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General Introduction

The skin as an iconic model in Evo-Devo

The skin is the largest of all organs in the body, and one of the only organs that is immediately visible to the external examination. That makes it a powerful system to carry out experimental research, as deviations from wild type are thus immediately detectable. As the primary interface between the body and its surroundings, the skin provides insulation and protection against environmental stress, allows secretion and cooling, and offers a major visual display crucial for communication, camouflage, mimicry, warning, reproduction... Both skin structure and patterns are largely established during embryogenesis and have been associated with an individual's survival and reproductive success.

The patterning of the skin is largely characterised by the arrangement of two characters locally established within skin layers, namely integumentary appendages (various types of glands and keratinous structures, e.g. hair, feathers and scales) and pigmentation, which both have historically served as handy visual characters in genetic and evolutionary studies: their development and physiology have thus been well characterized. Despite being very diverse across the animal kingdom, skin patterns are highly reproducible within individuals of the same species and represent a good example of a stable natural phenotype created by dynamic pattern-forming events.

Indeed, numerous genes and developmental pathways involved in the specification, differentiation and activity of skin cells have been identified. This provides an ideal genetic and phenotypic framework to study the morphogenetic and molecular events controlling the spatial arrangement of these traits, and thus the developmental constraints shaping skin pattern evolution.

Aim and organisation of the manuscript

In order to propose a unified understanding of skin pattern formation, this manuscript has been thought out and written as a concise account of the state of the art of 1) the mechanisms involved in the development of the skin patterns and 2) the mathematical frameworks and tools historically used for pattern formation. For the sake of conciseness and homogeneity, I have targeted the content of the introduction to put in perspective as well as possible the contributions of my thesis work: even though I have mainly worked on appendage patterns, we will see that lessons from colour patterning problems features can serve. Technical aspects of mathematical analysis are left in Annex.

In the first part of the Introduction, we define the morphological features (I-1)

that compose the skin patterns (I-2), and show how these patterns are regulated (I-3

and I-4) in prospect for modelling. In the second part, I introduce some mathematical tools and show how to build an array of partial differential equations from scratch and to study these equations (II-1). Then I present some famous models (equations, signification and patterning potentials) (II-2) and mention the effects of some model constraints such as initial conditions or domain size on patterning (II-3). In the last part of the introduction, I discuss the modelling approach in the context of skin pattern formation (III-1) and review some recent studies where this approach turned out to be successful (III-2 and III-3). Following the introduction, part IV gathers the main results of my thesis on the patterning of appendage primordia. Then, a short comment around some preliminary results on a probable patterning process occurring late in development (V) precedes a general discussion.

I-Introduction Part 1.

Morphogenesis and patterning of the skin I-1. Emergence of skin morphological features

The histological organization of the integument is fairly conserved amongst vertebrates, where it generally consists of two layers: (i) an outer layer (the epidermis) composed of a stratified coat of keratinocytes and a basal sheet of epidermal stem cells;

and (ii) an underlying layer (the dermis) composed of a tissue matrix containing nerves and blood vessels (Fig. 2). At the interface between these two layers, the basal lamina -comprised of collagen, fibronectin and laminin -acts among other things as a point of attachment for cells [START_REF] Bush | Conjugation of extracellular matrix proteins to basal lamina analogs enhances keratinocyte attachment[END_REF] The skin as a complex organ does not exist as such until a relatively late stage of development when the dermis becomes discernible from the underlying mesenchyme:

we start by describing these early embryonic processes of skin histogenesis. Then we focus on the emergence and general histology of the two characters that define the spatial organization of the skin: the integumentary appendages (various types of glands and keratinous structures, e.g. hair scales and feathers; I-2) and pigmentation (I-3).

I-1.a Early histogenesis: origin of skin cells

Origin of skin layers

Dorsal and ventral dermal cells come from distinct embryonic structures. The central-most region of the dermomyotome, which constitutes the upper part of the somite, gives rise to dorsal dermal cells located in the dorsum and dorsal region of the limbs (as well as embryonic muscle progenitors; [START_REF] Christ | Formation and differentiation of avian somite derivatives[END_REF][START_REF] Fliniaux | Ventral vs. dorsal chick dermal progenitor specification[END_REF][START_REF] Gros | A common somitic origin for embryonic muscle progenitors and satellite cells[END_REF][START_REF] Mauger | The role of somitic mesoderm in the development of dorsal plumage in chick embryos. II. Regionalization of the plumage-forming mesoderm[END_REF]. In this process, a fibrous network first invades the space between the overlying ectoderm and the epithelial somite. This provides a stratum for incoming mesenchymal cells that migrate directly above the dermomyotome in the dorsolateral region, or medially to colonize the subectodermal space located over the neural tube (from the third to the fifth embryonic days in the chick (E3 to E5), and from E9.5 to E13 in mice). In birds, the dermal cells involved in the formation of spinal feathers derive from the medial-most part of the dermomyotome while the lateral-most part likely gives rise to the lateral regions of the skin [START_REF] Olivera-Martinez | Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras[END_REF], 2002). Ventral dermal cells (i.e., located in the ventrum and ventral regions of the limbs) arise from the somatopleure (i.e., the dorsal part of the lateral plate mesoderm). The somatopleural mesoderm extends and forms a loose mesenchyme invaded by somitic cells (muscles) that later transforms into the lateral integument. The proximal-most part of the somatopleure (i.e., closest to the somites) gives rise to the dermal cells involved in the formation of the feather in the ventrum [START_REF] Fliniaux | Ventral vs. dorsal chick dermal progenitor specification[END_REF]Fig. 3).

Concomitantly with these processes, the ectoderm gradually differentiates into the epidermis composed of one layer of columnar cells covered by a periderm. Tissue recombination experiments have shown that dermal and epidermal cells have distinct functions in the patterning of the skin. We will see all along this manuscript in what is strong evidence that a significant fraction of melanoblasts also arise from Schwann cell precursors, which migrate ventrally and then along newly forming nerves [START_REF] Adameyko | Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin[END_REF].

In contrast, amphibians, fishes and reptiles possess several types of pigment cells called chromatophores, which are classified according to the colour they produce. The large majority of them also derive from the neural crest.

I-1.b Appendages Emergence of appendage fields

From E5 to E6 in the chick and from E13 to E14 in the mouse, the mesenchymal cells differentially organize across the skin beneath the epidermis, ultimately leading to the formation of two types of superficial dermis: (i) a dense dermis, characteristic of future feather or hair regions (high cell density: 2.6 nuclei per 1000 μm in birds); and (ii) a loose dermis, which corresponds to future glabrous skin regions (low cell density: 1.98 nuclei per 1000 μm in birds). Extracellular material accumulates in the latter, which becomes unable to induce the formation of appendages [START_REF] Dhouailly | A new scenario for the evolutionary origin of hair, feather, and avian scales[END_REF][START_REF] Sengel | Aptitude of the skin constituents of the mid-ventral apeterium of the chicken for forming feathers[END_REF]Wessells, 1965).

In birds, the dense dermis initially forms in the dorsal-most part of the future spinal tract right after E6, at HH29 (Hamburger-Hamilton stage 29;[START_REF] Hamburger | A series of normal stages in the development of the chick embryo[END_REF], and one day later in the region corresponding to the future ventral tract. In rodents, the vibrissae field forms first, followed by fur (for which dense dermis first occurs laterally and spreads homogeneously two days later over the neural tube and ventral surface), then the tail field, and lastly, the plantar surface.

Formation of placode primordia

The appendage fields further differentiate in a process involving intense cellular reorganization and molecular crosstalk between dermal and epidermal layers (see sections I-3 and I-4). Just when the dermis becomes competent, local inductive signals from the dense dermis instruct the overlying epidermis to thicken the epithelial sheet, thereby producing circular structures named epidermal placodes, (in which basal layer cells have the same density as the surrounding epithelium but increased height). Once formed, placodes signal back to the underlying dermis to form dermal condensations (with increased cell density, Fig. 2). From these, proliferating signals instruct the epidermis to initiate the production of feather or hair follicles (for reviews [START_REF] Ahn | Signaling in tooth, hair, and mammary placodes[END_REF][START_REF] Biggs | Early inductive events in ectodermal appendage morphogenesis[END_REF][START_REF] Widelitz | Early events in skin appendage formation: induction of epithelial placodes and condensation of dermal mesenchyme[END_REF].

Appendage morphogenesis

In the case of the hair follicle, proliferating cells from the placode invade the dermis to surround the dermal condensation, which becomes the dermal papilla.

Further proliferation and differentiation of epithelial cells result in the formation of the hair shaft and the inner root sheath of the mature follicle (Millar, 2002, Fig. 4).

Feather follicle morphogenesis differs markedly: proliferating dermal cells form a fingerlike feather papilla, or feather bud, which grows more rapidly on the dorsal side thereby establishing dorsal and ventral surfaces. The epidermis creates a cylindrical invagination by proliferating around the base of the papilla. The feather follicle is thus composed of an outer dermal layer surrounding an outer epidermal layer, a follicle cavity, an inner epidermal layer, and the dermal pulp at the centre (which provides nutrients to the growing feather) (Fig. 4). The feather itself is produced through a complex morphogenetic process involving continuous growth and a helical displacement of longitudinal epithelial ridges that form the future barbs within the inner epidermal

Histology of fully formed appendages

In amniotes (i.e., mammals, birds and reptiles), integumentary appendages (i.e., hair, feathers and scales, respectively) derive from the epidermis. This is in contrast to fish, where scales (and derivatives such as scutes, spines, stings, bony plates, or the lateral line [START_REF] Sire | Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio)[END_REF]) are formed by the dermis. While the study of scale formation in fish has provided information on the evolution of cutaneous appendages [START_REF] Sharpe | Fish scale development: Hair today, teeth and scales yesterday?[END_REF], the histological basis of scale patterning remains scarcely known.

In reptiles, the major cutaneous appendage is the scale. These rigid plates overlap most of the time in regular patterns, which cover the entire body and generally provide resistance to water and protection against physical stresses. In crocodiles, skink or tortoises, additional bone plates (osteoderms) that can fuse with the ribs to form shells (dorsal carapace and ventral plastron) may be found in the dermis.

In birds, the main appendage is the feather, a highly organized keratinous structure typically comprising a basal quill (calamus) implanted into a follicle in the epidermis, and extending into the rachis (central shaft). The latter bears barbs (primary branches) which themselves bear barbules (secondary branches). Contour feathers of the outer layer have barbicels (hooks) that attach barbules together in a flat "vane" providing the strength necessary for flight and water-resistance, while down feathers that constitute the inner layer have loose barbules, creating a fluffy structure trapping air for thermal insulation [START_REF] Prum | Development and evolutionary origin of feathers[END_REF]. Another notable appendage of birds, covering the hind limb, is the scale (scutate scales on the dorsal surface and reticulate scales on the ventral surface).

In mammals, the skin is covered by hair and sweat glands. Hair is implanted in follicles located at the dermis level, and is of two types: (i) vibrissae, generally located in a restricted area of the upper jaw, act as tactile sensory structures for environment sensing; and (ii) fur, composed of down hair (awl, auchene, and zigzag hair in rodents)

forming the undercoat and allowing thermal insulation, and sparser guard hair (1-3% of fur hair) that protrude through the undercoat to form an upper layer involved in visual display, water resistance, and protection against ultraviolet radiation. Other mammalian appendages include scales (e.g., covering the tail of rodents and observed in a few other groups such as pangolins).

While scales are directly rooted in the dermis, feathers and hair are deeply anchored in specialized structures called follicles, located at the dermis level and composed of both dermal and epidermal cells (Fig. 4). The hair follicle is a simple sac of two layers of epidermal cells (inner and outer epithelial sheets) associated with an erector pili muscle and sebaceous gland. At the base of the hair follicle, a group of cells forms the vascularized dermal papilla, itself surrounded by the germinal matrix, which contains pigment cells and produces the hair through progressive keratinization. The feather follicle is a cylindrical invagination of the epidermis into the dermis that creates a basal dermal papillae and an overlying cavity terminated by the epidermal collar, from which the feather develops [START_REF] Sengel | Morphogenesis of skin[END_REF].

I-1.c Colouration in Metazoan

Colouration results from a complex combination of biological pigments (i.e., chemical compounds absorbing certain wavelengths) and structure/layering of protein, sugars or nucleotides in cutaneous appendages (that cause iridescence and/or reflection). Pigments are deposited within pigment granules along appendages and can also be found in the skin tissue (epidermis and/or dermis; [START_REF] Johansson | Regionalisation of the skin[END_REF].

Especially in birds and mammals, melanocytes produce the melanin pigment (a derivative of the amino-acid tyrosine) of which there are two main types: eumelanin, which produces a brown-to-black color; and pheomelanin, which gives rise to yellow-toorange coloration [START_REF] Barsh | Biochemical and genetic studies of pigment-type switching[END_REF]. Melanocytes are found (depending on species or age) in the dermis and the epidermal layer of glabrous regions, as well as at the basis of hair/feather follicles and forming scales (and occasionally in non-skin-specific cells such as nerve cells). Birds can also acquire carotenoids through their diet (organic pigments which are synthesized by plants, algae or bacteria and which can dissolve in fat and are deposited on growing feathers, causing vivid yellow-to-red coloration), and may achieve structural coloration through various methods, such as light reflection, diffraction and interference through alternating layers of air and keratin or deformation through nanochannels in keratin (e.g., peacock green feathers and diffuse blue in macaw, respectively; for reviews, see [START_REF] Ball | Nature's color tricks[END_REF][START_REF] Kinoshita | Structural colors in nature: the role of regularity and irregularity in the structure[END_REF]. In amphibians, fishes and reptiles, chromatophores include melanophores (black or brown melanin pigments), xanthophores and erythrophores (yellow and reddish carotenoid and pteridin pigments, respectively), iridophores and leucophores (light reflection causing iridescent, blue, silver or gold, and whitish/dull color, respectively) and cyanophores (unknown compound producing electric blue ; [START_REF] Kelsh | Genetics and evolution of pigment patterns in fish[END_REF]. These chromatophores are usually distributed in different skin layers, with xanthophores and erythrophores constituting the upper layer, iridophores and leucophores forming an intermediate layer, the melanophores forming the upper layer.

I-2. Patterning of the skin

The spatial arrangement of pigments and appendages is extraordinarily diverse in the wild. This phenotypic diversity can be observed at the scale of the whole body (macro-pattern, characterised by the regionalisation of the skin in separate domains having their own geometry I-2.1) or within local skin areas (micro-pattern, characterised by the appendage or colour motifs found within macro-domains, I-2.2), and in the ultrastructure, shape, and colour of individual appendages (withinappendage pattern, I-2.3). We give an overview of the adaptive functions it serves, from camouflage to regulation (I-2.4).

I-2.a Macro-patterning of the skin Appendages

The macro-patterning of appendages represents the relative organization of the different appendage fields across the skin. Here, every macro-domain is defined by the presence of a given type of appendage

In birds (at the exception of a few known species who have feathers all across their skin), feathers are arranged in tracts (also called pterylae) separated by glabrous areas (also called apteria; Fig. 5;[START_REF] Pettingill | Ornithology in Laboratory and Field[END_REF][START_REF] Stettenheim | The Integumentary Morphology of Modern Birds-An Overview[END_REF]. This macropattern or "pterylography" (as defined by the length, width, and shape of each pterylae) is typically formed of spinal (dorsal), capital (head), humeral (anterior part of the wing), alar (posterior part of the wing), femoral (anterior part of the hindlimb), crural (posterior part of the hindlimb), caudal (tail) and ventral tracts (Fig. 5).

Pterylography appears to be specific to each bird group, such that before the advent of modern molecular tools it was proposed as a taxonomic tool (i.e., Nitzsch's Pterylography [START_REF] Nitzsch | Nitzsch's Pterylography[END_REF]). It has been thoroughly described in a few species, but inter-specific surveys exist only for Passeriformes and ovenbirds (Clench, 1970).

In mammals, four major hair fields characterize the macro-pattern: the vibrissae field, located above the upper lip; the tail field; the plantar field; and fur [START_REF] Johansson | Regionalisation of the skin[END_REF].

Colour

Colour macro-patterning corresponds to the repartition of colour domains, in the diversity of their sizes and shapes, at the scale of the whole body. Most studies on colour patterning have focused on melanin-based pigmentation in mutant strains of chick and mice, and only a handful of studies have so far described histological differences between colour compartments in wild populations. For instance, many vertebrates display a dark dorsum and a light ventrum (Fig. 5), resulting from differences in the distribution of pigments along appendages [START_REF] Manceau | The developmental role of Agouti in color pattern evolution[END_REF], see

I-2.c and I-4b).

In birds, the macro patterning of colour domains vary extensively.

For instance, the Estrilidae family of small passerine birds (which we use in the lab notably to study the establishment of colour domains) displays a tremendous variety of colour domain arrangements and shapes (Fig. 5).

I-2.b Micro-patterning of the skin

Appendages

The appendage micro-pattern corresponds to the spatial distributions of appendages within an appendage field. It is characterized by the density of appendages and the motifs they form.

In most species of birds, feather primordia first appear along one or two (depending on species and on the position on the antero-posterior axis) longitudinal rows towards the spinal region (around E6.5, HH29 in chick). New follicle rows then progressively appear at both sides of the first one(s). Thus, longitudinal rows gradually elongate and new rows are added laterally, until the total population of contour feather follicles is present (E9 in chick). At this point, feather follicles are first arranged in a nearly perfect regular hexagonal shape, that later turn into oblique lines forming "chevrons", as if an hexagonal array was stretched along the anteroposterior axis (Fig.

6 ;[START_REF] Sengel | Morphogenesis of skin[END_REF]. This particular shape seems to be present in every species of birds displaying well-separated feather tracts (for instance, emu and penguin feathers do not form chevrons; see IV-2 for data on these species and VI-2 for a discussion on this topic). Feather micro-pattern establishment and diversity are extensively discussed in section III-1.b, IV and V.

In mammals, each of the four hair fields has a specific micro-pattern: vibrissae hair is arranged in longitudinal rows; tail hair intermingles with scales; plantar hair is sparse and found between the sweat gland-containing foot pads; and fur hair is characterized by a precise, evenly spaced arrangement of guard hair and down hair, which varies in density, ranging from extremely high (e.g., sea otters) to nearhairlessness (e.g., elephants, rhinoceroses, moles, cetaceans, pinnipeds, hippopotamuses), and orientation (e.g., tufts or whorls are established by local variation in the directionality of hair growth) (Fig. 6).

I-2.c Within-appendage patterning

The formation of within-appendage coloured patterns is concomitant with the differentiation of appendage follicles and pigment cells in the skin. It results from the deposition of pigments in the appendage and is intimately linked to its morphogenesis.

Within-appendage patterns can vary according to gender, age, season, or specific environmental conditions (amount of light, physical stress, etc.) contrary to micro-and macro-pattern, which are generally stable.

The birds present so far the most diversity in colour distribution within a single appendage (Fig. 7), probably because the area of a feather surface allows more spatial configurations than a thinner hair. Within-feather patterns are characterized by four main types -plain, transverse oblique bars, spots and scales -each arranged symmetrically on both side of the quill (e.g., bars thus form typical chevrons, a diversity used in phylogenetic studies to reconstruct evolutionary histories of bird lineages [START_REF] Marshall | The evolution of pattern camouflage strategies in waterfowl and game birds[END_REF]). Typical cases for within-hair patterning are homogeneous and banded patterns: in Peromyscus mice, dorsal hair have a yellow band of pheomelanin comprised between two eumelanic regions at the tip and base of the hair [START_REF] Barsh | The genetics of pigmentation: from fancy genes to complex traits[END_REF].

I-2.d Adaptive function of skin patterns

Appendages

In mammals, the integument acts as a barrier against temperature fluctuations, and the patterning of hair is thus of uttermost importance in animals facing extremely low (or high) temperatures: dramatic modifications in hair patterning creating denser (or sparser) fur, thereby optimizing thermal regulation, are commonly observed in polar-inhabiting (or desert-dwelling species) as well as in marine mammals.

Feathers' shape, length and ultrastructure are also associated with various adaptations. For example, small insulating feathers surround the eye or cover the head, while long, stiff, aerodynamic feathers are found on the wing or the tail for flight or sexual display; juvenile duvet feathers lack a vane region due to the absence of barbicels, and quill thickness is dramatically increased in penguins for thermal insulation, and so forth [START_REF] Pettingill | Ornithology in Laboratory and Field[END_REF]. It has been suggested that the restriction of feathers to certain areas (macro-pattern restriction) permits large body sizes while maintaining a high range of movement, morphologically necessary for flight, and consistent with the reputed absence of apteria in flightless birds [START_REF] Nitzsch | Nitzsch's Pterylography[END_REF].

Colour

Hypotheses for the adaptive role of colour pattern have abounded. The most frequently used is camouflage, which can be achieved through several means. In pattern blending, the pattern of colour matches patterns of light and dark in the environment such as are created by tree foliage (e.g., spotted forest-dwelling Felidae [START_REF] Ortolani | Spots, stripes, tail tips and dark eyes: Predicting the function of carnivore colour patterns using the comparative method[END_REF]). In disruptive coloration, a superimposed pattern of contrasted colours blurs the body contour that becomes difficult to distinguish from the background (seen in predators such as the leopard or preys such as the European Nightjar [START_REF] Stevens | The effectiveness of disruptive coloration as a concealment strategy[END_REF]). Disruptive patterns may draw the predator's attention away from the real shape by visually suggesting a false form (e.g., cuttlefish [START_REF] Barbosa | Cuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns[END_REF]).

Finally, in countershading, animals achieve concealment by displaying a light ventrum and dark dorsum so as to balance the light from above and the shadow from beneath (a very common pattern more sharply seen in sea animals and bush and savanna mammals such as rodents, big cats, bovidae, or antelopes [START_REF] Caro | The Adaptive Significance of Coloration in Mammals[END_REF]). Some animals combine camouflage strategies (leopards are blended, disruptively camouflaged, and counter-shaded [START_REF] Allen | Why the leopard got its spots: relating pattern development to ecology in felids[END_REF]).

Visual patterns can also be used as signals to conspecifics (e.g., to advocate for individual quality in sexual selection and mate choice, such as in flycatchers [START_REF] Stre | A sexually selected character displacement in flycatchers reinforces premating isolation[END_REF]) or to communicate to other species (prey may advertise its noxiousness, pugnacity or unpalatability to signal its unprofitability to potential predators). For example, spotted skunks and poison dart frogs have vivid, sharp patterns associated with warning for noxious anal secretion and toxicity, respectively [START_REF] Summers | The evolution of coloration and toxicity in the poison frog family (Dendrobatidae)[END_REF]. While a few studies have empirically tested the adaptive role of overall coloration in invertebrates (e.g., peppered moth [START_REF] Cook | The peppered moth and industrial melanism: evolution of a natural selection case study[END_REF])) or vertebrates (e.g., deer mice [START_REF] Vignieri | The selective advantage of crypsis in mice[END_REF]), thus far none has focused on spatial differences in pigment distribution. The adaptive value of colour patterns has thus remained largely intuitive, and much subject to debate. For example, in a recent study, the stripes of zebras -long-thought to represent a case of disruptive coloration -have been associated with the avoidance of biting flies and ectoparasite attacks [START_REF] Caro | The function of zebra stripes[END_REF].

I-3. Regulation of appendage patterning

Heterospecific tissue recombination experiments have shown that dermis and epidermis have distinct functions in the formation of appendages: the class specificity of skin appendages (feathers, scales, hair) is epidermis-dependent [START_REF] Wu | Evo-Devo of amniote integuments and appendages[END_REF], while the dermis possesses the information responsible for the region-specific architecture of appendages. When grafted onto reptilian or mammalian epidermis, the chick dermis induces the formation of scales or hair (respectively) arranged in a typical avian hexagonal pattern [START_REF] Sengel | Morphogenesis of skin[END_REF]. Thus, the identity of appendage fields according to location in the body (macro-pattern) and of the species-specific arrangement and type of appendage (micro and within-appendage pattern) is acquired early, resulting at least in part from a series of instructing signals emanating from precursor transient structures and maintained in the skin tissue.

In this part, we focus on the events taking place just before or during the apparition of appendage primordia (~E5.5-E6.5 in chick, E13-E14 in mouse). We classify them according to cellular, molecular and mechanical point of views but one must keep in mind their entanglement: cellular, molecular and/or mechanical processes have been shown in many studies to act in concert to regulate morphogenesis processes.

I-3.a Cellular behaviours

Appendage placodes are characterized by a cell density that is highly superior compared to their surrounding environment, where cell density decreases (at E7/HH30 in chick dermis, ~3,2 cells/1000μm 3 vs ~1,2 cells/1000μm 3 (Wessells, 1965)).

Understanding the origins of cell density differences is thus required to understand the regulation of primordia formation.

Cell proliferation

A number of in vitro and in vivo experiments have shown an homogeneous cellular proliferation across the skin before primordia formation, followed by a cessation of proliferation within early forming primordia both in mouse and chick (Wessells, 1965;[START_REF] Wessells | Nonproliferation in dermal condensations of mouse vibrissae and pelage hairs[END_REF]. This lapse of time when proliferation stops has been extensively characterized molecularly and is probably related to intense cell fate specification (I-3.b). Later, proliferation timely restarts to enable follicle branching and growth [START_REF] Magerl | Patterns of Proliferation and Apoptosis during Murine Hair Follicle Morphogenesis[END_REF][START_REF] Yu | The morphogenesis of feathers[END_REF].

Cell movements

Cells movements in the skin prior to the formation of appendages have been mentioned in section I-1.a during the establishment of the skin layers, and quantified through cell tracking analyses in several studies (Ahtiainen et al., 2014;Ho et al., 2019;Fig. 8).

At the onset of primordia formation, cell compaction and centripetal migration are the main cellular mechanisms associated with appendage placode morphogenesis.

Cell migration is dependent on actin arches secreted at the onset of placode formations, as experiments including the inhibition of actin polymerisation (e.g., ex-vivo skin cultures with Latrunculin A) led to the disruption or suppression of placode formation in both mice and chick (Ahtiainen et al., 2014;Ho et al., 2019). Fig. 8 resumes some data on cell migration in chick and mouse as well as the differences in behaviours between dermis and epidermis in chick.

Bottom gene panel: Gene regulatory network derived from the transcriptional responses pathway stimulations on the left. (Glover et al., 2017)

Twist

The basic helix-loop-helix (bHLH) transcription factor Twist2 (also named cDermo1) has been shown to induce the formation of the dense dermis (its misexpression can induce the formation of ectopic feather buds; Hornik et al., 2005).

The role of Twist2 in promoting cell proliferation before the formation of primordia has been suggested in chick [START_REF] Scaal | BMPs induce dermal markers and ectopic feather tracts[END_REF]. It is thus an early molecular factor of primed importance, since the first skin areas competent to from placodes are characterised by their increased cell density.

Wnt signalling pathway

Three Wnt signaling pathways have been characterized: the β-catenin canonical Wnt pathway (known for regulating gene transcription), the non-canonical planar cell polarity (PCP) pathway (which regulates the cytoskeleton and thus possibly the shape of cells), and the non-canonical Wnt/calcium pathway. All three pathways are activated by the binding of a Wnt-protein ligand to a Frizzled family receptor, which passes the biological signal to the Dishevelled protein inside the cell.

The activation of β-catenin leads to the formation of ectopic appendages both in mouse [START_REF] Gat | De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin[END_REF] and chick (Noramly et al., 1999). Several Wnt genes are differentially expressed during the formation of primordia. For instance, Wnt-1, Wnt-3a and Wnt-5a are all expressed at HH29 in chick throughout the epidermis, but while the first two are then expressed within the primordia and activate the canonical pathway, Wnt-5a becomes expressed in the interbud region and triggers the PCP pathway; they all promote cell proliferation. On the other hand, Wnt-11 has an homogeneous dermal expression at HH29, then is restrained to the interbud region, activates the PCP pathway, inhibits proliferation and promotes migration [START_REF] Chang | Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers[END_REF]. Their role in feather patterning was determined though RCAS mediated misexpression in ovo: Wnt-1 reduced spinal tract size, Wnt-3a increased dermal thickness, expanded the spinal tract size, reduced interbud domain spacing, Wnt-11

and Wnt-1 enhanced interbud spacing.

Thus, distinctive Wnts have positive and negative roles in forming the dermis, tracts, and interbud spacing. Their concomitant expression with Wnt inhibitor proteins, for instance of the Dkk family (whose overexpression prevents appendages to form, [START_REF] Chang | Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers[END_REF] point towards a continuous and fine control of the level of activation of Wnt signaling pathways during skin patterning.

BMP

The BMP family is also differentially expressed during placode formation. In chick, BMP2 is first expressed in the epidermis at HH29 and then within the placode and the dermal condensation, BMP4 is more delayed and restrained to dermal condensations [START_REF] Noramly | BMPs mediate lateral inhibition at successive stages in feather tract development[END_REF], and BMP7 is expressed broadly in the preplacode epidermis and subsequently becomes localized to the forming placodes [START_REF] Harris | Bmp7 mediates early signaling events during induction of chick epidermal organs[END_REF].

BMP2 bead implantations early in chick development (HH17-22) notably lead to an upregulation of cDermo-1 expression in the mesenvhyme and to an increase of proliferation, which induces dermis competence and the formation of ectopic feathers [START_REF] Scaal | BMPs induce dermal markers and ectopic feather tracts[END_REF]. BMP7 function is necessary for the formation of epidermal placodes [START_REF] Harris | Bmp7 mediates early signaling events during induction of chick epidermal organs[END_REF]. On the other hand, a number of experiments have shown inhibitory effects of BMPs: for instance, bead implantations of BMP4 at the onset of feather placode formation (HH29) prevent feathers to form in the vicinity of the bead (Jung et al., 1998). Concerning the role of BMPs on cell movements, BMP-7 has been shown to act as a chemo-attractant to attract cells in dermal condensations, in contrast with BMP-2 which provokes an arrest of cell migration (Michon et al., 2008).

FGF

FGFs are a family of diffusible proteins that act through the activation of MAP Kinases in the cytoplasm.

FGF-10 is expressed early in the mesenchyme (in the dorsal midline, at HH28 in chick) and has been suggested to enhance proliferation in the dermis, allowing it to be competent to form feather primordia. Blocking FGF-10 with specific antibodies leads to the formation of glabrous areas [START_REF] Mandler | FGF signaling is required for initiation of feather placode development[END_REF]. FGF-2 is expressed in epidermal placodes and acts positively in the formation of dermal condensations, notably inducing chemo-attraction [START_REF] Song | FGF-2 signaling is sufficient to induce dermal condensations during feather development[END_REF]. It is able to rescue the formation of feather in Scaleless mutants, which lack feathers and foot scales (Song et al., 1996).

It has been shown that this scaleless trait is caused by a loss-of-function mutation in FGF20, a gene expressed strictly in the epidermis and located within primordia.

Conversely, inhibiting the FGF signalling pathway with soluble antagonists FGFR-1 and FGFR-2 prevents feather follicles to form. Of note, adding FGF-1,2 or 4 in the medium of ex-vivo cultures leads to the fusion of primordia in the feather tracts (Widelitz et al., 1996), whereas suppressing the ERK activation -downstream of FGF -with inhibiting drugs leads to a failure to form distinct feathers caused by a lack of cell movements (Lin et al., 2009).

Eda

Contrary to the previous factors, which are diffusible and can pass through the basal lamina at the interface between the dermis and the epidermis, Eda is a transmembrane protein that allows communication via cellular contact; it is a member of the Tumor Necrosis Factor (TNF) family of ligands and was initially implicated in appendage development by the cloning of a gene underlying hypohidrotic ectodermal dysplasia (HED) in mouse and human [START_REF] Kere | X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein[END_REF][START_REF] Laurikkala | Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar[END_REF].

HED is characterised by agenesis or malformation of ectoderm-derived appendages, such as teeth, sweat glands and hair follicles, while the skin itself develops normally.

Positional cloning identified a receptor for Eda, a member of the TNFR superfamily called Edar (Headon and Overbeek, 1999), and a cytoplasmic transducer of Edar signals called Edaradd (Headon et al., 2001;Yan et al., 2002).

During primordia formation in mouse and chick, Edar transcripts are located in epidermal placodes, complementary, Eda transcripts are found across the epidermal interplacode area, and Edaradd is expressed in the same cells as Edar (Ho et al., 2019;[START_REF] Laurikkala | Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar[END_REF].

Edar signaling mediates cell interactions within the ectoderm and regulates the initiation and morphogenesis of hair and teeth. It is also necessary for the development of fish scales, as Eda and Edar have been found to be crucial for hair follicle, tooth, and scale formation in fish, lizards, and mammals [START_REF] Di-Poï | The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes[END_REF][START_REF] Sadier | The ectodysplasin pathway: from diseases to adaptations[END_REF], suggesting this pathway and its function have been well conserved during the evolution of ectodermal organs. In chicken, targeted experiments found that locally forced stimulation of the EDAR pathway can induce formation of extra feather buds at the margins of expanding tracts [START_REF] Drew | The Edar subfamily in feather placode formation[END_REF].

Interactions of signalling pathways

Adding to the complexity of the molecular regulation of appendage patterning, some of the pathways cited above are closely linked one to another. In the past few decades, biologists have provided a number of helpful data in understanding how these pathways regulate each other. A method that has been used extensively to assess such interactions is to analyse the results of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in ex-vivo culture explants, in a medium containing an inhibitor or an activator of one of these pathways. I refer to F. Michon's thesis [START_REF] Michon | Formation de la condensation dermique chez l'embryon de poulet : études in vivo[END_REF] for extensive details on the pathways cited above and to Fig. 10 for an illustration of these interactions.

I-3.c Mechanical processes

Concomitant with the cellular and molecular processes cited above, the skin mechanical properties continuously evolve during the development. In morphogenesis, we generally include in the scope of mechanical cues the physical forces, alterations in extracellular matrix (ECM) mechanics and changes in cell shapes. Physical forces comprise, among other phenomena, shear stress (i.e., frictional forces of fluid flows on the surface of cells), compressive and tensional forces (respectively pushing and pulling the material) and traction exerted on the adhesion to the ECM and other cells as a result of the shortening of the contractile cytoskeletal actomyosin filaments, which transmit tensional forces across cell surface adhesion receptors (e.g. integrins, cadherins) [START_REF] Mammoto | Mechanosensitive mechanisms in transcriptional regulation[END_REF].

Mechanical processes can cause changes in size, shape, number, position, and gene expression of cells [START_REF] Heisenberg | Forces in tissue morphogenesis and patterning[END_REF][START_REF] Munjal | A self-organized biomechanical network drives shape changes during tissue morphogenesis[END_REF]. Indeed, mechanical cues have a large impact on transcriptional regulation [START_REF] Mammoto | Mechanosensitive mechanisms in transcriptional regulation[END_REF]. Some of the primary genes involved in appendage have been directly implicated in mechano-chemical regulation processes: in Drosophila, physiological deformations of the tissues trigger nuclear translocation of β-catenin from cell-cell junctions in the anterior pole of stomodeal cells, and activates the transcription of Twist, which is involved in pattern formation and crucial for subsequent midgut differentiation [START_REF] Desprat | Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos[END_REF].

Recently in chick, Shyer and colleagues showed that the nuclear translocation of β-catenin in the forming feather primordium is similarly mechanically triggered (Shyer et al., 2017). Strikingly, they have shown that a range of primordia size and spacing (i.e., micro-pattern alteration) can be obtained by tuning the contractility of cells and the stiffness of the substrates in ex-vivo skin cultures.

I-4. Regulation of colour patterning

From melanoblasts to melanocytes Newly specified melanoblasts exiting the neural crest migrate ventrally within the dermal compartment to colonize the trunk and limb regions. Upon reaching their final location, they invade the epidermal compartment to colonize the basis of the feather bud or hair follicle, where they differentiate into mature melanocytes. In fishes, waves of chromatophores leave the neural crest and undertake migration routes through the dermis or between the somite and the neural tube to populate the eye, ear, brain and skin epidermis [START_REF] Barsh | The genetics of pigmentation: from fancy genes to complex traits[END_REF]. In the case of melanocytes, fate specification is dependent on the expression in NCCs of the transmembrane receptor Kit and the microphthalmia-associated transcription factor Mitf [START_REF] Opdecamp | Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor[END_REF][START_REF] Wilson | Neural crest cell lineage segregation in the mouse neural tube[END_REF], which controls the specific expression of the transcription factor Sox10 [START_REF] Hoek | Novel MITF targets identified using a two-step DNA microarray strategy[END_REF].

Development of pigment cells

The molecular regulation of melanocyte development has been widely studied in laboratory mutant models, and dozens of genes are known to promote not only their migration (e.g., Ephrin receptor, EphR; Endothelin receptor b, Endrb) but also their proliferation (e.g., receptor tyrosine kinase Kit) and differentiation (e.g., Tyrosinaserelated protein 1, Trp-1; melanocyte-stimulating hormone, α-MSH) (reviewed in [START_REF] Cichorek | Skin melanocytes: biology and development[END_REF][START_REF] Hirobe | How are proliferation and differentiation of melanocytes regulated?[END_REF]. During the last days of embryogenesis, mature melanocytes synthesize melanin in specialized organelles (melanosomes) in a series of enzymatic reactions that convert the tyrosine amino acid to a polymer of melanin [START_REF] Del Marmol | Cysteine deprivation promotes eumelanogenesis in human melanoma cells[END_REF]. Melanin granules are deposited through melanocyte dendrites along growing hair and feathers.

Characterisation of pigment patterns

The spatial arrangement and differential activity of melanocytes in a macropattern (e.g., according to location in the body, within the epidermis and/or dermis, within or outside appendage fields, etc.) and micropattern (within or outside follicles, in local dense patches or homogeneously distributed, etc.) has been scarcely described in amniotes displaying region-specific differences in colour. It has been shown that in striped (tabby) cats, pigment-producing melanocytes are present in both dark and light stripes, and colour differences are likely produced by a modulation of their local transcriptional activity [START_REF] Kaelin | Specifying and sustaining pigmentation patterns in domestic and wild cats[END_REF]. Dorsoventral color differences in Peromyscus mice correlate with a delay in differentiation of ventral melanocytes compared to dorsal melanocytes [START_REF] Manceau | The developmental role of Agouti in color pattern evolution[END_REF]; however, it is unclear how this relates to differences in the distribution of pigments along dorsal and ventral hair (see above). In fishes, local differences in colour, such as lateral stripes in the zebra fish, result from (sometimes highly dynamic) changes in the arrangement of chromatophores within adult skin layers [START_REF] Singh | Zebrafish stripes as a model for vertebrate colour pattern formation[END_REF].

Within-hair/feather patterning

Within appendages, colour distribution is tightly linked to the morphogenetic events that control their shape and structure. Hair develops as a tubular protrusion expanding from the skin, and pigments thus deposit along the hair from the tip to the base. Within-hair patterning has been shown to involve a timely regulated control of melanocyte pigment-producing activity, modulating the type (eumelanin or pheomelanin) and presence/density of pigments along the individual appendage. The type of pigment produced is governed by the interaction of two proteins: (i) the transmembrane receptor melanocortin-1 (Mc1r), located at the surface of melanocytes; and (ii) its antagonist ligand, the secreted Agouti Signaling Protein (ASIP), produced by dermal papillae cells [START_REF] Barsh | The genetics of pigmentation: from fancy genes to complex traits[END_REF]. When the ligand α-MSH activates Mc1r, it induces the production of black eumelanin. The binding of Agouti causes a switch from the production of eumelanin to the production of yellow pheomelanin, thereby resulting in a lighter coloration. The activity of Agouti can be modulated by the serine protease Corin [START_REF] Enshell-Seijffers | The serine protease Corin is a novel modifier of the Agouti pathway[END_REF]. In the rodent dorsal skin, a transient peak of

Agouti expression during hair growth produces the typical banded pattern [START_REF] Barsh | The genetics of pigmentation: from fancy genes to complex traits[END_REF].

Nature of colour pattern instruction and pigment cell interactions

We have seen that the cells governing the formation of appendage follicles originate from the somite dermomyotome, and that their spatial distribution is mesoderm-dependent. Conversely, pigment-producing cells derive from the neural crest, but despite evidence that their differentiation responds to cues from the feather papillae [START_REF] Richardson | Pigment patterns in neural crest chimeras constructed from quail and guinea fowl embryos[END_REF], the means by which they govern color patterning remained unclear.

Recently, our laboratory showed that the periodic pattern of yellow and black stripes observed in the back of Galliform birds results from the timely production of yellow colouration at specific locations in the skin (resulting in a yellow-black banded patterns within early developing feathers, Fig. 7, the same way we just described in mice). In Japanese quail, the first black stripes are visible at E8, and the yellow ones at E9. Using natural variation of this striped pattern in five different species, we highlighted the role of agouti -itself expressed in several longitudinal bands (at E5.5, HH28 in quail) -in instructing the position of colour stripes. Grafting experiments showed that the somitic mesoderm autonomously instructs agouti expression and consequently the position of yellow stripes (Haupaix et al., 2018).

On the other hand, several studies have shown an important role of pigment cells interactions for colour patterning. In this sense, a large number of studies have been carried out on zebrafish, showing in particular that melanophores and xantophores interact through a 'run and chase' behaviour, and that their interactions with iridophores is also required for the formation of the pattern (for review, see [START_REF] Singh | Zebrafish stripes as a model for vertebrate colour pattern formation[END_REF]. In birds, the laboratory of Cheng-Ming Chuong showed that melanocytes were able to instruct adjacent dermal cells to express ASIP for pigment switching, and that gap functions could regulate the pigment pattern [START_REF] Inaba | Instructive role of melanocytes during pigment pattern formation of the avian skin[END_REF]. Grasping the origin of colour instruction thus remains a major challenge for developmental biologists. Crossing the results of two recent studies on birds' dorsal plumage striped pattern suggest an early instruction of agouti positioning by the dermis, followed by a fine autonomous modulation of pigment production and pigment domain size through a cross-talk between melanocytes (via gap junctions) and dermal cells (via agouti).

I-5 Conclusion of part I Wealth of skin pattern components

This first part showcases the fact that the patterning of the skin is a complex process that results from the organisation of many features. The distribution of appendage primordia in the skin draws the same pattern for 1) future forming follicles,

2) cellular aggregates and 3) molecular factors expressed within these primordiawhich we just saw are numerous (e.g., beta-catenin, Wnt3a, Edar, FGF20...). It draws a complementary pattern on some other factors that are expressed everywhere in the skin surface but on these primordia (e.g., Eda, Wnt11...). Similarly, a colour design in the skin of an animal portrays various patterns of pigments, pigment cells, patterning genes, etc.

Adding to the complexity of pattern formation, many of these factors -from whichever scale they belong to -interact each other: molecular pathways interact, gene expressions can drive cell movements, mechanical cues can trigger cell fate acquisitions.

It is to hope that the current amount of available data resumed in this first part is sufficient to disentangle the role of each of these factors.

Properties of skin patterns' geometry

The abundance of geometries that we can observe in the skin patterns of animals can be examined through different features. In prospect of using this abundance as an evolutionary predictive tool (cf III-1.b), it can be interesting to focus on some of the properties of these patterns.

Firstly, a pattern (or a patterning process) can display a particular directionality. For instance, the colour stripes in fishes and juveniles birds are oriented along the antero-posterior direction, as are the first feather follicles in chick forming in the spinal region. Regarding the patterning process of the spinal feather tract as a whole, there is also a dorso-ventral directionality as new rows of feather primordia are added one by one until the completion of this tract.

Secondly, typical distances that separate the repeated shapes (e.g., dots or stripes) vary extensively both within a same individual or across the wild (e.g., density differences of feather primordia between apteria and pterylea macro-domains, or density differences of hair in an otter compared to an elephant). In the case of perfectly periodic patterns, these typical distances are of great interest as periodic patterns can be fully defined by their type (hexagonal, squared, striped...), their directionality and this typical distance.

Among other aspects, we can also focus on the global regularity of a pattern, which can also vary between different areas or time points within a same developing embryo (this is the case for the patterns feather primordia, which is discussed in section VI-4) or between species.

Spatiotemporal windows of patterning processes within an individual

I have already mentioned several times that pattern types can differ according to the position in the body of an embryo: distinct macro-domains potentially host distinct types of patterns (I-2). Dividing the study of a patterning problem into wellchosen parts of space (i.e., to a selected part of the body of an embryo like a macrodomain) is important to assess the origins of the differences between the observed patterning behaviours. A first necessary step is to focus on one part of the embryo as a working model and describe all its features. In this thesis, the working model I have mostly focused on is the dorsal feather tract, whose patterning process displays variation in most of the characteristic properties cited above.

Defining the temporal window of study is also crucial. Indeed, the patterns we observe at a given time point during development or in adult are often transient: a given character will usually lose its pattern in favour of another one at a subsequent stage. This is the case for patterns at every scale (see e.g. the evolution of the spotted pattern of an adult leopard, or the evolving expression of Wnts in the different steps of feather formations, Fig. 9). All in all a given pattern at any time point can result from several upstream mechanisms. In this manuscript, we will further study and discuss the importance of describing every step of a motif's establishment to tackle pattern-forming problems.

II Mathematical models for skin pattern formation

The relatively limited variety of spatial patterns observed in the skin of animals contrasts with the amount of elements engaged in complex interactions supporting their formation (including cell types, signaling molecules, pigments, . . . ). Understanding the emergence of patterns and their regularity therefore calls for taking a step back from fine experimental descriptions and develop frameworks that can account for the most prominent types of phenomena and interactions. This is where mathematical modelling can efficiently step in the study of biological patterns.

Mathematical modelling conveys different meanings and a variety of activities. Essentially, a mathematical model of a biological phenomenon consists in a description of a biological system using a set of equations. To develop these equations, one needs to select appropriate variables that appear essential to the description of the phenomenon at hand, and describe their interactions through mathematical equations, with the aim of reproducing a set of natural observations. These equations can then be used to find numerical solutions, or for more abstract studies of their properties, when the theoretical results obtained are guided by, or confronted with, the reality of the observed phenomenon.

In this section, we introduce some basic tools used in mathematical modelling, presented as a toolbox (II-1), before reviewing briefly major classes of mathematical models that have proved to be relevant in skin pattern formation (II-2). We next present some insights on the effects on patterning of model constraints such as domain growth or initial conditions (II-3). We implicitly focus here on models that have proven, at least in part, their biological relevance in the context of the patterning events that we described in the first part.

II-1 Modeling tools II-1.a Alternatives to design a model i) Components of a model, classifications

Mathematical models are composed of variables and relationships between these (some are known, some are unknown and need to be computed). In all this part, unknown variables are typed in bold. Relationships can be described by mathematical operators -algebraic or differential -and functions (Annex A shows a summary of them), whereas variables are abstractions of system parameters of interest that can be quantified. In the biological sciences, a traditional mathematical model contains governing equations (most commonly, differential equations resulting from classical physics theory and conservation principles), and constraints (e.g., defining equations from physics or chemistry, initial conditions, boundary conditions).

Several classification criteria can be used to describe a typology of mathematical models according to the nature of their variables. model can indeed be :

-discrete or continuous: discrete models correspond to systems describing finite (or countable) objects, such as particles, individual cells, single molecules, etc., while continuous models represent continuous quantities such as the density of a substance, the velocity field of a fluid, etc. Time in a system can also be considered discrete (e.g., number of individuals at each generation) or continuous (evolution of the concentration of molecules at each time).

-deterministic or probabilistic/stochastic: in a deterministic model, every set of variable states is uniquely determined by parameters in the model and by sets of previous states of these variables (therefore, a deterministic model always provides the same outcome for a given set of initial conditions). Stochastic model explicitly incorporates randomness, and state variable are not described by unique values, but rather by probability distributions.

In other words, given a set of initial conditions, a stochastic system provides probabilities for each possible outcome).

In this manuscript, we want to follow the temporal evolution across the skin surface of variables such as cell density or molecular concentrations. In that purpose, we will mostly use in our manuscript partial differential equations (PDEs), i.e., differential equations that contain unknown functions that depend on several continuous variables (typically, time t and space x) and their partial derivatives.

ii) Initial and boundary conditions

Among the important constraints imposed on a model -on which the patterns it will generate depend drastically -feature the initial state of the system (initial conditions), and the behaviour of the system at the boundary of the domain on which it operates (boundary conditions).

Initial conditions are the values of the unknown variables at some point in time, designated as the initial time: for instance, the initial conditions in section IV-2 set the values of cell and molecular densities across the domain of the model, supposed to reflect the configuration of the skin at a certain embryonic stage.

As their name implies, boundary conditions constrain the unknown variables at the domain limits. In the case of PDEs, boundary conditions implicitly relate to the space variable.

There can be different types of boundary conditions imposed on a PDE:

-Neumann boundary conditions specify the values in which the derivative of a solution is applied within the boundary of the domain.

-Dirichlet conditions impose the values that a solution needs to take along the boundary of the domain.

-Robin conditions set a linear combination of both the values mentioned above.

Each of these conditions can be privileged according to the problem we are aiming to study. If a model aims to compute the repartition of temperature within a solid that is in contact with a heat source of constant temperature, then Dirichlet conditions should be imposed on the part of the domain boundary that is in contact with the source. Homogeneous Neumann conditions (i.e, null derivatives imposed everywhere within the boundary)

are the most commonly employed conditions in the context of embryonic pattern formation, and mean that no flux of the modeled substance can cross the boundary and go out of the domain. Indeed, zero flux conditions imply no external input, which is necessary to investigate to capacity of a pattern to self-organise. Finally, Robin conditions can be particularly adapted when modeling oxygen diffusion, for instance in a blood vessel: writing that the oxygen flux that goes through the alveolar wall is proportional to the difference of oxygen concentrations within and without that wall naturally reveals Robin conditions.

II-1.b Basic models derived from continuity equations

Drawing a full review of mathematical models would be too long and hardly intelligible.

In order to remain succinct but still grasp how to build model equations and study these, I will expose a few problem associated with the evolution of continuous variables through partial differential equations (PDEs).

Flux vector and continuity equations

Let us assume in this part that we describe the evolution in time and space of a substance described by its density u(x, t) (t and x represent time and space variables) within a bounded domain Ω. In this situation, the model we design depend mainly on how we choose to describe the propagation of the substance u(x, t) in the domain. A simple way to write it is to use a flux vector J, which in a two dimensional space can be defined formally as follows.

Let x be a point inside the domain Ω, n a unit vector, and D ε (n) a segment centred in x, of length ε and orthogonal to n. Let Q(ε, n) be the amount of substance traversing D ε (n) per time unit, counted positively in the direction of n.

If for any unit vector n, Q(ε,n) ε has a limit l when ε → 0, and if that limit is linear with respect to n (i.e. l = J.n), then we define J = J(x) as the flux vector in x.

Now we assume that J defines the propagation of u(x, t), and we consider a subdomain ω ⊂ Ω. The conservation of mass simply states that the change in time of u within ω is equal to the quantity of u that traverses the surface, positive if matter goes in and negative if matter goes out. This writes:

d dt ω u(x, t)dx = - δω ∇ • J.
Since this holds for any domain ω ⊂ Ω, mathematical methods allows deriving the equation

for u: ∂u ∂t + ∇ • J = 0 (1)

Fick law, diffusion

We say that a propagation phenomenon follows the Fick law of diffusion if there exists a positive diffusion parameter D (diffusion parameter) such that the flux vector writes:

J = -D∇u
Qualitatively, this means that the modeled substance tends to go from high density regions towards low density regions. Injecting this expression of J into the conservation equation ( 1)

gives:

∂u ∂t = ∇ • (D∇u) . ( 2 
)
It can be interesting to use this equation if we consider that diffusion occurs in an anisotropic way, i.e. if the substance does not diffuse at the same rate in every direction. This would lead to define a diffusion matrix, formally leading to analogous equations in separate directions.

If diffusion is isotropic, (2) simplifies as

∂u ∂t = D∆u, (3) 
also called the heat equation ( 3) (Fourier, 1822).

We will see in part II-2 other relevant expression of the flux J, and that several flux of different natures can be considered when writing a conservation law. A large number of mathematical models can be designed along the same lines and relying only on the concepts of fluxes and conservation cited above.

Adding source terms

One can add to the continuity equation ( 1) source terms f , modeling extrinsinc or autonomous creation (or removal if f is negative) of substance per time unit. The conservation equations in this case then write, in their integral and differential forms:

d dt ω u(x, t)dx = - δω ∇ • J + ω f,
and

∂u ∂t + ∇ • J = f (4)
Classical examples of source terms f comprise:

-Exponential growth:

f (u) = αu; -Logistic growth f (u) = αu 1 -u β ; -Allee effect f (u) = αu u β 1 -1 1 -u β 2 , etc.
From a discrete point of view, an exponential growth model assumes that every individual is replaced by a constant number of individuals, α, in the next time unit. As an example of exponential growth, in 1937, eight pheasants were introduced onto Protection island off the coast of Washington state, USA [START_REF] Lack | The natural regulation of animal numbers[END_REF]. Over the next five years the population grew exponentially, nearly tripling in size every year (α = 3). If this trend has continued, we would be overrun by pheasants: we would have 8 × 3 = 24 pheasants after one year, 8 × 3 2 = 72 after two years... and 8 × 3 82 > 10 40 pheasants today in 2019: obviously, exponential growth cannot continue endlessly in this case as it implies that the resources available to each individual is constant, regardless of the population size.

On the other hand, logistic growth assumes that fewer resources are available to each individual as the population size increases: the reproductive factor mentioned above decreases as the population grows, until a carrying capacity value, β, corresponding to the maximum population size at which the population can sustain itself.

Allee effect, a model not used in our simulations, adds to the notion of carrying capacity an additional correlation between per capita growth and population size, with synergistic impact of individuals on growth (growth rate are reduced when population size is small, modeling e.g. mating limitation, cooperative defence or feeding, habitat alteration, etc.).

Each of the different source terms above (see Fig. 12) usually lead to very different behaviours for the solutions of the system. In the situation where u represent the density of a cell population, f relates to the proliferative capacity of these cells.

II-1.c Solutions of a model

Well-posed problems

Many theoretical tools have been developed in mathematics to compute or study the solutions of a model. A first question that we must raise is whether a solution exists, a problem called well-posedness in mathematics. Well-posedness was defined by Jacques Hadamard [START_REF] Hadamard | Les problèmes aux limites dans la théorie des équations aux dérivées partielles[END_REF], to formalize the belief that, given an initial and, possibly, boundary conditions, mathematical models of physical or biological phenomena should have the following properties:

1. a solution exists, 2. the solution is unique, 3. the solution's behaviour changes continuously with initial conditions.

To put it simply, for a model to be well-posed, its governing equations usually need to be sufficiently constrained. In ordinary algebraic equations, well-posed problems are those that provide a number of constraints equal to the number of unknowns. For instance, linear equations of the type ax = b for a and b fixed are well posed as long as a = 0, and one can express the unique solution easily, but no more well-posed when a = 0, in which case no solution may exist (when b = 0), or many solutions exist (when b = 0). As we mentioned in II-1.a, initial and boundary conditions are essential constrains for a PDE to be well-posed.

If a problem is well-posed, then it stands a good chance to be able to accurately compute a solution on a computer using a suitable algorithm. If it is not well-posed, the problem becomes complex and no systematic methodology exist; one can for instance re-formulate the problem for numerical analysis, include additional assumptions, impose a regularization of solutions (e.g., see [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF], etc.

An example with an explicit solution

In the some cases, mathematicians have been able to compute explicit solutions to PDEs. For instance, if we consider the famous heat equation ( 3), ∂u ∂t = D∆u on the whole space R d , with an initial temperature u(x, 0) = u 0 (x) (enough for well-posedness), the solu-tion writes:

u(x, t) = 1 (4πDt) d/2 R d e -|x-y| 2 4Dt u 0 (y)dy,
This expression can be obtained through a probabilistic method (see for instance [START_REF] Dautray | Eyrolles : Commissariat à l'énergie atomique)[END_REF], but other equivalent formulations can be reached via other methods, like separation of variables (which was the method used by Fourier in 1822). The form of the solution allows interpreting how an initial distribution of temperature evolves in time:

solutions homogenize and spread in space over time (Fig. 12 (b)).

Traveling waves

In some cases, one may want to look for particular types of solutions, fitting to behaviors observed in nature . This is the case for travelling waves, that are solutions with a fixed spatial profile moving in space as time evolves. Indeed, there is a vast number of phenomena in biology in which a key element or precursor to a developmental process seems to be the appearance of a travelling wave of chemical concentration, mechanical deformation, electrical signal and so on (Baker et al., 2009). For instance, in the case of the egg of the fish Medaka a calcium wave sweeps over the surface, reportedly triggering developmental processes [START_REF] Gilkey | A free calcium wave traverses the activating egg of the medaka, Oryzias latipes[END_REF].

In one space dimension, a travelling wave is a solution of the type u(x, t) = U (xct)

for some c ∈ R, U (-∞) = 1 and U (+∞) = 0 (if the wave comes from the left; Fig. 12 (b)).

The construction and study of travelling waves is a full subject in itself, abundantly studied.

In some cases the computations are straightforward: injecting the typical expression of a travelling wave shown above into the model's equations yields an ordinary differential equation on the wave profile U that depends on speed, and such equations have been explicitly solved for specific models and conditions.

For instance, the heat equation ( 3) ∂u ∂t = D∆u admits no traveling wave. Indeed, suppose u(x, t) = U (xct) is a travelling wave solution of the heat equation. Then U verifies

-cU ′ -DU ′′ = 0, U (-∞) = 1, U (+∞) = 0.
After integrating we get cU + DU ′ = K 1 for some real constant K 1 . The solutions thus have the form

U (x) = K 1 c + K 2 e -c D x ,
with K 2 a real constant. Hence, they do not verify the conditions at ±∞, as

U (x) → x→-∞ +∞.
However, adding a source term can be sufficient to enable the existence of travelling wave solutions (see e.g. [START_REF] Fisher | THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES[END_REF].

In any case, analytical tools from mathematics allow the study of a model's features such as existence, positivity and regularity of solutions, or in-depth study of steady states stability (see e.g. [START_REF] Rashkov | Remarks on pattern formation in a model for hair follicle spacing[END_REF].

Numerical approximation and simulation of solutions

A major intake of modeling is the ability, even when the model is too complicated to be explicitly solved, to implement numerical schemes transcribing the phenomena undergone by each unknown variable. This is made possible by the discretisation of the spatiotemporal framework, which makes a model suitable for numerical evaluation and implementation on computers.

In applied mathematics, discretisation is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. Whenever continuous data is discretized, there is always some amount of discretization error, which needs to be controlled, i.e. kept to a level considered negligible for the modeling purposes at hand: numerical analysis is a whole field in mathematics that is dedicated to control these errors. The most common discretisation approaches are finite differences [START_REF] Grossmann | Numerical treatment of partial differential equations[END_REF] and finite elements methods (see [START_REF] Logan | A first course in the finite element method[END_REF] for global theory, and Hecht, 2012 for implementation on FreeFem++, a software optimised for solving PDEs with finite elements that was used in all simulation shown in the Results' sections).

II-1.d Stability analysis, patterning space

The capacity of models to form patterns can be studied through stability theory, which addresses the stability of solutions of differential equations under small perturbations. Vari-ous criteria have been defined and developed to prove stability or instability of a state. Under favorable circumstances, the question may be reduced to a well-studied problem involving eigenvalues of matrices. We summarise briefly here the principle of linear stability analysis.

The linear stability of a particular stationary solution to a nonlinear system is analysed by considering how small fluctuations about this solution evolve in time. Small perturbations can generally be written through linearized equations of type dw dt = Aw, where A is a matrix (stability, Jacobian matrix) and w is a vector containing the unknown variables. A solution is linearly unstable if the spectrum of A contains eigenvalues with positive real part: in these cases, a periodic pattern may occur. Else, the eigenvalues have negative real part, then the solution is called linearly stable (or stable in terms of first approximation). If there exist an eigenvalue with zero real part then the question about stability cannot be solved on the basis of the first approximation.

Rather than detailing the mathematical basis of stability theory, I refer to Annex B and to the Supplement Text of the submitted article (section IV-2) for illustrations of a model's stability analysis, which generally include these steps:

1. finding the spatially homogeneous steady states of the system, 2. linearizing the equations of the model around this steady state (compute the Jacobian matrix and the associated characteristic polynomial), 3. extracting conditions on the model parameters constraining the signs of the real parts of the eigenvalues of the matrix A: we look for eigenvalues whose real part is positive, which are those associated to pattern formation.

II-2 Major self-organising models for the formation of skin patterns

The emergence of structure and form has particularly captured the attention of theoretical scientists. For a long time from the mid 1950s, the debate on pattern-forming mechanisms was divided into two fundamental classes of models: positional information and selforganisation. Simplistically, the positional information principle -which was largely theorised and popularised by Lewis Wolpert, himself inspired by experiments on sea urchins by Hans Driesch back in 1891 -relies on differences in morphogen concentration across space that cells would interpret to acquire specific fates, these fates being defined by different thresholds (Wolpert, 1969(Wolpert, , 1971; see Fig. 15 for a sketch of the principle). On the other hand, in a self-organising process the intrinsic interactions of the system conspire to amplify small variations of an homogeneous state to form regular structures, thus creating ordered heterogeneity from homogeneity.

Whereas positional information is relatively intuitive in the outcomes it produces, what results from the governing interactions of self-organising systems is more difficult to predict and requires mathematical analysis. Thus, we do not treat in this part theories related to the formation of gradients -noting that a number of reviews consider this area in detail [START_REF] Grimm | Modelling the Bicoid gradient[END_REF][START_REF] Jaeger | Modelling the Drosophila embryo[END_REF][START_REF] Lewis | From Signals to Patterns: Space, Time, and Mathematics in Developmental Biology[END_REF][START_REF] Wartlick | Morphogen Gradient Formation[END_REF] -and refer to section IV-2 for discussions on this long-debated dichotomy. This subsection focuses on some frameworks capable of autonomously generating a wealth of spatial patterns.

II-2.a Reaction-diffusion systems

Reaction-diffusion systems constitute the historical self-organising framework of excellence. Their introduction in the context of pattern formation dates back to Alan Turing's seminal paper (Turing, 1952).

Mathematical formulation

As its name implies, reaction-diffusion equations are obtained from the conservation equation ( 4) that comprise a source term f with a diffusive flux, i.e. J = -D∇u. For the sake of simplicity, we will carry on with isotropic diffusion:

∂ t u = D∆u + f (u).
( 5)

This reaction-diffusion (RD) equation has been studied extensively for several reaction terms f (e.g, for f = ru(1u) with r a real constant, the famous Fisher equation is able to induce travelling waves [START_REF] Fisher | THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES[END_REF]).

We now focus on systems of equations of the same kind as ( 5), with multiple interacting species, e.g., for two species u and v,

       ∂ t u = D u ∆u + f (u, v) ∂ t v = D v ∆v + g(u, v) . ( 6 
)
In this concise framework, u and v are the concentrations of two components, that diffuse at their own rate D u and D v , and that interact together (these interactions being implemented via function f and g).

Patterning capacity

Classical linear stability analysis for equations ( 6) yields a set of diffusion-driven instability conditions: a set of requirements for which a spatially uniform steady-state morphogen distribution, stable in the absence of diffusive terms, is driven unstable through their addition (see Annex B for computations). Under these conditions, a nonuniform distribution emerges, which is typically in the form of a stationary and periodic pattern of high-and low-morphogen regions separated by a characteristic spatial wavelength (Fig. 13), although patterns can also undergo restless evolution in time. The implicit assumption in many applications is that this pattern provides the blueprint for cell differentiation and tissue organization.

In this familiar two-species form ( 6), Turing's model requires just two reacting and diffusing components to operate, albeit under a set of precise constraints. A classical and intuitive explanation is the short-range activation, long-range inhibition concept popularized by Gierer and Meinhardt (Gierer and Meinhardt, 1972) , and, independently, by Segel and Jackson in an ecological setting [START_REF] Segel | Dissipative structure: An explanation and an ecological example[END_REF]. This explanation leads to consider that the two reactants adopt the roles of an "activator" and an "inhibitor", respectively, with the activator activating both its own upregulation (self-activation), as well as that of the inhibitor, and the inhibitor downregulating the activator.

More generally, linear stability analysis implies that a two component system capable of patterning through Turing's mechanism comprise one more slowly diffusing reactant with "self-activating" (such as autocatalysis) properties and inter-component interactions structured into one of two forms-pure or cross activator-inhibitor systems-according to the loop structure (Fig. 13). The simplicity of these ideas has provided a useful framework for examining whether a given system could form a pattern. Of note, constraints such as the distinct ranges of diffusion required in the two component system ( 6) can be relaxed when considering more components (Marcon et al., 2016).

Reaction-diffusion can generate a plethora of shapes, as shown in Fig. 13.

Historical use

The term reaction-diffusion comes from Alan Turing's seminal paper in 1952, The Chemical Basis of Morphogenesis (Turing, 1952), which provided an elegant theoretical explanation for spatial periodic patterns to appear. His idea was that diffusion, within a system comprising several species diffusing at different rates, can amplify small spatial variations (e.g.

stochastic noise) and create patterns. At that time, he had very little knowledge about the biological processes at play during development: indeed, while concepts related to gradients and positional information date to the end of the nineteenth century (Wolpert, 1996), relatively few explanations have been made into the origins of 'pattern' at the time of Turing's contribution (among exceptions, see [START_REF] Wigglesworth | Local and General Factors in the Development of "Pattern" in Rhodnius Prolixus (Hemiptera)[END_REF].

At first mostly ignored, Turing's principle has been the subject of much debate in the scientific community. As a striking example, Conrad Waddington, pioneer in conceptualising a definition of epigenetics, wrote in 1956 that the Turing's model was "inherently chancy and likely to play a part only in the quasi-periodic dapplings and mottlings which often fill up relatively unimportant spaces".

Then, years passed and numerical methods improved a lot. In 1972 Gierer and Mein-hardt revived the concept of RD by articulating and developing its terminology, in particular by popularising the short-range activation / long-range inhibition concept (Gierer and Meinhardt, 1972). Many examples of biological patterning were subsequently explored, ranging from animal coat patterns (zebra, leopard and fish, see section III) to mollusc shell pigmentation patterns, all of which seemed to display RD-like properties. However, the proof that a

Turing mechanism was the actual basis of these patterns was lacking molecular evidence. Of note, some periodic patterns observed in vivo were shown to result from other mechanisms (e.g., the stripe pattern of genes distribution in the drosophila embryo, [START_REF] Akam | Making stripes inelegantly[END_REF])), keeping the debate in the scientific community vivid.

The molecular revolution that has started in the late 20 th century has provided a lot data to be confronted with the RD theory (for review, see Kondo and Miura, 2010). I refer to section III for some examples of theory-experiments crosstalk in the context of skin pattern formation.

II-2.b Chemotaxis

Mathematical formulation

Chemotaxis correponds to the movement of biological organisms (often cells) in response to chemical gradients. The Patlak-Keller-Segel model of chemotaxis (Patlak 1953a, 1953b, Keller and Segel, 1971a, 1971b) has provided a cornerstone for much of this work, its success being a consequence of its intuitive simplicity, analytical tractability and capacity to replicate key behaviours of migrating populations.

Chemotaxis model in their most succinct form comprise a "cellular" variable, n, and a molecular variable, u, whose concentration distribution affects the movement of cells. For the cellular part, we use a flux J that is the sum of a Fick diffusive flux J n,diff and a chemotaxis flux J n,chemo which in their simplest expressions write:

J n = J n,diff + J n,chemo with J n,diff = -D n ∇n ; J n,chemo = κn∇u
One usually adds a source term, f that usually depends on n, to summarise proliferation and apoptosis. For the molecular part we just consider a Fick diffusive flux J u,diff -D u ∇u and a source term g that usually takes into account the secretion of molecules u by the cells n as well as potential auto-catalysis and degradation of u. Using the conservation equation ( 4) with these hypotheses , in the case of isotropic diffusion for both components, leads to:

       ∂ t n = D n ∆n -∇ • (κn∇u) + f (n) ∂ t u = D u ∆u + g(n, u) . ( 7 
)
Many variations of this framework have been studied, notably in the expression of source terms f and g, or in the expression of the chemotactic flux J n,chemo that can include crowding effects (see Hillen and Painter, 2009 for review).

Patterning capacity

Parameter regimes leading to pattern formation can also be studied through linear stability analysis (Hillen and Painter, 2009). Supplementary text of section IV-2 shows how to derive the chemotaxis flux. Figure 14 displays an array a chemotactic patterns.

Historical use

Chemotaxis is a fundamental guidance mechanism of cells and organisms, responsible for attracting microbes to food, embryonic cells into developing tissues, immune cells to infection sites, animals towards potential mates... and mathematicians into biology. Chemotaxis was first described for bacteria and other single cells more than a century ago, in 1884, following pioneering studies of Engelmann and Pfeffer (reviewed in [START_REF] Berg | Chemotaxis in bacteria[END_REF]. Attributing this to bacteria steering towards the chemical signal -an implied directed migration -the latter used the term chemotaxis. Besides bacterial movement, chemotaxis models have been used in several fields like ecology and social sciences (for review, see [START_REF] Painter | Mathematical models for chemotaxis and their applications in self-organisation phenomena[END_REF].

In the context of pattern formation, a hypothesised role for chemotaxis has a history that goes back more than a century ago, as it was proposed that chemotaxis may be key to establishing interneuronal connectivity during nervous system development (Ramon y Cajal, 1892). Other promising cases of chemotaxis during development include border cell migration (Montell et al., 2012) or gastrulation (Yang et al., 2002). The extent to which chemotaxis occurs in the periodic patterning processes beloved by mathematical biologists is difficult to deduce we will see further that a promising example lies in feather arrangements.

II-2.c Mechanical-based models

Mechanics have been shown to have a peculiar and counterintuitive character on the scale of cells and embryonic tissues: forces generated by cell shape changes at one position in the embryo were equilibrated over the entire embryo virtually instantly [START_REF] Odell | The mechanical basis of morphogenesis[END_REF].

Thus entire tissues could be regarded as being in mechanical equilibrium. Consequently, mechanical forces could coordinate the shape changes of large cell sheets, without the intervention of long-range chemical signalling.

A central model based on mechanical aspects of morphogenesis was formalised in 1983 by Oster, Murray and Harris (OMH;[START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF]. It is based on two properties of mesenchymal cells: that they migrate within a substratum consisting of a fibrous extracellular matrix (ECM) and that these motile cells can exert large traction forces on the ECM.

This model is able to confirm that the mechanical interactions between motile cells and their elastic substratum affect the cells' motion to organize large scale spatial patterns.

Central variables of the OMH model are mesenchymal cell density, ECM density, and ECM displacement vector. Its mathematical formulation is longer to derive from conservation equations and necessitates further constraints such as balance force equations or viscoelastic stress tensors -as the ECM is modeled as a linear viscoelastic medium. [START_REF] Murray | Mathematical biology[END_REF][START_REF] Vaughan | A Modified Oster--Murray--Harris Mechanical Model of Morphogenesis[END_REF])

II-2.d Combining several frameworks i) Including Wolpert's positional information

As we mentioned earlier, much has been written about Turing's reaction-diffusion and Wolpert's position information principles, but some confusion still remains, particularly about the relationship between them. Green and Sharpe provided a great review conceptualising how these two processes can work together (Green and Sharpe, 2015;Fig. 15). Of note, a "Turing/Wolpert" combined network was recently used for the formation of boundaries in developing tissues: these two process can cooperate to establish boundaries at a reliable position (Quiñinao et al., 2015, Perthame et al., 2015).

ii) Reaction-diffusion-chemotaxis coupling RD and chemotaxis systems can be easily coupled, particularly if

• starting from an RD system with an activator of concentration u and an inhibitor of concentration v, the activator generates a chemotactic flux on a organism of density n (e.g. cells);

• or, starting from the PKS model of chemotaxis, the chemoattractant of concentration u reacts with another species of concentration v, which interacts in a way compatible to RD hypotheses.

The resulting models take the following form, if a proliferation term f is included in the evolution of n:

                 ∂ t n = D n ∆n -∇.(κn∇u) + f ∂ t u = D u ∆u + f (u, v) ∂ t v = D v ∆v + g(u, v) , ( 8 
)
n being the migrating cells, u and v are the activator and inhibitor species, respectively. We will see in sections III-2 and III-3 some applications of such systems.

iii) Mechano-chemical frameworks

Some recent models have focused on the interplay between chemical and mechanical processes during tissue development. For instance, in the context of pattern formation, Brinkmann and collaborators (Brinkmann et al., 2018) proposed a model where mechanical and chemical coupling is assured with the following features:

• tissue is modelled as a time-dependent 3D body formulated in the framework of continuum mechanics;

• the continuous formulation is blended with an explicit description of cell boundaries, the latter among other representing active forces exerting and possibly showing discontinuities at the plasma membrane (actomyosin cortex);

• model equations allow an arbitrary coupling between morphogen dynamics and different mechanical cues, such as curvature, strain, or compression and stretch;

This model is notably able to generate an array of dotted patterns of different sizes according to parameters such as skin stiffness, tangential diffusion or basal constriction (Fig. 15).

Of course, other possibilities exist to combine several framework: we will see a few examples of coupled RD systems in section III. 

II-3 Effects of model constraints on patterning Initial conditions and geometry of the domain

Initial conditions can play a role in determining, for example, the polarity of a pattern or whether a specific pattern will emerge. This aspect can be studied analytically through the study of dispersal relations (see Annex B) resulting from stability analysis [START_REF] Murray | Mathematical biology[END_REF].

To summarise, in a situation where several solutions exist, the solution that will emerge if the initial conditions are small random fluctuations about the uniform steady state will be the one that has the largest linear growth ; if initial conditions are different, they can bias this process.

Domain growth

During embryonic and juvenile stages, animals undergo considerable tissue growth and deformation. The effects of such growth on patterning is beautifully illustrated by the evolving pigmentation patterns seen on many species of animals. Several methods have been used

to incorporate extrinsic domain growth in a model, we present two of them in this subsection in a reaction diffusion system but these methods can transpose to other models.

To incorporate growth in a model, one can start from a conservation equation in its integral form and consider a domain Ω(t) that is growing over time:

d dt Ω(t) u(x, t)dx = Ω(t) [-∇ • J + f (u)] dx.
The left-hand side of this equation comprises a time-derivative of an integral over a domain that depends itself on time. This can be treated with the Reynolds theorem, which writes:

d dt Ω(t) u(x, t)dx = Ω(t) ∂u ∂t + ∇ • au dx,
a being the fluid flow. Combining the two above equations leads to study of an advection problem on the growing domain Ω(t) of the form:

∂ t u + ∇.(au) = D∆u + f (u),
n being the concentration of a chemical and a the fluid flow. D

At that point, a model can be simulated as it is on a growing mesh (see, e.g., Madz-vamuse, 2006), or, on a fixed domain by incorporating appropriately growth into diffusion coefficients after renormalisation [START_REF] Kulesa | On a Model Mechanism for the Spatial Patterning of Teeth Primordia in the Alligator[END_REF][START_REF] Murray | Mathematical biology[END_REF].

Among the impacts of incorporating domain growth in the context of pattern formation, two phenomena are often highlighted: a frequency-doubling phenomenon -i.e. the spatial frequency of the pattern regularly doubles, and no other pattern modes enter the sequence, and an increase of pattern formation robustness [START_REF] Crampin | Reaction and diffusion on growing domains: scenarios for robust pattern formation[END_REF].

II-4 Conclusion

Decades of mathematical study of pattern formation have now provided a number of theoretical frameworks able to generate a large variety of motifs. I have presented in this second part of introduction those who seemed to me the most relevant in light of skin pattern formation, but of course the list is not exhaustive: as a last example, models based on the movement of cells in response to the adhesive forces through binding (cell-cell adhesion) have also been successfully implemented and shown to generate periodic patterns autonomously [START_REF] Armstrong | A continuum approach to modelling cell-cell adhesion[END_REF].

Common features between these theories exist: for instance, local activation and long range inhibition interactions are necessary in many of these frameworks to form patterns, and these ranges control pattern spacing (Fig. 16, Hiscock and Megason, 2015). Furthermore, the range of patterns that is offered by the simulations of mathematical models is seemingly as large as the range of skin patterns described in the first part of the introduction, and for a given patterning problem, several possible scenarios can be proposed by mathematical models.

These analogies call for a warning: model simulations only account for the outcome of speculative mechanisms, and the actual nature of these interactions cannot generally be deduced by these models alone. However, models do not all have the same patterning abilities and some will not respond the same way to parameter alterations. By exploiting these differences, however subtle they can be sometimes, models can be used in a predictive manner

and help to answer precise biological questions when they are appropriately associated with experimental work. This is the object of next part.
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III-Experimental-modelling crosstalk: integrated understanding of skin pattern formation

Most of the ingredients necessary to carry out a proper dialogue between modelling and experiments have been presented in the first two parts of the introductions. This part is a short review on the state of the art in skin pattern formation studies using a modelling approach.

III-1 Top-down and bottum-up viewpoints

"One of the principle objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest sinplicity." J. Williard Gibbs.

A first approach to design a relevant modelling framework is to adopt a 'topdown' method: channel Einstein's maxim that 'a model should be as simple as possible, but no simpler' and take a reductionist view. This involves schematizing proposed biological interactions wherever possible and only adding extra components as demanded; for example, to test a specific hypothesis arising from a particular experiment. Occam's razor (also known as law of parsimony) is a principle particularly relevant to modelling, its essential idea being that among models with roughly equal predictive power, the simplest one is the most desirable. While added complexity usually improves the realism of a model, it can make the model difficult to understand and analyse, and can also pose computational problems, including numerical instability. Classic theoretical ideas for pattern formation as those shown in the previous section may not always carry the finesse to generate a perfect prediction in a particular system. However, they can still provide an important conceptual framework within which experimental work can be targeted (Painter et al., 2012).

«It is a capital mistake to theorise before one data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.» Sherlock Holmes, A scandal in Bohemia

Another method is to apply 'bottom-up' thinking: formulate a mechanistic and parametrised mathematical model for the system, complete as far as the biological understanding permits. The validity of a hypothesis can then be examined in rigour, predictions can be made, and failure to reconcile experiment and theory could point the way to missing interactions and components. A critical initial judgement to carry-out this approach is whether a given system is sufficiently well understood biologically to adopt this tactic. Certain developmental systems, where a substantial portion of the molecular biology is known, are now amenable to this approach. Early morphogenesis of the fruitfly Drosophila has provided one example that suits this approach [START_REF] Jaeger | Modelling the Drosophila embryo[END_REF]Othmer et al., 2009), which is getting more and more common as the mechanistic basis of some biological systems are better and better understood. Bottom-up approaches can also consist in checking some important features of a model's hypotheses: e.g., the necessary diffusivity difference between an activator and an inhibitor in a two-species RD model [START_REF] Müller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF].

III-2 Modelling of appendage patterning

We saw in section I-3.a that appendage patterning was regulated in many fashions. Computationally, we look for spotted patterns, but many models can generate spots. Here we show quickly succinctly with two figures some modelling-experiment crosstalk that has been carried out and helped understanding the formation of these primordia.

Patterning of hair primordia

The patterning of hair follicles has probably provided a first compelling evidence of Turing's reaction-diffusion model in vivo: in mice, Sick and colleagues identified a good activator-inhibitor candidate couple -Wnt and Dkk - [START_REF] Sick | WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism[END_REF] used transgenic lines of mice overexpressing the inhibitor Dkk, and correlated the variations of patterning outcomes in vivo and in silico (Fig. 17). Of note, the modified Gierer and Meinhardt's (Gierer and Meinhardt, 1972) model they used has been subject of mathematical studies years afterwards, making available a traceable and consistent framework for hair patterning [START_REF] Rashkov | Remarks on pattern formation in a model for hair follicle spacing[END_REF].

That study pushed developmental biologists into looking more closely at particular components of hair follicle patterning as an RD system. For instance, (Glover et al., 2017) Of note, studies have focused on cellular behaviours during mouse hair placode formation and have shown that centripetal cell movements toward forming hair placodes was a key mechanism (Ahtiainen et al., 2014). This raises the question of the necessity or not to include chemotaxis in a framework for hair patterning: at this stage, the equations used by Sick and colleagues are satisfactory to reproduce hair patterning and genetic alterations, but one may wonder if they would correctly predict the outcomes of experiments oriented on cell movements.

Patterning of feather primordia

The patterning of feather primordia in birds is richer in its diversity: while hair pattern variations mostly rely on their spacing and density differences, feather follicles bear a variability of highly reproducible shapes both at the level of the individual (dense and regular patterns in feather tracts, sparse and irregular in apterium and semi-apterium) and between species (see Clench, 1970 or Nitzsch, 1867, and section IV-2). Also, they appear in a timely fashion, with a well-defined positioning of the first forming follicles in many species. These precise and reproducible patterning attributes are precious to discriminate between acceptable and unsatisfying models.

From a top-down point of view, given the experimental data available (see section I-1) and the previous remarks on hair follicle patterning, reaction-diffusion and chemotaxis should be looked at first when modelling feather patterning. The role of chemotaxis in feather patterning has been the subject of several functional experiments, for instance by investigating the chemotactic response of mesenchymal cells according to the level of p-ERK activity: there, the chemotaxis also reproduced successively the bead experiments as well as a range of pattern outcomes from spots to stripes in drug experiments inhibiting ERK phosphorylation (Lin et al., 2009).

A first modelling approach that productively used the richness of the feather patterning process is the one used by Michon and colleagues: not only did they reproduce the final hexagonal dotted pattern displayed in the dorsal feather tracts of chicks, but also the whole row by row dynamics of sequentially appearing feather primordia (Michon et al., 2008). Their study also correctly predicted the outcomes of bead culture experiments and proposed an explanation for the role initial cell density (discussed in VI-4). They did so using a mixed reaction-diffusion-chemotaxis framework of the form of ( 8) (page 74) with a source term that is explicitly dependent on the time variable.

Later, Mou and colleagues used a striking macro-pattern alteration present in the skin of some birds: the loss of neck feathering -a trait associated with heat tolerance. They used a reaction-diffusion framework to highlight the fact that the neck region of the skin that is deprived of feathers was more sensitive to BMP inhibition, leading to the featherless trait [START_REF] Mou | Cryptic Patterning of Avian Skin Confers a Developmental Facility for Loss of Neck Feathering[END_REF].

More recently in the course of my thesis, a framework [START_REF] Painter | A chemotaxis model of feather primordia pattern formation during avian development[END_REF] comprising chemotaxis and molecular interactions with an imposed priming wave providing the field with competence to form patterns. Some of these aspects of feather pattern modelling are highlighted in Fig. 18.

To finish with some insights on the validity of the frameworks previously cited for appendage patterning across evolution, I mention here two modelling studies on appendage patterning of turtles (scutes of the shell, Moustakas-Verho et al., 2014) and sharks (tooth-like denticles, [START_REF] Cooper | An ancient Turing-like patterning mechanism regulates skin denticle development in sharks[END_REF]. Using reactions-diffusion models (two coupled RD systems in the case of the turtle), they have correctly predicted the dynamics of formation of these appendages, some aspects of natural variation and bead experiment outcomes.

III-3 Modelling of colour patterns

Even though colour patterning was not the focus of my PhD, lessons can be taken from the amount of work that has been done both experimentally and mathematically in this field. Fig. 19 resumes some patterning aspects and display, in mammal and fish models:

-some aspects of patterning dynamics in angelfish (Kondo and Asai, 1995),

-model predictions of experimental perturbations of the pattern (laser ablation of pigment cells on adult zebrafish, Watanabe and Kondo, 2015),

-the impact of geometry on patterning on the common genet and the tail of felids [START_REF] Murray | Mathematical biology[END_REF], All these simulations were carried out with RD or coupled RD systems. Of course, many other studies have shown similar patterning aspects. For instance, the evolution of complex patterns from juvenile to adult felids have been studied via a two stage RD model (Liu et al., 2006), chemotaxis has also been suggested to be a key mechanism in colour patterns particularly in fish (Painter, 2001;Painter et al., 1999), and more and more discrete modelling approaches are emerging (e.g., [START_REF] Volkening | Modelling stripe formation in zebrafish: an agent-based approach[END_REF].

-

III-4 Problematic

Disentangling the role of each candidate mechanism

Parallel progress in theory and experiments has played a central role in deciphering developmental patterning. In a modelling approach context, our understanding of pattern formation processes has improved from both -progress in experimental techniques,

-the extensive knowledge on mathematical models accumulated,

-the ability of models to reproduce natural of experimentally-induced variations of pattern-forming events.

However, as we have seen, several models can suit a patterning problem: for feather primordia patterning, different frameworks (RD or chemotaxis or both)

successfully guided experiments or helped answer biological question. The ever-standing question raised by any modelling problem is, behind any complex system as is the skin pattern and however complicated it may be, what parameters are essential to explain the dynamics of the system?

Dynamics of a patterning process

The recent literature has shown that beyond the study of natural and experimentally forced families of patterns, the experimental-modelling crosstalk is particularly efficient when focusing not only of the final patterns, but also on its dynamics of emergence. A question I have particularly focused on during my thesis is that of what parameters control the dynamics of patterning in vivo.

Modelling approach and evolutionary aspects

One can easily see that patterns vary extensively among species, even those belonging to the same genus. Yet, the genomes of all these species are similar, so it is unlikely that a different mechanism underlies each different pattern. This suggests that a single underlying mechanism can produce several of the various types of skin pattern.

Using modelling, I tried to assess how much conserved the developmental mechanisms of skin patterning were. 

IV-

Choice of tracts

As we have seen in section I, feathers are arranged in several tracts in most species. Focusing our attention on the dorsal feather tract was a technical choice as it was the one that was best described in the literature: in chick, they appear first aligned in the dorsal midline (~E6.5, HH29), and new feathers are added laterally to complete the dorsal tract in a few days (Jung et al., 1998). This process happens in a timely fashion with a high reproducibility within species, raising the question of what controls this rigorous timing.

Spatio-temporal developmental framing

To finely characterize the sequence, timing of the emergence, and global organisation of the dorsal feather tract, I mostly concentrated on a temporal window starting from the stages just preceding the first apparition of feather (e.g., E6, HH28

for the chick) until all primary primordia have appeared in a hexagonal array. Even though the chevron patterning emerging later has fascinated me early in this work -as a geometry not commonly studied in mathematical models and hardly reproducible by the models presented in section II -I quickly embraced the hypothesis that the emergence of chevrons was resulting from different and downstream developmental processes than those governing the formation of feather primordia, as highlighted by

Sengel in 1976: "the orientation of chevrons might result from the ratio of longitudinal to traverse growth rates" [START_REF] Sengel | Morphogenesis of skin[END_REF])), and further discussed in section V.

Characterisation of pattern dynamics in the Japanese quail

In order to precisely characterise the timely appearance of feather primordia in the dorsum of birds, I used the Japanese quail as a first model organism. This species, which was already thoroughly studied in the lab for other projects, provides multiple advantages. Its genome is sequenced and genetic strains can be provided from collaborators. Particularly, the final organisation of the dorsal tract was precisely described in flat skin preparations. In order to grasp precisely the dynamics of feather appearance I thus performed in situ hybridisations for beta-catenin, an early marker of feather differentiation, to track the evolution of feather appearance: I extracted quail embryos every 3 hours from incubators at slightly shorter embryonic stages than in the chick (using a thorough decription of the quail's developmental stages, see [START_REF] Ainsworth | Developmental stages of the Japanese quail[END_REF].

The result in quail is slightly different than in chick: in the dorsal region between the limbs, feather first appear not in one medial row but two rows longitudinally aligned close to the spine (see IV-2, Figure 2), defining two directions of propagation (dorso-ventrally as in chick, but also ventro-dorsally to fill the midline).

After the first rows have differentiated, the addition of new feather takes place in a strict row-by-row sequence in a perfectly reproducible manner.

Preliminary assessment of modelling alternatives

Firstly, engaging a top-down approach, I reviewed the mathematical frameworks that were developed to tackle the question of appendage primordia formation. As we have seen in section III, RD and coupled RD-chemotaxis have been recently used in a combined approach. Puzzled by the dynamical aspect of patterning, I chose to focus on the origin of the timing process as I thought it would restrain the choice of relevant models and invalidate many of them. From that point, it was clear to me that I should focus on RD-chemotaxis coupling as 1) they gather mechanisms that have largely proved their implication on appendage patterning and 2) they were already used to reproduce the row by row dynamics of forming follicles observed (Michon et al., 2008). this issue, helping the medio-lateral propagation of the pattern. These functions have a number of analytical advantages (they imply easily traceable steady states for n), and provide a suitable framework that should be both analytically and numerically amenable.

Survey of natural variation

Secondly, I used natural variation as a predictive tool, an approach that is consistently performed in the laboratory of Marie Manceau: we perform phenotypic surveys to identify common and varying attributes of a given pattern that we correlate with tissue/cell/molecular dynamics occurring during its formation. When I arrived in the lab, besides Japanese quails, common and Reeve's pheasants as well as red-legged and grey partridges were used in the lab for the study of variation in their dorsal striped colour pattern (by Nicolas Haupaix, a postdoc in the lab; Haupaix et al., 2018).

The zebra finch (another emerging model, whose genome is sequenced) was used by Magdalena Hidalgo, another postdoc in the lab who studies the establishment of the large colour domains it adorns. I thus quickly extended the description of dorsal tract formation in these species. Later on, other species that we suspected would provide more sizable variation, because of their radically different morphology, were added to the study: flightless ratites such as emus and ostriches, and more recently penguins, first rare specimens as we were relying from local zoos, and later available in larger quantities when a fellow PhD student in the lab, Camille Curantz, started performing fieldwork in the Falkland Islands (last year).

Variation was assessed not only in the final resulting patterns, but also during all the process of feather patterning during the chosen temporal window. I thus reported temporal sequences of plumage patterning with more beta-catenin in situ hybridisations in embryos of the above-mentioned species. All four phasianidae displaying exactly the same patterning sequences, only data on the common pheasants is shown.

To help me quantify differences between these species, I designed with the mentoring help of Jonathan Touboul a Matlab program ("Dotfinder", see IV-2, S1 

In silico replication of natural variation

The next step was to fit model simulations to in vivo observations (i.e,. to reproduce the six different dynamics of beta-catenin expression in all species, with the help of the Dotfinder program). My aim was to generate all six configurations observed with a minimal amount of change in parameters.

Domain size

The first parameter I varied is the size of the simulation domains. Indeed, the embryos I have used have sizes that vary extensively, from the zebra finch (smallest) to the emu (largest). To limit measurement errors, I focused on the part of the dorsal skin that goes from the tail to the wings in the anteroposterior axis, and from the dorsal midline to a fixed coordinate in the dorso-ventral axis corresponding to the position of This allowed me to define rectangular domains for simulations whose widths and lengths varied according to the experimentally measured landmarks.

Running simulations on these six different domain sizes, I realised that besides the emu and penguin, the right number of feathers/dots present in a given row could be roughly reproduced with the same model parameters, thus changing only domain size, suggesting highly conserved mechanisms and experimental conditions across these species.

Initial conditions

Unsolved differences remaining were then the timing of appearance of feathers/dots. From in situ hybridizations, it is striking that the patterning processes do not have the same starting point in all species. I thus implements functions for initial conditions whose shapes mimic the initial expression domain of beta-catenin.

Parameter refinements

With the prospect of using mathematical models as predictive tools, I varied all parameters of the model to see their impact on the patterning process. Usual parameters of reaction-diffusion and chemotaxis models (diffusion coefficients, amplitude of molecular interaction and chemotactic strength and degradation rates)

impacted the process in an unsurprising manner (a range of these parameters allow for different densities of dots). A parameter that I immediately found very interesting, however, was the proliferation rate from the logistic source: this parameter is the only one enabling a fine-tuning of the dynamics of the process (order of apparition of feathers in row-by-row fashion or not, and quickness of tract completion) without modifying the final shape of the resulting patterns.

In situ hybridisations being qualitative experiments, and simulation results

showing a high dependence of the dynamics on initial conditions, I thus focused more in depth on initial conditions, varying not only the parameters defining their shape but also those defining their amplitude, sharpness, and baseline level.

Experimental validation

Experimentally, I paid attention to keep track of the evolution of the dorsal skin's cellular configurations over the course of the chosen temporal window -cells being the variable plotted in the simulations. This was done thoroughly in the Japanese quail by sectioning embryos after in situ hybridizations, and by counting cellular densities in the whole dorsum surface of the skin. Given the critical importance of initial conditions to explain the variations observed, I have precisely characterised in vivo the cellular (DAPI staining and counts), molecular (sectioning embryos after in situ hybridisations and localising beta-catenin expression) and proliferative configurations at the corresponding developmental stages.

Proliferation parameters were thus subsequently studied in vivo. First, I carried out BrdU treatments and analysed the fraction of proliferative cells during the first steps of feather bud differentiation, in order to assess the relevance of the logistic source term. Second, experimental perturbations of cell proliferation were designed to confront the model's predictions: they consist in slowing down the overall proliferation rate in an ex-vivo culture setup via the application of colchicine, a tubulin drug, to the medium -these experiments were designed and carried out with the help of a research engineer in the lab, Carole Desmarquet.

Mathematical analysis of pattern formation

Over the course of my thesis work, I investigated possible simplifications of the model so it could be more precisely and exhaustively studied analytically. Extensive simulations led me to the conclusion that it was particularly difficult to robustly generate the proper dynamics of patterning with RD or chemotaxis models alone, and that coupled RD-chemotaxis models provided indeed a minimal model for robust pattern formation. Moreover, simplifying the reaction terms defining the interactions between activator u and inhibitor v (indeed, these interactions functions result in a definition of steady states by a five-degree polynomial equation, making them hardly traceable) did not provide a substantial improvement of the tractability of the system.

I was however still able to extract some analytical results from stability analysis, by focusing the mathematical analysis in the neighbourhood of the reference parameter set. Other conditions can probably trigger instabilities, but the numerical results support the fact that the analytical results shown in S1 Text resume the predominant route to pattern formation.

IV-2 Submitted publication

INTRODUCTION

The diverse shapes and motifs that adorn animals have been a long-standing interest of theoreticians and developmental biologists: how can patterns arise from homogeneous structures during the development of an organism in an often highly organised and reproducible manner? On the one hand, numerous modelling studies, frequently assuming a chemical basis for pattern-forming factors (for review [START_REF] Kondo | Reaction Diffusion as a framework for understanding biological pattern formation[END_REF][START_REF] Green | Positional information and reaction-diffusion: two big ideas in developmental biology combine[END_REF]) but also recently integrating cellular and mechano-chemical processes (for review [START_REF] Brinkmann | Post-Turing tissue pattern formation: Advent of mechanochemistry[END_REF][START_REF] Hiscock | Mathematically guided approaches to distinguish models of periodic patterning[END_REF]), led to the theorisation of self-organising dynamics to explain the emergence of many patterns. However, a single final pattern can often be reproduced by a variety of models [START_REF] Hiscock | Mathematically guided approaches to distinguish models of periodic patterning[END_REF][START_REF] Painter | Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis[END_REF]. In addition, each of these models (both in their equations and stationary solutions) potentially describes various developmental mechanisms. Choosing and building models that not only accurately anticipate patterns but also guide relevant tests of in vivo patterning mechanisms thus often remains challenging. On the other hand, genetic screens and expression analyses of developmental factors -sometimes guided by modelling, have identified candidate molecules and cellular events putatively involved in pattern formation in vivo [START_REF] Kondo | Reaction Diffusion as a framework for understanding biological pattern formation[END_REF][START_REF] Green | Positional information and reaction-diffusion: two big ideas in developmental biology combine[END_REF][START_REF] Sick | WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism[END_REF][START_REF] Glover | Hierarchical patterning modes orchestrate hair follicle morphogenesis[END_REF]. However, biological interpretation is often limited by the difficulty to link a given pattern to prior molecular gradients and/or cell behaviours occurring in the absence of spatial reference in the a priori naïve, un-patterned tissue.

The plumage pattern is one of the few emblematic systems in studies of pattern formation and evolution in which the modelling-experimentation gap has been successfully bridged [START_REF] Painter | Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis[END_REF][START_REF] Baker | Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies[END_REF]. In birds, feathers are implanted in so-called "tracts" (or pterylae) separated by glabrous areas (Fig 1). The spatial distribution of tracts at the scale of the whole body (i.e. macro-pattern) is broadly conserved, all birds having capital (head), humeral / alar (wings), dorsal, ventral, femoral / crural (legs) and caudal (tail) tracts [START_REF] Sengel | Morphogenesis of the Skin[END_REF][START_REF] Neguer | Embryonic Patterning of the Vertebrate Skin[END_REF]. However, their shape and size, as well as the geometrical arrangement of feathers within tracts (i.e., micro-pattern) vary between bird groups (as formerly studied in the zoological field of pterylography; [START_REF] Nitzsch | Nitzsch's Pterylography[END_REF][START_REF] Clench | Variability in Body Pterylosis, with Special Reference to the Genus Passer[END_REF]). Work performed in the domestic chicken Gallus gallus showed that the patterning of feather tracts involves surface dynamics occurring in the developing skin tissue. In this species, the early mesodermal layer first directs the formation of competent epidermal areas (or feather fields).

Within each feather field, longitudinal rows of feather follicles individualise in a medial-tolateral "wave" of differentiation to form a regular dotted pattern, which later becomes distorted to give rise to a reproducible geometry in which each feather is surrounded by an elongated hexagonal array of neighbours [START_REF] Neguer | Embryonic Patterning of the Vertebrate Skin[END_REF] (Fig 1A). Feather arrangement is thus a complex yet ordered motif that results from the timely orchestration of patterning events in the developing skin including (1) local individualisation of shapes (here, follicles) from an initially homogeneous feather field, and ( 2) the directional and gradual progression of this differentiation process.

Efforts to understand plumage patterning have largely focused on the control of feather follicle individualisation. Computer simulations of self-organising models (e.g., reactiondiffusion, chemotaxis, alone or in combination), can give rise to regularly spaced dots reminiscent of the chicken feather motif [START_REF] Michon | BMP2 and BMP7 play antagonistic roles in feather induction[END_REF][START_REF] Painter | A chemotaxis model of feather primordia pattern formation during avian development[END_REF] (or other cutaneous structures in Vertebrates [START_REF] Cooper | An ancient Turing-like patterning mechanism regulates skin denticle development in sharks[END_REF][START_REF] Moustakas-Verho | The origin and loss of periodic patterning in the turtle shell[END_REF]), which suggests that the formation of feather follicle arrays results from a selforganisation of the developing skin. The nature of self-organising positional factors raises much interest, as recent studies have evidenced a coupling between molecular and mechanically driven, cellular dynamics. Several candidate proteins of the BMP, FGF and Wnt signalling pathways have been identified based on their local expression and diffusive properties, and/or because perturbing their expression/activity modifies the local arrangement and differentiation of feather follicles [START_REF] Michon | BMP2 and BMP7 play antagonistic roles in feather induction[END_REF][START_REF] Painter | A chemotaxis model of feather primordia pattern formation during avian development[END_REF][START_REF] Mou | Cryptic Patterning of Avian Skin Confers a Developmental Facility for Loss of Neck Feathering[END_REF][START_REF] Jung | Local Inhibitory Action of BMPs and Their Relationships with Activators in Feather Formation: Implications for Periodic Patterning[END_REF]. Such molecular activity may rely on spontaneous changes in cellular organisation: the nuclear translocation of ß-catenin in epidermal cells (an event marking early stages of feather follicle differentiation [START_REF] Noramly | β-catenin signaling can initiate feather bud development[END_REF]) is caused by a local aggregation of dermal cells as the result of their contractile properties [START_REF] Shyer | Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin[END_REF].

Conversely, cellular dynamics can also depend on molecular activity: FGF signalling drives dermis aggregation, consequentially compressing the epidermis, which in turn intensifies FGF expression in a positive feedback loop [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF].

However, neither self-organising models nor the abovementioned molecular/cellular processes explain the directional and progressive aspects of plumage pattern formation.

Consistent with the medio-lateral appearance of feather rows, the differentiation of the skin tissue is characterised by a dorso-ventral gradient of cell density [START_REF] Sengel | Morphogenesis of the Skin[END_REF]. This gradient has been shown to precede a wave of Eda signalling that sets the cell density threshold required for the occurrence of feather follicle individualisation [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF]. However, the mechanisms that trigger such a signalling wave are not known. In addition, the events that mediate its propagation within the feather field, and control the orientation and temporal dynamics of this process such that it creates a stepwise sequence of longitudinal row formation, have not been identified. Thus, to what extent the control of patterning in time shapes the organisation of the avian skin in space and constrains its evolution remains an unresolved question.

Here, we tackled this challenge by performing an extended survey of tract pattern formation in Galliformes, passerines, ratites, and penguins, thereby identifying common and varying attributes of its temporal emergence. We built a mathematical model that intrinsically reproduces both these dynamics and their variation. We achieved so by combining parameters of reaction-diffusion and chemotaxis with logistic cell proliferation; when applied on initial conditions measured in the naïve skin tissue of each species, our unified model recapitulated species-specific patterning dynamics without forcing onto an extrinsic mathematical wave.

We then verified predictions by showing in and ex vivo that the two key elements driving spatio-temporal dynamics are an early symmetry breaking event occurring prior to follicle individualisation and oriented along the antero-posterior axis, and the non-homogeneous proliferation of cells, behaving as predicted by the logistic source and created by the limited capacity of the tissue to support cell density. These phenomena trigger the progressive appearance of discrete longitudinal domains in a travelling wave. The area of each segment, modulated by the pre-pattern, accommodates the self-organisation of a given number of follicles, which gives rise to the row-by-row patterning sequence in species with sharpenough initial conditions. By characterising skin architecture through time we demonstrated that a lateral transfer of increased cell density dictates the directional propagation of longitudinal segments. Finally, we showed that colchicine-based inhibition of cell proliferation on cultured skin explants slows down patterning in line with model simulations, demonstrating that cell proliferation sets the overall duration of tract completion.

RESULTS

Dorsal feather tracts vary in macro-and micro-pattern between birds

To facilitate the identification of events involved in the temporal control of plumage pattern formation we first described common points and differences in its final organisation by performing a comparative survey of completed dorsal tracts. The domestic chicken historically served as model: consistent with previous work [START_REF] Sengel | Morphogenesis of the Skin[END_REF] we observed that when completed (at E11) its dorsal tract covers ~77% of the skin surface and displays an orderly arrangement in which adjacent longitudinal rows (i.e., feather rows; fr) contain a reproducible number of feather follicles (F=25 as quantified between wings and tail in medial rows) and form "chevrons" along the dorso-ventral axis. For comparison, we chose two close relatives in the Galliformes bird order (which is part of the monophyletic group Galleoanserae), namely the Japanese quail Coturnix japonica and the common pheasant Phasianus colchicus for which we previously described feather distribution [START_REF] Haupaix | The periodic coloration in birds forms through a prepattern of somite origin[END_REF]. In Galliformes, overall tract size (~75 and 72% of dorsum surface, respectively), shape, and geometry are conserved, while the number of feathers per row is species-specific: F=17 in the quail (except in fr#1 known to develop later where F=10 [START_REF] Mou | Cryptic Patterning of Avian Skin Confers a Developmental Facility for Loss of Neck Feathering[END_REF]) and F=23 in the pheasant. By contrast, we found that in the emu Dromaius novaehollandiae, which is a flightless ratite of the derived monophyletic group of Paleognathes, feathers are arranged across the whole dorsum in a dense and irregular pattern (F~60, as quantified along lines drawn from wings to tail). Because

Galleoanserae and Paleognathes represent two ancient, species-poor branches of the bird phylogeny, we extended our survey to include two species of Neoaves, third and major avian taxon comprising 95% of all living bird species [START_REF] Prum | A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing[END_REF]. In the zebra finch Taeniopygia guttata, a passerine bird in which tracts had been previously thoroughly described [START_REF] Neguer | Embryonic Patterning of the Vertebrate Skin[END_REF], the dorsal tract encompasses a relatively thinner skin region (~38% of the dorsum surface) compared to

Galliformes. It displays a different shape with an enlargement at the level of hind limbs (socalled "saddle"), with fewer and shorter rows that are less strictly arranged (9<F<18 in the medial rows). Finally, in the Gentoo penguin Pygoscelis papua, which is an aquatic Neoaves bird devoid of flight abilities -much like the emu, we found that feathers densely cover the whole dorsal region (F~50; Fig 1B). Together, these observations show that independently of dorsum size, both the macro-pattern (relative tract surface and shape) and the micro-pattern (number and geometry of feather follicles) vary between species. Drastically opposite plumage patterns within taxons (such as for the Neoaves zebra finch and Gentoo penguin)

suggest that variation relies on changes in otherwise broadly conserved mechanisms.

Spatio-temporal dynamics of tract formation vary between species

To link variation in tract patterns to temporal dynamics of their emergence we characterised the spatial organisation of dorsal feather fields prior to, and during, the appearance of feather follicles. To do so we chose to assess the expression of ß-catenin, which marks differentiating follicles [START_REF] Noramly | β-catenin signaling can initiate feather bud development[END_REF], but also whose signalling acts upstream of FGF (which plays a role in feather follicle individualisation) and the receptor of Eda (i.e., EDAR, which marks the travelling wave of follicle differentiation [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF]). We developed an automatic algorithm to consistently sort and count the number of follicles in microscopy images of each species (S1 Fig) . We found that in all Galliformes and in the zebra finch, ß-catenin initially forms one visible medial (B1) and two lateral (B2) longitudinal bands, in which follicle individualisation gradually takes place, starting at the posterior end of the band and progressing anteriorly.

Adjacent feather rows form according to the same steps and sequentially, in a row-by-row wave that travels ventrally and stops at the limit of the feather field, with most follicles in a given row having formed prior to the appearance of the next ß-catenin expressing band.

Follicles reach the limit of the tract in ~2/3 days, irrespective of the duration of the whole development (varying from 14 days in the zebra finch to 16-22 days in Galliformes). Thus in these four bird species, tract patterning is characterised by broadly conserved medial-to-lateral bi-directionality, sequence (i.e., row-by-row dynamics and individualisation prior to next row) and duration. These spatio-temporal attributes may therefore be controlled by shared developmental mechanisms. We however observed subtle variation in the initial ß-catenin pattern: while B2 bands are similar in all species, the medial band B1 extends from the interlimb region to the tail in the chicken while in the Japanese quail it is reduced to the posterior region, in the common pheasant it is diffuse and in the zebra finch it is fused to lateral bands B2, forming a Y-shape. This profile defined the species-specific location of first-individualising follicles, suggesting a link between the spatial organisation of the feather field prior to the onset of the differentiation wave and the timely dynamics of its progression.

In contrast with the first four species, ß-catenin expression initially marks the whole dorsal region except its central part in the emu. Within this primary ß-catenin expressing surface, the effect of several candidate pathways such as FGF and BMP signalling [START_REF] Kondo | Reaction Diffusion as a framework for understanding biological pattern formation[END_REF][START_REF] Green | Positional information and reaction-diffusion: two big ideas in developmental biology combine[END_REF]. We simulated a range of reaction-diffusion equations for various interaction functions and on homogeneous surfaces:
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Consistent with previous studies, we found that when initiated on small random fluctuations, such models can generate dotted patterns, but do not reproduce directionality or row-by-row sequence observed experimentally (S2A Fig) . Other self-organisation models create motifs by combining locally evolving cell density (according to a proliferation rate ) with chemotaxis, the process of cell migration in response to a chemo-attractant generated by the cells (at a rate ), and also subject to diffusion (diffusivity ) and degradation (rate )

[28]:
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Such models are appealing to explain feather tract formation because they can represent epidermal/dermal interactions and the gradient of cell density occurring during the differentiation of the feather field [START_REF] Lin | Spots and stripes: Pleomorphic patterning of stem cells via p-ERK-dependent cell-chemotaxis shown by feather morphogenesis and mathematical simulation[END_REF][START_REF] Hillen | A user's guide to PDE models for chemotaxis[END_REF], two processes tightly linked to the presence of a travelling wave [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF]. However, although chemotaxis models are sufficient to produce dotted arrays [START_REF] Lin | Spots and stripes: Pleomorphic patterning of stem cells via p-ERK-dependent cell-chemotaxis shown by feather morphogenesis and mathematical simulation[END_REF], they too failed to intrinsically produce directionality or sequentiality in spot formation (S2B Fig) . Because we observed that ß-catenin initially forms medial bands in Galliformes and the zebra finch, we then ran simulations of self-organising models on frames containing a longitudinal line. We found that in this case, models produce repeated However, such combination is not sufficient to produce the row-by-row pattern sequence seen in Galliformes and the zebra finch, which argues for the involvement of other events orchestrating the dynamics of tract establishment in these species. Temporal sequences of pattern formation have been obtained when chemotaxis driven cellular distribution and/or reaction-diffusion were applied to mathematical, medial-to-lateral priming waves: condensed structures then form in a chicken-like sequence of directionality and speed related to the properties of the wave [START_REF] Michon | BMP2 and BMP7 play antagonistic roles in feather induction[END_REF][START_REF] Painter | A chemotaxis model of feather primordia pattern formation during avian development[END_REF][START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF]. Similar modelling in other study systems (e.g., sensory organs in Drosophila) also yielded sequential patterning [START_REF] Corson | Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila[END_REF]. We thus aimed at producing sequentiality to follicle individualisation using similar models but devoid of extrinsic forcing.

To do so, we described the evolution of local cell density ), ) according to two mechanisms. First, cell density changes due to diffusion, and chemotaxis towards instantaneous concentrations of an activator chemo-attractant ), ) depending on both its autocatalytic production by cells and the concentration of its repressor , . Second, cell density is modulated by intrinsic logistic proliferation accounting for a division rate at low cell population levels and a carrying capacity of the tissue , density above which proliferation stops. This term is inspired from a widely studied mathematical framework that serves as a classical tool to generate spreading events in theoretical studies of population behaviour and infectious diseases propagation [START_REF] Verhulst | Notice sur la loi que la population poursuit dans son accroissement[END_REF], and efficiently captures temporal dynamics of cell migration in vitro [START_REF] Mccue | Extended logistic growth model for heterogeneous populations[END_REF]. The resulting unified model thus contains three partial differential equations as follows:
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= ∆ + -, and parameterise the diffusion of cells, attractor and repressor, respectively, while accounts for the sensitivity to chemotaxis, ( ) is the production rate of the attractor (repressor) by the cells, and respectively quantify the saturation threshold and autocatalysis sensitivity of the activator, and ( ) is the degradation rate.

We first performed a stability analysis of the model (S4A building geometrical initial conditions corresponding to the initial expression pattern of ßcatenin in each species. To achieve the latter we used for Galliformes and the zebra finch three Gaussian equations restricted along the axes so that their peaks correspond to the measured central location of B1 and B2 ß-catenin bands:

, = + < + ) + ) < (2) 
For emus and Gentoo penguins, we respectively used one (as shown below) or two (see material and methods) elliptic surfaces ℰ to approximate the shape of initial areas marked with ß-catenin (Fig 3B ):
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In these equations, and are variable coordinates, , and correspond to measures work showing that optimal density provides patterning competence to the feather field [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF] and suggests that pattern differences in these species can be due to comparably lower amounts of cellular/molecular factors in the feather field environment surrounding initial conditions.

row dynamics of dot emergence -except for the most extreme. The latter often caused an absence of individualisation, in all cases matching exactly patterning criteria resulting from the stability analysis, even when two parameters are modified (S6-9 Fig) . Thus together, simulations suggest that self-organisation controls follicle size and spacing consistent with previous findings [START_REF] Painter | Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis[END_REF][START_REF] Painter | A chemotaxis model of feather primordia pattern formation during avian development[END_REF][START_REF] Jiang | Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia[END_REF], but have no impact on the onset of the row-by-row wave nor are responsible for its sequential aspect. Interestingly, simulations defined by species-specific frames and ß-catenin profiles yielded a number of dots per row similar to that observed for follicles in Galliformes and the zebra finch and lower to that of the emu and the Gentoo penguin (compare with Fig 2 and3). An appealing explanation is that parameters of selforganising events that control the individualisation of follicles in vivo are constrained by parameters defining the pre-pattern.

We next tested the role of initial conditions: we performed complementary simulations where self-organisation parameters are all maintained but the width of Japanese quail-like primary longitudinal bands containing causal factors is modified. We found that when we increased peak width (by decreasing s), several dot rows could form simultaneously within the herein produced surface, mimicking patterning in the emu and the Gentoo penguin, while a decrease (by increasing s) did not modify the resulting pattern or its sequential formation (Fig 5A). We therefore hypothesised that follicle individualisation occurs within discrete competent domains whose area is set by initial conditions and hosts the formation of a definite number of rows. Consistent with this model based prediction, we found that in the Japanese quail the mesoderm and follicle marker Twist-2 [START_REF] Hornik | cDermo-1 misexpression induces dense dermis, feathers, and scales[END_REF], though unlikely to contribute to the induction of patterning as it is expressed throughout the feather field prior to the "trigger stage" (i.e., corresponding to initial ß-catenin expression), delineates longitudinal surfaces appearing in the same order than future feather rows (Fig 5B). To characterise these putative domains in vivo, we quantified local cell density throughout the feather field or within, and just lateral to, ß-catenin expressing bands. We found that prior to the trigger stage (stage 0), cell density is slightly higher in the medial part of the dorsum and gradually decreases ventrally, reflecting the previously evidenced gradient [START_REF] Sengel | Morphogenesis of the Skin[END_REF], but not correlating spatially with observed and simulated Japanese-quail initial conditions (which contrary to the domestic chicken, are positioned laterally to the medial axis). However at the trigger stage ( stage 

Cell proliferation controls patterning propagation and the duration of tract formation

To understand the mechanisms controlling lateral propagation of competent domains, we tested the effect of cell proliferation because (1) our unified model intrinsically generates gradual propagation through a logistic proliferation term, and ( 2 In light of these observations we hypothesised that local changes in the rate of cell proliferation, otherwise homogeneously distributed, are involved in the propagation of the triggered patterning wave. To test this hypothesis, we varied the proliferation rate parameter in a homogeneous manner throughout simulation frames. We found that except for most extreme values, varying does not impact follicle size/spacing or the appearance of rows in a sequential fashion; however reaching final pattern states required longer simulation times as decreased, and shorter simulation times as it increased (Fig 6C). We thus tested the effect of the proliferation rate in vivo. To do so, we cultured explants of Japanese quail skin in varying concentrations of colchicine drug, known to inhibit cell proliferation. Low doses did not affect pattern compared to control experiments, while high doses had lethal effect (S6 Table ). We thus performed pulses of colchicine-mediated inhibition at the highest non-lethal dose. Even with the shortest pulse, this significantly reduced overall cell proliferation during follicle appearance (BrdU + cells are down to 10-15% of all DAPI + cells, p<0,005, S11 Fig).

Consistent with this observation, linear regression analysis showed that colchicine affects the rate of proliferation with a similar carrying capacity of the tissue, such as predicted by the 

A framework to identify pre-existing positional information

A next challenge will be to pinpoint the nature of the initial symmetry-breaking event. Our work thus sets the stage for the identification of such molecular or cellular factors. First, it provides testable hypotheses on their origin (i.e., axial landmarks). Good candidates may comprise Wnt proteins, which diffuse from axial tissues neighbouring the skin (neural tube, somites [START_REF] Gong | Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos[END_REF],) and activate the expression of ß-catenin [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF]. Second, it informs on the profile of causal factors. By varying parameters of the Gaussian peaks defining initial conditions in simulation surfaces, we showed that minor differences in the amount of causal factors between the peaks and their surrounding environment are sufficient to launch the patterning wave, provided they are distributed in a sharp-enough spatial profile. Consistent with this view, in the emu and the Gentoo penguin, shallow initial conditions or high basal levels of causal factors do not sufficiently mark symmetry breaking (consistent with the observation that ß-catenin is expressed throughout the dorsum surface in these species), and even regions away from the peaks have the ability to self-organise, which results in larger competent areas and a loss of patterning directionality and sequentiality.

Of note, the factors producing initial symmetry breaking may be identical to those contributing to the acquisition of patterning competence. Local differences in cell density for example, may on the one hand constitute initial spatial heterogeneities triggering patterning, consistent with patterning propagation through the spatial restriction of increased cell density.

On the other hand, they may also procure patterning competence, consistent with the observation that emu-like simulations better match the delay in follicle formation observed in the central ß-catenin-negative region when m is decreased, and with work from Ho and colleagues showing that follicles form when cell density is above a threshold set by Eda signalling [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF].

Cell proliferation modulates temporal dynamics in the skin

We demonstrated that cell proliferation mediates the lateral propagation of the patterning process to control its overall duration. This temporal attribute is comparable between Galliformes and the zebra finch irrespective of the duration of the whole development, and despite variation in the relative size of their tracts. The rate of cell proliferation may thus act as a constraint to the speed of the patterning process and thus, create variation in the extent of the plumage pattern in the skin of species with different initial conditions. This raises the possibility that proliferation is a mechanism through which the tract pattern is maintained and evolves. These hypotheses are consistent with the observation that even minor changes in cell proliferation rates through colchicine-mediated inhibition strongly impact temporal patterning dynamics. Further exploring the relationship between cell proliferation and the dynamic distribution of molecular/cellular factors involved in skin differentiation (of which good candidates are molecules of Eda and Wnt signalling pathways) will help gain a better understanding of the mechanisms that control the speed of the patterning wave and/or set the threshold of cell density at which proliferation stops. For example, low values of m can also modulate the timing of patterning (Fig 3), raising the possibility that the amount of factors in the environment that surrounds peaks locally influences the rate of cell proliferation. In addition, work in mice showed that hair placode formation -also concomitant with a local decrease in proliferation, is largely driven by differential cell migration [START_REF] Ahtiainen | Directional cell migration, but not proliferation, drives hair placode morphogenesis[END_REF]. To gain a comprehensive understanding of the cellular events controlling plumage pattern attributes, it will thus be necessary to test the role of cell proliferation at a more local scale, both mathematically through the use of the logistic source, and in vivo through real-time tracking of cell division during follicle individualisation.

On the evolution of tracts and the unique case of penguins

The plumage pattern is characterised by featherless areas that separate tracts and are thought to allow steric space necessary for flight movements [START_REF] Sengel | Morphogenesis of the Skin[END_REF]. In line with this hypothesis, we showed that feathers cover the whole dorsal skin in a dense pattern in both flightless emus and Gentoo penguins, while closer flying relatives in their respective groups display tracts (i.e., the zebra finch for Neoaves and the tinamou for Paleognathes [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF]). The absence of a tract pattern may thus be linked to the loss of flight ability, having evolved repeatedly, and/or through co-evolution with changes in wing morphology [START_REF] Harshman | Phylogenomic evidence of multiple loss of flight in ratite birds[END_REF]. Interestingly we observed surfaces initially devoid of ß-catenin expression in both emu and Gentoo penguin embryos.

While in the first, it is limited to the central region which gradually becomes ß-cateninpositive, in the second it is also absent from lateral-most regions, forming two surfaces that can be viewed as deformed or wider Galliformes/zebra finch-like initial conditions. These observations suggest that the tract pattern is an ancestral character, at least to the Neoaves taxon. Reconstructing the evolutionary history of tract pattern formation and flight loss will however necessitate a more comprehensive survey of tract patterns that includes other flying and non-flying species in all three avian taxa. These differences also suggest that similarities in both final plumage patterns and ecologies (i.e., absence of flying ability) have evolved through modifications of distinct developmental mechanisms in emus and Gentoo penguins, consistent with the observation that other pattern attributes vary between these species, such as pattern geometry, which is irregular in emus and the most regular of all observed species with a strict squared geometry in Gentoo penguins. Extending the phenotypic survey to other aquatic Neoaves will allow deciphering whether this geometry is a unique feature of penguins.

In addition, while the pattern of the emu may occur simply through delay of pattern-forming competence [START_REF] Ho | Feather arrays are patterned by interacting signalling and cell density waves[END_REF], the extreme Gentoo penguin geometry likely involves new or additional patterning mechanisms, such that other self-organising events and/or changes in the mechanical properties of the developing skin tissue. It will thus be crucial to further explore the mechanisms of follicle individualisation in these emblematic birds. experiments), and dissected. Flat skins were prepared as described previously [START_REF] Haupaix | The periodic coloration in birds forms through a prepattern of somite origin[END_REF]. Specimens were fixed in 4% formaldehyde, conditioned and sent back to the laboratory in the case of Gentoo penguins, and imaged.

MATERIALS AND METHODS

Embryo sampling and flat skin preparation

Expression analyses

In situ hybridisation experiments were performed in each species (n is provided in S1 Table )   as described previously [START_REF] Henrique | Expression of a Delta homologue in prospective neurons in the chick[END_REF] using antisense riboprobes synthesised from vectors containing 881-bp, 501-bp and 685-bp fragments respectively of Japanese quail, zebra finch and Gentoo penguin coding sequences for -catenin and a 740-bp fragment of Japanese quail coding sequence for Twist-2. Digoxigenin-labeled riboprobes were revealed with an anti- 

Quantifications of tract size and feather follicles/dots number

Tract size: Feather-containing surfaces normalised by that of the whole dorsum were measured using Fiji software on pictures of flat skins at developmental stages corresponding to tract completion (E11 for the domestic chicken, n=2; E10 for the Japanese quail, n=3, E12.5 for the common pheasant, n=3, E26 for the emu, n=2, ~E25 for the Gentoo penguin, n=1), and at hatching for the zebra finch (the relative surface of the completed tract being conserved during development, follicles are best visualised at P0; n=2). (needed for less than 5% of the total follicle number). Locations are processed to identify rows by segmenting the set of feathers/dots according to their location along the x-axis (and corrected by hand in the cases of Japanese quail and zebra finch for which fr# is shifted laterally and in the emu for which counting was performed along six virtual lines). Program code and interface (Dotfinder) are available on github.

Modelling

All simulations were performed using FreeFem++ [START_REF] Hecht | VI-1.a General biological interpretation of the unified model for appendage patterning VI-1.b Mechanical properties of the tissue affect molecular parameters[END_REF] software (specifically designed to compute numerical solutions of partial differential equations) with no flux (Neumann) boundary conditions (i.e., cells or molecules are free to diffuse outside of the tract). Spatial and temporal discretisation parameters were chosen as a compromise between accuracy and efficiency ( between 120 and 160, between 0.01 and 0.1).

Size of simulations frames

For comparison of pattern dynamics relative to tract size, the width (l s ) and length (L s ) of simulation frames has been set for each species according to developmental landmarks: we measured widths (i.e., l, in mm, distance between wings) and lengths (i.e., L, in mm, distance between tails and a medial point between wings; S2 Table andFig 3A). We then adjusted coordinates for the domestic chicken so that the numbers of feather rows (i.e., fr=8) and of feathers per row (F=25) coincide in vivo and in silico. This allowed defining a 0.45 coefficient between L and L s and a 0.7 coefficient between l and l s , which were reported to all other species. For better Figure readability, simulations were then rescaled to the same dimensions on all plots.

Initial conditions

Initial conditions for domestic chicken, Japanese quail, common pheasant and zebra finch species were implemented with equation (2) using parameters shown in S3 Table . For the emu, the primary competence domain was approximated by an elliptic surface where ℰ is the indicator function and = 1.5 1 -

)

) parametrises the ellipse (equation (3)). For the Gentoo penguin, the primary competence area was defined as the surface between the two ellipses .

+

) . ) = 1 and .

+

) . ) = 1. Same initial conditions are implemented on the three variables n, u and v in each case.

Reaction-diffusion models

We tested a large number of reaction-diffusion models (RD1-RD5) as shown in S4 Table.

Simulations in S2 Fig were performed using a model recently shown to reproduce a dotted pattern of denticles in sharks [START_REF] Cooper | An ancient Turing-like patterning mechanism regulates skin denticle development in sharks[END_REF]:

Stock solutions of Colchicine (50mg/mL in EtOH; Sigma #C9754) were diluted to various concentrations (0,00125 -40 mg/mL) in the culture medium to identify the highest non-lethal dose (0,2mg/mL; S6 Table ). Pulse treatments were achieved by washing 0,2mg/mL Colchicine out in successive medium baths after 30 minutes (n=12), 90 minutes (n=7), or 3 hours (n=10), as opposed to untreated, control explants (n=9). Skin explants were incubated at 37°C with a 5% CO 2 atmosphere (Thermo Scientific Midi 40); medium was changed every two days.

Immuno-histological stains and quantifications

Embryonic specimens were embedded in gelatin/sucrose, sectioned using a CM 3050S cryostat (Leica), treated with HCl 2N for 20 minutes (for BrdU stains), rinsed and stained using a rat primary antibody directed against BrdU (Abcam; 1:200) and a Goat anti-rat Alexa 488 secondary antibody (Molecular Probes; 1:500). Cell nuclei were revealed using DAPI (Southern Biotech). Slides were mounted in Fluoromount (Southern Biotech) prior to imaging. For quantifications of cell density or proliferation, the number of DAPI + or BrdU + cells, respectively, was counted in ten sections of confocal images (defined from the dorsal midline to the ventral limit of the feather field using Fiji software; a in 

Imaging

Flat skins and whole embryos were imaged using an AF-S Micro NIKKOR 60-mm f/2.8G ED macro-lens equipped with a D5300 camera (Nikon) and a MZ FLIII stereomicroscope (Leica) equipped with a DFC 450C camera (Leica). Confocal images were obtained using an inverted SP5 microscope (Leica) with a 40X immersed oil objective. In silico domain size L s x l s 5 x 3.5 4.5 x 3.3 4.6 x 3.4 6.1 x 4.9 3.1 x 1.8 6.8 x 3.9 

S1 Table: Number of embryos assessed for ß-catenin expression

Stage
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S1 Text: Stability analysis of the unified model

In this supplement we analyze the stability of spatially homogeneous solutions, and determine Turing instabilities associated with the formation of patterns on bird skin for our unified model:

       ∂ t n = e(n, u, v) = D n ∆n -∇.(κn∇u) + α n n 1 -n βn ∂ t u = f (n, u, v) = D u ∆u + αun(1+ωu 2 ) (βu+u 2 )(1+v) -δ u u ∂ t v = g(n, u, v) = D v ∆v + α v nu 2 -δ v v (1)

Homogeneous steady states

Spatially homogeneous equilibria are solutions of the equation ( 1) (n(t, r), u(t, r), v(t, r)) that are independent of time (steady state, or equilibrium) and of the position r on the tissue (spatially homogeneous). These spatially homogeneous solutions are thus solutions of the system of algebraic equations:

             α n n 1 - n β n = 0 α u n(1 + ωu 2 ) (β u + u 2 )(1 + v) -δ u u = 0 α v nu 2 -δ v v = 0 (2) 
that has two relevant solutions:

• the trivial state (0, 0, 0), corresponding to an unrealistic situation of complete absence of cells in the tissue (n = 0), in turn leading to an absence of activator and inhibitor u = v = 0. Because of the proliferation term, we expect this solution to be always unstable: a solution of equation ( 1) starting with a small number of cells will be able to proliferate at a rate equal to α n (while n is small compared to the tissue capacity) and thus the system will move away from that steady state.

• A non-trivial equilibrium (n s , u s , v s ) where the number of cells reaches the carrying capacity of the tissue n s = β n , and v s = αvβn δv u s 2 and u s is a solution to the degree five polynomial:

- δ u α v β n δ v u s 5 -δ u + δ u α v β u β n δ v u s 3 + α u β n ωu s 2 -δ u β u u s + α u β n = 0.
This degree-five polynomial can have up to 5 solutions. However, we found numerically that only one solution is real, and the other four are formed of two pairs of complex conjugated numbers. Only the real solution is relevant for our study.

Linear Stability -General Analysis

To assess stability of the equilibria found, we consider whether small perturbations about one of solution are initially damped or amplified. When small perturbations vanish, the equilibrium is said to be stable, and it is otherwise unstable.

Consider a small initial perturbation of the equilibrium of size ε, and let us denote the solution n = n 0 + εφ n , u = u 0 + εφ u and v = v 0 + εφ v for some functions (φ n , φ s , φ v ) to be determined and 1 (n 0 , u 0 , v 0 ) one of the spatially homogeneous solutions computed above. Using the fact that n is solution to the equation, we obtain:

ε∂ t φ n = εD n ∆φ n -ε∇.(κφ n ∇u 0 ) -ε∇.(κn 0 ∇φ u ) -ε 2 ∇.(κφ n ∇φ u ) + εα n 1 - 2n 0 β n φ n + ε 2 α n φ 2 n β n
(3) and using the fact that u 0 is spatially homogeneous (so the gradient is 0), that n 0 is spatially homogeneous (thus treated as a constant for the divergence in the chemotaxis term) and neglecting terms of order ε 2 (and possibly higher), one obtains the linearized equation on φ n :

∂ t φ n = D n ∆φ n -κn 0 ∆φ u + α n 1 - 2n 0 β n φ n . ( 4 
)
Proceeding in the same fashion for the other two variables, we obtain the linearized system:

         ∂ t φ n = D n ∆φ n -κn 0 ∆φ u + α n 1 -2n 0 βn φ n ∂ t φ u = D u ∆φ u + αu(1+ωu 0 2 ) (βu+u 0 2 )(1+v 0 ) φ n + 2αun 0 u 0 (ωβu-1) (βu+u 0 2 ) 2 (1+v 0 ) -δ u φ u - αun 0( 1+ωu 0 2 ) (βu+u 0 2 )(1+v 0 ) 2 φ v ∂ t φ v = D v ∆φ v + α v u 0 2 φ n + 2α v n 0 u 0 φ u -δ v φ v (5)
The solution (n 0 , u 0 , v 0 ) is stable if solutions (φ n , φ u , φ v ) of the linear perturbation equation decays to zero in time. To this purpose, we will decompose the initial shape of the perturbation on the Fourier basis, which is given by the functions W k 1 ,k 2 = cos k1 πx L 1 cos k 2 πy L 2 to ensure that our boundary conditions are satisfied. Mathematically, this set of functions is said to form a Hilbert basis (in the L 2 sense) of the set of functions Ω such that ∂ x f (0, 0) = ∂ x f (L 1 , 0) = ∂ y f (0, 0) = ∂yf (0, L 2 ) = 0, and any initial perturbation can be decomposed univocally in this Fourier basis:

φ z (x, y, t = 0) = ∞ k 1 =1 ∞ k 2 =1 C k 1 ,k 2 z cos k 1 πx L 1 cos k 2 πy L 2 .
Stability analysis thus amounts to investigating whether Fourier modes are amplified and damped.

If at least one Fourier mode is amplified, the solution is unstable. The choice of decomposing the initial condition on the Fourier basis is relevant to study equation ( 5) because Fourier modes are eigenfunctions of the diffusion operator:

∆W k 1 ,k 2 = µ k 1 ,k 2 W k 1 ,k 2
associated with the eigenvalues:

µ k 1 ,k 2 = -π 2 k 2 1 L 2 1 + k 2 2 L 2 2
Moreover, because the equation ( 5) is linear, from the principle of superposition of solutions for linear equations, it is sufficient to consider the evolution of a single mode. To assess whether solutions are damped or amplified, we thus look for solutions φ z (for z = n, u, v) of the form 1

φ z (x, y, t) = e λt C z W k 1 ,k 2 (x, y) (6) 
for C z some constant and λ a complex number whose real part is the rate at which the perturbation is damped (real part of λ < 0) or amplified (real part of λ > 0). We note Φ = (φ n , φ u , φ v ) and C = (C n , C u , C v ). In this equation, we observed that if a mode is amplified on one coordinate, it is also on the other, and we thus make the simplifying assumption

k n 1 = k u 1 = k v 1 and k n 2 = k u 2 = k v 2 .
The linearized equation for this perturbation reads:

∂Φ ∂t =      D n µ k 1 ,k 2 + α n 1 -2n 0 βn -κn 0 µ k 1 ,k 2 0 αu(1+ωu 0 2 ) (βu+u 0 2 )(1+v 0 ) D u µ k 1 ,k 2 + 2αun 0 u 0 (ωβu-1) (βu+u 0 2 ) 2 (1+v 0 ) -δ u - αun 0( 1+ωu 0 2 ) (βu+u 0 2 )(1+v 0 ) 2 α v u 0 2 2α v n 0 u 0 D v µ k 1 ,k 2 -δ v     
• Φ [START_REF] Glover | Hierarchical patterning modes orchestrate hair follicle morphogenesis[END_REF] =:

   ẽn (k 1 , k 2 ) ẽu (k 1 , k 2 ) e v f n fu (k 1 , k 2 ) f v g n g u gv (k 1 , k 2 )    • Φ. (8) 
implying, when inserting the specific form of Φ in the equation, that:

λC =    ẽn (k 1 , k 2 ) ẽu (k 1 , k 2 ) e v f n fu (k 1 , k 2 ) f v g n g u gv (k 1 , k 2 )    • C.
In other words, λ is an eigenvalue of the matrix on the righthand side.

Stability of the trivial steady state

For the trivial spatially homogeneous state (0, 0, 0), the matrix associated with stability is given by: det

   λ -D n µ k n 1 ,k n 2 -α n 0 0 0 λ -D u µ k u 1 ,k u 2 + δ u 0 0 0 λ -D v µ k v 1 ,k v 2 + δ v    (9) 
so the expressions of eigenvalues are straightforward:

λ 1 = D n µ k n 1 ,k n 2 + α n λ 2 = D u µ k u 1 ,k u 2 -δ u . λ 3 = D v µ k v 1 ,k v 2 -δ v Because µ k 1 ,k 2 is non-positive, λ 2 , λ 3 are strictly negative, but because α n > 0, λ 1 is positive for k 1 = k 2 = 0.
This implies that the trivial state is always unstable: a small cell density will progressively grow because of the logistic growth term.

Stability of the non-trivial equilibrium

To determine the values of λ in the case of the non-trivial equilibrium, we use the classical fact that eigenvalues are the roots of the polynomial:

λ -ẽn (k 1 , k 2 ) -ẽ u (k 1 , k 2 ) -e v -f n λ -fu (k 1 , k 2 ) -f v -g n -g u λ -gv (k 1 , k 2 ) = λ 3 + a 2 (k 1 , k 2 )λ 2 + a 1 (k 1 , k 2 )λ + a 0 (k 1 , k 2 )
where

       a 2 (k 1 , k 2 ) = -ẽ n (k 1 , k 2 ) -fu (k 1 , k 2 ) -gv (k 1 , k 2 ) a 1 (k 1 , k 2 ) = fu (k 1 , k 2 )g v (k 1 , k 2 ) -g u f v -f n ẽu (k 1 , k 2 ) + ẽn (k 1 , k 2 ) fu (k 1 , k 2 ) + ẽn (k 1 , k 2 )g v (k 1 , k 2 ) a 0 (k 1 , k 2 ) = -ẽ n (k 1 , k 2 ) fu (k 1 , k 2 )g v (k 1 , k 2 ) + ẽn (k 1 , k 2 )g u f v + f n ẽu (k 1 , k 2 )g v (k 1 , k 2 ) -g n ẽu (k 1 , k 2 )f v . ( 10 
)
The Routh-Hurwitz criterion provide three conditions for ensuring that eigenvalues have strictly negative real part (i.e. that the equilibrium is stable). In detail, all eigenvalues have strictly negative real part and only if we have simultaneously a 0 , a 2 ≥ 0 and a 2 a 1 > a 0 . An instability thus arises when one of these conditions is not satisfied, i.e.:

a 0 (k 1 , k 2 ) < 0 or a 2 (k 1 , k 2 ) < 0 or a 2 (k 1 , k 2 )a 1 (k 1 , k 2 ) ≤ a 0 (k 1 , k 2 )
While these expressions may look complex, they are relatively simple functions of µ k 1 ,k 2 . We found that for a variety of parameters in the vicinity of the central parameter chosen, only the term a 0 can break the condition of stability of Routh-Hurwtiz (see . We thus observe a Turing instability occurring, where modes W k 1 ,k 2 for (k 1 , k 2 ) in some interval become unstable and are amplified, yielding the emergence of a pattern.

We note that the non-trivial steady state is independent of the diffusion and chemotaxis coefficients.

We thus considered its stability as D u and D v (respectively, D u and κ) are varied in combination, as is shown in S6 Fig (respectively,S7 Fig). We found that instabilities require to have D u relatively small and D v relatively large (respectively, D u relatively small and κ relatively large). This is perfectly consistent with the loss of patterning when varying these parameters, as observed in S6-7 Fig.

V-Late micro-patterning refinement in feather tracts: emergence of a muscular lattice

In the previous section, I have developed a unified framework to look for the embryonic factors that lead to the timely emergence of feather primordia. This system, that involves a temporal window of development of 2 to 3 days in all the six studied species (largely, from E5.5 to E7.5 in quail), results in a famous hexagonal array of feather primordia in species having separate feather tracts. This regular pattern then progressively morphs into a chevron patterns, and the evolution from hexagonal to chevron patterns has been poorly described.

At hatching, the chevron-shaped motifs have been documented a long time ago, and it was hypothethised that they resulted from the differences between longitudinal and transersval growth [START_REF] Sengel | Morphogenesis of skin[END_REF]. From our observations in the Japanese quail on flat skins preparations, the transition from an hexagonal to a chevron pattern seems to happen gradually after tract completion. Indeed, in a temporal widow between E8.5 and E11, the asymmetry of the hexagonal pattern seems to be more and more visible as the embryo grows. To quantify and confirm this visual aspect, I analyzed the patterns using the associated Voronoi diagrams: these indeed allow computing the distribution of number of neighbours of the cells and provide a metric for quantifying the "hexagonality" of experimentally-observed patterns. Indeed, we found that between E8.5 and E11 in quail flat skins, the number of hexagons in the Voronoi diagram dropped from approximately 75% to 50% (Fig. 20 (a)).

The transition to a chevron shape is concomitant with the formation of a fibrous muscular network anchored at the sites of feather follicles (Fig. 20 (b)). Morphology of this fibrous network has also been described a long time ago (Stuart and Moscona, 1967;Wessells, 1965), and it has been the subject of a recent study highlighting in particular its regenerative power [START_REF] Wu | Self-assembly of biological networks via adaptive patterning revealed by avian intradermal muscle network formation[END_REF]. They showed that these muscle fibres extend outward from feather buds in every direction, and they eventually stabilise if they are able to connect to neighbouring buds. Strikingly, in the Japanese quail, a feather is not evenly connected to all its neighbours. In the penguin, that keeps To disentangle this multiscale aspect of skin patterning and have insights on the precise roles of each parameter of the system, mathematical models can be useful. I have described in the end of the introduction how to appreciate the reliability of a model: it mostly relies on its ability to reproduce a pattern at a given state, but also the different aspects of its formation, as well as naturally observed or experimentallyinduced variations. This model can then be used as a predictive tool: if parameter variation in vivo and in sillico are consistent (i.e., if the model predictions are correct), and if the model is well designed, we may infer that a reliable information about the role of the process related to this parameter has been identified. However, as indicated earlier, one shall always bear in mind that model simulations will only be able to account for the outcome of hypothesised mechanisms (see II-4). These remarks point out the necessity to permanently question the meaning of the variables we implement in mathematical models. While general mechanisms can be inferred from our mathematical model, the variables remain to be fully unveiled: the precise meaning of the cellular variable (discussed in VI-1.c), identity of reaction-diffusion actors and and the pathways supporting their action. In our model, the reaction functions accounting for the interactions between molecular factors are classical simplifications of interactions within genetic pathways constructed so as to respect the qualitative regulation between them. In our study, we have kept the kinetic functions chosen by Michon and collaborators (Michon et al., 2008), where u and v approximate the interactions between BMP2 and BMP7. However, our model makes no assumption on the specific activator or inhibitor molecule (or molecules), and various candidates may play a crucial role, notably FGF activation pathway often mentioned in the literature.

VI

We further emphasize that our model is not construed as exclusive, and one should not conclude that factors extrinsic to our model play no role in defining the resulting pattern: indeed, designing a model effectively leads to focus on the parameters implemented in its equations (in our case, chemotactic amplitude, diffusivities, proliferation rates...). However, these mechanisms may rely on multiple factors, and may depend on other factors absent of the model and potentially critical, exposing the limitations of any modelling approach.

Perspectives

I have already mentioned the ever-standing choice one has to make between simplicity/analytical traceability and complexity/realism when designing any mathematical model (see III-1). Modifications of the model can be easily done to include, for instance, signal-dependent or density-dependent chemotactic strength (Hillen and Painter, 2009), different reaction kinetics, or other molecular variables to better fit the topology of molecular pathways. Interestingly, it has been recently shown that the complexity of a Turing network topology could discharge biological constraints (e.g., RD systems comprising more than two components can form pattern with equally diffusing signals; Marcon et al., 2016).

On the other hand, simplifying our coupled RD-chemotaxis should allow making more precise predictions -e.g., on the lateral speed of pattern propagation -via linear stability analysis. This would be easier if simpler reaction terms were implemented, as these ones make the computations quickly difficult (see IV-2, S1 Text). Simplifying these smooth reaction terms and keeping the right row-by-row dynamics is not straightforward, but should be feasible starting from our computations, and would allow interpretations on minimal constraints necessary to generate such a row-by-row dynamics, a largely open question in applied mathematics.

However coupled RD-chemotaxis models have proven their predictive efficiency for appendage patterning, recent compelling results have been obtained focusing on mechanical parameters that are not implemented in our unified model (Shyer et al., 2017). This should lead us to either use other frameworks that include explicitly mechanical aspects, or to question the relationship between chemical-based and mechanical models.

VI-1.b Mechanical properties of the tissue affect molecular parameters

Patterning of the skin has been more substantially studied with chemical-based models, in which no explicit mechanical parameter is present. However, a complex crosstalk between mechanical and molecular aspects does exist in patterning events: mechanical properties of the tissue notably result from cell confinement and interactions in response to molecular cues, and in turn mechanics of skin tissue regulate various properties of molecular interactions.

In that sense, the stiffness of skin tissue has a direct biophysical impact on molecular diffusion and cell motility, slower in stiffer tissues. Biophysically, these changes in diffusivities and motility inevitably have major impact on patterning.

Specifically, too stiff substrates would not allow sufficient molecular and cellular motility necessary for the emergence of a pattern, while too flexible substrates would allow a rapid motility of cells and molecules preventing stabilisation of multicellular aggregates. This statement is consistent with the results of skin cultures experiments in which tissues slightly stiffer than control lead to smaller cellular aggregates -probably due to the slower molecular diffusion and cell motility -and, conversely, larger aggregates will emerge in more flexible tissues (Shyer et al., 2017).

An efficient way to predict and quantify mechanical effects would be to re-write our unified model and include the effects on diffusion and motility of the skin stiffness through a parameter s:

= -⋅ () + 1 - = + , , . = + , ,
This approach would imply making assumptions about the response of diffusivity and chemotactic parameters, i.e. to implement functions and , which is a major challenge in biophysics. Given the fact that these parameters have been shown to impact the spacing of the resulting dotted pattern, this re-writing of the unified model could provide a good framework to reconcile mechanical and chemical viewpoints. As an illustration, Figure 21 (b) displays a range of micro-patterns obtained when all diffusion parameters are dilated the same way, the chemotactic amplitude being unchanged.

It thus remains a complex task to disentangle molecular interactions and mechanical constraints and isolate, if even possible, the distinctive roles of mechanical constraints and of molecular interactions. To that end, emerging modelling approaches combining the coupling of these two aspects is of great interest (Brinkmann et al., 2018), and the patterning capabilities of these frameworks should be explored and studied as closely as their historical counterparts. For instance, this model generates variation in micro-patterns with respect to skin thickness, a parameter that can vary between species when feather primordia develop (data currently in acquisition).

Importantly, these frameworks are accompanied with an increasing experimental support for mechanochemical coupling as an important driving force in biological patterning (see e.g. [START_REF] Heisenberg | Forces in tissue morphogenesis and patterning[END_REF]Jannat et al., 2010;[START_REF] Mammoto | Mechanosensitive mechanisms in transcriptional regulation[END_REF].

VI-1.c Nature of symmetry-breaking events initiating feather primordia patterns

We showed that in the patterning of appendage primordia, minor heterogeneities between initial condition peaks and their surrounding environment are sufficient to launch the patterning wave, provided they are distributed in a sharpenough spatial profile. But the precise nature and embryonic origin of these initial conditions remain uncertain.

In the simulations shown in the paper, initial conditions were equally defined for all three variables , and . The results -at least with the reference parameter setare strictly similar if the Gaussian initial conditions are only forced on the cellular variable n, with random fluctuations around the baseline value for the two molecular variables. However and conversely, if the Gaussian initial conditions are set on the molecular variables and if the cellular variable starts from a shallow medio-lateral gradient, the model does not successfully generate the row-by-row dynamics (see Fig. 22; the row-by-rows dynamics if the cells are initialised by random fluctuations around a baseline value). That suggests that the power of attraction of the cells is not strong enough to precisely compartmentalise the cells in a narrow domain to subsequently form rows of feather follicles. Choosing higher chemotactic amplitude is not able to recapture the proper dynamics around the reference parameter set. These results show that the cellular variable should not be interpreted as completely equivalent to cell density, but rather as a density of competent cells, consistently with the fact that selforganising competence could be acquired above a cell density threshold (Ho et al., 2019).

Our study allows for several interpretations for the nature of the symmetrybreaking event. Firstly, local differences in cell density can fulfil this role. In that case, the origin of cell density heterogeneities is raised, particularly since the model predicts that molecular factors cannot provide the proper directionality themselves (Fig. 22).

VI-2 Directionality of patterning

Our unified RD-chemotaxis model suggests that the directionality of the feather patterning process is provided by initial landmarks. However shallow they are, they define a spatially restricted surface that is competent to self-organise into dots. Then, the timely regulation of 1) the self-organisation of the components within this domain (budding primordia) and 2) the lateral transmission of the self-organising competencein the direction that is orthogonal to that of the inital landmarks -define two directional aspects.

Directionality of patterns is even more striking in the context of colour patterning. In birds, we have described in lab variations of the pattern of alternative yellow and black stripes in juveniles of Galliforme birds (Haupaix et al., 2018). This periodic motif of directional stripes is reminiscent of many colour patterns observed in fish, raising the question of the origin of this directionality.

VI-2.a Directionality forced by initial conditions or inherited directionality

We have discussed on the previous subsection the nature of initial conditions that set the directionality of the appendage primordia patterning process in birds displaying spatially restrained initial conditions (chicken, quail, pheasants and zebrafinch). Whatever the nature of these initial conditions (see VI-2.c), it suggests that the directionality of forming feather rows is inherited from the directionality of these initial landmarks. In the hypothesis where this initial spatially-restrained competence is provided by molecular factors coming from the neural tube, directionality aspects of feather patterning would thus be a consequence of the anteroposterior directionality of the neural tube.

In birds, the mediolateral position of longitudinal agouti bands and coloured stripes is instructed by somites, which align longitudinally at early equivalent positions.

This also suggests that the direction of colour domains could be constrained by early precursors (the latter serving as foundations upon which late mechanisms act to produce variation).

In zebrafish, iridophore precursors migrate through the horizontal myoseptum to form a single, horizontal band of iridophores at the mid-larval stage. Melanophores and xanthophores that arrive in the same region afterwards are influenced by the localization of already-present iridophores, suggesting this mid-larval pattern of iridophores acts as the initial mediator for the direction of stripe patterning. Multiple experiments support this possibility: in mutant zebrafish in which this initial iridophore landmark is lost, the mid-larval pattern does not form, and adult fish develop a labyrinth-like pattern (Svetic et al., 2007). When all three types of pigment cells are suppressed using a laser, regeneration of the pattern occurs, but the directionality is lost (Yamaguchi et al., 2007). All in all, many experiments point towards the fact that the origin of stripe directionality in zebrafish relies on the initial distribution of iridophores in the skin, a result supported by many modelling approached (e.g.

recently, [START_REF] Volkening | Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns[END_REF]. degrees or 180 degrees angles, and then recombined with the dermis, the direction of the periodic central black stripes followed the AP axis of the epithelium [START_REF] Inaba | Instructive role of melanocytes during pigment pattern formation of the avian skin[END_REF].

Rotations of embryonic upstream embryonic structures could be tried out as well, and help decipher the origin of directionality for feather patterning. Resulting orthogonal or inverted orientation after manipulation can be controlled by assessing markers of its regional identity: indeed, a plethora of genes is known to specifically stain defined areas in the neural tube, lateral plate mesoderm, or somite; for exemple the combination of Pax3/Wnt11, En-1 and Sim-1 expression defines mediolateral regions along the dermomyotome. Heterospecific grafting experiments, between wellchosen species displaying different directionalities in their pattern could be carried out as well.

VI-2.b Directionality and anisotropic diffusion

The previsous subsection suggests that in order to understand why both feather follicle and colour patterns include a certain directionality, one needs to consider earlier embryonic development phases. However, this only shifts the problem, and implies to understand the origin of directionality in upstream developmental windows. It is important to note at this stage that other features could theoretically account for the emergence of directionality from homogeneous domains.

In particular, modelling studies have suggested a role of anisotropic diffusion to force pattern directionality in simple RD systems, by investigating the mechanism regulating the direction of stripes in two species of Genicanthus fishes during sexual conversion [START_REF] Shoji | Directionality of stripes formed by anisotropic reaction-diffusion models[END_REF][START_REF] Shoji | Origin of directionality in the fish stripe pattern[END_REF]; see Fig. 23). These species share almost identical morphologic properties, except for their stripe direction. In both species, spots transiently arise at random positions and then combine and rearrange to form directional stripes. The computational model they proposed showed that diffusion anisotropy is very effective at specifying the direction of stripes formed by the RD system. It could be interesting to assess whether diffusion is anisotropic in early embryonic stages of any species that display a directional pattern.

In the unified model with anisotropic diffusion, the resulting pattern displays a general orientation in the favoured direction of diffusion (Fig. 23). In these simulations, the shape of follicles becomes oval and is also oriented in the favoured direction for diffusion.

Perspectives

The effect of anisotropy in the unified model could be further studied by setting different anisotropy on the cellular, activator and inhibitor diffusion coefficients, as shown in Fig. 23 (a). I expect different results here with the addition of the chemotaxis and logistic growth parts.

In fish, some correlations have been found between the existence of scales and stripe directionality [START_REF] Shoji | Origin of directionality in the fish stripe pattern[END_REF]. This raises the question of the nature of this anisotropy, which could result from the geometry of underlying embryonic structures.

Of note some methods to quantify diffusion anistropy have been used ex-vivo in mice brain (Ianuş et al., 2018). 

VI-3 Origin of pattern geometry and regularity

A pattern property that has been overlooked in our modelling-to-experiment crosstalk is the regularity of appendage distribution. Birds are a great model system to study how regularity arises as their feathers, across the skin and throughout development, display various, well-defined pattern geometries and regularities. Indeed, feather appendage patterns can be irregular and sparse (in the glabrous regions of species with feather tracts such as the zebra finch or Galliformes), irregular and rather dense (e.g., in emus), perfectly arranged in an hexagonal array (e.g. in tracts when feather primordia have just appeared in the domestic chicken, Japanese quail, Phasianidae, ...) or arranged in V-shaped chevrons (in the later development of species with tracts, see section V). I discuss here the potential effects of cell density and initial conditions' geometry in shaping appendage patterns, and further comment the emergence of chevron motifs.

VI-3.a Cell density as a potential factor of regularity

Among hypotheses for the developmental origin of regularity, coupled RD-chemotaxis models from F. Michon and collaborators (Michon et al., 2008) predict that the initial cell density of the system can explain pattern transitions from apterium to tract: below an initial cell density threshold no feathers form, similar to the apterium, the final pattern becoming increasingly hexagonal and regular as cell density increases. This is consistent with the fact that at the onset of the patterning process of feather primordia, cell density is much lower in apteria and semi-apteria (where the patterns are irregular) than in tracts (where the pattern becomes hexagonal). This prediction on initial cell density is similar in our unified model that incorporates logistic cell proliferation, provided that the proliferation rate parameter is not set too high.

To challenge this prediction, we can design experiments based on ex-vivo skin culture explants in which the geometry of initial conditions is perturbed. This is currently done by my colleagues in the Manceau lab, by positioning isolating tantalum membranes in quail and emu dorsal skins around the trigger stage.

VI-3.c On the emergence of chevron shapes

We have seen in section V-2 that the hexagonal pattern that adorns the dorsal feather tract (when completed) of the Japanese quail progressively distorts to form chevrons. These geometries are observed in all species displaying feather tracts.

We have seen that the emergence of a muscular network is concomitant with a loss a global hexagonality of the pattern (see V-2). Strikingly, in the Japanese quail (that displays chevrons) this network is asymmetrical and as fibers seem more dense between feathers belonging to a same chevron, whereas in the penguin (that maintains a regular hexagonal pattern throughout development), the network connects every feather to its neighbours with equally dense fibres. Whether the asymmetry of the network drives the transition of hexagons to chevrons, or results from this transition, remains unclear.

This fibrous network has been the object of a recent study that highlights, in particular, its regenerative power and its formation process through a mathematical model [START_REF] Wu | Self-assembly of biological networks via adaptive patterning revealed by avian intradermal muscle network formation[END_REF]. In the framework they use, the organisation of the muscular network is predicted according to a pre-existing positioning of all feathers -as they are interested in the regenerative ability of this network.

Perspectives

From a modelling viewpoint, Wu and colleagues predicted the geometry of the network according to a given disposition of feather in the skin with a mathematical model: their model was initiated with an hexagonal/tetragonal array of feathers already set. Thus, their model assesses the impact of feathers on the network, but does not let the possibility that the network can influence the position of feathers. It would be interesting to test what occurs if this network formation process is initiated as soon as the first differentiated feathers appear (i.e., in a medio-lateral manner). In any case, modelling studies enabling to assess the influence of the fibrous network on the positioning of feathers may help predicting the origin of later pattern refinements in development.

VI-4 Developmental dynamics and timing

We have seen that dynamical aspects of skin patterning can help to choose a relevant framework, invalidating many models unable to generate them. Conversely, mathematical models can help to make predictions on the dynamics and timing of patterning processes. In this section, I further discuss the results obtained on the dynamics and timing of feather patterning, and examine the perspectives offered by these concepts at the scale of the whole embryonic development.

VI-4.a Dynamics and timing of feather patterning

In our study, we have described the establishment of dorsal feather patterning, which occurs in a progressive fashion by propagating an initial spatially restricted competence of cells, marked by beta-catenin, throughout the skin up to a certain limit (giving rise to tracts) or not. To understand the timing of transmission of cell competence, the proliferation rate is particularly interesting parameter in our model: it can tune the duration of the patterning process without altering the order of apparition of the dots, and preserving the properties of the final pattern. According to the simulations I have run, the other parameters (diffusion coefficients, chemotactic amplitude, intensity of activator-inhibitor interactions) rather have more dramatic effects on the process itself: either these parameters can provide instabilities and dots can appear, or not. But, when patterning is preserved, those parameters seem to only mildly alter the duration of the process.

We recall that if the initial competence is spatially confined in longitudinal domains and if the surrounding environment has low competence , the propagation of the pattern occurs in a row-by-row sequence. In the four surveyed species where this occurs (domestic chicken, Japanese quail, common pheasant and zebra finch), the duration of the process is largely similar (two to three days) irrespective of hatching times that vary from 14 to 22 days. On the other hand, in species that display large initial competence domains, the feathers first differentiate within initial competent domains and the completion of other skin areas occurs gradually, more or less rapidly according to the baseline value (see IV-2).

.

Perspectives

From a modelling perspective, our unified model seems to rely on Fisher type dynamics that give rise to a travelling wave solution (for the variable), over which a

Turing system ( and variables) is superimposed and uses n as a "bifurcation parameter". Thus, n defines the region where Turing model generate diffusion-driven instability. Simplifications of the model may allow tracking analytically this travelling wave, whose propagation speed is expected to depend on the proliferation rate. This approach could lead us to formulate other predictions on the dynamics and timing of propagation of feather primordia patterning.

We have seen that initial conditions -which result from upstream developmental mechanisms (whose nature is discussed in IV-1.c) -also impact drastically the patterning dynamics and duration. Understanding the differences observed in the dynamics of appendage patterning thus necessitates looking outside (upstream) of the temporal developmental window we have focused on.

VI-4.b Orchestration and timing of self-organising processes

Development usually proceeds in stages, and the pattern in one stage often serves as the prepattern of the next. In Alan Turing's words 'Most of an organism, most of the time, is developing from one pattern into another, rather than from homogeneity into a pattern' (Turing, 1952). In this sense, the development of an organism from a single cell to its adult form results from the succession of processes where early developmental cues can impact, or trigger, patterning processes occurring afterwards.

I have already mentioned in this discussion several examples of this stepwise aspect for appendage patterning: inherited directionality of feather patterning dynamics, initially induced regularity of the resulting motif, and we have seen in section V that the presence of chevrons was conditioned by the previous existence of an hexagonal pattern.

In bird colour patterning was uncovered a two-step mechanism in which early positional signals from the somite combine with late acting dynamics relying on the local control of agouti pre-pattern through changes in its expression levels. Mesodermal cells interact with melanocytes that also provide instruction for periodic stripe formation, as melanocyte transplantation transfers the ability to produce stripes. This capacity results from a modulation of gap junction channels in melanocytes. The formation of color patterns may thus be examined in an integrative way, whereby instructional, self-organizing and/or late acting mechanisms are coupled in space and time (see Haupaix et al., 2018, Inaba et al., 2019, andI-4). Similarly in zebrafish, early instruction position iridophores along the antero-posterior axis that later interact with xantopohres and melanophores, a self-organising process that can be modelled with reaction-diffusion (see VI-2.a).

Thus, self-organising processes depend on precise states of the embryo, at a given time point, that are inherited from upstream developmental mechanisms. One may wonder what would happen if these upstream mechanisms were slowed down someway in their process, and not ready to properly set the embryonic system at this time point (e.g., not providing enough heterogeneity to break symmetry and trigger another self-organising system). Results provided in the submitted article (section IV-2) suggest this may be such a case in the emu, where the embryonic system fails to trigger the patterning process due to lack of spatial heterogeneity.

VI-5 Evolutionary aspects of skin patterning

"from so simple a beginning, endless forms most beautiful and most wonderful have been, and are being, evolved." Charles Darwin, The Origin of Species

We have seen along this manuscript that natural variation and mathematical modelling can combine efficiently to provide working hypotheses about the mechanisms that shape patterning processes and their evolution. In light of natural variation, the relevance of mathematical models can be assessed through their ability to generate a given family of pattern alterations. Then, mathematical models can help interpret the evolution of patterns: the transition from one species to another can be interpreted through a change of one or several parameters. In this section, I come back to the results suggested by our framework on feather tract evolution and further discuss the evolving roles of skin patterns throughout development, in light of material developed in the previous section about dynamics and timing.

VI-5.a Evolution of feather tracts and flight ability

Feather patterns have now been extensively described in many species. The plumage pattern is characterised by featherless areas that separate tracts and are thought to allow steric space necessary for flight movements. Going further, at this stage of data available, there is a perfect correlation between 1) the presence of spatially restricted initial conditions (as described in section IV-2),

2) the formation of an hexagonal pattern that later distorts into chevrons in distinct feather tracts, and 3) the ability to fly.

Our study shown in IV-2 and other recent research have confirmed this trend, especially among ratites, where the flying tinamou displays an hexagonal to chevronned arrangement as well as feather tracts, unlike non-flying emu and ostriches, its ratite counterparts (Ho et al., 2019). Interestingly as well, non-flying Gentoo penguins have a regular pattern, but no chevrons and, apparently, no spatially confined initial conditions. Of note, differences between the feather patterns of emus and penguins also suggest that their loss of flying ability have evolved through modifications of distinct developmental mechanisms, consistent with the observation that their initial conditions are different and other pattern attributes vary between these species, such as pattern geometry. Reconstructing the evolutionary history of tract pattern formation and flight loss will however necessitate a broader description of feather tracts in other flying and non-flying species in all three avian taxa.

Our unified model has shown that larger computational times are needed for the whole simulation domain to be filled with dots if initial condition are confined spatially.

In vivo, where timing is important and patterning systems do not necessarily have the time to reach their steady state, this would mean that in chick, quail, pheasant and zebra finch, the patterning process is stopped and stabilised before all the skin is covered by feathers. Our framework thus suggests that the presence of feather tracts (and, probably, the ability to fly) depends on early developmental landmarks in the embryo, resulting in the confined initial conditions. Whether the flight function is acquired through the steric space allowed by apteriums, the spatial reparition of feathers in chevrons, or through any other feature (e.g., the differentiation of flight feathers) remains subject to debate.

VI-5.b Functions of skin patterns across development

In section I-2.d, I have described several possible functions of skin patterns.

These functions include thermal regulation (through appendage density), camouflage strategies (through pattern blending or disruptive colourations), or intra and interspecific communication. Of note, the functions of a given pattern can be multiple: in chameleons, adaptive colour change has been suggested to serve both camouflage, thermal regulation and intra-specific communication (Teyssier et al., 2015).

These function can also evolve with time. Even in adult, skin patterns can evolve and serve other different functions along the life of an individual. For instance, the striped pattern in juvenile pheasants plays a role that is most likely different than the shiny motifs they adorn when they grow older.

The issue of pattern functions is also relevant during embryonic development.

The adult patterns that we can commonly observe result from several intermediate patterns observed during development. Thus, all these intermediate patterns have the indirect function to generate certain adult motifs, whose role can be more intuitive. In this sense, function can be acquired through the existence of a given pattern at a certain time in development. For instance, the configuration of the muscular network described in section V depends on the prior (or current) organisation of feathers in the skin. Different network topologies should result in the acquisition of disctinct functions: the dense and regular configuration of this network in penguins (Fig. 22 (b)) could play a role for thermal regulation, either by providing a heat barrier itself or by making feathers closer one to another. All in all, this suggests that the function of a given pattern at a given time should be analysed in light of the consequences it further implies in development, or ethologically.

ANNEX

A Table of operators

Let p be a scalar field and u = (u x , u y ) a vector field of the plane R 2 . That means p (resp. u) associates a scalar value (resp. a vector) to every point in space. The most common operators we can meet in mathematical models for biology are resumed in the following table. 

B Stability analysis of reaction-diffusion systems

We show here the principles of linear stability analysis in RD systems, and some insights on the role of domain and initial conditions constraints on pattern formation, following mostly chapter 2 of Murray, 2002 (all figures in this annex part are adaptations the figures found in this reference). Two-species reaction diffusion systems can be nondimensionalised and scaled to the general form:

∂u ∂t = ∆u + γf (u, v) ∂v ∂t = d∆v + γg(u, v), (1) 
with boundary conditions specified -here we focus on homogeneous Neumann boundary conditions -and u(x, 0), v(x, 0) given. In this case, d is the ratio of diffusion coefficients, i.e. d = Dv Du , and γ can have different interpretations. γ represents the relative strength of the reaction terms, or, an increase in γ can be considered as equivalent to a decrease in the diffusion coefficient ratio d, and γ is proportional to the area of the spatial domain in a 2D case (in 1D, √ γ is proportional to the linear size of the domain).

B-1 Necessary conditions on parameters for patterning

A reaction diffusion system exhibits diffusion-driven instability, sometimes called Turing instability, if the homogeneous steady state is stable to small perturbations in the absence of diffusion but unstable to small spatial perturbations when diffusion is present.

Stability of the system without diffusion

We first focus on the system in the absence of diffusion, that is:

∂u ∂t = γf (u, v) ∂v ∂t = γg(u, v) (2) 
The relevant homogeneous steady state (u 0 , v 0 ) is the one that verifies f (u 0 , v 0 ) = 0, g(u 0 , v 0 ) = 0.

Linearising about the steady state (u 0 , v 0 ) we set

w =    u -u 0 v -v 0    .
For |w| small, the equation ( 2) becomes:

∂w ∂t = γAw ( 3 
)
where A is the Jacobian matrix of the system evaluated at the steady state:

A =    ∂ u f (u 0 , v 0 ) ∂ v f (u 0 , v 0 ) ∂ u g(u 0 , v 0 ) ∂ v g(u 0 , v 0 )    =:    f u f v g u g v    .
Now we look for solutions w ∝ e λt , and focus on the values of the eigenvalues λ. They are the solution of:

det (λI -γA) = λ -γf u -γf v -γg u λ -γg v = 0,
that is,

λ 2 -γ(f u + g v )λ + γ 2 (f u g v -f v g u ) = 0.
Straightforward algebra gives the solutions

λ 1,2 = 1 2 (f u + g v ) ± {(f u + g v ) 2 -4(f u g v -f v g u )}
For Turing instabilities to appear, the homogeneous steady state has to be linearly stable, that is, Re(λ) < 0. This is guaranteed if

tr(A) = f u + g v < 0, det(A) = f u g v -f v g u > 0. ( 4 
)
Instabilities in the full system with diffusion Now, we consider the full reaction diffusion system [START_REF] Kondo | Reaction Diffusion as a framework for understanding biological pattern formation[END_REF] and again linearise about the steady state, which with ( 3) is w = 0, to get

∂w ∂t = γAw + D∆w, D =    1 0 0 d    . ( 5 
)
192 To solve this system of equations subject to homogeneous boundary conditions, we first define W to be the time-independent solution of the spatial eigenvalue problem defined by ∆W + k 2 W = 0, with homogeneous Neumann boundary conditions. ( 6)

For example, if the domain is one-dimensional, say, 0 ≤ x ≤ L, W ∝ cos(nπx/L) where n is an integer; one can easily check that this satisfies [START_REF] Sick | WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism[END_REF] with zero flux conditions at x = 0 and x = L, and with k = nπ L . Now let W k be the eigenfunction corresponding to the wavenumber k with homogeneous Neumann boundary conditions. Because the problem is linear we can look for solutions w of ( 5) in the form:

w(x, t) = k c k e λt W k (x) (7) 
where the constants c k are determined by a Fourier expansion of the initial conditions in terms of W k (x). λ is the eigenvalue which determines temporal growth. Substituting this form into ( 5) with [START_REF] Sick | WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism[END_REF] and cancelling e λ t , we get, for each k,

λW k = γAW k + D∆W k = γAW k -Dk 2 W k
We require nontrivial solutions for W k so the λ are determined by the roots of the characteristic polynomial det(λI -γA + Dk 2 ) = 0

Evaluating the determinant with A and D from (2.15) and (2.20) we get the eigenvalues λ(k)

as functions of the wavenumber k as the roots of

λ 2 + λ k 2 (1 + d) -γ(f u + g v ) + h(k 2 ) = 0, with h(k 2 ) = dk 4 -γ(df u + g v )k 2 + γ 2 (f u g v -f v g u ). ( 8 
)
Contrary to the previous case without diffusion, here we require Re(λ) > 0 for some k = 0.

This can only happen if either the coefficient of λ in ( 8) is negative -but this is impossible because of ( 4) -or if h(k 2 ) < 0 for some k = 0. This implies two other conditions on the parameters:

df u + g v > 0, (df u + g v ) 2 -4d(f u g v -f v g u ) > 0. (9) 
In combination with (4), these conditions imply that the derivatives f u and g v must be of opposite sign and d = 1. In the case when f u > 0 and g v < 0, the ratio of diffusion coefficients must verify d > 1, hence the concept of short-range activator and long-range inhibitor.

In any case, inequalities ( 4) and ( 9) define a domain in a certain parameter space, called the patterning or Turing space, within which the model is unstable to certain spatial disturbances of given wavenumbers k. Looking for these wavenumbers can give further insights on a model's patterning behaviour.

B-2 Range of unstable wavenumbers, dispersion relations

If we consider the solution w given by ( 7), the dominant contributions as t increases are the modes W k for which Re λ(k 2 ) > 0, since all other modes tend to zero exponentially.

An important question is thus what is the range of acceptable values of wavenumbers k = 0 giving rise to these modes.

To illustrate the emergence of unstable wavenumbers, one can plot one of the equations defining necessary conditions on the parameters as a function of k 2 . In section IV-2, it corresponds to one of the equations emanating from the Routh-Hurwitz stability criterion.

In this simpler RD context, a plot of h(k 2 ) is relevant (see Fig. A1 (a)). The range of unstable wavenumbers k 2 can be analytically obtained from the zeros of h(k 2 ) in ( 8):

k 2 1 < k 2 < k 2 2 k 2 1 = γ 2d (df u + g v ) -{(df u + g v ) 2 -4d det(A)} 1/2 k 2 2 = γ 2d (df u + g v ) + {(df u + g v ) 2 -4d det(A)} 1/2 (10) 
Then, one can plot the so-called dispersion relations corresponding to the variations of Reλ with respect to either k, or to the wavelength ω = 2π k (Fig. A1 (b) and (c) display their usual shape). In these plots, the part of the curve that is above the x-axis corresponds to the range of possible growing modes: provided that a wavenumber lies in this interval, the associated mode will grow exponentially.

B-3 Shape of solutions

According to [START_REF] Glover | Hierarchical patterning modes orchestrate hair follicle morphogenesis[END_REF], the solutions of the system we study behave, for large times t, as w(r, t) = k 1 <k<k 2 c k e λ(k)t W k (r) [START_REF] Nitzsch | Nitzsch's Pterylography[END_REF] where r is the space variable and k 1 , k 2 bound the discrete interval of unstable wavenumbers (those that verify Re λ(K 2 ) > 0, mentioned above). It is convenient to distinguish the 1D and 2D cases and write more explicitly the components of the previous sum:

w(x, t) = where n 1 , n 2 (respectively m 1 , m 2 ) bound the discrete interval of unstable wavenumbers in the

x direction (resp. in the y direction). Hence, the selected modes W n or W n,m resulting from the Laplacian spectral decomposition ( 6) shape the pattern. Outside of simple geometries, this eigenvalue problem ( 6) becomes quickly complicated. We present here some patterns resulting from different domain geometries, starting from the simplest ones (1D segments,

2D rectangles).

A useful way of presenting spatial patterned results, used in Fig. A2, is to represent a concentration above the steady state value by a shaded region, while an unshaded region represents a concentrations below the steady state value. This simple way of presenting the results is very useful in representing patterns emanating from developmental biology, where it is postulated that cells differentiate when one of the morphogen concentrations is above (or below) some threshold level.

Solutions of the Laplace eigenvalue problem for the simplest geometries

• On a 1D segment 0 < x < L, the wavenumbers are k = nπ L and the modes write

W n (x) = c n cos nπx L . ( 12 
)
• On a 2D rectangle 0 < x < L, 0 < x < L 2 , the wavenumbers are The periodicity of these cosine functions results in periodic patterns as shown in Fig. A2.

k 2 = π 2 n 2 L 2 1 + m 2
The interpretation of ω as the wavelength of the pattern is transparent in these simple cases. The integers n associated to the selected unstable modes will define the number of stripes/spots/squares generated.

Solutions of the Laplace eigenvalue problem for hexagones and rhombi

Some elementary solutions for symmetric domains that tesselate the plane have been highlighted [START_REF] Christopherson | Note on the vibration of membranes[END_REF]. Their analysis is less straightforward, but since these results show that the geometry of the domain impacts the shape of the resulting patterns, I mention here as an illustration the solutions of ( 6) on some hexagons and rhombi.

• Solutions of ( 6) on a regular hexagon write, in Cartesian and polar coordinates: Because of the linearity of ( 6), such solutions are independent to the extent of multiplication by an arbitrary constant: the form chosen here makes W k (x, y) = 1 at the origin. This solution satisfies zero flux boundary conditions on the boundaries of the hexagonal domain if k = nπ, n = ±1, ±2... Fig. A2 (c) shows the type of pattern these solutions generate.

W k (x, y) = 1 3
• Solutions of ( 6) on a rhombus write 

B-5 Mode selection, initiation of patterning

We have seen in the two previous sections that:

-if the model parameters are appropriately set, dispersion relations allow for one, or several (as in Fig. A4 In the first case of Fig. A4 (b), the initial perturbation has all modes present in its expansion in terms of the eigenfunctions and so all modes in the unstable band of wavelengths in Fig. A4 (a) are stimulated. The mode with the maximum λ, ω 2 , is the one with the fastest growth and it ultimately dominates. The steady state inhomogeneous pattern that persists is then that with wavelength ω 2 .

In Fig. A4 (c) we envisage the domain to be growing at a rate that is slow compared with the time to generate spatial pattern. For small L(t) the domain is such that it cannot contain any wave with wavelengths in the unstable band. When it reaches L c , the critical domain size for pattern, it can sustain the smallest wavelength pattern, namely, that with wavelength ω 1 . In the time it takes L(t) to grow sufficiently to allow growth of the next wavenumber, that with wavelength ω 1 is sufficiently established to dominate the nonlinear stage. So the final pattern that emerges is that with the base wavelength ω 1 .

These two scenarios illustrate the importance of initial conditions in patterning. First, dispersion relations show that several modes can be "active". Modes with the highest growth rates are more likely to shape the resulting pattern (and random initial perturbations around 200
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 15 Figure 15: Combining several frameworks.(a) Top: Wolpert's concept of positional information (PI). Cells make fate choices according to their position over a monotonic gradient, resulting from a priorly asymmetry. This illustration shows that many tresholds (T) need to be set to use the PI concept in the context of a periodic pattern. Bottom: ways through which RD and PI concepts can work together (green is the RD pattern, while the blue, white and red flag indicates the interpretation of the PI;Green and Sharpe, 2015). (b) Left: schematic view of one investigated feedback loop between tissue mechanics and morphogen production. Right: Simulations of a mechanochemical model showing the range of patterns it can generate when changing parameters such as skin thickness, domain size, tangential diffusion or basal constricution(Brinkmann et al., 2018).

  complex patterns: a recently proposed model theorising patterns of piebaldism -a disorder of melanocyte development that result in transient superimposed patterns -and patterns surrounding the eyes of Puffer fishes Arothron caeruleopunctatus and Arothron mappa (Dougoud et al., 2019; Sanderson et al., 2006).

  Many of the characters of the avian skin and their development described in section I raise largely open and interesting questions to both the experimental and computational biology communities. Particularly fascinating for me was the regular orchestration of the patterning of feather primordia during development, which I quickly focused my interest on. Indeed, multiple facets of this question bear a strong interest for the community of mathematical biologists and seem particularly suited to carry out a mathematical/experimental crosstalk: feather patterning is highly reproducible among individuals of the same species, displaying well-defined shapes (irregular, or hexagonal and later chevrons) that evolve over the course of development in a timely fashion. I describe here the history of concepts and techniques, from the choice of patterned characters to the functional tests that I have subsequently used during this thesis, eventually leading to the submitted article that immediately follows.

  The model from Michon and collaborators was my starting point: I first reproduced the simulations in their paper and started to vary parameters. Quickly, the question of the source term for the cellular variable was raised. I thus quickly tried other proliferation terms, and implemented classical models (see II-1.b), or considered the absence of proliferation. Strikingly, I obtained similar results by varying the proliferation term: even though with no source term, the propagation of dots is extremely slow beyond the initial row, I realised that the logistic function could resolve

Fig) that helped

  Fig) that helped me characterize consistently this patterning process. This programwhich we have refined and improved all along the thesis -was finally able to 1) load and apply a pre-treatment of the image via Gaussian filters, 2) automatically detect dots in an image (e.g. a dot in a simulation image, a feather follicle in an embryonic flat skin or a forming primordium marked by beta-catenin), 3) quantify dynamical aspects of the process by tracking the number of rows and the number of dots within a

  the wings (panel (A) of S1 Fig in the submitted publication). I thus measured the distance between wings and tail, and between the two wings, in all surveyed species.

  follicle individualisation occurs randomly in space and time over the course of ~1 day (emus develop in 60 days). Similarly, in Gentoo penguins, ß-catenin marks large regions of the dorsal feather field: first detected in two thick lateral bands, it rapidly switches to the complementary central region, and later covers the whole tract. It thereby defines two successive early patterning surfaces, throughout which follicle individualisation rapidly takes place (Gentoo penguins develop in 35 days). Contrary to the emu, penguin follicles readily appear in a highly regular pattern, forming a unique squared geometry (Fig 2). This difference aside, and compared to Galliformes and the zebra finch, follicles individualise in both flightless species without clear directionality and sequence and in a comparably shorter duration. This may be due to entirely different patterning mechanisms specific to ratites and penguins, or to drastic changes in dynamics of tract establishment that occur independently of follicle individualisation.

  longitudinal bands within which spots individualise simultaneously (i.e., without row-by-row sequence), mimicking tract formation observed in skin areas of the emu and the Gentoo penguin initially marked by ß-catenin (S3 Fig). Thus, pattern directionality can be generated by combining self-organisation with spatial heterogeneities oriented along the medial axis and present in the skin prior to follicle individualisation.

  Fig and S Text) and then tested it on small random fluctuations (i.e., without axial initial conditions). As expected it allowed the formation of regularly spaced dots that appear throughout the simulation surface in a timely fashion (S4B Fig).Because we showed that initial axial conditions provide directionality to pattern formation, we next added species-specific spatial heterogeneities to numeric simulation frames by adapting their sizes to that of tract size/shape in each bird (Fig 3A) and

  relative to body landmarks that position the medial (P1) and lateral (P2) peaks, ℰ and ℰ are indicator functions that define inner and outer regions of elliptic surfaces ℰ, and is a variable value defining the elliptic curve. The amplitude and sharpness of peaks and elliptic areas, respectively, are represented by a, , and ℰ and m represents a minimal density throughout the simulation frame(Fig 3C). We found that simulations of the model with a unique set of reference parameters chosen from the stability analysis for their pattern-forming abilities (S4 Fig),and conserved minimal density but species-specific peak conditions, allow the formation of individualised dots in a bi-directional and typical row-by-row sequence requiring similar times of simulation Ts to stabilise in a final pattern for Galliformes and the zebra finch (Ts = 700/800), and in a spatially random and faster manner in the emu and the Gentoo penguin (Ts =200/150; Fig3D,E). Thus, combining self-organisation (which controls follicle individualisation) and logistic proliferation with a species-specific spatial organisation of the yet un-patterned skin (as marked by the expression of ß-catenin) accurately anticipates patterning directionality, sequence, and overall duration. Together, the incremental building of a unified model reproduced shared and varying spatio-temporal attributes of tract pattern emergence, allowing us to predict that they rely on a pre-pattern upon which spontaneous mechanisms act. described here by m: with Japanese quail-like conditions, proper row-by-row sequence is lost when m reaches a high threshold. Strikingly however, we found that sequential patterning occurs with low m values (close to m=0; Fig 4A). Thus, conserving low minimal density of cellular/molecular factors outside of domains spatially restricted along the medial axis is an initial symmetry breaking event that endows only the regions within these domains with the capacity to form patterns (neighbouring regions having close to basal density unable to generate patterns). Even when small, this break in symmetry acts as a trigger, sufficient to launch the medial-to-lateral patterning wave in which cells near longitudinal peaks progressively transmit the pattern-forming capacity to neighbouring regions. By contrast, we found that with emu and Gentoo penguin-like conditions, dots form without clear sequence within initial surfaces independently of m values, suggesting that pattern sequentiality depends on the geometry of initial conditions. In these cases however m influences the duration of tract completion: lowering m with emu or Gentoo penguin-like initial conditions delays pattern formation in central regions not primarily defined by ß-catenin expression, more accurately reproducing in vivo dynamics(Fig 4B and C). This is consistent with recent

  1), cell density peaks where ß-catenin expression appears (i.e., at the level of the putative first row), dropping sharply at the boundary with the lateral, ß-catenin-negative environment. During the formation of the first row (fr#3 and the posterior part of fr#2; stages 2), the amplitude of the peak increases, marking the differentiation of a follicle, as a second region of comparable area with increased cell density appears laterally. The latter also increases and becomes flanked by a third area during the formation of the second row (stage 3; Fig 5C). Thus, cell density gradually increases locally, defining successive longitudinal domains that form one follicle row. Together, simulations and experimental data indicate that a traveling front of longitudinal surfaces defined by causal factors propagates such that follicles individualise with or without row-by-row sequence: the latter occurs as domains have a sharp enough spatial profile that self-organising parameters, controlling follicle size and spacing within the domain, authorise the formation of only one feather follicle at a time.

  ) the timely appearance of surfaces with self-organising capacity involves increased cell density. We first simulated the logistic term 1 -on a longitudinal line, and found that it gradually produces ringed shaped structures distributed in a dotted pattern, which reflected its effect on the cessation of proliferation when density reaches a high threshold (Fig 6A), and suggested cell proliferation locally evolves during pattern formation. To validate this prediction we performed BrdU incorporation experiments on skin tissues in the Japanese quail (in which tracts form sequentially and in 3 days). We found that at the trigger stage (stage 1) BrdU + cells (i.e., 20,3% of all DAPI + cells, Friedman test, p=0.26) are homogeneously distributed, showing proliferation does not convey symmetry breaking within the feather field (S10 Fig). However later during the formation of the first formed row (stage 2), we observed a decrease in cell proliferation at the centre of follicles, where epidermal and dermal condensation cause higher cell density, and an increase in their periphery, where density is lower. Linear regression on quantifications of the proliferation rate (i.e, percentage of BrdU + /DAPI + cells in surface units) demonstrates that it gradually drops with increased cell density. Proliferation stops when the latter reaches a high threshold (Fig 6B). Here, the logistic term accurately predicts in vivo cell behaviour -to our knowledge a unique empirical validation of this classic mathematical tool.

  logistic source with decreased (Fig 6B). We found that the speed of row formation reduced with longer colchicine pulses (identically to predictions of simulations of the unified model with decreased ; Fig 6C). As a result, six days after treatment, tracts were not complete compared to control experiments (Fig 6D). Thus the proliferation rate of skin cells mediates the duration of the patterning process. DISCUSSION The pre-pattern spatially restricts self-organisation Altogether, simulations and experimental data allow us to propose a scenario in which in Galliformes and the zebra finch the tract becomes compartmentalised prior to the individualisation of follicular shapes in periodically arranged, oriented surfaces possessing patterning competence. These longitudinal segments appear in a medial-to-lateral travelling front triggered by a pre-pattern: in vivo factors are initially spatially restricted such that they create symmetry breaking in the surface field, likely constraining pattern directionality. The propagation of the travelling front is achieved through the lateral transfer of increased cell density controlled by optimal cell proliferation rate, which yields the completion of the patterning process in a timely fashion. Each longitudinal domain self-organises to form one feather follicle row, which produces a row-by-row sequence. Thus, skin pattern formation is a stepwise refinement of space that involves (1) pre-patterning, dictating directionality and triggering temporal sequences, (2) cell proliferation, locally controlling patterning propagation and overall duration, and (3) self-organisation, causing follicle individualisation within competent areas. Our work thus shows that periodic patterns are a combination of preexisting and spontaneously generated positional information, highlighting the role of spatial pre-patterns in generating temporal dynamics. It also provides an explanation to periodic pattern reproducibility in nature: by constraining self-organisation to definite and oriented compartments, temporal regulation allows the production of repeated motifs in a reproducible manner over large and developing surfaces.

Fertilised

  eggs were collected from a breeding colony at the Collège de France for zebra finches (Taeniopygia guttata), from the natural breeding sites of Stevely Bay and Grave Cove in the western part of the Falkland Islands for Gentoo penguins (Pygoscelis papua), and from local suppliers for the other species: Les Bruyères élevage for domestic chicken Gallus gallus, Cailles de Chanteloup for Japanese quails Coturnix japonica, Les boix de Vaux for common pheasants Phasianus colchicus, and l'Emeu d'Uriage and Autruche de Laurette for emus (Dromaius novaehollandiae). After egg incubation in Brinsea Ovaeasy 190 incubators installed at the laboratory or at the Dunbar Farm (Falkland Islands), embryos were treated in ovo with 9mg/mL of 5-Bromo-2′-deoxyuridine solution (Sigma; BrdU incorporation

F

  digoxigenin-AP antibody(1:2000, Roche) and an NBT/BCIP (Promega) substrate. Sequences of -catenin primers are: and R: GCCTTCACGGTGATGTGAGA (penguin).Sequences of Twist-2 primers are: F: AAAGCTCCAGTTCTCCTGTTTC and R: ATGTTGCTTCTCGCTTCTCTG.Gentoo penguin developmental stages were estimated according to Hamburger and Hamilton classification by morphological comparison with other species.

Follicle/dot

  number: To quantify feather follicles or dot number (F) respectively on pictures of flat skins or model simulations in a time efficient and consistent manner (i.e, across species and at different stages), we developed a custom Matlab program. The algorithm follows three steps: first, a Gaussian filter reduces optical noise through image smoothing (Matlab function imfilter; filters were obtained with the function fspecial). Second, morphological operations are applied (i.e., closing followed by opening of the image with a disk of radius 1 pixel using functions imopen and imclose; the disk was constructed using the strel function). Third, feather follicles/dots are detected as connected components of the image and their properties (centroid, bounding box, surface, etc…) stored. Because background levels on skin images can fluctuate, the algorithm contains a set of linearly spaced thresholds to (i) produce a binary image through a detection threshold of the pre-treated image, (ii) identify the connected components of the binary image (Matlab function bwconncomp), and (iii) repeat the second step if the maximal value in a given component is above the next threshold. The resulting feather/dot locations are presented in a Matlab interface (S1 Fig) allowing to adjust thresholds, filter properties, and correct for undetected follicles or false positives

  Fig 5C), or on sections of 120µm in length either initially expressing ß-catenin or immediately lateral to the latter in the feather field (b in Fig 5C). Homogeneity of cell proliferation along the medio-lateral axis at Stage 0 was assessed using a Friedman test on ten sections, and the significance of differences of cell density or proliferation rates from Stages 0 to 3 was assessed using Student's t-tests on 120µm length sections. For quantifications of cell proliferation rate in control and colchicine-treated explants, BrdU + /DAPI + cells were counted using a fine squared grid of 20µm length (3 skins per condition). Linear regression results in a line of equation 1.07 -0.0131*x for control conditions (p-value: 2.8*10 -11 ) and 0.6 -0.007*x for colchicine conditions (p-value: 2.9*10 -5 ). Compared to an equation 1 -similar to that implemented in the model, this yields estimated = 1.07, = 81.7 in control conditions, and = 0.6, = 85.7 in colchicine conditions.

S11Fig:

  Proliferation rates in control and colchicine-treated skin explants were assessed by counting BrdU + /DAPI + cells in large regions of different skin compartments (medial region, left panel; neighbourhood of the forming follicle, middle panel; lateral region, right panel). Difference of proliferation rates between control and colchicine-treated conditions is significant in all three cases. Student T-tests; p=0.0002 (midline region); p=0,001 (region of the forming follicle); p<0.0001 (lateral region).

- 1 .

 1 a General biological interpretation of the unified model for appendage patterning During this thesis, I have used this predictive approach focusing particularly on the formation of appendage primordia -a working model that has multiple advantages (see IV-1). The unified framework I proposed argues that initial conditions breaking symmetry -notion we further discuss below (see VI-1.c) -the skin layers self-organise autonomously through reaction-diffusion, chemotaxis and proliferation processes. The ability our model to generate shared and distinctive features of the feather patterning process (final patterns and dynamics) in several species can certainly make it a conceptual framework suitable to study appendage patterning.

PerspectivesA

  good lead to carry out further research in this direction could be to extend the family of patterns studied beyond those displaying stripes in the anterio-posterior directions as in zebrafishes. Interestingly, studies on the stripes of Pomacentridae clownfishes -which are oriented in the dorsal-ventral direction -have recently come out and shown large similarities between the transcriptomic signature of clownfish and zebrafish iridophores(Salis et al., 2019). The role of iridophore in pattern initiation has also been demonstrated in clownfishes(Salis et al., 2018). However, why theses iridophores are distributed in orthogonal directions in zebrafish and clownfish remains a central question.Methodical lineage tracing of skin cell precursors should allow identifying candidate positional factors on the basis of their spatial restriction within landmark regions. Grafting and tissue recombining experiments can be of great use to tackle the issue of directionality: at E6 and E7 in quail, when the epithelium is rotated at 90
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 23 Figure 23: Anisotropy of diffusion (a): Diagram showing the directionality of stripes resulting from random initial conditions according to the levels of anisotropy of activator and inhibitor (Shoji et al., 2003). (b) and (c): Simulations of the unified model with anisotropic diffusion coefficients, with random or quail-like initial conditions (all variables diffuse 1.5 times as fast in the x-direction (top) or in the y-direction (bottom)).

  •" is the usual scalar product. Remark that the Gradient operator increases the dimension of its argument (it transforms a scalar into a vector, and a vector into a matrix) while the Divergence operator lowers dimension and Laplacian keeps it unchanged.

n 1 <n<n 2 c

 2 n e λ(n)t W n (x) (1D) w(x, y, t) = n 1 <n<n 2 m 1 <m<m 2 c n,m e λ(n,m)t W n,m (x, y) (2D)

  kx + cos k (x cos φ + y sin φ)] kr cos θ) + cos(kr cos(θ -φ))] (15)where φ is the rhombus angle and again k = nπ, n = ±1, ±2... see Fig.A2 (c).

  (a)), unstable modes. The number of eligible modes can increase with the size of the domain.-a given mode gives rise to a given pattern, that notably depends on the geometry of the domain. Hence, we can wonder what pattern will come out of a model simulation when several wavenumbers/modes are allowed, i.e., what mode(s) will be selected and effectively shape the pattern.Consider a typical dispersion relation giving the growth factor Re λ as a function of the wavelength ω such as shown in Fig.A1and Fig.A4 (a), where a band of wavenumbers is linearly unstable. Let us illustrate some factors that can drive the selection of a mode via the three possible ways of initiating pattern shown in Fig.A4 (b-d), in a one-dimensional domain.

  

  

  

  

Table: In vivo measurements and in silico domain units S3 Table: Parameters of initial conditions of simulation

  

	T. guttata G. gallus C. japonica P. colchicus D. novaehollandiae D. novaehollandiae T. guttata 11 10 10.1 13.5 6.8 S2 Parameters G. gallus C. japonica P. colchicus Wings-tail distance L (mm) Wing width l (mm) 5 4.7 4.8 7 2.5	P. papua P. papua 15 5.5
	m			0.5		
	a			2		
	200	200	20	400		N/A
	200	200	200	400		N/A
	ℇ	N/A				200
	0.25	0.36	0.25	0.2		N/A
	2.6	0.1	0.1	0.9		N/A
	2.8	0.3	2	0.85		N/A
	Stage 1 S4 Table: Tested reaction-diffusion models Stage 2	Stage 3	Stage 4	Stage 5
	Gallus gallus	2	3	3	4	6
	Coturnix japonica	5	4	2	4	4
	Phasianus colchicus	5	3	3	4	5
	Dromaius novaehollandiae	2	1	1	1	1
	Taeniopygia guttata	4	4	6	7	9
	Pygoscelis papua	2	2	1	2	2

Table: Reference parameters of the unified model

  

	Parameter	Value	Biological interpretation
	Dn	7*10 -5	Cell diffusion rate
	Du	6*10 -3	Activator's diffusion rate
	Dv	0.13	Inhibitor diffusion rate
		8*10 -5	Chemotaxis sensitivity
		15	Activator degradation rate
		35	Inhibitor degradation rate
	u	100	Activator production rate by cells
		40	Activator autocatalysis sensitivity
	u	6	Activator saturation threshold
	v	4500	Inhibitor production rate by cells
	n	1*10 -3	Proliferation rate
	n	3	Cell density threshold
	S6		

Table: Tested doses of Colchicine

  

	Colchicine											
	concentration	0.001	0.01	0.025	0.05	0.1	0.2	0.5	1	2	4	40
	(mg/L)											
	Lethality		no						yes			

VI-1 Multiscale self-organisation of the skin: biological nature of patterning factors

  

	"This model will be a simplification and an idealization, and consequently a falsification.
	It is to be hoped that the features retained for discussion are those
	of greatest importance in the present state of knowledge."
	A.M. Turing, The chemical basis of morphogenesis, 1952
	Successive patterns relying on factors at different organisational levels (cellular,
	molecular, tissular...) cumulate temporally and spatially in a developing embryo (see I-
	5). Many model-based hypotheses about patterning processes can be tested using an
	array of biological observations and experimental manipulations (tissue recombination,
	grafting, use of transgenic lines, ex-vivo cultures in a modified, drug containing
	medium, etc.). However, experimental approaches seldom target a single parameter of a
	mathematical model: for instance, while a bead of BMP or FGF protein implanted in a
	skin culture explant can locally alter the chemical properties of the tissue, it may also
	affects its mechanical properties.

Rigorously, one may choose a distinct Fourier mode on each coefficient, yielding an equation with 6 unknown. In practice, when an instability occurs yielding a pattern in this system, all coordinates display a similar periodicity, and it is thus relevant to consider instability when the initial condition on n, u, v is perturbed by the same Fourier mode.
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ABSTRACT

The development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns yet drawing testable hypotheses from those often remains difficult. Consequently, little is known on pattern-forming events.

Here, we surveyed plumage patterns and their emergence in Galliformes, ratites, passerines and penguins, together representing the three major taxa of the avian phylogeny, and built a unified model that not only reproduces final patterns, but also intrinsically generates shared and varying directionality, sequence, and duration of patterning. We used in and ex vivo experiments to test its parameter-based predictions.

We showed that directional and sequential pattern progression depends on a speciesspecific pre-pattern: an initial break in surface symmetry launches a travelling front of sharply defined, oriented domains with self-organising capacity. This front propagates through the timely transfer of increased cell density mediated by cell proliferation, which controls overall patterning duration. These results show that universal mechanisms combining pre-patterning and self-organisation govern the timely emergence of the plumage pattern in birds.

where and are rectifying functions avoiding negative or too large values of the argument: = for 0<< , saturating at 0 and outside of this interval, and = for 0 < < , saturating at 0 and outside of this interval . Simulations were made on a square domain 0 < < 75 , 0 < < 150 with parameters = 0.02, = 0.08, = -0.08 , = 0.04 , = 0.03 , = 0.2 , = 0.6 , = 0.6 , = 0.16 , = 0 , = -0.05, = 0.08, = 0.5.

Chemotaxis models

We tested a large number of chemotaxis models such as described in [START_REF] Hillen | A user's guide to PDE models for chemotaxis[END_REF] Simulations in S3 Fig were performed using the model:

Unified model

All reference parameters are shown in S5 Table and were largely based on those used in a previous study of chicken-like plumage pattern formation [START_REF] Michon | BMP2 and BMP7 play antagonistic roles in feather induction[END_REF]. In the case of the zebra finch, we added a "competence zone" defined by limiting reaction terms within an elliptic surface.

We performed a stability analysis as described in S Text.

Skin explants

Skin regions corresponding to putative dorsal tracts were dissected from E6 Japanese quail embryos and placed dermal side down on culture insert membranes (12-wells format, Falcon #353103) over 800 µL DMEM supplemented with 2% FCS and 2% Penicillin/Streptomycin. Second, symmetry breaking may be achieved through the localised acquirement of competence from an upstream axial molecular factor. Among these factors, Wnt proteins are good candidates as they originate from the neural tube, activate betacatenin and act upstream of FGF, consistent with our writing of the unified model.

Figure 22: Uncoupling cellular and molecular initial conditions

Simulation of the unified model with the reference parameter set and initial conditions spatially restrained for the molecular variables and v. Initial conditions for the cells are a shallow medio-lateral gradient. In these situations, the row-by-row dynamics is not produced. 

Perspectives

From a modelling perspective, our unified model is not suited to predict the geometry of the initial conditions, which are imposed. It could still serve as an expiremental guide by predicting the effects of missing initial condition features.

Choosing another model focused on a narrow temporal window around the trigger stage however seems more appropriate.

Prspectives

Designing experiments to verify that cell density levels -through their initial value of proliferation -is challenging: for instance, in my colchicine ex-vivo setup, I would need to improve the survivability of explants to see if some doses of colchicine can result in a disruption of pattern regularity (so far, high doses did not allow producing more than two feather rows, making regularity hard to assess).

Alternatively, a pulse of colchicine applied at E5.5 instead of E6 as we did, could result in a delay in the timig of the trigger stage by delaying competence (hypothetically acquired through high cell density). Heterospecific Japanese quail-emu grafts could be tried out as well, as the critical cell density necessary to trigger the formation of primordia appears to be delayed in the emu compared to the quail (Ho et al., 2019).

VI-3.b Geometry of initial conditions putatively impacts pattern regularity

Simulations of my unified model can produce different regularities (hexagonal or irregular) through variation of initial conditions, with identical parameter values. This can be interpreted in the following: in a case where initial conditions are spatially restricted, the position of the first emerging dots is well-defined, at least along one coordinate (in our case, along the x-coordinates as initial conditions have anteroposterior directionality), and the slow timing of the process -i.e. the timely transmission of competence from one row to another -would not leave any choice for the position of emerging dots. On the other hand, in the case of broad initial conditions (e.g., emu-like simulation), the position of first-appearing dots is not well defined , preventing the system to organize regularly. Thus, spatial restriction of initial conditions (in and ex vivo: of positional factors) may play a role in defining the regularity of the pattern.

All in all, the spatio-temporal coupling of developmental mechanisms can provide an explanation to both periodic pattern reproducibility and diversity in nature.

By constraining self-organisation to definite and oriented compartments, temporal regulation allows the production of repeated motifs in a reproducible manner over large surfaces. However, if early events (e.g., mutations) alter upstream processes that in turn fail to constrain self-organisation, the consequences on downstream patterning processes may be dramatic.