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Introduction 

 

Motivation 

Over the last twenty years, thin films and small volume materials have been employed in the 

development of microsystems. In order to determine sufficient accuracy for these microsystems, the 

investigation of the link between the microstructure and the mechanical properties is very important. 

The nanoindentation technique is widely used for the characterization of the mechanical properties of 

materials at small-scale. Several models have been proposed to retrieve the elastic modulus and the 

hardness from such experimental data (Doerner and Nix, 1986; Oliver and Pharr, 1992). These methods 

generally assume that the material features a purely elastic behavior during the unloading part and does 

not exhibit any loading rate dependence (Oliver and Pharr, 1992). However, most of polymers exhibit a 

significant time-dependent behavior (Tang and Ngan, 2003). It is therefore important to develop a 

method to retrieve the intrinsic properties of a material from the temporal data of such nanoindentation 

test. Three approaches have thus been proposed in the literature (Cheng and Cheng, 1998a; Chen et al., 

2013). 

The first approach is based on the viscoelastic contact theory (Lee, 1955; Radok, 1957; Lee and 

Radok, 1960). The Laplace transform method is employed to extend the elastic solution to viscoelastic 

phenomena. The models yield closed-form solutions, which are used to analyze the nanoindentation test. 

The parameters are obtained by fitting the experimental load–displacement data (Cheng et al., 2000; 

Oyen, 2006). These viscous parameters, such as compliance constants and retardation times describe a 

mechanical system behavior in which the material is involved, but these are not intrinsic to the material. 

Indeed, these models generally include correction factors, which mix intrinsic material properties with 

geometrical consideration, to tune the contact conditions. A good example is the 𝛽 factor which corrects 

the Sneddon relation of elasticity for non-axisymmetric indentation (Oliver and Pharr, 1992). The vast 

majority of reported results make use of 𝛽 = 1.034 (King, 1987). It is however known that this factor 
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strongly depends on the tested material (Oliver and Pharr, 2004). This furthermore makes these models 

often over-parameterized, thus leading to multiple solutions for the fitting procedure (Menčík et al., 

2011). Converting the properties estimated by this approach, which should be taken into account for the 

structural engineering problems based on the finite element (FE) analysis, is therefore a difficult and 

non-obvious task. 

The second approach combines the contact theory and the FE method. It is mostly used for the 

elasto-plastic and viscoelastic materials (Cheng and Cheng, 1998a; Cao and Lu, 2004a; Cheng and 

Cheng, 2004) and there are only a few of measurements on viscoplastic properties so far (Bucaille et al., 

2002; Kermouche et al., 2008). Dimensional analysis is commonly employed to relate the 

nanoindentation response and the materials properties. The basic idea of this method is that the physical 

laws do not depend on the arbitrariness in the choice of the units of the physical quantities. This concept 

often allows to reduce the number of arguments in functions describing the physical phenomena, thus 

making them simpler to determine either from the computations or from the experiments. However, the 

uniqueness of the obtained solution has widely been discussed (Cheng and Cheng, 1999). 

The third approach, which is called finite element model updating (FEMU), is carried out by 

combining FE method and numerical optimization. In this method, the objective function, which is a 

norm of difference between the numerical nanoindentation force and/or displacement and experimental 

data, is minimized using optimization techniques (Qasmi et al., 2004; Guessasma et al., 2008). The 

parameters of the model are determined as the minimizer of the objective function. However, the 

uniqueness of this minimizer is generally not assessed in the literature, but it remains a fundamental 

question, particularly in instrumented nanoindentation. In fact, in the case of elasto-plastic behavior, 

numerous works have shown that a group of materials with distinct elasto-plastic properties may yield 

almost the same nanoindentation P-h curve (Cheng and Cheng, 1999; Alkorta et al., 2005a). It implies 

that the material properties cannot be uniquely determined by using a single sharp indenter tip. In order 

to address this problem in the case of elasto-plastic behavior, dual or multiple indentation techniques 

have been proposed by several authors (Le, 2008; Heinrich et al., 2009; Le, 2011). However, the 

existence of “mystical materials” that give almost similar P-h curves for different indenter tips with half 

angles ranging from 60° to 80° has also been shown (Chen et al., 2007). Recently, this problem of non-

uniqueness of the elasto-plastic properties was investigated by Phadikar et al. (Phadikar et al., 2013). 

They found that non-uniqueness of the solution is caused by a high sensitivity of the solution to the 

experimental errors. They also demonstrated that dual nanoindentation techniques are reliable when the 

experimental error is within ±1%. This question is poorly addressed in the presence of viscous 

phenomena (viscoelastic and/or viscoplastic). Constantinescu and Tardieu (Constantinescu and Tardieu, 

2001) highlighted this difficulty in the case of Maxwell and Norton–Hoff behaviors.  

 

The objective of this thesis is to extract intrinsic viscoelastic-viscoplastic properties of bulk 

materials from nanoindentation technique. In this context, series of nanoindentation experimental tests 
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is performed on polypropylene (PP) polymer at several depth rate. Also, pseudo-experimental tests are 

simulated using several loading types, namely, triangular, trapezoidal, exponential and sinusoidal 

loading. A viscoelastic-viscoplastic behavior law (VEVP) is implemented in ANSYS FE software with 

a particular case (i.e viscoelastic-plastic (VEP)) via a UMAT subroutine. The viscoelastic (VE) behavior 

is treated using the behavior law available in ANSYS. The mechanical properties of PP are estimated 

using FEMU method and quantified by an identifiability index. The main idea is to design experimental 

protocols using this index in order to uniquely determine intrinsic and reliable properties. 

Overview 

The manuscript is organized as follows: 

 

In chapter 1, we present a general overview of the methods used for the extraction of mechanical 

properties of materials by nanoindentation for various mechanical behavior such as elastic, elasto-

plastic, viscoelastic, viscoelastic-plastic and viscoelastic-viscoplastic. The nanoindentation technique is 

introduced and the different approaches used for the identification of materials properties from 

nanoindentation data are detailed. The characterization of the mechanical properties of materials using 

these approaches are reviewed. In this work, the FEMU method has been chosen for the identification 

procedure. This method allows to estimate the material parameters by minimizing the difference 

between the results obtained from FE simulation and the experimental data. The uniqueness of the 

parameters estimated by this method is also discussed. 

 

After this presentation of the state of the art in the identification of material properties from 

nanoindentation technique, chapter 2 presents the experimental device and experimental tests carried 

out on PP polymer. Subsequently, the pseudo-experimental tests simulated using triangular, trapezoidal, 

exponential and sinusoidal loading types and used for the conception of an identification methodology 

for the intrinsic material properties are detailed. Also, a tensile test performed to examine the identified 

behavior laws is presented.   

 

Chapter 3 describes the 2D-axisymmetric and 3D FEM used for the modelling of the 

nanoindentation test. Then, the convergence study of the 2D-axisymmetric FEM for the VE behavior 

law using five different indenter tips (42.28°, 57°, 60°, 65°, 70.3°) and the study of the friction 

coefficient effect on the nanoindentation P-h curve are performed. The FEMU method chosen for the 

identification of the material properties is detailed. The sensitivity of the nanoindentation response to 

the behavior law parameters is then investigated. An identifiability index (𝐼-index) is used to analyze 

the reliability of the estimated parameters. This 𝐼-index allows to quantify the completeness of the data 

contained in the nanoindentation P-h curves. 
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In chapter 4, the stability of the viscoelastic properties of PP extracted by the FEMU method using 

nanoindentation tests is examined. The VE behavior law is described. The updating process is performed 

using a nanoindentation triangular experimental test realized at depth rate of 1000 nm/min. The non-

uniqueness of the viscoelastic properties of PP estimated from single nanoindentation experimental test 

is demonstrated. The effect of the nanoindentation rate, apex angle of the indenter tip and the 

measurement noise on the identifiability results is numerically investigated and the link between these 

results and the dissipation energy is shown. In order to design an experimental procedure which leads 

to a unique solution for the inverse problem, combinations of nanoindentation tests and apex angles are 

considered in view of the 𝐼-index. Finally, an updating process using two nanoindentation experimental 

tests carried out at 500 nm/min with cube corner (42.28°) and Berkovich (70.3°) indenter tips is 

performed. 

 

Chapter 5 is dedicated to the investigation the mechanical behavior of PP by three behavior laws 

which are VEVP, and VEP. Firstly, a VEVP behavior law is detailed and updating process is performed 

using the dual nanoindentation experimental tests carried out at 500 nm/min with cube corner (42.28°) 

and Berkovich (70.3°) indenter tips with three starting points. The identifiability of the behavior law 

parameters is also examined. Secondly, a VEP behavior law is chosen and updating process using four 

staring points is carried out. The identifiability study is conducted to analyze the ill-posed character of 

the inverse problem. 

 

In conclusion, the identification of a unique set of the VE behavior parameters (𝐸, 𝑐1, 𝜈, 𝜂) from 

single nanoindentation test using FEMU method is impossible (𝐼 = 3.7). The combination of dual 

indenter tips from five different indenter tips (42.28°, 57°, 60°, 65°, 70.3°) numerically examined shows 

that the four parameters can be uniquely extracted from the dual nanoindentation tests performed at 500 

nm/min with cube corner (42.28°) and Berkovich (70.3°) indenter tips. The updating process using the 

experimental tests of dual nanoindentation illustrates that the PP does not only exhibit a VE behavior. 

In order to fully describe the mechanical behavior of this material, the VEVP, and VEP behaviors are 

investigated. The numerical results shows that the VEVP behavior law (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦, 𝑐2, 𝐾) generates 

almost the same P-h curves as those obtained experimentally. The identifiability analysis shows that the 

identification of the seven VEVP parameters from these nanoindentation data is impossible (𝐼 = 4.9). 

For the VEP behavior (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦), the comparison model/experience indicates that this behavior law 

is better than the VEVP one. The 𝐼-index of the five VEP parameters is 𝐼 = 2.8 which means that their 

identification is difficult. 
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1.1. Introduction 

In this chapter, we introduce different approaches used for the determination of mechanical 

properties of materials from nanoindentation data. From the literature, these approaches can be 

organized into three characterization methods families: 

 Analytical methods based on the contact theory, 

 Combination between the contact theory and finite element (FE) method, 

 Inverse analysis methods based on the simulation of the indentation test (by FE method for 

example). 

Then a review of the development of the identification methods for different mechanical behaviors 

of materials is given. Finally, an overview of the published results on the uniqueness of the extracted 

parameters from nanoindentation is provided. 

1.2. Nanoindentation test 

Nanoindentation test consists of driving a hard indenter tip of known geometry into a material by 

applying a prescribed load 𝑃 or displacement ℎ. Basically, one can distinguish two regimes in this test, 

the loading phase where the indenter penetrates the material and the unloading where the indenter is 

removed. In a first approximation, the loading part is generally considered as elasto-plastic and the 

unloading part as purely elastic (Bulychev et al., 1975; Doerner and Nix, 1986). 

Generally, the characterization of the mechanical properties of materials by the indentation 

technique can be performed from the nanoindentation P-h curves (Figure 1.1) following three 

approaches. The first one uses analytical methods based on the contact theory, the second uses the 

contact theory and the FE method and the third method is based on the combination of the FE method 

and an optimization process. These approaches are described in the next sections. 

 



Mechanical characterization of materials by nanoindentation 

 

20 

 

 

Figure 1.1. Schematic of a typical P-h curve of an elasto-plastic material. 𝑆 contact stiffness, 𝑃𝑚𝑎𝑥 maximum 

indentation load, ℎ𝑓 final displacement, ℎ𝑚𝑎𝑥  maximum displacement (Dao et al., 2001). 

1.3. Identification of mechanical properties  based on the 

contact theory 

The contact theory was commonly used to study the deformation of two solids caused by the load 

generated when they touch each other. Under this load, the solids deform and a contact area is formed. 

At the end of the 19th century, theoretical and semi empirical models able to describe this method have 

been developed. It allows to determine the elastic, plastic and viscous properties and the hardness of 

materials from nanoindentation data. An overview is presented in the following sections. 

1.3.1. Elasticity and hardness 

The characterization of material properties by indentation technique started ago over a century by 

the Hertz’s contribution on the contact between elastic solids (Hertz, 1881). Boussinesq subsequently 

developed a method based on the potential theory to solve the contact problem between a linear elastic 

solid and a rigid axisymmetric indenter (Boussinesq, 1885). Love  treated the Boussinesq’s problem to 

derive a solution for cylindrical and conical indenters (Love, 1939, 1929). Sneddon successively used 

Boussinesq’s problem to develop general solutions for different geometries such as spherical, cylindrical 

and conical indenters (Harding and Sneddon, 1945; Sneddon, 1946). Later, he extended his solution to 

an arbitrary indenter which is a solid of revolution (Sneddon, 1965). He found the following relation 

between load 𝑃 and displacement ℎ for any axisymmetric indenter: 

Loading

Unloading



Identification of mechanical properties based on the contact theory 

21 

 

 𝑃 = 𝐶ℎ𝑚 (1.1) 

where 𝐶 is a constant depending on the indenter shape and properties of the indented material and 𝑚 is 

a constant depending on the indenter type given in Table 1.1. 

 

Table 1.1. Parameters of the Sneddon’s solution for three indenter tips. 𝑀𝑟 is the contact reduced modulus. 

𝑃 = 𝐶ℎ𝑚 Conical (half angle 𝛼) Spherical (radius 𝑅) Cylindrical (radius 𝑅) 

𝐶 
2

𝜋
𝑀𝑟 tan 𝛼 

4

3
𝑀𝑟√𝑅 2𝑀𝑟𝑅 

𝑚 2 3/2 1 

 

For an isotropic elastic material, the contact reduced modulus 𝑀𝑟 (or equivalent modulus) is defined 

as function of the reduced modulus of the specimen 𝑀 and the indenter tip 𝑀𝑖 as follows: 

 1

𝑀𝑟
=

1

𝑀
+

1

𝑀𝑖
=

1 − 𝜈2

𝐸
+

1 − 𝜈𝑖
2

𝐸𝑖
 (1.2) 

where 𝐸 and 𝜈 are are Young’s modulus and Poisson’s ratio for the specimen, and 𝐸𝑖 and 𝜈𝑖 are the same 

parameters for the indenter tip. 

 

Bulychev et al. extended the Sneddon’s elastic contact solution to extract elastic properties from 

elastoplastic material behavior (Bulychev et al., 1975). They introduced an experimental method 

allowing the calculation of the equivalent modulus. This solution is based on the contact stiffness 𝑆 

which is given by: 

 

𝑆 =
𝑑𝑃

𝑑ℎ
|
ℎ=ℎ𝑚𝑎𝑥

= 2𝑀𝑟√
𝐴𝑐

𝜋
 (1.3) 

where 𝑆 and 𝐴𝑐 are the contact stiffness at the beginning of the unloading part and the projected area of 

the elastic contact, respectively. 

 

Doerner and Nix reused the stiffness equation proposed by Bulychev et al. (Bulychev et al., 1975) 

to demonstrate that the hardness 𝐻 and Young’s modulus 𝐸 could be calculated from the indentation 

load-displacement data (Doerner and Nix, 1986). However, these results were obtained assuming that 

the contact area remains constant during the initial unloading and similar to those of a flat cylindrical 

punch. In subsequent years, Oliver and Pharr (Oliver and Pharr, 1992) starting from the Sneddon’s 

solution (Equation 1.1), modified the method introduced by Doerner and Nix (Doerner and Nix, 1986). 

In their work, they proposed an improved method to determine hardness and Young’s modulus using 
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the indentation P-h curve. They found that the unloading part is usually not linear, but is better described 

by a simple power law. 

 𝑃 = 𝐵(ℎ − ℎ𝑓)
𝑚

 (1.4) 

where 𝐵 and 𝑚 are constants determined by a fitting procedure, ℎ𝑓 is the final displacement and ℎ is the 

total displacement calculated as: 

 ℎ = ℎ𝑐 + ℎ𝑠 (1.5) 

where ℎ𝑠 is the displacement of the surface at the perimeter of the contact. They determine the contact 

displacement ℎ𝑐 from the Sneddon’s expression for the shape of the surface outside the contact area 

(Figure 1.2). 

 
ℎ𝑐 = ℎ𝑚𝑎𝑥 − 휀

𝑃𝑚𝑎𝑥

𝑆
 (1.6) 

where 휀 depends on the indenter tip geometry, and usually about 0.75. 

 

Figure 1.2. Schematic of the indenter and sample surface at full load and full unload showing the parameters of 

the contact geometry (Oliver and Pharr, 1992, 2004). 

 

Once the contact area 𝐴 is determined, the hardness 𝐻 and the indentation modulus 𝑀 are computed 

as follows: 

 
𝐻 =

𝑃𝑚𝑎𝑥

𝐴
 (1.7) 

 

𝑀 = [
1 − 𝜈𝑖

2

𝐸𝑖
− 2

𝛽

𝑆
√

𝐴

𝜋
]

−1

 (1.8) 

ℎ𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

ℎ𝑠

ℎ𝑐

𝑎𝑐

ℎ𝑓

Indenter

Surface profile 

at maximum load

Surface profile after 

indenter removalInitial surface

𝛼
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where 𝛽 is a geometry correction factor depending on the indenter type and the tested material (Oliver 

and Pharr, 2004). 

This factor has been introduced by King (King, 1987) for elastic indentations formed with rigid flat-

ended punches. He found that 𝛽 = 1.034 for the Berkovich indenter tip. In the literature, the values of 

this factor have been intensely debated (Troyon and Huang, 2005; Fischer-Cripps, 2006; Woirgard, 

2006). 

Many authors employed the Oliver-Pharr’s method to extract the hardness and the elastic properties 

of isotropic and anisotropic materials from nanoindentation (Vlassak and Nix, 1994; Rho et al., 1997; 

Marx and Riester, 1999; Oliver and Pharr, 2004). However, one should be careful because the hardness 

is not a material property, as its value depends on the indenter geometry, and the elastic modulus 

determined by this method is a combination of at least two elastic constants in the case of isotropic 

materials and depends on the factors 𝛽 and 휀. In the next section, an overview on the characterization of 

viscous - plastic properties of materials by nanoindentation using contact theory is presented. 

1.3.2. Viscoelasticity - plasticity 

The Oliver-Pharr’s method presented above, does not consider the time dependent deformation in 

the mechanical response of the material. Most of viscoelastic solutions derived from the viscoelastic 

contact theory (Lee, 1955; Radok, 1957; Lee and Radok, 1960). Their method, which is called “the 

method of functional equations” consists in solving the viscoelastic problem from the elastic solution 

using the Laplace transform. It remains valid as long as the contact area does not decrease with time (the 

loading part of the nanoindentation test) (Lee and Radok, 1960; Hunter, 1960; Graham, 1965). This 

restriction has been studied by Yang who suggested a method to cover more general indentation 

problems (Yang, 1966). Subsequently, Ting  introduced a method to solve the contact problem for the 

indentation in linear viscoelastic material with axisymmetric rigid indenter (Ting, 1966). 

A large number of studies have been conducted to characterize the viscoelastic behavior of materials 

such as metals, polymers and composites materials using this approach. Cheng et al. derived a closed-

form solution of the equations of the flat punch indentation of a linear viscoelastic half-space (Cheng et 

al., 2000). The solution is obtained from the Laplace transform of the solution of the indentation of a 

semi-infinite elastic solid by a rigid punch developed by Harding and Sneddon (Harding and Sneddon, 

1945). It allows to extract some viscoelastic properties of thin films and coated materials from micro or 

nanoindentation creep and relaxation tests described by a three-elements standard linear solid (SLS) 

model with four parameters (𝐸1, 𝐸2, 𝜈, 𝜂) (Figure 1.3). The analytical results were validated by the 

comparison with experimental creep and relaxation performed on bulk polystyrene (Figure 1.4). 
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𝑃(𝑟) =

𝑃𝑚

2√1 − 𝑟2 𝑅2⁄
,      0 < 𝑟 < 𝑅,    𝑃𝑚 =

4𝐺ℎ

𝜋𝑅(1 − 𝜈)
     and     𝐺 =

𝐸

2(1 + 𝜈)
  (1.9) 

where 𝑃(𝑟), 𝑃𝑚 and 𝐺 are the contact pressure, the mean contact pressure and the shear modulus, 

respectively. The relation between the load and the displacement in terms of the Laplace variable is 

given by: 

 
�̂�(𝑠) = 2𝑅ℎ̂

𝑞0 + 𝑞1𝑠

1 − 𝑝1𝑠
    with  𝑝1 =

𝜂

𝐺1 + 𝐺2
,    𝑞0 =

2𝐺1𝐺2

𝐺1 + 𝐺2
   and   𝑞1 =

2𝐺1𝜂

𝐺1 + 𝐺2
 (1.10) 

where 𝐺1 and 𝐺2 are the shear moduli of the spring elements (Figure 1.3) and determined by: 

 
𝐺1 =

𝐸1

2(1 + 𝜈1)
,    𝐺2 =

𝐸2

2(1 + 𝜈2)
  (1.11) 

 

Figure 1.3. Three-elements Voigt model Standard Linear Solid (SLS) (Cheng et al., 2000). 

 

Figure 1.4. Indentation creep and relaxation curves of bulk polystyrene (Cheng et al., 2000). 

 

𝐸1, 𝜈1

𝐸2, 𝜈2𝜂

(b)(a)
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Later, Schiffmann analyzed the nanoindentation creep and relaxation tests of polycarbonate (PC) 

(Schiffmann, 2006). For the description of creep and relaxation processes, Burgers model, generalized 

Maxwell model, generalized Kelvin model (Figure 1.5) were applied with the relationships derived by 

Shimizu et al. and VanLandingham et al. (Shimizu et al., 1999; VanLandingham et al., 2005). He showed 

that the models may fit the experimental data in a restricted time interval (Figure 1.6), but do not yield 

useful material parameters. 

 
𝐽(𝑡) =

𝐴(𝑡)

(1 − 𝜈)𝑃0 tan 𝛼
 (1.12) 

 
𝐺(𝑡) =

(1 − 𝜈)𝑃(𝑡) tan𝛼

𝐴0
 (1.13) 

where 𝑃0, 𝐴0 and 𝛼 are the constant force, contact area corresponding to ℎ0 and the indenter tip half 

angle, respectively. 

 

Figure 1.5. (a) Burgers model, (b)  Generalized Maxwell model, (c) Generalized Kelvin model (Schiffmann, 

2006). 

 

Figure 1.6. (a) creep compliance 𝐽(𝑡), (b) stress relaxation modulus 𝐺(𝑡) for experimental data on PC with 

Berkovich indenter tip (Schiffmann, 2006). 

(a) (b) (c)

(a) (b)
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Other researches have also been conducted for the combination of viscous and plastic phenomena. 

Oyen and Cook developed a model to describe the viscoelastic-plastic responses of polymeric materials 

(Oyen and Cook, 2003). The model is composed of two parts, which describe the loading-unloading 

cycle (Figure 1.7). They are constructed from a series of the following quadratic mechanical elements: 

- Plastic slider with hardness α1𝐻 

- Elastic spring with stiffness α2𝐸′ 

- Viscous damper with viscosity coefficient α3𝜂𝑄 

α1, α1 and α3 are terms depend on the indenter tip geometry. 

 

Experimental loading-unloading tests were performed on several polymers PMMA, PC, high-

density poly-ethylene (HDPE) and polyurethane (PU) (Figure 1.8). The increasing tendency to viscous 

creep for PC, PMMA, HDPE and the negligible plasticity for PU is obvious in the indentation P-h 

curves. The model well describes the time dependent behaviors of materials. 

 

Figure 1.7. Viscoelastic-plastic model (a) loading part, (b) unloading part (Oyen and Cook, 2003). 

(a)

(b)
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Figure 1.8. Nanoindentation P-h curves for four polymers and the model fits (Oyen and Cook, 2003). 

 

Menčík et al. analyzed the viscoelastic-plastic behavior of PMMA for different indenter shapes 

(Menčík et al., 2011). They proposed a viscoelastic-plastic model consisted of spring, slider, damper 

and Kelvin-Voigt model connected in series (Figure 1.9). An experimental five-step procedure was used 

to determine the parameters in creep compliance function (Figure 1.10a). The creep test (step II) was 

approximated by seven rheological models, which are a combination of spring, damper and Kelvin-

Voigt model connected in series (Figure 1.10b). The obtained parameters in the creep function have no 

rigorous physical meaning. They should be understood as regression constants, which depend on the 

material, indenter shape, rheological model and the test time. 

 

Figure 1.9. Viscoelastic-plastic model. 𝐶0, 𝐶1, 𝐶2 compliances, 𝐸0, 𝑌, 𝐻0, instantaneous modulus, yield strength, 

hardness, 𝜂𝑉, 𝑐𝑉, viscosity, viscous compliance, 𝜏1, 𝜏2, retardation times. (Menčík et al., 2009). 



Mechanical characterization of materials by nanoindentation  

28 

 

 

Figure 1.10. (a) experimental procedure, (b) displacement-time experimental and calculated curves for various 

models (Menčík et al., 2011). 

Many studies have been carried out using the approach based on the contact theory to characterize 

the mechanical behavior of materials by nanoindentation. 

 Viscoelastic behavior: (Lu et al., 2003; Fischer-Cripps, 2004; Zhang et al., 2004; 

VanLandingham et al., 2005; Cheng et al., 2005; Oyen, 2006; Vandamme and Ulm, 2006; 

Jäger et al., 2007; Huang and Lu, 2007; Martynova, 2016; Samadi-Dooki et al., 2018). 

 Viscoelastic-plastic behavior: (Cook and Oyen, 2007; Menčík et al., 2009; Stan et al., 2011; 

Peng et al., 2012; Cook, 2018). 

 

The approach based on the contact theory allows to determine the elastic, the elasto-plastic and the 

viscous properties from nanoindentation tests such as the reduced modulus, the storage modulus, the 

yield strength and the viscosity coefficient. These properties describe a mechanical system behavior in 

which the material is involved, but these are not intrinsic to the material. Many hypotheses and 

corrections factors were involved that influence the reliability of the estimated properties. Furthermore, 

complex material behavior laws are not fully accessible. For that purpose, other inverse methods were 

proposed to characterize the material properties by combining of the contact theory and the FE method. 

1.4. Identification of mechanical properties using contact 

theory and FE method 

Over the past 50 years, the   method has been used in the numerical modeling of the indentation 

test. The improvements of the computational tools allowed to analyze the indentation experiments. In 

this section, the finite element model (FEM) of the nanoindentation test and the inverse methods, which 

combine the contact theory and the FE method are reviewed. 

(a) (b)
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1.4.1. FEM of the nanoindentation test 

In the indentation field, the FE method was first used by Lee and Kobayachi (Lee and Kobayashi, 

1970) to study the elasto-plastic contact problem of a half space surface under a rigid flat punch, and 

Dumas and Baronet have extended it to a rigid cylindrical indenter (Dumas and Baronet, 1971). 

Subsequently, Hardy et al. and Lee et al. carried out FE computations in spherical indentation (Hardy et 

al., 1971; Lee et al., 1972). Since that time, the FEM of the indentation test has been used to numerically 

explore the elastic and the elasto-plastic behavior of materials: 

 2D-axisymetric FEM: (Follansbee and Sinclair, 1984; Sinclair et al., 1985; Bhattacharya 

and Nix, 1988; Laursen and Simo, 1992; Knapp et al., 1999). 

 3D FEM: (Giannakopoulos et al., 1994; Hill et al., 1989; Wang and Bangert, 1993; Olaf 

and Scheer, 1993; Storåkers and Larsson, 1994; Zeng et al., 1995; Shimamoto et al., 1996; 

Giannakopoulos and Larsson, 1997). 

 

The FE method has first been used to compare the experimental and numerical results. At the end 

of the 20th century, the inverse analysis methods based on the combination of the contact theory and the 

FE method were commonly employed in the characterization of mechanical properties of materials from 

the indentation data with different behavior laws. These methods are reviewed hereafter. 

1.4.2. Elasto-plasticity 

The development of the analytical models in the indentation contact problems has consequently 

allowed for a better understanding and provided tools to characterize the elasto-plastic properties of 

materials. Cheng and Cheng introduced the dimensional analysis method to identify the material 

properties by considering the contact between an elastic perfectly plastic solid and a rigid conical 

indenter (Cheng and Cheng, 1998b). It consists in performing several numerical simulations for various 

sets of the initial parameters using the FEM of the nanoindentation test. The mechanical properties of 

materials are extracted by comparing the computed nanoindentation loading-unloading curves with that 

obtained from experiments. In their study, the loading part of the P-h curve depends on the Young’s 

modulus 𝐸, the Poisson’s ratio 𝜈 and the yield strength 𝜎𝑦, which are described by a dimensionless 

function Π1 (
𝜎𝑦

𝐸
, 𝜈). Several FE simulations were performed by varying the three parameters (𝐸, 𝜈, 𝜎𝑦). 

They demonstrated that it is possible to estimate one of the three parameters from the indentation loading 

curves provided that the two others are known. This result illustrates the three parameters cannot be 

uniquely determined from the indentation loading curves alone. 
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They later extended their method to take into account the unloading part of the indentation P-h 

curves (Cheng and Cheng, 1998a). In this work, using a power-law, they described the stress-strain 

(𝜎 − 휀) relationships of elasto-plastic materials by the following functions: 

 
𝜎 = 𝐸휀                          휀 <

𝜎𝑦

𝐸
 

𝜎 = 𝜎𝑦 (
𝐸

𝜎𝑦
)

𝑛

휀𝑛        휀 ≥
𝜎𝑦

𝐸
 

(1.14) 

where 𝑛 is the work-hardening exponent. 

 

The loading part is described by the dimensionless function Π1 (
𝜎𝑦

𝐸
, 𝜈, 𝑛), the unloading part is 

described by another dimensionless function Π2 (
𝜎𝑦

𝐸
,

ℎ

ℎ𝑚𝑎𝑥
, 𝜈, 𝑛). They derived scaling relationships 

between hardness, contact area, initial unloading slope, and mechanical properties. For a fixed value of 

𝜈, several FE simulations were performed by varying the three parameters (𝐸, 𝜎𝑦 , 𝑛). This analysis 

allows to interpret the information contained in indentation measurements limited by the assumptions 

of rigid indenter and frictionless contact between material and indenter tip. 

 

As the works progress, four dimensionless functions have been established based on the 2D and 3D 

FE simulations to characterize the shape of the indentation P-h curve: the loading part (Π1), the 

unloading part (Π2), the ratio between the final depth ℎ𝑓 and the maximum depth ℎ𝑚𝑎𝑥 (Π3) and the 

ratio between the total work 𝑊𝑇 and the plastic work 𝑊𝑃. 

 
Π1 (

𝜎𝑦

𝐸
, 𝑛) =

𝑃

𝐸ℎ2
=

𝑃𝑚𝑎𝑥

𝐸ℎ𝑚𝑎𝑥
2 =

𝐶

𝐸
 (1.15) 

 
Π2 (

𝜎𝑦

𝐸
, 𝑛) =

𝑆

𝐸ℎ2
=

𝑏𝐶

𝐸
(1 −

ℎ𝑓

ℎ
)

−1

 (1.16) 

 
Π3 (

𝜎𝑦

𝐸
, 𝑛) =

ℎ𝑓

ℎ
 

(1.17) 

 
Π4 (

𝜎𝑦

𝐸
, 𝑛) =

𝑊𝑝

𝑊𝑡
= 1 −

3

1 + 𝑏
(1 −

ℎ𝑓

ℎ
) 

(1.18) 

where 𝑏 is the exponent of a power-law fitting to the unloading curve: 𝑃 = 𝐶ℎ𝑚𝑎𝑥
2 (

ℎ−ℎ𝑓

ℎ𝑚𝑎𝑥−ℎ𝑓
)

𝑏

, 𝐶 =
𝑃

ℎ2 

is the loading curvature. The parameters involved in these dimensionless functions are represented in 

Figure 1.11. 
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Figure 1.11. Typical nanoindentation P-h curve of an elasto-plastic material with associated contact parameters 

(Dao et al., 2001; Casals and Alcalá, 2005). 

Subsequently, the dimensional analysis has been used in many works using different tips such as 

conical, Berkovich, Vickers and spherical tips (Cheng and Cheng, 1999; Giannakopoulos and Suresh, 

1999; Venkatesh et al., 2000; Dao et al., 2001; Kucharski and Mroz, 2001; Tunvisut et al., 2002; 

Capehart and Cheng, 2003; Chollacoop et al., 2003; Bucaille et al., 2003; Cheng and Cheng, 2004; Cao 

et al., 2005; Casals and Alcalá, 2005; Zhao et al., 2006; Collin et al., 2007; Liao et al., 2009; Kang et 

al., 2011). 

1.4.3. Viscoelasticity - plasticity 

Most works using this approach in literature have studied the elasto-plastic properties. Cheng and 

Cheng applied dimensional analysis to provide load-displacement relationship for conical indentation 

of isotropic linear viscoelastic materials (Cheng and Cheng, 2004). The same viscoelastic model (SLS) 

proposed by Cheng et al (Cheng et al., 2000) was employed (Figure 1.3). They studied the determination 

of the model parameters from loading curves under various loading conditions. They also preformed FE 

simulations using the linear viscoelastic model available in ABAQUS to demonstrate the effects of the 

loading type, such as constant displacement rate, constant loading rate, and constant strain rate on the 

indentation responses. Later, Huang et al. and Daphalapurkar et al. used spherical nanoindentation to 

extract viscoelastic properties of a human tympanic membrane (Huang et al., 2008; Daphalapurkar et 

al., 2009). Using the time dependent displacement relation given by Lu et al. (Lu et al., 2003), an inverse 

problem coupled with FEM was solved to determine the material relaxation moduli. The measurement 

results indicate that two exponential terms in the Prony series are sufficient to describe the viscoelastic 

behavior of the material (Figure 1.12). Subsequently, Peng et al. used dimensional analysis and FE 

𝑊𝑇 = 𝑊𝑃+𝑊 

𝑃𝑚𝑎𝑥

Displacement ℎ

ℎ𝑓 ℎ𝑚𝑎𝑥

L
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𝑊 𝑊𝑃
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 𝑃

 ℎ
 
ℎ=ℎ𝑚𝑎𝑥

𝑃 = 𝐶ℎ2
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simulations to establish a method for the characterization of the viscoelastic-plastic properties of the 

unplasticized polyvinyl chloride (UPVC) from the nanoindentation step-hold-unload loading (Peng et 

al., 2013). They assumed that the elasto–plastic deformation is dominant and the viscoelastic 

deformation can be neglected during the fast loading segment, and there is only viscoelastic deformation 

during the holding segment. Therefore, the viscoelastic and plastic properties can be determined 

separately from the different segments of the P-h curve. The method showed that the creep compliance, 

relaxation modulus and the yield strength can be determined from a single nanoindentation test.  

 

Figure 1.12. Experimental and numerical P-h curves (Huang et al., 2008). 

 

The approach based on the combination of the contact theory and FEM can be employed to 

characterize the elastic, plastic, and viscous properties of materials with either constitutive laws, like 

simple power law hardening laws or via the construction of analytical dimensionless functions that relate 

nanoindentation data to the material properties. They present many limitations such as the required 

number of nanoindentation tests, the time computation and the non-uniqueness of the identified 

parameters. In the following section, we present a review of the finite element model updating (FEMU) 

method, which will used in this work for the identification of the material properties. 
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1.5. Identification of the material properties using FEMU 

The FEMU method is widely used in the mechanical characterization of materials (Kavanagh and 

Clough, 1971). In this thesis, the method will be used to identify the polypropylene properties from 

nanoindentation response. Generally, the researchers explored two types of data: only the P-h curve or 

by adding the residual imprint. In the first case, the method allows to estimate one or more parameters 

values �̂� which minimize the difference between the response 𝑦(𝑡; 𝛉) obtained from the FE simulation 

and from the experimental (or pseudo-experimental) data 𝑦 𝑥𝑝(𝑡). This response can be the force acting 

on the indenter or the displacement of the indenter following if the experiment is in force or 

displacement-controlled mode. The inverse problem is recast as the minimization of an objective 

function ω, which quantifies the difference between the numerical model and the experiment. The lower 

the objective function the better estimated is the solution: 

 �̂� = argmin
𝛉

 ω [𝑦(𝑡; 𝛉), 𝑦 𝑥𝑝(𝑡)] (1.19) 

The objective function ω is defined as: 

 

ω(𝛉) =
1

2𝑇
∑ [

𝑦𝑘(𝛉) − 𝑦𝑘
 𝑥𝑝

𝑦𝑚𝑎𝑥
 𝑥𝑝 ]

2𝑇

𝑘=1

 (1.20) 

where 𝑇 is the number of data points for the nanoindentation test, i.e. number of the measured force or 

displacement values 𝑦𝑘(𝛉) = 𝑦(𝑡𝑘; 𝛉) and 𝑦𝑘
 𝑥𝑝

= 𝑦 𝑥𝑝(𝑡𝑘), and 𝑦𝑚𝑎𝑥
 𝑥𝑝

 is the maximum of the 

experimental response. 

 

In the case where the residual imprint of the sample’s surface at the end of the nanoindentation test 

is taken into account as additional information to complement the P-h curve (Bolzon et al., 2004). This 

combination provides more information for a reliable identification of the material properties. The 

objective function (Equation 1.20) becomes: 

 

ω(𝛉) =
1

2𝑇
∑ [

𝑦𝑘(𝛉) − 𝑦𝑘
 𝑥𝑝

𝑦𝑚𝑎𝑥
 𝑥𝑝 ]

2𝑇

𝑘=1

+
1

2𝑁
∑ [

𝑢𝑛(𝛉) − 𝑢𝑛
 𝑥𝑝

𝑢𝑚𝑎𝑥
 𝑥𝑝 ]

2𝑁

𝑛=1

 (1.21) 

where 𝑁 is the number of data points for the sample surface, i.e. number of the measured imprint values 

𝑢𝑛(𝛉) = 𝑢(𝑡𝑛; 𝛉) and 𝑢𝑛
 𝑥𝑝

= 𝑢 𝑥𝑝(𝑡𝑛), and 𝑢𝑚𝑎𝑥
 𝑥𝑝

 is the maximum of the residual imprint. 

 

In this thesis, The FEMU method will be used for the identification of mechanical properties of 

material from nanoindentation response 𝑦(𝑡). An overview will be presented in the following paragraphs 
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for the identification of mechanical properties from nanoindentation of different material behaviors such 

as elasto-plastic, viscoelastic, viscoelastic-plastic and viscoelastic-viscoplastic. 

1.5.1. Elasto-plasticity 

Many studies have been carried out to determine the elasto-plastic properties of different material 

systems such as bulk, thin film, and coating materials applying the FEMU method to the P-h curves 

obtained from nanoindentation responses (Nakamura et al., 2000; Gu et al., 2003; Rauchs, 2006; Sun et 

al., 2014; Fizi, 2015). These may also be complemented with other experimental data such as the mapped 

imprint and pile-up left after the indentation procedure (Bolzon et al., 2004; Bocciarelli et al., 2005; 

Bocciarelli and Bolzon, 2007, 2009; Bolzon et al., 2009; Moy et al., 2011; Bolzon et al., 2011; Bolzon 

and Talassi, 2013). These works suggest that the nanoindentation data (P-h curve and residual imprint) 

from multiple indenters are required to extract a unique set of material properties. However, Kang et al. 

proposed a method to determine the elasto-plastic properties of materials from a single nanoindentation 

P-h test (Kang et al., 2012). They investigated the accuracy of the optimization algorithm results using 

three different three-dimensional indenter geometries (conical, Berkovich and Vickers indenters). They 

concluded that the method could be used to extract a unique set of the elasto-plastic properties (Young’s 

modulus, Poisson’s ratio, yield strength, work hardening exponent) without the need for multiple 

indenter tips. 

Subsequently, Arizzi and Rizzi developed an inverse analysis method for the identification of 

elasto-plastic properties of materials through static and dynamic indentation tests (Arizzi and Rizzi, 

2014). The use of data from both nanoindentation P-h curve and residual imprint was investigated. They 

showed that the identification of the parameters remains possible when using the residual imprint only, 

while it becomes more uncertain when only the nanoindentation curve is taken in account, which proves 

that the relevant information towards reliable evaluations of the elasto-plastic material parameters 

(Young’s modulus 𝐸, yield strength 𝜎𝑦, work hardening exponent 𝑛) comes from the residual imprint. 

Additionally, for the data affected by random noise, despite a higher number of iterations, the parameters 

are estimated with lower errors (7%) which encourage the use of these data instead the P-h curve. 

Recently, Wang et al. developed an inverse method to estimate the elasto-plastic properties of metal 

materials using the residual imprint of spherical indentation (Wang et al., 2017). The effectiveness of 

the method is achieved only when the penetration depth or the imposed load is sufficient. The sensitivity 

investigation showed that the method is very effective and reliable in real engineering application. Also, 

using the imprint from different nanoindentation loads is able to give more stable and reliable solution. 

Kang et al. extracted the elasto-plastic properties of P91 steel from nanoindentation P-h curves using 

FEMU (Kang et al., 2018). They used several starting points for the optimization algorithm (Figure 

1.13) and the optimized results were compared with experimental data (Figure 1.14). The comparison 

of the estimated parameters by this method with the values obtained from uniaxial tensile test indicated 
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that the extraction of a unique set of the elasto-plastic material properties, especially the yield stress and 

work hardening exponent required nanoindentation curves form different indenter tip geometries rather 

than using the same indenter with different loads. 

 

Figure 1.13. Optimized parameter values for the P-h curves using FEMU (Kang et al., 2018). 

 

Figure 1.14. Comparison between experimental and simulated curves from optimized results (Kang et al., 2018). 

(b)(a)

(c)
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1.5.2. Viscoelasticity 

The identification of the viscoelastic properties of materials from indentation P-h curves using 

FEMU method was started at the beginning of the 21st century (Constantinescu and Tardieu, 2001). 

They performed several numerical identification examples to illustrate the accuracy and robustness of 

this method. Qasmi et al. analyzed the viscoelastic properties of polypropylene modified by He+ 

particles and electrons irradiation determined from P-h curves using FEMU (Qasmi et al., 2004). They 

quantify the variation of the instantaneous and relaxed modulus due to these modifications. Resapu et 

al. employed FEMU to determine viscoelastic properties of PVC film, polyethylene sheet, and wire with 

PVC insulation in both pristine and thermally aged conditions from nanoindentation P-h curves (Resapu 

et al., 2008). A constitutive viscoelastic model available in ANSYS FE software was used. The 

optimization approach minimized the objective function (RMS) (Figure 1.15) and allowed to 

characterize the changes in mechanical properties with thermal aging. 

 

Figure 1.15. Load-time experimental and simulated curves of PVC (Resapu et al., 2008). 

 

Liu et al. developed an inverse FE analysis method to identify the viscoelastic properties of gel from 

nanoindentation technique using the Kelvin-Voigt two parameters model available in ABAQUS FE 

software (Liu et al., 2009). Rauchs et al. determined the properties of rubber material by FEMU method, 

using spherical indentation (Rauchs et al., 2010). Kucuk et al. established a method to describe the 

nonlinear viscoelastic behavior of polymers under spherical indenter (Kucuk et al., 2013). A nonlinear 

Burgers model implemented in ABAQUS by introducing a UMAT subroutine was used for the analysis 

of nanoindentation of PMMA and the parameters were determined using the FEMU method. Chen and 

Diebels applied the FEMU method to characterize the viscoelastic properties of polymers from 

nanoindentation (Chen and Diebels, 2013). A linear viscoelastic model for small strain, based on a 

general Maxwell rheological model was employed to describe the rate dependent material behavior. 

Richard et al. used FEMU to quantify the effects of osteoarthritis on the viscoelastic behavior of human 
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articular cartilage (Richard et al., 2013). A viscoelastic behavior law corresponding to the SLS model 

was employed. They proposed an identifiability analysis to determine the uncertainties of 

nanoindentation data on the estimated parameters. In this thesis, the same analysis will be performed in 

order to evaluate the reliability of the behavior laws parameters. Yao et al. used the FEMU method to 

measure the compressive viscoelastic properties of human cervical tissue from spherical indentation 

(Yao et al., 2014). The initial parameters of the algorithm were obtained from the analytical solution of 

Oyen (Oyen, 2006). 

 

In our case, the viscoelastic behavior law is described by a linear elastic spring in series with Kelvin-

Voigt model. This rheological model can be decomposed into spherical (volumetric) and deviatoric parts 

and is presented in Chapter 4.2. 

1.5.3. Viscoelasticity-viscoplasticity 

Compared with the numerous works related to the identification of elastic, elasto-plastic or 

viscoelastic properties of materials, a few authors have proposed constitutive models to characterize the 

viscoelastic-plastic (VEP) or viscoelastic-viscoplastic (VEVP) material parameters from 

nanoindentation creep and relaxation tests. Ovaert et al. studied the VEP properties of bulk materials by 

nanoindentation (Ovaert et al., 2003). They used the four parameters model proposed by Kim (Kim, 

1999) and Wang (Wang, 2001) based on the stress decomposition (volumetric and deviatoric) to 

formulate the constitutive equations of the materials. The model consists of a linear damper of viscosity 

𝜂, in parallel with an elasto-plastic spring of stiffness 𝐸, yield stress 𝜎𝑦 and hardening exponent 𝑛 as 

shown in Figure 1.16. The Poisson’s ratio is an input variable. Wang and Ovaert implemented the four 

parameters VEP model developed by Ovaert et al. (Ovaert et al., 2003) in the FE software ABAQUS 

(Wang and Ovaert, 2009). They combined numerical FE/optimization-based and nanoindentation creep 

tests for the identification of mechanical properties of materials. 

 

Figure 1.16.  Four parameters model (Ovaert et al., 2003). 

 

𝜂 𝜎, 휀

𝜎 , 휀 

𝜎 , 휀 

𝐸, 𝜎𝑦, 𝑛
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Later, Kermouche et al. studied the time dependent behavior of PMMA during the scratch loading 

at constant rate using a viscoelastic-viscoplastic model with constant Poisson’s ratio available in the 

SYSTUS FE software (Kermouche et al., 2013). The model consists of the combination of the Kelvin-

Voigt model (Model 1) and the Arruda-Boyce model (Model 2) which is composed of a linear elasticity 

in series with a Argon’s viscosity (Figure 1.17). Then, they used the FEM to examine the potential of 

the model to reproduce the experimental results. 

 

Figure 1.17. VEVP constitutive model (Kermouche et al., 2013). 

 

Chen et al. implemented a VEVP (ten parameters) and nonlinear viscoelastic-viscoplastic (NVEVP) 

(twelve parameters) constitutive models (Figure 1.18) in ABAQUS to investigate the mechanical 

behavior of polymers by nanoindentation (Chen et al., 2015). They employed the FEMU method to 

determine the best-fit model parameters to experimental data and validate the results by the comparison 

with uniaxial tensile test performed on the ultra-high molecular weight polyethylene (UHMWPE) 

(Figure 1.19). 

 

Figure 1.18. Constitutive models (a) VEVP (b) NVEVP (Chen et al., 2015). 

 

(a) (b)
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Figure 1.19. (a) Displacement-time experimental and simulated curves using VEVP model, (b) Comparison with 

tensile test results (Chen et al., 2015). 

 

Using material’s thermodynamic, Poilâne et al. developed a VEVP behavior law which composed 

of a SLS viscoelastic model and viscoplastic model with nonlinear kinematic hardening to study the 

mechanical behavior of the flax/epoxy composite using creep and relaxation tests (Poilâne et al., 2014). 

It was implemented in ANSYS FE software via the UMAT subroutine with a particular case: VEP. In 

the VE case, the behavior law available in ANSYS is used in this work (Chapter 4.2). The other behavior 

laws will be described in Chapter 5.2 (VEVP without the nonlinear kinematic hardening) and Chapter 

5.3 (VEP). Also, the identification of material properties from nanoindentation P-h responses will be 

approached using FEMU method. The major challenge with the identification procedure using the 

FEMU method is the uniqueness of the obtained solution. In the next section, the different suggestions 

proposed to solve this problem will be presented. 

1.6. Uniqueness of material properties from 

nanoindentation curves 

The question of uniqueness of the parameters determined from nanoindentation data was studied 

by several authors for the elasto-plastic materials behavior (Cheng and Cheng, 1999; Capehart and 

Cheng, 2003; Tho et al., 2004; Alkorta et al., 2005a). They numerically illustrated that is not possible to 

uniquely determine three unknown elastic-plastic material properties 〈𝐸, 𝜎𝑦, 𝑛〉 from nanoindentation 

single P-h curve using conical tip (Figure 1.20). 

(a) (b)
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Figure 1.20. Nanoindentation P-h curves using several combinations of parameters (Cheng and Cheng, 1999). 

 

In order to overcome this problem, the authors suggested to enrich the information to be exploited 

in the FEMU method by the mapped imprint or by combining several nanoindentation P-h tests 

performed with different indenter tip geometries. In this context, Bolzon et al. and Bocciarelli et al. were 

the first to study the identification of elasto-plastic material properties from the combination of 

nanoindentation P-h curves and the residual imprint (Bolzon et al., 2004; Bocciarelli et al., 2005). 

Subsequently, they used the same methodology for the determination of material properties in 

film/substrate systems (Bocciarelli and Bolzon, 2007) and the interface properties (Bocciarelli and 

Bolzon, 2009). Bolzon et al. compared three identification approaches using, only the nanoindentation 

P-h curve, only the imprint profile, both P-h curve and imprint geometry (Bolzon et al., 2011). In their 

study, an elasto-plastic material model was employed and the parameters were estimated by the 

approaches above using FEMU method. They showed that the imprint geometry is more competitive 

than the other approaches for the identification of the plastic parameters (𝜎𝑦, 𝑛). The inverse analysis 

method returned accurate and robust results also in presence of input data corrupted by some noise when 

both the P-h curve and the imprint geometry data are employed in the inverse analysis procedure; the 

same conclusion does not hold true if the P-h curve only is exploited. 

 

Challocoop et al. established a method for interpreting sharp indentation results obtained with dual 

indenter with different half angles (Chollacoop et al., 2003). They also examined the uniqueness of the 

elasto-plastic properties (𝐸, 𝜎𝑦, 𝑛) of aluminum alloys and found that using a second indenter helps in 

reducing the non-uniqueness problem and improves the accuracy of the inverse problem (Figure 1.21). 

The sensitivity analysis performed for the estimated properties showed much improvement of the dual 

indenter algorithms over the single indenter results. 
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Figure 1.21. Nanoindentation P-h for three combination of parameters using Berkovich indenter tip 70.3° and a 

conical indenter tip of equivalent half-angle 60° (Chollacoop et al., 2003). 

 

Cao and Lu explored the stability of the reverse dual indenter algorithms proposed by Chollacoop 

et al. (Chollacoop et al., 2003) to determine the elasto-plastic properties of material using a power law 

(Cao and Lu, 2004b). They employed the dimensionless function Π𝛼 to identify the representative stress 

𝜎𝑟 produced by a conical indenter with a half angle 𝛼: 

 
𝑦 = Π𝛼 (

𝑀𝑟

𝜎𝑟
) (1.22) 

where 𝑦 =
𝐶

𝜎𝑟
, is a scalar and Π𝛼 the dimensionless function describing the loading curvature 𝐶, 

respectively. 

  

A condition number was used to analyze the stability of the inverse problem. It measures the 

sensitivity of the identified parameters 𝜃 to small modification in the input data. This condition number 

varies with the indenter half angle 𝛼 and the material properties: 

 
𝐶𝑜𝑛𝑑1 =

𝑦

𝜃

𝜕𝜃

𝜕𝑦
 (1.23) 

 

They demonstrated that the lower the 𝐶𝑜𝑛𝑑1, the better conditioned is the inverse problem and if 

the 𝐶𝑜𝑛𝑑 is large, the inverse problem is considered as ill-conditioned which means it is ill-posed. 

 

Subsequently, this condition number was used to investigate the stability of the inverse problem 

solution for plastic and elasto-plastic behaviors (Cao and Lu, 2004a; Cao et al., 2005; Cao and Huber, 
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2006; Seltzer et al., 2011) and hyperplastic behavior of soft materials by spherical indentation (Zhang 

et al., 2014). 

 

Swaddiwudhipong et al. demonstrated that P-h curves of two conical indenters with different apex 

angles could lead to unique solution of the three elasto-plastic material properties (𝑀𝑟, 𝜎𝑦, 𝑛) 

(Swaddiwudhipong et al., 2005). However, such study is far from being systematic regarding the wide 

material space and infinite combinations of elasto-plastic properties as well as indenter geometries. 

Nakamura and Gu used dual nanoindentation method (Berkovich, spherical) to determine the elasto-

plastic anisotropic properties of the thermally sprayed NiAl coatings (Nakamura and Gu, 2007). They 

showed that the additional information improves the convergence of the inverse problem. Chen et al. 

investigated the elasto-plastic properties of material extracted from dual (or plural) conical indentation 

(Chen et al., 2007). They found the existence of mystical materials that gives almost similar P-h curves 

for different indenter tips with half angles ranging from 60° to 80°. Therefore, without knowing other 

information in advance, many of the mystical materials cannot be distinguished by the dual (or plural) 

indenter methods unless extreme indenter angles are used. Many works were conducted for extracting 

of the elasto-plastic material using nanoindentation data. They showed that using the data of multiple 

indenters with different apex angles delivers better information than using the data from single indenter 

and removes the non-uniqueness problem (Luo and Lin, 2007; Lan and Venkatesh, 2007; Yan et al., 

2007; Heinrich et al., 2009; Le, 2008, 2009). 

 

Later Phadikar et al. studied the problem of non-uniqueness of inverse problem solution (Phadikar 

et al., 2013). They found that non-uniqueness is caused by a high sensitivity of the solution to the 

experimental errors. They also demonstrated that dual nanoindentation techniques are reliable when the 

experimental error is within ∓1%. They established a condition number to investigate the uniqueness 

of the elasto-plastic parameters 〈𝐸, 𝜎𝑦, 𝑛〉 and quantify the sensitivity of the conical nanoindentation 

results (Phadikar et al., 2013). In their work, an elasto-plastic power law for strain hardening is chosen: 

 

𝜎 =

{
 

 𝐸휀𝑛     for   휀 ≤
𝜎𝑦

𝐸

𝜎𝑦 (
𝐸

𝜎𝑦
)

𝑛

휀𝑛     for   휀 ≥
𝜎𝑦

𝐸

 (1.24) 

where 𝜎𝑦, 𝐸 and 𝑛 are the yield strength, the Young’s modulus and the strain hardening exponent of the 

material, respectively. They used three shape functions to describe nanoindentation P-h curve:
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 𝒚 = 〈Ψ1𝛼, Ψ2𝛼, Ψ3𝛼〉 (1.25) 

where 𝒚 is the data vector and Ψ1𝛼, Ψ2𝛼 , Ψ3𝛼 are the shape functions that describe the P-h curve for a 

conical indenter with half angle 𝛼. The condition number is defined as: 

 𝐶𝑜𝑛𝑑2 = ‖𝑱‖2‖𝑱−1‖2 = √𝜌( 𝑱 
𝑡  𝑱)√𝜌(( 𝑱 

𝑡  𝑱)−1) (1.26) 

where 𝑱 the jacobian matrix, ‖. ‖2 the matrix 2-norm and 𝜌 the spectral radius, respectively. 

 

A well-conditioned problem has condition number close to 1. When the condition number tends to 

+∞, the inverse problem is ill-posed. Between the two cases, the assessment of the conditioning will be 

ambiguous. 

 

The condition numbers presented above have some limitations, obstructing their applications in this 

work (Renner, 2016): 

 Specific behavior law (power law with three parameters),  

 The better conditioning interval is not limited, 

 The P-h curve is described by three shape functions. 

 

For that, the identifiability index (Chapter 3.5) proposed by Richard et al. (Richard et al., 2013) 

which can be used whatever the considered nanoindentation data will be employed. The stability of the 

parameters of different behaviors namely, viscoelastic (VE), viscoelastic-viscoplastic (VEVP) and 

viscoelastic-plastic (VEP) estimated from nanoindentation responses will be studied in Chapter 4 and 5 

through this identifiability index. 

1.7. Conclusion 

In this chapter, the methods for analyzing data of nanoindentation load-displacement responses 

were introduced. The literature review has shown how the use of this technique to extract the materials 

elastic and elasto-plastic properties has been studied since the late 1800s. Since that time, many efforts 

have been made to establish advanced theoretical and semi empirical models able to reasonably describe 

the contact mechanics phenomena occurring during indentation procedure. The development of 

analytical models in early 1980s and 1990s offers the possibility to extract the elasto-plastic properties 

of material from nanoindentation test. At the end of the 20th century, more complex models, such as 

viscoelastic, viscoplastic have been developed and used to characterize mechanical behavior of 

materials. 
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Three approaches can be employed to determine mechanical properties of materials from 

nanoindentation data. The first one uses analytical methods based on the contact theory, the second uses 

the contact theory and the  FE method and the third method is based on the combination of the FE 

method and an optimization process (the finite element model updating (FEMU)) which will be used in 

this thesis. After the introduction of the different analysis methods, an overview of different constitutive 

models developed for the characterization of elastic, elasto-plastic, viscoelastic, viscoelastic-plastic and 

viscoelastic-viscoplastic material behaviors was presented. 

The parameters extracted by the first two approaches describe a mechanical system behavior in 

which the material is involved, but these are not intrinsic to the material. Many hypotheses and 

corrections factors were involved that influence the reliability of the estimated properties. Furthermore, 

complex material behavior laws are not fully accessible. They also present many limitations such as the 

required number of nanoindentation tests, the time computation and the non-uniqueness of the identified 

parameters. The problem of non-uniqueness of the properties obtained from nanoindentation data was 

reviewed and the proposed approaches to solve this problem for elasto-plastic behaviors were discussed. 

 

The literature review presented above, shows that the problem of non-uniqueness of the parameters 

determined from nanoindentation data is poorly discussed in the presence of viscous phenomena 

(viscoelastic and/or viscoplastic). In view of different approaches, the FEMU method is chosen for the 

characterization of the mechanical properties of PP from nanoindentation responses using four behavior 

laws (VE, VEVP and VEP). The uniqueness of the obtained solutions is studied through an 

identifiability index (𝐼-index) in order to determine intrinsic material properties. 

For that purpose, the Chapter 2 presents the nanoindentation experimental device and experimental 

tests performed on PP. Then, the pseudo-experimental tests simulated using several loading types 

namely, triangular, trapezoidal, exponential and sinusoidal and used for the conception of an 

identification methodology for the intrinsic material properties are detailed. 

In chapter 3, the 2D-axisymmetric and 3D FEM used for the modelling of the nanoindentation test 

are described. A convergence study of the 2D-axisymmetric FEM for the VE behavior using five 

different indenter tips (42.28°, 57°, 60°, 65°, 70.3°) and the study of the friction coefficient effect on the 

P-h curve are conducted. The FEMU method is detailed and the sensitivity analysis of the 

nanoindentation response to the behavior law parameters is then investigated. The 𝐼-index is employed 

to analyze the reliability of the extracted parameters. 

The chapter 4 is devoted to the determination of the viscoelastic properties form nanoindentation 

tests. The VE behavior law is described and the updating process is performed using a nanoindentation 

triangular experimental test realized at 1000 nm/min. The non-uniqueness of the viscoelastic properties 

of PP estimated from this test is demonstrated. The effect of the nanoindentation rate, apex angle of the 

indenter tip and the measurement noise on the identifiability results is numerically investigated and the 

link between these results and the dissipation energy is shown. In order to design an experimental 
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procedure which leads to a unique solution for the inverse problem, combinations of nanoindentation 

tests and apex angles are considered in view of the 𝐼-index. Finally, an updating process using two 

nanoindentation experimental tests conducted at 500 nm/min with cube corner (42.28°) and Berkovich 

(70.3°) indenter tips is performed. 

In Chapter 5, the mechanical behavior of PP is studied using three behavior laws, which are VEVP 

and VEP. Firstly, updating process is carried out using two experimental tests carried out at 500 nm/min 

with cube corner (42.28°) and Berkovich (70.3°) indenter tips with three starting points for the VEVP 

behavior law. The identifiability of the VEVP parameters is then examined. Secondly, the VEP behavior 

law is employed for the updating process using four staring points is performed. The identifiability 

analysis is conducted to analyze the ill-posed character of the inverse problem. 

 In the next chapter, the nanoindentation device used for the experimental tests and all experiments 

performed during this thesis will be presented. 
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2.1. Introduction 

This chapter presents the nanoindentation tests used to characterize the mechanical properties of 

materials. The employed indenter tips as well as the experimental and pseudo-experimental 

nanoindentation tests conducted during this work are presented. The nanoindentation equipment used 

for the experimental measurement is also described.  We describe the experimental procedure for the 

experimental tests realized on polypropylene (PP) polymer. The experimental tests are to be used for 

the extraction of the intrinsic material properties. The pseudo-experimental tests simulated using 

triangular, trapezoidal, exponential and sinusoidal loading type and employed for the conception of an 

identification methodology for the extraction of intrinsic material properties are detailed. In addition, 

conventional tensile tests are also conducted during this work to validate the behavior laws. 

2.2.  Instrumented nanoindentation 

Nanoindentation is very a popular technique used to probe the mechanical properties of a small 

volume of materials. The nanoindentation test allows probing a material with a solid indenter tip 

featuring known geometry and mechanical properties. Depending on whether the test is displacement, 

force or strain controlled, the load and the displacement of the indenter tip are measured/applied 

continuously generating a nanoindentation load-displacement (P-h) curve. This (P-h) curve is a function 

of the intrinsic mechanical properties of the indented material. This technique is now widely used to 

study the behavior of metallic, ceramic, composites, polymeric and biomaterials. 

 

As presented in the Chapter 1, nanoindentation technique is frequently used to characterize the 

materials elasto-plastic and viscous properties. In this work, the material properties are measured from 

experimental nanoindentation triangle tests. Concerning the pseudo-experimental tests, which are 

simulated using several loading rates, they are used to investigate the influence of the rate, loading type 

and the indenter tip angle on the parameters identifiability and design a robust experimental 

identification procedure, which allows to determine reliable intrinsic material properties. 

2.2.1.  Indenter tips 

In experimental nanoindentation tests, the most frequently used indenter tips are conical, spherical 

(defined by its radius), Vickers (square pyramid), Berkovich (triangular pyramid), Knoop (pyramidal 

diamond base), flat punch and cube corner indenters. Many aspects should be considered while choosing 

an indenter tip for a nanoindentation test, the indented material such as a thin film, bulk or composite 

materials and the information one wishes to extract from the test (elastic and/or plastic parameters). For 

the experimental tests carried out during this study, diamond cube corner and Berkovich are used. 
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2.2.1.1. Berkovich 

The Berkovich indenter tip is a triangular base pyramid having a three-fold symmetry with a half 

opening angle of 65.3° (Berkovich, 1950). It has a symmetry of order six and the resulting point from 

the intersection of the three faces gives a better definition of the point of contact between indenter and 

specimen during the test. For that, it is the most common tip used for experimental nanoindentation test 

to measure the mechanical properties of bulk and thin film materials due to its simplified shape that 

avoids the edge effects during the nanoindentation test (Figure 2.1). In case of anisotropic material, the 

load-displacement curve is expected to be different according the indented material for each orientation 

variation of the indenter in the direction of indentation. The information from the test is then much richer 

on the material behavior than with an axisymmetric indenter. 

 

Figure 2.1. Schema of Berkovich indenter tip. 

 

2.2.1.2. Cube corner 

The cube corner indenter tip is a three-sided pyramidal tip that is much more sharper than the 

Berkovich indenter (Figure 2.2). The angle between the axis of symmetry and a face is 35.3° (Fischer, 

2002). The sharpness of the indenter generates much higher stresses and strains in the contact area and 

reduces the cracking threshold. This is useful in producing very small, well-defined cracks around 

hardness impressions in brittle materials. These cracks can be used to determine fracture toughness at 

very small scales (Kruzic et al., 2009). During the test, this indenter tip displaces a much larger volume 

of the material (more than three times that of the Berkovich indenter tip) and thus yields a greater plastic 

deformation after the unloading part which makes it suitable for plastic materials (Jang et al., 2005). 

65.3°
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Figure 2.2. Schema of cube corner indenter tip. 

 

2.2.1.3. Conical 

The cone indenter tip is widely used, especially in the numerical modeling of the nanoindentation 

test (Figure 2.3). It is attractive because the complications correlated with the stress concentrations at 

the sharp edges of the indenter are absent. However, very little experimental nanoindentation tests have 

been conducted using a conical indenter due to the fabrication difficulties. Two conical indenter tips 

were numerically used in this work, with equivalent half angles of 42.28° and 70.3°. These indenters 

are supposed rigid and correspond to the axisymmetric equivalent cone, of displaced volume for a given 

nanoindentation depth, of the cube corner and Berkovich indenter tips used in the experimental tests 

(Lichinchi et al., 1998; Fischer, 2002). 

 

Figure 2.3. Shema of conical indenter tip, 𝛼 = 42.28° (cube corner), and 𝛼 = 70.3° (Berkovich). 

 

90°

𝛼 𝛼
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2.2.2. Sample 

In this thesis, the polypropylene (PP301440) produced by the Goodfellow company has been used 

for the nanoindentation experimental tests. This material is a thermoplastic polyolefin that is produced 

by polymerizing propylene monomer, which is a gaseous by product of petroleum refining, in the 

presence of a catalyst under controlled heat and pressure (Maier and Calafut, 1998). It was initially 

produced in 1954 by G. Natta’s group following the work of K. Ziegler regarding to successful 

development of a suitable stereo-specific catalyst, which conferred polypropylene a kind of structural 

characteristics useful for rigid items (Vasile, 2000). It is used in a wide range of applications such as 

medical devices, packaging, labelling, fibers, pipes and automobile industry due to its excellent 

chemical, physical, mechanical and thermal properties for room temperature uses (Mendenhall et al., 

1987; Brun et al., 2001). In this research, PP specimens (PP301440) with dimensions of 15 mm ×

15 mm × 0.5 mm have been used for experimental tests. 

2.2.3. Experimental device 

All experimental nanoindentation tests are performed at room temperature and humidity using 

Anton Paar nanoindenter (Figure 2.4). This device is capable to apply forces from the micronewton 

range and measure displacement from nanometer range with controlled environmental conditions 

(temperature between 20 and 200°C, humidity between 10 and 90%). It is composed of an optical 

microscope, a Nano Hardness Tester (NHT²) head and a Ultra Nano Hardness Tester (UNHT) head. The 

UNHT head uses a differential displacement sensor to overcome almost completely the thermal drifts 

and has a high resolution in load and displacement. Table 2.1 summarizes the specifications of the two 

nanoindentation heads. A Berkovich indenter is installed on both, NHT² and UNHT. heads In Figure 

2.5, the schematic description of the NHT² and UNHT heads provided by Anton Paar is presented. 
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Figure 2.4. Experimental device: environmental chamber, NHT²/ UNHT nanoindentation  

and Peltier module (Renner, 2016). 

 
Table 2.1. Specifications of the NHT²/UNHT nanoindenter. 

Head 
Load Displacement 

Max Resolution Noise level Max Resolution Noise level 

UNHT 50 mN 0.003 µN < 0.1 µN 40 µm 0.003 nm < 0.03 nm 

NHT² 500 mN 0.02 µN < 1 µN 200 µm 0.01 nm < 0.3 nm 

 

 

Figure 2.5. Schematic design of (a) NHT and (B) UNHT of Anton Paar (Richard, 2017). 

UNHT headNHT² head

Environmental chamber Peltier module

(b)(a)
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2.3. Experimental tests 

In this section, the nanoindentation tests performed in displacement-controlled mode PP specimens 

are presented. Nanoindentation tests are carried out using Berkovich indenter tip to a maximum depth 

of ℎ𝑚𝑎𝑥 ≈ 550 nm at four different nanoindentation depth rates. Also, height tests are conducted using 

cube corner indenter tip. The indentation experiment consists of approach-load-unload segments. 

Firstly, the nanoindentation device uses an approach rate, which is not the same for all depth rates to 

detect the sample. Once the contact is detected, the indenter penetrates the sample at a quasi-constant 

nanoindentation depth rate until the maximum displacement ℎ𝑚𝑎𝑥, then during the unloading phase the 

indenter is lift off the surface with the same rate until a critical force (about 20 µN). From 20 µN to 0 

µN, the approach rate is then used. This explains why there is a setback on the unloading segments 

(arrow in Figure 2.6 and Figure 2.7). The data points are automatically recorded for the nanoindentation 

load and displacement during loading and unloading parts. In addition, experimental test at different 

nanoindentation depth rates, cyclic test, and dynamic tests but also nanoindentation at constant strain 

rate are conducted on PP material. 

2.3.1. Single rate 

Herein, experimental nanoindentation tests carried out on PP specimens using Berkovich and cube 

corner indenter tips at constant depth rate are presented. Series of four nanoindentation loading-

unloading tests at depth rates of 50, 100, 500, 1000, 5000 nm/min are performed with a Berkovich tip 

(Figure 2.6). In addition, eight nanoindentation tests are performed sample using cube corner indenter 

tip at depth rates of 12, 25, 50, 100, 500, 1000, 2000 and 2500 nm/min (Figure 2.7). 

 

Figure 2.6. Displacement-time and load-displacement experimental curves of PP at rates of 50, 500, 1000 and 

5000 nm/min using Berkovich indenter tip. 
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Figure 2.7. Displacement-time and load-displacement experimental curves of PP at rates of 12, 25, 50, 100, 500, 

1000, 2000, and 2500 using cube corner indenter tip. 

 

In Figure 2.6 and Figure 2.7, one can make the following observations: 

 For the same displacement, the nanoindentation load increases when increasing the loading 

rate. This indicates that the material could have rate dependent properties. 

 For the tests with cube corner indenter tip, from the depth rate of 500 nm/min, the maximum 

displacement ℎ𝑚𝑎𝑥 does not necessarily occur at maximum load 𝑃𝑚𝑎𝑥. This means that 

during the unloading segment the deformation and the recovery coexist. The material does 

not entirely relax during the loading segment. 

 For lower nanoindentation rate (12 nm/min) with the cube corner indenter tip, (50 nm/min) 

with the Berkovich indenter tip, the loading and unloading segments are not superimposed. 

This suggests that the material may exhibit plastic deformation. 

 

It can be concluded from the above observations that the PP polymer exhibit elastic, elasto-plastic, 

viscoelastic, and/or viscoplastic properties. These different mechanical behaviors coexist during the 

loading and unloading segments. This makes difficult to separate one property from the others. Since it 

is also impossible to determine an analytical solution for this problem, numerical approach must be 

employed. In this thesis, the FEMU method presented in Chapter 3 is chosen for the estimation of the 

mechanical properties of PP using several behavior laws, which are viscoelastic (VE) (Chapter 4), 

viscoelastic-viscoplastic (VEVP) and viscoelastic-plastic (VEP) (Chapter 5). 
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2.3.2. Several rates 

A combined rates nanoindentation experimental test is performed in displacement-controlled mode 

on PP specimen with Berkovich indenter tip to a maximum value of ℎ𝑚𝑎𝑥 ≈ 720 nm. This test is 

composed of seven steps during 𝑡𝑚𝑎𝑥 ≈ 655 s. It is accomplished by implementing multistep load-

unload cycles with various loading rates in each cycle. We used nanoindentation depth rates of 200, 250, 

500, 10, 2000, 100 nm/min during the loading segment and depth rate of 350 nm/min for the unloading 

segment. Figure 2.8 illustrates the imposed displacement and the load-displacement curves. Instead, 

several tests performed at several loading rates, this kind of tests can useful for the characterization of 

material properties from nanoindentation. 

 

Figure 2.8. Displacement-time and load-displacement of PP for the changed rate curve using  

Berkovich indenter tip. 

 

2.3.3. Cyclic loading 

An experimental test of three cycles of loading and unloading is conducted on PP specimen in load-

controlled mode using Berkovich indenter. After the approach step of 25 s, the cyclic indentations are 

done with a quadratic load increment (from 0.015 mN to 0.514 mN). The total time of the test is 145 s. 

Figure 2.9 displays the evolutions of the displacement-time and the load-displacement in cyclic 

indentations test. The comparison between the loops shows that no changes in the shape are visible. 

However, variations in the width loops can be observed and that due to the indentation under low load. 

In addition, a nanoindentation test is conducted in strain-controlled mode using strain rate ℎ̇ ℎ⁄ =

0.05 s−1 and adding sinusoidal signal over the loading time 125 s with amplitude of 2.5 nm and 
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frequency of 5 Hz (Figure 2.10). This test allows to dynamically determine the stiffness and the phase 

shift during the loading segment. 

 

Figure 2.9. Load-time and load-displacement curves for PP for the cyclic test using Berkovich indenter tip. 

 

Figure 2.10. Displacement-time and load-displacement curves for PP using Berkovich indenter tip. 

2.4. Pseudo-experimental tests 

In order to design a methodology for the identification of the intrinsic material properties, several 

pseudo-experimental nanoindentation tests are numerically generated at maximum depth of ℎ𝑚𝑎𝑥 =

500 nm. Four loading types, which are triangular, trapezoidal, exponential and sinusoidal are used. The 

triangular tests are simulated using 2D-axisymmetric FEM presented in Chapter 3 in displacement and 

load controlled modes. The following paragraphs describe these tests. These tests will be employed in 

the a priori identifiability study (Chapter 4). 
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2.4.1. Triangular 

Nanoindentation triangular tests at maximum depth of ℎ𝑚𝑎𝑥 = 500 nm and maximum time 𝑡𝑚𝑎𝑥 

are numerically carried out at eight nanoindentation depth rates ℎ̇ = 50, 100, 500, 1000, 2500, 5000, 

10000 and 20000 nm/min. Other nanoindentation tests at maximum load of 𝑃𝑚𝑎𝑥 = 0.6 mN are also 

conducted in force-controlled mode with eight nanoindentation loading rates (60, 120, 600, 1200, 3000, 

6000, 12000 and 24000 µN/min). The same time is considered for loading and unloading phases for 

each nanoindentation depth and load rate (Figure 2.11). The test times are 𝑡𝑚𝑎𝑥 = 1200, 600, 120, 60, 

24, 12, 6 and 3 s, respectively. 

 

Figure 2.11. (a) Normalized time-displacement curve. (b) Normalized time-load curve. 

 

2.4.2. Trapezoidal 

Eight nanoindentation trapezoidal tests are carried out at nanoindentation rates of 50, 100, 500, 

1000, 2500, 5000, 10000 and 20000 nm/min. The trapezoidal test consists of three stages, loading, 

holding and unloading phases: for each depth rate, the indenter penetrates the material until ℎ𝑚𝑎𝑥 =

500 nm at time 𝑡𝐿, the depth is then maintained during holding time 𝑡𝐻 = 𝑡𝐿/3, the indenter is finally 

removed with the same rate as loading part during unloading time 𝑡𝑈 = 𝑡𝐿 (Figure 2.12). The holding 

time allows to evaluate the creep function of the tested material. The test times are 𝑡𝑚𝑎𝑥 = 1400, 

700, 140, 70, 28, 14, 7 and 3.5 s, respectively. 

(b)(a)
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Figure 2.12. Normalized time-displacement curve for trapezoidal loading with 𝑡𝐿 = 𝑡𝑈. 

 

2.4.3. Exponential 

In this section, nanoindentation exponential tests are performed at depth of ℎ𝑚𝑎𝑥 = 500 nm using 

eight strain rates (ℎ̇ ℎ⁄ = 0.0104, 0.0207, 0.1036, 0.2072, 0.5179, 1.0359, 2.0722 and 4.1458 s−1). The 

loading and unloading segments have the same time for each strain rate (Figure 2.13). This loading type 

is widely used for the indentation of viscous materials. Varying the strain rate allows to show the 

dependence of the material behavior. 

 

Figure 2.13. Normalized time-displacement curve for exponential loading. 

𝑡𝐿 𝑡𝑚𝑎𝑥⁄ 𝑡𝐿 3𝑡𝑚𝑎𝑥⁄ 𝑡𝐿 𝑡𝑚𝑎𝑥⁄ = 𝑡𝑈 𝑡𝑚𝑎𝑥⁄
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2.4.4. Sinusoidal  

A monotonic loading test is conducted to a maximum depth of ℎ𝑚𝑎𝑥 = 510 nm over a loading time 

of 30 s with superimposed sinusoidal loading at an amplitude 0.01 µm and a frequency of 4 Hz. In Figure 

2.14, the time-displacement curve and a zoom showing the sinusoidal signal are displayed. This test will 

used for the identifiability analysis and compared with the triangular loading.   

 

Figure 2.14. (a) Normalized time-displacement using sinusoidal loading. (b) Zoom. 

2.5. Macro tests 

During this thesis, tensile tests have been performed using PP dumbbell-shaped specimens with 

useful zone (20 mm x 4 mm x 0.5 mm) in order to validate the identified behavior laws for material 

properties. Figure 2.15 shows the repetitive progressive loading test carried out at 2 N/s. The full-field 

strains have been measured by the technique of digital image correlation (DIC). These data are to be 

compared with the numerical results obtained using the identified behavior laws (Chapter 4.7, Chapter 

5.2 and Chapter 5.3). 

(a) (b)
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Figure 2.15. Repetitive progressive loading test performed at 2 N/s. 

 

2.6. Conclusion 

In this chapter, the nanoindentation was presented as method widely used to characterize the 

mechanical properties of bulk and thin film materials. The materials, the nanoindentation device and the 

experimental measurements were introduced. The pseudo-experimental tests allowed to design 

nanoindentation experiments that ensure the robustness of the intrinsic properties extraction were also 

detailed. 

In this thesis, we examine the mechanical properties of PP and the FEMU method presented in 

Chapter 3 is chosen. For that, the experimental tests performed on PP samples at 1000 nm/min with 

Berkovich indenter tip and 500 nm/min with Berkovich and cube corner indenter tips will be employed. 

Several behavior laws, namely viscoelastic (VE), viscoelastic-viscoplastic (VEVP) and viscoelastic-

plastic (VEP) will be investigated in order to extract reliable and intrinsic properties (Chapters 4 and 5). 

In the next chapter, the FEMU method and identifiability index will be described. 
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3.1. Introduction 

In this chapter, the finite element models (FEM) in two-dimensional and three-dimensional used to 

simulate the nanoindentation test are presented. The finite element model updating method (FEMU) 

chosen in this work for the identification of material properties using viscoelastic (VE), viscoelastic-

viscoplastic (VEVP) and viscoelastic-plastic (VEP) behaviors laws is described. A sensitivity analysis, 

which allows to determine the influence of model parameters on the nanoindentation results is detailed. 

Finally, an a priori identifiability index used to quantify the completeness of the nanoindentation data 

and design numerical experiments for better identification of materials properties is presented. 

3.2. FEM of the nanoindentation test 

The finite element method is a numerical approach widely used to analyze and predict the 

nanoindentation load-displacement curve (P-h) of the bulk and thin film materials. We have discussed 

in the first chapter the performances of this approach in nanoindentation field. In this section, the 

characteristics of the FEM used in this thesis are detailed. The convergence study of the 2D FE model 

is performed for five conical indenter tips with equivalent half angles 𝛼 = 42.28°, 57°, 60°, 65° and 

70.3° using the VE behavior law. The effect of the friction coefficient on the (P-h) curve is also 

investigated. 

3.2.1. Description of the FEM 

In this work, two parametric two-dimensional (2D) axisymmetric and three-dimensional (3D) FEM 

are constructed using the ANSYS commercial software, (FE software Ansys 16.0, 2016). In Figure 3.1, 

the 2D-axisymmetric FEM, which allows the simulation of the nanoindentation test using material that 

exhibit VE, VEVP and VEP behaviors is presented. Five conical indenter tips are used, with half angles 

of 𝛼 = 42.28°, 57°, 60°, 65 and 70.3° and are assumed to be rigid. The indenters 42.28° and 70.3° 

correspond to the axisymmetric equivalent cones of the cube corner and Berkovich indenter tips used 

experimentally (Fischer, 2002; Chen et al., 2007). The Coulomb’s friction law is used to model the 

contact between the surfaces. Linear quadrangular elements with 4 nodes (Q4 PLANE182) are used. 

The size of the modeled sample is 60 times greater than the maximum nanoindentation depth ℎ𝑚𝑎𝑥 in 

order to render realistic boundary conditions. The nodes belonging to the lower surface of the part of 

the modeled sample are clamped. The mesh size in the area right below the indenter is made finer than 

in the rest of the sample over a length 8 times greater than the ℎ𝑚𝑎𝑥, which makes possible to model the 

contact and to increase the precision of the result of the simulation. The mesh is progressively coarser 

when moving away from the indented area, making it possible to reduce the number of elements and 

thus reduce the computation time. The size of the elements 𝑚 below the indenter and the elements 

number in the model depend on a factor 𝑑 (𝑚 = ℎ𝑚𝑎𝑥 𝑑⁄ ). The test is simulated by two subsequent 
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parts: loading and unloading. During the loading part, the tip penetrates the specimen up to the ℎ𝑚𝑎𝑥; 

during the unloading part, the tip returns to the initial position. The loading and unloading times depends 

of the nanoindentation depth rate. In each simulation, the Newton-Raphson method requires 1 to 5 

iterations at each time step to converge. 

 

Figure 3.1. 2D-axisymmetric FEM of the nanoindentation test with Berkovich indenter tip with 𝑑 = 5. 

 

The 3D FEM is built in this work to achieve higher accuracy in the simulations of the 

nanoindentation test (Figure 3.2). In the 3D numerical simulations, FEM with conical and Berkovich 

indenter tips are considered. These indenter tips are modeled as rigid solids and representing a sixth of 

their complete geometries. The 3D Berkovich indenter tip corresponds to a three-sided pyramid with 

inner angle of 65.3°. Reducing the size of the 3D model to a sixth of its real volume allows a substantial 

reduction in the elements number and thus decreases the computational time. 3D 8-node hexahedral 

elements (SOLID185) and 3D 10-node tetrahedral elements (SOLID187) are used. The mesh size in the 

area right below the indenter is made finer than in the rest of the sample over a length 10 times greater 

than the ℎ𝑚𝑎𝑥. The model has about 39.000 finite elements. The nodes belonging to the lower surface 

of the part of the modeled sample are clamped. The benefit of using the 2D-axisymmetric FEM is that 

it requires less computation time compared to the 3D FEM. The results obtained using both models will 

be compared in Chapter 4 for the viscoelastic behavior. 

 

The computation time for the updating process depends on the FEM, constitutive behavior law and 

the equipment used in the calculation. The department of applied mechanics (DMA) possess a cluster 

Symmetry axis
Indenter tip

𝛼

8ℎ𝑚𝑎𝑥

60ℎ𝑚𝑎𝑥
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with 12 computation nodes: 7 bi-processors 4 cores (36 Go RAM), 1 bi-processors 6 cores (64 Go 

RAM), 2 bi-processors 8 cores (64 Go RAM) and 2 bi-processors 10 cores (96 Go RAM). For example, 

the updating process using the 2D-axisymmetric FEM with Berkovich indenter tip for the VE behavior 

lasts about 24 hours. In the case of 3D FEM, one numerical simulation takes 8 hours and is very 

expensive in terms of data storage. The VEVP and VEP behaviors will not be studied using the 3D FEM 

in this thesis. 

 

Figure 3.2. 3D FEM of the conical nanoindentation. 

 

3.2.2. Convergence study of the FE method for the VE behavior 

The convergence of the FE method is studied for the 2D-axisymmetric VE behavior using the 

several indenter tips with equivalent half angles of 42.28° (cube corner), 57°, 60°, 65° and 70.3° 

(Berkovich). In order to assess the influence of the mesh type on the simulated results, several 

simulations with refined meshes and time increments are performed using nanoindentation pseudo-

experimental triangular test with depth rate of 500 nm/min (Chapter 2) for all indenter tips. Figure 3.3 

shows the 𝑃𝑚𝑎𝑥 𝑃𝑚𝑎𝑥(𝑑 = 16)⁄  ratio for several mesh refinement when using the five equivalent half 

angles. The number of elements in the FEM and the computation using VE behavior are given in (Table 

3.1). The viscoelastic behavior law with four parameters (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 =

17.08 GPa.s is used in the simulations. In Figure 3.4, Figure 3.5 and Figure 3.6, the (P-h) curves using 

the five indenter tips and varying the refinement factor are displayed. It can be seen that the (P-h) curves 

are disturbed during loading and unloading segments when the mesh below the indenter is too coarse. 

10ℎ𝑚𝑎𝑥

60ℎ𝑚𝑎𝑥

Indenter tip
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These perturbations disappear when decreasing the size of the elements below the indenter. The small 

difference between the forces will probably affect the identifiability results. It is found that the force 

convergence is considered to be achieved from mesh with a factor 𝑑 = 10 for the cube corner indenter, 

𝑑 = 8 for the indenter with equivalent half angle 57°, 𝑑 = 7 for the indenter with 60°, 𝑑 = 6 for the 

indenter 65° and 𝑑 = 5 for Berkovich indenter. This means that increasing the half angle, the factor 𝑑 

decreases (Figure 3.7). The computation time for the simulation increases when the mesh size decreases. 

For example, a numerical simulation using mesh with 𝑑 = 16 lasts 4h. 

 

Figure 3.3. 𝑃𝑚𝑎𝑥 𝑃𝑚𝑎𝑥(𝑑 = 16)⁄  ratio for each mesh size using the five indenter tips. 

  

Table 3.1. Elements number and the computation time for the 2D VE behavior using Berkovich indenter tip. 

 Mesh 

Factor 𝑑 4 6 8 10 12 14 16 

Elements number 3300 7200 12800 20000 28000 38000 50000 

Elements in contact 

with the indenter tip 

8 11 14 18 21 25 28 

Computation time (ℎ) 0.3 0.6 1 1.5 3 3.5 4 
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Figure 3.4. VE-Nanoindentation curves performed at 500 nm/min. (a) cube corner indenter tip 42.28°.  

(b) Indenter tip with half angle 57°. 

 

Figure 3.5. VE-Nanoindentation curves performed at 500 nm/min. (a) Indenter tip with half angle 60°. 

 (b) Indenter tip with half angle 65°. 

 

(b)(a)

(b)(a)
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Figure 3.6. VE-Nanoindentation curves performed at 500 nm/min using Berkovich indenter tip 70.3°. 

 

Figure 3.7. Factor 𝑑 versus the indenter tip half angle 𝛼. 

 

3.2.3. Friction coefficient effect  

In this section, the influence of friction coefficient 𝜇 on the load-displacement curve has been 

investigated with different indenter geometries such as cube corner, Berkovich, spherical or Vickers 

indenter tips (Johnson, 1985; Bucaille et al., 2003; Mata and Alcala, 2004; Huang and Pelegri, 2007). 

In Figure 3.8, we present the load-displacement curves obtained with friction coefficient values vary 

from 0.1  to 0.5 using nanoindentation triangular test performed at 500 nm/min with cube corner and 
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Berkovich indenter tips in the VE case. It is observed that le friction coefficient does not have a 

significant effect on the nanoindentation results. The influence of this parameter during nanoindentation 

measurement is considered negligible. In our work, the friction coefficient is set to 0.2. 

 

Figure 3.8. Effect of the friction coefficient on the nanoindentation force using cube corner and Berkovich 

indenter tips. 

 

After presenting the 2D-axisymmetric and 3D FEM of the nanoindentation test, the Finite Element 

Model Updating method (FEMU) which is employed for the identification of material properties is 

detailed in the next section. 

3.3. FEM updating process 

In this section, the FEMU method used for the determination of material properties is presented. 

From a starting point 𝛉(0) for the optimization algorithm, the method allows to estimate one or more 

parameters values �̂� which minimize the difference between the force 𝑃(𝑡; 𝛉) resulting from the FE 

simulation and the experimental data 𝑃 𝑥𝑝(𝑡). The inverse problem is formulated by the following 

equation: 

�̂� = argmin
𝛉∈𝚯

 ω [𝑃(𝑡; 𝛉), 𝑃 𝑥𝑝(𝑡)] (3.1) 

where ω is the objective function. 

 

70.3 

42.28 
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Once they lead to a good agreement between the numerical results and the experimental data, the 

procedure is stopped. In order to identify the material parameters for different behavior laws from 

nanoindentation response 𝑦(𝑡), the updating process of the numerical model based on the experimental 

(or pseudo-experimental) data is used. The computation time for an updating process depends on the 

starting point 𝛉(0) and the number of parameters in the behavior law. 

3.3.1. Objective function 

The objective function ω is defined to quantify the difference between the numerical model and the 

experimental (or pseudo-experimental) data. When the nanoindentation test is displacement-controlled 

mode, the objective function is defined as (Qasmi et al., 2004): 

ω(𝛉) =
1

2𝑇
∑ [

𝑃𝑘(𝛉) − 𝑃𝑘
 𝑥𝑝

𝑃𝑚𝑎𝑥
 𝑥𝑝 ]

2𝑇

𝑘=1

=
1

2
𝐫T . 𝐫 (3.2) 

𝑇 = 1000 is the number of data points for each nanoindentation test, i.e. number of measured force 

values 𝑃𝑘(𝛉) = 𝑃(𝑡𝑘; 𝛉) and 𝑃𝑘
 𝑥𝑝

= 𝑃 𝑥𝑝(𝑡𝑘), 𝑃𝑚𝑎𝑥
 𝑥𝑝

 is the maximum of the experimental 

nanoindentation force and 𝐫 is the residues vector which represent the difference between the numerical 

and experimental responses. 𝑇 is sufficiently large so that it does not influence the reported results. The 

period ∆𝑡 = 𝑡𝑘+1 − 𝑡𝑘 depends on the nanoindentation rate. 

Note that if the nanoindentation test is force-controlled, the objective function is formulated using 

the displacement response ℎ(𝑡; 𝛉), instead of 𝑃(𝑡; 𝛉). 

 

As mentioned in chapter 1, many authors showed that using single nanoindentation P-h curve does 

not lead to a unique solution of the inverse problem (Alkorta et al., 2005b; Kang et al., 2012; K.K. Tho 

et al., 2004) and that additional information is required (Bolzon et al., 2011, 2004; Kang et al., 2018). 

Consequently, combination of several nanoindentation tests performed at several nanoindentation rates 

with the same indenter tip and dual nanoindentation tests from the five indenter tips is used during this 

work, the total objective function is given by the sum of the objective functions of all tests. 

ω(𝛉) = ∑ [
1

2𝑇
∑ (

𝑃𝑘
( )

(𝛉) − 𝑃𝑘
 𝑥𝑝(𝑒)

𝑃𝑚𝑎𝑥
 𝑥𝑝(𝑒) )

2𝑇

𝑘=1

]

𝑛

 =1

=
1

2
𝐫T . 𝐫        𝐫: 𝑇 × 𝑛 (3.3) 

where 𝑛 is the number of nanoindentation tests. 

 

3.3.2. Minimization algorithm 

The objective function (Equation 3.2 and 3.3) is minimized by a local numerical optimization 

technique based on the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) 

implemented in MIC2M software (Modélisation et Identification du Comportement Mécanique non 
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linéaire des Matériaux) (F. Richard, 2000). This algorithm is widely used in the identification of material 

properties using nanoindentation technique (Qasmi et al., 2004; Gamonpilas et al., 2010; Clément et al., 

2013; Stan and Fetecau, 2013). It is an improvement of the classic Gauss-Newton method for solving 

nonlinear least-squares regression problems. The main advantage of this technique is the robustness and 

the rapid convergence (Richard, 2017). 

Levenberg-Marquardt is an iterative nonlinear minimization method. Initiated at the starting point 

𝛉(𝑘) = 𝛉(0), it is desired to find the vector 𝛉(𝑘+1) = 𝛉(𝑘) + d𝛉 that best satisfies the estimated solution. 

Hence, at each step, it is required to determine the increment 𝐡 = d𝛉 to approach the solution. A function 

ω̃ is iteratively minimized, which approaches ω in the neighborhood of 𝛉 = 𝛉(𝑘): 

ω̃ = ω(𝛉) + 𝐠T 𝐡 +
𝟏

𝟐
𝐡T 𝐇𝐡 (3.4) 

where 𝐠T  is the transpose of the gradient of ω defined as: 

𝑔𝑖 =
𝜕ω

𝜕𝜃𝑖
                𝑖 = 1,… , 𝑛𝜃 (3.5) 

where 𝑛𝜃 is the number of the parameters and 𝐇 is the hessian of the objective function ω in 𝛉: 

𝐻𝑖𝑗 =
𝜕2ω

𝜕𝜃𝑖𝜕𝜃𝑗
|
𝛉

                𝑖 = 1, … , 𝑛𝜃 (3.6) 

The quadratic approximation (Equation. 3.4) is minimized when its gradient is zero. This gives the 

expression of the increment 𝐡: 

𝐡 = −𝐇−1𝐠 (3.7) 

The Gauss-Newton method facilitates the resolution and accelerates the descent to the optimized 

value of the objective function ω. Using single test, the coefficients of the jacobian matrix 𝐉 of the 

objective function ω are given by: 

𝐽𝑘𝑗 =
𝜕𝑟𝑘
𝜕𝜃𝑗

=
1

𝑠𝑐𝑘

𝜕𝑃𝑘

𝜕𝜃𝑗
               𝑘 = 1, … , 𝑇;  𝑗 = 1, … , 𝑛𝜃 (3.8) 

where 𝑠𝑐𝑘 is a scale factor associated to the force 𝑃𝑘(𝛉). If an absolute uncertainty is considered on each 

force increment 𝑃(𝑡𝑘), this factor can be written as (Richard, 2017): 

𝑠𝑐𝑘 = √𝑇 |max𝑃(𝑡𝑘)
𝑘             

| (3.9) 

The gradient can be defined as follows: 

http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/G/GaussNewtonMethod
http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/G/GaussNewtonMethod
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𝐠 = 𝐉T 𝐫 (3.10) 

and the components are: 

𝑔𝑖 = ∑
𝜕𝑟𝑘
𝜕𝜃𝑖

𝑟𝑘

𝑇

𝑘=1

= ∑
1

𝑠𝑐𝑘

𝜕𝑃𝑘

𝜕𝜃𝑖
𝑟𝑘

𝑇

𝑘=1

           𝑖 = 1, … , 𝑛𝜃 (3.11) 

For several nanoindentation tests, the equation 3.11 becomes: 

𝑔𝑖 = ∑ ∑
𝜕𝑟𝑘

( )

𝜕𝜃𝑖
𝑟𝑘

( )

𝑇

𝑘=1

𝑛

 =1

= ∑ ∑
1

𝑠𝑐𝑘
( )

𝑇

𝑘=1

𝑛

 =1

𝜕𝑃𝑘
( )

𝜕𝜃𝑖
𝑟𝑘

( )
           𝑖 = 1, … , 𝑛𝜃 (3.12) 

The approximation of the gradient 𝑔 and the hessian matrix 𝐇 can be obtained from the Gauss-

Newton matrix 𝐆: 

𝐇 ≈ 𝐆 = 𝐉T 𝐉 (3.13) 

Using the finite difference scheme, the components of the matrix 𝐇 can be formulated as: 

𝐻𝑖𝑗 ≈ ∑ ∑ [
1

𝑠𝑐
𝑘(𝑒)
2

𝜕𝑃𝑘
( )

𝜕𝜃𝑖

𝜕𝑃𝑘
( )

𝜕𝜃𝑗
]

𝑇

𝑘=1

𝑛

 =1

 (3.14) 

If the nanoindentation test (𝑒) is force-controlled, the components of the matrix 𝐇 are formulated 

using the displacement vector ℎ𝑘
( )

 instead of 𝑃𝑘
( )

. 

 

This approximation is valid in the following cases: 

 ω is low in the neighborhood of convergence, because the Gauss-Newton matrix becomes close 

to the Hessian. 

 ω is inhomogeneous, which amounts to assuming that the Gauss-Newton matrix depends on the 

point 𝛉. 

In the case where these conditions are not satisfied, badly conditioned matrices can be obtained. In 

order to improve the convergence, Marquardt (Marquardt, 1963) used a damping parameter 𝜆 proposed 

by Levenberg (Levenberg, 1944) for the least squares problems. Their strategy is based on the division 

of the value of 𝜆  by 10 in each iteration and increase it by successive multiplication by 10 when the 

objective function does not decrease. 

𝐡 = −[𝐇 + 𝜆𝐈]
−𝟏

𝐠 

𝐻𝑖𝑗 =
𝐻𝑖𝑗

√𝐻𝑖𝑖𝐻𝑗𝑗
 ; 𝑔𝑖 =

𝑔𝑖

√𝐻𝑖𝑖
            𝑖, 𝑗 = 1, … , 𝑛𝜃 

(3.15) 

http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/G/GaussNewtonMethod
http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/G/GaussNewtonMethod
http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/G/GaussNewtonMethod
http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Glossary/GlossaryTwo/G/GaussNewtonMethod


FEM updating process  

 

71 

 

Therefore, the increment 𝐡 is obtained as follows: 

ℎ𝑖 =
ℎ𝑖

√𝐻𝑖𝑖

 (3.16) 

 

In order to avoid that the vector 𝛉 + 𝐡 leaves the imposed domain 𝚯, an additional condition is 

taken into account. It consists to multiply 𝜆 by 10 when (𝛉 + 𝐡) ∉ 𝚯.  The implementation of the 

algorithm consists of iteratively repeating the following steps: 

 Choose a starting point 𝛉; 

 Calculate the objective function ω = ω(𝛉); 

 Let 𝜆 = 10−3, ‖d𝛉‖ = dω = 0, σ = 10−3 (data uncertainty); 

 Repeat the computation as long as ‖d𝛉/𝛉‖ > 10−3 and |dω|/ω > 10−3 or ω > σ2𝑁𝑣/2; 

I. Update the jacobian matrix 𝐉(𝛉); 

II. Update the hessian 𝐡 and the parameter 𝜆; 

III. Calculate the objective function ω = ω(𝛉 + 𝐡); 

IV. Evaluate ω, If ω(𝛉 + 𝐡) > ω(𝛉) or (𝛉 + 𝐡) ∉ 𝚯: 𝜆 = 10𝜆, return to II; 

V. 𝜆 = 𝜆/10, d𝛉 = 𝐡, dω = ω(𝛉 + 𝐡) − ω(𝛉); 

VI. 𝛉 = 𝛉 + d𝛉, ω = ω(𝛉); 

 Stop if the algorithm leads �̂� = 𝛉. 

 

 

The principal advantage of this algorithm is the convergence speed. It is very important to start from 

an initial point, which is close to the solution to identify because the algorithm may converge to a local 

minimum if it begins far. The uniqueness of this solution is one of the major issues in nanoindentation 

field. 

3.3.3. Parameters uncertainties 

The uncertainty ∆𝜃𝑗 on the estimated value of the parameter 𝜃𝑗 after the updating process using 

single nanoindentation test can be obtained from the following equation in 𝜃𝑗 = 𝜃𝑗 : 

∆𝜃𝑗

𝜃𝑗
= √2ω[�̅�−1]𝑗𝑗 (3.17) 

where �̅� is a dimensionless pseudo-hessian matrix computed by forward finite difference method (Pac 

et al., 2014; Richard et al., 2013). For single test, the components of �̅� are given as: 

�̅�𝑖𝑗 =
1

𝑇

𝜃𝑖𝜃𝑗

𝑃𝑚𝑎𝑥
2 ∑

𝜕𝑃𝑘(𝛉)

𝜕𝜃𝑖

𝜕𝑃𝑘(𝛉)

𝜕𝜃𝑗

𝑇

𝑘=1

      𝑖, 𝑗 = 1, … , 𝑛𝜃 (3.18) 
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where 𝑃𝑚𝑎𝑥 is the maximum of the numerical nanoindentation force. 

In the case of an updating process using several nanoindentation tests, the uncertainty becomes: 

∆𝜃𝑗

𝜃𝑗
= √

2

𝑛
ω[�̅�−1]𝑗𝑗 (3.19) 

and the pseudo-hessian matrix �̅� is calculated from the following equation:  

�̅�𝑖𝑗 = ∑ [
1

𝑇

𝜃𝑖𝜃𝑗

(𝑃𝑚𝑎𝑥
( )

)
2 ∑

𝜕𝑃𝑘
( )

(𝛉)

𝜕𝜃𝑖

𝜕𝑃𝑘
( )

(𝛉)

𝜕𝜃𝑗

𝑇

𝑘=1

]

𝑛

 =1

      𝑖, 𝑗 = 1, … , 𝑛𝜃 (3.20) 

 

In order to illustrate the updating process, experimental data from the nanoindentation test realized 

on PP at 1000 nm/min with Berkovich indenter tip using the triangular loading are used in Equation 3.1 

for the viscoelastic behavior law (𝐸, 𝑐1, 𝜈, 𝜂). A starting point 𝛉(01) is chosen to initialize the 

minimization algorithm (Table 3.2) and to solve the minimization problem. This procedure requires 

about 40 FE simulations (height iterations and five simulations for each one). Figure 3.9 illustrates the 

convergence of the objective function. The evolution of the four parameters during the minimization 

process is shown in Figure 3.10. The P-h curves obtained using the starting point and the estimated 

solution are plotted in Figure 3.11. The curve obtained with the estimated solution is in good agreement 

with the experimental one. 

 

Table 3.2. Estimated parameters set �̂� (Equation 3.1) and uncertainties (Equation 3.17). 

 Parameter Starting value Estimated value Uncertainty 

𝑗 𝜃𝑗 𝜃𝑗
(01)

 𝜃𝑗 ∆𝜃𝑗/𝜃𝑗  (%) 

1 𝐸 (GPa) 1.50 1.63 7.0 

2 𝑐1 (GPa) 12.25 1.05 6.0 

3 𝜈 0.4 0.13 90 

4 𝜂 (GPa. s) 65 18.56 15 

  4.59 × 10−2 1.24 × 10−5  
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Figure 3.9. Convergence of the objective function √2𝜔 during the updating process. 

 

Figure 3.10. Evolution of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process using starting point 

𝛉(01) = (𝐸 = 1.5 GPa, 𝑐1 = 12.25 GPa,  𝜈 = 0.4,  𝜂 = 65 GPa.s). 
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Figure 3.11. Experimental (ℎ̇ = 1000 nm/min) and simulated nanoindentation curves for the starting point 

𝛉(01) = (𝐸 = 1.5 GPa, 𝑐1 = 12.25 GPa,  𝜈 = 0.4,  𝜂 = 65 GPa.s) and the estimated solution �̂�(1) = (𝐸 =

1.63 GPa, 𝑐1 = 1.05 GPa,  𝜈 = 0.13,  𝜂 = 18.56 GPa.s). 

 

Several updating process are also performed using VE, VEVP and VEP behavior laws and the 

results will be presented in Chapter 4 and 5. The present study pretends to investigate the stability of the 

material properties obtained by using the updating process of the FEM on the nanoindentation response. 

The uniqueness of the parameters of VE, VEVP and VEP behaviors laws will be studied (Chapter 4 and 

5). The parameters uncertainties for different behavior laws will be also quantified. These uncertainties 

are an important indicator of the parametric identifiability after the updating process. Indeed, the results 

can be disappointing despite the very good agreement between estimated solution and the experimental 

data. The completeness of data contained in the nanoindentation force will be quantified by an 

identifiability index that allows to know a priori the better identifiability of the material properties. In 

the next section, sensitivity analysis which allows to quantify the effect of the behavior law parameters 

on the nanoindentation response 𝑦(𝑡) is presented. 

3.4. Sensitivity analysis 

The sensitivity analysis plays an important role in the identification procedures. It is usually 

performed to evaluate how, and to which extent, variations of the behavior law input data (material 

parameters values for example) influence the output data (in our case the force or displacement response 

as a function of time). It also assesses the parameters identifiability and provides a basis for the design 

of the experiments. In nanoindentation field, Bolzon et al. and Bocciarelli et al. used the sensitivity 

analysis to show the accuracy of the approach proposed for the identification of the material parameters 

from the nanoindentation curves and the imprint mapping (Bolzon et al., 2004; Bocciarelli et al., 2005; 

�̂�(1)

𝛉(01)
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Bocciarelli and Bolzon, 2007). Magnenet et al. studied the sensitivity of the Drücker–Prager elasto-

plastic behavior using nanoindentation load-displacement curves performed with five indenter shapes: 

spherical, conical, cylindrical, tetrahedral and pyramidal (Magnenet et al., 2008). Three sensitivity 

analysis methods are generally used in mechanical problems namely, the Direct Differentiation Method 

(DDM) (Huang and Lu, 2007), the Adjoint State Method (ASM) (Zhang et al., 2007) and the Finite 

Difference Method (FDM) (Bolzon et al., 2004; Magnenet et al., 2008) which is empolyed in this work. 

In the case of single nanoindentation test, the sensitivity matrix 𝐒 whose coefficients 𝑆𝑘𝑗 describe 

the sensitivity of the nanoindentation force 𝑃𝑘 to the parameter 𝜃𝑗. This matrix has dimension of 𝑇 × 𝑛𝜃 

and is obtained by considering 𝑛𝜃 sensitivity vectors 𝐒𝑗: 

𝐒 = [𝐒1  𝐒2  𝐒3  …  𝐒𝑛𝜃
] (3.21) 

Using a finite difference scheme, the components of sensitivity vectors 𝐒𝑗 are given by (for a single 

nanoindentation test): 

𝑆𝑘𝑗 =
𝜃𝑗

𝑃𝑚𝑎𝑥

𝜕𝑃𝑘

𝜕𝜃𝑗
≈

(1 + 휀)𝜃𝑗

𝑃𝑚𝑎𝑥

𝜕𝑃𝑘

𝜕𝜃𝑗
 (3.22) 

where 𝑃𝑘 is the nanoindentation force at time 𝑡𝑘, 𝜃𝑗(𝑗 = 1, … , 𝑛𝜃) are the number of the material 

parameters which depends on the behavior law, 휀 is the perturbation and 𝑃𝑚𝑎𝑥 is the maximal 

nanoindentation force. 

The sensitivity 𝛿𝑗 of the nanoindentation force to the parameter 𝜃𝑗 can be computed as: 

𝛿𝑗 =
𝜃𝑗

𝑃𝑚𝑎𝑥

√
1

𝑇
∑ (

𝜕𝑃𝑘

𝜕𝜃𝑗
)

2𝑇

𝑘=1

 (3.23) 

When the nanoindentation test is force-controlled, the same analysis is performed using the 

displacement response ℎ(𝑡; 𝛉), instead of 𝑃(𝑡; 𝛉). 

 

In the case of combination of several nanoindentation tests, the Equation 3.22 and 3.23 become: 

𝑆𝑘𝑗 = ∑
𝜃𝑗

𝑃𝑚𝑎𝑥
( )

𝜕𝑃𝑘
( )

𝜕𝜃𝑗

𝑛

 =1

≈ ∑
(1 + 휀)𝜃𝑗

𝑃𝑚𝑎𝑥
( )

𝜕𝑃𝑘
( )

𝜕𝜃𝑗

𝑛

 =1

 (3.24) 

𝛿𝑗 = ∑
𝜃𝑗

𝑃𝑚𝑎𝑥
( )

√
1

𝑇
∑ (

𝜕𝑃𝑘
( )

𝜕𝜃𝑗
)

2𝑇

𝑘=1

𝑛

 =1

 (3.25) 
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As mentioned in the section 3.2.2, the convergence is obtained using mesh size with a factor 𝑑 =

10 for the cube corner indenter and 𝑑 = 5 for Berkovich indenter tip. In order to investigate the effect 

of the relative perturbation 휀, a sensitivity analysis to the four parameters of the VE behavior law 

(𝐸, 𝑐1, 𝜈, 𝜂) using the pseudo-experimental triangular test realized at 500 nm/min in displacement-

controlled mode for cube corner and Berkovich indenter tips with several values of 휀 ∈ [10−1, 10−3] 

is performed. The value of each parameter is  changed by a relative perturbation 휀 with respect to its 

initial value. The computation time of this analysis is 7.5 hours for the cube corner indenter tip and 2.5 

hours for the Berkovich one. In Figure 3.12 and Figure 3.13, the sensitivity vectors of the 

nanoindentation force to the behavior law parameters calculated by finite difference (Equation 3.22) 

using the solution (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s) and four perturbation 

values are presented. It can be observed that the noise amplitude decreases when the 휀 value increases 

and there is gaps between the vectors. For example, the difference between the maximum values of the 

sensitivity vectors is about 0.035 for 𝑐1 and 0.011 for 𝜂 for both indenter tips. It is essential to investigate 

if these differences and the noise amplitude will affect or no the identifiability results. 

 

Figure 3.12. Effect of the relative perturbation 휀 on the sensitivity results using the solution (𝐸 = 1.47 GPa, 𝑐1 =

0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s) with cube corner indenter tip. 
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Figure 3.13. Effect of the relative perturbation 휀 on the sensitivity results using the solution (𝐸 = 1.47 GPa, 𝑐1 =

0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s) with Berkovich indenter tip. 

 

In this paragraph, the smoothing procedure used to examine the effect of the noise amplitude on the 

identifiability results is described. The local regression method (loess) based on the weighted linear least 

squares and second-degree polynomial model is employed. This method requires a smoothing parameter 

which defines a window of neighboring points to include in the smoothing computation for each data 

point, less than or equal to 1. A large smoothing parameter increases the smoothness but decreases the 

resolution of the smoothed data set, while a small smoothing parameter decreases the smoothness but 

increases the resolution of the smoothed data set. In Figure 3.14, the sensitivity vectors computed using 

nanoindentation test performed at 1000 nm/min with Berkovich indenter tip for the solution (𝐸 = 1.47 

GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s) with relative perturbation 휀 = 10−3 are plotted. The 

smoothing parameter used in this case is 0.08. As we can see, these vectors are disturbed during the two 

last third of the loading segment and the two first third of the unloading segment. These noises are 

mainly caused by numerical problems due to the contact between the indenter tip and the sample. 
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Figure 3.14. Sensitivity vectors of nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading segments before and after smoothing using nanoindentation test performed at 1000 nm/min with 

Berkovich indenter tip for the solution (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s). 

 

In Figure 3.15, we display the sensitivity vectors of the nanoindentation force to the four parameters 

calculated using the nanoindentation tests carried out at 500 nm/min with equivalent cube corner and 

Berkovich indenter tips for the same solution. In this analysis, a relative perturbation 휀 = 10−3 is 

considered. The local regression method (loess) is then used to smooth the vectors. The smoothing 

parameters used in this case are 0.16 for the cube corner indenter and 0.1 for the Berkovich indenter. It 

is observed that the noise amplitude is more important for cube corner indenter tip than Berkovich one. 

 

Figure 3.15. Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading after and before smoothing using nanoindentation test performed at 500 nm/min for the solution (𝐸 =

1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s). (a) cube corner indenter tip. (b) Berkovich indenter tip. 
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In this work, the sensitivity analysis is firstly performed using the VE behavior law (Chapter 4) in 

order to evaluate the effect of the parameters on the nanoindentation data from several loading types 

such as triangular, trapezoidal, exponential and sinusoidal with the five conical indenter tips. Then the 

effect of the parameters of the VEVP and VEP behavior laws is also examined (Chapter 5). The 

identifiability index based on the sensitivity matrix is presented in the next section. 

3.5. Identifiability index 

Herein, an identifiability index proposed to quantify the reliability of the behavior law parameters 

after or before the updating process of the nanoindentation test is presented. In this context, it is clear 

that an ill-posed inverse problem can hardly provide a unique solution. This problem was previously 

studied in plastic and elasto-plastic behaviors (Cao and Lu, 2004b; Phadikar et al., 2013). In this thesis, 

an identifiability index called 𝐼-index, developed by Richard et al (Richard et al., 2013) will be used to 

quantify the completeness of data contained in the nanoindentation data by conditioning the matrix �̅� 

(Equation 3.17 and 3.19). This 𝐼-index appears to be convenient to explore and investigate what are the 

optimal loading conditions to determine the parameters of the material whatever the constitutive law. 

The analysis can be carried out before and after the updating process and therefore does not necessarily 

require the experimental measurements (only pseudo-experimental loading). The 𝐼-index is a measure 

of the conditioning of the inverse problem and is defined as (Richard et al., 2013; Pac et al., 2014): 

𝐼 = log10 (
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
) > 0 (3.26) 

where 𝜆𝑚𝑎𝑥 and  𝜆𝑚𝑖𝑛 are the maximum and minimum eigenvalue of the matrix �̅� at the considered 

calculation point 𝛉, respectively. 

 

The lower the 𝐼-index, the better conditioned is the matrix, which means its inverse can be 

calculated with great accuracy. Contrarily, if the 𝐼-index is large, the matrix is considered as ill-

conditioned. Some  𝐼-index values defining practical limits can be found in the literature (Gujarati, D.N, 

1988). This procedure allows to distinguish the potentially identifiable combinations (𝐼 ≤ 2) of material 

parameters from those which are not (𝐼 > 3).  

In Figure 3.16, we graphically display these limits through an example with two parameters (𝜃1, 𝜃2). 

The red ellipse (Figure 3.16b) represents the identification zone described by the following equation 

(Renner, 2016): 

𝜆1𝑥1
2 + 𝜆2𝑥2

2 = 2𝜔(�̂�) (3.27) 

where 𝜆1 and  𝜆2 are the eigenvalues of the matrix �̅�(𝜆1 ≤ 𝜆2). The length of long half-axis 𝑎 and the 

length of short half-axis 𝑏 of the ellipse are defined as: 
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{
 
 

 
 

𝑎 = √
2𝜔(�̂�)

𝜆1

𝑏 = √
2𝜔(�̂�)

𝜆2

 (3.28) 

 

Figure 3.16. (a) Evolution of the function 2𝜔 as function of ∆𝛉. (b) Projection function in the space (∆𝜃1, ∆𝜃2) 

(Renner, 2016). 

 

The limits of the 𝐼-index depend on the shape of the projection function 2𝜔(�̂�) in the space 

(∆θ1, ∆θ2). In the case where 𝑎 = 𝑏, the projection function correspond to a circle and better 

identifiability is obtained (Figure 3.17a). It can be observed that the longer the ellipse, the identification 

of the parameter becomes difficult (Figure 3.17b) or impossible (Figure 3.17c). These 𝐼-index values 

correspond to the ratio between relative uncertainties over two estimated parameters up to 10 (𝐼 = 2) 

and 30 (𝐼 = 3) if an updating process was performed. 

2𝜔 �̂�

∆𝛉 �̂�
∆𝛉

∆𝜃2

∆𝜃1

2𝜔
±∆𝜃1

±∆𝜃2

2𝜔 �̂�

𝜆1
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Figure 3.17. Projection function 2𝜔(�̂�) in the space (∆𝜃1, ∆𝜃2) for different values of the 𝐼-index (Richard, 

2017). 

 

For the VE behavior law, the 𝐼-index is calculated using the nanoindentation pseudo-experimental 

triangular test performed at 500 nm/min with cube corner and Berkovich indenter tips to investigate the 

effect of the relative perturbation 휀. Figure 3.18 presents the results for three combinations of parameters 

calculated using the solution (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s) with both 

indenter tips. It can be observed that in the interest zone (𝐼 < 3) the relative perturbation 휀 does not have 

significant influence on the 𝐼-index values. The same study is performed for the VEVP and VEP 

behavior laws to determine an acceptable perturbation value. 

 

Figure 3.18. 𝐼-index versus the relative perturbation 휀 using the solution (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4,

𝜂 = 17.08 GPa. s) for three combinations of parameters, (a) Cube corner indenter tip. (b) Berkovich indenter tip. 
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In Figure 3.19, the 𝐼-index of three combination of VE parameters using the numerical test 

performed at 1000 nm/min with Berkovich indenter tip are displayed. In this study, a relative 

perturbation 휀 = 10−3 is considered. The impact of smoothing procedure on the 𝐼-index results is 

studied. It can be seen that in the interest zone (𝐼 < 3), the smoothing procedure increase 𝐼-index values 

when only the loading segment is used. The same 𝐼-index is obtained with or without smoothing 

procedure when both loading and unloading segments are considered. It can be concluded that this 

procedure does not change the 𝐼-index results in the case of VE behavior. The same study is performed 

for the VEVP and VEP behavior laws. 

 

Figure 3.19. Evolution of the 𝐼-index for the nanoindentation test performed at 1000 nm/min for the solution 

(𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa. s) with 휀 = 10−3. 

The stability of the obtained solutions will be studied for each behavior through this 𝐼-index. It can 

be used to design the nanoindentation experimental tests to be performed in order to ensure a better 

significance to the parameters estimated from the updating process. A parametric identifiability analysis 

will be presented in Chapter 4 and 5 to quantify the reliability of the estimated parameters using the VE, 

VEP and VEVP behavior laws. 

 

Interest zone (𝐼 < 3) 
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3.6. Conclusion 

In this chapter, the 2D-axisymetric and 3D FEM, which have been used for the modeling of the 

nanoindentation test, are described. The convergence study of the 2D-axisymetric FEM is performed for 

the VE behavior in order to ensure the convergence of the numerical solution for all indenter geometries 

which are equivalent half angles 𝛼 = 42.28° (cube corner), 57°, 60°, 65° and 70.3° (Berkovich). 

The finite element model updating method (FEMU) used in the identification procedure of the 

material properties from the nanoindentation load-displacement curves is detailed. The sensitivity of the 

nanoindentation data to the VE behavior law parameters and the effect of the relative perturbation are 

studied. 

The identifiability index allows to measure the richness of the information contained in the 

nanoindentation curves and it also allows to examine the stability of the identified parameters. Despite 

it has been shown in literature that additional information may yield more reliable identification results, 

this solution has not been fully investigated for different material behavior, motivating the study of the 

identifiability of the parameters using different nanoindentation responses. Besides, in spite of the 

considered information, the identifiability seems to have a close relationship with the nanoindentation 

rate and the indenter tip geometry. Moreover, different loading type (i.e., triangular, trapezoidal, 

exponential or sinusoidal) need to be compared to better understand the issue, since the parameters 

identifiability may be influenced not only by the measured experimental response, but also by the way 

the numerical simulation is performed. In conclusion, the identifiability analysis carried out in this work 

will answer the following questions: 

 What is the effect of the nanoindentation rate on the identifiability result ? 

 Does the loading type and indenter equivalent half angle has an influence on the identifiability 

of the behavior law parameters ? 

 How does the identifiability of parameters differ if several nanoindentation tests are taken into 

account ? 

 Finally, does the dual or plural indenter approach allows to determine unique solution of the 

inverse problem ? 

This chapter summarizes all the main factors that need consideration in order to accurately extract 

the mechanical properties of materials using the nanoindentation technique. In the next chapter, we will 

employ the FEMU method together with identifiability index to estimate and study the stability of the 

viscoelastic properties determined from nanoindentation data. 
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4.1. Introduction 

In this chapter, the stability of the viscoelastic properties of polypropylene (PP) extracted by the 

Finite Element Model Updating (FEMU) of the nanoindentation test described in the previous chapter 

is investigated. A four-parameter viscoelastic (VE) behavior law, which has been implemented in the 

2D axisymmetric and 3D FEM is described. The updating process using a nanoindentation experimental 

triangular test conducted at depth rate 1000 nm/min with several starting points of the minimization 

algorithm is presented. The effect of the nanoindentation rate, apex angles of the indenter and the 

measurement noise on the identifiability are numerically studied. Thus, the link between the 

identifiability index (𝐼-index) presented in Chapter 3.5 and the dissipation energy is shown. In order to 

design an experimental procedure that leads to a unique solution for the inverse problem, combinations 

of nanoindentation tests and apex angles are carried out through the 𝐼-index. Finally, an updating process 

using two nanoindentation experimental tests carried out at 500 nm/min with cube corner and Berkovich 

indenter tips is performed. 

4.2. Viscoelastic behavior law 

In this section, an isotropic linear VE law with constant Poisson's ratio 𝜈 to model the behavior of 

PP is considered. This behavior law is provided in ANSYS FE software. The Helmholtz free energy 𝜓 

(Lemaitre and Chaboche, 1994) can be written as:  

 
𝜓 =

1

2𝜌
(𝛆 : 𝐂: 𝛆 + 𝛂1: 𝐂1: 𝛂1) (4.1) 

where 𝛆  is the elastic strains tensor, 𝛂1 is the internal variables tensor representing the anelastic 

phenomena, 𝜌 is the density, 𝐂(𝐸, 𝜈) and 𝐂1(𝑐1, 𝜈) are the elastic and anelastic fourth-order stiffness 

tensors. 𝐸 and 𝑐1 are the instantaneous modulus, and the anelastic modulus, respectively; the symbol “:” 

stands for the tensor inner product. The state laws derive from this energy: 

 
𝛔 = 𝜌

∂𝜓

∂𝛆 
  and   𝐗1 = 𝜌

∂𝜓

∂𝛂1
 (4.2) 

where 𝛔  is the Cauchy stress tensor and 𝐗1 is the anelastic stress tensor. 

The dissipation potential 𝛺 is defined as: 

 
𝛺 =

𝐸

2𝜂
(𝛔 − 𝐗1): 𝐒: (𝛔 − 𝐗1) (4.3) 

where 𝜂 is the viscosity coefficient in the elastic domain and 𝐒 the elastic compliance (fourth-order) 

tensor such as 𝐒: 𝐂 = 𝐈 (identity tensor). The derivatives of this potential 𝛺 give the internal variables 

evolutions: 
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�̇�𝑎𝑛 =

∂𝛺

∂𝛔
  and  �̇�1 = −

𝛛𝛺

𝛛𝐗1

 (4.4) 

where 𝛆𝑎𝑛 is the anelastic strain which is defined as the difference between the total 𝛆 and elastic 𝛆  

strains. 

 𝛆𝑎𝑛 = 𝛆 − 𝛆  (4.5) 

This linear viscoelastic behavior law with constant Poisson's ratio is controlled by four material 

parameters, which define the parameter set 𝛉 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) = (𝐸, 𝑐1, 𝜈, 𝜂). 

 

From a rheological point of view, the behavior chosen here is, for elastic contribution, a linear 

spring whose stiffness is 𝐸 and Poisson’s ratio 𝜈, and for anelastic contribution (delayed elasticity), a 

classical Kelvin-Voigt model which consists of a linear viscous damper of viscosity 𝜂 and a linear spring 

of stiffness 𝑐1 with internal stress X1 placed in parallel (Figure 4.1).  

 

Figure 4.1. VE rheological model. 

 

4.3. Non-uniqueness of the solutions  

The problem of non-uniqueness of the inverse problem solution of the viscoelastic properties of PP 

estimated from a single nanoindentation experimental triangular load-unload test is investigated using 

FEMU. For that, the 2D-axisymmetric FEM of nanoindentation test presented in Chapter 3 is used. The 

obtained P-h curves are compared with experimental results and the parameters uncertainties are 

computed for each starting point of the updating process. In addition, the sensitivities of the parameters 

to the nanoindentation force are calculated as well as the 𝐼-index described in Chapter 3. A comparison 

between the identifiability results from 2D-axisymmetric and 3D FEM is also performed. 

 

 

𝜂

𝑐1, 𝜈

𝐸, 𝜈
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4.3.1. Updating process from experimental data of single test 

Herein, experimental data from the nanoindentation test realized on PP at 1000 nm/min using the 

triangular loading presented in Chapter 2 are used in Equation 3.1. Three starting points 𝛉(01), 𝛉(02) and 

𝛉(03) are chosen to initialize the minimization algorithm (Table 4.1). The evolutions of the four 

parameters during the minimization process are shown in Figure 4.2. The parameters 𝐸, 𝑐1 and 𝜂 tend 

towards the same values whatever the starting point with acceptable uncertainties (Equation 3.17) (about 

15% for the viscosity 𝜂). However the obtained values for Poisson’s ratio 𝜈 are multiple with a high 

uncertainty (about 140%). The value of the objective function ω is almost identical for all three cases 

and remains very low. Therefore, there is non-uniqueness of the solution of the inverse problem. The 

evolution of the parameter 𝐸 (1 − 𝜈2⁄ ) for the three starting points is shown in Figure 4.3. The estimated 

solutions tend to the same value. It indicates that this parameter can be determined from single 

nanoindentation test. Figure 4.4 illustrates that the obtained solutions generate almost the same P-h curve 

as the one obtained experimentally. 

 

Table 4.1. Estimated parameters set �̂� (Equation 3.1) using three starting points and uncertainties (Equation 3.17). 

  Parameter Starting value Estimated value Uncertainty 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 ∆𝜃𝑗/𝜃𝑗  (%) 

Starting point 1: 𝛉(01) 

1 𝐸 (GPa) 1.50 1.63 7.0 

2 𝑐1 (GPa) 12.25 1.05 6.0 

3 𝜈 0.4 0.13 90 

4 𝜂 (GPa. s) 65 18.56 15 

Objective function ω(1)   4.59 × 10−2 1.24 × 10−5  

Starting point 2: 𝛉(02) 

1 𝐸 (GPa) 1.40 1.63 6.0 

2 𝑐1 (GPa) 8.0 1.05 6.0 

3 𝜈 0.3 0.03 137 

4 𝜂 (GPa. s) 45 18.48 15 

Objective function ω(2)   2.18 × 10−2 1.24 × 10−5  

Starting point 3: 𝛉(03) 

1 𝐸 (GPa) 1.20 1.63 7.0 

2 𝑐1 (GPa) 4.0 1.06 6.0 

3 𝜈 0.2 0.03 138 

4 𝜂 (GPa. s) 30 18.50 15 

Objective function ω(3)   5.18 × 10−3 1.24 × 10−5  
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Figure 4.2. Evolution of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process using three starting points 

𝛉(01), 𝛉(02) and 𝛉(03). 

 

Figure 4.3. Evolution of the parameter (𝐸 (1 − 𝜈2)⁄ ) during the updating process using three starting points 

𝛉(01), 𝛉(02) and 𝛉(03). 
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Figure 4.4. Experimental (ℎ̇ = 1000 nm/min) and simulated nanoindentation curves for the three solutions 

�̂�(1) = (𝐸 = 1.63 GPa, 𝑐1 = 1.05 GPa, 𝜈 = 0.13, 𝜂 = 18.56 GPa.s), �̂�(2) = (𝐸 = 1.63 GPa, 𝑐1 = 1.05 GPa, 

𝜈 = 0.03, 𝜂 = 18.48 GPa.s) and �̂�(3) = (𝐸 = 1.63 GPa, 𝑐1 = 1.06 GPa, 𝜈 = 0.03, 𝜂 = 18.50 GPa.s). 

 

Furthermore, the Poisson’s ratio is badly estimated comparing the obtained value with those given 

in the literature for PP (𝜈~0.3 to 0.42) (Gao and Mäder, 2002; Jakes et al., 2008). Updating processes 

can also be performed by imposing one of the four material parameters. Two particular cases are 

considered. In the first case A, the Young's modulus 𝐸 is set to 1.50 GPa and the three parameters 𝜈, 𝑐1 

and 𝜂 are estimated (starting point: 𝛉(04) = (𝐸 = 1.50 GPa (imposed), 𝑐1 = 12.25 GPa, 𝜈 = 0.4, 𝜂 =

65 GP.s)). In the second case B, the value of the Poisson's ratio 𝜈 is set to 0.4 and 𝐸, 𝑐1 and 𝜂 are 

estimated (starting point: 𝛉(05) = (𝐸 = 1.50 GPa, , 𝑐1 = 12.25 GPa, 𝜈 = 0.4 (imposed), 𝜂 = 65 GP.s)). 

Figure 4.5 shows the evolution of the four parameters during the minimization process. The obtained 

values are multiple except for the parameter c1. The parameters estimated resulting from the updating 

process are presented in Table 4.2. It can be noted that imposing a parameter increases considerably the 

uncertainties of the estimated parameters even on 𝐸 and c1. The objective function values are not 

identical for the two solutions but they are the same order in magnitude. The five solutions �̂�(1), �̂�(2), 

�̂�(3) , �̂�(4) and �̂�(5) are summarized in Table 4.3. All of the obtained load-displacement curves are in 

good agreement with the experimental data (Figure 4.6). 
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Table 4.2. Estimated parameters for the two particular cases A and B. 

  Parameter Starting value Estimated value Uncertainty 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 ∆𝜃𝑗/𝜃𝑗  (%) 

Starting point 4: 𝛉(04) 

(Case A) 

1 𝐸 (GPa) 1.50 (imposed) 1.50 (imposed) 10 

2 𝑐1 (GPa) 12.25 0.96 24 

3 𝜈 0.4 0.02 291 

4 𝜂 (GPa. s) 65 22.87 29 

Objective function ω(4)   4.59 × 10−2 3.27 × 10−5  

Starting point 5: 𝛉(05) 

(Case B) 

1 𝐸 (GPa) 1.50  1.47 44 

2 𝑐1 (GPa) 12.25 0.94 48 

3 𝜈 0.4 (imposed) 0.4 (imposed) 145 

4 𝜂 (GPa. s) 65 17.08 41 

Objective function ω(5)   4.59 × 10−2 1.31 × 10−5  

 

 

Figure 4.5. Evolution of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process for the two particular cases 

A and B. Comparison with a case with 4 free parameters for the starting point (𝛉(01) = 𝐸 = 1.5 GPa, 𝑐1 = 12.25 

GPa, 𝜈 = 0.4,  𝜂 = 65 GPa.s). 
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Figure 4.6. Experimental (ℎ̇ = 1000 nm/min) and simulated nanoindentation curves for the three solutions 

�̂�(1) = (𝐸 = 1.63 GPa, 𝑐1 = 1.05 GPa, 𝜈 = 0.13, 𝜂 = 18.56 GPa.s), �̂�(4) = (𝐸 = 1.50 GPa, 𝑐1 = 0.96 GPa, 

𝜈 = 0.02, 𝜂 = 22.87 GPa.s) and �̂�(5) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s). 

 

Table 4.3. Five solutions of the inverse problem. 

 𝑗 1 2 3 4  

Solution  𝐸 (GPa) 𝑐1 (GPa) 𝜈 𝜂 (GPa. s) ω 

�̂�(1)  1.63 1.05 0.13 18.56 1.24 × 10−5 

�̂�(2)  1.63 1.05 0.03 18.48 1.24 × 10−5 

�̂�(3)  1.63 1.06 0.03 18.50 1.24 × 10−5 

�̂�(4)  1.50 (imposed) 0.96 0.02 22.87 3.27 × 10−5 

�̂�(5)  1.47 0.94 0.4 (imposed) 17.08 1.31 × 10−5 

 

 

Considering that the five sets of parameters give almost the same P-h curve at depth rate of 1000 

nm/min. Simulations have been carried out using nanoindentation tests simulated at depth rates of 50, 

500 and 5000 nm/min for the five solutions (�̂�(1), �̂�(2), �̂�(3), �̂�(4), �̂�(5)). Figure 4.7, Figure 4.8 and 

Figure 4.9 display the comparison between five numerical results. It can be seen that for these 

nanoindentation depth rates, these solutions do not lead to the same P-h curve. Particularly, the results 

obtained for the solution �̂�(4) (with a Poisson’s ratio 𝜈~0) differs from the others. It means that there is 

non-uniqueness of the solution of the inverse problem. It suggests that an identification procedure based 

on the data obtained at different nanoindentation depth rates could be more robust. However, this 

procedure is expensive and time consuming to execute (24h for one VE simulation using the 

experimental test (Figure 2.8) presented in Chapter 2). 

�̂�(1)

�̂�(4)

�̂�(5)
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Figure 4.7. Nanoindentation (P-h) curves for the five solutions at nanoindentation depth rate of 50 nm/min. 

 

 

Figure 4.8. Nanoindentation (P-h) curves for the five solutions at nanoindentation depth rate of 500 nm/min. 
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Figure 4.9. Nanoindentation (P-h) curves for the five solutions at nanoindentation depth rate 5000 nm/min. 

 

4.3.2. Sensitivity analysis 

To probe the uniqueness of a solution resulting from an updating process may appear to be very 

time consuming. In fact, an updating process for four parameters requires about 40 FE simulations (5 

simulations by 8 iterations) with Berkovich indenter tip for each starting point and for each 

nanoindentation test. Another way is to investigate, a priori, the identifiability of the parameters. In this 

way, it is needed to estimate the sensitivity of the nanoindentation force to the material parameters. A 

sensitivity analysis is performed for the five solutions �̂�(1), �̂�(2), �̂�(3) , �̂�(4) and �̂�(5) (2.5 hours for each 

sensitivity study) using the nanoindentation triangular test realized at 1000 nm/min in displacement-

controlled mode. The norms of sensitivity vectors 𝛿𝑗 calculated using Equation 3.23 are displayed in 

Figure 4.10. The Young’s modulus 𝐸 is the most sensitive parameter, which means that it is the most 

influential to the nanoindentation curve. Then the anelastic modulus 𝑐1 and the viscosity coefficient in 

the elastic domain 𝜂 have almost the same effect expect for the solution �̂�(4) (with 𝜈~0). The 

sensitivities appear to be well balanced for each solution. An exception can be noted for the Poisson’s 

ratio. In fact, there is a lack of sensitivity to 𝜈 for the solutions �̂�(1), �̂�(2), �̂�(3) and �̂�(4) where the 

sensitivity to this coefficient is close to zero (Figure 4.10). 

�̂�(1)

�̂�(2)

�̂�(3)

�̂�(4)
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Figure 4.10. Sensitivity of the nanoindentation force 𝑃 to 𝜃𝑗  for the five solutions �̂�(1), �̂�(2), �̂�(3) , �̂�(4) and �̂�(5) 

(Table 4.3) using triangular test at 1000 nm/min. 

 

The sensitivity vectors 𝑆𝑘𝑗 of the nanoindentation force have thus been calculated using Equation 

3.22. Figure 4.11a shows that the sensitivity vectors are very similar (up to a multiplicative factor) during 

the loading phase. Because of this collinearity between the sensitivity vectors, the identification of the 

four VE parameters from the sole loading phase is thus expected to be very difficult. Focusing on the 

sensitivity to 𝐸, we note that during the unloading part the proportionality with 𝑐1 and 𝜂 is lost. It seems 

to indicate that the unloading segment is more suitable to distinguish solution parameters and so to 

identify them. It also appears that the sensitivity vectors to 𝐸 and 𝜈 are almost collinear during the 

loading segment (OA) and even during the first tier of the unloading segment (AB) in Figure 4.11b, thus 

their identification using a single nanoindentation loading data is impossible. This is understood as a 

consequence of the sensitivity of the Boussinesq’s problem to the sole 𝐸 (1 − 𝜈2⁄ ) parameter 

(Boussinesq, 1885). 

�̂�(1) �̂�(2) �̂�(3) �̂�(4) �̂�(5)
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Figure 4.11. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading after smoothing using triangular test at 1000 nm/min. (b) Collinearity between sensitivity vectors 𝑆𝑘1 

and 𝑆𝑘3 (sensitivities to 𝐸 and 𝜈, respectively). 

 

4.3.3. A posteriori identifiability analysis 

In order to quantify the completeness of the data used in the updating process, the 𝐼-index is 

determined from Equation 3.26 using the solution �̂�(5) with the nanoindentation test realized at 1000 

nm/min for all combinations of parameters (6 couples, 4 triplets and 1 quadruplet) as a function of the 

considered data subsets (load-unload, only load and only unload). These results are summarized in Table 

4.4 (without smoothing the sensitivity vectors). The identification of all combinations of two parameters 

is possible from load-unload test and only unloading segment (𝐼 < 2). It seems possible to identify three 

parameters (𝐸, 𝑐1, 𝜂) when the Poisson’s ratio is known. The value of the index 𝐼(𝐸, 𝑐1, 𝜂) is greater 

than 3 only when the sole loading segment is considered and less than 2 as soon as the unloading phase 

is taken into account. For this combination of parameters, the identifiability is better if only unload is 

considered (𝐼 = 1.5) than if both load and unload are considered (𝐼 = 1.9). It can be observed that the 

relevant information is therefore contained in the unloading part, confirming the conclusions drawn from 

the sensitivity vectors analysis. The 𝐼-index is higher than 3 for the combination of four parameters from 

single nanoindentation load-unload test. The identification of the full set of parameters is considered to 

be impossible because of the inverse problem is too ill-posed (𝐼 > 3). 
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Table 4.4. 𝐼-index for all combinations of parameters using triangular test at 1000 nm/min with the solution �̂�(𝟓). 

𝐼 ≤ 2 (green, potentially identifiable), 𝐼 < 2 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination   Load-unload Load   Unload  

𝐸, 𝑐1 0.8 2.5 0.2 

𝑐1, 𝜂 0.8 2.1 0.8 

𝑐1, 𝜈 0.8 2.1 1.0 

𝐸, 𝜂 1.4 2.8 0.8 

𝐸, 𝜈 1.6 3.1 0.9 

𝜈, 𝜂 1.9 3.0 1.8 

𝐸, 𝑐1, 𝜂 1.9 3.5 1.5 

𝑐1, 𝜈, 𝜂 2.1 3.2 2.2 

𝐸, 𝜈, 𝜂 2.5 3.8 2.1 

𝐸, 𝑐1, 𝜈 3.0 3.7 2.6 

𝐸, 𝑐1, 𝜈, 𝜂 3.7 3.9 3.5 

 

 

4.3.4. Comparison between 2D and 3D FEM 

Herein, the identifiability results using the 2D-axisymetric and 3D FEM are compared. For that, a 

sensitivity analysis is performed using nanoindentation test of 1000 nm/min with 3D conical and 

Berkovich indenter tips. The 2D model has about 5000 elements. The conical and Berkovich 3D model 

are modelled by 39000 and 33500 elements. In Figure 4.12, the P-h curves obtained using both indenter 

tips are plotted. It can be seen that 2D and 3D conical indenter tips generate the same P-h curve. For the 

Berkovich indenter tip, there is small difference in the simulation results that will may be affect the 

identifiability results. Concerning the 𝐼-index, the obtained results are almost the same for the two 

conical indenter tips and do not agree with Berkovich indenter tip (Figure 4.13). It can be seen that using 

3D Berkovich indenter tip, the four VE parameters are identifiable (𝐼 = 2) which is not the case using 

the 2D or 3D conical indenter tips (𝐼 = 3.7). The 3D Berkovich indenter tip considerably improves the 

identifiability results. Consequently, an identification procedure using single nanoindentation test and 

the 3D FEM may allow to uniquely extract the four VE properties. This results is in good agreement 

with that proposed by Kang et al. (Kang et al., 2012). 
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Figure 4.12. Comparison of the nanoindentation P-h curves at 1000 nm/min using 2D and 3D FEM. 

 

Figure 4.13. Comparison of the 𝐼-index for three combinations of parameters using nanoindentation test at 1000 

nm/min with 2D, 3D conical and 3D Berkovich indenter tips. 
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4.4. A priori identifiability analysis using a single 

nanoindentation test 

In this section, we focus on the possibility to identify the viscoelastic parameters from a single 

nanoindentation test. The effects of nanoindentation depth rate, loading type (triangular, trapezoidal, 

exponential and sinusoidal), the noise on the nanoindentation force and the indenter tip angle are 

investigated. 

4.4.1. Effect of depth rate 

The 𝐼-index is calculated for the nanoindentation triangular load-unload tests (50, 100, 500, 2500, 

5000, 10000, 20000 nm/min) which are displayed in Chapter 2, with the solution �̂�(5) = (𝐸 = 1.47 

GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s) using Berkovich indenter tip. In Figure 4.14, the load-

displacement curves for all nanoindentation depth rates are presented. Table 4.5 shows that it is possible 

to identify two parameters using any nanoindentation depth rate and three parameters when using a rate 

between 500 and 1000 nm/min (𝐼 ≤ 2). The depth rate does not improve the four material parameter 𝐼-

index (𝐼 > 3). It can be concluded that whatever the depth rate, in the considered range the identification 

of the four material parameter from single nanoindentation triangular test is impossible. 

 

Figure 4.14. P-h simulated curves for all depth rates using the solutions �̂�(5) and Berkovich indenter tip. 
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Table 4.5. 𝐼-index for all combinations of parameters for all nanoindentation triangular load-unload tests using the 

solution �̂�(𝟓). 𝐼 ≤ 2 (green, potentially identifiable), 𝐼 < 2 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination  50 nm/min  100 nm/min  500 nm/min  1000 nm/min 2500 nm/min 5000 nm/min  10000 nm/min   20000 nm/min 

𝐸, 𝑐1 2.3 1.7 0.6 0.8 1.9 2.8 3.7 4.2 

𝑐1, 𝜂 2.2 1.7 0.6 0.8 1.7 2.3 2.3 2.2 

𝑐1, 𝜈 2.7 2.2 1.1 0.8 1.3 2.0 2.8 3.2 

𝐸, 𝜂 1.8 1.4 1.6 1.4 1.3 1.5 2.0 2.5 

𝐸, 𝜈 2.8 2.5 1.6 1.6 2.0 2.4 2.9 3.4 

𝜈, 𝜂 1.6 1.1 1.1 1.9 1.3 1.1 1.2 1.6 

𝐸, 𝑐1, 𝜂 3.3 3.1 1.8 1.9 3.0 3.7 4.0 4.3 

𝑐1, 𝜈, 𝜂 3.4 3.3 2.3 2.1 2.5 3.0 3.1 3.3 

𝐸, 𝜈, 𝜂 3.0 2.9 1.8 2.6 3.7 4.0 4.2 4.3 

𝐸, 𝑐1, 𝜈 3.5 3.5 2.9 3.0 3.6 4.0 4.2 4.4 

𝐸, 𝑐1, 𝜈, 𝜂 3.5 3.5 3.6 3.7 4.0 4.1 4.3 4.4 

 

 

4.4.2. Effect of loading type 

Herein, the identifiability analysis is performed using the trapezoidal, exponential and sinusoidal 

nanoindentation tests, which are displayed in Chapter 2. The results are summarized in Table 4.6. Like 

for the triangular loading, all combinations of two parameters are identifiable from trapezoidal and 

exponential tests. Three parameters (𝐸, 𝑐1, 𝜂) are potentially identifiable (𝐼 ≤ 2) when the Poisson’s 

ratio is known using trapezoidal loading. Comparing the results from single nanoindentation test in terms 

of 𝐼-index, the addition of a plateau just after the loading phase does not appear very helpful. It is 

observed that the better identifiability of the three parameters (𝐸, 𝑐1, 𝜂) is obtained using the exponential 

loading. Finally, the addition of a sinusoidal signal at the chosen frequency to the triangular loading 

phase is no more interesting for this material and all combinations of parameters are in the best case 

difficult to identify. The identification of the four parameters still impossible. 
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Table 4.6. Minima and maxima 𝐼-index values ([𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥]) for different loading types: triangular, trapezoidal, 

exponential and a sinusoidal loading with max rate (1000 nm/min), and 𝑓 = 4 Hz for the solution �̂�(𝟓). 𝐼 ≤ 2 

(green, potentially identifiable), 𝐼 < 2 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination   
Triangular 

load-unload 

Trapezoidal 

load-unload  

Exponential  

load-unload 

Triangular 

load 

Sinusoidal  

load 

𝐸, 𝑐1 [0.6; 4.2] [0.6; 4.2] [0.6; 5.7] 2.5 2.5 

𝑐1, 𝜂 [0.6; 2.3] [0.7; 2.5] [0.7; 2.6] 2.1 2.1 

𝑐1, 𝜈 [0.8; 3.2] [0.9; 3.2] [1.1; 4.6] 2.1 2.1 

𝐸, 𝜂 [1.3; 2.5] [1.2; 2.3] [1.1; 3.8] 2.8 2.7 

𝐸, 𝜈 [1.6; 3.4] [1.6; 3.3] [1.6; 4.1] 3.1 3.1 

𝜈, 𝜂 [1.1; 1.9] [0.9; 1.9] [0.7; 2.3] 3.0 2.9 

𝐸, 𝑐1, 𝜂 [1.8; 4.3] [2.0; 4.4] [1.6; 5.7] 3.5 3.4 

𝑐1, 𝜈, 𝜂 [2.0; 3.4] [2.3; 3.6] [2.1; 4.7] 3.2 3.1 

𝐸, 𝜈, 𝜂 [1.8; 4.3] [2.3; 4.4] [1.8; 4.5] 3.8 3.7 

𝐸, 𝑐1, 𝜈 [2.9; 4.4] [3.1; 4.5] [2.7; 5.7] 3.7 3.7 

𝐸, 𝑐1, 𝜈, 𝜂 [3.5; 4.4] [3.6; 4.5] [3.7; 5.7] 3.9 3.8 

 

 

4.4.3. Effect of the tip angle 

A study has also been conducted to investigate the influence of the indenter half angle 𝛼 on the 𝐼-

index. Five indenter tips with equivalent half angle of 𝛼 = 42.28° (cube corner), 57°, 60°, 65° and 70.3° 

(Berkovich) are considered. The P-h curves for these indenter tips using depth rate of 500 nm/min with 

the solution �̂�(5) are shown in Figure 4.15. The obtained 𝐼-index results are given in Table 4.7. 

Comparing the values of the 𝐼-index, it is found that the indenter tip angle does not have a great influence 

on the identifiability. The 𝐼-index values are almost the same and the four material parameters are, in 

the best case difficult to identify. 



A priori identifiability analysis of experimental approaches based on a single nanoindentation test 

 

101 

 

 

Figure 4.15. P-h simulated curves for all indenter tips using nanoindentation depth rate of 500 nm/min and the 

solution �̂�(5). 

 

Table 4.7. 𝐼-index for all combinations of parameters using the nanoindentation load-unload test of 500 nm/min 

with five indenter tip angles for the solution �̂�(5). 𝐼 ≤ 2 (green, potentially identifiable), 𝐼 < 2 ≤ 3 (difficult to 

identify), 𝐼 > 3 (red, not identifiable). 

Combination  Cube corner (𝛼 = 42.28°) 

 

𝛼 = 57° 𝛼 = 60° 𝛼 = 65° Berkovich (𝛼 = 70.3°) 

𝐸, 𝑐1 0.5 0.6 0.6 0.6 0.6 

𝑐1, 𝜂 0.6 0.6 0.6 0.6 0.6 

𝑐1, 𝜈 1.4 1.1 1.1 1.1 1.1 

𝐸, 𝜂 1.5 1.6 1.6 1.6 1.6 

𝐸, 𝜈 1.8 1.6 1.6 1.6 1.6 

𝜈, 𝜂 1.0 1.0 1.0 1.1 1.1 

𝐸, 𝑐1, 𝜂 1.7 1.8 1.8 1.8 1.8 

𝑐1, 𝜈, 𝜂 2.2 2.3 2.3 2.3 2.3 

𝐸, 𝜈, 𝜂 1.9 1.8 1.8 1.8 1.8 

𝐸, 𝑐1, 𝜈 2.7 2.8 2.8 2.8 2.9 

𝐸, 𝑐1, 𝜈, 𝜂 2.8 3.2 3.1 3.4 3.6 

 

 

4.4.4. Effect of measurement noise 

The I-index results using the nanoindentation test performed at nanoindentation depth rate of 1000 

nm/min show that it is possible to identify 𝐸, 𝑐1 and 𝜂 by assuming that the Poisson’s ratio is known 
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𝜈 = 0.4 (𝐼(𝐸, 𝑐1, 𝜂) = 1.9) (Table 4.4). In order to explore the effect of noise on the updating process 

results, a white Gaussian noise is used to disrupt the nanoindentation force 𝑃 from the test at 

nanoindentation depth rate of 1000 nm/min. 

 �̃�(𝑡) = 𝑃(𝑡) + 𝒩(0, 𝑠)𝑃𝑚𝑎𝑥 (4.6) 

where 𝒩(0, 𝑠) is a normal (Gaussian) distribution with zero mean and standard deviation 𝑠. 𝑃𝑚𝑎𝑥 is the 

maximum value of nanoindentation force 𝑃(𝑡). 

 

Figure 4.16. Nanoindentation P-h curves for three levels of measurement noise of nanoindentation triangular test 

at 1000 nm/min. 

 

In Figure 4.16, we show the nanoindentation P-h curves for noise levels used in the updating process 

calculations with the starting points 𝛉(05) = (𝐸 = 1.50 GPa, 𝑐1 = 12.25 GPa, 𝜈 = 0.4 (imposed), 𝜂 =

65 GPa.s), 𝛉(06) = (𝐸 = 1.40 GPa, 𝑐1 = 8.0 GPa, 𝜈 = 0.4 (imposed), 𝜂 = 45 GPa.s) and 𝛉(07) = (𝐸 =

1.20 GPa, 𝑐1 = 4.0 GPa, 𝜈 = 0.4 (imposed), 𝜂 = 30 GPa.s). The solutions obtained for the starting 

point 𝛉(05) and various noise levels are presented in Table 4.8. It can be clearly observed that the 

uncertainties values increase when increasing the noise level and vice versa. From a noise level 𝑠 =

10−2, large uncertainties are obtained for all parameters (about 213% for the Poisson’s ratio).  Figure 

4.17 presents the evolution of the parameters 𝐸, 𝑐1 and 𝜂  during the updating process. The obtained 

solution is not very sensitive to this type of noise. 
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Table 4.8. Estimated solutions for the four levels of measurement noise using load-unload test with the starting 

point 𝛉(05). 

 Noise   Parameter Starting value Estimated value Uncertainty 

 𝑠 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 ∆𝜃𝑗/𝜃𝑗  (%) 

 

10−2 

1 𝐸 (GPa) 1.50 1.446 64 

 2 𝑐1 (GPa) 12.25 0.933 73 

 3 𝜈 0.4 (imposed) 0.4 (imposed) 213 

 4 𝜂 (GPa. s) 65 17.27 66 

ω    4.90 × 10−2 4.70 × 10−5  

 

5 × 10−3 

1 𝐸 (GPa) 1.50 1.454 32 

 2 𝑐1 (GPa) 12.25 0.939 37 

 3 𝜈 0.4 (imposed) 0.4 (imposed) 106 

 4 𝜂 (GPa. s) 65 17.00 32 

ω    4.96 × 10−2 1.18 × 10−5  

 

10−3 

1 𝐸 (GPa) 1.50 1.449 11 

 2 𝑐1 (GPa) 12.25 0.935 12 

 3 𝜈 0.4 (imposed) 0.4 (imposed) 35 

 4 𝜂 (GPa. s) 65 17.15 11 

ω    4.94 × 10−2 1.32 × 10−6  

 0 

1 𝐸 (GPa) 1.50 1.449 9.0 

2 𝑐1 (GPa) 12.25 0.935 10 

3 𝜈 0.4 (imposed) 0.4 (imposed) 30 

4 𝜂 (GPa. s) 65 17.18 10 

ω    4.93 × 10−2 8.30 × 10−7  
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Figure 4.17. Evolution of the 3 parameters (𝐸, 𝑐1, 𝜂) during the updating process for the three starting points of 

the minimization algorithm 𝛉(05), 𝛉(06) and 𝛉(07) using noisy force values. 

 

The meaning of the I-index results is illustrated by reproducing this analysis only using the loading 

segments. The identifiability results show that the identification of the parameters 𝐸, 𝑐1 and 𝜂 is not 

possible in that case 𝐼(𝐸, 𝑐1, 𝜂) = 3.5 (Table 4.4). Despite very small values of the objective function, 

the relative uncertainties between the obtained and imposed solutions are very large as shown in Table 

4.9. The obtained solution is very sensitive to the noise during the loading segment (Figure 4.18). It is 

also observed that the convergence of the minimization algorithm is longer. 

 

 

 

 

(c)

(a) (b)
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Table 4.9. Estimated solutions for the three levels of measurement noise using loading segments with the starting 

point 𝛉(06). 

 Noise   Parameter Starting value Estimated value Uncertainty 

 𝑠 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 ∆𝜃𝑗/𝜃𝑗  (%) 

 

10−2 

1 𝐸 (GPa) 1.40 1.345 92 

 2 𝑐1 (GPa) 8.0 0.829 191 

 3 𝜈 0.4 (imposed) 0.4 (imposed) 277 

 4 𝜂 (GPa. s) 45 21.88 242 

ω    1.26 × 10−2 5.14 × 10−5  

 

5 × 10−3 

1 𝐸 (GPa) 1.40 1.396 43 

 2 𝑐1 (GPa) 8.0 0.883 83 

 3 𝜈 0.4 (imposed) 0.4 (imposed) 132 

 4 𝜂 (GPa. s) 45 19.37 109 

ω    1.27 × 10−2 1.18 × 10−5  

 

10−3 

1 𝐸 (GPa) 1.40 1.363 13 

 2 𝑐1 (GPa) 8.0 0.817 25 

 3 𝜈 0.4 (imposed) 0.4 (imposed) 40 

 4 𝜂 (GPa. s) 45 21.17 34 

ω    1.26 × 10−2 1.05 × 10−6  
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Figure 4.18. Evolution of the 3 parameters (𝐸, 𝑐1, 𝜂) during the updating process for the three starting points of 

the minimization algorithm 𝛉(05), 𝛉(06) and 𝛉(07) using loading segments of noisy force. 

 

4.4.5. Link between dissipation and identifiability 

The loss factor (intrinsic damping) tan(𝛿), which is used to measure a viscoelastic material property 

in the case of tensile and harmonic loading can be approached for any of the considered loading signals 

considered herein, by discording any signal harmonic so that: 

 
tan(𝛿) =

2𝜋𝑓𝐸𝜂

𝑐1(𝐸 + 𝑐1) + (2𝜋𝑓)2𝜂2
 (4.7) 

where 𝑓 is the fundamental frequency. In the case of the nanoindentation test: 𝑓 = 1 𝑡𝑚𝑎𝑥⁄ . 

 

The 𝐼-index is calculated for the numerical nanoindentation triangular tests presented in Chapter 2 

with equivalent cube corner and Berkovich indenter tips using displacement-controlled and force-

controlled modes to investigate the effect of nanoindentation rate.  

In Figure 4.19, the results for three combinations of parameters calculated using the solution �̂�(5) 

with the equivalent cube corner indenter tip are presented.  Using the force-controlled mode, it can be 

(c)

(a) (b)
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observed that the 𝐼-index values of the four parameters fall for the three slowest rates (60, 120 and 600 

µN/min) (Figure 4.19b). This problem disappears if the Poisson’s ratio is known. The better 

identifiability of the material parameters is obtained with a depth rate between 500 nm/min (𝑡𝑚𝑎𝑥 =

120 𝑠) and 1000 nm/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in displacement-controlled mode and a load rate 600 µN/min 

(𝑡𝑚𝑎𝑥 = 120 𝑠) and 1200 µN/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in force-controlled mode. It also shows that the 𝐼-

index is well correlated to the loss factor (Figure 4.19). In particular, we note that when the loss factor 

is maximum, (i.e when the dissipation is maximum) the 𝐼-index is minimum, (i.e the identifiability is 

the maximum). 

 

Figure 4.19. 𝐼-index for the nanoindentation triangular tests and the loss factor using the solution �̂�(5) with 

equivalent cube corner indenter tip, (a) displacement-controlled mode. (b) force-controlled mode. 

 

For the equivalent Berkovich tip (Figure 4.20), it can be seen that the better identifiability of the 

four material parameters is obtained using a nanoindentation depth rate between 500 nm/min (𝑡𝑚𝑎𝑥 =

120 𝑠) and 1000 nm/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in displacement-controlled mode and a nanoindentation load 

rate about 1200 µN/min (𝑡𝑚𝑎𝑥 = 60 𝑠) in force-controlled mode. It also shows that the 𝐼-index is well 

correlated to the loss factor (Figure 4.20), similarly to equivalent cube corner tip. 

600 µN/min1200 µN/min1000 nm/min 500 nm/min (a) (b)
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Figure 4.20. 𝐼-index for the nanoindentation triangular tests and the loss factor using the solution �̂�(5) with 

equivalent Berkovich indenter tip, (a) displacement-controlled mode. (b) force-controlled mode. 

 

The link between tan(𝛿) and the 𝐼-index is also investigated for trapezoidal and exponential loading 

types using Equation 4.7. Figure 4.21 shows the 𝐼-index results for 3 combinations of material 

parameters with equivalent Berkovich indenter tip as function of the loss factor using the solution �̂�(5). 

It can be seen that, whatever the loading type, the better identifiability corresponds to conditions, which 

maximize the loss factor. The link between tan(𝛿) and the 𝐼-index depends on the nanoindentation rate 

to solicit the dissipative phenomena, which is different from a loading to the other. 

1200 µN/min1000 nm/min 500 nm/min (a) (b)
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Figure 4.21. 𝐼-index versus tan(𝛿) using three loading types with the solution �̂�(5) for three combinations of 

parameters, (a) 𝐼(𝐸, 𝜈). (b) 𝐼(𝐸, 𝑐1, 𝜂). (c) 𝐼(𝐸, 𝑐1, 𝜈, 𝜂). 

4.5. Combination of nanoindentation tests for well-posed the 

inverse problem 

In order to determine the better identifiability of the four material parameters, the subset of 

nanoindentation triangular tests simulated in displacement-controlled mode with Berkovich indenter tip 

is investigated. Then, all combinations of dual indenter tips from the five indenter tip angles (42.2 °, 

57°, 60°, 65°, 70.3°) using nanoindentation test simulated at 500 nm/min is examined. 

4.5.1. Several nanoindentation triangular tests 

In this section, the identifiability analysis is carried out using a set of 2 to 8 nanoindentation 

triangular tests (50, 100, 500, 1000, 2500, 5000, 10000, 20000 nm/min) for the solution �̂�(5). Table 4.10 

summarizes the 𝐼-index values for all subsets of nanoindentation tests. The combination of 

nanoindentation triangular tests decreases the maximum 𝐼-index values, and therefore improves the 

identification robustness. All combinations of two parameters can be identified from the subset of two 

(b)(a)

(c)

𝐼(𝐸, 𝜈) 𝐼(𝐸, 𝑐1, 𝜂)

𝐼(𝐸, 𝑐1, 𝜈, 𝜂)
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nanoindentation tests. The subset of multiple nanoindentation tests allows to identify the first 9 

combinations of parameters. For example, the combination of three parameter (𝐸, 𝑐1, 𝜂) is identifiable 

whatever the subset if six nanoindentation tests are considered. The identification of the four material 

parameters (𝐸, 𝑐1, 𝜈, 𝜂) is still impossible despite the additional information. The value of the 𝐼-index for 

the four material parameters is never less than 3.5. Comparing the 𝐼-index results from single 

nanoindentation test (Table 4.4) and the subset of several tests (Table 4.10), it is observed that the set of 

eight nanoindentation rates does not necessarily lead to better 𝐼-index compared to a single but properly 

chosen one. 

 

Table 4.10. Minima and maxima 𝐼-index values ([𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥]) of all combinations of parameters for all subsets of 

nanoindentation triangular load-unload tests using the solution �̂�(𝟓). 𝐼 ≤ 2 (green, potentially identifiable), 𝐼 <

2 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination  2 tests  3 tests  4 tests  5 tests  6 tests  7 tests  8 tests  

𝐸, 𝑐1 [0.5; 3.9] [0.5; 3.3] [0.5; 2.6] [0.5; 1.7] [0.6; 1.2] [0.6; 0.8] 0.7 

𝑐1, 𝜂 [0.4; 2.3] [0.3; 2.2] [0.3; 1.7] [0.3; 1.0] [0.4; 0.9] [0.4; 0.7] 0.6 

𝑐1, 𝜈 [0.5; 2.9] [0.5; 2.4] [0.5; 1.7] [0.5; 1.1] [0.5; 0.9] [0.5; 0.8] 0.7 

𝐸, 𝜂 [1.2; 2.3] [1.1; 2.1] [1.2; 2.0] [1.2; 1.8] [1.3; 1.6] [1.3; 1.5] 1.4 

𝐸, 𝜈 [1.6; 3.1] [1.6; 2.8] [1.5; 2.5] [1.6; 2.2] [1.6; 2.0] [1.7; 1.8] 1.7 

𝜈, 𝜂 [0.7; 1.5] [0.7; 1.3] [0.8; 1.2] [0.8; 1.1] [0.8; 1.0] [0.9; 0.9] 0.9 

𝐸, 𝑐1, 𝜂 [1.3; 4.2] [1.3; 3.8] [1.3; 3.2] [1.3; 2.1] [1.3; 1.6] [1.3; 1.5] 1.4 

𝑐1, 𝜈, 𝜂 [1.1; 3.4] [1.1; 3.0] [1.0; 2.3] [1.0; 1.9] [1.1; 1.6] [1.2; 1.4] 1.3 

𝐸, 𝜈, 𝜂 [1.7; 4.3] [1.6; 4.1] [1.6; 3.9] [1.6; 3.1] [1.7; 2.5] [1.8; 2.0] 1.9 

𝐸, 𝑐1, 𝜈 [2.5; 4.2] [2.4; 4.0] [2.4; 3.6] [2.4; 2.9] [2.5; 2.7] [2.5; 2.6] 2.6 

𝐸, 𝑐1, 𝜈, 𝜂 [3.5; 4.3] [3.5; 4.3] [3.5; 4.2] [3.5; 4.1] [3.6; 3.9] [3.7; 3.8] 3.7 

 

4.5.2. Dual nanoindentation 

Herein, the combination of the tip angles is numerically investigated in order to determine the better 

approach to identify the four material properties. Table 4.11 presents the 𝐼-index values for all dual 

nanoindentation using triangular test at 500 nm/min in displacement-controlled mode with the solution 

�̂�(5). Whatever the combination, it is possible to identify two parameters, however, for three parameters, 

the tips have to be carefully chosen. The value of the 𝐼-index for the combination of four parameters 

from the combination of equivalent cube corner (𝛼 = 42.28°) and Berkovich (𝛼 = 70.3°) tips is equal 

to 2. Contrary to the single nanoindentation, both loading and unloading phases should be used. The 

identification of all combinations of parameters using loading and unloading phases with these particular 

tip angles may thus provide a unique solution. The identifiability is difficult from unloading phases and 

impossible if only loading phases are considered. Figure 4.22 displays the simulated load-displacement 
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curves for the two indenter tips at 500 nm/min for the solution �̂�(5). This figure will be employed in an 

updating process to verify the uniqueness of the solution. 

 

Figure 4.22. Nanoindentation pseudo-experimental (P-h) curves for equivalent cube corner and Berkovich 

indenter tips at 500 nm/min obtained using the solution �̂�(5) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 =

17.08 GPa.s). 

 

Table 4.11. 𝐼-index for all combinations of parameters for all dual nanoindentation data at 500 nm/min with the 

solution �̂�(𝟓). 𝐼 ≤ 2 (green, potentially identifiable), 𝐼 < 2 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination   Dual nanoindentation  

Loads-unloads [𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥] 

Loads-unloads (𝛼1 =

42.28°, 𝛼2 = 70.3°) 

Loads Unloads 

𝐸, 𝑐1 [0.6; 0.6] 0.6 2.1 0.8 

𝑐1, 𝜂 [0.6; 0.6] 0.6 1.8 0.8 

𝑐1, 𝜈 [1.1; 1.2] 1.1 1.5 1.5 

 

 
𝐸, 𝜂 [1.6; 1.6] 1.6 2.9 0.9 

𝐸, 𝜈 [1.5; 1.6] 1.5 1.9 0.9 

𝜈, 𝜂 [1.0; 1.1] 1.0 1.6 0.4 

𝐸, 𝑐1, 𝜂 [1.8; 1.8] 1.8 3.0 1.7 

𝑐1, 𝜈, 𝜂 [1.7; 2.3] 1.7 2.1 2.0 

𝐸, 𝜈, 𝜂 [1.7; 1.8] 1.7 3.0 1.3 

𝐸, 𝑐1, 𝜈 [1.9; 2.8] 1.9 2.2 2.1 

𝐸, 𝑐1, 𝜈, 𝜂 [2.0; 3.3] 2.0 3.1 2.1 

 

 

After determining the better dual nanoindentation that will probably provide a unique solution of 

the inverse problem, the norms of sensitivity vectors calculated for the five solutions with cube corner 
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and Berkovich indenter tips at nanoindentation rate of 500 nm/min using Equation 3.23 are displayed in 

Figure 4.23 and Figure 4.24. For both indenter tips, the nanoindentation force is sensitive to all 

parameters. The Young’s modulus 𝐸 and the anelastic modulus 𝑐1 are the most influential. Then the 

viscosity coefficient in the elastic domain 𝜂 has almost the same effect expect for all solutions. As for 

the nanoindentation test at 1000 nm/min, the Poisson’s ratio is the least influential parameter for the 

solutions �̂�(1), �̂�(2), �̂�(3) and �̂�(4). 

 

Figure 4.23. Sensitivity of the nanoindentation force 𝑃 to 𝜃𝑗  for the five solutions �̂�(1), �̂�(2), �̂�(3) , �̂�(4) and �̂�(5) 

(Table 4.3) using triangular test with cube corner tip at 500 nm/min. 

 

Figure 4.24. Sensitivity of the nanoindentation force 𝑃 to 𝜃𝑗  for the five solutions �̂�(1), �̂�(2), �̂�(3) , �̂�(4) and �̂�(5) 

(Table 4.3) using triangular with Berkovich tip at 500 nm/min. 

Figure 4.25 Figure 4.26 show that the vectors are identical during the loading part for the both 

indenter tips. The identification of these four parameters from the loading phases is thus impossible as 

�̂�(1) �̂�(2) �̂�(3) �̂�(4) �̂�(5)

�̂�(1) �̂�(2) �̂�(3) �̂�(4) �̂�(5)
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shown by the 𝐼-index results. We can note that the sensitivity vectors to 𝐸 and 𝜈 are almost collinear 

during the loading part (OA) and the first tier of  the unloading part (AB) in (Figure 4.25b, Figure 4.26b), 

thus their identification using a single nanoindentation loading data is impossible with cube corner or 

Berkovich indenter tip. 

 

Figure 4.25. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading after smoothing using triangular test at 500 nm/min with cube corner indenter tip. (b) collinearity 

between sensitivity vectors 𝑆𝑘1 and 𝑆𝑘3 (sensitivities to 𝐸 and 𝜈, respectively). 

 

Figure 4.26. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading after smoothing using triangular test at 500 nm/min with Berkovich indenter tip. (b) collinearity 

between sensitivity vectors 𝑆𝑘1 and 𝑆𝑘3 (sensitivities to 𝐸 and 𝜈, respectively). 

As shown above, the results of the identifiability analysis suggest that dual nanoindentation (cube 

corner and Berkovich) may provide a unique solution for the full set of four unknown parameters. 
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Herein, three updating processes are thus performed using equivalent cube corner and Berkovich 

indenter tips with the pseudo-experimental tests at 500 nm/min (Figure 4.22). These updating processes 

make use of the three starting points 𝛉(01), 𝛉(02) and 𝛉(03). In addition, other starting point 𝛉(08), which 

is far from the reference solution is also considered. As expected from 𝐼-index results, the obtained 

solutions are the same for the four starting points (Table 4.12) and almost equal to the solution �̂�(5). The 

evolution of the four parameters during the algorithm iterations is illustrated in Figure 4.27. The obtained 

P-h curves are compared with the pseudo-experimental data (Figure 4.28). 

 

Table 4.12. Estimated solutions for the three starting points using dual nanoindentation. 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point 5: 𝛉(05) 

1 𝐸 (GPa) 1.50 1.47 

2 𝑐1 (GPa) 12.25 0.94 

3 𝜈 0.4 (imposed) 0.4 (imposed) 

4 𝜂 (GPa. s) 65 17.08 

Objective function ω(5)   4.59 × 10−2 1.31 × 10−5 

Starting point 1: 𝛉(01) 

1 𝐸 (GPa) 1.50 1.45 

2 𝑐1 (GPa) 12.25 0.95 

3 𝜈 0.4 0.39 

4 𝜂 (GPa. s) 65 17.40 

Objective function ω(1)   8.56 × 10−1 2.79 × 10−5 

Starting point 2: 𝛉(02) 

1 𝐸 (GPa) 1.40 1.45 

2 𝑐1 (GPa) 8.0 0.95 

3 𝜈 0.3 0.39 

4 𝜂 (GPa. s) 45 17.40 

Objective function ω(2)   4.40 × 10−1 2.79 × 10−5 

Starting point 3: 𝛉(03) 

1 𝐸 (GPa) 1.20 1.45 

2 𝑐1 (GPa) 4.0 0.95 

3 𝜈 0.2 0.39 

4 𝜂 (GPa. s) 30 17.40 

Objective function ω(3)   1.17 × 10−1 2.79 × 10−5 

Starting point 8: 𝛉(08) 

1 𝐸 (GPa) 5.0 1.45 

2 𝑐1 (GPa) 10 0.95 

3 𝜈 0.25 0.39 

4 𝜂 (GPa. s) 2.0 17.40 

Objective function ω(8)   1.01 × 10+1 2.89 × 10−5 
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Figure 4.27. Evolution of the 4 parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process using the three starting points 

𝛉(01), 𝛉(02), 𝛉(03) and 𝛉(08) with dual nanoindentation technique. 

 

Figure 4.28. Nanoindentation (P-h) pseudo-experimental and simulated curves of the obtained solution. 
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It is demonstrated that dual nanoindentation test with cube corner and Berkovich indenter tips at 

500 nm/min allows to uniquely identify the four VE parameter. In the following section, the effect of 

the measurement noise on the estimated solution is examined.  

4.5.2.1. Effect of measurement noise 

The I-index results using two nanoindentation tests performed at nanoindentation depth rate of 500 

nm/min with equivalent cube corner and Berkovich indenter tips indicate that it is possible to identify 

the four parameters (𝐼(𝐸, 𝑐1, 𝜈, 𝜂) = 2) (Table 4.11). The effect of measurement noise on the obtained 

solution is investigated. Both the nanoindentation forces obtained with 500 nm/min using equivalent 

cube corner and Berkovich indenter tips are corrupted by noise according to Equation 4.6 (Figure 4.29). 

 

Figure 4.29. Disrupted pseudo-experimental nanoindentation P-h curves (ℎ̇ = 500 nm/min) for three levels of 

noise with equivalent cube corner and Berkovich indenter tips obtained using �̂�(5). 

 

The estimated solutions using Equation 3.1 and the uncertainties (Equation 3.11) for three noise 

standard deviations are presented in Table 4.13. The four material parameters tend towards the same 

values whatever the starting point (Figure 4.30) and these values are close to the reference solution 

(lower than 5%). Comparing with the case of single nanoindentation, the Poisson’s ratio uncertainty 

decreased but still considerable (about 66% for the level 10−2). The solution is not very sensitive to this 

type of noise, thereby proving the proposed procedure is adequate to retrieve a unique set of viscoelastic 

parameters. 

 

70.3 

42.28 
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Table 4.13. Estimated solutions for the three levels of measurement noise using dual nanoindentation with the 

starting point 𝛉(02). Reference �̂�(𝟓) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s). 

 Noise   Parameter Starting value Estimated value Uncertainty 

 𝑠 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗  ∆𝜃𝑗/𝜃𝑗  (%) 

 

10−2 

1 𝐸 (GPa) 1.40 1.454 28 

 2 𝑐1 (GPa) 8.0 0.954 18 

 3 𝜈 0.3 0.381 66 

 4 𝜂 (GPa. s) 45 17.58 47 

ω    4.90 × 10−2 4.89 × 10−4  

 

5 × 10−3 

1 𝐸 (GPa) 1.40 1.461 16 

 2 𝑐1 (GPa) 8.0 0.945 10 

 3 𝜈 0.3 0.388 34 

 4 𝜂 (GPa. s) 45 17.28 26 

ω    4.96 × 10−2 1.47 × 10−4  

 

10−3 

1 𝐸 (GPa) 1.40 1.453 7.0 

 2 𝑐1 (GPa) 8.0 0.947 5.0 

 3 𝜈 0.3 0.388 16 

 4 𝜂 (GPa. s) 45 17.41 12 

ω    4.94 × 10−2 3.26 × 10−5  

 

0 

1 𝐸 (GPa) 1.40 1.454 7.0 

2 𝑐1 (GPa) 8.0 0.947 4.0 

3 𝜈 0.3 0.388 15 

4 𝜂 (GPa. s) 45 17.40 11 

ω    4.40 × 10−1 2.79 × 10−5  
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Figure 4.30. Evolution of the 4 parameters (𝐸, 𝑐1, 𝜈, 𝜂) during the updating process for the three starting points of 

the minimization algorithm 𝛉(01), 𝛉(02) and 𝛉(03) using noisy force values of dual nanoindentation data. 

 

4.6. Estimation of the VE behavior parameters from dual 

nanoindentation experimental data 

In this section, two experimental nanoindentation tests (𝑛 = 2) carried out using the cube corner 

and Berkovich indenter tips at depth rate of 500 nm/min are considered (see Chapter 2). For the updating 

process, the starting point 𝛉(01) is chosen to initialize the minimization algorithm. The identified 

parameters are summarized in Table 4.14. Unlike the updating process using single test for the VE 

behavior (Table 4.3), the Poisson’s ratio tends to the limit value (𝜈 = 0.5). The nanoindentation 

experimental P-h curves and the numerical results are plotted in Figure 4.31. The results show a poor 

agreement between the experimental data and the updating process results. This may be due to the plastic 

(a) (b)

(d)(c)
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deformation in the material behavior. It can be concluded that under nanoindentation, the PP is probably 

not only deformed in the viscoelastic domain. 

Table 4.14. Estimated parameters of the viscoelastic behavior using the dual nanoindentation (cube corner and 

Berkovich tips). 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point: 𝛉(01) 

1 𝐸 (GPa) 1.50 1.03 

2 𝑐1 (GPa) 12.25 0.17 

3 𝜈 0.4 0.5 

4 𝜂 (GPa. s) 65 49.17 

Objective function ω   2.24 6.71 × 10−2 

 

 

Figure 4.31. Nanoindentation (P-h) experimental and simulated curves for the viscoelastic behavior from dual 

nanoindentation with cube corner and Berkovich indenter tips at 500 nm/min. 

4.7. Assessment of the VE behavior  

In order to examine the validity of the VE behavior, FE simulations are carried out using all 

experimental tests performed at single nanoindentation rate with cube corner and Berkovich indenter 

tips (Chapter 2) for the solution �̂�(5) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 GPa, 𝜈 = 0.4, 𝜂 = 17.08 GPa.s). 

The P-h curves are presented in Figure 4.32 and Figure 4.33. For both indenter tips, it can be observed 

that the shape of the numerical curves changes by increasing the indentation rate. The comparison of the 

experimental and numerical curves enables us to deduce that this viscoelastic behavior law is not capable 

to completely describe the material behavior. The same conclusion is obtained from the comparison 

70.3 

42.28 
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between the numerical simulation using the solution  �̂�(5) and the tensile test (Figure 4.34). It is 

suggested that using another behavior law, indenter tip geometry or FEM may provide better description 

of the mechanical behavior of PP. For that, two behavior laws will be studied in the next chapter: 

 Viscoelastic-viscoplastic behavior law (VEVP) 

 Viscoelastic-plastic behavior law (VEP) 

 

 

(Figure 4.32 following) → 

�̂�(5) �̂�(5)

�̂�(5)�̂�(5)
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Figure 4.32. Experimental and simulated nanoindentation curves of PP at rates of 12, 25, 50, 100, 500, 1000, 

2000, and 2500 nm/min using cube corner tip for the VE behavior with the solution �̂�(5) 

 

 

(Figure 4.33 following) → 

�̂�(5)

�̂�(5)�̂�(5)

�̂�(5)

�̂�(5) �̂�(5)
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Figure 4.33. Experimental and simulated nanoindentation curves of PP at rates of 50, 500, 1000, and 5000 

nm/min using Berkovich indenter tip for the VE behavior with the solution �̂�(5).

 

Figure 4.34. Experimental data of the tensile test and simulation response using the VE behavior for  

the estimated solution �̂�(5). 

4.8. Conclusion 

In this chapter, the stability of the viscoelastic properties of polypropylene determined by the FEMU 

of the nanoindentation test has been studied. A four-parameter viscoelastic behavior law has been 

implemented in a 2D-axisymmetric FEM. The FEMU method illustrates that a single nanoindentation 

experimental triangular load-unload test conducted at constant nanoindentation depth rate (~1000 nm/

min) is not sufficient to uniquely determine the four viscoelastic properties of the material. The updating 

�̂�(5) �̂�(5)

�̂�(5)

 2  3
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process leads to multiple solutions for the values of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) of the viscoelastic 

behavior law. The identification of the four parameters from a single nanoindentation triangular test is 

thus considered as impossible. The identifiability analysis allows the quantification of the ill-posed 

character of the inverse problem by a scalar 𝐼-index and shows that it is possible to identify three 

parameters (𝐸, 𝑐1, 𝜂) even if only the unloading phase is taken into account, which proves that the 

relevant information is in the unloading phase. 

The effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, 

sinusoidal) and tip angle on the identifiability has been numerically investigated. The comparison 

between the results from the different loading types shows that the identification of the four material 

parameters is not possible. The included half angle 𝛼 of the indenter tip does not have a significant 

influence on the identifiability results. It is also found that the updating process solutions are not very 

sensitive to the measurement noise. 

The comparison between the loss factor and the 𝐼-index results from the nanoindentation triangular 

tests indicates that the better identifiability of the material parameters is obtained at the maximum loss 

factor, which corresponds to the maximum of the dissipated energy. It is also observed that, whatever 

the loading type, the best identifiability is obtained if the loss factor is maximum. 

The combination of several triangular load-unload tests improves the identification robustness and 

does not lead to better 𝐼-index for the four material parameters compared to a single but properly chosen 

one. We numerically show that the combination of two nanoindentation triangular tests carried out at a 

constant nanoindentation depth rate using equivalent cone apex angles of cube corner (42.28°) and 

Berkovich (70.3°) indenter tips allows for the retrieval of a unique solution of the inverse problem, 

which is robust with respect to the noise. The four material parameters are potentially identifiable using 

this experimental protocol if the material behavior is viscoelastic. 

The 𝐼-index can be used to numerically design the nanoindentation tests which allow to activate the 

dissipative phenomena as much as possible, thus to identify intrinsic and reliable properties.  In order to 

identify the material behavior, the plasticity phenomena will be taken into account in the behavior law 

in the next chapter. 
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5.1. Introduction 

In the previous chapter, it has been shown that during the nanoindentation test, the polypropylene 

(PP) does not only exhibit a viscoelastic behavior. The optical images of the imprint show that the 

indented material does not return to initial state after unloading, which indicates that there is a residual 

plastic deformation (Figure 5.1). For a complete description of the material behavior, plasticity should 

be taken into account in the behavior law. In order to identify the mechanical behavior of PP, 

viscoelastic-viscoplastic (VEVP) and viscoelastic-plastic (VEP) behaviors have been considered. From 

the literature, the yield strength of PP is about 60 MPa (Ashby, 1994). The sensitivities of the 

nanoindentation force to the VEVP and VEP behaviors parameters is assessed. The identifiability 

analysis is carried out in order to extract accurate mechanical properties of the material. 

 

Figure 5.1. Optical images of imprints on PP samples. (a) cube corner indenter tip (2.48 × 2.48 𝜇m2). 

(b) Berkovich indenter tip (6.55 × 6.55 𝜇m2). 

5.2. Viscoelastic-viscoplastic behavior law 

As mentioned in the Chapter 1, behavior laws, which combine viscoelasticity and viscoplasticity 

have been proposed to investigate the mechanical behavior of polymers (Kermouche et al., 2013; Chen 

et al., 2015). For example, the behavior law developed by Chen et al, which is controlled by ten 

parameters, is fully capable to reproduce the mechanical behavior of UHMWPE (Figure 1.19). In this 

section, the viscoelastic-viscoplastic (VEVP) behavior law established by Poilâne et al. (Poilâne et al., 

2014) and implemented in ANSYS FE software through UMAT subroutine is used for the investigation 

of the material behavior. The rheological model consists in the connection in series of the VE model 

presented in Chapter 4.2 and a VP model, which is composed of a linear spring of hardening coefficient 

𝑐2, a linear viscous damper of viscosity K which is associated with a plastic slider of  yield strength 𝜎𝑦 

in parallel (Figure 5.2). This VEVP behavior involves seven parameters as follows: 

(b)(a)



Estimation of the viscoelastic-viscoplastic properties of materials from dual nanoindentation curves 

 

126 

 

 

Figure 5.2. VEVP rheological model. 

 

The total strain tensor 𝛆 is defined as the sum of the elastic 𝛆 , anelastic 𝛆𝑎𝑛 and viscoplastic 𝛆𝑣𝑝 strains: 

 𝛆 = 𝛆 + 𝛆𝑎𝑛 + 𝛆𝑣𝑝 (5.1) 

The viscoelastic strain 𝛆𝑣  is given by the sum of the elastic and anelastic strains: 

 𝛆𝑣 = 𝛆 + 𝛆𝑎𝑛 (5.2) 

The inelastic strain 𝛆𝑖𝑛 is defined as the sum of the anelastic 𝛆𝑎𝑛 and viscoplastic 𝛆𝑣𝑝 strains: 

 𝛆𝑖𝑛 = 𝛆𝑎𝑛 + 𝛆𝑣𝑝 (5.3) 

Based on the framework of irreversible thermodynamics, the Helmholtz free energy is given by 

(Lemaitre and Chaboche, 1994): 

 𝜓 =
1

2𝜌
(𝛆𝑒: 𝐂: 𝛆𝑒 + 𝛂1: 𝐂1: 𝛂1 +

2

3
𝛂2: 𝐂2: 𝛂2) (5.4) 

where 𝛆  is the elastic strains tensor, 𝛂i is the internal variables tensors representing the inelastic 

phenomena, 𝜌 is the density,  𝐂(𝐸, 𝜈), 𝐂1(𝑐1, 𝜈) and 𝐂2(𝑐2) are the elastic, anelastic and viscoplastic 

stiffness tensors which are defined by: 

 𝛔 = 𝐂(𝐸, 𝜈): 𝛆  with the Hooke’s law 𝜎𝑖𝑗 =
𝐸

1+𝜈
[휀𝑖𝑗 +

𝜈

1−2𝜈
휀𝑘𝑘𝛿𝑖𝑗] (5.5) 

 𝐂1(𝑐1, 𝜈) =
𝑐1

𝐸
𝐂 (5.6) 

 𝐂2(𝑐2) = 𝑐2𝐈4 (5.7) 

 

𝑐2

𝜎𝑦

𝐾

𝜂

𝑐1, 𝜈

𝐸, 𝜈

VE VP
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where 𝐸, 𝜈, 𝑐1 and 𝑐2 are the instantaneous modulus, the Poisson's ratio, the anelastic modulus and the 

coefficient of the linear kinematic hardening, respectively; the symbol “:” stands for the tensor inner 

product, 𝐈4 is a fourth-order identity tensor. The state laws derive from this energy: 

 
𝛔 = 𝜌

∂𝜓

∂𝛆 
, 𝐗1 = 𝜌

∂𝜓

∂𝛂1
     and     𝐗2 = 𝜌

∂𝜓

∂𝛂2
 (5.8) 

where 𝛔  is the Cauchy stress tensor, 𝐗1 and 𝐗2 are the tensors representing the inelastic phenomena. 

 

The dissipation potential 𝛺 is defined as follows: 

 𝛺 =
𝐸

2𝜂
(𝛔−𝐗1): 𝐒: (𝛔 − 𝐗1) +

1

2𝐾
〈𝑓〉2 (5.9) 

where 𝜂 and 𝐾 are the viscosity coefficients in the viscoelastic and viscoplastic domains, 𝐒 the elastic 

compliance (fourth-order) tensor such as 𝐒: 𝐂 = 𝐈 (identity tensor). 

The function 𝑓 is given by: 

 𝑓(𝛔, 𝐗2) = σ − X2
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜎𝑦 (5.10) 

where 𝜎𝑦 is the yield strength. 

The Von Mises stress is expressed as follows: 

 σ − X2
̅̅ ̅̅ ̅̅ ̅̅ ̅ = √

3

2
dev(𝛔 − 𝐗2): dev(𝛔 − 𝐗2) (5.11) 

where dev(𝛔 − 𝐗2) is expressed as: 

 dev(𝛔 − 𝐗2) = (𝛔 − 𝐗2) −
1

3
Tr(𝛔 − 𝐗2)𝐈 (5.12) 

 The Macaulay brackets correspond to: 

 〈𝑓〉 = {
0, if    𝑓 < 0
𝑓, if    𝑓 ≥ 0

 (5.13) 

By deriving the Helmholtz free energy 𝜓 according to the Equation 5.8, we obtain the state laws: 

 𝛔 = 𝐂: 𝛆  (5.14) 

 𝐗1 =
𝑐1

𝐸
𝐂: 𝛂1 (5.15) 

 𝐗2 =
2

3
𝑐2𝛂2 (5.16) 

The derivatives of the potential 𝛺 give the internal variables evolutions: 
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 �̇�𝑖𝑛 = �̇�1 + �̇�2 (5.17) 

 
�̇�1 =

𝐸

𝜂
𝐒: (𝛔 − 𝐗1) (5.18) 

 
�̇�2 =

1

𝐾
〈𝑓〉

dev(𝛔 − 𝐗2)

σ − X2
̅̅ ̅̅ ̅̅ ̅̅ ̅

  (5.19) 

 

This VEVP behavior law is controlled by seven material parameters, which define the parameter 

set 𝛉 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7) = (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦, 𝑐2, 𝐾). In order to determine these parameters from 

nanoindentation responses, the FEMU method is employed. The identifiability index (𝐼-index) 

introduced in Chapter 3.5 is then used to examine the parameters identifiability. 

5.2.1. Results of the updating procedure for the VEVP behavior law 

Herein, two experimental triangular tests realized at nanoindentation depth rate of 500 nm/min with 

cube corner and Berkovich indenter tips in displacement-controlled mode are used for the updating 

process of the 2D-axisymmetric FEM to identify the VEVP properties of material (Equation 3.1). Three 

starting points 𝛉(09), 𝛉(10), and 𝛉(11) are considered for the minimization algorithm (Table 5.1). The 

computation time for each identification is about 30 days. The evolution of the seven parameters during 

the minimization process are displayed in Figure 5.3. It can be seen that the estimated parameters are 

not the same for the three starting points. In the case the Poisson’s ratio is imposed, the algorithm 

converges faster with less iterations. Comparing with the VE behavior results (Chapter 4.6), the 

objective function value decreases, which indicates that the VEVP behavior is more adapted to the 

description of the material behavior. Despite the difference observed between the estimated parameters, 

Figure 5.4 shows that the numerical and experimental P-h curves are nearly the same. 
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Table 5.1. Estimated parameters set �̂� (Equation 3.1) for the VEVP behavior law using three starting points. 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point 09: 𝛉(09) 

1 𝐸 (GPa) 1.77 1.77 

2 𝑐1 (GPa) 1.43 1.45 

3 𝜈 0.4 (imposed) 0.4 (imposed) 

4 𝜂 (GPa. s) 15.75 15.63 

5 𝜎𝑦(MPa) 76.60 75.40 

6 𝑐2 (GPa) 10−3 9.7 × 10−4 

7 𝐾(GPa. s) 10−4 1.03 × 10−4 

Objective function ω(9)   1.90 × 10−2 2.30 × 10−3 

Starting point 10: 𝛉(10) 

1 𝐸 (GPa) 2.0 1.56 

2 𝑐1 (GPa) 1.8 1.35 

3 𝜈 0.4 0.5 

4 𝜂 (GPa. s) 20 15.55 

5 𝜎𝑦(MPa) 90 69.92 

6 𝑐2 (GPa) 10−3 2.4 × 10−2 

7 𝐾(GPa. s) 10−4 2.5 × 10−3 

Objective function ω(10)   7.43 × 10−2 1.93 × 10−3 

Starting point 11: 𝛉(11) 

1 𝐸 (GPa) 3.0 1.32 

2 𝑐1 (GPa) 2.0 1.76 

3 𝜈 0.4 0.5 

4 𝜂 (GPa. s) 30 23.60 

5 𝜎𝑦(MPa) 90 57.88 

6 𝑐2 (GPa) 1.0 6.06 × 10−2 

7 𝐾(GPa. s) 0.1 7.80 × 10−3 

Objective function ω(11)   1.03 4.28 × 10−3 
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Figure 5.3. Evolution of the seven parameters (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦 , 𝑐2, 𝐾) of the VEVP behavior during the updating 

process using the three starting points 𝛉(09), 𝛉(10) and 𝛉(11) with dual nanoindentation technique. 

 

Figure 5.4. Experimental (ℎ̇ = 500 nm/min) and simulated nanoindentation (P-h) curves using cube corner and 

Berkovich indenter tips for the three VEVP solutions (Table 5.1). 

5.2.2. Assessment of the VEVP behavior 

In this section, 2D-axisymmetric FEM is used to evaluate the VEVP behavior prediction. The 

solution �̂�(9) = (𝐸 = 1.77 GPa, 𝑐1 = 1.45 GPa, 𝜈 = 0.4 (imposed), 𝜂 = 15.63 GPa.s, 𝜎𝑦 = 75.40 

MPa, 𝑐2 = 9.7 × 10−4 GPa, 𝐾 = 1.03 × 10−4 GPa.s) is considered for the numerical simulations using 

all experimental tests carried out with cube corner and Berkovich indenter tips (Chapter 2.3). The 

experimental and numerical P-h curves are plotted in Figure 5.5 and Figure 5.6. For both indenter tips, 

the numerical results are improved comparing with those obtained using the VE behavior (Chapter 4.7). 

(g)

𝛉(09)

𝛉(10)

𝛉(11)

�̂�(9)

�̂�(10)

�̂�(11)

70.3 

42.28 
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It is obvious that for the test performed at 500 nm/min, the P-h curves are in a good agreement with the 

experimental data. It also can be seen that increasing the depth rate, the behavior law does not predict 

the material behavior and particularly the elastic return. Concerning the Berkovich indenter tip (Figure 

5.6), the behavior prediction agrees nearly with the loading segment of the nanoindentation tests 

performed at 50 nm/min, 500 nm/min and 1000 nm/min. The difference between the numerical and 

experimental P-h curves may be due to the rounded indenter tip effect or the geometry of the FEM. The 

numerical simulations using the 3D FEM may be useful to improve the results. A comparison between 

a tensile test and the VEVP behavior using the solution �̂�(9) is given in Figure 5.7. The numerical result 

and experimental data are almost in good agreement. These results show that the VEVP law is better for 

describing the material behavior than the VE one. 

 

(Figure 5.5 following) → 

 

�̂�(9)

�̂�(5)

�̂�(9)

�̂�(5)

�̂�(9)

�̂�(5)

�̂�(9)

�̂�(5)
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Figure 5.5. Experimental and simulated nanoindentation (P-h) curves of PP at rates of 12, 25, 50, 100, 500, 

1000, 2000, and 2500 nm/min using cube corner indenter tip for the VEVP behavior with the solution �̂�(9). 

 

(Figure 5.6 following) → 
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Figure 5.6. Experimental and simulated nanoindentation (P-h) curves of PP at rates of 50, 500, 1000, and 5000 

nm/min using Berkovich indenter tip for the VE behavior with the solution �̂�(9) and VEVP behavior with �̂�(9). 

 

Figure 5.7. Experimental data of the tensile test and simulation response using the VEVP behavior for  

the estimated solution �̂�(9). 

5.2.3. Sensitivity analysis 

In this section, a sensitivity analysis is performed for the solution �̂�(9) (with imposed Poisson’s 

ratio) using nanoindentation tests conducted at 500 nm/min with cube corner and Berkovich indenter 

tips. The tests are discretized in 𝑇1 = 940 points for cube corner indenter tip and  𝑇2 = 1000 points for 

�̂�(9)�̂�(9)

�̂�(5)�̂�(5)

 2  3

�̂�(9)
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the Berkovich indenter tip. The relative perturbation 휀 is set to 5 × 10−3. The norms of the sensitivity 

vectors 𝛿𝑗 are defined as: 

 

𝛿𝑗 = ∑
𝜃𝑗

(9)

𝑃𝑚𝑎𝑥
( )

√
1

𝑇 
∑ (

𝜕𝑃𝑘
( )

𝜕𝜃𝑗
|

�̂�(9)

)

2𝑇𝑒

𝑘=1

2

 =1

 (5.20) 

 

Figure 5.8 shows that the nanoindentation force is sensitive to the seven VEVP parameters 

(𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦, 𝑐2, 𝐾). The yield strength 𝜎𝑦 is the most influential one. Then, the sensitivities to the VE 

parameters 𝐸, 𝑐1, 𝜈 and 𝜂 are of almost similar magnitudes. The hardening coefficient 𝑐2 and the 

viscosity coefficient 𝐾 are the least sensitive parameters, which can be due to their low values. The ratio 

between the norms of the sensitivities of 𝜎𝑦 (most sensitive) and 𝑐2 (least sensitive) is about 28.8. It also 

appears that for both indenter tips, the sensitivity to (𝑐2, 𝐾) are close to zero. This may affect the 

identifiability of the behavior law parameters. 

 

Figure 5.8. Sensitivity of the nanoindentation force 𝑃 to 𝜃𝑗  for the solution �̂�(9) using nanoindentation tests 

performed with cube corner and Berkovich indenter tips for the VEVP behavior. 
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The sensitivity vectors of the nanoindentation force to the behavior law parameters are calculated 

using the following equation: 

 

𝑆𝑘𝑗 = ∑
𝜃𝑗

(9)

𝑃𝑚𝑎𝑥
( )

𝜕𝑃𝑘
( )

𝜕𝜃𝑗
|

�̂�(9)

2

 =1

≈ ∑
(1 + 휀)𝜃𝑗

(9)

𝑃𝑚𝑎𝑥
( )

𝜕𝑃𝑘
( )

𝜕𝜃𝑗

2

 =1

 (5.21) 

 

The same smoothing procedure presented in Chapter 3.4 is employed with smoothing parameter 

equal 0.2 for the cube corner indenter tip and 0.06 for the Berkovich indenter tip (Figure 5.9a and Figure 

5.10a). For both indenter tips the sensitivity vectors to the parameters 𝐸, 𝑐1, 𝜈, 𝜂 and 𝜎𝑦 are almost 

similar during the loading segment. For example, Figure 5.9b and Figure 5.10b illustrate the collinearity 

between the sensitivity vectors (𝜈, 𝜎𝑦), which means that their identification from the sole loading phase 

is thus expected to be impossible. For the cube corner indenter tip, the sensitivity vectors to (𝐸,𝜂) and 

(𝑐1,𝜎𝑦) remain almost proportional during the unloading segment. Concerning the Berkovich indenter 

tip, the sensitivity vectors to (𝐸,𝜈) are almost collinear during the unloading segment. 

 

(Figure 5.9 following) → 
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Figure 5.9. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading using cube corner indenter tip for the VEVP behavior. (b) Collinearity between sensitivity vectors 𝑆𝑘3 

and 𝑆𝑘5 (sensitivities to 𝜈 and 𝜎𝑦, respectively). 

 

(Figure 5.10 following) → 
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Figure 5.10. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading using Berkovich indenter tip for the VEVP behavior. (b) Collinearity between sensitivity vectors 𝑆𝑘3 

and 𝑆𝑘5 (sensitivities to 𝜈 and 𝜎𝑦, respectively). 

5.2.4. Identifiability analysis 

This 𝐼-index is calculated from Equation 3.26 for the 120 parameters combinations (21 couples, 35 

triplets, 35 quadruplets, 21 quintuplets, 7 sextuplets and 1 septuplet) and for various time subsets (loads-

unloads, loads only, unloads only) using the smoothed vectors for the solution �̂�(9). In Figure 5.11, the 

evolution of the 𝐼-index for five combinations of parameters using dual nanoindentation data is shown. 

The 𝐼-index is disturbed during loading segment, which can be due to the contact problems between the 

cube corner indenter tip and the specimen. Subsequently, these perturbations disappear for the 

Berkovich indenter tip. When considering that the anelastic and viscoplastic parameters (𝑐1, 𝜂, 𝜎𝑦, 𝑐2, 𝐾) 

are known, the elastic parameters are identifiable 𝐼(𝐸, 𝜈) = 0.9. It is also observed that the identification 

of the three parameters (𝐸, 𝑐1, 𝜂) from the cube corner test is difficult (𝐼 = 2.2) and becomes possible 

when the Berkovich test is considered (𝐼 = 1.4). This identifiability is better than that obtained with the 

VE behavior presented in Chapter 4.3 (𝐼 = 1.9). In the case when the viscoplastic parameters (𝜎𝑦, 𝑐2, 𝐾) 

are known, the identifiability of the viscoelastic parameters is difficult 𝐼(𝐸, 𝑐1, 𝜈, 𝜂) = 2.2. This result 

is better than that obtained using single nanoindentation test (𝐼(𝐸, 𝜈, 𝑐1, 𝜂) = 3.7). Also, the 

identification of the five parameters (𝐸, 𝜈, 𝑐1, 𝜂, 𝜎𝑦) from cube corner test is impossible (𝐼 = 4.1) and 

becomes difficult when adding the Berkovich test (𝐼 = 2.9). The additional information improves the 

O

A

A′

(A, A′)

O
Loading Unloading

Loading

Unloading

(a) (b)



Viscoelastic-viscoplastic behavior law 

139 

 

identifiability results. This result agrees with that obtained for the elasto-plastic behavior (Le, 2008; 

Heinrich et al., 2009). The identification of the seven VEVP parameters from the dual nanoindentation 

(cube corner, Berkovich) is impossible (𝐼 = 4.9). The 𝐼-index results obtained without smoothing 

procedure shows that this procedure increases the 𝐼-index values (about 12 %). In addition, considering 

the combination (Berkovich, cube corner), the identifiability results lead to the same conclusions. 

 

Figure 5.11. Evolution of the 𝐼-index for five combinations of parameters using nanoindentation experimental 

tests of cube corner and Berkovich indenter tips at 500 nm/min with the VEVP behavior law. 

 

The minima and maxima values of the 𝐼-index of all combinations of VEVP behavior parameters 

are presented in Table 5.2. It can be seen that it is possible to identify some combination of two and 

three parameters (𝐼 ≤ 2) from these dual nanoindentation data and only using the loading or unloading 

segments. In the case where the VE parameters (𝐸,𝑐1,𝜈,𝜂) are imposed, the identification of the 

viscoplastic parameters (σy, c2, K) remains impossible (𝐼 = 4.5). The identification of four parameters 

(𝐸, 𝜈, 𝜂, 𝜎𝑦) from the two load-unload tests is difficult (𝐼 = 2.1) and becomes possible when only the 

unloading segments are taken into account (𝐼 = 2.0). All combinations of five parameters are in the best 

case difficult to be identify. The identification of six and seven parameters is impossible whatever the 

considered nanoindentation data (loads-unloads, loads only, unloads only) (𝐼 > 3). 
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Table 5.2. Minima and maxima 𝐼-index values ([𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥]) for different combinations of parameters with the 

solution �̂�(9). 𝐼 ≤ 2 (green, potentially identifiable), 𝐼 < 2 ≤ 3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination   Loads-unloads  Loads  Unloads 

2 parameters [0.5; 4.3] [0.7; 4.3] [0.1; 4.4] 

3 parameters [1.3; 4.5] [2.3; 4.9] [1.0; 4.5] 

4 parameters [2.1; 4.6] [3.5; 5.1] [2.0; 4.6] 

5 parameters [2.9; 4.7] [4.5; 5.2] [2.9; 4.7] 

6 parameters [4.4; 4.8] [4.7; 5.4] [4.3; 4.7] 

𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦, 𝑐2, 𝐾 4.9 5.4 4.8 

5.3. Viscoelastic-plastic behavior law 

Herein, a viscoelastic-plastic (VEP) behavior law is used to characterize the mechanical behavior 

of PP. The rheological model consists in the VE part of the VEVP one presented in section 5.2 connected 

in series with a plastic slider of yield strength 𝜎𝑦 as seen in Figure 5.12. In this case, the viscosity 𝐾 is 

set to 1 MPa.s and the coefficient of the linear kinematic hardening to 𝑐2 = 0 to enable the plastic 

deformation. 

 

Figure 5.12. VEP rheological model.

 

This VEP behavior law is controlled by five material parameters, which define the parameter set 

𝛉 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) = (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦). The updating process and identifiability analysis are 

presented in the following paragraphs. 

5.3.1. Results of the updating procedure for the VEP behavior law 

In this case, the same dual nanoindentation tests (cube corner, Berkovich) are used and four starting 

points (𝛉(12), 𝛉(13), 𝛉(14), 𝛉(15)) are considered (Table 5.3). The starting point 𝛉(12) is chosen by adding 

a yield strength to the estimated solution of the VE behavior �̂�(5) (�̂�(12) = (𝐸 = 1.47 GPa, 𝑐1 = 0.94 

𝜂
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GPa, 𝜈 = 0.4 (imposed), 𝜂 = 17.08 GPa.s, 𝜎𝑦 = 60 MPa). The updating process lasts about 23 days of 

computation for each starting point. The evolution of the five parameters during the minimization 

process are illustrated in Figure 5.13. As for the VEVP behavior, the Poisson’s ratio tends to the value 

𝜈 = 0.5. When 𝜈 is free, the parameters 𝐸, 𝑐1, 𝜂 and 𝜎𝑦 tend towards the same values whatever the 

starting point. The value of the objective function ω is almost identical for all four cases. Comparing its 

value with those obtained for the VEVP behavior, one can conclude that the VEP behavior law is more 

adequate to the description of the material behavior. Then, it is obvious that the numerical and 

experimental P-h curves are very close for both indenter tips (Figure 5.14). 

 

Table 5.3. Estimated parameters set �̂� (Equation 3.1) for the VEP behavior law using four starting points. 

  Parameter Starting value Estimated value 

 𝑗 𝜃𝑗 𝜃𝑗
(0)

 𝜃𝑗 

Starting point 12: 𝛉(12) 

1 𝐸 (GPa) 1.47 1.77 

2 𝑐1 (GPa) 0.94 1.43 

3 𝜈 0.4 (imposed) 0.4 (imposed) 

4 𝜂 (GPa. s) 17.08 15.75 

5 𝜎𝑦(MPa) 60 76.70 

Objective function ω(12)   9.78 × 10−2 2.07 × 10−3 

Starting point 13: 𝛉(13) 

1 𝐸 (GPa) 4.0 1.61 

2 𝑐1 (GPa) 3.0 1.31 

3 𝜈 0.4 0.5 

4 𝜂 (GPa. s) 60 14.41 

5 𝜎𝑦(MPa) 90 69.96 

Objective function ω(13)   1.44 1.86 × 10−3 

Starting point 14: 𝛉(14) 

1 𝐸 (GPa) 2.0 1.57 

2 𝑐1 (GPa) 1.5 1.32 

3 𝜈 0.3 0.5 

4 𝜂 (GPa. s) 40 15.25 

5 𝜎𝑦(MPa) 70 70.28 

Objective function ω(14)   5.39 × 10−2 1.88 × 10−3 

Starting point 15: 𝛉(15) 

1 𝐸 (GPa) 1.5 1.63 

2 𝑐1 (GPa) 1.0 1.31 

3 𝜈 0.25 0.5 

4 𝜂 (GPa. s) 20 14.48 

5 𝜎𝑦(MPa) 60 69.56 

Objective function ω(15)   1.41 × 10−1 1.86 × 10−3 
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Figure 5.13. Evolution of the 5 parameters (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦) of the VEP behavior during the updating process using 

the four starting points 𝛉(12), 𝛉(13), 𝛉(14) and 𝛉(15) with dual nanoindentation technique. 
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Figure 5.14. Experimental (ℎ̇ = 500 nm/min) and simulated nanoindentation P-h curves using cube corner and 

Berkovich indenter tips for the four VEP solutions (Table 5.3). 

5.3.2. Assessment of the VEP behavior  

To validate the behavior law, numerical simulations have been carried out using experimental tests 

performed at single nanoindentation rate with cube corner and Berkovich indenter tips (Chapter 2.3) for 

the solution �̂�(12) = (𝐸 = 1.77 GPa, 𝑐1 = 1.43 GPa, 𝜈 = 0.4 (imposed), 𝜂 = 15.75 GPa.s, 𝜎𝑦 = 76.70 

MPa). Figure 5.15 and Figure 5.16 present the experimental and numerical P-h curves for both indenter 

tips. The numerical results are nearly the same as those obtained with the VEVP behavior (Figure 5.5 

and Figure 5.6). It indicates that the VEP behavior law does not exactly predict the PP behavior. The 

comparison between the simulation results and the tensile test data shows that the VEP law predicts the 

PP behavior better than the VEVP one (Figure 5.17).  
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Figure 5.15. Experimental and simulated nanoindentation (P-h) curves of PP at rates of 12, 25, 50, 100, 500, 

1000, 2000, and 2500 nm/min using cube corner tip for the VEP behavior with the solution �̂�(12). 
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Figure 5.16. Experimental and simulated nanoindentation (P-h) curves of PP at rates of 50, 500, 1000, and 5000 

nm/min using Berkovich indenter tip for the VEP behavior with the solution �̂�(12). 
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Figure 5.17. Experimental data of the tensile test and simulation response using the VEP behavior for  

the estimated solution �̂�(12).    

 

5.3.3. Sensitivity analysis  

In order to investigate the identification the VEP properties of PP, the sensitivity of the 

nanoindentation force to the parameters estimated from the updating process 𝛉 = (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦) is 

studied using the dual nanoindentation tests (cube corner, Berkovich). The norm of sensitivity vectors 

calculated using Equation 5.20 for the solution �̂�(12). For this analysis, the computation time is about 

15 days. Figure 5.18 shows that the nanoindentation force is sensitive to the five VEP parameters. The 

yield strength 𝜎𝑦 is the most sensitive parameter. The norms of the sensitivities to the parameters 𝐸, 𝑐1 

and 𝜈 have almost the same magnitude. The viscosity coefficient 𝜂 is the least influential parameter. The 

ratio between the norms of the sensitivities of 𝜎𝑦 and 𝜂 about 3.5. 

�̂�(12)
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Figure 5.18. Sensitivity of the nanoindentation force 𝑃 to 𝜃𝑗  for the solution �̂�(12) using nanoindentation 

experimental tests performed using cube corner and Berkovich indenter tips for the VEP behavior. 

 

 

The sensitivity vectors of the nanoindentation force have been computed using Equation 5.21 for 

the solution �̂�(12). The same smoothing procedure presented in Chapter 3.4 is used with smoothing 

parameter 0.2 for the cube corner indenter tip and 0.1 for the Berkovich indenter tip. As for the VEVP 

behavior, the sensitivity vectors are very similar during the loading segments, which indicates that the 

identification of the five VEP parameters from the loading segments is expected to be difficult (Figure 

5.19 and Figure 5.20). The proportionality between the sensitivity to 𝜈 and 𝜎𝑦 during the loading 

segment and the last half of unloading is illustrated in Figure 5.19b and Figure 5.20b. It means that their 

identification using single loading phase is impossible. Focusing on the cube corner indenter tip, it is 

observed that the sensitivity vectors to (𝐸,𝜂) and (𝑐1,𝜎𝑦) remains almost proportional during the 

unloading segment. This proportionality indicates that the identification of these parameters from this 

test will be impossible. For the Berkovich indenter tip, the proportionality remains for (𝐸,𝜈) and it is 

lost for (𝑐1,𝜎𝑦) during the unloading segment. 
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Figure 5.19. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading using cube corner indenter tip for the VEP behavior. (b) Collinearity between sensitivity vectors 𝑆𝑘3 

and 𝑆𝑘5 (sensitivities to 𝜈 and 𝜎𝑦, respectively). 
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Figure 5.20. (a) Sensitivity vectors of the nanoindentation force to the material parameters 𝜃𝑗 during loading and 

unloading using Berkovich indenter tip for the VEP behavior. (b) Collinearity between sensitivity vectors 𝑆𝑘3 

and 𝑆𝑘5 (sensitivities to 𝜈 and 𝜎𝑦, respectively). 
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5.3.4. Identifiability analysis 

In this section, the identifiability of the VEP parameters 𝛉 = (𝐸, 𝑐1, ν, 𝜂, σy) is studied using the 

dual nanoindentation experimental tests performed at 500 nm/min with cube corner and Berkovich 

indenter tips. This 𝐼-index is calculated for the 26 parameters combinations (10 couples, 10 triplets, 5 

quadruplets and 1 quintuplet) and for various time subsets (loads-unloads, loads only, unloads only) 

using the smoothed vectors for the solution �̂�(12) (with imposed Poisson’s ratio).  In Figure 5.21, the 

evolution of the 𝐼-index for four combinations of parameters using dual nanoindentation data is plotted. 

For all combinations, the 𝐼-index value decreases once the unloading segment is considered. For 

example, the value of the index 𝐼(𝐸, 𝑐1, 𝜂) = 2.2 only when the cube corner test is considered and equal 

2 as soon as the Berkovich test is taken into account. In case the yield strength σy is known, the 

identifiability of the VE parameters is difficult 𝐼(𝐸, 𝑐1, ν, 𝜂) = 2.2. The identification of the five VEP 

parameters from this dual nanoindentation remains difficult (𝐼 = 2.8). 

 

Figure 5.21. Evolution of the 𝐼-index for four combinations of parameters using nanoindentation experimental 

tests of cube corner and Berkovich indenter tips at 500 nm/min with the VEP behavior. 

 

The values of the 𝐼-index of all combinations of VEP parameters calculated using dual 

nanoindentation (cube corner, Berkovich) are summarized in Table 5.4. It can been seen that all 

combinations of two parameters present an 𝐼-index < 2, which means that they are identifiable using 

the dual nanoindentation tests and only unloading segments. The identifiability of the parameters 

(𝐸, 𝑐1, 𝜂) is better from the sole unloading segments (𝐼 = 1.6) than both nanoindentation tests (𝐼 = 2.0). 
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For the triplets (𝐸, 𝜈, 𝜂) and (𝐸, 𝜂, 𝜎𝑦), the 𝐼-index is 𝐼 > 2 when using the two tests and becomes 

possible when only the unloading segments are considered 𝐼 < 2. In the case where we assume that the 

elastic parameters (𝐸, 𝜈) are known, the viscous and plastic parameters are identifiable (𝐼(𝑐1, 𝜂, 𝜎𝑦) =

1.3). It is also observed that when the yield strength 𝜎𝑦 is imposed, the identifiability of the VE 

parameters (𝐸, 𝑐1, 𝜈, 𝜂) from these dual nanoindentation data is difficult (𝐼 = 2.2). The identification of 

the five VEP parameters (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦) from this dual nanoindentation tests as well as the unloading 

segments is also difficult (𝐼 = 2.8). 

 

Table 5.4. 𝐼-index for all combinations of VEP parameters using nanoindentation experimental tests of cube corner 

and Berkovich indenter tips at 500 nm/min with the solution �̂�(12). 𝐼 ≤ 2 (green, potentially identifiable), 𝐼 < 2 ≤

3 (difficult to identify), 𝐼 > 3 (red, not identifiable). 

Combination   Loads-unloads Loads   Unloads  

𝐸, 𝑐1 0.5 2.3 0.2 

𝐸, 𝜈 0.9 2.8 0.2 

𝐸, 𝜂 1.6 3.5 1.3 

𝐸, 𝜎𝑦 0.5 1.1 0.8 

𝑐1, 𝜈 1.3 2.1 1.9 

𝑐1, 𝜂 0.6 2.0 0.7 

𝑐1, 𝜎𝑦 1.3 1.3 1.4 

𝜈, 𝜂 0.8 3.0 0.3 

𝜈, 𝜎𝑦 1.3 1.3 1.4 

𝜂, 𝜎𝑦 1.1 1.8 1.3 

𝐸, 𝑐1, 𝜈 2.1 2.9 2.2 

𝐸, 𝑐1, 𝜂 2.0 3.7 1.6 

𝐸, 𝑐1, 𝜎𝑦 1.4 2.6 1.8 

𝐸, 𝜈, 𝜂 2.1 3.7 1.5 

𝐸, 𝜈, 𝜎𝑦 2.0 3.5 2.2 

𝐸, 𝜂, 𝜎𝑦 2.2 3.8 2.0 

𝑐1, 𝜈, 𝜂 1.8 3.1 2.2 

𝑐1, 𝜈, 𝜎𝑦 1.7 2.7 2.4 

𝑐1, 𝜂, 𝜎𝑦 1.3 2.7 1.7 

𝜈, 𝜂, 𝜎𝑦 1.9 3.6 1.9 

𝐸, 𝑐1, 𝜈, 𝜂 2.2 3.9 2.2 

𝐸, 𝑐1, 𝜈, 𝜎𝑦 2.8 3.5 2.9 

𝐸, 𝑐1, 𝜂, 𝜎𝑦 2.3 4.0 2.2 

𝐸, 𝜈, 𝜂, 𝜎𝑦 2.4 3.9 2.3 

𝑐1, 𝜈, 𝜂, 𝜎𝑦 2.4 3.8 2.7 

𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦 2.8 4.1 2.9 
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5.4. Conclusion 

In this chapter, the mechanical behavior of the PP under nanoindentation is studied using the FEMU 

method with two behavior laws, which are VEVP, and VEP.  

Firstly, the updating process of the 2D-axisymmetric FEM has been performed using the dual 

nanoindentation experimental tests conducted at 500 nm/min with cube corner and Berkovich indenter 

tips for the VEVP behavior with seven parameters (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦, 𝑐2, 𝐾). This procedure illustrates that 

this dual nanoindentation is not sufficient to uniquely estimate the VEVP properties of material. The 

identifiability analysis is performed using several nanoindentation data (loads-unloads tests, only loads 

and only unloads). It indicates that the addition of the information improves the identifiability results. 

The 𝐼-index results show that the identification of the VEVP properties from this dual nanoindentation 

is however impossible (𝐼 = 4.9). It suggests that an identification procedure using several 

nanoindentation tests carried out at different rates may allow to extract a unique VEVP properties. 

Secondly, updating process of the 2D-axisymmetric FEM on the same dual nanoindentation tests 

leads to multiple solutions for the values of the five parameters (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦) of the VEP behavior law. 

The identifiability of the VEP parameters is then calculated. It shows that the identification of the five 

VEP parameters is considered as difficult (𝐼 = 2.8). The better description of the PP behavior under 

nanoindentation is obtained with the VEP behavior law. 
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Conclusions and future work 

The identification of the viscoelastic-viscoplastic (VEVP) properties of materials from 

nanoindentation data is the main focus of this work. Three approaches can be employed to determine 

mechanical properties of materials from nanoindentation data. The first one uses analytical methods 

based on the contact theory, the second uses the contact theory and the finite element (FE) method and 

the third method is based on the combination of the FE method and an optimization process (the finite 

element model updating (FEMU)) which is used in this thesis. A constitutive VEVP behavior law is 

implemented in the ANSYS FE software through a subroutine UMAT with a viscoelastic-plastic (VEP) 

particular case. 

 

Series of experimental nanoindentation triangular tests are performed on PP samples in 

displacement-controlled mode using Berkovich and cube corner indenter tips at constant and multiple 

depth rates. Also, pseudo-experimental nanoindentation tests are numerically simulated with triangular, 

trapezoidal, exponential and sinusoidal loading types. These nanoindentation tests are used in the 

identification of the mechanical properties and the identifiability investigation. 

 

Two parametric two-dimensional (2D) axisymmetric and three-dimensional (3D) FEM are 

constructed using the ANSYS FE software. The 2D-axisymmetric FEM allows the simulation of the 

nanoindentation of material using different behavior laws. The results obtained using the two FEM 

models are compared in the viscoelastic (VE) case. It is shown that the 3D model improves greatly the 

identifiability results. The mechanical properties of the material are determined using the FEMU method 

for different behavior laws. 

 

In the first case, the four parameters VE behavior law available in ANSYS FE software has been 

used in the 2D-axisymmetric FEM, for time consuming reason. The FEMU process of nanoindentation 

test illustrates that a single nanoindentation experimental triangular load-unload test conducted at 

constant nanoindentation depth rate (~1000 nm/min) is not sufficient to uniquely determine the four 
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VE properties of the PP. The updating process of the 2D-axisymmetric FEM on these experimental data 

leads to multiple solutions for the values of the four parameters (𝐸, 𝑐1, 𝜈, 𝜂) of the VE behavior law. In 

order to extract a unique solution of the VE parameters from the FEMU method, an identifiability 

analysis is performed. It allows the quantification of the ill-posed character of the inverse problem by a 

scalar identifiability index (𝐼-index) and shows that the identification of the four VE parameters from a 

single nanoindentation triangular load-unload test is impossible (𝐼 = 3.7). However, it is possible to 

identify three parameters (𝐸, 𝑐1, 𝜂) even if only the unloading phase is taken in account (𝐼 = 1.5), which 

proves that the relevant information is in the unloading phase. 

 

The effect of nanoindentation depth rate, loading type (triangular, trapezoidal, exponential, 

sinusoidal) and indenter tip angle on the identifiability has been numerically investigated. The 

comparison between the results from the different loading types shows that the identification of the four 

material parameters from single test is not possible. The included half angle 𝛼 of the indenter tip does 

not have a significant influence on the identifiability results. It is also found that the updating process 

solutions are not very sensitive to the measurement noise.  

The comparison between the loss factor and the 𝐼-index results from the nanoindentation triangular 

tests indicates that the better identifiability of the material parameters is obtained at the maximum loss 

factor, which corresponds to the maximum of the dissipated energy. It is also observed that, whatever 

the loading type, the best identifiability is obtained if the loss factor is maximum. 

 

The combination of several triangular load-unload tests improves the identification robustness and 

does not lead to better 𝐼-index for the four material parameters compared to a single but properly chosen 

one. We show that the combination of two numerical nanoindentation triangular tests carried out at a 

constant nanoindentation depth rate using equivalent cone apex angles of cube corner (42.28°) and 

Berkovich (70.3°) indenter tips allows for the retrieval of a unique solution of the inverse problem, 

which is robust with respect to the noise. The four material parameters are potentially identifiable using 

this experimental protocol if the material behavior is viscoelastic. 

 

In the last part of the thesis, the mechanical behavior of the PP under nanoindentation is studied 

using the FEMU method with two behavior laws, which are VEVP and VEP behaviors.  

The updating process of the 2D-axisymmetric FEM is conducted using the dual nanoindentation 

experimental tests performed at 500 nm/min with cube corner and Berkovich indenter tips for the VEVP 

behavior law (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦 , 𝑐2, 𝐾). The values of the obtained objective function indicate that the VEVP 

behavior improves the capability to describe the experimental data compared with the VE one but the 

obtained solution is not unique. The identifiability analysis illustrates that the addition of the information 

enhances the identifiability results. It is shown that the identification of four parameters (𝐸, 𝜈, 𝜂, 𝜎𝑦) 
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from these dual nanoindentation data is difficult (𝐼 = 2.1) and becomes possible when only the 

unloading segments are considered (𝐼 = 2.0). The identification of the seven VEVP parameters from 

these data is impossible (𝐼 = 4.9).  

The FEMU method using the same dual nanoindentation tests leads to multiple solutions for the 

values of the five VEP parameters (𝐸, 𝑐1, 𝜈, 𝜂, 𝜎𝑦). It is observed that if the Poisson's ratio is known, the 

identification of the four parameters (𝐸, 𝑐1, 𝜂, 𝜎𝑦) from these data is difficult (𝐼 = 2.2). The 𝐼-index 

value of the five VEP parameters is 𝐼 = 2.8. This result informs us about the difficulty of the 

identification procedure but indicates that a certain richness of these nanoindentation data may help to 

yield an 𝐼-index ≤ 2. 

According to the investigations of the different behavior laws, it is suggested that the PP behavior 

under nanoindentation is better described using the VEP behavior law. 

 

It is interesting to note that the 𝐼-index can be used to numerically design the nanoindentation tests 

which allow to activate the dissipative phenomena as much as possible, thus to identify intrinsic and 

reliable properties. The results obtained for the VE behavior give a quite good reference for the future 

investigations.  

 For the identification of the VEVP properties, it is suggested that an identification procedure 

using several nanoindentation tests performed at different rates may allow to determine a 

unique and intrinsic properties. However, this study is expensive and time consuming to carry 

out. 

 Concerning the 3D FEM, it could be important to perform a convergence study in order to 

optimize the contact between the indenter tip and the specimen. 

 The identifiability analysis has been shown that the four VE properties can be identified using 

single Berkovich nanoindentation test with the 3D FEM (the computational time is about 40 

hours). Along this way, it is interesting to perform the same analysis for the VEVP behavior 

law using dual (or plural) nanoindentation tests. In addition, considering the true indenter tip 

geometry may improve the identifiability of material parameters.  
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Titre : Identification des propriétés viscoélastique-viscoplastique des matériaux par nanoindentation 

instrumentée 

Mots clés : viscoélasticité, viscoplasticité, nanoindentation, identifiabilité, unicité, FEMU 

Résumé : La nanoindentation est une technique 

très utilisée pour extraire les propriétés 

mécaniques des matériaux à partir de courbes 

force-déplacement. Cependant, l’unicité et le 

caractère intrinsèque des valeurs estimées 

restent des problèmes ouverts, particulièrement 

lorsque des phénomènes visqueux sont exhibés. 

Dans ce travail, une loi de comportement 

viscoélastique-viscoplastique (VEVP) a été 

implémentée dans le code éléments finis (EF) 

ANSYS par l’intermédiaire une subroutine 

UMAT avec un cas particulier: viscoélastique-

plastique (VEP). Le cas viscoélastique (VE) a 

été traité en utilisant la loi disponible sur 

ANSYS.  L’objectif principal est d’extraire des 

propriétés intrinsèques et fiables par 

nanoindentation. Dans ce contexte, une série 

d’essais expérimentaux de nanoindentation a été 

réalisée sur du polypropylène (PP) en 

déplacement contrôlé avec les indenteurs cube 

corner et Berkovich. La méthode du recalage de 

modèle EF montre que l’identification des 

propriétés VE intrinsèques au PP à partir d’un 

essai expérimental triangulaire effectué à 1000 

nm/min est impossible. Afin de quantifier la 

richesse de l’information contenue dans l’essai 

de nanoindentation, un indice d’identifiabilité 

(𝐼-index) basé sur le conditionnement 

numérique du problème inverse est utilisé. Les 

effets de la vitesse de déplacement, de type de 

chargement (triangulaire, trapézoïdal, 

exponentiel et sinusoïdal) et de l'angle de la 

pointe de l’indenteur sont étudiés dans le cas 

VE. On montre qu’il existe une corrélation entre 

les résultats d’identifiabilité et l'énergie dissipée 

par le matériau. Quelques combinaisons 

d’essais triangulaires de nanoindentation et 

d’angles de pointe sont aussi investiguées. 

 

On montre que la méthode de nanoindentation à 

double pointes (cube corner et Berkovich) avec 

des essais triangulaires charge-décharge s’avère 

robuste pour extraire tous les paramètres VE. Le 

recalage de modèle utilisant deux essais 

expérimentaux de nanoindentation réalisés à 

500 nm/min avec les indenteurs cube corner et 

Berkovich montre que durant l’essai de 

nanoindentation, le PP ne se déforme pas 

seulement dans le domaine VE.  

L’investigation du comportement du PP est 

étendue en ajoutant la viscoplasticité dans la loi 

de comportement. Le recalage de modèle VEVP 

conduit à des solutions multiples des 

paramètres. L’analyse d’identifiabilité réalisée 

avec ce modèle illustre que l’identification des 

paramètres est impossible. On montre aussi que 

l’identification des paramètres VEP à partir de 

cette double nanoindentation est difficile.  

Ces résultats ouvrent la voie à l’utilisation de cet 

𝐼-index pour concevoir une combinaison 

d’essais de nanoindentation capable de garantir 

l’unicité et le caractère intrinsèque au matériau 

des propriétés extraites. 

 

 

 

 



 

 

 

Title : Identification of the viscoelastic-viscoplastic properties of materials by instrumented 

nanoindentation  

Keywords : viscoelasticity, viscoplasticity, nanoindentation, identifiability, uniqueness, FEMU 

Abstract : Instrumented nanoindentation is a 

popular technique to extract the material 

properties from the measured load-displacement 

curves. However, the uniqueness and the 

intrinsic character of the estimated material 

parameters remain open issues, particularly 

when viscous phenomena are exhibited. In this 

thesis, a constitutive viscoelastic-viscoplastic 

(VEVP) behavior law is implemented in the 

finite element software ANSYS through a 

subroutine UMAT with a viscoelastic-plastic 

(VEP) particular case. The viscoelastic (VE) 

was treated using the behavior law available in 

ANSYS. The goal is to extract reliable and 

intrinsic properties by nanoindentation. In this 

context, series of nanoindentation experimental 

tests are carried out on the polypropylene (PP) 

in displacement-controlled mode using cube 

corner and Berkovich indenter tips. The Finite 

Element Model Updating (FEMU) shows that 

the identification of intrinsic VE properties of 

PP from single experimental nanoindentation 

test performed at 1000 nm/min is not possible. 

In order to quantify the richness of the 

information contained in the nanoindentation 

test, an identifiability index (𝐼-index) based on 

the numerical conditioning of the inverse 

problem is used. The effect of nanoindentation 

depth rate, loading type (triangular, trapezoidal, 

exponential and sinusoidal) and apex angle is 

numerically investigated using this 𝐼-index in 

the VE case. We show a correlation between the 

identifiability results and the energy dissipated 

by the material. Several combinations of 

nanoindentation triangular tests and indenter tip 

angles are also investigated. 

 

We show that a dual nanoindentation method 

(cube corner and Berkovich) with triangular 

load-unload tests is an interesting combination 

to reliably extract all the VE parameters. The 

updating process using dual nanoindentation 

experimental tests conducted at 500 nm/min  

with cube corner and Berkovich indenter tips 

shows that under nanoindentation the PP is not 

only deformed in the VE domain. 

The investigation of the PP behavior is extended 

by including viscoplasticity in the behavior law. 

The updating process of the VEVP behavior law 

leads to multiple solutions for the values of the 

behavior parameters. The identifiability analysis 

carried out using this behavior shows that the 

identification of the material parameters from 

this dual nanoindentation data is impossible. We 

also carried out an updating process and 

identifiability analysis with the VEP behavior 

law. The obtained results show that the 

identification of the VEP parameters is difficult.  

These results pave the way for the design of a 

combination of nanoindentation tests based on 

this 𝐼-index to guarantee the uniqueness and the 

intrinsic character of the extracted properties.  
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