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Abstract 

 

Cellular memory is a critical ability displayed by micro-organisms in order to 

adapt to potentially detrimental environmental fluctuations. In the unicellular 

eukaryote S. cerevisiae, it has been shown at the population level that cellular memory 

can take the form of a faster or a decreased response following repeated stresses.  

We here present a study on how yeasts respond to short, pulsed hyperosmotic 

stresses at the single-cell level. We analyzed the dynamical behavior of the stress 

responsive STL1 promoter fused to a fluorescent reporter using microfluidics and 

fluorescence time-lapse microscopy.  

We established that pSTL1 displays a dynamical variability in its successive 

activations following two short and repeated stresses. Despite this variability, most 

cells displayed a memory of past stresses through a decreased activity of pSTL1 upon 

repeated stresses. We showed that this memory does not require do novo protein 

synthesis. Rather, the genomic location is important for the memory since promoter 

displacement to a pericentromeric chromatin domain leads to its decreased 

transcriptional strength and to the loss of the memory. Interestingly, our results points 

towards an unreported involvement of the SIR complex on the activity of pSTL1 only 

when displaced to the pericentromeric domain in our experimental conditions.  

This study provides a quantitative description of a cellular memory that 

includes single-cell variability and points towards the contribution of the chromatin 

structure in stress memory. Our work could serve as a basis to broader studies on the 

positioning of stress response genes at subtelomeric positions in the budding yeast, 

from a genetic point of view as well as an evolutionary one. 

 

Keywords: chromosome organization, cellular memory, single cell, stress response, 

yeast, microfluidics 
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Résumé 

 

La mémoire cellulaire est une capacité critique dont font preuve les micro-

organismes pour s'adapter aux fluctuations environnementales potentiellement 

néfastes. Chez l'eucaryote unicellulaire S. cerevisiae, il a été montré à l’échelle d’une 

population que la mémoire cellulaire peut prendre la forme d'une réponse plus rapide 

ou moins prononcée suite à des stress répétés.  

Nous présentons ici une étude sur la façon dont les levures réagissent à des 

stress hyperosmotiques de courte durée à l’échelle de la cellule unique. Nous avons 

analysé le comportement dynamique du promoteur STL1, exprimé en condition de 

stress osmotique, et fusionné à un rapporteur fluorescent en faisant usage de 

microfluidique et de microscopie à fluorescence.  

Nous avons établi que pSTL1 présente une variabilité dynamique dans ses 

activations successives après deux stress courts. Malgré cette variabilité, la plupart des 

cellules présentent une mémoire des stress passés caractérisée par une diminution de 

l'activité de pSTL1. Nous avons montré que cette mémoire ne nécessite pas de nouvelle 

synthèse de protéines. L'emplacement génomique est important pour cette mémoire 

puisque le déplacement du promoteur vers un domaine chromatinien 

péricentromérique entraîne une diminution de sa force transcriptionnelle ainsi que la 

perte de la mémoire. Nos résultats indiquent aussi une implication non rapportée du 

complexe SIR sur l'activité de pSTL1 lorsqu'il est déplacé dans le domaine 

péricentromérique, dans nos conditions expérimentales.  

Cette étude fournit une description quantitative d'une mémoire cellulaire qui 

inclut la variabilité cellulaire et prend en compte la contribution de la structure de la 

chromatine sur la mémoire du stress. Nos travaux pourraient servir de base à des 

études plus larges sur le positionnement des gènes de réponse au stress en positions 

subtélomériques dans la levure, tant d'un point de vue génétique qu'évolutif. 

 

Mots clés : organisation chromosomique, mémoire cellulaire, cellule unique, réponse 

au stress, microfluidique 
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Motivation 

 

All living organisms evolve in constantly fluctuating environments that can 

take various forms. These environmental changes, defined as stresses, can be harmful 

and exert a selective pressure on cell survival. Thus, to ensure their survival, living 

organisms have developed various strategies throughout their evolution, such as 

adaptation in order to cope with a single environmental change. In some cases, 

adaptation to a first stress can serve as a learning process when the organisms face 

subsequent stresses. This type of survival strategy is defined as cellular memory. 

Therefore, the knowledge of the biological mechanisms of cellular memory is both an 

important feature to comprehend how micro-organisms as we know them now have 

evolved, as well as what could be their fate in fluctuating environments. 

 During my PhD, I aimed to understand the mechanisms behind the cellular 

memory in the budding yeast, model organism in biology. To that effect, I tested an 

endogenous yeast genetic system in a well-controlled environment which parameters 

I could change. This allowed me to test a natural genetic response to environmental 

change and ask: do budding yeast develop a memory of short repeated hyperosmotic 

stresses and if so, what are the underlying biological mechanisms? 

Before explaining the methodology I used to reach my goals (Chapter II) and 

the results I obtained (Chapter III), I will introduce several key biological concepts in 

order to understand the importance of cellular memory in the budding yeast in 

response to environmental stresses as well as the genetic strategies it implies and the 

importance of single-cell analysis. This understanding requires the knowledge of 

certain key biological concepts. 

 To that effect, I will here present S. cerevisiae, the model organism on which I 

have performed my experiments, along with some of its main characteristics, 

especially nuclear organization. I will present the basis of gene expression, which is 

intimately linked to the nuclear architecture, and introduce the key notion of 

epigenetics with an emphasis on the SIR complex which role I have investigated in the 

context of my experimental work. I will next introduce what is known about cell 

adaptation to hyperosmotic stresses. The notion of adaptation to repeated changes in 

the environment, defined as cellular memory, will subsequently be presented through 

two examples.  

My work is an attempt to go further than studies on memory usually performed 

at the population level, therefore without considering the differences that exist 

between clonal cells. To that effect, I will present in the last part of the introduction the 

origin of the cell-cell variability and the advantages of performing studies at the single-

cell level, which I have extensively done during my PhD.  
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I. Overview of the S. cerevisiae’s genetics 
 

A. Introducing the budding yeast 

 

Fungi constitute a group among the eukaryotes, which includes yeast. 

Saccharomyces cerevisiae, also known as the budding yeast, the baker yeast or even the 

brewing yeast, is a type of yeast that is 3-6µm large and naturally found on ripped 

grapes. The budding yeast was first reported to have appeared in Mesopotamia (Liti, 

2015), but a recent study tends to put its geographic origin in East Asia (Peter et al., 

2018). The budding yeast is supposedly the first micro-organism to have ever been 

domesticated by mankind. Over the course of thousands of years of human 

civilization, yeast has been notoriously used for brewing1 thanks to its ability to 

perform alcoholic fermentation, and baking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Although Fungi, plants and animals have evolved separately for several 

millions of years, they all are eukaryotes thus share many common genetic and 

metabolic features. However, the budding yeast is easy to select, cultivate, conserve 

and engineer compared to other eukaryotes. As a result, S. cerevisiae enabled the 

                                                             
1 Amusingly, a study showed that the strains of yeast used by mankind in order to make alcoholic 

beverages are actually the evolutionary outcome of flies eating specific yeast because of their taste, 

therefore causing a natural selection that constrained mankind’s choice (Christiaens et al., 2014). 

Figure 1-1. Electron microscopy image of haploid budding yeast. The budding 
yeast, in its haploid form, has an ovoid shape of 3-6µm. The red arrow shows an 
example of a scar that follows the budding process leading to the creation of a 
daughter cell.  Picture from mpg.de 
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establishment of most of the basis in molecular biology and stands out as a model 

organism in biology (Botstein et al., 2011) 

The budding yeast can either be found in haploid or diploid form, respectively 

with one or two copies of each of its chromosomes where its genetic information is 

contained. I will detail in a later part the notion of chromosome. While human cells 

take on average 20h to divide, S. cerevisiae divides on average every 90-100min in 

standard laboratory conditions. The budding yeast’s division is asymmetrical (Lord 

and Wheals, 1980). This allows the distinction between the original cell (mother) and 

its progeny (daughter).  

The division of a haploid cell consists in the bud and the duplication of the 

genetic material. This constitutes the S phase. The cell then undergoes a checkpoint 

defined as G2 phase during which it prepares for the segregation of the duplicated 

DNA, then enters the M phase during which mitosis is performed. The genetic material 

will be equally distributed between the mother and the daughter cell which is still in 

the form of a bud almost the same size of the mother. The cell then undergoes 

cytokinesis, meaning that mother and newly formed daughter will separate from each 

other. Eventually, they will both enter the G1 phase, a checkpoint that will allow the 

entry in the S phase if no errors such as DNA damages are detected (Chen et al., 2000; 

Li et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2. Cell-cycle of the budding yeast. Haploid yeast that successfully pass the G1 checkpoint will enter the S 
phase, characterized by duplication of the genetic material and start of the budding. After successfully passing the 
G2 checkpoint, the yeast will enter the M phase, during which it will perform mitosis, then cytokinesis. 
Haploid of different mating type will shmoo and form a diploid that will follow the same cell cycle as a haploid.  
Starvation of the diploid causes the formation of ascopores and a subsequent restoration of optimal growth 
conditions causes the sporulation. Image from Encyclopedia of Life Sciences. 
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However, because the division is asymmetric, the passive repartition of proteins 

between mother and daughter is not necessary identical. Specific complexes of 

proteins such as the polarisome (Casamayor, 2002) can allow the active passing of 

proteins to the daughter cell. Interestingly proteins can be retained in ageing mothers, 

such as extrachromosomal rDNA circles (ERCs) (Kennedy and McCormick, 2011; 

Sinclair and Guarente, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In its haploid form, the budding yeast displays two mating types defined as a 

and α. Haploid yeast of opposite mating type, when given the opportunity, will 

systematically mate and form a diploid (Schrick and Hartwell, 1997). As a result, in its 

natural environment, the budding yeast is usually found in diploid form in non-

stressing condition (Liti, 2015). The diploid will perform its cell-cycle in a similar 

fashion than the haploid cell. However, in challenging environments, especially when 

Figure 1-3. ERCs are not transmitted to the daughter cell. (A) Admitted model of retention of ERCs. Maternal nuclear 
pore complexes (NPCs) are retained in the mother nucleus during mitosis. The ERCs are tethered to the NPCs, thus 
retained. (B) New proposed model. The maternal NPCs are not retained during mitosis, but both the small size of the 
bud neck and the short duration of mitosis makes it impossible the diffusion of the ERCs, thus their heritability. Image 
from Kennedy and McCormick, 2011.  
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nutrients are lacking, the diploid will enter meiosis and form spores that will 

eventually lead to four haploids cells, two a and two α (Neiman, 2005). 

From a genomic point of view, a haploid budding yeast has over 6000 genes 

distributed among 16 chromosomes and a genome of 12Mb (Goffeau et al, 1996). Of 

comparison, a haploid human cells has an estimated 20000 genes distributed among 

23 chromosomes with a total of 3400Mb (Venter et al., 2001). The yeast coding 

sequences represent almost 75% of the genome. Such compactness is much more 

pronounced than in most eukaryotes. For instance, only 10% of the human’s genome 

codes for functioning proteins (Venter et al., 2001).  

 

S. cerevisiae performs homologous recombination, inter alia as a mechanism to 

counter DNA damages such as double strand breaks. Although it is not clear why, its 

ability to perform homologous recombination is so efficient compared to other 

eukaryotes it allows the engineering of its genome through DNA fragments 

integration in the yeast genome through cell transformation (Struhl et al., 1979).  

The ease to genetically engineer the budding yeast has led to major yeast collections 

widely used in the yeast community:  

- The deletion collection (Giaever et al., 2002). The original idea was to identify 

the role of the budding yeast’s genes through the study of yeast that are missing 

specific genes. To that effect, a collection of yeast strains deleted for 90% of the 

genes has been created. This eventually led to the creation of the Saccharomyces 

Genome Database (SGD)2, a comprehensive database where the sequences and 

details on the functions of the yeast genes can be found. 

 

- The GFP collection (Huh et al., 2003): the improvements of biological tools 

reached a peak with the use of the Green Fluorescence Protein (GFP) that allows 

to tag proteins of interest and analyze their dynamics and localization in a living 

cells. The GFP collection consists in a collection of strains where most genes are 

tagged with a fluorescence reporter. 

 

B. Chromosome organization in the budding yeast 

 

1. Necessity of the packaging of the genetic material 

 

                                                             
2 https://www.yeastgenome.org/ 
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As I have previously mentioned, the size of the yeast genome is 12Mbp. It has 

been established3 that 1bp=0.33 nm, therefore the size of S. cerevisiae’s linear DNA in a 

cell is ~4mm. This length of molecule has to be contained in a nucleus that has an 

average size of 1µm. This means that for such genetic material to be contained in the 

nucleus, it has to be consequently compacted in it. To that effect, the DNA is coiled 

around structures called nucleosomes. 

A nucleosome is an assembly of two copies of the four proteins H2A, H2B, H3, 

and H4 named core histones. 147 bp of DNA (~49 nm) is coiled around a nucleosome. 

A quick calculation shows that in order to have a completely packaged DNA in a 

yeast’s nucleus, around 80 000 nucleosomes are required.    

 

 

 

 

 

 

 

 

 

 

The DNA around nucleosomes forms fibers: this is defined as the chromatin 

(Kornberg, 1974). The chromatin itself is condensed into microscopic structures: the 

chromosomes4. Chromosomes are of different size, depending on the eukaryote 

considered. Importantly, the number of chromosomes does not necessarily reflect on 

the complexity of the organism. For instance, humans have 46 chromosomes and are 

                                                             
3 Molecular Biology of the Cell 6th edition ISBN: 9780815344643 
4 First published by Schwan, Smith and Schleiden in 1847 in Microscopical researches into the accordance in the 
structure and growth of animals and plants. 

Figure 1-4. Schematic diagram of a nucleosome. Each nucleosome consists of two copies of the four types of core histones 
H2A, H2B, H3, and H4, around which 147 base pairs of DNA are wrapped forming 1.67 turns. Linker DNA is located between 
nucleosomes with a variable length ranging between 8 and 114 bp depending on the species, cell type, and chromatin region. 
From Koprinarova et al, 2016.  
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viewed as more complex than goldfishes that have over a hundred chromosomes 

(Venter et al., 2001).  

The yeast nucleus itself is characterized by two domains: the nucleoplasm and 

the nucleolus that can occupy 1/3 of the nucleus. The latter serves as a factory for 

biogenesis of ribosomes (Roeder and Rutter, 1970).  

As chromosomes are densely packed in the nucleus, in a molecular crowded 

environment, it was long thought that this packing would drastically constrain the 

mobility of chromosomes, making impossible to have an emergence of a spatially 

functional organization. The nuclear functions would then rely on the biochemistry of 

the nucleus only. Research of the past 15 years have however established that the 

nucleus is a highly spatially non-random organized structure. 

 

2. The Rabl conformation 

 

In the budding yeast, chromosomes adopt a configuration within the nucleus 

that is called Rabl (Marshall et al., 1997). Chromosomes’ centromeres, composed of a 

single nucleosome in the budding yeast, are tethered to a structure called the Spindle 

Pole Body (SPB) through nuclear microtubules. The SPB consists in a single structure 

embedded in the nuclear envelope, found opposite the nucleolus in the G1 stage of the 

cell-cycle (Rout, 1990).  

 

In addition to the SPB and anchoring proteins, another key feature of the 

nucleus is a structure defined as the Nuclear Pore Complex (NPC). The NPC is an 

ensemble of 456 nucleoporins with a size of 50MDa that is embedded in the nuclear 

envelope (Alber et al., 2007; Rout et al., 2000). The budding yeast’s nucleus is covered 

with about 200 NPCs. To make a physicist approximation, it resembles a cylinder of 

96nm diameter and 35nm width. The NPC enables the exchange of small molecules 

(through diffusion) and active exchange of macro-molecules between the nucleus and 

the cytoplasm (Ishii et al.). In particular, the NPCs controls trafficking of proteins from 

nucleus to the cytoplasm, and vice versa. 

 

The extremities of the chromosomes are important features named telomeres, 

which spread away from the centromeres and are tethered to the Nuclear envelop 

(Palladino et al., 1993). Telomeres have notoriously been linked to the process of 

biological ageing as they shorten over time (Austriaco and Guarente, 1997). They are 

also associated with a protective role against chromosome fusion and degradation 

(Sandell, 1993). Unlike the rest of chromosomes, yeast telomeres do not contain 
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nucleosomes (Wright et al., 1992). The haploid budding yeast has 32 telomeres that are 

clustered to the nuclear envelop into an average of 8 foci (Gotta, 1996).   

 

 

 

 

 

 

 

 

 

 

Telomeres consist in 200-300bp irregular TG1-3 repeats in S. cerevisiae. As they do 

not contain any genes, they do not produce any functional proteins. Surprisingly, 

telomeres are transcribed into long non coding mRNA called Telomeric containing 

Repeated RNA (TERRA). One of the roles of the TERRA is the regulation of telomerase 

activity, linked to cellular ageing through the control of the shortening of telomeres 

(Iglesias et al., 2011; Luke and Lingner, 2009).   

Upstream telomeres, up to 30-40kbp, are regions that contain highly repeated 

sequences and few genes, usually in several copies. Such regions are called 

subtelomeres (Louis, 2014). The current experimental characterizations of 

subtelomeres point towards an evolutionary and adaptive role. In the budding yeast, 

subtelomeres are also proposed to be the playground of the creation of novel genetic 

functions, since this is where new genes are created (Snoek et al., 2014). Thus 

subtelomeres are considered to be gene reservoirs.  

Figure 1-5. Fluorescence observation of telomeres clusters. A RAP1-GFP strain is observed under the 
fluorescence light. As the Rap1 protein is bound to the telomeres, observing this proteins allows the observation 
of telomeres clusters. The red arrow points to a Rap1 focci. From Hozé et al, 2013. 
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Chromosomes can be viewed as polymeric fibers but for a long time, no 

quantitative description was made to characterize their behavior. Physicists have 

shown that chromosomes can be described by polymer physics. As a result, various 

parameters such as persistence length, rigidity and compaction have been associated 

for the yeast chromosomes (Wong et al., 2012).  

The modeling of chromosomes, along with experimental evidences, showed 

that chromosomes do not interact much between one another, but rather intra-

chromosomal interactions occur. This lack of interaction between chromosomes led 

the way to thinking that one chromosome could be constrained to stay in specific areas 

of the nucleus (Burgess and Kleckner, 1999). This is the basis of the notion of 

chromosome territories.  

 

The genetic information has to be treated in specific manners depending for 

instance on the external environment. It can therefore be asked if this implies that local 

changes on the chromosomes have to be made. This would mean that biophysical 

parameters associated to the chromosomes are not fixed in time, but subjected to 

changes that are triggered by proteins in the nucleus. As a result, part of the nuclear 

function and organization would be an interplay between local structural changes and 

biochemical changes.   

Figure 1-6. Nuclear organization in the budding yeast. (Left) Rabl conformation. Chromosomes (in black) have their centromeres 
tethered to the spindle pole body (purple). The extremities of the chromosomes are tethered to the nuclear periphery. (Right) 
Telomeres are clustered at the nuclear periphery (red) and chromosome in an “active state” relocate to the nuclear pore complex 
(green). From Zimmer & Fabre, 2010. 



25 
 

C. Basics of gene expression  

 

The genetic information has to be read in order to produce proteins of interest, 

necessary for any living organism to perform metabolic function throughout their 

lives. In the case of genes transcribed by RNA Polymerase II, mRNAs are produced 

upon binding of Pol II along with other factors to the promoter of a target gene. Once 

produced, mRNAs are exported from the nucleus through NPCs and serve as a 

template for translation.  

Most studies on gene expression focused on investigating the sequences of 

genes, the characterization of the associated promoters and the specific transcription 

factors require to the transcription. More recently, thanks to the improvement and 

development of next generation sequencing and whole genome approaches, the role 

of the structure of the chromatin was acknowledged to be as important as the 

biochemical processes occurring in the nucleus.  

The role of the structure of the chromatin is fairly apparent if we adopt a simple 

model that assumes that the packing of the chromatin is homogenous in an initial state. 

The budding yeast has genes with an average size of 2kb. As DNA, and consequently 

genes, are coiled every 147bp around histones, when the state of a gene changes (from 

not transcribed to transcribed for instance), a seemingly contradiction appears 

between the accessibility and realization of the transcription of DNA due to the fact 

that DNA is tightly compacted. An obvious solution would be a change in the 

chromatin structure in order to loosen the DNA around nucleosomes, or even locally 

evict the nucleosomes altogether, to make the DNA accessible to transcription factors. 

The yeast has two genes encoding for each of the core histones, which 

incidentally makes easier the studies of histones during transcription. For instance, 

changes in the histones level have been shown to impact gene expression (Norris and 

Osley, 1987). Experimental studies have also shown that the depletion of the H4 

histone led to a global change of the chromatin and to the activity of the PHO5 

promoter under experimental conditions where it shouldn’t be expressed (Han and 

Grunstein, 1988). Overall, this implies that the presence of histones and their level is 

essential for gene expression, and must be tightly regulated throughout all events that 

can occur in the life of the yeast such as environmental stress.  

Analysis of certain genes that are in a repressed state, shows that the associated 

promoters contain a large amount of nucleosomes that block the access of transcription 

factors (Han and Grunstein, 1988). Conversely, when the promoter is activated, the 

nucleosomes are evicted with the help of chromatin remodeler complexes (see below), 

allowing factors to bind to the chromatin and the transcription of the gene (Gutiérrez 

et al., 2007). Gene expression is therefore an interplay between repression state of a 

promoter and transcription factors overcoming it.  
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Gene expression is a costly phenomenon in terms of energy. As a result, all 

genes are not expressed at all times, from one part to optimize the energy used in the 

cell, and because of the uselessness to transcribe proteins that won’t be required in 

unnecessary physiological conditions. In particular, the yeast possess genes called 

housekeeping genes, involved in the day-to-day activity of the cell. The promoters of 

these genes are mostly nucleosome free regions which makes them highly expressed. 

(Basehoar et al., 2004; Huisinga and Pugh, 2004). The yeast also possesses stress genes 

that are usually in regions enriched with nucleosomes and are repressed in normal 

conditions (Bernstein et al., 2004). As a result, transcription factors binding sites at the 

promoter of stress genes are inaccessible, which creates a competition between the 

nucleosome repression of stress genes and transcription factors trying to bind to them. 

It has been hypothesized that this competition contributes to the cell-cell variability, a 

concept that will be detailed in a later part (SvarenS et al., 1994).  

 

D. Basis of chromatin regulation and epigenetics 

 

As I have presented above, gene expression is a dynamical process with local 

modifications on the chromatin enabling changes of chromatin configuration and 

protein production in a given period. This directly affects gene expression, and is done 

so in a well-regulated manner. An important point is that a regulated change in gene 

expression is never made directly through a change in the gene’s sequence5.  

As gene expression is a dynamical process, the state of compaction of DNA 

around nucleosomes has to be temporarily and locally changed during transcriptional 

events, or even after6 (Bernstein et al., 2004). The process of temporary alteration of 

histones can be done via two distinct processes.  

On one hand, through the involvement of specific proteins called ATP-

chromatin remodelers (Muchardt and Yaniv, 1999). In the budding yeast, there exists 

several families of such remodelers, including the SWItch/Sucrose Non-Fermentable 

(Swi/Snf) superfamily (Tsukiyama et al., 1999). The latter is historically the first 

identified chromatin remodeler able to modify the chromatin structure, favoring 

transcription.  

Chromatin remodelers function through hydrolysis of ATP, which can induce 

local changes in the conformation of nucleosomes, sometimes through the recruitment 

                                                             
5 Changes in a gene’s sequence can occur through mutations, DNA damages or evolutionary 

mechanisms such as transposition (Hershberg, 2015; Langley’; Nei). As these events are random, they 

can either induce no changes in gene expression (silent mutation) or lead to an uncontrolled change of 

in gene expression that thereafter cause a malfunction in the gene that might be detrimental to the cell 

and lead to its death.  

6 This is referred to as post-transcriptional events. 
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of specific proteins, for instance a variant7 of the histone H2A is H2A.Z. It is involved 

in several genetic processes including the regulation of transcription and DNA repair 

(Jackson, 2000; Santisteban et al., 2000). Although not essential to yeast viability, it is 

closely linked to the interaction between gene expression and chromatin structure.  

I will here present two important points of the activity of the Swi/Snf system for 

the results that will be presented in this manuscript. It has been shown that the Swi/Snf 

complex is involved in stress response. It regulates the genes expressed under the 

control of heat-shock factor (Erkina et al., 2008). The response to heat-shock involves 

genes that are also expressed in different stress conditions, such as the osmotic stress. 

Another key feature of the Swi/Snf system is its implication in the regulation of genes 

that are repressed in glucose conditions (Geng and Laurent, 2004). The STL1 promoter, 

which dynamics I have investigated during this study, is also repressed in glucose 

conditions (Ferreira et al., 2005). 

DNA is a negatively charged molecule because of its phosphate composition. 

Depending on the charge on nucleosomes, DNA will either be attracted by 

nucleosomes or repelled by them. In the most basal state, nucleosomes are positively 

charged, therefore the interaction between DNA and nucleosome is strong: the 

chromatin is inaccessible to transcription factors (SvarenS et al., 1994). Changes of the 

nucleosomes are made through changes on the histones. In addition to ATP-chromatin 

remodelers, a possible way to modify histones is through covalent histone-modifying 

complexes.  

 

 

The modification of the charge of a nucleosome is done through addition or 

removal of specific residues at N tails of histones (Strahl and Allis, 2000). It exists 

several processes allowing to perform nucleosomes modifications. To better 

understand the reasoning behind the experiments dealing with nucleosome 

modifications performed during my PhD, I will here present two processes8 that are:  

Acetylation: the addition of an acetyl group on histones causes the nucleosomes 

to be negatively charged, thus reducing the affinity between DNA and nucleosome 

and loosening the chromatin: transcription factors can bind the DNA (Grunstein, 

1997). This process is made through proteins named Histones Acetyl Transferases 

(HATs).  

 

                                                             
7 The budding yeast also possesses another histone H3 variant that is CenH3, found at centromeres’ 
nucleosome. 
8 In addition to acetylation and deacetylation, it exists processes such as summoylation, phosphorylation, 
ubiquityation. A comprehensive summary can be found in Bannister and Kouzarides, 2011. 
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Deacetylation: the removal of an acetyl group on histones increases the affinity 

between nucleosomes and chromatin. This process is performed by Histone 

DeACetylases (HDACs). An example is the protein Rpd3. Its influence on transcription 

during hyperosmotic stress conditions will be described in a later section (de Nadal et 

al., 2004). 

 

In general, acetylation and HATs are associated to gene expression; 

deacetylation and HDACs are associated to repression. However there are exceptions. 

It has been observed that they can behave either as activators or repressors. For 

instance, the HAT Gcn5 can repress certain genes in the budding yeast (Vogelauer et 

al., 2000). 

 

The histone code corresponds to all modifications applied on histones and 

could give the keys to a complete description of gene regulation (Jenuwein, 2001). 

However, many exceptions to the mechanisms of chromatin remodeling9, blurs the 

understanding of histone role on transcriptional regulation. 

 

An important remark is that gene position along a chromosome can be 

important for its level of expression. As the chromatin can locally be different because 

of local changes of structure or the presence of a high amount of specific protein at 

specific locations, changing the position of a gene may alter its gene expression. Such 

                                                             
9 An example is the fact that deacetylation is usually associated to gene repression but there are many counter 
examples to this assessment (Gcn5, Rpd3 for instance).  

Figure 1-8. Schematic representation of the action of chromatin remodeler factors. Chromatin remodeling factors can 
remove (left) or slide (middle) nucleosomes. Histone-modifying enzymes can add or remove covalent modifications to certain 
histone residues. For example, histone acetyltransferases (HATs) can add an acetyl residue, which can be removed by histone 
deacetylases (HDACs). Acetyl groups add an electronegative charge to the histones, which repulses the negatively charged 
DNA polymer, resulting in a modified, “looser” DNA-histone interaction and an increased accessibility of the DNA. From 
Jansen and Verstrepen, 2011 
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phenomenon is referred to as position effect10. A very particular example in the 

budding yeast is the Telomere Position Effect (TPE):  the closer a gene is moved to 

telomeres, the more decreased its transcriptional activity is (Aparicio et al., 1991; Rine’ 

and Herskowitz, 1987).  

Any change in the current chromatin state that affects its gene expression 

without a change in the gene’s sequence, and produces a stable subsequent phenotype 

that can be passed on through cellular division is referred to as epigenetics.  

 

E. Example of epigenetic process: the SIR complex 

 

In this paragraph, I will detail an epigenetic process occurring through specific 

proteins that I have investigated during my PhD and proved to be a key feature to my 

results. 

 As I have presented before, subtelomeres are chromosomal domains in the 

budding yeast that contain genes that are not expressed in normal conditions and are 

submitted to transcriptional silencing. This phenomenon occurs through the Silent 

Information Regulator complex (Guarente, 1999; Moazed et al., 1997).  

The silencing of genes11 was originally described in the case of the mating type 

in the budding yeast. In its haploid form, the a or α mating type are expressed, never 

both at the same time. The genes responsible for the mating types are HML and HMR, 

both located at the subtelomeres of the chromosome III. Essentially, the HML or HMR 

information is copied at the MAT specific locus. Once inserted, the budding yeast has 

a fixed mating type (Kostriken et al., 1983). 

A yeast of mating type a (resp. α) will express a-specific transcription factors 

(resp. α -transcription factors) at the mating-type locus. Haploids of different mating 

type can mate and form a diploid. Such diploid will both express a and α factors which 

cancels out the ability of the diploid to mate. It was thus proposed that a yeast that has 

the a mating type strictly possess the HML gene, and a yeast of mating type α only has 

the HMR gene. However, it was discovered that haploid mating-deficient a- yeast 

could switch to an α mating type, implying that a haploid contains both mating type 

                                                             
10 More information can be found in Wilson C, Bellen HJ, Gehring WJ. Position effects on eukaryotic gene 
expression. Annu Rev Cell Biol. 1990;6:679-714 
11 In the budding yeast, silencing is chromatin context dependent. Chromosomal regions of the budding yeast 
other than the subtelomeres are subjected to transcriptional silencing, notably part of the ribosomal DNA 
repeats (rDNA). Although the silencing of the subtelomere is performed through the SIR complex, the silencing 
of the rDNA is made via the REgulator of Nucleolar silencing and Telophase (RENT) (Huang, 2003). A common 
point between the SIR complex and the RENT complex is that both involve the protein Sir2 (Tanny et al., 2004). 
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genes in its genome, one of which has to be silenced12. This was one of the first 

introduction of the notion of gene silencing (Nakayama et al., 1988).   

 

 

 

Subsequent screening experiments showed the existence of a complex of 

proteins that is responsible for the silencing at a mating type locus and form a family 

named the Silent Information Regulator (SIR) complex. The SIR complex is a family 

composed of 4 proteins Sir1/2/3/4 encoded by four genes required for transcriptional 

silencing (Moazed et al., 1997). Using truncated subtelomeres, it has been shown that 

the SIR complex binds to telomeres and spreads to the subtelomeres. 

The SIR proteins are first recruited through specific factors and eventually form 

a complex that prevents the access of the transcription factors to their targets. For 

instance, RapI, a factor that binds to the TG1-3 repeats of the telomeres, can recruit either 

Sir3 or Sir4 (Marcand et al. 1996; Moretti et al. 1994) . Other factors are more specific, 

such as AbfI that recruits exclusively Sir3 and the YKU complex that recruits 

exclusively Sir413 (Guarente, 1999; Luo, 2002). The proteins Sir3 and Sir2 can bind to 

Sir4 in order to form a complex. The Sir4 part of the complex will then bind to the 

chromatin. The protein Sir2 will deacetylate the H3K16ac, allowing Sir3 to bind to 

H3K16dac. In turn, Sir3 will recruit Sir2-Sir4, causing the spreading of the SIR complex 

along the chromatin. SIR spreading will prevent the access of the RNA Polymerase II 

and thus the transcription of the genes in the newly silenced domain (Liou et al., 2005). 

Spreading is stopped when a regulatory element is encountered. Also, the amount of 

available SIR proteins could limit the formation of SIR complexes and implicitly cause 

the arrest of the silencing spreading (Buchberger et al., 2008). Finally, deletion of a SIR 

protein compromises the formation of the SIR complex altogether.  

                                                             
12 The budding yeast can naturally switch between mating types, through the HO endonuclease. This 

enzyme causes a double strand break at the MAT locus, permitting homothallic switching. Haploid 

strains used in labs are deleted for this endonuclease, which constrains a population of clonal yeast to 

always be in a specific mating type, therefore preventing the emergence of diploids. 
13 The clustering of the telomeres is caused by the dual role of Sir4, involved both in the silencing and the 
anchoring at the NPC . 

Figure 1-9. Sketch of the mating type loci on the chromosome III. The SIR complex is recruited at telomeres and to the 
HML and HMR locus (either to one of these locus in a haploid cell, to both on these locus in a diploid cell). From 
Gartenberg et al, 2000. 
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Interestingly, a study has shown that a HMR loci which ability to recruit the SIR 

complex has been cancelled out can still be silenced if anchored to the nuclear 

periphery (Andrulis et al., 1998). This shows that nuclear organization plays an 

important in transcriptional regulation. However, two very recent studies are leading 

the way to a novel interpretation of the notion of nuclear organization in the budding 

yeast. In particular, both studies used synthetic biology tools in order to fuse all 16 

chromosomes of the yeast into a single (or two) chromosome (Luo et al., 2018; Shao et 

al., 2018). All the notions presented above do not seem to apply anymore in the case of 

this new synthetic chromosome. Very surprisingly however, haploid cells with such a 

chromosome do not show growth defects and their transcriptome is almost similar to 

the wild type. Differences in growth were observed in challenging environments. 

These studies prove a great plasticity and robustness of haploid budding yeasts to 

Figure 1-10. Comprehensive summary of the SIR complex assembly. (a) Schematic of the Sir2-3-4 complex as a heterotrimer. 
(b) Formation of subcomplexes of the SIR complex through dimerization of either Sir3 or Sir4 C-terminal domains. (c) Model 
of the assembly of the silent HMR locus: Sir2-Sir4 binds to the chromatin and Sir2 deacetylate the H3K16ac, allowing Sir3 
to bind to H3K16dac.Sir3 will then recruit the Sir2-SIr4 complex that will bind the chromatin and start the process anew. 
(d) The conversion of SIR-bound nucleosomes into a repressed domain may require compaction or folding into a higher-
order structure, depicted as a highly compact HMR locus, or as a folded telomeric domain. From Kueng et al, 2013. 
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genome changes, but a necessity of a nuclear organization to better adaption to 

challenging environments.  

 

II. Environmental stress and adaptation 
 

All living organisms, whether unicellular or multicellular, evolve in fluctuating 

environments. This implies that some of the physiological properties of the cells (such 

as protein synthesis) need to be adjusted or fine-tuned dynamically. This is done 

through the use of specific sensors and regulatory networks working in a dynamic 

fashion (Gasch and Werner-Washburne, 2002).   

When environmental fluctuations have mild intensities, they can be tolerated 

by those organisms, i.e. do not require a specific response. However, these fluctuations 

can be very intense and cause harm to the organisms. In this case, such fluctuations 

are defined as environmental stress. They necessitate an adequate strategy from the 

organisms in order to ensure their survival, and implicitly cause a selective pressure 

on them (Coleman and Chisholm, 2010).  

Throughout their evolution, living organisms have developed strategies in 

order to actively try to survive such environmental stresses. The case where these 

organisms have successfully survived the stress through an active, functional strategy 

is defined as adaptation. 

The adaptation to an environmental stress requires a very complex genetic 

response that is not universal. Indeed, micro-organisms have evolved different 

strategies in order to survive stresses are different, although similarities may occur. In 

addition, as there are numerous environmental stresses, numerous strategies exist. 

Such diversity adds a high level of complexity to studies on stresses. 

It exists several definitions of how micro-organism can respond to 

environmental stresses: 

- Tolerance: the fact that a micro-organism does not have an active strategy to 

fight a stress (either because it cannot or the stress is not strong enough to 

necessitate such a response) and manages to survive it. 

 

- Adaptation: the fact that a cell has an active response to fight a stress and 

successfully survives it 

 

- Memory: following an adaptation to a stress, a micro-organism improves its 

response to a subsequent stress in order to have a better adaptation. In a certain 

measure, this can be viewed as an extension of the adaptation to repeated 

stresses. 
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In the following parts, I will focus on the response to environmental changes in 

the budding yeast and emphasize on the response to hyperosmotic stresses. I will then 

present two key examples of cellular memory in response to environmental stresses. 

 

A. Environmental stress response program 

 

In their natural environment, budding yeast are subjugated to various stresses 

such as changes in the osmolarity, increase of the amount of UV lights, changes in the 

acidity, sudden presence of toxic products, food starvation. 

The effects of specific stresses are different, so the response to a particular stress 

can differ from another stress. Interestingly, it has been observed in the budding yeast 

that when cells are exposed to a mild dose of a stress, it adapts better to lethal doses of 

other stresses (Berry and Gasch, 2008; Święciło, 2016). The adaptation to a specific 

stress can cause the yeast to better adapt to a different stress, suggesting the existence 

of a crosstalk between the strategies of responses to different stresses.  

More surprisingly, with the advances in technology that permitted genome 

wide studies, it appeared that the genes involved in the response to a specific stress 

(heat shock) are also activated when the cells is subjugated to a different stress (Schmitt 

and McEntee, 1996). Sequences known as the STRE14-sequences were identified in most 

stress-response promoters and linked to two transcription factors Msn2 and Msn4, 

known as the general stress transcription factor (Martínez-Pastor et al., 1996). The 

general stress response to external environments was later better characterized and 

named Environmental Stress Response program (Gasch et al., 2000).  

 

                                                             
14 Stress Response Elements (STRE) are DNA sequences found in promoters of stress response genes. 
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B. Example of an adaptation: the budding yeast’s response to 

hyperosmotic stresses 

 

Budding yeasts are naturally found on grapes, which can rot and thus release 

molecules in their surroundings such as fructose. A change in the fructose 

concentration can lead to a local variation of the osmolarity in the environment. The 

response to osmotic changes has been extensively studied in S. cerevisiae and is well-

characterized. 

Osmotic stresses can happen in two fashions that lead to different physiological 

effects: either the external osmolarity increases or it decreases. An osmotic stress is by 

essence a physical constrain applied on the cell. In the case of a decrease in the 

osmolarity of the external environment, water will flow in the yeast. This causes an 

increase of the yeast volume which can sometimes causes the cell to burst. Conversely, 

in the case of an increase in the osmolarity of the environment, water will flow out of 

the yeast, leading to a shrinkage of the cell’s volume. In both cases, these constraints 

applied on the cell compromise the integrity of the cell wall, and consequently 

biological events related to it, such as mating or budding (Morris et al., 1986). 

Moreover, as any osmotic stress causes a change in the water’s activity since the 

Figure 1-11. Transcriptomes of the genes from the ESR, in various stress conditions. Gene expression change over 
1h following stress for genes composing the Environmental Stress Response (ESR) which are transcriptionally 
affected by most stress types. From Gasch et al, 2000. 
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number of available water molecules either increases or decreases, the day-to-day 

biochemical reactions occurring in the cell are compromised (Morris et al., 1986). 

Therefore it is vital that following an osmotic stress, the yeast returns in homeostasis 

with its environment. The strategy to survive to hyperosmotic stresses consists in 

using glycerol (either by biosynthesis or by taking it from the environment if it is 

available) in order to increase the cell’s volume, forcing the water to flow in and 

recovering the homeostasis (Albertyn et al., 1994). A hyperosmotic stress will cause an 

imbalance of pressure in the yeast. This will be detected by osmosensors that will 

trigger the activation of the High Osmolarity Glycerol (HOG) pathway (Dihazi et al., 

2004; Miermont et al., 2011; O’Rourke et al., 2002).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two branches of the pathway, related to specific osmosensors, will lead to 

the phosphorylation of the cytoplasmic protein Hog1, causing its translocation into the 

nucleus where it will participate in the activation and regulation of an estimated 10% 

of the genome, including the genes GPD1 (responsible for the biosynthesis of the 

glycerol) and the glycerol transporter STL1 that I will describe in more detail below 

(Ferreira et al., 2005). 

Figure 1-12. Comprehensive sketch of the Hog Pathway. The pathway is composed of a Sln1 and Sho1 modules that 
sense the osmotic change in the environment and transmit the information to the mitogen activated protein (MAP) 
kinase module, ending on the MAPKK Pbs2. The later phosphorylates the cytoplasmic protein Hog1, causing its 
translocation in the nucleus and the eventual upregulation of stress response genes. From Bettinger et al, 2007 
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Following the stress and activation of the HOG pathway, the cell will eventually 

adapt by accumulating glycerol and getting back in homeostasis with its external 

environment. This adaptation takes an estimated 15-30min (Miermont et al., 2011). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

1. A few consequences of the compression due to hyperosmotic 

stress 

 

From a transcriptional perspective, a hyperosmotic stress causes a dramatic 

change in the transcription profile in the budding yeast, as stress response genes will 

be activated and housekeeping genes downregulated (Schuller et al.,1994). 

Interestingly, the stability of the mRNA of housekeeping genes present at the moment 

of the stress is also affected: these mRNA will be destabilized. Conversely, mRNA 

Figure 1-13. Sequential steps of the HOG pathway in response to a hyperosmotic stress. (1) Increase of the osmolarity of 
the environment causes the cells to lose their water and shrink. (2) Within less than 1min: osmosensors at the membrane 
detect the osmotic imbalance and start the activation of the Hog Pathway. (3) Within a minute, the Hog Pathway is activated. 
(a) Closure of the main glycerol membrane export channel Fps1 (b) Activation of several enzymes involved in glycerol 
synthesis. (c) Phosphorylated Hog1 accumulates into the nucleus and within 3min, upregulates 600 genes. (4) Proteins of 
osmo-responsive genes (such as GPD1) are produced, starting the physiological adaptation of the cell and the progressive 
deactivation of the Hog Pathway. (5) Glycerol production cause the water to flow back in the cell and the cell to regain its 
original size. (6) The cell is physiologically adapted: the Hog Pathway is fully deactivated. From Miermont et al, 2011 
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produced by the stress responses genes will be stabilized (Romero-Santacreu et al., 

2009).  

 

 

 

 

 

 

 

 

 

 

As I have previously mentioned, a hyperosmotic stress is a physical 

phenomenon that compresses the cell. Experimental work along with computer 

simulations show that this physical compression not only impacts the cell wall, but 

also the nucleus (Morris et al., 1986). A notable consequence is that proteins that are 

bound to chromatin prior to hyperosmotic stress are removed from it upon stress. In 

particular, it has been shown that it is the case for the protein Sir3 (Mazor and Kupiec, 

2009) 

 

Figure 1-15. ChiP analysis of the presence of Sir3 on the telomere of chromosome VI in response to a hyperosmotic stress. 
The Sir3 is removed from the telomere of the chromosome VI after hyperosmotic stress. 30min upon stress, Sir3 is on the 
chromatin again. From Mazor et al, 2009.  

Figure 1-14. mRNAs half-life change after mild osmotic stress. Non osmo-responsive genes have their 
associated mRNA destabilized, whereas the mRNA following the transcription of osmo-responsive genes 
are stabilized through an increase of their half-life. From Romero-Santacreu et al, 2009. 
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2. A promoter of interest: pSTL1 

 

As the protein Hog1 translocates in the nucleus after phosphorylation upon 

stress, the level of transcription of hundreds of genes is altered. Most of them are part 

of the ESR program and encode for chaperones and protective enzymes, but some of 

them are osmotic stress specific. 

Among all osmo-responsive genes, 80% are Hog1 dependent. Although the 

mechanisms behind which Hog1 impacts these genes is still unknown, studies show 

that Hog1 works in association with several co-factors such as the transcription 

activators Hot1, Smp1, Msn1, Msn2, Msn4 and the transcription repressor Sko1 

(Miermont et al., 2011). In particular, Hog1 and the transcription factor Hot1 co-

activate the STL1 gene (Bai et al., 2015).  

As explained before, a possible strategy for a cell to accumulate glycerol is to 

take it from the surrounding environment. This is done via STL1 which codes for a 

transporter that imports glycerol from the environment into the cell (Ferreira et al., 

2005). In addition, a yeast cell constitutively synthesizes glycerol through the GPD1 

gene and its paralog, which activity increases upon stress in order to permit the yeast 

to adapt. Consequently, the deletion of STL1 has limited effects on the cell viability 

during stress. Highly and specifically expressed upon hyperosmotic stress, STL1 is a 

standard reporter of the HOG pathway activity (Llamosi et al., 2016; Uhlendorf et al., 

2012). 

Like most stress response genes, STL1 is located at the subtelomere of the right 

arm of the chromosome IV. Upon activation, evidences suggest that this gene relocates 

to the nuclear pore complex, although this relocation does not appear to have an 

important effect on the adaptation or activity of this gene (Guet et al., 2015). 

Interestingly, a study showed that Hog1 also works in tandem with the Histone 

Diacetyl (HDAC) Rpd3 to activate osmo-responsive genes (de Nadal et al., 2004). This 

is surprising considering that, as I have previously introduced, histone deacetylation 

is associated with repression. In particular, the study shows that removing Rpd3 

actually reduces the activity of Hog1 osmo-responsive genes such as STL1. 
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The transcriptional activity of osmo-responsive genes such as STL1 is in the vast 

majority mediated by the phosphorylated Hog1, i.e. Hog1 inside the nucleus.  This 

transcriptional event occurs within minutes. Once the cell is adapted, Hog1 relocates 

inside the cytoplasm, ending the transcriptional response to the stress: Hog1 causes a 

negative feedback loop (Zi et al., 2010). This adaptation takes 15-30min to appear. A 

quantitative study on the transcriptional dynamics of STL1 for instance is thus made 

more difficult as adaptation effects have to be taken into account. However, the study 

of the response to short hyperosmotic stresses would allow to dismiss the adaptation 

effect. 

  

C. Cellular memory 

 

As I have presented above, the budding yeast can adapt to environmental 

stresses through the activation of specific pathways. In the case of the hyperosmotic 

stress, the Hog Pathway. However, such adaptations can serve as a learning process 

in order to improve the adaptation when encountering a similar stress later or even 

Figure 1-16. Northern blot study of the Influence of the deletion of Rpd3 on the activity of various 
osmo-responsive genes during a hyperosmotic stress. Deletion of the HDAC Rpd3 causes a decrease 
in the produced amount of Stl1p compared to the wild type, at similar times after hyperosmotic stress 
induction. From de Nadal et al, 2004. 
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preparing the cell to a high adaptation when encountering a different stress, thus 

increasing the chances of survival. This is defined as cellular memory15.  

The budding yeast has proven to be an excellent model to study the emergence 

of cellular effects and the underlying mechanisms. I will describe two examples 

bellow. 

 

1. The galactose memory 

 

a) The GAL pathway 

 

The budding yeast has the natural ability to process various sources of carbon 

such as raffinose, glucose, galactose and maltose. This is due to the presence of specific 

genetic pathways (Carlson and Botstein, 1983). The GAL cluster of genes has been 

extensively studied and is among the most well characterized gene network in the 

budding yeast. Therefore, many experiments on the galactose memory have been 

performed.  

The model of activation of the GAL pathway is as follow. When yeast are grown 

in glucose, the GAL genes are repressed by the protein Gal80, which binds the protein 

Gal4 that is found at the GAL1, GAL2, GAL80 promoters. When galactose is added to 

the external environment, the protein Gal2 imports the galactose in the cell. The 

galactose permits the activation of GAL3 and the subsequent Gal3 protein binds to 

Gal80 and brings it in the cytoplasm. Without the Gal80 blockage, Gal4 along with the 

transcriptional machinery can activate the GAL cluster16.  

The repression implies that it will take time for the repression to be lifted.  

                                                             
15 The notion of cellular memory exists for all unicellular. For instance in mammalian cells, cellular memory can 
be defined for cell differentiation and even cancer cells.  
16 Interestingly, the activation of the GAL cluster is made with a bimodality that has recently been linked to a 
long non-coding RNA and a bifunctional galactokinase (Zacharioudakis and Tzamarias, 2017). 
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b) Memory experiments 

 

 

As I have presented above, the galactose pathway has been extensively studied 

and is very well understood. Since the repression in non-galactose conditions implies 

that it will take time for the repression to be lifted, the groups of J. Brickner and D. 

Tzamarias wondered back in 2007 if sequential activations of the GAL pathways could 

lead to a its faster reactivation. They published two different studies exposing similar 

results (Brickner et al., 2007; Zacharioudakis et al., 2007). I will here present Tzamarias’ 

study. 

The experiments on the galactose memory performed by this group followed a 

similar pattern which consists in:  

- Yeast are grown in a medium containing glucose 

 

- Yeast are then transferred to a medium containing galactose. The GAL cluster 

will then be activated and its dynamics of activation analyzed, usually using 

the fluorescence reporter GAL1-GFP.  

 

- The population of yeast is then be transferred back to a medium with the 

original source of carbon, causing the GAL cluster to be deactivated. The 

Figure 1-17. Comprehensive sketch of the galactose pathway in the budding yeast. From 
Stockwell et al, 2015. 
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growth of the population will last several hours in order to allow them to divide 

and making sure that the GAL genes are not activated any more. 

 

- A second induction in the galactose containing medium is performed and the 

dynamics of the GAL genes is then observed.  

 

 

 

 

 

 

 

The dynamics of activation of the genes during both activations is compared. A 

difference between the activations is likely to reflect a cellular memory. 

Tzamarias’ group observed that the GAL genes were expressed after 4h during 

the first induction and, interestingly, the time to induce the GAL genes was reduced 

by half after the second induction, triggered 12h after the first one. It was inferred that 

previous activations of the GAL genes are remembered and lead to a faster 

activation: this is defined as the galactose memory. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-18. Principle of the galactose memory experiment. Yeast are grown in glucose, then switched to 
galactose until the GAL cluster is activated (4h). The cells are then switched to a glucose medium for 12h 
causing the deactivation of the GAL pathway, then switched to galactose and the dynamics of the GAL cluster 
is analyzed and compared to the dynamics during the first activation. From Kundu and Peterson, 2009. 

Figure 1-19. Fluorescence analysis of GAL1 activation and reactivation. The GAL1 gene is fused to a 
fluorescence protein and its dynamics is analyzed upon a first and second galactose activation. Mean 
GFP values are analyzed every 30min. The activation of GAL1 occurs after 4h and its reactivation 
occurs after 2h. 
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However, a question was quickly raised by Perterson’s group: could this 

reactivation be an artefact caused by variable time of glucose repression? In other 

words, does lifting the repression on the GAL cluster causes, after the first induction, 

the GAL cluster to be only slightly repressed compared to the previous time? To that 

effect, similar experiments were performed using raffinose17 prior to the first induction 

then glucose prior to the second induction (Kundu et al., 2007).  

 

 

 

 

 

In this case, the first galactose induction caused the GAL genes to be activated 

in less than 20min, and the second induction took less than 5min18. This means that the 

galactose memory is not an artefact of the glucose repression but a different biological 

phenomenon. However, such memory was lost after 6h (i.e. 3 divisions), leading the 

way to the notion of long-term and short-term memory.  

 

 

                                                             
17 Raffinose is a sugar that causes the GAL cluster to not be expressed, but without an active 

repression. 
18 In this study, the analysis was performed using northern blots. 

Figure 1-20. Principle of the galactose memory experiment. Yeast are grown in raffinose, then switched to 
galactose until the GAL cluster is activated (4h). The cells are then switched to a glucose medium for 1h causing 
the deactivation of the GAL pathway, then switched to galactose and the dynamics of the GAL cluster is analyzed 
and compared to the dynamics during the first activation. From Kundu et al, 2007. 
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Because those two memories have different persistence and time dynamics, 

distinct biological mechanisms could explain them although their effects both consists 

in a faster reinduction of the GAL genes compared to a previous induction. 

 

Long-term memory  

This memory is characterized by a persistence between 4h-12h and has been 

associated to the presence of Gal1p which is synthetized during the first induction. 

Because of its long half-life, this protein is kept in the population of cells that received 

the first induction and is diluted throughout their progenies. Gal1p serves as a 

transactivator and its presence in the cell allows them to activate the GAL genes faster 

(Zacharioudakis et al., 2007).  

 

Short-term memory 

This memory is characterized by a persistence of 4h. It has been described to be 

a consequence of the activity of the SWI/SNF chromatin remodeler that poises the GAL 

genes for faster reactivation. Contradictory results however state that the relocation of 

GAL1 to the NPC forms a loop that is necessary for the memory. But such loop would 

only appear in the original population of cells (parents) as they keep their NPC, and 

Figure 1-21. Transcriptional memory at the GAL1 gene. Comparison of the kinetics of GAL1 induction and 
reinduction following a sequential northern blot quantification. A faster GAL1 activity was observed after 
reinduction. From Kundu et al, 2007. 
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the memory is looked at after several hours, so in the daughters which have newly 

synthesized NPC (Brickner et al., 2007; Kundu et al., 2007).   

 

The example of the galactose memory shows that depending on the time of 

repression between two inductions, different mechanisms can appear although the 

inductions have the same nature: there is no universality in the mechanisms of a 

memory to a specific stimuli as it appears to be time-dependent. 

 

2. An example of hyperosmotic memory 

 

As I have previously explained, the response and adaptation to hyperosmotic 

stresses has been extensively studied. There are however not many studies on the 

memory of the response to hyperosmotic stresses. I will here present the study 

performed by M. Proft’s group (Rienzo et al., 2015).   

Two identical populations of cells are grown in a synthetic glucose medium to 

exponential growth phase. The cells from one of the population are then submitted to 

a 1h (long) hyperosmotic stress using 0.7M of NaCl. Cells from the other population 

remain in the growth medium and serve as a negative control.  

In a second time, both cultures were then transferred to a synthetic glucose 

medium and aliquots of those cultures were submitted to various concentration of 

NaCl. The dynamics of GRE2 (an osmo-responsive gene) was analyzed using luciferin. 

The study shows that: 

- Bellow 0.1M of NaCl there is no activity of GRE2, meaning that the stress is too 

mild to trigger an active transcriptional response: the cells tolerate such stress. 

 

- From 0.25M to 0.8M of NaCl, GRE2 displays a transcriptional activity that is 

always lower when the cells have already experienced the 1h hyperosmotic 

stress: this is defined as a cellular memory.  

The deletion of ENA1, which codes for an ATPase sodium pump involved in 

the efflux of sodium, causes the loss of the memory. Therefore cells that have already 

experienced a stress have synthesized Ena1p that is kept in those cells and diluted to 

their progeny, therefore conferring them the memory of a previous stress. This 

memory does not rely on chromatin remodelers.  
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Both these examples of cellular memory show that a cellular memory varies in 

its description depending on the stress. Indeed, the galactose memory is characterized 

by a faster gene activation whereas the previously described hyperosmotic memory is 

characterized by a reduced transcriptional activity.  

 

All studies on cellular memory in the yeast converge on two mechanisms that 

are at their origin:  

- Cytoplasmic memory: the fact that during the stress/induction, proteins are 

created and are still present, albeit in smaller concentration because of 

degradation or dilution, during the next stress/induction. Thus, they can help 

optimizing the response. 

 

- Epigenetic memory: the memory is developed through changes on the 

chromatin state made by remodelers present prior to the stress. Although a 

cytoplasmic memory can technically be an epigenetic one, the distinction is 

always made between the two. 

Figure 1-22. Memory of the GRE2 gene upon hyperosmotic streses depends on the Ena proteins. (Left) Fluorescence 
analysis of GRE2 fused to a luciferase in different hyperosmotic conditions. Cells pre-exposed to the hyperosmotic 
stress develop a memory characterized by a decrease of GRE2 activity (red) compared to cells that have never 
experienced a stress before (black). (Right) Deletion of the ENA complex causes the pre-exposed cells (red) to lose the 
memory and behave like cells that have never experienced a stress before (red). From Rienzo et al, 2015   
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Here, I want to stress the fact that the studies on cellular memory are performed 

in a population of cells. Because of the division time of the budding yeast and the long 

inductions of the stresses, the memory is always shown to be transmitted to the 

progeny of the original population of cells. However, it is not known if the initial 

population that receive the first induction develops the memory as well and, more 

broadly, if the memory is systematic or if it takes some time to be set throughout the 

Figure 1-23. Summary of the different mechanisms of cellular memory. (Left) Epigenetic modifications occur 
following the event that caused a transcriptional response and causing the emergence of a cellular memory. Such 
epigenetic modifications are stable and can be inherited. (Right) Following a stress, proteins will be synthesized 
causing the emergence of a memory. These proteins are diluted to the progeny and the memory persistence is 
function of the half-life of the proteins. From Kundu and Peterson, 2009. 
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generations of descendent. These questions can be answered by not looking at the 

entire population, but at specific individuals. It requires the ability to track individual 

cells and their progenies. 

 

III. On the importance of single-cell measurements 
 

 Despite having similar genotypes, a clonal population of cells can display 

different phenotypes. This is due in part to the epigenome, environmental factors and 

the noise in gene expression. In this part, I will explain how genetic noise causes an 

isogenic population to be different and the use of performing studies at the single-cell 

level. 

 

A. Mechanisms of stochastic gene expression 

 

Gene expression is a phenomenon involving biochemical reactions, which are 

dynamical and subjected to some inherent randomness: stochasticity is an important 

feature. For instance, there is such a small amount of transcription factors available for 

a specific promoter to create a productive reaction that transcription of a gene becomes 

an unlikely event (Kepler and Elston, 2001). Thus, the description of biochemical 

processes occurring in the cells can be explained by stochastic processes. 

The first evidences associated with the stochasticity of gene expression were 

provided experimental with the microorganisms E. coli and the budding yeast 

(Elowitz, 2002; Raser, 2004). The principle of the latter experiment is as follow: two 

identical PHO5 promoters control the expression of two fluorescence proteins genes 

that are relatively similar in their sequence (YFP and GFP). The proteins are therefore 

relatively similar and expressed in a similar fashion, thus erasing the possible bias of 

the overexpression of one protein compared to the other. Moreover, the promoters are 

located at identical loci so that their activity would be identical and not linked to 

chromatin environment. Thus, for each cell, it is possible to perform fluorescence 

measurement of each fluorescence reporter in order to quantify it. 

The analysis revealed that the spectrum of the two different fluorescence 

proteins under the control of the same promoter were different. The cells have a 

mixture of red (symbolizing the YFP) and green (symbolizing the CFP). Each cell is 

represented by a dot. The color of the dot represents cells from different time points 

from the start of the induction of the PHO5 promoter. In the case of a system where 

the promoter could be described by a deterministic process, the two reporters would 

have the same expression level and all dots should fall along the bisector (YFP=CFP 
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line). However, a non neglectable number of cells are away from the bisector. This 

number is higher than what could be expected in deterministic conditions 

The conclusion of the article is the existence of two components that justifies the 

differences of expression of YFP and CFP: 

-the intrinsic component: represents the deviation from the situation YFP=CFP, 

i.e. the fact that in this experiment, clonal cells did not transcribed the two promoters 

equally. 

-the extrinsic component: represents the fact that some cells are globally 

brighter than others, regardless of the proportion of YFP and CFP. Thus, this 

component is independent of transcription and is likely linked to cell-cell 

physiological differences. 

 

B. Necessity of single-cell studies on adaptation 

 

Most studies questioning adaptation effects are carried out on isogenic 

populations of cells giving information on the mean population behavior. 

Nevertheless such a population is heterogeneous and sometimes results at the single-

cell level are crucial. In the case of the hyperosmotic stress for instance, a bimodality 

of the stress response is shown to exist, linked to a slow transition from a repressed 

state to an active one19 (Pelet et al., 2011).  

An overview of some of the techniques enabling single-cell studies is found 

bellow (Llamosi, 2016). Another tool enabling performing single-cell experiments that 

is not represented on the figure bellow is microfluidics. As it is the tool used during 

                                                             
19 This will be presented in more details in the Chapter III. 

Figure 1-24. Two components of genetic noise. (A) Microscopic picture of the dual fluorescence strains. (B) CFP vs YFP 
fluorescence intensities measurements upon induction. (C) Decomposition into intrinsic and extrinsic components. From 
Raser et al, 2004. 
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the PhD, I will briefly present it in the next chapter, along with the specific devices I 

have used and how they were made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Conclusion 

 

The experimental evidence of the difference in gene transcription in a clonal 

population of cells can be linked to two parameters. As I have presented before, those 

two parameters can be described in a simplistic way as: 1/ the influence of the 

environment on a cell’s physiology in a manner independent of the biochemical 

reaction occurring in the cell, so independent of gene transcription and 2/ the 

stochasticity of the biochemical reactions within the cell and the unlikeliness of gene 

expression occurring because of the low number of reactants. Those parameters are 

both referred to as extrinsic and intrinsic noise respectively. The figure bellow 

provides a good summary.  

 

Figure 1-25. Example of various technological tools for genome wide and single-cell analysis, classified according 
to their dangerousness. Image from Artemis Llamosi. 
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As a brief conclusion on the stochasticity is its origins have been quickly 

described, but what could its biological purpose be? As I have presented before, 

stochasticity is an inevitable phenomenon determined by the laws of physics and 

chemistry. It has a natural repercussion in biology, which is causing a genetically 

identical population of cells to actually behave differently in response to external 

stimuli. In other words stochasticity permits, along with genetic variability, the 

emergence of diversity. Thus stochasticity is a necessary phenomenon in biology as 

diversity is the driving motor of evolution.  

 

 

 

 

 

 

Figure 1-26. Tentative summary of the description of extrinsic and intrinsic noise.  From Huang 2009. 
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General conclusion  

 

The response to hyperosmotic stresses was presented, and I here want to 

emphasize that adaptation to a long hyperosmotic stresses in the yeast involves a 

feedback loop that prevents the understanding of transcriptional events exclusively. 

However, short hyperosmotic stresses allows the investigation of transcriptional 

events and the eventual study of the possibility that the budding yeast could develop 

a memory in response to short stresses. 

This is in such a framework that the studies I have performed took place. As I 

have presented in the motivations, I have investigated the dynamical response of 

budding yeast to pulsed hyperosmotic stresses in order to interrogate: do budding 

yeast develop a memory of short repeated hyperosmotic stress at the genetic level 

solely and if so, what are the underlying biological mechanisms? 

 

I will present in the second chapter the various tools I have designed and used 

that made the experimental work possible. The third chapter will be dedicated to the 

results that I have obtained. The fourth and final chapter will serve as a discussion, 

conclusion and opening that, I hope, will be of counsel for whoever will perform akin 

or subsequent work dealing with cellular memory and dynamical variability effects in 

the budding yeast.  
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Performing long term experiments on single-cells is a challenge. Not only do 

the cells have to be constrained in a specific area so that they can be observed 

without getting out of the view field of observation, they also need to be as close as 

possible to their normal state. The latter can be perturbed by the constraint applied to 

keep the cells at specific locations. The cells also need to be fed, which requires 

flowing a constant fresh media on the cells. In addition, if one wants to investigate 

the behavior of cells in response to specific stimuli, there must be a way to switch 

between different media dynamically. Finally, since the experiments can last for 

hours, most of the processes such as image acquisition and input delivery, have to be 

automated. As a result, the creation and use of specific tools are required to tackle 

those issues.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

I. Microfluidics  
 

A. Introduction 

 

Microfluidics is a field of science and technology aiming at studying the 

dynamics of fluids at micrometric dimensions, and to develop techniques to 

manipulate fluids at small scale. It is a very active field of research that has led to 

numerous technological applications, particularly in biology. Microfluidics 

developments are also known as “Lab-on-a-chip” and consists in miniaturizing and 

automatizing experiments usually performed in an experimental biology or chemistry 

lab, such as PCR (Khandurina et al., 2000), RNA sequencing (Wu et al., 2014), cell 

growth (Barbulovic-Nad et al., 2010), blood analysis (Dimov et al., 2011) and even 

identification of viral receptors (Patolsky et al., 2004), using small microfluidic devices. 

Microfluidics stands out as it allows not only to make single-cell observations for hours 

(even days), but also to control the external environment with fast dynamics (seconds 

to minutes).  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2-1. Sketches of several microfluidic devices. (A) Mother machine. Bacteria are loaded in chambers and grow there 
in line. A medium flows in the feeding channel and diffuses in the chambers, feeding the bacteria. (B) Microfluidic device 
enabling the formation of droplets. A hydrophilic reagent is flown in a chamber, and oil is flown from to the reagent. The 
ensemble exists through an opening of specific height, which leads to the creation of droplets. (C) Microfluidic device for 
blood analysis. Blood is flown in channels to a chamber containing biomarkers. 
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The majority of microfluidics devices are made out of synthetic polymers 

(mostly polydimethylsiloxane, PDMS) or glass welled in a mold called a wafer. Taking 

advantage of the experience in making microfluidic devices in one of my teams, I learnt 

how to design, micro fabricate and operate microfluidic systems for yeast.  

 

 

B. Microfluidic device used during the PhD 

 

The microfluidic device I used during my PhD is a H-shaped device composed 

of two elements: 

 

- Two flow channels of 40µm height that possess inputs at each ends where tubes 

of 0.02mm diameter are connected perfuse culture medium at a velocity of 

120µL/min. 

 

- Squared observational chambers of 3.6µm heights and 400µm side. The yeast 

are confined in the chambers20 and imaged. The medium flowing in the 

channels diffuses to the chambers, feeding the cells that are confined there.  

 

 

 

 

 

 

 

 

                                                             
20 The cells are loaded using a 0.02mm needle syringe from one of the two input channels and access the 
chambers where they stay confined. The confinement is very important as it constrains cells to grow as a 
monolayer thus making them easier to segment and track. 

Figure 2-2 H-shaped microfluidic device used during the PhD. (A) picture of the microfluidic device. (B) The cells are 
constrained in a chamber where they receive the medium. From Uhlendorf et al, 2012.   
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C. Microfabrication: how to make the device? 

 

1. Principle of photolithography 

 

The dominant approach to make microfluidic devices is based on 

photolithography, a technique which purpose is to transfer the motifs of a support that 

can be a photomask or a film, to a light-sensitive substrate. The latter is, in my 

conditions, a silicon wafer on which is poured a photoresist. It is a chemical that 

becomes soluble (positive photoresist) or insoluble (negative photoresist) in a 

developer, after exposure to UV light. I had the opportunity to perform 

photolithography in the clean room facility of Paris Diderot University. 

 

The principle is as follow:  

 

-the wafer + photoresist21 and the photomask are placed in contact, then exposed 

to intense UV light.  

 

-the photoresist is then removed using a developer, thus only the motifs will 

remain on the wafer.  

 

-PDMS can then be poured on the newly created mold and baked so that it gets 

solid. The removal of solid PDMS from the wafer provides a usable microfluidic 

device.  

 

 

 

 

 

                                                             
21 The photoresist is poured on the wafer and spin-coated at a specific velocity. The faster the ensemble is spin-
coated, the lower would the height of the photoresist be on the wafer. 
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2. Design of the photomask 

 

In order to make a design of the microfluidic device that will serve to make a 

photomask, I use the layout software L-Edit (Mentor). As I have presented above, the 

flow channels and the observation chambers have different heights. Therefore, I 

separate the design of the microfluidic in two parts. Once the photomask is received, 

the idea is to first engrave the patterns of smallest heights (observations chambers) on 

the wafer. Then, the flow channels will be engraved on the same wafer. In order to 

align the observations chambers and the flow channels properly, I added references 

crosses on the design. The alignment process is made in the cleaning room using a 

mask aligner MJB4 (Süss Microtec). 

 

Figure 2-3. Principle of soft photolithography. (a) Silicon wafer that serves as a support to make a mold. (b) Photoresist is 
poured and spin-coated on the silicon wafer. The velocity of spin-coating determines the final height of the mold. (c) The 
photomask is put in contact with the wafer. The ensemble is then (d) exposed to UV light, which enables the engraving of the 
patterns of the mask on the wafer. The photoresist is then dissolved in a developer.  (e) PDMS is poured on the new wafer and 
serves to make a (f) microfluidic device containing the patterns. 
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3. Protocol 

 

 The photoresist I use comes from a family of resist called SU-8 (Microchem, 

Newton, USA). In order to grow yeast in a monolayer, I aim to reach a height of 3.6µm 

of my microfluidic device’s observation chambers. 

 

 I use the SU8-2010 that I dilute by 1/3 in order to reach a range of heights 

between 3µm and 5µm, something that cannot be obtained with a non-diluted SU-8 

photoresist22. 

My experimental protocol is as follow: 

 

1- Pour the photoresist on a silicon wafer23 and spin-coat at 500 rpm for 10s with 

acceleration of 100 rpm/s then at 3000 rpm for 30s with acceleration of 300 

rpm/s. 

2-  Soft bake at 95°C for 2min 

3- Exposure to UV lights (100mJ/cm²) 

                                                             
22 In theory it should be possible to reach heights above 3µm with the SU8-2 photoresist. However, this 
requires such low spin-coating velocities that the photoresist does not spread across the wafer in a 
homogeneous fashion: the subsequent microfluidic device will not necessarily have the same height 
everywhere. 
23 I use wafers from Silicon Prime Wafers, 76.2 mm diameter, N/Phosporus dopant, a resistivity of 1-10 Ohm.cm 
and 380µm thickness. 

Figure 2-3. Design of the photomask used to make the microfluidic device use in the PhD. (top design) 
Flow channels (bottom) observation chambers. Reference crosses allows to align the chambers and the 
channels.  
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4- Post-exposure bake at 95°C for 3min 

5- 1min treatment in the SU-8 developer 

6- Hard bake at 150°C for 15min 

 

After hard bake, I use a mechanical profilometer Dektak 150 in order to control 

the heights of the patterns. 

Once the wafer is obtained24, usually referred to as a master wafer25, PDMS is 

poured on it then baked overnight at 65°C. It is then possible to cut microfluidic 

devices using a scalpel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. Yeast strains and methods 
 

                                                             
24 Removing the PDMS from the mold can cause the patterns to be removed as well. After obtaining the wafer 
with the patterns, it is useful to treat its surface with silane (Sigma, ref 63800). This step makes it possible to 
remove the PDMS device from the mold without destroying the patterns. 
25 An alternative that I adopted is to cut a thick PDMS microfluidic device and make another master wafer with 
a resin called epoxy. This newly made wafer is extremely solid, won’t break following strong stresses caused 
with a scalpel as it may be the case with the master wafer. Moreover, it provides microfluidic devices of the 
same quality than the original master wafer. A protocol detailing the making of an epoxy wafer can be found in 
the appendix. 

Figure 2-4. One of the wafer used during the PhD that shows the 
shape of the microfluidic device. 
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During my PhD, I mostly made fluorescence measurements of a strain which 

has the STL1 gene replaced by a fluorescence protein26 (strain yPH53). This strain 

served as a parent strain, as the strains I later made are derived from this one. 

  

A. Yeast transformation protocol 

 

  I use the standard Lithium Acetate transformation protocol to genetically 

engineer yeast strains. Unlike the common protocol however, I treat the cells for 20min 

with 0.5M CaCl2, after the heat shock step27. The detailed protocol along with the list 

of primers used to make the strains of interest can be found in the appendix. 

 

B. List of strains presented in the manuscript 

 

STRAIN GENOTYPE 

yPH003 ura3∆0, leu2∆0,  lys2∆0,  GPD1-GFP-HIS3 

yPH015 leu2∆0, lys2∆0,  HOG1::GFP-HIS3,  HTB2::mCherry-URA3 

yPH053 ura3∆0,  leu2∆0,  his3∆1,  lys2∆0,   pSTL1::yECITRINE-HIS5 

yPH200 ura3∆0,  leu2∆0,  his3∆1,  lys2∆0,   Δ(pSTL1-STL1)::CaURA3 

yPH212 ura3∆0, leu2∆0, his3∆1, lys2∆0, Δ(pSTL1-STL1)::CaURA3,  Δtrp1::pSTL1-

yECITRINE-HIS5 

yPH213 ura3∆0,  his3∆1,  lys2∆0,   pSTL1::yECITRINE-HIS5,    Δsir3::pLEU2-LEU2 

yPH215 ura3∆0, his3∆1, lys2∆0, Δ(pSTL1-STL1)::CaURA3,  Δtrp1::pSTL1-yECITRINE-

HIS5 ,    Δsir3::pLEU2-LEU2 

yPH353 leu2∆0,  his3∆1,  lys2∆0,   pSTL1::yECITRINE-HIS5, Δtrp1::pURA3-URA3 

yPH358 ura3∆0,  leu2∆0,  his3∆1,  lys2∆0,   pSTL1::yECITRINE-HIS5, SNF2::pLEU2-LEU2 

yPH359 ura3∆0,  leu2∆0,  his3∆1,  lys2∆0,   pSTL1::yECITRINE-HIS5, HTZ1::pLEU2-LEU2 

yPH360 ura3∆0,  lys2∆0 , GPD1-GFP-HIS3, Δsir3::pLEU2-LEU2   

yEF506 ura3∆0,  trp∆1,  lys2∆0,   his3∆1, SIR3::GFP-TRP1 

 

 

C. Culture media 

 

                                                             
26 The fluorescence reporter is the yECITRINE, which excited at 516nm and emits at 529nm and has a half-life of 
2h (Bionumbers). 
27 Such treatment is thought to increase the transformation efficiency. 
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I used a SC media (Synthetic Complete), which is one of the most used culture 

media for S. cerevisiae. It is especially useful if one wants to select for auxotrophic 

markers (i.e. remove one or more amino acid). 

I typically make SC 1X solution in 180mL of H2O. To that effect, I mix and 

autoclave28: 

- 1.34g of Yeast Nitrogen Base w/o Amino Acid (Difco ref 291940) 

 

- 0. 16g CSM dropout mix (MP Biomedicals ref 114500022) 

 

In addition to the SC 1X, I add 20 mL of a 10X glucose autoclaved glucose 

solution (200g of glucose in 1L H2O). This allows me to have a solution of SC 1X+ 2% 

glucose which is the media I use to feed the cells. It is important to autoclave the 

glucose separately from the SC to avoid auto fluorescence of the medium. 

 

 In order to trigger a hyperosmotic stress, I supplement the medium with a 2M 

sorbitol solution (Sigma, ref S1876) in order to reach a final concentration of 1M. 

 

D. Protocol for Crispr experiments 

 

I used the plasmid pAG414GPD-dCas9-VPR from Addgene (ref # 63801) to 

express the inactivated form of CAS9 fused to transcriptional activator VPR. This 

plasmid has a TRP1 selection. The guides RNA were cloned under SNR52 promoter in 

plasmid pEB002 (TRP1 selection) using the enzyme BsmBI. Digesting the resulting 

plasmid by NotI / XbaI and cloning the Guide containing fragment into pRS425 

similarly digested, performed marker exchange (from TRP1 to LEU2), leading to the 

plasmid pZB004. I designed two guides targeting pSTL1 using the online software E-

CRISP29 targeting pSTL1. I then checked on SGD30 that the guides were in a nucleosome 

free region. Strains yPH212 and yPH353 were used for Crispr transformation. The 

detailed protocol along with the maps of the plasmids can be found in the appendix. 

 

 

                                                             
28 After autoclaving, SC sometimes presents some precipitate put dirt in the microfluidic device during 
experiments. To avoid such debris, I filter the medium used for the microscopy experiments. 
29 http://www.e-crisp.org/E-CRISP/ 
30 https://www.yeastgenome.org/ 
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E. Flow cytometry experiments 

 

I performed all flow cytometry experiments using a flux cytometer Gallios 

(Beckman Coulter) equipped with 10 colors, 4 lasers (488nm Blue, 561nm Yellow, 

638nm Red, 405 nm Violet). As all cells that I observed possess the yECITRINE 

fluorescence reporter, I used the excitation laser 488nm and the emission filter at 

530nm +/- 30 nm. Cells were grown in SC+2% glucose. Experiments were performed 

at OD=0.5. Removal of the inducer is performed through a centrifugation at 4000rpm 

for 5min.  

 

III. Long-term experiments 
 

A. Experimental platform 

 

To follow the fluorescence in the cells, I used an inverted microscope Olympus 

IX71. The yeast were observed with an objective x100 UplanFLN 100x/ 1.3 Oil Ph3 Ul2. 

The microscope was linked to a camera Cool Snap HQ2 Princeton Instruments. All 

experiments were made at 30°C thanks to a thermostat Cube-Life Imaging. The 

microscope also contains a piezo, used inter alia for autofocusing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. Image of the experimental platform. (A) Two tubes in the relevant medium are connected 
to the (B) arduino controlled valve. Exiting from the valve a tube going in the (C) T-deviation. The two 
following tubes will be connected to the (D) two inputs of the microfluidic (E) and its two outputs. A 
peristaltic pump (F) pulls the medium in the circuit and flows it in the trash (G).  
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Yeast are imaged every 5min with 20ms exposure in bright light and 200ms in 

fluorescence light, using a mercury lamp Olympus U-RFL-T. The microscope was 

controlled by the open source software MicroManager which was interfaced with 

Matlab31. 

Cells were grown in SC 1X+2% glucose. In order to trigger a hyperosmotic 

stress, the media was supplemented with 1M sorbitol. Both media are flown in the 

microfluidic chip using a peristaltic pump ISMATEC with a velocity32 set at 120µL/min 

with tubes of 0.02mm diameter. A Matlab-controlled Arduino circuit33 controls a 

valve34 that allows the switching between growth media and inducer media. 

 

 

B. Autofocus  

 

I use an autofocus that was developed in the lab which allows to: 

 

- impose a specific window as to where the autofocus should be performed. I 

impose the autofocus to work only on the sharp-edged patterns of my microfluidic 

device, which are fixed structure that never move over the course of the experiment. 

  

- take an entire z-stack of one of the sharp-edged pattern that I set as a reference 

prior to the experiment. The sharpest image is determined using the entire stack and 

all the out-of-focus information. This new method proved itself to be very stable and 

was actually at the inception of a new segmentation method developed in the lab (see 

appendix). 

 

 

 

 

                                                             
31 Associated Matlab script can be found on https://github.com/Lab513 
32 Such velocity allows diffusion in the chambers without flushing the cells out of the chambers. 
33 Associated Matlab script can be found on https://github.com/Lab513 
34 The Lee Co, ref LFAA1201418H 
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IV. Single-cell analysis 
 

 

I made a simple program to have a semi-automatic method to perform the 

single-cell analysis. First, I manually segment a cell on a bright field image. Then, the 

program measures various parameters such as mean value of grey level inside the cell, 

on the corresponding fluorescence frame before moving to the next frames both in 

bright field and fluorescence 

This method is time consuming, but factually gives an extremely robust way to 

segment and track cells35. The fluorescence for every cells can thus be analyzed. 

 

 

                                                             
35 There are several available software to perform automatic segmentation and tracking. However, the 
implementation time for my image analysis was so long that using the semi-automatic method was more 
efficient. 

Figure 2-6. Microfluidic device and autofocusing. (A) Sharp edges of the observations chambers (red arrow) 
are used as reference structures to perform the autofocusing. (B) Typical autofocusing curve. The image 
sharpness measured through a stack during an acquisition (in red) is compared to the curve acquired at the 
beginning of the experiment (in blue) and the new in-focus frame is inferred from it (green line). Using the 
entire stack for comparison is more precise than using a single image as reference. 
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Figure 2-8. Manual segmentation and fluorescence trajectories. (A) Segmentation on four different cells from a 
bright field image. (B) Fluorescence trajectories of the four cells after segmentation and tracking over time.  
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Most studies on cellular memories do not take into account the heterogeneity 

between cells in a population, yet cell variability is critical to understand how cells 

adapt and remember past stresses. Indeed, single-cell variability may cause 

genetically-identical cells to exhibit different behaviors when encountering the same 

stimuli. My first objective is to study, at the single-cell level the response of yeast cells 

to repeated, pulsed hyper osmotic stress. I will show that under such conditions, yeast 

cells do exhibit a genetic memory of past stresses at the population level, even though 

they display a large cell-cell variability that I have quantified. After establishing and 

characterizing this memory, I will expose how my experimental results show that the 

memory does not require de novo protein synthesis and is gene-positioning 

dependent. I will close this chapter by presenting preliminary results on the influence 

of chromatin modifying proteins and the inheritance of the cellular memory. 
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I. Introduction 

A. Performing short stresses prevents the physiological adaptation 

 

With the long-term experimental platform presented in the previous chapter 

(figure 2-5), I am able to submit a population of cells confined in my microfluidic 

device to a long hyperosmotic stress, and follow the stress response of single cells over 

time. Bellow, an example of yeast submitted to a continuous hyperosmotic stress 

imaged in bright and fluorescence light, along with the corresponding single-cell 

quantification (figure 3-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. Observation and analysis of cells (yPH53 strain) submitted to a continuous 
hyperosmotic stress. The stress is triggered using sorbitol 1M. (Top) All cells respond to the 
long stress. The cells are exposed both to bright light (10ms exposure) and fluorescence light 
(200ms exposure). (Bottom) Fluorescence trajectories of cells in the view field that received 
the hyperosmotic stress. 
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I have presented in the introduction that a long hyperosmotic stress causes the 

cells to physiologically adapt to the stress within 15-30min (Miermont et al., 2011). This 

is due to a feedback loop orchestrated by the Hog1 protein (Zi et al., 2010). In such 

conditions, it is impossible to discriminate between the genetic response and the 

physiological adaptation. However, my aim is to focus on transcriptional events 

exclusively. This implies that the duration of the stress should not be longer than the 

duration of the main steps of physiological adaptation, i.e. shorter than 15min. 

However, the transcriptional events during hyperosmotic stresses start after several 

minutes, so the duration of the stress has to be long enough to trigger the activity of 

the transcriptional response, but also to have enough protein production in order to 

make relevant analysis. As Hog1 is responsible for the upregulation of stress response 

gene upon hyperosmotic stress, I decided to perform 8min stresses as such duration is 

long enough to cause a significant nuclear Hog1 enrichment (figure 3-2), thus a 

consequent transcriptional activity, but short enough to not cause a physiological 

adaptation.   

 

 

 

 

 

 

 

 

 

 

 

  

With this experimental platform, I am able to submit a population of cells 

confined in my microfluidic device to an 8min stress and perform the single-cell 

quantification of the fluorescence level (figure 3-3).  

Figure 3-2. Analysis of the nuclear enrichment of the Hog1p. The strain used is yPH15 and 
imaged every 2min in GFP. Peak of enrichment is reached after 8min of hyperosmotic stress 
triggered with 1M sorbitol. This time is chosen as the time of the stress induction in my PhD. Data 
from Llamosi, 2016. 
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A consequence of performing an 8min stress is that the cell-cell variability is 

pronounced as all cells in the view field do not express the fluorescence protein to 

identical levels (figure 3-4). In particular, some cells do not express the fluorescence 

protein at all, a phenomenon referred to as bimodality (Pelet et al., 2011). 

Figure 3-3. Observation and analysis of cells submitted to an 8min stress. The stress is 
triggered using sorbitol 1M. (Top) The cells are exposed both to bright light (10ms 
exposure) and fluorescence light (200ms exposure). Variability of the response is visible; 
the arrows point to cell that do not show a response to the stress. (Bottom) Fluorescence 
trajectories of cells in the view field that received the hyperosmotic stress. 
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B. Amplitude and time parameters to study the response to 

repeated stresses 

 

As my goal is to study the genetic response to short repeated hyperosmotic 

stresses, I studied a population of growing yeast in the microfluidic device that I 

submitted to 8min stresses separated by 4h. This is done by switching the culture 

medium to a medium supplemented with 1M Sorbitol. Image analysis enables me to 

obtain the fluorescence trajectories of all cells in response to two pulsed stresses (figure 

3-5). The rationale for this experimental plan is to activate the response to 

hyperosmotic stress, wait for the cell to recover fully from the stress, progress through 

the cell cycle and let the yECITRINE reporter protein to be degraded36, then apply a 

second stress.  

A remark that I wish to make here is that a common issue in fluorescence 

microscopy experiments is the impact of photobleaching on experiments. A 

fluorescence protein, when exposed too often to fluorescence light, becomes 

chemically altered and loses its ability to fluoresce. This phenomena is referred to as 

                                                             
36 The half-life of the yECITRINE is 2h (Bionumbers). Waiting 4h allows to the degradation of the 

fluorescence protein and to discriminate between fluorescence proteins already present and newly 

created fluorescence protein. 

Figure 3-4. Single-cell variability in the expression of fluorescence. Merge of bright field (10ms 
exposure) and fluorescence (200ms exposure) images of a population of cells (strain yPH53) 70min 
after receiving an 8min hyperosmotic stress. Most cells express the fluorescence protein, with a large 
variability in its amount. Some cells, particularly (top left) do not express the fluorescence protein at 
all. 
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photobleaching. During the first stress, fluorescence proteins are synthesized. Thus 

photobleaching should not blur the stress response.  

 

 

 

I focus on cells that receive both a first and a second stress. This means that in a 

growing population, not all cells are of interest for my study. On the contrary only the 

cells that were already present before the first stress appeared are considered for 

subsequent analysis.  

The fluorescence trajectories of each cells is then used to compare the dynamics 

and amplitude of the transcriptional response to subsequent hyperosmotic stresses. 

Following the parameters of studies in the works on memory presented in the 

introduction, I chose to study two parameters37 of the successive response to 

hyperosmotic stresses:  

 

- The amplitude of the response: the highest level of fluorescence reached 

by a cell in response to a short stress compared to the basal fluorescence 

level. 

 

- The time of response defined as the time it takes for the fluorescence of 

a cell to reach the maximum of amplitude from the moment the cell is 

stressed.  

                                                             
37 The two parameters are calculated using a polynomial fit on the top of the fluorescence trajectory in 

order to determine these parameters with a higher precision. 

Figure 3-5 Variability of the fluorescence expression in response to pulsed stresses. Single-cell 
fluorescence trajectories of cells from the yPH53 strain submitted to two 8min hyperosmotic stresses 
triggered by 1M sorbitol and separated by 4h. The fluorescence trajectories show a difference in the 
level of fluorescence reached by the cells (N=103). 
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In the following part, I report my investigations of the study of the response to 

pulsed hyperosmotic stresses in the budding yeast at the population level. All 

subsequent trajectories are plotted with the standard error since I estimate average 

values. However, because of cell-cell variability I will also present single-cell 

quantifications, which implicitly account for the standard deviations. Interestingly, 

this last point allowed the observation and quantification of interesting and 

unreported phenotypes. 
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II. Yeast cells display a cellular memory of past stress  

 

In this part, I will describe the results showing the existence of a memory in 

response to repeated hyperosmotic stresses in my experimental conditions. Using 

single-cell analysis and comparison with a stochastic model, I will show that the 

memory effect is not a reflection of the stochasticity of gene expression, which is linked 

to cell-cell variability, but rather is likely caused by another biological mechanism. 

 

A. The response of a population of cells to successive hyperosmotic 

stresses suggests the existence of a cellular memory 

 

To start with, I quantified the fluorescence expression of pSTL1-yECITRINE of 

a population of cells receiving two pulsed hyperosmotic stresses separated by 4h. 

Because of the segmentation and tracking method I used, this process was time 

consuming. However, it allowed me to perform a robust population and single-cell 

study. The single-cell trajectories, along with the standard deviation, shows a large 

variability in the values of fluorescence reached by the cells (figure 3-6). For this 

reason, I focus my population study on how does the mean fluorescence value evolves 

with the stress, which requires an estimate of the mean with the mean on the error. To 

take into account the variability, I next perform a single-cell analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6. Large variability in the response to two short 
hyperosmotic stresses. Cells from the yph53 strain were submitted 
to two 8min hyperosmotic stresses separated by 4h using sorbitol 
1M. The standard deviation shows the variability in the response of 
the cells. (N=150, 3 experiments). 
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 The fluorescence analysis of such a population shows that the cells have a 

decreased response to the second stress by 30% in average compared to their response 

to the first stress (figure 3-7). This effect is akin in its behavior to the one observed in 

the context of the hyperosmotic memory presented in the introduction (Rienzo et al., 

2015). If the response of the two stresses was not correlated, it would be expected that 

in such a population there won’t be significant differences in the average amplitudes 

of response to both stresses. This is not the case in my analysis, likely suggesting that 

the response to the first and second stress is indeed correlated. This points to the 

existence of a cellular memory in my experimental conditions. However, at this point, 

since there a decrease in the amplitudes of fluorescence it could be argued that either 

the rate of transcription decreases with the stress, or cells spend less time producing 

proteins during the second stress.  

To answer this question, I analyzed the times of response to both stress. The 

subsequent analysis shows that there are no statistical differences between the times 

of response (p>0.05), implying that the decrease of fluorescence if caused by a 

reduction of the protein production rate upon stress rather than a shortened duration 

of transcription events (figure 3-7).  

 

 

 

I will now refer to the phenomena of decreased response with the stress as 

memory effect. As I established this result at the population level, I then proceed to 

quantify the single-cell variability in the context of my experiments to better 

characterize the memory effect. 

Figure 3-7. Decreased rate of fluorescence production with the stresses. (Left) Normalized fluorescence trajectories 
of a population (N=97, two independent experiments) of yeast (yPH53 strain) submitted to two repeated hyperosmotic 
stresses. The envelop represent the mean error calculated with the independent experiments. The amplitude of 
response decreases with the stress. (Right) There are no differences in the time of response between the two repeated 
stresses for the same population of cell. 



81 
 

 

B. At the level of single cells, most cells, but not all, show a cellular 

memory 

 

1. There are several dynamical behaviors in response to pulsed 

stresses 

 

As I have presented in figure 3-5, there is a variability in the fluorescence values 

of the cells. There is also a variability in the behaviors of the cells. Indeed, although at 

the population level the cells decrease their amplitude of response with the stress, 

some cells have, for instance, a behavior that is the opposite of the memory effect, 

namely they have a response to the second stress that is actually higher than during 

the first stress (figure 3-8).  

 

 

 

 

 

 

 

 

 

 

I named the ensemble of possible behaviors in response to pulsed stresses 

dynamical variability. Said differently, while the population exhibits a memory effect 

in my conditions, this is not the case for every cells, which can display different 

dynamical behavior. To quantify this competition between the leading effect (memory) 

and the dynamical variability, a way to make a relevant single-cell characterization of 

the cells would be to cluster them according to their dynamical behavior in response 

to two stresses. 

 

Figure 3-8. Dynamical behavior in response to pulsed stresses. Five examples of single-cell trajectories of cells 
(yPH53 strain) behaving differently in response to two stresses. These single-cell trajectories will serve as a 
reference for the subsequent single-cell analysis. 
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2. The dynamical variability can be clustered according to typical 

profiles 

 

Based on the analysis of all fluorescence trajectories in my experiments, I 

classified the behavior of the cells according to five typical trajectories (figure 3-9A). 

The subsequent single-cell quantification of the cells according to these profiles shows 

that the most predominant profile is the profile 1 -profile that corresponds to the 

memory effect. This stands to reason as it is also the effect that is apparent at the 

population level. Indeed, while 55%±11% of the cells display the memory effect, 

18%±7% of the cells have an opposite response, i.e. a stronger amplitude during the 

second stress.  

 

 

 

 

 

 

 

As expected, there are cells that show no response to a single stress, which is 

likely the result of the bimodality of the HOG response at the transcriptional level as 

Figure 3-9. Most mothers behave according to the memory effect at the single-cell level 
(Top) Single-cell fluorescence trajectories of that correspond to the five typical profiles of 
response that serves as reference for categorization. (Bottom). Quantification of the 
response of cells (yPH53) to two pulsed stresses according to the five typical profiles of 
response. Most cells behave according to the profile 1, i.e memory effect. (N=700 
performed on three independent experiments) 
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presented previously, and which is thought to be seen for short stress (Pelet et al., 

2011). The single-cell analysis reveals a dynamical variability in the response to pulsed 

stresses among the cells. As an explanation to cell-cell variability is the stochasticity of 

gene expression, a legitimate question is: could the single-cell quantification be 

consistent with a purely stochastic behavior of the cells or does it imply that additional 

biological effects have to be taken into account?  

 

3. Computing a population of “stochastic” cells  

 

To determine if the variability of the response to the repeated stresses and if the 

eventual single-cell quantification could be explained by the stochasticity of gene 

expression solely, I computed a population of cells constrained to perform only 

transcription and translation upon receiving pulsed hyperosmotic stresses using the 

Gillespie algorithm38 (figure 3-10).  

 

 

 

 

 

 

 

 

 

Such a model would render possible to compute a cell-cell variability in the 

expression of the fluorescence protein. The rates of production and degradation of 

protein and mRNA that I used can be found in the table below and are from (Llamosi 

et al., 2016). 

 

 

                                                             
38 The code can be found on https://github.com/Lab513 

Figure 3-10. Principle of the simulation. A population of cells is modelled to perform the 
transcription of pSTL1 at the moment of the stress with a rate k1 and the translation of the 
yECITRINE with a rate k2. Degradation of the mRNA and the fluorescence occur a rates d1 and d2 
respectively. The transcription can occur with a time delay τ. 
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4. The cellular memory cannot be explained by a stochastic 

behavior only 

 

From the computed single-cell fluorescence trajectories, I used the same 

principle of clustering in order to categorize the cells according to the same rules than 

the ones used experimentally. 

The stochastic simulation allowed to obtain the profiles 1, 2, 3. Addition of a 

time delay randomly chosen between 0 and 10min caused the emergence of profiles 4 

and 5. The model thus shows that a possible explanation to the temporal bimodality is 

a delay in the transcription39. Overall, the simulation shows that the stochasticity of 

gene expression solely can explain the existence of the five typical profiles of response. 

As expected in such simulations, profiles 1 and 2 have the same occurrences as they 

are ruled by the stochasticity of gene expression, therefore no biological mechanism 

should force the cells to behave according to one of the two profiles in particular. The 

same reasoning can be applied to the profiles 4 and 5. The profile 3 is a rare event that 

depends on the threshold imposed during the clustering process40-threshold that is 

identical in the simulations and experiments (figure 3-11). 

                                                             
39 As the bimodality exists for short stresses but not long stresses, the experiments suggest the existence of a 
critical time from which all cells will eventually respond to the stress. 
40 I use a 5% tolerance to evaluate the profiles for the experiments as well as the model. 

Parameter Definition Unit Reference Value Source 

k1 transcription rate min-1 1.101 (Llamosi, 

2016) 

d1 mRNA decay min-1 2.94.10-1 (Llamosi, 

2016) 

τ time delay min Between 0 and 10 min This 

study 

k2 translation rate min-1 9.47.10-1 (Llamosi, 

2016) 

d2 protein decay min-1 4.10-3 (Llamosi, 

2016) 

Table 1. Parameters used in the stochastic simulations. 
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Altogether, the five profiles of response can be explained by the stochasticity of 

gene expression. However, such stochasticity cannot explain why the profile 1 is 

privileged by the cells in my experimental conditions. Therefore, the results suggests 

that at least one other biological phenomenon is active to ensure that most of the cells 

dynamically behave by displaying the memory effect. 

 

C. Conclusion 

 

My experimental results show that a population of cells adapts to short, 

repeated hyperosmotic stresses by decreasing their response with the stresses, process 

that I call memory effect. Furthermore, the single-cell analysis shows that this mean 

behavior is actually a mixture between cells behaving according to several individual 

typical profiles, synonym of a dynamic response upon stress. The differences in 

clusters quantification observed in vivo and through the simulation, suggest that a 

biological mechanism is able to overcome the stochasticity of gene expression and 

force most cells (but not all) to display the memory effect. With these information, my 

next step is to find what this (these) biological mechanism(s) could be. As I have 

presented in the introduction, memory experiments performed in the budding yeast 

describe two mechanisms responsible for a cellular memory: a cytoplasmic memory 

or an epigenetic one.  

Figure 3-11. The stochasticity of gene expression alone cannot explain the memory effect. (Top) 
Typical fluorescence trajectories. (Bottom left) Single-cell quantification of the yPH53 strain as 
previously shown. (Right) Single-cell quantification of mothers computed with the Gillespie 
algorithm and in the case where a variable transcriptional delay is added (N=1000, 4 rounds of 
simulations). 
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I will describe in the following parts transcriptional inhibition experiments that 

eventually suggest that the memory effect I described in my experiments is not a 

cytoplasmic one.  
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III. The memory effect does not require de novo protein 

synthesis during stress. 

 

To investigate the possibility of a cytoplasmic memory, the strategy I chose 

consisted in canceling out the cells’ ability to perform transcription during the first 

stress and allow them to perform transcription during the second stress only. The idea 

behind this strategy is: if the cells still possess the memory of past stresses, a 

cytoplasmic factor would not be involved as none would have been created during the 

first induction. From an experimental point of view, a way to prevent the transcription 

in a fast and reversible manner is required.  

I will here present my experimental results consisting in analyzing the 

dynamics of the fluorescence reporter upon repeated stresses when cells are treated 

with a transcriptional inhibitor, and pointing towards an origin of the memory effect 

that is not consistent with a cytoplasmic memory. 

 

A. The transcriptional inhibitor thiolutin can successfully prevent 

the transcriptional response upon stress 

 

There are many works on the stability and degradation of mRNA that requires 

the use of transcriptional inhibitors. As a result, many have been well characterized 

and are available on the market. A good summary can be found in this study 

(Bensaude, 2011). 

 

To prevent the cells from producing any protein during a hyperosmotic stress, 

I used a well-characterized transcriptional inhibitor in S. cerevisiae which is the 

thiolutin41. It is a fast and reversible chemical that inhibits the activity of all three RNA 

polymerases in the budding yeast. I first searched for parameters of thiolutin treatment 

that would lead to the loss of the stress response in the cells (Jimenez et al., 1973). After 

a treatment of 1h with thiolutin at a concentration42 of 50µg/µL, no cells showed a 

fluorescent signal upon 8 minutes of hyperosmotic stress43 (figures 3-12, 3-13).   

                                                             
41 Abcam ref ab143556 
42 Typically, concentrations of 3µg/µL are used for transcriptional inhibition using thiolutin, although it has been 
shown that higher concentrations do not impact cell viability and can potentially also inhibit translation. 
Following a hyperosmotic stress, cells treated with a concentration of thiolutin lower than 50µg/µL still 
expressed the fluorescence reporter.  
43 Experiment made in batch for the treatment and on agar pad for the observation and quantification. 
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Figure 3-12. Thiolutin treatment prevents the activity of pSTL1 upon stress. (Top) yPH53 cells 
observed in bright and fluorescence light in SC. (Middle) Cells submitted to a 8min 
hyperosmotic stress using sorbitol 1M observed in fluorescence and bright light after 70min. 
(Bottom) Cells submitted to a 8min hyperosmotic stress using sorbitol1M complemented with 
thiolutin and observed in fluorescence and bright light after 70min. Prior to the stress, these 
cells were pretreated with thiolutin for 1h. The cells do not express the fluorescence protein. 



89 
 

 

 

 

 

 

 

 

 

 

 

 

B. Inhibition of the transcriptional response during the first stress 

does not prevent the emergence of the memory effect at the second 

stress 

 

Having established that the thiolutin can successfully prevent transcription 

during a hyperosmotic stress, the next step was to test if a treatment with the thiolutin 

could alter the cells’ ability to respond back to a hyper-osmotic stress (figure 3-14). The 

idea was if the thiolutin persisted in the cell after treatment and altered the activity of 

pSTL1 upon stress, for instance by decreasing it, an effect resembling the memory 

effect could be observed, but would be a consequence of the treatment rather than the 

actual memory effect. 

 

 

 

 

 

 

 

 

Figure 3-13. Fluorescence quantification of the different cases exposed in the 
previous figure. The amount of cells are respectively N=100. 

Figure 3-14. Principle of the control experiments. (Top) Cells are exposed to an 8min 
hyperosmotic stress and their fluorescence level analyzed. (Bottom) Cells are pretreated with 
thiolutin for 1h, then the inhibitor is washed away and the cells grow for 4h before being 
exposed to a hyperosmotic stress. Their fluorescence level will subsequently be analyzed. 
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To that effect, I treated the cells during 1h with the transcriptional inhibitor. 

After treatment, the inhibitor was washed out and cells were submitted to a 

hyperosmotic stress, 4h later in order to let them recover the treatment and because 

such duration is the resting time that I allow the cells in my experimental conditions. I 

successfully observed that such treatment did not affect the activity of pSTL1, as the 

response of treated cells is similar44 to the response of non-treated cells (figure 3-15). 

Therefore, any effect observed after transcriptional inhibitor treatment in the context 

of my memory experiments would likely not be a consequence of the treatment. 

 

 

 

 

 

 

 

 

 

Having verified that treatment by thiolutin does not impair stress response, I 

next performed thiolutin treatment 1h prior and during the first stress, washed 

thiolutin and submitted cells to a second stress 4h later. Interestingly, in these 

conditions, the cells responded to the second stress similarly with an amplitude 

decreased by 65%±5%. This is comparable45 to the non-treated cells displaying the 

memory effect at the second stress with an amplitude reduced by nearly 50%±5%. 

                                                             
44 Albeit a slight decrease in the case where the mothers are treated with the inhibitor. There might be a slight 
effect on the response of the thiolutin. 
45 A possible explanation would be that if the thiolutin indeed had a slight decrease effect on the response, it is 
possible that the memory effect emerged but because of the thiolutin, will be slightly more pronounced 
compared to non-treated mothers. 

Figure 3-15. Thiolutin treatment does not impair the transcriptional response. Cells (yPH53 
strain) treated with the transcriptional inhibitor do not present a pSTL1 transcriptional defect 
after the inhibitor is washed. Population quantification of the response to a stress in the case 
when the cells were untreated (blue) or treated with the inhibitor (purple) 
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C. Conclusion  

 

The transcriptional inhibition experiment suggests that the memory effect is not 

driven by de novo protein synthesis during the stress. Therefore, the memory effect 

that I observed is likely an epigenetic memory. In addition, these experiments 

suggest that the first stress induces changes independent of the activity of any RNA 

polymerases, and are responsible for adaptation. One interesting possibility is that the 

chromatin is modified by marks independent of transcription. The modifications 

would appear in most cells during the first stress and remain to the second stress. Since 

Figure 3-16. The memory effect does not require a transcriptional activity during the 
first stress.  (Top)  Non treated cells are exposed to two 8min hyperosmotic stresses 
separated by four hours. Treated cells are exposed to thiolutin for 1h and, still treated 
with the inhibitor, exposed to an 8min hyperosmotic stress. The inhibitor is then washed 
and the cells grow for 4h before being exposed to another 8min stress. (Bottom) Inhibition 
of the response to the first stress does not prevent the memory of the stress. Population 
quantification of the response to a second stress in the case when the cells (yPH53 strain) 
were submitted to a first 8min stress (blue) or submitted to a first stress + transcriptional 
inhibitior (purple). 
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thiolutin inhibits RNA Polymerases but does not prevent other factors from binding 

to the chromatin, such marks are possibly dependent on transcription initiation.  

As I ruled out the cytoplasmic memory hypothesis, I then focused on 

investigating the influence of several epigenetic factors on the memory effect, in order 

to characterize it and find its biological mechanism. 
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IV. The chromatin structure impacts both the transcriptional 

activity of pSTL1 and the memory effect 

 

I will here present my experimental results showing that a change in the 

position of the genetic system that I analyzed not only alters the activity of pSTL1, but 

also its dynamical behavior and the memory effect. The results suggest that the 

position of pSTL1 on the genome may determine if the memory effect or the noise in 

gene expression is predominant. 

 

A. Chromosome positioning alters both the activity and the 

dynamical behavior of pSTL1 

 

1. Rationale to displace pSTL1 

 

The STL1 locus is located on the right arm of the chromosome IV, in its 

subtelomeric region. As I have presented in the introduction, silencing and epigenetics 

are known to partly depend on the locus positioning. Particularly, subtelomeres are 

regions prone to transcriptional silencing. 

 

As the memory effect is characterized by a decreased amplitude of response 

upon stress, a possible explanation to it would be that it is a reflection of the silencing 

caused by the subtelomeric position of pSTL1. I thus investigated the influence of the 

chromatin context on the dynamics of activation of pSTL1. As subtelomeres are 

particular regions containing stress response genes46, I have moved a region containing 

the promoter of STL1 and the yECITRINE fluorescent reporter to a distinct, 

centromeric chromatin domain. Such a region is not prone to silencing, nor contains 

stress response gene. Therefore, pSTL1 is in a distinct transcriptional environment. 

More specifically the fluorescence reporter, along with 1kb of upstream sequence, 

enough to have a fully functional STL1 promoter at its endogenous locus, was moved 

at the TRP1 locus (figure 3-17). 

                                                             
46 However, they can contain housekeeping genes which activity increase upon stress. For instance, GPD1 is a 
housekeeping gene that is upregulated upon hyperosmotic stress, and is located at a pericentromeric location 
of the chromosome IV. 



94 
 

 

 

 

 

 

 

 

 

 

 

 

2. Quantification of the variation of the displaced pSTL1’s 

behavior compared to the wild type 

 

 

a) The activity of pSTL1 is decreased at the pericentromeric 

location 

 

Before performing the dynamical analysis of the displaced pSTL1 in the context 

of the memory experiments, and as transcription level can depend on genome location, 

I first wanted to verify if the displacement caused any differences in its transcriptional 

activity. To that effect, I submitted a population of cells to a 2h hyperosmotic stress. 

Such long stress forces all cells to express the fluorescence protein under the control of 

promoter of interest. I performed flow cytometry experiment in order to have a robust 

and statistically relevant analysis of the potential differences between wild type strain 

and strain with the displaced pSTL1. 

Interestingly, the experiments (triplicates on 15 000 cells) show that at the 

population level, the transcriptional strength of the displaced pSTL1 is 20% lower in 

average than the endogenous one, in the stress conditions (figure 3-18). This result is 

quiet counter-intuitive since subtelomeres are notoriously known to be regions with 

lower transcriptional activity compared to others. However, this paradigm has been 

established in normal conditions. During stress conditions, subtelomeres are no longer 

silenced since stress response genes, mostly located at subtelomeres, have to be 

expressed. Cells, in these conditions, will stop most of their day-to-day processes, 

controlled by non-subtelomeric genes, in order to fight the stress. Therefore, it appears 

Figure 3-17. Genomic coordinates on the chromosome IV. For 
the following experiments, pSTL1 was moved to the Trp1 locus. 
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that the paradigm stating that subtelomeres are silenced is true only in non-stress 

conditions. It can thus be hypothesized that upon stress, the activity of pSTL1 is likely 

to be stronger than at another location that might be downregulated upon stress.  

 

 

 

 

 

 

 

 

 

 

 

 

 

b) The memory effect is lost at the pericentromeric location 

 

As there are differences at the population level between subtelomeric and 

pericentromeric positions, my next step was to perform microfluidic experiments on 

the centromeric strain in order to investigate the cells’ behavior at the single-cell level. 

In this context, the cells still behave according to the five typical profiles of response 

that I have presented earlier for the wild type strain. I then compared the patterns of 

consecutive responses to two 8min hyperosmotic stresses separated by 4h between 

subtelomeric and centromeric pSTL1. Cells expressing the STL1 promoter at the 

pericentromeric position showed a more uniform distribution into the five defined 

typical profiles of response47 and there was a decrease in the amount of cells displaying 

the memory effect (from 55%±11% to 28%±4%, figure 3-19). Such a loss of memory 

effect is actually comparable to a solely stochastic process, as simulations have 

established. This result suggests that the chromatin environment determines the 

dynamical transcriptional activity of pSTL1 (see discussion). 

                                                             
47 An interesting point is that the profiles 4 and 5 have similar occurrences in both the subtelomeric 

and centromeric strain. Consequently, these profiles do not depend on the genomic location which is 

another argument in favor of a transcriptional delay. 

Figure 3-18. Displacement of pSTL1 causes a decrease in its transcriptional activity. 
Cells were submitted to a 2h hyperosmotic stress and the fluorescence activity of 
pSTL1 at its endogenous location (yPH53 strain, dark blue) and at the pericentromeric 
location (yPH212, light blue) was analyzed. The displaced pSTL1 expression decreases 
by 20% upon stress compared to the wild type. Represented, the error on the mean 
value between the triplicates for the various time points. 
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3. Influence of the chromatin environment in non-stress 

condition: a Crispr control  

 

A key observation is that moving the promoter of interest from its endogenous 

location to a pericentromeric location on the same chromosome causes a decrease in 

its activity. It has been established that a decrease in the activity of pSTL1 can be 

obtained when the promoter is truncated, i.e. when the sequence upstream STL1 is 

inferior to 658bp (Bai et al., 2015). This is not the case in this study, as 1kb upstream of 

the promoter sequence was moved48. A fully functional pSTL1 may, in addition to its 

sequence, require the presence of unreported genetic regulators located at its 

endogenous position.  

 

In my study, only the STL1 promoter was displaced in a pericentromeric 

domain and no potential regulators. Therefore, the hypothesis that the decrease of 

activity of pSTL1 at the pericentromeric at the population level is caused by the 

                                                             
48 Also, there are no mutation in the displaced pSTL1 that could explain the reduced activity. Sequencing data 
available in https://github.com/Lab513 

Figure 3-19. Displacement of pSTL1 causes a loss of the memory effect in favor of a uniform 
behavior. (Top) Five typical fluorescence trajectories. (Bottom) Single-cell quantification of cells with 
pSTL1 at its endogenous location (yPH53, dark blue, N=700), or pSTL1 at the pericentromeric location 
(yPH212, light blue, N=250). The memory effect is lost when pSTL1 is displaced, in favor of a 
homogenous distribution with regards to the five classes. 
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absence of genetic regulators has to be considered. To test this hypothesis, I used a 

Crispr/dCas9Vpr system in order to force the activation of pSTL1 in non-stress 

conditions (Chavez et al., 2015). The Cas9 is a DNA endonuclease associated with the 

CRISPR immune system of bacteria that is guided by a small RNA (gRNA). 

Recognition of a specific DNA sequence by gRNA induces DNA specific double 

stranded cleavage. Mutated, catalytically inactive “dead” Cas9 (dCas9) can still 

recognize a specific sequence in the presence of dedicated gRNA, but will leave DNA 

uncleaved. When dCas9 is fused to the Viral Protein R and given a specific RNA 

sequence, it is virtually possible to force the activation of any specific gene. By 

targeting a genomic sequence within the 1kb of upstream sequence of the fluorescence 

reporter in both the subtelomeric and centromeric strains and forcing the activity of 

pSTL1, it is possible to bypass stress induction of pSTL1 and therefore the potential 

effect of proximal regulators at the endogenous position. Consequently, any 

differences in the transcriptional activity of pSTL1 observed using the 

Crispr/dCas9Vpr would likely be linked to the chromatin environment.  

 

Using such system on the yeast strains where pSTL1 is at its endogenous 

location and displaced, I have successfully bypassed the need to stress the cells with 

1M sorbitol in order to activate pSTL1. However, the fluorescence quantification 

shows that the activity of the promoter is twice as strong as at its endogenous location 

than when displaced (figure 3-20). As the Crispr/dCas9Vpr system bypasses the stress 

response and enables the distinction between endogenous regulatory mechanisms of 

the promoter and chromatin context, I have concluded that the differences of 

expression and dynamical behavior of pSTL1 when close to the centromere, are neither 

linked to the sequence of the promoter itself, nor the presence of regulatory elements. 

Rather, these differences in activity are related to the chromatin environment. 

Altogether, these experiments suggest that the chromatin environment is critical to 

respond in a manner distinct to a solely stochastic one in response to pulsed 

hyperosmotic stresses.   
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B. Conclusion 

 

The experimental results that I have presented points towards an influence of 

the chromatin on the memory effect, as a change in the genomic location of pSTL1 led 

to a loss of the memory effect among a population of cells and to a behavior that is 

comparable to the one described by cells performing only transcription and 

translation, i.e. without memory effect. 

My next step was to try finding the epigenetic factor(s) that could be responsible 

for such differences between the two strains. Because of the previously presented 

observations, the factor(s) would likely be specific to the subtelomeres, or absent at the 

subtelomeres. The natural choice, as I have presented in the introduction, is the 

epigenetic SIR complex. I will thus present in the following part my investigation of 

the SIR complex on the transcriptional activity of pSTL1 and on the memory effect.  

 

 

 

 

 

 

 

Figure 3-20. Successful activation of pSTL1 in non-stress conditions using Crispr/dCas9Vpr shows that 
the chromatin context determines the transcriptional strength of pSTL1. (Left) Fluorescence image of the 
yPH53 strain transformed with Crispr/dCas9Vpr and guide 1. The system successfully forces the 
transcription of the yECITRINE. (Right) Fluorescence quantification of the yPH53 and yPH212 strains with 
Crispr/dCas9Vpr and the guide 1. 
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V. The SIR complex has an unreported influence at a 

pericentromeric location 

 

In this part, I will here present the influence of the SIR complex on the memory 

effect at the subtelomeric and centromeric location. In particular, I will show that the 

SIR complex forms unreported hyperclusters upon stress, and the absence of these 

hyperclusters has no impact on the memory effect at the subtelomeric location, but 

enables the recovery of both an activity of pSTL1 comparable to the wild type and the 

memory effect at the pericentromeric location. However, the effect of the SIR complex 

on a location outside of subtelomeres appears not to be a global phenomenon as 

suggest experiments performed on pericentromeric osmo-responsive gene GPD1. 

 

 

A. The SIR complex has no influence on pSTL1 at its endogenous 

position 

 

1. The SIR complex forms hyperclusters upon hyperosmotic 

stress 

 

a) Observation of the SIR3 hyperclusters 

 

The SIR complex is bound to the telomeres and forms 3-8 clusters at the nuclear 

periphery (Guarente, 1999; Maillet et al., 1996; Taddei et al., 2009). Using a SIR3-GFP 

strain from the GFP collection, I could observe the various Sir3 clusters in fluorescence. 

In non-stress conditions, small clusters are observable. However, when I perform an 

8min stress on the SIR3-GFP strain, I observed a change in the phenotype with the 

SIR3-GFP clusters larger and much brighter (figure 3-21).  

Several reports have stated that during a hyperosmotic stress, factors are 

depleted from the chromatin. In particular, Kupiec’s group showed that Sir3 is 

removed from subtelomeres during a hyperosmotic stress. However, no studies have 

investigated in more depth the fate of Sir3 during a hyperosmotic stress. My 

experiments show that, assuming that Sir3 is removed from the chromatin, this 

removal ctually causes Sir3-GFP to form hyperclusters in the nucleus upon stress 

(figure 3-21). Such a phenotype has never been reported in any stress conditions and 

would require a more consequent investigation. 
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b) Quantification of the Sir3 hyperclusters 

 

To make a quantitative measurement of the fluorescence of the Sir3 hypercluster 

upon stress and to try to determine the location of this hypercluster in the nucleus, I 

examined the SIR3-GFP formation in a strain with NUP49-RFP49. 

Using a simple thresholding on the fluorescence images, I was able to quantify 

the fluorescence intensities of the Sir3 clusters in non-stress and stress conditions. On 

average, the hyperclusters formed upon stress are twice as fluorescent as the Sir3 

clusters that are present in normal conditions (values on figure 3-21). However, no 

conclusions could be drawn about the position of the Sir3 hyperclusters in the nucleus 

compared to the position of the Sir3 clusters. This would require a deeper investigation 

that will probably necessitate the use of gene maps (Berger et al., 2008). 

 

 

 

One could ask the question whether the Sir3 hyperclusters are not due to an 

increase of SIR3 activity upon stress that could obviously make the original clusters 

                                                             
49 Nup49 is a protein of the Nuclear Pore Complex. Therefore, tagging such a protein would allow the nuclear 
membrane to be visible under fluorescence light. 

Figure 3-21. Formation of Sir3 hyperclusters upon hyperosmotic stress that are twice as fluorescent as 
the Sir3 focci in non-stress conditions. Cells (yEF506) were submitted to an 8min hyperosmotic stress 
using sorbitol 1M. Images were taken five minutes upon stress. (Middle) Fluorescence image of the 
budding yeast. The nuclear envelope is marked with a fluorescence marker. (Top right) Fluorescence 
image in GFP with Sir3 focci in normal conditions. (Bottom right) Fluorescence image in GFP with Sir3 
hyperclusters upon hyperosmotic stress. (Left) Merged fluorescence images.  
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brighter. Since I am observing the production of the complex SIR3-GFP following a 

hyperosmotic stress, the folding time of the GFP in the yeast must be taken into 

account. This folding time is around 20-30min, therefore any newly produced proteins 

won’t be visible under fluorescence light before such folding time. As I observe the 

formation of the Sir3 hyperclusters during the stress  -namely after 5min of induction- 

the phenotype I observe cannot match an overproduction50 of Sir3. Therefore, the 

experimental observation is consistent with a relocation of Sir3 that forms 

hyperclusters. 

Interestingly, the hyperclusters of Sir3 that I observe upon stress are very 

similar to the Sir3 hyperclusters observed when cells reach a quiscence state (Guidi et 

al., 2015; Laporte et al., 2016). It is worth mentioning that it exists several common 

points between a quiescent cell and a cell under hyperosmotic stress (figure 3-22). 

Although the phenomenon I observe might probably be different than the one 

described in the study, similarities could be still be drawn between the two 

phenotypes.  

 

 

 

 

 

 

 

 

 

2. Sir3 has no influence on the endogenous pSTL1 

 

a) Sir3 does not impact the activity of pSTL1 

 

In order to study the influence of the SIR complex on the activity of pSTL1 upon 

stress, and to potentially obtain an indirect information on the impact of the Sir3 

hyperclusters on the transcriptional activity of pSTL1, I have deleted SIR3 in the 

subtelomeric strain (figure 3-23).  

                                                             
50 It is however factually possible that there could be an overproduction of Sir3 during the stress. An 

RT-qPCR would be required to further investigate this possibility.  

 

Figure 3-22. From Laporte et al, 2016. Hyperclusters of Sir3 in quiescence state. 
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In a similar fashion than I have presented before, I submitted the cells to a long 

stress in order to force every cell to response and performed flow cytometry 

experiments in order to quantify potential differences of pSTL1’s activity between wild 

type strain and the SIR3 mutant. After exposing both strains to a 2h hyperosmotic 

stress, the fluorescence quantification of the flow cytometry experiment reveals that 

deletion of SIR3 has no influence on the subtelomeric strain, albeit a slight increase of 

activity51 of pSTL1 (figure 3-24).  

 

  

 

 

 

 

                                                             
51 Absence of the SIR complex means that Sir3 does not replace the H3 histone. Therefore, the spacing between 
nucleosomes might be different, so the chromatin would be less compacted in the case where SIR is absent, 
hence the slight increase in the activity of pSTL1. 

Figure 3-23. Deletion of SIR3 changes the phenotype of cells. (Left) Wild type cells growing in 
the microfluidic device and imaged in bright light. (Right). Cells deleted for SIR3 growing in the 
microfluidic device and imaged in bright light have a lemon-like shape. Scale bar at 5µm. 
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b) Sir3 does not impact the memory effect 

 

The analysis of the experiments performed in the microfluidic device consisting 

in submitting a population of cells deleted for SIR3 to pulsed hyperosmotic stresses 

separated by 4h shows that there are no differences in the single-cell quantification 

compared to the wild type strain (figure 3-25), a result consistent with the population 

experiment. 

 

 

 

 

 

 

 

 

Figure 3-24. There is no influence of SIR3 on the activity of pSTL1 in the wild type strain. 
The cells were submitted to a 2h hyperosmotic stress (red) and the fluorescence level 
was quantified in the yPH53 strain (blue) and the SIR3 mutant (yPH213, gold) using flow 
cytometry. The analysis, made in triplicates on 15000 cells, shows that there is no 
influence of SIR3 on the transcriptional activity of pSTL1. Represented, the error on the 
mean between the triplicates for the various time points. 



104 
 

 

3. Conclusion 

 

One possible explanation for the lack of effect of the SIR3 deletion on stress 

response is that in the endogenous strain and upon hyperosmotic stress, pSTL1 has to 

be expressed, along with various stress response genes that are mostly located at 

subtelomeres. This implies that the subtelomeric repression, ensured by the SIR 

complex, has to be lifted during the stress. As a result, the SIR complex should not 

have any impact on pSTL1’s activity, and the analysis of my experiments suggests that 

it actually does not. Another argument in favor of the absence of role of the SIR 

complex upon stress is the fact that a study has reported that the SIR complex is 

depleted from the subtelomeric chromatin upon stress (Mazor and Kupiec, 2009).

  

 

B. The SIR complex has an unexpected effect at the 

pericentromeric location 

 

Although Sir3p does not impact the activity of pSTL1 at its endogenous location 

upon stress, the formation of Sir3 hyperclusters in the nucleus might impact the 

transcriptional activity of other regions of the chromatin, especially if the formation of 

Figure 3-25. There is no influence of SIR3 on the memory effect at the single-cell level. Single-cell 
quantification according to the five profiles of response (top) of the wild type strain yPH53 (blue, 
N=700) and the SIR3 mutant yPH213 (gold, N=100) in response to two pulsed hyperosmotic stresses. 
In both cases, most of the cells behave according to the profile 1 (memory effect), suggesting that 
there is no influence of SIR3 on the memory effect. 
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such hyperclusters is an active phenomenon. To that effect, I have investigated the 

influence of the Sir3 in the strain where pSTL1 is displaced at a pericentromeric 

location. 

 

1. Deletion of SIR3 restores a wild-type like transcriptional 

activity of pSTL1 

 

Similarly to the experiment performed on the subtelomeric strain, I have deleted 

SIR3 in the centromeric strain and submitted a population of yeast to a 2h 

hyperosmotic stress and analyze the fluorescence activity of pSTL1. Unlike the wild 

type strain, I observe a very surprising effect: removal of SIR3 actually causes an 

increase by 20% in the activity of pSTL1, to a level that is similar to the wild type strain 

(figure 3-26). This result implies that the SIR complex has an impact on the activity 

of pSTL1 displaced at the pericentromeric location, which is unexpected as the SIR 

complex has never been reported to have any activity outside the subtelomeres and 

telomeres.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-26. Deletion of SIR3 causes an increased activity of pSTL1 in the centromeric context 
to a level comparable to the wild type. The cells were exposed to a 2h hyperosmotic stress 
(red) and their fluorescence level was quantified in the strain where (light blue) pSTL1 
displaced at the centromere yPH212, (yPH215, gold) the same strain deleted for SIR3. Also, the 
wild type strain yPH53 is plotted (dark blue). Experiment made in triplicates on 15000 cells. 
The experiment shows that the deletion of SIR3 causes pSTL1 in the centromeric context to 
regain a transcriptional activity comparable to the wild type. . Represented, the error on the 
mean between the triplicates for the various time points. 
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2. Deletion of SIR3 restores the memory effect at the 

pericentromeric location 

 

Following the patterns of microfluidic experiments that I have presented earlier, 

I then performed single-cell experiments in the microfluidic device on the 

pericentromeric strain deleted for SIR3. The single-cell quantification shows that the 

cells still display the five typical profile of response. However, as the pericentromeric 

strain was characterized by a pronounced decrease of the memory effect, deletion of 

SIR3 causes most cells to regain the memory effect. The quantification (figure 3-27) 

shows an increase in the amount of cells displaying the memory effect in the 

centromeric compared to the same strain deleted for SIR3 (from 28%±4% to 50%±5%). 

Such behavior is comparable to the dynamical behavior of the wild type strain as 

55%±11% of the cells displayed the memory effect in the wild type strain. 

 

 

 

3. Conclusion 

 

It has been established in a definitive manner that the SIR complex only acts at 

subtelomeres and telomeres in the budding yeast, through interactions with specific 

factors such as Rap1 and Abf1, in non-stress conditions (Maillet et al., 1996). 

Figure 3-27. Deletion of SIR3 in the pericentromeric context allows the recovery of the memory effect.  
Single-cell quantification according to the five profiles of response (top) of the centromeric strain yPH212 
(blue, N=100) and the SIR3 mutant yPH215 (gold, N=100) in response to two pulsed hyperosmotic stresses. 
The memory effect is recovered in the mutant. 
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My experimental data show that the SIR complex does not have any influence 

on the activity and dynamical behavior of pSTL1 at its endogenous location, which can 

logically be linked to the fact that stress response genes must be expressed upon stress. 

However, my experimental data also point towards an influence of the SIR complex 

on pSTL1 when this promoter is moved to the pericentromere. As the SIR complex is 

likely removed from subtelomeres upon stress and appears to form hyperclusters 

according to my experiments, it is entirely possible that such hyperclusters have an 

influence on chromatin domains distinct from subtelomeres.  

If such hypothesis were to be true, other genes expressed upon hyperosmotic 

stresses might be influenced by the SIR complex in stress conditions. I have therefore 

looked for a gene at the pericentromeric location of the chromosome IV and expressed 

upon hyperosmotic stress conditions in order to test the influence of the SIR complex 

on such gene. 

 

 

C. The SIR complex does not have a global influence on osmo-

responsive genes 

 

1. GPD1 is an osmo-responsive, pericentromeric gene 

 

The budding yeast has the natural ability to produce glycerol for its day-to-day 

biochemical reactions, and does so in normal conditions through the constitutive 

expression of the GPD1 gene. The latter is overexpressed upon hyperosmotic stress in 

order to ensure the physiological adaptation of the cell to the stress. GPD1 is a 

pericentromeric gene, more precisely located at 34kb from Cen IV (figure 3-28). Those 

characteristics of GPD1 makes it an ideal candidate to verify if Sir3 has a broad 

influence on the chromatin, especially at pericentromeric regions. 
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2. The transcriptional activity of GPD1 does not change upon 

short stresses, but increases upon long stresses 

  

I used the GPD1-GFP strain from the GFP collection and first tried to make a 

fluorescence quantification of the overexpression of GPD1 upon stress. As it turned 

out, an 8 min hyperosmotic stress did not cause any increase of the fluorescence. This 

is due to the adaptation time to a hyperosmotic stress that has been determined to start 

at least 15min after an induction and end at a maximum of 30min. As I have explained 

before, I only focus on the transcriptional response and perform short stresses in order 

to decorrelate the physiological adaptation from the transcriptional response. It is thus 

not surprising that I do not observe an overexpression of GPD1 and actually confirms 

that an 8 min stress is a good choice to avoid the physiological adaptation. However, 

in response to a 1h hyperosmotic stress, the increase of GPD1 fluorescence is clearly 

apparent52 (figure 3-29).  

 

                                                             
52 Interestingly, I also observe a bimodality in the response to the stress: some cells do not show any 

increase in GPD1 activity upon stress. As a result, these cells do not adapt to the stress and stop their 

cellular division. A justification based on a transcriptional delay could not explain such subpopulation 

as GPD1 is constitutively transcribed. However, these cells are unable to overexpress the gene. As I 

have not investigated further this phenomenon, I am unable to propose a biological explanation. 

Figure 3-28. Coordinates of GPD1 on the chromosome IV. 
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Overall, performing the same patterns of microfluidics experiments on the 

GPD1-GFP strain that I did before is not possible. Thus, I decided to investigate the 

influence of the SIR complex on GPD1 upon long stress only.  

 

 

3. The SIR complex does not impact the activity of GPD1   

 

I have therefore proceeded to the deletion of Sir3 from in the GPD1-GFP strain. 

The subsequent cells were then submitted to a 2h hyperosmotic stress and their 

fluorescence level quantified using flow cytometry. The quantification shows that 

there are no differences between the wild type strain and the strains deleted for SIR3 

(figure 3-30). This suggests that the effect of Sir3p is specific to the inducible pSTL1 

gene when pericentromeric. 

 

Figure 3-29. GPD1 is overexpressed in long hyperosmotic stress conditions only. GPD1-GFP strain 
exposed to an 8min hyperosmotic stress (top) or a 1h hyperosmotic stress (bottom). Cells were imaged 
in fluorescence light (200ms exposure). A short stress does not cause an increase of GPD1 fluorescence 
level, unlike a long stress. This is because an 8min stress does not trigger a physiological adaptation. 



110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One possibility is that the influence of the SIR complex at the GPD1 locus is non-

existent, however GDP1 is constitutively expressed so the chromatin environment is 

already in a state prone to transcriptional activity. This is not the case with the 

displaced pSTL1 which is repressed in normal conditions. Thus it would be interesting 

to study an inducible hyper-osmotic pericentromeric gene in order to verify if the 

presence or absence of the SIR complex can influence its expression, or displacing the 

pSTL1 promoter and its fluorescence reporter to various locations of the chromatin. 

 

The absence of effect of the SIR complex on the overexpression of GPD1 

suggests that the role of the Sir3 hyperclusters is not global. As of now, the role and 

effect of these hyperclusters is still elusive. Gene maps and ChIP experiments in order 

to look at the location of Sir3 upon stress would be a great starting point to study the 

likely locations where the hyperclusters would have an effect. Having such locations, 

investigations of the biological effects would be the natural following step (see 

discussion). 

 

 

D. Conclusion  

 

Figure 3-30. The SIR complex does not have an influence on GPD1 upon 
stress. The cells were exposed to a 2h hyperosmotic stress (red) and their 
fluorescence level was quantified in the GPD1-GFP strain (yPH003, blue) and 
the same strain deleted for SIR3 (yPH360, gold). Experiment made in 
triplicates on 15000 cells. Represented, the error on the mean between the 
triplicates for the various time points. 
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Upon hyperosmotic stress, I observed a previously unreported phenotype 

which consists in the formation of Sir3 hyperclusters. These hyperclusters, which 

resembles those observed during quiescence, a state that share many similarities with 

a cell upon stress, do not impact the activity of the endogenous pSTL1, nor the single-

cell quantification of the cells that have the promoter of interest at the endogenous 

location.  

At the pericentromeric position, the most obvious effect that the deletion of SIR3 

caused is the recovery of an activity of the displaced pSTL1 to a similar level to the 

wild type. In such conditions, the recovery of the memory effect was also observed. 

The SIR complex explains how to recover the memory effect in a particular case, but 

does not explain why it existed in the first place. However, the previously presented 

results on the influence of Sir3 on the displaced pSTL1 suggests that a particular level 

of transcriptional activity is required for the emergence of memory effect. This level 

of transcriptional activity would be similar to the one of wild type, explaining why this 

strain already has the memory effect. If such hypothesis were to be true, this would 

mean that particular loci (such as the TRP1 locus) caused the stochasticity of gene 

expression to trump a high transcriptional activity, thus overcoming any biological 

effect hence the absence of memory at the pericentromeric location. However, the 

subtelomeric position would allow to overcome the stochasticity of gene expression 

for some cells. Thus, a subpopulation of cells will switch to one specific profile, i.e. the 

profile 1 corresponding to the memory effect.  

 

Based on the hypothesis of the necessity to have a high transcriptional activity, 

my next step was to look for epigenetic factors independent to any RNA Pol (as shown 

by the transcriptional inhibition experiment) that could influence the compaction of 

the chromatin which, as I have presented in the introduction, is linked to the likelihood 

of having a high or low transcriptional activity. 
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VI. Preliminary study of the impact of chromatin remodelers 

on the memory effect 

 

In the previous part, I have presented results on the influence of the SIR complex 

on the memory effect. The analysis points to the necessity of an optimal level of 

transcription in order for most of the cells to obtain the memory effect. However, I do 

not have an answer as to why at the endogenous location the memory effect is 

predominant, nor what are the biological mechanisms behind it. As the transcriptional 

inhibition experiment has ruled out that de novo protein synthesis is at the origin of the 

memory effect, I have studied several factors that are known to influence the 

chromatin state. In particular, as we have presented during the introduction, I have 

investigated the roles of histone acetylation, the histone variant H2A.Z and the 

chromatin remodeler Snf2p. This work is however still preliminary. 

 

A. Acetylation may not have an effect on the memory effect 

 

As developed in the introduction, histones acetylation increases the accessibility 

of the chromatin to transcriptional factors. Since I observed a decrease of 

transcriptional activity upon successive stresses, a possible explanation would be that 

the state of the chromatin is modified between stresses, therefore causing the 

transcriptional response to vary. However, if changes in the acetylation levels upon 

stress is the factor responsible for the memory effect, forcing the same level of 

acetylation in order to constantly prepare the chromatin at the STL1 locus for 

transcriptional activity should in theory lead to a decorelation of the transcriptional 

responses to the stresses and lead to a dynamical behavior of the cells comparable to 

the stochastic simulations53. 

 

 To test this hypothesis, I have attempted to force an open state of the chromatin 

using Trichostatin A (TSA)54. This chemical inhibits histones deacetylases, thus the 

chromatin is primed to be in a constant hyperacetylated state, including at the STL1 

locus.  

Cells were treated for 8h with 100nM TSA dissolved in ethanol and submitted 

to pulsed stresses in the microfluidic device. Following the pattern of my memory 

                                                             
53 Alternatively, forcing a high level of acetylation on the strain with the displaced pSTL1 during the first stress 
only, might cause a recovery of the memory effect. 
54 Abcam ref ab120850 
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experiments, I quantified the fluorescence trajectories of the cells in order to analyze 

their dynamical behaviors. The subsequent single-cell quantification shows that 

despite hyperacetylation of the chromatin, this latter is likely not in the same state 

during the first and second stress as most of the cells still decrease their transcriptional 

activity with the stress (62%±21% in the hyperacetylated case compared to 55%±11% 

in the wild type strain, figure 3-31): the memory effect is predominant. Overall, this 

result suggests that there are no differences in the dynamical behavior compared to 

the non-treated cells, therefore TSA acetylation does not seem to be a critical factor to 

the memory effect. This work is however preliminary and will need to be repeated and 

TSA efficiency controlled55. 

 

 

 

 

 

B. Investigation of chromatin remodelers 

 

Chromatin remodelers, through hydrolysis of ATP, induce local changes in the 

conformation of nucleosomes that can influence gene expression. As I have presented 

before, a possible hypothesis to the memory effect is the necessity to have a high 

transcriptional activity at the first stress. To that effect, I investigated the influence on 

                                                             
55 I have used the TSA according to protocol available in Gael Yvert’s lab website (http://www.ens-

lyon.fr/LBMC/gisv/index.php/en/protocols/yeast-methods/92-tsa-treatment), but I did not perform a 

control consisting of doing a western blot targeting the acetylated histones exclusively. Therefore, the 

result could also be explained by a failed TSA treatment. 

Figure 3-31. Acetylation does not permit to decorrelate the response to two hyperosmotic 
pulses. Single-cell quantification according to the five profiles of response (top) of the wild type 
strain yPH53 (blue, N=700) and the wild type strain treated with TSA (gold, N=100) in response to 
two pulsed hyperosmotic stresses. The single-cell quantification is similar in both cases. 
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the memory effect of two well studied factors that affect the compaction of the 

chromatin. My reasoning here was to keep the chromatin in a constantly open state so 

that the activity of pSTL1 would constantly be at a high level and potential post-

transcriptional regulation would not be effective: the responses to the pulsed stresses 

would be decorrelated. 

 

 

1. The Swi/Snf complex does not impact the memory effect 

 

The Swi/Snf complex is an assembly of proteins involved in the regulation of 

gene expression, including stress response genes. Moreover, it has implication in the 

regulation of genes that are repressed in glucose conditions. As the STL1 gene is a 

stress response gene that is submitted to glucose repression in non-stress conditions, 

the Swi/Snf complex is a perfect candidate to the investigation of its potential role in 

the transcriptional regulation of STL1 and maybe the memory effect.  

 I have deleted SNF2, the catalytic subunit of the Swi/Snf complex. The 

subsequent strain was submitted to pulsed stresses in the microfluidic devices and the 

dynamical behavior of the cells analyzed by fluorescence. The single-cell 

quantification shows that the cells still behave according to the five typical profiles of 

response. A high variability in the amount of cells behaving according to the profiles 

1 and 2 impeaches to conclude on the effect of SNF2 (50%±21% and 30%±22% 

respectively, figure 3-32). This experiment needs to be reproduced. 

Figure 3-32. The memory effect is not impaired by SNF2.  Single-cell quantification according to the 
five profiles of response (top) of the wild type strain yPH513 (blue, N=700) and the SNF2 mutant 
yPH385 (light blue, N=120) in response to two pulsed hyperosmotic stresses. Although there is an 
increase in the cell-cell variability in the latter case, there is no real change in the single-cell 
quantification. 
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However, the high variability might suggest that the presence of the complex 

influences the cell-cell variability. Further work is required in order to have a definitive 

answer as to the role of the complex on the dynamical response. 

 

 

2. The histone variant H2A.Z may not impact the memory effect 

 

A stated in the introduction, H2A.Z is involved in the regulation of transcription 

and has been implied in the galactose memory. 

This histone variant is encoded by the HTZ1 gene. I have deleted this gene of 

interest in the yPH53 strain. I have then performed single-cell experiments during 

which the dynamical behavior a cells was studied in microfluidics. 

The preliminary result does not point towards an influence of this factor on the 

memory effect as the profiles of responses are relatively similar to the wild type (62% 

of cells with the memory effect in the strain deleted for HTZ1 compared to 55%±11% 

in the wild type strain, figure 3-33). However, this preliminary work needs 

confirmation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-33. The memory effect is not impaired by HTZ1.  Single-cell quantification according 
to the five profiles of response (top) of the wild type strain yPH53 (blue, N=700) and the HTZ1 
mutant yPH359 (gold, N=56) in response to two pulsed hyperosmotic stresses. Although there 
is an increase in the cell-cell variability in the latter case, there is no real change in the single-
cell quantification. 
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C. Conclusion 

 

My previous work pointed towards the fact that a high level of activity of pSTL1 

during the first stress is required to have the emergence of the memory effect at the 

second stress, characterized by a decreased activity, probably linked to post-

transcriptional activity that are independent of Pol II transcriptional marks. In this 

case, both stresses are correlated. By altering the activity factors involved in the 

structure of the chromatin, I intended to keep the chromatin in the same state during 

the pulsed stress in an effort to avoid the emergence of the memory effect. 

Although preliminary work, my study points towards the absence of influence 

of at least two factors that modify the chromatin by opening it. Moreover, artificially 

inducing an open state of the chromatin with TSA does not impact the single-cell 

quantification either. Overall, the open state of the chromatin, usually associated with 

acetylation, does not seem to be involved in the memory effect.  

However, it is known that a high expression of STL1 is linked to the presence of 

the HDAC Rpd3 (de Nadal et al., 2004). In such a case, deacetylation might actually be 

linked to an open state of the STL1 promoter. Since TSA inhibits HDACs, an effect 

should have been visible in the TSA experiment, which is not the case. Interestingly, 

the TSA is known to inhibit all HDACs except a specific class of HDACs called sirtuins. 

In the budding yeast, the archetypal sirtuin is Sir2.  

Sir2 interacts with Rpd3 in an antagonist fashion. Therefore, a promising lead 

of study is the investigation of both deacetylation through the study of Rpd3 and Sir2 

which can make a bridge between the memory effect at the subtelomeric location (the 

high activity of pSTL1 is at this position which is Rpd3 dependent) and the absence of 

it at the centromere (the low activity of pSTL1 at this location is linked to the presence 

of the SIR complex). 
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VII. Preliminary study of the heredity of the memory effect 

 

I have so far presented an investigation on the existence of a cellular memory in 

a population of cells in response to short repeated hyperosmotic stresses. A memory, 

by essence, not only can be defined for the same individual, it can also be defined for 

different individuals since a memory can potentially be passed on. I here asked if the 

memory effect that I have observed among the cells that received pulsed stresses could 

be passed on to their progeny. To that effect, I have investigated the inheritance of the 

memory to the first generation of daughter cells that was born from the original 

population of cells from the yPH53 strain, which I will here referred to as mothers, 

during the first and second stress (figure 3-34). As daughters are naïve cells in regard 

to the response to a hyperosmotic stress, the purpose is to investigate if the memory 

effect could be transmitted and, as I can do single-cell experiments, if such heredity 

happens with a cell-cell variability that we can quantify or is it absolute, i.e. if all 

daughters would systematically inherit the memory.   

 

 

A. The memory effect is inherited by the progeny 

 

1. Analysis at the population level shows that the memory effect 

is transmitted 

 

Figure 3-34. Denomination: notion of first generation daughters. (Left). Sketch of a cell dividing over time 
and submitted to two pulsed stresses separated by 4h. The cell that receive the first and second stress is 
called mother. The daughter is the cell created by the mother between the two stresses. (Right) Bright field 
sequence images of a mother cell giving birth to a daughter cell. 
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I have analyzed the response of the first daughters in some of my previous 

microfluidics experiments where a population of yeast was submitted to pulsed 

hyperosmotic stresses. 

The response of the daughters to their first stress is on average 34% lower than 

the response of the mothers to their first stress (i.e. when they are still naïve cells in 

regard of the memory effect, figure 3-35). In fact, the response of the daughters is 

actually more comparable to the response of the mothers during their second stress, 

i.e. when the mothers display the memory effect. In this case, among the mothers, the 

difference of amplitudes of response between the two stresses is in average 30%. 

 

Unlike the mothers, the daughter cells have never experienced a stress prior to 

the second stress. In the absence of heredity of memory, they should behave like the 

mothers during their first stress which is not the case here. Instead, the daughters 

behave like mothers with the memory effect: as a result, the memory effect is 

transmitted to at least the first generation of daughters.  

 

 

 

2. Single-cell quantification shows that the memory effect is 

partially transmitted to the progeny 

 

Figure 3-35. The memory effect is transmitted at the population level. (Left) Response of the mothers to the 
repeated hyperosmotic stresses. The mother have a decreased response to the second stress, which 
corresponds to the memory effect. (Right) Response of the daughters to their first stress. The response is 
different from the response of mothers during the first stress but closer to the response of the mothers to 
the second stress, meaning that the memory effect is inherited.  
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I have analyzed various pairs mother-daughter in order to compare the 

response of the daughters to their second stress with the overall response of the 

mothers. In a similar fashion than the single-cell analysis performed on the response 

of the mothers, I have clustered the various pairs mother-daughter according to typical 

profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The single-cell quantification (figure 3-36) shows that 40% ± 10% of the 

daughters actually display a response to the second stress that is identical to the 

response of their mothers during the same stress (profile a). As most of the mothers 

have the memory effect, so do the daughters behaving according to profile a. In 

addition to this behavior, 20% ± 7% of the daughters have a response to the second 

stress that is lower than their mothers’ (profile b). Moreover, 19%± 8% of the daughters 

do not show any response, which can be associated to the bimodality of the response 

to a hyperosmotic pulse (profile d).  

 

B. Conclusion 

 

Figure 3-36. The heredity of the memory effect occurs with a single-cell variability. (Top) Typical 
profiles of response of the daughters (red) compared to the response of their corresponding mothers 
(blue). (Bottom) Single-cell quantification of the daughters according to the five typical profiles of 
response. Most cells respond exactly like their mothers (40%) but there is an equally distribution 
according to the three remaining patterns. As a result, the memory effect is a mixture between 
daughters not responding and daughters actually displaying the memory effect. 



120 
 

As daughters have never experienced a stress before, in the absence of memory 

they should behave like their mothers during the first stress. It is however not the case, 

as daughters behave like their mothers once they have already experienced a stress 

and respond to the next with a decreased amplitude of fluorescence: at the population 

level, the memory effect appears to be transmitted. 

However, the single-cell quantification shows that this heredity is a mixture 

between daughters that actually have the memory effect, daughters not responding to 

the stress and daughters even better responding to the stress compared to their 

mothers. Of note, a subpopulation of daughters behave according to the profile d, 

which means that they do not develop a memory. Therefore, unlike what the 

population analysis reveals, the memory effect is only partially transmitted. 

The cell-cell variability among the transmission of the memory effect will 

obviously require more work, such as investigating the position in the cell cycle and 

the persistence of such memory by analyzing next generations of progenies and 

especially quantifying what happens to other generations of daughters, which could 

potentially point towards a slow establishment of the memory effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



122 
 

Chapter IV: Discussion 

Table of contents 

I. A possible interpretation of the memory effect ....................................................................... 124 

A. Comparison between the memory effect and the galactose memory .................................. 124 

B. Comparison with the memory of long hyperosmotic stresses .............................................. 125 

II. On the biological mechanisms of the memory effect ............................................................... 126 

A. On the role of the SIR hyperclusters .................................................................................... 126 

B. On the transcriptional activity in stress memory establishment ........................................... 127 

III. Perspectives on the dynamical variability ............................................................................ 129 

IV. On the dynamical bimodality ............................................................................................... 131 

V. Improvement of the experimental setup and parameters ....................................................... 131 

VI. Final word ........................................................................................................................... 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 
 

I. A possible interpretation of the memory effect 

 
I have presented a study aiming at understanding how do individual yeast 

dynamically behave in response to short pulsed stresses and if a genetic adaptation 

does exist. In response to two pulsed hyperosmotic stresses, I have observed that a 

population of yeast reduce pSTL1 amplitude of response with the stress, without any 

difference in the time of response. This suggests that the rate of protein production 

decreases with the stress. I named this phenomenon memory effect. The use of the 

term memory comes from the fact that such behavior does not match a stochastic 

behavior: in my experimental conditions, the response to the first and the second stress 

is correlated. 

 

As I have presented in the introduction, several examples of cellular memories 

in the budding yeast in response to repeated stresses exist. I described two possible 

ways to respond from a genetic point of view: 

- with a faster dynamics of gene expression, i.e galactose memory (Brickner et 

al., 2007; Kundu et al., 2007; Zacharioudakis et al., 2007). 

 

- with a lower amplitude of response, i.e of hyperosmotic memory (Rienzo et 

al., 2015). 

 

Although I studied short stresses, the memory effect I described is similar in its 

behavior that the one observed in the context of the memory to long hyperosmotic 

stresses (Rienzo et al., 2015). However, two interesting questions could be asked:  

- Why the memory effect I described does not consist in a faster dynamics of 

response, like the galactose memory?  

 

- What does it mean for a cell to decrease its amplitude of response upon 

stress? 

 

A. Comparison between the memory effect and the galactose 

memory 
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A hyperosmotic or galactose stress56 both cause cells to stop their growth in 

order to counter the stress and eventually adapt to the stress. The subsequent growth 

rate is lower than in the original environment. The adaptation process consists in the 

activation of specific metabolic pathways in order to create enzymes allowing the cell 

to synthesize glycerol or process galactose. As a result, galactose memory and osmotic 

memory might be different because of the differences in the metabolic pathways they 

involve.  

The genetic response to a switch from glucose to galactose starts with a 4h 

dynamics (Zacharioudakis et al., 2007). However, the genetic response to a 

hyperosmotic stress starts within 3 minutes. Signal transduction between the sensing 

of the stress and the transcriptional activity of osmo-responsive genes might make 

impossible to modify this time of response (Miermont et al., 2011). However, in the 

case of the galactose memory, this time could be optimized as it has been shown in the 

galactose memory experiments. As a result, faster dynamics of response in the context 

of the memory effect would not be a possible strategy.    

 

B. Comparison with the memory of long hyperosmotic stresses 

  

The hyperosmotic memory in response to long stresses described by Proft’s 

group shows that a reactivation of the osmo-responsive gene GRE2 leads to a 

decreased activity of the gene, without any difference in its time of reactivation. The 

stresses were triggered using NaCl, which is uptaken by yeast. In order to tolerate the 

stress, the yeast Ena complex of proteins that is involved in the efflux of Na+ ions. 

Accumulation of Ena proteins has been shown to be at the origin of the reduced 

transcriptional activity of GRE2 upon reactivation. 

In my experimental conditions, I observe a similar decrease in amplitude of 

pSTL1 response after pulsed stresses, without any difference in the time of reactivation 

(figure 3-7). A diminished transcriptional activity could be a way for the cells to lessen 

their burden compared to the case where transcriptional response to two stresses 

would be similar. Therefore, the memory effect could be a way for the yeast to 

optimize the amount of energy dedicated to fighting the stress  

One could ask what are the potential factors explaining a decreased amplitude of 

response. It is probable that Ena proteins described to be at the origin of the 

                                                             
56 When a cell experiences any environmental stress, the Environmental Stress Response will necessarily be 
triggered and upregulate stress response genes, controlled by PKA or Msn2/Msn4 (Gasch et al., 2000). This is 
indeed the case when the cell encounters a hyperosmotic change, but not a galactose switch. It could be argued 
that a galactose stress does not fit the definition of environmental stress. 
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hyperosmotic memory are not responsible for the memory effect I described since I 

use a non-salty inducer.  However, it is still possible that the accumulation of others 

proteins could impact the response to the second stress. Transcriptional inhibition 

experiments with thiolutin that I have performed showed that proteins present prior 

to the first stress could be involved during the second stress in order to cause the 

emergence of the memory effect (figure 3-16). A potential candidate could be the 

protein Hog1 whose half-life is ca 10-11 hours. Since upon hyperosmotic stress, the 

cytoplasmic protein Hog1 is phosphorylated and translocates inside the nucleus where 

it participates in the activation of numerous osmo-responsive genes (Miermont et al., 

2011), it could be hypothesized that some of the Hog1p remains in the nucleus after 

stress and ready osmo-responsive genes for activation with a different dynamics 

during a following stress. Although it has been shown that the entirety of Hog1p exits 

the nucleus after adaptation of cells to the stress (Muzzey et al., 2009), performing a 

dynamical analysis of Hog1p during the first and second stress could give an 

indication on its potential influence on the genetic response’s dynamics to the stresses. 

  

 

II. On the biological mechanisms of the memory effect 
 

   

A. On the role of the SIR hyperclusters 

 

Transcriptional inhibition experiments show that the memory effect does not 

seem to require de novo protein synthesis. This suggests that one or several factors, 

potentially epigenetic factors, already present during first the stress, would influence 

the transcriptional activity of pSTL1 during the second stress. It has been described 

that the SIR complex is removed from the chromatin upon hyperosmotic stress (Mazor 

and Kupiec, 2009). However, no additional information is available on SIR complex 

fate in such stress conditions. Interestingly, I observed that the SIR complex forms 

hyperclusters upon stress (figure 3-21). Such phenotype requires to be explored in 

more detail. These hyperclusters resemble the ones observed in quiescence (Guidi et 

al., 2015). Quiescence can be defined as a state where cells maintain viability under 

growth-arrested conditions and to resume mitotic growth once growth-promoting 

conditions are restored (Klosinska et al., 2011). Interestingly, a long hyperosmotic 

stress causes the arrest of the cell-cycle and the subsequent activity of the HOG 

pathway that allows viability under the growth-arrested condition. The mitotic growth 

is restored after adaptation to the hyperosmotic stress or removal of said stress. By this 

analogy, the physiological condition of a cell submitted to a long hyperosmotic stress 
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could be compared to the quiescence state. In my experimental conditions I performed 

short stresses which indeed cause the activity of the HOG pathway but does not lead 

to the physiological adaptation of the cell to the stress. However after stress, the cell 

will be back the original environment, which is suitable for mitotic growth. I have not 

quantified if such short stresses actually cause the arrest of the cell cycle, which will 

require a more in-depth analysis. A positive answer would encourage try to build a 

bridge between quiescence and stress response. 

Nevertheless, in quiescent cells, the SIR complex is still on the subtelomeric and 

telomeric chromatin, and the hyperclusters cause a grouping of telomeres (Guidi et al., 

2015; Laporte et al., 2016). It could be hypothesized that this clustering changes the 

yeast genome architecture in order to maintain longevity (Guidi et al., 2015). Based on 

the study showing that the SIR complex is stalled from the chromatin upon 

hyperosmotic stress (Mazor and Kupiec, 2009), the hyperclusters I observed may not, 

be on the subtelomeric chromatin anymore. This may explain why the ∆sir3 mutant 

has no effect on the endogenous pSTL1 in my experimental conditions (figures 3-24, 3-

25). Surprisingly, the SIR complex has an impact on the activity of pSTL1 moved to a 

pericentromeric area (figures 3-26, 3-27). This suggests that in stress conditions the 

hyperclusters might have a regulatory activity in this pericentromeric gene57.  

Potential ways to investigate the influence of the SIR hyperclusters on gene 

expression would be to: 

- Perform Chip experiments in order to first ascertain that the SIR complex 

interacts with the pericentromeric pSTL1 upon hyperosmotic stress. A 

genome wide analysis of the distribution of the SIR complex on the genome 

upon stress could be performed eventually.  

 

- Investigate where the SIR hyperclusters actually form in the nucleus in order 

to verify if their formation appears at the same locations upon stress or are 

randomly distributed in the nucleus. The use of gene maps (Berger et al., 

2008) would be a good way to perform such investigation. 

 

 

B. On the transcriptional activity in stress memory establishment 

 

I observed that a low transcriptional activity during the first stress does not 

cause the memory effect, at least at the pericentromeric location (figure 3-19). 

Therefore, a high transcriptional strength of pSTL1 might be a prerequisite condition 

to have the emergence of the memory effect. To work towards confirming this 

hypothesis, I used TSA to force an open state of the chromatin during the first and 

                                                             
57 This activity would not be global as no effect has been observed on the osmo-responsive pericentromeric 
gene GPD1 
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second stress in order to uncouple the response to these stresses and cause the loss of 

memory effect at the endogenous location. However, the result was inconclusive as 

the memory effect was still present (figure 3-31) and no experiments were performed 

to verify that the TSA actually worked. Nevertheless it is a relevant strategy that can 

be improved, along with additional experiments such as: 

- Using specific chemicals in order to open the chromatin during the first 

stress only.  This treatment could cause a high transcriptional activity of 

pSTL1 moved to the pericentromeric location during the first stress. 

Observing if the memory effect is restored at the pericentromeric location 

the second stress could inform on the role of the chromatin state in the 

establishment of the memory effect.  

 

- Using a Crispr/dCas9 system with inducible guides (Farzadfard et al., 2013) 

in order to artificially force the activity of pSTL1 at the first stress to a high 

level, then observe at the second stress if the memory effect is restored. 

Inducing the guides could either be done during the first stress in order to 

enhance the natural activity of the displaced pSTL1, or without a stress in 

order to decorrelate the exclusive genetic activity of pSTL1 from the entire 

activity of the HOG pathway.  

 

 

These experiments require an artificial way to induce or remove the memory 

effect, but won’t show what the biological mechanisms behind the memory are. 

However, a positive result of these experiments could justify the search for factors 

known to be involved in the opening of the chromatin which is usually linked to a high 

transcriptional activity. I investigated the role of two factors known to open the 

chromatin, Snf2 and Htz1 (figures 3-32, 3-33). My work on the matter is however 

preliminary and would require more experiments and probably the investigation of 

others factors.  

A way to ascertain the influence of factors on the transcriptional strength of 

pSTL1 would be to perform a screen by mating the strain with pSTL1 moved at the 

pericentromere, with strains from the yeast library deleted for non-essential ORFs. The 

subsequent screen would consist in the search of a strain with a higher activity of 

pSTL1 as compared to the centromeric strain by flow cytometry. This would allow to 

discriminate the factors that change the activity of pSTL1. The right strains would be 

further analyzed using microfluidics in order to test if the memory effect can be 

developed.  

A factor that I would be keen on studying is the HDAC Rpd3. As I have 

presented during the introduction, this protein influences the transcriptional activity 

of pSTL1 (figure 1-16). Thus, Rpd3 might determine the transcriptional activity of 
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pSTL1 upon repeated stresses. Moreover, Rpd3 has been proposed to drive 

transcriptional quiescence in the budding yeast (McKnight and Tsukiyama, 2015), so 

investigating its role might also prove to be interesting as it could create a bridge 

between quiescence and memory effect. 

 

Interestingly, the notion of developing a memory because of transcriptional 

events occurring above a certain threshold has been described in B. subtilis (Wolf et al., 

2008). This organism develops a memory of competence with the expression of the 

ComK transcription factor above a certain threshold. Similarities in the regard to the 

mechanisms of the memory effect could imply the existence of a conserved mechanism 

through evolution. 

 

 

III. Perspectives on the dynamical variability 
 

 Stochastic modelling shows that the dynamical variability in the response to 

pulsed stresses can be explained by the noise in gene expression (figure 3-11). Noise 

causes a diversity of behaviors that allows one or several choices when a selective 

pressure is exerted. Along with mutations, noise is a driving motor of evolution. The 

single-cell quantification of the microfluidics experiments shows a dynamical 

variability of the behaviors of mothers that respond to two pulsed stresses.  

Noise in gene expression can be explained by the external stimuli influencing 

the physiology of the cell (extrinsic noise), cell-cell physiological differences and the 

stochasticity of gene expression (intrinsic noise). This latter is hardly controllable, so it 

would be interesting to try to experimentally quantify the influence of several factors 

involve in the extrinsic noise: 

- The age of the cells could influence the response upon pulsed stresses since 

old cells will not necessarily be in the same physiological state as younger 

ones. Using calcofluor in order to stain the cells will allow counting the buds 

scars of the mothers and estimating their age. It will allow determining if a 

correlation between the amplitude of response with the age exists. This will 

also allow to evaluate if there is a likelihood that young mothers are more 

likely to display the memory effect than old ones. 

 

- The cells in my microfluidic device are all in different stages of the cell cycle, 

which would partly account for the variability of the response. Determining 
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the position in the cell-cycle will require the use of strains with a tagged 

nucleus and/or bud neck. 

 

These are parameters that can be estimated and, to a certain extent, controlled. 

As a result, the description of the mechanisms behind the dynamical variability would 

greatly be improved and open the way towards an evolutionary description of this 

mechanism.  

However, the stochasticity of the biochemical reactions occurring during the 

genetic response to the stress must also be taken into account. This is something that I 

have tried to address by moving pSTL1 in a different transcriptional area (figure 3-17).  

It has been established that changing the position of a gene on the locus can 

alters its expression (Aparicio et al., 1991). The change in the expression can be 

associated to a reduction of noise in the transcription, or a reduction in the noisy steps 

of transitioning from a repressed state to an expressed one. The latter case is important 

as it has been shown that such changes can actually enhance a cellular memory (Acar 

et al., 2005). A possible hypothesis would thus be that the pericentromeric position 

might increase the transcriptional noise which can be translated by a reduced 

transcriptional activity. As a result, the previously presented hypothesis stating that 

a high transcriptional activity is required to the memory effect would essentially mean 

that a high transcriptional activity allows to overcome the noise in gene expression, 

therefore making possible the emergence of various mechanisms such as the memory 

effect. 

It would consequently be important to investigate the effect of displacements of 

pSTL1 on more locations, especially: 

- If pSTL1 is displaced to different subtelomeres, do the mothers still display 

the memory effect with the same proportions? 

 

- Does moving pSTL1 outside of a subtelomere necessarily cause a decrease 

of transcriptional activity along with the loss of the memory effect and a 

behavior close to a stochastic one? 

 

- In the various positions chosen, does the SIR complex has in influence of the 

dynamical behavior of pSTL1? 

Such investigation would broaden the understanding of the influence of the 

chromatin context on the memory effect and actually help find the factors involved in 

the emergence of the memory effect. 
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IV. On the dynamical bimodality 
 

I have observed that cells submitted to two short stresses may or may not 

respond to either of the stresses (figure 3-3, 3-4). It could be argued that cells not 

responding are physiologically unable to respond, or have gone in a dormant state 

upon stress in order to try to tolerate it. However, such explanations are dismissed by 

the fact that extending the duration of the stress causes all cells to eventually respond 

(figure 3-1). The stochastic simulations showed that a possible explanation as to why 

some cells respond or not to a stress can be linked to a delay in the transcription. This 

is consistent with the original study by Pellet’s group on the bimodality phenomenon 

(Pelet et al., 2011). However, such delay could have several explanations: 

- pSTL1 is repressed in glucose conditions, and such repression has to be lifted 

upon expression. It is possible that some cells are not able to lift the 

repression with a fast dynamics compared to the rest of the population. 

Experiments consisting in modifying the amount of glucose could help 

determining if these new conditions allow obtaining a more uniform 

distribution of the time of response compared to my experimental 

conditions. 

 

- The HOG pathway is activated through different sensors. This leads to two 

distinct branches of activation that eventually converge to a catalytic activity 

of Pbs2 (figure 1-12). However, these two branches have different dynamics. 

Deletion of either of the branches would be a good indication. 

 

- The transcriptional activity of pSTL1 depends on the duration of the stress 

and its intensity. Although I perform stresses using 1M sorbitol, can 

increasing the dose of sorbitol change the amount of cells not responding to 

a stress?  

 

Investigating such parameters would allow to better characterize this novel 

phenomenon. Also, it would allow to determine if such mothers can transmit the 

memory effect. Indeed, the absence of transcriptional activity is not a requirement for 

the absence of memory effect as I have established in the transcriptional inhibition 

experiment presented in the previous chapter (figure 3-16). An understanding of this 

bimodality could therefore help in, for instance, the context of heredity experiments. 

 

V. Improvement of the experimental setup and parameters 
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I have presented a preliminary study of the heredity of the memory effect. At 

the population level, the memory effect appear to be transmitted to the first progenies 

of the mothers. However, the single-cell level analysis reveals that this transmission if 

only partial and actually consists in a mixture of various single-cell profiles, including 

daughters with the memory and not responding to the stress.  

 Because of the cellular crowding, I was unable to analyze more generations of 

daughter cells. Such analysis would enable to better characterize the memory effect, 

for instance by understanding if short pulsed only cause the first generation of 

daughters to mostly develop a memory or if the more generations, the more likely the 

daughters of a specific generation would be able to develop a memory. Such a study 

would require the use of a microfluidic device that would prevent cellular crowding. 

Such a tool has been developed by (Kim et al, 2010) to answer such questions. In 

particular, a microfluidic device where cells can only grow in one dimension, therefore 

the lineage can easily be tracked and studied (figure 4-1).  

 

 

 

 

 

 

 

 

 

 

 

 

Cellular crowding is also a parameter that could limit the amount of cells 

receiving pulsed stresses and being subsequently analyzed. As a result, the persistence 

of the memory effect in such cells might be difficult to fully study. The Alcatras 

microfluidic system (figure 4-2) could be an interesting alternative (Crane et al., 2014). 

Mother cells are trapped between two pillars and the progeny of the cells is flushed 

away. More single-cell investigations of the memory effect can thus be made on the 

mothers, but any study of its heredity is impossible with such a device. 

Figure 4-1. Microfluidic device for lineage experiments. Related cells grow in one dimension in a chamber, 
enabling the analysis of the genealogy of a particular cell. From Kim et al, 2010. 
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 Over my PhD, I triggered the hyperosmotic stresses using sorbitol 1M for 8min 

every 4h. Constrained by the time it took to set up the experimental platform, the long 

time it takes to manually perform the single-cell analysis and the subsequent biological 

investigations I privileged, I did not change much the parameters of study. However, 

changing the concentration of sorbitol, even the chemical used to trigger the stress, the 

duration of the stresses and even their frequency would be interesting to better 

quantify the memory effect. The comparison of those various experiments would show 

if the phenotype of dynamical adaptation and/or the genetic mechanisms for them are 

always the same. In other words, is there a universality of the memory or, like the 

galactose memory, could different biological mechanisms exists for a short-term 

memory, a long-term memory and similar type of stresses caused by different sources. 

 

VI.  Final word 
 

The stochasticity of gene expression gives a diversity of behaviors. From an 

evolutionary point of view, this diversity of responses to repeated stresses allows one 

or several choices to be selected. As it appears that the memory effect was the one 

selected, this suggests that the specific subtelomeric position of pSTL1 has been chosen 

in order to gain a regulation level in order to perform better adaptation instead of 

behaving in the same manner observed at the pericentromeric position. After time, 

additional biology effects would be added to enhance the memory effect. This research 

not only proves how critical single-cell studies are for such analysis, but it also 

indicates that the establishment and the transmission of the memory does not require 

a long stress and can start very early on, at least on the original population. Overall, 

my study suggests that the specific location of pSTL1 at the subtelomere is required 

Figure 4-2. Alcatras microfluidic system. Mother cells are trapped in pillars and the progeny is flushed away. 
This enables the analysis of mothers exclusively. From Crane et al, 2014. 
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for an optimal level of transcription that can go beyond a simple stochastic behavior 

and lead to the emergence of a memory in response to osmotic stresses. Despite several 

improvements required, this work could serve as corner stone to broader studies of 

stress response genes at subtelomeric positions in the budding yeast. Moreover, the 

methodology developed during this work can help perform similar work with a 

different stress, and even cross-stress experiment. And finally, this work could lead 

the way of more investigation of the role of the SIR complex in stress conditions as not 

only unreported phenotypes appear in osmotic conditions, but genetic influence 

outside subtelomeres have also been observed which would possibly cause a 

reinterpretation of the way we think about transcriptional silencing at subtelomeres. 
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A-Protocol to make epoxy wafer from a microfluidic device 

 

What you need 

-PDMS and curing agent 

-microfluidic device 

-Cutter, scalpel and ideally a Dremel  

-epoxy resin and associated hardener 

In this protocol, the resin used is the epoxy resin R123 and hardener R614.   

(reference in here http://www.soloplast-vosschemie.fr/resine-r123.htm) 

The protocol is fairly easy, but needs an overnight step, so consider two days to make an 

epoxy wafer. 

 

Protocol 

Step 1:  

 

Pour some PDMS mixed with curing agent on a petri dish. Put the microfluidic chip you want 

to replicate on the petri dish. Make sure the patterns of your device are on top!! (figure 1). 

Bake the whole at 65°C so that the PDMS will get solid. Be very careful though, the device 

can move in the petri dish so you might want to hold it the center of the petri dish by putting 

some tape on it and the edges of the tape are stuck to the edges of the petri dish. 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2: 

Figure 7. Microfluidic device on solid PDMS in a petri dish. The patterns are 
not in contact with the bottom of the petri dish. 
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Pour some epoxy and hardener in a 50mL falcon tube. 

With the epoxy R123, you will need 100g of epoxy and 45g of hardener.  

Although it is written on the protocol found on the epoxy bottle that you can work in terms 

of volumes (100 parts of epoxy and 49 parts of hardener). We have tried this method several 

times and it does not work. 

For a standard petri dish, you need about 70-80g of epoxy. 

 

Close the falcon tube and shake in order to mix everything. The whole should be very bubbly 

(figure 2 left), so you need to get rid of the bubbles, otherwise you will find them on your 

new wafer where your patterns are. It is impossible to get rid of the bubbles by putting the 

opened tube in a vacuum bell, as the epoxy is very viscous. 

To get rid of the bubbles, centrifuge your falcon tube at 2000rpm for 10min (figure 2 right).  

 

 

Step 3: 

Pour the epoxy on your wafer. Do it slowly and be careful as bubbles might form so try to 

get rid of them if they do, or you can leave them be if you are absolutely sure that the 

bubbles are not on the patterns of your microfluidic device. If you see bubbles, remove them 

using a pipette. 

Leave the whole (ideally under a hood) overnight in order for the resist to solidify.  

Another way to do that: after you pour the epoxy, put the petri dish at 30°C for 6h and 

check that there are no bubbles. If there are some, remove them with a pipette. Check every 

30min that no more bubbles form. After 6h at 30°C, leave the petri dish at room 

temperature overnight. 

Figure 2: (left) before centrifugation (right) after centrifugation 
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Step 4 

Once the wafer is solid (figure 4 left), flip the petri dish over (so now the patterns of your 

device are facing down) and draw an area (figure 4 right).  

 

You need to remove the petri dish part on the drawn area. Use a scalpel, a cutter or a 

dremel to do so (figure 5 left). This latter is, by experience, the safest and more efficient 

method. Once this is done, remove the cut petri dish (figure 5 center) and use a scalpel to 

cut the microfluidic device from the new epoxy wafer (figure 5 right). You can then pour 

PDMS in the wafer and cut chips. 

Figure 3. (left) pouring the epoxy slowly in the petri dish. (right) Make sure that you put enough resin to entirely cover the 
microfluidic device. 

Figure 4. (left) solid mold. The chip is entirely covered in epoxy. (right) area drawn on the bottom of the petri dish that will 
serve to be cut. 
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Figure 5. Final epoxy wafer. 
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B-Yeast transformation protocol 

 

To do on the eve : launch a culture with the strain of interest in 5mL of YPD. 

What you need : 

  

Mother solutions: 

- Solution TE 10x :     for 500ml 

Tris HCl (pH 7.5)  100mM    50ml  1M 

EDTA    10mM    10ml  0.5M 

 

- Solution LiAc 10x : sterile 

Acétate de lithium pH7.5 1M 

 

- Solution PEG 3350   

PEG 3350 (p/v)  50%  5g for 10ml 

PEG 4000 (p/v)  50%  4.8g for 10ml 

 

Final solutions: 

- solution TE/LiAc : pour 100ml     - solution TE/LiAc/PEG : 

10ml TE 10x       0,1ml TE 10x  

10ml LiAc 10x       0,1ml LiAc 10x  

Qsp 100ml eau       0,8ml PEG 3350 

 

- DNA carrier  5mg/ml (3min à 95°C and sonication) 

 

 

  

1. Diltion of the culture made on the eve at 1/50 in 50ml of YPD than put at 30°C in shaker untill the 
cell density reaches 1 to 3.107 cellules/ml (it usually takes 3h-4h). 
 

2. Transfer the culture in a 50mL falcon and centrifuge for 5min at 5000rpm. 

 

3. Remove the surpernatent and resuspend in 20ml of TE/LiAc solution. Centrifuge for 5min at 
5000rpm. 

 
4. Remove the supernatent and resuspend with TE/LiAc untill you reach 2.109 cellules/ml. 
 
 

5. Incubate 15min at 30°C without shaking. 

 

6. In an 1.5mL eppendorf, put : 
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 Negative control Positive control Transformation of 
interest 

TE/LiAc/PEG 300µl 300µl 300µl 

DNA carrier  50 µg 50 µg 50 µg 

DNA solution to be 
transformed 

/ 500ng – 1µg 1 – 5 µg 

 Vortex 

Competent cells 50µl 50µl 50µl 

 Mix with the pipet 

 

7. Incubate 30min at 30°C without shaking. 

8. Perform a heat shock at 42°C for 20min. 

9. Centrifuge the tubes 5min at 5000rpm. Remove the supernatent. 

10. Resuspend in CaCl2 0.5M for 15min. Centrifuge the tubes 5min at 5000rpm. Remove the 
supernatent and resuspend in YPD.  

11. Plate the yeast on plates with the right auxotrophy markers for 48-72h.  
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C- List of primers 

 

 

 

Sequence Function 

TGCAGGCAAGTGCACAAACAATACTTAAATAAATACTAC
TCAGTAATAACATTATTGGTGCGGCAAGG 
 

Reverse primer to move pSTL1-
yECITRINE-HIS6 at the pericentromere 
domain of chromosome IV 

TATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGG
CAGCTTGGAGTCAATGATTCTGAAATACTCCTTTTACA 
 

Forward primer to move pSTL1-
YECITRINE-HIS5 at the pericentromere 
domain of chromosome IV 

CGCCAGATGGCAGTAGTGGAAG 
 

Forward primer to amplify pSTL1-
yECITRINE at the pericentromere 

GCCTGCAGGCAAGTGCAC 
 

Forward primer to amplify pSTL1-
yECITRINE at the pericentromere 

CCGATTAAGAATTCGGTCG 
 

Forward sequencing primer 1 (for pSTL1-
yECITRINE) at the pericentromere. 

CATTGCCAAGGCTAGGAG 
 

Forward sequencing primer 2 (for pSTL1-
yECITRINE) at the pericentromere. 

GGATCTGCACTTTCTCAG 
 

Reverse sequencing primer 1 (for pSTL1-
yECITRINE) at the pericentromere. 

catcaccttcaccttcacc 
 

Reverse sequencing primer 2 (for pSTL1-
yECITRINE) at the pericentromere. 

ATACAGGAGCAGGGAGAATTACGGGAAATGGGAAAGA
AAAACTATTCTTCttaagcaaggattttcttaacttcttc 
 

Htz1 deletion forward (via pRS405) 
 

CGTTAAATTCAATTTCGCACTATAGCCGCACGTAAAAATA
ACTTAACATAaactgtgggaatactcaggtat 
 

Htz1 deletion reverse (via pRS405) 
 

TGTTTGTCTACGTATAAACGAATAAGTACTTATATTGCTTT
AGGAAGGTAttaagcaaggattttcttaacttcttc 
 

Snf2 deletion forward (via 405) 
 

TCTAATCGCGACTTTCTGCTATTTTCACGACTTTCGATTAA
TTATCTGCCaactgtgggaatactcaggtat 
 

Snf2 deletion reverse (via pRS405) 
 

CATGTGTACATAGGCATATCTATGGCGGAAGTGAAAATG
AATGTTGGTGGttaagcaaggattttcttaacttcttc 
 

Sir3 deletion forward (via pRS405) 

TTACAGGGGTTTAAGAAAGTTGTTTTGTTCTAACAATTGG
ATTAGCTAAAaactgtgggaatactcaggtat 
 

Sir3 deletion reverse (via pRS405) 

TATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGG
CAGCTTGGAGTactatgcggcatcagagcag 
 

Trp1 deletion forward (via pRS316) 

gatcGAAAGTGCAGATCCCGGTAA 
 

Crispr guide forward 

aaacTTACCGGGATCTGCACTTTC 
 

Crispr guide reverse 
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D- plasmid maps 
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Abstract 

 

Obtaining single cell data from time-lapse microscopy images is critical for 

quantitative biology, but bottlenecks in cell identification and segmentation 

must be overcome. We propose a novel, versatile method that uses machine 

learning (SVM, Random Forest, Neural Network) to identify cell morphologies 

from z-stack bright-field microscopy images. We show that axial information is 

enough to successfully classify the pixels of an image, without the need to add 

image transformation to outline morphological features. This fast, robust 

method can be used to identify different cell morphologies, including the 

features of E. coli, S. cerevisiae and epithelial cells, even in mixed cultures. Our 

method demonstrates the potential of acquiring and processing Z-stacks for 

single-layer, single-cell imaging and segmentation   
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Main Text 

 

Thanks to the development of microfluidics and microscopy, it is now possible 

to measure the dynamics of single cells over time1,2. In recent years, longitudinal 

time-lapse studies have emerged as key methods in quantitative biology and 

are essential to understand the dynamics of cellular processes2–4. However, a 

robust and efficient cell segmentation method is required to obtain high quality 

single cell traces1,2. Despite years of development, a universal method to 

segment cells from microscopy images has not yet been established. The 

numerous existing methods were designed for specific cell types and usually 

rely on specific morphological features (e.g., size, shape, fluorescent labeling). 

Although efficient for specific problems, these methods are not versatile, and 

usually fail when applied to different cell types or other experimental 

conditions. As a result, research groups design and tweak image analysis 

software5–11 to match their specific segmentation problem. This is a considerable 

waste of time and energy, and highlights the need for a simple, versatile strategy 

to segment cells, irrespective of experimental design or cellular characteristics.  

Notably, segmentation critically depends on obtaining high-quality images 

with a constant focus that outlines the borders and main morphological features 

of the cell. This is an important constraint, which – in practice – requires periodic 

auto-focusing or a control system to automatically maintain perfect focus. Here, 

we propose a different segmentation strategy inspired by hyperspectral 

imaging. Instead of relying on the in-focus image, we systematically acquired 

multiple stacks of images around the focal plane (i.e. a z-stack) of various cells, 

and use the information contained within the full z-stack to identify the focal 

region of the cells in the images. The central idea is that cell contours, the cellular 

interior or any objects within the field of view do not have the exact same 

intensity profile throughout the z-dimension. Here, we show it is possible to 

train an algorithm using machine learning to classify z-pixels (the vector of light 

intensity along the z-axis for a specific pixel in the image) based on their focal 

signature. The method is simple, robust, can be run in real-time and – 

importantly – gives excellent results for E. coli (rod-shaped), S. cerevisiae (round), 

mammalian epithelial (HeLa) cells, and even a mixture of bacteria and yeast 

cells.  

We used a Piezzo drive (PIFOC, PI) to acquire z-stacks containing 100 images, 

100 nm apart, of E. coli using a 100x oil objective (UPlanFL 1.3NA) and 

CoolSNAP HQ2 camera with a resolution of 1040 × 1392 pixels (Figure 1A-B). E. 

coli cells were loaded into a microfluidic device where they were cultured in 

narrow chambers (Figure 1C). A graphical user interface (GUI, Supplementary 
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Text) was developed to manually label a training dataset by defining regions of 

interest (classes), such as the interior of the cell and its contours, then a machine 

learning classifier was trained on this dataset (see Supplementary Text). 

Importantly, the algorithm was not trained using the morphological features in 

the (x-y) plane, but only a representative set of z-pixels (Figure 1B) for each class 

of objects that the user wants to identify and segment in the image. Indeed, 

many such z-pixels can be found in a z-stack of a monolayer since it usually 

contains tens to a few hundred E. coli and any 10 × 10 pixels area (representing 

the typical surface of a cell) contains as many as 100 different profiles. Principal 

component analysis was used to reduce the dimensionality of the problem from 

100 dimensions (if all z-positions in the stack are considered) to a lower 

dimension space (typically between 5 and 20 dimensions, see Supplementary 

Text), that enabled separation of the different user-defined classes (Figure 1D-

E). In practical terms, we first used Matlab and its Support Vector Machine 

library (fitcsvm package), to perform training and class identification (see 

Supplementary Figure S1). The classification of a z-pixel does not depend on the 

classification of other z-pixels, so the parallelization of the prediction process is 

straightforward.  

 

After training, we acquired another z-stack and used the SVM to classify the 

pixels. As shown in Figure 2, the different parts of an image of E. coli cells were 

correctly identified with neither post-processing nor user intervention (see also 

Supplementary Figure S2). The cells were detected, and it was even possible to 

locate and classify the cell contour, cell interior and microfluidic chamber with 

excellent fidelity. Therefore, this method is markedly more powerful than 

classic segmentation, since it enables identification of more than one type of 

structure, without any a priori knowledge of their morphological features in the 

focal plane. Moreover, Figure 2C shows how automatic labeling of a pixel is 

associated with a confidence score that can be used to assess the quality of the 

classification and further refine cell segmentation (see Supplementary Text, 

Supplementary Figures S2-S6). Although it’s often interesting to define several 

classes to identify important objects on the image, classification of cells only 

requires two classes: “cell” and “not cell” (see supplementary text). The number 

of images can also be decreased while achieving good performance; the method 

gave excellent identification scores (classification error less than 1%) if the z-

stack contained at least seven images (Figure 2D, Supplementary Figure S3).  

 

On our computer system (20-cores Xeon, DELL), training the SVM on a typical 

dataset took from 15 min to 1 hour at most, and a little longer than 1 minute to 
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attribute the pixels to their classes in a 1392 × 1040 × 100 z-stack. This is relatively 

slow, as expected for SVM on such data. Therefore, we also implemented two 

other classifiers, namely, Random Forest and Neural Network (See 

Supplementary Text, supplementary Figure S7) and used them within the same 

framework to classify each pixels. We obtained comparable classification 

accuracy than SVM, but at much faster speed. Specifically, Random Forest 

classification was typically 20 times faster than SVM classification. With a single 

core processor, a full image classification was obtained in typically a minute 

with a Random Forest classifier. It is thus possible to perform identification in 

real-time, at least with respect to the typical timescale of single cell microscopy 

imaging (e.g. several minutes between two frames when observing gene 

expression by fluorescence microscopy). Of course, the processing time could 

be also drastically decreased by relying on graphic processor unit (GPU) 

accelerated libraries. 

 

Importantly, this method could be applied to different experimental designs. 

First, we confirmed our method could efficiently identify single bacteria in a 

dense monolayer of E. coli (instead of a few lines of cells) grown between a glass 

slide and an agar pad (Figure 3A). We then showed that the method also worked 

well to identify yeast cells, even though budding yeast cells are larger than E. 

coli cells (~5 µm vs. ~1 µm) and are round (Figure 3B, Supplementary Figure S4). 

We also successfully segmented a mixture of yeast cells and bacteria (Figure 3D, 

Supplementary Figure S5); the system could distinguish between the two types 

of cells based on their focal signature. This is a particularly hard task for any 

standard segmentation algorithm based on morphological features alone, 

indicating this method could represent an important tool for research on 

infectious diseases or microbial ecology. Additionally, we succeeded in 

identifying individual epithelial HeLa cells in a confluent monolayer (Figure 

3C, Supplementary Figure S6). Mammalian cell segmentation is a particularly 

hard problem, and although deep learning methods have already demonstrated 

their potential to segment mammalian cells with complex shapes, it came at the 

expense of large dataset and long computing time12. In our case, a simple 

machine learning algorithm and limited training datasets were sufficient to 

enable rapid identification of cells with various shapes in a timescale that allow 

cell classification to be done on the fly. Importantly, our method showed better 

classification results (see Supplementary Figure S8) than the Ilastik classifier, a 

reference image analysis software, which does not use axial information, but 

encode information from neighboring pixels. This suggests that axial 

information contained in Z-stack contains enough information to be used 
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directly for pixel classification (see Supplementary Text). After classification, the 

cellular regions are already identified and the cellular segmentation becomes 

easier. The use of even simple segmentation methods downstream of the 

classification step provided good results (see Supplementary Text). We 

anticipate that advanced segmentation algorithms, such as active contour 

methods, could further improve the fidelity of cell segmentation and tracking.  

  

The method presented in this manuscript does not require a complex imaging 

setup, since only a few images (~10) in a z-stack are required for robust 

identification of cells. We also developed a GUI to facilitate drawing of the 

regions of interest in the training dataset. Importantly, our method can identify 

bacteria, yeast, mixture of yeast and bacteria, and mammalian cells (Figure 3). 

Our method is versatile, can be integrated into any image analysis pipeline13 

and can thus tremendously facilitate segmentation for several cell types and 

morphologies. 

 

Methods 

 

Cell culture and imaging. Cells were cultured and imaged following standard 

protocols (E. coli were grown in LB at 37°C, yeast in SC at 30°C and HeLa cells 

in MDEM at 37°C and 5% CO2). Unless noted otherwise, z-stacks were acquired 

using an IX71 Olympus equipped with a piezo (PIFOC, PI). This allows 

precision positioning of the objective at a resolution in the tens of nanometers. 

 

Z-pixel classification.  

A graphical user interface (GUI, see supplementary text) was used to simplify 

training set construction. Images were normalized by performing a standard 

histogram equalization procedure with 1% loss on the histograms. We used 

principal component analysis (PCA) to reduce dimensionality of the problem. 

Only a subset of the main principal component (N < 20) dimensions were used 

to represent the data used to train the classifiers and later generate predictions. 

For SVMs, we used a method known as winner-takes-all SVM (WTA-SVM), 

which has the double advantage of providing a classification score for each class 

and does not require the experimenter to establish a classification tree. The fit 

implementation of the SVMs was based on the Matlab fitcsvm package, which 

features automatic hyper-parameter optimization, with a Gaussian radial basis 

function as a kernel and a hinge loss function. We built a manually labeled set 

and divided it into two parts by random data subsampling: the first part, 

consisting of 90% of all data was used to train the SVMs. The remaining 10% 
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was used as an evaluation set. Once a satisfactory SVM set was obtained for a 

particular classification problem, it was used to process new stacks (captured 

under similar conditions) for cell identification. Stacks to be analyzed were first 

scaled to the same dynamic range as the training stacks (the histogram of the 

entire stack is equalized over the maximum range of the training data type). 

Then transformed into the principal components base. The best SVM set was 

then applied to the transformed data, and – for each z-pixel – a set of 

classification scores that correspond to each of the classes the SVMs were trained 

for was computed. Good to very good segmentations were obtained from the 

classification maps, has shown in supplementary materials. Classification and 

segmentation methods are described in details in supplementary materials. We 

also implemented classification with a Random Forest classifier and a neural 

network. Both methods show similar accuracy than SVMs classifier but, as 

expected, are much faster for the classification step and thus should be 

considered as the methods of choice.  

Data Availability. The Matlab code and datasets generated for this study are 

available on our GitHub repository (https://github.com/Lab513/Zcells) to 

facilitate its diffusion to the scientific community. 
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Figure 1 

 

 
Figure 1. Principle of z-stack segmentation. A. A piezo-driven system is used 

to quickly and precisely move the objective and acquire a stack of images below, 

at and above the focal plane (z-stack). B. Acquisition of bright field z-stacks 

provides the focal signature of every z-pixel. C. E. coli cells (~1µm long, observed 

with a 100x objective) are cultured in a microfluidic device designed to keep 

them in lines. D. The graphical user interface is used to define different classes 

of object by directly drawing them. Each z-pixel in the image contains a profile 

of intensity as a function of the z-stack position. E. Average z-pixel profiles 

obtained from the example shown in C-D, demonstrating that different classes 

have different focal signatures. The shaded areas are +/- one standard deviation. 

From this training dataset and the definition of classes, it is possible to classify 

each pixel in a z-stack into one of the classes. 

Figure 2 
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Figure 2. SVM classification enables robust, precise detection of cell features. 

A. Applying the procedure described in Figure 1, we can attribute z-pixels to 

different classes that are freely defined by the user (e.g. PDMS, microfluidic wall, 

cell interior, cell contour, halo between cells, microfluidic wall). B-C. High-

magnification image showing perfect classification of the interior and contours 

of E. coli cells. D. Normalized confidence scores for each pixel of the x1-x2 line 

shown in C. The score of each class is computed as a softmax function (see 

Supplementary Information). E. Validation of the method as a function of the 

number of frames used to identify the different object classes (red: evenly 

spaced images; blue: manually selected images; green: logarithmically spaced 

images). Irrespective of how the frames are chosen, misclassification was lower 

than 1% for a z-stack containing as few as 10 frames.  
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Figure 3 

 

 
 

Figure 3. Segmentation of different cell types using the same method. A. E. 

Coli cells (~1 µm long, observed with a 100x objective) growing as a monolayer; 

cell interior and cell contour classes are indicated in red and green, respectively. 

From left to right: original image; identification results. B. Budding yeast cells 

(~4 µm wide, observed with a 100x objective) growing in a microfluidic device. 

Cells are growing as a monolayer and cell interior, cell contour and halo classes 

are shown in blue, red and black. C. A mixed culture of E. coli and budding yeast 

(observed with a 60x objective). Both cell types can be identified within the same 

image based only on their focal signatures. D. Monolayer of epithelial HeLa 

cells (observed with a 60x objective). Cell interior and cell contour classes are 

shown in blue and red. Adding elementary topological rules (e.g. cell contour 

cannot be inside a cell) and using basic segmentation method (e.g. watershed) 

we obtained good to very good segmentation on yeast, bacteria and mammalian 

cells (see supplementary text).  
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Abstract 

 

Cellular memory is a critical ability displayed by micro-organisms in order to 

adapt to potentially detrimental environmental fluctuations. In the unicellular 

eukaryote S. cerevisiae, it has been shown at the population level that cellular 

memory can take the form of a faster or a decreased response following repeated 

stresses. We here present a study on how yeasts respond to short-pulsed 

hyperosmotic stresses at the single-cell level. We analyzed the dynamical 

behavior of the stress responsive STL1 promoter fused to a fluorescent reporter 

using microfluidics and fluorescence time-lapse microscopy. We established 

that pSTL1 shows variability in its successive activations following two repeated 

short stresses. Despite this variability, most cells displayed a memory of past 

stresses through a decreased activity of pSTL1 upon repeated stress. Notably, 

we showed that genomic location is important for the memory effect since 

mailto:pascal.hersen@univ-paris-diderot.fr
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promoter displacement to a pericentromeric chromatin domain leads to a 

decreased transcriptional strength of pSTL1 and to the loss of the memory. This 

study provides a quantitative description of a cellular memory that includes 

single-cell variability and points towards the contribution of the chromatin 

structure in stress memory. 

 

Introduction 

 

Cellular memory can be defined as a cellular response to transient and repeated 

stimuli. These latter can emanate from constantly fluctuating and potentially 

stressful environments, thus possibly exerting a selective pressure on cell 

viability [1]. To ensure their survival, living organisms have developed various 

strategies to cope with environmental changes [2], [3]. One possible way for cells 

to maintain their biological functions in a challenged environment is to regulate 

gene transcription [4]. The active genetic response allowing cells to survive a 

single stimulus is referred to as cellular adaptation. Factors such as chromatin 

remodelers [3], specific proteins produced during the stress [5], [6] or even 

changes in chromatin conformation [7], [8] have been determined to be causal 

factors of adaptation to environmental changes.  

What happens when cells encounter consecutive stresses is less well 

understood, however it has been observed in some cases that the adaptation to 

a first stress can serve as a learning process to a better adaptation to a 

consecutive stress. This process is defined as memory. 

Two main pathways are proposed to explain underlying biological mechanisms 

for cellular memory. The first one involves the remodeling of the chromatin and 

is usually referred to as epigenetic memory, which may also be genomic-

position dependent ref!. The second explanation is the creation of one or several 

proteins during the event that caused the emergence of the cellular memory. 

Such proteins are kept throughout the divisions, thus giving a trace of the event 

that happened in the first place: this is defined as cytoplasmic memory. Such 

memory should not be dependent on the genomic position.  

In the budding yeast, studies on cellular memory showed that cells confronted 

to successive environmental stresses can respond differently. For instance, the 

so called galactose memory is characterized by a faster transcriptional 

reactivation of the GAL cluster, while an example of the memory of long 

hyperosmotic stresses is characterized by a reduced activity of the osmo-

responsive  gene GRE2 without any difference in the time of reactivation of this 

gene [5], [6]].   
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All eukaryotes have a highly organized nucleus. In the case of the budding 

yeast, chromosomes follow a Rabl organization : centromeres are tethered to the 

spindle pole body, while telomeres are anchored to the nuclear periphery [26]–

[28]. Interestingly, the galactose memory appears to rely on gene positioning 

inside the nucleus since the GAL cluster has been found to be repositioned 

towards the nuclear periphery in an H2AZ and Nup60 dependent manner Ref . 

The nuclear organization may also play a critical role in the genetic stress 

response as most stress response genes are located in the subtelomeres Ref . 

Subtelomeres are regions up to 40kb upstream the telomeres that are subjected 

to silencing by proteins of the Silent Information Regulator (SIR) complex [29]–

[31]. However, stress conditions lift this repression, making possible the 

transcription of stress response genes. Most of those genes are globally 

expressed in response to any external stresses: this is defined as the 

environmental stress response (ESR) mechanism [32]. In addition to this 

mechanism, stress response genes that are specific to the nature of a stress will 

also be transcribed. This latter is in part the reason why there is no universality 

in the mechanisms of adaptation to different types of stresses. 

Most studies questioning memory effects are carried out on isogenic 

populations of cells, giving information on the mean behavior. Nevertheless, a 

population of micro-organisms is heterogeneous. This is partly due to 

physiological differences between cells such as their age, size or position in the 

cell cycle, defined as extrinsic noise. Moreover gene expression is an inherently 

stochastic phenomenon, inter alia because of the low number and availability of 

specific molecules such as transcription factors, accessibility of the promoter or 

functional regulatory networks ref. Overall, stochasticity causes genetically 

identical cells to exhibit different behavior when encountering the same stimuli 

[33]–[36].  

The response to osmotic changes in the budding yeast has proven to be a good 

tool to study the emergence of adaptation and cellular memories in this 

organism [9] [10]–[12]. When a yeast experiences an increase in the osmolarity 

of its surrounding environment (hyperosmotic stress), intracellular water will 

flow out of the yeast, leading to its shrinkage [13]. This causes a perturbation of 

the chemical reactions occurring in the cell. [15]– [17]. The imbalance of osmotic 

pressure is detected by osmosensors that activate the High Osmolarity Glycerol 

(HOG) pathway [18]–[20] [21]. This conducts to the phosphorylation of the 

cytoplasmic protein Hog1 and its eventual transient translocation into the 

nucleus where it will participate in the activation and regulation of an estimated 

10% of the genome, including the osmo-responsive gene STL1 [22], [23], [24]. 

Thanks to the HOG pathway, a yeast can physiologically adapt to a 
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hyperosmotic stress in 15-30 min [25], notably by producing glycerol which 

leads to homeostasis. The dephosphorylation of Hog1 and its exit from the 

nucleus signals the end of the adaptation to the hyperosmotic stress: this 

constitutes a negative feedback loop. However, such negative regulation makes 

impossible the distinction between physiological adaptation and genetic 

response. As the time required for this negative feedback loop matches the time 

of the physiological adaptation to the stress, the investigation of the genetic 

component of the hyperosmotic stresses response exclusively can only be made 

through the study of short stresses. 

We here present a single-cell study of S. cerevisiae cells submitted to short pulsed 

hyperosmotic stresses in a well-controlled system based on time lapse 

fluorescence microscopy and microfluidics [39], [40]. Using computer science 

tools, we were able to track and analyze hundreds of single cells receiving 

repeated osmotic stresses. We found that in response to two consecutive 

hyperosmotic stresses separated by 4h, individual cells display a variability in 

the dynamical activity of pSTL1 in response to the two stresses- variability that 

we have clustered according to five typical profiles of response. Despite the 

existence of this pronounced dynamical variability, most of the cells adopt the 

same behavior, consisting in a decreased amplitude of response upon stress. We 

called this specific behavior memory effect. Importantly, we found that the 

chromatin environment dictates the manner by which cells respond to pulsed 

stresses as a relocation of the promoter of interest on the chromatin eventually 

causes a reduced activity of pSTL1 and the loss of the memory effect. Overall, 

our study suggests that the specific location of pSTL1 at the subtelomere is 

required for an optimal level of transcription that can go beyond a simple 

stochastic behavior and lead to the emergence of a memory in response to short 

osmotic stresses. 

 
Results  

 

The response of a population to successive hyperosmotic stresses suggests the existence 

of a cellular memory. 

We studied a population of growing yeast cells in a microfluidic device and 

submitted to short and repeated hyperosmotic stresses, using 1M Sorbitol. We 

measured the fluorescence at the single cell level of the promoter pSTL1 tagged 

with the yECITRINE fluorescent reporter as a function of time [41] (figure 1a). 

This protein serves as a reporter of the activity of the HOG Pathway. During the 

time course of an experiment, each cell is tracked allowing observing, in the 

same cell, the first and second activation of the pSTL1 promoter due to the short 
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and transient activation of the HOG pathway. The limited duration of the stress 

(8 min) and the long delay between the two stresses (4 hours) guaranteed that 

cells fully recovered from the first stress, thus allowing us to compare the 

dynamics of response to the first and second osmotic stresses. Moreover cells 

born between the two stresses were not considered since they dis not receive the 

stress and may blur the stress response. Rather, we focus exclusively on the 

population that received both the first and the second stress (figure 1b).  

We observed on such a population that the response to the second stress was 

lowered by 20% in average as compared to response to the first stress (figure 

1c), but detected no difference in the time required to reach the peak of 

fluorescence (figure 1d). The decrease of fluorescence amplitude correlated with 

decreased protein amount, as detected by Western Blotting (supplementary 

figure 1), suggesting it is independent of photobleaching .  

Altogether, these observations show that, somehow, there is a memory of the 

stress event at the level of the population of stressed cells. Moreover, the 

decrease of fluorescence intensity at the second stress is seemingly due to a 

reduction of protein production rate rather than a shortened duration of 

transcription events.  

 

At the level of single cells, most cells, but not all, show a cellular memory. 

Yet, this memory effect was not shared equally among cells. Indeed, single-cell 

analysis reveals a dynamic variability in the individual response to the repeated 

stresses. We classified single-cell fluorescent trajectories according to typical 

behaviors based on the first and second responses to stress (figure 2a). The most 

frequent behavior (55%±11%) is in line with the population memory effect in 

which the cells submitted to the second stress showed a lower fluorescence 

intensity. However, up to 18%±7% of cells display an opposite behavior, with a 

stronger response at the second stress. Very few cells showed similar responses 

to both stresses. Interestingly, we observed two subpopulations of cells that did 

not respond to one of the stress (figure 2b), although we confirmed that these 

cells indeed perceived the stress by visualization of transient cell shrinkage 

upon stress (Supplementary video & supplementary figure 2). Altogether our 

results show that the population behavior hides a richer set of dynamic 

behaviors of single-cell responses, which are likely the traces of the variability 

of the activation of pSTL1 by a hyper osmotic stress.  

 

The cellular memory cannot be explained by a stochastic behavior only.  

To determine the importance of the intrinsic variability on setting the different 

dynamical behaviors shown in figure 2a, that is the stochastic nature of the 
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pSTL1 activation, we performed stochastic simulations based on the Gillespie 

algorithm [42]. We simulated the transcription of pSTL1 and the translation of 

the fluorescent reporter of 1000 cells submitted to two 8min stresses separated 

by 4h (figure 2c). The rates of production and degradation of mRNA and 

proteins were set as established previously [39] (supplementary Table 1). Such 

a model implies that the computed cells will necessarily respond to both 

stresses. However, our experiments show that cells exposed to an 8min stress 

do not necessarily respond to a stress (figure 2d), conversely to cells submitted 

to a longer stress (figure 2e). More specifically, the absence of response 

disappears for longer stress duration since for a 1h stress 100% cells showed an 

activation of pSTL1, while for 8 min stress 80% of cells showed a response 

(figure 2f). This experimental observation suggests the existence of a critical 

time from which all cells will eventually respond to a stress.  Therefore  a 

stochastic time of activation of the STL1 promoter was added to the model.  

As expected in such a memory-free system, cells were clustered equally in the 

two main categories obtained experimentally, and the population did not 

display any memory effect. Of note, transcriptional delay made possible clusters 

4 and 5 appearance (figure 2g).  

The differences in clusters observed in vivo and through simulation, suggest that 

a biological mechanism other than noise in transcription and translation is at 

play in the memory effect. 

 

Adaptation to pulsed hyperosmotic stress does not require de novo protein synthesis 

during the stress. 

In order to investigate the biological origin of the memory effect, we first wanted 

to determine if the memory effect was linked to one or several long-lived 

proteins synthesized during the first episode of stress. To test this hypothesis, 

we inhibited transcription upon stress using thiolutin, a well-studied molecule 

that inhibits all three RNA polymerases in the yeast in a reversible manner [43], 

[44] (figure 3a). As expected, treatment of cells with thiolutin led to the loss of 

pSTL1 activity: when cells were treated for 1h with thiolutin (50µg/µL), no cells 

showed a fluorescent signal when stimulated by an 8 min hyperosmotic stress, 

while 80%±10% cells showed a signal in response to a hyperosmotic stress in the 

absence of thiolutin (figure 3b,c). We next tested the cells ability to respond back 

to a hyper-osmotic stress after thiolutin treatment. After 1h in the presence of 

thiolutin, the inhibitor was washed out and cells were submitted to an 8 min 

hyperosmotic stress, 4h later (figure 3d). At the population level, a response 

similar to the response to the first stress without thiolutin treatment was 

observed (figure 3e). We then performed the thiolutin treatment during 1h, 
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including during the first stress, then washed the inhibitor and submitted cells 

to a second stress 4h later (figure 3f). In these conditions, cells showed a marked 

decrease of the YFP signal by 50% +/-? (figure 3g), comparable to the response 

to a second stress without thiolutin treatment. Consequently, this experiment 

suggests that the memory effect is not primarily driven by de novo synthesis of 

proteins during the first stress, which could help the cells to respond to the 

second stress. To explain the observed memory effect, we can hypothesize that 

the first stress induces chromatin modifications independently of the activity of 

any RNA polymerases, but with an effect on subsequent transcription events at 

the pSTL1 locus. A possibility could be that chromatin marks would appear in 

most cells during the first stress and alter the response dynamics of cells during 

the second stress.  

 

Chromosome positioning influences the dynamical activity of pSTL1. 

The STL1 locus is located on the right arm of the chromosome IV, in its 

subtelomeric region, prone to silencing in non-stress conditions. To investigate 

the influence of the chromatin context on the dynamics of activation of pSTL1, 

we moved a region containing the promoter of STL1 and the yECITRINE 

fluorescent reporter to a distinct, centromeric chromatin domain (figure 4a). The 

displaced DNA region included 1kb upstream of the STL1 locus, enough to have 

a fully functional STL1 promoter [45]. To compare pSTL1 activity between its 

endogenous position and the centromeric one, we first submitted both strains 

to a 2h hyperosmotic stress and used flow cytometry to quantify the 

fluorescence at several time points. The activity of centromeric pSTL1 was 

significantly lower than in wild type cells (figure 4b), although the integrity of 

the promoter was preserved (supplementary figure 3).  

Patterns of consecutive responses to two 8min hyperosmotic stresses separated 

by 4h were then compared between endogenous and displaced pSTL1. Cells 

expressing the STL1 promoter at this centromeric position showed a more 

uniform distribution into the five defined clusters and there was a decrease in 

the amount of cells displaying the memory effect (from 55%±11% to 28%±4%, 

figure 4c) compatible with a purely stochastic process. Such a result indicated 

that the chromatin environment might be involved in the dynamical 

transcriptional activity of pSTL1. Although a functional pSTL1 promoter has 

been displaced [45] , potential subtelomeric  regulatory elements could have 

been lost during gene displacement. We have ruled out this hypothesis using a 

Crispr/dCas9VPR system [46] to bypass regulatory elements and force the 

activation of pSTL1 in non-stress conditions (supplementary figure 4). We 

designed guide RNAs to target Crispr/dCas9VPR within the 1kb sequence of 
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displaced pSTL1 and successfully induced the fluorescent reporter expression 

independently of any stress at both the peri-centromeric and subtelomeric 

positions. We observed a decrease in the activity of pSTL1 at the peri-

centromeric position compared to the endogenous one, meaning that the 

observed differences of expression of pSTL1 are not linked to the sequence of 

the promoter itself or the presence of regulatory elements, but is rather related 

to the chromatin environment. 

Taken together, our results show that the chromatin environment sets the 

variability of single-cell dynamical response for short stresses and can 

consequently act on cellular memory in a time varying environment.  

 

Discussion 

 

In the current study, we investigated how individual yeast cells dynamically 

behave in response to pulsed hyperosmotic stresses. Focusing our study on 

short stresses allowed us to analyze the genetic response to hyperosmotic 

stresses exclusively and probe the cell-cell variability that finds its origin in the 

onset of transcriptional events.  

 

The in-depth single-cell analysis reveals that the yeast display various behaviors 

in response to two repeated stresses Most cells decrease their responses with the 

stress, meaning that the memory effect profile is privileged compared to the 

others profiles we have defined. Using stochastic simulations, we have 

established that the five profiles of response could be explained by the 

stochasticity of gene expression. However the single-cell quantification 

obtained with such a model could not match the quantification obtained 

following the experiments where the memory effect is the dominant behavior, 

despite the existence of various profiles of response that are synonymous of 

variability. Thus, the memory effect is not a reflection of the stochasticity of gene 

expression. 

Although cells mostly display the memory effect, characterized by a reduced 

activity of pSTL1, we have not observed any difference in the time of response 

to the pulsed stresses. This suggests that the cellular memory consists in a 

decrease in the rate of protein production, which could also mean a decrease in 

the rate of transcription.  

It can be argued that the STL1 stress response promoter is naturally fine-tuned 

to respond with the fastest dynamics to ensure cell survival as its transcription 

starts at the moment of the stress, apart for the bimodality phenomenon, 

explaining why no temporal differences could be observed. However, a possible 
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way for the yeast to improve their response to subsequent stresses is the 

optimization of the amount of energy dedicated to fighting the stress, hence the 

emergence of the memory effect.  

We have then investigated the biological mechanisms behind such a memory. 

In order to examine the possibility of factors synthesized during the stress that 

could influence the response to the next stress, we used a transcriptional 

inhibitor in order to block de novo transcription during stress. Since blocking the 

transcription during the first stress does not prevent a decreased response to the 

second stress, it might imply that no new factors are required for the emergence 

of the memory effect. Such result also incidentally show that there is no 

universality in the memory effect to the same type of stress, as [5] describes an 

increase in the Ena1 proteins production to be at the origin of the memory effect 

they observed, which is not the case in our experiments. Furthermore, the use 

of a transcriptional inhibitor such as the thiolutin that inhibits all three RNA Pol 

and de novo transcription in the yeast does not prevent various factors from 

binding to the promoter’s sequence, potentially causing specific marks of 

transcription on it. Those marks would likely serve as a trace of previous 

activities of the promoter. Alternatively, proteins present prior to the stress with 

a long half-life could also be implicated in the memory effect by displaying 

different dynamics with the stresses, or in the case of cytoplasmic proteins, 

being translocated in the nucleus upon the first stress and remaining there, 

poising the promoter of interest for a different activation.   

 

We further showed that the dynamic variability distribution between single cells 

was dependent on the positioning of the pSTL1 locus on the chromosome. When 

displaced in a domain where  pSTL1 shows a decreased activity,  the 

stochasticity of gene expression prevails. Consequently, it appears that a 

biological mechanism, active in the subtelomeric regions upon transcription 

during stress, allows the memory effect to become predominant among the 

population of cells.  One of the key differences between the two genomic 

positions analyzed is the variation of the transcriptional activity of pSTL1. We 

thus propose that transcriptional marks or transactivators will induce a high 

level of transcriptional activity during the first stress, required to overcome the 

stochasticity of gene expression and have the emergence of a cellular memory 

at the second stress. A parallel can be drawn with previous studies performed 

in B. subtilis, where transcriptional events occurring above a certain threshold 

have been described to lead to the emergence of a cellular memory Ref! Et en 

dire un peu plus . Although this organism is a prokaryote, some similarities 
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might exist between those two microorganisms in the regard to the biology of 

the memory effect. 

It could be hypothesized that a high activity of the promoter of interest would 

mean and opened chromatin. The latter is more likely to exist in an area of high 

transcriptional activity upon stress such as the subtelomere. Although marks of 

acetylation are usually associated with a high level of gene expression, the 

activity of pSTL1 is known to be reduced in absence of the histone deacetylase 

Rpd3. This means that in our experimental context, marks of deacetylation 

might actually be responsible for a high level of transcriptional activity. It would 

be interesting to investigate the potential role of (de)acetylation by, for instance, 

forcing a high level of (de)acetylation during the first stress only.  

 

The stochasticity of gene expression gives a diversity of behavior. From an 

evolutionary point of view, this diversity could favor adaptation since it gives 

several choices for selection. As it appears that the memory effect was the one 

selected, the specific position of pSTL1 would have been kept throughout 

evolution to gain a regulation level in order to perform better response to 

stresses as compared to other down-regulated regions.  

Working at the single-cell level allowed us to observe and quantify additional 

phenotypes that would have been blurred by a population study. We also 

showed that the cellular memory does not require a long stress and can start 

very early on. Overall, our study suggests that the specific subtelomeric location 

of pSTL1 is required for an optimal level of transcription that can go beyond a 

simple stochastic behavior and lead to the emergence of a memory in response 

to repeated hyperosmotic stresses. Our work could serve as a basis to broader 

studies of the positioning of stress response genes at subtelomeric positions in 

the budding yeast, from a genetic point of view as well as an evolutionary once.   

 

 

 

 

 

 

 

 

 

Materials and Methods 
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Flow Cytometry: all flow cytometry experiments were performed with a flux 

cytometer Gallios (Beckman Coulter) equipped with 10 colors, 4 lasers (488nm 

Blue, 561nm Yellow, 638nm Red, 405 nm Violet). We used the excitation laser 

488nm and the emission filter at 530nm +/- 30 nm.  

 

Yeast strains and cell culture: our experiments were made using a 

STL1::yECITRINE-His5 (yPH53) strain derived from S288C and gifted to us by 

Megan McClean. The yeast were grown overnight in SC+2% glucose at 30°C. 

The cells were diluted next morning to reach OD600=0.5 at the moment of the 

experiments. Genotype of all strains used in this study are indicated in table 2. 

To move pSTL1 reporter construct in the peri-centromeric region of 

chromosome IV, pSTL1-yECITRINE-HIS5 construct was PCR amplified using 

primers 

TATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGGCAGCTTGGA

GTCAATGATTCTGAAATACTCCTTTTACA and 

TGCAGGCAAGTGCACAAACAATACTTAAATAAATACTACTCAGTAATAA

CATTATTGGTGCGGCAAGG with 50 bases homologies to the TRP1 locus. 

[HIS+ TRP-] yeast transformants were verified by PCR and PCR fragment 

subsequently sequenced, ensuring the absence of any mutations in the 

construct.   

 

Crispr experiments: we used the plasmid pAG414GPD-dCas9-VPR from Addgene plasmid 

(# 63801) to express the inactivated form of CAS9 fused to transcriptional activator VPR. The guides 

were cloned under SNR52 promoter in plasmid pEF534 using the enzyme 

BsmBI. Digesting the resulting plasmid by NotI / XbaI and cloning the Guide 

containing fragment into pRS425 similarly digested, performed marker 

exchange. We designed two guides targeting pSTL1, respectively gRNA1, 

GAAAGTGCAGATCCCGGTAA and gRNA2, 

GCGCCGAATACCCCGCGAAA. 

 

Single-cell clustering: To categorize cells in different classes, we compared the 

maximum level of fluorescence reached during the first and second stress, while 

taking the basal fluorescence level prior to the corresponding stress as a 

reference. The ratio between the maximum amplitude of the first and the second 

stress was then evaluated. Cells categorized according to profile 1 had a ratio 

superior to 1, cells categorized according to profile 2 had a ratio inferior to 1 and 

cells displaying profile 3 had a ratio equal to 1. The cells with a maximum of 

amplitude equal to 0 (no expression) during the second or the first stress were 
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categorized separately (figure 2b). All ratio were established with a 5% 

threshold. 

 

Microfluidics: we used an H-shaped microfluidic device to confine the yeast in 

channels of 3.7µm high. This microfluidic device was made using soft 

lithography techniques. The hyperosmotic stresses were triggered using SC+2% 

glucose supplemented with 1M sorbitol. The media were flown in the 

microfluidic chip using a peristaltic pump ISMATEC set at 120µL/min flow rate. 

 

Transcriptional inhibition: cells were exposed to SC with addition of thiolutin 

(Abcam ref ab143556) at 50µg/mL (diluted in DMSO) for 1h prior and during 

the stress. To wash out Thiolutin in the microfluidics experiments, SC medium 

was delivered to the cells during 4h using a peristaltic pump set at a flow rate 

of 120µL/min.  

 

Microscopy: we used an inverted microscope Olympus IX71. The yeast were 

observed with an objective x100 UplanFLN 100x/ 1.3 Oil Ph3 Ul2. Images were 

recorded with a camera Cool Snap HQ2 Princeton Instruments. All experiments 

were made at 30°C. Yeast were imaged every 5min with 20ms exposure in bright 

light and 200ms in fluorescence light. The microscope was controlled by the 

open source software MicroManager which was interfaced with Matlab. 
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FIGURE LEGENDS 

FIGURE 1 

(A) Experimental setup. We use a multi-layer H-shaped microfluidics device 

composed of two large flow channels of 50µm height and 40µm thin, 

observation chambers of 400µm x 400µm x 3.7µm. Cells are trapped in the 

chambers and grow as a monolayer, facilitating cell segmentation and tracking.  

The medium flowing in the channels diffuse in the chambers. The hyperosmotic 

stresses activating expression of pSTL1-yECRITRINE are triggered using 

sorbitol 1M for 8min. (B) Principle of the experiments. Cells are exposed to two 

8min stresses separated by 4h, which allows the cells to recover upon stress. 

Cells are imaged every 5min in bright light (20ms exposure) and fluorescence 

light (200ms exposure) (C) Decrease of the amplitude of response upon stress at 

the population level. Fluorescence response of a population of a hundred cells. 

The mean response of cells submitted to a first stress (dark blue), followed by 

another stress 4h later (light blue) is represented with the standard error. The 

peak of fluorescence decreases upon stress. (B) Analyses of time response to two 

consecutive stresses in the same population. Time between stress induction and 

fluorescence peak reveals that the time of response is similar upon stress. 

 

FIGURE 2 

 (A) Examples of five typical single-cell response profiles. Although the single-

cell analysis reveals a dynamical variability of the response, we have defined 

five typical profiles of response adopted by the cells. (B) Single-cell clustering. 

Using criteria on the values of the fluorescence peaks, we have clustered the 

dynamical variability of response according to the five typical fluorescence 

response. (C) Modeling gene expression upon stress in a memory-free system. 

We use stochastic simulations to model the transcription of the fluorescent 

reporter and the protein translation upon stress. (D) Sequence images of cells 

submitted to an 8min stress. The arrows on the last bright field image shows the 

cells that do not respond to the stress. (E) Sequence images of cells submitted to 

a continuous stress. All cells show a response to such a stress. (F) Quantification 

of responsive cells. Upon receiving an 8min stress, 80% of cells show a response, 

whereas 100% of cells respond to a 1h stress. (G) Single-cell quantification of 

computed cells according to the five typical profiles. The model in this case 

includes a transcription delay randomly chosen between 0 and 10min for each 

computed cells. This delay is also different during the two stresses. The 

simulation is run twice and the fluorescence peaks values are used to cluster the 

computed cells responses according to the five typical profiles of response. 
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FIGURE 3 

(A) Principle of the transcription inhibition experiment. In our experimental 

context, we perform a 1h thiolutin treatment prior and during the stress in order 

to prevent the activity of pSTL1 upon stress. (B) Bright field associated 

fluorescence pictures of cells in (top) non stress conditions (middle) 

hyperosmotic conditions (bottom) hyperosmotic conditions in the presence of 

thiolutin (C) Single-cell quantification of the fluorescence of the cell in these 

different conditions. (D) Principle of the control experiment (Up) The cells are 

in the microfluidic device for 4h before being exposed to an 8min hyperosmotic 

stress. (Down) The cells are treated with the transcriptional inhibitor for 1h in 

the microfluidic device. The cells then are allowed to grow for 4h before being 

exposed to an 8min hyperosmotic stress. (E) Cells treated with the 

transcriptional inhibitor do not present a pSTL1 transcriptional defect after the 

inhibitor is washed. Population quantification of the response to a stress in the 

case where the cells were untreated (blue) or treated with the inhibitor (purple). 

(F) Principle of the experiment. (Up) The cells are exposed to two 8min 

hyperosmotic stresses separated by four hours. (Down) The cells are treated 

with thiolutin for 1h and, still treated with the inhibitor, exposed to a 8min 

hyperosmotic stress. The inhibitor is then washed and the cells grow for 4h 

before being exposed to another 8min stress. (G) Inhibition of the response to 

the first stress does not prevent the memory of the stress. Population 

quantification of the response to a second stress in the case when the cells were 

submitted to a first stress (blue) or submitted to a first stress + transcriptional 

inhibitior (purple). 

 

FIGURE 4 

(A) Displacement of pSTL1 towards the peri-centromere of the chromosome IV. 

Sketch of the genomic position of pSTL1 on the chromosome IV. The promoter 

was moved at the TRP1 locus, on the same chromosome. (B) Decrease of activity 

of the displaced pSTL1 upon stress. Fluorescence quantification of the activity 

of the promoter in response to a 2h hyperosmotic stress in the endogenous case 

(blue) and when the promoter was moved (red). (C) Displacement of pSTL1 

leads to the loss of the memory effect. Single-cell quantification of cells 

containing displaced promoter pSTL1 in response to two hyperosmotic stresses. 

Classification made according to the five typical profiles of response as in figure 

2.  

 

Data availability 
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All data are available on an open repository hosted on the ZENODO platform 

and with the following DOI : XXX 
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FIGURE S1  

 
Supplementary Table 1: Gillespie parameters 

   

 

 

Supplementary Table 2: strains genotype   

Parameter Definition Unit Reference Value Source 

k1 transcription rate min-1 1.101 [39] 

d1 mRNA decay min-1 2.94.10-1 [39] 

τ time delay min Between 0 and 10 min This 

study 

k2 translation rate min-1 9.47.10-1 [39] 

d2 protein decay min-1 4.10-3 [39] 
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yPH53 ura3∆0  leu2∆0  his3∆1  lys2∆0   pSTL1::yECITRINE-HIS5 

yPH200 ura3∆0  leu2∆0  his3∆1  lys2∆0   Δ(pSTL1-STL1)::CaUra3 

yPH212 ura3∆0 leu2∆0 his3∆1 lys2∆0 Δ(pSTL1-STL1)::CaUra3  Δtrp1::pSTL1-

yECITRINE-HIS5 

5 leu2∆0  his3∆1  lys2∆0   pSTL1::yECITRINE-HIS5 Δtrp1::pURA3-

URA3 

 
Supplementary Table 3: list of primers   

Deletion of pSTL1-STL1 

forward 

Gagtagaaaatttactaatgtggtctcgcgtgtgaatcaggtttagct

tgcctcgtcccc 

Deletion of pSTL1-STL1 

reverse 

taagtaaattacaaaatatgatttgtgagttgtgtgtgaaGTTTTC

GACACTGGATGGCG 

PCR of pSTL1-yECITRINE 

His selection with 50bp of 

TRP1 homology forward 

TATTGAGCACGTGAGTATACGTGATTAAGCA

CACAAAGGCAGCTTGGAGTCAATGATTCTG

AAATACTCCTTTTACA 

 

PCR of pSTL1-yECITRINE 

His selection with 50 bp of 

TRP1 homology reverse 

TGCAGGCAAGTGCACAAACAATACTTAAAT

AAATACTACTCAGTAATAACATTATTGGTGC

GGCAAGG 

 

Amplification of pSTL1-

yECITRINE at TRP1 locus 

forward 

CGCCAGATGGCAGTAGTGGAAG 

 

Amplification of pSTL1-

yECITRINE at TRP1 locus 

reverse 

GCCTGCAGGCAAGTGCAC 

 

Sequencing of pSTL1 at TRP1 

locus forward 1 

CCGATTAAGAATTCGGTCG 

 

Sequencing of pSTL1 at TRP1 

locus reverse 1 

GGATCTGCACTTTCTCAG 

 

Sequencing of pSTL1 at TRP1 

locus forward 2 

CATTGCCAAGGCTAGGAG 

 

Sequencing of pSTL1 at TRP1 

locus reverse 2 

catcaccttcaccttcacc 

 

Primer gRNA 1 forward gatcGAAAGTGCAGATCCCGGTAA 

 

Primer gRNA 1 reverse  aaacTTACCGGGATCTGCACTTTC 

 

Primer gRNA 2 forward gatcGCGCCGAATACCCCGCGAAA 
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Primer gRNA 2 reverse aaacTTTCGCGGGGTATTCGGCGC 
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