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Introduction

Gotlib, RàB T2. Le matou matheux

Nous introduisons le sujet de cette thèse en par-
tant du plus général vers le plus précis, non pas
en une seule étape mais à l’aide d’agrandissements
successifs du niveau de précision, d’une manière de
plus en plus détaillée atteignant ultimement un ré-
sumé précis de la thèse et de ses contributions.

Un travail mathématique

Ce document présente un travail de recherche
en mathématiques. Le but des mathématiques est
d’étudier certains concepts abstraits, afin de mieux
comprendre leurs propriétés et par conséquent de
mieux appréhender les concepts eux-mêmes. Nous
donnons sans tarder un exemple : nous sommes
tous familiers avec le concept de moyenne, et d’évè-
nement aléatoire. Ainsi, on dira facilement : « si je
lance une pièce en l’air il y a une chance sur deux
qu’elle tombe sur pile ». Ou « si je vais au casino,
j’ai plus de chances de repartir plus pauvre, que

plus riche ». Ces phrases sous-entendent l’existence d’une notion d’aléatoire, difficile à définir
dans le monde réel qui nous semble suivre la causalité et donc être étranger au concept d’aléa-
toire. Mais les mathématiques nous le permettent, ils peuvent faire exister cette notion de manière
précise dans un monde abstrait. Et une fois le concept proprement défini, nous avons les outils
pour l’étudier, le disséquer et dévoiler ses propriétés les plus inattendues. Ainsi, la théorie des
probabilités nous apprend qu’il existe des évènements qui n’ont pas de moyennes ! Imaginez une
boîte contenant des boules numérotées, et avec un bouton qui à chaque pression extrait une boule
de la boite, tirée aléatoirement parmi toutes les boules selon une certaine distribution. Le tirage
est donc indépendant des précédents. Pour certaines distributions, l’étude mathématique nous
dit que le concept de moyenne, associé à ce tirage, n’existe pas. On pourrait être tenté de calculer
la moyenne des nombres qui sortent, après de nombreux tirages, mais celle-ci ne se stabiliserait
pas : très rarement, un nombre colossalement grand serait tiré de la boîte, augmentant la valeur
moyenne calculée sans qu’il n’y ait de borne à cette augmentation.

Les mathématiques nous ont donc appris quelque chose à propos du concept de probabilité,
que l’on n’aurait pas forcément deviné lorsque celui-ci était juste une idée, une intuition sur le
fonctionnement du monde. Elles nous ont appris bien d’autres choses sur les probabilités, dont
de nombreuses se vérifient et permettent de comprendre mieux le monde bien réel et concret.
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2 CONTENTS

La logique mathématique
Commençons enfin notre premier raffinement vers ce qui nous intéresse dans cette thèse : la

logique mathématique. La logique mathématique est un domaine particulier des mathématiques,
elle correspond à l’étude d’un concept particulier, le concept même des mathématiques. Seulement
rappelons nous, la première étape dans l’étude d’un concept abstrait est de le définir formellement,
de le faire exister concrètement dans un monde abstrait.

Ce domaine des mathématiques fait donc exister de manière concrète les concepts de théo-
rème, de preuve, de théorie dans le monde des mathématiques, en leur donnant une définition
formelle, des contraintes qu’ils doivent satisfaire. Ces contraintes, ces définitions sont calquées
parfaitement sur notre idée de ce que sont les mathématiques, nous sommes donc confiants en
cette représentation des concepts abstraits dont nous sommes partis.

Nous nous trouvons ainsi en présence de deux types de théorèmes : ceux auxquels on vient de
donner une existence formelle en les définissant dans les mathématiques, et ceux dont on parle
lorsque l’on fait des mathématiques, mais qui n’ont pas d’existence précisément, formellement
définie. Ces derniers sont dits faisant partie de la méta-théorie, les mathématiques que l’on utilise
dans la vraie vie, pour étudier les mathématiques que l’on vient de définir.

Bien sûr, si les mathématiques de la méta-théorie correspondent réellement aux mathéma-
tiques, on peut définir à l’intérieur de ces dernières à nouveau les notions de preuves, théorèmes,
et formules. En d’autres termes, si les mathématiques peuvent étudier les mathématiques, alors
les mathématiques peuvent étudier les mathématiques étudiant les mathématiques. Il est bien
sûr temps de s’arrêter là, en résumant l’essentiel : en logique, il y a deux types de mathématiques,
celles que l’on étudie, et celles que l’on utilise pour étudier. Les unes sont une modélisation des
autres, mais les deux sont bien distinctes.

Ce besoin d’étudier les mathématiques provient initialement d’un besoin de fondations solides
et puissantes aux mathématiques : solides dans le sens qu’elles ne permettent pas de prouver une
chose et son contraire, et puissantes dans celui de pouvoir prouver suffisamment de théorèmes.
Cet objectif a guidé la majeure partie des contributions des premiers logiciens, et de nombreux
résultats surprenants, inattendus ont été trouvés. Ainsi, malgré un plan d’attaque, proposé par
Hilbert, qui connut tout d’abord un certain succès, Gödel démontra que de telles fondations
n’étaient pas possibles. Mais tant pis : la logique mathématique était née.

Cette thèse ne s’intéresse pas aux fondations des mathématiques. En effet, bien qu’ayant été
la motivation initiale, la logique ne s’arrête pas à celle-ci. C’est une théorie qui permet l’étude
de nombreux nouveaux concepts, ou d’anciens concepts vus sous un nouvel angle, et qui possède
de nombreuses applications et connexions à d’autres domaines des mathématiques. Cette thèse
s’inscrit dans le contexte de la théorie de la calculabilité, et c’est donc le moment d’opérer un
nouveau zoom en direction de celle-ci.

La théorie de la calculabilité
La théorie de la calculabilité, ou plus simplement la calculabilité, est l’étude du concept de

calcul. Un calcul est l’application successive de règles simples, partant d’un état et se terminant
dès qu’une règle l’indique. Par exemple, l’addition telle que l’on apprend à la poser correspond à
un calcul : c’est une succession d’additions mécaniques de deux chiffres, que l’on applique chiffres
par chiffres, en ajoutant au besoin des retenues, et qui se termine lorsque l’on a considéré tous
les chiffres, par la somme des entiers initiaux.

Ce concept de règles mécaniques, aussi appelé “algorithme” du nom du mathématicien Perse
Al-Khwârizmî, n’a à ce point de l’introduction qu’un sens vague. Passer du concept à une réalité
dans le monde mathématique, satisfaisante et convaincante, ne fut pas chose aisée ! En effet, il
n’est pas évident de trouver un ensemble de règles suffisamment puissantes pour englober tout ce
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qui serait dit calculable par l’intuition, sans permettre de règles qui offrent trop de possibilités. Et
pour chaque candidat à une telle définition, il faut encore se convaincre que c’est la bonne ! Ainsi,
plusieurs définitions de la notion de calcul furent proposées, certaines n’étant pas convaincantes
car elles n’englobaient pas assez de calcul possible, d’autres car elles étaient trop alambiquées et
semblaient loin de l’intuition de calcul. Finalement, c’est Turing qui mit tout le monde d’accord,
en définissant ses “machines de Turing”, sorte de modèle d’un ordinateur primitif.

Ainsi donc, la définition formelle de calculable finit par être consensuelle. Grâce à celle-ci,
nous sommes ainsi capables de définir précisément ce qu’est un ensemble calculable : c’est un
ensemble d’entiers A tel qu’étant donné un entier n, le problème de savoir si n ∈ A peut être résolu
à l’aide d’un simple calcul, au sens de Turing. Nous sommes aussi en mesure de prouver qu’il
existe des ensembles non calculables. Mais plus que cela, la définition de Turing nous permet
de définir un calcul relatif à un ensemble d’entiers : en quelque sorte, si B est un ensemble
d’entiers, la calculabilité relativement à B correspond à l’étude des calculs qui sont possibles si
B est accessible au calcul. Cela permet ensuite de s’abstraire des ensembles d’entiers, et de ne
parler plus que de contenu calculatoire. Deux ensembles ont ainsi le même contenu calculatoire si
les notions de calculabilités relativement à l’un ou à l’autre sont les mêmes. L’étude des contenus
calculatoires, nommés degrés Turing, fut au centre des préoccupations, et une structure très riche
et complexe fut découverte.

Donnons maintenant quelques exemples de contenus calculatoires. Bien que l’on n’ait pas
encore défini formellement la notion de calcul, nous appelons à l’intuition, en soulignant que cette
notion de calcul correspond exactement à ce qui peut être calculé par un ordinateur qui ne serait
pas limité par sa mémoire. Prenons l’ensemble des entiers pairs, P . La donnée de P n’aide en rien
à calculer de nouveau : on peut se passer de cette donnée car on peut facilement la retrouver,
en regardant le dernier chiffre d’un entier, qui sera pair si et seulement si ce dernier chiffre
est 0, 2, 4, 6 ou 8. P n’a donc aucun contenu calculatoire particulier. Cependant, considérons
maintenant l’ensemble des calculs qui finissent par s’arrêter. Il semble difficile de prédire si un
calcul va s’arrêter, et on ne peut pas le tester en l’exécutant, car s’il ne se termine pas, nous ne le
saurons jamais. Et cette donnée peut être utile pour générer de nouveaux calculs, qui pourront
éviter de s’engager dans des boucles infinies. Cet ensemble est connu sous le nom du problème
de l’arrêt. Donnons un dernier exemple. La résolution d’équations est un des problèmes majeurs
des mathématiques. Est-ce que l’on pourrait ramener leur résolution à une suite mécanique de
règles, un calcul ? En particulier dans le cas d’un système d’équations simples, ne contenant que
des entiers, des sommes et des multiplications, un théorème de Matiyasevitch nous dit que cela
n’est pas possible, et même que le contenu calculatoire nécessaire pour résoudre ces équations
est exactement celui du problème de l’arrêt, ni plus, ni moins.

À ce point là il n’est pas encore clair en quoi la théorie de la calculabilité fait partie de la
logique mathématique. Ceci tient en grande partie au fait qu’il existe de nombreux liens entre
calculabilité, et définissabilité. Ainsi, la calculabilité d’un ensemble peut se ramener au fait que
l’ensemble est définissable par une formule ayant certaines propriétés. Définissons une formule
∆0

0 comme une formule de l’arithmétique dont tous les quantificateurs (les assertions de la forme
“pour tout n”, et “il existe m”) sont bornés. Définissons les formules Σ0

1 comme celles qui ne
peuvent comporter que des quantifications “il existe” qui soient non bornées, et Π0

1 celles dont
les seules quantifications non bornées sont celles de la forme “pour tout”. Alors, un ensemble est
calculable si et seulement si il est définissable à la fois par une formule Σ0

1 et par une formule
Π0

1. Un ensemble qui est définissable par une formule Σ0
1 sera lui un ensemble calculatoirement

énumérable, ou ensemble c.e., c’est à dire un ensemble tel qu’un calcul puisse énumérer exactement
ses éléments. Le problème de l’arrêt est c.e. car il est définissable par une formule Σ0

1, un calcul
c s’arrêtant si et seulement si “il existe une étape t tel que le calcul c s’arrête à l’étape t”.

Les liens entre définissabilité et calculabilité ne sont pas si étonnants, étant donné que ce sont
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deux notions de complexité pour des ensembles : l’une mesure la difficulté à le définir, l’autre la
difficulté à le calculer. La mesure de complexité d’ensembles est par ailleurs un thème récurrent
en logique mathématique, central aussi en théorie descriptive des ensembles qui jouera aussi un
rôle dans cette thèse.

Fort de cette analogie entre calculabilité et définissabilité, le mouvement suivant est d’appli-
quer les nombreuses méthodes, constructions et outils puissants développés lors de l’étude des
degrés Turing, à d’autres domaines de la logique mathématique dont la définissabilité est un
élément clé, et il est temps de zoomer à nouveau.

Calculabilité et définissabilité

Nous arrivons au plus gros niveau de granularité de cette introduction. Au moins trois do-
maines profitent de la calculabilité pour jeter un jour nouveau sur la définissabilité, et utiliser
ses nombreuses méthodes de construction. À l’instar des précédents agrandissements, nous allons
présenter ces trois domaines en effectuant un travelling : la théorie descriptive des ensembles, puis
les mathématiques à rebours et enfin la théorie algorithmique de l’aléatoire. Nous terminerons
ce travelling par une présentation du caractère commun à notre étude de ces trois domaines, le
point de départ de cette thèse : la notion de calcul infini, elle aussi très liée à la définissabilité,
et donc applicable aux domaines susnommés.

La théorie descriptive des ensembles

La théorie descriptive des ensembles est l’étude de la complexité des sous-ensembles de R,
d’un point de vue topologique. On prendra généralement le point de vue d’associer un élément
de R à son écriture en base 2 : un réel est donc assimilé à une suite infinie de 0 et de 1, et l’on
nomme l’ensemble de ces suites infinies l’espace de Cantor, noté 2ω.

Les sous-ensembles de l’espace de Cantor les plus simples, au sens de la théorie descriptive
des ensembles, sont les ensembles de la forme {x ∈ 2ω : x commence par σ} pour σ une suite
finie, c’est à dire l’ensemble des réels dont l’écriture commence par une suite de chiffres finie et
fixée. Une description d’un tel ensemble est simple : il suffit de donner la chaîne σ. À noter que
dans R, cela correspond à des ensembles ouverts. Et pour cause : les ensembles ouverts, ainsi que
les ensemble fermés, constituent le premier niveau de complexité de la théorie descriptive, après
les ouverts-fermés.

Le niveau de complexité descriptive juste au dessus des ouverts et des fermés est constitué des
intersections dénombrables d’ouverts, et des unions dénombrables de fermés, traditionnellement
nommés Fσ et Gδ. Les niveaux suivants de complexité de description topologique continuent
ainsi, en prenant des intersections dénombrables, ou des unions dénombrables, d’ensembles de
complexité moindre.

Les motivations à classer les sous-ensembles des réels par complexité proviennent entre autres
de la théorie des ensembles. Le but est de montrer que les ensembles “pas trop compliqués” se
comportent bien. Ainsi, même si des ensembles de grande complexité existent nécessairement,
la plupart des mathématiques usuelles manipulent des ensembles de complexité raisonnable.
Ainsi, par exemple les ensembles dont la complexité se trouve dans la précédente hiérarchie, dite
hiérarchie Borélienne, sont tous déterminés, ils ne contredisent pas l’hypothèse du continu, deux
propriétés de bon comportement.

À première vue, il ne semble pas y avoir de liens entre la complexité topologique que l’on vient
d’esquisser et la calculabilité, et pourtant ils existent ! Pour les faire apparaître, il faut rajouter
de l’effectivité dans les unions et les intersections. La complexité “effectivement topologique”
que l’on définit ainsi possède de bonnes propriétés, comme celle d’avoir un nombre dénombrable
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d’éléments pour une complexité donnée. Une fois qu’un résultat est prouvé sur la complexité
effective, on peut le réhausser au niveau de la complexité topologique en relativisant le résultat :
cette technique marche car la complexité topologique est l’union des complexités effectivement
topologiques relativisées à un réel. L’étude de la complexité topologique effective est appelée
théorie descriptive effective.

Les mathématiques à rebours

Dans cette thèse, le second domaine qui profite de la calculabilité est le domaine des mathé-
matiques à rebours. Commençons par parler à nouveau des origines de la logique : le besoin de
fondations aux mathématiques. Ces fondations furent bâties sur ce qu’on appelle la théorie des
ensembles, une théorie où tous les objets sont des ensembles, y compris les entiers. Cela implique
donc un travail de codage des objets définis usuellement en mathématique dans cette théorie.
Avec les axiomes de Zermelo et Fraenkel, et éventuellement un axiome supplémentaire, toutes les
mathématiques usuelles sont prouvables dans cette théorie. Cependant, elle implique l’existence
d’objets gigantesques n’apparaissant jamais naturellement, et les axiomes ne correspondent pas
aux étapes d’un raisonnement fait lors de la preuve d’un théorème.

Les mathématiques à rebours s’attachent à étudier non pas les fondations de toutes les mathé-
matiques, mais elles se restreignent aux raisonnements effectués en arithmétique du second ordre,
c’est à dire les raisonnements qui n’impliquent que les entiers et les ensembles d’entiers. Cela
inclut la grande majorité des mathématiques développées jusqu’à maintenant. Par exemple, la
théorie des nombres et la théorie des graphes entrent dans ce cadre, car les objets qu’ils étudient
sont, au codage près, seulement des entiers. La théorie de Ramsey, qui elle étudie les structures
émergeant dans les ensembles infinis d’entiers, est largement étudiée du point de vue des mathé-
matiques à rebours. Beaucoup d’autres domaines, bien que se concentrant sur des objets qui ne
sont ni des entiers ni des ensembles d’entiers, peuvent tout de même être étudiés dans ce cadre :
c’est le cas de l’analyse dans sa grande majorité, car par exemple une fonction continue peut être
codée en un ensemble d’entiers.

Le plan des mathématiques à rebours pour étudier les raisonnements de l’arithmétique du
second ordre, était le suivant : étant donné un résultat important d’un domaine des maths, isoler
les axiomes utilisés dans la preuve, c’est à dire les étapes qui ne nécessitent pas d’explications,
qui sont vraies car elles sont évidentes ; puis une fois ces axiomes exhibés, tenter de prouver les
axiomes eux-mêmes à partir du résultat. Ainsi, si le théorème et ses axiomes sont équivalents,
on peut dire que ces axiomes sont les axiomes minimaux permettant de prouver le théorème. Le
terme de mathématiques à rebours vient de la technique de preuve qui part du théorème pour
arriver aux axiomes, à l’inverse de l’ordre usuel. Cependant, le problème clé d’une question de
mathématiques à rebours peut aussi être de trouver une preuve utilisant moins d’axiomes.

La plus grande découverte de cette étude est que l’écrasante majorité des théorèmes déve-
loppés au cours des siècles, dans de très nombreux domaines, sont équivalents à un parmi cinq
systèmes d’axiomes correspondant chacun à un type de raisonnement, voire même à un pro-
gramme philosophique de fondations des mathématiques 1. Ces cinq systèmes d’axiomes, réunis
dans le Club des Cinq, correspondent aux principes suivants :

1. Le premier, RCA0, est le système d’axiomes nécessaire au développement des mathéma-
tiques constructives. Il correspond aux arguments les plus simples, ceux qui nous per-
mettent d’effectivement construire l’objet que nous définissons. Par exemple, si l’on prouve

1. À savoir : le constructivisme de Bishop, les mathématiques finitaires de Hilbert, la prédicativité de Weyl et
Fefermann, le reductionisme prédicatif de Friedman et Simpsons, puis pour finir l’imprédicativité de Feferman et
al. [60]



6 CONTENTS

l’existence d’un ensemble d’entiers à l’aide de ce système d’axiomes, alors l’ensemble sera
calculable.

2. Le second, WKL0, est le système d’axiomes correspondant à l’usage de la compacité dans
un argument, un moyen de ramener une preuve sur le fini à une preuve sur l’infini.

3. Le troisième, ACA0, est le système d’axiomes permettant de construire des objets qui
ne soient pas totalement constructifs, mais dont la construction ne dépend que d’énoncés
arithmétiques, c’est à dire de formules ne parlant que d’entiers.

4. Le quatrième, ATR0, est le système d’axiomes permettant les constructions par induction
transfinie, c’est à dire étape par étape, mais dont le nombre total d’étapes afin d’atteindre
l’objet final dépasse le fini.

5. Le cinquième et dernier, Π1
1-CA0, est un système d’axiomes permettant de construire des

objets de complexité presque déraisonnable. Cependant, des théorèmes naturels nécessitent
tout de même l’existence d’un tel système d’axiomes, le rendant plus que légitime.

Ainsi qu’on peut le voir, la théorie de la calculabilité pointe déjà son nez à la porte des
mathématiques à rebours. En effet, les axiomes correspondent à des concepts de calculabilité, et
nombre de constructions de ce domaine permettent des séparations entre théorèmes et axiomes,
c’est à dire permettent de montrer qu’un théorème ne peut pas impliquer un système d’axiomes.

L’implication de la communauté de calculabilité dans les mathématiques à rebours a permis
aussi de montrer qu’on peut définir un “contenu calculatoire” à un théorème, c’est à dire ses impli-
cations en termes de calculabilité. Par exemple, considérons le théorème de Bolzano-Weierstrass,
qui stipule qu’une suite infinie de réels bornés admet une sous-suite convergente. Étant donné
une telle suite calculable, la sous-suite convergente ne pourra pas nécessairement être calculable,
et le contenu calculatoire commun à toutes les sous-suites convergentes est donc en quelque sorte
“impliqué” par le théorème. Cependant, le cadre donné par les mathématiques à rebours n’était
pas adapté à l’étude précise du contenu calculatoire des théorèmes.

Le cadre adapté, l’outil qu’il fallait pour étudier le contenu calculatoire des théorèmes, existait
en réalité déjà, et était utilisé en analyse : c’est la réduction de Weihrauch. Celle-ci permet en
particulier de comparer les théorèmes de la forme “pour tout quelque chose, il existe autre chose
tel qu’une troisième chose soit vraie”. L’idée est de considérer ce type de théorèmes comme un
problème, avec des instances dont il faut trouver une solution. Sous cet angle, le théorème dit
que toute instance admet une solution, et le contenu calculatoire d’un tel théorème correspond à
la difficulté de trouver la solution étant donnée l’instance. On peut ensuite utiliser la réduction
de Weihrauch pour comparer la difficulté de résolution de deux problèmes : un problème P1 est
plus facile à résoudre qu’un problème P2, si étant donné une instance de P1, je peux en trouver
une solution si l’on me donne une boîte qui me permet de résoudre l’instance que je souhaite de
P2, sachant que je ne peux utiliser la boite qu’une seule fois.

La théorie algorithmique de l’aléatoire

Le dernier domaine important de cette thèse, toujours en relation directe avec la calculabilité,
est la théorie de l’aléatoire algorithmique. Nous avons tous une idée de ce à quoi ressemblerait
une suite de “pile” et de “face”, obtenue en lançant 1000 fois de suite une pièce. Pourtant, toutes
les suites de 1000 “pile” ou “face” ont la même probabilité de se produire. Pourquoi donc, la
suite “pile, pile, pile, pile, pile, ...” nous paraît-elle moins aléatoire que la suite “pile, face, face,
pile, face, pile, pile...” ? Il y a une dissonance entre notre intuition d’une suite aléatoire et notre
intuition des probabilités. Tandis que la théorie des probabilités formalise ce dernier concept, la
théorie algorithmique de l’aléatoire se concentre sur notre concept de suite aléatoire, réconciliant
ce concept avec celui de probabilité.
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Comment définir formellement ce qu’est une suite aléatoire ? En accord avec l’exemple du
paragraphe précédent, nous commençons par discuter le cas des suites finies (mais présumées
longues). En plus de la suite constante à “pile”, bien d’autres suites ne doivent pas non plus être
considérées comme provenant d’un processus aléatoire, comme par exemple la suite constituée de
“pile, face” répétés. La suite des décimales de π prise à partir de la 100ème décimale peut sembler
aléatoire à première vue, mais plus du tout dès que l’on se rend compte de ce fait. Toutes ces
suites très longues ont été décrites à l’aide de quelques mots, c’est à dire d’une suite très courte.
Mais il me serait impossible de décrire une suite aléatoire en si peu de mots, l’intuition nous dit
qu’il serait peu probable qu’elle soit justement obtenue, parmi toutes les suites possibles !

C’est comme cela que l’aléatoire est défini pour les suites finies : plus précisément, il estmesuré
en fonction de la plus petite description qui permet de retrouver la chaîne, c’est la complexité
de Kolmogorov. Cette complexité ne peut dépasser la longueur de la chaîne, car en donnant
la chaîne elle-même, on peut trivialement la “retrouver”. Et toute suite de longueur n aura au
moins la complexité de l’écriture de n. Plus la complexité d’une suite de longueur n est proche
de n, plus elle peut être considérée comme aléatoire, et plus elle est proche de la complexité de
l’écriture de n, moins elle semble aléatoire.

Si l’on appelle suite infinie aléatoire une suite obtenue par la répétition infinie d’un lancer
de pièce, alors à chaque étape la suite finie de lancers devra avoir une mesure de son caractère
aléatoire proche du maximum, c’est à dire que sa complexité de Kolmogorov devra être proche
de n. Cette définition, appelée l’aléatoire de Martin-Löf, est une des plus importantes, car elle
peut être caractérisée par trois approches possibles , toutes raisonnables :

1. L’incompressibilité : l’approche par complexité de préfixes, celle que nous avons utilisée à
l’instant pour décrire un ensemble aléatoire. Si un ensemble est obtenu par un lancer infini
de pièces, à chaque étape il devra sembler aléatoire, et réciproquement s’il semble aléatoire
à chaque étape, il devra sembler aléatoire dans son ensemble.

2. L’imprévisibilité : une suite semble aléatoire s’il est impossible de deviner le prochain élé-
ment de la suite à partir des précédents, avec plus qu’un succès sur deux. Plus précisément,
si l’on doit parier sur ce que sera l’élément suivant, une somme que l’on choisit à chaque
étape, on ne doit pas pouvoir devenir aussi riche que l’on veut.

3. La banalité : une suite aléatoire ne doit avoir aucune propriété exceptionnelle. Une propriété
exceptionnelle est une propriété telle que l’on ne s’attende pas à ce qu’une suite aléatoire
l’ait, comme par exemple le fait d’avoir toujours deux “piles” à la suite. Et si la théorie des
probabilités ne nous dit pas pourquoi une suite semble plus aléatoire qu’une autre malgré
leurs équiprobabilités, elle nous dit bien quelles sont les propriétés qu’il est très improbable
d’avoir : ce sont les propriétés de mesure 0. Parmi ces propriétés de mesure 0, on ne choisit
que celles qui ont une description pas trop complexe, car toute suite est dans un ensemble
de mesure 0, comme {x}.

L’aléatoire de Martin-Löf possède donc des définitions équivalentes, chacune suivant l’un de
ces trois paradigmes. Mais il n’est pas pour autant une définition parfaite, dans le sens où certaines
suites qui nous semblent ne pas être aléatoires, sont tout de même Martin-Löf aléatoires. Par
exemple, elles ne devraient pas pouvoir avoir un contenu calculatoire arbitrairement grand, et
pourtant un théorème de Kuc̆era et Gács montre que tout ensemble, quel que soit sa difficulté,
est calculé par un Martin-Löf aléatoire. Cette notion n’est donc en ce sens “pas assez forte” pour
représenter notre intuition.

Mais il existe de nombreuses autres notions plus ou moins fortes, une hiérarchie de niveaux
d’aléatoirité, tous définis à l’aide d’un des trois paradigmes donnés précédement. La théorie
algorithmique de l’aléatoire est l’étude de toutes ces notions, leurs forces, et leurs faiblesses.
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Le calcul en temps infini

Il nous reste à aborder le dernier point important pour comprendre de quoi il s’agit dans
cette thèse. C’est le spectre par lequel nous allons investiguer les domaines que nous avons
précédemment évoqués, le calcul à temps infini. En effet, étant donné l’apport que la calculabilité
a à offrir aux mathématiques, il est justifié de s’attendre à ce que des variations de cette notion
soient aussi utiles.

Mais quelle est l’intuition d’un calcul à temps infini ? Difficile de parler même d’intuition,
car n’étant pas quelque chose que l’on rencontre dans la vie de tous les jours, l’infini n’est
pas le concept le plus transparent que l’on puisse envisager. Et pourtant il est très présent en
mathématiques, il est même essentiel à certains résultats, qui ne le mentionnent pourtant même
pas dans l’énoncé. Afin de familiariser le néophyte, passons en revue quelques types d’infinis.

Le premier type d’infini est un “pseudo” infini, un infini en puissance, dans le sens qu’il n’est
pas atteint. C’est l’infini qui correspond aux résultats du type :

lim
n→∞

n2

2n+ 1
=∞.

Cette expression se lit “tendre vers l’infini”, et non “être égal à l’infini”, car cela n’aurait pas de
sens pour n d’être égal à l’infini. Tendre vers l’infini signifie s’en rapprocher sans jamais s’arrêter,
et sans borne finie à son rapprochement. Ce n’est donc pas cela qui nous permettra de définir un
calcul infini, car un calcul de ce type d’infini n’attend jamais réellement une étape infinie, il ne
pourra jamais profiter de son infinité d’étapes précédentes.

Le premier à avoir défini un infini actuel est Cantor, ce qui lui valut une grande résistance de
la part de certains de ses collègues. Pourtant, il existe un exemple simple d’infini, en tant que
nombre d’éléments d’un ensemble, que l’on peut donc voir comme un infini actuel : l’ensemble des
entiers naturels. Cette notion d’infini en tant que “nombre d’éléments” d’un ensemble est appelé
la cardinalité : un ensemble à 5 éléments a une cardinalité de 5, tandis que N a une cardinalité
infinie. Deux ensembles A et B auront même cardinalité si l’on peut mettre en relation un à
un les éléments de A et de B, tel que tout élément de A est en relation avec exactement un
élément de B, et réciproquement. Ainsi, bien que l’ensemble des entiers N contienne strictement
l’ensemble des entiers pairs 2N, ces deux ensembles ont la même cardinalité : on peut mettre
en relation l’élément n de N à l’élément 2n de 2N . Cantor montra qu’il existe de nombreuses
cardinalités infinies, par exemple la cardinalité de R est strictement plus grande que celle de N.

Profitons de ce bref passage sur les cardinaux pour parler d’une illustration assez imagée
des étonnantes propriétés de l’infini, en tant que cardinalité. Hilbert, fameux mathématicien
allemand, décida un jour d’ouvrir un hôtel qu’il baptisa sobrement : l’hôtel de Hilbert. Mais
Hilbert ne fait pas les choses à moitié, son hôtel possède une infinité de chambres ! Elles sont
numérotées c1, c2, c3... et ainsi de suite. C’est le succès absolu ! Et c’est aussi très pratique,
comme le montre l’anecdote suivante : un soir de grande pluie, un voyageur isolé arrive trempé
à l’hôtel, qui est plein cette nuit là. Le réceptionniste n’y peut rien, mais sur l’insistance du
voyageur, appelle Hilbert qui aura peut-être une solution, mathématicien qu’il est. Et c’est bien
sûr le cas : Hilbert demande simplement à l’occupant de la chambre cn de se déplacer dans la
chambre cn+1, qui vient donc d’être libérée par la même opération. Et comme il n’y a pas de
chambre c0, la chambre c1 est donc libre !

Un peu plus tard, cette même nuit là, une troupe de scouts arrive à l’hôtel. Hilbert, qui
accueille tout le monde et même les scouts, demande au Grand Scout combien de personnes
compte la troupe, prêt à refaire la même opération jusqu’à ce qu’ils aient tous une chambre de
libre. Le Grand Scout compte à voix haute : « Voyons voir, il y a s1, s2, s3... nous sommes une
infinité ! ». Comment faire, se dit le réceptionniste, l’hôtel est éjà plein ! Mais déjà, Hilbert a
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une solution : il demande à l’occupant de la chambre cn d’aller à la chambre c2n, libérant ainsi
toutes les chambres impaires, et envoie le scout si à la chambre c2i+1. Nous laissons au lecteur le
soin de résoudre le problème survenu cette même nuit, où une infinité de cars b1, b2, b3... chacun
rempli d’une infinité de touristes ti1, ti2, ti3... où i est le numéro du car, débarquèrent à l’hôtel.
Ce problème laissa un affreux mal de crâne au réceptionniste.

Cette digression n’ayant que trop duré, parlons maintenant de l’infini qui nous permettra de
définir un calcul infini : l’infini ordinal, ou bien-fondé. En effet, le concept de cardinalité d’un
ensemble ne semble pas adapté pour définir un calcul, qui est une succession d’étapes caractérisée
par l’application de règles simples, et se terminant sous des conditions simples. La décomposition
en étapes suggère que l’infini que l’on définit est sous la forme d’un ensemble ordonné : chaque
élément de l’ordre correspond à une étape du calcul, et l’ordre est infini. Cela implique une variété
bien plus grande d’infinis que dans le cas de la cardinalité, qui nous permettait de réordonner
les éléments, comme lorsque Hilbert déplace les occupants des chambres !

Des infinis ordonnés, seul une part nous intéresse, celle qui nous permet de définir chaque
étape de calcul à partir des précédentes. Ces types particuliers d’ordre sont appelés les ordres bien
fondés, et chaque ordre a un représentant appelé ordinal ne contenant que l’essence de l’ordre.
Pour comprendre le calcul en temps infini, il faut bien comprendre cette notion d’ordinal. Nous
appellerons dans cette introduction les éléments des ordinaux des étapes. Les ordinaux eux-
mêmes sont bien ordonnés, les premiers étant les ordinaux finis, correspondant à un nombre fini
d’étapes, les unes après les autres. Après tous ces ordinaux finis, arrive le premier ordinal infini,
usuellement noté ω. Cet ordinal correspond au même ordre que celui sur les entiers, c’est à dire
une infinité d’étapes, les unes après les autres. C’est l’ordinal correspondant au fait de “tendre”
vers l’infini, sans jamais l’atteindre. Après ω vient ω + 1, l’ordinal constitué de toutes les étapes
de ω auquel est rajouté une étape après toutes les autres : c’est le premier ordinal qui correspond
pour un calcul à l’atteinte effective d’une étape infinie, au dessus de toutes les autres. Mais un
calcul infini ne s’arrête pas là, il peut avoir besoin encore de nombreuses étapes pour mettre à
profit l’infinité d’étapes précédentes. Après ω + 1 vient donc l’ordinal ω + 2, puis ω + 3, ω + 4
et pour tout n, ω + n. Et plus grand que tous les ordinaux précédents, nous avons l’ordinal
ω + ω = ω2, constitué de ω étapes après lesquelles viennent ω autres étapes. On peut continuer
comme ça et définir ω2 + n, puis ω3, ω4, ω5... et enfin ω2. Si le vertige ne nous a pas encore
gagné, il est clair que ω2 n’est pas une borne aux infinis possibles, car il suffit de rajouter une
étape supplémentaire à la fin, l’ordinal ω2 + 1. Et ainsi de suite, on définit ωn, puis ωω, puis
ωω

ω.
.

, et nous arrêterons ici l’explication qui pourrait continuer infiniment longtemps.
Nous savons maintenant à quoi ressemblent les étapes d’un calcul infini. Il nous reste à définir

quelles sont les règles que l’on peut utiliser, et en particulier aux étapes limites, c’est à dire
les étapes qui n’ont pas d’étape immédiatement précédente contrairement aux calculs avec un
nombre fini d’étapes ! Dans cette thèse, nous allons utiliser trois types de calcul en temps infini :
la calculabilité d’ordre supérieur, l’α-récursivité et les machines de Turing à temps infini. Ces
trois types de calcul à temps infini, s’ils ont beaucoup de points communs et paraissent surtout
différents par la durée des plus long calculs, sont définis de manières très différentes. Les deux
premiers viennent de la relation entre définissabilité et calculabilité que nous avons déjà présentée
dans cette introduction. La calculabilité d’ordre supérieur est une variation de la définissabilité
par des formules ∆0

1, Σ0
1 et Π0

1, en des formules ∆1
1, Σ1

1 et Π1
1, c’est à dire que les quantifications

ne sont plus limitées aux entiers, mais aux réels. La calculabilité qui en découle peut être vue
comme infinie, de temps borné par un ordinal particuler, ωCK

1 le premier ordinal non calculable.
L’α-récursivité étend la quantification des formules à une bien plus grande classe d’ensembles, les
constructibles de Gödel. Non seulement elle permet de borner la longueur des temps de calculs à
un ordinal arbitraire α, mais elle permet aussi de calculer des ensembles d’ordinaux au lieu des
ensembles d’entiers habituels. Enfin, les machines de Turing à temps infini prennent un tout autre
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chemin, et ne se basent pas sur la relation entre définissabilité et calculabilité. Au contraire, elles
consistent en une modification de la machinerie des machines de Turing pour leurs permettrent
de s’exécuter le long des étapes infinies constituées par les ordinaux.

Avant d’attaquer l’aride résumé de la thèse et des principales contributions, il est temps de
faire une pause rafraîchissante, et de reparler de l’hôtel de Hilbert. Celui-ci était construit sur
une ligne de métro, qui partait du centre-ville, passait par les arrêts a1, a2, a3... et enfin aω,
où était l’hôtel. Cette ligne avait été construite par Cantor 2 pour montrer tous les avantages de
l’infini actuel à ses détracteurs. La ligne était sobrement nommée le métro de Cantor. Chaque
rame partait du centre-ville en direction de l’hôtel, et à chaque station, exactement une personne
descendait s’il n’est pas vide, et invariablement 10 personnes montaient. Cependant, chaque jour
un nombre différent de personnes arrivaient à l’hôtel, certaines fois finis, certaines fois infinis,
et de temps en temps le métro arrivait même vide ! Le réceptionniste se demandait comment
le même nombre de montées/descentes pouvait induire des résultats différents, et il se décida
finalement à poser la question à Cantor, qui séjournait à l’hôtel en ce moment.

La réponse de Cantor fut la suivante : « Bien qu’à chaque arrêt le même nombre de personnes
montent et descendent chaque jour, cela ne veut pas dire que ce sont chaque fois les même
personnes qui font les mêmes actions. Les passagers arrivant à l’hôtel sont ceux qui sont rentrés
dans le métro et ne sont pas sortis avant d’arriver à l’hôtel. Si chaque voyageur sort dès que parmi
les autres personnes de la rame, il est celui à avoir voyagé le plus longtemps, alors personne ne
restera indéfiniment dans le métro, car à tout moment le nombre de personnes dans le métro
est fini, et quand une personne rentre elle aura donc un nombre fini d’arrêts à attendre avant
de sortir. Si au contraire, à chaque arrêt sur les 10 personnes qui rentrent, 9 décident de rester
indéfiniment et une seule décide de sortir au prochain arrêt, alors la rame arrivera pleine. Et
dans la saison touristique, où une infinite de personnes montent et une seule descend à chaque
station, la rame peut-elle aussi arriver vide d’après toi ? ».

Mais Cantor n’avait pas prévu de rame de retour, ce qui était bien embêtant, même si les
astuces de Hilbert permettaient de toujours trouver de la place dans l’hôtel. Il était bien difficile
d’en construire une qui passerait exactement par les mêmes arrêts qu’à l’aller, car l’annonce
sonore « Prochain arrêt, aγ » ne marchait pas au départ de l’hôtel. Ainsi, il décida de faire
passer le métro par un autre chemin, et de construire les arrêts aω+1, aω+2, ... jusqu’àu centre-
ville, l’arrêt aω1

où ω1 est le premier ordinal non dénombrable. Ainsi, la ligne dessert de nombreux
arrêts supplémentaires. Mais à la grande surprise de ce pauvre réceptionniste, décidément bien
naïf, personne n’arrivait jamais au centre-ville, la rame était toujours vide quelque soient qui
monte et qui descend à chaque arrêt 3. La démonstration de ce fait est laissée en exercice au
lecteur.

Résumé et contributions de la thèse

Cette thèse présente à la fois des résultats de mathématiques à rebours et d’aléatoire algorith-
mique, dont le dénominateur commun est l’importance de l’utilisation du calcul en temps infini.
Elle est découpée en cinq chapitres, dont les deux premiers contiennent tous les préliminaires
nécessaires, et les trois suivants sont le travail de thèse à proprement parler.

Le chapitre I se veut une large présentation de toutes les notions qui serviront dans cette
thèse. Trop brève pour être une vraie introduction au sujet, elle rappelle les résultats, et souvent

2. L’histoire crédite plutôt Hilbert, mais j’ai décidé de le remplacer par Cantor, car Hilbert a déjà un hôtel,
et Cantor n’eut pas une vie facile, entre sa dépression et les attaques de ses pairs sur son travail novateur et
remarquable.

3. Qui suivaient toujours la rêgle suivante : à chaque arrêt 1à personnes montent toujours, et exactement une
personne descend sauf si la rame est vide.
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leur preuve, qui joueront un rôle suffisamment important par la suite. Ainsi, ce chapitre sert de
rappel plus que d’introduction.

Le chapitre II se concentre sur l’introduction des différents types de calcul en temps infini
que nous considérons ici : la calculabilité d’ordre supérieur dont les ensembles calculables sont
les ∆1

1, l’α-récursivité, et les machines de Turing à temps infini. Cette partie se veut aussi comme
un préliminaire, mais elle est bien plus spécialisée que le chapitre précédent. Bien que soient
présents quelques résultats originaux, la principale contribution de cette partie est de présenter
de manière rapprochée, et dans une certaine mesure comparée, les différents types de calcul en
temps infini existant.

Le chapitre III est l’étude du théorème de Hindman dans le cadre des mathématiques à
rebours. C’est le seul chapitre où le calcul en temps infini ne joue pas de vrai rôle, mais c’est un
chapitre important. Le théorème de Hindman est tiré de la théorie de Ramsey, il stipule qu’étant
donné un coloriage des entiers en un nombre fini de couleurs, il existe un ensemble infini H dont
toutes les sommes finies d’éléments distincts de H ont une même couleur. L’appartenance de ce
théorème au Club des Cinq n’est pas connue, le seul résultat est qu’il doit être entre ACA0 et
ACA+

0 . D’un point de vue plus calculatoire, il existe une instance calculable dont toute solution
calcule le problème de l’arrêt, tandis que toute instance a une solution calculable en la ω+2-ième
itération du problème de l’arrêt. L’étude dans ce chapitre se place à la fois du point de vue de la
calculabilité, en étudiant un des passages clés de la preuve consistant en la construction d’objets
combinatoires intermédiaires nommés full-match, et du point de vue de la théorie de la preuve
en effectuant une analyse ordinale du théorème.

La contribution majeure de ce chapitre se trouve sans doute dans le théorème III.41 et les
questions III.54 et III.46. Mettre une question comme contribution peut sembler étonnant, mais
la raison est que cette question était censée être résolue, avant que le présent travail ne découvre
une erreur dans la preuve, ainsi qu’une preuve que le résultat plus fort de la preuve erronée ne
pouvait être vrai, contenue dans le théorème III.41. Cette découverte ouvre de nouvelles direc-
tions de recherche pour résoudre la question principale sur le théorème de Hindman. La seconde
contribution est l’analyse ordinale de ce théorème, dont l’aboutissement est le théorème III.91.

Le chapitre IV est l’étude d’un niveau particulier du zoo des degrés de Weihrauch, situé
autour du principe d’induction arithmétique transfinie. Ce principe, bien que très important en
mathématiques à rebours, est encore peu étudié du point de vue des degrés de Weihrauch. En
particulier les différentes manières de représenter ce principe dans cette hiérarchie ne sont pas
encore toutes explorées. ATR est relié au principe de choix analytique, que nous étudions aussi
dans ce chapitre, en particulier ses restrictions.

La contribution majeure de ce chapitre est clairement le théorème IV.100 séparant les prin-
cipes d’axiomes de choix et de choix dépendant, les choix s’effectuant dans des sous-ensembles
analytiques de N. Cela résout une question posée par [13] et [47], à l’aide d’une version de ATR
introduite par Goh [51]. Ce chapitre introduit aussi de nouveaux degrés reliés à ATR aux dé-
finitions IV.57, IV.64, IV.68, IV.70, et IV.71. Pour finir, une étude extensive des restrictions
du choix analytique est effectuée, aboutissant aux Theorèmes, propositions et corollaires de la
section IV.3, dont un résumé est présent dans la conclusion IV.3.5.

Finalement, le chapitre V est un développement du domaine de l’aléatoire algorithmique
relativement aux machines de Turing à temps infini. Ce domaine a été initié par Carl et Schlicht
[19] peu après le début de cette thèse, et ce chapitre est dans la continuation de leur travail.
En particulier les versions ITTMs des notions standards d’aléatoire algorithmique sont définies,
ainsi que leur équivalent d’α-récursivité. Ce chapitre se veut être le développement d’un cadre
précis pour l’étude de l’aléatoire des ITTMs, en particulier il suppose le minimum d’admissibilité
dans ses résultats afin de pouvoir les appliquer à l’ordinal Σ des ITTMs, connu pour ne pas être
admissible.
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Les contributions principales de ce chapitre sont de trois natures. La première est le dévelop-
pement d’un cadre précis pour l’étude de l’aléatoire en temps infini. La seconde est à nouveau
une question, la Question V.43 sur la séparation de deux classes, une question dont la réponse
paraissait si évidente qu’elle n’avait pas été investiguée dans le papier fondateur [19] introduisant
les définitions. Enfin, la troisième consiste en une progression en direction de la résolution de
la précédente question, comme le théorème V.37, et ainsi qu’une résolution de son équivalent
catégorique à l’aide du Théorème V.59. Nous répondons aussi à plusieurs questions de [19] dans
la section V.3, dont le théoreme V.41 en est un remarquable représentant.



Introduction

We introduce the subject of this thesis, going from the most general to the most specific, not
in one big step but using many successive zooming, getting more and more detailed, eventually
reaching a precise summary of the thesis and its contributions.

A mathematical work

This document presents a research work in mathematics. The goal of mathematics is to
study abstract concepts, in order to better comprehend their properties and therefore the concept
themselves. We start with an example: everyone, or at least most people, are familiar with the
concept of “mean”, and random events. So, one would easily say: “if I toss a coin, there is one
chance out of two that I get head”. Or “if I go to the casino, there are more odds that I leave less
rich, than richer”. These sentences suggest the existence of a notion of randomness, hard to define
in the real world, which seems to us to follow a causality rule, therefore somewhat “unrelated”
to the concept of randomness. But the mathematics allow us to define this notion, to make it
actually exist in a precise way but in an abstract world. And once the concept is defined, we
have the tools to study it, and unveil its most unexpected properties. For instance, probability
theory teaches us that there are random events that do not have a mean! Think of a box, each
time we press a button on it, a ball with a number written on it is outputted from the box,
picked at random along all possible balls following a certain distribution. The random drawing
is done independently of the previous ones. For some distribution, the mathematical study tells
us that the concept of mean does not exist. One could be tempted to compute the mean of
the outputted numbers, after a huge amount of drawings, but this computed mean would not
stabilize: very rarely, a colossally big number would be drawn, increasing the computed mean,
eventually reaching any bound fixed in advance on the mean.

Mathematics taught us something about the concept of probability, that would have been
hard to guess when they were only an idea, an intuition on the way the world works. They taught
us many more things on probability, many of them being verified and allowing us to understand
better the world we live in.

Mathematical Logic

Start our first enlargement toward what interests us most in this thesis: mathematical logic.
Mathematical logic is a particular domain of mathematics which corresponds to the study of a
particular concept, the concept of mathematics itself. Recall that the first step in the study of
an abstract concept is to define it formally, to make it exists concretely in an abstract world.

This field of mathematics makes therefore exist formally defined versions of the concepts of
theorem, proof and theory in the world of math. These definitions are modeled exactly from

13
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idea of what are mathematics, we are confident that what they model is actually what we had
in mind, even though there is no way to prove it.

We are in presence of two types of theorems: those we just gave a formal meaning, and those
we informally speak of when we do math. The latter ones are said being part of the meta-theory,
the mathematics that we used in real life to study the theory, the math that we just defined.

Of course, if the mathematics of the meta-theory do correspond to the usual mathematics, we
can define inside the latter the notions of proof, theorem and formula again. In other words, if
the mathematics can study the mathematics, then the mathematics can study the mathematics
studying the mathematics. It is time to stop and summary the essential: in logic, there are two
types of mathematics, the one we study and the one we use to study. The former is a model of
the latter, and both are distinguished.

This need of studying mathematics come initially from a need of solid and powerful foundation
to mathematics: solid in the sense that they do not allow to prove one thing and its opposite,
and powerful in the sense of being able to prove sufficiently many theorems. This goal guided
the contributions of most early logicians, and many unexpected results were found. Despite a
precise plan, made by Hilbert, which first had some success, Gödel showed that such perfect
foundations do not exist. But good things were done: mathematical logic was born!

This thesis does not focus on foundations of mathematics. Indeed, even if it has been the
initial motivation, mathematical logic is not bound to it. It allows the study of numerous new
concepts, or older concepts from a new angle, and has many applications and connections with
other fields of mathematics. This thesis stands in the context of computability theory, and it is
time to focus our frame on it.

Computability theory

Computability theory is the study of the concept of computation. A computation can be seen
as a successive application of simple rules, from an initial state and halting whenever a rule says
so. For instance, addition as we learn to do it by hand corresponds to a computation: it is a
successive application of addition of two digits, applied to the digits of two numbers in some way
involving carries, ending when all digits have been considered with the sum of the two original
numbers.

This concept of mechanical rule, also called “algorithm” from the name of the Persian math-
ematician Al-Khwârizmî, is at this point of the introduction only vaguely defined. Going from
the concept to a reality in the mathematical world, satisfying and convincing, was not an easy
thing! Indeed, it is not obvious to find a set of rules sufficiently powerful to include all that would
be intuitively computable, without adding rules allowing too many possibilities. And for each
candidate to such a definition, it is yet to convince peers that it is the one! Several definitions
of the notion of computation have been proposed, some of them been not convincing by lack of
computational power, others because they were overly complicated and unnatural, seamed to far
from the initial intuition. Eventually, Turing made everyone agree with his eponymous “Turing
machines”, a kind of model for a primitive computer.

So, a formal definition for computation made it to a consensual state. Thanks to it, we are
now able to define precisely what is a computable set: it is a set of integers A such that given
an integer n, the problem of knowing if n ∈ A can be solved using a simple computation, in the
sense of Turing. We were able to prove that there exists non computable sets. More than that,
Turing’s machine allows to define a computation relative to a set of integers: in some ways, if
B is a set of integers, the computability relative to B consists of the study of the computations
that are possible if B is accessible to the computation. It allows us to abstract ourselves from
the set of integers, and to speak only about the computational content. Two sets have the same
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computational content if the notions of computability relative to one or the other are the same.
The study of computational contents, named Turing degrees, has been in the center of concerns,
and a very rich and complex structure was unveiled.

Let us now give a few examples of computational contents. Even if we have not formally
defined the notion of computation, we appeal to the intuition, emphasizing that this notion
corresponds exactly to what can be computed by a computer which would not be limited by its
memory. Consider the set of even numbers, P . The set P does not help to compute anything
new: we can do without it, as its information can easily been retrieved by a computation,
checking if the last digit is a 0, 2,4,6, or 8. P has no particular computational content. However,
consider now the set of computations that reach a halting state. It seems difficult to predict
if a computation will stop, and there is no way to test it by executing the computation, as if
it never stops, we will never know it. But having access to this set might be useful in some
computation, to avoid ending in infinite loops. This set is known as the halting problem. Let us
give one last example. The resolution of equations is one major problem of mathematics. Could
we reduce their resolution to a mechanical step by step computation? In particular, in the case
of a system of simple equations containing only integers, sums and multiplications, a theorem of
Matiyasevitch tells us that it is not possible, and even more it tells us that the computational
content needed to resolve these equations is exactly the one of the halting problem, not more,
not less.

At this point, it is not even clear why computability theory is part of mathematical logic.
This is due to the fact that there exists many links between computability, and definability.
Thus, the computability of a set can be reduced to the fact that the set can be defined by a
formula having certain properties. Define a ∆0

1 formula as an arithmetical formula all of whose
quantifiers (the parts of the form “there exists” and “for every”) are bounded. Define Σ0

1 formula
as those that are allowed unbounded “there exists”, and Π0

1 those that are allowed unbounded
“for every”. Then, a set is computable if and only if it is definable both by using a Σ0

1 formula,
and by using a Π0

1 formula. A set definable only by a Σ0
1 formula is a computably enumerable

set, or c.e. set, that is a set such that there exists a computation that enumerates exactly its
elements. The halting problem is c.e. as it is definable using a Σ0

1 formula: a computation halts
if and only if “there exists a step t such that the computation halts after t steps of execution”.

The links between definability and computability could be expected, as both are a notion
of complexity for sets: one measure the difficulty to define it, while the other the difficulty to
compute it. The measure of complexity of sets is a recurring theme in mathematical logic, central
also in descriptive set theory which has also a role in this thesis.

With this analogy in mind between computability and definability, the next move is to apply
the different methods, constructions and powerful tools developed during the study of Turing
degrees, to other domains of mathematical logic where definability is a key element. Now, let’s
take a closer look on these domains.

Computability and definability

We are now at the most precise level of granularity of this introduction. At least three
domains use computability to shed new lights on definability, and profit of its many methods of
construction. We will present these three domains as a tracking shot: first, descriptive set theory,
then reverse math and algorithmic randomness. We will end this tracking shot by a presentation
of the common part to our study of these three domains, the initial point of this thesis: the notion
of infinite time computations, itself also tied closely to definability, and therefore applicable to
the above-mentioned domains.
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Descriptive set theory

Descriptive set theory is the study of the complexity of subsets of R, from a topological point
of view. We will generally decide to associate an element of R to its base 2 decomposition: as
such a real is assimilated to an infinite sequence of 0s and 1s, and we call the set of these infinite
sequences the Cantor space, noted 2ω.

The most simple subsets of the Cantor space, from the descriptive set theoretical meaning,
are the sets in the form {x ∈ 2ω : x extends the string σ}, where σ is a fixed finite string; or
the set of reals whose base 2 development starts with a finite and fixed in advance sequence of
bits. A description for such a set is simple: it suffices to give the sequence σ. Note that in R,
it corresponds to open intervals. And for good reasons: the open sets, as well as the closed sets,
make the first level of complexity of descriptive set theory, just after the clopen sets.

The complexity level just after the open and closed sets is made of countable intersections of
open sets, and countable unions of closed sets, traditionally named Fσ and Gδ. The next levels
of complexity go on like this, by taking countable intersections, or countable unions, of sets of
lesser complexity.

The motivations to classify subsets of the reals using their complexity comes, among others,
from set theory. The goal is to show that the “not too complicated” sets behave well enough.
Thus, even if sets of high complexity necessarily exist, most of the usual mathematics only
manipulate sets of reasonable complexity. For instance, for sets in the hierarchy defined above,
called the Borel hierarchy, are all determined, they do not contradict the continuum hypothesis,
two property of well behaviour.

It does not seem at first sight to be any link between the topological complexity of the Borel
hierarchy and computability, and yet they exist! To unveil them, one has to add some effectivity
in the unions and intersections. The “effectively topological” complexity that we obtain has
many good properties, such as having only countably many members of a given complexity.
Once a result is proven one the effectively topological complexity, it is almost always possible
to raise it to topological complexity by a technique called relativization: this technique uses the
fact that the topological complexity is nothing more than the union of effectively topological
complexities relativized to a real. The study of the effective topological complexity is called
effective descriptive set theory.

Reverse mathematics

The second field of this thesis that benefits from computability is called reverse mathematics.
Let us talk again of the origin of logic: the need for strong and solid foundations of mathematics.
These foundation were built on what we call set theory, a theory where all the objects are sets,
including numbers. It therefore implies an effort of coding the usual objects of math into sets.
With the axioms of Zermelo and Fraenkel, and sometimes one additional axiom, all of the usual
mathematics are provable in this theory. However, it implies the existence of gigantic objects,
never showing up naturally by themselves, and the axioms of this theory do not correspond to
the a reasoning step made in the proof of a theorem.

The reverse mathematics study not foundations of all mathematics, but restrict themselves to
the reasoning made in second order arithmetic, that is mathematics using only integers and sets
of integers. It includes a vast majority of mathematics developed until now. For instance, number
theory and graph theory fit in this framework, as the objects they study are only integers, up
to coding. Ramsey theory, studying structures emerging from infinite sets of integers, is widely
studied from the point of view of reverse mathematics. Many other fields, even if they concentrate
on integers that are neither integers, nor sets of integers, can still be studied in this framework:
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it is the case of analysis in its vast majority, as for instance a computable function can be coded
in a set of integers.

The plan of reverse mathematics to study second order arithmetic reasoning, was the follow-
ing: given an important result of a given domain fitting in the framework, to isolate the axioms
used in the natural proof, that is the steps of the proof that did not demand any explanation,
which are true as they are “obvious”; then once these axioms have been isolated, to try to prove
the axioms themselves assuming the result. Thus, if the theorem and its axioms are equivalent,
we can say that they are the minimal axioms needed to prove the theorem. The name “reverse
mathematics” comes from the technique of proof starting from the theorem and trying to prove
the axioms, reversed from the usual way. However, the key problem of a reverse mathematical
question can also be to find a proof using less axioms.

The biggest discovery in this study was that the vast majority of theorems developed during
centuries, in many domains, are equivalent to one out of five axiomatic systems, each correspond-
ing to a type of reasoning, or even to a philosophical program of foundation of mathematics 4.
These five axiomatic systems, known as the Big Five, correspond to the following principles:

1. The first one, RCA0, is the axiomatic system needed to develop constructive mathematics.
It corresponds to the most simple arguments, the ones which allow to actually build the
object that we define. For instance, if we prove the existence of a set in this system, then
the set is computable.

2. The second one, WKL0, is the axiomatic system corresponding to the use of compactness
in an argument, a way to reduce a proof on the finite to a proof on the infinite.

3. The third one, ACA0, is the axiomatic system allowing to build objects that are not
totally constructive, but whose construction only depends on arithmetical statements, the
statement that only mention integers.

4. The forth one, ATR0, is the axiomatic system allowing constructions by transfinite in-
duction, that is step by step, but with the total number of steps needed exceeding the
finite.

5. The fifth and last one, Π1
1-CA0, is the axiomatic system allowing to construct object of a

very high complexity. However, some theorems still need the existence of such an axiomatic
system, making those constructions legit.

As we can see it, computability theory is not far in the previous principles. Indeed, the
axiomatic systems correspond to computability concepts, and many constructions of this domain
allow separation of theorems and axioms, that is allow to show that one theorem cannot imply
an axiomatic system.

The involvement of the computability theory community in reverse mathematics allowed the
discovery of the fact that we can define a “computable content” to a theorem, corresponding to its
implications in terms of computability. For instance, consider the Bolzano-Weierstrass theorem,
stipulating that an infinite sequence of bounded reals must admit a converging subsequence.
Given a computable sequence, the converging subsequence may not be computable, and the
computable content common to all of the converging subsequences is in some ways “implied” by
the theorem. However, the framework given by reverse mathematics is not ideal for the precise
study of computable content of theorems.

The good framework, the tool that was needed to study the computational content of theo-
rems, actually already existed in analysis: it is the Weihrauch reduction. This reduction allows
in particular to compare the theorems of the form “for every something, there exists an other

4. They are : the constructivism of Bishop, the finitistic reductionism of Hilbert, the predicativism of Weyl and
Fefermann, the predicative reductionism of Friedman and Simpsons, and finally the impredicativism of Feferman
et al. [60]
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thing, such that some property is true”. The idea is to consider these types of theorems as prob-
lems, with instances of which one has to find a solution. Under this angle, the theorem says that
all instances have a solution, and the computational content of such a theorem corresponds to
the difficulty of finding a solution given the instance. We can then use Weihrauch reduction to
compare the difficulty of the resolution of two problems: a problem P1 is easier than a problem
P2, if given an instance of P1, I can find a solution if I am given a box solving the instance I
want of P2, but that I can use only once.

Algorithmic randomness

The last important domain of this thesis, still in direct relation with computability, is al-
gorithmic randomness. We all have an idea of what would look like a sequence of “head” and
“tail” obtained by tossing 1000 times a coin. However, all sequences of 1000 tossing of a coin
have the same odd to happen. Then, why does the sequence “head, head, head, head...” seems
less random than the sequence “head, tail, tail, head, tail, head, head,...”? There is a dissonance
between our intuition of a random sequence and of our intuition of probability. When proba-
bility theory studies the latter, algorithmic randomness concentrate on the concept of random
sequences, conciliating it with probability.

How to formally define what is a random sequence? In agreement with the example of the
previous chapter, we begin by discussing the case of finite sequences (presumed long). In addition
to the sequence constantly “head”, many other sequences should not be considered coming from a
random process, such as for instance the sequence made of a succession of “head, tail” repeated.
The sequence of digits of π taken from the 100-th decimal can seem random at first glance, but
not at all when we realize this fact. All these very long sequences have been defined using only
simple words, that is using a short sequence of letters. But, it would be impossible for me to
give an example of a seemingly random with so few words, intuition telling us that the odds of
obtaining such a string out of all possibles strings is very low!

This is how we define randomness for finite strings: more precisely, it is measured by the
length of the smallest description allowing to retrieve the string, the Kolmogorov complexity.
This complexity cannot exceed the length of the sequence, as giving the entire sequence is a
description of it. And all sequences of length n will have as complexity at least the complexity
of n. The more the complexity of a string is close to n, the more it can be considered random;
and the more it is close to the complexity of n, the less it seems random.

If we call “infinite random sequence” a sequence obtained after the infinite repetition of tossing
a coin, then at each step the finite sequence of tossing will have a measure of its randomness
close to the maximum, that is its Kolmogorov complexity will be close to n. This definition,
called Martin-Löf randomness, is one of the most important, as it can be characterized by three
possibles approach, all of them reasonable:

1. Incompressibility : the approach by prefix complexity, is the one that we just used to define
a random sequence. If a sequence is obtained by an infinite repetition of tossing a coin, at
each step it will have to seem random, and conversely if it seems random at each steps, it
will seem random as a whole.

2. Imprevisibility : a sequence seems random if it is impossible to guess which will be the next
element, given its predecessor, with more than one odd out of two. More precisely, if at
each step we can bet some amount that we chose on the next element of the sequence, we
mustn’t be able to be rich.

3. Banality : a random sequence mustn’t have any exceptional property. An exceptional
property is a property that we do not expect a random sequence to have, such as the fact
of always having two “head” in a row. And if probability theory does not tells us why some
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sequence look more random than others, it does tell us what are the properties that it is
unlikely to have: the properties of measure 0. Out of these properties of measure 0, we
only chose the not too complex ones, as every sequence is in a measure 0 set, such as {x}.

Martin-Löf randomness is a robust notion with different equivalent definitions, each following
one of these paradigm. But that does not mean it is a perfect definition for our intuition of
randomness, in the sense that there exists sequences that should not be considered random,
but still are Martin-Löf random. For instance, they should not have an arbitrary powerful
computational content, and yet a theorem of Kuc̆era and Gács shows that every set, no matter
its computational content, is computable by some Martin-Löf random. This notion is therefore
“not strong enough” to represent our intuition perfectly.

There exists many other randomness notions stronger and weaker, a full hierarchy of ran-
domness, all defined using one of the three paradigm given above. Algorithmic randomness as a
field is the study of all these notions, their strength, and their weakness.

Infinite time computations

It remains to tackle the last important point in order to understand what it is about in this
thesis. It is the spectrum through which we will investigate the domain previously mentioned,
the infinite time computation. Indeed, given the benefits computability theory bring to other
fields, it is justified to expect the same kind of benefits from variations of computability.

But what would be the intuition of infinite computations? It can be hard to speak about
intuition, as not being something we meet a lot in every day life, infinite is not the most obvious
concept. And yet, it is very present in mathematics, it can even be essential to some results,
not even mentioning it in their statement. In order to familiarize a neophyte, begin by reviewing
several infinities.

The first type of infinity is a “pseudo” infinity, a potential infinity, in the sense that it is never
reached. It is the infinity corresponding to the statements of the type:

lim
n→∞

n2

2n+ 1
=∞.

This expression can be read “as n goes to infinity”, and not “is infinity”, as it would not even
make sense of n to equal infinity. Going to infinity means to get closer and closer to it, never
stopping, with no bound on the convergence. This type of infinite would not help us to define
an infinite computation, as such an infinite computation for this type of infinite would never
actually reach an infinite step, it would never be able to benefit from the infinitely many steps
just done.

The first to define an actual infinite is Cantor, which earned him a huge resistance from some
of his colleagues. However, there exists a simple type of infinite, as the size of a set, that we can
see as an actual infinite: the set of natural numbers is infinite. This notion as the “number of
elements” of a set is called the cardinality : a set with five elements has a cardinality of 5, while
N has an infinite cardinality. Two sets A and B will have the same cardinality if we can put the
elements of A and B in a one to one relation, such that every element of A is in relation with
exactly one element of B, and reciprocally. Thus, even if the set N strictly contains the set of
even numbers 2N, these two sets have the same cardinality: we can put in relation the element
n of N with the element 2n of 2N. Cantor showed that there exists many infinite cardinalities,
for instance the cardinality of R is strictly bigger than the cardinality of N.

Let us use this part on cardinality to speak about an imaged illustration of the amazing
properties of the infinite cardinality. Hilbert, a famous German mathematician, decides one day
to open a Hotel that he simply named: Hilbert’s Hotel. But Hilbert is not a man to do things in
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small size, and his hotel has infinitely many rooms! They are numbered r1, r2, r3... and so on.
And its an absolute success! And it is also very useful, as the following anecdote suggests: One
day of heavy rain, a lonely traveler makes it to the hotel, wet to the bones. But the hotel is full
this night, and the receptionist does not help! On the insistence of the traveler, he calls Hilbert,
hoping that as a mathematician, he might have a solution. And he does! Hilbert simply asks
the occupant of the each room rn to move to the room rn+1, which has been freed by the same
process. And as there is no room r0, the room r1 is now empty!

An hour later, a group of scouts reaches the hotel. Hilbert, who welcome everyone and even
the scouts, is ready to redo the same operation several time to accommodate the group. He asks
the Great Scout how many people are there in the group. The Great Scout starts to count: “Let’s
see, there is scout c1, c2, c3... we are an infinity!”. How will we do this, thinks the receptionist,
the hotel is already full! But already Hilbert has a solution: he asks to the occupant of each
room rn to move to the room r2n, freeing in this way all odds rooms, and send the scout ci to
the room r2i+1. We leave to the reader the care to solve the problem that happened this exact
same night, where an infinity of buses b1, b2, b3,... with the bus bi being full of tourists ti1, ti2,
ti3... queued at the hotel. This problem left a horrible headache to the receptionist.

This digression being already too long, let us now speak about the type of infinite that
will allow us to define infinite computations: the ordinal, or well-founded, infinite. Indeed, the
concept of cardinality does not seem to fit the need to define an infinite computation, which
corresponds to a sequence of steps characterized by the application of a simple rule, halting on
simple conditions. The decomposition in steps suggests that the infinite we need has the form
of an ordered set: each element of the order will correspond to one step of computation, and the
order will be infinite. This implies a much wider variety of infinity that in the case of cardinality,
which allowed us to reorder the elements, just as when Hilbert moves the occupant of the rooms!

Out of the ordered infinities, only some are of interest for us, those that allows to define
each step of computation from the previous steps. These particular types of linear orders are
called well-founded orders, and each of them has a representative called ordinal containing only
the essence of the order. To understand infinite time computations, one has to understand well
this notion. We will call in this introduction “steps” the elements of an ordinal. The ordinals
themselves are (well) ordered, the first one of them are the finite ordinals, corresponding to
a finite number of steps, one after the other. After all these finite ordinals, comes the first
infinite ordinal, usually written ω. This ordinal corresponds to the same order as the one of the
integers, that is an infinity of steps, one after the other, like an infinite ladder. It’s the ordinal
corresponding to the potential infinite of “going to infinity”, never reaching it. After ω there is
ω + 1, the ordinal consisting of all the steps of ω and a supplementary step after all the others:
its the first ordinal where a step actually reached infinity. But an infinite computation does not
stop here, it may need several other steps to benefit the infinitely many previous steps already
done. After ω+ 1 comes the ordinal ω+ 2, followed by ω+ 3, ω+ 4, and for all n, ω+ n. Above
all of them lies ω + ω = ω2, consisting of ω steps, followed by ω other steps. We can continue
and define the ordinals ω2 +n, ω3, ω4, ωω = ω2. Again, there is no reason for ω2 to be a bound,
as it suffices to add a step after it to have a bigger ordinal, ω2 + 1. And so forth and so on, we
define, ωn, ωω, and ωω

ω.
.

. We stop here our examples of how far the infinite ordinals can go,
before it becomes infinitely long.

We now know what kind of steps will be in an infinite time computation. It remains to define
what are the simple enough rules that we can use, and in particular at the limit steps, that is at the
steps which do not have one immediately preceding step, unlike the steps of a finite computation!
In this thesis, we will use three types of infinite time computations: higher computability, α-
recursion and infinite time Turing machines. These three types, if they have many common
points and seem different only by the length of the allowed computations, are defined in very
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different ways. The first two come from the relation between definability and computability
that we already mentioned. Higher computation is a variation of definability by ∆0

1, Σ0
1, Π0

1

formulas, in ∆1
1, Σ1

1, Π1
1 formulas, that is the unbounded quantifications are no longer limited to

the integers, but range over the reals. The computability which surprisingly results from these
definitions can be seen as computation with infinite time but still bounded by an ordinal, ωCK

1

the first non computable ordinal. The α-recursion follows the same principle, but extends the
quantifications of the formulas to a much larger class of sets, the Gödel’s constructibles. Not only
it defines infinite time computation with time bounded by an arbitrary large α, but it also allows
to compute sets of ordinals instead of the sets of integers usually computed. Finally, infinite
Time Turing machines take a different path, and do not bases itself on the relation between
definability and computability. Rather, it modifies the hardware of a regular Turing machine to
allow them to be executed along ordinal stages.

Before starting the arid summary of the thesis and its principal contributions, we take the
time to make a refreshing break, and to speak again about Hilbert’s Hotel. This hotel was located
near a subway station of a line starting from the center of the city, and going through the stops
s1, s2, s3... and sω, the nearest stop to the hotel. This line was built by Cantor 5 to show his
detractors all the advantages of an actual infinite. The line was simply called Cantor’s subway.
Each train left the center in the direction of the hotel, and at each station, invariably 10 persons
get on the train, and exactly one person get off the train. However, each day a different number
of people get to hotel, sometimes a finite number, sometimes an infinite number, and sometimes
even an empty train! This puzzled the receptionist, who wondered how the same number of ins
and outs in the subway could lead to different outcomes in the station sω. He decided to ask
Cantor, who was in the hotel at this moment.

Cantor’s answer was the following: “Even if at each stop the same number of people get in
and out of the train each day, this does not mean that it is the same people who do the same
actions each days. The passengers arriving to the hotel are those who entered the train at an
earlier step, and never left before the hotel. If each passenger decide to leave once he is the first,
out of the people with him in the train, to have entered it, then no one will stay until the hotel:
indeed when someone enters the train there are finitely many people there, so once they all have
leaved he will also leave. If, contrary to this, of the 10 passengers entering at each stops, one of
them decides to leave at the next stop while the 9 others decide to stay until the hotel, then the
train will arrive full. What about in the touristic season, where infinitely many people get in
and only one gets out at each station, do you think the metro can still reach the hotel empty?”.

However, Cantor did not plan a way to come back, which was annoying even if Hilbert’s
always found some tricks to host the new people. It was quite difficult to build one that would
go through the same stops in reverse order, as no one knew what should the announcement for
the next stop say when leaving the hotel: “next stop: an” was wrong for all n. Therefore, Cantor
decided to make the way back using another path, with stops aω+1, aω+2, aω+3... until the
city center, aω1

where ω1 is the first uncountable ordinal. This way, several new people get to
have a subway station near their house. But at the great astonishment of this poor receptionist,
decidedly naive, no one never reached the city center, no matter what the passengers did 6 ! The
proof of this fact is left to the reader as an exercise.

5. The history credits Hilbert, but I decided to replace him with Cantor, as Hilbert already owns a hotel, and
Cantor did not had an easy life, from his depression to the attacks of his peers on his remarkable work.

6. They still followed the rule that we precise in this case: at each steps, 10 people get in the train, and exactly
one gets out except if the train is empty.
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Summary and contributions of the thesis

This thesis presents both results in the field of reverse mathematics and algorithmic random-
ness, with the common point being the importance of infinite time computations. It is split in
five chapters, the first two of them contain all the necessary preliminaries, and the three last
ones contain the actual work of this thesis.

Chapter I presents itself as a large presentation of all the notions that will be helpful in this
thesis. Too short for being a true introduction to a neophyte, it still has the merits of recalling
many results, and often proofs, that will play an important role in the later parts.

Chapter II focuses on the introduction of the several types of infinite time computations that
we will use: higher computability whose recursive sets are the ∆1

1 sets, α-recursion, and infinite
time Turing machines. This part can also be viewed as a preliminary, but much more specialized
than the previous one. Even if some original results are included, the main contribution of this
chapter is to present in a common document, and in a somewhat compared manner, the main
notions of infinite time computations.

Chapter III is the study of Hindman’s theorem in the framework of reverse mathematics. It
is the only chapter on which infinite time computations do not play an important role, but it
is nonetheless an important chapter. Hindman’s theorem comes from Ramsey’s theory, it states
that given a finite coloring of the integers, there exists an infinite set H, such that all finite
sums of distinct elements of H share the same color. The belonging of this theorem in the Big
Five is unknown, the only result is that its strength has to be between ACA0 et ACA+

0 . In a
more effective point of view, there exists a computable coloring such that every solution H for
Hindman’s theorem would compute the halting problem, while we know that every computable
instance has a solution computable in the ω + 2-th iteration of the jump. The study in this
chapter is both from the point of view of computability, by studying one of the key part of the
proof consisting in the construction of an intermediate combinatorial object named full-match,
and from the point of view of proof theory by making an ordinal analysis of the proof.

The main contribution of this chapter certainly is Theorem III.41 and Questions III.54
and III.46. Emphasizing a question as a main contribution may sound strange, but the rea-
son is that the question was supposed to be solved, before this work exhibit an error in the
proof, as well as the proof that the stronger result in which lied the error was in fact false, as
attested by Theorem III.41. This discovery opened new research directions toward solving the
main question on Hindman’s theorem. The second contribution is the ordinal analysis of the
proof of Hindman’s theorem, of which TheoremIII.91 is the conclusion.

Chapter IV is the study of a particular level in the zoo of Weihrauch degrees, located near the
principle of Arithmetical Transfinite Reduction. This principle, despite its importance in reverse
mathematics, is not well known from the point of view of Weihrauch degrees. In particular, the
different ways to embed this principle in a Weihrauch degree are not yet fully explored. ATR is
linked with the analytic version of the axioms of choice, that we also study in this chapter.

The main contribution of this chapter is with no doubt the Theorem IV.100 separating the
axioms of choice and dependent choice, each choice being made from an analytic subsets of N.
This solve a question asked in [13] and [47], using a version of ATR introduced by Goh [51]. This
chapter also introduces new degrees related to ATR with Definitions IV.57, IV.64, IV.68, IV.70,
and IV.71. Finally, an extensive study of the restrictions of analytic axioms of choice is made,
leading to the theorems, propositions and corollary of section IV.3, which are summed up in the
conclusion section IV.3.5.

Finally, chapter V is a development of the domain of algorithmic randomness for infinite time
Turing machines. This domain was initiated by Carl and Schlicht [19] soon before the beginning
of this thesis, and this chapter is a continuation of their work. In particular, the ITTMs versions
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of standard randomness notions are defined, as well as their equivalent in α-recursion. This
chapter aims at being the development of a precise framework for the study of randomness in
ITTMs, in particular the fewest requirement are made in the statement of its results, in order to
be able to apply them to the ordinal Σ which is known to not be admissible.

The main contributions of this chapter are of three different natures. The first one is the de-
velopment of the precise framework for randomness in infinite time. The second is Question V.43
on the separation of two classes, a question whose answer seemed so obvious that it had not been
investigated in the founding paper [19] introducing all the definitions. Finally, the third one
consists of a progression toward a resolution of the precedent question, as in Theorem V.37, as
well as a resolution of its categorical counterpart in Theorem V.59. We also answer several open
questions of [19] in section V.3, among which Theorem V.41 is an important one.
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Chapter I

Preparation

I.1 Basics of Mathematical Logic

Gotlib, RàB T2. Le matou matheux

Every mathematical field is centered around the
study of a particular concept. For instance, num-
ber theory studies the concept of numbers, with
regards to addition and multiplication, with basic
objects being the integers. From the many fields of
mathematics, we can give a few examples: analy-
sis roughly consists of the study of functions of real
numbers; while algebra studies algebraic structures
such as groups, rings and fields... An introduction
to any of these field starts with defining the most
basic objects, the object that are to be studied
by the field, from function to group or probability
measure. Then, if Mathematical Logic is centered
around the notion of logic, what are the objects
that should be defined in the first place?

Logic refers to reasoning, and therefore proofs,
theorems, theories and formulas. This means that
these notions will be our basic objects, and there

will be theorems about theorems, definitions about definitions, proofs about proofs... There
seems to be some kind of circular definition: in order to define a formula, one already has to use
formulas. In fact, we will only define a “model” of our intuition of formulas, just as in probability
theory, when we model our intuition of probability. So there will be the “formulas”, the “proofs”
and the “theorems” that we define and study as mathematical objects. To distinguish them from
the usual meaning of formulas, proof and theorems, we will call the latter members of the meta-
theory. The meta-theory is the framework in which we do mathematics, whereas the theory will
be some object that we study.

Therefore, we need to give a formal meaning to these syntactic notions that we always use to
write mathematics.

I.1.1 Formulas

The first thing to define is the language, in which the formula will be defined.

25
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Definition I.1

A language L is a couple ((fi)i∈I , (Pj)j∈J) where each fi is a symbol for a function with
a certain arity, while each Pj is a symbol for a predicate, for arbitrary set of indices I and
J .
The 0-ary functions of L are called constants. Terms are formed syntactically from
variables, constants and functions of positive arity.

For instance, the language of arithmetic consists of the constant 0, the 1-ary successor function
S, the 2-ary functions + and × and the 2-ary predicate ≤. The language of set theory consists
just of the binary predicate ∈. Another example is the language of group theory, with a binary
function for the group operation, and optionally a constant for the neutral element.

Given a language, we are able to build formulas.

Definition I.2

— A formula without quantifier in a language L is a formula built using the predicate
“=”, predicates of L and logical connectors such as ∧, ∨, ¬, =⇒ , and the constant
⊥ (meaning “false”).

— A first order formula in a language L is a formula where we can additionally use
first order quantifiers.

— A second order formula in a language L additionally allows second order quan-
tifiers and the predicate a ∈ X if a is a term of L and X is a second order
variable.

— A sentence is a formula with no unbounded variable.

I.1.2 Theories and Models

For the moment, we only have defined formulas in a syntactic way. That is, we defined
everything without specifying any “meaning”. Of course, the meaning, or semantic, of everything
such as the logical connectors and quantifiers is clear to any mathematician.

In the following, we give two meanings to these connectors. One is how they behave in proofs,
the second is how they are interpreted in models. As we use their classical logic interpretation,
which is the one of usual mathematics, we omit the details in the definitions.

Syntax

Definition I.3

Let L be a language, T be a set of formulas of L and φ a single formula. We say that T
proves φ, in symbol T ` φ if there exists a proof of φ using as axioms only the formulas
in T and the axiom of equality.

For example the logical connector ∧ is defined as a symbol, but we give it some meaning in
the previous definition by specifying how it works in proofs: A ∧B proves A and proves B, and
if T proves A and proves B, then T proves A ∧B.

A theory is then just a collection of sentences: the axioms of a theory.
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Definition I.4

A theory on a language L is a set of sentences from the language. A theory T is consistent
if there is no proof of ⊥, otherwise it is inconsistent. A theory is complete if for every
formula φ of L , either T ` φ or T ` ¬φ.

Usually, the axioms define the behaviour of the predicates and function symbols of a language.
For instance, the axioms of group theory define the behaviour of the operator symbol. Two
different theories on the same language can give different meaning to the same symbol.

Models

We now take an orthogonal approach: instead of defining the meaning by axioms (logical or
in theories), we give them an interpretation in a model.

Definition I.5

Let L = ((fi)i∈I , (Pj)j∈J) be a language. An L -structure M is a tuple
(M, (gi)i∈I , (Qj)j∈J), where M is any set, gi : Mni → M where ni is the arity of fi
and Qj ∈ P(Mmj ) where mi is the arity of Pj . We call gi the interpretation of fi, and
Qi the interpretation of Pi.
A second order L -structure is an L -structureM with an additional set S ⊆ P(M).

Similarly to when we define proofs, the meaning we give to the symbols lies on the following
definition. Once again, we do not give the details on the interpretations of usual connectors and
quantifiers.

Definition I.6

Let M be an L -structure, and φ be an L -sentence. We say that φ is true in M and
write M |= φ when φ is true in M when interpreting functions and predicates by their
M-interpretations. We sometimes also allow to add elements of M as constants in the
language L , and if a formula uses such constants it is said to be with parameters.
IfM is a second order L -structure and φ is a second order L -formula, then when φ is
interpreted inM, the second order quantifiers range over the set S ⊆ P(M) ofM.

Definition I.7

We say that an L -structureM is a model of T , and writeM |= T , if for every sentence
φ ∈ T , we haveM |= φ.

For instance, in the language of groups, one can define the theory T containing the axioms of
a group. Then, a model of this theory is any group. Closer to logic, N is a model of Peano Arith-
metic, a theory containing some rules about addition and multiplication, as well as induction.
There exists other models of Peano Arithmetic, that we call “non-standard models”.

I.1.3 Gödel’s code

We previously defined every syntactic notions, such as proofs and formulas, using the def-
inition of a language. However, all of these are really just a sequence of symbols over a finite
alphabet, containing for instance variables, logical connectors, but also parenthesis. Some se-
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quences are well-formed, some others might not be. There is a way to combine those sequences
of symbols by assigning a fixed number to each of them.

Gödel made this encoding of finite sequences in a clever way, so that it is possible to create
integer codes for sequences, and then recover every element of the sequence, in a very effective
way. Using this, he was able to show that already in Peano arithmetic, the statement “is provable
in PA” taking a code for a formula as an input, could be defined.

In this thesis, we will call Gödel code an integer, coding a finite sequence (such as a formula),
such that it is easy from the code to recover the initial object.

I.2 Computability Theory

I.2.1 Basics and Turing Machines
What would be a formal definition of the computable functions, for our intuitive notion of

“computation in the real world”? This question, in our modern world full of computers, seems
easier now than when it was first asked. It took many efforts from great scientists to give
a convincing answer, and there has been several attempts. Some have failed to model all the
computable functions, such as the now called “primitive recursive” functions. Some other were not
convincing enough, such as Herbrand-Gödel’s general recursive functions 1. Soon after, Turing
gave the definition of his now famous Turing Machines, a model of computation much closer to
what it should represent (a computation in the real world), leading to the Church-Turing Thesis:

I Thesis I.8 (Church-Turing Thesis). The Turing machine model succeeds in modelling what
we mean by computations in the real world.

Of course, it is not possible to prove or disprove this thesis. One can only give it credit, or
discredit, by comparing specific example of what a Turing machine can and cannot compute to
what we expect to be computable and uncomputable. In this document, we take it as granted
and do not distinguish the Turing machine model and the natural notion of computation.

We first give a formal definition, and then an informal one. Usually, the informal definition is
much easier to understand, and the actual coding of the concept into a formal definition do not
add any value. The reason we care to still give a formal definition of a Turing Machine here, as
a 5-uplet, is that the important Definition II.40 of Infinite Time Turing Machine in Chapter V
will be based on Turing Machines. Of course, we want this central definition to be formal in
order to have a strong basis to the theory.

Definition I.9

— A (one-tape) Turing machine can be formally defined as a tuple M =
〈Σ, Q, q0, qh, δ〉 where
— Σ is the alphabet;
— Q is a finite, non-empty set of “states”;
— q0, qh ∈ Q are the “initial state” and “halting state”;
— δ : (Q \ {qh})×Σ→ Q×Σ×{−1, 1} is a partial function called the “transition

function”.
— A configuration is a triple (t, q, h), where t is an infinite word in the alphabet Σ

and corresponds to the values on the tape; q is a state corresponding to the current

1. The general confusion between recursive and computable comes from this terminology.
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state of the machine; and h is an integer corresponding to the current position of
the head on the tape.

— A computation is a sequence of configurations (ci)i<n following the rules of δ. A
computation starts with the head at position 0 and the initial state q0. If ci =
(ti, qi, hi), then δ(qi, ti(qi)) = (qi+1, a, b) where hi+1 = hi + b and ti+1(n) = ti(n)
for n 6= hi and ti+1(hi) = a.

— A computation is halting if it reaches the halting state qh.
— Let cod be a coding of integers into finite strings of 0 and 1. If M is a Turing

machine, we write M(n) ↓ if there exists a halting computation starting with
cod(n) written on the tape. We write M(n) = m if it halts, with cod(m) written
on the tape.

— A function f : N→ N is computable if there exists a Turing Machine such that for
every n, M(n) ↓= f(n).

Informally, a Turing Machine is finite set of instructions, with an unbounded memory. The
finite set of instructions corresponds to the code of a program. Each instruction can only read
one bit of the memory, so any finite computation depends on only a finite part of the tape.

We note that this model is very robust, as long as it keeps infinite memory, with few constraint
on its access. For instance, one can consider Turing machines with several tapes, any finite
alphabet, they are all equivalent in terms of computability. Tapes can be also bi-infinite. Using
a coding of n-tuples of integers into a single number, one can define computable functions with
multiple inputs.

Since then, many models of computation equivalent to Turing Machines have been defined.
Some of them are programming language that are used for actual programming, such as assembly,
C++. Some others are more abstract, such as recursive functions and various lambda-calculus.
One important thing shared between all these models is that the execution of some computation
is not too complex, in other word, is itself computable. This can be formalized by the fact that
there exists an interpreter, a program that executes a computation given the code of a program.

To code a Turing machine, we will use the Gödel encoding. Then, a Turing machine that can
execute any other one given its code, will be called a universal Turing machine.

Definition I.10

Given a Gödel code e ∈ N for a Turing machine, we will write ϕe for the corresponding
Turing machine. Therefore, (ϕe)e∈N is an enumeration of all Turing machines. We write
ϕe0 ' ϕe1 if they are equal as partial functions, that is they are defined on the same
inputs, and if they are defined they have the same value.

Theorem I.11 (Existence of universal Turing machines)

There exists a Turing machine U such for every Turing machine ϕe and input n,
U(〈e, n〉) ' ϕe(n).

This is clear assuming Church-Turing Thesis. Not only it is computable to execute ϕe given
a code e, but it is also computable to manipulate those codes. For instance, given two codes e0

and e1 it is possible to give the code e2 of the composition of ϕe0 and ϕe1 . One of the historically
most famous theorem on manipulating codes is the S-m-n Theorem, stating that we can hard-
code an input into a code. In other words, there exists a computable S such that if e is a code
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for a Turing Machine of two inputs, then for all m and n, ϕS(e,m)(n) ' ϕe(m,n).
Again, those code manipulations are natural for anyone used to programming, assuming

Church-Turing thesis. There is one theorem that is more surprising and deserves attention:
Kleene’s recursion theorem.

Theorem I.12 (Kleene’s recursion theorem)

Let f be a computable function. Then, there exists some e ∈ N such that ϕe ' ϕf(e).

Proof. Let s be a computable function such that ϕs(e,n)(m) ' ϕe(n,m). Let e ∈ N be a
code such that

ϕe(n,m) ' ϕf(s(n,n))(m).

Then, we claim that s(e, e) is a fixed-point in the sense of the theorem: we have that

ϕs(e,e)(m) ' ϕe(e,m) ' ϕf(s(e,e))(m).

�

The consequence of this theorem is that, when defining a Turing machine, one can always
suppose that it has access to its own code, regardless on how circular this definition may seem.
For instance, here is how we define a Turing machine that outputs its own code. Let f be the
computable function, which to any n associates a code for a Turing machine outputting n on
any input. Let e be a fixed-point of this. Then, ϕe ' ϕf(e) is a Turing machine which outputs e
on any input. These machines are called “quines”.

I.2.2 Oracles and reducibilities

One of the nice feature of Turing machines is that it is really easy to relativize the notion of
computation.

Definition I.13

We call Turing machine with oracle, or Turing functional a Turing machine with an
additional read-only tape, called the oracle tape. A computation with oracle X is any
usual computation that additionally starts with X written on the oracle tape. If e is
the code for a Turing machine with oracle, we write ΦXe = Y if ΦXe is the characteristic
function of Y . We suppose Φ∅e = ϕe.

The following definition is maybe the most important of computability, allowing to define
degrees of unsolvability, corresponding to the “difficulty of computing an uncomputable program”:

Definition I.14 (Turing and many-one reducibilities)

We say that A ⊆ N is Turing reducible to B ⊆ N if there exists an oracle Turing Machine
Φe such that ΦBe = A. In this case, we write A ≤T B.
We say that A is many-one reducible to B if there exists a computable function f such
that for every n, we have n ∈ A iff f(n) ∈ B. In this case, we write A ≤m B.

Many one reducibility is a special case of Turing reducibility where the Turing machine can
only check one cell of the oracle tape and output its value directly.
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I Proposition I.15. The relations ≤T and ≤m are pre-orders.

Definition I.16 (Turing degrees)

The relation ≡T defined by A ≡T B if A ≤T B and B ≤T A is an equivalence relation.
We call Turing degree a degree in this equivalence relation.

A Turing degree corresponds to a computational power: all of its members can compute
exactly the same sets. The study of the structure of Turing degrees has kept computability
theorist busy for a long time, and many things are still unknown. The first easy thing is to show
that the degrees are not all 0, the degree of computable sets, an easy statement that we will see
in the next section. Another important question that lead to the development of an essential
technique, is the existence of two incomparable degrees, solving Post’s problem of whether there
exists non-recursive incomplete c.e. sets, named after Emil Post.

There is an easy counting argument to show that there exists a non-computable set: there
are only countably many Turing Machines, while there are uncountably many subsets of the
integers. Therefore, most of the sets must be non-computable. However, this does not give an
example of a non-computable set. The first and most prominent such example is the halting set.

Definition I.17 (Halting problem, Jump)

The halting problem is, given a code for a Turing Machine, the problem of deciding if the
Turing machine will stop. The corresponding set is:

∅′ = {e : ϕe(e) ↓}.

More generally, one can relativize this definition to any X ⊆ N:

X ′ = {e : ΦXe (e) ↓}.

We also call X ′ the jump of X.

It is clear that X ′ ≡T {〈e, n〉 : ϕe(n) ↓}. We now prove that this indeed defines a non-
computable set, by showing that X ′ >T X.

I Proposition I.18. For every X, X <T X
′.

Proof. It is clear that X ≤T X ′, as one can check if a fixed n is in X by testing if the
Turing Machine which halts only if its oracle has a 1 in the n-th position, do halt or not.

Now, suppose that X ≥T X ′ via Ψ. Let f be the function which, given a code e for a
Turing Machine, outputs the code of the following procedure: given an oracle Y , halts if and
only if ΨY (e) = 0. By the recursion theorem I.12, let e be a fixed-point of f . Then, φXe halts
if and only if ΨX(e) = 0 if and only if X ′(e) = 0, a contradiction. �

I Proposition I.19. If A ≤T B, then A′ ≤T B′.

Proof. Let f be a computable function such that fB = A. In order to decide if ΦAe (e)

halts, let e0 be the Turing functional such that ΦXe0 = Φf
X

e (e). Then, ΦBe0(e0) = ΦAe (e), so
e ∈ A′ if and only if e0 ∈ B′. �
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I.2.3 Computable enumeration

We give an important notion of computability theory: the notion of computable-enumeration.

Definition I.20

We say that a set A ⊆ N is computably enumerable, or c.e. if it is the range of a computable
function. If e is any integer, we write We for the range of the e-th Turing machine ϕe.

In other words, there exists a computable process that, to any integer n, associates one
element of A. All elements of A are accessed this way. We often see a c.e. set as containing the
elements enumerated by a Machine that never halt, but from time to time output a number: the
machine that outputs f(0), f(1), f(2), and so on.

Note that historically these sets have been called recursively enumerable, due to the previous
definition of recursive functions. As “computable” is more accurate than “recursive”, there has
been some efforts to change every occurrence of r.e. to c.e. Despite those efforts, now both
formulation can be found in the literature. In this thesis, we try to avoid the word “recursive”
when it means computable, however we restrained from modifying the whole terminology of
α-recursion theory.

As there is an enumeration of partial computable functions ϕe, there is also an enumeration
of computably enumerable sets.

Definition I.21

We call We the range of ϕe. Then, (We)e∈N is an enumeration of the computably enu-
merable sets.

I.3 Gödel’s theorems

I.3.1 Gödel’s completeness theorem

We gave two different meaning of the syntactic notion of formulas. The first one stays
syntactic, the notion of provability, while the second is more focused on semantic: the ability to
be interpreted in a model.

There is one link that we expect: ifM is a model of T and T proves φ, then φ is true inM.
This can be proved by induction on the length of the proof, but the result is natural as we gave
the same meaning of logical connectors in the proof definition, and in the model definition.

However, the precise link between syntax and semantic, or provability and modelling, is not
obvious. Gödel’s answered this in his famous completeness theorem.

Theorem I.22 (Gödel’s completeness theorem)

Let L be a language and T be a theory. Then, T is consistent if and only if there exists
a model of T .

Gödel’s completeness theorem is very important. We will give two examples of how to use it:
one to show a very easy incompleteness fact, and one to build a model of a particular theory.

Take the language of groups (a constant for the neutral element, a binary operator) together
with the axioms of groups in this language, grouped in the theory TG. Then there exists a model
which is abelian, and another one which is not abelian. Therefore, by Gödel’s completeness
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theorem, neither ∀a, b, ab = ba nor ¬(∀a, b, ab = ba) can be proved in TG, and TG cannot be
complete.

Now, we continue with a more profound example. Let TA be a theory in the language of
arithmetic that attempts to define the integers. Now, add a constant symbol x, and consider
T = TA ∪ {x > n : n ∈ ω}, where n = S(S(· · ·S(0) · · · )) iterated n times. Suppose T is not
consistent, there must exist a proof of ⊥ which therefore uses finitely many axioms from T . But
this is impossible, as N is a model of every finite sub-theory of T . Therefore T is consistent, and
there exists a model of TA which is not N as it contains an element greater than any integer.

The previous reasoning is known as the compactness theorem, which is a corollary of the
completeness theorem but can also be proved without the use of the syntactic proof, using
ultrafilters.

Theorem I.23 (Compactness Theorem)

Let T be a theory. If every finite subset of T has a model, then T has a model.

Proof. Towards a contradiction, suppose T is not consistent. Then T proves ⊥, and as
a proof uses finitely many axioms, a finite subset of T is not consistent. But then, by Gödel’s
completeness theorem, a finite subset of T has no model which is a contradiction with the
hypothesis.

Therefore, T is consistent, and by Gödel’s completeness theorem T has a model. �

I.3.2 Gödel’s incompleteness theorems
When mathematical logic started to receive more focus, a need to give the whole mathematical

field a strong basis and formal definitions was developed. For instance, the notion of infinitesimal
was used a lot without a precise definition. Hilbert had a plan to settles strong foundations for
all mathematics.

Hilbert’s plan was in several step. The first one was to find an axiomatic system is which
all of mathematics could be proved. The second step was to prove the coherence of this system
within a simple system that he called “finitistic” and that was supposed to be based only on
reasoning of finite things.

Hilbert’s plan was quite popular and started making progress. For instance, the coherence of
simple systems (less than PA) was proved. The coherence of PA was proved using simple means
except for one single step. However, removing this step seemed very difficult. And at this point
Gödel’s theorem condemned the whole program.

The first incompleteness theorem

The first Gödel theorem tackles the first step of Hilbert’s plan. Basically, a theory where
the axioms are recursively enumerable (that is, when given a formula, if it is an axiom it will be
recognized as an axiom), there exists a formula that is unprovable.

Theorem I.24 (Gödel’s first incompleteness theorem)

Let T be a computably enumerable theory containing PA. Then, either T is inconsistent,
or T is incomplete.

As an example, we give a proof of a related result with a much shorter proof. Let T be
a recursively enumerable theory containing the language of arithmetic, and such that N |= T .
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Then either T is incomplete or T is inconsistent.
We admit that the following collection of formulas {ϕn(n) ↓: n ∈ N} is a collection of

arithmetical formula of T .
As T is complete, for every n ∈ N, either there exists a proof of “ϕn(n) ↓”, or there exists a

proof of “¬ϕn(n) ↓”. As T is consistent, only one of the previous two incompatible sentences is
provable, and because N |= T , only the true one must be computable. Therefore, we have a way
to compute the halting set: look for a proof that ϕn(n) halts or a proof that ϕn(n) does not
halt, and output the corresponding answer.

Compared to this result, Gödel had to deal with several additional things. First, he had to
encode into Peano arithmetic the notion of formula, sentence and proof. This step corresponds
to admitting that ϕn(n) ↓ is an arithmetical formula. Then, he also had to use a fixed point
argument.

The second incompleteness theorem

The first incompleteness theorem leaves no hope for the first step of Hilbert’s program.
However, the unprovable formula of Gödel’s first incompleteness theorem does not have any
interesting meaning, and the question of its veracity would never be asked in normal mathematics.
So, there might subsist some hope to have a good axiomatic system, where all of “natural”
mathematics could be proved (at least all the previous theorems), on which the second step of
Hilbert’s plan could be done.

If this were true, we would get an axiomatic system very secure: there would exist an elemen-
tary proof of its consistency. If most mathematics could be done inside this system, then most
mathematics would be secure and it would be very satisfying. Gödel’s second incompleteness
theorem takes care of destroying this hope.

Theorem I.25 (Gödel’s second incompleteness theorem)

Let T be a recursively enumerable theory containing PA. Then, the arithmetical formula
consisting of the consistence of T is unprovable in T .

One must have a stronger system to prove the coherence of a given system. But then, the
coherence of the stronger system is questioned, and there is no point in proving the coherence of
some theory assuming the coherence of a stronger theory!

So Hilbert’s program should be dead. However, proof theorists continued to pursue this
program in some weakened versions and have made major discoveries. For instance, they grouped
the “non finitistic” reasoning in a single concentrated step. And even if we know we will never
prove its consistency, mathematics feel secure after so many years of usage, and no one doubt of
its consistency.

I.4 Topology and Computability

I.4.1 Computability in topological spaces

In a previous section, we introduced computable functions relative to some oracle. We showed
that this allows to define relative computability for subsets of the integers, by using the charac-
teristic functions of sets. In this section, we show that this can be extended to many topological
spaces, given a convenient presentation of them. In this thesis we will only be interested in
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Cantor and Baire space, so we give only the presentation of these spaces. We also highlight the
interaction between topology and computability.

Definition I.26

We call string of length k a function in k → A, where A is the alphabet. An infinite
string is a function in N→ A. The length of a string σ is written lh(σ) or |σ|. If σ, τ are
two strings, we say that τ extends σ (written σ ≺ τ) if τ extends σ as partial functions.
We write σaτ for the concatenation of two strings, and σ � n for the initial prefix of σ of
size n.
The set of strings in alphabet A is written A<ω. The empty string is written ε.

Definition I.27 (Cantor and Baire space)

We call Cantor space the set 2ω of infinite sequences of bits, equipped with the product
of the discrete topology on 2. This topology is generated by the open sets [σ] = {x ∈ 2ω :
σ ≺ x} for all σ ∈ 2<ω. We call reals the elements of the Cantor space, in relation with
infinite binary expansion of reals between 0 and 1.
We call Baire space the set ωω of infinite sequences of integers, equipped with the product
of the discrete topology on ω. This topology is generated by the open sets [σ] = {x ∈
ωω : σ ≺ x} for all σ ∈ ω<ω.

It remains to show how to define computations on Cantor and Baire space. Using Turing
Machines, it seems quite easy for Cantor space, as the tapes of Turing Machine already consist of
infinite sequences of 0 and 1. We say that a real x is computable if there exists a Turing Machine
that never halts but instead write the infinite sequence x on its tape. Relative computability is
defined again using oracle.

For Baire space, it is only slightly less straightforward, as we need to code sequences of
integers into sequences of bits. This can be done by many computable 2 methods, such as
(xn) 7→ 0x010x110x21 · · · . We give the general framework for topological spaces with a fixed
countable base.

Definition I.28

Let (X, τ) be a topological space. Then, (Ui)i∈N is a recursive presentation if it is a basis
for τ and there exists a computable function f such that Ui ∩ Uj = Uf(i,j). A recursively
presented topological space is a topological space with a recursive presentation.
If (Ui)i∈N is any sub-base for τ , one can easily define a recursive presentation of τ using
the bijection between integers and finite sequences of integers. Therefore, we sometimes
consider sub-bases as recursive presentation.

The canonical recursive presentation of the Cantor space is ([σ])σ∈2<ω , while the canonical
one for the Baire space is ([σ])σ∈ω<ω .

Definition I.29

Let (X0, τ0) and (X1, τ1) be two topological spaces with (U in)n∈N being a recursive pre-
sentation of τi. Then, we say that f : X0 → X1 is computable if it is continuous and if
the set

{
(m,n) : U0

m ⊆ f−1(U1
n)
}
is computably enumerable.

2. In the sense of Definition I.29
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We say that an element x ∈ X0 is computable if there exists a computable function from
the trivial topology of the set with a unique element to X0 such that x is in the image.

In informal words, in order to compute an object x using an oracle y, it must be able to
compute it at any precision, that is find all neighbourhood containing x. In its computation,
the machine will be given approximations of y (understand, neighborhoods of y) at arbitrary
precision.

It becomes even clearer when the topological spaces are also metric spaces. For instance, one
can see R as a recursively presented topological space generated by U〈i,j〉 = B(qi, εj) where qi
and εj are rationals (coded by the integers i and j) and B(qi, εj) is the open ball centered on qi
of radius εj . A function f : R → R is computable if it can find a rational ε-close to f(x), given
rationals arbitrary close to x.

Remark that every continuous function is computable relatively to some x ∈ 2ω.

I.4.2 Topological properties of Cantor and Baire spaces

We first give a few topological facts about Cantor and Baire space

Theorem I.30

The Cantor space is perfect a, compact, 0-dimensional b and metrizable.

a. Closed without isolated point
b. It has a basis of clopen sets

The most important property to remember here is the fact that Cantor space is compact.
This is sometimes known as a weak version of Kőnig’s lemma, which states that each infinite tree
with finite branching has an infinite branch.

We also specify a metric for Cantor and Baire spaces. Let x 6= y ∈ ωω. We define d(x, y) to
be 2−k where k is the smallest integer such that x(k) 6= y(k).

Theorem I.31

The Baire space is perfect, 0-dimensional, and metrizable.

In fact, there is a characterization of those two spaces by topological properties. In the
theorem we only included the properties that will be interesting to us.

We will often use the following characterization of closed sets by trees.

Definition I.32 (Tree and infinite paths)

We say that a set T ⊆ ω<ω is a tree if it is closed under prefix. We write [T ] = {x :
∀n, x � n ∈ T} the set of infinite branches of T .

Theorem I.33

Then, A ⊆ ωω is closed if and only if there exists a tree T ⊆ ω<ω such that A = [T ].
Similarly, A ⊆ 2ω is closed if and only if there exists a tree T ⊆ 2<ω such that A = [T ].
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Proof. Let T be a tree. Then, [T ] is the complement of
⋃
σ 6∈T [σ]. Conversely, if A is a

closed set, then A = [T ] where T = {σ ∈ ω<ω : ∃x ∈ A, σ ≺ x}. �

I.4.3 Effectively open and closed sets

We define the notion of effective open and closed set.

Definition I.34

A set A ⊆ ωω is effectively open if there exists a computably enumerable set W ⊆ ω<ω

such that A =
⋃
σ∈W [σ]. An effectively closed set is the complement of an effectively

open set.

Theorem I.35

A set is effectively closed if and only if there exist a co-c.e. tree T ⊆ ω<ω such that
A = [T ], if and only if there is a recursive tree T ⊆ ω<ω such that A = [T ].

Proof. Let W ⊆ ω<ω be such that the complement of A equals
⋃
σ∈W [σ]. Then, define

T to be ω<ω \ {τ : ∃σ ≺ τ, σ ∈ W}, a co-c.e. set. By construction, T is a tree. Now if x ∈ [T ]
then x avoid being in any [σ] for σ ∈W , so x ∈ A.

Conversely, if T ⊆ ω<ω is co-c.e. let W = ω<ω \ T , a c.e. set. We have that x ∈ T if and
only if x 6∈ [σ] for any σ ∈W , so the complement of [T ] is

⋃
σ∈W [σ].

Now suppose that T is a co-c.e. tree. Define T̂ = {σ ∈ ω<ω : all prefixes of σ are in T at
stage lh(σ)}. Then, [T ] = [T̂ ] and the result follows. �

We also give the link between all these notions and their computable counterparts.

Theorem I.36

The following holds:
1. A set is open if and only if it is effectively open in some set X.
2. A set is closed if and only if it is effectively closed in some set X.
3. A function is continuous if and only if it is computable in some set X.

This theorem establish a clear link between topology and computability. It actually is very
useful in some areas of topology. For instance, the field of effective descriptive set theory is the
application of computability tools to descriptive set theory. Descriptive set theory studies the
complexity of subsets of reals, from a topological point of view. We see in the next sections the
effective and non-effective hierarchies on these sets.

I.5 Hierarchies of complexity

In this section, we study the different hierarchies of complexity using several means: logic,
computability and topology.
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I.5.1 The Arithmetical hierarchy

Subsets of N

We define the arithmetical hierarchy using definability. We will define a notion of complexity
in arithmetical formulas, and then classify subsets of the integers using this notion.

Definition I.37 (Σ0
n, Π0

n and ∆0
n formulas)

Let L be the language of arithmetic. We say that an L -formula is ∆0
0, Σ0

0 or Π0
0 if all its

quantifiers are bounded, that is of the form “∃n < t” or “∀n < t” where t is an L -term.
Then, we say that:

— A formula φ is Σ0
n+1 if φ = ∃i ∈ N, ψ(i) where ψ is Π0

n.
— A formula φ is Π0

n+1 if φ = ∀i ∈ N, ψ(i) where ψ is Σ0
n.

— A formula φ is ∆0
n+1 if it equivalent to both a Σ0

n+1 and a Π0
n+1 formula.

When relativized with a set X ⊆ N, we write Σ0,X
n , Π0,X

n and ∆0,X
n .

Note that the notions of being Σ0
n and Π0

n is a syntactic notion, while being ∆0
n is not.

Therefore, it depends on the model on which we interpret the formula, which may or may not
be N.

Definition I.38 (Σ0
n, Π0

n, ∆0
n sets)

We say that a set A ⊆ N is Σ0
n (respectively Π0

n, ∆0
n) if it is Σ0

n-definable (respectively
Π0
n, ∆0

n), that is there exists a Σ0
n (respectively Π0

n, ∆0
n) formula φ(n) with

i ∈ A ⇐⇒ N |= φ(i).

The hierarchy of the Σ0
n and Π0

n sets form what we call the arithmetical hierarchy. A set
in the arithmetical hierarchy is said to be arithmetic.

The arithmetical hierarchy is strict, and has strong links with computability.
Recall the definition of the halting problem. We claim that ∅′ has a Σ0

1 definition. More than
that, we have the following:

I Proposition I.39. — The predicate “ϕe(n) halts in t step” is ∆0
1.

— The predicate “ϕe(n) halts” is Σ0
1.

Proof. For the first item, we claim that ϕe(n) halts in t steps if and only if there exists a
trace of the computation of ϕe(n) of length t that halts, if and only if every trace of computation
of ϕe(n) of length t does halt.

The second item is clear, as ϕe(n) halts if and only if there exists t such that ϕe(n) halts
in t steps. �

In fact, ∅′ is universal in the Σ0
1 sets.

I Proposition I.40. If A is Σ0
1, then there exists a computable function f such that i ∈ A if

and only if f(i) ∈ ∅′.

We say that ∅′ is a many-one Σ0
1-complete set. This suggests a link between computability

and the arithmetical hierarchy. We extend this to iterations of the jump.
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Definition I.41

If X is any set, we define by induction the sets X(0) = X and X(n+1) = (X(n))′. The set
X(n) is called the n-th jump of X.

I Proposition I.42. Let n be any integer. Then, A is Σ0
n if and only if there exists a computable

function f such that i ∈ A ⇐⇒ f(i) ∈ ∅(n).

Proof. We show that ∅(n) is Σ0
n. The empty set is clearly Σ0

0. Now suppose ∅(n) is Σ0
n,

via formulas φ. We have that e ∈ ∅(n+1) if and only if ∃σ ∈ 2<ω,∃t ∈ N such that ϕσe (e)[t] ↓
and σ ≺ ∅(n). Now σ ≺ ∅(n) is a ∆0

n+1 statement: ∀n < lh(σ), σ(n) = 1 ⇐⇒ n ∈ ∅(n). So
e ∈ ∅(n+1) is Σ0

n+1 definable.
Then, it is clear that if there exists function reducing A to ∅(n), then A is Σ0

n. Now we
prove the converse by induction, so suppose A is Σ0

n+1-definable. Then, n ∈ A if and only if
∃m, 〈n,m〉 ∈ B where B is Σ0

n-definable, and therefore computable in ∅(n). Let f(n) be the
code of the Turing machine which on oracle ∅(n) searches for such an m, and stops if it finds
one. Then, n ∈ A if and only if f(n) ∈ ∅(n+1). �

I Corollary I.42.1. The arithmetical hierarchy is strict.

Theorem I.43

Let A ⊆ N be any set. Then, A ∈ ∆0
n+1 if and only if A ≤T ∅(n).

Proof.
Suppose that A is computable in ∅(n) via the Turing machine ϕ. Then, n ∈ A (resp.

n 6∈ A) if and only if there exists a time t and a string σ ≺ ∅(n) such that ϕσ(n) ↓= 1 (resp.
ϕσ(n) ↓= 0). Therefore, A is ∆0

n+1 definable.
Now, using Proposition I.42, every Σ0

n set is ∅(n) computable, and so are their complement
the Π0

n sets.
Now, suppose A is ∆0

n+1. Then, n ∈ A if and only if ∃m,φ(n,m) if and only if ∀m,ψ(n,m),
with φ and ψ being respectively Π0

n and Σ0
n, so their validity is computable in ∅(n). Now, the

Turing machines with oracle ∅(n) with input n can search for the smallest m such that either
φ(n,m) or ¬ψ(n,m) and answer accordingly, making A computable in ∅(n). �

We also have the following important link between definability and computability. This
theorem is the characterization of computability we will use to generalize it in other settings.

Theorem I.44

Let A ⊆ N be any set. Then:
1. A is computably enumerable if and only if A is Σ0

1.
2. A is co-computably enumerable if and only if A is Π0

1.
3. A is computable if and only if A is ∆0

1.

Proof. We prove the first item. Remark that Σ0
0-definable sets are computable, as

bounded quantifiers can be checked in finite time. If A is Σ0
1 via φ ≡ ∃t, ψ(n, t), then at time

T enumerates the n ≤ T such that ∃t ≤ T such that ψ(n, t). Clearly, this enumerates all A
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and nothing else.
If A is c.e. then n ∈ A if and only if ∃m, t such that ϕe(n) halts in t step and ϕe(m) = n,

where ϕe is the Turing machine whose range is A.
Now, the second item follows from the first as the complement of a c.e. set is a co-c.e. set

and the complement of a Σ0
1 is a Π0

1 set. The third item is a consequence of Theorem I.43.
�

Subsets of the Baire and Cantor spaces

In this section, we show how the arithmetical sets for 2ω and ωω spaces are linked to topology.

Definition I.45 (Σ0
n, Π0

n, ∆0
n sets)

Let X be the Baire or the Cantor space. We say that a set A ⊆ X is Σ0
n (respectively

Π0
n, ∆0

n) if it is Σ0
n-definable (respectively Π0

n, ∆0
n), that is there exists a Σ0

n (respectively
Π0
n, ∆0

n) formula φ with

∀x ∈X , x ∈ A ⇐⇒ N |= φ(x).

In this definition, the arithmetical formulas have a second order free variable. We first show
that the Σ0

1 subsets of the Baire and Cantor spaces correspond to the effectively open sets.

I Proposition I.46. A set A ⊆ X where X is the Baire or the Cantor space, is Σ0
1 if and

only if it is effectively open. It is Π0
1 if and only if it is effectively closed.

Proof. Suppose that ∃n, φ(X,n) is a Σ0
1 formula defining A. As φ has only bounded

quantifiers, given some n it needs only a finite amount of X to decide if it is true or false.
Then, x ∈ A if and only if there exists n and σ ≺ x such that already we have φ(σ, n). Then
we have A =

⋃
{[σ] : ∃n, φ(σ, n)}.

Suppose that A is effectively open, of code e. Then, x ∈ A if and only if ∃σ ∈We such that
σ ≺ x.

�

With the same proof, one can show the corresponding fact for the n-th level. A union (or
intersection) is effective if the codes for the element of the union (intersection) are given by a
computable enumeration. In our case, a code for a Σ0

n set is a Gödel code for a Σ0
n formula

defining it, while a code for a Π0
n is a code for a Π0

n formula defining it.

I Proposition I.47. A set is Σ0
n+1 if it is an effective unions of Π0

n sets. It is Π0
n+1 if it is an

effective intersection of Σ0
n sets.

We have seen that Σ0
1 sets are open sets, so Π0

2 sets are intersection of open sets, which is
called Gδ in topology. Like in Proposition I.46, the Gδ sets are exactly the relativized Π0

2 sets.
The topological version of the arithmetical sets is called the finite Borel hierarchy.

I.5.2 The finite Borel hierarchy

The Borel hierarchy is a measure of the topological complexity of sets. Compared to the
previous definitions, it does not measure in any way the effective content of the set. Therefore,
all subsets of N would be of the lowest topological complexity: they are clopen sets.
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Definition I.48 (Finite Borel Hierarchy)

Let A ⊆X , where X is Baire or Cantor space. Then:
— A is ∆0

0, Σ0
0 or Π0

0 if it is clopen.
— A is Σ0

n+1 if it is a countable union of Π0
n sets.

— A is Π0
n+1 if it is a countable intersection of Σ0

n sets.
— A is ∆0

n if it both Π0
n and Σ0

n.
A set is in the finite Borel hierarchy if it is ∆0

n for some n ∈ N.

The finite Borel hierarchy is closed under finite unions, finite intersections and complement.
However, it is not closed under countable unions, as countable unions of An where each An is
Σ0

n might not be finite Borel. In order to continue the closure under countable union, one need
to continue the construction after the finite level: a transfinite construction. The tool to do this
is the ordinals.

I.6 Ordinals

I.6.1 Basic properties

Ordinals are fundamental to mathematical logic. They are the backbone of set theory. They
appear in model theory, computability theory, topology... It is almost surprising to see how they
appear in proof theory. This thesis is of course not spared: ordinals will play an important role
in most chapters.

In ordinary language, an ordinal number is a position in an enumeration: the first, the second,
the third and so on. Mathematical language extends this to infinity and beyond. For instance,
suppose you are trying to count the real numbers. Then, you pick one, label it “first”, pick another
one, label it “second”, and continue this way for all integer. You get a list of reals indexed by
n ∈ N, but as we know that R does not have the same cardinality as N, there must exist some
real that we have not enumerated. So in order to give every real an ordinal number, one need to
continue enumerating them, and the first ordinal number after all the previous one would be ω,
followed by ω+1, ω+2,... But again, after infinitely many steps we would only have enumerated
countably many reals. So the next one is labelled ω + ω = ω × 2, then ω × 2 + 1... It continues
up to ω × n, ω2, ωω...

Ordinal numbers is the notion required for any kind of induction: definitions and proofs.
Integers allow to do induction up to any finite level. Infinite ordinals continue the induction
after infinitely many steps, and in this sense it is called transfinite induction.

Definition I.49

A well founded relation R on some set A is a relation such that for every B ⊆ A, there
exists an element b0 ∈ B such that ∀b ∈ B, ¬bRb0.
A well-order is a (strict) well founded linear order.

We are usually not interested in the exact support of a well-order, but rather by its structure.
Therefore, we usually consider the equivalence class by bi-embedding, and specify representative
of these equivalence classes: the ordinals.
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Definition I.50

An ordinal is a transitive set, well-ordered by the “membership” relation.

Ordinals are interesting as representative of well-orders. For instance, each ordinal is the set
of smaller ordinals, in the sense of embeddability. The smallest well-order is the empty one, we
write it 0 and it is an ordinal. Then, 1 = {0} is also an ordinal, as well as 2 = {0; 1}. The
ordinals form a class, and this class is well-ordered as any set has an element, and the set of
elements below is well-ordered. We call ω1 the first uncountable ordinal.

I Proposition I.51. Every well-ordered set is in bijection with some ordinal, called its order-
type.

Each ordinal is either the empty ordinal, a successor ordinal if it is of the form {α} where α is
an ordinal (and in this case we write it α+ 1) or a limit ordinal, that is the limit of an increasing
sequence of ordinals for the order topology. We now give an example of definition by induction
using ordinals.

I Proposition I.52. For every ordinal α, there exists a unique function +α : α× α→ α such
that for all β, γ < α we have:

— β +α 0 = 0,
— β +α γ = (β +α δ) + 1 if γ = δ + 1,
— β +α γ = limδ<γ(β +α δ) if γ is limit.

Proof. Let α be an ordinal. We prove by induction on γ that there exists such a +α,γ

defined up on α× γ + 1. If γ = 0 = ∅, the result is clear by choosing β +α,0 0 = β.
If γ = δ + 1 and the result is true for δ, it suffices to extend +α,δ to α × γ by defining

β +α,γ γ = (β +α,δ δ) + 1.
If γ = limδ<γ δ and the result is true for every δ < γ, it suffices to extend +α,δ to α× γ by

defining β +α,γ γ = limδ<γ β +α,δ δ. �

Of course, if α < β, then +β restricted to α is equal to +α, so we will drop the subscript
notation. One can also define ordinal product and exponentiation this way.

As we will mainly be in the setting of second order arithmetic, we need sets to only contain
integers. Therefore, instead of speaking of ordinals, we will speak of codes for ordinals, the codes
being elements of Cantor space.

Definition I.53 (Encoding of ordinals)

An encoding for an ordinal α is any well-order x on a subset of N with order type α,
modulo the bijection N2 → N. More precisely, it is a single real x ∈ 2ω such that the
relation n C m⇔ x(〈n,m〉) = 1 is a well order of order-type α.
We write WO ⊆ 2ω for the set of codes of ordinals below ω1. We write WO<α ⊆ 2ω,
WO≤α ⊆ 2ω andWO=α ⊆ 2ω for the set of codes for ordinal that are respectively strictly
below, below or equal, and equal to α.
In order to be consistent with the notation for recursive ordinals, we defineWO = {(e,X) :
Φe(X) ∈WO}.

I.6.2 Computable ordinals
Trivially, only countable ordinals can be encoded. We will be interested in the special case

when ordinals have recursive encoding. In this case we can code them into single integers.
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Definition I.54 (Recursive code and ordinals)

A recursive code for a ordinal α is an integer e such that the relation has domain {n ∈
N : ϕe(n, n) ↓} and such that n ≤ m iff ϕe(n,m) = 1 is a well order of order-type α. We
call ≤e this well-order.
We say that an ordinal α is recursive if it has a recursive code, and we write WO ⊆ N for
the set of recursive codes for ordinals. If α is a recursive ordinal, we write WO<α ⊆ N,
WO≤α ⊆ N and WO=α ⊆ N for the set of codes for ordinal that are respectively strictly
below, below or equal, and equal to α.
We define analogously the relativized notion of recursive in X codes and ordinals. We
define WOX ⊆ N to be the set {e : ϕXe is a well-order}.
We write WOX = WOX × {X} and WOX = {Φe(X) : e ∈WOX}.

It is clear that the recursive ordinal form an initial segment of the ordinals. Indeed, if α is
recursive via ϕe, and β < α, then there exists some n such that e0 is a code for β, where ϕe0 is
the restriction of ϕe on the set of m with m ≤e n.

The relativization of WO is straightforward, however we need to also define a version where
the oracle is added in the set to have a pendant of Σ0

n =
⋃
X∈2ω Σ0

n(X). It is clear that WOX

and WOX are one-to-one equivalents (relative to X), and we have WO =
⋃
x∈2ω WOX .

As there are only countably many computable ordinals, there must exist non-computable
ordinals. The smallest such one exists as ω1 is a well-ordered.

Definition I.55 (ωCK
1 )

We call Church-Kleene omega 1 and write ωCK
1 the smallest uncomputable ordinal. We

write ωX1 for the smallest ordinal that is non-computable in X.

As the computable ordinals form an initial segment, every ordinal below ωCK
1 is computable.

It is worth noting that we have ω1 =
⋃
X∈2ω ω

X
1 .

We emphasized that well-orders are the good framework to conduct construction by induction.
So we would expect that computable ordinals would allow some kind of construction by induction
where the result is computable. Recall the definition of the ordinal sum in Proposition I.52. Even
in this simple definition, we had to react in different ways depending on the form of the ordinal:
whether it is 0, a successor ordinal or a limit ordinal.

Suppose we wanted to define a computable version of the ordinal sum, that worked on ordinal
codes. Some things would lack in a recursive code for ordering: Indeed, it is non-computable,
given a code for a computable ordinal, to decide if it codes for 0, a successor ordinal or a limit
ordinal. Similarly it is uncomputable to find a code for the predecessor of a successor ordinal. A
way to overcome this difficulty is to consider codes that are more precise: they specify this kind
of information, for the ordinal and its elements. We call these constructive codes, and show that
recursive ordinals have a constructive code.

I.6.3 Constructive ordinals

The first thing to see in order to build constructive codes is the relation between well-orders,
and trees. Indeed, trees are partial orders, and they also can code ordinals.
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Definition I.56

Let T be a tree. Then, the relation σ ≤T τ meaning “σ extends τ in T ” is a partial order.
It is well-founded if and only if [T ] = ∅. In this case, we say that T is well-founded.
If T is a well-founded tree, we define | · |o : T → Ord by induction on T such that
|σ|o = sup {|τ |o + 1 : τ is a direct child of σ}. We define |T |o to be |ε|o.
A tree-code for an ordinal α is a code for a computably enumerable well-founded tree T
with |T |o = α.

In order to prove that recursive ordinals and ordinals with tree-codes are the same, we need
the useful notion of Kleene-Brouwer ordering.

Definition I.57 (Kleene-Brouwer ordering)

We define the Kleene-Brouwer ordering on ω<ω, denoted ≤KB to be the following order:
if σ, τ ∈ ω<ω, then:

1. If τ ≺ σ, then σ <KB τ ,
2. If t is the smallest such that σ(t) 6= τ(t), then σ(t) < τ(t) implies σ <KB τ .

Let T ⊆ ω<ω be a tree. We define ≤KB(T ) to be ≤KB restricted to the elements of T .

I Proposition I.58. The recursive ordinals and the tree-coded ordinals are the same.

Proof sketch Let α be a recursive ordinal with code e. Then, the tree of strictly decreasing
sequences for ≤e is a tree-code of α.

Let T be a tree. Then, ≤KB(T ) is a code for a recursive ordinal α such that |T |o ≤ α. We
conclude using the fact that the recursive ordinals are an initial segment. �

Tree-codes for ordinals do not add the additional information needed to conduct recursive
transfinite induction. However, we are now able to add labels to the nodes of the tree.

Definition I.59 (Constructive code for recursive ordinal)

We say that e is a constructive code if e is the code of a computable well-founded tree
such that:

1. Each node has either 0, 1 or infinitely many direct children, and is labelled accord-
ingly 0, 1 or ∞.

2. If σ has infinitely many direct children (τn)n∈N such that τn = σaan with an strictly
increasing, then |τn|o < |τn+1|o.

We say that an ordinal is constructive if it has a constructive code. We call O the set
of constructive codes. As usual, we define O≤α, O<α and O=α for restrictions of O, and
OX , OX≤α, OX<α and OX=α for their relativization to X.

This time, constructive codes contain the information in the label of the root. If it is labelled
0, then it codes for the ordinal 0. If it is labelled 1, then it codes for a successor ordinal, and a
constructive code for the predecessor is the unique child of the root. If it is labelled∞, then it is
a limit ordinal such that the children form an infinite increasing sequence of constructive codes,
converging to the limit ordinal. Therefore we say that a is the successor of b if the root of a is
labelled 1 and b is its sub-tree whose root is the unique child of the root of a; we say that a is
the limit of (bn)n∈N if the root of a is labelled ∞ and bn are its sub trees, whose roots are the
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children of the root of a in increasing order.
It remains to show that recursive ordinals and constructive ordinals (those with constructive

codes) are the same. It is clear that a constructive ordinal is recursive by Proposition I.58. We
will now show that every recursive ordinal is constructive, in two steps: first, we prove that
every recursive ordinal is bounded by a constructive ordinal, and then we show that constructive
ordinals are closed downward.

Theorem I.60

For every recursive ordinal α, there exists a constructive code c for an ordinal β with
α ≤ β.

Proof. By Proposition I.58, let T0 be a computably enumerable tree with |T0|o = α. We
will modify T so that we are able to label it, and so that it is computable, without decreasing
its value for | · |o.

First, we modify T into T0 by adding infinitely many leaves to every node of T . Therefore,
we can safely label nodes of T with “∞”, and label nodes that we added with “0”.

Then, we modify the computably enumerable tree T0 into a computable tree T1. The tree
T1 uses the fact that given a code of a Turing machine e and an integer N , one can uniformly
find another code e0 with ϕe ' ϕe0 . Therefore, we define T1 to be the enumeration of T0 such
that if σan is enumerated before σam, then m < n. This makes T1 computable, but with the
same ordinal value.

Finally, we ensure that at every step the ordinal value of an increasing sequence of children
has increasing associated ordinals. We do this by modifying T1 by f where f is the following:
if σ ∈ T1 is a leaf or a singleton, then f(σ) = σ, otherwise let an be the increasing sequence
of direct children of σ. Then the new children of σ is an increasing sequence of constructive
codes bn such that bn codes for the sum of |f(ai)|o + 1 for i ≤ n. Then, T = f(T1) proves the
theorem. �

I Corollary I.60.1. WO is many-one reducible to O. In its relativized version, for every
X ∈ 2ω, WOX is many-one reducible to OX .

We now show that constructive ordinals are closed downwards.

Theorem I.61

The constructive ordinals are closed downward. Moreover, there exists a function f such
that if a is a constructive code for α, then Wf(a) is an enumeration of constructive codes
such that any β < α has a constructive code in Wf(a).

Proof sketch We prove by induction that if e is a constructive code for an ordinal α and
T is the associated tree, then for any β < α there exists some σ ∈ T such that |T � σ|o = β,
where T � σ = {τ : σaτ ∈ T}.

If α = 0, the result is trivial as there is no β < 0. If α is successor, then the root of T has
a unique child σ and |T � σ|o = β, and for every γ < β we also have the result by induction
hypothesis, so we have the result for α.

If α is limit, then the root of T has infinitely many children σn, such that |T � σn|o = γn
and γn converging to α. If β < α, let n be such that β < γn. By the induction hypothesis,
there exists a τ ∈ T � σn such that |T � σn � τ |o = β. Therefore, |T � σnaτ |o = β.

Therefore, f(a) is the code that enumerates the constructive codes T � σ for any σ in T .
�



46 CHAPTER I. PREPARATION

I Corollary I.61.1. Constructive ordinals and recursive ordinals are the same. More than that,
WO is many-one equivalent to O. In its relativized version, for every X ∈ 2ω, WOX is many-one
equivalent to OX .

We now use the previous result to define an iteration of the Turing jump along the constructive
ordinals.

Definition I.62

Let α be a recursive ordinal, and a be a constructive code for it. We inductively define
∅(a) to be:

1. The empty set if a codes for the ordinal 0,
2. The set ∅(b) if a is the successor of b,
3. The set

⊕
n∈N ∅(bn) if a is the limit of (bn)n∈N.

The jump is an operation essentially meant for Turing degrees. We expect the transfinite
iteration of the jump along α, the set ∅(a), to be independent from the coding a of α. This is the
case by a result of Spector.

Theorem I.63 (Spector)

If a and b are constructive codes for respectively α and β with α ≤ β, then ∅(a) ≤T ∅(b)
uniformly in a and b.

I Corollary I.63.1 (Spector’s uniqueness theorem). If α is an ordinal with constructive codes
a and b, then ∅(a) ≡T ∅(b), in a uniform way.

Thus, we are allowed to ignore the constructive coding of an ordinal when we are only
interested in Turing degree properties. If α is a constructive ordinal, we write ∅(α) for the Turing
degree of ∅(a) for any constructive code a of α.

Note that there is another way to define iterations of the jump, using recursive codes instead
of constructive ones. We will see this construction in Definition I.89.

I.7 Transfinite hierarchies

Now that we have defined ordinals, we are able to extend the arithmetical and Borel hierar-
chies beyond the finite case. As it is simpler in the sense that it does not require any effectivity,
we start by extending the finite Borel hierarchy to any ordinal below ω1, the smallest uncount-
able ordinal. In the effective case we will need to code the elements of the hierarchy to be able
to make the union and intersection effective. Finally, we extend the arithmetical hierarchy of
subsets of integers.

I.7.1 The Borel Hierarchy

Let us define the hierarchy.
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Definition I.64 (The Borel hierarchy)

Let A ⊆ ωω. Let α be an ordinal, we say that:
1. A is Σ0

1 if it is open.
2. A is Σ0

α if it is the union of countably many sets, each of them being Π0
βn

for some
βn < α.

3. A is Π0
α if it is the complement of Σ0

α set.
4. A is ∆0

α if it is both Σ0
α and Π0

α.

First, note that no set is added at step Σ0
ω1

or Π0
ω1
. Indeed, every countable union (or

intersection) of Π0
αn

set where every αn is countable is already Σ0
β for some countable β, as

there is always a countable upper bound on the sequence (αn)n∈ω. However, the hierarchy is
strict before ω1.

The obtained hierarchy can be seen as a layering on the construction of a set closed by
countable union and intersection, and containing the open and closed sets. We start by adding
every countable union and intersection. Then, this will add some set, so we also have to add
countable unions and intersections of these sets. We continue like this up to ω, but even at this
point, there will be a countable union consisting of An being a Π0

n set. So this union is not
already added and we have to continue the completion.

The Borel hierarchy is used primarily in Descriptive set theory, as a topological measure of
complexity, the simplest set being the clopen sets. It has the following properties:

— For every α, the classes Σ0
α and Π0

α are closed under finite unions and intersections.
— For every α, the class Σ0

α is closed under countable union and the class Π0
α is closed under

countable intersection.
— For every α < β < ω1, we have Π0

α ∪Σ0
α ⊆∆0

β .

I.7.2 The effective Borel Hierarchy

We now effectivize Definition I.64. The problem is that for being able to give an effective
union, each member of the union must be coded by an integer. Therefore we define codes along
with the hierarchy.

Definition I.65 (The effective Borel hierarchy)

Let α be an ordinal.
— A Σ0

1 code is an integer of the form c = 〈0, e〉. The set
⋃
σ∈We

[σ] has code c.
— A Π0

α code is an integer of the form c = 〈1, c0〉, where c0 is a Σ0
α code. The

complementary of A has code c, where A has code c0.
— A Σ0

α code is an integer of the form c = 〈2, e〉, if each c0 ∈ We is a Π0
βc0

code,
sup{βc0 + 1 : c0 ∈ We} = α. Then the set

⋃
c0∈We

Ac0 has code c where each set
Ac0 has code c0.

A set A ⊆ ωω is said to be Σ0
α (resp. Π0

α) if it has a Σ0
α (resp. Π0

α) code. It is said to be
∆0
α if it is both Σ0

α and Π0
α. The notions relativized to X are written Σ0

α(X), Π0
α(X) and

∆0
α(X).

It is clear that every Σ0
α set is a Σ0

α set. Conversely, for every α < ωCK
1 there exists a Σ0

1

which is not Σ0
α. We saw that the Borel hierarchy stops adding new sets at step ω1. In the

case of the effective Borel hierarchy, there is no Σ0
α code for any α ≥ ωCK

1 : indeed, from a Σ0
β
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code, one can enumerate a well-founded tree of Baire space, linearize it using Kleene-Brouwer
ordering, and the resulting ordinal is at least β. So, β cannot be above ωCK

1 .
The effective Borel hierarchy is a combination of topological and effective complexity, for

subsets of Baire and Cantor space. It still has the following properties:
— For every α, the classes Σ0

α and Π0
α are closed under finite unions and intersections.

— For every α, the classes Σ0
α is closed under effective union and Π0

α is closed under effective
intersection.

— For every α < β < ω1, we have Π0
α ∪ Σ0

α ⊆ ∆0
β .

We now show how the Borel and effective Borel hierarchies are intertwined.

Theorem I.66 (Lusin, [52])

For every X and α < ωX1 , there exists a set that is ΣXα but not Π0
α.

I Corollary I.66.1. The Borel hierarchy does not collapse before level ω1. The effective Borel
hierarchy does not collapse before level ωCK

1 .

I.7.3 Hyperarithmetic sets

We now extend the arithmetical sets up to ωCK
1 . This hierarchy being on subsets of N, it is

only a measure of the effective complexity, but not the topological complexity as all subsets of
N are open. It really is the counterpart of the effective Borel hierarchy.

Definition I.67 (Hyperarithmetical hierarchy)

Let α be an ordinal.
— A Σ0

1 code is an integer of the form c = 〈0, e〉. The set
⋃
σ∈We

[σ] has code c.
— A Π0

α code is an integer of the form c = 〈1, c0〉, where c0 is a Σ0
α code. The

complementary of A has code c, where A has code c0.
— A Σ0

α code is an integer of the form c = 〈2, e〉, if each c0 ∈ We is a Π0
βc0

code,
sup{βc0 + 1 : c0 ∈ We} = α. The set

⋃
c0∈We

Ac0 has code c where each set Ac0
has code c0.

A set is said to be Σ0
α (resp. Π0

α) if it has a Σ0
α (resp. Π0

α) code. It is said to be ∆0
α if it

is both Σ0
α and Π0

α. We say that A is hyperarithmetical if it is Σ0
α for some α < ωCK

1 .

There is a very nice equivalence between the hyperarithmetical sets and the iterations of the
jump.

Theorem I.68

A set is ∆0
α+1 if and only if it is computable by the α-th jump. It is Σ0

α if and only if it
is many-one reducible to the α-th jump.

I Corollary I.68.1. A set A ⊆ N is hyperarithmetic if and only if there exists a computable
ordinal α such that A ≤T ∅(α).

I.7.4 Complexity above the Borel sets

The task of ordering the sets of reals, although we already gave several hierarchies, is far
from being complete. Indeed, the sets that are at some level of a hierarchy, also known as the
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Borel sets, is “negligible” compared to the total number of sets. Precisely, the cardinality of
P(ωω) is 22ℵ0 , while the cardinality of the Borel sets is only 2ℵ0 , as there are countably many
hyperarithmetic sets and every Borel set is hyperarithmetic in some oracle.

We saw that the first ω level of the hierarchy correspond to definability with quantifiers over
the integers. In order to extend the Borel and effective Borel hierarchies, we will this time allow
quantifiers over sets of integers. We will see that this greatly increases the definability power
and that already at the first level, it includes the whole (effective) Borel hierarchy. Each level in
this projective (or analytical in the effective case) hierarchy has a huge complexity gap between
it and its successor, in particular many nice properties (such as measurability) tend to become
undecidable. Therefore, instead of considering all levels up to the collapsing of the hierarchy as
in the Borel case, we will restrict ourselves to only one quantifier on ωω.

We show how to define complexity for sets that have higher complexity than the Borel hier-
archy.

Definition I.69

A Σ1
1 formula is a formula of the form ∃X ∈ ωω,Φ(X) where φ is arithmetic. A Π1

1

formula is a formula of the form ∀X ∈ ωω,Φ(X) where φ is arithmetic. A ∆1
1 formula is

a formula that is equivalent both to a Π1
1 and a Σ1

1 formula.

Definition I.70

A set A ⊆ X where X is 2ω, ωω or N is Σ1
1 (respectively Π1

1, ∆1
1) if there is a Σ1

1

(respectively Π1
1, ∆1

1) formula ϕ such that

∀n ∈X , n ∈ A ⇐⇒ ϕ(n).

We now give the boldface, non effective version of this. The boldface do not directly use the
notion of formula, although we could just use Definition I.70 with formulas with a real parameter.
Instead, we give the more “historic” definition.

Definition I.71

A set A ⊆ X where X is 2ω or ωω is Σ1
1 if it is the projection of a Borel subset of

X ×ωω.A set is Π1
1 if it is the complement of a Σ1

1 set, and it is ∆1
1 if it is both Σ1

1 and
Π1

1.

In a paper from 1905, Henry Lebesgue himself made a mistake about the measurability of
Σ1

1 sets. He stated that projections of Borel sets of the plane into the real line are Borel sets.
This mistake was found ten years later by Suslin, who then started the study that eventually led
to descriptive set theory.

Note that Definition I.71 is really the non-effective version of Definition I.70. To see this,
remark that if A is Σ1

1, then there exists a Borel set B such that x ∈ A if and only if ∃g ∈
ωω, (x, g) ∈ B. We recognize the existential quantifier over the Baire space, however the effective
counterpart of Borel sets is hyperarithmetic, and not arithmetic as in Definition I.70. The fact
that Σ1

1 =
⋃
X∈2ω Σ1

1(X) needs the following result:

I Proposition I.72. A set A ⊆X is Σ1
1 if and only if it is the projection of a closed subset of

X × ωω, if and only if it is the range of a continuous function F : ωω →X .
A Σ1

1-formula is always equivalent to ∃X ∈ ωω,∀x,Φ(X,x) and ∃X ∈ 2ω,∀x∃y,Ψ(X,x, y)
for some ∆0

0 formulas Φ and Ψ.
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I Corollary I.72.1. The Σ1
1 sets A are exactly the projections of the effectively closed sets of

the Baire space. By Theorem I.35, A is Σ1
1 if and only if A = p([T ]) where T ⊆X × ωω.

As a Corollary, we are able to define simple codes for Π1
1 and Σ1

1 sets:

Definition I.73

A Σ1
1 code is an integer n = 〈0, e〉 where e is a code for an effectively closed set A of X ×ωω

and the associated set is p(A) (where p is the projection along the first coordinate). A
Π1

1 code is an integer n = 〈1, e〉 where e is a Σ1
1 code, and the corresponding set is the

complement of A if A is a Σ1
1 set of code e.

A Σ1
1 code is a real 〈0, x〉 where x is a code for a closed set A of X ×ωω and the associated

set is p(A). A Π1
1 code is a real n = 〈1, x〉 where x is a Σ1

1 code, and the corresponding
set is the complement of A if A is a Σ1

1 set of code x.

We will further study those sets in Chapter II, as they can be seen as infinite time computa-
tions along ωCK

1 .

I.8 Reverse Mathematics

Reverse mathematics is a field that seek to find the necessary and sufficient axioms needed to
prove a theorem. In some sense, this looks similar to set theory, but it is quite different. First,
set theory is a foundation of all mathematics in a very basic but unifying way. This requires a
lot of unnatural coding of mathematical objects into sets, the only kind of object in set theory.
The axioms of ZF are consensual, they acts as a base theory, the question about which other
axioms are needed, and what they imply falls on less convincing sentences such as the Axiom of
Choice, the Constructibility of the Universe, the Continuum Hypothesis... These axioms are at
the very least not obvious.

In reverse mathematics, we are interested in Second Order Arithmetic. Therefore, there
are different types of objects: integers, and set of integers, also called “reals”. This allows the
language to be more natural than set theory, and to do formal proofs in a more similar way to
what we do in real life. All axioms that we consider in reverse mathematics are true with no
doubt, the question is more whether they are necessary to prove some result.

We need to define which is our base theory, the minimal axioms that we need to do the
simplest form of mathematics. They consists of two type of axioms: the first order part, the one
that define the integers, and the second order part, the one that defines the sets of integers.

I.8.1 Second Order Arithmetic

Definition I.74

The language of second order arithmetic LA is a two-sorted language, with first sort
intended for integers and the second for set of integers. It contains the signature
{0;S; +;×;<; =;∈}, where 0 is a constant, S is a unary function for first-sort terms,
+ and × are binary function for first sort terms, < and = are predicates for first-sort
terms and ∈ is a binary predicate relating first and second sort terms.
It contains quantification for both sort, we will write quantification over sets of integers
using upper case letters and those for integers using lower-case letters.
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First Order Part

The first step is to define the first order part of our base theory, the axioms that are specially
directed toward defining the first sort of the language LA. We will use the simple axioms from
PA:

Definition I.75

We write P−0 for the collection of the universal closure of the following axioms:
1. m+ 1 6= 0

2. m+ 1 = n+ 1 =⇒ m = n

3. 0 = m ∨ ∃n : n+ 1 = m

4. m+ 0 = m

5. m+ (n+ 1) = (m+ n) + 1

6. m× 0 = 0

7. m× (n+ 1) = (m× n) +m

8. m = 0 ∨ 0 < m

9. m 6< 0

10. m < n+ 1⇔ (m < n ∨m = n)

These axioms define the behaviour of +, ×, <. However, the integers still have too much
margin and a model can behave very differently from regular integers. We need to add one
fundamental property: the induction.

In the case of second order arithmetic, we add the “second order induction axiom” instead of
a scheme of axioms.

Definition I.76

We write P0 for the collections of axioms of P−0 together with the second order induction
axiom

∀X, 0 ∈ X ∧ (∀n, n ∈ X =⇒ n+ 1 ∈ X) =⇒ ∀n, n ∈ X

Therefore, the second order part has an influence on the first order part, as it defines how
much induction will take place.

Second order Part

The second order part of arithmetic consists of the true statement on the sets of integer. One
of the most important specifies that definable sets exist.

Definition I.77

If C is a class of formula, we call C-comprehension the collection of axioms of the form:

∃X : ∀n, n ∈ X ⇔ φ(n)

where φ is a formula in C.
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Definition I.78

By full second order arithmetic, we mean P0 together with comprehension for the class
of all formulas of second order arithmetic.

When devising subsystems of full second order arithmetic, we will mainly restrict compre-
hension to a subsystem, and sometimes add axioms that do not corresponds to a specific type of
comprehension.

I.8.2 Encoding objects in Second Order Arithmetic

In order to speak about theorems of mathematics in Second Order Arithmetic, we need to be
able to speak about sufficiently many objects. The language allows to deal with integers and sets
of integers. This allows to speak about elements of R, using for instance the binary expansion.
However, some fields such as analysis need to deal with functions on reals. Should we switch to
Third Order Arithmetic?

In fact, Second Order Arithmetic is sufficient for most of mathematics. We are able to code
higher order objects such as functions or subsets of reals into a single real. Usually, every notion
that has an effective counterpart can be coded into a real. So for instance, every Borel set can
be encoded, as ∆1

1 =
⋃
X∈2ω ∆1

1(X). One can use this to code a Borel set by a couple consisting
of an oracle together with an effective Borel code, which is a integer. Usually, there is also a
direct way to code an object, such as for ordinals. From this comes the difference between the
definitions of WO and WO.

Of course, most of the set of reals are not encodable in Second Order Arithmetic, as the
cardinality of codes is less than the cardinality of P(R). But references to those sets almost
never appear in natural mathematics.

I.8.3 The Big Five

When looking for the necessary axioms of theorems from many different fields of mathematics,
a surprising scheme emerged: most of them were equivalent to one out of five linearly ordered
systems of axioms. These systems correspond to various kind of arguments used in proofs, but
they also correspond to the computational complexity of the objects involved in the proofs. A
very good book on the subject is by Simpson, and can be found in [60].

Recursive Comprehension Axiom scheme

The first of them will be the base theory in most of our coming comparisons of theorems and
principles. It is the simplest system that allows to conduct computations in mathematics.

Definition I.79 (RCA0)

RCA0 is the system of axioms consisting of P0 together with ∆0
1-comprehension and Σ0

1-
induction scheme. Note that ∆0

1 is not a syntactic notion, therefore we need to clarify
the axioms: they consists of the following axiom for every φ and ψ Σ0

1 formulas:

[∀n, φ(n)⇔ ¬φ(n)] =⇒ ∃X : [∀n, n ∈ X ⇔ φ(n)]

When the universe of a model is N, then there is a characterization of models of RCA0.
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Definition I.80 (Turing ideal)

A Turing ideal I ⊆ P(N) is a collection of sets such that for all A,B ∈ I we have
A⊕B ∈ I and if C ≤T A then C ∈ I.

Theorem I.81

A second order structure (N, I) is a model of RCA0 if and only if it is a Turing ideal.

Weak Kőnig’s Lemma

This principle corresponds to the use of compactness in an argument. The corresponding
computational power is those of PA degrees: being able to compute a path on every infinite
binary tree.

Definition I.82 (WKL0)

WKL0 is the system of axioms consisting of RCA0 together with “every infinite binary
tree has an infinite path”.

Definition I.83

A Scott set is a Turing ideal I such that if A ∈ I, then there exists B ∈ I such that B is
PA over B. In other words, for every T ⊆ 2<ω, if T is infinite then T has a path in I.

Theorem I.84

A second order structure (N, I) is a model of WKL0 if and only if it is a Scott set.

Arithmetical Comprehension Axiom scheme

This principle is used to assert that every arithmetically defined set exists. The corresponding
computational power is those of PA degrees: being able to compute a path on every infinite binary
tree.

Definition I.85 (ACA0)

ACA0 is the system of axioms consisting of RCA0 together with arithmetic comprehen-
sion.

In particular, this implies that the jump of any set must exists in the model, as it is Σ0
1. In

fact, any iteration of the jump must exist, but one proves them all.

Theorem I.86

A second order structure (N,S) is a model of ACA0 if and only if it is a Turing ideal and
for every A ∈ S, A′ ∈ S.

Note that even though ACA0 does not contain the axiom scheme of Σ0
n-induction, it proves

it using induction for sets and Σ0
n-comprehension. In fact, it proves more than that: transfinite
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induction holds for any linear order that is an ordinal in the model. However, it does not prove
Σ0
n-transfinite recursion, as this needs a real quantifier to be proved.

Arithmetic Transfinite Recursion scheme

Arithmetic transfinite recursion is the axiom scheme that allows us to define things by trans-
finite recursion, using arithmetical steps. Given a well-order on N and an arithmetical formula,
we define the transfinite recursion to be a set where each slice of some elements of the order is
obtained using φ from the slices of previous elements. The sets of those slices is called a hierarchy.

Definition I.87 (Φ-hierarchy)

Let Φ be any formula (with parameters), E be a partial order on ω. We say that H ⊆ ω
is a hierarchy for Φ on E if for every j ∈ ω, we have:

Hj = {n ∈ N : Φ(n,
⊕
iCj

Hi)}

where Hj = {n : 〈j, n〉 ∈ H} and
⊕

n∈F Xn = {〈n, x〉 : n ∈ F ∧ x ∈ Xn}.
We write HierΦ(H,E) for “H is a hierarchy for Φ on E”. If Φ is ∆0

n, then HierΦ(H,E) is
a Π0

n formula, as it can be expressed by ∀〈x, n〉 ∈ N, 〈x, n〉 ∈ H ⇔ Φ(n,Φ(n,
⊕

iCnHi))

This definition corresponds to the trace of a definition by induction along C: Hj is defined
from Φ and the previously defined sets. In our definition, we do not require the order to be
well-founded: a hierarchy on such an ordering would correspond to a definition by induction, but
with no starting point...

Definition I.88 (ATR0)

ATR0 is the system of axioms consisting of ACA0 together with the axiom scheme con-
sisting of:

∀ E binary relation, WO(E) =⇒ ∃H,Hierφ(H,E)

for every arithmetical φ, where WO stands for the Π1
1 formula “C is a well-order”.

We will see in Chapter IV that neither the set of arithmetic sets nor the set of hyperarithmetic
sets is a model of ATR0. For the first one, it is clear as ∅(ω) is not arithmetic but must be in
every model of ATR0. The second case is less trivial and needs the existence of linear orders
with no hyperarithmetic infinite descending sequences (so that in HYP the order appears as
well-founded) but with no hyperarithmetic hierarchy. In fact, there is no minimal model for
ATR0 (see [60]).

We allowed arbitrary arithmetical formulas to do the transfinite construction, but a single
jump would have sufficed.

Definition I.89 (Jump-Hierarchy)

We say that H is a Jump-Hierarchy on E if H is a Hierarchy for Φ(〈a, b〉, X) ≡ b ∈ X ′a ≡
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ϕXab (b) ↓. In other word, if H is a Jump-Hierarchy for E, then

Ha =
⊕
bCa

H ′b.

The predicate “H is a Jump-Hierarchy for E” is written JH(H,E) and is Π0
2.

Π1
1 Comprehension Axiom scheme

The last axiom scheme of the big five is Π1
1-comprehension. In fact, in the context of RCA0,

Π1
1-comprehension implies also Σ1

1-comprehension, so it implies all the previous one. We will not
study it in this thesis.

Definition I.90 (ACA0)

Π1
1-CA0 is the system of axioms consisting of RCA0 together with Π1

1 comprehension.
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Chapter II

Infinite time computations

Gotlib, RàB T2. Le matou matheux

In this chapter, we deal with notions of com-
putation along infinite time. Infinite time compu-
tations are the backbone of this thesis, applied to
different domains such as randomness and reverse
mathematics.

The rough idea of infinite time computation is
not to be constrained by having to take decisions
after finitely many steps. For instance, given an
infinite string, a normal computation cannot check
if there is a 1 at some point: If there is no 1 in the
input, then it would take infinitely many steps to
check all the cells, and there would be no time left
for further computation.

Now, using an infinite computation, one should
be able to compute ∅′. Indeed, to check if a partic-
ular Turing machine halts, it suffices to run it for
each finite step of computation. If it halts at some
point, we answer correspondingly, and if it never
halts after running for an infinite amount of time,
it will never halt. It should also be able to deter-
mine if a Turing machine is total, that is if it halts
on every input. One way to check this, would be to
check if φ(n) halts for every n. But this suggests
“infinitely many” infinite time of computation.

Ordinal numeration appears to be suitable for
this settings. For instance, ω + ω corresponds to infinitely many steps, followed by infinitely
many steps, while ω2 corresponds to infinitely many times “infinitely many steps”. An ω2 length
computation should be able to check the totality of a Turing machine (or even an ω + ω length
computation can do it, using some parallelization 1). But this is only informal, and there are
still lots of details that need to be provided. For instance, the ordinals are not a set. So should
we give a bound on the total number of steps of an infinite computation? If we do not do this,
do we risk to end with the collection of computations not being a set?

1. Using an infinite time Turing machine of Definition II.40, even an ω + 1 computation suffices using the
lim inf rule.

57
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Also, there is the question of the implementation at limit steps. In this introduction, we said
that using infinite time it is possible to check the halting problem for a machine. But how do we
actually implement this idea? There are several answers to this question. The first one is that we
do not implement this: instead, we use the relation between definability and computability, and
argue that some definability notions correspond to our intuitive notion of infinite computation.

The first notion of infinite computation that we will study takes this approach. We call it
“higher computability” here, although this term sometimes refers to the whole field of infinite
computation. It comes from descriptive set theory, and in fact, we have already defined the
notion without giving it from the viewpoint of infinite computation.

Contrary to this, Infinite Time Turing Machines are more commonly defined using a model
of computation. That is, an Infinite Time Turing Machine behaves like a normal Turing machine
at successor steps, and has a behavior at limit steps that allows it to continue the computation,
keeping a reasonable memory of what happened before. In this version of infinite computations,
the ordinal number of steps is not bounded, we will see that however there is still a bound on
the ordinal number of steps it can reach before starting to loop. A suitable restriction of this
model also gives a model of the higher computability definitions.

The third notion of infinite computation of this thesis, α-recursion, was first studied in the
setting of computability on ordinals instead of integers. In this field, an α-computable set was a
subset of the ordinals below α. However, this model still makes sense for the subset of integers,
and is very general as it includes in some way the two previous ones. The α in α-recursion
corresponds to the fixed bound on infinite computations, which for well chosen ordinals is not a
constraint to our intuition. Once again, α-recursion isn’t defined with a model of computation.
The disadvantages of this is that relativization does not work as well as for instance Infinite Time
Turing Machine.

After having defined a computability notion, we will often use informal definitions of al-
gorithm, just as we do with Turing machines. We will always give the same example: the
construction of a simple set, a co-infinite c.e. set that intersects every infinite c.e. set. This class
of sets was defined by Post when he was trying to solve its so-called Post’s problem, as a simple
set S can only be non-computable: otherwise, N \ S would be computable, and that would be
an infinite c.e. set that does not meet S. We give the proof of the normal case, as a reference for
later higher versions:

Theorem II.1

There exists a simple set, i.e. a set S co-infinite and such that S∩W 6= ∅ for every infinite
c.e. set W .

Proof. Let M be the machine enumerating n if and only if there exists some e such that
n is the first element above 2e enumerated by We (we can suppose that at most one element
is enumerated at each step). Formally, n is such that

∃t,∀m0 < t, [(m0 6= n ∧m0 ≥ 2e)⇒ m0 6∈We,t′ ] ∧ n ∈We,t ∧ n ≥ 2e.

Recall that no element above t is enumerated in any We,t.
Call S the set enumerated by M . It is clear that S is c.e. set. Also, for every e ∈ N, only

e numbers can be enumerated below 2e, so at least e are not in S, and S is co-infinite. If We

is infinite, then some n ≥ 2e is enumerated in We, and the first such will be enumerated in S.
�

Higher computability will be used in Chapter IV, while α-recursion and Infinite Time Turing
Machine will be used in Chapter V.
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II.1 Higher Computability

A common way to generalize a notion is to generalize one of its characterization. For (a very
unrelated) example, the function sin is commonly defined using the unit circle and trigonometric
considerations. This definition gives no clue on how to extend this function to imaginary numbers.
However, the equality sin(x) = eix−e−ix

2i allows to extend sinus to imaginary number in a very
straightforward way.

The following notion of computability is defined by modifying a known characterization of
classical computability. Let us recall Theorem I.44, that relates definability and computability:

I Theorem. Let A ⊆ N be any set. Then:
1. A is computably enumerable if and only if A is Σ0

1.
2. A is co-computably enumerable if and only if A is Π0

1.
3. A is computable if and only if A is ∆0

1.

What happens if we replace quantification over integers by quantification over reals, do we still
get some kind of computations? The answer is yes, but we need a few material from descriptive
set theory to see that.

II.1.1 Lightface analytic and co-analytic sets
We already defined the class of sets that are central for higher recursion, we will study

them further in this section. The goal is to show how they can be seen as computations, or
enumerations, along ωCK

1 . It is separated in two parts: first, we show that every Π1
1 set can be

seen as a uniform enumeration along ωCK
1 . Then, we show that defining a set by ∆1

1 enumeration
along ωCK

1 yields a Π1
1 set.

Π1
1 as uniform enumerations along ωCK

1

This comes from the following important result:

Theorem II.2

WO is Π1
1-complete: for every Π1

1 set A ⊆ N, there is a computable function f such that
n ∈ A if and only if f(n) ∈WO.
The relativized version also holds: WOX is Π1

1(X)-complete.

Proof. First, it is clear that WO is Π1
1, as

e ∈WO⇐⇒ e ∈ LO ∧ ∀X ∈ ωω, ∃n ∈ N, X(n+ 1) 6≤e X(n)

where ≤e is the relation coded by We. Being in LO is arithmetic, as the axioms have only
integer quantifiers.

Now suppose that A ⊆ N is Π1
1. Then n ∈ A ⇔ ∀X ∈ ωω, ∃t ∈ N, R(X, t, n), which is

also equivalent to the fact that the c.e. tree Tn = {σ : ∃τ � σ ∃t ∈ N, R(τ, t, n)} contains no
infinite path, or seen as a partial order, is well-founded. This last fact is true iff KB(Tn) is
well-founded. Let f be the computable function, mapping any n to the index of a c.e. order
corresponding to KB(Tn). Then, n ∈ A if and only if f(n) ∈WO. �

I Corollary II.2.1. O is also Π1
1-complete.
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I Corollary II.2.2. For every A ⊆ N a Π1
1 set, there exists a uniform family of ∆1

1 sets such
that A =

⋃
α<ωCK

1
Aα and the family (Aα)α<ωCK

1
is increasing. By uniform, we mean that given

any computable index for α, one can computably obtain a ∆1
1 code for Aα.

Proof. As WO is Π1
1-complete, let f be computable such that n ∈ A iff f(n) ∈WO. Now,

let Aα = {n : f(n) ∈WO<α}. Clearly, we have A =
⋃
α<ωCK

1
Aα. �

This last Corollary shows how every Π1
1 set can be seen as an enumeration along ωCK

1 .

Uniform enumerations along ωCK
1 as Π1

1 sets

We show that conversely, Π1
1 sets can be defined by an enumeration of integers along ωCK

1 .
The enumeration is defined by a Σ1

1 function, which given the previous stages of the enumeration,
answers the newly enumerated integers. This is made precise in the following theorem.

Theorem II.3

Let F ⊆ N×NN×N be Σ1
1 such that for every α < ωCK

1 and for every f : O<α → N such
that ∀b ∈ O<α, F (b, f�O<b , f(b)), there exists a unique n such that for every a ∈ O=α, we
have F (a, f, n).
Then, there exists a unique Π1

1 function f such that for every α < ωCK
1 and a ∈ O=α, we

have F (a, f�O<α , f(a)).

The informal corollary of this theorem is that we can define a Π1
1 set by induction along the

computable ordinals. The formula F in the theorem is the definition of a step in the computation:
it has access to a code corresponding to the ordinal stage, to a function f that associates previous
ordinal stages to the numbers enumerated at these stages, and it defines in a unique manner
what number is enumerated at the current stage. Then, the enumerated set is a set A with
n ∈ A ⇐⇒ ∃e ∈ O, n = f(e) i.e. A is the set of elements added at some stage.

I Example II.4. There exists a higher simple set. This set cannot be ∆1
1.

Proof. Let F of Theorem II.3 such that the corresponding enumerated set S is the
following: at stage α, S enumerates all n for which there exists some e such that n is the
smallest verifying n ≥ 2e, n ∈ Pe,α but no element of Pe has already been enumerated in S at
earlier stage.

Then, the enumerated S is a “higher simple set”: it is co-infinite, Π1
1 and intersects every

infinite Π1
1 set. Therefore, its complement cannot be Π1

1 so S is not ∆1
1. �

I Corollary II.4.1. Neither WO nor O are Σ1
1.

Proof. As they both are Π1
1-complete, if they were also Σ1

1 then the higher simple set of
the previous example would be Σ1

1, a contradiction. �

II.1.2 Properties of higher recursion
In this section, we study the properties of higher recursion, in particular we emphasize the

differences with normal computability and how we can still prove many of the results.
The first and good thing is that there exists a universal Π1

1 set, a set U = {(e, n) : n ∈ Pe}
where Pe is the set of Π1

1 code e. Therefore, in a Π1
1 enumeration we can act depending on the

enumerations of other Π1
1 sets. We already used this fact in Example II.4.
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However, there is a new concern on the bound of transfinite computations: Suppose for
instance that ω + ω was a bound in place of ωCK

1 , then any operation taking ω steps could not
be done twice. We shall make sure that this sort of things do not happen.

The requirement we want on the bounding ordinal time, is that if we can do α steps in a
computation, and there is α operations we need to do, then we have time to do them all. As an
informal example, if we can in ω steps compute the jump of a set, and if we can do α steps, we
expect to be able to compute the α-th jump. This requires the bounding ordinal to be closed by
sufficiently many operations. It is the case for ωCK

1 in the strong way expressed in the following
theorem.

Theorem II.5 (Spector’s Σ1
1-boundedness)

Let A ⊆ WO be a Σ1
1 set. Then, there exists some computable α such that A ⊆ WO<α.

Moreover, a code for α can be found uniformly in a code for A.

Proof. Suppose not. Then, we would have e ∈WO if and only if ∃a ∈ A such that e <0 a,
which is a Σ1

1 formula. WO would then be ∆1
1, a contradiction with Corollary II.4.1.

For the uniformity, the idea is to define α to be the supremum over n ∈ N of the minimum
between the step where n is removed from A and the ordinal coded by n. This is possible,
as given two orders where at least one is well-founded, one can define the tree of decreasing
sequences of one element from both orders, and take the Kleene-Brouwer ordering of this. This
ordinal is recursive and above every ordinal of A. �

Another important difference between higher computability and regular computability, is
that the time of computation, and the size of the sets we compute, have two different length.
Sometimes, proofs in the lower case make use of the “homogeneity” of the set of enumerated
elements and the time of computation, in this case it is called a “time trick”, as first defined in
[7, 9].

Sometimes, time tricks are not avoidable, and sometimes there is a way around. One way
around is the fact that, even though the computations length are ordinals, they are bounded by
a countable ordinal, and more than that there is a Π1

1 injection from ordinal times to integers.
We first see an example of time trick where the corresponding fact does not hold in higher

computability. Then, we will define the projectum function and show an example where it is a
way around a time trick.

Recall that an effectively open set is of the form
⋃
σ∈We

[σ]. However, there might be some
redundancy in We, in other words two strings σ0 ≺ σ1 in We. A set that contains no redundancy
is called a prefix-free set.

I Proposition II.6. For every effectively open set A, there exists a prefix-free c.e. set W such
that A =

⋃
σ∈W [σ].

Proof. Let V be c.e. such that A =
⋃
σ∈V [σ]. We define the enumeration W prefix-free,

from the enumeration of V . If σ is enumerated at stage t, then if σ has length t or more we
enumerate σ, otherwise we enumerate all extensions of σ of length t. �

The higher analogue does not hold.

I Proposition II.7. There exists a Π1
1 set of strings V such that for every prefix-free Π1

1 set
W , we have: ⋃

σ∈V
[σ] 6=

⋃
τ∈W

[τ ].
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Proof. We first define Ve, a Π1
1 set of strings such that either the e-th Π1

1 set Pe is not
prefix-free, or it does not define the same effectively open set as Ve. Here is the enumeration
of Ve.

At the first stage, Ve enumerates all strings 0n1 for n ∈ ω. Then, at all later stages,
if [Pe]

≺ 6= [Ve]
≺, then Ve does not enumerate anything. Otherwise, [Pe]

≺ = [Ve]
≺ and Ve

enumerates the empty string.
Suppose that in the end, [Pe]

≺ = [Ve]
≺. Then, let αn be the stage where [0n1] ⊆ [Pe]

≺ 6= 2ω.
Then, by Spector’s Σ1

1 boundedness Theorem II.5, there exists a bound α < ωCK
1 above every

αn. But then, at stage supαn, Ve enumerates the empty string, so at this stage we have
[Pe]

≺ = 2ω \ {Oω} and [Pe] cannot equal [Ve]
≺ = 2ω while staying prefix-free.

Now, we do a product of the construction: the final set of string V is
⋃
e∈N 0e1aVf(e) where

f(e) is the Π1
1-index of {τ ∈ 2<ω : 0e1aτ ∈ Pe}. �

Some other time tricks can still be avoided in higher computability, by the use of a projectum.
The general notion of projectum will be defined in the next section on α-recursion, but we give
the special case of projectum function in higher computability.

Definition II.8

The projectum function of ωCK
1 is the injective function p : ωCK

1 → ω such that p(α) =
min(O=α).

I Proposition II.9. There exists a Π1
1 function, p̂ : O → ω such that if α < ωCK

1 is of code
a ∈ O=α, then p̂(a) = p(α).

In other words, the projectum function p is higher computable in terms of code for ordinals.
Note that it is coding independent, as required in Theorem II.3 for definition of Π1

1 sets as
enumerations.

We can give the following (trivial) example of a use of the projectum. There exists a c.e. set
enumerating a (strictly) new element at each stage of the enumeration. For the basic case, this
is trivial: at stage t, just enumerate t. For the higher case, we need the projectum function: at
stage α, just enumerate p(α).

Continuing the example of Proposition II.9, we give a more elaborate use of projectum. An ε-
prefix free is a set of strings such that the measure of the redundancy, when seen as the description
of an open set, is bounded by ε. A set W ⊆ 2<ω is ε-prefix free if

∑
σ∈W µ([σ]) ≤ µ([W ]≺) + ε,

where µ is the Lebesgue measure of Definition V.5.

I Proposition II.10. For every non-zero ε ∈ R+ and Π1
1 set of strings V , there exists an

ε-prefix-free Π1
1 set of string W with [V ]≺ = [W ]≺.

Proof. We can suppose ε is rational are those are dense in the reals. Fix V ⊆ 2<ω,
we describe the enumeration of an ε-prefix free description W of V . At stage α, suppose V
enumerates the string σ, andWα denotes the string already enumerated inW . Then, [σ]\[Wα]≺

is a closed set, so there exists an open set U ⊇ [σ] \ [Wα]≺ with µ(U) ≤ µ([σ] \ [Wα]≺). We
have [σ] ⊆ [Wα]≺ ∪ U , so by compactness it is already true for a finite union of intervals.
Now, W enumerates the first finite set of strings found S such that [σ] = [S]≺ ∪ [Wα]≺ and
µ([S]≺ ∩ [Wα]≺) ≤ 2−p(α) × ε. �

II.1.3 Higher computable sets
In this section, we prove that the higher computable sets are exactly the hyperarithmetic

sets. This is satisfying in the sense that it gives a bound on the complexity of higher computable
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sets: those that are computable by the α-th jump, for α a computable ordinal.
We first sketch the proof that all hyperarithmetic sets are ∆1

1. Then, we sketch the converse:
every ∆1

1 set is hyperarithmetic.

Theorem II.11

For every recursive ordinal α, ∅(α) is ∆1
1.

Proof sketch For any constructive code a of α “X = ∅(a) is arithmetic. Therefore, n ∈ ∅(a)

if and only if ∀X ∈ 2ω, X = ∅(a) =⇒ n ∈ X if and only if ∃X ∈ 2ω, X = ∅(a) =⇒ n ∈ X.
�

I Corollary II.11.1. Every hyperarithmetic set is ∆1
1.

Theorem II.12

Every ∆1
1 set is hyperarithmetic.

Proof. Let A ⊆ N be ∆1
1. By Corollary II.2.2 applied to A and its complement, fix some

computable functions f and g such that if Aα = {n : f(n) ∈ WO≤α} and Bα = {n : g(n) ∈
WO≤α}, then (Aα)α∈ωCK

1
and (Bα)α∈ωCK

1
are uniform Π1

1 sequences such that A =
⋃
α<ωCK

1
Aα

and N \A =
⋃
α<ωCK

1
Bα.

Now, for every n, there exists a smallest computable ordinal αn such that either n ∈
Aαn ∪ Bαn . Its code an can be uniformly found, so the set {an : n ∈ N} ⊆ O is Σ1

1. By
Spector’s Σ1

1-boundedness Theorem II.5, there exists a computable bound α above every αn.
Then, A =

⋃
β≤αAβ = Aα. Recall that Aα = {n : f(n) ∈ WO≤α} for some computable

function f . As WO≤α is hyperarithmetic, so is A. �

II.1.4 Higher recursion with sets of reals
One of the advantages of infinite computation is that it allows to compute sets of reals in a

more interesting way than finite computations. We can define computability for subsets of real
exactly the same way than for subsets of integers: the characteristic function is computable. In
the case of subsets of real, the characteristic function must then be a Turing functional.

So a subset A of the real is decidable if there exists a Turing machine such that if we write
x ∈ 2ω in its output tape, it will halt and answer whether x ∈ A or not. However, as a halting
Turing machine can only see a finite part of its input, the decidable sets are all open sets with
recursive description, and in the end there is no fundamental difference between decidability of
sets of reals, and computability of sets of integers.

In the case of infinite computability, the entire input can be seen, and the higher decidable
sets need not to be open. Also, with certain input, ωCK

1 might not be a high enough bound on
the length of computation. This time, ∆1

1 subsets of reals can be seen as computations along ω1.
However, an answer on the belonging of X has to be given before the ωX1 -th step.

Theorem II.13

WO is also Π1
1-complete, in the sense that for every Π1

1 subset of the reals A, there exists
a computable Turing functional Φ such that x ∈ A iff Φx ∈WO.
WO is Π1

1-complete for subsets of the reals. More than that, for every Π1
1 set A ⊆ 2ω,
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there exists an integer e such that

∀X ∈ 2ω, X ∈ A ⇐⇒ e ∈WOX .

Each Π1
1 set can be decided by a computation along ωX1 where X is the input:

Theorem II.14

Let F ⊆ NN×N×NN×2 be Σ1
1 such that for every X, α < ωX1 and for every f : OX<α → N

such that ∀b ∈ OX<α, F (X, b, f�OX<b , f(b)), there exists a unique i such that for every
a ∈ OX=α, we have F (X, a, f, i).
Then, there exists a unique Π1

1 function f ⊆: 2ω × O → 2 such that for every X, e 7→
f(X, e) is defined only on OX , and for every α < ωX1 and a ∈ OX=α, we have F (X, a, (n 7→
f(X,n))�OX<α , f(a)). The set defined by the computation F is

AF = {X ∈ 2ω : ∃a ∈ OX , f(X, a) = 1}

We still have some kind of Spector Σ1
1 boundedness for reals, which gives us that ∆1

1 sets are
Σ0
α sets for some computable α.

Theorem II.15

If A ⊆WO is Σ1
1, then there exists a computable ordinal α such that A ⊆WO≤α.

Proof. Suppose otherwise. Then, WO is also Σ1
1, as E ∈ WO if and only if ∃X ∈ 2ω and

∃e ∈ N such that (e,X) ∈ A and there exists an order-preserving injection from dom(E) and
ΦXe . �

We also have that the higher decidable subsets of the reals are the hyperarithmetic ones.

Theorem II.16

A set A ⊆ ωω is ∆1
1 if and only if it is hyperarithmetic.

II.2 α-recursion

In the previous section, we based on Theorem I.44 our generalization of computations to
infinite computations. We replaced quantification over integers by quantification over reals, and
it turned out that these definitions in some sense yield infinite computations over ωCK

1 . However,
something unexpected appeared: the counterpart of c.e. sets, which is originally the Σ0

1-definable
sets, is the Π1

1-definable sets rather than the Σ1
1-definable sets.

This suggests that the quantifications do not have the same role in the lower and the higher
settings. In the proof of Theorem I.44, the existential quantifiers assert the existence of the trace
of a halting computation. In the higher case, a trace of computation would be a computable
ordinal defining the steps, and “rules for next step”, the function F of Theorem II.3. Quantifying
over the existence of such a computation is Π1

1 as WO is Π1
1, so we can get some existential

quantification as Π1
1 sentences. The following theorems of Kleene, Spector and Gandy makes
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this precise:

Theorem II.17 (Kleene, [59, p.59])

If A(x, f) is arithmetic, then “∃f ∈ HYP, A(x, f)” is a Π1
1 predicate.

Proof. By the fact that WO is Π1
1-complete and that hyperarithmetic and ∆1

1 sets are the
same, a set A ⊆ N is hyperarithmetic if and only if it is computable in some recursive iteration
of the jump. But then, ∃f ∈ HYP, A(x, f) is equivalent to

∃f, g total and recursive, f(n) 6∈ O =⇒ g(n) ∈ O∀A

,
�

Theorem II.18 (Spector, Gandy, [59, p.61])

Every Π1
1 predicate P (x) can be put in the form “∃f ∈ HYP, A(x, f)” for some arithmetical

A.

We are now able to revisit Theorem II.3.

Theorem II.19

Let A ⊆ N be any set. Then:
1. A is c.e. iff ∃φ ∈ Σ1 such that n ∈ A ⇐⇒ N |= φ(n).
A is higher c.e. iff ∃φ ∈ Σ1 such that n ∈ A ⇐⇒ HYP |= φ(n).

2. A is co-c.e. iff ∃φ ∈ Π1 such that n ∈ A ⇐⇒ N |= φ(n).
A is higher co-c.e. iff ∃φ ∈ Π1 such that n ∈ A ⇐⇒ HYP |= φ(n).

3. A is computable iff it is both c.e. and co-c.e.
A is higher computable iff it is both higher c.e. and higher co-c.e.

This new vision of higher computations allows us to generalize computations even more. Let
A be any set containing at least the integers. Then, a set A would be A-c.e. if and only if it is
Σ1-definable over A. If A is sufficiently closed and contains sufficiently many ordinals, we expect
this definition to be a good definition for infinite computations of length more than ωCK

1 .
However, it remains to choose the set A so that this definition makes sense. Gödel’s con-

structibles, that we will introduce in the next section, make a good candidate for this, when
restricted to specific layers.

II.2.1 Godel’s constructible universe

Gödel’s constructible universe was introduced by Gödel in 1938, in order to prove consistency
of the Axiom of Choice and the Generalized Continuum hypothesis. But Gödel’s constructible
have many more applications. For instance, they form an important hierarchy of complexity of
all constructible sets.

The idea behind Gödel’s constructible is to add all the sets that can be defined by compre-
hension, layer by layer. This way, we will get the smallest “closed by comprehension” universe.
So, we start with the empty set, and add all the sets that can be defined by comprehension from
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the empty set. This will define new sets. Using these new sets, we are able to define new sets.
And so forth and so on, we continue to add new definable sets from the previous ones, along the
ordinals.

The constructible universe is usually defined starting with L∅ = ∅. When using some oracle
x ∈ 2ω, it starts with L∅(x) = tc(x) (which equals {x} ∪ ω when x is infinite). In order to keep
some consistency between the constructible universe defined with and without oracle, we start
with L∅ = ω.

Definition II.20

The constructible universe is defined by induction over the ordinals as follow:
— L∅ = ω
— Lα+ = {X ⊆ Lα : X is first order definable in Lα with parameters in Lα}
— Lsupγ<α =

⋃
γ<α Lγ

Let x ∈ 2ω. The constructible universe starting with x as an oracle is defined by induction
over the ordinals as follow:

— L∅(x) = {x} ∪ ω
— Lα+(x) = {X ⊆ Lα(x) : X is first order definable in Lα(x) with parameters in

Lα(x)}
— Lsupγ<α(x) =

⋃
γ<α Lγ(x)

For a ∈ L, the rank of a, denoted by rk(a), is the smallest α such that a ∈ Lα.

Our choice of having L∅ = ω makes the first levels of the constructible peculiar, as α is not
the smallest ordinal not in Lα for α < ω2. However, at the ω2 layering our definition retrieve this
property, and for every α ≥ ω2, we have α ⊆ Lα, and α ∈ Lα+1 but α 6∈ Lβ for any β < α+ 1.

Any limit level has some closure properties, for instance it satisfies ∆0 comprehension. How-
ever, some layers satisfy more than this, and are particularly interesting for our purpose of
defining computations inside them. We give two examples, the first of them should ring a bell
related to higher recursion.

Theorem II.21 ([25, Theorem 3.6.8])

For every set A ⊆ N, we have A is ∆1
1 if and only if A ∈ LωCK

1
.

This is exactly going in the direction of choosing some layers of the constructible hierarchy
to define α-recursion: we have that higher c.e. is equivalent to Σ1-definable over LωCK

1
!

We now define a layer of the constructibles above all the ones we will be interested in. This
layer contains exactly the sets whose “belonging” relation can be coded into a real (the same way
countable ordinals are exactly the only ordinals whose ≤ relation can be encoded in a real).

Definition II.22

We define hereditarily countable sets by induction on the membership relation. A set A is
hereditarily countable if it is countable and all of its members are hereditarily countable.

Theorem II.23

The set Lω1 contains only hereditarily countable sets.
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Proof. We show by induction that Lα is hereditarily countable for every α < ω1. We have
that L0 = ω is hereditarily countable. If α = β + 1, then as there are only countably many
first order formulas with parameters in a countable set, Lα is countable. As Lα ⊆ P(Lβ),
Lα contains only hereditarily countable sets, so Lα is hereditarily countable. If α is a limit
countable ordinal, and for every β < α the set Lβ is countable then Lα is countable as
a countable union of countable sets. Every element of Lα is in some Lβ for β < α so is
hereditarily countable. Therefore, Lα is hereditarily countable. �

II.2.2 The definition of α-recursion

After all these preliminaries, the definition of α-recursion comes naturally.

Definition II.24 (α-recursion)

Let A ⊆ N, and α be an ordinal.
— We say that A is α-recursively enumerable if there exists a Σ1 formula φ, with

parameters in Lα, such that n ∈ A if and only if Lα |= φ(n).
— We say that A is α-co-recursively enumerable if there exists a Π1 formula φ, with

parameters in Lα, such that n ∈ A if and only if Lα |= φ(n).
— A is α-recursively enumerable if A is both α-r.e. and α-co-r.e.

We have to emphasize the small differences we have with the usual definition of α-recursion.
The first difference is that the field of “α-recursion” is usually restricted to special ordinals called
“admissible”. The study of Σ1-definability over Lα for other ordinals is called β-recursion. In
this thesis, we will write α-recursive according to Definition II.24 without making a distinction
on whether the ordinal is admissible or not.

The second difference has a bit more importance. Usually, α-recursion is not restricted to
subsets of N, but to subsets of Lα. As we will mostly use α-recursion in the settings of algorithmic
randomness, in Chapter V, we are interested in subsets of the Cantor space rather than subsets
of 2α. We still give the corresponding definitions.

Definition II.25

Let α be an ordinal.
1. Any x ∈ Lα is said to be α-finite.
2. A subset A ⊆ Lα is said to be α-r.e. (resp. α-co-r.e., resp. α-recursive) if it is

Σ1-definable (resp. Π1-definable, resp. ∆1-definable).
3. A function f : Lα → Lα is said to be α-recursive if it has an α-r.e. graph.

In order for the previous definition to work as expected, we need several other things. First,
similarly to higher computability we need the ordinal bound α never to be reached in an α-
finite number of α-finite steps, in order to safely conduct computations. This issue was mainly
addressed by Spector’s Σ1

1 boundedness theorem. However, there is a new issue one need to take
care in our settings.

We called “time tricks” the arguments in proofs using the homogeneity between “time” and
“space”. Following this idea, we could call “code tricks” the arguments using the homogeneity
between the codes of machines and space. For instance, when defining a simple set S, we
enumerate n ∈ We only if n ≥ 2e, ensuring co-infinity of S. In our definition of α-r.e. sets, the
Σ1 formula have a parameter in Lα. So if there is no way to enumerate all parameters along N,
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one cannot build a simple subset of N (this problem does not occurs in “full” α-recursion where
subsets of α are considered). As the codes for machines and for the time are homogeneous,
this issue is resolved the same way it is resolved for the “space-time” conflict: by the notion of
projectum.

We start by giving some requirements on the ordinal α for α-recursion to behave well. Admis-
sibility provides a safe requirement, however we also need to work with non admissible ordinals,
therefore we show that for many recursions, α limit is already enough to conduct them safely.

After that we show that many useful predicates for Gödel’s constructibles are α-recursive. We
then define and discuss on other properties that allow α-recursion to behave similarly to regular
computations for subsets of N. We finally give an example of the construction of an α-r.e. set.

II.2.3 Σ1-induction for limit and admissible ordinals

In order to safely conduct Σ1 inductions, we normally need to be in a model of KP: a
weakening of set theory in which we have extentionality, pairing, union, Cartesian product,
induction over the ∈ relation (suppose for all a we have [∀b ∈ a Φ(b)]→ Φ(a), then for all a we
have Φ(a)), ∆0-comprehension and Σ1-collection.

For any α limit, we have that Lα is a model of all these axioms, except Σ1-collection.

Definition II.26

Let A = (A, ε) be an L -structure for the language of set theory. We say that A is a Σn-
admissible structure if A is a model of extentionality, pairing, union, Cartesian product,
induction over the ∈ relation, ∆n-comprehension and Σn-collection.

Definition II.27

We say that α is admissible if Lα is a model of KP, that is, if α is limit and Lα is a model
of Σ1-collection and ∆1-comprehension.
More generally we say that α is Σn-admissible if Lα is a Σn admissible structure.

Usually, admissibility is stated in the following way: the image of an α-finite set by an α-
recursive function is α-finite. This makes sense when we consider subsets of α as our main
interest. In our case, we want to emphasize that ordinals are used as time of computation, while
we only consider subsets of integers. Therefore, admissibility should be viewed as Spector’s Σ1

1

boundedness theorem: a bound on the computation time of an α-recursive set of α-recursive
stages of computation.

In the next section about Infinite Time Turing Machines, we will have to work with ordi-
nals which are not necessarily admissible. We will see for instance that Σ, the smallest non-
accidentally writable ordinal of Definition II.50, is not admissible.

Fortunately, we can already define a lot of things in models Lα for α simply limit (and not
necessarily admissible). Working with the constructibles involves working constantly with Σ1-
inductive definitions. Whereas these are perfectly safe in Lα for α admissible, some additional
care needs to be taken when α is not admissible. Let us determine what we need:

Let E ∈ Lα and < ∈ Lα be a well-founded order on elements of E. We define by induction
the <-rank of elements a ∈ E, denoted by rk<(a), to be the smallest ordinal β such that for
every b < a, b has <-rank less than β. Let Eβ be the elements of E of <-rank strictly smaller
than or equal to β, let E<β be the elements of E of <-rank smaller than β and E=β the elements
of E of <-rank exactly β. Let γ be the supremum of the <-rank of elements of E and suppose
γ ≤ α.
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Suppose we have a ∆0 formula F (a, f, r) such that for any a ∈ E, with rk<(a) = β whenever
f ∈ Lα is defined on E<β , then there is a unique r ∈ Lα such that Lα |= F (a, f, r). The classical
theorem of set theory, that justifies definition by induction, says that we then have a unique
function f defined on E and such that the ∆1 formula Φ(γ, f) is true, where:

Φ(γ, f) ≡ For every β < γ, for every a ∈ E=β , we have F (a, f �E<β , f(a))

Indeed the function f , if it exists, must be unique and ∆1-recognizable by the formula Φ(γ, f)
(using parameter γ). Also by induction one shows that whenever f �E<β exists, then f �E<β+1

must exists as it is ∆1-definable by F with f �E<β as a parameter (see Proposition II.28 below).
This uses the axiom of Σ1 collection: if for all a ∈ E=β there exists a unique r ∈ Lα such that
F (a, f �E<β , r), then the corresponding function f ′ defined on E=β must exists. However if the
ranks of the r’s are unbounded in Lα, the function f ′ will not exist in Lα. Fortunately most of
the time, for simple tasks, the rank will be bounded in Lα by something independent of a ∈ E=β ,
but dependent only on β.

The axiom of Σ1-collection also needs to be used at a limit step: If for any γ < β, there
exists a unique function fγ defined on Eγ and such that Φ(γ, fγ), then by Σ1-collection there
exists a unique function fβ such that Φ(β, fβ) (and the function fβ is simply the union of the
functions fγ). Here again, this argument works within Lα as long as the rank of each function
fγ is bounded in Lα. We sum up in the following proposition conditions in which definitions by
induction can be conducted in Lα for α limit:

I Proposition II.28 (∆0 Induction with bounded rank replacement). Let E be a class well-
ordered by <. Let f : E 7→ L be ∆0-definable by induction on <, such that for any β there exists
k < ω for which:

1. Eβ is ∆
Lβ+k

1 -definable uniformly in β, in particular E<α ⊆ Lα for α limit.

2. For any a ∈ Eβ, rk<(a) is ∆
Lβ+k

1 -definable uniformly in β.

3. For any a ∈ Eβ we have rk(f(a)) < β + k.

Then f is ∆Lα
1 -definable uniformly in any limit ordinal α. By this we mean that there are single

Π1 and ∆1 formulas that define f �E<α when interpreted in Lα.

Proof. Let Φ(β, f) be the ∆1 formula defined in the discussion above. We shall show that
for any α limit we have:
(a) For any β < α, the function f �Eβ belongs, as a set, to Lβ+m for some m < ω.

(b) The function f �E<α is ∆Lα
1 -definable by the formulas:

f �E<α (a) = r ≡ ∃f Φ(rk<(a), f) ∧ f(a) = r
≡ ∀f Φ(rk<(a), f)→ f(a) = r

It is clear that for any α limit we have (a) implies (b). Suppose now α = 0 or α limit and (b)
is true for α, and let us show that (a) is true for α+ω. If α = 0 we clearly have f �E<α∈ Lα+1.
If α is limit and (b) is true for α, thus also it is clear by definition of L that f �E<α∈ Lα+1.
Now from f �E<α∈ Lα+1 together with (1) (2) and (3), by iterating inductively the same
argument for n ∈ ω, we easily obtain that f �Eα+n

is ∆
Lα+(n+1)k

1 -definable and thus belongs to
Lα+(n+1)k+1 ⊆ Lα+ω. Thus (b) is true for α+ ω.

Suppose now that α is limit of limit and that for any β < α limit we have that (a) is true.
Thus clearly (a) is true for α, and therefore also (b). This concludes the proposition. �
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We end by one last thing one needs to be careful about when working in Lα for α not
admissible. In case α is admissible, formulas of the form ∀n ∈ ω ∃β Φ(n, β) where Φ(n, β) is
∆0, can be considered to be Σ1-formulas, precisely because if the formula is true in Lα, there
must exists B ∈ Lα such that ∀n ∈ ω ∃β ∈ B Φ(n, β). This is of course not the case for α not
admissible, and one has to be careful about keeping Σn formulas truly Σn.

II.2.4 Some α-recursive predicates

Using induction with bounded rank replacement, it is possible to show that the function
β 7→ Lβ is absolute already in Lα for α limit. This is done formally in [28].

In order to show that the function β 7→ Lβ is absolute in any model Lα for α limit, the
author of [28] uses a bounded rank argument as sketched above. In this case, this requires to be
a bit careful with the encoding one uses for ZF formulas by sets (hereditary finite sets in case
the formula has no parameter). In particular, it is worth noting that one uses partial function
from n to {p1, . . . , pn} to encode finite sequences, rather than successive pairing. This way, as
long as P ∈ Lα, for any n, a function from n into P has its rank bounded by some α+ k, where
k is an integer independent of n (even in Lω: recall that we start with L∅ = ω).

Using such an encoding of formulas, we write pΦq for the code of Φ. We have the following:

Theorem II.29 (Lemma I.9.10 of [28])

The predicate M |= Φ(p1, . . . , pn) is ∆Lα
1 uniformly in any α limit, in M , in pΦq and in

the sequence 〈p1, . . . , pn〉.

By the above, we formally mean the following: there is a Σ1 formula Φ(M, e, p), and a Π1

formula Ψ(M, e, p), such that for any α limit, as long as we take M, 〈p1, . . . , pn〉 in Lα, we have:

M |= φ(p1, . . . , pn)
⇔ Lα |= Φ(M, pφq, 〈p1, . . . , pn〉)
⇔ Lα |= Ψ(M, pφq, 〈p1, . . . , pn〉)

We will also sometimes use the following version of the above: in case Φ is a ∆0 formula, then Φ
is true in Lα iff Φ is true in the model being the transitive closure of all the parameters involved
in the formula. Using that such a model can be obtained uniformly and that satisfaction is
absolute in any Lα for α limit, we also have:

I Corollary II.29.1. The predicate Lα |= Φ(p1, . . . , pn) is ∆Lα
1 uniformly in any α limit and

in the code of any ∆0 formula pΦq.

Using that satisfaction is absolute in any Lα for α limit, we also have:

Theorem II.30 (Lemma II.2.8 of [28])

The function β 7→ Lβ is ∆Lα
1 uniformly in any α limit.

It is also well-known that L is well-ordered in L, that is, there is a well order <L on elements
of L, which is definable in L. Again, one can show that this order is absolute in any Lα for α
limit.
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Theorem II.31 (Lemma II.3.5 of [28])

The relation <L and the function a 7→ {b : b <L a}, are ∆Lα
1 , uniformly in any α limit.

We end this subsection by showing that in the special case of Σn-admissibility in the con-
structible hierarchy, only the axiom of Σn-collection is needed when α is limit.

I Proposition II.32. Suppose Lα is a model of Σn-collection for α limit. Then, Lα is a model
of ∆n-comprehension.

Proof. The proof goes by induction on n. For n = 0 as α is limit we always have that
Lα is a model of ∆0-comprehension. Suppose the result is true for n and let us show it is true
for n + 1. Let Lα be model of Σn+1-collection. Let Φ(a, b) and Ψ(a, b) be Π0

n formulas with
parameters in Lα. Let A ∈ Lα and E ⊆ A be such that:

a ∈ E ⇔ Lα |= ∃b Φ(a, b)
a /∈ E ⇔ Lα |= ∃b Ψ(a, b)

We have in particular that Lα |= ∀a ∈ A ∃β ∃b ∈ Lβ Φ(a, b) ∨Ψ(a, b)
By Σn+1-collection there exists β < α such that we have:

Lα |= ∀a ∈ A ∃b ∈ Lβ Φ(a, b) ∨Ψ(a, b)

Note that we then have
a ∈ E ⇔ Lα |= ∃b ∈ Lβ Φ(a, b)
a /∈ E ⇔ Lα |= ∃b ∈ Lβ Ψ(a, b)

It follows that we have :

a /∈ E ⇔ Lα |= ∀b ∈ Lβ ¬Φ(a, b)
a ∈ E ⇔ Lα |= ∀b ∈ Lβ ¬Ψ(a, b)

As Lα is a model of Σn-collection, formulas ∀b ∈ Lβ ¬Φ(a, b) and ∀b ∈ Lβ ¬Ψ(a, b) are both
equivalent in Lα to Σn formulas. Therefore E is in fact defined by a ∆n formula. By induction
hypothesis we have that E ∈ Lα.

�

II.2.5 Stability
When lifting up notions of computability to various ordinals, new phenomenons start to

appear, one of them central to the study of α-recursion is the notion of stability.

Definition II.33

For α ≤ β we say that Lα is Σn-stable in Lβ , and we write Lα ≺n Lβ if for every Σn
formula Φ with parameters in Lα we have Lα |= Φ iff Lβ |= Φ. Without confusion, we
will also write α ≺n β for Lα ≺n Lβ .

The notion of n-stability is the same as the notion of elementary substructure for Σn formulas
in model theory. The following proposition is easy and will be used in various places of the paper:

I Proposition II.34. Suppose Lα ≺n Lβ. Let Φ(a1, . . . , an) be a Πn+1 formula and let
p1, . . . , pn ∈ Lα. If Lβ |= Φ(p1, . . . , pn) then Lα |= Φ(p1, . . . , pn).
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Proof. The formula Φ(a1, . . . , an) is of the form ∀x Ψ(x, a1, . . . , an) for Ψ a Σn formula.
Also for every x ∈ Lα we have Lβ |= Ψ(x, a1, . . . , an) and thus Lα |= Ψ(x, a1, . . . , an) by Σn
stability. It follows that Lα |= ∀x Ψ(x, a1, . . . , an). �

I Corollary II.34.1. Lα ≺n Lβ if and only if for every Σn formula φ with parameters in Lα,
we have Lβ |= φ implies Lα |= φ.

Proof. The implication is direct. We prove the reciprocal by induction. The reciprocal
is true for n = 0. Suppose it is true for n, and for every Σn+1 formula φ with parameters in
Lα, we have Lβ |= φ implies Lα |= φ. In particular, as every Σn formula can be seen as a
Σn+1 formula, we have Lα ≺n Lβ . But by Proposition II.34, we get the only missing part for
n+ 1-stability: if ψ is Πn+1, then Lβ |= ψ implies Lα |= ψ. �

I Proposition II.35. For β limit and α < β, the predicate Lα ≺n Lβ is Π
Lβ
n uniformly in β

and α.

Proof. We start with Σ1-stability. We have Lα ≺1 Lβ iff

Lβ |= For all ∆0 formulas pΦ(b, a1, . . . , ak)q ∀p1, . . . , pk ∈ Lα[
∀x ¬Φ(x, p1, . . . , pk) or Lα |= ∃y Φ(y, p1, . . . , pk)

]
which is Π

Lβ
1 by Proposition II.29 and II.29.1. Suppose now that the predicate Lα ≺n Lβ is

Π
Lβ
n . To show that Lα ≺n+1 Lβ is Π

Lβ
n+1, we write first the formula which says Lα ≺n Lβ , in

order to express that if Lα satisfies a Σn+1 formula, then also Lβ satisfies this formula (see
Proposition II.34). This formula is Π

Lβ
n . We then combine it with the following Π

Lβ
n+1 formula,

which expresses that if Lβ satisfies a Σn+1 formula, then also Lα satisfies this formula:

Lβ |= For all ∆0 formulas pΦ(b1, . . . , bn+1, a1, . . . , ak)q, ∀p1, . . . , pk ∈ Lα,{
∀x1 ∃x2 · · ·Qxn+1, ¬Φ(x1, . . . , xn+1, p1, . . . , pk)

or Lα |= ∃y1 ∀y2 · · ·Qyn+1 Φ(y1, . . . , yn+1, p1, . . . , pk)

where Q ∈ {∃;∀} depends on the parity of n. This concludes the proof. �

When dealing with the constructibles, stability presents additional features to the notion of
elementary substructures in model theory. For instance, given that α is limit, the set of elements
which are Σ1-definable in Lα with no parameters is necessarily of the form Lβ , and β is the
smallest such that Lβ ≺1 Lα [5, Theorem 7.8]. We also have the following:

Theorem II.36

Suppose α < β for β limit, and Lα ≺n Lβ . Then α is Σn-admissible.

Proof. The proof is easy for Σ1-admissibility, but does not lift straightforwardly to
Σn-admissibility.

We first show the theorem for Σ1-admissibility. Suppose α is not Σ1-admissible. Then there
exists a ∈ Lα and a Σ1 formula Φ(x, y) = ∃z Φ0(x, y, z) with parameters in Lα witnessing the
failure of Σ1-admissibility, that is:

Lα |= ∀p ∈ a ∃r ∃z Φ0(p, r, z)
and Lα 2 ∃γ ∀p ∈ a ∃r ∈ Lγ ∃z ∈ Lγ Φ0(p, r, z)
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As α < β it is however clear that we have:

Lβ |= ∃α ∀p ∈ a ∃r ∈ Lα ∃z ∈ Lα Φ0(p, r, z)

In particular the above Σ1 formula is satisfied in Lβ but not in Lα, so we do not have Lα ≺1 Lβ .
We continue by induction: suppose α is not Σn+1-admissible. Then if Lα is not Σn-stable

in Lβ , it is in particular not Σn+1-stable in Lβ and the proposition is verified. Otherwise we
have Lα ≺n Lβ . Let a ∈ Lα and let Φ0(x, y, z1, . . . , zn+1) be a ∆0 formula (where Q ∈ {∃;∀}
depends on the parity of n) such that:

Lα |= ∀p ∈ a ∃r ∃z1∀z2 · · ·Qzn+1 Φ0(p, r, z1, . . . , zn+1)
and Lα 6|= ∃γ ∀p ∈ a ∃r ∈ Lγ ∃z1∀z2 · · ·Qzn+1 Φ0(p, r, z1, . . . , zn+1)

Note that unlike with the Σ1-case, we cannot necessarily bound the variables z1, . . . , zn+1

by Lγ . Indeed, it might be the case for every p in a there exists some r in Lγ which is Σn+1-
definable in Lγ , even though it is not Σn+1-definable in Lα. We need to use that Lα ≺n Lβ .
In particular we have:

Lβ |= ∃α ≺n β ∀p ∈ a ∃r ∈ Lα s.t. Lα |= ∃z1 ∀z2 . . . zn+1 Φ0(p, r, z1, . . . , zn+1)

First let us note that by Proposition II.35 the above formula is Σn+1. It is also clear that Lα
cannot be a model of this formula, because then, using Proposition II.34, it would also be a
model of:

∃γ ∀p ∈ a ∃r ∈ Lγ ∃z1 ∀z2 . . . zn+1 Φ0(p, r, z1, . . . , zn+1)

�

II.2.6 Projectibility

Another central notion in α-recursion theory is the notion of projectible ordinal. We are in
particular able to lift most of the work done in algorithmic randomness and genericity, in the
case α is projectible into ω. The reason for this is that it is a way to recover a weak homogeneity
of space, time and machines code. Indeed, it allows for instance to have an enumeration of
machines along ω, or to allows some “numeric” errors such that the sum of all errors is finite (such
as in Proposition II.10). However, increasing the time stage might not increase its projectum,
disallowing the use of some time trick.

Definition II.37 (Projectum)

We say that α is projectible in β ≤ α if there is a one-one function Σ1-definable (with
parameters) in Lα, from α into β. We call projectum and write α∗ for the smallest ordinal
such that α is projectible into α∗. If α∗ < α we say that α is projectible. Otherwise we
say that α is not projectible.

This notion of projectibility is very useful to lift proofs from lower to higher recursion. This
has been done in particular in the hyperarithmetic setting, for instance in [7], using the fact that
ωCK

1 is projectible into ω. We give a general theorem on projectums. This theorem can be found
in a similar form in [5].
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Theorem II.38

Let α be admissible. We have that α∗ is the smallest ordinal such that Lα is not a model
of Σ1-comprehension for subsets of α∗. If the Σ1 formula Φ is a witness of this failure,
then the projectum is definable with the same parameters as the ones used in Φ.

Proof. We first show that Lα satisfies Σ1-comprehension for subsets of ordinals smaller
than α∗. Let δ < α∗ be an ordinal, and A ⊆ δ be such that x ∈ A ⇔ Lα |= ∃y Φ(x, y)
where Φ is ∆0. Let f be the function defined on A, such that f(a) = δ × γ + a where γ is
the smallest ordinal such that Lγ |= ∃y Φ(a, y). Obviously f is 1-1. We then collapse f [A] by
defining g(γ) to be the first β ∈ f [A] that we find which is not in {g(γ′) : γ′ < γ}. Formally,
let ∃y Ψ(a, β, y) with Ψ ∆0 be the Σ1 formula defining f . Then we define the function g by
g(γ) = β if there exists η for which 〈β, η〉 is the smallest pair such that Lη |= ∃y ∃a Ψ(a, β, y)
and β 6∈ {g(γ′) : γ′ < γ}. We have that f−1 ◦ g is a Σ1-definable bijection from an initial
segment of α, onto A. Also the domain of f−1 ◦g cannot be α otherwise α would be projectible
into δ < α∗. Therefore the domain of f−1 ◦ g is a strict initial segment of α and thus the range
of f−1 ◦ g, which is A, is an element of Lα.

We now exhibit a Σ1-definable subset of α∗ which is not in Lα. If p is a projection into
α∗, we have that p[α] = A ⊆ α∗ is a subset of α∗ which is Σ1 definable in Lα. This subset is
not in Lα, as otherwise the function g : α∗ → α defined by g(β) = supx∈A∧x≤β(p−1(x)) would
contradict the admissibility of α. �

II.2.7 An α-simple subset of N
We first mention that when α is projectible and Lα |=“everything is countable”, then there

exists a uniform enumeration of Σ1 formula with parameters, along N.

Theorem II.39

If α is admissible and projectible in ω, and Lα |=“everything is countable”, then there
exists an enumeration (Pn)n∈ω of Σ1 formulas with exactly one parameter, and an α-r.e.
function U such that for every n,m ∈ ω, we have Lα |= U(n,m) iff Lα |= Pn(m).

Proof. We first show that there is a partial Σ1-definable surjection from ω onto Lα. As α
is not projectible, there is a Σ1-definable function p : α → ω. Note that as Lα |= “everything
is countable”, for every β < α there exists in Lα a bijection between Lβ and ω, and the <L-
smallest one can be found uniformly. Let p be the projectum of α into ω, if p(β) = n, then we
call fn the <L-smallest bijection between Lβ and ω. The surjection we are looking for is then
defined to be f(〈n,m〉) = fp−1(n)(m).

Let (θm)m∈N be a recursive enumeration of the Σ1 formulas without parameters, but with
two free variables. We now define U(〈c, e〉, i) to be true if ∃K,K = f(c) ∧ θe(i,K).

Let Pe be any Σ1
1 formula with one parameter K ∈ Lα. Fix e′ such that θe′ is Pe where

the parameter K is now a free variable. As f is a surjection from N to Lα, let c be such that
f(c) = K. Now, U(〈c, e′〉) is true if and only if ∃K,K = f(c)∧ θe′(i,K) if and only if θe′(i,K)
if and only if Pe(i).

�

I Corollary II.39.1. If α is admissible and projectible in ω, and Lα |=“everything is countable”,
then there exists an α-r.e. set S ⊆ N which is co-infinite and such that S ∩W 6= ∅ for every
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infinite α-r.e. W .

Proof. The proof is the same as in the higher and computations, using Theorem II.39.
Write Pe[β] for the set {n : Lβ |= U(e, n)} (this has to be compared to We[t]). Enumerate
n into S if and only if there is some e ∈ N and β < α with n ≥ 2e and S ∩ Pe[β] = ∅, but
n ∈ Pe[β + 1], and n is the smallest such integer.

�

Note that if α is not projectible in ω, there cannot exists simple subsets of N as every α-r.r.
subset of N is also in Lα by Theorem II.38 and is therefore α-computable.

II.3 Infinite Time Turing Machines

The idea behind Infinite Time Turing Machine is different from the previous notions of infinite
computation. This time, we will define an actual model of computation, a machine, just as we
did with Turing machine. It is now easier to be confident that the resulting notion do represent
infinite computations.

However, the idea is the same: we index computations by ordinals, instead of integers. In the
model, there will be no predetermined bound to the computations, even though bounds appear
naturally. Several ordinals will be associated to bound particular features of computations, and
we will see that these ordinals have purely set-theoretic definitions, in a surprising but satisfying
way.

It turns out that the Infinite Time Turing machines actually give a model to α-recursion for
a particular α. But more than that, it gives a much better way to relativize computations to
real numbers. In α-recursion, we saw that an admissible α is good for bounding computations
to length less than α while still keeping a good behaviour. Yet, when relativized to some set X
the computations may need to go further α to be well-behaved: Lα(X) might not be admissible.
Infinite Time Turing Machines overcome this difficulty as there is no predetermined bound on
the computations.

II.3.1 The Infinite-Time Turing Machines model
We start by introducing the model. Just as we did for regular Turing machines, we need to

define two things: the machine, and the computation.

Definition II.40 (Infinite Time Turing Machine)

An Infinite Time Turing Machine, often shortened to ITTM, is a Turing machine with
3 tapes called the input tape, the working tape, and the output tape; and a distinguished
state called qlim.

This is all for the formal definition of an Infinite Time Turing Machine. The denotation of
the tapes already suggests how they will be used in computations. As a special kind of Turing
Machine, there exists countably many ITTMs, and they can be given a Gödel code. Let us now
explain how they are executed.

Definition II.41 (Infinite Time computations)

If M is an ITTM, we say that c is a configuration of M if c = (q, T, h) where q is a state,
T is the value of the tapes (merged in one function from N to 2) and h ∈ N is the position
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of the head.
A computation of length α is a sequence C = (cβ)β<α where cβ = (qβ , Tβ , hβ) are config-
urations of M , and we have the following requirements on the course of computation:

1. q0 is the initial state of the Turing machine, T0 three empty tapes and h0 = 0.
2. qβ+1 is given from qβ using the usual rules of regular Turing machines.
3. If λ is a limit ordinal, then qλ = qlim. Moreover, hλ = 0 and Tλ(n) =

lim supβ<λ Tβ(n).
If M is an ITTM and α an ordinal such that there exists an α-long computation for M ,
we write M [α] to denote the value of the output tape at step α. If additionally at the
beginning the input tape is filled with x, we writeM(x)[α]. We write CM [α] for the whole
configuration of M at step α.

In an infinite computation, we want of course the successor steps to be the same as in the
case of finite computation, independently of the fact that there may be infinitely many past
computations. So the only thing that we had to specify in Definition II.41 is the behaviour at
limit steps: the state, the head and the tapes.

At a limit step, the state is always put to the fixed state qlim. Therefore, in a computation
we are able to know when we are at limit steps. In modern programming terms (as opposed to
Turing machine programming), one could say that there is a special line of code, or function, such
that the execution flow is directed to this line at each limit step. Similarly, the reading/writing
head of the machine is redirected to the initial position.

However, we want to keep a memory of the past computations, so we cannot erase all the
tapes to 0s. If at some point, the value of a cell was stable, then the value at the limit is clear:
it should be the stable value. However, sometimes the value in a specific cell alternates when
approaching the limit step. In this case, we could choose several behaviours, for instance that the
computation diverges. Instead, we define the limit to be 1, making Tλ(n) = lim supβ<λ Tβ(n).
Of course, using lim inf would be completely symmetric. We will see that this is an important
design choice of ITTMs.

Definition II.42 (ITTM-computability)

We say that a real x ∈ 2ω is ITTM-computable, also called writable, if there exists an
ITTM whose execution with empty input tape reaches the halting state with x being
written on the output tape.
If y ∈ 2ω is any real, we say that x ∈ 2ω is ITTM-computable in y, also called writable in
y, if there exists an ITTM whose execution with y written on the input tape reaches the
halting state with x being written on the output tape. In this case, we write M(y) = x.
We just write M(y) ↓ to mean it halts.
We say that a class C ⊆ 2ω is ITTM-decidable if there exists an ITTM M such that if
x ∈ 2ω, then M(x) = C(x) (the ITTM always halts, with 0 on the output tape if x 6∈ C
and 1 otherwise).
We say that a set A ⊆ N (resp. C ⊆ 2ω) is ITTM-semidecidable if there exists an ITTM
M such that if n ∈ N (resp. x ∈ 2ω), then M(n) ↓ if and only if n ∈ A (resp. if x ∈ 2ω,
then M(x) ↓ if and only if x ∈ C).

We note that the ITTM model is quite a robust one. Adding or removing tapes (as long as
we keep the input, output and working spaces in some way), changing the alphabet, does not
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modify the ITTM-computable reals.
There are two fundamental differences between α-recursion and ITTMs. The first one is

that there is no fixed bound on the length of computation in ITTMs, while α-recursions are
bounded by α. The second is that while α-recursions have access to the entire history of the
computation, Infinite Time Turing Machines can only try to code their history on the ω-length
tapes. Therefore, it might start to be “lost in time”, after a too long computation. As we will see
later, there will be a special ordinal after which those machines get confused, and start to loop.

II.3.2 Computational power of ITTMs
We now give a few examples of the ITTM-computable sets. It turns out that the computability

power of these machines is very high.

Theorem II.43

The following sets are ITTM-computable:
1. the jump ∅′,
2. the n-th jump ∅(n),
3. the α-th jump ∅(α) for any recursive α,
4. the sets WO and O, and more than that the set WO is ITTM-decidable,

5. if X is any writable set, the set WOX and OX . In particular, OO and OOO and

OOO
..

.

Proof. It is clear that item 5 implies all the other items, but we prove them one by one
in order to get a better intuition on how to program ITTMs.

We show that ∅′ is ITTM-computable. Let M be the ITTM that does the following: when
run, it simulates in parallel the execution of Turing machines ϕe with input e. Whenever one
machine stops, it writes 1 on the output tape, at position e if e is its code. Then, it halts when
it reaches a limit state. Clearly, at limit step all cells of the tape converged to the right value.

Computing ∅(n) is done by induction. Suppose we can compute ∅(n) for some n. Then, we
define the machine that first write ∅(n) on some working tape, but instead of halting it simulates
in parallel the execution of Turing machines ϕe with input e and oracle ∅(n). Whenever one
machine stops, it writes 1 on the output tape, at position e if e is its code. It halts the next
time it reaches the limit state. Clearly, at limit step all cells of the tape converged to the right
value.

We won’t prove item 3, but it is implied by item 4. We show that WO is ITTM-decidable.
Let x be a real written on the input tape. The fact that x is a code for a linear order is
an arithmetical statement, as we proved that we can compute arbitrary jumps, it is ITTM-
decidable. So the machine halts with the “no” answer if x is not a code for a linear order.
Otherwise, it has to continue to check the well-foundedness of the order coded by x.

The machine works as follow: it find a smallest element of x, removes it, and iterates. If
there is no smallest element at some point, then it rejects x, otherwise it reaches a stage where
the linear order has empty domain, in this case it accepts x. One of the two events must occur,
as any linear order on A is such that A = B∪C where B is well-ordered and C has no smallest
element.

It remains to explain how to find a smallest element. The ITTM will consider all numbers
one by one, and stored in some (infinite) part of the tape the current best candidate for being
the smallest one. If there is no smallest elements, we will find a new best candidate infinitely
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often, and if there is one, we will change our mind only finitely often. In order to know in
which case we are, every time we change the best candidate, we also “flash” a particular cell
that we call “flag”: we make it equal to 1, and then 0 again.

If at the limit step the value of the “flag” cell is 1, then infinitely often we flashed it, and
there is no minimum, so x is ill-founded. Otherwise, the reserved tape for the best candidate
stabilized at some point, and the minimum is written on it.

Item 5 is clear by relativizing the item 4. �

The most important thing here is the ability to check that a real is a code for a well-order.
This fact used the “lim sup” rule in an unavoidable manner, so the design choice was important
here for this model.

Computational weaknesses of ITTMs

For the moment, we only gave examples of ITTM-computable sets, and seen that they go
quite high compared to our previously defined hierarchy. We give here a few examples of bounds
on ITTM computations.

Definition II.44

We define γ to be the supremum of the halting times of ITTMs.

First, as there are countably many ITTMs, it is clear that γ must be defined, and has cofinality
ω. Therefore it cannot be ω1. We prove that γ is countable.

I Proposition II.45. We have γ < ω1.

Proof. We will prove that if the execution of an ITTM reaches stage ω1, then it is in
a looping process. So suppose M is an ITTM with a computation C = (cα)α<ω1+1 reaching
stage ω1. Then, at ω1 the state is qlim and the head is at position 0. Let us define an ordinal
α with the exact same configuration as ω1, that is Cα = Cω1

.
We say that n is alternating if the sequence (Tα(n))α<ω1 has no limit, otherwise it is stable.

Let α−1 = 0 and αn be the smallest ordinal higher than αn−1 such that
— If n is stable, the sequence (Tα(n))α<ω1

has converged at step αn.
— For every alternating m < n, the sequence (Tα(m)) has alternated between αn−1 and

αn.
Then, let α = supn αn. As each αn is countable and the union is countable, then α < ω1. We
also argue that Tα = Tω1 : indeed, if n is stable, as α > αn, Tα(n) is already the stable value.
If n is alternating, Tα(n) = lim supβ<α Tβ(n) = 1 as there is no stable value by definition of
the Tαn . So Tα = Tω1

.
As α is limit, its associated state is qlim and the head is at position 0. Then Cα = Cω1

. But
contrary to ordinary Turing machine, this solely does not imply that the machine entered an
unbounded looping cycle. Indeed, a looping cycle can be stopped after ω many of its iterations,
if because of the lim sup rule, one cell stops to be 0. However, in our case, we also have that
for all n such that Tω1

(n) = 0, there is no β between α and ω1 such that Tβ(n) = 1. So the
looping cycle cannot be broken, and M will never stop. �

Theorem II.46

The following are not ITTM-computable:
1. The set {e ∈ N : Me(e) ↓}.
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2. Any code for an ordinal α ≥ γ.

Proof. The first item has the exact same proof than the fact that the jump is not
computable. We still have the recursion theorem for ITTM, and using this we could devise an
ITTM that halts if and only if it does not halt.

Let x be any code for α ≥ γ. In the proof of the ITTM-decidability of WO, given x a code
for some β, we used at least β steps to answer yes, as we remove one by one the elements of
x in the order of β. But then, the machine writing x on a tape, and then checking its well-
foundedness would take more than γ steps to halt. This is a contradiction with the definition
of γ. �

Theorem II.47

There exists an ITTM-simple set: an ITTM-semidecidable set S ⊆ N such that for every
infinite ITTM-semidecidable set W ⊆ N, we have S ∩W 6= ∅.

Proof. We use the fact that there exists a universal Infinite Time Turing Machine,
simulating all the other ones. Let us describe a machine M : it simulates on the working tape
all machines Me on every input n. We also keep on the working tape a cell Ce initially 0, for
each of machines Me. We say that Me is marked if Ce = 1. If at some point there is n and e
such that n ≥ 2e, Me(n) ↓ and Me is not marked, then we enumerate n and mark Me.

The verification is as usual. �

II.3.3 The three notions of writability

In order to tackle the exact complexity of ITTM-computable sets with regards to the hierarchy
of Gödel’s constructibles, we need a careful analysis of the halting time of the ITTMs. This goes
through an attentive comparison between the halting ordinals of Infinite Time Turing Machines,
and the ordinals that have writable codes, as well as two other notion of writability: eventual
writability and accidental writability.

Definition II.48 (Hamkins, Lewis [41])

Let y ∈ 2ω.
— The real y is writable if there is an ITTM M such that M ↓ [α] = y.
— The real y is eventually writable if there is an ITTMM and an ordinal α such that
∀β ≥ α we have M [β] = y.

— The real y is accidentally writable if there is an ITTM M and a stage α such that
M [α] = y.

For x ∈ 2ω we define the notions of x-writable, x-eventually writable and x-accidentally
writable similarly, but with the ITTMs starting with x on their input tape.

Hamkins and Lewis introduced these three analogues of being computable by an ITTM. They
used these notions to study the ordinals that are computable by an ITTM, with respect to these
definitions. In particular, these definition will be particularly important when applied to codes
of ordinals.
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Definition II.49 (Hamkins, Lewis [41])

An ordinal α is writable, resp. eventually writable, resp. accidentally writable, if it has
a writable code, resp. an eventually writable code, resp. an accidentally writable code.
For x ∈ 2ω we define analogously the notion of x-writable, x-eventually writable and
x-accidentally writable.

It is clear that the writable, eventually writable, and accidentally writable ordinals, are all
initial segments of the ordinals. Hamkins and Lewis showed that the supremum of the writable
ordinals was eventually writable and that the supremum of the eventually writable ordinals was
accidentally writable.

Definition II.50 (Hamkins, Lewis [41])

We define the following ordinals:
— λ is the supremum of the writable ordinals.
— ζ is the supremum of the eventually writable ordinals.
— Σ is the supremum of the accidentally writable ordinals.

λx, ζx, Σx are defined the same way but relative to x.

Theorem II.51

λ is eventually writable and ζ is accidentally writable.

Proof. The ordinal λ is eventually writable via the machine M , in the following way:
M simulates in parallel all ITTMs. At each step, M writes on the output tape the sum of all
ordinals written on the output tape of halted simulated machines. When the simulation of all
halting machines have halted, the output tape of M will never change, and contains an ordinal
higher than all writable ordinals. Therefore, as the set of eventually writable ordinals is closed
downward, λ is eventually writable.

We now prove that ζ is accidentally writable, via the following machine M . The execution
of M once again simulates all ITTMs, but this times it writes on the output tape the sum of
ordinals written on the output tape of any machine, halted or not. Let α be an ordinal where
all eventually writable ordinals have settled in the simulations. Then, the ordinal written in
the output tape at this stage α will be greater than any eventually writable ordinal. By the
downward closure of the accidentally writable, ζ is accidentally writable. �

Hamkins and Lewis also defined the clockable ordinals: an ordinal α is clockable if it is the
halting time of some ITTM M . It is clear that the supremum of the clockable ordinals (we
already defined it as γ) is at least λ: if an ordinal α is writable, one can design the machine
that writes α and then “counts down α” in at least α steps just as we did in Theorem II.46. The
question of equality between λ and the supremum of the clockable ordinals was one of the main
question in Hamkins and Lewis [41]. It was later solved by Welch:

Theorem II.52 (Welch [65])

Let M be an ITTM. Write TM [α] for the content of the tapes at stage α.
1. If (TM [α](n))α<λ converges to i ∈ {0, 1}, then TM [α](n) = i for every α ≥ λ.
2. If (TM [α](n))α<ζ converges to i ∈ {0, 1}, then TM [α](n) = i for every α ≥ ζ.
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3. (TM [α](n))α<ζ diverges if and only if (TM [α](n))α<Σ diverges.
We have in particular CM [ζ] = CM [Σ]. Also ζ,Σ is the lexicographically smallest pair of
ordinals such that CU [ζ] = CU [Σ] for the universal machine U .

Proof. First, suppose that the result is true for α < Σ. Then, We still have that
CM [ζ] = CM [Σ] and more than that, the 0 valued cells never take value 1 between stage ζ and
Σ. The machine thus enters a loop, and the converging cells never take a new value. Therefore,
we only need to prove item 1 and 2 for α < Σ.

We start by proving item 1. Suppose that (TM [α](n))α<λ converges to i ∈ {0, 1}, but there
exists α with λ ≤ α ≤ Σ and TM [α](n) = 1− i. Let β0 < λ be a stage where (TM [β])β<λ has
converged. LetM ′ be the machine that searches for an accidentally writable β with β > β0 but
TM [β] = 1− i, writes it on the tape and halts. This machine will halt, as there exists such an
accidentally writable ordinal. But then this ordinal satisfies β0 < β < λ but TM [β](n) = 1− i,
a contradiction with the definition of β0.

We now prove item 2 with very similar method, but using eventually writability instead of
writability. Once again, we let β0 < ζ be an eventually writable ordinal such that between β0

and ζ, the value of TM (n) is constant and equal to i. We suppose that for some accidentally
writable ordinal β above ζ, we have TM [β](n) = 1−i. Then, we define the following ITTMM ′,
which does the following: it finds the first accidentally writable β such that TM [α](n) = 1− i
that is above the approximation of β0, and writes it to the tape. Whenever the approximation
of β0 changes, it may change the ordinal written on the output tape.

First, because there exists one, M ′ will always find an ordinal to write on the tape. This
ordinal written on the tape will eventually settle, as the approximation of β0 will settle, and
therefore it is an eventually writable ordinal β < ζ. But TM [β](n) = 1 − i and β0 < β < ζ, a
contradiction.

It remains to prove item 3. The reverse implication is a weakening of item 2, so we only have
to prove the forward implication. Suppose that there exists an accidentally writable α < Σ
such for α < β < Σ, TM [β](n) is constant equal to i (we take α as the smallest such). Then, we
define the following ITTM M ′: the machine M ′ searches for all accidentally writable ordinals
β such that TM [β](n) = i. Whenever it finds such a β, it first checks that it is greater that the
one, currently β0, written on the output tape. If so, it checks that between β and β0, there
exists an ordinal δ with TM [δ] = 1− i. If so, it replaces on the output tape the ordinal β0 by
the new ordinal β.

We argue that the machine M ′ eventually writes an ordinal above α. Indeed, the first
accidentally writable found above α will be written on the output tape, and never be replaced.
Therefore, α < ζ and (TM [α](n))α<ζ must converge. �

I Corollary II.52.1 (Welch [65]). The ordinal λ is also the supremum of the ITTMs’ halting
time.

Proof. By Theorem II.52, we have that if an ITTM M has not halted before stage Σ,
then it will never halt, because the configuration of an ITTM at stage Σ is the same as the
configuration of an ITTM at stage ζ, and every 1 in the tape at stage ζ will stay a 1 at every
stage between ζ and Σ. Thus the computation will loop forever, and if an ITTM halts it must
halt before stage Σ. We can then run an ITTM which looks for all the accidentally writable
ordinals α (using some universal ITTM) and for each of them, which runs M for α steps.
When the machine finds an accidentally writable ordinal α such that M [α] ↓, then it writes α
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and halts. By hypothesis on M our ITTM will write α and halt at some point. Thus α is a
writable ordinal, which implies that M halts at a writable step. �

I Corollary II.52.2 (Welch [65]). The ordinal ζ is equal to the supremum of the ITTMs’
converging time.

Proof. By Theorem II.52, we have that if an ITTM M has not converged before stage Σ,
then it will never converge, because the configuration of an ITTM at stage Σ is the same as
the configuration of an ITTM at stage ζ, and thus the computation will loop forever with at
least one change in some cell in each loop. Thus if an ITTM converge it must converge before
stage Σ. But then, by Theorem II.52 each cell must actually have converged at time ζ, never
to be changed again. So if M has a converging output tape, it must be converging before ζ.

Now, let us show that the time of converging computations are cofinal below ζ. Let α < ζ
be an eventually writable ordinal. Then, the following machine M has a converging output
tape, that reaches a stable value after at least α steps: M computes an approximation of α, on
its working tape. Each time the approximation changes, M verify if it codes an ordinal using
the algorithm of Theorem II.43, item 4, while at the same time “messing” with the output tape:
flipping one of its bit for every step of the algorithm. But given an ordinal γ, the algorithm
takes at least γ steps to finish. So, the first time that the approximation of α reaches its final
state, the output tape will not be converging for at least α more steps, and settle down after
that. �

I Corollary II.52.3 (Welch [65]). The ordinal Σ is equal to the supremum of the times where
new accidentally reals appear.

Proof. As any ITTM starts to loop after it has reached Σ, then no new reals can appear
after stage Σ. It remains to show that some new reals appear cofinally below Σ. First, as ζ is
accidentally writable but not eventually writable, it cannot appear at a stage below ζ. Now,
suppose that no new real appears at stage α > ζ that we consider limit. Then, the universal
machine Mu at stage α has the exact same configuration as at some ordinal β < α. Let δ
such that β + δ = α. Then, by Theorem II.52, all cells containing a 0 do not change of value
between stage α and αδ. Therefore, the universal machine starts looping from stage α to α+δ,
and as by Theorem II.52 the pair (ζ,Σ) is the smallest initiating such a loop, we must have
α+ δ ≥ Σ, so α ≥ Σ as Σ is closed by sum. �

Welch’s theorem and proof provided a clear understanding of ITTMs allowing us, as we
will see it soon, to cut ourselves off the machine model, and to reason within the constructible
hierarchy.

II.3.4 The λ-ζ-Σ theorem
We state in this section results regarding the three ordinals λ, ζ,Σ, and their relative versions

λx, ζx and Σx. In particular, as promised we establish a clear connection between ITTMs and
constructibles, summed up in the two following theorems.

We introduce a coding of hereditarily countable sets defined in Definition II.23, into elements
of the Cantor set.

Definition II.53

A code for an hereditarily countable set H, is a real x ∈ 2ω such that x = 〈dom(x),∈x〉
and there is an isomorphism between (dom(x),∈x) and (tc({H}),∈).
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We can prove that every hereditarily countable set has a code. Indeed we prove by induction
over the membership relation ∈ that for every hereditarily countable set H, the transitive closure
of H is countable. This is clear by induction, because tc({H}) = {H} ∪ {tc(A) : A ∈ H} and H
is countable. So if (An)n∈N is an enumeration of tc({H}), then x ∈ 2ω defined by dom(x) = N
and n ∈x m if and only if An ∈ Am, is a code for H.

Also note that from a code x for H it is possible to recover the particular n ∈ dom(x) which
is linked to H in the isomorphism: it is the only n such that there is no m with n ∈x m.

Theorem II.54 (Welch [65])

The set Lλ (resp. Lζ , resp. LΣ) is the set of all sets with a writable (resp. eventually
writable, resp. accidentally writable) code.

Proof. Let us call H(λ) (respectively H(ζ), H(Σ)) the set of hereditarily countable sets
with a writable (respectively eventually writable, accidentally writable) code. Our goal is to
prove that H(η) = Lη for η being λ, ζ and Σ.

Before that, we argue that ITTMs can manipulate freely the codes for hereditarily countable
sets. If a and b are two codes, then it is ITTM-decidable if they both code for the same set:
indeed, this fact is Σ1

1 as it can be restated as “there exists an isomorphism between the two
relations”. Given a code b for a set B, the elements of the transitive closure of B are the one
with code bn, where n ∈ dom(b) and bn consists of b with domain restricted to the m such
that there exists a finite sequences (mi)i≤k with m = m0, mk = n and mi ∈a mi+1. Given
two codes a and b for sets A and B, an ITTM can also decide if A ∈ B: it is the case if there
exists an n such that a and bn code for the same set. Therefore, all ∆0 formulas are decidable,
and as the quantification in a code ranges over integers, the validity of any first order formula
in some hereditarily countable set is ITTM-decidable in the code.

For clarity we separate the proof in the two steps.

I Claim II.54.1. Lη ⊆ H(η) for η being λ, ζ and Σ.

Proof. First, we will prove that Lλ ⊆ H(λ), in other words, Lα ⊆ H(λ) for every
writable α. As α+ 1 is a well order on N, an ITTM can use it to split the working tape into
countably many tapes (Tβ)β<α+1. Then, we argue that the construction of Lα can be done
by an ITTM, by having a code for Lβ on the tape Tα.

A code for L0 is clearly ITTM-computable. Given a code for Lβ , we have to show that a
code for Lβ+1 is ITTM-writable. The first order formulas with parameters from a code c are
recursively enumerable in c. Then, an ITTM can check their validity . Therefore, an ITTM
is able to write a code for Lβ+1.

If β is limit, then, a code for Lβ should be a code for the union of Lγ for γ < β. All
those codes are accessible on the tapes Tγ , so it suffices to create a code for the union. The
code x∪ of the union will have dom(x∪) split into β set, where the γ-th subset contains the
elements of Lγ+1 \Lγ . As we fill the γ-th subset, we also complete the membership relation.

Using the previous construction, we are able to create a code for every Lα for α writable.
Therefore, every set in Lλ has a writable code, and Lλ ⊆ H(λ). If α is eventually writable,
we are able to do the same construction but restarting from the beginning every time the
approximation of α changes. So Lζ ⊆ H(ζ). It is also possible to enumerate all accidentally
writable ordinals, so we can do the construction for each of them, and accidentally write all
the codes obtained, so LΣ ⊆ H(Σ). �

I Claim II.54.2. H(η) ⊆ Lη for η being λ, ζ and Σ.
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Proof. We argue that any computation (halting or not) of length α is in Lα+n for some
n. Indeed, if c = (cβ)β<α+1 is a computation of length α, there is a unique and definable
way to extend it to a computation ĉ of length α + 1, so if c ∈ Lα+n then ĉ ∈ Lα+n+m for
some m ≥ 1 (depending on the way we code the computation). If there is a computation of
length α in Lα+nα for every α < λ, then there is a computation of length λ in Lλ+n for some
n, defined from the union of computations of length less than λ and the limit rule.

Therefore, if a computation halts before α, then the result of the computation must be
in Lα+n for some n. By Corollary II.52.1, γ = λ. Let Ax ∈ H(λ) with x being a code for
Ax such that there is a computation of length α < λ writing x. Then, we have x ∈ Lλ, and
we need to argue that Ax is in Lλ. This is because we can define the Mostowski collapse of
x, which yields A: Suppose x ∈ Lα. Then, constructing by induction the function f with
domain dom(x) verifying f(n) = {f(m) : m ∈x n}. The induction is of length β bounded
by KB(∈x), which is a writable ordinal as x is writable, so at Lα+β ⊆ Lλ there is a function
from dom(x) to Ax, and then Ax ∈ Lλ.

In order to show that H(ζ) ⊆ Lζ , this time we use a relation between ζ and converging
times for ITTMs. Indeed, by Corollary II.52.2, ζ is also the supremum of the converging
time of converging computations. So, if x is an eventually writable code of a set Ax, and
x is the converging value of the output tape of an ITTM, then the output tape must have
converged at step α < ζ. Then, x appears in some computation of length α < ζ, so x ∈ Lα
and Ax ∈ Lζ .

Finally, we deal with H(Σ) ⊆ LΣ. If x is accidentally writable, by Corollary II.52.3 it
must appear at some time before Σ. But then x ∈ Lα for α < Σ, and Ax ∈ LΣ. �

�

The following theorem is similar to Theorem II.52, but with the constructible hierarchy in
place of ITTM’s tapes.

Theorem II.55 (Welch [65])

The triplet of ordinals (λ, ζ,Σ) is the lexicographically smallest triplet such that

Lλ ≺1 Lζ ≺2 LΣ

By relativization, (λx, ζx,Σx) is the lexicographically smallest triplet such that

Lλx(x) ≺1 Lζx(x) ≺2 LΣx(x)

Proof. Let us first show that Lλ ≺1 LΣ. Let Φ be a Σ1 formula, with parameters in Lα
for α-writable. Thus, the parameter has a writable code. Let M be the machine that searches
for an accidentally writable β such that Φ is true in Lβ , then writes β on the output tape and
halts. If LΣ |= Φ, then Lλ |= Φ, so Lλ ≺1 LΣ.

By Corollary II.34.1, we only need to prove that if LΣ is a model of a Σ2 formula, then so
is Lζ . Let Φ ≡ ∃a ∀b φ(a, b, p) be a Σ2 formula with a parameter p in Lζ . Then, let M be the
machine which does the following: M searches for the first accidentally writable α it can find
so that for all the accidentally writable ordinal β to come, we have ∃a ∈ Lα,∀b ∈ Lβ ,Φ(a, b, p)
(where p is approximated). It writes the current such ordinal α on the output tape when it
finds one, and replaces it only when a strictly bigger is needed.

We argue that M eventually writes an ordinal on its output tape: indeed, as we have
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LΣ |= ∃a ∀b φ(a, b, p), there exists some α < Σ such that ∃a ∈ Lα ∀b ∈ LΣ φ(a, b, p), so when
the approximation of p has converged and such an α is found it will be written on the tape
and never be replaced. But then, α < ζ and so Lζ |= ∃a ∀b φ(a, b, p).

We now argue that this is the smallest pair. Suppose there exists a smaller pair (α, β, δ)
with Lα ≺1 Lβ ≺2 Lδ. Then as we can do all computations of length less than η in Lη for η
limit, every converging cells at step δ actually converged at step β. But then, the universal
machine (in the sense that it simulates all the others) have reached a looping cycle at stage
β, repeating at stage δ. This is so for δ = Σ and β = ζ by Theorem II.52. If an Infinite
Time Turing Machine has halted, then it has halted at step β = ζ, so by stability it has also
halted at stage α. Therefore, α is at least the supremum of halting machines, that is α = λ by
Corollary II.52.1. �

I Corollary II.55.1. The ordinal ζ is Σ2-admissible, and there are cofinally many eventually
writable Σ2-admissible ordinals below ζ.

Proof. As Lζ ≺2 LΣ, we deduce from Theorem II.36 that ζ is Σ2-admissible. In particular
for any eventually writable α we have that LΣ is a model of Φ ≡“there exists β > α which is
Σ2-admissible”. It follows that Lζ is also a model of Φ and thus that there are cofinally many
eventually writable Σ2-admissible ordinals. �

I Corollary II.55.2 (Hamkins, Lewis [41]). The ordinal λ is Σ1-admissible, and there are
cofinally many writable Σ2-admissible ordinals below λ.

Proof. For any writable α we have that LΣ is a model of “there exists β > α which is
Σ2-admissible”. It follows that Lλ is also a model of that and thus that there are cofinally
many writable Σ2-admissible ordinals. �

An important question of [41] was to determine whether Σ was admissible or not. Welch’s
proof that ITTMs halt only at ordinals smaller than λ provides insight on the way ITTMs work,
and helped to solve the question. The proof can also be found in [66].

Theorem II.56 (Welch)

There is a function f : ω 7→ Σ which is Σ1-definable in LΣ with ζ as a parameter and
such that supn f(n) = Σ.

Proof. Let U be the universal ITTM, which simulates every other ITTM. In particular we
have by Theorem II.52 that Σ is the smallest ordinal greater than ζ such that CU [ζ] = CU [Σ].
For every n let us define the function fn such that fn(0) = ζ and fn(m + 1) is the smallest
ordinal bigger than fn(m) such that ∀i ≤ n for which {CU (i)[β]}β<ζ does not converge, we
have that CU (i) has changed at least once in the interval [fn(m), fn(m+ 1)].

If there was some n such that supm fn(m) = Σ, this would prove the theorem already. It is
actually possible to show, by combining Σ2-stability of Lζ in LΣ, together with admissibility
of Lζ , that this cannot happen for any n. Let us then define the function f as follow: f(n) is
the smallest ordinal α greater than ζ such that CU [ζ]� n = CU [α]� n. As for every m we have
supm fn(m) < Σ, then f(n) < Σ and thus f is Σ1-definable in LΣ with ζ as a parameter. It is
clear that f(n) ≤ f(n+ 1). It is also clear that f(n) < supn f(n) as otherwise we would have
CU [ζ] = CU [α] for some α < Σ.

Let α = supn f(n) and let us show α = Σ. Let n ∈ ω. If {CU (n)[β]}β<ζ converges then by
(2) of Theorem II.52 we have CU (n)[ζ] = CU (n)[α]. If we have that {CU (n)[β]}β<ζ diverges
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then CU (n)[ζ] = 0. Then either {CU (n)[β]}β<α converges to CU (n)[ζ] = 0 or {CU (n)[β]}β<α
diverges and then CU (n)[α] = 0. In both cases we have CU (n)[α] = CU (n)[ζ]. This implies
that CU [α] = CU [ζ] which implies α = Σ. �

I Corollary II.56.1 (Welch). The ordinal Σ is not admissible.

The function of Theorem II.56 will be used in various places of this thesis. We also have the
following:

Theorem II.57 (Welch)

The ordinal Σ is a limit of admissible ordinals.

Proof. By Lemma II.55.1, ζ is a limit of admissible ordinals. By Σ2-stability, Σ must also
be a limit of admissible ordinals.

�

We now study what effect the increase of one of the three main ordinals has on the others.

Theorem II.58

The following are equivalent:
1. ζx > ζ

2. Σx > Σ

3. λx > Σ

Proof. Suppose ζx > ζ. In particular ζ is eventually writable in x. Let {ζs}s be the
successive approximations of ζ using an ITTM that eventually writes ζ using x. We can run
an ITTM M(x) which does the following: at step s, it uses ζs as a parameter in the function
f : ω 7→ Σ of Theorem II.56, and whenever it has found values for every f(n) (and no new
version of ζs has arrived so far), it writes Σs = supn f(n) on the output tape. At some stage
s we will have ζs = ζ and thus Σs = Σ will be on the output tape. It follows that Σx > Σ.

Suppose now that we have Σx > Σ. We can run the ITTM M(x) which search for two
x-accidentally writable ordinals α < β such that Lα ≺2 Lβ , then writes β and halts. As ζ < Σ
is the smallest such pair of ordinals and as Σx > Σ, the ITTM will write an ordinal equal to
or bigger than Σ at some point and halt. We then have λx > Σ.

Finally if λx > Σ it is clear that ζx > ζ. �

Theorem II.59

For every λ ≤ α < ζ, there exists x ∈ ω such that α ≤ λx, such that ζx = ζ and Σx = Σ.

Proof. Let α be such that λ ≤ α < ζ. Let x ∈ ω be an eventually writable code for α.
It is clear that α ≤ λx. Let us show ζx = ζ. Let α be any x-eventually writable ordinal, via
some ITTM M . Let N be the ITTM which starts to eventually write x and in the same time
uses the current version xs of x to run M(xs) and copy at every time the output tape of M
on the output tape of N . There is some stage s such that for every stage t ≥ s we will have
xs = xt = x together with M(x)[s] = M(x)[t] = α. This implies also N [s] = N [t] = α. Thus
α is eventually writable.

From Theorem II.58 we have Σx = Σ, as ζx = ζ. �
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As a last theorem about the properties of reals which collapse λ, we give a bound on the
Borel complexity of this set. This uses a result by Friedman and Welch that is not covered in
this thesis, but can be found in [34]. It states that there is a “Theory Machine” that is able to
write on its output tape the theory of (Jα,∈) at stage ω2× (α+ 1), where Jα is the α-th level of
Jensen’s hierarchy, another version of the constructibles. We have α = ωα implies that Lα = Jα,
so Lη = Jη for η being λ, ζ or Σ.

Theorem II.60

The two sets {x ∈ 2ω : λx > λ} and {x ∈ 2ω : Σx > Σ} are both Σ0
ω2(Σ+2)+1.

Proof. Let us show that for any x ∈ 2ω, we have that

λx > λ ⇐⇒ ∃e ∈ N(∀α < λ,Me(x) ↑ [α]) ∧Me(x) ↓ [ω2(Σ + 2)]

where (Me)e∈N is an enumeration of ITTMs.
For the reverse implication, it is clear as if there exists a computation that does not halt in

time less than λ, but still halts when given more time, then λx > λ. So, the non trivial part is
to find a bound on the smallest halting time strictly above λ, for all x such that there exists
one.

If Σx = Σ and λx > λ, then there is a computation halting after λ but below Σ. Otherwise,
suppose Σx > Σ. Then, we use [34, Corollary 3] to show that there exists a computation
halting between Σ and ω2(Σ + 2). We transform the “Theory Machine” that writes the theory
of Jα[x] for x-accidentally writable ordinals, to make it halt whenever Jα[x] |= ∃α, β such that
Lα ≺1 Lβ . Let Me be this machine.

Then, the set {x ∈ 2ω : λx > λ} is also the set:

{x ∈ 2ω : Lω2(Σ+2)(x) |= ∃e ∈ N(∀α < λ,Me(x) ↑ [α]) ∧Me(x) ↓}

and by Theorem V.20 athis set is Σ0
ω2(Σ+2)+1.

Similarly, the set {x ∈ 2ω : Σx > Σ} is also the set:

{x ∈ 2ω : Lω2(Σ+2)(x) |= ∃e ∈ N(∀α < Σ,Me(x) ↑ [α]) ∧Me(x) ↓}

and this set is also Σ0
ω2(Σ+2)+1.

�

a. This theorem will be seen in the last chapter of this thesis. It says that given a formula ∆0 formula Φ,
the set {x ∈ 2ω : Lβ(x) |= Φ} is Borel of complexity Σ0

β , with a code that is β-recursive in a code for Φ. We
refer the reader to section V.2.3 for a more detailed presentation.

We now study the projectibility of the three ordinals λ, ζ and Σ. Intuitively λ is projectible
into ω, by the function which to α < λ associates the code of the first ITTM which is witnessed to
write α. Such a thing is of course not possible to achieve with ζ, which indeed is not projectible.

Theorem II.61
.

1. λ is projectible into ω without parameters.
2. ζ is not projectible.
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Proof. A direct proof of (1) would be possible. It is also a direct consequence of
Theorem II.38: it is well known that the set {e ∈ ω : the e-th ITTM halts} is not writable (by
a standard diagonalization, see for instance [41]) and thus does not belong to Lλ. It is however
Σ1-definable in Lλ and thus Lλ is not a model of Σ1-comprehension for subsets of ω. It follows
that λ∗ = ω, with no parameters.

To prove (2), we will show that Lζ satisfies Σ1-comprehension for any set in Lζ . We shall
first argue that for every α < ζ, there exists β ≥ α such that Lβ ≺1 Lζ . For every α < ζ, there
exists by Theorem II.59 some x ∈ 2ω such that λx > α and such that ζx = ζ and Σx = Σ. In
particular we have Lλx ≺1 Lζx = Lζ . Now suppose that for α < ζ we have that A ⊆ Lα is
Σ1-definable in Lζ with parameters in Lα. Let β ≥ α be such that Lβ ≺1 Lζ . In particular
A ⊆ Lα is Σ1-definable in Lβ . It follows that A ∈ Lζ . �

We now study the projectibility of LΣ. We will show that it is projectible into ω with
parameter ζ, in a strong sense, that is, with a bijection. To do so we first need to argue that LΣ

is a model of “everything is countable”. It is clear intuitively: if x belongs to LΣ then it has an
accidentally writable code, and this code gives the bijection between x and ω. Friedman showed
a bit more:

I Lemma II.62 (Friedman [34]). Let α be limit. Suppose there exists x ∈ Lα such that Lα |=
“x is uncountable”. Then there exists γ < δ < α such that Lγ ≺ Lδ (that is, Lγ ≺n Lδ for every
n).

Proof. Let us first argue that there must be a limit ordinal δ < α such that Lα |= “Lδ
is uncountable”. If α is limit of limit this is clear, because there must be a limit ordinal δ
such that Lδ contains an x which is uncountable in Lα. As Lδ is transitive, it must be itself
uncountable in Lα. If α is not limit of limit, let δ be limit such that α = δ + ω. Suppose that
Lδ is countable in Lα. Thus also by definition of L, every element of Lδ+1 must be countable in
Lα. We can continue inductively to show that every element of Lδ+ω = Lα, must be countable
in Lα, contradicting our hypothesis.

Thus there must be a limit ordinal δ < α such that Lα |= “Lδ is uncountable”. We then
conduct within Lα the Löwenheim-Skolem proof to find a countable set A ⊆ Lδ such that
A ≺ Lδ. The Mostowsky collapse A′ of A is transitive, as A′ ≺ Lδ and as Lδ is a model of
“everything is constructible” together with “for all β the set Lβ exists” a, then A′ must be of
the form Lγ for some γ ≤ δ. As Lγ is countable in Lα we must have γ < δ. �

a. Note that this is where we use that δ is limit, using Theorem II.30

I Corollary II.62.1. For any limit ordinal α ≤ Σ, we have that Lα |= “everything is countable”.

Proof. It is immediate using that Σ is the smallest ordinal such that Lα ≺2 LΣ for some
α < Σ. �

Theorem II.63

Suppose Lα |= “everything is countable” and α is not admissible. Then there is a bijection
b : ω → Lα which is Σ1-definable in Lα with the same parameters than the ones used
in a witness of non-admissibility of α. In particular α is projectible into ω, with these
parameters (using b−1 restricted to ordinals).

Proof. We first show that there is a Σ1-definable surjection from ω onto Lα. As α
is not admissible, there is a set a ∈ Lα and a function g : a 7→ α which is Σ1-definable
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over Lα with some parameter p ∈ Lα, and such that supx∈a g(x) = α. Note that as Lα |=
“everything is countable”, there is a bijection in Lα between a and ω. Using this bijection there
is then a function f : ω → α which is Σ1-definable over Lα with parameter p, a, and such that
supn∈ω f(n) = α (the bijection does not need to be a parameter, as it can be detected directly
with a Σ1-formula, similarly to the way it is done below). Let Ψ(n, β) be the Σ1 functional
formula with parameter p, a, which defines f .

We now define a Σ1 formula (with parameter p, a) Φ(n,m, z) such that for every n,m there
is a unique z ∈ Lα for which Lα |= Φ(n,m, z), and such that for every z ∈ Lα, there exists
n,m such that Lα |= Φ(n,m, z). We define:

Φ(n,m, z) ≡ ∃g ∃β s.t.
Ψ(n, β) and
g is a bijection between ω and Lβ s.t. g(m) = z and
every g′ <L g is not a bijection between ω and Lβ

Recall that <L is the order of Theorem II.31. Note that the quantification ∀g′ <L g can
formally be replaced by a quantification bounded by the set {g′ <L g}, and that this set can
be obtained with an existential quantification at the beginning of the formula Φ. In particular
Φ is Σ1. It is clear that for every n,m, there is at most one z such that Φ(n,m, z). The fact
that every z ∈ Lα is defined by Φ for some n,m is clear because Lα |=“everything is countable”.

It follows that there is a surjection f from ω onto Lα, which is Σ1-definable in Lα with
parameters p, a. To obtain a bijection, we define the function h : ω → ω such that h(0) = 0 and
h(n+ 1) = min{m ∈ ω : ∀n′ ≤ n f(h(n′)) 6= f(m)}. Note that h is defined by Σ1-induction.
As α is not admissible, we should make sure we can do so. This relies on the fact that h is
defined only on integers: we can then essentially rely on the admissibility of ω. Indeed, to
decide h(n + 1) = m, we only need the finite function h �n and the finite function f �m. In
particular only finitely many witnesses for values of f are needed and they then all belongs to
some Lβ for β < α. Formally we can define h in Lα as follow:

h(n) = m ≡ ∃β ∃h′ �n ∀k < n
h′(k + 1) > h′(k) ∧ Lβ |= ∀i < k f(h′(k)) 6= f(i)∧
∀j with h′(k) < j < h′(k + 1) Lβ |= ∃i < j f(h′(j)) = f(i)
and h′(n) = m

The bijection is then given by b(n) = f(h(n)). �

I Corollary II.63.1. There is a bijection b : ω → LΣ which is Σ1-definable in LΣ with ζ as a
parameter. In particular Σ is projectible into ω, with parameter ζ.

Proof. From Theorem II.56 there is a function f : ω 7→ Σ which is Σ1-definable over
LΣ with parameter ζ and such that supn f(n) = Σ. From Corollary II.62.1: we have that
LΣ |=“everything is countable”. The result follows. �
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Chapter III

The Reverse Math of Hindman’s
Theorem

Gotlib, RàB T2. Le matou matheux

We have seen that many theorems of usual mathe-
matics are equivalent to one of the big five axiomatic
systems, known as RCA0, WKL0, ACA0, ATR0 and
Π1

1-CA0. There exists also many axiomatic systems that
are not equivalent to any of these big five. But what
about natural theorems? What kind of theorems are an
exception to the empirical phenomenon of the big five?

Most answers to this question come from combina-
torics, and especially Ramsey Theory. Ramsey Theory
is a branch of mathematics that studies how some or-
der must appear in sufficiently large structures. The
first and founding theorem of this branch is Ramsey’s
theorem, which states that for any n, there exists a
monochromatic clique of size n in every sufficiently large
complete graph with finitely colored edges.

If there are only two colors, one of the popular way
of saying it is: In a party, and for any n, if there are suf-
ficiently many people, then either there exists n people
who never saw each others, or there exists n people who
all know each others. For instance, in a rather small
party of six people, there must exists three guests who
never saw each others, or who all know each others.

There are generalizations of this theorem, where in-
stead of coloring edges, that is a set of two elements, we
color sets of n elements for a fixed n. We are interested

here in an infinite version of this: If we color the sets of cardinality n with finitely many colors,
then there exists an infinite set whose all subsets of cardinality n have the same color. The
infinite version for 2 colors and 2 elements, RT2

2, is between RCA0 and ACA0, but incomparable
to WKL0.

Among all the theorems studied in Ramsey Theory, which is the branch of mathematics that
study orders emerging from chaos, RT2

2 became the key-stone of natural theorems that are not
in the big five.
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In this chapter, we study one theorem from Ramsey Theory whose belonging to the big five
is still unknown. While most theorems outside of the big five are below ACA0, this one is known
to imply it.

III.1 Hindman’s Theorem

Hindman’s Theorem is an answer to a conjecture by Graham and Rotschild [37] in 1971. Neil
Hindman solved this conjecture positively in [43], showing that any finite coloring has a color
containing the finite sums of an infinite set. But this is only the beginning of the study of this
theorem: since Hindman’s article, there has been many other proofs, and especially a proof by
Galvin and Glazer (first appeared in [27]) starting a fruitful interaction between combinatorics
and ultrafilters.

Hindman’s Theorem has also been studied intensively by reverse mathematicians. Its first
analysis was done by Blass, Hirst and Simspon in [1], showing that the principle must be between
ACA0 and ACA+

0 . There has been many attempts and improvements as in [64, 21], however the
exact position of HT in the reverse mathematics zoo is still unknown. There has also been an
extensive study of the various weakening of Hindman’s theorem as in [21, 20, 30].

We start by giving all the details on Hindman’s Theorem with no concerns on reverse math-
ematical aspects.

III.1.1 Statement

Definition III.1

Let A ⊆ N. We denote by FS(A) the set of finite sums of distinct elements from A, that
is:

FS(A) =

{∑
n∈F

n : F ⊆fin A

}
We say that B ⊆ N is an IP set if there exists an infinite set A ⊆ N such that FS(A) ⊆ B.
We write A ⊆FS B for FS(A) ⊆ FS(B).

As a part of Ramsey Theory, Hindman’s Theorem share the same general form with Ramsey’s
theorem. However, instead of coloring tuples of fixed size, we color arbitrary sums of distinct
elements.

Theorem III.2 (Hindman’s Theorem, [43], HTFS)

Let c : N→ k be a finite coloring of the integers. Then, there exists a monochromatic IP
set.

The fact that it is a sum and not another operation on the integers is not crucial in the
combinatorics of the proof. For instance, it could be adapted with no changes for multiplication.
The precise requirement on the operation is that it forms a “right-moving semigroup”, as defined
in [36] (see also [44]). We will stick to the version of Hindman’s theorem with finite sums,
together with a version involving unions of finite sets that we will detail.

We often distinguish these two versions by calling them the “finite sum theorem” and the
“finite union theorem”. We will show that they are equivalent in terms of reverse mathematics.
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Definition III.3

Let U ⊆ Pfin(N), then, FU(U) is the set of finite unions of elements from U , that is:

FU(U) =

{ ⋃
A∈F

A : F ⊆fin U

}

Given two finite sets F and G, we write F < G for maxF < minG. We say that F and
G are apart if F < G or G < F , in other words if maxF < minG or maxG < minF . A
set U of finite sets has the apartness property if any two sets F,G ∈ U are apart.
We say that S is an IP∪ set if there exists an infinite set U ⊆ Pfin(N) with the apartness
property such that FU(U) ⊆ S.

One of the advantages of the Finite Union Theorem III.4 is that we don’t really have to deal
with the “preservation of finite sums” (in symbol ⊆FS): There exists some infinite set A ⊆ N such
that FS(A) is not closed under finite sums; an example is A = {1}∪3N where FS(A) = 3N∪3N+1,
but FS(FS(A)) = N \ {2}. Contrary to this, if U has the apartness property, then U is closed
under finite union and FS(FS(U)) = FS(U).

Theorem III.4 (HTFU)

Let c : Pfin(N)→ k be a finite coloring of the finite set of integers. Then, there exists an
IP∪ monochromatic set.

We will prove that over RCA0, these two formulations are equivalent. We introduce the key
link between these two theorems:

Definition III.5

We write t2 : Pfin(N) → N for the bijection F 7→
∑
i∈F 2i. It draws a correspondence

between the binary expansion of an integer and a finite set.
By extension, we say that a set of integers A has the apartness property if t−1

2 [A] has the
apartness property. In this chapter, we write λ : N→ N for min ◦ t−1

2 and µ : N→ N for
max ◦ t−1

2

Theorem III.6 (Lemma 2.2, [43])

We have HTFU ≡0 HTFS.

Proof. We start with the easy implication: the finite union theorem proves the finite
sum theorem. Given c a coloring of the integer, we define the coloring c′ : F 7→ c(t2(F )). By
HTFU, let U ⊆ Pfin(N) be with the apartness property, such that FU(U) is monochromatic
for c′. Then, S = t2[U ] is an infinite set, such that FS(S) is monochromatic for c: indeed, if
a0, · · · an ∈ S, with corresponding F0, · · · , Fn in U , then a0 + · · · + an = t(F0 ∪ · · · ∪ Fn) by
the apartness property, and therefore it must have the same c-color as a0.

Now, let us deal with the other implication. We cannot only use the inverse of t2, as for
F,G apart we do have t(F ∪ G) = t(F ) + t(G), but HTFS does not imply that µ(n) < λ(m)
for n,m in a solution for c. Therefore, we have to thin out the solution set.

More formally, let c : Pfin → k be a coloring. Define c′ = c ◦ t−1 : N→ k and use HTFS to
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get a S such that FS(S) is monochromatic. Our goal is to find a sequence of elements (an)n∈N
with µ(an) < λ(an+1) for all n.

We prove by induction on n that if A ⊆ N is any infinite set, then there exists a ∈ FS(A)
such that λ(a) ≥ n. The initial case is trivial. Suppose it is true for n, then let F0 ⊆fin A and
a0 =

∑
b∈F0

b such that λ(a0) ≥ n. Again, apply the induction hypothesis for A \ F0 to get
F1 ⊆fin A \ F0 and a1 =

∑
b∈F1

b with λ(a1) ≥ n. If λ(ai) ≥ n for some i < 2 we are done,
otherwise λ(ai) = n for all i < 2 and therefore λ(a0 + a1) ≥ n+ 1.

We are therefore able to build the sequence (an)n∈N with the apartness property and such
that FS({an : n ∈ N}) ⊆ FS(S): at each step, we search some an+1 in the finite sums of
elements of S not already used in a previous sum, with λ(an+1) ≥ µ(an). The set T =
t−1
2 [{an : n ∈ N}] is such that FU(T ) = t−1

2 [FS({an : n ∈ N})] and therefore is a solution to c
for the finite union theorem. �

The proof even show HTFU ≡W HTFS as defined later in Definition IV.4.

III.2 Multiple proofs

One of the striking phenomenons with regards to Hindman’s Theorem is the variety of its
proof. These proofs are truly different, and therefore make a good case of study for reverse
mathematics. We will only present some of them, following the chronological order in which
they appeared: Hindman first gave a pretty complex proof in [43], then Baumgartner simplified
it in [6], and finally Galvin and Glazer found a very simple and powerful proof using ultrafilters,
which first appeared in [27].

The amusing fact is that the simpler the proof is, the more it complex are the axioms used,
therefore the reverse mathematics order of complexity of these proof is reversed 1.

I Notation III.7. Let c : X → k be a coloring of a set X. Then, we write Cci = {x ∈ X :
c(x) = i} the set of elements of X of color i. When there is no ambiguity we omit the coloring
and write Ci.

III.2.1 The most effective proof

The most effective proof that we give here is almost the original one given by Hindman in
1974. In his paper [43], he had one very uneffective argument that was not really needed. In [1],
Blast, Hirst and Simpson studied this proof in terms of reverse mathematics, and removed the
uneffective bit.

Later, Towsner [64] gave a very elegant version of Hindman’s proof by clarifying the interme-
diate combinatorial objects and steps of the proof. This is what we present here.

Definition III.8 ([64])

Let F ⊆ N be a finite set, and S ⊆ N be an infinite set with F < S, c a k-coloring defined
on N and i < k a color.

— We say that (F, S) is a right-match for color i if F < S and for every x ∈ FS(S)
of color i, there exists an a ∈ F such that c(x) = c(x+ a),

— We say that (F, S) is a left-match for color i if F < S and for every x ∈ FS(S) of
color i, there exists an a ∈ F such that c(a) = c(x+ a),

— We say that (F, S) is a full-match for color i if F < S and for every x ∈ FS(S) of

1. as in “reverse” mathematics...
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color i, there exists an a ∈ F such that c(a) = c(x) = c(x+ a).
We say that (F, S) is a right-match (respectively left-match, full-match) if it is a right-
match (respectively left-match, full-match) for every color.

Let us give a property on these objects, that explains why they are of interest for finding a
witness to Hindman’s Theorem.

I Proposition III.9. Assume Hindman’s Theorem. If (F, S) is a full-match then for every
T0 ⊆FS S, there exists a set T1 with T1 \ F ⊆FS T0, FS(T1) monochromatic and F ∩ T1 6= ∅.

In other word, no matter how we shrink S, there will always be a solution containing an
element of F .

Proof. Suppose (F, S) is a full-match and T0 ⊆FS S. Then, let c0 be the coloring
k 7→ 〈c(k), a〉 with a ∈ F such that c(k) = c(a + k) = c(a). By Hindman’s Theorem, let
T̃1 ⊆FS T0 be such that FS(T̃1) is monochromatic for c0. It is clear that T1 = {a} ∪ T̃1 prove
the result. �

This theorem does not help to prove Hindman’s Theorem, it only helps to understand the
notion of full-match, and why we build a solution by picking elements from full-matches.

We have the same kind of result for right-matches, suggesting that right-matches will be
helpful to build full-matches:

I Proposition III.10. Assume that every coloring has a full-match inside any IP set. If (F, S)
is a right-match then for every T0 ⊆FS S, there exists a finite set G and an infinite set T1 such
that (F +G,T1) is a full-match and (F +G) ∪ T1 ⊆FS T0.

In other word, no matter how we shrink S, there will always be a full-match whose finite set
contains only elements that are obtained by a finite sum using an element of F .

In order to better understand, let S be such that every x ∈ FS(S) is the result of a unique
sum (for instance {2i : i ∈ N} is such a set). Then, if (G,S) is a right-match, every b ∈ G has
some a ∈ F in its unique sum decomposition.

Proof. Suppose (F, S) is a right-match and T0 ⊆FS S. Then, let c0 be the coloring
k 7→ 〈c(k), a〉 with a ∈ F such that c(k) = c(a+k). By the existence of full-matches inside any
IP set, let (G0, T1) be a full-match with G0∪T1 ⊆FS T0. Then, let x ∈ FS(T1), there must exist
b ∈ G0 such that c0(b) = c0(x) = c0(x+ b), that is there exists a ∈ F such that c(b) = c(b+ a)
and c(x) = c(x+a) and c(x+b) = c(x+b+a). We conclude that c(a+b) = c(x) = c(a+b+x),
and (F +G,T1) is a full-match as well. �

I Corollary III.10.1. If (F, S) is a right-match then for every T0 ⊆FS S ∪ F , there exists an
infinite set T1 ⊆FS T0 and an element x ∈ T1 such that x ∈ F + FS(S).

In the “more effective” proof of Hindman, we will be interested only in right-matches and
full-matches, which were called half-matches and full-matches in [64]. Therefore we do not give
a suggestion of how left-matches can be used, but they will be seen to be of great importance in
the reverse mathematical study of Hindman’s Theorem, in section III.3.3.

The first step: constructing right-matches

We build right-matches by first explaining how to build one for some particular color, and
then iterate the construction for every color.
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Theorem III.11 ([43, 64])

Let S ⊆ N be any infinite set and c a finite coloring. Then, there exists a right-match
(F, T ) with F ∪ T ⊆FS S.

Proof. We first prove a restricted version of the result to a specific color.

I Lemma III.12. Let S ⊆ N be any infinite set, c a coloring and i a color. Then, there exists
a right-match (F, T ) for color i with F ∪ T ⊆FS S.

Proof. We will try to find a right-match (F, T ) by adding into F one by one the elements
of T that witness that (F, T ) is not a right-match. If we never find a right-match, then we
will be able to build one from the witnesses of our failure at each step.

More formally, we build a sequence of integers (aj)j∈N. We write Sj for S ∩ (aj−1,∞)
(and S0 = S) and Fj = {ak : k < j}. We will ensure that aj ∈ FS(Sj), so that FS({aj : j ∈
N}) ⊆ FS(S).

If (ak)k<j has been constructed, we split into two cases:
1. If (FS(Fj), Sj) is a right-match for color i, then we are done.
2. Otherwise, there must exist some âj ∈ FS(Sj) such that c(âj) = i 6= c(a + âj) for all
a ∈ FS(Fj). The smallest such defines aj .

If at some point the construction stops, then we have found a right-match for color i. Oth-
erwise, (aj)j∈N is defined, and by construction it is clear that (FS({aj : j ∈ N}) \ {aj : j ∈
N})∩Ci = ∅. Therefore, T = {a2j + a2j+1 : j ∈ N} is such that FS(S)∩Ci = ∅. So (∅, T ) is
a right-match for color i. �

We iterate the use of the lemma for every color. Let c be a k-coloring of the integers. We
define (Fi, Si) for i ∈ [−1, k − 1], starting with F−1 = ∅ and S−1 = A, and getting (Fi, Si) by
applying Lemma III.12 to Si−1 and color i.

We have A ⊇FS S0 ⊇FS · · · ⊇FS Sk−1, and (
⋃
i<k Fi, Sk−1) is a half-match: Let x ∈

FS(Sk−1) and i = c(x), then as x ∈ FS(Si) there exists a ∈ Fi such that c(x) = c(a + x).
�

The second step: constructing full-matches

The goal of the second step is to iterate the construction of right-matches to get a full-match.
Remember from Proposition III.10 that given a right-match, we can safely assume that one
should sum elements from it to obtain a full-match.

Theorem III.13 ([43, 64])

Let S ⊆ N be any infinite set and c a finite coloring. Then, there exists a full-match
(F, T ) with F ∪ T ⊆FS S.

Proof. Again, we start with the color-restricted version of the theorem.

I Lemma III.14. Let S ⊆ N be any infinite set, c a finite coloring and i a color. Then, there
exists a full-match (F, T ) with F ∪ T ⊆FS S.
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Proof. In the proof of Lemma III.12, we created a sequence of couples (Fj , Sj), each
corresponding to a potential right-match. If none worked, we were able to build a right-
match from our failure. We will prove this lemma the same way, trying to build potential
full-matches. If none work, we will be able to conclude by extracting a full-match from the
previous failure.

We simultaneously build a sequence of couple (Fj , Sj)j∈N and a sequence of coloring
(cj)j∈N∪{−1} such that

1. cj is a coloring of FS(Sj),
2. (Fj+1, Sj+1) is a right-match for cj ,
3. Fj+1 ∪ Sj+1 ⊆FS Sj

4. cj+1 is a refinement of cj (in the sense that cj+1(a) = cj+1(b) implies cj(a) = cj(b)).
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Start with c−1 = c and S−1 = S. Now, suppose that ck has been defined for every k < j.
We use Theorem III.11 to define (Fj , Sj), a right-match for cj−1, with Fj ∪Sj ⊆FS Sj−1. We
now split into two cases:

— If (
⋃
j′≤j Fj′ , Sj) is a full-match for color i for c, then we are done.

— Otherwise, define cj to be x 7→ 〈cj−1(x), a〉, where a ∈ Fj is the smallest such that
cj(x) = cj(a+ x).

If at some point the construction stops, then we have found a full-match for color i for c.
Otherwise, before going further, we explain what is a color for cj . Writing 〈〈t0, t1, . . . , tn〉〉 as
a shortcut for 〈· · · 〈t0, t1〉, t2〉 · · · 〉, tn〉, if x ∈ FS(Sj), we have cj(x) = 〈〈aj , aj−1, · · · , a0, i〉〉;
where c(x) = i and ak ∈ Fk is the smallest such that ck−1(x) = ck−1(ak + x). In other
words, cj(x) is the list for k ≤ j of the smallest witness of Fk being a half-match for ck−1

at x, plus the original color. In the following, we write ak(x) for the integer such that
ck(x) = 〈〈ak(x), · · · , a0(x), i〉〉.

We argue that for x ∈ FS(Sj), the set x+ FS({ak(x) : k ≤ j}) is monochromatic of color
c(x): We proceed by induction on the length of the sum. For sums of length 0, the result is
trivial. Now suppose the result is true for all x ∈ FS(Sj) and k long sums, fix x ∈ FS(Sj),
we write aj for aj(x) to shorten notations. Let a = aj1 + · · · + ajk with j0 < · · · < jk. By
definition of ajk , we have cjk−1(ajk+x) = cjk−1(x) = 〈〈ajk−1, · · · , a0, i〉〉, so ak′(ajk + x) = ak′

for k′ < k. By these equalities, and the induction hypothesis on ajk + x and the k long sum
a0 + · · ·+ ajk−1

, we have c(a0 + · · ·+ ajk−1
+ (ajk + x)) = c(ajk + x). But c(ajk + x) = c(x),

so we have the result on the k + 1 long sum.
As the construction never stopped, we know that at each level j there is some x ∈ Sj

of color i witness of (
⋃
j′≤j Fj′ , Sj) not being a full-match for c. Let (aj′)j′≤j with cj(x) =

〈〈aj , · · · , j0, i〉〉, we know that x + FS({aj′ : j′ ≤ j}) is monochromatic of color c(x) = i,
therefore there cannot be an element of FS({aj′ : j′ ≤ j}) of color i: if such element a
existed, we would have c(a) = c(x) = c(a+ x), a contradiction with our choice of x.

We then know that for each level j, there exists a sequence (ajj′)j′≤j with ajj′ ∈ Fj′ and
FS({ajj′ : j′ < j}) ∩ Ci = ∅. As every Fj is finite, by compactness there exists an infinite
sequence (aj)j∈N with FS({aj : j ∈ N}) ∩ Ci = ∅. But then, (∅, {aj : j ∈ N}) is a full-match
for color i.

�

We iterate the use of the lemma for every color. Let c be a k-coloring of the integers. We
define (Fi, Si) for i ∈ [−1, k − 1], starting with F−1 = ∅ and S−1 = S, and getting (Fi, Si) by
applying Lemma III.14 to Si−1 and color i.

We have S ⊇FS S0 ⊇FS · · · ⊇FS Sk−1, and (
⋃
i<k Fi, Sk−1) is a full-match: Let x ∈

FS(Sk−1) and i = c(x), then as x ∈ FS(Si) there exists a ∈ Fi such that c(x) = c(a + x).
�

The third step: constructing monochromatic sets

Once again, the key to build a solution for a coloring (a monochromatic IP set) is to iterate
Theorem III.13.

Theorem III.15 ([64])

Let S ⊆ N be any infinite set and c a finite coloring. Then, there exists an infinite set
T ⊆FS S with FS(T ) monochromatic.
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Proof. We build sequences (Fj , Sj)j∈N and (cj)j∈N∪{−1} such that
1. cj is a coloring of FS(Sj)

2. (Fj+1, Sj+1) is a full-match for cj
3. Fj+1 ∪ Sj+1 ⊆FS Sj ,
4. cj+1 is a refinement of cj .

We start with S−1 = S and c−1 = c, and at each step j, (Fj , Sj) are given by Theorem III.13
with Sj−1 and cj−1. The coloring cj is defined by cj(x) = 〈cj−1(x), a〉 where a ∈ Fj is the
smallest such that cj−1(a) = cj−1(x) = cj−1(a+ x).

Just as in the proof of Lemma III.14, we make the coloring cj more explicit: for any
x ∈ FS(Sj), we have cj(x) = 〈〈aj , · · · , a0, i〉〉 with c(x) = i, ak ∈ Fk and ck−1(ak) = ck−1(x) =
ck−1(ak + x) for any k ≤ j. We use the same notation aj(x) as in the proof of Lemma III.14.

This time we claim that for any x ∈ FS(Sj), the set FS({ak(x) : k ≤ j}∪{x}) is monochro-
matic. We prove it by induction on j. We already have that x + FS({ak(x) : k ≤ j}) is
monochromatic of color c(x) by the proof of Lemma III.14. As cj−1(x) = cj−1(aj(x)), we have
ak(x) = ak(aj), so by this equality and the induction hypothesis on aj(x) ∈ FS(Sj−1), we have
FS({ak(x) : k < j} ∪ {aj}) is monochromatic of color c(aj) = c(x). Combining al together, we
get that FS({ak(x) : k < j} ∪ {aj} ∪ {x}), concluding the induction.

For any level l, there is a sequence (ak)k≤l such that FS({ak : k ≤ l}) is monochromatic,
with ak ∈ Fk and Fk finite. Therefore, by compactness there must exist an infinite sequence
(ak)k∈N with FS({ak : k ∈ N}) monochromatic, and {ak : k ∈ N} ⊆FS S.

�

III.2.2 The less effective proof

The “less effective” proof is due to Baumgartner [6]. It appeared in 1974 just after Hindman’s
original proof, and it is an attempt to make it simpler, in the sense of being shorter and easier
to understand.

In the previous proof we make some guess on what will be the elements of the solution, but
still consider integers that won’t be in the final solution. For instance, in the construction of a
solution in the proof of Theorem III.15, we have some kind of tree made by full-matches. In the
end, a path in the tree will consist of a solution, therefore it will take exactly one element of the
finite set of each full-match. All the work on the other potential path is not useful. The same is
valid for the construction of full-matches: the finite set of a right-match consists of a finite set
of candidate to sum with others for the future full-match.

In Baumgartner’s proof, the idea is to “guess” in advance an integer of a full-match that can
be part of a solution, and shrink the reservoir so that is can be part of every solution. We know
that if Hindman’s Theorem is true there must exist one by Proposition III.9, although we cannot
use this proposition in proving Hindman’s Theorem. Instead, we use a largeness notion.

Definition III.16 ([6])

If C ⊆ N and S ⊆ N is infinite, then C is large for S if for any infinite set T ⊆FS S,
FS(T ) ∩ C 6= ∅.
If c : X → k is a coloring, we say that a color i is large for S if Ci = {x ∈ X : c(x) = i}
is large for S.

In other word, a color is large for an IP set if one cannot avoid it, while staying in the IP set.
Therefore, it has to be the only possible color of a solution inside the IP set.
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We first show that this does correspond to a kind of largeness notion:

I Proposition III.17 ([6]). If C is large for S and C = C0 ∪ C1, then there is an infinite
T ⊆FS S such that either C0 or C1 is large for T .

Proof. Suppose not. Then, C0 is not large for S, so let T0 ⊆FS S such that FS(T0)∩C0 = ∅.
Applying the contraposition of the proposition on the C1 side with T0, we have that C1 is not
large for T0, so there exists T1 ⊆FS T with FS(T1) ∩ C1 = ∅.

But then, T1 ⊆FS S and FS(T1) ∩ (C0 ∪ C1) = ∅, contradicting the largeness of C for S.
�

I Corollary III.17.1. If S is any infinite set and c : N → k is a coloring, then there exists a
large color i < k for some T ⊆FS S.

Proof. By repeated application of Proposition III.17, using the fact that N is large for
any set. �

Corollary III.17.1 says that for every coloring of the integers, there exists an infinite set on
which a color is large. Therefore, it suffices to show Hindman’s Theorem for a large set, that is:
For any C, S ⊆ N such that C is large for S, there exists T ⊆FS S such that FS(T ) ⊆ C. Note
that starting from an S such that color i is large for S, we can only build solutions for color i.

The fact that there always exists a large color allows us to know in which direction to do the
construction. The part on the construction of a right-match is exactly the same, however this
time we are able to pick one element of the finite part of the right-match that we know can be
extended to a full-match.

Theorem III.18 ([6])

Suppose c is a coloring and i is a large color for S. Then, there exists a ∈ FS(S) and
T ⊆FS S such that {x ∈ N : c(x) = i = c(a+ x)} is large for T .

Proof. By Lemma III.12 with color i, there exists (F, T0) a right-match for color i
such that F ∪ T0 ⊆FS S. For any x ∈ FS(T0) of color i, there exists some a ∈ F such that
a+x ∈ Ci. Therefore, we are able to define a coloring c1 such that c1(x) is the first a ∈ F such
that c(x) = i = c(a+x) if x ∈ Ci ∩FS(T0), and c1(x) = −1 otherwise. It is clear that color −1
cannot be large in any T1 ⊆FS T0, so by Corollary III.17.1 there must exist some a ∈ F ⊆FS S
and T1 ⊆FS T0 with color a for c1 being large, that is: {x ∈ N : c(x) = i = c(a + x)} is large
for T1, concluding the proof. �

In the statement of the previous theorem, the set {x ∈ N : c(x) = i = c(a + x)} has to be
considered as a new large color, for the refinement c1 of c, so that we can iterate. The following
theorem is to be considered as the choice of a particular element of a full-match. However,
the several elements in the finite set of full-matches in Theorem III.13 comes from the several
elements in the finite set of right-matches. As in Theorem III.18 we got a right-match whose
finite set is a singleton, we won’t need the use of Proposition III.17 to also get a full-match whose
finite set is a singleton.

Theorem III.19 ([6])

Suppose c is a coloring and i is a large color for S. Then, there exists a ∈ FS(S) with
c(a) = i and T ⊆FS S such that {x ∈ N : c(a) = c(x) = i = c(a+ x)} is large for T .
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Proof. We build a sequence (an)n∈N and (Sn, Cn)n∈N∪{−1} such that
1. Sn+1 ⊆FS Sn,
2. an+1 ∈ FS(Sn),
3. Cn+1 = {x ∈ N : x ∈ Cn and an+1 + x ∈ Cn} large for Sn+1.

Start with S−1 = S and C−1 = {x ∈ N : c(x) = i}. Given Sn and Cn we use Theorem III.18
with cn being the characteristic function of Cn, and large color i, to define an+1, Sn+1 and
Cn+1 = {x ∈ N : x ∈ Cn and an+1 + x ∈ Cn} large for Sn+1.

We will prove by induction that if a ∈ FS({ak : k ≤ j}) then x ∈ Cj implies c(x) = c(x+a) =
i (this is the same argument that we have done several times now). Suppose a = aj0 + · · ·+ajk
with j0 < · · · < jk. Then ajk +x ∈ Cjk−1 ⊆ Cjk−1

. By induction with ajk +x and the sequence
aj0 + · · ·+ ajk−1

, we have i = c(aj0 + · · ·+ ajk−1
+ (ajk + x)) = c(ajk + x) = c(x), concluding

the induction.
As color i is large for S we know that FS({an : n ∈ N}) cannot avoid color i, so there

must be some a = aj0 + · · · + ajk such that c(a) = i. By the prior remark, we also have
c(x) = c(a+ x) = i = c(a) for any x ∈ FS(Sjk), concluding the proof of the theorem.

�

It is now possible to iterate Theorem III.19 to get a solution to Hindman’s Theorem.

Theorem III.20 ([6])

Suppose c is a coloring on X and i is a large color for S. Then, there exists T ⊆FS S such
that FS(T ) is monochromatic of color i.

Proof. Iterating Theorem III.19, we are now able to build a sequence (an, Sn, Cn) with
the additional property that an ∈ Cn−1:

1. Sn+1 ⊆FS Sn,
2. an+1 ∈ FS(Sn),
3. Cn+1 = {x ∈ N : x ∈ Cn and an+1 + x ∈ Cn} large for Sn+1.
4. an+1 ∈ Cn.

We start with S−1 = S and C−1 = {x ∈ N : c(x) = i}. By the proof of Theorem III.19, we have
that if a ∈ FS({ak : k ≤ j}) then x ∈ Cj implies c(x) = c(x+ a) = i. Let a = aj0 + · · ·+ ajn ,
then as ajn ∈ Cjn−1 , c(a) = i. Take T = {an : n ∈ N} ⊆FS S, we have that FS(T ) is
monochromatic. �

III.2.3 The ultrafilter proof

We include the ultrafilter proof of Hindman’s Theorem in this thesis only as a curiosity. The
interesting thing in that proof is that it is an example where manipulating objects of very high
complexity such as ultrafilters 2 can simplify a lot the argument. The beauty of this proof is
also that it seems quite magical, in the sense that we never dive into complicated combinatorial
argument, yet it proves a complicated combinatorial result. More on the interaction between
combinatorics and ultrafilters can be found in [44].

2. Though, there has been modification of the proof to make it fit in second order arithmetic, as in [63]
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Ultrafilters

Definition III.21

A filter F on X is a subset of P(X) such that:
1. X ∈ F and ∅ 6∈ F ,
2. If A ∈ F and A ⊆ B ⊆ N, then B ∈ F ,
3. If A,B ∈ F , then A ∩B ∈ F .

An ultrafilter is a filter F that is maximal for inclusion, that is there is no filter F ′ ) F .
Write U(X) for the set of ultrafilters on X.

In informal ways, a filter measures the largeness of a set. The total set X is large, ∅ is not, a
superset of a large set is large and the intersection of two large sets is large. This extends many
other notions of largeness such as co-null sets, co-meager sets, in areas where they would not
work such as N.

The ultrafilters correspond to the filters where the union of two small sets cannot be large.
In some sense, it can be seen as a notion of largeness where each set is either small or large,
compared to filters where a set can be neither small nor large.

I Proposition III.22. A filter F is an ultrafilter on an arbitrary set X if and only if for every
A ⊆ X, either A or X \A is in F .

Proof. Suppose F is a filter, and there exists A ∪ (X \ A) = X ∈ F , but none of them
is in F . We can easily verify that F ∪ {Ã ∩ B : Ã ⊇ A and B ∈ F} is a filter that strictly
contains F , so F is not an ultrafilter.

Now suppose F is not an ultrafilter. Let F ′ ⊇ F be a filter and A ∈ F ′ \ F . Then,
X \A 6∈ F otherwise ∅ ∈ F ′. �

We continue with some general background on ultrafilters. Using the product topology, we
get a topology on the families of sets generated by the basic open sets {F ⊆ P(X) : A ∈ F} and
{F ⊆ P(X) : A 6∈ F} for any A ⊆ X.

I Proposition III.23. The set U(X) ⊆ 22X is compact for the product topology on 22X =∏
x∈2X 2.

Proof. The set
∏
x∈2X 2 is compact by Tychonoff’s Theorem. Moreover, by the axioms

of Definition III.21 its subset U(X) is closed, and therefore compact. �

Ultrafilters and semi-groups

We define an operation on U(N).

Definition III.24

If U ,V ∈ U(N), then we define U ⊕ V by

A ∈ U ⊕ V iff {n : A− n ∈ V} ∈ U

where A− n = {m ∈ N : m+ n ∈ A}.

Not only this operation is internal in U(N), but it also defines a semi-group.
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I Proposition III.25. (U(N),⊕) is a semi-group with ⊕ being right-continuous.

Proof. We first prove that the operation is internal, that is, for any U ,V ∈ U(N), U ⊕ V
is an ultrafilter.

For any set A ⊆ N, write A? = {n ∈ N : A− n ∈ V}. It is clear that ∅ 6∈ U ⊕ V as ∅? = ∅,
and that N ∈ U ⊕ V as N? = N.

Let A ∈ U ⊕ V, and A ⊆ B ⊆ N. For every n we have A− n ⊆ B − n therefore A? ⊆ B?.
It follows that B ∈ U ⊕ V.

Let A,B ∈ U ⊕ V. If n ∈ A? ∩ B?, then both A − n and B − n are in V, therefore
A− n ∩B − n = (A ∩B)− n ∈ V and n ∈ (A ∩B)?. In other words, A? ∩B? ⊆ (A ∩B)?. As
A?, B? ∈ U , we have (A ∩B)? ∈ U and A ∩B ∈ U ⊕ V.

We proved that U ⊕V is a filter, using only the fact that U and V are filters. It remains to
prove the “ultrafilter” part, using the characterization of Proposition III.22. Let A ⊆ N be any
set. For any n, A− n and B − n are disjoint union, so exactly one of them is in V. Therefore,
A? ∪ (N \A)? = N and one of them must be in U , in other word either A or N \A is in U ⊕V.

The associativity is clear as

A ∈ U ⊕ (V ⊕W) ⇐⇒ {n : A− n ∈ (V ⊕W)} ∈ U
⇐⇒ {n : {m : A− n−m ∈ W} ∈ V} ∈ U

A ∈ (U ⊕ V)⊕W ⇐⇒ {m : A−m ∈ (W ⊕W)} ∈ (U ⊕ V).

It only remains to prove the right-continuity. Let V ∈ U(N) and A ⊆ N, for any U ∈ U(N) we
have A ∈ U ⊕V iff {n : A− n ∈ V} ∈ U iff U ∈ {W : {n : A− n ∈ V} ∈ W} a basic clopen set.

�

The operation ⊕, seen as a largeness notion, say that a set A is large if there is a U-large set
of elements x such that there is a V-large set of elements y such that x+ y ∈ A. In other words,
to get an element in A as a sum of two elements, we have at least a U-large choice for the first
and a V-large choice for the second. Given the fact that we are interested in finding sums that
end in some particular color, it is clear that this operation can be useful. However, we need to
deal with sums of arbitrary length.

Theorem III.26

There exists an ultrafilter U ∈ U(N) such that

U ⊕ U = U .

Proof. This is just an application of the Idempotent Theorem III.27, using Proposi-
tion III.25. �

Theorem III.27 (The Idempotent Theorem [38])

Let E be a compact semi-group for which right-multiplication ψg is continuous for all
g ∈ E. Then, there exists g ∈ E such that g2 = g.

Proof. We do a construction by induction. Start with E0 = E. If Eα is defined, let
g ∈ Eα. If g 6∈ Eαg = {fg : f ∈ Eα}, then we take this set as Eα+1 as by right-continuity it is
compact. Otherwise, B = {f ∈ Eα : fg = g} is non empty. If g ∈ B, then g2 = g and we have
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found our idempotent element, we set Eβ = Eα for every β > α. Otherwise, we let Eα+1 = B
as it is a semi-group (if f0, f1 ∈ B then f0f1g = f0g = g) and compact by right-continuity.

If Eβ has been defined for every β < α, then we define Eα =
⋂
β<αEβ . This set cannot be

empty as every Eβ is compact.
Let α be a stage where Eα = Eα+1, which must happen by cardinality reasons. We must

have found a g such that g2 = g, as the only way it can happen in the construction is if we
find an idempotent g. �

In [38] (Section 6.1, Theorem 9), the authors give a version of the proof by just taking a
smallest non-empty compact subgroup which must exist by Zorn’s Lemma. We chose to present
the proof this way as it gives an example of a transfinite recursion with no bound known in
advance (as discussed in section IV.5.1, “the unbounded construction”).

Proving Hindman’s Theorem with ultrafilters

In the previous results about ultrafilters, we did not do anything especially related to Hind-
man’s Theorem, except for the definition of ⊕ in Definition III.24 and for Proposition III.25,
whose proof is just a verification of the definition. Moreover, nothing was combinatorially com-
plex. Still, we will be able to derive Hindman’s Theorem as a corollary in a very simple manner.

Theorem III.28 ([27])

For every coloring of the integers, there exists an infinite set A such that FS(A) is
monochromatic.

Proof. By Theorem III.26, let U be an ultrafilter such that U = U ⊕ U . For any set
A ⊆ N, write A? = {n : A−n ∈ U}. We have A ∈ U iff A? ∈ U . Also let i be a color such that
{a : c(a) = i} ∈ U , by repetitive application of Proposition III.22.

We construct a sequence of sets Cn ∈ U and an ∈ Cn ∩C?n. We start with C0 = {a : c(a) =
i}, and a0 ∈ C0 ∩ C?0 (there exists such an a0 as C0 ∩ C?0 ∈ U). Given Cn ∈ U and an such
that Cn − an ∈ U , let Cn+1 = Cn ∩ (Cn − an) \ {an} ∈ U , an+1 any element of Cn+1 ∩ C?n+1,
which exists as Cn+1 ∩ C?n+1 ∈ U .

We prove by induction that Cn ⊆ C0 ∩ C0 − FS({ai : i < n}). It is clear for n = 0. If it is
true for n, then

Cn+1 = Cn ∩ Cn − an \ {an}
⊆ C0 ∩ C0 − FS({ai : i < n}) ∩ C0 − an ∩ C0 − an − FS({ai : i < n})
⊆ C0 ∩ C0 − FS({ai : i < n+ 1}).

As an ∈ Cn, we get the result. �

Picking an element in Cn ensures that the finite sums stay in C0, picking it also in C?n ensures
that we can continue the construction. The ultrafilters take care of everything else.

III.3 The Reverse Mathematics of HT

We are now pretty convinced that Hindman’s Theorem is true, as we have three proofs of it.
So we can start its reverse mathematical study. We will begin with the analysis of the axiomatic
systems used in the “most effective” proof, to get an upper bounds on its strength. More precisely,
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we will benefit from the structure of the proof in “steps”, to give an upper bound on the axioms
needed to build the intermediate combinatorial objects.

The other proofs take place in more powerful axiomatic systems, in fact the ultrafilter proof
does not fit as is into second-order arithmetic. It is still possible to modify it a bit to place
the argument in second order arithmetic [63]. We won’t study these proofs in terms of reverse
mathematics.

After giving the upper bounds, the natural thing is to give the lower bounds. Again, one
would wish to give lower bounds also to the intermediate combinatorial objects. However, we
will only be able to give lower bounds to right-matches, left-matches of 2-colors and solution to
Hindman’s Theorem. It is not yet known whether there always exists computable full-matches,
or not.

The way we give a lower bound is by using combinatorics and computability, instead of proof-
theory. We exhibit a coloring such that every solution to this coloring computes a particular set,
such as the halting problem of the coloring.

The main contribution in this section is the reverse mathematical study of full-matches and
left-matches. In particular, we show that there always exists computable left-matches for 2
colors, invalidating a proof from [64]. We are also able to prove the existence of computable
full-matches in many particular cases. Finding computable full-matches for every coloring would
result in an equivalence between HT and ACA0, solving the most important open question related
to Hindman’s Theorem.

All of this section is joint work with Ludovic Patey and Benoît Monin.

III.3.1 Upper bound
Recall that the formal system ACA0, which asserts the existence of every arithmetical set, is

equivalent to the existence of the jump of any set. Indeed, we are then able to iterate the jump
up to any finite (in the meta-theory) level. However, we are not able to conduct a construction
that requires an unbounded amount of jumps. We will see that the “more effective” proof of
Hindman’s theorem contains such a construction, as therefore does not hold in ACA0. We need
to define an axiomatic system under which those constructions can happen.

Definition III.29 (ACA+
0 )

We write ACA+
0 for the axiomatic system that consists of RCA0 and:

∀A ⊆ N,∃Y s.t Y = A(ω).

We first exhibit the axiomatic system in which the proof of Lemma III.12 and therefore
Theorem III.11 takes place.

Upper bounds on right-matches

We prove that right-matches do not need more than the base theory of reverse mathematics:
there always exists computable right-matches. However, the computation is not computably
uniform in the coloring.

Theorem III.30

Given a finite coloring c : N→ k, an infinite set S and a color i < k,
1. Either there exists (F, T ), a right-match for color i computable in (c, S), with T ⊆FS
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S

2. Or, there exists T ⊆FS S computable in (c, S) with FS(T ) ∩ Ci = ∅.
The disjunction is decidable uniformly in (c, S)′′.

Proof. We consider the construction in the proof of Lemma III.12. It is split depending
on the following:

∃n, (FS(S ∩ [0;n]), S ∩ (n;∞)) is a right-match for color i (RMPi)

If (RMPi) is true, which is decidable in (c, S)′′, then one can easily find, using (c, S)′′ again, a
code for a (c, S)-computable right-match for color i.

Otherwise, the construction in Lemma III.12 will never end. This is a computable con-
struction of an infinite set T ⊆FS S with FS(T ) ∩ Ci = ∅.

�

I Corollary III.30.1. Given a coloring c and an infinite set S, there exists a right-match (F, T )
with T ⊆FS S that is computable in (c, S) uniformly in (c, S)′′.

I Corollary III.30.2. Theorem III.11 is provable in RCA0.

Upper bounds on full-matches

We continue with an upper bound on the construction of full-matches. This time, because
of the non-uniformity of the construction of right-matches, the full-matches are not known to be
computable. Indeed, the construction consists of an infinite iteration of a right-match construc-
tion.

Theorem III.31

Given a coloring c, an infinite set S and a color i,
1. Either there exists (F, T ) a full-match for color i, computable in (c, S) with T ⊆FS S

2. Or, there exists T ⊆FS S computable in (c, S)(3), with FS(T ) ∩ Ci = ∅.
The disjunction is decidable uniformly in (c, S)(3).

Proof. We use Corollary III.30.1 to study the complexity of the proof of Theorem III.13.
In the construction of the full-match, we build a succession of right-matches. Each of them is
defined from the previous one. By Corollary III.30.1, each of these right-matches is computable,
but for the construction to be effective it needs to be uniform, so the construction itself is
computable in (c, S)′′.

Now there are two cases: either there exists a computable full-match for color i in the
sequence, in this case one can find it uniformly using (c, S)′′; or there is no such full-match. It
is decidable whether we are in the first case or not, using (c, S)(3). If we are in the first case
an index for the computable full-match can be found in (c, S)′′.

In the second case, the construction goes on forever and defines an infinite sequence of
colorings and right-matches that are not full-matches for color i. From this construction,
which is effective in (c, S)′′, we can compute the set of witnesses that the right-matches are
not full-matches for color i, and their “refined” color defines a tree, as described in the proof
of Theorem III.13.
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The solution is any path of the (c, S)′′-computable tree. So, given (c, S)(3) we are able to
uniformly compute a path on this tree, which corresponds to a solution as explained in the
proof of Theorem III.13. �

ICorollary III.31.1. Given a coloring c : N→ k and an infinite set S, there exists a full-match
(F, T ) for c with T ⊆FS S and (F, T ) is computable in (c, S)(3(k−1)) uniformly.

Proof. By iterating Theorem III.31. One cannot always be in Case 2., as otherwise we
get a set avoiding all colors. �

I Corollary III.31.2. Theorem III.13 is provable in ACA0.

Upper bounds on Hindman’s Theorem

With Corollary III.31.1, it is now easy to tackle the implication of the proof of Hindman’s
Theorem III.15. The proof consists of an iteration of a construction of full-matches, which are
arithmetically defined. However, the construction of a full-match depends on the previously
constructed one, so there is no bound in the arithmetic power needed by the iteration.

Theorem III.32

Given a coloring c and an infinite set S, there exists an infinite set T ⊆FS S with FS(T )
monochromatic and T uniformly computable in (c, S)(ω+1).
Theorem III.15 is provable in ACA+

0 .

Proof. In the proof of Theorem III.15, we built a sequence of full-matches (Fn, Sn), and
by Corollary III.31.1 each of them can be taken computable in a finite amount of jumps of the
previous one. This means that we need (c, S)(ω) to do the construction. When the construction
is achieved, it defines a tree on which we take a path using one more iteration of the jump.
The path is a solution, and is computable in (c, S)(ω+1). �

III.3.2 Lower bounds
In this part, we prove lower bounds on Hindman’s Theorem. We work with the finite union

theorem, as it is more convenient for our purpose and equivalent to the finite sum theorem.
In practice, we will devise particular computable colorings of the finite subsets of the integers,

such that any monochromatic IP∪ set computes the halting set. This shows that HT implies
ACA0 as the latter is equivalent to the existence of the jump of any set.

We first define the two colorings we are interested in, as we will mention them outside of the
proof of HT implies ACA0.

Definition III.33 (Gaps in finite sets [1])

— Let F ⊆ N be a set, and m < n be elements of F . We say that (m,n) is a gap in
F if there is no k ∈ F with m < k < n.

— Let (m,n) be a gap in F . We say that it is a small gap for k if

∅′�m[n] 6= ∅′�m[k].

We say that it is a small gap if it is a small gap for some sufficiently large k.
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— Given F finite, we denote by SGk(F ) the number of small gaps for k in F . In
particular, we denote SG(F ) = SG∞(F ) the number of small gaps in F , and
VSG(F ) the number SGmaxF (F ), where VSG stands for “very small gaps”.

— We denote by cvsg : Pfin(N) → 2 the coloring cvsg : F 7→ VSG(F ) mod 2. Note
that this is a computable coloring.

Let us justify a bit the notation of small gaps. If (m,n) is a small gap and m < p < n,
then both (p, n) and (m, p) are small gaps. Indeed, ∅′�m[n] 6= ∅′�m imply both ∅′�p[n] 6= ∅′�p and
∅′�m[p] 6= ∅′�m.

Theorem III.34 ([1])

There exists a computable coloring of the integers such that for all A ⊆ N with FS(A)
monochromatic, we have A ≥T ∅′ uniformly.

Proof of Theorem III.34 using cvsg. We will show that cvsg has the desired property. Let
S be an IP∪ set, such that FU(S) is monochromatic for cvsg. We prove two claims to get the
result.

I Claim III.34.1. If F ∈ FS(S) then SG(F ) = 0 mod 2.

Proof. Fix an F ∈ FS(S). Let t be big enough so that ∅�maxF [t] = ∅�maxF , in
other words any step t such that ∅′ has converged on its prefix of size maxF . Let G ∈ S
with minG > t,maxF , this is possible since S in an IP∪ set. We know that [VSG(F ) =
VSG(F ∪G) = VSG(G)] mod 2. But

VSG(F ∪G) = SGmaxG(F ) + SGmaxG({maxF ; minG}) + VSG(G),

and by our choice of G,

SGmaxG(F ) = SG(F ) and SGmaxG({maxF ; minG}) = 0.

We get that VSG(G) = SG(F ) + VSG(G) mod 2 so SG(F ) must be even. �

I Claim III.34.2. For every F,G ∈ FU(S) with F < G, the gap (maxF,minG) cannot be a
small gap.

Proof. Fix such F and G in FU(S), we need to show that SG({maxF ; minG}) = 0.
We have that SG(F ∪ G) = SG(F ) + SG({maxF ; minG}) + SG(G). As all of F , G and
F ∪ G are in FU(S), by Claim III.34.1 they have an even number of short gaps so we have
0 = 0 + SG({maxF ; minG}) + 0 mod 2.

As SG({maxF ; minG}) is even and either 0 or 1, it is 0 and {maxF ; minG} is not a
short gap. �

We just proved that in between two elements F < G of S, there must be a large gap, in
other words the approximation of ∅′ already converged on its initial segment of size maxF at
step minG. But then, given S, we are clearly able to compute ∅′. �

I Corollary III.34.1. HT implies ACA0 over RCA0.
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Remark that in the proof, we only needed unions of three elements, and 2 colors. So it proves
the stronger result that the finite union theorem with unions of at most three elements and two
colors implies ACA0 over RCA0. The next proof strengthen this result to unions of two elements.

Definition III.35 (Important gaps, [21])

— Let F be a finite set. We say that a gap (m,n) in F is important for k if something
is enumerated in the approximation of ∅�k between stagem and stage n. We simply
say that it is important if it is important for minF .

— We write IMPk(F ) for the number of gaps in F that are important for k. We write
IMP(F ) = IMPminF (F ) for the number of important gaps in F .

— We write cimp : Pfin(N)→ 2 for the function F 7→ IMP(F ) mod 2.

We are now able to give the proof of Theorem III.34 using cimp, given in [21], that only
requires unions of two and one elements.

Proof of Theorem III.34 using cimp. We will show that cimp has the desired property. Let
S be an IP∪ set such that FU(S) is monochromatic. We will prove that for any F ∈ S, we
have that ∅�minF [maxF ] = ∅�minF .

Indeed, let F ∈ S be any set. Let t be big enough so that the approximation of ∅′ has
converged in its minF first elements, and because S is an IP∪ set, let G ∈ S be with minG > t.

Now, cimp(F ) = cimp(F ∪G). We also have:

IMP(F ∪G) = IMP(F ) + IMPminF ({maxF ; minG}) + IMPminF (G).

By our choice of G with a sufficiently big minimum, IMPminF (G) = 0, so we get:

IMPminF ({maxF ; minG}) = 0 mod 2

and therefore it is equal to 0. But that means that nothing is enumerated between minF and
maxG, so ∅′�minF has already converged at step maxF .

This suggests the algorithm to compute ∅′ from S: to compute ∅′ up to n, find F ∈ S with
minF > n and approximate ∅′ up to maxF . �

There is still quite an important gap between our lower and upper bounds: we know that
we can force all solutions to compute the jump, and we know that there always exists a solution
computable in the ω+1-th jump. But what is in between? Does there always exist an arithmetical
solution? Or does there exist a computable coloring with all solutions computing the ω-th jump?

I Question III.36 ([56]). Which one of the following is true:
— HT is equivalent to ACA0 over RCA0?
— HT is strictly between ACA0 and ACA+

0 over RCA0?
— HT is equivalent to ACA+

0 over RCA0?

Let us show that neither cimp nor cvsg answer the question.

Definition III.37

We say that a coloring is stable in S if there exists a computable T ⊆FS S, such that
∀n ∈ FS(T ), ∃m ∈ FS(T \ [0, n]) such that for all p ∈ FS(T \ [0,m + n]), we have
c(n+m) = c(n+m+ p). Such a color is called the limit color of n.
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Theorem III.38

If c is stable, then there exists a c′-computable infinite set S with FS(S) monochromatic,
uniformly in c(3).

Proof. Let S be such that ∀n ∈ FS(S), ∃m ∈ FS(S \ [0, n]) such that for all p ∈
FS(S \ [0,m + n]), c(n + m) = c(n + m + p). Define clim(n) to be the color of c(n + mn) for
mn being the first to witness the stability property. There must be a limit color which appear
infinitely often in S, fix it to be i (using the triple jump of c we can find such a color). Now,
define a sequence (xn)n∈N such that: clim(x0) = i, and xn+1 being the first in S such that
clim(xn+1) = i and xn+1 > xn +mxn .

Any finite sum in {xn +mxn : n ∈ N} is of the form xn0 +mxn0
+ z where z > xn0

+mxn0
,

and therefore is of color i. �

I Corollary III.38.1. The coloring cimp admits an arithmetical monochromatic IP set.

Proof. Using Theorem III.38, it is sufficient to show that cimp is stable. We use the “finite
union theorem” terminology. Let A be a finite subset of integers, and fix 2N big enough so
that the first minA bits of ∅′ have converged at step N . Then, let B be such that maxB > S.
Then cimp(A ∪B) = cimp(A ∪B ∪ C) for every C with C > B. �

Theorem III.39

Let S be any computable IP∪ set. Then, cvsg admits an infinite IP∪ set T with FU(T ) ⊆
FU(S), computable in ∅′ uniformly in ∅(3).

Proof. Toward a contradiction, suppose that for some n, if F ∈ FU(S) is such that n < F
then SG(F ) = 1 mod 2. Then, let A,B ∈ FU(S) with n < A < B and (maxA,minB) is a
large gap. Then, SG(A ∪B) = SG(A) + SG(B) = 0 mod 2, a contradiction.

Therefore, there exists a ∅′-computable set T0 with FU(T0) ⊆ FU(S) and every set F ∈ T0

has SG(F ) = 0 mod 2. Using ∅(3), find a color i for cvsg that appear infinitely many often in
T0.

Now, let T be a shrink of T0 where every set has color i and if A,B are in T then they
are apart in a large gap. Then, any union F =

⋃
i<n Fi in FU(T ) with Fi < Fi+1 is such that

VSG(F ) = SG(F0) + · · ·+ SG(Fk−2) + VSG(Fk−1) = VSG(Fk−1) = i mod 2.
�

III.3.3 Right-match, Left-match and Full-match

In order to answer Question III.36, we investigate where the construction can be improved,
and where it cannot, to unveil which steps we should focus on. The so-called steps are the
constructions of right-match, full-match and solution.

First, the construction of the right-match is optimal in some sense as the obtained right-
match is computable in the coloring. The only room for improvement is the uniformity of the
solution, however there can be no hope to get a computable uniformity.
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Right-matches

Theorem III.40

There exists no continuous functional with as input a coloring c, and with output a
right-match (F, S) for c.

Proof. Towards a contradiction, let Φ be such a functional. Let σ be a sufficiently big
prefix of some coloring, such that Φσ converge to some finite F . Let m = maxF . We extend
σ to the coloring c such that for all n 6∈ dom(σ), c(n) = 1 iff n = 0 mod m + 1. Suppose
that there exists a right-match (F, S) for some S. Let x ∈ FS(S) with x > |σ| such that
x ∈ (m+ 1)N. We have c(x) = 1 but c(x+ a) = 0 for every a ≤ m, a contradiction. �

We proved that if m is any integer, then there exists a computable coloring with no right-
match whose finite set F is such that F < m. In [64], Towsner proves a different result: given
k a bound on the size of the finite set, there exists a computable coloring with no computably
enumerable right-match whose finite set has size less than k.

The result is the same: we cannot hope to improve the construction of Theorem III.11 to a
uniform one.

Left-matches

In his paper [64], where he introduced the formulation of the proof using right-matches and
full-matches, Towsner also had the approach of studying the reverse mathematics of every step,
trying to pin those that can be improved.

However, his conclusions were erroneous: he made a flawed proof that there exists a com-
putable coloring with no computably enumerable full-match. Therefore, he concluded that we
cannot improve the construction of a full-match to computable, and the efforts in improving
the upper bounds should be made toward improving the last construction in the proof of Theo-
rem III.15: the construction of monochromatic IP sets.

In this thesis not only we discovered the flaw in Towsner’s lower bound for full-matches, but
we also show that his proof cannot be patched. Indeed, it was actually “proving” the stronger
result that there exists a 2-coloring with no c.e. left-match. We prove here that this is not
possible.

Theorem III.41

For any 2-coloring c and infinite set S, there exists a left-match (F, T ) with T ⊆FS S, T
being computable uniformly in (c, S)′′.

Proof. We write S≤N for S ∩ [0;n] and S>N for S ∩ (n;∞). We split the construction
into two cases.

If there exists some N such that (FS(S≤N ), S>N ) is a left-match. Then, the result is clear.
Otherwise, we do the following construction. Let x0 ∈ S be any element. If the xi are

defined for i < n, then we define xn to be the first element in FS(S>xn−1
) such that for all

a ∈ FS({xi : i < n}) we have c(a+ xn) 6= c(xn), which exists because we are in case 2.
Now, let S0 = {xi : i ∈ N}. We prove by induction on the length of the sum that

c(xi0 + xi1 + · · · + xin) = c(xi0) + n mod 2. If n = 0, then the result is clear. If we suppose
that the result is true for n, let x = xi0 + xi1 + · · ·+ xin+1

, then we know by construction that
c(xi0 + xi1 + · · ·+ xin+1

) 6= c(xi0 + xi1 + · · ·+ xin). By the induction hypothesis c(xi0 + xi1 +
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· · ·+ xin+1
) 6= c(xi0) + n mod 2 and by the fact that there are only two colors, c(xi0 + xi1 +

· · ·+ xin+1) = c(xi0) + n+ 1 mod 2.
By the pigeon-hole principle, let S1 = {xi0 ;xi1 ; · · · } be a monochromatic subset of S0 of

color say i. Let T = {xi0 + xi1 ;xi2 + xi3 ; · · · }. Then, T is monochromatic of color i: indeed,
any finite sum of elements from T is composed of an even number of xi with the minimum of
those being of color i. �

In Corollary III.51.1 we improve a bit Theorem III.41 by showing that the finite set of the
left-match to be monochromatic.

Note that the fact that the coloring has only two colors is used here, when concluding from
c(a) 6= c(b) 6= c(d) that c(a) = c(d). This is important, compared to the case of right-matches and
full-matches. Indeed, a construction for a right-match (respectively full-match) for 2-colorings
can be iterated to work on colorings with an arbitrary number of colors.

Definition III.42

— FM is the principle: for every k, and k-coloring c : N → k and infinite S ⊆ N,
there exists a full-match (F, T ) with F ∪ T ⊆ S. FMk is the analogue for a fixed
k.

— LM is the principle: for every k, and k-coloring c : N→ k and infinite S ⊆ N, there
exists a left-match (F, T ) with F ∪ T ⊆ S. LMk is the analogue for a fixed k.

— RM is the principle: for every k, and k-coloring c : N → k and infinite S ⊆ N,
there exists a right-match (F, T ) with F ∪ T ⊆ S. RMk is the analogue for a fixed
k.

I Proposition III.43. We have that HT2 =⇒ HT over RCA0.

Proof. This is clear, by induction on k. If c is a k+ 1-coloring, then applying HT2 to the
2-coloring c0 defined by c0(x) = 0 iff c(x) = 0 either gives us a solution to c, or an IP set on
which c is a k-coloring, and we can apply the induction hypothesis. �

I Proposition III.44. We have that FM2 =⇒ FM and RM2 =⇒ RM over RCA0.

Proof. Let k ∈ ω. We only prove that RM2 =⇒ RM over RCA0, the other implication
having exactly the same proof. Suppose RM2. Let c be a k-coloring of the integers. For every
i < k, let ci be the 2-coloring such that ci(n) = 1 if and only if c(n) = i, the characteristic
function of the integers of color i. We let X−1 be N, and for 0 ≤ i < k, we let Xi ⊆ Xi−1

and Fi be given by RM2 on ci. This construction is a meta-induction outside of RCA0 which
is possible as k is an integer of the meta-theory. The induction hypothesis at stage i is that
RCA0 proves the existence of such an Xi.

We claim that
⋃
i<k Fi together with the IP set Xk−1 is a right-match. Let x ∈ Xk−1.

Letting i < k be the color of x, as x ∈ Xi, let a ∈ Fi be such that ci(a) = ci(x + a). By
definition of ci and i, this implies c(a) = c(x+ a), which concludes the proof. �

I Question III.45. Does LM2 =⇒ LMk over RCA0 for some k?

Suppose we do the same construction as in Proposition III.44 to solve Question III.45. To
make it simpler, consider a 3-coloring of the integers c. Define c0, c1 and c2 to be the characteristic
functions of color respectively 0, 1 and 2. By Theorem III.41, we can create (F0, S0) a left-match
for coloring c0, (F1, S1) a left-match for coloring c1, and (F2, S2) a left-match for coloring c2 with
S2 ⊆FS S1 ⊆FS S0. However, there is no guarantee that (F0 ∪ F1 ∪ F2, S2) is a left-match for c:
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indeed, given x ∈ FS(S2), we can have ci(a) = ci(x+ a) = 0 but still i 6= c(a) 6= c(x+ a) 6= i for
all i < 3 and a ∈ Fi. In particular, we don’t know the answer for k = 3:

I Question III.46. Does there exists a computable 3-coloring with no computable left-match?

Full-matches

We try to prove that every computable 2-coloring of the integers admits a computable full-
match. We are not able to tackle the general case, however we are able to pin many cases of a
disjunction, leaving only computable coloring of a particular form to be investigated.

We first add a property to the (right, left, full)-matches in order to explain more easily the
disjunction:

Definition III.47

Fix a coloring c : ω → k. Let F ⊆ ω be a finite set, and S ⊆ ω be a set such that
maxF < minX. We say that (F, S) is a middle match for color i if ∀x ∈ FS(S), there
exists a ∈ F such that c(a+ x) = i.

Now, we are able to express our first property used in disjunction.

Definition III.48

Let c be a 2-coloring of the integers. Let i, j < 2, we say that an infinite set S satisfies
(MMi,j) if:

∃F ⊆ Ci : (F, S) is a middle match for color j (MMi,j)

We are now able to treat the cases depending on the truth of (MM0,0), (MM1,1), (MM0,1)
and (MM1,0).

When we do not have (MMi,1−i)

We start with the case when there is some i such that we have (¬MMi,1−i). In this case, we
are able to find a computable monochromatic IP set.

Theorem III.49

Suppose there is some i < 2 such that (MMi,1−i) does not hold within an infinite com-
putable set X ⊆ ω. Then there is an infinite computable set Y ⊆ X such that FS(Y ) is
homogeneous.

Proof. We prove the result for i = 0. We suppose that there is no computable homogeneous
set for color 1, as otherwise the proof is complete. We will now describe how to build a
computable IP set for color 0. For that, we define a computable sequence (xn), a sequence
(Xn) of uniformly computable infinite sets, such that:

1. xn ∈ FS(Xn) ∩ C0,
2. For all x ∈ FS({xi : i ≤ n}), x+ FS(Xn+1) ⊆ C0,
We first prove that if we can construct such sequences, then X = FS({xn : n ∈ ω}) is a

monochromatic IP set. Let x ∈ FS(X), and i0 < . . . < iN ∈ N be such that x =
∑

0≤n≤N xin .
If N = 0 then by Item 1 c(x) = 0. If N > 0, then

∑
0≤n<N xin ∈ FS({xi : i < in}) and

xin ∈ FS(Xin) so by Item 2, c(x) = 0.
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Now, we explain how to do the construction. We take x0 ∈ C0 be any element of C0, and
X0 = N. Now, suppose that we have defined (xi)i<n and (Xi)i<n. We let Xn = {yi : i ∈ ω},
where the yi are defined as follows: for any i, yi ∈ N is the smallest element greater than yi−1

(when defined) such that {xj : j < n} + FS({y0; . . . ; yi−1; yi}) ⊆ C0. Note that by (¬MM0,1)
applied with F = {xi : i < n}+FS({0; y0; . . . ; yi−1}), such a yi always exists, and Xn is infinite
and computable. It is clear by construction that Item 2 is ensured.

Now, as we have supposed that no computable IP set is monochromatic of color 1, it
cannot be the case that FS(Xn) ⊆ C1. Using this we define xn to be the smallest element of
FS(Xn) ∩ C0, ensuring Item 1. �

We continue the case disjunction, this time focusing on (MMi,i).

When (MM0,0) and (MM1,1) have the same truth value

Theorem III.50

If (MM0,0) and (MM1,1) hold in some S, then there exists a computable full-match.

Proof. Let F0 and F1 be given by (MM0,0) and (MM1,1) on S. Then, we claim that
(F0 ∪ F1, S) is a full-match: let x ∈ FS(S), and c(x) = i Let a ∈ Fi such that c(x + a) = i.
Then, we have c(a) = c(x+ a) = c(x). �

Theorem III.51

If (¬MM0,0) and (¬MM1,1) hold on some S, then there exists a computable monochro-
matic IP set.

Proof. We prove that in this case, we must have (¬MM0,1) on S. Let F ⊆ C0. Then,
by (¬MM0,0) let x such that x + F ⊆ C1. By (¬MM1,1), let y be such that y + x + F ⊆ C0.
Then, x+ y is a witness of (¬MM0,1).

We conclude using Theorem III.49. �

Note that, at this point, we have as a consequence the existence of left-match. We even have
the stronger result that the finite part of the left-match can be considered monochromatic:

I Corollary III.51.1. For every 2-coloring c and infinite set S, there exists a left-match (F, T )
with F ∪ T ⊆FS S and F monochromatic.

Proof. If (¬MMi,i) for all i on some S, then by Theorem III.51 we have a monochromatic
IP set and therefore a monochromatic left-match. Otherwise, there must exist some i < 2 such
that (MMi,i) holds, that is there is some F ⊆ Ci such that we have ∀x ∈ S, there exists a ∈ F
with c(x+ a) = i = c(a), which is therefore a left-match with monochromatic finite set. �

The remaining case

There is only one remaining case: When we have all the following:
1. For every infinite computable S ⊆ N, we both have (MM0,1) and (MM1,0),
2. For every infinite computable S ⊆ N, (MM0,0) for S if and only if (¬MM1,1) for S.
3. The coloring is not stable.
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We call this case the remaining case.
By symmetry, suppose that (MM0,0) holds on N. We must have that for every S, (¬MM1,1)

holds for S. Note that by (MM0,0), there already exists a full-match for color 0. We only need
to build a full-match for color 1 in order to conclude.

We investigate a bit on the implications of our hypothesis.

I Lemma III.52. Suppose we are in the remaining case. If F0 ⊆ C0 is such that (F0,N) is a
middle-match for color 1, then it is also a middle match for color 0.

Proof. Suppose this is not true, let x be such that F0 + x ⊆ C1. Then, F0 + x is a
middle-match for color 1: Indeed, let y ∈ N. As y+x ∈ N and F0 is a middle-match for color 1,
there exists a ∈ F0 such that c(a+ x+ y) = 1. This is a contradiction with (¬MM1,1). �

I Lemma III.53. Suppose we are in the remaining case, and there is no computable full-match.
Then, for every F1 ⊆ C1, there exists a finite H > F1 such that (F1, H ∩ C1) is a middle-match
for color 1, but for every x > H, (F1, ({x} ∪ (H + x)) ∩ C1) is not a middle match for color 1.

Proof. Suppose not. Then, let F1 ⊆ C1 be given as a witness of failure of the lemma.
We build a computable sequence (xn)n∈N such that for every n, (F1,FS({xi : i < n}) ∩ C1) is
a middle match for color 1. But then, F1 is a full-match for color 1. By ((MM0,0)), there is a
full-match for color 0, so we get a full-match. �

I Question III.54. Does every computable coloring has a computable full-match?

The special case of cimp and cvsg

Recall that cimp and cvsg are defined on the finite sets of integers. We show that, despite
having no computable solution, they both have computable full-matches.

I Proposition III.55. For every IP∪ set S, cimp satisfy (MM0,0) and (MM1,1) in T with
T ⊆FU S. Therefore, cimp must have a computable full-match (F, T ) with F ∪ T ⊆FU S.

Proof. We now show the result for the coloring cimp. Let A0 and A1 in FS(S) be such
that:

1. ∅′ � minAi has converged at step maxAi, for i = 0, 1.
2. cimp(Ai) = i for i = 0, 1.

Then, let T = {X ∈ S : X > max(A0 ∪ A1)}. Then, ({A0;A1}, T ) is a full-match: let
X ∈ FS(T ), and i = cimp(X). Then, cimp(Ai) = i and cimp(Ai ∪X) = cimp(Ai) = i as no gap
after maxAi can be important as the minAi first bits of ∅′ has already converged. {A0} and
{A1} are witness of (MM0,0) and (MM1,1).

Now, let us argue that we can find such A0 and A1. For every i, there must exist some
Xi such that cimp(X) = i and Item 1. is not true. Indeed, otherwise we would be able to
compute the n first bits of ∅′ by just finding some X ∈ FS(S) with cimp(X) = i and n < X,
which is possible as a computable S cannot have FS(S) monochromatic, and then, output
∅′ � n[maxX].

Set Ai = X1−i ∪ Yi where Yi ∈ FS(S) and minYi has made ∅′ converged on its minX1−i
first bits. Then, cimp(Ai) = cimp(Xi) + 1 = i, and Ai satisfy 1. �

We prove a slightly weaker statement for cvsg.

I Proposition III.56. The coloring cvsg has a computable full-match (F, T ).
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Proof. We start with cvsg. We claim that there exists A0, A1 in FS(S) such that
1. VSG(Ai) = i mod 2, and
2. SG(Ai) = 0 mod 2.

In this case, let N be big enough so that the approximation of ∅′ has converged on its maxA0

and maxA1 first bits, at step N . Let T = {E ∈ S : E > N}. Then ({A0;A1}, T ) is
a full-match: Let X ∈ FS(T ). If cimp(X) = i, then cimp(Ai) = i and cimp(Ai ∪ X) =
SG(Ai) + SG({maxAi; minX}) + VSG(Ai) mod 2 = 0 + 0 + VSG(Ai) = cimp(Ai) by our
choice of N and minX > N .

The existence of such A0 and A1 is clear if we can take any finite subset of the integers.
Take A0 = F ∪ {N}, where SG(F ) = 0 mod 2 and (maxF,N) is a large gap. Take any small
gap (x, y) that is not a very small gap, and set A1 = {x; y}.

�

III.4 Ordinal Analysis of Hindman’s proof

Ordinal analysis of theories is an important part of proof theory. Given a theory T , the
proof-theoretic ordinal associated with a theory T is the smallest ordinal α such that T proves
the well-foundedness of α, that is: There exists a primitive recursive order ≺ of order-type α, and
T does not prove that ≺ is well-founded. The associated ordinal-theoretic usually yields a nice
well-ordering on theories, as theories with higher ordinal-theoretic tends to prove the coherence
of the smaller ones. For instance, Gentzen proved the coherence of Peano Arithmetic using only
“finitistic reasoning” and an induction along ε0 = ωω

...

, the ordinal-theoretic of PA. Any theory
with ordinal-theoretic above ε0 therefore prove the coherence of PA.

Comparing this ordinal-theoretic to other ordinals associated with combinatorial statements
allows to prove their independence from a theory. For instance, Ketonen and Solovay were able
to prove Paris-Harrington Theorem, and as a consequence the independence of the strengthened
finite Ramsey theorem from Peano Arithmetic. They did so using a model-theoretic method,
compared to the usual syntactic methods of proof-theory, such as Gentzen’s cut-elimination.

The strengthened finite Ramsey Theorem is a version of the finite Ramsey Theorem where
the size of the solution is at least its minimum. In other words, while the finite Ramsey theorem
states that there exist solutions of arbitrary cardinality given sufficiently many integers, the
strengthened version adds another notion of largeness. A set A is ω-large if |A| > minA, and
the strengthened Ramsey Theorem states that for every a, n, k, there exists some N such that
for every coloring c : [N ]n → k, there exists some c-homogeneous set H with |H| > minH ≥ a.

As suggested by the notation “ω-largeness”, there exists a whole family of largeness notion
for finite sets, indexed by ordinals. These notions of largeness for finite sets are linked to ordinal
analysis of theories. The first introduction of such largeness notion and ordinal analysis were
conducted by Ketonen and Solovay in [46]. Given a combinatorial statement P , such as the
strengthened Ramsey Theorem, one can associate an operation on ordinal: From α, define P (α)
to be the smallest ordinal such that any P (α)-large instance has an α-large solution. Comparing
the first ordinal closed by the operation P to the ordinal-theoretic of PA allowed Paris and
Harrington to conclude, using Gentzen result.

Ordinal analysis is often linked with syntactic method, as cut-elimination. One can look at
the ordinal-size of a proof seen as a tree, after eliminating all the cuts in the proof. However,
here we will use a more semantic method, where we actually build models to show independence.
This model-theoretic approach to ordinal analysis is nicely introduced by Jeremy Avigad and
Richard Sommer in [3].
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We first give a formal definition of the largeness notions we are interested in. Then, we give
an account on how we would be able to benefit from a satisfying ordinal analysis of Hindman’s
theorem. This gives an example of construction of models from the model-theoretic approach to
ordinal analysis of [3]. Finally we perform the analysis of Hindman’s proof in terms of largeness
notion: in particular, we study how large the coloring can be to ensure the existence of large sets
of solutions.

This part is a joint work with Keita Yokoyama.

III.4.1 Largeness notions

Recall that the largeness notions we are about to define are a generalization of cardinality, and
are linked to ordinal analysis. We start by defining the general axioms for a notion of largeness.
Then, we explicit a particular case of α-largeness, for α being below ε0. We end by defining
notions of largeness related to Hindman’s Theorem.

Definition III.57

We say that a subset Γ of P(N) is a notion of largeness if:
1. any infinite set has a finite subset in Γ,
2. Γ is closed under superset,
3. for any two pointwise different sequence (xi)i∈N and (yi)i∈N, if {xi : i < n} is large

and ∀i < n, yi < xi, then {yi : i < n} is large. (We sometimes refer to this as
left-preservation of largeness)

where in this context X is large if X ∈ Γ.

The left-preservation of largeness makes it resemble to a density notion: not only the size is
important, but also how much the members are stacked to the beginning of the integers. This
notion is even sometimes referred to as “density”, or “regular largeness notion”.

We now define the notion of α-largeness for some ordinal α. The idea of α-largeness is that
one can “count-down” the elements of a set, starting from α and reaching 0. For α = k ∈ N, it is
clear that counting down from k the element of a set E, will reach 0 if and only if there are at
least k elements in E.

However, it is not even clear how to count down from any limit ordinal, as it has no prede-
cessor. We have to choose one smaller ordinal, and we will do so depending on the integer we
count.

Definition III.58

Let α < ε0. We inductively define the Cantor normal form of α to be the decomposition
of α into ωβ0 + ωβ1 + · · · + ωβk where β0 ≥ β1 ≥ · · ·βk are ordinals in Cantor normal
form.

The above definition works for all ordinals below ε0, since if α = ωβ0 + ωβ1 + · · ·+ ωβk , then
every βi < α. This is of course not the case for ε0, where ε0 = ωε0 .

Definition III.59

Let α < ε0, and n ∈ N. We define α[n] as follows:
1. 0[n] = 0.
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2. ω0 = 0 and ωβ [n] = n · ωβ[n].
3. If the Cantor normal form of α is ωβ0 + ωβ1 + · · · + ωβk , then α[n] = ωβ0 + ωβ1 +
· · ·+ ωβk−1 + (ωβk [n]).

If A = {a0; · · · ; an} is a finite set with ak < ak+1, then we write α[A] for α[a0][a1] · · · [an],
where the precedence is given as follows: α[n1][n2] = (α[n1])[n2].

We stated earlier that this definition should be a kind of generalization of the predecessor in
a particular class of ordinals. For successor ordinals, it is clear that (α + 1)[n] = α. For a limit
ordinal λ, we can prove that λ[n]→ λ when n→∞. Therefore the “predecessor” chosen as λ[n]
in the countdown is just some particular ordinal below λ, but closer and closer as n is bigger.

Note that we could have extended this to ordinals higher than ε0, by using a suitable function,
which to any countable ordinal α, associate a family (αn)n∈N with limn→ω αn = α.

Here are a few examples of the previous definition for limit ordinals:
1. We have ωl · k[n] = ωl · (k − 1) + ωl−1 · n for l ∈ ω,
2. ωω[n] = n · ωn

3. ωω
ω

[n] = n · ωn·ωn

Definition III.60 ([40])

Let α < ε0 be an ordinal, and A ⊆ N be a set. We say that A is α-large if A is infinite or
α[A] = 0.

I Example III.61. For any n ∈ ω, A is n-large if and only if |A| ≥ n. A is ω-large if A\{minA}
is minA-large, that is |A| > minA.

The notions of α-largeness still lack some expressiveness. For instance, the largeness notion
corresponding to “min(A) + 1 < |A|” is not an α-largeness notion for any α 3. Yet, it is included
in ω + 1-largeness. We give a few operations on largeness notions to palliate this lack:

Definition III.62 (Operation on largeness notions)

Let Γ,Γ0 and Γ1 be notions of largeness.
1. We say that Z is Γ0 ⊕ Γ1-large if there exists a partitioning of Z = Z1 t Z0 such

that Z0 is Γ0-large, Z1 is Γ1-large and Z1 < Z0
a.

2. We say that Z is Γ0 ⊗ Γ1-large if there exists a partitioning of Z = Z0 t · · · tZk−1

such that
(a) For every i < k − 1, Zi < Zi+1,
(b) For every i < k, Zi is Γ0-large,
(c) For every (xi)i<k ∈

∏
i<k Zi, {xi : i < k} is Γ1-large.

3. We write Γ{k}-largeness for Γ⊗ (Γ{k−1})-largeness. The notation with curly braces
is to distinguish it with exponentiation.

4. We write {k}Γ-largeness for ({k−1}Γ)⊗ Γ-largeness.

a. The reason Z is split in this order will appear clear in Proposition III.64

3. ω-largess corresponds to |A| > minA, while ω + 1-largeness corresponds to |A| > min(A \ {minA}). Both
are clearly different.
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The notation ⊕ and ⊗ is useful to distinguish it with ordinal sum in the case of α-largeness:
note that for instance (1 ⊕ ω)-largeness, which is “minA + 1 < |A|” does not correspond to
(1 + ω)-largeness which is ω-largeness. However, ⊕ and + correspond for well-chosen ordinals.

Definition III.63

Let α0 =
∑
i<k0

ων
0
i and α1 =

∑
i<k1

ων
1
i be two ordinals below ε0, in their Cantor normal

form. We say that (α0, α1) is compatible for addition if ν0
k0−1 ≥ ν1

0 .

I Proposition III.64. Let α, β < ε0 be ordinals. If (α, β) is compatible for addition, then A is
α+ β-large if and only if A is α⊕ β-large.

Proof. Suppose A is α + β-large. As α and β are compatible for addition, the Cantor
normal of α + β is just the concatenation of the two Cantor normal forms. Therefore, there
exists a prefix A0 of A such that (α+ β)[A0] = α, β[A0] = 0. But (α+ β)[A] = α[A \A0] = 0,
so A1 = A \A0 is α-large. We found A0 < A1 witnessing that A is α⊕ β-large.

Conversely, if A is α⊕β-large, let A = A0 tA1 be a witness of this. Then, (α+β)[A0] ≤ α
as β[A0] = 0 and as (α, β) is compatible for addition. Therefore (α + β)[A] ≤ α[A1] = 0, and
A is α+ β-large.

�

I Question III.65. Is there a good notion of compatibility for product, for which a proposition
similar to Proposition III.64 holds? What would be the smallest γ such that γ-largeness implies
α⊗ β-largeness?
I Remark III.66. — A set Z is ω{2}-large if Z can be partitioned in Z0 < · · · < Zk−1

where for each i < k, minZi < |Zi| and k = maxZ0.
— Γ⊕ Γ = Γ⊗ 2 (it may not be equal to 2⊗ Γ)
— The operations ⊕ and ⊗ are not commutative (like addition and multiplication of ordi-

nals).
— The condition (c) of the definition of ⊗ (Definition III.62, Item 2.) is equivalent to:
{maxZi : i < k} is Γ0-large.

We give the following generalization of the pigeon-hole principle, as an example of the kind
of things we can do with these operations:

Theorem III.67

If Z is Γ{k}-large, and Z is k-colored, then there exists Y ⊆ Z monochromatic and
Γ-large.

Proof. By induction on k. When k = 1, the result is obvious. Suppose the result for k,
and let Z be Γ⊗ Γ{k}-large. Decompose Z = Z0 t · · · t Zl as given by the largeness.

— If ∀i < l, there is xi ∈ Zi of color 0, then {xi : i < l} is Γ-large and monochromatic.
— Otherwise, let i < l be such that Zi has no member of color 0. Then Zi is Γ{k}-large

and k colored, so we can apply the induction hypothesis.
�

III.4.2 The strategy
As it was done for proving the Paris-Harrington theorem, we associate an ordinal to the

combinatorial statement that interests us.
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Definition III.68

Let X ⊆ N be any set.
— We say X is 0-HT-large if it is ω-large.
— We say that X is n + 1-HT-large if it is (n-HT)⊗ ω-large, and for every coloring

of FS(X), there exists a finite F such that FS(F ) ⊆ FS(X) is monochromatic and
F is n-HT-large.

Definition III.69

The statement n-FinHT is

∀X ∈ [ω]ω,∃F ∈ [ω]<ω : F is n+ 1-HT-large.

The idea to separate HT from ACA+
0 is to use the following two facts:

Theorem III.70

There exists an arithmetical formula Φ such that ACA+
0 ` Φ but ACA 0 Φ.

Proof. The formula Φ is Φ ≡ ¬Con(ACA). By Gödel’s incompleteness Theorem, this
formula cannot be proven in ACA. It remains to show that the consistence of ACA in ACA+

0 ,
and we will do so by building a model of ACA using only the axioms of ACA+

0 .
We define the model to be (N, {A ∈ P(N) : A ≤T ∅(w)}). Clearly, it is a model ACA0. It

remains to show that this model satisfies induction for arbitrary formula. Let φ be an arbitrary
formula of second order arithmetic. We replace quantification over sets by quantification over
sets below ∅(ω), which is really a number quantification. The obtained formula is arithmetical.
As ACA+

0 proves arithmetical induction, (N, {A ∈ P(N) : A ≤T ∅(w)}) satisfies induction for
φ. So it is a model of ACA. �

Theorem III.71 (Patey, Yokoyama [58])

HT is Π1
1 conservative over ACA0 + {n-FinHT : n ∈ ω}.

The following corollary of the previous two facts shows that if we are able to prove a certain
amount of finite versions of Hindman’s Theorem using only ACA, then we would have the
separation.

I Corollary III.71.1. We have that (∀n ∈ ω, ACA ` n-FinHT) implies that HT + ACA0 0
ACA+

0 .

Proof. Suppose, towards a contradiction, that ∀n ∈ ω, ACA ` n-FinHT and HT ` ACA+
0 .

Now, let φ be given by Theorem III.70. As HT ` ACA+
0 we also have HT ` φ. But by

Theorem III.71, RCA0 + {n-FinHT : n ∈ ω} ` φ already by Π1
1-conservativity.

As ACA ` n-FinHT for all n, we have that ACA ` φ, a contradiction with Theorem III.70.
�

So, according to Corollary III.71.1, it remains to prove n-FinHT for every n using only ACA
to achieve our goal.
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III.4.3 Proof of Theorem III.71

We want to show that Hindman’s Theorem is Π1
1-conservative over ACA0 + {n-FinHT : n ∈

ω}. To do this, we prove that any Π1
1 formula φ that is not provable in RCA0+{n-FinHT : n ∈ ω},

is still not provable in HT + φ. As we will use the equivalence between unprovability and the
existence of a model, we start with a model of RCA0 +{n-FinHT : n ∈ ω}+¬φ to build a model
of HT + ¬φ.

We need a few tools to build these models. We will use non-standard models of arithmetic,
that is models where the universe is not the integers. If M is a non-standard model, then N
must inject itself inM, as to every element n of N corresponds a term 1 + 1 + · · ·+ 1. So every
non-standard model contains N as an initial segment, we call these the standard numbers and
non-standard the other numbers of the model.

If M is a non-standard model of Σ0
n-induction, then there cannot be a Σ0

n definition of N
in M, as otherwise we would have a φ such that M |= φ(0) and ∀n, φ(n) =⇒ φ(n + 1), but
M 6|= ∀n, φ(n). So, if φ is any Σ0

n property that is true on the integers, it must also be true for
some non-standard number. This fact is called overspill. This is of particular importance, as a
non-standard element is above all integers, it can encode infinite information but behave inside
the model as something finite.

Definition III.72

Let M be some structure on the language of first order arithmetic. Call M -finite the
finite subsets of M , coded by elements of M (usually taking the binary expansion). Let
I be a subset of M . We write Cod(M/I) for the set {A ∩ I : A is M -finite}.

In other words, Cod(M/I) are subsets that may be infinite in I, but are coded as finite
subsets in M (though we need I to decode it). We use this notion and the following results to
build models. Lemma III.74 allows us to build models of WKL0.

Definition III.73

LetM be a model of arithmetic. A cut is an initial segment that is closed under successor.
A semi-regular cut is a cut I such that for everyM -finite set X such that cardM (X) ∈ I,
X ∩ I is bounded in I.

I Lemma III.74 (Lemma IX.3.11 in [60]). Let M be a model of RCA0 and I be a proper
semi-regular cut of I. Then, (M,Cod(M/I)) is a model of WKL0.

I Lemma III.75 (Lemma 3.2 [58]). Given a countable non-standard model M of IΣ1, and an
M -finite set Z ⊆ M which is a-HT-large for some a ∈ M \ N, there exists an initial segment I
of M such that (I,Cod(M/I)) |= WKL0 + HT and I ∩ FS(Z) is unbounded in I.

Proof. We will build a cut of M , ensuring that it is semi-regular and satisfies HT. Let
(Ei)i∈N be an enumeration of the M -finite sets, and (ci)i∈N an enumeration of the M -finite
2-colorings. We suppose that each M -finite set appears infinitely often in the enumeration.

Start with S0 = Z the a-HT-large set. We define a sequence (Sn)n∈N with Sn being a
(a − n)-HT-large set. The resulting cut will be {e ∈ M : ∃n ∈ N, e < minSn}. Here is the
construction:

1. If S3i is defined, then it is (a− 3i)-HT-large. Then, let S3i+1 ⊆FS S3i be a (a− 3i− 1)-
HT-large set such that FS(S3i+1) is monochromatic for ci.

2. If S3i+1 is defined, we ensure that the resulting cut will be semi-regular. If |Ei| ≥
minS3i+1, then S3i+2 = S3i+1. Otherwise, Ei = {e0; · · · ; el−1} with l < minS3i+1. For
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k ∈ [−1, l − 1], we define Wk = S3i+1 ∩ [ek, ek+1[ where we extend e−1 = 0 and el =∞.
Then Si =

⊔
−1≤k≤lWk. As S3i+1 is (a−3i−1)-HT-large, it is (a−3i−2)-HT⊗ω-large,

so let k be such that Wk is (a− 3i− 2)-HT-large. We define S3i+2 to be Wk.
3. Define S3i+3 to be S3i+2 \minS3i+2, which is a (a − 3i − 3)-HT-large set as n + 1-HT-

largeness clearly implies 1⊕ (n-HT)-largeness.
Now, let us show that the set I = {e ∈M : ∃n ∈ N, e < minSn} proves the theorem. First, it
clearly is an initial segment of M . The step 3. where we remove the minimum of S3i+2 ensures
that I is closed by successor, so it is a cut. Let E be an M -finite set with |M | ∈ I. Then, at
some point we have Ei = E and |Ei| < minS3i+1. By step 2. we shrink the set to S3i+2 so
that there is no element of E in ]minS3i+2,maxS3i+2]. Therefore, E ∩ I is bounded in I.

It remains to show that (I,Cod(M/I)) |= HT. Let c be an M -finite 2-coloring of I. As c
is M -finite, there exists an i such that c = ci. We have that S3i+1 is such that FS(S3i+1) is
monochromatic for c. Therefore S3i+1 ∩ I ∈ Cod(M/I) is a solution to c which is unbounded
in I, again by the action of step 3.

�

We are now able to prove Theorem III.71, that we recall here.

I Theorem (Patey, Yokoyama [58]). HT is Π1
1 conservative over ACA0 + {n-FinHT : n ∈ ω}.

Proof. First, we proved that HT implies ACA0 over RCA0 in Theorem III.34. Therefore,
by compactness, HT + RCA0 proves n-FinHT for every n ∈ N, so we only have to prove that
HT + RCA0 do not prove any additional Π1

1 statement.
Let Φ be a Π1

1 formula such that Φ is not provable in ACA0 + {n-FinHT : n ∈ ω}; say of
the form ∀X ∈ P(N),∃i,∀j, ϕ(i, j,X), where ϕ is ∆0

1 (here, we used ACA0 to be able to put
Φ in such a form). By the completeness theorem, let M be a model of ACA0 + {n-FinHT :
n ∈ ω} + ¬Φ. Fix some X ∈ M such thatM |= ∀i,∃j¬ϕ(i, j,X). Define inM the following
sequence recursive in X:

1. x0 = 0, and
2. xn+1 is the smallest integer strictly greater than xn such that ∀i ≤ xn,∃j ≤ x, ¬ϕ(i, j,X).

Let X = {xi : i ∈M}. By RCA0, X ∈M, and it is unbounded as (xi) is strictly increasing and
therefore xi ≥ i. The set {a ∈M : there is anM-finite a-HT-large subset of X} is Σ0

1-definable
and contains all the integers, therefore by overspill there must exist some non-standard a and
an M -finite set A ⊆ X with A being a-HT-large.

By Lemma III.75, let (I,Cod(M/I)) be a model of HT + RCA0 with A being infinite in
I. As A ⊆ X is unbounded in I, I must be a model of ∃X,∀i,∃j, ¬ϕ(X, i, j). Therefore,
HT + RCA0 cannot prove Φ. �

III.4.4 Ordinal analysis of n-FinHT

In this section, we analyze how large a set must be to contain a large set of monochromatic
finite sum, for a given notion of largeness. The idea would be to bound n-FinHT by some ordinal
below the ordinal-theoretic of ACA, which is εε0 ([4]). By Corollary III.71.1, this would separate
HT from ACA+

0 . In practice, we will bound n-FinHT with iteration of ⊕ and ⊗ rather than
α-largeness for a specific ordinal, however an ordinal could be recovered using Proposition III.64.

I Remark III.76 (“N is sparse”). We consider from now on that any set X ⊆FS N is such that
∀a ∈ X, we have (

∑
b∈X,b<a b) < a.

Note that we are now interested in finite sets, therefore in this section we weaken our notion
of right-match and full-match to finite sets.
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Constructing finite right-matches

In this section, we want the same kind of result as Theorem III.67, for the construction of
right-matches. However, if A is some large set, we will not look for a large right-match S with
S ⊆ A, but rather with S ⊆FS A. Therefore, we need this first result, dealing with finite sums.

Theorem III.77

If Γ is a largeness notion and Z = Z0tZ1t· · ·tZk−1 is a witness of ∆⊗(Γ⊕1)-largeness,
then any (xi) ∈

∏
i<k FS(Zi) is such that {xi : i < k} is Γ-large.

Proof. Let (yi)i<k ∈
∏
i<k Zi and (xi)i<k ∈

∏
i<k FS(Zi). We have that {yi : i < k} is

Γ ⊕ 1-large, therefore {yi : 0 < i < k} must be Γ-large. As xi < yi+1 for every i < k − 1, the
set {xi : i < k − 1} is Γ-large, which implies the result. �

We use this to tackle the “sum by two” drop of largeness:

I Corollary III.77.1. If Γ is a largeness notion and Z = {xi : i < 2k} is 2 ⊗ (Γ ⊕ 1)-large,
then {x2i + x2i+1 : i < k} is Γ-large.

We define the exact largeness that we need in the proof of Corollary III.30.1 for a set to have
a Γ-large right-match.

Definition III.78

Let Γ be a largeness notion.
— We define RM0-Γ to be Γ.
— We define RMk+1-Γ to be (RMk-Γ)⊗ [2⊗ ((RMk-Γ)⊕ 1)⊕ 1].
— Finally, we say that Z is RM-Γ-large if Z is RMminZ-Γ-large (we will always have

less colors than minZ)

Theorem III.79

Let Γ be a largeness notion. If FS(Z) is k-colored and RMk(Γ)-large, then
— Either there exists F, Y ⊆FS Z a right-match such that Y is Γ-large,
— or there exists Y ⊆FS Z, a Γ-large set such that FS(Y ) is monochromatic.

Proof. We prove the result by the following induction on k: When Z is only 1-colored,
the result is trivial.

Suppose the result for k colors, and Z is (RMk-Γ) ⊗ [2 ⊗ ((RMk-Γ) ⊕ 1) ⊕ 1]-large and
k + 1-colored. By the largeness of Z, it can be decomposed into Z0 t · · · t Zk. We build a
sequence of elements from zi ∈ Zi (almost) avoiding one color, such that if at some point we
cannot continue, then we already have a sufficiently large right-match. Suppose z0, · · · , zi−1

has been defined. We split the construction in two cases:
— If FS({za : a < i}) together with Zi make a right-match for color 0. As Zi is RMk-

Γ-large, by induction hypothesis a, there exists F, Y a right-match for all other colors,
with Y ⊆FS Zi Γ-large. But then, F ∪ FS({za : a < i}) is a right-match.

— Otherwise, let zi ∈ FS(Zi) of color 0 be such that ∀a ∈ FS({za : a < i}), c(zi + a) 6= 0,
and continue the construction.

If the construction continues until the zi’s are defined for i ≤ k, then by Theorem III.77,
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{zi : i ≤ k} is 2⊗ (RMk-Γ⊕ 1)-large, and by Corollary III.77.1, Y0 = {z2i + z2i+1 : i < k/2} is
RMk-Γ-large. But as FS(Y0) never gets color 0, it is k-colored and we can apply the induction
hypothesis.

�

a. There is a small abuse here, as Zi is k + 1-colored. To be accurate we would have to separate the total
number of colors to the number of colors we want to have a right-match on, but we omit this for the sake of
concision!

Constructing finite full-matches

Now that we can construct large right-matches, we need to iterate the construction to get
full-matches. For example, if we have a set that is RM-(RM-(· · · -RM-k)· · · )-large where there
is k-many “RM”, then we can iterate the construction of k right-matches, and thus obtain a
full-match of size k (or if it fails at some point, a solution of size at least k).

However, instead of a fixed number of iterations, that gives us a full-match of a fixed size, we
need a largeness notion. For example, to obtain a full-match that is ω-large, we roughly need Z
to be RMminZ-ω-large.

For this to work with a more general largeness notion than ω-largeness, we need to define the
exponentiation of two largeness notions.

An exponentiation of largeness notions

We start by defining Γ{∆}, our goal being to define RM∆-Γ. Going from the first to the
second will be straightforward, following the same idea.

Remember that Γ{k} is Γ⊗ (Γ{k−1}). We need to replace k by ∆. For example, replacing k
with ω seems easy: the number of times that we split is minZ, that is a set Z is Γ{ω}-large if it
is Γ{minZ}-large.

To do this for an arbitrary given largeness notion ∆, we define a well-ordering on finite
sequences of integers.

Definition III.80

Let Γ be a largeness notion, and x̄ an increasing sequence of integers. We say that Z is
Γ− x̄-large if Z ∪ {x : x ∈ x̄} is Γ-large.

This notation is not necessary, but motivates the notation of Theorem III.83. We have to be
careful that Γ− x̄ may not be a largeness notion.

Definition III.81 (The order <Γ)

The order <Γ is the order on finite increasing sequences, generated by x̄ >Γ ȳ if ȳ strictly
extends x̄ as sequences, and {x : x ∈ x̄} is not Γ-large.

I Proposition III.82. Let Γ be a largeness notion. Then <Γ is well-founded.

Proof. Suppose there is an infinite decreasing sequence for <Γ. This defines an infinite
set, by properties of largeness it must be large and some finite part must also be large. But
then, this finite part cannot have any extension that is <Γ smaller. �

Using this proposition, we are able to define the exponentiation by induction.
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Definition III.83

Let ∆ and Γ be largeness notions, and x̄ be an increasing sequence. We define the
Γ{∆−x̄}-largeness by induction on <∆, using Proposition III.82:

— If x̄ is a minimal element for <∆ (that is, {x : x ∈ x̄} is ∆-large), then every set is
Γ{∆−x̄}-large.

— Otherwise, we say that Z is Γ{∆−x̄}-large if Z \minZ is Γ× Γ{∆−x̄
a minZ}-large,

where xaminZ is the addition of minZ in the end of the sequence x̄.
— Finally Γ{∆}-largeness is Γ{∆−ε}-largeness.

We can do the same with the “operation” RM:

Definition III.84

Let ∆ and Γ be largeness notions, and x̄ an increasing sequence. We define the RM∆−x̄-
Γ-largeness by induction on <∆, using Proposition III.82:

— If x̄ is a minimal element for <∆ (that is x̄ is ∆-large) then RM∆−x̄-Γ-largeness is
Γ-largeness.

— Otherwise, we say that Z is RM∆−x̄-Γ-large if Z \ minZ is RM-RM∆−x̄minZ-Γ-
large.

— Finally RM∆-Γ-largeness is RM∆−ε-largeness.

I Fact III.85. 1. For every largeness notions Γ and ∆, Γ{∆} and RM∆-Γ are largeness
notions.

2. Γ{k} as defined in Definition III.62 is implied by Γ{k} as defined in Definition III.83 (where
k is interpreted as the k-largeness notion).
Both notions are not equivalent as at each iteration of the decomposition into Γ subsets,
we remove one element. In fact, Γ{k} would be equivalent to the definition by induction
Γ∼k+1 = (Γ∼k + 1)⊗ Γ.

3. RMk-Γ as in Definition III.84 implies RM-RM-· · · -Γ, where there is k times RM.

Proof. We only prove the items for the exponentiation, as the same results for RM follow
exactly the same proof.

We prove that Γ{∆} is a largeness notion by induction, using the well-ordering <∆ and
Proposition III.82. For the base case, a notion where all sets are large is a largeness notion.

Let us show the successor case (there is no limit point in <∆). First, by another induction,
Γ{∆−x̄} is included in Γ{∆−ȳ} when there is an injection f from x̄ to ȳ such that f(x) ≤ x.
Therefore, Γ{∆−x̄} is stable under superset and also satisfies left-preservation.

Item 2. is clear by induction, as Z is Γk-large by definition if Z \minZ is Γ⊗Γ{k−1}-large
(recall that a set is k-large if and only if it has k elements).

�

The finite full-match construction

Using the tools from the previous section, we are able to give a sufficiently powerful largeness
notion for constructing Γ-large full-matches.



126 CHAPTER III. THE REVERSE MATH OF HINDMAN’S THEOREM

Definition III.86

Let Γ be a largeness notion. We define:
1. FM0-Γ to be Γ, and FM1-Γ to be RMΓ⊕1-Γ
2. For k ≥ 1, FMk+1-Γ to be FM1-(FMk-Γ).

We say that Z is FM-Γ-large if it is FMminZ-Γ-large.

And now the theorem:

Theorem III.87

Let Γ be a largeness notion, Z ⊆ N an FM-Γ-large set and c a k-coloring set with
k < minZ. Then, there exists F, Y ⊆FS Z a Γ-large full-match.

Proof. We should be comfortable with the construction of full-matches given in the proof
of Theorem III.13 and studied in Theorem III.31. Therefore we only detail the analysis of
largeness. As usual, we first prove existence of full-match for one specific color.

I Lemma III.88. Suppose that Γ is a largeness notion, and Z is a k-colored FM1-Γ-large
set. Then, there exists F, Y ⊆FS Z a full-match for color 0, where Y is Γ-large.

Proof. We use Theorem III.79 to construct sequences F0, F1, · · · and Z0 ⊇FS Z1 ⊇FS · · ·
and c0, c1, · · · such that Fi, Zi is a right-match for ci, ci+1 is the refinement of ci corresponding
to the right-match Fi, and Zi is RMΓ⊕1−〈minZj :j<i〉-Γ-large. Note that we can always apply
Theorem III.79 as the number of colors of ci is less than minZi.

If at some point, (FS(Fi), Zi) is a full-match for color 0, we have proven the theorem as
every Zi is at least Γ-large. Otherwise, we continue until, {minZi : i < N} is Γ ⊕ 1-large,
and (FS(FN ), ZN ) is still not a full-match for color 0. But in this case there must exist a
sequence 〈x0, · · · , xN 〉 with xi ∈ Fi with FS({xi}) avoiding color 0, just as in the infinite
case. As Fi < minZi+1 and by left-preservation, the path must be Γ-large . �

The theorem is clear from the lemma. �

Constructing finite Hindman’s solution

The construction of large solutions to Hindman’s Theorem is very similar to the construction
of large full-matches, except that the base step is the construction of a full-match and not of a
right-match. Therefore, this section and the previous one are very similar.

Definition III.89

Let ∆ and Γ be largeness notions, and x̄ be an increasing sequence. We define the
FM∆−x̄-Γ-largeness by induction on <∆, using Proposition III.82:

— If x̄ is a minimal element for <∆ (that is x̄ is ∆-large) then FM∆−x̄-Γ-largeness is
Γ-largeness.

— Otherwise, we say that Z is FM∆−x̄-Γ-large if Z \ minZ is FM-FM∆−x̄minZ-Γ-
large.

— Finally FM∆-Γ-largeness is Γ∆−ε-largeness.
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Definition III.90

Let Γ be a largeness notion. We define HT-Γ-largeness to be FMΓ⊕1-1-largeness.

And now the theorem:

Theorem III.91

Let Γ be a largeness notion, Z ⊆ N an HT-Γ-large set and c a k-coloring set with k <
minZ. Then, there exists Y ⊆FS Z a Γ-large set with FS(Y ) monochromatic.

Proof. We should be comfortable with the construction of monochromatic IP sets given
in the proof of Theorem III.15 and studied in Theorem III.32. Therefore we only detail the
analysis of largeness.

We use Theorem III.87 to construct sequences F0, F1, · · · and Z0 ⊇FS Z1 ⊇FS · · · and
c0, c1, · · · such that Fi, Zi is a full-match for ci, ci+1 is the refinement of ci corresponding
to the full-match Fi, and Zi is FMΓ⊕1−〈minZj :j<i〉-1-large. Note that we can always apply
Theorem III.87 as the number of colors of ci is less than minZi.

We continue until {minZi : i < N} is Γ⊕ 1-large. As in the infinite case, there must exist
a sequence 〈x0, · · · , xN 〉 with xi ∈ Fi and FS({xi}) monochromatic. As Fi < minZi+1 and by
left-preservation, the path must be Γ-large . �

III.4.5 Conclusion on the ordinal analysis
It is clear using Theorem III.91 that n-FinHT is bounded by HT-(HT-(· · · -(HT-ω)))-largeness,

where we iterated n times the HT operation on largeness. However, it remains to show what
ordinal-theoretic is needed to prove the existence of these notions, and find whether is it below
εε0 or not.

Informally, the construction suggests that the ordinal associated with the construction of
right-matches is ωω. Indeed, HM-Γ-largeness corresponds to an unbounded iteration of sums
and product from Γ. Therefore, most likely when going back to ordinal largeness notions, HM-
α-largeness is bounded by αω.

Similarly, the construction of full-matches is associated with ε0, as it is the unbounded iter-
ation of HM. Therefore, we should get that FM-ω-largeness is bounded by ε0.

The construction of solutions to Hindman’s Theorem following the same pattern, it should
require εε0 -largeness to bound n-FinHT. This ordinal is exactly the ordinal-theoretic of ACA, and
is therefore too high to leave us a hope to use Corollary III.71.1 to separate HT from ACA+

0 . An
important modification of the construction would be needed to conclude using these techniques.

Although the proof-theoretic aspects is not complete, in particular the bounding of ⊕,⊗-
constructed notions, as well as exponent-constructed notions, we believe that the ordinal analysis
of Hindman’s Theorem in this setting is still of interest.
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Chapter IV

AC and ATR in Weihrauch lattice

Gotlib, RàB T2. Le matou matheux

Despite its importance in the community
of computability theorists, the “implication over
RCA0” is really a notion of reduction from proof
theory. It is used to compare theorems in terms
of “provability strength”, and to find the minimal
axioms needed for a proof. This “provability re-
duction” is linked to computability as RCA0 con-
sists exactly of the axioms needed for computations
to exist in a theory, and comparing computational
implication of two principles is useful to separate
them over RCA0. For instance, using the theory of
PA degrees is a way to separate WKL0 from ACA0,
by creating a model of WKL0 containing only low
degrees.

Conversely, the implication over RCA0 is not a
good way to compare the computational content of
principles. There are several reasons for this. We
mention three of them:

1. A finite amount of non-uniformity is allowed in proofs, as when using the law of excluded
middle. For instance, it is provable using WKL0 that for any tree T , either there exists a
maximum depth for T , or there exists a path for T . However, the computational strength
usually associated to WKL0 is those of PA degrees, and incomplete PA degrees cannot
decide ill-foundedness of binary trees.

2. We want the computational strength of a principle to be independent from the underlying
theory, that is from the model. Sometimes, it may be the case that the interpretation of a
principle truly depends on the model in an unexpected way. For instance, we have seen in
Theorem II.18 that if ∃X : Φ(X) is a Σ1

1 formula, then the formula ∃X ∈ HYP : Φ(X) is
Π1

1. This justifies some differences on analytical principles between provability reductions
and computable reductions, as seen in Theorem IV.80 and in the paragraph following this
theorem.

3. In order to be fine-grained in our comparison on computational power, we don’t want the
principle to be used multiple times. For instance, we want to make a distinction between
the computational power of solving RT2

2 once and the computational power of solving RT2
2

twice. It is not obvious to quantify the number of times a principle is used in a proof: for

129
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instance, a principle may appear only once in a proof, but in an induction, suggesting the
principle is in fact used many times.

Therefore, in order to compare computational strength of theorems, we need to devise other
reductions. One of the most successful is Weihrauch reduction, which has been actively studied
for instance in [16, 14, 10, 12, 11] as a continuation to the reverse mathematics program. We start
this chapter by presenting many examples and tools around Weihrauch reductions. We focus on
the problem of choosing a particular object in an analytic set. We then study the computational
power of ATR0, introducing two newWeihrauch problems, inspired by the arithmetical transfinite
recursion and its method of pseudo-hierarchy. We show how all these principles are linked with
the Axiom of Choice. In particular, we use the principle ATR2 to separate the analytical versions
of the axioms of choice and dependent choice, solving a question of [47, 13].

IV.1 Reducibilities on multivalued function

Turing reducibility is very convenient in order to computably compare elements of the Cantor
or the Baire space, using a Turing Machine with an oracle. However, it is not suitable to compare
higher order objects, such as subsets of the Cantor or the Baire space, as they do not fit in the
tape. One way to counter this misfitting is to consider the “decidability” version: a set B ⊆ ωω

is decidable by a Turing machine if there exists one that answers the question of whether its
infinite input is in the set or not.

But, even if this notion of decidability can be view as a version of being computable for
subsets of the Baire space, it does not relativize to subsets of the Baire space by using an oracle
tape for querying the oracle: if we had an oracle tape solving the decidability problem of a set,
it would take an infinite amount of time just to write the question! So there is no easy way to
define a notion of “A is decidable relative to B” for subsets of the Baire space. Note that using
infinite time Turing machines, it is easy to define such a notion.

There still exists reducibilities that can compare computational strength of subsets of Cantor
or Baire space: Muchnik reducibility, and its uniform counterpart, Medvedev reducibility. The
idea is to use a representation that fits in the tape: a set of reals is represented by any of its
member. Therefore for A ⊆ ωω to compute B ⊆ ωω, the input may be any representation of A,
that is, an element of A, and the output must be a representation of B, that is an element of
B. Another point of view is to see a set as a problem, and its members as the solutions to the
problem. A problem is easier than another if any solution of the latter computes a solution to
the former.

IV.1.1 Medvedev and Muchnik reducibilities

Definition IV.1

Let A,B ⊆ ωω. We say that A is Muchnik-reducible to B, written A ≤w B if for every
y ∈ B, there exists x ∈ A such that x ≤T y.
We say that A is Medvedev-reducible to B, written A ≤s B if there exists a single com-
putable functional Φ such that for every y ∈ B, Ψy ∈ A.

Clearly Medvedev reducibility is stronger than Muchnik one, justifying the notation: w stands
for “weak” while s is for “strong”.

I Proposition IV.2. Both Medvedev and Muchnik reducibilities are preorders on subsets of
Baire space. The degree structures have a minimum and a maximum element.
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Proof. It is clear that they are reflexive, by the identity function. If every element of
C compute (uniformly) and element of B, which itself (uniformly) computes an element of A,
then every element of C (uniformly) computes an element of A.

The minimum element is the degree of the set of the Baire space that contains a computable
element, while the maximal is the empty set. �

Note that the degree structure of both reducibilities embed the Turing degrees, by considering
the singletons.

These reducibilities allow to compare subsets of Baire or Cantor space. An example of an
interesting degree is MLR, the set of Martin-Löf Randoms (see Definition V.7): the degrees below
it are the sets such that any source of (Martin-Löf) randomness allows to compute one member.
No Turing degree is below MLR by a Theorem of Sacks [57].

However, these reducibilities are of less interest in the case of the Reverse Mathematical
program. Indeed, the only theorems that can be naturally embedded into such degrees are
theorems of the Σ1

1 form: If ∃X,Ψ(X) is a true Σ1
1 sentence, then {X ∈ 2ω : Ψ(X)} is a

non-empty set with a Medvedev and Muchnik degree.
The theorems with a Σ1

1 form are a rather small class of interesting theorems, however many
interesting theorems are of the Π1

2 form, such as all the big fives and Hindman’s theorem. To
these theorems correspond a multivalued function: If ∀X∃Y,Ψ(X,Y ), is a true statement, then
the natural corresponding multivalued function is X 7→ {Y ∈ 2ω : Ψ(X,Y )}. Instead of subsets
of Baire space, we need a way to compare multivalued functions. The best candidate for our
purpose, Weihrauch reduction, has recently been given focus by reverse mathematicians who
wanted a more computational approach.

IV.1.2 Weihrauch Reduction

All the reductions of this subsection are on multivalued functions. We see multivalued func-
tions as problems, where the input are instances of the problem and the output are solutions
to the instances. Therefore, we will often use this terminology in the definition, even by using
“problems” and “multivalued functions” interchangeably.

We start with defining the strong Weihrauch reduction. This reduction, from a problem P
to a problem Q is quite simple and proceed in two steps: Given an instance I of P , it computes
an instance I ′ of Q, and given a solution S′ to I ′, it computes a solution S to I. More formally,
here is the definition:

Definition IV.3

Let P,Q ⊆: 2ω → P(2ω) be partial multivalued functions. Then we say that P is strongly
Weihrauch reducible to Q, in symbols

P ≤sW Q

if there exists f, g partial computable functions such that

∀x ∈ dom(P ), g(x) ∈ dom(Q) ∧ ∀y ∈ Q(g(x)), f(y) ∈ P (x)

In other words,
∀x ∈ dom(P ), f [Q(g(x))] ⊆ P (x)

We can see this reduction as: if we had a solver for a problem Q, we could solve P by
computably modifying the input and the output of the solver. However, this reduction has some
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unnatural features. For instance, one would expect that the constant 0 function and the identity
function have the same degree, as their computational difficulty are the same: the computable
ones. However, this is not the case, as in strong Weihrauch reduction, the input of the initial
problem is forgotten when it comes to compute a solution.

Another way of seeing this is: we would have a Turing Machine that gets an input, computes
a question to ask to the solver. Then, everything is removed from its tape before giving the
answer from the solver. It seems more natural to leave the initial input to the second stage of
the reduction, as in Weihrauch reduction.

Definition IV.4

Let P,Q ⊆: 2ω → P(2ω) be partial multivalued functions. Then we say that P is
Weihrauch reducible to Q, in symbols

P ≤W Q

if there exists f, g partial computable functions such that

∀x ∈ dom(P ), g(x) ∈ dom(Q) ∧ ∀y ∈ Q(g(x)), f(y, x) ∈ P (x)

In natural language, given any instance x of the problem P , we are able to compute an
instance g(x) of Q such that for any solution y of g(x), then f(y, x) is a solution for x.

Note that there also exists versions of ≤sW and ≤W which are non-uniform: the two func-
tionnals f and g depends on the input and the solution. These reductions are called computable
and strongly computable reductions. However, we will never use them in this Thesis.

We show that this reduction is sound, and we are able to speak about Weihrauch degree by
considering the usual equivalence classes:

I Proposition IV.5. ≤W and ≤sW are preorders.

Proof. We only show the result for ≤W, as it is even easier for ≤sW. We need to show
reflexivity and transitivity. If F is any multivalued function, then clearly identity and the first
projection are witnesses of F ≤W F .

Now suppose F ≤W G and G ≤W H, via witnesses (f0, g0) for the first one and (f1, g1)
for the second. Then, we claim that F ≤W H via (f, g) where f = f1 ◦ f0 and g(y, x) =
g0(g1(y, f0(x)), x). Indeed, suppose x is an instance of F . Then f0(x) is an instance of G
and f1(f0(x)) is an instance of H. So suppose y is a solution to the instance f1 ◦ f0(x) of
problem H. Then, g1(y, f0(x)) is a solution to the instance f0(x) of problem G. But then,
g0(g1(y, f0(x)), x) is a solution to the instance x of the problem F . �

In the beginning of this chapter, we argued that the “implication over RCA0” is not suitable
to compare computational implication of theorems, and we gave three reasons for this. The first
one was the use of the law of excluded middle in proofs, which introduced non uniformity. The
Weihrauch reduction is uniform (but not the computable reduction).

The second thing was that computational implications should be independent of the base
theory. This is the case with Weihrauch reduction, which takes place in the ambient model of
mathematics: We can use very complex axioms to show that a reduction exists, but the reduction
itself has to be simple.

The third complaint was the resource insensitivity of ≤0. In a proof, it is very unclear how
to quantify the number of times an axiom is used. In the case of Weihrauch reduction, it is very
clear and only one application of the solver is used. We will see that there exists ways to consider
principles where multiple applications are allowed.



IV.1. REDUCIBILITIES ON MULTIVALUED FUNCTION 133

We now give a few examples of multivalued functions and degrees that are of interest for
Weihrauch reducibility:

I Examples IV.6. 1. If A ⊆ ωω is any set, we write fA for the multivalued function defined
only on 0ω and such that fA(0ω) = A. If A,B ⊆ ω, then A ≤s B if and only if fA ≤W fB :
This show that Medvedev degrees are embedded into Weihrauch degrees.

2. Any f is single valued and computable is in the degree of computable functions, written
id. Note that this degree of computable functions does not exists in the strong Weihrauch
reduction.

3. The multivalued function IVT, which given a continuous function with f(0) × f(1) < 0,
returns the elements x ∈ [0; 1] such that f(x) = 0. There must exist such an x by the
Intermediate Value Theorem, justifying the name.

4. The multivalued function WKL which to any infinite binary tree T associates the elements
of [T ]. The degree of this function is considered to be the Weihrauch equivalent of the
WKL0 principle of reverse mathematics.

5. The single valued function lim, which to any converging element of ωω, return the limit.
The degree of this function is considered to be the Weihrauch counterpart of the ACA0

principle from reverse mathematics.
6. The single valued function Π1

1-CA which to any Π1
1 formula φ, associates the set {n ∈ N :

φ(n)}. The formula is allowed to have parameters.

In the examples we gave the Weihrauch degrees equivalent of four principles out of the Big
Five: The Arithmetical Transfinite Induction is missing. We will discuss more on the equivalent
of ATR0 in the Weihrauch lattice later.

IV.1.3 Algebraic structure of the Weihrauch lattice
Due to its fine-grained nature, the Weihrauch reducibility contains many natural ways to

combine degrees, making the Weihrauch quasi-order an interesting algebraic structure.

Definition IV.7

Let P,Q be a multivalued functions. Then P × Q is the problem where instances are
couples (i0, i1) ∈ dom(P )× dom(Q) with solutions (s0, s1) ∈ P (i0)×Q(i1).

Note that as the Weihrauch reduction is resource sensitive, P × P may not be equal to P .
When P × P ≡W P , then we say that P is idempotent.

For instance, WKL is idempotent: given two infinite binary trees T0 and T1, one can build
an infinite binary tree where the even levels correspond to T0 and the odd ones to T1. Formally,
σ ∈ T if σ ◦ (i 7→ 2i) ∈ T0 and σ ◦ (i 7→ 2i + 1) ∈ T1. Given a path on this binary tree T , it is
easy to recover a path from both binary tree T0 and T1.

The degree P ×P allows two independent queries for an answer to P . To express an arbitrary
number of independent queries, or an infinite number of independent queries, to the same problem
P , then we need the following:

Definition IV.8

Let P be a multivalued function. Then P ∗ is the finite parallelization of P : an instance
is a finite sequence 〈i0, . . . , in〉 where ik ∈ domP for all k ≤ n, and a solution is a product
of solution for every ik.
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P̂ is the parallelization of P : an instance is an infinite sequence (ik)k∈N where ik ∈ domP

for all k ∈ N, and a solution is a product of solutions for every ik. When P ≡W P̂ we say
that P is parallelizable.

For instance, for every P we have P̂ ≡W
̂̂
P , that is P̂ is parallelizable: It is easy to “flatten”

a sequence of sequences to a unique sequence, with the same elements.

In all the previous constructions, multiple queries must be independent from each others.
However, proofs of usual mathematics are usually more sequential than parallel: we often apply
a theorem of a Π1

2 form by instantiating it with something depending on the application of
another Π1

2 theorem: in this case, the instance of one query must depend on the answer to
another.

In order to define this sequentiallity of two Weihrauch degrees, one cannot just compose the
multivalued functions, as the output of the first one might need to be modified before being given
as input to the second one. This is reflected by the following construction:

Definition IV.9

Let P,Q be multivalued functions. Then P ∗ Q is the compositional product defined by
P ∗ q(i, e) = (id×P ) ◦ Φe ◦Q.

There are many more algebraic properties and construction in the lattice of Weihrauch de-
grees, but in this chapter we won’t use them. An interested reader can refer to [15].

IV.1.4 Arithmetical Weihrauch reduction

In this thesis, we are mainly interested by objects of high complexity. Sometimes, Weihrauch
complexity is a little bit too fine-grained: some degrees that are conceptually close can be distinct
for Weihrauch reduction, but equivalent when given a few more power to the function modifying
the input and the output. Therefore, we define the arithmetical Weihrauch reduction, where the
functionnals are arithmetic instead of being recursive.

Definition IV.10

Let P,Q ⊆: 2ω → P(2ω) be partial multivalued functions. Then we say that P is arith-
metically Weihrauch reducible to Q, in symbols

P ≤a
W Q

if there exists f, g partial functions that are arithmetically definable, and such that

∀x ∈ dom(P ), g(x) ∈ dom(Q) ∧ ∀y ∈ Q(g(x)), f(y, x) ∈ P (x)

We now go on to define the most studied classes of Weihrauch degrees, the degrees corre-
sponding to a choice in a definable set.
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IV.2 Choices in the Weihrauch lattice

IV.2.1 Single Choices
Although Weihrauch degrees have been introduced in this chapter to compare computational

strength of theorems, inspired by the reverse mathematical program, Weihrauch reduction has
been defined independently of this goal. It compares the difficulty of solving problems that
sometimes cannot be translated into a natural theorem. One class of such problems is the “choice
problem”: given a code for a non empty set, output a member of the set. A corresponding theorem
would be: “for every non empty set, the set has a member”, an uninteresting theorem but an
interesting degree in the Weihrauch hierarchy of computational power.

Definition IV.11

Let X be a recursively presented topological space, and A = (Ap)p∈2ω be a presentation
of sets by elements of the Cantor space. Then A-CX is the multivalued function such
that:

1. dom(A-CX ) is the set {p ∈ 2ω : Ap 6= ∅}.
2. A-CX (p) = Ap.

In other words, A-CX is the multivalued function which given a presentation p of a set Ap,
outputs the elements of this set. When omitted, A will be the standard presentation of closed
sets: A sequence (on) of code for the basic open sets that are removed from the closed set. In
the case of Cantor and Baire space, this corresponds to the tree presentation, where a tree codes
for its infinite path. We will call Σ1

1-presentation a presentation of a closed set A ⊆ X × ωω,
and this presentation will code the set p(A) where p is the projection on the first coordinate.

Let us give a few examples:

I Example IV.12. 1. C2 is the task of, given a co-enumeration of a non-empty set D ⊆ 2,
to find an element of D. Cω is the same with a co-enumeration of a non-empty set of
integers.

2. C2ω is the task of, given an ill-founded tree T ⊆ 2<ω, to find an element of [T ]. Cωω is the
task of, given an ill-founded tree T ⊆ ω<ω, to find an element of [T ].

3. Σ1
1-CX is the task of, given a Σ1

1 presentation of a set, to find an element of the set.
It corresponds to the task of finding an element of p(A), given a presentation of a closed
set A ⊆ X × ωω, to find an element of p(A), where p is the projection along the first
coordinate. When X = ωω (respectively X = 2ω), the input can equivalently be an
ill-founded tree T ⊆ (ω×ω)<ω (respectively T ⊆ (2×ω)<ω) and the output an element of
p([T ]).

4. Σ1
1-tree-CX is the task of, given a Σ1

1-presentation of an ill-founded Σ1
1 tree T ⊆X <ω, to

find an element of [T ] 1. We also write Σ1
1-WKL for Σ1

1-tree-C2.

The next few theorems show how these principles relate under Weihrauch reducibility.

Theorem IV.13

Cωω ≡W Σ1
1-tree-Cωω ≡W Σ1

1-Cωω ≡W Σ1
1-C2ω .

1. Note that a Σ1
1-presentation is a presentation of a closed set, and therefore is a tree. So a Σ1

1 presentation
of a tree is a tree T such that its projection p([T ]) is itself a tree.
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Proof. It is clear that Σ1
1-C2ω ≤W Σ1

1-Cωω . Let c be the usual injection from ωω to 2ω.
Given a Σ1

1 set A ⊆ ωω, then its image by c is a Σ1
1 set of the Cantor space, such that any

element from it uniformly computes an element of A just by using c−1, so Σ1
1-Cωω ≤W Σ1

1-C2ω .
We continue by showing that Σ1

1-Cωω =W Σ1
1-tree-Cωω . If T ⊆ ω<ω is a Σ1

1 tree, then the
set [T ] is also Σ1

1, as X ∈ [T ] if and only if ∀n,X�n ∈ T . Moreover, given a Σ1
1 presentation of

T , one can compute a Σ1
1 presentation of [T ]. So Σ1

1-tree-Cωω ≤W Σ1
1-Cωω .

Conversely, if A ⊆ ωω is Σ1
1, then let T ⊆ ω<ω be computable such that A = p([T ]). T is

also Σ1
1, so let T̃ be a presentation of T as a Σ1

1 set. Given a path y of T by Σ1
1-tree-Cωω , one

can obtain x = p(y) ∈ A. So Σ1
1-Cωω ≤W Σ1

1-tree-Cωω .
It is obvious that Σ1

1-Cωω ≥W Cωω . It only remains to prove Σ1
1-Cωω ≤W Cωω . Let A be a

Σ1
1 set, and let T be such that p([T ]). Then, given any path y ∈ [T ] by Cωω , one can find an

element of A just taking the projection p(y) ∈ A. �

We now show that the only gap in the choice principles mentioned above happens between
Π0

1 and Π0
2 choices. These version of choice are defined from Definition IV.11 using the usual

coding of Π0
n sets.

Theorem IV.14

For all n ≥ 2, we have

C2ω ≡W Π0
1-C2ω <W Π0

n-C2ω ≡W Σ1
1-C2ω

Proof. We have C2ω ≡W Π0
1-C2ω just by definition. It is clear that Π0

n-C2ω ≤W Σ1
1-C2ω .

By Theorem IV.13, for the right part we only have to show Cωω ≤W Π0
n-C2ω .

Let T ⊆ ω<ω be an ill-founded tree. We fix a computable bijection (σn)n∈N from N to ω<ω.
Let e be a code for the set of codes for pruned subtrees of T . Formally, e is a code for the
formula φ(C) being ∀n, n ∈ C ⇒ σn ∈ T (inclusion in T ) and ∀n ∈ C,∀m,σm ≺ σn ⇒ m ∈ C
(C is a tree) and ∀n ∈ C, ∃m ∈ C : σn ≺ σm ∧ σn 6= σm (C is pruned).

This formula is Π0
2. Because T is ill founded, {C ∈ 2ω : φ(C)} 6= ∅. Let C ∈ 2ω be any

such that φ(C). As C codes for a pruned tree, it computes its leftmost path. But as it codes
a subtree of T , this path is an element of [T ].

Therefore, Cωω ≡W Π0
2-C2ω .

It remains to prove the separation. We do so by comparing C2ω with Cωω . There exists a
recursive tree T ⊆ ω<ω with a non empty set of paths, but no hyperarithmetic path. Finding
a path in such a tree cannot be reduced to finding a path in a tree of 2<ω, as any infinite tree
in 2<ω has a low path. �

I Corollary IV.14.1. For all n,m ≥ 2, Π0
n-C2ω ≡W Π0

m-C2ω

I Corollary IV.14.2. For all n ≥ 2, Π0
n-C2ω ≡W Π0

n-Cωω

Recall that Σ1
1-WKL is defined as Σ1

1-tree-C2ω . In contrast with Theorem IV.13, we have the
following:

Theorem IV.15

C2ω <W Σ1
1-WKL <W Σ1

1-C2ω .

Proof. The tree with a single path corresponding to ∅′ is Σ1
1, while any recursive tree in

2<ω has a low path, establishing the separation C2ω <W Σ1
1-WKL.
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It is clear that Σ1
1-WKL ≤W Σ1

1-C2ω , as if T is Σ1
1, then [T ] is Σ1

1 as well uniformly in T .
We now have to show that Σ1

1-WKL 6≤W Σ1
1-tree-Cωω , and conclude using Theorem IV.13.

We start by remarking the following: there exists a Σ1
1 tree T0 ⊆ ω<ω and a computable

function g0 such that for every X ∈ [T0], gX0 is total and majorizes every ∆1
1 function. Indeed,

one can take the Σ1
1 tree T0 = {σ : ∀n < lh(σ),∀i ≤ n, σ(n) ≥ fi(n) whenever fi(n) ↓} where

(fi)i∈ω is an enumeration of partial Π1
1 functions. Then, gX0 : n 7→ X(n) majorizes every ∆1

1

function whenever X ∈ [T0], up to finite values.
Contrary to this fact, for every Σ1

1 tree T ⊆ 2ω and computable functional f total on [T ],
there exists a ∆1

1 function g majorizing every fX for X ∈ [T ]. Indeed, let T be Σ1
1, we define

g(n) using the following procedure: First, wait for an ordinal stage s such that fn : X 7→ fX(n)
is total on Ts, the co-enumeration of T at stage s. Then, output the maximum of the values
taken by fn + 1 on this set. This must happen, as by compactness there is a finite level of T
already witnessing totality, and the co-enumeration must be exact on this finite level at some
computable ordinal stage. Moreover, only finitely many values can be taken, so the maximum
must exist.

Now suppose that Σ1
1-WKL ≥W Σ1

1-tree-Cωω . Then, there must exist some Σ1
1 tree

S ⊆ 2<ω, such that every path of S uniformly computes a path of T0, which itself uniformly
computes a ∆1

1-majoring function, a contradiction.
�

IV.2.2 Restrictions on single choice

In this section, we investigate on several restrictions of choice in analytic sets. In [15], the
author lists several variations on the principle of single choice on closed set, corresponding mainly
to restrictions on the cardinality of the inputs. The following can be considered as an extension
of his work, by considering the same kinds of restrictions but for Σ1

1 sets instead of closed sets.

Unique and Compact choice

Definition IV.16

Let A and X be as in Definition IV.11. Then, A-UCX is A-CX restricted to singletons,
while A-KCX is A-CX restricted to compact sets.

We first characterizes how these restrictions work at the Σ1
1 level, using the degrees already

defined.

Theorem IV.17

Σ1
1-UCωω <W Σ1

1-KCωω ≡W Σ1
1-WKL.

Proof. It is clear that a Σ1
1 singleton is a ∆1

1 element. However, there exists compact
subsets of ωω with no hyperarithmetic elements, showing Σ1

1-UCωω <W Σ1
1-KCωω .

It is clear that any Σ1
1 tree of the Cantor space induces a compact Σ1

1 subset of the Baire
space. Conversely, let A be a compact subset of Baire space. As a compact set, it must be
closed, so the Σ1

1 tree T = {σ ∈ ω<ω : ∃X ∈ A,X � σ} is such that [T ] = A. It is clear that
each node in T has finitely many direct child, as [T ] is compact. Therefore, the map defined
on T by the function n0n1 · · ·nk 7→ 0n010n110n21 · · · 0nk give a tree T ′ ⊆ 2<ω with no other
path but the image of elements of [T ], and any path of T ′ computes a path of T . �
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Next, we show that the compact Σ1
1-choice principle is also Weihrauch equivalent to the

following principles:
— The principle Π1

1-Tot2, the totalization problem for partial Π1
1 two-valued functions, is the

partial multivalued function which, given a partial function ϕ : ⊆ ω → 2 which is Π1
1

relative to a given parameter, chooses a total extension f : ω → 2 of ϕ.
— The principle Π1

1-DNC2, the problem of finding a two-valued diagonally non-Π1
1 function, is

the partial multivalued function which, given a sequence of partial functions (ϕe)e∈ω which
are Π1

1 relative to a given parameter, chooses a total function f : ω → 2 diagonalizing the
sequence, that is, f(e) 6= ϕe(e) whenever ϕe(e) is defined.

The latter notion has also been studied by Kihara-Marcone-Pauly [47].

I Proposition IV.18. Σ̂1
1-C2 ≡W Π1

1-Tot2 ≡W Π1
1-DNC2.

Proof. Π1
1-Tot2 ≤W Π1

1-DNC2: Given a partial function ϕ : ⊆ ω → 2, define ψe(e) =
1 − ϕ(e). If g diagonalizes (ψe)e∈ω, then g(e) = 1 − ψe(e) = ϕ(e) whenever ϕ(e) is defined.
Therefore, g is a totalization of ϕ.

Π1
1-DNC2 ≤W Σ̂1

1-C2: Define Se = {a : ϕe(e) ↓< 2 → a 6= ϕe(e)} is uniformly Σ1
1.

Moreover, the choice for (Se)e∈ω clearly diagonalizes (ϕe)e∈ω.
Σ̂1

1-C2 ≤W Π1
1-Tot2: Given a Σ1

1 set Sn ⊆ 2, wait for Sn to become a singleton, say
Sn = {sn}. It is easy to find an index of a partial Π1

1 function f such that f(n) = sn whenever
Sn = {sn}. Then, any total extension of f is a choice for (Sn)n∈ω. �

Other restrictions

Then, we define:

Σ1
1-UCX = Σ1

1-CX �{A⊆X:|A|=1},

Σ1
1-C

fin
X = Σ1

1-CX �{A⊆X:A is finite},

Σ1
1-C

cof
X = Σ1

1-CX �{A⊆X:A is cofinite},

Σ1
1-C

foc
X = Σ1

1-CX �{A⊆X:A is finite or cofinite},

Σ1
1-C

aof
X = Σ1

1-CX �{A⊆X:A=X or A is finite},

Σ1
1-C

aou
X = Σ1

1-CX �{A⊆X:A=X or |A|=1} .

Note that the all-or-unique choice is often denoted by AoUCX instead of Caou
X , cf. [48]. Among

others, we see that the all-or-unique choice Σ1
1-Caou

N is quite robust. Recall from Proposition
IV.18 that the Π1

1-totalization principle Π1
1-Tot2 and the Π1

1-diagonalization principle Π1
1-DNC2

restricted to two valued functions are equivalent to the Σ1
1 compact choice principle. We now

consider the ω-valued versions of the totalization and the diagonalization principles:
— The principle Π1

1-TotN, the totalization problem for partial Π1
1 functions, is the partial

multivalued function which, given a partial function ϕ :⊆ ω → ω which is Π1
1 relative to

a given parameter, return the total extensions of ϕ.
— The principle Π1

1-DNCN, the problem of finding a diagonally non-Π1
1 function, is the partial

multivalued function which, given a sequence of partial functions (ϕe)e∈ω which are Π1
1

relative to a given parameter, returns the total functions f : ω → ω diagonalizing the
sequence.

It is clear that Π1
1-DNCN ≤W Π1

1-DNC2 ≡W Π1
1-Tot2 ≤W Π1

1-TotN. One can easily see the
following.
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I Proposition IV.19. Σ̂1
1-Caou

N ≡W Π1
1-TotN.

Proof. The argument is almost the same as Proposition IV.18. Given a partial function
ϕ, define Sn = {a : ϕ(n) ↓ → a = ϕ(n)}, which is uniformly Σ1

1. Clearly, either Sn = N or
Sn is a singleton. Hence, the all-or-unique choice principle chooses an element of Sn, which
produces a totalization of ϕ.

Conversely, given a Σ1
1 set Sn ⊆ N, wait until Sn becomes a singleton, say Sn = {sn}. It is

easy to find an index of partial Π1
1 function f such that f(n) = sn whenever Sn = {sn}. Then,

any total extension of f is a choice for (Sn)n∈ω. �

IV.2.3 Axioms of Choices
The previous subsection dealt with single choice. This principle has no equivalent in the

reverse mathematical zoo. However, as uniformity matters in proofs, single choice does not
imply infinite choice. The Axiom of Choice is a very important principle in mathematical logic,
from reverse mathematics to set theory.

Of course, any kind of axiom of choice on X can be seen as a single choice on X N, but we
still make a difference, in particular when X is countable and therefore of a different nature
than X N.

Definition IV.20 (Σ1
1-ACX )

Let X be a recursively presented topological space. We define Σ1
1-ACX to be the mul-

tivalued function with dom(Σ1
1-ACX ) being the set of all families (cn)n∈N of countably

many codes for Σ1
1 non empty sets An, and with solutions being elements of the product∏

n∈NAn.

It is clear that, by design, we have Σ1
1-ACX ≡W Σ̂1

1-CX . Dependent choice is when the set
of choices depends on the previous choices. Therefore, the input looks like a tree without leaves.

Definition IV.21 (Σ1
1-DCX )

Let X be a recursively presented topological space. We define Σ1
1-ACX to be the multi-

valued function with dom(Σ1
1-DCX ) being the set of all families (cσ)σ∈N<N of countably

many codes for Σ1
1 sets An, with Aσ 6= ∅ iff ∀n < |σ|, σ(n) ∈ Aσ�n. Its solutions are the

infinite sequences x ∈X N with x(n) ∈ Ax�n.

As mentioned in the introduction, we have that Σ1
1-DCX ≤W Σ1

1-CX N , however more pre-
cisely we have the following:

IProposition IV.22. Let X be a recursively presented topological space. We have Σ1
1-DCX ≡W

Σ1
1-tree-CX .

Proof. Between the two principles, only the way the input are given differ. Given
(cσ)σ∈2<N Σ1

1 codes for sets Aσ, one can clearly compute an index for the Σ1
1 tree {σ ∈X <N :

∀n < |σ|, σ(n) ∈ Aσ�n}. Conversely, given a index of a Σ1
1 tree T ⊆ 2<N, one can uniformly

compute indices for the sets Aσ = {i ∈X : σai ∈ T}. �

I Corollary IV.22.1. We have both Σ1
1-DC2 ≡W Σ1

1-WKL, and Σ1
1-DCN ≡W Σ1

1-tree-CN.
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We will often see dependent choices as trees. In order to see independent choices as particular
instances of dependent choice, we make the following definition:

Definition IV.23

A tree T ⊆ X <N is homogeneous if Aσ = {n ∈ X : σ a n ∈ T} only depends on the
length of σ. We also say that a set X ⊆X N is homogeneous if it corresponds to the path
of a homogeneous tree.

Theorem IV.24

We have that
Σ1

1-AC2 ≡W Σ1
1-DC2 <W Σ1

1-C2ω

but
Σ1

1-ACω ≤W Σ1
1-DCω ≡W Σ1

1-Cωω

Proof. We start with the corollaries of already proven reductions and separations, leaving
the proof of Σ1

1-DC2 ≡W Σ1
1-AC2 at the end.

The fact that Σ1
1-ACX ≤W Σ1

1-DCX where X = 2 or X = ω is clear, by considering the
tree {σ ∈X <ω : ∀i < |σ|, σ(i) ∈ Ai} given an instance ΠnAn of Σ1

1-ACX .
The fact that Σ1

1-DC2 <W Σ1
1-C2ω is due to the fact that Σ1

1-DC2 ≡W Σ1
1-WKL and

Theorem IV.15. The fact that Σ1
1-DCω ≡W Σ1

1-Cωω is due to the fact that Σ1
1-DCω ≡W

Σ1
1-tree-Cω and Theorem IV.13.
Let us now show that Σ1

1-DC2 ≡W Σ1
1-AC2. By Corollary IV.22.1, it is sufficient to show

Σ1
1-WKL ≡W Σ1

1-AC2, so let T ⊆ 2<ω be a Σ1
1 tree. As {σ ∈ T : ∃Y � σ, Y ∈ [T ]} is also Σ1

1,
we can suppose T with no dead end. Now, we define Aσ = {i ∈ 2 : σai ∈ T}, a collection of
Σ1

1 subsets of 2. However, (Aσ)σ∈2<ω is not always non empty: for σ 6∈ T , we will certainly
have Aσ = ∅, so it is not an instance of Σ1

1-AC2.
In order to make (Aσ)σ∈2<ω into an instance of Σ1

1-AC2, we uniformly modify Aσ into the
non-empty Σ1

1 set Âσ ⊆ 2 such that Aσ 6= ∅ implies Âσ = Aσ. We define Âσ using the view of
Σ1

1 sets as co-enumeration along ωCK
1 : Âσ is defined to follow the co-enumeration of Aσ until

one element is removed from Aσ. At any stage after the first removal, Âσ stays the same.
Now, let (bσ)σ∈2<ω ∈

∏
σ∈2<ω Âσ. We claim that (bσ)σ∈2<ω uniformly computes a path

of T : Let a0 = bε. As T is non empty, Aε 6= ∅ so Aε = Âε, and therefore 〈aO〉 ∈ T . Now
suppose 〈a0, · · · , an〉 ∈ T has been defined. As T has no dead end and 〈a0, · · · , an〉 ∈ T , we
must have A〈a0,··· ,an〉 6= ∅, so b〈a0,··· ,an〉 ∈ A〈a0,··· ,an〉. Define an+1 = b〈a0,··· ,an〉, we have that
〈a0, · · · , an+1〉 ∈ T .

As the sequence (an)n∈N is uniformly computable in (bσ)σ∈2<ω , and a code for (Âσ)σ∈2<ω

is uniformly computable from a code for (Aσ)σ∈2<ω , we have Σ1
1-WKL ≤W Σ1

1-AC2.
�

I Corollary IV.24.1. Σ̂1
1-C2 ≡W Σ1

1-WKL.

The Σ1
1-DC2 ≡W Σ1

1-AC2 part of the previous proof is important. Its core is that in some case
it is possible to prevent a Σ1

1 co-enumeration from removing the last element of a set. However,
when co-enumerating an arbitrary subset of N we are not able to achieve this: the set can become
empty without a last element removed. This implies that there is no version of this proof for
axioms of choice in all N, raising the question whether dependent and independent choice are
equivalent when the choices are made on natural numbers. This question has been asked in [13]
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and [47] in the form of Σ̂1
1-CN versus CNN .

I Question IV.25 ([13, 47]). Do we have Σ1
1-ACN <W Σ1

1-DCN?

We will answer later this question by the affirmative, however the proof need another principle,
ATR2, that we will introduce only in section IV.5.1. Therefore, we post-pone its resolution.
Before starting with the study of restricted axioms of choice, we show another example of a use
of the trick where we prevent the removal of the last element, to show that this can be done in
other settings than the finite sets.

Definition IV.26

The totalization of a multivalued function P with dom(P ) ⊆ ωω is the principle P tot of
domain the full Baire space; such that if x ∈ dom(P ) then P tot(x) = P (x), and whenever
x 6∈ dom(P ), P (x) = ωω.

In other words, all inputs become admissible, but in the case where there is no output in the
original principle, any output is a solution.

I Proposition IV.27. Let X be a ∆1
1 subset of N. Then, Σ1

1-UCtot
X ≡W Σ1

1-Caou
X .

Proof. Σ1
1-UCtot

X ≤W Σ1
1-Caou

X : Given a Σ1
1 set S, wait until S becomes a singleton at some

ordinal stage. If it happens, let R = S; otherwise keep R = X. One can effectively find a
Σ1

1-index of R, and either R = X or R is a singleton.
Σ1

1-Caou
X ≤W Σ1

1-UCtot
X : Trivial. �

In particular, the totalization of two-valued unique choice is equivalent to the compact choice.

I Corollary IV.27.1. ̂Σ1
1-UCtot

2 ≡W Σ1
1-WKL.

Proof. It is clear that Σ1
1-Caou

2 ≡W Σ1
1-C2. Thus, the assertion follows from Corol-

lary IV.24.1. �

IV.3 Restricted Analytical Axioms of Choice

Just as we did in section IV.2.2 for single choice, we investigate the restrictions of the axiom
of choice to several properties. In particular, we are interested in the structure of different
(semi-)sublattices of the Medvedev degrees corresponding to instances of a restricted axiom of
choice.

Given a Weihrauch problem P , we define the Medvedev lattice of P by the lattice of Medvedev
degrees of P (x) for all computable instances x ∈ dom(P ). One reason we are interested in
upward density of Medvedev lattices of those various Weihrauch degrees, is that it can be used
to Weihrauch-separate two of them. Suppose that P ≤W Q and the Medvedev lattice of Q is
upward dense while the Medvedev lattice of P is not. Then, we have P <W Q: Let x ∈ dom(P )
be any computable instance realizing a maximal P -Medvedev degree, and take y ∈ dom(Q)
such that P (x) ≤s Q(y) (as P ≤W Q). By upward density, let z ∈ dom(Q) be such that
Q(z) <s Q(y). Then, it cannot be that there is t ∈ dom(P ) such that P (t) ≥s Q(z), as it would
contradict maximality of x. Therefore, z is a witness that P <W Q.

We now define the restricted axioms of choice studied in this section.
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Definition IV.28

Recall that we already have defined several versions of single choice where the set we have
to choose from are restricted to special kinds: For ? ∈ {fin, cof, foc, aof, aou}, we defined:

Σ1
1-C

?
N

to be Σ1
1-CN where the domain is restricted to be respectively finite, cofinite, finite or

cofinite, all or finite and all or unique. We define this single choice to correspond to a
single step in a restricted axiom of choice:

Σ1
1-AC?N = Σ̂1

1-C?N

We will also consider the Dependent Choice where the restriction is also dependent on
the previous choices:

Σ1
1-DC?N = Σ1

1-DCN �{(Aσ)σ :Aσ is ? or empty} .

where ? ∈ {fin, cof, foc, aof, aou} has the same meaning.

Before going further, we mention that under Medvedev reducibility, AC and DC are always
different, as there exists products of two homogeneous sets that are never Medvedev equivalent
to a homogeneous set.

I Proposition IV.29. For every ? ∈ {fin, cof, foc, aof}, there exists A ∈ Σ1
1-DC?N such that

there is no B ∈ Σ1
1-AC?N with A ≡s B.

Proof. Simply take A0 and A1 in Σ1
1-ACfin

N which are not Medvedev equivalent, and
consider C = 0aA0 ∪ 1aA1, which is in Σ1

1-DCfin
N . Now, toward a contradiction, suppose also

that there exists H in Σ1
1-ACN (actually there is no need for H to be Σ1

1) such that C ≡s H.
Let φ and ψ be witnesses of this, i.e φ (resp. ψ) is total on C (resp. H) and its image is included
in H (resp. C).

Now, we describe a way for some Ai to Medvedev compute A1−i: Pick i ∈ 2 and σ be
extensible in H such that ψσ(0) = 1 − i. Given x ∈ Ai, apply φ on iax to obtain an element
y of H. Replace the beginning of y by σ and apply φ: by homogeneity, y with σ as beginning
is still in H, and the result has to be in (1− i)aA1−i.

For other values of ?, the proof is very similar. �

Note that the above proof used the fact that there exists infinum of any two elements in
Σ1

1-DC?N while this is not clear in Σ1
1-AC?N. However, these differences on the point of view of the

Medvedev lattice do not always imply a difference in the corresponding Weihrauch degrees. For
instance, the Weihrauch degrees Σ1

1-DCfin
N and Σ1

1-ACfin
N coincide.

IV.3.1 Axiom of finite Choice

Theorem IV.30

Σ1
1-ACfin

N ≡W Σ1
1-DCfin

N
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Proof. It is clear by Corollary IV.24.1 that we have Σ1
1-ACfin

N ≤W Σ1
1-DCfin

N ≤W
Σ1

1-WKL ≤W Σ̂1
1-C2 ≤W Σ1

1-ACfin
N . �

However, we are interested in a finer analysis of Σ1
1-ACfin

N and Σ1
1-DCfin

N , using Medvedev
reducibility. In particular, we show that upward density does not hold in both these lattices:
Indeed, we show that there is a single non-empty compact homogeneous Σ1

1 set coding all infor-
mation of non-empty compact Σ1

1 sets.

Theorem IV.31

There exists A ∈ Σ1
1-ACfin

N such that for every B ∈ Σ1
1-DCfin

N , B ≤s A.

Proof. To construct a greatest element in Σ1
1-DCfin

N , we only need to enumerate all non-
empty Σ1

1 sets Se ⊆ 2ω, as every compact subset of ωω is below a closed subset of 2ω. Consider
an upper ∆1

1 approximation (Se,α)α<ωCK
1

of Se. Note that emptiness of Se is a Π1
1-property,

and therefore, if Se = ∅, then it is witnessed at some stage α < ωCK
1 . Let α be the least ordinal

such that Se,α is empty. By compactness of Se, such an α must be a successor ordinal.
Now we construct a uniform sequence (Te)e∈ω of non-empty Σ1

1 sets such that if Se 6= ∅
then Se = Te. Define Te,0 = 2N, and for any α > 0, Te,α = Se,α if Se,α 6= ∅. If α > 0 is the first
stage such that Se,α = ∅, then α is a successor ordinal, say α = β + 1, and define Te,γ = Te,β
for any γ ≥ α, and ends the construction. It is not hard to check that the sequence (Te)e∈ω
has the desired property.

As a maximal element, it suffices to take the product T of all Te, defined by x ∈ T if and
only if σ ◦ (n 7→ 〈e, n〉) ∈ Te for every e ∈ N. This is not yet an element of Σ1

1-ACfin
N , but by

Theorem IV.30 we have that Σ1
1-ACfin

N ≡W Σ1
1-DCfin

N , so there exists an element in the domain
of Σ1

1-ACfin
N which is above T for Medvedev reduction, making it above every element of the

domain of Σ1
1-DCfin

N . �

Even if lattices of dependent and independent choice share a common maximum, they still
have structural differences. The most evident one is the existence of infimums: Given two Σ1

1 trees
T1 and T2, it is easy to create a tree T such that [T ] is the infinum of [T0] and [T1], by considering
for example 0aT0 ∪ 1aT1

2. However, this is not possible when the trees are homogeneous as in
the independent choice.

As a special property of Σ1
1 compact sets, we have the following analog of the hyperimmune-

free basis theorem. For p, q ∈ NN we say that p is higher Turing reducible to q (written p ≤hT q)
if there is a partial Π1

1-continuous function Φ:⊆ NN → NN such that Φ(q) = p (see Bienvenu-
Greenberg-Monin [8] for more details).

I Lemma IV.32. For any Σ1
1 compact set K ⊆ NN there is an element p ∈ K such that every

f ≤hT p is majorized by a ∆1
1 function.

Proof. Let (ψe) be a list of higher Turing reductions. Let K0 = K. For each e, let
Qe,n = {x ∈ NN : ψxe (n) ↑}. Then Qe,n is a Σ1

1 closed set. If Ke ∩Qe,n is non-empty for some
n, define Ke+1 = Ke ∩Qe,n for such n; otherwise define Ke+1 = Ke. Note that if Ke ∩Qe,n is
non-empty for some n, then ψxe is undefined for any x ∈ Ke+1. If Ke ∩ Qe,n is empty for all
n, then ψe is total on the Σ1

1 compact set Ke, one can find a ∆1
1 function majorizing ψxe for

all x ∈ Ke (cf. [47]). Define K∞ =
⋂
nKn, which is non-empty. Then, for any p ∈ K∞, every

f ≤hT p is majorized by a ∆1
1 function. �

2. or 2NaT0 ∪ (2N+ 1)aT1 when finite sets are restricted such as in Σ1
1-DCcof

N .
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Note that continuity of higher Turing reduction is essential in the above proof. Indeed, one
can show the following:

I Proposition IV.33. There is a non-empty Σ1
1 compact set K ⊆ NN such that for any p ∈ K,

there is f ≤T p′ that dominates all ∆1
1 functions.

Proof. Let (ϕe) be an effective enumeration of all partial Π1
1 functions ϕe :⊆ ω → 2. As

in the argument in Proposition IV.18 or Proposition IV.19, one can see that the set Se of all
two-valued totalizations of the partial Π1

1 function ϕe is non-empty and Σ1
1. Then the product

K =
∏
e Se = {〈e, n〉 : n ∈ Se} is also a non-empty Σ1

1 subset of 2ω. It is clear that every
p ∈ K (non-uniformly) computes any total ∆1

1 function on ω. Let f be a total p′-computable
function which dominates all p-computable functions. In particular, f ≤T p′ dominates all ∆1

1

functions. �

IV.3.2 Axiom of all-or-finite Choice
We now discuss the axiom of choice, when the sets from which we choose can be either

everything, or finite. We will show that under the Weihrauch scope, this principle is a robust
one that is strictly above Σ1

1-DCfin
N . It also shares with the latter that dependent or independent

choice does not matter, and the existence of a maximal element containing all the information,
with a very similar proof as for Σ1

1-DCfin
N .

In Proposition IV.19, we showed that Σ1
1-ACaou

N is robust. We give two other evidences of this
in the following theorems.

Theorem IV.34

For any A ∈ Σ1
1-ACaof

N , there exists B ∈ Σ1
1-ACaou

N such that A ≤s B.

Proof. Let A =
∏
nAn ∈ Σ1

1-ACaof
N . We define B =

∏
〈m,n〉B

m
n such that A ≤s B. We will

ensure that there exists a single computable function Φ such that for any m and X ∈
∏
nB

m
n

we have Φ(X) ∈ Am.
We first describe the co-enumeration of Bmn . Let (Am,α)α<ωCK

1
be an approximation of Am.

First, wait for the first stage where Am is finite. If it happens, wait for exactly n additional
elements to be removed from Am. If this happens, remove from Bmn all elements but c ∈ N,
the integer coding for the finite set Am at this stage, say at stage αn. More formally, let De

be the finite set coded by e, and set Bmn = {c} with Dc = Am[αn].
Now, we describe the function Φ. Given X, find the first i such that we do not have the

following: X(i + 1) viewed as coding a non-empty finite set consists of elements from X(i)
with exactly one element removed. Note that X(0) codes a finite set, so the length of chains
DX(0) ) DX(1) ) . . . has to be finite. Therefore, there exists such an i. Then, output any
element from DX(i). Whenever we reach stage αn, we have DX(n) = Am[αn], and thus i ≥ n.
This implies that the chosen element Φ(X) is contained in Am, as required. �

We have seen in Proposition IV.18 that Σ1
1-ACfin

N is Weihrauch equivalent to Π1
1-Tot2 and

Π1
1-DNC2. Moreover, we have also shown in Proposition IV.19 that Σ1

1-ACaou
N is Weihrauch

equivalent to Π1
1-TotN. Recall the Π1

1-diagonalization principle Π1
1-DNCN we introduced in Section

IV.2.2, which is a special case of the cofinite (indeed, co-singleton) Σ1
1-choice principle. In

particular, at first we know a bound on the number of elements removed from a cofinite set. We
now consider the following principle for a bound ` ∈ N:

Σ1
1-C

cof�`
X = Σ1

1-CX �{A⊆X:|X\A|≤`} .
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We call the union of (Σ1
1-C

cof�`
X )`∈N the strongly-cofinite choice on X, and write Σ1

1-C
cof�∗
X .

Later we will show that the cofinite choice Σ1
1-ACcof

N is not Medvedev or Weihrauch reducible to
the all-or-finite choice Σ1

1-ACaof
N ; however we will see that the strong cofinite choice is Medvedev

or Weihrauch reducible to Σ1
1-ACaof

N .
Even more generally, we consider the finite-or-strongly-cofinite choice, denoted Σ1

1-ACfosc
N ,

which accepts an input of the form (p, ψ), where for all n ∈ N, p(n) is a code of a Σ1
1 subset

Sp(n) of N such that either Sp(n) is non-empty and finite, or |N \ Sp(n)| ≤ ψ(n). If (p, ψ) is an
acceptable input, then Σ1

1-ACfosc
N chooses one element from

∏
n Sp(n).

We show that the all-or-unique choice is already strong enough to compute the finite-or-
strongly-cofinite choice:

I Proposition IV.35. For any A ∈ Σ1
1-ACfosc

N , there exists B ∈ Σ1
1-ACaof

N such that A ≤s B.

Proof. Let A =
∏
nAn with a bound ψ is given. We will construct a uniformly Σ1

1

sequence (Bnm)m≤ψ(n) of subsets of N. We use Bn0 , Bn1 , . . . , Bnψ(n)−1 to code which element
is removed from An whenever An is cofinite, and use Bnψ(n) to code full information of An
whenever An is finite. If a0 is the first element removed from An, then put Bn0 = {a0}, and if
a1 is the second element removed from An, then put Bn1 = {a1}, and so on. If An becomes a
finite set, then Bψ(n) just copies An. One can easily ensure that for any n ∈ N andm < ψ(n), if
An is finite, then Bnm is a singleton, which is not contained in An; and if An stays infinite then
Bnm = N. Moreover, we can also see that either Bnψ(n) is non-empty and finite or Bnψ(n) = N.

Now, assume that X ∈
∏
n,mB

n
m is given. If X(n, ψ(n)) 6∈ {X(n, i) : i < ψ(n)}, then put

Y (n) = X(n, ψ(n)). Otherwise, choose Y (n) 6∈ {X(n, i) : i < ψ(n)}. Clearly, the construction
of Y from X is uniformly computable.

If An becomes a finite set, the first case happens, as every X(n, i) is the only element of
Bni , which is an element removed from An, and as An is finite it is equal to Bnψ(n). Then,
Y (n) = X(n, ψ(n)) ∈ Bnψ(n) = An. If An remains cofinite, it is easy to see that N \ An ⊆
{X(n, i) : i < ψ(n)}, and therefore Y (n) ∈ An. Consequently, Y ∈ A. �

I Corollary IV.35.1. Σ1
1-ACaou

N ≡W Σ1
1-ACaof

N ≡W Σ1
1-ACfosc

N .

In the following we will only consider all-or-finite choice, by convenience. We now prove that
dependent choice does not add any power, and the existence of a maximal instance that already
codes all the other instances, with very similar proofs as in the Σ1

1-DCfin
N case.

Theorem IV.36

For every A ∈ Σ1
1-DCaof

N there exists B ∈ Σ1
1-ACaof

N such that A ≤s B.

Proof. The argument is similar as in Theorem IV.31. If T is a Σ1
1 tree, define Tσ by

the following Σ1
1 procedure: First, wait for {n : σan ∈ T} to be finite but non-empty. If this

happens, at every stage define Tσ to be {n : σan ∈ T} except if this one becomes empty. Note
that if {n : σan ∈ T} becomes a finite set at some stage α0, but an empty set at a later stage
α1, then the least such stage α1 must be a successor ordinal, and therefore we can keep Tσ
being non-empty (see also the proof of Theorem IV.31). Clearly, Tσ is either finite or N and∏
σ∈ω<ω [Tσ] ≥s [T ]. �

I Corollary IV.36.1. Σ1
1-ACaof

N ≡W Σ1
1-DCaof

N .
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Proof. By uniformity of the precedent proof. �

The upward density of the axiom of choice on “all-or-finite” sets would allow us to Weihrauch
separate it from its “finite” version. However, Σ1

1-ACaof
N does also has a maximum element.

Theorem IV.37

There exists a single maximum Medvedev degree in Σ1
1-ACaof

N and Σ1
1-DCaof

N .

Proof. The argument is similar as the one of Theorem IV.31, even though we have no
compactness assumption. By the fact that Σ1

1-ACaof
N ≡W Σ1

1-DCaof
N , it suffices to prove the

result for one, let’s say Σ1
1-ACaof

N . Let Ae =
∏
n S

e
n be the e-th Σ1

1 homogeneous set. We set
Âe =

∏
n Ŝ

e
n to be defined by the following Σ1

1 procedure: First, wait for some Sen to become
finite and non-empty. If this happens, define Ŝen = Sen until it removes its last element. At this
point, leaves Ŝen non-empty, which is possible since it can happen only at a successor stage (see
also the proof of Theorem IV.36).

Then (Âe)e∈N is an enumeration of all non-empty elements of Σ1
1-ACaof

N . Define the maxi-
mum to simply be

∏
e

∏
n Ŝ

e
n. �

We now prove that the relaxed constraint on the sets that allows them to be full does increase
the power of the choice principle, making Σ1

1-ACaof
N strictly above Σ1

1-ACfin
N . We use the fact that

the lattice of Σ1
1-ACfin

N has a maximal element, and we show that it must be strictly below some
instance of Σ1

1-ACaof
N .

Theorem IV.38

For every A ∈ Σ1
1-ACfin

N , there exists B ∈ Σ1
1-ACaof

N such that A <s B.

Proof. We will find C =
∏
n Cn ∈ Σ1

1-ACaof
N such that C 6≤s A. Then, A× C will witness

the theorem.
Now, let us describe the co-enumeration of Cn. First, wait for Φn(·;n) to be total on A,

where Φn is the n-th partial computable function. Then, wait for it to take only finitely many
values, which will happen by compactness. At this point, remove everything from Cn except
max Φn(A;n) + 1.

We have that Cn is either N if the co-enumeration is stuck waiting for Φn(·;n) to be total,
or a singleton otherwise. Also, it is clear that for any n, Φn cannot be a witness that C ≤s A,
so C 6≤s A. �

I Corollary IV.38.1. We have Σ1
1-ACfin

N <W Σ1
1-ACaof

N .

Proof. By Theorem IV.38 and Theorem IV.31. �

One can also use the domination property to separate the all-or-finite choice principle and
the compact principle.

I Proposition IV.39. There exists A ∈ Σ1
1-ACaof

N such that every element p ∈ A computes a
function which dominates all ∆1

1 functions.

Proof. Let (ϕe)e∈N be an effective enumeration of all partial Π1
1 functions on ω. Put

s(e) =
∑
n≤e n. Define As(e)+k ⊆ N for k ≤ e as follows. Begin with As(e)+k = N. Wait
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until we see ϕe(k) ↓. If it happens, set As(e)+k = {ϕe(k)}. Define A =
∏
nAn. Then define

Ψ(p;n) =
∑
k≤e p(k), which is clearly computable in p. It is easy to see that Ψ(p) dominates

all ∆1
1 functions whenever p ∈ A. Indeed, since Ψ is total, every p ∈ A tt-computes a function

which dominates all ∆1
1 functions. �

IV.3.3 Axiom of cofinite Choice
The choice problem when all sets are cofinite is quite different from the other restricted choices

we study. It is the only one that does not contain Σ1
1-ACfin

N .
Let us fix an instance A =

∏
nAn of Σ1

1-ACcof
N . For every n, An is cofinite, so there exists

an such that for any i ≥ an, we have i ∈ An. Now, call f : n 7→ an. We have that f ∈ A,
and for every g pointwise above f , we must have g ∈ A. So we clearly have A ≤W {g ∈ ωω :
∀i, f(i) ≤ g(i)} = Af . This essential property of Σ1

1-ACcof
N prevents an instance to have more

computational power than Af for some f ∈ ωω.
The cofiniteness still allows some power, as we will prove in this section that Σ1

1-ACcof
N is

Weihrauch incomparable with both Σ1
1-ACfin

N and Σ1
1-ACaof

N .

Theorem IV.40

There exists A ∈ Σ1
1-ACcof

N such that for any B ∈ Σ1
1-ACaof

N A 6≤s B.

Proof. We use the existence of a maximal all-or-finite degree of Theorem IV.37 to actually
only prove

∀B ∈ Σ1
1-ACaof

N ,∃A ∈ Σ1
1-ACcof

N : A 6≤s B.
Fix a B =

∏
n∈NBn, with Bn ⊆ N being either N or finite. We will construct A =

∏
e∈N Se,

and use Se to diagonalize against Φe being a witness for the reduction, by ensuring that either
Φe is not total on B, or ∃k ∈ N, σ ∈

∏
n<k Bn with Φσe (e) ↓6∈ Se. Here is a description of the

construction of Se, along with sequences of string (σn) and (τn):
1. First of all, wait for a stage where B ⊆ dom(Φe), that is Φe is total on the current

approximation of B. If it happens, it must happen before stage ωCK
1 as the totality of

a recursive function on a Σ1
1 set is a Π1

1 property: Φe is total on B if and only if for all
X ∈ ωω, either X 6∈ B or Φe is total on B. Define σ0 = ε = τ0.

2. Let n be the maximum such that τn is defined. Find σn+1 � τn such that Φ
σn+1
e (e) ↓∈ Se.

Take σn+1 to be the least such, and remove Φ
σn+1
e (e) from Se.

3. Wait for some stage where ΦBe (e) ⊆ Se. If it happens, it must happen before ωCK
1 , as

it is a Π1
1-property: ∀X, either X 6∈ B or ΦBe (e) ∈ Se (during the wait, Se is a fixed

set). Then, wait again for the current approximation of B to be “all or finite”, which will
happen. Take τn+1 to be the greatest prefix of σn+1 still in B, and return to step (2).

Let us prove that Se is cofinite. If the co-enumeration of Se stays at step (1), then Se = N is
cofinite. Otherwise, let us prove that there can only be finitely many τn defined.

Suppose infinitely many (τn) are defined. Then, the sequence (τn) must converge to a real:
By induction, let l be a level such that (τn(l′))n stabilizes for all l′ < l. Start from a stage
where they have stabilized. From this stage, if τn(l) changes, it must have been removed from
Bl. But then, by step 3 Bl will become finite before the algorithm continue, and (τn(l)) can
only take value from Bl and never twice the same. Therefore, (τn(l)) becomes constant at
some point, concluding the induction: For every l, (τn(l)) becomes constant at some point.

If there are only finitely many τn, then only finitely many things are removed from Se
which is cofinite. It remains to prove that A 6≤s B. Suppose Φe is a potential witness for the
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inequality. Either Φe is not total on B, or we get stuck at some step in the co-enumeration of
Se, waiting for ΦBe (e) ∈ Se to never happen, leaving us with ΦBe (e) 6⊆ Se. �

Theorem IV.41

For any A ∈ Σ1
1-ACaof

N and B ∈ Σ1
1-ACcof

N , if A ≤s B, then A contains a ∆1
1 path.

Proof. Assume that A ≤s B via some functional Φ, and A and B are of the forms
∏
nAn

and
∏
nBn, respectively. We describe the ∆1

1 procedure to define C:
Given n, in parallel, wait for n to be enumerated in one of those two Π1

1 sets:
1. If n is enumerated in {n : ∃k ∈ N,∀f ∈ ωω,∃σ ≺ f, Φ(σ;n) = k}, define C(n) to be one

of these k.
2. If n is enumerated in {n : ∀f ∈ ωω,∀k,∃k′ > k,∃σ ≺ f such that Φ(σ;n) = k′} then

define C(n) = 0.
Here, σ ≥ f denotes the pointwise domination order, that is, σ(n) ≥ f(n) for all n < |σ|. It is
clear that one of the two options will happen. Let f ∈ ωω be such that ∀k ≥ f(n), k ∈ Bn. In
case (1), it is clear that C(n) ∈ An. In case (2), it is clear that An is infinite, therefore it is
equal to N and C(n) ∈ An. So C ∈ A. �

I Corollary IV.41.1. We have both Σ1
1-ACcof

N 6≤W Σ1
1-ACaof

N and Σ1
1-ACfin

N 6≤W Σ1
1-ACcof

N .

Proof. The first part is implied by Theorem IV.40. The second part is implied by
Theorem IV.41 and the fact that there exists Σ1

1 finitely branching homogeneous trees with no
∆1

1 member. �

We now show upper density of Σ1
1-ACcof

N , using a similar proof than the one of Theorem IV.40.

Theorem IV.42

The Medvedev degrees of Σ1
1-ACcof

N are upward dense.

Proof. Fix a B =
∏
n∈NBn, with Bn ⊆ N being cofinite. We will construct A =

∏
e∈N Se,

and use Se to diagonalize against Φe being a witness for the reduction, by ensuring that either
Φe is not total on B, or ∃k ∈ N, σ ∈

∏
n<k Bn with Φσe (e) ↓6∈ Se. Here is a description of the

construction of Se, along with sequences of string (σn) and (τn):
1. First of all, wait for a stage where B ⊆ dom(Φe), that is Φe is total on the current

approximation of B. As before, if this happens it must be before ωCK
1 as the property of

being total on a Σ1
1 set in Π1

1. Define σ0 = ε = τ0.
2. Let n be the maximum such that τn is defined. Find σn+1 � τn such that Φ

σn+1
e (e) ↓∈ Se.

Take σn+1 to be the least such, and remove Φ
σn+1
e (e) from Se.

3. Wait for some stage where ΦBe (e) ⊆ Se. Take τn+1 to be the greatest prefix of σn+1 still
in B, and return to step (2).

Let us prove that Se is cofinite. If the co-enumeration of Se stays at step (1), then Se = N is
cofinite. Otherwise, let us prove that there can only be finitely many τn defined.

Suppose infinitely many (τn) are defined. Then, Then, the sequence (τn) must converge to
a real: By induction, let l be a level such that (τn(l′))n stabilizes for all l′ < l. Start from a
stage where they have stabilized. From this stage, if τn(l) changes, it must have been removed
from Bl. But that can happen only finitely many times, as Bl is cofinite. Therefore, (τn(l))
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becomes constant at some point.
If there are only finitely many τn, then only finitely many things are removed from Se

which is cofinite. It remains to prove that A 6≤s B. Suppose Φe is a potential witness for the
inequality. Either Φe is not total on B, or we get stuck at some step in the co-enumeration
of Se, waiting for ΦBe (e) ∈ Se to never happen, leaving us with ΦBe (e) 6⊆ Se. By taking
C = A×B =

∏
n Cn where C2n = Bn and C2n+1 = Sn, we get the result. �

IV.3.4 Axiom of finite-or-cofinite Choice

In this part, we study the weakened restriction to sets that are either finite, or cofinite.
This restriction allows any instance from the stronger restrictions, thus Σ1

1-ACaof
N , Σ1

1-ACfin
N , and

Σ1
1-ACcof

N are Weihrauch reducible to Σ1
1-ACfoc

N (and similarly for dependent choice). It is the
weakest form of restriction other than “no restriction at all” that we will consider. However, we
don’t know if this restriction does remove some power and is strictly below Σ1

1-ACN or not, as
asked in Question IV.44.

In the following, we will show upper density for both Σ1
1-ACfoc

N , Σ1
1-DCfoc

N and Σ1
1-ACN, Σ1

1-DCN.
We will give several different proofs of this result. Theorem IV.43 has a weaker conclusion, but
is an attempt to answer Question IV.44. This attempt fails, by being not effective enough to
make a diagonalization out of it.

Theorem IV.43

For every A ∈ Σ1
1-ACfoc

N , there exists B ∈ Σ1
1-ACN such that B 6≤s A.

Proof. We will build B =
∏
eBe ∈ Σ1

1-ACN by defining Be in a uniform Σ1
1 way, such that

if Φe is total on A, then Φe(A; e) 6∈ Be.
Fix e ∈ N, and A =

∏
nAn ∈ Σ1

1-ACfoc
N . In our definition of the co-enumeration of Be along

the ordinals, there will be two main steps in the co-enumeration: The first one forces that if
Φe(A; e) ⊆ Be, then for every l, |Φe(A�≤l)| < ω where A�≤l = {σ ∈ ω≤l : [σ] ∩ A 6= ∅}. The
second step will force that if Φe(A; e) ⊆ Be, then A is empty or Φe is not total on A.

In order to conduct all these steps, we will need to remove several times an element of Be,
but we do not want it to become empty. This is why in parallel of removing elements from Be,
we also mark some as “saved for later”, so we know that even after infinitely many removal, Be
is still infinite.

We now describe the first part of the co-enumeration. For clarity, we use the formalism of
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an infinite time algorithm, that could easily be translated into a Σ1
1 formula.

for l ∈ ω do
Mark a new element of Be as saved;
while Φe(A�≤l; e) is infinite do

for i ∈ ω do
Mark a new element of Be as saved;
Remove from Be the first element of Φe(A�≤l; e) that is not saved, if it
exists. Otherwise, exit the loop;

Wait for Φe(A; e) ⊆ Be;
end
Wait for every An to be finite or cofinite;
Unmark the elements marked as saved by the “for i ∈ ω” loop;

end
end
Let us first argue that for a fixed l, the “while” part can only be executed a finite number

of times. At every execution of the “for i ∈ ω” loop, either one element of A�≤l is removed,
or Φe(A�≤l; e) is finite and we exit the while loop (this is because at every step, only finitely
many elements are marked as saved). But this means that if a “for” loop loops infinitely many
times, by the pigeon hole principle there must exists a specific level l0 ≤ l such that Al0 went
from cofinite to finite. But this can happen only l+ 1 times, and the “while” loop can only run
l + 1 many times.

Let us now argue that at every stage of the co-enumeration, including its end, Be is infinite.
Fix a level l, and suppose that at the beginning of a “while” loop, Be is infinite. As after every
loop of the “for i ∈ ω” loop one element is saved, it means that after all these infinitely many
loops, Be contains infinitely many elements. This will happen during only finitely many loops
of the “while” loop, so at the beginning of level l+1, Be is infinite. A similar argument with the
elements saved by the first “for l ∈ ω” loop shows that if the first part of the co-enumeration
ends, Be is still infinite.

Now we split into two cases. If the first part of the co-enumeration never stops, as the
“while” loop is in fact bounded, it means that the co-enumeration is forever stuck waiting for
Φe(A; e) ⊆ Be. But as this never happens, Be has the required property. Otherwise, the first
part of the co-enumeration ends, and we are at a stage where for every l, Φe(A�≤l; e) is finite,
but Be is infinite. We now continue to the second part of the co-enumeration of Be:

for l ∈ ω do
Remove from Be all the elements of Φe(A�≤l; e);
Wait for Φe(A; e) ⊆ Be;

end
We argue that this co-enumeration never finishes. Let x ∈ A, and σ ≺ x such that

Φe(σ; e) ↓= k. The co-enumeration will never reach the stage where l = |σ + 1|, as it cannot
go through l = |σ|: If it reaches such a stage, it will remove k from Be and never have
Φe(A; e) ⊆ Be. So, the co-enumeration has to stop at some step of the “for” loop, waiting for
Φe(A; e) ⊆ Be never happening. As Be is infinite, it has the required property. �

In order to Weihrauch-separate Σ1
1-ACfoc

N from the unrestricted Σ1
1-ACN, one would need a

stronger result with a single B ∈ Σ1
1-ACN not Medvedev reducible to any A ∈ Σ1

1-ACfoc
N . We could

try to apply the same argument to define
∏
〈n,e〉B〈n,e〉, this time diagonalizing against an enu-

meration (Se)e∈N of Se =
∏
n S

e
n ∈ Σ1

1-ACN. If Se is not in Σ1
1-ACfoc

N , the co-enumeration will be
stuck somewhere in the co-enumeration of some level, with no harm to the global diagonalization.
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However, if some particular Se is empty, we could end up with some B〈n,e〉 = ∅, making B
empty. Indeed, suppose we reach the second part of the co-enumeration. Then, the malicious Se
can make sure that every step of the second loop are achieved, by removing from Se all strings
σ such that Φe(σ; e) ↓6∈ B〈n,e〉, at every stage of the co-enumeration. As a result, both Se and
B〈n,e〉 will become empty.

I Question IV.44. Do we have Σ1
1-ACfoc

N <W Σ1
1-ACN?

We now give a stronger result with a much simpler, but not effective, proof. As a corollary,
we will obtain the upper density of Σ1

1-ACN and Σ1
1-DCN.

Theorem IV.45

For every A ∈ Σ1
1-DCN, there exists B ∈ Σ1

1-ACN such that B 6≤s A.

Proof. We first claim that there is no enumeration of all non-empty elements of Σ1
1-ACN.

More than that, we will prove that there is no
∏
n,e∈N S

e
n ∈ Σ1

1-ACN uniformly Σ1
1 such that

for every B =
∏
nBn ∈ Σ1

1-ACN, there exists an e such that
∏
n S

e
n ⊆ B. Let (Sen)n,e∈N be

any uniformly Σ1
1 enumeration. We construct (Be)e∈N, a witness that this enumeration is not

a counter-example to our claim. We define Be by stage: At stage α, Be is equal to the interval
]min(See),∞[, where min(See) is computed up to stage α. This defines a Σ1

1 set. We have∏
nBn 6⊇

∏
n S

e
n for every e ∈ N and the claim is proven.

Now, suppose that there exists A ∈ Σ1
1-DCN such that for every B ∈ Σ1

1-ACN, we have
B ≤s A. Let us define Sen by

m ∈ Sen ⇔ ∃X ∈ A : Φe(X;n) ↓= m or Φe is not total on A.

Given any B ∈ Σ1
1-ACN, as B ≤s A, fix a witness Φe. We have Φe(A) ⊆ B, and as B is

homogeneous we also have
∏
n S

e
n ⊆ B. Then, (Sen)e,n∈N would be a contradiction to our first

claim. �

I Corollary IV.45.1. We have upward density for Σ1
1-ACN and Σ1

1-DCN.

In [22], Cenzer and Hinman showed that the lattice of Π0
1 classes in Cantor space is dense.

Here we already showed upward density, we now prove downward density:

Theorem IV.46

Σ1
1-DCN is downward dense. In other words, for every A ∈ Σ1

1-DCN with no computable
member, there exists B >s ω

ω in Σ1
1-DCN such that

ωω <s A ∪B <s A.

Proof. We first reduce the problem to finding a non-computable hyperarithmetical real
G such that A contains no G-computable point. Indeed, assume such a G exists, then we have
ωω <s A ∪ {G} <s A.

It suffices to show that Φe(G) 6∈ A for any e, and ∅ <T G. To show that any 1-generic
satisfy this, fix a pruned Σ1

1 tree TA such that [TA] = A. There are two ways for Φe to not
be a witness that A has no G-computable element: either Φe(σ) 6∈ TA for some σ ≺ G, or
G 6∈ dom(Φe). Let us argue that we have the following: For any e ∈ N and σ ∈ ω<ω there
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Figure IV.2 – The Weihrauch hierarchy of analytical axioms of choice

exists a finite string τ extending σ such that

either Φe(τ) 6∈ TA or [τ ] ∩ dom(Φe) = ∅ (IV.1)

Indeed, if it was not the case for some e ∈ ω, we would have a string σ such that for every
τ , Φe(τ) ∈ TA and there exists an extension ρ � τ such that Φe(ρ) strictly extends Φe(τ),
allowing us to compute a path of TA, which is impossible as A >s ω

ω.
Using (IV.1), it is clear that any 1-generic real has the desired property, and B = {G}

proves the theorem. �

IV.3.5 Conclusion on the restrictions
We gather the results obtained so far in the Weihrauch hierarchy of restricted analytical ax-

ioms of choice in Figure IV.2. In particular, We proved that for choices that are restricted to
finite sets, and all-or-finite sets, we have that dependent and independent are Weihrauch equiv-
alent. We will prove in Theorem IV.100 that for unrestricted subsets of the integers, dependent
choice is strictly above axiom of choice.

The question whether independent choice and dependent choice are in the same Weihrauch
degree has been solved when there are strong restrictions (such as finite and all-or-finite), and
will be solved in the absence of restrictions. However, for the other kinds of restrictions, the
question is still open.

I Question IV.47. Does Σ1
1-ACfoc

N ≡W Σ1
1-DCfoc

N ?

I Question IV.48. Does Σ1
1-ACcof

N ≡W Σ1
1-DCcof

N ?

The remaining question is whether “finite-or-cofinite” is a strict restriction:

I Question IV.49. Does Σ1
1-ACfoc

N <W Σ1
1-ACN? And Σ1

1-DCfoc
N <W Σ1

1-DCN?

IV.4 More on ATR0

In definition I.88, we introduced the definition of Arithmetical Transfinite Recursion, as part
of the Big Five: the five robust axiomatic systems such that most theorems of mathematics are
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equivalent to one of them, over RCA0. In this chapter we will study the ATR principle in the
Weihrauch lattice, however before doing so we review some properties of ATR in the context of
reverse mathematics. In particular, we see some theorems that are equivalent to it over RCA0.
One of them, the Perfect Tree theorem, needs an original method to get around the limitation
of second order arithmetic: the method of pseudo-hierarchy. This method, and the underlying
concepts, is important to understand why ATR is so different in the Weihrauch context.

Most of this section can also be found from Simpson’s book [60], which has a very detailed
presentation of ATR0 in the context of reverse mathematics. We recall Definition I.88 of ATR
already given in Chapter I.

I Definition (Φ-hierarchy). Let Φ be any formula (with parameters), E be a partial order on
ω. We say that H ⊆ ω is a hierarchy for Φ on E if for every j ∈ ω, we have:

Hj = {n ∈ N : Φ(n,
⊕
iCj

Hi)}

where Hj = {n : 〈j, n〉 ∈ H} and the operation
⊕

is defined by
⊕

n∈F Xn = {〈n, x〉 : n ∈ F ∧x ∈
Xn} for any (Xn).

We write HierΦ(H,E) for “H is a hierarchy for Φ on E”. If Φ is ∆0
n, then HierΦ(H,E) is a

Π0
n formula, as it can be expressed by ∀〈x, n〉 ∈ N, 〈x, n〉 ∈ H ⇔ Φ(n,Φ(n,

⊕
iCnHi))

This definition corresponds as a trace of a definition by induction along C: Hj is defined
as the jump of the previous defined sets. In our definition, we do not require the order to be
well-founded: a hierarchy on such an ordering would correspond to a definition by induction, but
with no starting point...

I Definition (ATR0). ATR0 is the system of axioms consisting of ACA0 together with the
axiom scheme consisting of:

∀ E binary relation, E∈WO =⇒ ∃H,HierΦ(H,E)

for every arithmetical Φ.

IV.4.1 Comparability of Well-Ordering
The ATR principle stipulates that construction by arithmetical transfinite recursion is pos-

sible. Well-orders are well-suited for proofs by induction, so ATR should prove most existential
statements about well-orders. And indeed, it proves that two well-order must be comparable,
that is given any two well-orders there must exists a function from one into an initial segment
of the other.

Theorem IV.50

ATR0 proves that if X,Y ∈ WO, then there exists an embedding either from X into an
initial segment of Y , or from Y into an initial segment of X.

Proof. We use ATR0 to build the embedding. The arithmetic formula we use is the
following: Φ(n,H) is true if H ⊆ N×N is an embedding from an initial segment I0 of X to an
initial segment I1 of Y , and n = 〈a, b〉 where a is the smallest in X \ I0 and b is the smallest
in Y \ I1.

If H is such that HierΦ(H,X), then either H is the graph of an embedding from X to
an initial segment of Y , or H−1 (the inverse of the function of which H is the graph) is an
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embedding from Y to an initial segment of X. �

In fact, the two statements are equivalent over RCA0.

Theorem IV.51 ([60])

The axiomatic system consisting of RCA0 and “for every two well-ordering, there exists
an embedding from one to the initial segment of the other” proves ATR0.

IV.4.2 Σ1
1 separation

Another theorem that is equivalent to ATR0 over RCA0 is the Σ1
1 separation theorem. It is

a very important result by Lusin, stating that given two disjoint Σ1
1 subsets of Baire space A

and B, there exists a Borel set C separating the two sets, in the sense that A ⊆ C ⊆ ωω \ B.
Note that a direct consequence of this is that every ∆1

1 set A is also Borel: A and ωω \ A are
two disjoint Σ1

1 sets so there exists a Borel set C with a ⊆ C ⊆ ωω \ (ωω \A) so A = C.
However, being able to speak about Borel codes, and membership in a Borel code, in second

order arithmetic already needs quite complex axioms such as ATR0. So it is quite complex to
show equivalence between ATR0 and this version of Σ1

1-separation, as the notion of the latter
needs ATR0 to be defined. So, instead, we turn to a version of separation for subsets of N.

Definition IV.52 (Σ1
1-Sep)

Σ1
1-Sep is the axiomatic system consisting of :

(∀n, φ(n)⇒ ¬ψ(n)) =⇒ ∃Z,∀n, φ(n)⇒ n ∈ Z ∧ ψ(n)⇒ n 6∈ Z

for every Σ1
1 formula with parameters.

Note that contrary to the comparability of well-ordering and the next example, the perfect
tree theorem, this is not a theorem from natural mathematics. Indeed, proving it only require
an instance of the axiom of comprehension, and the axiomatic system can be considered as a
weakening of Σ1

1-comprehension. The real Σ1
1-separation theorem for subsets of N would be that

the separating set Z is hyperarithmetic.

Theorem IV.53

Σ1
1-Sep is equivalent to ATR0 over RCA0.

Proof. We first prove that ATR0 implies Σ1
1-Sep. We use our intuition of Σ1

1 sets as co-
enumerations along ωCK

1 . Let A,B ⊆ N be two disjoint sets and let αn be the first stage where
n has been enumerated either out of A or out of B. Then, let α be a bound on the αn, and
let Â and B̂ be the co-enumeration of A and B up to α. By ATR0 it is possible to build those
sets, and Â or N \ B̂ provide a solution to the separation.

However, the proof should be conducted in second order arithmetic, so we detail a bit more.
As φA and φB are Σ1

1 formulas, let TA and TB be two functions such that φA(n) iff TA(n) is ill-
founded, and φB(n) iff TB(n) is ill-founded. As φA(n) implies ¬φB(n), for every n at least one
of TA(n) and TB(n) is well-founded. So let α = supn∈N(min(KB(TA(n)),KB(TB(n)))). By a
simultaneous transfinite recursion along α, let H be a comparison KB(TA(n)) and KB(TB(n))
for every n. Then, the set {n ∈ N : H says KB(TA) is greater than α} is a solution.
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Now, we prove ATR0 from Σ1
1-Sep and RCA0. As every arithmetical formula is also Σ1

1, we
already have arithmetical comprehension, and therefore we can prove the principle of transfinite
induction. Let E be a well-ordering, and Φ be a formula. Then, the following formulas are
Σ1

1: φ0(n) ≡ ∃H,HierΦ(H,E) ∧ n ∈ H and φ1(n) ≡ ∃H,HierΦ(H,E) ∧ n 6∈ H. Moreover,
using a transfinite induction along E, there cannot exists two different sets H0 and H1 with
HierΦ(H0,E) and HierΦ(H1,E), so φ0(n) =⇒ ¬φ1(n), and we can apply Σ1

1-Sep to get a
separating set W . And then, using another transfinite induction along E, W is such that
Hierφ(E,W ). �

IV.4.3 Perfect Set Theorem
Here, we present yet another theorem that is equivalent to ATR0 over RCA0. However, this

time we won’t prove the equivalence, which is a bit more involved and refer the reader to [60]. We
will only be interested in one implication: the proof of the perfect tree theorem in the context
of second order arithmetic and ATR0. It involves a surprising technique, called the method
of pseudo-hierarchy, to get around a lack of expressiveness: the usual proof that was given in
the context of descriptive set theory uses the ordinal ω1, which is inaccessible in second order
arithmetic.

The perfect tree theorem is a version of the continuum hypothesis. In its full version, it says
that a Σ1

1 set is either countable, or of cardinality 2ℵ0 . However, the core result is that every
closed set of Baire space has this property.

Definition IV.54

A perfect set is a closed set A ⊆ ωω with no isolated point. A perfect tree T ⊆ ω<ω is a
tree such that for every σ ∈ T , there exists incomparable τ0, τ1 ∈ T extending σ.

It is clear that A = [T ] for a perfect tree is equivalent to being perfect.

Theorem IV.55 (Perfect Tree Theorem)

For every tree T ⊆ ω<ω, either [T ] is countable, or there exists a perfect subtree of T .

Proof. Let T ⊆ ω<ω be a tree. For every α countable, we define by induction a tree Tα by
removing at each step all the paths that are not splitting. More formally, we use the following
induction:

— T0 = T ,
— Write T<α =

⋂
β<α Tβ . Then,

Tα = {σ ∈ Tα : ∃τ0, τ1 ∈ T<α incomparable and σ ≺ τ0, τ1}.

Let us argue that there must be a countable ordinal α such that Tα = Tα+1. Indeed, suppose
the construction strictly decrease the tree until ω1. Then, there is a surjection from the set
of removed strings R = T \ Tω1 to ω1: to any element σ, associate the ordinal α such that
σ ∈ Rα = T<α \ Tα, the set of elements removed at time α. This is impossible, as R ⊆ ω<ω is
countable, whereas ω1 is not. Therefore, let α0 be such that Tα0

= Tα0+1. Now, we split the
analysis in two cases.

The first is when we have Tα0 = Tα0+1 6= ∅. Then, it is clear that Tα0 is a perfect set: any
element of Tα0 is an element of Tα0+1 and therefore has two extensions in Tα0 .

The other case is when Tα0
= ∅. We have that [T ] =

⋃
α<α0

[T<α] \ [Tα]: the reverse
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inclusion is clear as T<α ⊆ T , and if X ∈ [T ] then let β be the smallest such that X 6∈ [Tβ ],
we have β ≤ α0. Then, X ∈ [T<β ] \ [Tβ ]. However, to each σ ∈ T<α \ Tα corresponds at most
one element of [T<α] \ [Tα], so any of these set is countable. As α0 is countable, we have a
countable union of countable set: [T ] is countable. �

It is clear in this proof how the Arithmetical Transfinite Recursion is used. However, the
proof does not fit in the Second Order Arithmetic: indeed, we mention the ordinal ω1 which
cannot be encoded in second order arithmetic, and therefore we cannot conduct induction of this
length. Therefore we are not directly able to conclude: it would be possible that Tα 6= ∅ for
every α countable, but we never have Tα = Tα+1. We need to use another technique to fill this
lack of expressiveness.

Theorem IV.56

ATR0 proves the perfect tree theorem IV.55.

Proof. Using the same argument as before, if there exists a countable α0 such that
Tα0+1 = Tα0

, then we are done. So, suppose we are not in this case. We claim that there exists
an ill-founded linear order E and some (Ts)s∈dom(E) such that HierΦ((Ts),E) where Φ defines
the construction of the proof of Theorem IV.55, with Ts 6= Ts+1 at any stage s+ 1 ∈ dom(E).

Indeed, otherwise it would contradict Corollary II.4.1, as WO(E) would be equivalent to
∃(Ts)s∈dom(E) such that HierΦ((Ts),E) and Ts 6= Ts+1 for all s+ 1 ∈ dom(E).

Therefore, fix an ill-founded linear order E, with (sn)n∈N an infinite decreasing sequence
for E and (Ts)s∈dom(E) defined by induction. Let us build a perfect tree inside T .

Start with L0 = {ε}. We have L0 ⊆ Ts0 as Ts0 6= ∅. If Ln ⊆ Tsn has been defined, then we
define Ln+1 by adding in this set, for every σ ∈ Ln, two incomparable strings τ0, τ1 ∈ Tsn+1

extending σ. This is possible, as sn+1 < sn, and by construction of Tα.
The tree {σ ∈ ω<ω : ∃n ∈ N, τ ∈ Ln, σ ≺ τ} generated by the union of Ln is included in T .

Moreover it is by construction a perfect tree. �

The method used in this proof is called by Simpson in [60] the method of pseudo-hierarchy.
In the next section, we exhibit the general principle of this method, and show that it is equivalent
to ATR0.

IV.4.4 The Method of Pseudo-Hierarchies
The issue in the proof of Theorem IV.55 is that we need to do an induction until it reaches

a particular state (in our case, Tα = Tα+1), without knowing in advance a countable bound on
the required length of the induction. In the context of set theory, this is not a problem as we
can consider ω1-long induction, and argue afterward that the induction must have reached the
particular state at a countable stage.

However, the ATR0 principle only allows inductions for countably many steps, that we should
give in advance. The method of pseudo-hierarchy uses the fact that WO is not Σ1

1 to tackle this
problem.

Definition IV.57 (Method of Pseudo-Hierarchy: MPH)

MPH is the axiomatic system, containing the following axiom for every Π1
1 formula Ψ(E

, H) and arithmetical formula Φ(n,E, H):
1. Either there exists a well-order α and a hierarchy H for the formula Φ̂(n,H) ≡
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Φ(n, α,H) on α such that Ψ(α,H),
2. or there exists an ill-founded E and a hierarchy H for the formula Φ̂(n,H) ≡ Φ(n,E
, H) on E such that ¬Ψ(E, H).

In the second, we call such a hierarchy a pseudo-hierarchy.

The formula Φ has to be considered as the inductive definition, while the formula Ψ has to be
considered as a “halting condition”: either there exists a countable ordinal reaching the halting
condition, or there exists an ill-founded order with an induction along this order never finding
the halting condition. As the order is not fixed in advance, we feed the formula with it so the
inductive definition has access to the order.

Theorem IV.58

ATR0 proves MPH over RCA0.

Proof. Suppose that for some arithmetical Φ and Π1
1 Ψ, we do not have the first possibility

of MPH: For all E ∈ WO, there exists a hierarchy H for Φ̂(n,H) ≡ Φ(n,E, H), so we must
have ¬Ψ(E, H). Then, the Σ1

1 formula θ(E) being:

∃H,HierΦ̂(H,E) ∧ ¬Ψ(E, H)

is true on all well-order. As WO is not Σ1
1 and θ is Σ1

1, it cannot be an equivalence and there
must exists an ill-founded order satisfying θ, which is exactly the second possibility of MPH.

�

We now show the reverse.

Theorem IV.59

MPH proves ATR0 over RCA0.

Proof. First, it is obvious that MPH implies ACA0 by choosing Φ(n,E, H) ≡ ϕn(n) ↓,
and Ψ(E, H) ≡ dom(E) 6= ∅.

We will prove that MPH proves CWO over RCA0. So, let α and β be two well-orders.
Define Φ(〈a, b〉,E, H) to be true if and only if H =

⊕
a∈N Hn, where Hn is either empty or

Hn = {〈an, bn}, and a = min{x ∈ dom(α) : ∀n, x ≥α an} and b = min{x ∈ dom(β) : ∀n, x ≥β
bn}.

Let Ψ(E, H) be true if and only if one of the following is true, where Hn = {x ∈ N : 〈n, x〉 ∈
H}:

1. for some n ∈ dom(E), Hn is not a singleton,
2. for all n ∈ dom(E), Hn is the singleton 〈an, bn〉; and there exists m C n such that
am >α an.

By MPH for Φ and Ψ, there exists either a well-founded E and a hierarchy for Φ along E such
that Ψ(E, H), or an ill-founded E and a hierarchy for Φ along E such that ¬Ψ(E, H).

Suppose E is the latter possibility. Then, as ¬Ψ(E, H), by ¬1 we have that all Hn are
singletons for n ∈ dom(E). By ¬2, if m C n, then am <α an. Therefore, an infinite descending
sequence in E implies an infinite descending sequence in α, a contradiction.

So, E must be well-founded, and H must verify Ψ. By arithmetical transfinite induction
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along E, at each step s ∈ dom(E), ps = {a : 〈s, a〉 ∈ H} is an embedding from an initial
segment of α to an initial segment of β. Therefore, 2 must be false, and because Ψ is true, 1.
must be true. But if for some s, Hs is empty, it means that there were no minimum either to
dom(α) \ dom(ps) or to dom(β) \ Im(ps), and therefore ps is a comparison map.

�

IV.5 ATR in the Weihrauch lattice

We are now ready to study the ATR principle in the context of Weihrauch reduction. As a
part of the big five, we saw that this principle is one of the most important of reverse mathematics,
however it has been studied in the scope of Weihrauch reduction only recently, by Takayuki et al
in [47], and Jun Le Goh in [51]. Unlike other principles, the exact Weihrauch degree candidate
for ATR0 is not so clear. In particular, the reverse mathematics equivalence with many theorems
do not translate, as the techniques used in their proof might include non-constructive methods
such as the pseudo-hierarchy method. Therefore, the first step of the study of ATR0 in the
Weihrauch scope is to exhibit the degrees that are natural candidates for being an analogue of
ATR0.

IV.5.1 The Weihrauch degrees of ATR

The ATR degree

We recall that ATR0 is RCA0 plus the principle that says that if E is a well order and Φ
is arithmetic, then there exists a hierarchy for Φ on E. It is also equivalent to the existence of
Jump-hierarchies for every well-order E. This principle therefore has the Π2 form that allows us
to naively turn it into a multi-valued function.

Definition IV.60 (ATR)

ATR is the multivalued function, with input any well order E on the integers and arith-
metical formula Φ, and as output any H such that H is a Hierarchy for Φ on E.

We need to emphasize that, just as in the settings of RCA0, this principle is robust. In
particular, Goh showed in [51] that creating Jump-hierarchies suffices to have the full power, and
that we can always suppose we have access to the knowledge of which elements of the order are
successor, and which are their predecessors.

Theorem IV.61 ([51])

The following versions of ATR are all Weihrauch equivalent:
1. Input: A couple (E, A) where E is a well-order.

Output: A jump hierarchy relativized to A.
2. Input: A couple (E, A,Φ) where E is a well-order and Φ is arithmetic.

Output: A hierarchy for Φ on E.
3. Input: A couple (E, A, S, p,Φ) where E is a well-order, S is the successor elements

of E, p the predecessor function defined on S and Φ is arithmetic.
Output: A hierarchy for Φ on E.
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The ATR2 degree

Although ATR is shown robust by Theorem IV.61, its set of instances is very complex: only
well-orders can be given as input. This limit its Weihrauch power, as for any P to be below
ATR, an instance of P must compute an instance of ATR. However, when a linear order is
not an instance of ATR because it is ill-founded, this can be witnessed by an infinite decreasing
sequence. In other words, we can expand the logical form of ATR to another Π2 form with more
possible inputs. The standard way of writing ATR is:

∀ C∈WO,∃HC a Jump Hierarchy on C,

but as, WO is defined by a Π1
1 formula, it can also be written

∀ C∈ LO,∃(xn)n∈N : (∀n ∈ N, xn+1 C xn) ∨ (∃HC a Jump Hierarchy for C)

This suggests the following variants of ATR, introduced by Jun Le Goh in [51].

Definition IV.62 (ATR2, [51])

ATR2 is the multivalued function, with input any linear order E on the integers, and as
output either an infinite decreasing sequence for E, or any H such that H is a Jump-
Hierarchy on E.

One more time, Goh showed in [51] the robustness of this principle:

Theorem IV.63 ([51])

The following versions of ATR2 are all Weihrauch equivalent:
— Input: A couple (E, A) where E is a linear order.

Output: Either a jump hierarchy on E relativized to A, or an infinite decreasing
sequence for E.

— Input: A tuple (E, A,Φ) where E is a linear order and Φ is arithmetic.
Output: A hierarchy for Φ on E, or an infinite decreasing sequence for E.

— Input: A tuple (E, A, S, p,Φ) where E is a linear order, S is the successor elements
of E, p the predecessor function defined on S and Φ is arithmetic.
Output: A hierarchy for Φ on E, or an infinite decreasing sequence for E.

The introduction of the principle ATR2 has also some repercussion on the study of the
Weihrauch lattice outside of the reverse mathematics point of view. In particular, it allows
to answer Question IV.25, in Corollary IV.100.1. This question was first asked by Pauly and
Brattka in [13] and later in [47].

The ATR2′ degree

We know by Theorem IV.87, that there exists ill-founded orders that still support Jump-
Hierarchies. Therefore, for such orders, the solution for ATR2 can be either an infinite decreasing
sequence, or a Jump Hierarchy. The interest of having a Jump Hierarchy on an ill-founded order
is in practice often relevant only on the well-founded initial segment of the ill-founded order.
Therefore, we can weaken ATR2 a bit by allowing more answers to it.
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Definition IV.64 (ATR2′ , [2])

ATR2′ is the multivalued function, with input any linear order E on the integers, and as
output either an infinite decreasing sequence for E, or any H such that H is a Jump-
Hierarchy on an initial segment of E that contains its well-founded part.

Seemingly, ATR2′ is completely unrelated to any other choice principles. Surprisingly, how-
ever, we will see that (the parallelization of) ATR2′ is arithmetically equivalent to the choice
principle for Σ1

1-compact sets, which is also equivalent to the Π1
1 separation principle.

Theorem IV.65

ÂTR2′ ≡a
W Σ1

1-KCNN ≡a
W Σ̂1

1-Caou
N .

We divide the proof of Theorem IV.65 into two lemmas.

I Lemma IV.66. ATR2′ ≤aW ̂Σ1
1-UCtot

2 .

Proof. Fix x ∈ LO. Given n ∈ N, let JHn be the set of jump hierarchies for ≺x�n. Note
that JH is an arithmetical relation. For a, k ∈ N, if a ≺x n then let Sna,k be the set of all i < 2
such that for some jump hierarchy H ∈ JHn, the k-th value of the a-th rank of H is i, that
is, Ha(k) = i. Otherwise, let Sna,k = {0}. Clearly, Sna,k is Σ1

1 uniformly in n, a, k, and therefore
there is a computable function f such that Sna,k is the f(n, a, k)-th Σ1

1 set Gf(n). Note that if
≺x�n is well-founded, then the product

∏
〈a,k〉 S

n
a,k consists of a unique jump hierarchy for ≺x�n.

In particular, Sna,k is a singleton for any a ≺x n and k ∈ N whenever ≺x�n is well-founded.
Given pn,a,k ∈ Σ1

1-UCtot
2 (f(n, a, k)), define Hn =

⊕
〈a,k〉 pn,a,k. Note that if n is contained

in the well-founded part of ≺x, then Hn must be a jump hierarchy for ≺x�n. By using an
arithmetical power, first ask if Hn is a jump hierarchy for ≺x�n for every n. If yes,

⊕
nHn is

a jump hierarchy along the whole ordering ≺x, which is, in particular, large. If no, next ask if
there exists a ≺x-least n such that Hn is not a jump hierarchy for ≺x�n. If yes, choose such an
n, and then obviously n is not contained in the well-founded part of ≺x. Hence, ≺x�n is a large
initial segment of ≺x. Moreover, by minimality of n,

⊕
{H ′j : j ≺x n} is the jump hierarchy

for ≺x�n. If there is no such n, let j0 be the <N-least number such that Hj0 is not a jump
hierarchy for ≺x�j0 , and jn+1 ≺x jn be the <N-least number such that Hjn+1

is not a jump
hierarchy for ≺x�jn+1

. By using an arithmetical power, one can find such an infinite sequence
(jn)n∈ω, which is clearly decreasing with respect to ≺x. �

I Lemma IV.67. Σ1
1-Caou

N ≤aW ÂTR2′ .

Proof. Let S be a computable instance of Σ1
1-Caou

N . Let ≺n be a linear order on an initial
segment Ln of N such that n ∈ S iff ≺n is ill-founded. Let Hn be a solution to the instance ≺n
of ATR2′ . Ask if there is n such that Hn is an infinite decreasing sequence w.r.t. ≺n. If so, one
can arithmetically find such an n, which belongs to S. Otherwise, each Hn is a jump hierarchy
along a large initial segment Jn of Ln. In an arithmetical way, one can obtain Jn. Then ask
if Ln \ Jn is non-empty, and has no ≺n-minimal element. If the answer to this arithmetical
question is yes, we have n ∈ S.

Thus, we assume that for any n either Ln = Jn holds or Ln \Jn has a ≺n-minimal element.
In this case, if n ∈ S then Jn is ill-founded. This is because if Jn is well-founded, then Jn is
exactly the well-founded part of Ln since Jn is large, and thus Ln \ Jn is non-empty and has
no ≺n-minimal element. Moreover, since Jn admits a jump hierarchy while it is ill-founded,
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Jn is a pseudo-well-order; hence Hn computes all hyperarithmetical reals. Conversely, if n 6∈ S
then Hn is a jump hierarchy along the well-order Jn = Ln, which is hyperarithmetic.

Now, ask if the following (Hn)n∈N-arithmetical condition holds:

(∃i)(∀j) Hi 6<T Hj . (IV.2)

By our assumption that S 6= ∅, there is j ∈ S, so that Hj computes all hyperarithmetic
reals. Therefore, if (IV.2) is true, for such an i, the hierarchy Hi cannot be hyperarithmetic;
hence i ∈ S. Then one can arithmetically find such an i. If (IV.2) is false, for any i there
is j such that Hi <T Hj . This means that there are infinitely many i such that Hi is not
hyperarithmetical, i.e., i ∈ S. However, by our assumption, if S is infinite, then S = N. Hence,
any i is solution to S.

Finally, one can uniformly relativize this argument to any instance S. �

Proof of Theorem IV.65 By Corollary IV.27.1 and Lemmas IV.66 and IV.67. �

The ATRpo
2 degree

As the principle of construction by induction does not need the order to be linear, we can
also define a partial order version of ATR2.

Definition IV.68 (ATRpo
2 , [2])

ATRpo
2 is the multivalued function, with input any partial order E on the integers, and

as output either an infinite decreasing sequence for E, or any H such that H is a Jump-
Hierarchy on E.

I Proposition IV.69. Σ1
1-Caou

N ≤W ATRpo
2 .

Proof. Let S be a computable instance of Σ1
1-Caou

N . Let Tn be a computable tree such
that n ∈ S iff Tn is ill-founded. Define

T = 00 tn Tn = {〈〉, 〈0〉, 〈00〉} ∪ {〈00n〉σ : σ ∈ Tn}.

Let iaH be a solution to the instance T of ATRpo
2 . If i = 1, i.e., if H is an infinite decreasing

sequence w.r.t. T , then this provides an infinite path p through T . Then, choose n such that
00n ≺ p, which implies Tn is ill-founded, and thus n ∈ S. Otherwise, i = 0, and thus H is a
jump hierarchy for T . We define H∗n = H〈00n〉. Note that if n 6∈ S then H∗n is hyperarithmetic,
and if n ∈ S then H∗n computes all hyperarithmetical reals by Corollary IV.91.1 that we prove
in section IV.6.1. By the definition of a jump hierarchy, we have (H∗n)′′ ≤T H. Thus, the
following is an H-computable question:

(∃i)(∀j) H∗i 6<T H∗j . (IV.3)

As in the proof of Lemma IV.67, one can show that if (IV.3) is true for i then i ∈ S, and
if (IV.3) is false then any i is a solution to S. As before, one can uniformly relativize this
argument to any instance S. �
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The unbounded construction

There is the other way to use the Arithmetical Transfinite Recursion principle of the perfect
tree theorem; where we don’t know in advance the number of steps that we need to construct
the object we need, but we know that it will happen at some point.

We already defined the MPH principle in the context of second order arithmetic. However,
this pseudo-hierarchy was in some sense a trick to counter the fact that we cannot prove the
Perfect Tree Theorem directly, as it makes use of ω1: we need to use a “pseudo-hierarchy”
method as in Theorem IV.56. A principle is derivated from this in Definition IV.57 and has been
proven equivalent to ATR in Theorem IV.58.

In the Weihrauch context, there is no need for such tricks, as we are not focused in “prov-
ability”. Therefore, we define two Weihrauch degrees corresponding to these techniques (the
plain one of Theorem IV.55 and the “pseudo-hierarchy” trick of Theorem IV.56). They both
corresponds to one specific usage of the arithmetical transfinite recursion principle.

Definition IV.70

ATRunb is the multivalued function, with:
— input: an arithmetic formula Φ(n,E, H) and a Σ1

1 formula Ψ(E, H) such that
there is an output,

— output: An ordinal α and a hierarchy H for Φ̂ ≡ Φ(n, α,H) up to α such that
Ψ(α,H).

Definition IV.71

MPH is the multivalued function, with input an arithmetic formula Φ(n,E, H) and a Σ1
1

formula Ψ(E, H), and with output:
1. Either a well order α ∈WO and a Hierarchy H for Φ̂ ≡ Φ(n, α,H) up to ordinal α,

with Ψ(α,H).
2. Or a code for a linear order E, together with an infinite decreasing sequence (xn),

and a hierarchy H for Φ̂ on E, such that ¬Ψ(E, H).

We consider ATRunb as more important than MPH, as we see the latter more as an artefact
of second order arithmetic than an actual way to use arithmetical transfinite recursion.

IV.5.2 Comparing the different versions of ATR

We compare the previously defined different degrees for the arithmetical transfinite recursion
principle. They are linearly ordered, but not every strictness is known. We have the following:

Theorem IV.72

ATR <W ATR2′ ≤W ATR2 ≤W ATRpo
2

Proof. It is clear that ATR ≤W ATR2′ , by identity witnesses, as given a well-order,
ATR2′ has no other choice than answering the Jump Hierarchy for the whole order. This
strictness comes from the fact that ATR always has a hyperarithmetic solution, while there
exists an instance of ATR2′ that has no hyperarithmetic solution: for any pseudo-well order, as
defined in Definition IV.86, both an infinite descending sequence and a jump-hierarchy cannot
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be hyperarithmetic by Corollary IV.91.1 and Theorem IV.96.
It is clear that ATR2′ ≤W ATR2 by identity functions, as any solution for the latter is a

solution for the former. Finally, again by identity witnesses, we have ATR2 ≤W ATRpo
2 as the

latter is the former with a bigger domain.
�

The principles introduced in this thesis are strictly (far) above the previously defined princi-
ples:

Theorem IV.73

ATRpo
2 <W ATRunb and ATR2 <W ATRunb.

Proof. This follows from Theorem IV.78 and Theorem IV.77.
�

I Question IV.74. Do we have ATR2 ≡aW ATR2′ ≡aW ATRpo
2 ? Or do we have ATR2′ <W

ATR2 <W ATRpo
2

I Question IV.75. Do we have ATRunb ≡W MPH?

IV.5.3 Relation between choices and ATR.

The Choice principles are good references when studying new Weihrauch degree, as they are
already well-studied and provide a good hierarchy.

Theorem IV.76

We have that ATR ≡W Σ1
1-UCωω .

Proof. Let us prove that ATR ≤W Σ1
1-UCωω . Given a well-order E, the set of jump-

hierarchies on E is a Π0
2 singleton, therefore ATR can be solved using Σ1

1-UCωω . Conversely,
let Φ be a Σ1

1 formula defining a singleton A = {A}. The singleton is ∆1
1, as n ∈ A iff ∃X ∈ A,

n ∈ X iff ∀X ∈ A, n ∈ X. Then, there is a computable bound α such that n ∈ A iff f(n) ∈ O≤α
for all n. But O≤α can be defined by an α long induction. �

Theorem IV.77 ([51])

We have ATRpo
2 <W Cωω .

Proof. We first prove that ATRpo
2 <W Cωω . Given a partial order E, the set of jump-

hierarchies on E is a Π0
2 set, and the set of infinite decreasing sequences for E is a Π0

1 set.
Therefore ATRpo

2 can be solved using Σ1
1-Cωω ≡W Cωω .

Now, let us argue that Cωω 6≤W ATRpo
2 . Suppose otherwise via Turing functionnals Φ and

Ψ. Then, we have that T is ill-founded if and only if

Φ(T ) is a partial order ∧ ∀S ∈ ATRpo
2 (Φ(T )), Ψ(T, S) ∈ [T ]

As ATRpo
2 (Φ(T )) is arithmetic, the above formula is arithmetic, which is a contradiction with

the set of ill-founded trees not being ∆1
1. �
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Therefore, all the principles ATR, ATR2′ , ATR2 and ATRpo
2 lay in the gap between Π0

1-Cωω

and Π0
2-Cωω . Between those two choice principles, we also have the other choice principles

Σ1
1-WKL and Σ1

1-ACN. While we already know that Σ1
1-WKL is strictly in between, we will

obtain the separation of independent and dependent choice as a corollary by proving that that
ATR2 is not below Σ1

1-ACN.
For the more powerful problems ATRunb and MPH, Choice on Baire space is not trivially

sufficient to output a solution. The output of a solution needs to generate a sufficiently large
ordinal, a Π1

1 set. Those principles are above the closed choice in Baire space:

Theorem IV.78

Cωω ≤W MPH and Cωω ≤W ATRunb.

Proof. Consider the construction which starts with a tree T ⊆ ω<ω, remove leaves along
the ordinals, and stop when there is no more leaves.

If we are given an ordinal α and a construction (Tβ)β≤α where Tα has no leaves, then it is
easy to compute a path in Tα ⊆ T as there is no dead-ends.

Suppose we are given a sequence (Txn)n∈N taken from (Tβ)β≤α a construction on an ill-
founded order α, with (xn) being an infinite descending sequence. Then, one can compute an
infinite path, as every leaf of Txn must have an extension in Txn+1 . To compute the path, take
the leftmost path of Tx0

until it reaches a dead-end. If that happens, continue by extending
this left-most path in Tx1

until it reaches a dead-end, always taking the next tree when reaching
a dead-end. �

IV.5.4 Weihrauch degrees of theorems at the ATR0 level

In section IV.5.1, we developed different Weihrauch degrees for the arithmetical transfinite
recursion principle, arguing that they correspond to different usage of ATR0 in proofs. We now
see how the equivalence over RCA0 of the theorems presented in section IV.4, transfers in the
Weihrauch lattice.

We start with Σ1
1-Sep. Due to the relative nature of Σ1

1-definitions, as witnessed by Theo-
rem II.18, we will not only consider Σ1

1 separation but also Π1
1 separation.

Definition IV.79

We define the following principles:
— Σ1

1-Sep is the multivalued function with:
I Input: Two Σ1

1 descriptions of sets A,B ⊆ N with A ∩B = ∅,
I Output: A set C such that A ⊆ C and B ∩ C = ∅.

— Π1
1-Sep is the multivalued function with:
I Input: Two Π1

1 descriptions of sets A,B ⊆ N with A ∩B = ∅,
I Output: A set C such that A ⊆ C and B ∩ C = ∅.

Note that this deals with subsets of N. One could also define Σ1
1-separation for subsets of R,

the output being a Borel code, however Π1
1 separation by a Borel set does not hold.

Theorem IV.80 ([47])

We have ATR ≡W Σ1
1-Sep <W Π1

1-Sep ≡W Σ1
1-WKL.
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This contrasts with their relation in reverse mathematics: Σ1
1-separation is strictly stronger

than Π1
1-separation over RCA0 [55]. The explanation is again that the interpretation of Σ1

1

formulas are dependent on the model, as shown by Spector and Gandy, so that it is not surprising
that they behave differently in the Weihrauch and the reverse math case.

The perfect tree theorem has many corresponding Weihrauch degrees. Similarly to ATR, it
is for every instance, the disjunction of two Π1

1 sentences. So there are at least three different Π1
2

formulations of it: the straightforward formulation, and the two possible “negation of one case
implies the other case”.

Definition IV.81 ([47])

— PTT1 is the multivalued function with:
I Input: A tree T ⊆ ω<ω,
I Output: A perfect tree T ′ ⊆ T

— PTTlist is the multivalued function with:
I Input: A tree T ⊆ ω<ω,
I Output: An enumeration (bi)i∈N such that [T ] ⊆ {bi : i ∈ N}.

— PTTdet is the multivalued function with:
I Input: A tree T ⊆ ω<ω,
I Output: Either a perfect tree T ′ ⊆ T , or an enumeration (bi)i∈N such that

[T ] ⊆ {bi : i ∈ N}.

In [47] Kihara, Marcone and Pauly proved that these three problems have very different
degrees:

Theorem IV.82 ([47])

ATR ≡W PTTlist <W PTT1 <W PTTdet.

However, all of them are below the unbounded version of the arithmetical transfinite recursion
principle:

Theorem IV.83

PTTdet ≤W ATRunb.

Proof. By the exact same proof as Theorem IV.55. �

The last theorem that is equivalent to ATR0 over RCA0 is the comparability of well-orders.
Kihara, Marcone and Pauly have shown in [47] that its Weihrauch degree is equivalent to ATR,
and Goh showed that it is a robust one in [51].

Definition IV.84 ([47, 51])

CWO is the multivalued function with:
I Input: Two well-orders E and 4,
I Output: Either an embedding from E to an initial segment of 4, or an embedding

from 4 to an initial segment of E,
The multivalued function WCWO is the versions of CWO where the embedding is not
required to be into an initial segment.
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Theorem IV.85 ([47, 51])

We have CWO ≡W ATR ≡W WCWO.

It remains to see how the introduction of new principles might benefit the study of the
Weihrauch degrees.

IV.6 Separating Σ1
1 axioms choice and dependent choice

The goal of this section is to answer Question IV.25. Recall the informal presentation of this
question: Suppose we have a black box that can find a path in any higher co-c.e. homogeneous
tree, where homogeneous means that every nodes at a given level share the same extensions.
Can we use this black box to solve the same problem where the trees are not required to be
homogeneous?

We will solve this problem by showing that ATR2 is not Weihrauch below Σ1
1-ACω. As it

is Weihrauch below Σ1
1-DCω, we can conclude that the two axioms of choice are not Weihrauch

equivalent. The crucial property of homogeneous sets we will use is that if H is homogeneous
and A ≤s H via Φ, then if Φσ = τ for some σ ≺ X ∈ H, then there exists a Turing functional
Ψ such that ∀X ∈ H, we have τ ≺ ΨX ∈ A. Indeed, choose ΨY to be ΦX∩[0,|σ|]∪Y ∩[|σ|+1,∞[. In
other words, we can force a finite part of the computed elements of A.

In the context of being Weihrauch above ATR2, any solution of an instance of ATR2 specifies
in its finite part which type of answer it is: a hierarchy or an infinite decreasing sequence. So
by the above, if an instance is Medvedev below a homogeneous set, then every element of the
homogeneous set uniformly computes a solution in a consistent manner: computed solutions are
either all hierarchies, or all infinite descending sequences.

We can show that using this previous fact would allow us to define a ∆1
1 set containing all the

well-orders, together with some specific ill-orders, supposing ATR2 below Σ1
1-ACω. This does

not directly consists of a contradiction as we only know that WO is not ∆1
1, but a study of Σ1

1

sets containing the recursive well-orders will allow us to conclude. This is what we do in the
following subsection IV.6.1.

IV.6.1 Supportive orders and pseudo well orders

In this part, we present the phenomenon used by the method of pseudo-hierarchies: the
existence of ill-founded orders that still allows some kind of induction along them. We will not
consider arbitrary construction by induction, but only iteration of the jump, so we recall the
definition of jump hierarchies:

I Definition (Jump-Hierarchy). We say that H is a Jump-Hierarchy on E if H is a hierarchy
for Φ(〈a, b〉, X) ≡ b ∈ X ′a ≡ ϕ

Xa
b (b) ↓. In other word, if H is a Jump-Hierarchy for E, then

Ha =
⊕
bCa

H ′b.

The predicate “H is a Jump-Hierarchy for E” is written JH(H,E) and is Π0
2.

We are now able to define the properties on the orders we will be interested in.
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Definition IV.86 (Supportive orders and Pseudo-well orders)

Let C be a linear order on the integers.
1. We say that C is a Φ-supportive order if it supports a hierarchy for Φ, that is there

exists H a hierarchy for Φ on C. We write Φ-Supp for the set of indices of recursive
Φ-supportive orders. When talking about Jump-hierarchies, we simply omit .

2. We say thatC is a pseudo-well order if there is no infinite hyperarithmetic decreasing
sequence. We write PWO for the set of indices of recursive pseudo well orders.

Note that, compared to the property of being well-ordered, the property of being supportive
and pseudo-well-ordered is a property of the order and not the order-type.

These sets have already been well-studied, as in [42, 32, 62]. Gathering their work in this
document, we will prove the following theorem, which appeared in [32]:

Theorem IV.87 ([32])

WO ( Supp ( PWO.

Proof. By Lemma IV.88, Theorem IV.96 and Theorem IV.97. �

We start with the easy part:

I Lemma IV.88. For every arithmetic Φ, we have WO ( Φ-Supp.

Proof. By ATR, it is clear that WO ⊆ Φ-Supp. However, Φ-Supp is a Σ1
1 set: e ∈ Φ-Supp

if and only if ∃H such that HierΦ(H,≤e), which is a Σ1
1 statement. As by Theorem II.2, WO

is Π1
1 complete, it cannot be Σ1

1, and WO ( Φ-Supp. �

Although the previous proof is very short, and does not rely on complex theorems, the result is
quite intriguing and unexpected. Indeed, it says that there exists a supporting order which is not
well-founded, and so there is an infinite sequence (Xn)n∈N such that for every n, X ′n+1 ≤T Xn.
However, this existence result is inherently non constructive! And proving it directly would
seem complicated, in fact we will see more formally that constructing such a sequence must be
sufficiently complicated.

We now devote our efforts to prove the second part of Theorem IV.87, Supp ⊆ PWO. In order
to do this, we will follow the following strategy:

0. If C is a well-order, it is also a pseudo-well-order, so we can already suppose that C is
ill-founded, but supports a hierarchy (such hierarchies are called pseudo-hierarchies).

1. First, we will show that any pseudo-hierarchy associated with an ill-founded supportive
order computes every hyperarithmetic set.

2. Second, show that in a sequence such that X ′n+1 ≤T Xn for every n, the indices of the
reduction is highly non uniform, even in some Xn,

3. Lastly, suppose that C is ill-founded, supportive and with an infinite decreasing sequence.
Then, find a contradiction with 1. and 2.

One consequence of step 1. is that a pseudo-hierarchy cannot be hyperarithmetic. Pseudo-
hierarchies for the jump contains sequences that decrease of at least one jump at each step.
These sequences will be central, so we name them:
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Definition IV.89

We say that (Xn)n∈ω is a Jump-decreasing sequence if it is such that for every n, we have
X ′n+1 ≤T Xn.

Pseudo-hierarchies and Jump-decreasing sequences

Recall that we already supposed that C supports a pseudo-hierarchy. In this part we study
the computational strength of both pseudo-hierarchies and Jump-decreasing sequences. First,
we show that a pseudo hierarchy always contains a Jump-decreasing sequence, in the following
sense:

I Fact IV.90. If H is a pseudo-hierarchy, then there exists (xn)n∈N such that (Hxn)n∈N is a
Jump-decreasing sequence.

Proof. As H is a pseudo-hierarchy, it is a Jump-hierarchy on some ill-founded order C.
Let xn be an infinite decreasing sequence for C. Then, clearly H ′xn+1 ≤T Hxn by just taking
the projection of Hxn on xn+1. But then, (Hxn)n∈N is a Jump-decreasing sequence. �

Now, to give a lower bound on the computational power of pseudo-hierarchies, it suffices to
give a common lower bound on every element of a Jump-decreasing sequence. This is what we
achieve in the following theorem: By this fact, in order to show that a pseudo hierarchy uniformly
computes every hyperarithmetic set, we can use the following theorem:

Theorem IV.91 ([31])

If (Xn)n∈ω is Jump-decreasing, then every Xn computes all hyperarithmetic sets uni-
formly in its double jump.

Proof. We show by induction on α that for any Jump-decreasing sequence (Xn)n∈N and
α < ωCK

1 , we have that X0 ≥T 0(α). Note that we do not require any kind of uniformity in
this statement.

For the base case, it is obvious that X0 ≥T 0(0) for any X0. Now, if the result is true for
α, as (Xn+1)n∈N is also a Jump-decreasing sequence, X1 computes 0(α). But as X0 ≥T X ′1,
X0 ≥T 0(α+1), concluding the successor case.

Now we need to deal with the limit case, when λ is limit. The problem is that the successor
proof is not uniform: it depends on the indices used for the reductions from X ′1 to X0, and
going back in the induction from X ′i+1 to Xi. As we will see later, these reductions cannot be
recovered uniformly. However, the reductions from Xi to 0(α) can be recovered using a finite
number of jump, as seen below.

By the induction hypotheses, for every e code for α < λ, we have that X2 ≥T He where He

is the Jump Hierarchy on ≤e. Let l be a code for λ, that is φl codes an order ≤φl of order-type
lambda, and g be such that φg(i) codes for the well-order below the i-th element enumerated
in the domain of ≤φl . Therefore, for any i, ϕg(i) is a code for an ordinal below λ, and there
exists r such that ϕX2

r = Hϕg(i). As stated in Definition I.89 deciding this equality is Π0
2 in

ϕg(i) and ϕX2
r , thus given i and the double jump of X2 one can compute Hl. As X0 ≥T X ′′2 ,

we have X0 ≥T 0(λ), concluding the limit case.
Now we have he result except for the uniformity, that we can get exactly the same way we

did for the limit case.
�



IV.6. SEPARATING Σ1
1 AXIOMS CHOICE AND DEPENDENT CHOICE 169

I Corollary IV.91.1. If H is a pseudo hierarchy on a computable order with no lowest element,
then it computes all the hyperarithmetic sets.

Proof. By Fact IV.90 let H = (Hxn)n∈N be a Jump-Decreasing sequence. Then by the
previous theorem, H ≥T Hx0

computes every hyperarithmetic set. �

I Corollary IV.91.2. The set HYP of all hyperarithmetic sets is not a model of ATR0

Proof. By Lemma IV.88, there exists a recursive order with no hyperarithmetic descending
sequence. This order looks like a well-order inside HYP. However, by Corollary IV.91.1 any
Jump-Hierarchy on this order would not be hyperarithmetic, so HYP does not satisfy ATR0

for this specific order. �

In particular any hierarchy on a supportive order that is not a well-order cannot be hy-
perarithmetic (otherwise it would compute its own jump). Contrary to this, a hierarchy on a
recursive well-order is hyperarithmetic by definition. Therefore, we have a characterization of
well-orders that has the Spector-Gandy Theorem as consequence:

Theorem IV.92 (Spector [61], Gandy [35])

Every Π1
1 predicate P (x) is equivalent to a predicate of the form: ∃Y ∈ HYP : A(Y, x)

for some arithmetic A.

Proof. By Theorem II.2, P (x) is equivalent to “ϕ(x) codes a well-founded order” for some
ϕ. We claim that

P (x) ⇐⇒ ∃H ∈ HYP, H is a hierarchy on ϕ(x).

Indeed, if P (x) holds, then ϕ(x) codes a well founded order and the hyperarithmetic Hφ(x) is
a jump-hierarchy for ϕ(x). If ¬P (x) then ϕ(x) is not well-founded, it might be supportive but
by Corollary IV.91.1 it has no hyperarithmetic hierarchy. �

Uniformity in Jump-decreasing sequences

We saw that any pseudo-hierarchy contains all the elements of a Jump-decreasing sequence.
However, this does not imply that it computes a Jump-decreasing sequence, as it might be
complex and non-uniform to know which layer to take. In particular, the key to recover a Jump-
decreasing sequence from a pseudo-hierarchy is an infinite decreasing sequence, our initial interest.
Therefore, in this section we are interested in uniformity inside Jump-decreasing sequences.

We will show that in any Jump-decreasing sequence, there is no arithmetic uniform way to
go from one element to the next one. This is expressed by the following definition:

Definition IV.93 (P -sequence)

If P is an arithmetic formula, a P -sequence is a sequence (Xn)n∈ω such that for every n,
Xn+1 is the unique set X such that P (Xn, X). In this case, we write X = P (Xn).

Therefore, we are able to express the negative result about uniformity in Jump-decreasing
sequences:
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Theorem IV.94 ([62])

There is no Jump-decreasing P -sequence.

Before doing the proof, it is useful in order to understand it more easily to draw a parallel
with an informal proof of Gödel’s Theorem. Suppose that T is a theory, and T proves Con(T ).
Then, by Gödel’s completeness theorem, T proves 3 that there exists a model of T . Fix any
model M0 of T . As it is a model of T , it contains M1 also model of T . We can continue and
construct models of T Mn for every n ∈ ω.

Now, suppose the construction of (Mn)n is such that we can express the predicate R such
that R is true in Mn if and only if “∀i > 0, R is false in Mn+i”. Then, we can easily derive a
contradiction: If R is true inM0, it is false inMi for i > 0. In particular, it is false inM1, and
therefore it is true in someMj for j > 1, a contradiction with R being true inM0. If R is false
inM0, it is true in someMi and we use the same argument.

Now, we do the proof in the settings of P -sequence.
Proof of Theorem IV.94 Let P (X,Y ) be any arithmetical formula. We say that X is a

beginning if there exists a Jump-decreasing P -sequence (Xn)n∈N with by X0 = X. Our goal
is to show that there is no beginning. The element Xn of such a sequence would corresponds
roughly to a modelMn of the previous paragraph. The next Lemma is a step to express the
formula R, by identifying e, k with the e-th Σ0

k+1 formula.

I Lemma IV.95. There exists an arithmetical formula R(A, e, k) such that if A is any be-
ginning, then:

R(A, e, k)⇐⇒ ∃y > k + 1 : e 6∈ (P y(A))(k+1) (IV.4)

Proof. What is needed to be shown for this lemma is just that the right part of the
equality can be put in an arithmetic form. In its current form, it is Σ1

1, as when expanded
in a lower level language it becomes ∃y > k + 1 ∃(Yn)n≤y such that Y0 = A, Yn+1 = P (Yn)

and e 6∈ Y (k+1)
y .

However, in the Lemma we are in the special case where A is a beginning, that
is (Pn(A))n∈N is defined and a Jump-decreasing sequence. In particular, for every n,
A ≥T Pn(A). This allows us to quantify over the cone below A instead of all Y s: an
arithmetic quantification. Under this new light, R is defined to be:

R(A, e, k)
def⇐=⇒ ∃y > k + 1,∃(in)n≤y :


ΦAi0 = A ∧
∀n < y, ΦAin+1

= P (ΦAin) ∧

e 6∈
(

ΦAiy

)(k+1)

Therefore, R is arithmetic and satisfy the equivalence of the Lemma. �

For the moment, in our analogy with the argument above the proof, R says: the e-th Σ0
k

formula false in some model My for y ≥ k. We will consider the case where R is given its
own code. More formally, as R is arithmetic, let e0 and k0 be codes for R, that is such that
R(A, x, y) ⇔ 〈x, y〉 ∈ WA(k0)

e0 . Replacing R in (IV.4) and fixing k = k0, we get that for every
beginning A:

∀e, 〈e, k0〉 ∈WA(k0)

e0 ⇐⇒ ∃y > k + 1 : e 6∈ P y(A)(k0+1) (IV.5)

Let ẽ0 be such that n ∈ WX
ẽ0

if and only if 〈n, k0〉 ∈ WX
e0 . We now apply (IV.5) with e = ẽ0,

3. We suppose T strong enough to prove the completeness theorem.
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so for every beginning A:

〈ẽ0, k0〉 ∈WA(k0)

e0 ⇐⇒ ∃y > k + 1 : ẽ0 6∈ P y(A)(k0+1) (IV.6)

ẽ0 ∈WA(k0)

ẽ0
⇐⇒ ∃y > k + 1 : ẽ0 6∈ P y(A)(k0+1) (IV.7)

ẽ0 ∈ A(k0+1) ⇐⇒ ∃y > k + 1 : ẽ0 6∈ P y(A)(k0+1) (IV.8)

Coming back to our analogy, the last statement is the one that is true if and only if it is false
in some biggerMn.

�

Proof of Theorem IV.87

We are now ready to combine all the previous results to prove Theorem IV.87.

Theorem IV.96 ([32])

If e ∈ Supp, then e ∈ PWO.

Proof. Let H be a Jump-hierarchy on e and let (xn)n∈N be an infinite decreasing sequence.
Toward a contradiction, suppose that (xn)n∈N is hyperarithmetic.

As (Hxn)n∈N is a Jump-decreasing sequence, by Theorem IV.91 for every n the element
H ′′xn uniformly computes the whole hyperarithmetic sequence (xn)n∈N, via some fixed Turing
functional Φ. Therefore, (Hxn)n∈N is a P -sequence where P is such that :

P (X,Y )⇐⇒ X ′′ compute the sequence (xn) via Φ, and
if n is such that X is a jump hierarchy for the order xn,
then Y ′ = {a : 〈xn+1, a〉 ∈ X}

This is a contradiction with Theorem IV.94. �

We also mention the following theorem from Harvey Friedman’s thesis:

Theorem IV.97 ([33, Chapter 3 Theorem 2])

There exists a pseudo well order which supports no jump hierarchy.

IV.6.2 Complexity of Supp and PWO

In the previous section, we have shown WO ⊆ Supp ⊆ PWO. We will now tackle their
complexity, using a very general theorem proved by Harrington.

We will work in the slightly more general setting of partial order. We extend the sets to WF,
Supppo and PWF corresponding to the same notions for partial orders, in the very straightforward
way. Harrington’s theorem is the following:

Theorem IV.98

If A ⊆ N is a Σ1
1 set such that WF ⊆ A ⊆ PWF, then A is Σ1

1-complete.
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Proof. Let A be such a set. In order to prove that A is Σ1
1-complete, we will reduce to A

the most famous Σ1
1-complete set: IF, the set if indexes of ill-founded trees.

For any e, write Ue for the tree of code e. Also, as A is Σ1
1, for any n there exists a tree Vn

such that Vn is ill-founded if and only if n ∈ A.
The reduction f will be such that

[Uf(e)] = {g : Ue → Vf(e) order preserving}.

In order to define this f , we need to use the recursion theorem, in the following way: Given
e, let h be the procedure that given n, output a code for the tree {g ⊆: Ue → Vn| g is finite
and order preserving}. By the recursion theorem, let n0 be a fixed-point of h, that is n0 is a
code for {g ⊆: Ue → Vn0 : g is finite and order preserving} and define f(e) = n0. Then, f is a
computable function by the effectivity of the recursion theorem.

Before proving that f is a reduction, we prove that for every e, Uf(e) is ill-founded. If
f(e) ∈ A, then Vf(e) is ill-founded by definition of (Vn)n∈N. But then, for every tree T there
exists an order preserving function from T to Vf(e), and [Uf(e)] 6= ∅. Otherwise, if f(e) 6∈ A,
as WF ⊆ A, f(e) 6∈WF and Uf(e) is ill-founded. Therefore, there exists an embedding from Ue
to Vf(e), that is a total order preserving function.

Now we prove that f is a reduction.
— Suppose e ∈ IF, that is Ue is ill-founded. As Ue embeds into Vf(e), the latter must be

ill-founded, which by definition implies f(e) ∈ A.
— Otherwise, e 6∈ IF, that is Ue is well-founded. As we already know that there exists

an embedding from Ue to Vf(e), by Lemma IV.99 below there must exist a hyperarith-
metic one. But then, Uf(e) contains a hyperarithmetic infinite descending sequence, and
therefore f(e) 6∈ PWF. As A ⊆ PWF, f(e) 6∈ A.

It only remains to prove the Lemma:

I Lemma IV.99. If T0, T1 ⊆ ω<ω are computable trees such that T0 is well founded and
there exists an order-preserving function from T0 to T1, then there exists such a function that
is hyperarithmetic.
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Proof. We begin with some notation. We write Tσ for {τ ∈ T : τ � σ}. We call rank of
the tree T the function l such that l(σ) =∞ if Tσ is ill-founded, and l(σ) = supσ≺τ∈T (l(τ)+1)

otherwise. By convention, ∞ is greater than any ordinal.
As T0 is well founded and computable, the rank l0 is defined by induction over a com-

putable ordinal, and therefore is hyperarithmetic. Let α0 be the computable ordinal associ-
ated to the root, l0(ε).

Contrary to l0, the rank l1 of T1 may not be hyperarithmetic as T1 may not be well-
founded. However, the function l∗1 corresponding to the rank constructed only up to stage
α0 is hyperarithmetic: where we have l∗1(σ) = l1(σ) if l1(σ) ≤ α0, and l∗1(σ) =∞ otherwise.

We will prove that for every σ ∈ T0 and τ ∈ T1, the following are equivalent:
1. there exists an embedding f from T0,σ to T1,τ with f(σ) = τ

2. there exists a hyperarithmetic embedding from T0,σ to T1,τ with f(σ) = τ

3. l0(σ) ≤ l1(τ)

4. l0(σ) ≤ l∗1(τ)
The equivalence between 3 and 4 if obvious by definition of l∗1. The implication from 2 to 1
is obvious, we will now prove 1 implies 3 and then 3 implies 2.

We prove 1 implies 3 by induction on the rank of σ. Fix an embedding f , we have that
l0(σ) = supσ≺ρ∈T0

l0(ρ) ≤ supσ≺ρ∈T0
l1(f(ρ)) by induction hypothesis, but then as f is an

embedding l0(σ) ≤ supτ≺ρ∈T1
l1(ρ) = l1(τ).

We prove 3 implies 2. We define by induction the embedding fστ from T0,σ to T1τ . To
define fσ,τ , for every ρ � σ direct successor of σ in T0, fix any µ(ρ) � τ such that l1(µ(ρ)) ≥
l0(ρ), which must exist. Then, define fσ,τ to be {(σ, τ)}∪

⋃
{fρ,µ(ρ) : ρ direct successor of σ}.

Then, fσ,τ is an hyperarithmetic embedding.
Applying the equivalence with σ and τ being the empty sequence, we get the existence

of a hyperarithmetic embedding. �

�

I Corollary IV.99.1. If A ⊆ N is a Σ1
1 set such that WO ⊆ A ⊆ PWO, then A is Σ1

1-complete.

Proof. Let A be such a set. If e is an index for a tree in Baire space, we write KB(e)
for the index of the order of the associated Kleene-Brouwer ordering. We let B be {e ∈ N :
KB(e) ∈ A}. Then, we have WF ⊆ B ⊆ PWF: If T is well-founded of code e, then the
Kleene-Brouwer ordering of T is a well-order and KB(e) ∈WO ⊆ A. If there exists an infinite
hyperarithmetic descending sequence in T , then this sequence is also infinite decreasing for
KB(e) and KB(e) 6∈ A.

Therefore, B is Σ1
1-complete. As there exists a many-one reduction from B to A, A is also

Σ1
1-complete. �

I Corollary IV.99.2. Supp and PWO are Σ1
1-complete.

IV.6.3 ATR2 versus Σ1
1-ACω and Σ1

1-DCω

We are finally able to answer Question IV.25, using the background of this section. This is a
very interesting situation, where the introduction of a new degree, ATR2, purely inspired from
reverse mathematics, allowed to close an open question asked by Pauly and Brattka in [13], a
paper that is purely on Weihrauch considerations.
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Theorem IV.100

ATR2 6≤W Σ1
1-ACω

Proof. Toward a contradiction, we suppose that ATR2 6≤W Σ1
1-ACω. As the above

principle is parallelizable, we then have ÂTR2 6≤W Σ1
1-ACω. Fix Φ and Ψ witnesses of this

reduction.
Let I =

⊕
e∈LO Ie be the product of all the computable instances of ATR2. As A is an

instance of ÂTR2, Φ(A) is the presentation of a product of Σ1
1 sets S =

∏
nBn such that for

every x ∈ S, Ψ(x) is the product of solutions to every computable instance of ATR2.
Given e ∈ LO and x ∈ S, we are interested in what kind of solutions for Ie are computed

by x. We write Answerx(e) ⊆ {H; D} for the kind of solution to Ie that are computed by
x, that is H ∈ Answerx(e) iff and only if ∃f computable with f(x) is a Jump-hierarchy for
Ie, and similarly for D with an infinite descending sequence. As (Ψ(x))e is always a solution,
Answerx(e) 6= ∅ for every x ∈ S.

We define answerS(e) =
⋂
x∈S answerx(e). If e ∈WO, then we have that answerS(e) = {H},

as there is no infinite descending sequence in Ie. Contrary to this, answerS(e) = {D} for
e 6∈ Supp as there is no associated hierarchy. However, by Theorem IV.87 there are some
e ∈ Supp \WO that we need to take care of.

For those e ∈ Supp \WO, we argue that answerS(e) 6= ∅. Indeed, let x ∈ S, (Ψ(x))e is a
solution of type i ∈ {H; D}. Let σ ≺ x finite such that Ψ(σ) already determines the type of
solution it start to compute for Ie. Then, for every y ∈ S, Ψ(σ(y�>|σ|)) is a solution to I as by
homogeneity σ(y�>|σ|) ∈ S. But then i ∈ answery(e) for all y ∈ S, and i ∈ answerS(e).

Define the Σ1
1 sets

B = {e : H 6∈ answerS(e)}
C = {e : D 6∈ answerS(e)}.

As for every e ∈ LO, answerS(x) 6= ∅, A∩B = ∅. We also have WO ⊆ C and LO\Supp ⊆ B. As
B and C are Σ1

1, by Lusin’s Separation Theorem for integer, corresponding to Theorem IV.53,
there exists a ∆1

1 set D with WO ⊆ C ⊆ D and D ∩ B = ∅. But then by Theorem IV.87,
B ⊇ PWO and so D ∩ PWO = ∅. By Corollary IV.99.1, D is Σ1

1-complete, a contradiction.
�

We can now answer the question about axioms of choice and dependant choice.

I Corollary IV.100.1. Σ1
1-ACω 6≤W Σ1

1-DCω

Proof. We have ATR2 6≤W Σ1
1-ACω, but ATR2 ≤W Σ1

1-Cωω ≡W Σ1
1-DCω, so the two

principles cannot be equivalent. �



Chapter V

Randomness and genericity within
ITTMs

Gotlib, RàB T2. Le matou matheux

One of the striking observation of mathemati-
cal logic is that given a countable alphabet, the set
of things we can define is countable, so in this lan-
guage we can only speak of countably many reals
even though there are many more of them. This
can in some ways be given a formal statement,
known as the descending Löwenheim-Skolem the-
orem. So, coming back to the reals, we need the
existence of reals that we cannot define, making
them rather difficult to deal with.

So if mathematics only deals about an infinites-
imal part of the real numbers, what do the other
largest part look like? Even if we cannot define
some individual, can we speak about them as a
whole? As they are not really definable, they
should not have any discriminating property. In
other words, we use the interesting small part of
the reals, the major part being a mass of typical
objects, all of them different but sharing the same
features, making them indistinguishable.

There are several ways of studying these reals, the mass sharing the most common properties.
Usually, we define a notion of largeness to decide which are the most common properties. Then,
we get a hierarchy on typicality of reals, defined by the complexity of the simplest common
property that is not verified. This includes two very different notions of typicality: randomness
and genericity.

The study of randomness fills a gap left by probability theory. Consider the following se-
quences of bits: “00000000000000000000”, “01010101010101010101”, and “11001001110100111000”.
Probability theory says that if they are obtained by tossing a fair coin many times, all three out-
comes are equally probable. However, our intuition strongly suggests that the first one was using
a biased coin, the second was purely cheating and the last one might have been obtained by toss-

175



176 CHAPTER V. RANDOMNESS AND GENERICITY WITHIN ITTMS

ing a coin 1. Similarly, if we compare infinite sequences of bits, they all have probability 0 to be
obtained by tossing a coin infinitely many times. Yet, we expect them to have many properties,
such as having roughly as many 0s than they have 1s, to follow the law of large numbers, and in
some sense, to be very disordered.

The study of the randomness of infinite sequences and the one of finite sequences both con-
verged to the foundation of algorithmic randomness, providing a clear and satisfying answer to
the above contradiction between the theory and the intuition. The resulting theory of algorithmic
randomness measures the randomness content of a finite string as the size of the most efficient
way of compressing the string, still being able to recover it in a computable fashion (or at least,
using a reasonably powerful oracle). It measures the randomness of an infinite string by finding
how typical it is with regard to the sets of measure 1. It turns out that many such notions
are linked, and an infinite string is random if and only if its finite prefixes all have maximal
randomness, up to a constant.

Algorithmic randomness, since the first randomness notion by Martin-Löf in 1966 [53], has
known an impressive development. A very rich theory has emerged, as a complex and beautiful
answer to the original philosophical question of what are random objects. Just like recursion
theory had been extended to higher recursion theory, to α-recursion theory and to the theory
of ITTMs, algorithmic randomness is meant to follow a similar development. This has been
started with Higher randomness by Hjorth and Nies [45], Chong and Yu [23] [24] and Bienvenu,
Greenberg and Monin [39] [7] [54]. Recently this was extended to ITTMs by Carl and Schlicht
[19]. The goal of this chapter is first to pursue their work.

This chapter aims at continuing the study of randomness and genericity at the higher levels.
In Section V.1 we recall some basic facts and definitions about typicality notions. In Section V.2,
we develop a framework that can be used in general to study randomness and genericity within
Gödel’s constructible hierarchy. We use this framework to answer several open questions of Carl
and Schlicht, and we also ask new ones.

Some formal details of Section V.2 may be a bit tedious to read, and there is no way around
that. Any recursion theorist may have struggled in its early days to read all the technical details
on the equivalence between various models of computations, and developed after that a very
solid intuition of what is computable, without the necessity of coming back every time to the
formal definitions. Thus, the reader who is not familiar with constructibility will certainly need
to furnish an effort with some proofs of Section V.2, whereas the reader who is used to it will
certainly have no problem admitting these theorems without reading the proofs. Despite the
difficulties inherent to the material presented here, we tried as much as possible to never confuse
rigor and formalism, by ensuring the former without getting trapped in the latter.

In Section V.3, even though we answer several questions of [19], we feel that this section’s
main achievement is not there, but more in a new question (Question V.30) that we ask on the
separation of two randomness notions defined by Carl and Schlicht. It seems so clear at first
that the two notions should be different, that the question was not asked so far. The reason is
certainly that the analogues of these two notions in Higher randomness actually differ for simple
reasons. We emphasize here that things are not so simple in the settings of ITTMs, and we show
that the two notions are much closer than we think, even though we are not able to settle the
question.

This question was the original motivation for the work presented in Section V.4: In order to
argue that it is not absurd to think that these two randomness notions may actually coincide,
we show that it is the case for their categorical analogues. Note that the versions of these
analogues with Higher genericity are also known to differ for simple reasons, like it is the case

1. In fact, it was obtained using a pseudo-random generator. So, continuing this way would result in something
strongly non-random in the sense of this chapter.
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with randomness. In some sense, Theorem V.59 that shows equality of these notions, may
actually be the most important of this chapter: it uses the new phenomenons that occur within
some levels of the constructible hierarchy to show that two classes collapse in a very unexpected
way. Despite that, we decided to leave this section at the end, so that the chapter follows the
logic exposed so far, that we now sum up.

In Section V.1, we expose the definitions and basic results of randomness and genericity. In
Section V.2 we develop a general framework to study randomness in any limit level of Gödel’s
constructibles, in Section V.3 we study randomness notions with respect to ITTMs, focusing first
on the question we mentioned above and proving several results meant to delineate and sharpen
the contour and outline of this question. In this same section we then answer several questions
of [19], the most interesting theorem about that being maybe Theorem V.41. In Section V.4 we
define and study, in the setting of ITTMs, the categorical analogues of the studied randomness
notions. The section focuses on answering for categoricity the question that is still too hard in
the randomness case.

V.1 Notions of typicality

Genericity and randomness are two different approaches to study typical objects, that is,
objects having “all the typical properties” for some notion of typicality. For randomness, a
property is typical if the class of reals sharing it is of measure 1, whereas for genericity, a
property is typical if the class of reals sharing it is co-meager. In both cases, for any countable
collection of typical properties, it is still a typical property to have all of them: the intersection
of countably many measure-one sets is still a measure-one set, and the intersection of countably
many co-meager sets is still a co-meager set. Depending on the countably many properties we
consider, the reals that share all of them may be of great interest, in forcing constructions or to
study various notions of degrees, from Turing to α-degrees.

Computability theory establishes many countable hierarchies of complexity, making these a
good choice for the study of typical objects. Indeed, if one defines a random real as being a real
with all the measure 1 properties among a countable class, it is natural to include in the class
the less complex properties, before the more exotic ones (such as 2ω \ {X} where X is a set that
looks like very random).

These hierarchies of complexity define hierarchies of randomness and genericity. A set is more
random if it appears random with regards to all sets of a higher complexity. Many notions of
randomness and genericity have been defined, ranging from rather simple sets to ITTM-semi-
decidable sets. Following the previous chapters of this thesis, we will be more interested in the
high-end of the spectra, possibly the strongest class of randomness defined so far.

In this section, we review the two notions of typicality: first, randomness which relies on
measure theory, and genericity which relies on Baire categoricity. Measure and categoricity are
two different ways to measure the largeness of a subset of the reals.

V.1.1 Measure Theory

A measure is a value of largeness given to subsets of reals. Measuring every subsets of the
real in a consistent but non trivial way may not seem a difficult task, however there are so many
of them (P(R) is of cardinality 22ℵ0 ), perhaps even some are not constructible, that we restrict
the measurable sets to a smaller class: a σ-algebra.
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Definition V.1 (σ-algebra)

A σ-algebra A on X is a subset of P(X), closed by complementary and countable union,
and containing X.

Of course, P(R) is a σ-algebra. However, as said before it is not so clear that there exists
a well-behaving measure on so many complex sets. Therefore we will restrict ourselves to the
smallest σ-algebra containing the open sets.

I Example V.2. The Borel sets form a σ-algebra. It is the smallest σ-algebra containing the
open intervals.

Proof. Let us show that the Borel sets form a σ-algebra. First, the Borel sets is a
collection closed by intersection. If An ∈ Π0

αn
for all n ∈ N, as the αn are countable we have

that α = supαn is also countable. But then, A =
⋃
nAn is Π0

α+1, and the Borel sets are also
closed by countable unions, therefore consist of a σ-algebra.

We now show the converse, that any σ-algebra containing the open sets must contain the
Borel sets: Let A be a σ-algebra containing the open intervals. Suppose that there exists an α
and a Π0

α set A 6∈ A with α < ω1. Let α be the smallest such one, it cannot be 1 as A contains
all Σ0

1 sets. Then A is the complement of a union of sets in A, as every Π0
β set for β < α is in

A. But then, the complement of A is in A, so A ∈ A. �

Then, we measure the sets of a σ-algebra.

Definition V.3 (Measure)

If A is a σ-algebra on X, then a function µ : A → R ∪ {∞} is a measure if we have the
following:

1. µ(∅) = 0, and
2. If (An)∈N is a family of disjoint sets in A, then µ(

⋃
nAn) =

∑
n µ(An).

We call the second requirement σ-additivity. If we also have µ(X) = 1, then we say that
µ is a probability measure.
Elements of the σ-algebra are called measurable sets. A measurable set of measure 0 is
called a null set.

There exists some measures on the full σ-algebra on 2ω, such as for instance, given some fixed
x ∈ 2ω, the measure valued 1 on a set A if x ∈ A and 0 otherwise. This measure is called the
Dirac measure on x. However, if we want a more natural measure on the reals, we may have to
restrict the σ-algebra first. However, given a σ-algebra and a measure on it, there is sometimes
a cheap way to increase the number of measurable sets, by completing a measure.

Definition V.4

Let A be a σ-algebra on X and µ a measure on it. We say that N ⊆ X is negligible if N
is included in some measure 0 set. Then, the set B = {A∪N : A ∈ A and N is negligible}
is a σ-algebra, and the measure defined by µ∗(A ∪N) = µ(A), for some negligible N , is
a measure on B. It is called the completed measure of µ. If a measure equals its own
completion, then the measure is said to be complete.
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Definition V.5 (Lebesgue Measure)

There exists a unique complete measure µ on the Borel sets, such that µ([a, b]) = b − a
where a, b ∈ R. This measure is called Lebesgue measure.

Usually, Lebesgue measure is written λ. In this thesis, we avoid this notation as λ is already
used to denote the supremum of writable ordinals.

Before continuing to algorithmic randomness, we need to show that for a probability measure,
a countable intersection of measure 1 sets is also of measure 1. The complement of a measure 1
set is a measure 0 set. By σ-additivity, the countable union of null sets is null. Therefore, the
countable intersection of co-null set is co-null.

V.1.2 Algorithmic Randomness

Once we have defined the largeness notion and showed that countably many “large” sets are
“large”, we can use computability hierarchies to define typical objects.

Definition V.6 (C-randomness)

Let C ⊆ P(2ω) be countable. A set x ∈ 2ω is C-random if it is in no null set of C, that is
∀A ∈ C, µ(A) = 0 =⇒ x 6∈ A.

We explain why this definition corresponds to our intuition of random sets, and yields robust
notions of randomness. There are usually three paradigms to define randomness:

1. The first paradigm is the one used here: the difficulty to find some non randomness in the
set. If a set is obtained by tossing a coin infinitely many times, then we expect the set to
have no special properties.

2. The second paradigm is unpredictability. If a sequence of 0 and 1 is random, then given
a finite initial segment, there should be no way to “guess” the next bit. This is usually
formalized by bounding the expectation of a gambler, who tries to win money by betting
the next bits of the sequence, steps after steps, but has limited computational power.

3. The third paradigm is the incompressibility of prefixes. If a sequence is random, then there
must be no structure in the sequence allowing to compress the initial segment in a code,
still being able to recover the initial segment using limited computational power.

We give the most famous choice of C in algorithmic randomness:

Definition V.7

A Martin-Löf test is a Π0
2 set effectively of measure 0, that is a uniform intersection⋂

n∈N Un of open sets Un with µ(Un) ≤ 2−n.
We say that x is Martin-Löf random if X is in no Martin-Löf test.

V.1.3 Baire categoricity

We start by giving the analogue of co-null sets for Baire categoricity, that is the largeness
notion.
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Definition V.8

Let (X, τ) be a topological space. Then, a set A ⊆ X is co-meager is it contains a
countable intersection of dense open sets. A set is meager if it is the complement of a
co-meager set.

The terminology of meager and co-meager sets suggests that we defined them reversed of the
usual way. The reason is that we feel that “dense open” is more easily understood than using the
notion of “nowhere density”.

We now argue that co-meagerness is indeed a good candidate for being a notion of largeness.
It can be seen as the notion of largeness induced by open dense sets, when closing the notion by
countable intersection. Open and dense sets look like a good largeness notion: if a set A is open
dense, it means that for every x, not only there is an approaching sequence to x in A, but there
are intervals in A arbitrarily close to x.

Yet, it remains to prove that co-meagerness is not a trivial notion. This is so in what is
usually called “Baire spaces”, but the terminology clashes with the (also standard) notion of
“the” Baire space, ωω. In this new notion, a Baire space is a topological space in which every
intersection of countably many dense open sets is dense. The Baire category theorem states that
every complete metric space, as well as every locally Hausdorff space, are Baire spaces. We only
do the proof for the Baire space and the Cantor space.

Theorem V.9

For Baire and Cantor spaces, the intersection of countably many dense open sets is dense.

Proof. Let (Dn)n∈N be a countable union of dense open sets, and σ be a finite string (of
bits, or of integers). We define by induction a sequence (σn)n∈N, where [σn] ⊆ Dn, σn ≺ σn+1

and the length is strictly increasing. We start with σ−1 = σ the empty string, and if σn−1 has
been defined, we use the density of Dn to define xn � σn−1 in Dn, followed by the use of the
openness of Dn to find σ̂n ≺ xn such that [σ̂n] ⊆ Dn. If σ̂n−1 ≺ σn−1 we define σn = σn−1

a0,
otherwise σn = σ̂n.

It is clear that x � σ is in every Dn, as σn ≺ x, concluding the theorem. �

V.1.4 Genericity

Just as we defined random objects as those which have all co-null simple properties, we define
generic objects as those which have all co-meager simple properties. Note that every open set
can be “densified”: if P ⊆ ωω is an open set, then P̂ = P ∪

⋃
{[σ] : [σ] ∩ P = ∅} is a dense open

set. This densified set corresponds to the fact that given any open property, and beginning σ of
a constructed object, either we can force the final object to be in P , or we can force the final
object to avoid P , by just choosing an extension τ � σ in P̂ \ P = {[σ] : [σ] ∩ P = ∅} (if the
former is false, then we must already have σ ∈ P̂ \P ). After an extension τ is chosen, no matter
how the construction continues above τ , we already know if the constructed object will belong
to P or not.

So, we can see the generic objects as the one having all the properties that can be ensured
in a finite way. For instance, having 1000 zeros one after the other can be ensured after any
beginning of a string. So generic objects will have this property. Note that this is also a property
of random objects, as never having 1000 zeros in a row in the binary expansion has probability
0.
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Definition V.10

Let D be a countable family of dense open sets. Then, a sequence g is generic over D if
for every D ∈ D, g ∈ D.

So, let us give a property that generic objects have, but random objects don’t. The set
Pn =

⋃
{[σa0lh(σ)] : σ ∈ 2<ω ∧ lh(σ) > n} is a dense open set, as if σ ∈ 2<ω is any sufficiently

long finite binary string, then [σa0lh(σ)] ⊆ Pn. So if g ∈ 2ω is generic, then there must be
infinitely often a sequence of zeros as long as the sequence before the zeros, which happens with
probability 0.

Genericity is closely related to forcing. In fact, Cohen used the previously defined notion of
genericity, over the sets of a countable model of ZFC, to enlarge the model with a generic real in
some way. He called this method forcing. By modifying the topology to another Baire space, we
get other definitions of forcing, but in this thesis we will be only interested in the above defined
Cohen genericity.

It is straightforward to use hierarchies from computability and logic to define hierarchies of
genericity notions.

Definition V.11

Let α < ωCK
1 . A sequence is weakly-α-generic if it belongs to every Σ0

α dense open sets.
It is α-generic if it belongs to every densification of Σ0

α dense open set.

The fact that we require the Σ0
α to be open might seem a restrictive condition to the set of

properties that can be ensured for generic elements. However, it is not such a restriction. In fact,
a potentially not open property can be approximated in an open property, up to a meager set.
Then, any “generic enough” element will be in the open approximation, but not in the meager
set of errors, therefore the generic will have the initial property.

Definition V.12

A set A has the Baire property if there exists an open set U and a meager set M such
that A = U∆M , where ∆ is the symmetric difference: A∆B is (A \B) ∪ (B \A).

Having the Baire property is being equal to an open set up to a meager error. Now, we need
that a Σ0

α set have the Baire property in a way that works well with α-genericity.

Theorem V.13 (Baire property theorem for lightface Borel sets)

For any Σ0
α set A ⊆ 2ω, one can find uniformly in an index for A a Σ0

α-open set U and
uniformly in n a Π0

<α-closed set Fn such that A = U∆B for some set B included in⋃
n δFn , where δFn is the boundary of Fn.

For any Π0
α set A ⊆ 2ω, one can find uniformly in an index for A a Π0

α-open set U and
a uniformly in n a Π0

α-closed set Fn such that A = U∆B for some set B included in⋃
n δFn, where δFn is the boundary of Fn.

Therefore, for every Σ0
α P , there is a Σ0

α open set U equal to P for α-generic.
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Theorem V.14

Let α < ωCK
1 , let Gα be the set of α-generic reals andWGα be the set of weakly-α-generic

reals. Then, for every Σ0
α set P we have:

1. There exists a Σ0
α-open set U with P ∩WGα = U ∩WGα.

2. There exists a Π0
α-open set U with P ∩ Gα = U ∩ Gα.

V.2 Forcing in the constructibles

Algorithmic randomness normally deals with Borel sets of positive measure. Working in the
constructibles will make this task a little bit harder, and requires to go into usual naming and
forcing in L.

We will however not formally define a forcing relation. Instead we go around the need of
defining one, by directly dealing with Borel sets. The reason we do so is to stick with what is
traditionally done with algorithmic randomness: the manipulation of Borel sets. We believe that
for our purpose, it is a bit more clear to use Borel sets rather than a formal forcing relation.

V.2.1 Borel codes

In order to be able to speak about sets of reals in Lα, we need to code them into elements
of Lα. We do that with the notion of ∞-Borel codes and Borel codes. In this chapter, due to
technical reasons that will be made clear later, we need to be careful about the L-rank of our
Borel codes. In particular, if {cn}n∈ω are Borel codes for Σ0

α+k sets Bn such that each cn has
L-rank, say β, we need a code of

⋂
n∈ω Bn also to have L-rank β. In particular we cannot for

instance define a code of
⋂
n∈ω Bn to be a set containing the codes cn.

In what follows the coding trick is achieved with (3) and (4), by coding sequences of sequences
of codes to be a partial function defined in F ⊆ ω, using the usual bijection between ω and ω2.
This way the L-rank of a sequence of code stay at the same level.

Definition V.15 (∞-Borel codes and Borel codes)

We define, by induction, ∞-Borel codes together with their rank r, type t = Σr or Πr

and interpretation ι:
1. The set c = 〈2, {σi}i<k〉, for any finite sequence {σi}i<k with each σi ∈ 2<ω, is

an ∞-Borel code, with rank r(c) = 0, type Σ0 = Π0 = ∆0 and interpretation
ι(c) =

⋃
i<k[σi]

2. Suppose that for some set I, there exists a function f : i ∈ I 7→ ci such that ci is
an ∞-Borel code for every i ∈ I. Then d0 = 〈0, f〉 and d1 = 〈1, f〉 are ∞-Borel
codes, with rank r(d0) = r(d1) = supi∈I(r(ci) + 1), type respectively Σ0

r and Π0
r

and interpretation ι(d0) =
⋃
i∈I ι(ci) and ι(d1) =

⋂
i∈I ι(ci).

3. Suppose for some set I, there is k ∈ ω and a function i ∈ I 7→ ci where for every
i ∈ I, the set ci = 〈0, fi : Ik → L〉 is an∞-Borel code. Then we define f : Ik+1 → L
by f(i, a1 . . . , ak) = fi(a1 . . . , ak). The set c = 〈1, f : Ik+1 → L〉 is an∞-Borel code,
with rank r(c) = supi∈I(r(ci) + 1), type Πr and interpretation ι(c) =

⋂
i∈I ι(ci).

4. Suppose for some set I, there is k ∈ ω and a function i ∈ I 7→ ci where for every
i ∈ I, the set ci = 〈1, fi : Ik → L〉 is an∞-Borel code. Then we define f : Ik+1 → L
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by f(i, a1 . . . , ak) = fi(a1 . . . , ak). The set c = 〈0, f : Ik+1 → L〉 is an∞-Borel code,
with rank r(c) = supi∈I(r(ci) + 1), type Σr and interpretation ι(c) =

⋃
i∈I ι(ci).

A Borel code is an ∞-Borel code where each set I involved equals ω. Note that a Borel
code can be encoded by a real.

In order to lighten the notations, we will write b =
∨
i∈I bi if b is the∞-Borel code of

⋃
i∈I ι(bi)

and b =
∧
i∈I bi if b is the ∞-Borel code of

⋂
i∈I ι(bi). Note that given a Borel code b =

∨
i∈I bi

or b =
∧
i∈I bi, one can uniformly find I (using the domain of the function involved in the code),

and find the code bi uniformly in i ∈ I:
I Proposition V.16. We have:

1. The function which on an∞-Borel code b =
∨
i∈I bi and some i ∈ I, associates the∞-Borel

code bi, is ∆Lα
1 -definable uniformly in α limit. The same holds for b =

∧
i∈I bi.

2. The function which on an ∞-Borel code b ∈ Lγ associates the ∞-Borel code d of 2ω − ι(b)
with d ∈ Lγ and r(b) = r(d), is ∆Lα

1 -definable uniformly in α limit.
3. The function which on ∞-Borel codes b0, . . . , bk ∈ Lγ associates the ∞-Borel code d ∈ Lγ

with r(d) = maxi≤k(r(bi)) and ι(d) =
⋃
i<k ι(bi), is ∆Lα

1 -definable uniformly in α limit.

Proof. (1) is rather obvious: A code b =
∨
i∈I bi is of the form 〈0, f : Ik+1 → L〉 for some

k ≥ 0. If k = 0 then bi is given by f(i). If k > 0 then bi is given by 〈1, fi : Ik → L〉 where fi
is defined by fi(a1 . . . , ak) = f(i, a1 . . . , ak). This is easily uniformly definable in Lα for any α
limit. The same holds for b =

∧
i∈I bi.

(2) goes by propagating the complement into the ∞-Borel code, and (3) by propagating
the finite union in the ∞-Borel code. Both (2) and (3) are straightforward by induction on γ,
using bounded rank replacement of Proposition II.28.

�

I Proposition V.17. The set of ∞-Borel codes and of Borel codes of Lα, are ∆Lα
1 -definable

uniformly in any α limit.

Proof. We define by ∆0-induction on the rank of sets of Lα, a total function f : Lα →
{0, 1}. The function returns 1 iff its parameter is a Borel code. It is defined as follow:

f(c) = 1 if c is of the form 〈2, {σi}i<k〉 for a sequence of strings {σi}i<k
= 1 if c is of the form

∨
i∈ω ci or

∧
i∈ω ci

and if for every i ∈ ω we have that f(ci) = 1
= 0 otherwise

Note that we are in the conditions of Proposition II.28, with sets Lβ in place of sets Eβ .
One easily see that (1) (2) and (3) of Proposition II.28 are verified, which implies that f is
well-defined in Lα for α limit, using bounded rank replacement.

The proof is similar for ∞-Borel codes. �

V.2.2 The naming system
We use the naming system presented by Cohen in [26]: a name for a set a ∈ Lα(x) is given

by the successive construction steps that lead to the construction of a, starting from an oracle x
that we do not know.
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We define P0 as the set of names for elements of L0(x), that is, for {x} ∪ ω. The integer 0 is
a name for x and the integer n+ 1 is a name for n ∈ ω.

Suppose now by induction that for an ordinal α, the set of names Pα for elements of Lα(x)
has been defined. We define the set of names Pα+1 for elements of Lα+1(x). Let b ∈ Lα+1(x) be
such that b = {a ∈ Lα(x) : Lα(x) |= Φ(a, p1, . . . , pn)}, for p1, . . . , pn ∈ Lα(x). A name for b is
given by the following ḃ = 〈Pα, pΦq, ṗ1, . . . , ṗn〉, where ṗ1, . . . , ṗn ∈ Pα are names for p1, . . . , pn.

Suppose now that the set of names Pβ have been defined for β < α. Then we define Pα =⋃
β<α Pβ .
In general if a ∈ Lα(x), its corresponding name is written ȧ. Note that the naming system

allows us to speak about elements of Lα(x) without any requirement on x.

I Proposition V.18. The function β 7→ Pβ is ∆Lα
1 -definable uniformly in α is limit.

Proof. We only sketch the proof here. It is straightforward by ∆0-induction on ordinals,
using bounded rank replacement of Proposition II.28, where E<β is simply β. One should show
that for any β, the set Pβ belongs to Lβ+k for some k ∈ ω. This ensures (3) of Proposition II.28,
whereas (1) and (2) are obvious. �

We shall now argue that given a name p ∈ Pα and given x ∈ 2ω, we can, uniformly in p and
x, define the set of Lα(x) that is coded by the name. Such a set will be denoted by p[x], and is
defined by induction on the rank of p as follows:

— If p = 0 then p[x] = x. If p = n ∈ ω − {0} then p[x] = n− 1.
— Suppose p[x] has been defined for every name p ∈ Pα. We define

Pα[x] = {p[x] : p ∈ Pα}

Note that Pα[x] is intended to equal Lα(x). Let p = 〈Pα, pΦq, ṗ1, . . . , ṗn〉 be a name of
Pα+1. Then p[x] is defined as:

p[x] = {q[x] : q ∈ Pα s.t. Pα[x] |= Φ(q[x], ṗ1[x], . . . , ṗn[x])}

It is clear by induction that for any ordinal α, for any x ∈ 2ω and any p ∈ Lα(x), we have
ṗ[x] = p.

Note that with the definition we gave, we do not have Pα ⊆ Pα+1. However for β < α and
p ∈ Pβ , one can uniformly obtain a name q ∈ Pα such that p[x] = q[x].

I Proposition V.19. The function which to ordinals γ < β and names ṗγ ∈ Pγ of elements
p ∈ Lγ(x), associates names ṗβ ∈ Pβ for the same element p, is ∆Lα

1 uniformly in α limit.

Proof. This is again ∆0-induction on ordinals, using bounded rank replacement of
Proposition II.28. If β = 1, given ṗ0 ∈ P0, a name for some p ∈ L0(x), we let ṗβ = 〈P0, pa ∈
zq, ṗ0〉 ∈ P1. Note that z is a free variable in the formula, meant to be replaced by ṗ0. It is
clear that ṗβ ∈ Lk for some k < ω and that ṗβ is also a name for p.

Let β and let f be the function of the theorem defined on any γ′ < β′ ≤ β and names of
Pγ′ . Let us show that we can extend f on any γ < β + 1 and any name of Pγ . Let γ < β + 1
and ṗγ ∈ Pγ be a name for some p ∈ Lγ(x). If γ < β, using f we can find ṗβ ∈ Pβ , a name for
p. Thus we can work as in the case γ = β and consider that we always have a name ṗβ ∈ Pβ .
In particular we have that ṗβ equals 〈Pγ , pΦ(a, zi)q, pi〉 for some pΦ(a, zi)q, some pi ∈ Pγ , and
some γ < β (with γ = β − 1 if β is successor).

Using f one can find names qi ∈ Pβ corresponding to the names pi ∈ Pγ . Note that a
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name for Lγ is given by 〈Pγ , pa = aq〉. Let Ψ(a, r, pi) be the conjunction of the formula a ∈ r,
together with the formula Φ(a, pi) where every instance of ∃x (resp. ∀x) is replaced by ∃x ∈ r
(resp. ∀x ∈ r). The name ˙pβ+1 ∈ Pβ+1 is then given by:

〈Pβ , pΨ(a, r, qi)q, 〈Pγ , pa = aq〉, qi〉

If is clear that ˙pβ+1 ∈ Lβ+k for some k. Therefore we are in the conditions of Proposition II.28
and the function of the proposition is ∆Lα

1 uniformly in α limit.
Also for the limit case the induction is clear as for β limit we have Pβ =

⋃
γ<β Pγ . �

V.2.3 The canonical Borel sets
We develop here the notations and the main theorem to deal with the canonical sets with

∞-Borel codes, that will be used in this chapter. Let β be an ordinal. Let p1, . . . , pn ∈ Pβ . Let
Φ(p1, . . . , pn) be a formula. Then we write:

BβΦ(p1, . . . , pn) for the set {x ∈ 2ω : Lβ(x) |= Φ(p1[x], . . . , pn[x])}

The upcoming theorem makes sure that BβΦ(p1, . . . , pn) truly has an ∞-Borel code, definable
uniformly in pΦq, β and p1, . . . , pn.

We will sometimes write BΦ or BβΦ when the ordinal β and/or parameters p1, . . . , pn are not
specified. Also given an∞-Borel set BΦ for a Σn formula Φ, we say that BβΦ is a Σβn ∞-Borel set.
Note that a fixed formula Φ gives rise to many possible ∞-Borel sets depending on the model
Lβ that we consider.

The second part of the following theorem says that for α limit, if Φ is ∆0, then an ∞-Borel
code for BαΦ(p1, . . . , pn) belongs to Lα, and can be found uniformly. It follows that one can
picture a Σαn Borel set with similar intuitions one has with the usual Σn Borel sets used in the
realm of computable objects and algorithmic randomness : The Σα1 Borel sets can be seen as
increasing uniform unions of ∆α

0 Borel sets over the names of elements of Lα. Note that if α is
limit we have Pα ⊆ Lα and:

{x ∈ 2ω : Lα(x) |= ∃z Φ(z, p1[x], . . . , pn[x])}
=

⋃
ż∈Pα{x ∈ 2ω : Lα(x) |= Φ(ż[x], p1[x], . . . , pn[x])}

Similarly, Σα2 Borel sets are unions of intersections of ∆α
0 Borel sets. Indeed we have for α limit

that:
{x ∈ 2ω : Lα(x) |= ∃z1 ∀z2 Φ(z1, z2, p1[x], . . . , pn[x])}

=
⋃
ż1∈Pα

⋂
ż2∈Pα{x ∈ 2ω : Lα(x) |= Φ(ż1[x], ż2[x], p1[x], . . . , pn[x])}

One easily sees how to continue for Σαn Borel sets in general.

Theorem V.20

Let α be limit. Then, we have the following:
1. A function which on β, pΦ(x1, . . . , xn)q and p1, . . . , pn ∈ Pβ , associates an ∞-Borel

code for BβΦ(p1, . . . , pn) is ∆Lα
1 uniformly in α.

2. A function which on ∆0 formulas pΦ(x1, . . . , xn)q and p1, . . . , pn ∈ Pα, associates
an ∞-Borel code for BαΦ(p1, . . . , pn) is ∆Lα

1 uniformly in α.
Moreover, if α is countable and Φ is ∆0, then the ∞-Borel code for BαΦ(p1, . . . , pn) shows
that BαΦ(p1, . . . , pn) is a Σ0

α set.
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Proof. (1) is proved by a ∆0-induction, using bounded rank replacement of Proposi-
tion II.28, with the class of elements of the form (β, pΦ(x)q, p) in place of E: an ordinal β, a
formula with n free variables, and n parameters of Pβ . The induction is done only on the or-
dinal β. For a set F of formulas (for instance the atomic formulas) let Hβ(F ) be the induction
hypothesis:

(Hβ(F ))
The function f which on β, formulas pΦ(x)q ∈ F and p ∈ Pβ
associates an ∞-Borel code for BβΦ(p), belongs to Lβ+k for some k

Let F0 be the set of atomic formulas and F∞ be the set of all formulas. We will show H0(F0).
Then we will show Hβ(F0) implies Hβ(F∞), then we will show Hβ(F∞) implies Hβ+1(F0).
Finally we will show

∧
γ<βHγ(F∞)→ Hβ(F0), together with (2) of the Theorem.

Let us begin with H0(F0), Let p1, p2 ∈ P0. Consider B= = {x ∈ 2ω : L0(x) |= p1[x] =
p2[x]} and B∈ = {x ∈ 2ω : L0(x) |= p1[x] ∈ p2[x]}. Recall that p1, p2 must be integers, with
0 coding for x and n + 1 coding for n. Therefore we have B= = 2ω if p1 = p2 and B= = ∅
otherwise. We also have B∈ = 2ω if p1, p2 > 0 and p1 ∈ p2 or if p1 6= 0, p2 = 0 and p1 − 1 ∈ x.
Otherwise we have B∈ = ∅. It is clear that the two possible Borel codes (2ω or ∅) belongs
to Lk for some k ∈ ω and that the computable function which assign the right Borel code
depending on the atomic formulas and parameters, also belongs to Lk for some k ∈ ω (recall
that we start with L0 = ω).

Now we proveHβ(F0)⇒ Hβ(F∞). We proceed in 5 stages, first showingHβ(F0)⇒ Hβ(F1),
for F1 the set of atomic formulas and their negations, then showing Hβ(F1)⇒ Hβ(F2), for F2

the set of finite disjunctions of formulas of F1, then showing Hβ(F2)⇒ Hβ(F3), for F3 the set
of finite conjunctions of formulas of F2, then showing Hβ(F3) ⇒ Hβ(F4) for F4 the set of all
formulas of F3 closed by finitely many quantifications, and finally showing Hβ(F4)⇒ Hβ(F∞).

The step Hβ(F0) implies Hβ(F1) simply follows from (2) of Proposition V.16. The step
Hβ(F1) implies Hβ(F2) then follows from (3) of Proposition V.16, whereas the step Hβ(F2)
implies Hβ(F3) follows from both (2) and (3) of Proposition V.16. Let us now show the step
Hβ(F3) implies Hβ(F4). Let p ∈ Pβ and let Φ(a) = ∃a1 ∀a2 . . .Ψ(a1, a2, . . . , a) be any formula
of F4 (that is in prenex normal form with its quantifier-free part in disjunctive normal form,
in particular with Ψ in F3). We then have:

BβΦ(p) = {x ∈ 2ω : Lβ(x) |= ∃x1 ∀x2 . . .Ψ(x1, x2, . . . , p[x])}
=

⋃
q1∈Pβ

⋂
q2∈Pβ . . . {x ∈ 2ω : Lβ(x) |= Ψ(q1[x], q2[x], . . . , p[x])}

Using (3) and (4) of Definition V.15, and assuming we have the function given by Hβ(F3),
it is easy to build the Borel code for BβΦ(p) whose rank does not increase with the number
of quantification, and furthermore, to uniformly do so. In particular we obtain Hβ(F4). In
order to obtain Hβ(F∞), one simply has to use the computable function which transforms
any formula into a formula in prenex normal form with its quantifier-free part in disjunctive
normal form.

We continue by assuming Hβ(F∞) and proving Hβ+1(F0). We let p1, p2 ∈ Pβ+1 with
p1 = 〈Pβ , pΦ1q, a1, . . . , an〉 and p2 = 〈Pβ , pΦ2q, b1, . . . , bm〉. For q ∈ Pβ , let:

BΦ1(q) = {x ∈ 2ω : Lβ(x) |= Φ1(q[x], a1[x], . . . , an[x])}
BΦ2

(q) = {x ∈ 2ω : Lβ(x) |= Φ2(q[x], b1[x], . . . , bm[x])}

Note that q[x] ∈ p1[x] iff x ∈ BΦ1
(q) and q[x] ∈ p2[x] iff x ∈ BΦ2

(q). Also by induction
hypothesis, the function which on q ∈ Pβ and on any formula Ψ associates the code of BΨ(q)
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belongs to Lβ+k for some k ∈ ω. We have:

Lβ+1(x) |= p1[x] ∈ p2[x] iff ∃q ∈ Pβ , x ∈ BΦ2(q) ∧ Lβ+1(x) |= p1[x] = q[x]

Lβ+1(x) |= p1[x] = p2[x] iff ∀q ∈ Pβ we have x ∈ BΦ1
(q)↔ x ∈ BΦ2

(q)

Thus we have:

Bβ+1
= (p1, p2) = {x ∈ 2ω : Lβ+1(x) |= p1[x] = p2[x]}

=
⋂
q∈Pβ [BΦ1

(q) ∩BΦ2
(q)] ∪ [(2ω −BΦ1

(q)) ∩ (2ω −BΦ2
(q))]

It is clear that a code for Bβ+1
= (p1, p2) can be obtained uniformly and belongs to Lβ+1+k for

some k which is independent from p1, p2. It follows that we have Hβ+1(F0) for equality. Also
the set

Bβ+1
∈ (p1, p2) = {x ∈ 2ω : Lβ+1(x) |= p1[x] ∈ p2[x]}

=
⋃
q∈Pβ [BΦ2

(q) ∩ {x ∈ 2ω : Lβ+1(x) |= p1[x] = q[x]}]

Using Proposition V.19 one can uniformly transform q ∈ Pβ into a name that belongs to
Pβ+1 and thus perform the induction given by the = case just above. We thus have Hβ+1(F∞).

We now deal with the limit case, together with (2) of the theorem. We shall show∧
γ<βHγ(F∞) → Hβ(F0). We will actually show more in order to also show (2): We show∧
γ<βHγ(F∞)→ Hβ(F∆0

) where F∆0
is the set of ∆0 formulas.

For a ∆0 formula Φ(p1, . . . , pn), let γ be the smallest such that p1, . . . , pn ∈ Pγ . Note that
γ is ∆

Lβ
1 -definable uniformly in p1, . . . , pn. We have that the Borel BβΦ(p1, . . . , pn) also equals

the Borel BγΦ(p1, . . . , pn) = {x ∈ 2ω : Lγ(x) |= Φ(p1[x], . . . , pn[x])}. By induction hypothesis
the function which on Φ and p1, . . . , pn ∈ Pγ gives the Borel code of BγΦ(p1, . . . , pn) belongs to
Lγ+k for some k. As this function can be recognized with a ∆0 formula uniformly in γ, this
gives us (2). Note that the union of all these functions belongs to Lβ+k for some k, which gives
us Hβ(F0). This concludes the proof. �

Note that for the study of ITTMs, we can always assume that we work with Borel codes and
not ∞-Borel codes. Indeed by Corollary II.62.1, for every α ≤ Σ limit the sets Lα is a model
of “everything is countable”. We can then uniformly transform any ∞-Borel codes into a Borel
code, working in Lα for α limit, by searching inductively for the smallest (in the sense of <L)
bijection between elements of a Borel code, and ω.

V.3 Randomness within ITTMs

We now have all the framework to be able to speak about Borel sets in the hierarchy of
constructibles, and will therefore be able to define the different randomness notions. We start
with a lemma extending computable measure theory to levels of the constructible hierarchy.
Recall that µ denotes the Lebesgue measure on 2ω.

I Lemma V.21. We have:
1. The function b 7→ µ(ι(b)), defined on ∞-Borel codes b, is ∆Lα

1 uniformly in any α limit.
2. We have the following, where b range over Borel codes and q over rationals:

— The function b, q 7→ u such that u is the Borel code of an open set with ι(b) ⊆ ι(u) and
µ(ι(u)− ι(b)) ≤ q
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— The function b, q 7→ c such that c is the Borel code of a closed set with ι(c) ⊆ ι(b) and
µ(ι(b)− ι(c)) ≤ q

are ∆Lα
1 definable uniformly in any α limit.

Proof.
Both (1) and (2) are proved by a ∆0-induction on ranks of Borel sets (their rank as elements

of L). This uses the bounded rank replacement of Proposition II.28.
Proof of (1). For a Borel code b of rank 0, the measure is easily computable, as the measure

of a clopen set. Let now b =
∨
n∈I bn and γ the smallest such that b ∈ Lγ+1. Note that each

bi belongs to Lγ . Let Pf (I) be the set of finite subsets of I. We have:

µ(ι(b)) = sup
F∈Pf (I)

(
λ

( ⋃
bi∈F

ι(bi)

))
(V.1)

Using (3) of Proposition V.16 we can obtain an∞-Borel code dF such that ι(dF ) =
⋃
bi∈F ι(bi)

and such that dF ∈ Lγ . It is also clear that the function which to I associates Pf (I) is ∆Lα
1 -

definable uniformly in α limit. The function can then be defined by the ∆0-induction with
bounded rank replacement of Proposition II.28.

To compute µ(
∧
n∈ω bn), we can use (2) of Proposition V.16 to take the complement to 1

of the measure of 2ω − ι(c).

Proof of (2). The function is also defined by ∆0-induction over γ, using bounded rank
replacement of Proposition II.28. In this first point, we could use ∞-Borel codes (and not
Borel codes) but still compute the measure by considering all finite unions of codes of smaller
complexity. In the second point, we do need to use Borel codes in order to associate a quantity
2−n to each component of a Borel set.

For a Borel code b of rank 0, both the open and the clopen sets are given by b itself. Let
now b =

∨
n∈ω bn with γ+ the smallest such that b ∈ Lγ+ . Note that each bn belongs to Lγ .

By induction, for each bn we find codes un and cn of respectively open and closed sets, such
that µ(ι(un) − ι(bn)) < 2−nq and µ(ι(bn) − ι(cn)) ≤ 2−nq. The code for the desired open set
is then

∨
n∈ω un. For the closed set, note that we have µ(ι(

∨
n bn)− ι(

∨
n cn)) ≤ q. It follows

that there must be some m such that µ(ι(
∨
n bn)− ι(

∨
n<m cn)) ≤ q. The code for the closed

set is then given by a code d equivalent to
∨
n<m ι(cn), where we propagate the finite union

using Proposition V.16.
�

V.3.1 Main definitions

We give the first definition, which in full generality extends algorithmic randomness to every
level of the constructible hierarchy.

Definition V.22

Let α be a countable ordinal. A set x is random over Lα if x is in no null set with a Borel
code in Lα.

This can be seen as an extension, to any level of the constructible hierarchy, of ∆1
1-randomness,

which corresponds to randomness over Lωck1 in the above definition.
The most famous and studied randomness notion is undoubtedly Martin-Löf randomness
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[53], whose counterpart for Lωck1 was defined in [45]. We also extend the definition of Martin-Löf
randomness to any level of the constructible hierarchy:

Definition V.23 (Carl, Schlicht [19])

An α-recursively enumerable open set Un is an open set with a code Σ1-definable in Lα
(with parameters). A set x is α-ML-random if x is in no intersection

⋂
n Un where each

set Un is an α-recursively enumerable open set, uniformly in n, such that µ(Un) ≤ 2−n.

We now turn to randomness notions which are specific to ITTMs. In order to do so, we first
need the following definition:

Definition V.24 (Hamkins, Lewis [41])

A set P ⊆ 2ω or P ⊆ ω is ITTM-semi-decidable if there is an ITTM M such that
x ∈ P ⇔M(x) ↓. A set P ⊆ 2ω or P ⊆ ω is ITTM-decidable if it is both semi-decidable
and co-semi-decidable, equivalently, there is an ITTM M such that M(x) ↓= 1↔ x ∈ P
and M(x) ↓= 0↔ x ∈ P .

If x ⊆ ω, it is clear by admissibility of Lλ that x is ITTM-decidable iff x ∈ Lλ, and that x is
ITTM-semi-decidable iff x is Σ1-definable over Lλ.

Definition V.25 (Carl, Schlicht [19])

An ITTM-semi-decidable open set is an open set U with an ITTM-semi-decidable descrip-
tion W ⊆ 2<ω such that we have

⋃
σ∈W [σ] = U . A set X is ITTM-ML-random if X is in

no intersection
⋂
n Un where each set Un is an ITTM-semi-decidable open set, uniformly

in n, such that µ(Un) ≤ 2−n.

Before we continue, we would like to make a small digression about the definition of ITTM-
semi-decidable open sets. In the case of Turing machines, given an open set U , it is equivalent
to have a recursively enumerable set W ⊆ 2<ω such that U =

⋃
σ∈W [σ] and to have a functional

Φ such that Φ(X) ↓↔ X ∈ U .
In the case of computability over Lωck1 , the same holds: given an open set U , it is equivalent

to have a Π1
1 set W ⊆ 2<ω such that U =

⋃
σ∈W [σ] and for the open set U to be Π1

1 as a set of
reals.

The corresponding fact with ITTMs does not hold:

I Proposition V.26. Every ITTM semi-decidable open set U ⊆ 2ω is also ITTM semi-decidable
as a set of reals, but there is an open set that is ITTM-decidable as a set of reals and which is
not ITTM-semi-decidable as a set of strings.

Proof. Suppose U has an ITTM semi-decidable code W ⊆ 2<ω. We can design another
ITTM which on input x looks for some n such that x�n ∈ W . Whenever it find such an n it
halts. It is clear that this other ITTM semi-decide U as a set of reals.

Let us now exhibit an open set U that is ITTM-decidable as a set of reals, but does not
have an ITTM-semi-decidable code. Let c be given by the “Lost melody lemma” [41], that is
{c} is ITTM-decidable but c is not writable. Then, A = 2ω−{c} is ITTM-decidable. However,
no ITTM-semi-decidable set W ⊆ 2<ω can be such that U =

⋃
σ∈W [σ], as otherwise c would

be writable by the following algorithm: if we know that σ ≺ c, we compute a longer prefix of c
by waiting for W to cover either σai (for i = 0 or 1), which will happen by compactness, and
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then extend our prefix to σa(1− i) ≺ c. �

However, the two notions of ITTM-ML-randomness, where the test are ITTM-semidecidable
as a description of an open set, or as a set, still the same.

Theorem V.27

A set X is ITTM-ML-random if and only if for every uniformly ITTM-semi-decidable
sets (Wn)n∈N with λ([Wn]) ≤ 2−n we have X 6∈

⋂
n[Wn].

Proof. The forward implication is clear, as the sets [Wn] are open and uniformly semi-
decidable. Now, let Un be uniformly semi-decidable and open with λ(Un) ≤ 2−n. As Un is
uniformly λ-recursive let φ be such that x ∈ Un if and only if Lλ |= ∃a φ(a, n, x). Fix p the
projectum of λ into ω.

For every α < λ, we define V αn such that [V αn ] ⊇ {x : Lα[x] |= ∃a, φ(a, n, x)} = Aαn and
λ([V αn ]) ≤ λ(Aαn) + 2−p(α). This is possible, by Lemma V.21 and the fact that Aαn is has an
∞-Borel code.

Define the semidecidable set Vn =
⋃
α<λ V

α
n . We do have λ([Vn]) ≤ λ(Un) + 2−n, but only

Vn ⊇ Un ∩ {x : λx = λ}. Yet, as Un is open and most reals do not collapse λ, we can get
around by defining:

Wn = {σ : λ([σ]) = λ([Vn] ∩ [σ])}

It is clear that Vn andWn have the same measure, andWn is still semidecidable. Now, let us
show that Wn ⊇ Un: Let x ∈ Un. Let σ ≺ x such that [σ] ⊆ Un. Then as λ({x : λx = λ}) = 1,
we must have λ([σ]) = λ([Vn] ∩ [σ]), so σ ∈Wn and x ∈ [Wn].

�

We now turn to the most interesting randomness notions defined with ITTM.

Definition V.28 (Carl, Schlicht [19])

A real x is ITTM-random if it is in no semi-decidable null set of reals. A real x is
ITTM-decidable random if it is in no decidable null set of reals.

ITTM-decidable randomness can be seen as a counterpart of ∆1
1-randomness, and indeed Carl

and Schlicht showed that ITTM-decidable randomness coincides with randomness over LΣ.
The notion of ITTM-randomness is more interesting and is in many regards an equivalent for

the notion of Π1
1-randomness. We try to provide a better understanding of this notion.

V.3.2 ITTM-randomness

It is not immediately clear that every ITTM semi-decidable set is measurable. A semi-
decidable set has the form {x ∈ 2ω : LΣx(x) |= Φ} for some Σ1-formula Φ. Such sets need not
to be Borel, but we can separate them into a Borel part and a non-Borel part always included
in a Borel set of measure 0. In particular any such set is included in the set {x ∈ 2ω : LΣ(x) |=
Φ} ∪ {x ∈ 2ω : Σx > Σ}. The fact that every ITTM semi-decidable set is measurable follows
from the fact that the set {x ∈ 2ω : Σx > Σ} is included in a Borel set of measure 0. This will
be a consequence of Theorem V.31 together with Theorem II.55.

ITTM-randomness is by many aspects the ITTM counterpart of Π1
1-randomness. For instance,

there is a greatest Π1
1 null set, and Carl and Schlicht showed that there is a greatest ITTM-semi-

decidable null set. We also have that x is Π1
1-random iff x is ∆1

1-random and ωx1 = ωck1 . Carl
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and Schlicht proved the analogous statement for ITTM-randomness:

Theorem V.29 (Carl, Schlicht [19])

A real x is ITTM-random if and only if it is random over LΣ and Σx = Σ.

There are of course differences between ITTM-randomness and Π1
1-randomness. It is for

instance straightforward to build a sequence that is ∆1
1-random but not Π1

1-random: to do so
one can show that the set of Π1

1-randoms is included in the set of Π1
1-ML-randoms, which is

included in the set of ∆1
1-randoms. One can then build a sequence which is ∆1

1-random but not
Π1

1-ML-random, with a construction similar to the one given in the proof of (1) implies (3) in
Theorem V.41. The same thing is not possible with ITTM-randomness. We will see in particular
that the Σ-ML-randoms are strictly included in the ITTM-randoms. Also, it is not clear that
there are reals x which are randoms over LΣ and such that Σx > Σ. We will for instance show
later in Section V.4 that the equivalent notions for genericity collapse: a real x is ITTM-generic
iff x is generic over LΣ iff x is generic over LΣ and Σx = Σ. The question for ITTM-randomness
remains open:

I Question V.30. Does ITTM-randomness coincide with randomness over LΣ ?

Although we are not able to answer the question here, we still can say meaningful things
about ITTM-randomness. In [19] Carl and Schlicht proved the following:

Theorem V.31 (Carl, Schlicht [19])

Suppose that α is countable and admissible or a limit of admissibles ordinals. Then:
1. If Lβ ≺1 Lα and z is random over Lα, then Lβ(z) ≺1 Lα(z)

2. If Lβ ≺n Lα and z is random over Lγ where Lγ |=“α is countable”, then Lβ(z) ≺n
Lα(z) for n ≥ 2.

In order to understand better Σ-randomness, we introduce a stronger notion that will be
enough to obtain (2) in the previous theorem.

Definition V.32

A weak α-ML test is given by a set
⋂
q∈Lα Bq such that the function which to q associates

a Borel code of Bq is ∆Lα
1 and such that µ(

⋂
q∈Lα Bq) = 0.

A real x is captured by a weak α-ML test if x ∈
⋂
q∈Lα Bq. Otherwise we say that x

passes the test. A real x which passes all the weak α-ML tests is weakly α-ML-random.

I Proposition V.33. Let α be admissible and Lα |=“everything is countable”. Then weak
α-ML-randomness coincides with randomness over Lα.

Proof. It is clear that weak α-ML-randomness implies randomness over Lα for any α.
Suppose now α admissible and let

⋂
q∈Lα Bq be a weak α-ML test. Let f : ω → Lα be defined

with f(n) to be the smallest r ∈ Lα, in the sense of <L, such that µ(
⋂
q<Lr

Bq) < 2−n. By
admissibility of α there exists β < α such that ∀n f(n) ∈ Lβ . We then have µ(

⋂
q∈Lβ Bq) = 0

and
⋂
q∈Lα Bq ⊆

⋂
q∈Lβ Bq. As

⋂
q∈Lβ Bq has a Borel code in Lα we have that every element

in
⋂
q∈Lα Bq belongs to a null set of Lα. �

I Proposition V.34. Weak Σ-ML randomness is strictly stronger than randomness over LΣ.
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Proof. It is clear that weak Σ-ML randomness is stronger than randomness over LΣ. Let
us build x ∈ 2ω that is random over LΣ but not weakly Σ-ML random.

From Corollary II.63.1, let b : ω → LΣ be a bijection which is Σ1-definable in LΣ with
parameter ζ. One can then simply diagonalize against every measure 1 set with a Borel code
in LΣ. We define σ0 to be the empty string and F0 to be 2ω. Suppose for some n and every
i ≤ n we have defined a string σi and a closed set Fi uniformly in i such that µ(σi ∩ Fi) > 0,
such that σi � σi+1, such that Fi+1 ⊆ Fi and such that if b(i) is the Borel code of a co-null set,
then Fi ⊆ Bi. Let us define Fn+1 and σn+1. If b(n + 1) is the Borel code of a set of measure
less than 1, we define σn+1 = σn and Fn+1 = Fn. If b(n + 1) is the Borel code of a set B of
measure 1, we uniformly find a closed set F ⊆ B with a Borel code in LΣ and with a measure
sufficiently close to 1, so that we have µ(σn ∩ Fn ∩ F) > 0, using Lemma V.21. We define
Fn+1 = Fn ∩ F . We then define σn+1 = σni for i ∈ {0, 1} such that µ(σn+1 ∩ Fn+1) > 0.

Let x = σ0 � σ1 � σ2 � . . . . It is clear that x is random over LΣ. The weak Σ-ML test⋂
q∈LΣ

Bq is as follow: for q ∈ LΣ, let n = b−1(q). Then define Bq = σn. It is clear that
x ∈

⋂
q∈LΣ

Bq and that µ(
⋂
q∈LΣ

Bq) = 0. �

We then need two lemmas. The first is the same as (1) in [19], but we believe that this proof
is a bit simpler.

I Lemma V.35. Let β < α with α countable and limit and Lα |=“everything is countable” and
Lβ ≺1 Lα. Let z be random over α. Then we have Lβ(z) ≺1 Lα(z).

Proof. Let Φ(p, q) be a ∆0 formula with p ∈ Pβ . Suppose z is random over Lα such
that Lα(z) |= ∃q Φ(p[z], q). Consider the set BαΦ = {x : Lα(x) |= ∃q Φ(p[x], q)}. We have
BαΦ =

⋃
q̇∈Pα Aq̇ where:

Aq̇ = {x : Lα(x) |= Φ(p[x], q̇[x])}

Let µ(BαΦ) = m. Note that as z is random over Lα we must have m > 0. For every ε
with 0 < ε < m we have Lα |= ∃ṙ µ(

⋃
q̇<Lṙ

Aq̇) > ε. As Lβ ≺1 Lα we then have Lβ |=
∃ṙ µ(

⋃
q̇<Lṙ

Aq̇) > ε. As this is true for every ε we then have µ(
⋃
q̇∈Pβ Aq̇) = m.

Suppose for a contradiction that z /∈
⋃
q̇∈Pβ Aq̇. There exists ṙ ∈ Pα such that z ∈ Aṙ.

Note that we have
⋃
q̇∈Pβ Aq̇ ⊆

⋃
q̇∈Pα Aq̇ and µ(

⋃
q̇∈Pβ Aq̇) = µ(

⋃
q̇∈Pα Aq̇). Therefore we have

µ(Aṙ−
⋃
q̇∈Pβ Aq̇) = 0. It follows that z belongs to a set of measure 0 with a Borel code in Lα,

which is a contradiction. Therefore we have z ∈
⋃
q̇∈Pβ Aq̇ which implies Lβ(z) |= ∃q Φ(p[z], q).

�

For the following lemma, we write =∗,⊆∗ for equality and inclusion, up to a set of measure
0.

I Lemma V.36. Let β < α with α countable and limit, such that Lβ ≺2 Lα. Let BαΦ =⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 be a Σα2 set with parameters in Lβ. Then we have BαΦ =∗ BβΦ.

Proof. By Lemma V.35 and Proposition II.34 we have that if z if random over Lα, then
z ∈

⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2 implies that z ∈
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 . It follows that⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2 ⊆∗
⋃

q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2

In particular if µ(
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2) = 0 then we are done. Suppose then that we have
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µ(
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2) = m > 0. For every ε with 0 < ε < m we have:

Lα |= ∃〈q̇1,0, . . . , q̇1,k〉 ∀ṙ2 µ

 ⋃
0≤i≤k

⋂
q̇2<Lṙ2

Aq̇1,i,q̇2

 > ε

Using Lβ ≺2 Lα we deduce:

Lβ |= ∃〈q̇1,0, . . . , q̇1,k〉 ∀ṙ2 µ

 ⋃
0≤i≤k

⋂
q̇2<Lṙ2

Aq̇1,q̇2

 > ε

We deduce that:

µ

 ⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2

 ≥ ε
As this is true for every ε with 0 < ε < m, we must have the inequality

µ(
⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2) ≥ m.
Together with the fact that

⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2 ⊆∗
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 , we have the
proposition. �

Theorem V.37

Let β < α with α limit, be such that Lβ ≺2 Lα. Let z be weakly α-ML random. Then
Lβ(x) ≺2 Lα(x).

Proof. Let p ∈ Pβ . Let Φ(x1, x2, x3) be a ∆0 formula.
Suppose Lβ(z) |= ∃a ∀b Φ(a, b, p[z]). In particular there exists ȧ ∈ Pβ such that Lβ(z) |=

∀b Φ(ȧ[z], b, p[z]). From Lemma V.35, Lα(z) |= ∀b Φ(ȧ[z], b, p[z]). Thus we have Lα(z) |=
∃a ∀b Φ(a, b, p[z]).

Suppose Lα(z) |= ∃a ∀b Φ(a, b, p). Then, let BαΦ = {x ∈ 2ω : Lα(x) |= ∃a ∀b Φ(a, b, p[x])}.
We have BαΦ is the Σα2 set given by

⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 , where

Aq̇1,q̇2 = {x ∈ 2ω : Lα(x) |= Φ(q̇1[x], q̇2[x], p[x])}

From Lemma V.36 we have that BαΦ =∗ BβΦ. Let ṙ be such that z ∈
⋂
q̇2∈Pα Aṙ,q̇2 . Then we

have

λ

 ⋂
q̇2∈Pα

(
Aṙ,q̇2 − B

β
Φ

) = 0

It follows that
⋂
q̇2∈Pα(Aṙ,q̇2 −B

β
Φ) is a weak α-ML test. As z is not weakly α-ML random

it does not belong to the test and then it must belong to BβΦ. Thus z ∈
⋃
q̇1∈Pβ

⋂
q̇2∈Pβ Aq̇1,q̇2 .

It follows that Lβ(z) |= ∃a ∀b Φ(a, b, p[z]). �

I Corollary V.37.1. Let β < α such that Lα |=“everything is countable” and Lβ ≺2 Lα.
Suppose α is admissible. Let z be random over Lα. Then Lβ(z) ≺2 Lα(z).

Proof. If α is admissible we have that weak α-ML-randomness coincides with randomness
over Lα by Proposition V.33. Thus if z is random over Lα we must have Lβ(z) ≺2 Lα(z).
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�

I Corollary V.37.2. Let z be weakly Σ-ML random. Then z is ITTM-random.

Proof. We have Lζ ≺2 LΣ. We also have that z is ITTM-random iff z is random over LΣ

and Σz = Σ. If z is weakly Σ-ML random we have Lζ(z) ≺2 LΣ(z). In particular (ζz,Σz) is the
lexicographically smallest pair of ordinal such that Lζz (z) ≺2 LΣz (z), which implies Σz = Σ
and ζz = ζ. Also if z is weakly Σ-ML random, then it is random over LΣ. It follows that z is
ITTM-random. �

We now give a more combinatorial equivalent characterization the notion of ITTM-randomness:
a characterization in terms of being captured by sets of measure 0 having a specific complexity.
For the following proposition, by ∆Σ

3 set, we mean a set which is also ∆ζ
3, that is, a set BΣ

1 = BΣ
2

with BΣ
1 which is ΣΣ

3 and BΣ
2 which is ΠΣ

3 , such that for the versions Bζ1 and Bζ2 we also have
Bζ1 = Bζ2 .

Theorem V.38

The following are equivalent:
1. z is ITTM-random.
2. z belongs to no ∆Σ

3 set of measure 0, with parameters in Lζ .

Proof. Let us show (2) implies (1). Suppose that z is not ITTM-random. If it is not
random over LΣ then clearly (2) is false with the ΣΣ

1 set of measure 0 which is the union
of all the Borel sets of LΣ of measure 0. Otherwise z is random over LΣ and there is a
parameter p ∈ Lζ(z) with a ∆0 formula Φ(x1, x2, x3) such that LΣ(z) |= ∃a ∀b Φ(a, b, p) but
Lζ(z) |= ∀a ∃b ¬Φ(a, b, p). Let Ψ(p) ≡ ∃a ∀b Φ(a, b, p).

We have z ∈ BΣ
Ψ∩B

ζ
¬Ψ. Also from Lemma V.36 we have BΣ

Ψ =∗ BζΨ and thus µ(BΣ
Ψ∩B

ζ
¬Ψ) =

0. We now have to transform the Πζ
2 set Bζ¬Ψ into a ΠΣ

2 set BΣ
φ such that BΣ

φ =∗ Bζ¬Ψ and BΣ
φ

still contains z. Let β < ζ be such that p ∈ Lβ(z).
We define BΣ

φ to be
⋂
β≤α≺1Σ Bα¬Ψ. Formally, the corresponding formula φ is given by

φ(β, p) ≡ ∀α ≥ β [Lα is not Σ1 stable or Lα(x) |= ¬Ψ(p)].
Using Proposition II.35 it is clear that BΣ

φ is ΠΣ
2 . We shall now show that as long as z is

random over Lζ we have z ∈ BΣ
φ iff z ∈ Bζ¬Ψ. As Lζ ≺1 LΣ we have BΣ

φ ⊆ B
ζ
¬Ψ. Let us show

that if z is random over Lζ and z ∈ Bζ¬Ψ, then z ∈ BΣ
φ .

To do so let us first show that for every α with ζ < α < Σ we have that ¬Lα ≺1 LΣ. Fix
such an ordinal α. By Theorem II.58, every accidentally writable ordinal becomes writable with
parameter ζ. In particular {α} is Σ1-definable in LΣ with some Σ1 formula Φ(ζ, α) (intuitively
the program that writes α and halts). It follows that LΣ |= ∃α Φ(ζ, α) but ¬Lα |= ∃α Φ(ζ, α).
Thus we do not have Lα ≺1 LΣ.

Suppose now z is random over Lζ and z ∈ Bζ¬Ψ. Let α ≥ β be such that Lα ≺1 LΣ. Then
we must have α ≤ ζ. Also if LΣ |= Φ(p) for some Σ1 formula Φ with parameter p ∈ Lα, we
must have Lα |= Φ(p) and then Lζ |= Φ(p). Therefore Lα ≺1 Lζ . Now as z is random over Lζ
and z ∈ Bζ¬Ψ, we must have by Lemma V.35 and Proposition II.34 that z ∈ Bα¬Ψ. It follows
that z ∈

⋂
β≤α≺1Σ Bα¬Ψ.

We then have that z ∈ BΣ
Ψ ∩ BΣ

φ , with µ(BΣ
Ψ ∩ BΣ

φ ) = 0, and with BΣ
Ψ ∩ BΣ

φ a ∆Σ
3 set with

parameters in Lζ . Note that BζΨ ∩ B
ζ
φ is also a ∆ζ

3 set.

Let us show (1) implies (2). Suppose now that there is a ΠΣ
3 set BΣ

Φ and a ΣΣ
3 set BΣ

Ψ, with



V.3. RANDOMNESS WITHIN ITTMS 195

parameters in Lζ , such that z ∈ BΣ
Φ = BΣ

Ψ and µ(BΣ
Φ) = µ(BΣ

Ψ) = 0, with also BζΦ = BζΨ.
If z /∈ BζΦ then LΣ(z) |= Φ and ¬Lζ(z) |= Φ for the Π3-formula Φ. By Proposition II.34 we

then have ¬Lζ(x) ≺2 LΣ(x) and thus z is not ITTM-random.
Otherwise z ∈ BζΦ and thus z ∈ BζΨ. We also have that µ(BΣ

Ψ) = 0.
Also BΣ

Ψ =
⋃
q̇1∈PΣ

⋂
q̇2∈PΣ

⋃
q̇3∈PΣ

Aq̇1,q̇2,q̇3 . For any name q̇1 ∈ Pζ we have
that µ(

⋂
q̇2∈PΣ

⋃
q̇3∈PΣ

Aq̇1,q̇2,q̇3) = 0 and from Lemma V.36 we then must have that
µ(
⋂
q̇2∈Pζ

⋃
q̇3∈Pζ Aq̇1,q̇2,q̇3) = 0. In particular there is q̇1 ∈ Pζ such that z ∈⋂

q̇2∈Pζ
⋃
q̇3∈Pζ Aq̇1,q̇2,q̇3 . It follows that z is not random over LΣ and thus not ITTM-random.

�

So ITTM-randomness is equivalent to ∆Σ
3 -randomness for sets with parameters which are at

most eventually writable, but not accidentally writable. We shall now see that it is actually very
close to randomness over LΣ, which can be shown to be equivalent to a similar test notion:

Theorem V.39

The following are equivalent:
1. z is random over LΣ.
2. z is in no ΣΣ

2 set of measure 0, with parameters in Lζ .
3. z is in no ΠΣ

2 set of measure 0, with parameters in Lζ .

Proof. It is clear that both (2) and (3) imply (1), using the ΣΣ
1 set of measure 0 which is

the union of all the Borel sets of LΣ of measure 0.

Let us show (1) implies (2). Let BΣ
Φ be a ΣΣ

2 set equal to
⋃
q̇1∈Pα

⋂
q̇2∈Pα Aq̇1,q̇2 with

µ(BΣ
Φ) = 0. The following argument is a combination of the Σ2-stability of Lζ in LΣ, together

with the admissibility of Lζ .
By Lemma V.36 we have µ(BζΦ) = 0. Then, ∀q̇1 ∈ Pζ µ(

⋂
q̇2∈Pζ Aq̇1,q̇2) = 0. Fix

q̇1 ∈ Pζ . By admissibility of ζ, there must exists ṙ ∈ Pζ such that µ(
⋂
q̇2<Lṙ

Aq̇1,q̇2) = 0.
It follows that Lζ |= ∀q̇1 ∃ṙ µ(

⋂
q̇2<Lṙ

Aq̇1,q̇2) = 0. As Lζ ≺2 LΣ we also have
LΣ |= ∀q̇1 ∃ṙ µ(

⋂
q̇2<Lṙ

Aq̇1,q̇2) = 0. In particular every real in BΣ
Φ is in a set of mea-

sure 0 with a Borel code in LΣ.

Let us show (1) implies (3). Let BΣ
Φ be the ΠΣ

2 set of measure 0. By Lemma V.36 we must
have BζΦ =∗ BΣ

Φ. Let z ∈ BΣ
Φ. Suppose z /∈ B

ζ
Φ. Then we have LΣ(z) |= Φ and ¬Lζ(z) |= Φ for

a Π2 formula Φ with parameters in Lζ . By Lemma V.35 together with Proposition II.34 we
then have that z is not random over LΣ. Suppose now z ∈ BζΦ. Then z is in a set of measure
0 with a Borel code in LΣ which implies that z is not random over LΣ. �

V.3.3 Martin-Löf randomness in the constructibles

It was shown in [19] that randomness over Lλ is the counterpart of ∆1
1-randomness for ITTMs,

and λ-ML-randomness the counterpart of Π1
1-ML-randomness. Carl and Schlicht asked if as in

the hyperarithmetic case these two notions really differ. We give a general answer to this question
by characterizing the ordinals α for which the two notions are different.



196 CHAPTER V. RANDOMNESS AND GENERICITY WITHIN ITTMS

Separation of randomness over Lα and α-ML-randomness

We first give the easy relation between randomness over Lα and α-ML-randomness:

I Proposition V.40. Let α be limit. Then α-ML-randomness is stronger than randomness
over Lα

Proof. Let B be a Borel set with code in Lα. By Lemma V.21, we define an α-ML-test⋂
n Un such that for all n, we have B ⊆ Un, and µ(Un) ≤ µ(B) + 2−n = 2−n. Then B ⊆

⋂
n Un,

this proves the property. �

The following theorem characterizes exactly when randomness over Lα and α-ML-randomness
coincide, for α admissible or α limit and Lα |=“everything is countable”.

Theorem V.41

Let α be admissible or α limit such that Lα |=“everything is countable”. The following
are equivalent:

1. α is projectible into ω.
2. There is a universal α-ML-test.
3. α-ML-randomness is strictly stronger than randomness over Lα.

Proof. Note first that if α is limit, non-admissible and Lα |=“everything is countable”,
then by Theorem II.63 α is projectible into ω. Therefore for (3) implies (1) and (2) implies
(1), we can suppose α admissible.

The proof that (3) implies (1) is done by contraposition and Theorem II.38: if α is not
projectible into ω, then Lα satisfies Σ1-comprehension for subsets of ω and then every α-
ML-test is in Lα, which implies that randomness over Lα is stronger than α-ML-randomness.
Together with Proposition V.40 we have that the two notions of randomness coincide.

To prove (2) implies (1), suppose we have (2) and α is not projectible into ω, in order to
get a contradiction. Then by Theorem II.38, the universal α-ML-test

⋂
n Un would be in some

Lβ with β < α. We have that 2ω − U0 is a closed set whose leftmost path is definable in Lβ
and then belongs to Lβ+1. As this leftmost path is definable in Lα, it is not random over Lα,
which contradicts the universality of the test.

Let us now prove (1) implies (2). Assuming that α is projectible into ω, it is then possible
to α-recursively assign an integer to all the parameters in Lα, we will use this to assign an
integer to every α-ML-test. We have an enumeration {Φm(x, k, p, σ)}m∈ω of every ∆0 formula
with four free variables and without parameters. We see any such formula as defining a uniform
intersection of α-recursively enumerable open sets when given a parameter p: for some m the
formula Φm together with a parameter p defines an intersection of open sets

⋂
k Uk, each Uk

being the union of all the cylinders [σ] such that Lα |= ∃x Φm(x, k, p, σ).
Let π be a Σ1-definable injection of Lα into ω. Note that if α is admissible we use the

projection together with the bijection between α and Lα. Otherwise we use the bijection given
by Theorem II.63. Let p be a parameter and n an integer such that π(p) = n. If

⋂
k Uk is

defined in Lα by the Σ1 formula Φm(x, k, p, σ) with parameter p, then
⋂
k Uk is also defined

by the following parameter-free Σ1 formula Ψn,m(k, σ) ≡ ∃p ∃x π(p) = n ∧ Φm(x, k, p, σ).
Consequently, every uniform intersection of α-recursively enumerable open set

⋂
k Uk is defined

by a formula in the enumeration {Ψm,n(k, σ)}〈m,n〉∈ω.
Now for integers m,n, the formula Ψm,n(k, σ) might not define an α-ML-test, due to

the measure requirement. For any n,m let ψ̃m,n(z, k, σ) be a ∆0 formula such that Lα |=
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∃z ψ̃m,n(z, k, σ) iff Lα |= Ψn,m(k, σ). We define the computable function g which to n,m
associates the code g(n,m) of the ∆0 formula φ(z, k, σ)

φ(z, k, σ) ≡ ψ̃m,n(z, k, σ) ∧ λ
(⋃
{[τ ] : ∃z′ ≤L z ψ̃n,m(z′, k, τ)}

)
≤ 2−k

The formula ∃z φ(z, k, σ) always defines a Martin-Löf test. Furthermore, if Ψn,m(k, σ) de-
fines an α-ML-test, then the formula ∃z φ(z, k, σ) defines the same test. It follows that
{g(n,m)}n,m∈ω is an enumeration of codes for α-ML-tests that contains all the α-ML-tests.
This can then be used to define a universal α-ML test as in the lower settings: given an enu-
meration {

⋂
k Unk }n∈ω of all the Martin-Löf tests, we define Vm =

⋃
i U ii+m+1. We clearly have⋃

n

⋂
k Unk ⊆

⋂
m Vm, and as µ(U ii+m+1) ≤ 2−m−i−1 we have µ(Vm) ≤ 2−m which implies that⋂

m Vm is a Martin-Löf test. Thus (1) implies (2).
To prove (1) implies (3), we will build an α-ML test U capturing a real x which is random

over Lα. Let π be a Σ1-definable injection of Lα into ω. We proceed by stages where the
stages are ordinals s < α. The stages will approximate a set x random over Lα in a ∆0

2 way,
together with an α-ML test that capture x. To do so, for every integer n and every stage s,
we will define a closed set Fns and a string σns with |σns | = 2n and σns ≺ σn+1

s , such that:

λ

⋂
i≤n

F is ∩ [σns ]

 > 0 (Rsn)

If π(a) = n for a ∈ Ls such that a is the code
of a Borel set Ba of measure 1, then Fns ⊆ Ba

(Ssn)

Also the definition of σns and Fns will be independent from the definition of σnt and Fnt for
t <L s. At stage s, we define F0

s to be 2ω and σ0
s be the empty string. It is clear that Rs0 and

Ss0 are satisfied. Suppose F is and σis have been defined for every i ≤ n such that Rsi and Ssi
are satisfied. Let us define Fn+1

s and σn+1
s . If π(a) = n + 1 for some a ∈ Ls such that a is

the Borel code of a set Ba of measure 1, then let
⋃
m Sm ⊆ Ba be a conull union of closed sets

with a Borel code in Lα. Note that by Lemma V.21 we can obtain such a union uniformly.
Let then k be the smallest such that:

λ

⋃
i≤k

Si ∩
⋂
i≤n

F is ∩ [σns ]

 > 0

Let Fn+1
s =

⋃
i≤k Si. Let σsn+1 be the first extension of σsn by two bits such that Rsn+1 is

satisfied.
Let xs be the sequence σs1 ≺ σs2 ≺ σs3 ≺ . . . . Note that for each n, the sequences {σns }s<α

and {Fns }s<α change at most once per integer i ≤ n such that π(a) = i for some Borel set Ba
of measure 1 with a ∈ Ls. Thus these sequences change at most n times. In particular the
whole process converges and the sequence xs converges to some sequence x.

This can also be used to define the α-ML-test that contains x. We define Un =
⋃
s<α[σns ].

This is an α-ML-test as there are at most n distinct versions of σns and for each of them we
have |σns | = 2n. The measure of Un is then bounded by n× 2−2n ≤ 2−n. This shows that x is
not α-ML-random. Also by Ssn we have that x is in every Borel set Bs, so it is random over
Lα. We then have (1) implies (3). �
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I Corollary V.41.1. We have:

— λ-ML-randomness is strictly stronger than randomness over Lλ.
— ζ-ML-randomness is equal to randomness over Lζ .
— Σ-ML-randomness is strictly stronger than randomness over LΣ.

Proof. By Corollary II.61, we have that λ is projectible over ω with no parameter, and
ζ is not projectible into ω. By Corollary II.63.1, we have that Σ is projectible into ω with
parameter ζ. �

We shall now improve Corollary V.41.1 for Σ-ML-randomness, by showing that it is strictly
stronger than weak Σ-ML randomness and thus than ITTM-randomness.

Theorem V.42

Σ-ML-randomness is strictly stronger than weak Σ-ML randomness and than ITTM-
randomness.

Proof. We shall construct a real z such that for any ΣΣ
1 set

⋃
p∈LΣ

Bp of measure 1, we
have z ∈

⋃
p∈LΣ

Bp, together with a Σ-ML test
⋂
n∈ω Un containing z, and with µ(Un) ≤ 2−n.

The proof is very similar to (1) implies (3) in Theorem V.41.
Let b be Σ1-definable bijection of Corollary II.63.1 from ω to LΣ. Using this bijection, let

{
⋃
p∈LΣ

Bn,p}n∈ω be an enumeration of all the union of Borel sets of LΣ.
We will define a computation, stage by stage, of a set z, that will be approximated in a ∆0

2

way, together with a Σ-ML test that will capture z. To do so, for every integer n and every
stage s, we will define a closed set Fns and a string σns with |σns | = 2n and σns ≺ σn+1

s , such
that for every n, s we have

λ

⋂
i≤n

F is ∩ [σns ]

 > 0

and for every n, if µ(
⋃
p∈LΣ

Bn,p) = 1 there exists t such that for all s ≥ t we have Fns ⊆⋃
p∈LΣ

Bn,p. Note also that the definition of Fns and σns will not depend on Fmt or σmt for
m ∈ ω and t < s.

At stage s, we define F0
s to be 2ω and σ0

s to be the empty string. Suppose F is and σis have
been defined for every i ≤ n. Let us define Fn+1

s and σn+1
s :

Suppose µ(
⋃
p∈Ls Bn+1,p ∩

⋂
i≤n F is ∩ (σns )) > 0. Then let us find some closed set Fn+1

s ⊆⋃
p∈Ls Bn+1,p such that µ(

⋂
i≤n+1 F is ∩ [σns ]) > 0. Let then σsn+1 be the first extension of σsn

by two bits such that µ(
⋂
i≤n+1 F is ∩ [σn+1

s ]) > 0.
Let zs be the sequence σs1 ≺ σs2 ≺ σs3 ≺ . . . . Note that for each n, the sequences {σns }s<Σ

and {Fns }s<Σ change at most once per integer i smaller than n. Thus these sequences change
at most n times. In particular the whole process converges and the sequence zs converges to
some sequence z.

This can then be used to define the α-ML-test that contains z. We define Un =
⋃
s<Σ[σns ].

This is a Σ-ML-test as there are at most n distinct versions of σns and for each of them we
have |σns | = 2n. The measure of Un is then bounded by n× 2−2n ≤ 2−n. This shows that z is
not Σ-ML-random. It is also clear that z is in every set

⋃
p∈LΣ

Bp such that µ(
⋃
p∈LΣ

Bp) = 1.
�
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Summary

The following picture summarizes the relations between all the randomness notions we have
seen:

randomness over Lλ

ITTM-decidable
randomness

λ-ML-randomness

randomness over Lζ

ζ-ML-randomness

randomness over LΣ

ITTM-randomness

weak
Σ-ML-randomness

Σ-ML-randomness

?

?

Figure V.2 – Higher randomness

We recall here the two remaining open questions:

I Question V.43. Is ITTM-randomness strictly stronger than randomness over LΣ?

I Question V.44. Is weak Σ-ML randomness strictly stronger than ITTM-randomness?

Note that by Proposition V.34 a negative answer to one of the two questions would provide
a positive answer to the other one.

Mutual λ-ML randoms computing common reals

When two sets are mutually random, we expect them to compute no common non-computable
sets. However, depending on the randomness level we ask for, this is sometimes not the case.
Carl and Schlicht asked in Question 5.5 from [19] if two mutually λ-ML-randoms could compute
a common non-writable set. It is the case with Martin-Löf randomness, and sets which can
be computed by two mutually Martin-Löf random must be K-trivials. We show that the same
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happens with ITTMs: some non-writable sets can be ITTM-computed by two mutually λ-ML-
randoms. We do not study here however the notion of K-triviality for ITTMs, even though we
conjecture that most of the work done about K-trivials and about higher K-trivials (K-trivials
defined over Lωck1 ) lifts to the world of computability inside Lλ, using the fact that λ is projectible
into ω.

First, we need to expand, in a straightforward way, some definitions from ML-randomness to
the ITTM settings. In the following, we focus on ITTMs but the proofs also work for α such
that there exists a universal α-ML-test, in other word by Theorem V.41 when α is projectible in
ω and such that either α is admissible or both α is limit and Lα |=“everything is countable”.

Definition V.45

An ITTM-Solovay test is a sequence of uniformly ITTM-semi-decidable open sets (Ss)s<λ
such that Σs<λµ(Ss) <∞. We say that Z ∈ 2ω passes the test if Z belongs to only finitely
many Ss.

I Proposition V.46. Let z ∈ 2ω. The following are equivalent:
1. z passes every ITTM-Solovay tests.
2. z is λ-ML-random.

The proof of this characterization of λ-ML test via ITTM-Solovay tests is exactly the same
as the one from the lower case, that can be found in [29]. Our witness for answering the question
will be the even and odd parts of a specific λ-ML-random, an approximable one.

Definition V.47 (Chaitin’s Ω for ITTMs)

Let
⋂
n Un be a universal λ-ML-test. We define Ω as being the leftmost path of 2ω − U0.

In particular Ω is λ-ML-random and has a left-c.e. approximation in Lλ.

In [19] Carl and Schlicht discuss the van Lambalgen theorem for λ-ML randomness. It
holds using the fact that λ is projectible into ω. The proof is the same as the one for ωck1 -ML
randomness (called Π1

1-ML randomness in the literature) and works for any α limit such that α
is projectible into ω. In particular for Ω = Ω1 ⊕Ω2 we have that Ω1 and Ω2 are mutually λ-ML
random.

Theorem V.48

There exists a non ITTM-writable set A which is ITTM-writable from both Ω0 and Ω1,
the two halves of Chaitin’s Ω for ITTMs.

Proof. Let us first show the following version of the Hirschfeldt and Miller theorem
for ITTMs (see for example [57, Theorem 5.3.15]): let

⋂
n Un be a uniform intersection of λ-

recursively enumerable open sets, with µ(
⋂
n Un) = 0. Then there exists a non-writable set A

such that A is x-writable in every λ-ML random x ∈
⋂
n Un. The set A will be a λ-recursively

enumerable simple set, that is, it will be co-infinite and intersect any infinite λ-recursively
enumerable set of integers. Let

⋂
n Un be a uniform intersection of λ-recursively enumerable

open sets of measure 0. Note that we can suppose without loss of generality that Un+1 ⊆ Un.
Let {We}e∈ω be an enumeration of the λ-recursively enumerable sets.

The enumeration of A is defined by stages. At ordinal stage s = ω × α+ 〈n, e〉, if we have:
1. n > 2e,
2. A[< s] ∩We[s] = ∅,
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3. n ∈We[α]

4. µ(Un[α]) ≤ 2−e

Then we add n to A at stage s.
First, let’s show that A is simple. It is obviously co-infinite, as |A∩ [0, 2n]| ≤ n by require-

ments (1) and (2). Let e be such that We is infinite, and towards a contradiction, suppose
that We ∩ A = ∅. Then, let m > 2e such that µ(Um) < 2−e, together with n ≥ m and α such
that n ∈ We[α]. Note that we have µ(Un) ≤ µ(Um) < 2−e. At stage s = ω × α + 〈n, e〉 if
A[s]∩We[s] = ∅ then (1) (2) (3) and (4) will be met and n ∈We will be added to A at stage s.

Now, let’s show that A is x-writable from every λ-ML-random element of
⋂
n Un. We build

the following ITTM-Solovay test: each time we add n into A at stage s = ω×α+ 〈n, e〉, we put
Un[α] in the Solovay test. Note that by (4) we have µ(Un[α]) < 2−e, in particular the measure
requirement of the Solovay test is satisfied. Now if x ∈

⋂
n Un is λ-ML-random it belongs to

only finitely many such sets Un[α]. In particular, there exists k such that for every m ≥ k, if
m ∈ A, then m ∈ A[s] for s = ω × (α + 1) where α is the smallest such that x ∈ Um[α]. We
can then use x to write A.

Finally, it remains only to prove that Ω0 and Ω1 are both in a common uniform intersection⋂
n Un of λ-open sets, with µ(

⋂
n Un) = 0. Each set Un is given by

Un =
⋃
α<λ

[Ω0[α] � n] ∪
⋃
α<λ

[Ω1[α] � n]

It is clear that each set Un is a λ-recursively enumerable open set which contains both Ω0 and
Ω1. Let S0 = {Ω0[α] : α < λ} ∪ {Ω0} and S1 = {Ω1[α] : α < λ} ∪ {Ω1}. To show that

⋂
n Un

has measure 0, we use the following argument from [7, Proposition 5.1]: if x ∈
⋂
n Un, then x is

at a distance of 0 from the set S0∪S1. Also it is clear that both S0 and S1 are closed sets, and
thus that S0 ∪S1 is a closed set (in particular because for every i the sequences {Ω0(i)[α]}α<λ
and {Ω1(i)[α]}α<λ change only finitely often). As x is at a distance 0 from a closed set, it is
a member of the closed set. As the closed set is countable it has measure 0. It follows that
µ(
⋂
n Un) = 0. �

V.4 Genericity within ITTMs

Just like we define as random the sequences which are in every measure 1 set, among countably
many sets, we define as generic the sequences which are in every co-meager set, among countably
many sets. Both notions are obtained by considering a notion of largeness (measure 1 sets for
randomness and co-meager sets for genericity), together with a countable class of large sets. For
this reason both notions present many similar properties, and of course also many differences,
as they are somehow opposite notions: whereas the random sets have no atypical property, the
generic sets have them all.

The notion of genericity was designed by Cohen, as a canonical forcing notion. He considered
as generic, the sets that belongs to no meager set, with a Borel code, in a countable model of ZFC.
Various weakenings of this notion have then been considered in the literature. This has been
done in computability by Jockush and Kurtz [49] [50], in higher computability by Greenberg
and Monin [39], and for ITTMs by Carl and Schlicht [18]. In the later paper, the authors
mostly focus on sets that are computable from every oracle in a large set, for various notions
of largeness, including co-meagerness. We focus here on various genericity notions, defined from
ITTM. We define in particular the categorical analogue of ITTM-randomness, and we show that
it is equivalent to ITTM-genericity over LΣ, whereas the equivalent question remains open for
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the randomness case.

V.4.1 Genericity over the constructibles
Again, we do not work with the forcing relation, traditionally defined to deal with generic

sets, but we instead directly deal with Borel sets. The following proposition is the ITTM version
of the Baire property for lightface Borel sets, Theorem V.13. It is the core tool of forcing with
co-meager set:

Theorem V.49 (Baire property theorem for ITTMs)

There is a function b 7→ (o,m), which to any∞-Borel code b, associates the∞-Borel code
o of an open set, and the ∞-Borel code m of a union of closed meager sets, such that for
any x /∈ ι(m) we have x ∈ ι(b) iff x ∈ ι(o). Moreover this function is uniformly ∆Lα

1 for
α limit.

Proof. The function is defined by ∆0 induction on the rank of sets of Lα with the bounded
rank replacement of Proposition II.28. If b is the ∞-code of an open set then o = b and m is
the∞-code of the empty set. If b is the∞-code of a closed set then o is the interior of b and m
is the boundary of b. We leave to the reader the proof that the function which to an ∞-Borel
code of a closed set associates the∞-Borel code of its interior and boundary, is uniformly ∆Lα

1

for α limit.
Consider now an ∞-Borel code b =

∨
i∈I ci. Note that the rank of each ci in Lα is smaller

than the rank of b. By induction we uniformly find ∞-Borel codes oi and mi such that for
any i and any x /∈ ι(mi) we have x ∈ ι(bi) iff x ∈ ι(oi). We have that o is given by a code of⋃
i∈I ι(oi) and m is given by a code of

⋃
i∈I ι(mi). It is clear that for any x /∈ ι(m) we have

x ∈ ι(b) iff x ∈ ι(o).
Consider now an ∞-Borel code b =

∧
i∈I ci. Note that the rank of each ci in Lα is smaller

than the rank of b. By induction we uniformly find ∞-Borel codes oi and mi such that for any
n and any x /∈ ι(mi) we have x ∈ ι(bi) iff x ∈ ι(oi). We have that o is given by a code of the
open set generated by all the strings σ such that each open set ι(oi) is dense in [σ]. For each
such string σ we find mσ,i, the ∞-Borel code of the closed set of empty interior [σ] − ι(oi).
Let ms be a code of the meager set given by the union of each such ι(mσ,i). The meager set
ι(ms)∪

⋃
i∈I ι(mi) ensures that if x ∈ ι(o), then x ∈ ι(

∧
i∈I ci). We now need to ensure that if

x ∈ ι(
∧
i∈I ci) then x ∈ ι(o). For that we add the following meager set: for each oi we consider

an∞-Borel code ui of 2ω− ι(oi). We then let mt be the boundary of the closure of
⋃
i ι(ui). A

code m of our full meager set is then given by a code of ι(mt) ∪ ι(ms) ∪
⋃
i∈ω ι(mi). Suppose

now that for x /∈ ι(m) we have x ∈
∧
i∈I ci, and suppose that for no prefix σ ≺ x we have

[σ] ⊆ ι(o). In particular for every prefix σ ≺ x, there is an extension τ � σ and some i such
that [τ ] ⊆ ι(ui). Also because x /∈

⋃
i∈I ι(mi) we must have x ∈ ι(oi) for every i and then

τ ⊀ x. It follows that x is in the boundary of the closure of
⋃
i ι(ui), which contradicts that

x /∈ ι(m). �

We now use the previous proposition to define the forcing relation in Lα for α limit, as follows:

Definition V.50

Let α be limit. Let Φ(p) be a formula and p ∈ Lα a parameter. Let Bα(p) = {x :
Lα(x) |= Φ(p)}. Let o and m be the Borel codes of Theorem V.49, such that for x /∈ ι(m)
we have x ∈ ι(un) iff x ∈ Bα(p). Then we define σ 
α Φ(ṗ) if [σ] ⊆ ι(o).
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It is clear that for z � σ generic enough, that is, which does not belong to sufficiently many
meager sets, we have Lα(z) |= Φ(p) iff σ 
α Φ(ṗ).

I Proposition V.51. Let α be countable and limit. Let Φ(p) be a formula with parameter
p ∈ Lα. For any σ, there exists τ � σ such that τ 
α Φ(ṗ) or τ 
α ¬Φ(ṗ).

Proof. Let o1 be the open set which equals {x ∈ 2ω : Lα(x) |= Φ(ṗ)} and o2 be the open
set which equals {x ∈ 2ω : Lα(x) |= ¬Φ(ṗ)}, both up to a union of closed meager sets of Borel
code m. Suppose we have [σ]∩ (ι(o1)∪ ι(o2)) = ∅ for some σ. In particular there is z � σ with
z /∈ ι(m) (because a countable union of meager closed set is nowhere dense, here we use that α
is countable). Either Lα(z) |= Φ(p) or Lα(z) |= ¬Φ(p). In the first case we must have z ∈ ι(o1)
and in the second case we must have z ∈ ι(o2), which contradicts [σ] ∩ (ι(o1) ∪ ι(o2)) = ∅.

�

We now see that the predicate σ 
α Φ(ṗ) for ∆0 formulas with parameters ṗ is uniformly
∆α

1 . We in fact need a bit more, in order to show that the forcing relation for more complex
formulas is still not too complex, even when α is not admissible (see Corollary V.53.1):

I Proposition V.52. The function which to a string σ and a ∆0 formula Φ(ṗ) returns 1 iff
σ 
α Φ(ṗ) (and 0 otherwise) is ∆Lα

1 uniformly in α limit, and more so, the function which on a
∆0 formula Φ(ṗ) returns the function f : 2<ω → {0, 1} such that f(σ) = 1 iff σ 
α Φ(ṗ), is ∆Lα

1

uniformly in α limit.

Proof. By Theorem V.20 one can uniformly find the Borel code of Bα(p) = {x : Lα(x) |=
Φ(p)}. Then by Theorem V.49 one can uniformly find the Borel code o of the open set such
that Bα(p) equals ι(o) up to a meager set, and let f(pΦ(ṗ)q) = o. The function f is simply
given by f(σ) = 1 iff [σ] ⊆ ι(o). �

In the previous proposition, note that the forcing relation is uniform in α: for α1 < α2 both
limit, the same formula defines the forcing relation, interpreted as 
α1 when working in Lα1 and
interpreted as 
α2 when working in Lα2 .

I Proposition V.53. Let α be limit. Let Φ(a, p) be some formula with parameter p ∈ Lα. We
have:

σ 
α ∃a Φ(a, ṗ) iff ∃ȧ σ 
α Φ(ȧ, ṗ)
σ 
α ∀a Φ(a, ṗ) iff ∀ȧ ∀τ � σ ∃ρ � τ ρ 
α Φ(ȧ, ṗ)

Proof. This follows from the construction of the Borel code o of Theorem V.49 together
with the definition of the forcing relation: for each a ∈ Lα, let Aȧ = {x ∈ 2ω : Lα |= Φ(ȧ, ṗ)}
and let oȧ be Borel codes of open sets such that ι(oȧ) equals Aȧ up to a union of closed meager
set.

Then we have that the Borel code of the open set o of Theorem V.49 corresponding to⋃
ȧ∈Pα Aȧ is given by

⋃
ȧ∈Pα ι(oi). This gives us exactly σ 
α ∃a Φ(a, ṗ) iff ∃ȧ σ 
α Φ(ȧ, ṗ).

Now the Borel code of the open set o of Theorem V.49 corresponding to the set
⋂
ȧ∈Pα Aȧ

is given by Borel code of the open set generated by all the strings σ such that each ι(oȧ) is
dense in [σ]. This gives us exactly σ 
α ∀a Φ(a, ṗ) iff ∀ȧ ∀τ � σ ∃ρ � τ ρ 
α Φ(ȧ, ṗ). �

I Corollary V.53.1. Let α be limit and n ≥ 1. The function which to a string σ and a Σn
formula Φ(ṗ) returns 1 iff σ 
α Φ(ṗ) (and 0 otherwise) is ΣLαn uniformly in α.

Proof. By induction on the complexity of formula, starting with the function f of
Proposition V.52. For the induction, note the the quantifiers ∀τ � σ and ∃τ � σ are bounded,
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and that for the Π case, we have to use each time the function f : 2<ω → {0, 1} given by
Proposition V.52. �

V.4.2 Main definitions

We now formally define the notions of genericity that will be used.

Definition V.54

If α is an ordinal, a sequence z is generic over Lα if z is in every dense open set U with
a Borel code in Lα.

This previous definition applied to ITTM give that z is generic over λ (resp. generic over
ζ, resp. generic over Σ) if z is in every dense open set with a writable Borel code (resp. an
eventually writable Borel code, resp. an accidentally writable Borel code). These notions are
somehow analogues of ∆1

1-genericity, in the sense that ∆1
1-genericity corresponds to genericity

over Lωck1 as defined above.

I Proposition V.55. Let α be limit. Let Φ(ṗ) be a ∆0 formula. Let z be generic over Lα.
Then Lα(z) |= Φ(ṗ[z]) iff ∃σ ≺ z σ 
α Φ(ṗ).

Proof. By Theorem V.20 one can uniformly find the Borel code of Bα(p) = {x : Lα(x) |=
Φ(p)}. Then by Theorem V.49 one uniformly find the Borel code m of the union of meager
closed sets such that for any x /∈ ι(m) we have x ∈ Bα(p) iff ∃σ ≺ x σ 
α Φ(ṗ). As z is generic
over Lα it does not belong to ι(m) and the result follows. �

We now define the categorical analogues of ITTM-randomness and ITTM-decidable random-
ness. A first idea would be to define as ITTM-generic reals those which are in every ITTM-
semi-decidable open sets (open sets generated by semi-decidable set of strings). However it is
clear that such open sets cannot be enumerated beyond stage λ, and the notion we get is not so
interesting (it is in fact equivalent to genericity over Lλ). Instead we need to use reals as oracle
and the following definition seems to be the correct one:

Definition V.56

Let z ∈ 2ω. We say that z is:
— ITTM-generic if it is in no meager ITTM-semi-decidable set.
— coITTM-generic if it is no meager ITTM-co-semi-decidable set.
— ITTM-decidable generic if it is in no meager ITTM-decidable set.

The counterparts of these notions for Infinite Time Register Machines have already been
studied in [17].

V.4.3 ITTM-genericity and ITTM-decidable genericity

In this section, we will fully characterize genericity over ITTM-decidable, semidecidable and
cosemidecidable sets in terms of genericity over a level of the L-hierarchy. We will see in particular
that ITTM-genericity coincides with genericity over LΣ, whereas the analogue question remains
open for randomness.
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ITTM-genericity

We first see why ITTM-genericity is the categorical analogue of ITTM-randomness.

Theorem V.57

Let α < β limit with Lα ≺1 Lβ . Suppose z ∈ 2ω is generic over Lβ . Then Lα(z) ≺1

Lβ(z).

Proof. Suppose Lβ(z) |= ∃q Φ(q, p) for a ∆0 formula Φ and p ∈ Lα. Let q be such that
Lβ(z) |= Φ(q, p). As z is generic over Lβ and as Φ is ∆0, there must exist by Proposition V.55
a string σ ≺ z such that σ 
β Φ(q̇, ṗ). In particular as ∃q̇ σ 
β Φ(q̇, ṗ) we have σ 
β ∃q Φ(q, ṗ).
By Σ1-stability of Lα in Lβ we have σ 
α ∃q Φ(q, ṗ) and then we have Lα(z) |= ∃q Φ(q, p).

�

Theorem V.58

Let z ∈ 2ω. Then the following are equivalent
1. z is ITTM-generic
2. z is generic over LΣ and Σz = Σ.
3. z is generic over Lζ and ζz = ζ.

Proof. We first prove (1) implies (2). Suppose z is ITTM-generic. Note first that the set
A = {x ∈ 2ω : Σx > Σ} is ITTM-semi-decidable: given z, one simply has to look for two
z-accidentally writable ordinals α < β such that Lα ≺2 Lβ and then halt. Such a machine
halts exactly on oracles x such that Σx > Σ. Carl and Schlicht showed [18] that if x is generic
over LΣ+1, then Σx = Σ (we will improve this result with Corollary V.59.1). Thus the set A
is a meager semi-decidable set, which implies that Σz = Σ. We now have to show that z is
generic over LΣ. Suppose not for contradiction. We can then design the machine which given
x on its input tape, look for all the accidentally writable Borel codes of unions of closed set
of empty interior, and halt whenever it finds one such that x is in it. It is clear that such a
machine semi-decides a meager set, and in particular halts on z, which contradicts that z is
ITTM-generic.

Let us now show that (2) implies (1). Suppose z is generic over LΣ and Σz = Σ. Let M
be an ITTM that semi-decides a meager set M . Suppose for contradiction that M(z) ↓. As
we have Σz = Σ we must also have ζz = ζ, by Theorem II.58. By Theorem V.57 we have
Lλ(z) ≺1 Lζ(z) = Lζz (z). As λz is the smallest ordinal α such that Lα(z) ≺1 Lζz (z) and
as λ ≤ λz we then have λ = λz. It follows that M(z) ↓ [α] for some α < λ. Thus the set
B = {x ∈ 2ω : Lλ(x) |= M(x) ↓ [α]} is a Borel set with a code in Lλ. As M halts on a meager
set, the set B must be meager. As z ∈ B it is not generic over Lλ, which is a contradiction.

It is clear that (2) implies (3). Let us now show (3) implies (2). Suppose z is generic over
Lζ and ζz = ζ. By Theorem II.58 we have that Σz = Σ. Suppose for contradiction that z is not
generic over LΣ. Then we can design the machine M that looks for the smallest accidentally
writable ordinal α such that Lα contains the Borel code of a meager set containing z, and
when it finds it, writes α and halts. As z is not generic over LΣ the machine M with input z
will write some accidentally writable ordinal α and halt. As z is generic over Lζ it must be
the case that α > ζ. It follows that λz > ζ and thus ζz > ζ, a contradiction. �

I Corollary V.58.1. There is a largest ITTM semi-decidable meager set.
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Proof. Such a set is given in the proof of (1) implies (2), in the previous theorem: let M
be the ITTM which halt on x such that Σx > Σ, or on x such that x belongs to a meager set
with an accidentally writable Borel code. It is clear that M semi-decides a meager set. Also
this meager set contains all the elements x which are not generic over LΣ, or such that Σx > Σ.

�

We now show our main theorem for this section, that is, genericity over LΣ coincides with
ITTM-genericity.

Theorem V.59

Let α < β with β limit, such that Lα ≺2 Lβ . Let z be generic over Lβ . Then Lα(z) ≺2

Lβ(z).

Proof. Let Φ(a, b, p) be a ∆0 formula with parameter p ∈ Lα. By Theorem V.57 and
Proposition II.34 we have that if Lα(z) |= ∃a ∀b Φ(a, b, p), then Lβ(z) |= ∃a ∀b Φ(a, b, p).
Suppose now that Lβ(z) |= ∃a ∀b Φ(a, b, p). Let us show that Lα(z) |= ∃a ∀b Φ(a, b, p). We
shall prove that ∃σ ≺ z σ 
β ∃a ∀b Φ(a, b, ṗ). Note that this is not obvious because z is only
generic over Lβ and the equivalence of Proposition V.55 works only for ∆0 formulas.

For any γ limit such that p ∈ Lγ , let us define

Aγ1 = {σ ∈ 2<ω : σ 
γ ∃a ∀b Φ(a, b, ṗ)}
Aγ2 = {σ ∈ 2<ω : σ 
γ ∀a ∃b ¬Φ(a, b, ṗ)}

Suppose for a contradiction that for no prefix σ ≺ z we have σ ∈ Aβ1 . Suppose first that
also for no prefix σ ≺ z we have σ ∈ Aβ2 . By Proposition V.51 it must be the case that either
Aβ1 is dense along z, or that Aβ2 is dense along z (without containing z). Also by the fact that
Lα ≺2 Lβ and by Corollary V.53.1, we must have Aα1 = Aβ1 and Aα2 = Aβ2 . By considering the
boundary of the closure of the open set generated by whichever set among Aα1 of Aα2 is dense
along z, we obtain a meager closed set containing z, with a Borel code in Lα, which contradicts
that z is generic over Lβ .

Thus if for no σ ≺ z we have σ /∈ Aβ1 , it must be the case that σ ∈ Aβ2 for some σ ≺ z. Let
us fix such a string σ. In particular we must have σ 
β ∀a ∃b ¬Φ(a, b, ṗ). By the fact that
Lα ≺2 Lβ and by Corollary V.53.1 we must have σ 
α ∀a ∃b ¬Φ(a, b, ṗ). By Proposition V.53
we have:

Lα |= ∀ȧ ∀τ � σ ∃ρ � τ ∃γ ∃ḃ ∈ Pγ ρ 
α ¬Φ(ȧ, ḃ, ṗ)

By Theorem II.36 we must have that Lα is admissible. Using admissibility of Lα we must
have:

Lα |= ∀ȧ ∃γ ∀τ � σ ∃ρ � τ ∃ḃ ∈ Pγ ρ 
α ¬Φ(ȧ, ḃ, ṗ)

Now coming back to the definition of forcing we easily see that we have:

Lα |= ∀ȧ ∃γ ∀τ � σ ∃ρ � τ ρ 
α ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ)

Which by the fact that Lα ≺2 Lβ gives us:

Lβ |= ∀ȧ ∃γ ∀τ � σ ∃ρ � τ ρ 
β ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ)

It follows that for every ȧ ∈ Pβ , there exists γ < β such that the open set generated by the
strings ρ for which ρ 
β ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ), is dense in [σ]. Also this open set is clearly a set
of Lβ , and its complement in [σ] is a meager closet set of Lβ . It follows that we must have a
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prefix ρ ≺ z such that ρ 
β ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ), which implies Lβ(z) |= ∃b ∈ Lγ ¬Φ(a, b, p). As
this is true for every ȧ ∈ Pβ , we must have that Lβ(z) |= ∀a ∃b ¬Φ(a, b, p), which contradicts
that Lβ(z) |= ∃a ∀b Φ(a, b, p).

Thus it must be in the first place that σ 
β ∃a ∀b Φ(a, b, ṗ) for some prefix σ ≺ z. Then we
also must have σ 
α ∃a ∀b Φ(a, b, ṗ) which implies Lα(z) |= ∃a ∀b Φ(a, b, ṗ). This concludes
the proof. �

I Corollary V.59.1. If z is generic over LΣ then Σz = Σ. In particular the set

{z ∈ 2ω : Σz > Σ}

is meager.

Proof. This is because Lζ ≺2 LΣ, and because Σz is the smallest ordinal such that
Lα(z) ≺2 LΣz (z) for some α. By the previous theorem we must have Σz = Σ. �

I Corollary V.59.2. Let z ∈ 2ω. The following are equivalent:
1. z is generic over LΣ.
2. z is ITTM-generic.

Proof. The equivalence is given by the conjunction of Theorem V.59 and V.58. �

ITTM-decidable genericity

Theorem V.60

Let z ∈ 2ω. The following are equivalent:
1. z is generic over Lλ,
2. z is ITTM-decidable generic,
3. z is co-ITTM generic.

Proof. The implications (3) ⇒ (2) and (2) ⇒ (1) are trivial. Thus, it remains only to
prove (1)⇒ (3). Let z be a real generic over Lλ. LetM be a machine that halts on a co-meager
set. By Corollary V.59.1 we have that the set {x ∈ 2ω : Σx > Σ} is meager. Note also that
if z is generic over LΣ we have Lλ(x) ≺1 Lζ(x) together with Lζ(x) ≺2 LΣ(x). Thus the set
{x ∈ 2ω : λx > λ} is actually also meager. It follows that the set {x ∈ 2ω : ∃α < λ M(x) ↓
[α]} is already co-meager.

In particular the set {σ : σ 
λ ∃α M(x) ↓ [α]} must be a dense set of strings. By
admissibility of λ, there must exists β < λ such that the set {σ : σ 
λ ∃α < β M(x) ↓ [α]} is
already a dense set of strings.

It follows that {x ∈ 2ω : M(x) ↓ [β]} is co-meager in a dense open set and thus comeager.
Furthermore its complement is a union of nowhere dense closed sets with Borel code in Lλ. In
particular as z is generic over Lλ, it must be that M(z) ↓ [β]. Thus z also is co-ITTM generic.

�
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