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CHAPTER 1

INTRODUCTION

1.1 Main functions of the immune system

Broad definition of the immune system The immune system can be introduced as the

set of cells and mechanisms that allow the body to react against pathogens and, generally

speaking, any kind of body that can generate sickness, from microparticles to living organ-

isms or tumors. Every cell of the body can actually be involved in an immune reaction, but

the term ’immune cell’ is commonly (and, in my opinion, quite unfairly) restricted to the

cells that specialize in immune reactions. The immune system encompasses white blood

cells (leukocytes), which recirculate among lymphoid organs through the blood; resident

immune cells that scan tissues such as macrophages and dendritic cells; and the lymphoid

organs (spleen, bone marrow, lymph nodes, tonsils, Peyer’s patches).

Types of pathogen faced by the body At the scale of large multicellular eukaryotic or-

ganisms, the body is challenged by pathogens coming from all branches of the tree of life,

namely:

• Viruses: these are inert molecular structures that carry their own genome and wait to

insert it into a host-cell’s genome to be able to duplicate their own genome. Since their

genome is usually constrained by the small size of the capsid, they only encode a few

specialized proteins and they need the host cell machinery of a living cell to produce

and replicate new viral proteins. Some viruses infecting amoeba species harbor a very

large size and genome [1] and own more genes that small living organisms, but they

still require a living host to multiply. On the other hand, because they are inert, some

viruses can persist in environments where alive organisms would die, like in ice. While
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the infected cells usually die from the virus or from apoptosis as a protective reaction,

some viruses can stably integrate their genome as DNA inside the chromosomes of the

host cell, thereby subsisting in the cell and its progeny.

• Bacteria: these living organisms take advantage of a micro-environment with nu-

trients to proliferate. Their pathological properties are not directly linked to their

presence or their nutrient consumption, but rather the virulence factors they express

that challenge the body and can be toxic. Some bacteria are intracellular, hijack-

ing the cell machinery and nutrients; others are extracellular and enter via contact

with the body at mucosal barriers. As long as they are located outside the physical

barriers of the body, they are harder to access by immune cells. The tricky aspect

of bacteria is that they are ubiquitously present in our environment and especially

along the mucosa and in the digestive tract. Some enteric bacteria are beneficial to

the host by digesting complex nutrients that the human body does not process nor-

mally, such as polysaccharides [2], or by producing essential vitamins [3]. Germ-free

rodents, thereby lacking gut microbiota, are less efficient in digestion than their col-

onized littermates, and eat substantially more calories [4]. The gut microbiota also

competes with pathogenic bacteria for the colonization of the gut (reviewed in [5],

and the disruption of a microbial community by antibiotics can sometimes open a win-

dow to opportunistic pathogens. The role of the immune system in the control of the

microbiota, and especially the mechanisms allowing the immune system to tolerate

commensals, and the mechanisms by which commensals control the immune system

are a current field of study, and rely on multiple layers of defenses (reviewed in [6,

7]).

• Eukaryotic cells, monocellular or pluricellular: These can be fungi (candida albicans,

causing mycoses for instance) or parasites such as worms or protists (ex: Leishmania).

In a healthy state, their location is restricted to the ’outside’ of the physical barriers of

the body, meaning on the skin, the mucosa, in the gut and lung, and in the digestive

tract, but not inside the body itself, which is supposedly kept sterile. They need to

break physical barriers to invade the body and can have complex reactions against

the defenses of the body.

Additional features of the immune system The functions of the immune system are not

restricted to foreign pathogens but also include broader tasks that are necessary to maintain

the body’s homeostasis. An overall list of tasks and troublemakers cleared by the immune
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system are shown in (Figure 1.1), including the clearance of dead cells, debris, tumors

and pathogenic commensals. It is important to look at what the immune system tolerates,

starting from cells and structures within the body. Some micro-organisms are additionally

tolerated when they are outside the mucosa, while the same pathogens would be rejected

inside the body. The distinction between which particles trigger an immune response and

which ones are tolerated is crucial and still widely debated, and relies on complex layers of

regulatory mechanisms in which helper T cell have a major impact.

1.2 Pathogen recognition and clearance mechanisms

In order to introduce the role of CD4 T cells, the immune system can be separated into

several lines of defense that are modulated by them. I chose to present helper T cells being

at the top of these layers because they regulate all other immune compartments through the

production of cytokines. As each of these layers is evolutionarily conserved within different

clades of species, I propose to start by looking at the immune defenses of other species and

then trying to link these with mammalian defenses.

Defenses from bacteria are probably not conserved to humans From the point of view

of bacteria, typical pathogens are viruses (phages) that are able to multiply and constantly

kill huge amounts of bacterial biomass. Several restriction mechanisms have been described

that can recognize or inhibit virus replication. For instance, the Crispr-Cas9 system [8] al-

lows the bacteria to remember pieces of the genomes of a virus and later annihilate viruses

of the same kind by binding to their DNA. Interestingly, this mechanism is shared with some

Archæa. It illustrates that bacteria have their own ’immune’ system. Although these mecha-

nisms could typically be shared via horizontal gene transfers between unicellular organisms,

it is unlikely that such mechanisms would be evolutionarily conserved to humans.
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Figure 1.1: Functions of the immune system and location of the main immune cells

types. 1/ Troublemakers and associated tasks: The immune system faces a wide set
of entities, starting from healthy cells and tissues that are obviously tolerated to avoid au-
toimmunity. Next come dead cells and extra-cellular particles such as amyloid filaments
(which cause Alzheimer’s disease) that occur naturally but are constantly cleared by im-
mune cells such as macrophages (or microglia in the brain). Although foreign particles
or organisms inside organs are usually detected and cleared, thereby maintaining a sterile
micro-environment as much as possible, living organisms outside the physical barriers (gut,
skin, lungs, ...) can be beneficial (in the case of the microbiota) or pathogenic, depending on
their type and amount. Therefore, in different environments, the same pathogen can be tol-
erated or attacked. The immune system has been shown to regulate the diversity of the com-
mensals in the gut, for instance. Furthermore, most exogenous particles in the environment
and food are usually tolerated otherwise generating allergies. Finally, the immune system
contributes to wound healing, for instance through aggregation of suicidal neutrophiles. 2/

Cells : Some immune cells are resident inside organs, mainly macrophages, NK cells and
dendritic cells. These can detect the presence of microbial patterns (pathogen-associated
molecular patterns or PAMPs) or a breakdown of homeostasis, and provide an immediate
response. Mature white blood cells (T and B lymphocytes, neutrophiles, eosinophiles and
basophiles) are found mainly in the blood and lymphoid organs (spleen, lymph nodes, ton-
sils, Peyer’s patches and bone marrow), and constantly recirculate among them. In a healthy
state, these cells seldom enter peripheral (non-immune) organs and inflammation is asso-
ciated with infiltration of these cells inside the inflamed tissues.
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Several human defenses are conserved in ancient eukaryotic organisms From the

point of view of a small eukaryotic organism, like the unicellular protists, the list of trou-

blemakers expands to viruses and bacteria. The immune defenses of unicellular eukaryotes

have been very poorly investigated in literature and it is therefore hard to know whether

ancestral restriction mechanisms against viruses would be conserved between protists and

humans, for instance. Several clues would argue for the existence of such mechanisms.

Many pathogens infecting amoebas (a kind of protist), also infect humans (e.g. Legionella,

Chlamydia, etc.), suggesting they could have infected common ancestors. It has further

been suggested that these pathogens ’train’ inside amoeba to be resistant to antimicrobial

effectors that are similar in macrophages [9]. On the other side, looking further along the

path of evolution, human viral restriction mechanisms such as the family of sirtuins [10] are

conserved in unicellular eukaryotes [11], though this might be caused by other functions

of sirtuins. Similarly, OAS, a gene expressed downstream from interferon signaling that en-

codes a RNAse which degrades viral RNA, has conserved counterparts in eukaryotes [12],

which are devoid of interferons, leaving the possibility for independent original functions

other than viral restriction. A review of the evolution of antiviral mechanisms can be found

in [13].

Eukaryotic species sometimes compete with bacteria to survive in their environment. For

example, fungi produce a huge diversity of antimicrobial products (that led to the discovery

of penicillin and other antibiotics). It is interesting to note that gut epithelial cells are also

able to produce antimicrobial peptides such as defensins, cathelicidins or C-type lectins

[6], which are important for regulating the microbial flora. Some of these are conserved

throughout all eukaryotic species, such as defensins [14] [15]. These examples illustrate

that the first layer of the immune system is performed by non-immune cells and consists of

under-appreciated, sometimes evolutionarily conserved, mechanisms.

Pattern recognition receptors are the recognition tool of the innate immune system in

metazoans Eukaryotic species are constantly challenged by a huge diversity of pathogens

that were previously unknown to an individual, and that have the capacity to mutate and

evolve quickly. However, at the scale of millions of years, different individuals from the

same species are challenged by the same family of pathogens again and again. A class of

receptors, called pathogen recognition receptors (PRRs), has been described based on their

ability to recognize common molecular structures of pathogens, probably as an evolutionary

tool to encode some conserved properties of these previous infections in the genome. Some
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PRRs like the Toll-like receptors, were initially identified in Drosophila melanogaster and

are conserved between a wide range of metazoans including humans [16].

Only some of the described PRRs are expressed by somatic cells of the body, whereas

most of them are restricted to specialized immune cells, contributing to their activation and

effector functions, and tuning the production of accurate signals, depending on the type of

inflammation.

The first line of cells activated by PRRs are the macrophages, which reside inside tissues

and can, in turn, clear pathogens, debris or dead cells via phagocytosis or by producing

antimicrobial agents. These cells can secrete pro-inflammatory cytokines such as IFN-γ and

help to recruit other immune cells in certain contexts, as well as releasing anti-inflammatory

cytokines and/or contributing to wound healing in other contexts [17]. Macrophage-like

cells have been described in metazoans [18], as early as sponges (the earliest remaining

metazoans), which also carry certain PRRs (Toll-like receptors) and have cytokine signaling

related to interferons [19].

Generally, the set of specialized immune cells activated by PRRs is broader and includes

leukocytes, namely macrophages, their progenitors (monocytes), dendritic cells and other

phagocytes such as eosinophils or neutrophils. These are commonly referred to as innate

immune cells. It is noteworthy that metazoans up to invertebrate species have an immune

system constituted of only innate cells and can successfully handle infections, meaning that,

early in evolution, the innate immune system was enough to maintain a species over time

– at least to the next generation ...

A list of PRRs is shown in (Figure 1.2), illustrating the diversity of innate recognition

recognition molecules. For instance, some PRRs can recognize lipopolysaccharids on bacte-

ria or double-stranded RNA which is characteristic of certain viruses, etc. The recognized

patterns are called Pathogen-Associated Molecular Pattern (PAMPs).

Philippe A. ROBERT 16
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Figure 1.2: A list of PRRs inside or at the surface of cells, and the associated patterns

(PAMPs) recognized. The bottom section focuses on viruses. Taken directly from: Liau-
nardy Jopeace (Intechopen.com) Pattern Recognition Receptors and Infectious Diseases. ds,
double-stranded; ss, single-stranded.

Adaptive receptors in vertebrates The detection of pathogens by PRRs has some limits.

First, not many genes encode PRRs in comparison to the number of pathogens and their ca-

pacity for mutation. It means that the adaptions from the pathogen side are likely to remain

undetected, allowing viruses to hide by mutating critical epitopes. Second, in the case of

the gut microbiota, PRRs are unable to distinguish symbiotic bacteria from pathogenic ones

as long as they carry the same molecular patterns. Finally, PRRs are unable to discriminate

tumors.

In vertebrates, additional immune cells, referred to as adaptive immune cells, have been

described as carrying a diverse ’anticipatory repertoire’ of receptors, meaning that different

cells can carry different receptors for which the sequence and specificity are not directly

encoded in a gene, but instead are generated via random recombination. Two such parallel

systems have been described so far: in jawed vertebrates, the T cell receptor and B cell

17
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receptor (TCR and BCR) gene segments can rearrange themselves at the chromosomal level

during T and B lymphocyte development respectively (as shown in (Figure 1.3) for BCRs),

creating a huge variety of receptors: more than 1014 different TCRs, although not all are

generated in one individual [20]. Separately, in jawless vertebrates, leucine-rich protein

modules can assemble in a combinatorial manner and act as adaptive receptors [21].

Figure 1.3: Mechanism of random receptor generation for the B cell receptor (BCR) in

jawed vertebrates. Germline cells and B cell precursors have complex chromosomal loci
for the chains of the BCR gene (namely the Igκ, Igλ and IgH genes) with repetitions of
sequences called the V, D, J and C regions. For instance, the IgH locus contains 40 differ-
ent V regions, 25 D regions and 6 J regions. During their development, B cells proceed to
recombination, in which only one V, D and J segment each is kept for one copy of each of
these three genes, while other segments are removed and lost. The junction of segments is
performed by an enzyme (terminal deoxynucleotidyl transferase) that randomly adds nu-
cleotides, enhancing the possible number of receptors that can be generated. Taken directly
from Wikipedia/Antibody.

Philippe A. ROBERT 18
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Role of lymphocytes in the immune system (of jawed vertebrates) The recognition

mechanisms and effector functions of B and T cells are distinct and complementary.

The BCR of B cells can recognize 3D structures, mainly proteins or native antigens, but

also sugars and lipids. When the receptor recognizes an antigen with high affinity, the cells

expressing these receptors get activated, proliferate and differentiate to effector or memory

cells. Finally, effector B cells (plasmablasts) have the capacity to release antibodies (copies

of their BCR), which diffuse throughout the body and fix native antigens and the pathogens

themselves (opsonization).

The TCR of T cells, in contrast, recognizes peptides when they are presented on a MHC

complex (Figure 1.4A). After peptide-MHC complex recognition, similarly to B cells, the

cells proliferate and become effector or memory cells. T cells can be separated into (1)

cytotoxic T cells (CD8+), which can kill infected cells via contact-dependent mechanisms;

(2) helper T cells (CD4+, with the αβ type of TCR) that produce cytokines to boost CD8 T

cells, B cells and innate immune cells. Additional types of T cells, and those carrying TCRs

that recognize other molecules than MHC complexes, such as NKT cells, are not counted in

the ’classical’ T cells.

MHC complexes allow cells to present fragments of their intracellular proteic content

at the surface. All cells of the organism express Type I MHC complexes, which are loaded

with fragments of their proteins, even at steady state. These complexes can be recognized

by CD8 T cells, which implies that every cell from the body can potentially be killed by a

cytotoxic T cell.

However, only certain/specialized types of cells carry MHC II complexes to high enough

levels to activate CD4 helper T cells. These cells are called antigen presenting cells (APCs).

These encompass B cells and innate immune cells (notably dendritic cells) located within

tissues. These cells can also present antigens from the pathogens found in the tissue to their

MHC II (Figure 1.4B).

T cells are a more recent evolutionary layer than the innate and somatic immune layers,

but they rely on the presence of APCs and innate signals to be activated.

19
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Figure 1.4: Recognition of antigens by T cells and principles of antigen presentation.

A. Each T cell carries one type of (recombined) TCR with multiple copies at its surface.
The TCRs recognize peptides when loaded onto MHC complexes. CD8+ T cells recognize
peptides on Type I MHCs in contrast to CD4+ T cells, which recognize them on Type II MHC
complexes. B. Antigen presentation: All cells can process intracellular proteins, healthy
proteins as well as those from viruses or intracellular bacteria, onto MHC I complexes, which
can activate specific CD8 T cells (CTLs), but only antigen presenting cells (APCs) are able to
cross-present extracellular fragments onto their MHC II complexes, which can also activate
CD4 T cells. Taken directly from A: Van Kaer 2005 (Nature Reviews Immunology) [22] and
B: "Immunology: Professional secrets", Craig R. Roy 2003 (Nature) [23]
.
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The main advantage of carrying a repertoire of recombined receptors is the capacity to

recognize antigens (potentially all possible 3D epitopes for B cells and small peptides for

T cells) that the individual or even the species never saw before; and to clonally expand

the cells with appropriate receptors when they are needed. Therefore, by generating B

and T cells with a long-lived memory after infection, the body can keep track of the infec-

tion history of the individual by maintaining a specific set of useful TCRs and BCRs. It is

contributing to the ’immunization’ principle, where the immune system becomes stronger

against a pathogen after a first infection.

On the other hand, recombined receptors could recognize ‘antigens’ from our own body,

leading to autoimmunity. Several tolerance mechanisms have been described. First, the

development of B and T cells is controlled by positive and negative selection mechanisms

in the spleen and bone marrow [24], and in the thymus [25], respectively, a process called

‘central tolerance’ that ensures that cells activated by self-antigens are deleted during their

development. Central tolerance is not perfect and mature auto-reactive cells can be detected

in the periphery [26, 27]. Luckily, several mechanisms are controlling the physiological

effect of these escaped cells:

1/ First, the development of T cells carrying an autoreactive TCR can be skewed into

parallel lineages than the ’conventional’ T helper cells. Cells with high self-reactivity can

differentiate into thymic regulatory T cells in the thymus (tTregs, or natural Tregs nTregs)

[28], which express the transcription factor Foxp3 and can suppress the immune response by

many complementary mechanisms [29]. Other specialized populations of T cells, showing

high self-reactivity, have been described and are discussed here [30]. Here, unless otherwise

stated, we use the term helper T cells to specify conventional helper T cells, meaning cells

originating from Foxp3- mature T cells (and carrying the TCRαβ). tTregs are outside the

focus of this study.

2/ Second, a phenomenon called "peripheral tolerance" [31] have been observed in

vivo, and includes the deletion of auto-reactive cells when they are activated in a non-

inflammatory context; the release of anti-inflammatory signals by immune cells; and es-

pecially the suppressive mechanisms of tTregs. Conventional T cells can also contribute to

peripheral tolerance by the secretion of anti-inflammatory cytokines such as IL10 and TGFβ .

It is the focus of the present study to understand how a T helper cell decides to behave in a

pro- or anti- inflammatory manner, and in particular, to express specific cytokines.

As another source of self-reactivity, activated B cells are characterized by the ability to

specifically mutate the gene of their receptor, a process called somatic hypermutation [32,

21
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33]. For the common type of B cells (follicular B2 cells), this process is spatially contained in

structures called germinal centers, where the selection process ensures that the affinity of the

BCR to the antigen increases with time while not recognizing self-antigens. Helper T cells

also have a crucial role in this process by producing signals that support B cell proliferation

and survival, and by selecting the fittest B cells for the antigen [34]. These helper T cells are

called T follicular helpers and are also left out of this work because of the lack of commonly

acknowledged protocols for generating them in vitro, yet.

The effector functions of B and T cells are illustrated in (Figure 1.5). It is important to

note that B cells can access native antigens in the extracellular milieu via the BCR but cannot

detect viruses or bacteria when these are intracellular. The effector fucntions of B cells are,

consistently, extracellular (through the production of antibodies). CD8 T cells, on the other

hand, can scan the intracellular content of cells via the peptides presented on their MHC

I, but cannot bind native antigens. When CD8 T cells kill infected cells, they contribute to

kill the intracellular pathogens inside. CD4 T cells are more complex, as they can access

peptides derived from both intra- and extracellular pathogens via antigen presentation and

cross-presentation, and as they boost the response of both CD8 T cells (intracellular) and B

cells (extracellular), among other functions like recruiting other cell types.

Philippe A. ROBERT 22
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Figure 1.5: Central role of helper T cells in the adaptive immune response. The activa-
tion of T cells relies on the interaction with antigen presenting cells (APCs). They recognize
pathogens with their PRRs in the periphery, become activated, migrate to lymphoid organs,
and cross-present peptide fragments of the pathogen to CD4 and CD8 T cells. B cells, in
contrast, can directly bind native antigens that are brought to the lymphoid organs, or that
are bound to previously present antibodies. Activated T and B cells follow a clonal expan-
sion phase before migrating via the blood to the infected organ. As effector functions, CD8 T
cells can directly bind and kill infected cells that display peptides from the pathogen on their
MHC I. B cells release antibodies that diffuse throughout the whole organism (even outside
the gut mucosa) and directly bind epitopes of the pathogen, helping to neutralize it and to
recruit innate cells to clear the area. Finally, CD4 T cells or ’helper T cells’ play a central role
by producing a set of cytokines that are necessary to boost different immune compartments.
By production of IL-4, IL-5 or IL-13, they enhance the B cells’ response; by producing IFN-
γ, they boost the CD8 response and antigen presentation and support macrophages, and
innate cells in general; by producing IL-17, they help to recruit massive amounts of innate
cells such as neutrophiles, to the inflamed organ. Some helper T cells are also characterized
by suppressive capacities and are called regulatory T cells. They can, among other mecha-
nisms, dampen the local immune response by producing anti-inflammatory cytokines such
as IL-10. A full B cell response (from convenional, follicular B cells) requires a physical
interaction between B cells and specific CD4 T cells, called T follicular helpers cells.
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Finding mistakes: the discontinuity theory of NK cell activation An additional immune

protection layer is given by the NK cells. These are innate cells that can be activated by

PRRs, and produce cytokines that mirror those of helper T cells at early time points during

infection. Additionally, each NK cell carries a combination of inhibitory and activatory re-

ceptors encoded by a large set of genes, which recognize the expression of different variants

of MHCs (which are highly polymorphic), as well as viral proteins mimicking MHCs [35].

Tumorous cells and infected cells have an abnormal expression of MHCs variants, caused

by viral mechanisms in the latter case, called ‘missing self’. NK cells constantly scan organs

for the expression of specific MHC variants at the surface of cells, triggering a combination

of inhibitory and activatory receptors at their surface. As long as the NK cells are inhibited

by the binding of inhibitory receptors to MHCs, they are silent. However, MHC downregu-

lation within cells removes this inhibition and triggers the activation of NK cells, allowing

them to detect tumors and infected cells. Interestingly, the NK receptors are sensitive to the

peptides presented on the MHCs, which has been suggested to additionally detect changes

in antigen presentation on tumor or infected cells [36]. Based on the signaling mechanisms

of the NK receptors, a theory of ’discontinuity’ has been proposed, where these receptors

tune themselves to an average amount of MHC expression so they can react to an abrupt

change rather than the absolute expression level of MHCs [37].

A layered view of the immune system As a summary of this part, the main cellular actors

of the immune system are represented in layers (Figure 1.6), by separating somatic cells,

innate and finally adaptive immune cells.

The distinction between innate and adaptive cells historically originated from empirical

properties such as innate cells being able to reply immediately to a pathogen and the capac-

ity of adaptive cells to initiate a memory response. The innate–adaptive distinction based

on these criteria has proven to be difficult in light for recent findings. For instance, NK cells

are able to initiate a memory response [38] although they are considered to be innate cells;

B1 cells, a subset of B cells, are able to initiate an immediate response while carrying re-

combined BCRs. Another way to base this distinction between innate and adaptive would

be to say that innate cells carry and are activated by predefined receptors for pathogens

(the PRRs) that are encoded in the germline, whereas adaptive cells also carry receptors

that are somatically determined by gene recombination and for which the repertoire is dif-

ferent between two individuals. As every rule comes with exceptions, several T and B cell

populations carry predefined subsets of rearranged receptors that can recognize predefined

Philippe A. ROBERT 24
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structures that are not necessarily peptide–MHC complexes [39], making it hard to draw

a precise line between innate and adaptive cells. Such cells (NK T cells, or cells recogniz-

ing specific, non-MHC structures) are likely to be conserved vestiges of evolutionary steps

between initial multigenic receptor gene families and later recombined receptors.

Even though most of the cytokines produced by helper T cells can also be produced by

other cell types (for instance by NK cells or dendritic cells), helper T cells have become in-

dispensable for both boosting and regulating the immune response. For instance, the deple-

tion of CD4 T cells due to HIV infection, or T cell deficiencies lead to immuno-suppression,

whereas a lack or deficiency in regulatory T cells leads to lethal autoimmunity. Therefore,

during an immune response, T cells have a central role and the progeny of only a few helper

T cells with the appropriate TCR are required to ultimately produce the right cytokine at

the right place and at the right time.
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Figure 1.6: An evolutionary pyramid view of the immune system. The first (bottom)
layer is the somatic cells of the body own defenses, some of which are conserved in other
eukaryotic species. For instance, body cells can produce interferons or antimicrobial agents,
or contain viral infection by restriction mechanisms such as RNA interference or by helicases
that cut double-stranded RNA, proper to viruses. Next, innate cells can scan the organs, rec-
ognize pathogens through PRRs and clear pathogens, as well as launching inflammation by
producing cytokines. Such cells can be seen in all metazoans. Finally, in jawed vertebrates,
adaptive immune cells, activated by innate cells, help to clear the pathogens. In this pyra-
mid, helper T cells can be put at the top because they regulate all other components by the
production of cytokines, while being activated by lower stages.
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1.3 Differentiation of helper T cell subsets

In this work, we are investigating how T helper cells decide to differentiate and produce

a particular set of cytokines. The properties of T helper cell differentiation, regarding the

signals they receive and the cytokines they produce are developed in this part. The mech-

anisms underlying the fate decision will be presented in the next section, and are the basis

of the mathematical model presented in Chapter 3.

Helper T cells arise from naive cells Freshly differentiated mature T cells leaving the

thymus are characterized by surface markers that are lost upon activation and are called

’naive T cells’. They recirculate between the blood and lymphoid organs, with a long life-

span (up to years), until they finally recognize a peptide–MHC complex with high affinity.

Once they meet their cognate antigen, they get activated, they can acquire the markers of

effector cells, producing high amounts of cytokines, or long-lived memory cells, which can

be re-activated much faster than naive cells upon re-infection.

Subsets of helper T cells and their impact Depending on the type of pathogen and the

micro-environment, naive CD4 T cells can differentiate into different subsets of helper T

cells with specific patterns of cytokine expression: Th1 can be defined by the production

of IFN-γ, necessary to support the CD8 response and immune responses against intracel-

lular pathogens [40]; Th2 can be defined by IL-4 production, and support B cell responses

and extracellular pathogen clearance [41]; Th17 cells which notably produce IL-17, and

which, in turn, promotes the recruitment of innate cells and the clearance of some fungi

and extracellular bacteria [42, 43]; Tfh, defined by their presence inside germinal centers

together with the expression of CCR5 and the production of IL-21, and that are necessary

for the maintenance of germinal centers via direct costimulation of B cells in a CD40-CD40L

dependent manner [44]; Th9 cells, which produce IL-9 but no or low IL-4 [45, 46], and

whose role is not fully delineated yet because Th9 cells seem to have both pro- and anti-

inflammatory properties, and have been linked with several pathologies [47].

Other cytokines can be produced by helper T cell subsets depending on the inflammatory

context, the pathogen and the type of APC encountered. For instance, Th2 often produces

IL-5 and IL-13, and Th17 sometimes produces IL-22, but these cytokines are not included

in their definition, as they are not always co-expressed with the major cytokine. Additional

names have been given to cells based on the production of such cytokines: Tr1 cells which

produce IL-10 but do not express Foxp3; Th22 cells, which produce IL-22 but not IL-17; and
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Th3, which produce TGF-β but do not express Foxp3 or IL-10.

Finally, naive T cells can differentiate into Foxp3+ Tregs. These cells are called iTregs

when differentiated in vitro, and ’peripherally derived Foxp3+ Tregs’ (pTregs) when they

arise in vivo. They are defined by the expression of Foxp3, and can harbor suppressive

properties [48] (Figure 1.7). The extent to which they mirror the population of ’professional’

Tregs derived from the thymus (nTreg or tTregs) is still not fully appreciated, and pTregs

and tTregs do not suppress in the same situations. The definitions of regulatory T cell can

be multiple depending on the studies. In a functional basis, a T cell that has suppressive

capacities in vitro or in vivo can be called a Treg, and this definition would include Tr1

and Th3 cells depending on the experimental setting. In this work, the iTregs or tTregs

implicitely refer to ’Foxp3+ iTregs’ or ’Foxp3+ tTregs’, respectively, and ’Tregs’ englobes

iTregs and tTregs.
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Figure 1.7: Major helper T cell subsets.The major subsets arising from naive T cells are
depicted, along with the property defining them (red box), the cytokines they commonly
co-produce and their main functional pathogenic targets. The ’canonical’ cytokines that can
induce the differentiation of naive CD4 T cells into to each subset in vitro (except for Tfh)
are shown in brown. Note: in vivo, differentiation can happen in response to other cytokines
or combinations of inducing signals, depending on the inflammatory context.
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Therapeutical impact of helper T cells Autoimmune diseases such as multiple sclerosis

or rheumatoid arthritis are linked with an excessive Th17 response [49] and Th1 cytokine

profiles [50], consistent with murine models of susceptibility to autoimmunity [51]. Th2

cytokines can lead to asthma and cause atopic disease [52]. Tregs inside tumors contain

detrimental suppressive effects [53] and Th1 cells can restrict tumor progression [54]. In

contrast, Th17 cells can promote or inhibit a tumor, depending on the context [55, 56], but

it has to be kept in mind that IL-17 can also be produced by other cells such as γδ T-cells in

these contexts.

Manipulating the T cell responses is a tantalizing target for anti-tumor treatment or

for the re-establishment of a balanced immune system. Therapies can involve cytokine in-

jections or blocking antibodies against specific cytokines, but these have to be cautiously

administered because of unpredictable pleiotropic effects [57]. As an example, systemic

administration of anti-IL-17 had strong side-effects on the inflammation status of the gut

[58] and direct sub-cutaneous skin administration of anti-IL-17 against psoriasis is prefer-

able [59]. Another emerging strategy consists of engineering T cells from a patient before

grafting them back, avoiding the risk of graft rejection. For instance, anti-tumor "adoptive

immunotherapies" consisting of redirecting T cells to recognize a tumoral antigen through

the expression of a chimeric antigens receptors (CARs)) which has shown promising effects

for tumor rejection in melanoma and B cell malignancies [60, 61].

Although helper T cell subsets are commonly accepted as separate lineages, because

they keep a memory of their cytokine profile [62] upon TCR restimulation without the ad-

dition of specific cytokines in vitro, they show a high degree of plasticity in vivo [63]. A

transferred anti-tumor Th1 cell can become a Treg and show unwanted or opposing effects.

Similarly, targeting autoimmune diseases by transferring Tregs in mice is challenged by the

poor stability of these iTregs in vivo [64, 65] .

Therefore, understanding the mechanisms controlling helper T cell differentiation and

plasticity, and how to induce stable helper T cells subsets in vitro can help us to design or

improve immunotherapies.

Signals impacting the differentiation of naive T cells into cytokine producers The ac-

tivation of naive T cells happens via interaction with one or more APCs over time, providing

the T cell with several signals at the same time, namely (1) TCR stimulus [66], (2) different

contact-dependent costimulatory signals [67] and (3) the cytokines secreted by the APCs or

that are present in the medium [68] (Figure 1.8).
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Figure 1.8: The ’three signals theory’ of the simultaneously received signals required

for the activation of naive T cell by APCs.The activation of the TCR of naive T cells is
enough to activate them whereas they undergo homeostatic proliferation in the body with-
out encountering high affinity ligands. Upon activation, costimulatory signals are needed to
support the full activation, proliferation and productions of cytokines, whereas TCR activa-
tion without costimulation can lead to death, called ’activation-induced cell death’ (AICD)
in certain conditions. Costimulatory signals are diverse and show a high synergy with TCR
signaling pathways, meaning that low TCR activation can be compensated by high costim-
ulation and vice versa. Finally, the cytokines encountered during activation have a high
impact on the differentiation program and the cytokines produced later by an activated T
cell. Other signals impact differentiation, such as the metabolic micro-environment, the
presence of soluble molecules and appropriate localization following chemotactic signals;
this list could probably be expanded.
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The inducing signals responsible for in vivo differentiation into each subset have still

not fully been characterized. Based on experiments using knock-out mice, several cytokines

have been shown to be necessary for the initiation of a helper T cell subset and the clearance

of a pathogen, but one has to remember that these experiments are pathogen-specific. For

instance, in vivo, for most intracellular pathogens, IL-12 is necessary to induce an appropri-

ate Th1 response and clear the infection [69, 70]. However, in specific cases, IL-12-deficient

mice could clear viruses or bacteria and develop Th1 cells [71, 72]. In a human setting, this

process can be Type I interferon-dependent [73], meaning that Th1 differentiation is not

always mounted via the same signals. IL-4 deficiency leads to the incapacity to initiate a

Th2 response [74]. IL-6-deficient mice had impaired Th17 response [75]. Finally, mice

with targeted disruption of TGF-β signaling in T cells developed lethal autoimmunity. Al-

though these mice had high amounts of tTregs, the peripheral maintenance (and probably

conversion) of naive cells into iTregs was inhibited [76].

Consistently, activation of naive T cells in vitro in the presence of IL-12; IL-4; a cocktail

of TGF-β and IL-6; and TGF-β , successfully manage to generate Th1, Th2, Th17 and iTregs,

respectively. These signals are referred to here as ’canonical’ inducing signals, and will be

used in this study.

However, the cytokinic micro-environment in vivo is likely to be more complex, rather

than restricted to only one cytokine, and probably contains opposing signals at the same

time. It is possible that different infections could lead to yet unappreciated combinations of

cytokines, leading to the same helper T cell subtype but with additional specific properties.

For instance, Th1 or Th17 cells can express IL-10, depending on the context, which endorse

them with regulatory properties [77, 78]. Studies comparing helper T cells generated by

different pathogens or using reporter tools to follow the cytokines received by T cells in vivo

would give insight into this new layer of complexity.

Origin of inducing signals: translating the infection type into a helper T cell subtype

Helper T cells can be seen as a standardized immune component that is activated in any type

of infection, integrating a large range of signals and then controlling the other immune lay-

ers. However, one has to remember that the signals inducing differentiation are produced

by APCs, meaning that helper T cell differentiation is actually manipulated and controlled

by the APCs and the micro-environment where they interact. A large range of APC subsets

has been described and is currently expanding, based on their localization, the cytokines

they produce and their surface markers, meaning that the APC layer strongly depends on
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the pathogen [79] and the location of infection (and is not standard to all pathogens like

the T cell layer was). This way, at the initiation of an infection, a specific kind of APC is

activated, migrates to the lymphoid organs and can provide clues to the T cells about the

properties of the pathogen and the site of activation. For instance, although both pathogens

lead to a Th1 response, viruses and intracellular bacteria lead to the production of differ-

ent signals by APCs. It has also been suggested that T cells are instructed to migrate to

different organs depending on the APC subset [80]. Further, several types of APCs have

tolerogenic properties and modulate the strength or type of helper T cell subset generated

[81, 82]. This is a new complex and expanding field, though a complex one, because each

pathogen infection requires the study of different APCs and goes beyond the complexity of

the standardized helper T cell response.

1.4 Plasticity of helper T cells

A striking property of T helper cells is their capacity to re-differentiate between subsets in

specific contexts. In this work, experiments were performed to assess the early plasticity

of T helper cells in vitro, and were used to test the predictive power of our mathematical

model. An introduction to T helper plasticity is given here.

While T helper subsets are defined as lineages because they keep the memory of their

cytokine profiles upon TCR restimulation, accumulation of evidence show that they are

plastic and can reprogram into another subset in vivo. Plasticity can arise in two manners:

1/ full redifferentiation from one subset to another one, based on the cytokine expression

profile and 2/ acquisition of additional cytokines or transcription factors, leading to ’mixed

states’ populations, endorsed with the properties of two subsets.

Here, as a non-thorough illustration, several cases of T helper plasticity have been de-

scribed for each subset, illustrating the limits of the "independent lineages of T helper cells"

paradigm:

Cases of stability for Th1 and Th2: In vitro generated (TCR transgenic) Th1 and Th2

cells, transferred into a WT mice, maintained their cytokine profile at different time-points

after transfer [83], though at later points (140 days), their cytokine production was reduced.

It shows that, without infection nor TCR activation, cells can keep memory of their cytokine

profile in vivo. Generally speaking, memory cells with a Th1, Th2 and Th17 profile have

been described, and they can maintain their cytokine pattern upon restimulation.

In vitro, cell activated under Th1 or Th2 condition showed plasticity to express the cy-
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tokine profile of the other subset when the inducing condition was changed at an early time

points. [62]. However, this article concluded that, after 4 divisions, cells were not plastic

anymore to Th1/Th2 repolarization.

In [84], in vitro, after a week under polarizing conditions, Th1 or Th2 cells could be

re-differentiated into IL-4 or IFN-γ producers respectively, with some cells co-producing

IL4+ IFN-γ+ cells called ’Th1/2 cells’. However, when in vitro derived Th1 or Th2 cells

were re-stimulated under their polarizing conditions every week for three weeks, they were

much less plastic and mainly kept their phenotype upon repolarization. Finally, long-term

established clones were not plastic anymore and could not be re-differentiated.

Example of stability while acquiring of a new phenotype: ’Continuous’ IL-4+ IFN-γ+

cells emerge in vivo and in vitro. [These IL-4+ IFN-γ+ T-bet+ Gata3+ cells are called

here Th1/2]. In [85], following adoptive-transfer of Th2 (IL-4+ Gata3+) differentiated

cells into mice, and infection with LCMV (chronic, Th1 inducing virus), Th1/2 cells, co-

expressing IL-4 and IFN-γ were detected and persisted as memory cells in vivo, consistently

with [86]. Altogether these data suggest that, in vivo, T helper responses naturally generate

Th1/2 cells. In vitro, Th1/2 can also be obtained by combination of IL-4 and IL-12 [87]

while the canonical differentiation protocols use blocking antibodies and are optimized to

raise only a ’clean’ Th1 only or Th2-only phenotype.

Reprogramming of Th1 to other subsets can happen in vivo In [88], murine Th1 cells

were polarized in vitro and adoptively- transferred into Rag-/- mice. Some adoptively-

transferred Th1 cells were converted into IL-17+ IFN-γ- cells, showing that Th1 to Th17

trans-differentiation can happen in vivo in a lymphopenic mice.

Plasticity from the Th1 phenotype to the Treg phenotype has been described, after the co-

transfer of human Th1 cells with human T cells transduced with PDL1, a marker expressed

by tumor cells but not only, into NSG humanized mice [89].

In [90], murine in vitro generated T helper cells were adoptively transferred, into a WT

host, prior to the challenge with an helminth infection (Th2 response prone pathogen).

Adoptively transferred Th1 or Th17 cells were redirected to produce IL-4, while only a few

cells kept producing IFN-γ and IL-17, respectively, showing a complete trans-differentiation

for most of the cells. Interestingly, the Th1 to Th2 conversion in vivo also occurred in

IL-4/IL-13 double deficient mice, though in this case, most of the cells kept IFN-γ produc-

tion and became Th1/2 cells. Strikingly, transferred iTregs did not express IL-4 following

helminth infection.
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Th17 cells can win the ’plasticity awards’ In vivo, using a fate-mapping approach to

track IL-17 expression, [91] showed that a high percent of cells that previously expressed

IL-17 had lost its expression in steady-state (called ’exTh17’ cells). After inducing inflam-

mation by injection of anti-CD3, these exTh17 cells could become IL-10 producers with

regulatory capacity, similarly to Tr1 cells.

In vitro, the restimulation of human Th17 cells in the presence of IL-12 has been shown

to induce the generation of IL-17+ IFN-γ+ ’Th1/17 cells’. These Th1/17 cells co-express

Rorγt and T-bet and were also found naturally in human blood [92]. Interestingly, murine

ex vivo Th17 cells were less responsive to IL-12 (as compared to in vitro Th17 cells) due to a

lower IL-12Rβ2 expression, generating a lower percentage of Th1/17. Pre-treatment with

IFN-γ upregulated IL-12Rβ2 expression and allowed a higher conversion to Th1/17 cells.

In [93], in vitro generated OTII TCR-transgenic Th17 cells were restimulated in pres-

ence of different combinations of cytokines. In the presence of TGF-β at each round of

restimulation, IL-17+ IFN-γ- producing cells were stably maintained. However, when Th17

cells were restimulated with IL-12-/- APCs in presence of IL-23, a significant percentage of

IL-17- IFN-γ+ cells arose. Finally, restimulation of Th17 cells in the presence of IL-12 led

to the generation of 60% of IL-17- IFN-γ producers, though this did not happen in pres-

ence of TGF-β , and only a few cells still expressed IL-17. Therefore, Th17 are sensitive to

IL-12 signaling and plastic to IFN-γ expression, while TGF-β acts as a stabilizer of the Th17

phenotype.

Interestingly, Th1 cells derived from Th17 [94] (called ’non-classic Th1’), keep memory

of their previous differentiation status as Th17-specific gene locI such as Rorγt and CCR6,

and remain demethylated [95].

In [96], Th17-derived Th1 cells were able to induce colitis in a T cell based -colitis model,

while IFN-γ-/- Th17 cells did not, suggesting that IFN-γ+ Th17 cells have an inflammatory

and pathogenic potential, while IFN-γ-/- (IL-10+) Th17 cells have a less pathogenic and

more regulatory phenotype.

T helper cells producing both IL-4 and IL-17 have been described in human in the mem-

ory compartment of patients with atopic asthma [97, 98] and the restimulation of human

Th2 memory cells with Th17 inducing cytokines allowed to generate these cells in vitro

[97]. Interestingly, stimulation of human naive T cells with a combination of Th2 and Th17

inducing cytokines failed to induce both IL-4 and IL-17 but the restimulation of memory

Th17 cells with Th2 polarizing cytokines did succeed [98].

Finally, isolated human Th17 TILs (Tumor Infiltrating Lymphocytes) acquired Foxp3 ex-
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pression and IFN-γ production following restimulation using allogeneic PBMCs,[99]. It has

to be noted that Foxp3 expression is transiently induce following TCR stimulation in hu-

mans, and is not necessarily associated with a Treg phenotype.

iTregs are not stable, and Foxp3+ cells expressing other master transcription factors

can be observed in vivo, likely arising from tTregs. iTreg are known to lose Foxp3 ex-

pression in vitro over time, and, even after several rounds of polarization, they lose Foxp3

expression following adoptive transfer in vivo [65]. It has been described that Foxp3+ cells

can harbor additional properties:

1. Foxp3+ T-bet+ IFN-γ+ cells can be detected in vivo, are suppressive, and relied on

T-bet expression for localisation at the site of infection [100]. IFN-γ has also been

proposed as a tool for Tregs to mediate suppression [101].

2. Similarly, Foxp3+ Gata3+ Tregs are suppressive in vivo, and Gata3 was required for

a localization at the site of inflammation and the maintenance of Foxp3 expression.

[102].

3. Foxp3+ Rorγt+ Tregs were described in the gut, are suppressive, and carry epigenetic

marks specific of tTregs (demethylation at the Foxp3 locus), suggesting that they de-

rived from tTregs. [103].

Thus, Foxp3 expression can in that way be seen as a parallel fate that mirrors all the T

helper effector subsets [104] (Figure1.9).

To summarize, these findings highlight the diversity of experimental protocols for assess-

ing plasticity, and the complexity of T helper subsets reaction when they are restimulated in

the presence of cytokines (in vitro) or in an inflammatory context (in vivo). The strongest

cases of stability have been shown in case of restimulation without adverse cytokines, or

repeated re-polarizations. However, in the general case, differentiated T helper cells seem

to be plastic. A mathematical model would help to find out whether the already known

mechanisms are able to explain this complexity, or whether new mechanisms remain to be

discovered.
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Figure 1.9: Foxp3 expression can be seen as a parallel fate decision, expressed together
with the specific properties of pro-inflammatory T helper subsets, while maintaining sup-
pressive activity. (Taken from [104]).

1.5 Molecular mechanisms controlling CD4 T cell differen-

tiation

We aim to develop a mathematical model describing the kinetics of T helper differentiation.

It requires to pull together a list of major mechanisms that decide for the differentiation.

This part summarizes the major intracellular pathways that link the input cytokinic signals

with the differentiation programs. The mathematical model was build from these published

mechanisms, with simplifications, and is described in Chapter 3.

Differentiation of Th1 cells The course of IL-12 induced Th1 differentiation follows two

main phases: IL-12 induction of Th1 genes and very restricted/limited IFN-γ production,

followed by a phase of IFN-γ auto-stabilisation of the Th1 phenotype with massive IFN-γ

production [105](Figure 1.10). It has to be noted that IFN-γ is also provided by other cell

types in vivo [106].

The receptor chains for IL-12 are regulated during differentiation. ILR12β1 is constitu-

tively expressed in substantial amounts whereas IL-12Rβ2 is only present at very low dose in

murine and human naive T cells. TCR stimulation induces a slow upregulation of IL-12Rβ2

[107], further increased by IL-12 downstream signaling through STAT4 [108], creating a

slow feedback loop where IL-12 signaling increases the sensitivity to its own signaling on T
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cells.

Several studies detected IFN-γ signaling as required for the stable and strong expression

of IFN-γ by T cells. Naive T cells stimulated by their TCR in the presence of anti-IFN-γ

show no detectable IFN-γ mRNA expression (By reanalysing data published in [109]), Th1

development is impaired in IFN-γR-/- mice upon candida albicans infection in vivo [110]

and is strongly reduced in vitro [111]. Finally, addition of exogenous IFN-γ increases the

production of IFN-γ by T cells although in a transient manner.

In a mechanistic point of view, IFN-γ signals through the IFN-γRI-IFN-γRII receptor com-

plex (type 3 IFN receptor), whose chains are respectively associated with Jak1 and Jak2.

Upon IFN-γ binding, Jak1 and Jak2 phosphorylation leads to the binding and tyrosine phos-

phorylation (Y701) of STAT1 pre-formed dimers, which re-orientate into an antiparallel

dimeric structure [112], locate to the nucleus and act as a transcription factor, and lead,

among other things, to the direct activation of T-bet expression in synergy with STAT4 [113].

T-bet overexpression by retroviral transfection at 36 hours after TCR stimulation via anti

CD3/28 antibodies was sufficient to induce the expression of IFN-γ, even into Th2 pre-

differentiated cells (during 9 or 22 days) [114]. In a system where the activity of T-bet is

controlled through an oestrogen receptor [115], T-bet depletion leads to a loss of IFN-γ pro-

duction, and IFN-γ production depends on T-bet in a dose-dependent manner. Finally, T-bet

deficient cells fail to produce high amounts of IFN-γ upon IL-12 treatment. Taken together,

these findings supported T-bet as a master transcription factor for Th1 differentiation, by

being necessary and sufficient for full IFN-γ production in the Th1 condition.
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Figure 1.10: Core Th1 differentiation network. IL-12 induces STAT4 phosphorylation,
trans-activating IFN-γ, T-bet and IL-12Rβ2, among other genes. In parallel, IFN-γ, initially
produced downstream TCR, signals in part through STAT1 phosphorylation, which fully
activates T-bet expression, in synergy with STAT4. This synergy can be observed by a lack
of T-bet expression in the context of anti-IFN-γ, and by the fact that IFN-γ is not sufficient
to trigger Th1 differentiation.
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Differentiation of Th2 cells Th2 differentiation is believed to be initiated by IL-4, and

further supported by the production of cytokines exerting a positive feedback by IL-4 itself

and IL-13 (Figure 1.11). IL-4 as well as IL-13 deficiencies lead to an impaired response to

helminths [116]. Basophiles have been suggested to produce IL-4 in vivo and to be respon-

sible for Th2 induction [117], but the origin of IL-4 in vivo is still a matter of debate. The

response against some helminths was independent of the IL-4 signaling pathway, suggesting

the existence of additional Th2 induction pathways [117].

IL-4 signals by binding to the IL-4 receptor, composed of IL-4Rα and the γc common

receptor, shared with other cytokine receptors. IL-13 also signals via IL-4Rα, but in complex

with IL-13Rα. Another chain, IL-13Rα2 has been described to be expressed in the thymus

but lacks Jaks binding intracellular regions and does not confer sensitivity to IL-13 alone

[118], while it was to suggested to be part of a the IL-13 receptor complex together with

IL-4Rα and IL-13Rα1 [119]. Following IL-4 binding, Jak1, bound to IL-4Rα and Jak3, to

γc, are transphosphorylated, leading mainly to STAT6 phosphorylation at Tyrosine 641. In

the case of IL-13, the same process happens between Tyk2 bound to IL-13Rα1 and Jak1,

also leading to the same STAT6 phosphorylation [120].

Phosphorylated STAT6 proteins are able to form anti-parallel dimers and to relocate

into the nucleus where they bind to STAT6 responsive elements and directly activate genes

including Gata3, IL-24 and SOCS1 [121]. Interestingly, while STAT6-P also binds to the

IL-4 locus and correlates with permissive epigenetic marks, it is not enough to activate IL-4,

suggesting a role for chromatin remodelling rather that a direct transcriptional activation.

Gata3 is able to directly induce the expression of IL-4, IL-5 and IL-13. Gata3 deficiency

in mice is embryonically lethal, but Gata3 knock-down in Th2 clones abrogated IL-4 pro-

duction [122]. Finally, Gata3 overexpression in Th1 cells leads to the production of IL-4

while inhibiting IFN-γ production [123] [124], promoting Gata3 at the rank of master tran-

scription factor for Th2 differentiation. It is of interest that Gata3 is able of activate its

own transcription [125]. IL-13 and IL-4 provides an additional feedback loop to support

Gata3 expression. However, IL-5 signaling in T cells has not been described, and IL-13 was

shown to be insufficient to initiate Th2 differentiation, but rather to support it later, prob-

ably due to a regulation in receptor levels. TCR signaling might have an important role in

Th2 differentiation by supporting early Gata3 transcription as well [126].

Additional feedback loops are evoked during Th2 differentiation, supported by Gata3

and IL-2 downstream signaling, including higher expression of IL-4Rα and IL-2Rα. IL-2

binds to the trimeric IL-2R complex, composed of IL-2Rα (CD25), IL-2Rβ (CD122) com-
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plexed with Jak1, and γc, bound to Jak3. Upon IL-2 binding, Jak1 and Jak3 are trans-

phosphorylated, leading mainly to STAT5 phosphorylation at Tyr 694 and switching of the

STAT5 dimers into an anti-parallel structure [127], while other STATs were shown to be ac-

tivated by IL-2 to a minor extent [128]. IL-2 can support Th2 development independently

of IL-4 signaling [129]. However, IL-2 is not a Th2 specific cytokine because it is produced

by most activated T cells in early phases, and the differentiation of Th1 cells was also shown

to be dependent on IL-2 [130].

Figure 1.11: Th2 core differentiation network. Stat6 phosphorylation, initially triggered
by IL-4, induces Gata3 expression that induces the production of the Th2 cytokines (IL-4,
IL-5, IL-13), as well as IL4Rα and CD25 expression. IL-4 and IL-13 provide a feedback loop
to sustain Gata3 expression, in synergy with IL-2.
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Reciprocal differentiation of iTregs and Th17 cells Th17 and iTregs are both supported

by TGF-β1, 2 and 3, in synergy with other cytokines. It was first discovered as a surprise

because TGF-β was believed to be a pan-anti-inflammatory cytokine, and activation of T

cells with tTregs and dendritic cells led to the generation of pro-inflammatory Th17 cells

due to the combination of TGF-β from the Tregs and IL-6 from the dendritic cells[131]. It

turned out that TGF-β can actually be pro-inflammatory in a context-dependent manner by

promoting Th17 differentiation.

The main receptor for TGF-β in T cells is composed of TGF-βR1 (type I) and TGF-βR2

(type II). Several other TGF-β receptors have been actually described on T cells and might

endorse the cells with other downstream signaling pathways upon TGF-β treatment: CD105

/ Endoglin [132], CD109 [133, 134], and TGF-βRIII / betaglycan [135, 136]. Interestingly,

there might be an unappreciated cross-talk between different members of the TGF-β su-

perfamily ligands with TGF-β regarding T cell differentiation, for instance with Activin A

[137] suggesting that they might support iTreg or Th17 in vivo independently of TGF-β . As

a speculation, this diversity in the TGF-β superfamily signaling could result from the fact

that TGF-β is one of the most ancient cytokines in evolution [138].

Binding to TGF-β to the classical TGF-βR1/TGF-βR2 receptor leads to the phosphory-

lation of Smad2, Smad3 at C-terminal serine residues by TGF-βR1. Smad2 or Smad3 can

in turn heterodimerize with Smad4 and act as transcription factors in the nucleus [139],

activating Foxp3. In contrast, activation of the transcription factor Rorγt downstream TGF-

β , (hallmark of Th17 cells, and also activated downstream IL-6), was independent on the

canonical smad2/smad3 signaling pathway [139] but was blocked by MAPK inhibitors and

partially inhibited by AKT/mTOR inhibitors [140] suggesting a parallel TGF-β signaling

during Th17 differentiation, potentially through CD105 [132].

Interestingly, activated T cells can produce TGF-β [141] [142], in Foxp3-dependent and

-independent manners [143], though this process is more often observed on Foxp3+ Tregs.

TGF-β is secreted in a latent form, initially complexed with LAP (Latency Associated Pep-

tide), also produced from the TGF-β gene. The secretion of TGF-β requires the binding

of a third protein (Latent TGF-b-Binding Protein (LTBP)), which finally allows for the re-

lease of the Latent (inactive) TGF-β into the medium. Latent TGF-β can be kept at the

surface of the cells, in a membrane-bound manner via GARP (Glycoprotein A repetitions

predominant) [144]. For instance, regulatory T cells express GARP upon activation which

is required for their suppressive function in specific contexts [145]. Finally, the use of la-

tent TGF-β requires enzymatic proteolysis. For instance, Tregs release active TGF-β from
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its membrane-anchored latent counterpart through integrinβ8 [146] [147]. The feedback

generated by TGF-β has been shown to sustain Th17 cells in vivo [148]. In general, this

feedback is hard to analyze in vitro, due to the presence of high amounts of latent TGF-β

in serum used for cell cultures, which can saturate the ELISA measurements of total TGF-β ,

and could give a source of functional TGF-β to the cells if they can activate it. A review on

the relevance of TGF-β for T helper differentiation can be found in [149].

In vitro, IL-6 in combination with TGF-β is sufficient to induce IL-17 production from

naive T cells, and further in vivo, IL-6 deficiency leads to a strong decrease of Th17 amounts

in the lamina propria [75].

The transcription factor Rorγt (gene rorc) emerged as a master transcription factor for

Th17 development. In vitro, Rorc-/- deficient cells failed to produce IL-17 in presence of

IL-6 and TGF-β , while over-expression of Rorγt was enough to endorse the cells with IL-17

expression [75]. Note that Rorγ (also called Rorγ1), another isoform of Rorγt due to al-

ternative promoter use, is mainly expressed in non-immune organs linked to metabolism,

but is also induced in Th17 cells and redundantly mirrors Rorγt [150]. In vivo however,

rorc (Rorγ-/- Rorγt-/-) gene deficiency did not totally abrogate Th17 differentiation, and a

second transcription factor of the same family, Rorα (isoform 4), was described to act in syn-

ergy with Rorγt to promote IL-17 production [151, 152]. Rorα overexpression was enough

for IL-17 expression and further co-overexpression with Rorγt lead to greater IL-17 pro-

duction, even in adverse T helper conditions as Th2. The double deficiency rora-/- rorc-/-

completely abrogated Th17 differentiation in vivo in a EAE model, showing that the partners

Rorγ, Rorγt and Rorα4, control Th17 differentiation.

Mechanistically, IL-6 signals through IL-6Rα (CD126 / gp80) and gp130 (CD130, IL-6Rβ)

homodimers receptor chains, both binding to Jak1. IL-6 induces Jak1 phosphorylation lead-

ing to phosphorylation of STAT3 [153], but also STAT1 [154], whose dimers (hetero- and

homo-) act as transcription factors in the nucleus. Soluble forms of IL-6Rβ and gp130 have

been observed in the human serum, and were suggested to interfere with or support IL-6

signaling (by trans-signaling) depending on the context, as discussed in [155] .

Phosphorylated STAT3 dimers transactivates many targets including IL-21, Rorc, Rora,

IL-17a, IL-17f, IL-6ra, IL-23r [156] as well as TGF-β [157]. IL-21 is further secreted and

signals through the IL-21R-γc receptor chains, bound to Jak1 and Jak3 respectively, and

inducing STAT3 phosporylation (together with Stat1 and both Stat5a and Stat5b isoforms).

Therefore, IL-21 provides a direct feedback loop to support the Th17 phenotype [158].

The balance between Foxp3 and Rorγt expression is regulated by additional mechanisms.
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Among them, Rorγt inhibits Foxp3 expression by direct binding to its promoter, ensuring that

Foxp3 is not maintained in the Th17 condition. Foxp3, in turn, directly binds to Rorγt, which

inhibits its function [159] and its stabilization. Therefore, during Th17 differentiation, the

synergy between TGF-β and IL-6 allows for sustained Rorγt expression whereas in iTreg

condition, Rorγt expression is transient but not sustained.

The expression of Foxp3 induced by TGF-β is not stable. IL-2 further supports iTreg

differentiation via direct binding of STAT5 to foxp3 promoter, sustaining its expression. iTreg

differentiation is strongly reduced in vitro on IL-2 deficient cells [160]. It is interesting to

see that iTreg cells do not produce feedbacks specific to their own subset: IL-2 and TGF-β

are produced by activated T cells in general. In contrast, thymically derived tregs (tTregs

or nTregs), show a stable expression of Foxp3, but this property was shown to be due to

additional mechanisms at the epigenetic level [64, 65].

The interplay between iTreg and Th17 intracellular differentiation networks is shown in

(Figure 1.12).
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Figure 1.12: Th17 - iTreg differentiation network. TGF-β initiates the transcription of both
Foxp3 and Rorγt, while IL-6 signaling activates both Rorγt and IL-21 expression. IL-21, in
turn, sustains Rorγt via the same signaling pathway than IL-6. IL-2 support Foxp3 expression
while inhibiting IL-17 expression. Foxp3 inactivates Rorγt by direct binding while Rorγt
inhibits Foxp3 transcription.
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1.6 Mathematical models for T helper differentiation

Several quantitative mathematical models have been developed to account for T helper dif-

ferentiation, at different scales. Most of them are combined with the design of experimen-

tal data to train the model and to obtain realistic parameter through parameter estimation.

They rely on a simplified regulatory sub-network, and mostly focus on a subset separately.

Models for intracellular signaling during Th1 differentiation IL-12 signaling during

Th1 differentiation has been modelled in [161]. The kinetics of expression og IL-12Rβ2

were followed in vitro after adding IL-12 or not at day 2 following activation, and a math-

ematical model was designed to mimic/modelize the kinetics of the intracellular signaling

(Receptor dimerization, STAT phosphorylation). Experimental data were used to discrim-

inate the relative importance of redundant pathways up-regulating IL-12Rβ2. This model

predicted that, at 3 days post activation, STAT4-P poorly induces IL-12Rβ2, which is already

expressed at high rate (probably due to TCR activation), and that the effect of SOCS1 is very

limited.

This model was extended by looking at the cross-talk between IL-12 and TNF-α on a Th1

cell line (2D6 cells) [162]. The cells were treated with IL-12 after 12 hours of culture, and

the kinetics of IFN-γ, TNF-α secretion and IL-12R and STAT4-P expression were measured.

In silico, STAT1 signaling and TNF-α production were added to the model, and a fitting

procedure allowed to predict that: 1/ the effect of STAT4-P in sustaining TNF-α levels is

negligible (TNFα is amplifying itself), 2/ that cell division induces a substantial decrease of

STAT4-P under the hypothesis that it is not re-synthesized, 3/ that STAT4-P is able to induce

IFN-γ at low dose while it requires a higher level of STAT4-P to induce IL-10, and 4/ that

IL-12R phosphorylates both STAT1 and STAT4.

In [163], a model was developed to recapitulate IFN-γ and IL-4 signaling and the neg-

ative feedbacks of SOCS proteins on differentiation. A very detailed mathematical model

was derived (>200 parameters) but due to lack of quantitative data, a set of parameters had

to be chosen, that reproduces qualitatively the properties of differentiation under different

doses of IL-4 and IFN-γ. The model predicted quite intuitive results, such that SOCS1-/-

mice would have a skewed differentiation towards Th1, or that the use of JAK3 inhibitors

would reduce Th2 differentiation. This study is more a ’proof of concept’ of what you would

expect was consistent with quantitative simulations, performed on a complex network.

The cross-talks between TCR, IL-12 and IFN-γ during Th1 differentiation were investi-
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gated in [111] using WT or IFN-γR-/- T cells. The authors observed that, under Th1 condi-

tion, the first peak of T-bet expression at 24 hours following activation requires IFN-γ while

the progressive up-regulation of T-bet at later time points relies on STAT4-P and is indepen-

dent of IFN-γ, therefore segregating over time the IFN-γ and IL-12Rβ2 positive feedback

loops. In silico, four different sub-networks were proposed to explain the regulation of T-bet

and IL-12Rβ2 expression over time. The 4 models differ in including (IL-12 activates T-bet)

or not, and including (TCR inhibits IL-12Rβ2) or not. The models without negative feed-

back were discarded because they could not explain a two-peaks temporal profile for T-bet,

and the best model according to the data was the one where TCR inhibits IL-12R expression

and where IL-12 signaling contributes to T-bet induction. While the remaining model shows

the best consistency as compared to the 3 others ones, it is not possible to conclude for sure

that this mechanism (TCR inhibits IL-12Rβ2) is the reason for T-bet downregulation after 24

hours, because this is the only inhibitory mechanism that was investigated among a longer

possible list of described mechanisms in literature. Probably, comparing more models with

different possible inhibitions would hihglight multiple mechanisms. As experimental vali-

dation, they show that blocking TCR signaling by inhibiting Calcineurin at day 1 increases

T-bet and IL-12Rβ2 expression at later time points. However, a recent study suggests that

TCR signaling has a positive effect on IL-12Rβ2 expression, and in a dose-dependent man-

ner [164]. It would mean that the in silico model managed to reproduce the accurate curves

for T-bet, but by using an explicit mechanism that likely does not exist.

Models for Th1-Th2 differentiation At the population level, a first model [165], further

extended in [166], investigated the general properties of Th1 and Th2 cross-inhibition. It

uses a simple topology of the network where Th1 and Th2 differentiation programs auto-

activate themselves and inhibit each-other, through the production of generic Th1 and Th2

signals without explicitly naming which ones. The model is not compared with experimental

data but instead characterizes the outcome of differentiation for every possible value of

the unknown parameters. It predicts among other things that 1/ a mixed population of

Th1 and Th2 is possible by combining both Th1 and Th2-inducing signals, and 2/ that

re-programming using the other cytokine signal is possible. This prediction is not true in

all contexts because Th1 or Th2 cells fully differentiated in vitro with multiple rounds of

polarization are resistant to reprogramming in vitro, suggesting for additional layers or

signals of regulation of the Th1/Th2 balance [84].

In [87], the intracellular levels of IL-4, IFN-γ, T-bet and Gata3 were measured by Flow
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Cytometry, when T cells were activated under different combinations of IFN-γ and IL-4

doses. Double positive T-bet+Gata3+ cells could be observed when both signals were

present. A simple mathematical model was designed, including (indirect) auto-amplification

of T-bet and Gata3, and cross-inhibitions between them, similarly to [165], and could re-

capitulate the data. It shows that such a simple mechanistic approach can account for the

cross-talk between IFN-γ and IL-4.

In [167], one week old Th2 cells were restimulated with PMA/Ionomycin and the ki-

netics of IL-4 expression at mRNA, protein and secreted protein (by IL-4 secretion assay)

levels were followed. The cells showed a “yes-or-no” expression pattern. In order to under-

stand the population dynamics of IL-4 expression, an in silico model of chromatin opening

of the IL-4 locus was developed at a single-cell level, where the locus is initially in a ’ON’

state and takes time to close to a ‘OFF’ state. During the ‘closing’, it has a higher chance to

re-activate itself. Interestingly, 3 weeks-old Th2 cells produced less IL-4 after restimulation,

which could be explained in the model by only changing the chromatin opening rate in dif-

ferentiated cells. The prediction is therefore that the IL-4 locus is harder to reopen in more

differentiated (older) cells. The model also allowed to extract the half life and transcription

rates of Gata3 and IL-4 from the experimental data.

Models for Th17-Treg differentiation In [168] the effects of the topology of three differ-

ent simple networks for Th17/iTreg differentiation were compared. All of them predicted

the existence of a Rorγt+Foxp3+ state, and a possible reprogramming from iTreg to Th17.

In [169], the genome-wide expression of genes was followed by microarrays along 18

time points during the three first days of Th17 and Th0 differentiation. The ambition was

to automatically reconstruct a genome-wide Th17 differentiation network. To this aim, po-

tential interactions between genes were identified, provided the genes were differentially

regulated compared to the Th0 control condition, and provided they were timely consistent

with an activation. For instance, if a gene was expressed before another one, it could be an

activator of it. This strategy highly over-estimates the number of interactions, and requires

additional steps to identify the relevant ones. The expression of 39 different genes was per-

turbed by small interfering RNAs from the beginning of differentiation to reveal functional

interactions between genes. At 48hrs, the impact of each perturbation was quantified and

summarized by positive or negative arrows. As a limitation, since they look at the outcome

48hrs after the perturbation, the interactions might be indirect and the number of arrows

is likely to be overestimated again. Among the newly identified factors impacting Th17 dif-
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ferentiation, they further validated experimentally the impact of the deficiency of 4 of them

on Th17 differentiation. To sum up, even if this study generated an enormous amount of

experimental information and found new regulators, it was not sufficient to have a suffi-

ciently constrained network. Additionally, the resolution of the network was limited to the

topology of interactions between genes, and did not allow to perform kinetic simulations

because the quantitative properties of the interactions are unknown.

In [109], the biological question was the same but the utilized methods were slightly

different. They focused on the role of IRF4, BATF, STAT3, cMAF and Rorγt on Th17 differ-

entiation. From a Chip-Seq approach, they identified the binding sites of combinations of

these factors. BATF and IRF4 were required for most of the binding sites. Then, following

gene expression by RNA-seq of Th17 generated from deficient mice in each of these genes,

they could map positive or negative effects regarding these 5 transcription factors on the

genome. Their data also pointed out potential regulators of Th17 and they experimentally

assessed the impact of the upregulation or inhibition of several factors by siRNAs on Th17

differentiation at the transcriptomic level. Some of them had a critical effect, particularly

FOSL2, and they proposed a model to add FOSL2 effect on the core ’ IRF4, BATF, STAT3,

cMAF and RORC’ network. The focus was put on the structure of the network (who activates

or inhibits who), and the kinetic properties of the system were not investigated.

Models for all subsets A long series of T helper differentiation boolean models were pub-

lished from the teams of Denis Thieffry (ENS Paris) and Luis Mendoza (Instituto de Investi-

gaciones Biomedicas, Mexico). Two recent studies were published in [170] and [171]. They

designed complex networks from the literature on T helper differentiation (> 40 genes !),

and simulated them in a boolean way (genes are only ON or OFF at any time). They could

predict the stable states of the system (that would correspond to T helper subsets), includ-

ing mixed states (with multiple phenotypes at the same time). However, boolean networks

are not able to reproduce the kinetics of gene expression, and they don’t have realistic time-

scales. Additionally, the rules to update gene expression at the next time-step can become

very complicated. For instance, the decision of the next state of a gene regulated by an

activator and an inhibitor when they are both ’ON’ is an hypothesis to be chosen. When

more genes are included, the list of regulation hypothesis to consider grows exponentially.

New techniques using model-checking allow to incorporate experimental data as qualitative

constraints [172] and to predict properties of the differentiation network with a minimum

of user-defined hypotheses. It has been successfully applied to the T cell differentiation
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network in [173], and predicted possible trajectories (re-differentiation) between differen-

tiated T helper subsets.

Only one dynamic model for T helper differentiation including 4 T helper subsets (Th1,

Th2, Th17 and iTreg) has been published so far [174]. It contains the cytokine signaling

pathways and the main cross-inhibitions between transcription factors (Gata3, T-bet, Rorγt

and Foxp3), including the regulation of cytokine signaling by SOCS proteins. The number of

unknown parameters is very high (around 300), and the experimental data limited to only

one late time-point. The model was designed to reproduce steady-state (late) expression of

the genes, but has not been trained to reproduce the dynamics of gene expression during

differentiation, which is the focus of the present thesis.

Published datasets that could be used for developing a T helper differentiation model

Several quantitative and genome-wide datasets following T helper differentiation in vitro

have been published and could be the experimental basis of a new mathematical model :

• in [109], the genome-wide kinetics mRNA expression of Th17 in vitro differentiation

were followed by the use of RNA-seq. As a control, a Th0 condition with anti-IFNγ

and anti-IL-4 was followed. This dataset was very helpful to validate our kinetics in

the Th17 condition, and correlated nicely (shown in Appendix, Figure 7.5).

• a similar trancriptomic assay, performed with microarrays, followed Th17 differentia-

tion in vitro, at 18 different time-points [175]. The dataset was not accessible without

using specific bio-informatic tools, and I gave up to open them.

• a kinetics analysis following Th9 differentiation was performed by [176]. The dataset

is actually not publicly available and the authors didn’t reply to our request to share

their data.

• in [177], a transcriptome study following differentiating Th1 and Th2 cells was pub-

lished. The expression of selected differentially expressed genes is given and rounded

(with 10% precision). Some of the main factors of the differentiation network are not

given in the list, and the authors didn’t reply to our request to provide the full dataset.

• A study followed early Th1-Th2 differentiation from human cells in vitro, and shared

publically the transcriptomic data [178]. Unfortunately, this was performed on human

cells, and does not contain enough time-points to delineate clear kinetics, but the data

was informative to compare with our own kinetics.
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As a conclusion, even if genome-wide studies have been performed and gave important

insight into the properties of T helper differentiation, these dataset were not made available

in a manner that is suitable for later modeling, or for being compared with each-other,

and I believe this is unfortunately a recurrent problem faced by the mathematical biology

community.

As a second approach, the kinetics of the main factors could be taken from different

studies separately. As an example, different kinetics have been published for T-bet mRNA

expression during Th1 in vitro differentiation, in C57BL/6J mice, and with similar proto-

cols (Figure 1.13). The curves show inconsistencies in their peaks, and it is consequently

very complicated and dangerous to use quantitative data from different studies and from

different laboratories, because the variation is too strong.

Figure 1.13: Comparison of Tbet dynamics in Th1 conditions from different articles

: (A) only with IL-12 or under full Th1 conditions including IL-12 and anti-IL-4 (B,C,D).
A : [111], B: [179], C: [180], D: from the present study. In theory, the curves pointed by
the red should follow the same kinetics. Note that the curve in D. follows only 3 days of
differentiation.
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In our case, we decided to generate a complete data set (performed in the same experi-

mental condition), in order to avoid these bias. I am very grateful that I had the opportunity

to perform the experiments and time-points that were required for the project. I do hope

that in the future, standardization of protocols will allow quantitative data to be compared

between different studies, and that modellers will have more occasions to use published

data without the necessity to generate new datasets.
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CHAPTER 2

IMPACT OF GLUTAMINE DEPRIVATION ON T HELPER

DIFFERENTIATION

2.1 Introduction

At steady state, naive T cells have not yet responded to an antigen and are small, quiescent,

and possess a very small cytoplasmic volume (compared to the size of the nucleus). Upon

activation, a slow growing phase is observed during which their volume increases, and the

first division is finally observed 24 to 30 hours post-activation. In contrast, the subsequent

divisions are performed with an extremely fast rate, up to three divisions per day [181]. The

metabolic status of activated cells demands a metabolic reprogramming from their quiescent

progenitors, and relies on the use of high amounts of energy and nutrients to build new

constituents of the daughter cells, such as nucleic acids and proteins.

Naive T cells fulfil their energy requirements by the use of aerobic glycolysis of glucose

(called ’Oxphos’ glycolysis) and oxydation of fatty acids [182]. The other pathways are not

shut down, but rather the balance between the different glycolytic pathways is skewed to

the Oxphos one. Upon activation, a metabolic switch occurs [183], resulting in the upregu-

lation of additional metabolic pathways, including 1/ anaerobic glycolysis pathways (called

’glycolytic pathway’), which use glucose faster but less efficiently than Oxphos, and gen-

erates lactate that acidifies the extracellular medium 2/ the pentose-phosphate pathway,

that can convert glucose into ribose and nucleic acid precursors, and 3/ increased uptake

of glutamine, as a source of both nitrogen for the generation of proteins, and of energy, by

feeding the TCA cycle (Krebs cycle) [184, 185].

Th1, Th2 and Th17 cells harbor a high (non-Oxphos) glycolysis, and over-expression of
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Glut-1, a major glucose transporter in T cells, was associated with an increased production

of effector cytokines [186]. In Th1 condition in vitro, both proliferation and production of

IFN-γ were reduced when glycolytic pathways were inhibited, while IL-2 production was

not significantly impacted [187, 188]. Similarly, Glut1 deficiency selectively impaired the

proliferation and differentiation of these T helper subsets [189]. In vitro activated T cells

under low doses of glutamine show a reduction of proliferation and IFN-γ secretion when

glucose concentration goes below 0.1 mM [190]. Such a low dose is likely not reached in

most in vitro cultures with Fetal Calf Serum, which already contains glucose. Studies us-

ing glycolytic inhibitors such as 2-Deoxy-D-glucose, are sometimes used to mimic glucose

deprivation, but should be interpreted carefully (reviewed in [191]), because of potential

off-targets effects, including the blockage of the pentose-phosphate pathway which is nec-

essary for glycosylation and which has been shown to impact on T cell differentiation [192].

iTregs, in contrast, rely more on the usage of fatty acids [193–195]. Blocking fatty

acid oxydation by Etomoxir reduced the differentiation of murine iTregs in vitro [186].

Interestingly, the supplementation of fatty acids had an inhibitory effect on the survival of

Th1, Th2 and Th17 and their cytokine production [186], meaning that not only deprivation

but even excess of nutrients can impair certain differentiation programs. Finally, inhibiting

glycolysis promoted murine iTreg differentiation in vitro [196].

The idea that iTregs rely on different metabolic sources than other subsets could be used

therapeutically for restoring the balance between the pro- and anti-inflammatory CD4 T cell

response. It would be further interesting to find metabolic differences distinguishing Th1,

Th2 and Th17 differentiation programs.

While initial studies focused on the impact of glucose for T cell differentiation, little was

known regarding the specific role of amino acids [197]. Notably, glutamine attracted our

attention, as it is the most abundant amino acid in the plasma, and an important source of

precursors for protein synthesis. Several studies have already pointed to the importance of

glutamine: [198] compared the proliferation of T cells activated (Th0) in the absence of

several identified amino-acids, and it resulted that glutamine was a limiting factor for T cell

proliferation. The amount of IFN-γ and IL-2 were both reduced in the absence of glutamine.

In [199], human PBMCs were activated with attenuated bacteria or measles virus and po-

larized in the presence of different doses of glutamine: in the absence of glutamine, Th1

differentiation was inhibited while the Th2 cytokine production was increased. In another

study, human PBMCs were activated with anti CD3 with different levels of glutamine [190].

The early expression of mRNAs for IL-2, IL-4, IFN-γ were independent of the glutamine
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concentration while the actual later IFN-γ secretion was reduced under limiting amount of

glutamine. The production of other cytokines was not reported.

The work presented below was initiated following the observation that CD4 T cells ac-

tivated (Th0 condition) under glutamine-deprived conditions resulted in a high percentage

of Foxp3-expressing T cells. The aim of the present study was to characterize the impact of

glutamine deprivation during in vitro differentiation of Th1, Th2, iTreg and Th17 subsets.

2.2 Material and Methods

Cell isolation and T helper differentiation C57BL/6J mice were purchased from Charles

River laboratories. CD4 T cells were purified from freshly isolated lymph nodes and naive

(gated as CD4+ CD62L+ CD44- CD25- cells) sorted by FACS. Cells were cultivated in glucose

and glutamine-free RPMI 1640 medium (Life Technologies), complemented with 10% FCS,

beta-mercapto-ethanol (50 µM), Penicillin Streptomycin, glucose (11mM), with or without

glutamine (2 mM). Naive T cells were activated under polarizing conditions using non-

(tissue treated) cell culture plates (Thermofisher), previously coated with 1µg/mL anti-CD3

(2C11, homemade) and 1µg/mL anti-CD28 (PV.1, BioXCell). After 3 days, cells were split

and replated in cell-culture treated plates, and fed with 1 volume fresh media containing

either IL-23 (to reach 20 ng/mL final) for the Th17 condition, or IL-2 (100 U/mL final) for

the other conditions.

Notes: stopping TCR stimulation at day 3 avoids an excess of Activation Induced Cell

Death (AICD). Anti-CD3 binds to a conserved part of the TCRs and leads to polyclonal acti-

vation (nonspecific) while anti-CD28 provides a costimulatory signal, by binding to CD28.

It is an APC-free system, composed of only differentiating T cells and allowing to isolate

RNA without the risk of contamination from other cell types.

Differentiation into T helper subsets was performed using: TH1 condition: IL-12 (10

ng/ml) and anti–IL-4 antibody (5 µg/ml); TH2 condition: IL-4 (10 ng/ml) and anti–IFN-γ

antibody (10 µg/ml); iTreg condition: human TGF- b (3 ng/ml) and IL-2 (100 U/mL); Th17

condition: IL-6 (30 ng/mL), human TGF-β (3 ng/mL), anti-IFN-γ (10 µg/mL), and anti-

IL-4 (5 µg/mL). Following isolation, naive T cells were washed 2 times with PBS, labelled

with Cell Trace Violet (Invitrogen), 5 µM, for 3 minutes at 37°C, and resuspended in fresh

medium with FCS, prior to activation.

Flow cytometry Flow cytometric assays were performed on Facs Canto II (BD Biosciences).

At the time-point of interest, cells were stained for extracellular markers (CD4-AlexaFluor780,
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BD), and intracellular stainings were performed using the eBioscience intracellular staining

kit. Foxp3-PE and Foxp3-PeCy7 (eBioscience) were used. For intracellular cytokine staining,

cells were washed and resuspended in RPMI containing glucose (11mM) and glutamine (2

mM), and supplemented with Phorbol Myristate Acetate (100 ng/mL, Sigma-Aldrich), ion-

omycin (1 mg/mL, Sigma-Aldrich) and brefeldin A (10 mg/mL, Sigma-Aldrich) for 4 hours

at 37°C prior to intracellular staining. IL17A-PE and IFN-γ-APC were used (eBioscience).

Analyses were performed on FlowJo (Tree Star, Inc.). Cytokines released in the supernatant

were measured using the Cytometric Bead Array assay from BD, according to manufacturer

protocol.

RT-qPCR RNA isolation was performed using RNeasy Micro Kit (Qiagen), Reverse tran-

scription using the QuantiTect Reverse Transription Kit (Qiagen) and the q-PCR step was

performed with LightCycler 480 SYBR Green I Master kit (Roche). The furnisher’s protocols

were followed. The primers sequences utilized are:

T-bet S:5’-TCCCCCAAGCAGTTGACAGT AS:5’-CAACAACCCCTTTGCCAAAG

Gata3 S:5’-AGTTCGCGCAGGATGTCC AS:5’-AGAACCGGCCCCTTATCAA

Hprt S:5’-CTGGTGAAAAGGACCTCTCG AS:5’-TGAAGTACTCATTATAGTCAAGGGCA

The list of reagents is provided in Table 2.1.

2.3 Results:

Impact of glutamine deprivation on T cell growth and proliferation during T helper

polarization. To evaluate the importance of glutamine during polarization, naive T cells

were differentiated in vitro towards a Th1, Th2, iTreg and Th17 fate (and ’Th0’ as a control

without polarizing cytokine), under glutamine-replete or -deprived conditions.

Cell growth was followed by flow cytometry (size monitored by Forward light, FSC

and granularity by Scattered light SSC) (Figure 2.1). At 24 hours, T cells activated under

glutamine-deprived conditions were still very small as compared to the cells activated in

glutamine-replete conditions. However, the overall viability and the percentage of live cells

was similar between conditions at this early time point. At a later time point (7 days), the

cell size of T cells deprived of glutamine was similar to the one of cells activated with 2mM

glutamine. However, it’s important to note that the viability and growth of Th17-polarized

cells was severely impaired under limited conditions. Therefore, the absence of glutamine

is delaying, but not impairing the growth of Th1, Th2 and iTreg cells. In both glutamine
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Table 2.1: List of reagents for Chapter 2

REAGENT FURNISHER REFERENCE

CD4+ enrichment
CD4 T-cell isolation kit, mouse Miltenyi Biotech 130-095-248
LS columns Miltenyi Biotech 130-042-401
Sorting
FcBlock (2.4 G2) BioXCell BE008
CD4-Pe BD 553049
CD8-PerCP BD 551162
CD62L-FITC BD 553585
CD25-AAF eBioscience 47-0251-82
CD44-PeCy7 eBioscience 25-0441-82
DAPI
Cell Culture
untreated plates 24 wells D Dutscher 55620
Fetal Bovine Serum Eurobio S1830-500
RPMI w/o Gln w/o Glc D Dutscher P04-17550
P/S Life Technology 15140122
anti-CD28 (PV1) BioXCell BE0015,5
anti-CD3 (2C11) homemade
Cell Trace Violet Life technology C34557
mIL12 Peprotech 210-12-13
mIL2 Peprotech 212-12-20
mIL6 Peprotech 216-16
huTGFb1 R&D 240.B.002
mIL23 R&D 1887.ML.010
mIL4 R&D 404.ML.010
anti-IL4 (11B11) BioXCell BE0045
anti-IFNg (XMG1.2) BioXCell BE0055
mRNA
RNeasy Mini Kit (250) Quiagen 74106
QuantiTect RT (200) Quiagen 205313
LightCycler480 SYBR green I ROCHE 4707516001
Cytokine assay
CBA mouse Th1 Th2 Th17 BD 560485
Stainings
Foxp3 Staining buffer Kit Ebioscience 00-5523-00
Fixation / Perm Kit Ebioscience 00-5521-00
Foxp3-PE Ebioscience 12-4774-42
Foxp3-PeCy7 Ebioscience 25-9985-80
CD4 AAF BD 470042
mIL17A-PE Ebioscience 12-7177-81
mIFNg-APC Ebioscience 17-7311-82
Brefeldin A (Penecil. brefeldian.) Sigma B7651
PMA Sigma P1585
Ionomycin (Strepto Conglo.) Sigma I9657
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conditions, and at least at 3 days and at later tested time-points, Th1 cells seemed to reach

a bigger size than the other polarized subsets It could be the consequence of asymmetric

divisions previously described in Th1 cells, that would leave a bigger and smaller cell at

each division [200].

In parallel, cell proliferation was monitored by following CTV dilution, a cytoplasmic

fluorescent dye whose intensity gets diluted by cell division. The history of cell proliferation

was assessed at day 2 and 6 upon differentiation (Figure 2.2).

At 48 hours post activation, the cells differentiated without glutamine still didn’t start

dividing (for all the polarizing conditions), while some of the cells differentiated in the

presence of 2mM of glutamine already started proliferating, up to 3 divisions. After 6 days of

differentiation, the cells cultivated with glutamine had divided at least 5 times. In contrast,

under glutamine-deprived conditions, the number of cell divisions was strongly reduced.

Additionally, as mentioned above, without glutamine, most Th17 cells didn’t manage to

divide and died (Figure 2.1), while only a small portion of the remaining cells could start

dividing. Therefore, the cells stimulated under limited amount of glutamine started dividing

with an important delay, and at a slower pace.

It shows that glutamine is a major source of energy for differentiating cells, and confirms

previous findings that Th17 cells rely on the supply of amino acids to expand and differen-

tiate more than other subsets [197], though the effect of glutamine was not assessed in this

study.
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Figure 2.1: Size (FSC) and Granularity (SSC) of cells after 24 hours, 48 hours and 7

days of differentiation, under glutamine-replete or -deprived conditions. At 24 and 48
hours, the gates represent alive cells. 2 independent experiments. Note: The FSC scale is
the same between 24 and 48 hours, but different for the day 7 time-point.
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Figure 2.2: Proliferation at day 2 (A.) and day 6 (B.) of CTV-labelled T cells following T
cell activation under polarizing conditions under glutamine-replete or -deprived conditions.
(Representative of 3 independent experiments).
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Glutamine deprivation impairs Th1 differentiation We further investigated whether

specific differentiation programs were sensitive to glutamine deprivation. Therefore, at day

6 of differentiation, the production of effector cytokines was assessed following restimula-

tion with PMA/Ionomycin under glutamine-replete conditions and intracellular staining for

IL-17 and IFN-γ (Figure 2.3).

Under glutamine-replete condition, 57% of IFN-γ producers were detected in Th1 polar-

ized cells. In contrast, only 4 percents of IL-17+ cells were detected in Th17-polarized cells.

As expected, only few percents of cells activated under Th0 and iTregs conditions produced

IFN-γ nor IL-17.

Interestingly, IFN-γ production was strongly impaired in Th1 condition under glutamine-

deprived condition, falling from 57% to 5%, indicating the importance of glutamine to ob-

tain an efficient Th1 differentiation. Without glutamine, the few remaining cells in the Th17

condition (due to massive cell death, see Figure 2.1), were not producing IL-17.

Figure 2.3: Cytokine production following differentiation with or without glu-

tamine.Intracellular staining for cytokine production after PMA/Ionomycin restimulation
at day 6. Representative of 3 different experiments.
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Figure 2.4: Cytokine measurement in the supernatant of cultures at day 6 of differen-

tiation, in pg/mL, for each condition, with or without glutamine. (2 independent experi-
ments).
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In parallel, we also measured the concentration of specific cytokines in the culture su-

pernatants of T cells activated under different polarizing conditions in the presence or not

of glutamine (Figure 2.4). Consistent with intracellular stainings, IFN-γ production was

strongly impaired in Th1 polarized cells under glutamine deprivation.

Interestingly, the IL-4 concentration in Th2-polarized cells increased in glutamine de-

prived condition, even though the density of cells was lower due to reduced proliferation,

indicating that glutamine levels differentially modulate Th1 and Th2 differentiations, with

opposite effects. As IL-4 was not detected in any other condition (and Th1 polarizing cul-

tures are performed in the presence of blocking anti-IL-4), the impact of glutamine onto

Th1 differentiation cannot be explained by a modulation of IL-4 production.

In normal conditions, the amount of IL-2 in the supernatant was higher in Th1 and

Th2 conditions, reduced in the iTreg condition, and poorly detected in the Th17 condition

most probably due to the presence of anti-IL-2. The amount of IL-2 in the supernatant

results from a balance between cytokine production and consumption by binding to the IL-2

receptor complex [201], and makes the interpretation of these results tricky. For instance,

the reduced amounts of IL-2 in the iTreg condition could be consistent with both a reduced

production of IL-2 or a higher consumbtion. Nevertheless, under glutamine deprivation,

IL-2 secretion was strongly abrogated in all conditions, consistently with [198], and possibly

esplaining the reduced proliferation.

Note: Here, a low number of IL17+ cells was detected in the Th17 polarizing condition

(4% under glutamine-replete conditions, and 18 ng/mL detected in the supernatant). It

can either be explained by a non-optimized staining protocol or from a suboptimal protocol

of polarization. In chapter 3, the protocol was modified using a different medium with an

optimized combination of cytokines that allowed to reach 60% of IL-17 producing cells and

more than 200 ng/mL in the supernatant.

Glutamine deprivation increases the generation of Foxp3 expressing cells The impact

of glutamine deprivation on iTreg differentiation was then investigated. With this purpose,

the percentage of Foxp3-expressing cells was assessed at day 3 and 6 of in vitro polarization

(Figure 2.5).

At day 3, as expected, a high percentage of Foxp3+ cells was observed in the iTreg con-

dition, and interestingly, the efficiency of the polarization was not altered under glutamine-

deprived condition. A lower and transient percentage of Foxp3+ cells was detected in Th17

condition, consistent with previous findings [202]. Finally and as expected, a negligible
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percentage of Foxp3+ cells could be observed in Th0 condition.

Surprisingly, at a later time point following stimulation under glutamine deprivation,

a high percentage of Foxp3-expressing cells (more than 30% of the cells) was detected in

Th0 and Th1 cells but not Th2 cells .These data indicate that glutamine level is crucial to

Th1-differentiated cells but not to Th2 fate, suggesting distinct nutrient requirements of

different T helper subsets.

Figure 2.5: Percentage of Foxp3-expressing cells following polarization in glutamine-

replete or -deprived conditions.Foxp3 intracellular staining was performed at day 3 and
day 6 of differentiation. Note: CD4 expression level cannot be compared between day 3
and day 6 (not the same fluorophore). Representative of 3 independent experiments.

Philippe A. ROBERT 64



2

Im
pa

ct
of

gl
ut

am
in

e
de

pr
iv

at
io

n
on

T
he

lp
er

di
ff

er
en

ti
at

io
n

To understand why Th1 T cells could not be obtained under glutamine-deprived con-

ditions, the level of T-bet and Gata3 mRNA expression were assessed at early time-points

(Figure 2.6). Interestingly and consistently with the reduced IFN-γ production, T-bet mRNA

levels were strongly reduced in Th1-polarized cells under glutamine-deprived condition, as

compared to glutamine-replete condition. This low level of T-bet mRNA expression was fur-

ther confirmed at the protein level (data not shown). In contrast, Gata3 mRNA levels were

similar between Th2 cells polarized in glutamine-replete or -deprived conditions.

Figure 2.6: T-bet and Gata3 mRNA expressionwas assessed in T cells 30 hours following
activation under Th0, Th1 and Th2 polarizing conditions, in glutamine-replete or -deprived
conditions. Relative expression to HPRT is represented. 2 independent experiments.

Taken together, these results show that glutamine deprivation differentially impacts on

the distinct T helper subsets: lower survival of cells polarized towards a Th17 fate; in-

hibition of Th1 differentiation, and conversion to Foxp3-expressing cells; increasing iTreg

differentiation and promoting IL-4 production under Th2 condition.

2.4 Conclusions :

In this chapter, we showed that glutamine deprivation has a critical impact on helper T cells

differentiated in vitro. The proliferation and growth of activated T cells was considerably

delayed, even though high amounts of glucose were present, showing that glutamine is a

critical source of energy and signal for T cell differentiation.

It’s important to mention that part of these results have been published in the following

article: [203].

Dorota Klysz et al. “Glutamine-dependent a-ketoglutarate production

regulates the balance between T helper 1 cell and regulatory T cell

generation”. In: Sci. Signal 8 (2015)

In line with this work, a study [204], evaluated the consequences of ASCT2 deficiency,

a glutamine transporter, on mouse T cell differentiation. Consistently with our data, a de-
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crease of Th1 and Th17 differentiations in vitro and in vivo was observed. Strikingly, no

significant effect was revealed on Foxp3 in vitro (at day 4). Therefore, it would be inter-

esting to further characterize the phenotype of these cells (other metabolic receptors for

instance), and to activate them under low glutamine concentrations to determine whether

ASCT2 was the main transporter responsible for glutamine uptake.

Recently, a study [205] confirmed our findings and demonstrated that glutamine depri-

vation promotes Foxp3 expression during human iTreg differentiation, and was associated

with a preferential proliferation of Foxp3+ cells, outnumbering the Foxp3- cells with time.

To conclude this chapter, here, glutamine deprivation impacted the differentiation of all

subsets. We opted for a mathematical approach to ultimately make predictions on which

pathway is the most likely to drive the effect of glutamine.
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CHAPTER 3

MODELING THE EARLY DYNAMICS OF T HELPER

DIFFERENTIATION

3.1 Introduction

The mechanisms underlying T helper differentiation have been extensively studied, reveal-

ing large and complex networks linking differentiation signals to the expression of the mas-

ter transcription factors or cytokines [206, 207]. However, due to their complexity, it is

impossible to predict the behavior of T helper cells in new or pathological conditions just by

drawing such networks, and a computational approach is required to assist our thinking.

As a first approach, several studies used a boolean network formalism, where each gene

is either ON or OFF. They occurred to be powerful tools to study the topology of the T cell

differentiation network and could predict potential new subsets or possible redifferentiation

methods [208, 209]. However, predictions from boolean representations are limited by the

lack of quantitation and dynamics: in these studies, all activations or inhibitions happen at

the same time, and dose dependent interactions are not incorporated. New approaches are

emerging using multi-valued logic or model checking [172, 173], and will likely improve

the predictive power in a close future.

As a second strategy, dynamic models based on Ordinary Differential Equations are a

suitable tool to simulate the kinetics of gene expression, in a manner that can directly be

compared to experimental data [210]. They allow to incorporate more features into a differ-

entiation network, especially the strengths and dynamics of gene interactions. Their major

limitation is the number of generated parameters: each variable, activation and inhibition

requires quantitative parameters, most of which are unknown. Therefore, a first reduction-
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istic step is usually required, through the design of a minimal network based on the main

genes and interactions. Based on experimental data, optimization methods further derive

the most likely values for the parameters and the fitting quality between the model and the

data gives a first insight on the trustability of the model.

While several dynamical models have been developed to describe the differentiation of

one subset separately [111, 161, 167, 168, 211], or the balance between Th1 and Th2 fates

[163, 166, 212], the differentiation of a naive cell into the main T helper subsets from the

same network has still been poorly investigated, although it is necessary to understand plas-

ticity between subsets. In [174], a large network was proposed, and allowed to recapitulate

later stages of differentiation at steady-state. However, due to the lack of experimental

data during differentiation, it can not be used directly to predict differentiation events nor

plasticity at critical early time-points when the fate decision is taking place.

Here, we investigate the early dynamics of T helper cell differentiation in vitro at the

mRNA and protein levels, in order to quantitatively assess the order of events underlying

the fate decision, and to design an appropriate and minimal dynamical model capturing the

key features of T helper differentiation. The kinetics of the major transcription factors and

cytokines were measured during the first hours of differentiation into Th1, Th2, iTreg and

Th17 cultures separately, including a Th0 control without added cytokines. Major delays

could be identified at the transcriptional and post-transcriptional level, together with the

low but significant expression of master transcription factors in their non-specific subsets,

revealing the importance of inhibitions between the differentiation programs to keep the

opponent factors under control.

We designed a minimal differentiation network from literature, including all the mea-

sured factors as mRNA and protein levels separately, to represent direct or indirect inter-

actions between them. We used optimization methods to estimate the strength of the acti-

vations and inhibitions, with which the model successfully recapitulated all the measured

data.

3.2 Materials and Methods, for chapters 2 and 3

Mice hCD2-Foxp3 Knock In mice, expressing a GPI-anchored human CD2-CD52 fusion

protein under the control of Foxp3 promoter [213], were bred in-house (Helmholtz Centre

for Infection Research, Braunschweig, Germany) under specific pathogen-free conditions

and in accordance to institutional, state and federal guidelines.
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Naive T Cell Isolation CD4+ T cells from lymph nodes and Spleen were purified with the

MACS CD4+ T cell isolation kit (Miltenyi Biotec). Naive T cells were further sorted as CD4+

CD62L+ huCD2- cells with FACSAria (BD Biosciences) using CD62L-PercpCy5.5, CD4-V4-

500 and huCD2-APC to leave the main color channels free for other stainings at early time-

points. Cells were stained using Cell Trace Violet (Life Technologies) for 5 minutes at 37°C

prior to culture.

T helper differentiation cultures. Naive T cells were activated on NUNC-Untreated plates

(Thermofisher, ref 144530), pre-coated for 3 hours at 37°C with 1 µg/mL anti-CD3 (17A2,

Biolegend), and 1 µg/mL anti-CD28 (37.51, eBiosciences). Cultures were performed on

IMDM supplemented with 10% FCS, β -mercaptoethanol (50 nM), sodium-pyruvate (1 mM),

hepes (30 mM), penicillin streptomycin (0.01 U), and glutamine (2 mM). The polarization

conditions were as follow: Th0: medium only; Th1: 10 ng/mL IL-12 and 10 µg/mL anti-

IL-4; Th2: 20 ng/mL IL-4 and 10 µg/mL anti-IFN-γ ; iTreg: 0.5 ng/mL TGF-β and 10 ng/mL

IL-2 ; Th17: 30 ng/mL IL-6, 0.2 ng/mL porcine TGF-β , 10 ng/mL IL-1β , 7.5 µg/mL anti-

IL-2 (JES6-1A12, Biolegend), 10 µg/mL anti-IFN-γ (XMG1.2, BioXCell). In experiments

in which the inducing condition was changed during differentiation, the supernatant was

carefully removed, and the cells were washed 2 times with PBS by gently adding it on top

of the culture and removing it again. As the cells were sticking to the coated antibodies,

they remained in the plate during the washing step, and kept receiving TCR stimulation.

Gene Expression and measuring cytokine levels At each indicated time-point, cells were

centrifuged, and while the supernatant was taken to monitor cytokine levels, the pellet

was resuspended in RLT buffer supplemented with β -mercaptoethanol and stored at -80°C.

For each experiment, mRNA was isolated from all the samples at the same time using the

RNeasy Micro Kit (Qiagen), and cDNA was obtained using the Transkriptor First Strand

cDNA Synthesis Kit (Roche). To monitor gene expression, RT-qPCR analyses were performed

using the LightCycler 480 SYBR Green I Master kit (Roche). The primers were designed to

overlap an exon-exon junction with Primer Blast (NCBI), to avoid amplification of residual

genomic DNA.
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Gata3-Sense AGAACCGGCCCCTTATCAA

Gata3-Antisense AGTTCGCGCAGGATGTCC

Tbet-Sense CACTAAGCAAGGACGGCGA

Tbet-Antisense TCTGGGTGGACATATAAGCGG

Foxp3-Sense CACACTTCATGCATCAGCTCTC

Foxp3-Antisense GTGGGAAGGTGCAGAGTAGAG

Rorγ-Sense TGCAAGACTCATCGACAAGGC

Rorγ-Antisense AGCTTTTCCACATGTTGGCTG

IL-2-Sense CAAGCAGGCCACAGAATTGAAA

IL-2-Antisense AGAAAGTCCACCACAGTTGCT

IL-4-Sense CAGCAACGAAGAACACCACAG

IL-4-Antisense CAGTGATGTGGACTTGGACTCA

IL-10-Sense GCCGGGAAGACAATAACTGC

IL-10-Antisense GCCTGGGGCATCACTTCTAC

IL-17A-Sense GGACTCTCCACCGCAATGAA

IL-17A-Antisense CCAGCATCTTCTCGACCCTG

IL-21-Sense TGAAAGCCTGTGGAAGTGCAAACC

IL-21-Antisense AGCAGATTCATCACAGGACACCCA

TGF-β -Sense GGAAGGACCTGGGTTGGAAG

TGF-β -Antisense CCACGTAGTAGACGATGGGC

IFN-γ-Sense CGCTACACACTGCATCTTGG

IFN-γ-Antisense GTCACCATCCTTTTGCCAGT

The level of cytokines in the supernatant was measured by Flow Cytometry on a Fortessa

(BD Biosciences), using the LEGENDplex™ Mouse Th Cytokine Panel (Biolegend). The stan-

dard curves were fitted to a 4-parameter log-sigmoidal function to retrieve the cytokine

amounts from MFI to ng/mL.

Flow Cytometry Flow cytometric assays were performed on LSR Fortessa (BD Biosciences).

Cells were stained with Life Dead fixable blue (Invitrogen) to exclude dead cells, prior to ex-

tracellular staining using huCD2-PeCy7 (Biolegend) for monitoring Foxp3 expression. Fixa-

tion and intracellular stainings were performed using the eBioscience intracellular staining

kit. Gata3-A647 (BD), RORγt-PE (BD) and T-bet-PE (BD) were used. For intracellular cy-

tokine staining, the cells were washed and stimulated in medium with Phorbol Myristate
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Acetate (100 ng/ml, Sigma-Aldrich), ionomycin (1 mg/ml Sigma-Aldrich) and brefeldin A

(10 mg/ml, Sigma-Aldrich) for 4 hours at 37°C prior to intracellular staining. Analyses were

performed with FlowJo (Tree Star, Inc.).

Simulations and Parameter Estimation The program performing simulations and pa-

rameter estimation was developed in C++, using the Qt graphical library for plotting curves.

The Ordinary Differential Equations (ODEs) (Box S9) were solved with adaptive Euler

method with a minimum time-step and a stopping condition when one simulated variable

exceeds a realistic range of values. It allowed to discard inaccurate parameter sets before

the simulation ends, and avoided freezing in the case of steepness-inducing parameters sets.

Due to the number of unknown parameters, the parameter estimation procedure was sep-

arated into sub-fittings [214]. Taking advantage of the availability of the kinetics at the

mRNA and protein levels, and since the network doesn’t have any direct feedback (mRNA

impacting protein level impacting mRNA level and so on), each variable could be fitted

separately with its subset of relevant parameters, by replacing all the other variables by a

linearly interpolated curve from the data, following the method descrived in [214]. A fi-

nal global fitting procedure was performed, 50% around the parameters values found from

these step-by-step fitting (see Box S7). All optimizations were performed using the Evo-

lutionary Strategy Algorithm described in [215], and further explained in (Box S1). 12

different mutations and 8 cross-over operators were compared for the fitting of a smaller

regulatory network to synthetic data as benchmark. The best combination was SBX-cross

over and normal mutation on all parameters. The ’sum of squares’ cost function was used

to compare a simulation and experimental data.

The reagents used throughout chapters 3 and 4 are listed in Table 3.1.
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Table 3.1: List of reagents for Chapter 3 and 4

REAGENT FURNISHER REFERENCE

CD4+ enrichment (on AutoMACS)
anti-mouse CD4 (L3T4) MicroBeads Miltenyi Biotech 130-049-201
Rat IgG, whole molecule Dianova 012-000-003
FcBlock (α-CD16/CD32, 2.4G2) BioXcell BE0008
Erythrocyte lysis buffer . 01M KHCO3, 0.155M NH4CL, 0.1mM EDTA
Sorting
CD4-V500 (RM4-5) BD 560782
CD62L-PerCpCy5.5 (MEL-14) ebioscience 45-0621-82
humanCD2-APC (RPA2.10) BioLegend 300214
Cell Culture
untreated plates 24 wells Thermofisher 144530
α-CD3 (17A2) Biolegend 100208
α-CD28 (37.51) eBiosciences 12-0281-86
Fetal Bovine Serum Biochrom
IMDM + Glutamax Gibko 21980032
HEPES-Buffer 1M Biochrom L1613
2-Mercaptoethanol, 50 mM (1000X) Life Technologies 31350-010
mIL-12 Peprotech 210-12
mIL-4 R&D 404-ML/CF
porcine TGF?1 R&D 101-B1
mIL-2 R&D 402-ML
mIL-6 Biolegend 575204
mIL1b Biolegend 575102
α-IFNγ (XMG1.2) BioXCell BE0055
α-IL-4 (11B1) BioXCell BE0045
α-IL-2 (JES6-1A12) Biolegend 503704
mRNA
RNeasy plus Mini kit (50) Qiagen 74134
Transkriptor First Strand cDNA Kit Roche 04379012001
Light Cycler480 SYBR Green I Roche 04 887 352 001
Cytokine assay
LEGENDplex Mouse (13) Th Cytokine Panel BioLegend 740005
Stainings
Cell Trace Violet proliferation kit Invitrogen C34557
Brefeldin A (Penecil. brefeldian.) Sigma-Aldrich B7651-5MG
PMA Sigma-Aldrich P1585-1MG
Ionomycin (Strepto Conglo.) Sigma-Aldrich I9657-1MG
Live/dead fixable blue (UV) invitrogen L23105
Foxp3 Staining Buffer Set eBioscience 00-5523-00
Gata3-A647 (L50-823) BD 560068
IFN gamma-FITC (XMG1.2) BioLegend 505806
Tbet-PE (4B10) BD 561265
IL17A-APC (TC11-18H10) Biolegend 506916
IL4-PE (11B11) Biolegend 504104
CD45.2-PerCP/Cy5.5 (104) Chap.4 BioLegend 109828
CD45.1-APC (30-F11) Chap.4 BioLegend 103112
Foxp3-PE (FJK-16S) eBioscience 12-5773-82
human CD2-PeCy7 (TS1/8) () Biolegend 309214
ROR gammat-PE (AFKJS-9) eBioscience 12-6981-82
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Box S1 : Optimization method used. Optimizations are performed in a log scale,
between the log of the boundaries values for each parameters. The algorithm fol-
lows an ’Evolutionary Strategy’ design, where each individual I carries both a value
(I .pk) and a speed of mutation (I .σk), for each parameter/dimension k. The speed of
mutation also evolves (mutates), in a way that some individuals are mutating faster
(good explorers), while some individuals are mutating slowly (better exploitation).
The selection process is therefore selecting on the parameter values, and indirectly
on the speed of individuals.

Parameters:
PopSize 250 Population size
Number of generations 200 to 2000 Max number of simulations / PopSize
ForkCoeff 0.5 Birth rate : proportion of the population

created at each generation
PrcOffspring 0.2 Proportion of newborns that come from

cross-over (the rest come from mutations)
SigmasMut 0.005 Rate of changing the sigmas (mutation speed)

Algorithm 1 Optimization Algorithm (Evolutionary Strategy)

1: Initialize a population of PopSize random individuals (uniform for each parame-
ter)

2: for each generation do

3: Updating the Sigmas of the individuals, (∗N(0, mutation speed))
4: for each individual I do

5: for each parameter index k do

6: if With probability SigmasMut then

7: I .σk I .σk ∗ ex p(N(0,1)) ⊲ N(0,1) : normal centered gaussian
8: end if

9: end for

10: end for

11: AddOffspringByCrossOver(popSize. f orkCoe f f .PrcO f f spring)
12: AddMutants(popSize . (1 - forkCoeff) . PrcOffspring)
13: Selection:
14: for each individual I do

15: Simulate the ODEs with the parameters of this individual
(ex p(I .{p1, p2, ...}))

16: Evaluate the cost (’Fitness’) between the simulation and the experiments
17: end for

18: Sort all individuals based on their fitness, and keep only the ’PopSize’ best ones
(lowest fitness)

19: end for

Note : Mutants for the parameter k are made according to a normal mutation, by
adding σk.sqr t(2).N(0,1) . Offspring are made using the SBX cross-over, with pa-
rameter 1.0
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3.3 Results

Three days of differentiation are sufficient for a fully established program. In order to

define a time-window to monitor CD4 T cell differentiation, we performed in vitro cultures

from naive CD4 T cells, activating in the presence of inducing cytokines for Th1 (IL-12 and

anti-IL-4), Th2 (IL-4 and anti IFN-γ), iTreg (IL-2 and TGF-β), Th17 (IL-6, IL-1β , TGF-β , anti

IL-2 and anti IFN-γ), and Th0 as control (no cytokine added).

The typical differentiation efficiency at day 3 was around 60% IL-17+ cells under Th17

condition, 60% IFN-γ high cells under Th1 condition, and 70-80% Foxp3+ cells in iTreg

condition (Box S2). In Th2 condition, all the cells expressed Gata3 to high levels already

at day 3, but IL-4 expression by cytokine staining was detected only later at day 4 when

cells were replated in fresh medium at day 3, showing that the fate decision was already

achieved at day 3 for all subsets. We therefore decided to restrict our study to the first three

days of differentiation.

Box S2 : Efficiency of differentiation

Efficiency of differentiation, monitored by cytokine intracellular staining for IFN-γ,
IL-4 and IL-17; and by expression of huCD2 (for Foxp3) after three days of differen-
tiation. IL-4 intracellular staining is also shown at 90 hours (day 4) of culture, after
replating the cells in a normal, non-coated culture plate with fresh medium and 10
ng/mL IL-2. Representative of 3 distinct experiments.
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The kinetics of transcription factors expression reveals non-exclusive expression. The

expression of the main transcription factors was followed during differentiation in the five

conditions of interest: Th1, Th2, iTreg, Th17 and Th0 (Figure 3.1). mRNA levels were

obtained from RT-qPCR while protein levels were monitored by flow cytometry. The tran-

scription factors were significantly expressed in their associated subtype as early as 24 hours,

but their expression was not limited to one subtype.

Indeed, T-bet showed a high but transient expression in Th0 and iTreg conditions, while

it was only sustained in the Th1 condition. Similarly, Gata3 showed upregulation in Th0

and iTreg condition, consistent with findings that Tregs express Gata3 [102, 216] and T-bet

[100] in vivo, while it was completely downregulated in Th17 and Th1. Finally, a transient

expression of Rorγt mRNA could be observed in the iTreg condition, in accordance to the

fact that TGF-β can induce both Rorγt and Foxp3.

Surprisingly, an initial peak in T-bet mRNA level was observed in all subsets at the first

time-point (3 hours), consistently with [109, 217], and without upregulation of the protein

level before 16 hours, showing a limiting rate of T-bet translation at early times.

Gata3 mRNA and protein were already present in naive T cells, as already shown [217,

218] and linked with reminiscent expression of Gata3 from thymic development, but it

was interesting to see a fast downregulation at both mRNA (as in [217]) and protein lev-

els as early as 3 hours in all subsets but Th2. It could be explained by ubiquitinylation

of Gata3 protein downstream TCR signaling [218, 219] that would further dampen Gata3

auto-activation [125]. A small peak of Gata3 mRNA could be observed in the iTreg condi-

tion, consistent with findings that IL-2 supports Th2 differentiation [220], and that STAT5

can bind to the gata3 promoter [221].

Rorγt peaked early, in both mRNA and protein levels around 18 and 30 hours, respec-

tively. Both levels further went down to intermediate levels, even when differentiation was

extended up to one week (not shown), while these cells are were still able to produce high

amounts of IL-17 upon restimulation.

Finally, Foxp3 was expressed in an all-or-none manner (Box S3). The percent of Foxp3+

cells was following the amount of mRNA for Foxp3 found in the population. It is likely that

the expression of Foxp3 mRNA also follows a yes or no pattern, but RT-qPCR could only

monitor the population average. The details of the FACS stainings for each time points are

shown in (Box S3).
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Box S3 : Kinetics of Transcription factors levels by flow cytometry.

The histograms of fluorescence intensity are shown for each transcription factor at
each time-point and each differentiation condition separately. A slight increase in
fluorescence for T-bet and Rorγt was also observed for the isotype control stainings
(not shown), and was deduced from the expression levels shown in (Figure 3.1). 2
distinct experiments.
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Figure 3.1: Kinetics of master transcription factors during the first days of differentia-

tion, in Th0, Th1, Th2, iTreg and Th17 condition. A- Kinetics or mRNA expression, followed
by RT-qPCR and normalized to RPS9 gene expression. B- Kinetics of protein expression
followed by intracellular FACS staining (MFI sample - MFI isotype control). As Foxp3 ex-
pression always shows two populations with low and high Foxp3 levels, Foxp3 expression
is represented as the percent of expressing cells. 2 different experiments.

Effector cytokine expression is specific but requires more time As transcriptions factors

pop up early during differentiation, we wondered at which time cytokine feedbacks could

already support or impact on transcription factor expression. We followed the dynamics of

cytokine expression as mRNA levels by RT-qPCR and the amount of cytokines secreted in

the supernatant (Figure 3.2). While the transcription factors were not exactly specific to T

helper subsets, the expression of cytokines required more time and was more specific.

A very small peak of IFN-γ mRNA expression could be observed in all subsets in the first

time-points (Box S4). Substantial amounts of IFN-γ mRNA appeared after 24 hours in Th1

condition and the cytokine could be detected in the supernatant at 36 hours.

IL-4 mRNA also showed a very small peak after activation (not shown), but was highly

expressed only after 24 hours, with a similar dynamics than IFN-γ in Th1. As IL-4 is both

the inducing cytokine used for Th2 differentiation, and produced as a feedback signal, the

amount of IL-4 in the beginning is overriding the amounts of IL-4 produced during the first

72 hours. Consistently with the fact that IL-4 producing cells could be observed at day 4

(Box S2); in our experimental system, strong IL-4 production required more time than other

subsets.

Finally, during Th17 differentiation, IL-21 mRNA was already detected after 6 hours,

while the cytokine was only produced after 16 hours. As IL-21 is shown to enhance Rorγt

and IL-17 expression, this supports the idea that IL-21 provides an early feedback loop

during Th17 differentiation. It was noticeable that IL-21 was detected in the Th1 condition
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as in [222, 223] but not as protein. It suggests that the translation or secretion of IL-21 is

specifically repressed during Th1 differentiation.

Figure 3.2: Kinetics of cytokines expression during the first 3 days of differentiation,
in Th0, Th1, Th2, iTreg and Th17 condition. A - Kinetics or mRNA expression, followed
by RT-qPCR and normalized to RPS9 gene expression. B - Cytokine levels in the culture
supernatant, measured by multiplex (elisa protocol on beads, see Methods). Note that IL-4
is added to the culture from the start (red arrow). 2 different experiments.
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Box S4 : Early undetectable levels of IFN-γ production are necessary for T-bet

upregulation.

A: mRNA expression of T-bet, under the presence of anti-IL-2 or anti-IFN-γ. Block-
ing IFN-γ stops T-bet upregulation, even in the presence of IL-12 (Th1 condition)
while blocking IL-2 does not impair T-bet expression. B: protein expression of T-bet
monitored by flow cytometry at 72 hours, after adding anti-IFN-γ at different time-
points. Blocking IFN-γ up to 24 hours abolishes T-bet upregulation at protein level at
later time-points. C: Kinetics of IFN-γ expression at mRNA and protein level, with a
zoomed view (right panel). Conclusion: IFN-γ cytokine in the medium are necessary
for the upregulation of T-bet at 24 hours and later, though the presence of IFNγ was
not detected by multiplex assay.
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Non-specific cytokines are transcribed earlier but show delayed protein expression.

Among cytokines produced by CD4 T cells, we followed the kinetics of other cytokines, not

specific to particular T helper subset, but that could have an effect on differentiation (Figure

3.3).

IL-2 mRNA showed a first peak at 12 hours post activation in all subsets before going

back to low levels at 72 hours, consistent with [224]. Two peaks could be observed in Th0,

Th1 and Th2 conditions, suggesting that two different pathways control IL-2 expression over

time. It was noteworthy that, in the presence of IL-2 in the iTreg condition, IL-2 expression

was lower than other conditions, while in the presence of anti-IL-2 in Th17 condition, the

early peak of IL-2 mRNA was higher, which is consistent with previous findings showing that

IL-2 inhibits its own production [225, 226]. Interestingly, compared to the Th0 condition,

Th2 cells produced less IL-2, supporting a negative effect of IL-4 to IL-2 production as well,

as observed in [226].

The secretion of IL-2 in the supernatant showed a major delay compared to the expres-

sion of the mRNA in all subsets, and its upregulation could be detected only after 18 hours.

Consumption of IL-2 by internalization by Tregs has been proposed as a suppressive mech-

anism [201]. In our system, the reduction of IL-2 in iTreg condition was minor, while the

cells already expressed CD25 at 12 hours (not shown), supporting that this mechanism has

a limited effect here.

IL-10 was detected in mRNA and protein level in Th1 and Th2 at day 3, while in Th17

condition, IL-10 came up earlier, but never reached the same level. IL-10 is usually de-

scribed as a Treg and Th2 cytokine, but it has also been shown to be produced by Th1 cells

under high TCR stimulation [195], which is likely the case with plate-bound stimulation.

Regarding the iTreg condition, we couldn’t detect IL-10. It is consistent with the fact that

ex vivo Tregs do not express IL-10 in vitro, except if they are isolated from the gut [227,

228]. Additionally, iTregs can express IL-10 in the gut in vivo after adoptive transfer into

mice with induced colitis [229].

Th17 cells were shown to produce IL-10 [78, 228], which has a regulatory effect on

Th17 differentiation in vivo [230]. In order to find the impact of the presence of IL-10 in

the supernatant on the differentiation profiles, we assessed the effect of blocking IL-10 in

Th1, Th2 and Th17 cultures (Not shown). No impact could be detected at the transcription

factor levels nor cytokine expression by intracellular staining. We couldn’t either detect an

effect of adding exogenous IL-10 in the cultures. It could be due to a lack of IL-10 receptor

expression.
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Finally, the kinetics of TGF-β mRNA showed a high peak after activation in all subsets,

followed by a basal expression that was higher in iTreg and Th17 conditions. Activated T

cells were already shown to produce TGF-β [142] in latent or activated form. However,

due to the presence of high amounts of latent TGBβ in the serum, we couldn’t measure the

production of TGF-β in the supernatant by differentiating cells over time.

Figure 3.3: Kinetics of IL-2, IL-10 and TGF-β expression during the first 3 days of differ-

entiation, in Th0, Th1, Th2, iTreg and Th17 conditions. A- Kinetics or mRNA expression,
followed by RT-qPCR and normalized to RPS9 gene expression. B- Cytokine level in the
culture supernatant, measured by multiplex. Note: IL-2 was added to the iTreg condition
at the beginning. Due to the presence of large amounts of latent TGF-β in the culture com-
ing from the serum, secreted TGF-β in the supernatant could not be directly measured. 2
independent experiments.

Box S5 : Dynamics of additional cytokines.

Dynamics of additional cytokines, as mRNA level measured by qPCR (IL-13, IL-17-
F), and as concentration in the supernatant measured by multiplex. 2 independent
experiments.
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Building a dynamical network Designing a mathematical model starts by a choice of hy-

potheses on how to represent a biological system into abstract quantities and equations.

Different researchers would probably take different sets of hypotheses and scales of rep-

resentation. Including all factors involved in the molecular pathways between the input

cytokines to the final decision would require to include thousands of molecules, which are

probably all important in a specific context, but can not be simulated.

Several studies have tried to reconstruct the T helper differentiation network by use

of transcriptomic time-resolved kinetics as well as perturbations from siRNA or deficient

backgrounds [109, 169], at a genome-wide scale and without bias. These approaches un-

fortunately strongly overestimated the amount of interactions, because they rely on the time

profile of factors to find interactions: an early gene can activate a later gene but a later gene

can not activate an early gene, and this is not enough to reveal real, functional interactions.

In our study, some observations made this approach not suitable: 1/ different factors

can have extreme levels of expression, with some factors being active at very low, even

undetectable levels such as IFN-γ, while some other factors need to reach high levels to

be effective (ex: Rorγt); 2/ the presence of delays, that create time uncorrelation between

factors which actually interact, as we observed in the case of Foxp3 or cytokine secretion.

This requires special care in term of modeling [231], and 3/ unless measuring at the same

time mRNA and proteins, the presence of auto-activations such as Gata3 activating its own

transcription can hardly be detected by such methods.

Interestingly, as an alternative approach, an automated method was used in [174] to

compare the kinetics of a transcriptome following Th17 differentiation with interactome

data from databases, in order to reconstruct sub-networks in accordance with the data, and

using a ranking strategy to simulate only the key players, which succeeded into a quite

reduced network. Still, these techniques try to represent every single mechanistic interac-

tion steps, and it is very likely that the neglected factors, or interactions that remain to be

discovered would change the properties of the regulatory networks once updated.

To avoid this problem as much as possible, we decided to represent only the key factors

already described to control T helper differentiation, and the cytokines either added or

produced as feedback. Instead of representing the exact mechanisms linking them, we use

abstract activations or inhibitions when there is one or more, direct or indirect pathways

(provided they don’t cross another simulated factor). Therefore, each arrow represent the

empirical effect that a factor has on another one, but we don’t exactly specify by which

mechanism. We followed a minimalist strategy, starting by published interactions, and by
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including only required empirical interactions to explain the experimental data (for instance,

linking the transient TCR peak to several genes).

In order to extract the dynamical properties of T helper cell differentiation from our

data, we developed a mathematical model based on literature restricted to the mRNA and

protein levels of the main transcription factors (T-bet, Gata3, Rorγt, Foxp3), and the main

cytokines that have a feedback effect (IL-4, IFN-γ, IL-21, IL-2 and TGF-β). The inducing

cytokines (IL-12, IL-6 and IL-1b) were also included in the simulations as they are added

to the culture, but are supposedly not produced during differentiation. The most important

pathways controlling differentiation (Explained in the introduction) are incorporated in the

network (Figure 3.4) and were converted into Ordinary Differential Equations (ODEs) to

simulate the kinetics of each variable (Box S9).

We could find published mechanisms allowing each transcription factor to inhibit every

other one, therefore we draw inhibitions for all of them. When there were multiple mech-

anisms doing an activation or inhibition, they were pooled in one arrow. The model then

captures the combined kinetics of both of them, without knowing which one is active.

Additional interactions were required from the data, and where taken as additional hy-

potheses:

• H1: As the mRNA of many genes showed a transient peak in all conditions due to

TCR stimulation, we included a ’TCR transient signal’ as a peak, and added a linear

transcriptional activation to all target genes. All the genes of the network require TCR

to be expressed, but these particular genes have a transient effect on top.

• H2: The decrease of Gata3 in the Th1 condition compared to Th0/iTreg couldn’t

be due to T-bet directly, because T-bet followed the same dynamics during Th1 and

Th0/iTreg differentiations during the two first days (Figure 3.1). Therefore, the inhi-

bition of Gata3 is specifically present in Th1 condition but not Th0. We propose it to

be due (directly or indirectly) to IL-12, and therefore we add an inhibition from IL-12

to Gata3.

• H3: It has been shown that Gata3 is ubiquitinylated downstream TCR and would

explain why its mRNA levels dropped. We therefore included a linear effect of TCR

increasing Gata3 degradation.

Finally, we realized that from this network, several mechanisms were not active. First, in

iTreg versus Th0 condition, the kinetics of T-bet and Gata3 were exactly the same, suggesting

the inhibition of Foxp3 to T-bet and Gata3 were not active. It is consistent with the fact that
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iTregs expressed low levels of T-bet and Gata3. However, such mechanisms could depend

on additional stimuli and could have an importance in other conditions.

In order to explain the second peak of T-bet, IL-2 was a good candidate as an activator.

STAT5 has been shown to bind to the T-bet promoter and to be supporting Th1 differen-

tiation [232]. The model could fit T-bet profiles thanks to adding an activation from IL-2

to T-bet (not shown), showing it is a plausible explanation, though other ones could also

be. However, blocking (Box S4) or adding IL-2 had no impact (data not shown) on T-bet

expression at mRNA and protein level, so we discarded this activation from the network.

Strikingky, even if IFN-γ was not detected early in the supernatant, blocking IFN-γ from the

beginning or at different time-points (Box S4) abrogated T-bet upregulation after 24 hours,

showing that, even if it is not detected, IFN-γ is the activator responsible for late T-bet up-

regulation, consistently with previous studies [111, 217], and therefore, the network didn’t

require any modification regarding the Th1 positive feedback loops.
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Figure 3.4: Network of interactions between the critical players of T helper differen-

tiation. The variables (mRNA, intracellular protein for transcription factors and secreted
protein for cytokines) are shown as nodes of the network. The biological processes tar-
geting them are represented as arrows: degradation, translation, transcription, regulation
of transcription (activation or inhibition). The regulation of differentiation is mainly done
through the activation and inhibition of transcription. Black (activation) and red and purple
(inhibition) arrows are directly taken from literature (indirect or indirect) allowing a gene
to regulate another one.
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Fitting and quantification of delays The regulatory network comes with many unknown

parameters: degradation rates, translation rates, activation thresholds, etc. and a parameter

estimation phase has to be performed to find realistic parameter values from the data.

As a first approach, a parameter estimation step was performed with all the parameters,

but failed to find a realistic set of parameters (i.e. for which the simulation are similar

enough to the differentiation kinetics), likely due to the high dimensionality of the problem

(not shown).

Measuring both mRNA and protein levels from the same experiment has the important

benefit of uncoupling feedbacks: in the network, there is no direct feedback from the mRNA

levels to themselves, or from a protein levels to themselves. Therefore, the network should

be able to simulate the mRNA kinetics from the protein data and to simulate the protein

levels from the mRNA data. We then follow the iterative fitting procedure proposed in

[214] (Box S6), where the network is cut into small sub-networks: each variable is fitted

separately from the linear interpolation of the other variables from data (local fit), which

allows to restrict the range of parameter values impacting this variable. Then, the whole

network can be fitted (global fit) by constraining the parameter values to be in the range of

the local fittings.

From the experimental, and thanks to this method, several temporal uncoupling could

be observed between mRNA and protein levels, especially for T-bet, Gata3, Rorγt, IL2 and

IL-21 (Figure 3.1 and 3.2). We first wondered if they could arise from the linear rates in the

model (See equations in Box S9).

Local fittings of IL-2 protein profiles from IL-2 mRNA kinetics couldn’t reproduce the

experimental curve, as shown in (Figure 3.5). It means that the production of IL-2 in the

supernatant from the mRNA (including translation and secretion), can not be explained by

a linear (constant) ’translation and secretion’ combined rate.

Similarly, in the case of the transcription factors, by the use of the local fittings, even if

the mRNA was present at early time-points, the protein profile could not be explained by a

constant translation rate (data not shown), and it therefore means that the translation rate

is much lower in early time-points than observed at later time-points.

Delays in transcription could also be observed in the case of IL-2, IL-21, Rorγt and Foxp3.

Indeed, for all of them, all the necessary signals for their production were present from the

very beginning, and the model would always simulate a fast growing kinetics that can not

fit the experimental kinetics that require more time (not shown). In the case of Foxp3 and

Rorγt transcription, it was in agreement with the cells being yes/no producers in early time-
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points (Box S3), and suggests the role of epigenetic control of their locus such as methylation

[64, 233]. The delay downstream TCR to transcribe IL-2 could also arise from the time to

demethylate its promoter [234] or might be due to other activators or inhibitors of IL-2

downstream TCR, which might need time to become effective or repressed, respectively.

In both cases, these latencies needed to be incorporated into the model, and we decided,

as a simplest way, to give a translation capacity and a combined ’translation and secretion’

capacity over time, parameterized as a sigmoid function with the critical time where the pro-

cess gets activated. The different capacities profiles are listed in (Box S6). These sigmoidal

functions therefore incorporate the time dynamics of most complex mechanisms without

explicitely naming nor modeling such mechanisms.

To be fair, we applied the same secretion delay (identified for IL-2) to all the cytokines,

and it was consistent with the dynamics of other cytokines (especially IL-21 levels in the

supernatant; not shown). Therefore, the translational capacity curve was taken to be iden-

tical for all mRNAs to transcription factors, and the ’secretion’ capacity was taken to be the

same for all cytokines.

Box S6 : Delays implemented in the model, and local fitting quality

A. The time-dependent translation capacity applies to all transcription factors, and
allows to fit properly Rorγt, T-bet and Gata3 protein dynamics. Rorγt is shown as ex-
ample. B. The combined ’translation and secretion’ capacity applies to all cytokines,
and allows to simulate the kinetics of the early cytokines (IL-2 and IL-21). IL-2 is
shown as example, as in Figure C5. C. and D. Transcriptional capacity of rorc, foxp3,
IL-2 and IL-21 promoters allow to reproduce the mRNA profiles (for IL-2 and IL-21,
the effect is minor, and is not shown) . Note: The mRNA profiles and the transcrip-
tion factor protein levels are normalized separately to their maximum value (from all
conditions) to span in a range of [0 .. 10], in order to have a similar contribution
in fittings, and because they don’t technically represent absolute values. Cytokines
protein levels are not normalized.
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Figure 3.5: quantifying the delay in IL-2 production. Top: The experimental mRNA pro-
file of IL-2 in different conditions (top left) together with the simulated best local fit for IL-2
cytokine levels (top right, smooth curves) without explicit delay, as compared to experimen-
tal data (broken lines). Bottom left: best secretion capacity curve, and right: best fit, by
including the secretion capacity in the model. The mRNA profiles and the transcription fac-
tor protein levels are normalized separately to their maximum value (from all conditions)
to span in a range of [0 .. 10], in order to have a similar contribution in fittings, and because
the measurements do not technically represent absolute values. Cytokines protein levels are
not normalized.
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Box S7 : Separate fitting strategy.

It is possible to ’isolate’ a variable by replacing the curves of all the other variables
by the interpolated experimental data. In this case, only the parameters impacting
this variable have an impact on the simulations, and it can be fitted separately. For
fitting the CD4 differentiation network, all the ’combinations’ (columns) used for sep-
arate fitting are shown. For a combination, the parameters fitted are highlighted on
the upper part, together with the variables that were overridden (replaced) by ex-
perimental data. For instance, in the second combination, only IL-2 was simulated
while all other variables were replaced by experimental data, and the corresponding
parameters were fitted: PI L−2 and KDI L−2. The first combination includes both IFN-
γ, Gata3 mRNA and T-bet, because undetected IFN-γ could have an impact on T-bet
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(Box S3). Otherwise, interpolating data for IFN-γ would increase the noise in the
early time-points, and it is better to replace it by simulated values. The parameters in
red represent interactions that were discarded from the data, therefore they are put
to a coefficient of 1 (no effect) for the fitting of canonical differentiations.

The model accurately reproduces the data By now including the aforementioned delays,

the mathematical model was able to reproduce the kinetics of the main transcription factors

(Figure 3.6) and cytokines (Box S8), as mRNA and protein. It shows that the hypotheses

included the model are consistent with the data. The best parameter values are given in

(Appendix Figure 7.4). An identifiability analysis was performed on all the parameters

(Appendix, Figure 7.3 and 7.4) to see if the parameter values are fully constrained by the

data, or if other values could still be consistent with the data. It revealed that most of the

parameters regarding protein translation and degradation could be identified. However, in

case of translational regulation, due to the complexity of the regulation of the promoters,

the parameters of the hill functions were not identifiable. Having a robust estimation of

such parameters would require to measure the transcription rate in the context of different

concentrations of each of the activators / inhibitors, and was not performed here.
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Figure 3.6: Simulations from the best total fitting. For each transcription factor, the sim-
ulations (smooth curves) are compared to the data (hard curves) in the 5 conditions of
differentiation. The experimental data is the one showed in (Figures 3.2 and 3.1). The ex-
periments were performed two times, and the two replicates can be compared in (Appendix,
Figure 7.1). Each variable for which the measurement was not absolute (mRNA, MFI), were
normalized between [0..10] to have a balanced effect of each variable during the fitting.
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Box S8 : Simulation of cytokine dynamics from the best fitted set of parameters.
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Box S9 : Formulation of the model and list of equations

In this study, Ordinary Differential Equations were used to simulate the regulatory network. Some processes
such as translation and degradation are simulated as linear processes and succeeded to reproduce the data in
the separate fitting strategy. Cytokine signal transduction is represented by a generic 3-parameter hill function.
Finally, the behavior of gene promoters in the presence of activators and inhibitors at the same time is globally
unknown. We had to choose a simple, though general representation, and decided to model transcription as a
product of separate hill functions for each activator or inhibitor. Each hill function starts at 1 when the activator
(or inhibitor) is absent, allowing one activator to start transcription alone even if the other ones are absent.
Multiplying the contributions of each transcription factor allows to have synergy between factors when multiple
of them are present. We believe it is a general way to represent most possible behaviors of a gene.
Here, the equations with simplified notations are shown. For details, the full version is given in the Appendix.
In (Figure 7.4), the complete and simplified parameter names are given together with the best values found by
parameter estimation.

List of simulated variables

- the concentration of cytokines in the medium in ng/mL : [I L2], [I L4], [I L6], [I L12], [I L17], [I L21],
[I FNG], [T GFB];

- the concentration of transcription factors inside the cell : [T BET], [GATA3], [RORGT], [FOX P3]. There
is no unit as it follows the scale of fluorescence intensity measured by FACS;

- mRNA level inside the cell, in fold induction compared to RPS9 mRNAs at the same time-point : [mI L2],
[mI L4], [mI L17], [mI L21], [mI FN], [mT GFB], [mT BET], [mGATA3], [mRORGT], [mFOX P3];

- the concentration of free blocking antibodies in the medium in mg/mL : [αI L4], [αI FN g], [αI L2];

List of time-dependent mechanisms with pre-defined functions

- the peak of signaling following TCR triggering : T CR(t),

- the state of processes showing saturation or delay. All start very small (0.001) at t 0, and increase to 1
(full capacity) with time : O2(t), O21(t), Of p3(t), Oror(t), for the chromatin opening states of these genes,
T (t) the translational capacity, and S(t) the secretion capacity.

Equations

1. Cytokine levels in the medium are impacted by :

- production through translation (P), limited by the secretion capacity of the cell changing with time
(S(t)),

- degradation (D)

- binding to blocking antibodies when present in the culture (B)
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d[I L2]
d t

−D2.[I L2] P2.S(t).[mI L2]−BαI L2.[I L2].[αI L2] (3.1)

d[I L4]
d t

−D4.[I L4]P4.S(t).[mI L4]−BαI L4.[I L4].[αI L4] (3.2)

d[I L6]
d t

0 (3.3)

d[I L12]
d t

−D12.[I L12] (3.4)

d[I L17]
d t

−D17.[I L17] P17.S(t).[mI L17] (3.5)

d[I L21]
d t

−D21.[I L21] P21.S(t).[mI L21] (3.6)

d[I FNγ]

d t
−Dγ.[I FNγ] Pγ.S(t).[mI FNγ]−BαI FNγ.[I FNγ].[αI FNγ] (3.7)

d[T GFβ]

d t
−Dβ .[T GFβ] Pβ .S(t).[mT GFβ] (3.8)

(3.9)

I L6 and I L12 are not produced by T cells during in vitro-differentiation (at least, not detected). Com-
mercial I L6 does not show any degradation in my cultures.

2. Transcription factor protein levels in the cells are impacted by :

- degradation D, increased in the case of ubiquitination (KU b),

- production from translation (P), limited by the translational capacity of the cell (T (t)) which is
saturated in the first hours

d[T BET]

d t
−DT .[T BET] PT .T (t).[mT BET] (3.10)

d[GATA3]
d t

−DG .[GATA3].(1 KU b.[T CR]) PG .T (t).[mGATA3] (3.11)

d[RORGT]

d t
−DR.[RORGT] PR.T (t).[mRORGT] (3.12)

d[FOX P3]
d t

−DF .[FOX P3] PF .T (t).[mFOX P3] (3.13)

(3.14)

3. mRNA levels in the cells are impacted by

- degradation Dm,

- production from transcription, with basal coefficient (C), regulated by activators or inhibitors (with
linear effect K , or using hill functions with parameters K:threshold, N :slope and S:max fold induc-
tion), and limited by the chromatin opening of specific locus (OX (t))

Each activation from a protein [A] is represented by a Hill function :

Activ([A],S,K ,N) (1 (1−S).
[A]N

KN [A]N
)

Similarly, an inhibition from a factor [I] is represented by a Hill function :

Inhib([B],S,K ,N) (S (1−S).
KN

KN [I]N
)

For the cytokine that are not modelled over time, the hill function linking the cytokine concentration to
the transcriptional activity is replaced by only one factor S, by using the function δ([A],S) S if [A] 0]
(effect) and 1 otherwise (no effect).
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d[mI L2]
d t

−Dm2.[mI L2] C2.O2(t).(1 KT CR→I L2.[T CR]).

Inhib([I L2],S1,K1,N1).Inhib([I L4],S2,K2,N2) (3.15)

d[mI L4]
d t

−Dm4.[mI L4] C4.

Activ([GATA3],S3,K3,N3) (3.16)

d[mI L17]
d t

−DmI L17.[mI L17] C17.Activ([RORGt],S3,K3,N3) (3.17)

d[mI L21]
d t

−Dm21.[mI L21] C21.O21(t).(δ([I L6] 0,S4)).

Activ([RORGt],S5,K5,N5) (3.18)

d[mI FNγ]

d t
−Dmγ.[mI FNγ] Cγ.(δ([I L12] 0,S6)).

(1 KT CR→I FNγ.[T CR]).Activ([T BET],S7,K7,N7) (3.19)

d[mT GFβ]

d t
−Dmβ .[mT GFβ] Cβ .(1 KT CR→T GFβ .[T CR]) (3.20)

d[mT BET]

d t
−DmT .[mT BET] CT .(1 KT CR→T BET .[T CR]).(δ([I L6] 0,S8)).

Activ([I FNG],S9,K9,N9).Inhib([GATA],S10,K10,N10).

Inhib([RORGT],S11,K11,N11).Inhib([FOX P3],S12,K12,N12) (3.21)

d[mGATA3]
d t

−DmG .[mGATA3] CG .(1 KT CR→GATA3,POS .[T CR]).(δ([I L12] 0,S13)).

Activ([I L2],S14,K14,N14).Activ([I L4],S15,K15,N15).

Inhib([T BET],S16,K16,N16).Activ([GATA],S17,K17,N17).

Inhib([RORGT],S18,K18,N18).Inhib([FOX P3],S19,K19,N19) (3.22)

d[mRORGT]

d t
−DmR.[mRORGT] CR.Oror(t).(δ([I L16] 0,S20)).

Activ([I L21],S21,K21,N21).Activ([T GFB],S22,K22,N22).

Inhib([T BET],S23,K23,N23).Inhib([GATA],S24,K24,N24).

Inhib([FOX P3],S25,K25,N25) (3.23)

d[mFOX P3]
d t

−DmF .[mFOX P3](t) CF .Of p3(t).Activ([I L2],S26,K26,N26).

Activ([T GFB],S27,K27,N27).Inhib([T BET],S28,K28,N28).

Inhib([GATA],S29,K29,N29).Inhib([RORGT],S30,K30,N30) (3.24)
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4. Remaining doses of free blocking antibodies The antibodies are stable (no degradation), and the annealing
is fast (KB is chosen big) and complete, meaning the complexes cytokine-antibody will stay bound. Since
the antibodies are put in saturating concentrations, the cytokines are annealed very fast. But for later
predictions, low antibody doses can be tried.

d[αI L2]
d t

−BαI L2.[I L2].[αI L2] (3.25)

d[αI L4]
d t

−BαI L4.[I L4].[αI L4] (3.26)

d[αI FNγ]

d t
−BαI FNγ.[I FNγ].[αI FNγ] (3.27)

(3.28)

5. Time-dependent mechanisms (with pre-defined kinetics)

- TCR peak, with the peak at time T CRPEAK and a maximum of T CRCOEF F

[T CR](t) (T CRCOEF F ∗ (t/3600))∗ ex p−
λ.t

3600

λ
1

T CRPEAK
; (3.29)

- For the processes showing a time-dependence (translation, secretion and chromatin opening), a
sigmoid function is used, whose kinetics is determined by the FORC E parameters.

d[S(t)]

d t
Fs.S(t).(1−S(t)) (3.30)

d[T (t)]

d t
Ft .T (t).(1−T (t)) (3.31)

d[O2(t)]

d t
F2.O2(t).(1−O2(t)) (3.32)

d[O21(t)]

d t
F21.O21(t).(1−O21(t)) (3.33)

d[Oror(t)]

d t
Fror .Oror(t).(1−Oror(t)) (3.34)

d[Of p3(t)]

d t
F f p3.Of p3(t).(1−Of p3(t)) (3.35)

(3.36)
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Prediction: IL-2 controls the T-bet-Gata3 balance in Th0 and iTreg cells As a first set

of predictions, the model was used to simulate the effect of performing the differentiations

conditions, together with a specific dose of IL-2 from the beginning of the culture (Figure

3.7). In the Th0 condition, counter-intuitively, a high amount of IL-2 induced a reduced

final amount of IL-2, due to its auto-inhibition. This was true for all subsets (not shown).

The model predicted no effect of IL-2 on Th1 condition (not shown). In the Th2 condition,

the dynamics of Gata3 and IL-4 expression in silico were faster with higher doses of IL-2 but

didn’t impact the later differentiation. Finally, the dose of IL-2 impacted the balance between

T-bet and Gata3 in the iTreg condition, with higher doses inhibiting T-bet, indirectly due to

Gata3 upregulation. It suggests that, paradoxically, for dampening IL-2 production by T

cells, an initial low dose of IL-2 is beneficial. It has been proposed to use low dose IL-2

therapies to selectively boost Tregs but not Tconvs based on their different sensitivity to IL-2

[235]. One could speculate that such therapies also reduce Tconv expansion by blocking

their own IL-2 production, independently of Tregs.
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Figure 3.7: : Effect of performing differentiation cultures with specific doses of IL-2

in silico. A-D Simulations for the kinetics of transcription factors at the mRNA and protein
levels are depicted under different conditions. Note: the Th17 condition contains anti-IL-2
and is not simulated here. E Simulations of IL-2 kinetics at mRNA and protein level due
to the presence of different doses of IL-2. Curves are the same for Th1, iTreg and Th0
conditions.
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Prediction: the consumption of IL-2 by bystander cells impacts the T-bet/Gata3 bal-

ance in iTregs It has been proposed that the consumption of IL-2 by regulatory T cells can

suppress the activation of T helper subsets [201]. We wondered whether this mechanism

has an impact on the balance between transcription factors inside T cells. It was modelled

by increasing the degradation rate of IL-2 in the medium, and led to the kinetics of tran-

scription factors shown in (Figure 3.8). While IL-2 consumption had no effect on Th1 and

Th17 subsets (because of the presence of anti-IL-2 for the latter), the model predicted that

an increase in IL-2 consumption would reduce Gata3 levels in Th2 and iTreg cells, while

increasing the amount of T-bet in iTregs.

Figure 3.8: Kinetics of transcription factors during differentiation into Th2 and iTreg

conditions depending on the degradation rate of IL-2, as a mimicry for IL-2 consumption
during IL-2-mediated suppression.
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CHAPTER 4

ASSESSING T HELPER PLASTICITY IN VITRO AND IN SILICO

4.1 Introduction

After training the mathematical model with the experimental dynamics of differentiation,

we decided to test its robustness according to a new independent set of data.

An interesting property of T helper cells is their plasticity to redifferentiation under spe-

cific conditions, though this has not been assessed at the early time points for which the

model was designed and validated.

We investigated the plasticity of cells in vitro, by changing the polarizing condition at

20 hours after the start of differentiation, just after the induction of master transcription

factors, but before cell division. A very high plasticity could be observed. All the cells

could acquire the expression of the new transcription factor independently of the previous

inducing condition. Similarly, they could express IL-17 and IFN-γ upon switching into Th17

and Th1 condition respectively, except in the Th17 to Th1 switch, showing that early Th17

differentiation did not allow for further IFN-γ production. The same experimental settings

were simulated in silico in parallel, to evaluate if the model can predict differentiation and

plasticity in these new conditions without prior knowledge of the data. The model predicted

a high plasticity to similar extend than the experimental data, but could not accurately fit

the kinetics of transcription factors.

It suggests that some properties of the differentiation network could not be extracted

only from the kinetics of the main factors during canonical differentiations. Instead, this

switching dataset contains additional information that will be given to the mathematical

model as an additional training dataset.

Finally, in order to design new experiments that could later validate the robustness of the
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network, and since ’old cells’ are believed to be more stable in literature, the plasticity of T

helper cells was assessed in a new, later settings: fully differentiated cells were co-cultured

with other subsets, either without restimulation at day 3, or with restimulation, at day 10.

4.2 Results

Differentiating cells are plastic to repolarization even when the master transcription

factors are highly expressed We wondered if differentiating cells would be plastic to re-

polarization into another subset. We chose a time-point of 20 hours to switch stimulation,

such that the mRNA for the transcription factors is already induced, but the cells didn’t di-

vide yet. It avoids the effect of potential asymmetric divisions on the result [200], which are

not included in the model and would be hard to interprete. Differentiation cultures into each

subset were started for 20 hours, the supernatant was washed carefully and fresh medium

was added with the cytokines of other conditions. The expression of the transcription fac-

tors was followed by flow cytometry after this perturbation (Figure 4.1). At 72 hours, the

expression of cytokines was additionally assessed by cytokine staining for IFN-γ and IL-17

(Figure 4.2).

Figure 4.1: Dynamics of transcription factors expression as protein levels after switch-

ing the differentiation condition at 20 hours, measured by flow cytometry. 2 independent
experiments. T-bet stainings showed poor quality (technical problems), and are not shown
here.
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At the transcription factor level, redifferentiation into Th2, Th17 and iTreg was possible

independently of the previous inducing condition (Figure 4.1, upper panel), showing a full

plasticity to acquire the new phenotype at 20 hours.

In contrast, the fate of the initially induced transcription factor depended on the subse-

quent condition (Figure 4.1, lower panel). Rorγt level was sustained to intermediate levels

after an initial period of 20 hours of Th17 differentiation, independently of the later sig-

nals. Starting from an iTreg condition, low levels of Foxp3 were transiently maintained

after switching to the other conditions but slowly decayed. Finally, in case of initial Th2 po-

larization, Th0 and iTreg conditions were permissive to sustained and increasing expression

of Gata3 while Th1 and Th17 conditions fully inhibited its expression. It shows that, even if

cells are plastic, they can keep a memory of their previous states in some of the conditions,

and it is possible to generate double positive cells in vitro, such as iTregs with high expres-

sion of Gata3, or Gata3+ Rorγt+ cells at day 3. The stability of such double positive cells

would need to be assessed.

At the cytokinic levels (Figure 4.2), Th1 redifferentiation lead to high amounts of IFN-γ

production (Figure 4.2, upper panel), except after 20 hours of Th17 culture. When Th1 cells

were challenged by other stimulations, IFN-γ expression was maintained to higher levels

only in Th0 and Th1 condition but was suppressed by the iTreg, Th2 and Th17 inducing

signals.

When the cells were redifferentiated into Th17 cells, a high level of IL-17+ producers

was detected in all cases, consistant with the high expression of Rorγt in these conditions

(Figure 4.2, lower panel). Interestingly, redifferentiating cells from an initial Th17 condition

showed a reminiscence of IL-17 expression in iTreg and Th0 but not in Th1 or Th2 conditions

(Figure 4.2, lower panel). This finding does not match with the Rorγt levels observed in

(Figure 4.1), which are very similar between Th1, Th2 and Th0, revealing that, while Rorγt

expression was dominant over other transcription factors, additional mechanisms decide for

the expression of IL-17.

It has to be noted that the differentiation cultures contain blocking antibodies. In par-

ticular, in the Th1→Th17 and Th1→Th2 condition, anti-IFN-γ is included in the second

condition, and might block IFN-γ production in an artificial way compared to an in vivo

settings, devoid of blocking antibodies. Here, the experiment was designed to maximize

the chance of plasticity (with blocking antibodies), but they would need to be reproduced

without blocking antibodies to get more mechanistic insights.
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Figure 4.2: Cytokine expression at day 3 by flow cytometry, when the culture condition

was changed at 20 hours. Proliferation is assessed by initial CTV labelling before initial
stimulation, allowing a better separation of populations. Top: frequency of IFN-γ producers,
separated into intermediate and high producers, as observed in [236]. Only the switching
conditions from and to Th1 are shown. Bottom: frequency of IL-17 intermediate and high
producers, similarly to the two populations observed for IFN-γ. Only the conditions switch-
ing from or to Th17 are shown. IL-17 was not observed in any other switching condition. 2
independent experiments.
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The model qualitatively recapitulates early plasticity but fails to explain the curves.

The mathematical model was used to predict the effect of condition switching at 20 hours.

The simulated curves for transcription factor expression were compared with the experi-

mental data (Figure 4.3). Note that the simulations were extended up to 5 days here.

Following T-bet expression over time, the model predicts that T-bet expression can be

acquired upon switching to Th1 condition independently of the previous condition (Figure

4.3A). However, cells first simulated in the Th1 condition followed the same kinetics than

T-bet in the new condition, as if nothing happened in the first 20 hours (see Figure 3.1

for comparison). Due to technical reasons, the experimental data is not available for T-bet

over time upon switching. The predictions of the model are only partially consistent with

the amount of IFN-γ producers (Figure 4.2, upper panel). Indeed, IFN-γ could be acquired

after switching from most subsets but not Th17, while T-bet was predicted to be maintained

in Th17 → Th1 condition. IFN-γ was kept only in Th1 and Th0 conditions but not iTreg

when switching from Th1, while the model predicted similar T-bet profiles in the Th1→Th0

and Th1→iTreg condition. However, it doesn’t mean that the model is wrong, and these

inconsistencies between T-bet and IFN-γ might be true.

The predicted kinetics of Gata3 expression globally follow the experimental profiles (Fig-

ure 4.3B), where all cells could acquire Gata3 expression after switching to Th2 (though the

model predicts a too slow upregulation in Th2→ Th17). The predicted switching from Th2

to Th1 and Th17 successfully showed Gata3 suppression. However, even if the model qual-

itatively predicts sustained levels of Gata3 in the Th2→Th0 and Th2→iTregs conditions,

they are underappreciating the Gata3 amounts experimentally observed.

In the case of Foxp3 expression (Figure 4.3C), again, the model qualitatively predicted

the accurate trends of switching, while it failed to predict that cells can express Foxp3 in

the Th17→ iTreg condition. Interestingly, in all conditions, the model predicts that Foxp3

expression is not stable after three days.

The model also predicted a full plasticity towards acquiring Rorγt expression upon Th17

switching, but with too slow kinetics (Figure 4.3D). Finally, The model accurately repro-

duced the experimental kinetics of Rorγt when switching from Th17 to another subset. At

later time-points (after day 3), it predicts that Rorγt will be stably expressed, except in

Th17→iTreg condition. As a limitation, the model diverges in the Th17 (untouched) con-

dition, which is not physiological.
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Figure 4.3: Simulations for switching differentiation condition at 20 hours, using the
model and parameters obtained in chapter 3. The amount of transcription factor is displayed
over time either simulated (smooth curves), or according to the experimental data of figure
D1 (dashed curves). Each curve represent a different combination of an initial and later
differentiation condition. An additional curve is shown (in gray), as a control where the cells
are untouched (canonical differentiation, experimental data taken from chapter 3, Figure
3.1).
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To conclude, the model, though being fitted from time-resolved experimental data of

the canonical differentiations, was only partially able to recapitulate the early plasticity

observed in this study. It shows that following the kinetics of elements of a network is

not necessarily enough to fully determine this network, and that it is difficult to evaluate

which data is required to completely determine a mathematical model. Indeed, only a minor

number of parameters were identifiable from the data (Appendix, Figure 7.4). The kinetics

of transcription factors upon early switching will be included in new fittings of the model,

and an additional dataset will need to be generated to assess the predictive capacity of the

model.

Three days of differentiation are sufficient for a stable phenotype in co-culture with

other subsets. T helper cells initiate their differentiation in the lymphoid organs and then

migrate in peripheral organs. We wondered what would happen if differentiated T helper

cells from different subsets would encounter in periphery, and in particular if they would be

stable, inhibit each-other, or induce a particular reprogramming to the other cell.

In vitro, naive T cells from mice with two congenic backgrounds (either CD45.1 or

CD45.2) were differentiated in vitro into all the subsets (Th1, Th2, iTreg, and Th17) for

3 days. Then, cells from one subset were taken from a background and co-cultured with

cells of another subset (in equal amount), differentiated in the other background, allowing

to know the origin of each cell later. After two days of co-culture in fresh medium, without

additional cytokine nor TCR stimulations, the cells were assessed for cytokine production

by PMA-Ionomycin restimulation and cytokine staining (Figure 4.4).

For instance, when Th1 from CD45.2 background were co-cultured with Th2 cells from

CD45.1 background, 33.2 % of the Th1 cells expressed IFN-γwhile the Th2 did not express it

(Figure 4.4A). In the case of Gata3, the histogram of Gata3 expression was shown inside one

of the populations, in dependence on the other subsets that were present in the co-culture

(Figure 4.4B).

Th1 cells contained the same percent of IFN-γ producers, independently of the Th2, iTreg

or Th17 cells present in the culture (Figure 4.4A). However, they were slightly increased

when Th1 were co-cultured with Th1, suggesting that Th1 cells are insensitive to the signals

produced by other subsets (without TCR stimulation), but receive a positive feedback from

other Th1 cells.

Cells from Th2 and iTreg kept the memory of their Gata3 expression independently

of the presence of other cells (Figure 4.4B). The expression of Foxp3 among iTreg cells
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was similar when co-cultured with iTregs, Th2 or Th17 (45 to 47%) and showed a slight

decrease in the presence of Th1 cells, suggesting that iTregs are sensitive to Th1 signals

(Figure 4.4C). Finally, the same amount of IL-17 producers (44 to 47%) was observed in

Th17 differentiated cells, independently on the well-mates (Figure 4.4D). Note that all the

cells in the CD45.1 background come from the same pool of cells, while the Th17 cells from

the CD45.2 background were separately differentiated, possibly explaining that they are

slightly different for IL-17 expression.

Finally, it was striking to observe that, while cells from each subset kept memory of their

cytokine secretion profile, they never acquired the markers of another subsets following

co-culture. It shows that, in this context, without TCR stimulation, the cells are mainly

insensitive to the signals produced by other differentiated cells.
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Figure 4.4: Stability analysis upon coculture with adverse subsets. Naive T cells from
congenic mice (CD45.1 or CD45.2) were separately differentiated into all the subsets for
three days. Each subset from a congenic background was further co-cultured for two days
with another subset from the opposite congenic culture (in equal amount and without TCR
stimulation). A,C,D: Cytokine and Foxp3 stainings are shown for different combinations of
subsets, as indicated on the right of each plot. The fraction of positive cells are indicated
within the congenic populations separately (CD45.1+ or CD45.1-). Note that the order was
inverted in C for iTreg-Th17 co-culture. B: Level of Gata3 staining inside each subset, after
co-culture with other subsets. Preliminary (performed only once).
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Old cells co-restimulated keep they cytokine profile but are inhibited by well-mates

The finding that differentiated cells were stable upon co-culture without TCR stimulation

was a bit surprising in light of previous findings showing that (ex vivo) Th17 cells express

IFN-γR and IL-4R, and are consequently inhibited by IFN-γ [93, 237] and IL-4 [238], re-

spectively, and these cytokines should be produced by co-cultured cells. It would be possible

that, due to the lack of TCR stimulation, the cells didn’t produce enough cytokines to de-

tect an effect, or that they need TCR to be responsive to cytokine signals, through serine

phosphorylation of the STATs for instance [239].

Box S10 : Experimental layout for the co-culture of old differentiated T helper

subsets.

In order to avoid cell death by restimulation of young cells, naive T cells of both
CD45.1 and CD45.2 backgrounds were differentiated for 3 days and expanded with
fresh medium and IL-2 (or IL-23 for Th17) every 2 days for 7 additional days. Fi-
nally, cells were washed, and co-cutltured with different ratio (but the same total cell
number) in anti-CD3/CD28 coated plates, in fresh medium, for 12 hours (this time
period is sufficient to activate memory cells). After 12 hours the cells were replated
in a normal culture plate to stop stimulation and avoid cell death, and were analysed
at day 3 post activation for transcription factor expression or cytokine production by
flow cytometry
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Therefore, a similar experiment was performed by co-cultivating different congenic T

helper subsets in vitro, but under TCR stimulations, as described in (Box S10). This exper-

imental layout applies to (Figures 4.5, 4.6 and 4.7).

An example of cytokine secretion assay is shown in the case of Th1-Th17 cocultures,

with different ratios (Figure 4.5). Only IFN-γ producers could be observed from Th1 cells

(in blue), while only IL-17 producers arose from the Th17 cells, showing that the cells keep

their phenotype and do not express the cytokine of the other subsets, similarly to the results

in (Figure 4.4).

Figure 4.5: Cytokine expression by cocultured, old, differentiated Th1 (blue) and Th17

(red) with different ratio. Th1 cells were differentiated from CD45.1 and Th17 cells from
CD45.2 background. After 10 days of expansion, they were washed, counted and restim-
ulated with TCR for 12 hours in the same well, with different ratio. Representative of 3
different experiments.
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To quantify possible inhibitions between two co-cultured subsets, the expression of cy-

tokines or transcription factors inside one subset (separated in the analyses thanks to the

congenic marker), was quantified depending on the ratio of cells from the other subset in the

well. IFN-γ and IL-17 production is shown in (Figure 4.6) together with Gata3 expression

in (Figure 4.7).

When Th17 cells were cultivated with Th0, Th1 or Th2 cells and with different ratio, no

significant dose-dependent effect could be observed and around 30% of cells were highly

producing IL-17. A decrease of IL-17 production could be observe in the presence of iTreg

cells, going down to 20% when 90% of the cells in the well were iTregs. This shows that

iTregs have a small suppressive effect on Th17 cells. IL-17 was never observed in non-Th17

cells.

When Th1 were co-cultured with any other subset, their production of IFN-γ diminished

in a ratio-dependent manner. Th2 were very efficient in suppressing IFN-γ production, as

only 10% of Th2 cells in the well were sufficient to drop the amount of high IFN-γ producers

from 60% to 10%. Even Th0 cells did suppress IFN-γ production. It is not possible to

separate whether a positive feedback between Th1 cells is diluted when their ratio is smaller

(for the same total number of cell), or whether all the other subsets do have an inhibitory

effect on IFN-γ production. Here, the co-culture with Th0 cells (which are believed to have

a restricted cytokine secretion pattern), would suggest that Th1 rely on a positive feedback

to support IFN-γ production. Finally, Th2 co-cultured with a high ratio started producing

IFN-γ to a low extend (up to 12% of producers), showing that old Th2 are plastic to express

IFN-γ, while maintaining Gata3 (see figure 4.7). Interestingly, no IFN-γ production from

Th17 cells could been detected (data not shown), while Th17 have been shown to produce

IFN-γ [92], suggesting that the signals leading to IFN-γ production by Th17 are independent

of those produced by Th1 cells.

By looking at IL-4 production, Th2 cells lost their expression when co-cultured with cells

from any other subsets, from 35% IL-4+ in a pure Th2 condition, down to 1% in conditions

where they were surrounded by adverse cells. Consistently, Gata3 levels dropped down

when Th2 were co-cultured with iTreg, Th2 and Th17, but not significantly with Th1 cells.

It shows that, either Th2 cells rely on a positive feedback requiring a lot of Th2 cells (which

is not likely as the presence of 10% of other cells strongly dampens IL-4 production), or that

the other subsets secrete a factor that inhibits IL-4 production.

Strikingly, IL-4 production and high gata3 expression could be acquired by Th1 and Th17

cells when they were co-cultured with Th2 cells, likely due to the production of IL-4 by Th2
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Figure 4.6: Amount of IFN-γ and IL-17 producers among different subsets when they

are co-cultured with another subset, and with different ratios. 2 independent experi-
ments.

cells upon TCR stimulation. Curiously, co-culture of Th17 cells with iTreg cells induced the

expression of Gata3 and, to a minor extent, of IL-4, which was completely unexpected. It

would be interesting to assess if these iTregs need their intermediate Gata3 expression to

perform this ’Th17 suppression’.

These results show that, even if differentiated cells maintain their cytokine secretion

profile upon a co-culture challenge, inhibitory mechanisms as well as acquisition of another

cytokine or transcription factor could be observed.
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Figure 4.7: Amount of IL-4 producers and Gata3 expression among different subsets

when they are co-cultured with another subset, and with different ratios. Preliminary
(performed only once).
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CHAPTER 5

DISCUSSIONS

5.1 Potential pro-inflammatory effect of Glutamine

therapeutical impact Our work highlights a critical role for extracellular nutrient avail-

ability in the terminal differentiation of CD4+ T cells to distinct effector fates. Remarkably,

activation of naive CD4+ T cells under conditions of glutamine deprivation causes them to

terminally differentiate into Foxp3+ regulatory T cells (Tregs). Furthermore, the skewing of

glutamine-deprived naive CD4+ T cells to a Foxp3+ fate occurs even under Th1-polarizing

conditions. Notably though, Th2 differentiation is not inhibited by glutamine deprivation

and the cells do not adopt a Treg fate.

It suggests that the glutamine concentration and more generally, the metabolic environ-

ment could constitute a 4th signal for guiding T cell differentiation. The local response

to infection is generally associated with a high metabolic activity, and an increased blood

inflow. One could speculate that the presence of glutamine would skew immune cells to

behave in a pro-inflammatory manner, meaning that the body could use the local metabolic

state as an immune signal. Following this reasoning, a poor metabolic environment could

be considered as a non-infected tissue by the immune system, and studying the heteroge-

neous metabolic complexity of organs could help to understand organ-specific immunity. It

would be interesting to assess the immune response against the same pathogen in organs

with different metabolic properties (though this might be hard because pathogens are usu-

ally organ-specific), or by modulating the local environment in vivo. The gut might be an

interesting organ to follow, because of its pH gradient between the stomach and the colon

[240].

Our observations as well as others would suggest to use specific diets to modulate the
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activity of the immune system. However, it is not sure that the observations described in the

present study in vitro would apply directly in vivo, because other immune cells types could

differentially respond to glutamine. Interestingly, low glutamine levels have been correlated

with an anti-inflammatory immune state in vivo in humans, and glutamine administration,

in specific therapeutic situations, has been shown to support the immune response, consis-

tently with our findings:

Anaerobic training (used in sports to increase the amount of Red Blood Cells) leads to

a decrease in plasma glutamine, and is associated with a decrease in CD4 T cell numbers

[241]. Physical exercise has been shown to have anti-inflammatory properties, and it has

been suggested to be due to a change in the amounts of glucose and glutamine in the blood

[242]. Similarly, a study pinpointed that prolonged exercise induces immuno-suppression,

and supplementation with a glutamine precursor reduced its severity [243]. Finally, in the

case of severe infection, injections of glutamine enhanced the resolution of the pathology.

[244]. In the same direction, supplementation of glutamine and leucine had a beneficial

effect in the response against herpes virus [245].

The tumoral micro-environment is known to be metabolically poor, due to the consump-

tion of nutrients by tumoral cells, and the lack of oxygen supply or blood vessels. Glutamine

levels have been shown to be particularly low inside specific tumors, such as carcinomas

[246] or colon tumors [247], together with glucose and other amino-acids. It raises the

question whether glutamine limitation generates an anti-inflammatory shield for tumors,

and would suggest to adapt the treatments in the case of glutamine-deprived tumors, to

support the pro-inflammatory functions of T cells.

A potential supplementation of glutamine as an anti-tumoral treatment would need to

be designed carefully because tumoral cells rely also on glutamine ??. As an example,

Elspar, a treatment that induces depletion of glutamine and arginine from the plasma, is

used against a type of B cell lymphoma (ALL), and shows anti-tumor efficacy but causes

immuno-depression as side effect [248]. Therefore, the respective impact of treaments on

cancer cells but also on immune cells has to be carefully evaluated. One could speculate

that an optimal glutamine level could be found, sufficient to boost immune cells, but low

enough to maintain tumor cells under starvation. Another approach could be to instruct T

cells into a different metabolic program, less dependent on glutamine. Several strategies

could be envisioned. As a selection-based approach, T cells could be first differentiated in

a replete environment, and progressively replace the supernatant with media with reduces

concentrations of glutamine, to select potential ’super T cells’. Another approach could be

Philippe A. ROBERT 116



5

D
is

cu
ss

io
ns

to modulate the expression of nutrient transporters or metabolic enzymes, via overexpres-

sion or the use of interfering RNA, for instance, or to find external (metabolic or cytokinic)

signals that could modulate them.

One could also try to manipulate other sources of energy than glutamine in a way that

tumor cells are impacted but not T cells. Acetate has been shown to be an important source

of energy for tumors after glucose and glutamine [249]. Interestingly, T helper cells have

been shown to be sensitive to acetate levels, and acetate was implied in the acetylation of

the Foxp3 promoter [250].

Mechanisms linking glutamine sensing to Th differentiation An important question

raised by this work is by which mechanisms glutamine levels are integrated into a fate

decision. The study of metabolic sensing is quite complicated, because the pathways that

sense metabolites also impact on the expression of metabolic enzymes processing other

nutrients. Consequently, the indirect effects of different nutrient sensors are entangled,

because they will help using other metabolites and indirectly activate other nutrient sensors.

Importantly, the TCR itself activates many nutrient sensors. Personally, I would say it is a

way to force the cell to use specific nutrients and to proliferate blindly with maximal power

by thinking the metabolic environment is full of nutrients, while these nutrient sensors might

not have been activated otherwise.

Several pathways have been studied to be important for metabolic reprogramming and

could be responsible for the phenotype of differentiation observed under glutamine depri-

vation in Chapter 2:

• mTOR (mTORC1 and mTORC 2). These two complexes are amino acid and growth

factor sensors, and in turn promote growth and proliferation by increasing ribosome

biogenesis and translation for instance. It has recently been shown that TCR signaling

upregulates ASCT2 (glutamine receptor), which in turn is necessary for glutamine en-

try and activation of the mTOR pathway [204]. The signals inducing mTOR in T cells

are discussed in [251]. Th1 and Th17 rely in mTORC1 activation downstream Rheb

[252], which is itself activated downstream amino-acid sensing. Glutamine depriva-

tion would cause a failure to activate mTORC1 and to support Th1 and Th17 differen-

tiation, consistently with our findings, and similarly to [204]. Regarding iTreg differ-

entiation, the use of rapamycin, an inhibitor of mTORC1, enhanced Foxp3 expression

[253], while activation of mTOR inhibited iTreg differentiation [254], consistent with

the upregulation of Foxp3 without glutamine. Therefore, mTOR could contribute to
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the glutamine deprivation-induced redifferentiation.

• ERK(1 and 2): ERK phosphorylation promotes proliferation and cell growth, espe-

cially for the G1/S transition of the cell cycle. In T cells, ERK is activated through the

TCR signaling and by several cytokines. Interestingly, the level of ERK phosphoryla-

tion was reduced when T cells were activated in absence of glutamine [198]. Fur-

thermore, ERK inhibition by the use of inhibitors [255] impaired Th17 differentia-

tion while increasing iTreg differentiation. Similarly, ERK2 deficient cells showed a

strongly reduced Th1 differentiation in vitro and lower T-bet expression, while Th2

differentiation was slightly enhanced and Gata3 expression was increased. Th17 was

not impaired in this case (probably because only ERK2 was deleted), but the iTreg dif-

ferentiation was increased at day 5. Therefore, an inhibition of ERK due to glutamine

deprivation would recapitulate our observation that Th1 differentiation is inhibited

at the benefit of Foxp3 expression. It is interesting to note that TGF-β can inhibit

TCR-induced ERK signaling [256, 257], though TGF-β can also increase ERK acti-

vation from non-canonical pathways [132, 258], and that ERK itself modulates the

functional effects of TGF-β on T cells gunnlaugsdottir2005anti. Therefore, it would

be insightful to assess the dose-dependence cross-talk between TGF-β and glutamine

levels on ERK and iTreg differentiation.

Other energy sensors that are not directly linked to glutamine so far, could be affected

by the metabolic adaptation of the cell under glutamine deprivation, and in turn could be

responsible of the impaired differentiation profile.

• AMPK can sense the energetic status of T cells, and is activated under low amounts of

ATP (which we observed under glutamine deprivation), and can, in turn, downregu-

late mTOR. AMPK was shown to be essential for Th1 and Th17 differentiation [259].

Therefore, AMPK could also be responsible for the impairment of Th1 and Th17 dif-

ferentiation via controlling mTOR. However, as AMPK is also upregulated in iTreg, a

downregulation of AMPK could also impact on Foxp3 expression.

• GAPDH, an enzyme involved in glycolysis, can also bind to the 3’UTR of IFN-γ mRNA

and suppress its translation when glycolysis is low [188]. It could contribute to the

decrease Th1 differentiation under low metabolic activity under glutamine depriva-

tion.

• Additional metabolic sensors such as Foxo1/Foxo3 [260], PPARγ, a sensor of lipids

[261], have been involved in T helper differentiation, and are reviewed in [262].
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Finally, for the beauty of complexity, these signaling pathways are interrelated, with

positive and negative feedbacks, making it very difficult to investigate the effect of one of

them separately [263] (Figure 5.1).

Figure 5.1: An example of the entanglement between metabolic sensors. Connections
between mTORC1/mTORC2, AMPK, PPARγ and cMyc. Taken from [263].
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In further work from the lab, we demonstrated that supplementation with a cell-permeable

α-KG (a downstream metabolite of the glutaminolysis pathway) could restore an efficient

Th1 differentiation under glutamine deprivation [203]. Furthermore, the phosphorylation

level of S6, one of mTORC1 target, was also increased. Indeed, α-KG has been shown to ac-

tivate mTOR [264] even after inhibition of glutaminolysis. These findings support, that the

conversion of glutamine to α-KG, potentially regulated by the mTOR pathway, is important

for terminal Th1 differentiation, Finally, mTOR has been shown to induce Glut1 expression

[265], which could explain the limited proliferation of the cells actived under glutamine

deprivation but in presence of glucose.

I personally think that the metabolic reprogramming of T cell activated under deprived

glutamine conditions would skew many metabolic pathways into a ’low energy’ profile and

therefore impact all previously mentioned metabolic sensors, independently of potential

cross-talks between them. Then, I would not be surprised if many synergistic pathways

exist in parallel between these metabolic sensors and the expression of transcription factors

such as Foxp3. It would be interesting on one side to discriminate the ’sensor profile’ of T

cells in response to specific nutrient modulations, and on the other side to investigate the

relative effect of each sensor separately on differentiation.

The complexity of nutrient sensing pathways and the fact that all the differentiation pro-

grams were impacted by glutamine deprivation, led us to develop the mathematical model

presented in chapter 3, that could be further used to predict which pathway is the most likely

to influence, or is the most strongly influencing differentiation under glutamine-deprived

conditions. More precisely, by assuming that one pathway has more effect on differentiation

than others, the model could be used to predict which single modifications of the differentia-

tion network could explain the phenotype observed in the context of glutamine deprivation.

It would then allow to predict the efficacy of specific inhibitors in a quantitative way, includ-

ing the effect of the complex regulatory network deciding for T cell differentiation in the

prediction. We didn’t reach this point here, but we managed to draw a mathematical model

that recapitulates the kinetics of T cell differentiation. We hope that this model will be a

good basis to further incorporate metabolic pathways into it.
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5.2 Combining an in vitro and in silico approaches to cap-

ture the dynamical properties of T helper differentia-

tion

The dynamics of transcription factors and cytokine expression suggest refinements of

the ’master transcription factors’ (MTF) paradigm The dynamics of the MTFs (T-bet,

Gata3, Foxp3 and Rorγt) were followed during helper T cell differentiation in vitro, in a

replete metabolic environment. It showed that some MTFs are expressed in other subsets

than their respective ones, but are kept under control.

They are acknowledged as the MTFs for their respective subsets as they were shown to

be necessary (i.e. their deficiency strongly abrogated the subset differentiation in vitro and

in vivo), and sufficient (their overexpression was enough to induce subset-specific cytokines

or functions) for the differentiation of their subset. The present study would suggest some

refinements to this paradigm:

1. The expression of the MTFs is not specific to a subset, but rather their high and

sustained expression. First, we observed, consistently with published data, [102]

[100], that a MTF is not expressed in only one subset. For instance T-bet and Gata3

were expressed at intermediate levels in iTreg and Th0, and Rorγt was transiently

expressed during iTreg differentiation. The intermediate expression of Gata3 was not

enough to endorse with a Th2 phenotype (in iTreg or Th0), but instead, one could

speculate that a threshold in Gata3 should be overcome to properly confer a Th2

phenotype. Therefore, (low) expression of a MTF alone is not sufficient, and high

amounts are likely to be necessary.

2. The (intermediate) expression of MTFs is not sufficient. Secondly, T-bet was very

highly expressed in Th0 and iTreg conditions, though transiently, without leading to

high IFN-γ production. It shows that early high expression of T-bet is not enough

to confer a Th1 phenotype (defined by IFN-γ production). The mathematical model

could explain this observation by the synergy between T-bet and the positive feedback

from IFN-γ on itself, which started earlier in Th1 condition. Biologically speaking, the

specificity of IFN-γ production in Th1 could also arise from different mechanisms, for

instance if T-bet has to be sustained for a sufficient period of time to allow for IFN-γ

production, or if Gata3 has to be sufficiently dampened downstream IL-12 to allow
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for IFN-γ production. Our data suggests that T-bet alone does not manage to provide

a full Th1 differentiation, and that exogenous IL-12 provides important signals for

differentiation, though other cytokines could do the same job in vivo such as IL-18.

Initial studies showed that T-bet overexpression is able to endorse T cells with the

production of IFN-γ [114]. In these settings, the cells were transfected after several

days of activation, and a artificially high level of T-bet was likely induced. The time-

point of study is also different. In our hands, T-bet expression between 20 hours

and 60 hours was not inducing IFN-γ in Th0 and iTreg conditions, but was further

downregulated. It doesn’t exclude that other factors could be present after day 3

that would allow this IFN-γ induction. In this case, it would be critical that T-bet

is downregulated before day 3 in the Th0 and iTreg conditions to avoid the ectopic

expression of IFN-γ. It would be interesting to modulate T-bet expression at late time-

points to test this hypothesis.

3. Not all the transcription factor expressing cells do produce cytokines. In an in

vitro culture, it is commonly acknowledged that not all the cells reach the state of

cytokine producer. However, they all express the associated transcription factor to

very high levels. Indeed, by comparing (Box S1) and (Figure C1), in a typical in

vitro differentiation all the cells are positive for T-bet, Gata3 or Rorγt in the respective

subsets, but only a few of them are reaching the state of producing the associated

cytokines under PMA-Ionomycin restimulation (Box S1). Should the cells that are not

producing the cytokine be considered as properly differentiated cells or not ?

4. The concept of MTF is conceptually not unique. Third, the notion of ’necessary

and sufficient’ for MTFs is conceptually not unique: If a MTF F would require to be

in complex with another factor C for inducing the effector functions of a subset, and

if this factor C can induce the expression of the MTF F, then both of them become

necessary and sufficient. Indeed, in a deficient background for C, the complex would

not form, and overexpressing C would also induce the master factor F and successfully

form the complex.

In the case of Th1, Hlx would be a candidate to the T-bet co-factors list, as Hlx overex-

pression induces IFN-γ production even under Th2 polarizing condition [266], while

Hlx haplo-insufficiency impacted the Th1/Th2 ratio in vitro [267]. Hlx induces T-bet

[268], thus making up the aforementioned connection of C and F. The effect of Hlx

deficiency on T helper differentiation could not be assessed yet because it is embryonic
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lethal [269]. Overexpression of T-bet in combination with Hlx in Stat4-/- Th2 cells

led to an increase amount of IFN-γ producers compared to T-bet overexpression alone

[268], suggesting that Hlx performs complementary functions with T-bet. It would

remain to prove that T-bet alone, in a Hlx knock down context, would not be able

to induce IFN-γ, to include Hlx as an other MTFs for the Th1 subset. In the present

study, the presence of a second factor in Th1 could help to explain why Th0 or iTregs

highly expressing T-bet are not successful into producing IFN-γ, as this second factor

could be IL-12 induced (like Hlx [270]) or generally speaking Th1 specific. It would

be interesting to measure Hlx in parallel with T-bet during differentiation.

5. MTFs work in groups The MTFs have been shown to make complexes with several

transcription factors, which, in turn, determine their transcriptional capacity, and the

target genes they bind. For instance, T-bet can bind Gata3 and inhibit the activation of

Th2 genes by Gata3 [271]; Foxp3 can bind Rorγt and inhibit IL17 expression [159].

Similar effects (positive or negative) can be observed by direct binding with the Runx

proteins [272, 273]. In [109], genome-wide binding of Th17 specific genes (STAT3,

IRF4, BATF, c-Maf, and RORγt) was investigated and showed that they co-localize in

most binding sites, suggesting that RORγt functions in a complex, whose composition

will determine the binding sites and activated genes.

It raises the questions: Which complexes are important for T helper differentiation

and which factors of these complexes have a quantitative effect ? and how is a gene

regulated in dependence on the amount of each protein involved in the complex ? Our

modeling work suggest that, inside the potential transcriptional complexes, the MTFs

are the ones quantitatively deciding for the transcription, because the model could

explain the kinetics of differentiation only by including the amount of the master

factors. In case that multiple factors have a quantitative effect, this question is very

tricky because of the gigantic amount of data required to understand the quantitative

response of a promoter to many input factors. One could speculate that the amount

of complexes successfully formed could be directly determined by the limiting factor

in the complex, and would allow a simple mathematical formulation.

implications of the observed latencies in vitro Another result from this combined in

vitro and in silico approach is the identification of major delays (or saturation effects). De-

lays in Foxp3 transcription, in translation and cytokine secretion were necessary to explain

the link between mRNA and protein kinetics, and opens further speculations:
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First, on the methodological level, most modeling studies rely only on one level of data

(most of the time being transcriptomics). By neglecting the dynamics of the protein levels,

it becomes very hard to reveal a correlation in time between activators and activated genes

because they are separated in time. Without delays, the real network would probably not

fit the data, while wrong networks would succeed in explaining the data (by using other

activators or inhibitors to artificially reproduce the dynamics of the genes expression). It is

an open question to know if mRNA networks with delays are adequate tools to capture the

latencies. It would be interesting to generate synthetic data from a bi-level mRNA-protein

network, and to see if a similar model at the mRNA level only would be able to detect and

reproduce those delays.

Second, the term delay is not necessarily accurate, as we don’t know the mechanisms

responsible for the observed latencies. They might be due to additional activators or in-

hibitors that require time to be expressed or dampened; it could be due to the storage of

mRNA molecules to be transcribed later, as described in NK cells [274]; a regulation in

translation, or a regulation by the cell cycle. In our work, we considered these delays as

a saturation in the translational and secretion machinery, with a specific time-scale, inde-

pendent on external signals. However, it is still possible that cytokine or TCR signals have

an impact on the time-scales of the delays, in which case a modulation of the TCR strength

could impact differentiation by allowing an earlier cytokine secretion. Additionally, when

switching the differentiation condition at 20 hours in (Figures 4.2, 4.1 and 4.5), the delays

might be re-initiated and could explain why the model was not completely reproducing the

experimental data. In the model, while the translation and secretion capacity should not be

impacted by switching, a ’reprogramming transcriptional latency’ for the promoters of Rorγt

and Foxp3 could be included, or an epigenetic mechanism could be explicitly modelled.

The delay in translation has interesting consequences. Peaks in mRNA could be observed

that were not converted into proteins (or to only minor levels), as for T-bet in the first hours

(Figure 3.1). This mechanism might give differentiating cells a certain level of plasticity,

where the cell has a certain time-frame with limited memory to decide what will be its dif-

ferentiation profile. During this time, the cell might integrate signals coming from different

APCs, and an initial T-bet peak might be dampened by further opposite signals. It would be

interesting to simulate and perform experiments with repeated stimulations of the cells with

different cytokines, to see how the decision is taken at the end of this time-window. The

latency in cytokine secretion is consistent with previously published observations that Th1

and Th2 differentiating cells usually need to trigger the first division to produce cytokines
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[275] (though this is not always the case for Th17 cells, data not shown).

Where is the limit between plasticity and stability ? Finally, the last chapter shows that

T cells tend to keep their cytokine secretion phenotype when co-cultured with other differ-

entiated cells, while sometimes acquiring an additional phenotype. It shows that the notion

of stability is more complex and quantitative than previously appreciated. It would be inter-

esting to separate which mechanisms are responsible for the partial stability of differentiated

cells. Stability could arise by different mechanisms such as: 1/ through positive feedbacks

from released cytokines 2/ by modulating the cytokine receptors levels and making the cell

deaf to adverse signals 3/ by inhibiting specific cytokine signaling pathways thanks to the

SOCS proteins 4/ by imprinting the expression of cytokines or transcription factors as epi-

genetic marks. It would be interesting to assess of the positive feedbacks are strong enough

to support the stability of a subset. The model could be extended with these mechanisms to

investigate their consequences.

Thoughts about the mathematical modeling approach In this work, we developed a

mathematical model to capture the key features of T helper differentiation, by taking the

core factors and their interactions, and by developing suitable, time-resolved data. Two lim-

itations of the mathematical model could be observed: First, only a minority of parameters

were actually identifiable from the data (Appendix, Figure 7.3), and second, the model only

partially reproduced the experiments where the differentiation conditions were switched at

20 hours (Figure 4.3).

Therefore, it shows that learning the properties of a network from a time-resolved data

in canonical condition is not enough to fix all its interactions (even with more than 1000

data points !). It is likely that some interactions between transcription factors are not active

during canonical differentiation. Indeed, in an inhibition, both factors should be expressed

to significant levels to detect an effect of the inhibition. Therefore, the kinetics of canonical

differentiation do not contain such information and the model could not extract them. In

this case, the switching experiments will be a good additional dataset to be included in the

fitting.

Another source of non-identifiability is the complexity of the equations and the number

of parameters. To increase the number of identifiable parameters, a solution would be to

simplify the network or the equations in a way that reduces the overall number of parame-

ters. The functions describing transcriptional activations or inhibitions (hill functions with

3 parameters) could be simplified to 2-parameters hill functions. As a preliminary test, the
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simplified equations allowed for a good fitting of the kinetics of all transcription factors but

Foxp3 (not shown), meaning that Foxp3 has specific sensitivity properties to signals, and

needs a more general hill function. Another simplification mechanism would be to randomly

remove interactions in the network, in order to discriminate which interactions are required

to fit the kinetics. However, this technique is biologically dangerous, because these inter-

actions might be inactive during the measured canonical differentiations, but active during

other experimental settings or predictions, and because the fitting method might artificially

overload redundant pathways to the removed interaction. Nevertheless, a simplification of

the equations would not solve the lack of information in the canonical differentiations, and

would only be a complementary approach to reach a full identifiability.

It is important to define first which set of data and which behaviors a model should re-

produce. In the present study, the ’training data set’ was the kinetics of transcription factors

and cytokines during differentiation. If the model does recapitulate a set of experimental

data, one can say that this model is a good representation of this data/problem. In some

sense, it means we use modeling for learning data into a structure that can, at least, repro-

duce this particular set of data when we need. It is just a condensed representation, but

not unique, of a set of experiments. In our case, the fact that the model could recapitulate

the kinetics of all factors during T cell differentiation showed that the list of hypotheses

incorporated in the model are enough to explain reality, and that they are consistent with

each-other.

The network representation would probably be equivalent to use any structure or learn-

ing method (a black box !) such as a neural network, and to include the topological data

of known interactions as additional constraints in the training dataset. Then, whatever the

structure such black box would have, as long as it matches the data, one can always make

predictions with it, and they might be true ...

Then comes the question: can we trust the predictions of a model according to data it

didn’t see before ?

It is probably impossible to know for sure...

The aim of predictions should be to discover new things or get new understanding that

suggest predictive experiments whose result will be reality. If the model allowed to discover

or design new experiments that revealed unexpected findings, the model was useful, led

to new experimental knowledge, and can glorily be put into pension ! In this case, we can

trust the predictions if they are finally experimentally true ! If the predictions failed, new

questions can emerge regarding the why, and lead to an improvement of the network.

Philippe A. ROBERT 126



5

D
is

cu
ss

io
ns

To conclude, every model has a range of validity. The training dataset is, of course,

included in this range, and, if one believes into continuity of biological systems, the model

should still be true for ’close’ situations than the initial training dataset.

5.3 Future work and extensions of the model

When the model will (hopefully) be able to reproduce the dataset of redifferentiation upon

condition switching at 20 hours (presented in Chapter 4), several predictions could be de-

rived and suggest validating experiments:

1. The differentiation under combination of different cytokines could be described, in

order to delineate which conditions lead to a ’clean’ T helper subset, and which con-

ditions would lead to a ’mixed states’ phenotype. These extreme conditions could be

tested experimentally and provide a protocol to generate bi-functional T helper cells.

The switching experiments from Th2 to iTreg at 20 hours (Figure 4.1) show the devel-

opment of Foxp3+ cells with a high expression of Gata3, and suggests that switching

experiments could be a solution to produce double positive subsets.

2. By simulating long-term differentiation, the model could help to assess if the strength

of positive feedbacks can stably maintain a subset. Strikingly, preliminary simulations

suggest that the expression of transcription factors decays with time, and would sug-

gest that the stability, in long term, is not encoded by the expression of the master

transcription factor alone. It could be via the regulation of cytokine receptor levels

for instance, and this could be tested experimentally.

3. By including the possible mechanistic hypotheses linking glutamine sensing to differ-

entiation, the model could help to separate whether the results from Chapter 2 can

be explained by mainly one pathway or not.

4. The model could be used to predict optimal redifferentiation protocols, from a fully

differentiated cell to another subset, or to describe in which cases plasticity can occur.

5. The scanning of APCs by T helper cells might lead to contradicting signals over time.

The model could simulate the encounter with several APCs providing a heterogeneity

of signals, and to describe what signal patterns are necessary for a proper Th1 dif-

ferentiation for instance. It would be a ’signal integration model’ for cytokine signals

during T helper differentiation, similarly for the model for thymic selection that we
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developed in [276]. The impact of the latencies in the first hours, when mRNA is not

translated into protein, could be assessed, and a potential time-windows for signal

integration could be revealed.

6. It would be interesting to include this model in a population model of independent

T helper cells following the same differentiation network but harboring an intrinsic

variability. The expression of cytokines and Foxp3 could be probabilistic in this model

(all-or-none expression inside each cell), allowing to directly compare a simulation

with flow cytometry results. Additionally, the consequences of naive cells heterogene-

ity could be investigated.

As a conclusion, I hope that this model will further be used to make sense from a larger

set of experimental data, and hopefully make the field of T cell differentiation a little bit

simpler ...

5.4 Conclusion and impact

In this work, we showed that the metabolic environment, in the case of glutamine levels, has

a dominant impact on T helper differentiation in comparison to the presence of cytokines.

It suggests to develop specific diets or to plan direct injections of glutamine in combination

of classical therapies in order to further modulate the immune response.

The kinetics of T helper differentiation in vitro were followed and a mathematical model

of T helper differentiation could be trained with this dataset to reproduce the experimental

data. The parameter estimation was only possible thanks to the availability of both mRNA

and protein levels over time, by using an iterative fitting strategy. Additionally, latencies

could be observed between mRNA and protein levels. It suggests to systematically include

both mRNA and protein data in the design of future modeling projects. While the model

could reproduce the kinetics of the main factors during differentiation, certain inhibitions

could not be estimated by the model. It means that monitoring the kinetics of the network’s

elements is not enough to identify all interactions between them. It would be very helpful to

develop tools to estimate the predictive power of a predefined set of experiments, or to de-

sign minimalistic sets of experiments necessary to identify all the parameters. Nevertheless,

the model was able to partially predict the kinetics of the transcription factors upon switch-

ing of the differentiation conditions, giving hope that it will soon be able to recapitulate this

data set when it will be included as an additional training data set.
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T helper differentiation is a very complex process, and involves the regulation of hun-

dreds of genes and dozens of pathways. It is interesting to see that a very strict simplification

of the biological differentiation network was able to quantitatively explain the dynamics of

the master transcription factors and cytokines. I believe that this is a big step in the quan-

titative understanding of T helper differentiation, especially in separating which genes and

pathways are most important.

T helper differentiation shows unique properties, such as a differential plasticity at early

versus late time-points, and the capacity to express multiple transcription factors at the

same time. Just by looking at the minimalistic differentiation network, one could already

speculate about reasons that could explain these properties, and I have the personal feeling

that the current mathematical model (or small extensions of it) will be able to recapitulate

the most important properties of helper T cell differentiation, and assist the development of

immunotherapies.
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7.1 Comparison of the two replicates of kinetics

Figure 7.1: Comparing kinetics replicates. Among 5 kinetics realized, 2 were technically
successful and are shown here. As the staining efficiency changes between experiments,
one replicate had to be renormalized by a coefficient (C, shown for each graph), to be in
the same scale as the other replicate. Unfortunately, the same effect appeared on the qPCR
data, and the replicates had to be normalized by a coefficient again. This is unfortunate. No
standard deviations are drawn because 1/ they depend on the normalization and 2/ each
experiment has interesting properties that would be lost upon averaging, like the fact that
IL-21 and RORγ were earlier in one replicate.
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Figure 7.2: Comparing kinetics replciates,following of previous figure.
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7.2 Parameter values and identifiability

Figure 7.3: Exemple of parameters that are identifiable or not. The identifiability analy-
sis for a parameter P was performed by scanning a large range of values for P, and by doing
a local fitting (separate fitting as described in Box S7). The cost of the local fitting is shown,
in dependence of the parameter value. The parameters KDRorγt (short name DR), PRorγt

(short name PR) and KDI L2mRNAt (short name Dm2) are identifiable because there is a
value of the parameter that gives an optimal fitting. However, as most of the parameters,
the parameter SI L4toI L2 (S2) is not identifiable because, whatever its value, a good fit can
be obtained.

Figure 7.4: List of parameter values, names and identifiability. The list of parameters
is shown next pages, together with their best fitted value, the range of values that was
autorized for the fitting for each parameter, their short name in the equations in (Box S9),
and a green tag if they are identifiable.
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7.3 Side comparison of our data with a Th0/Th17 pub-

lished kinetics

Figure 7.5: The kinetics of the three key genes for Th17 differentiations are compared

between A: a published genome-wide dataset [109] and B: our experimental data .
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7.4 Full formula

List of simulated variables (full name)

- the concentration of cytokines in the medium in ng/mL : [I L2], [I L4], [I L6], [I L12], [I L17],
[I L21], [I FNG], [T GFB];

- the concentration of transcription factors inside the cell : [T BET], [GATA3], [RORGT], [FOX P3].
There is no unit as it follows the scale of fluorescence intensity measured by FACS;

- mRNA level inside the cell, in fold induction compared to RPS9 mRNAs at the same time-point :

[I L2mRNA], [I L4mRNA], [I L17mRNA], [I L21mRNA], [I FNGmRNA], [T GFBmRNA], [T BET mRNA],

[GATA3mRNA], [RORGT mRNA], [FOX P3mRNA];

- the concentration of free blocking antibodies in the medium in mg/mL : [antiI L4], [antiI FN g],

[antiI L2];

List of time-dependent mechanisms with pre-defined functions

- the peak of signaling following TCR triggering : T CR(t),

- the state of processes showing saturation or delay. All start very small (0.001) at t 0, and increase to 1
(full capacity) with time : openI L2(t), openI L21(t), openFOX P3(t), openRORGT (t), openT BET (t),
for the chromatin opening states of these genes, t ransl(t) the translational capacity, and Secret(t) the
secretion capacity.

Equations

1. Cytokine levels in the medium are impacted by :

- production through translation (P), limited by the secretion capacity of the cell changing with
time (Secret(t)),

- degradation (K)

- binding to blocking antibodies when present in the culture (KB)

d[I L2](t)
d t

−KD,I L2.[I L2](t) PI L2.Secret(t).[I L2mRNA](t)−KB,αI L2.[I L2](t).[αI L2](t) (7.1)

d[I L4](t)
d t

−KD,I L4.[I L4](t) PI L4.Secret(t).[I L4mRNA](t)−KB,αI L4.[I L4](t).[αI L4](t) (7.2)

d[I L6](t)
d t

0 (7.3)

d[I L12](t)
d t

−KD,I L12.[I L12](t) (7.4)

d[I L17](t)
d t

−KD,I L17.[I L17](t) PI L17.Secret(t).[I L17mRNA](t) (7.5)

d[I L21](t)
d t

−KD,I L21.[I L21](t) PI L21.Secret(t).[I L21mRNA](t) (7.6)

d[I FNγ](t)

d t
−KD,I FNγ.[I FNγ](t) PI FNγ.Secret(t).[I FNγmRNA](t)−KB,αI FNγ.[I FNγ](t).[αI FNγ](t)(7.7)

d[T GFβ](t)

d t
−KD,T GFβ .[T GFβ](t) PT GFβ .Secret(t).[T GFβmRNA](t) (7.8)

(7.9)

I L6 and I L12 are not produced by T cells during in vitro-differentiation (at least, not detected). Com-
mercial I L6 does not show any degradation in my cultures.

2. Transcription factor protein levels in the cells are impacted by :

- degradation KD, increased in the case of ubiquitination (KU b),
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- production from translation (P), limited by the translational capacity of the cell (Transl(t)) which
is saturated in the first hours

d[T BET](t)

d t
−KD,T BET .[T BET](t) PT BET .Transl(t).[T BET mRNA](t) (7.10)

d[GATA3](t)
d t

−KD,GATA3.[GATA3](t).(1 KU b,T CR→GATA3.[T CR](t)) PGATA3.Transl(t).[GATA3mRNA](t)(7.11)

d[RORGT](t)

d t
−KD,RORGT .[RORGT](t) PRORGT .Transl(t).[RORGT mRNA](t) (7.12)

d[FOX P3](t)
d t

−KD,FOX P3.[FOX P3](t) PFOX P3.Transl(t).[FOX P3mRNA](t) (7.13)

(7.14)

3. mRNA levels in the cells are impacted by

- degradation KD,

- production from transcription, with basal coefficient (C), regulated by activators or inhibitors
(with linear effect K , or using hill functions with parameters K:threshold, N :slope and S:max
fold induction), and limited by the chromatin opening of specific locus (OpenGene(t))

d[I L2mRNA](t)

d t
−KD,I L2mRNA.[I L2mRNA](t) CI L2mRNA.OpenI L2(t).

(1 KT CR→I L2.[T CR](t)).

[SI L2→I L2mRNA (1−SI L2→I L2mRNA).
K

NI L2→I L2mRNA

I L2→I L2mRNA

K
NI L2→I L2mRNA

I L2→I L2mRNA
[I L2]NI L2→I L2mRNA

(t)

].

[SI L4→I L2mRNA (1−SI L4→I L2mRNA).
K

NI L4→I L2mRNA

I L4→I L2mRNA

K
NI L4→I L2mRNA

I L4→I L2mRNA
[I L4]

NI L4→I L2mRNA

(t)

] (7.15)

[dI L4mRNA](t)

d t
−KD,I L4mRNA.[I L4mRNA](t) CI L4mRNA.

[1 (1−SGATA3→I L4mRNA).
[GATA3]

NGATA3→I L4mRNA

(t)

K
NGATA3→I L4mRNA

GATA3→I L4mRNA
[GATA3]

NGATA3→I L4mRNA

(t)

] (7.16)

d[I L17mRNA](t)

d t
−KD,I L17mRNA.[I L17mRNA](t) CI L17mRNA.

[1 (1−SRORGT→I L17mRNA).
[RORGT]

NRORGT→I L17mRNA

(t)

K
NRORGT→I L17mRNA

RORGT→I L17mRNA
[RORGT]

NRORGT→I L17mRNA

(t)

] (7.17)

d[I L21mRNA](t)

d t
−KD,I L21mRNA.[I L21mRNA](t) CI L21mRNA.OpenI L21(t).

([I L6 0.5?FI L6→I L21mRNA : 1).

[1 (1−SRORGT→I L21mRNA).
[RORGT]

NRORGT→I L21mRNA

(t)

K
NRORGT→I L21mRNA

RORGT→I L21mRNA
[RORGT]

NRORGT→I L21mRNA

(t)

] (7.18)

d[I FNγmRNA](t)

d t
−KD,I FNγmRNA.[I FNγmRNA](t) CI FNγmRNA.

([I L12 0.5?FI L12→I FNγmRNA : 1).

(1 KT CR→I FNγ.[T CR](t)).

[1 (1−ST BET→I FNγmRNA).
[T BET]

NT BET→I FNγmRNA

(t)

K
NT BET→I FNγmRNA

T BET→I FNγmRNA
[T BET]

NT BET→I FNγmRNA

(t)

] (7.19)
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d[T GFβmRNA](t)

d t
−KD,T GFβmRNA.[T GFβmRNA](t) CT GFβmRNA.(1 KT CR→T GFβ .[T CR](t))(7.20)

d[T BET mRNA](t)

d t
−KD,T BET mRNA.[T BET mRNA](t) CT BET mRNA.

(1 KT CR→T BET .[T CR]).

([I L6](t) 0.5?FI L6→T BET mRNA : 1).

[1 (1−SI L12→T BET mRNA).
[I L12]NI L12→T BET mRNA

(t)

K
NI L12→T BET mRNA

I L12→T BET mRNA
[I L12]NI L12→T BET mRNA

(t)

].

[1 (1−SI FNγ→T BET mRNA).
[I FNγ]

NI FNγ→T BET mRNA

(t)

K
NI FNγ→T BET mRNA

I FNγ→T BET mRNA
[I FNγ]

NI FNγ→T BET mRNA

(t)

].

[SGATA3→T BET mRNA (1−SGATA3→T BET mRNA).
K

NGATA3→T BET mRNA

GATA3→T BET mRNA

K
NGATA3→T BET mRNA

GATA3→T BET mRNA
[GATA3]NGATA3→T BET mRNA

(t)

].

[SRORGT→T BET mRNA (1−SRORGT→T BET mRNA).
K

NRORGT→T BET mRNA

RORGT→T BET mRNA

K
NRORGT→T BET mRNA

RORGT→T BET mRNA
[RORGT]

NRORGT→T BET mRNA

(t)

](7.21)

d[GATA3mRNA](t)

d t
−KD,GATA3mRNA.[GATA3mRNA](t) CGATA3mRNA.

(1 KT CR→GATA3,POS .[T CR]).

([I L12 0.5?FI L12→GATA3mRNA : 1).

[1 (1−SI L2→GATA3mRNA).
[I L2]NI L2→GATA3mRNA

(t)

K
NI L2→GATA3mRNA

I L2→GATA3mRNA
[I L2]NI L2→GATA3mRNA

(t)

].

[1 (1−SI L4→GATA3mRNA).
[I L4]

NI L4→GATA3mRNA

(t)

K
NI L4→GATA3mRNA

I L4→GATA3mRNA
[I L4]

NI L4→GATA3mRNA

(t)

].

[1 (1−SGATA3→GATA3mRNA).
[GATA3]NGATA3→GATA3mRNA

(t)

K
NGATA3→GATA3mRNA

GATA3→GATA3mRNA
[GATA3]NGATA3→GATA3mRNA

(t)

].

[ST BET→GATA3mRNA (1−ST BET→GATA3mRNA).
K

NT BET→GATA3mRNA

T BET→GATA3mRNA

K
NT BET→GATA3mRNA

T BET→GATA3mRNA
[T BET]

NT BET→GATA3mRNA

(t)

].

[SRORGT→GATA3mRNA (1−SRORGT→GATA3mRNA).
K

NRORGT→GATA3mRNA

RORGT→GATA3mRNA

K
NRORGT→GATA3mRNA

RORGT→GATA3mRNA
[RORGT]

NRORGT→GATA3mRNA

(t)

](7.22)

d[RORGT mRNA](t)

d t
−KD,RORGT mRNA.[RORGT mRNA](t) CRORGT mRNA.OpenRORC(t).

([I L6 0.5?FI L6→RORGT mRNA : 1).

[1 (1−SI L21→RORGT mRNA).
[I L21]NI L21→RORGT mRNA

K
NI L21→RORGT mRNA

I L21→RORGT mRNA
[I L21]NI L21→RORGT mRNA

].

[1 (1−ST GFB→RORGT mRNA).
[T GFB]NT GFB→RORGT mRNA

K
NT GFB→RORGT mRNA

T GFB→RORGT mRNA
[T GFB]NT GFB→RORGT mRNA

].

[ST BET→RORGT mRNA (1−ST BET→RORGT mRNA).
K

NT BET→RORGT mRNA

T BET→RORGT mRNA

K
NT BET→RORGT mRNA

T BET→RORGT mRNA
[T BET]NT BET→RORGT mRNA

].

[SGATA3→RORGT mRNA (1−SGATA3→RORGT mRNA).
K

NGATA3→RORGT mRNA

GATA3→RORGT mRNA

K
NGATA3→RORGT mRNA

GATA3→RORGT mRNA
[GATA3]NGATA3→RORGT mRNA

].

[SFOX P3→RORGT mRNA (1−SFOX P3→RORGT mRNA).
K

NFOX P3→RORGT mRNA

FOX P3→RORGT mRNA

K
NFOX P3→RORGT mRNA

FOX P3→RORGT mRNA
[FOX P3]NFOX P3→RORGT mRNA

](7.23)
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d[FOX P3mRNA](t)

d t
−KD,FOX P3mRNA.[FOX P3mRNA](t) CFOX P3mRNA.OpenFOX P3(t).

[1 (1−SI L2→FOX P3mRNA).
[I L2]NI L2→FOX P3mRNA

(t)

K
NI L2→FOX P3mRNA

I L2→FOX P3mRNA
[I L2]NI L2→FOX P3mRNA

(t)

].

[1 (1−ST GFB→FOX P3mRNA).
[T GFB]

NT GFB→FOX P3mRNA

(t)

K
NT GFB→FOX P3mRNA

T GFB→FOX P3mRNA
[T GFB]

NT GFB→FOX P3mRNA

(t)

].

[ST BET→FOX P3mRNA (1−ST BET→FOX P3mRNA).
K

NT BET→FOX P3mRNA

T BET→FOX P3mRNA

K
NT BET→FOX P3mRNA

T BET→FOX P3mRNA
[T BET]

NT BET→FOX P3mRNA

(t)

].

[SGATA3→FOX P3mRNA (1−SGATA3→FOX P3mRNA).
K

NGATA3→FOX P3mRNA

GATA3→FOX P3mRNA

K
NGATA3→FOX P3mRNA

GATA3→FOX P3mRNA
[GATA3]NGATA3→FOX P3mRNA

(t)

].

[SRORGT→FOX P3mRNA (1−SRORGT→FOX P3mRNA).
K

NRORGT→FOX P3mRNA

RORGT→FOX P3mRNA

K
NRORGT→FOX P3mRNA

RORGT→FOX P3mRNA
[RORGT]

NRORGT→FOX P3mRNA

(t)

](7.24)

4. Remaining doses of free blocking antibodies The antibodies are stable (no degradation), and the an-
nealing is fast (KB is chosen big) and complete, meaning the complexes cytokine-antibody will stay
bound. Since the antibodies are put in saturating concentrations, the cytokines are annealed very fast.
But for later predictions, low antibody doses can be tried.

d[αI L2](t)
d t

−KB,αI L2.[I L2](t).[αI L2](t) (7.25)

d[αI L4](t)
d t

−KB,αI L4.[I L4](t).[αI L4](t) (7.26)

d[αI FNγ](t)

d t
−KB,αI FNγ.[I FNγ](t).[αI FNγ](t) (7.27)

(7.28)

5. Time-dependent mechanisms (with pre-defined kinetics)

- TCR peak, with the peak at time T CRPEAK and a maximum of T CRCOEF F

[T CR](t) (T CRCOEF F ∗ (t/3600))∗ ex p−
λ.t

3600

λ
1

T CRPEAK
; (7.29)

- For the processes showing a time-dependence (translation, secretion and chromatin opening), a
sigmoid function is used, whose kinetics is determined by FORC E parameters.

d[Secret](t)

d t
FORC ESECRET.Secret(t).(1−Secret(t)) (7.30)

d[Transl](t)

d t
FORC ETRANSL.Transl(t).(1−Transl(t)) (7.31)

d[OpenI L2](t)

d t
FORC EI L2.OpenI L2(t).(1−OpenI L2(t)) (7.32)

d[OpenI L21](t)

d t
FORC EI L21.OpenI L21(t).(1−OpenI L21(t)) (7.33)

d[OpenRORC](t)

d t
FORC ERORC .OpenRORC(t).(1−OpenRORC(t)) (7.34)

d[OpenFOX P3](t)

d t
FORC EFOX P3.OpenFOX P3(t).(1−OpenFOX P3(t)) (7.35)

(7.36)
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