
HAL Id: tel-02937851
https://theses.hal.science/tel-02937851

Submitted on 14 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dual-Arm control strategy in industrial environments
Sonny Tarbouriech

To cite this version:
Sonny Tarbouriech. Dual-Arm control strategy in industrial environments. Micro and nanotechnolo-
gies/Microelectronics. Université Montpellier, 2019. English. �NNT : 2019MONTS111�. �tel-02937851�

https://theses.hal.science/tel-02937851
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Systèmes Automatiques et Microélectroniques (SYAM)

École doctorale : Information, Structures, Systèmes

Unité de recherche LIRMM

Stratégie de contrôle de robot bi-bras dans un
environnement industriel

Stratégie de contrôle de robot bi-bras dans un
environnement industriel

Présentée par Sonny Tarbouriech
Le 5 Décembre 2019

Sous la direction de Philippe FRAISSE

Devant le jury présidé par

Bruno SICILIANO, Professeur, University of Naples Examinateur

Et composé de

Vincent PADOIS, Maître de Conférences HDR, Inria Bordeaux Rapporteur

Michael MISTRY, Maître de Conférences, University of Edinburgh Rapporteur

Philippe FRAISSE, Professeur, Université de Montpellier Directeur de thèse

Andrea CHERUBINI, Maître de Conférences HDR, Université de Montpellier Co-encadrant de thèse

André CROSNIER, Professeur, Université de Montpellier Co-encadrant de thèse

2

Titre : Contribution à la stratégie de commande d’un robot bi-bras en milieu industriel

Résumé :

Le besoin grandissant de flexibilité en milieu industriel conduit à reconsidérer la
manière dont les robots sont utilisés dans de tels environnements. Il s’ensuit que la re-
lation entre l’homme et les machines doit évoluer au profit d’une plus grande proximité,
en leur permettant de partager un espace de travail commun et d’interagir physique-
ment. Dans cette optique, cette thèse a pour objectif de contribuer au contrôle de
robots bi-bras à des fins collaboratives dans un contexte industriel. Pour ce faire, nous
proposons une approche de contrôle cinématique réactif basée sur une loi de contrôle
en admittance. Celle-ci permet une manipulation d’objets sécuritaire en collaboration
physique avec des opérateurs humains. Le contrôleur résout un problème d’optimisation
quadratique (QP) afin de trouver le déplacement articulaire permettant de satisfaire la
commande spécifiée dans l’espace de la tâche, ceci tout en respectant un ensemble de
contraintes (e.g. limites articulaires, évitement de collision). La résolution cinématique
peut être adaptée afin de générer des solutions parcimonieuses au niveau des vitesses
articulaires, ce qui signifie qu’un nombre minimal d’actionneurs est activé pour assu-
rer la réalisation de la tâche. Cela induit un comportement potentiellement plus sûr
dans un environnement évolutif partagé avec des individus. Les plateformes bi-bras
comprennent parfois des extensions (par exemple, une base mobile, un torse articulé,
etc.). Dans cette thèse, nous présentons une méthode hiérarchique originale pour le
contrôle de systèmes multi-robots. Une implémentation open source du travail, Robot
Kinematics Control Library (RKCL), a été développée. Cette librairie rassemble tous
les composants décrits dans cette thèse et peut être facilement configurée pour inclure
de nouveaux robots. Tout au long des développements, des validations expérimentales
ont été effectuées sur le cobot mobile à deux bras BAZAR.

Mots-clefs : Manipulation Bi-Bras, Interaction Humain-Robot, Contrôle cinématique

Title: Dual-Arm control strategy in industrial environments

Abstract:

The growing need for flexibility in industrial settings leads to reconsidering the way
robotic systems are exploited in such environments. It follows that the relationship
between humans and machines has to evolve in favor of more proximity, by letting
them share the same workspace and physically interact together. With this in mind,
this thesis aims at contributing beyond the state of art in the control of dual-arm
robots for collaborative purposes in an industrial context. We propose a generic online
kinematic control approach based on an admittance control law which enables safe
manipulation of objects in physical collaboration with humans. The controller solves
a Quadratic Programming (QP) optimization problem to find the joint space motion
that satisfies the task space command while respecting a set of constraints (e.g. joint

4

limits, collision avoidance). The kinematic solver can be tuned to generate parsimo-
nious solutions at the joint velocity level, meaning that as few actuators as possible are
activated to achieve the tasks. This induces potentially safer behavior in an unstruc-
tured environment shared with humans. Dual-arm platforms are sometimes extended
to include additional robots (e.g., mobile base, articulated torso, ...). In this thesis, we
also present an original hierarchical method for the control of multi-robot systems. An
open-source implementation of the work, Robot Kinematics Control Library (RKCL),
is available. It implements all the components described in this thesis and can be eas-
ily configured to work with new robots. Throughout the developments, experimental
validations have been performed on the dual-arm mobile cobot BAZAR.

Keywords: Dual-Arm Manipulation, Human-Robot Interaction, Kinematic Control.

Discipline : Systèmes Avancés et Microélectronique

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
UMR 5506 CNRS/Université de Montpellier
Batiment 5 - 860 rue de St Priest

Contents

List of Figures 8

Nomenclature 9

Introduction 11

1 State of the art 17
1.1 Multi-arm manipulation . 17

1.1.1 Augmented object and virtual-linkage 17
1.1.2 Symmetric control scheme . 19
1.1.3 The cooperative task space . 20

1.2 Task-solving approaches for redundant robots 22
1.2.1 Explicit solutions to the inverse kinematics problem 22
1.2.2 Numerical optimization approaches 24

1.3 Human-robot physical collaboration in industry 26
1.3.1 Robot force control for physical collaboration 26
1.3.2 Collaborative object transportation 27

1.4 Conclusion . 28

2 Dual-arm task space control 29
2.1 Task representation for dual-arm robots 30
2.2 Wrench feedback for safe and collaborative manipulation 32

2.2.1 Wrench in the task space . 33
2.2.2 Identification and cancellation of the objects’ gravity effects . . 36
2.2.3 Retrieve human interaction wrench 37

2.3 Task space control . 37
2.3.1 Closed-loop admittance control for physical interactions 39

2.4 Application to human-robot collaborative transportation 41
2.4.1 Setup . 42
2.4.2 Results . 43
2.4.3 Repulsive action for collision avoidance 45

6 CONTENTS

2.4.4 Simulation experiments . 46
2.5 Conclusion . 49

3 Dual-arm joint motion control 51
3.1 Inverse kinematics resolution . 52

3.1.1 Solving the cooperative tasks with a unique QP 52
3.1.2 Parsimonious task-solving approach 53
3.1.3 Hierarchical inverse kinematics strategy 54
3.1.4 Application to relative tasks . 57
3.1.5 Extension to other robots . 60

3.2 Hard constraints consideration . 69
3.2.1 Joint limits . 69
3.2.2 Task space limits . 70
3.2.3 Collision avoidance hard constraints 72

3.3 Conclusion . 76

4 Kinematic control framework: RKCL library development 77
4.1 Software developments in RKCL . 79

4.1.1 RKCL main concepts . 79
4.1.2 Synchronization issues . 82
4.1.3 Example . 85
4.1.4 Benchmarks . 90

4.2 Application to teaching-by-demonstration 91
4.2.1 Description of the scenario . 91
4.2.2 Setup . 92
4.2.3 Results . 92

4.3 Conclusion . 98

Conclusion 99

A Jacobian computation 101

Bibliography 111

List of Figures

1 Vision of the automotive case treated in the VERSATILE project . . . 11
2 High level overview of the dual-arm kinematic control scheme. 14

1.1 Augmented object model . 18
1.2 Virtual-linkage representation . 19
1.3 Dual-arm manipulation using the symmetric control representation . . 20
1.4 Representation of the cooperative tasks 20

2.1 Components of the dual-arm kinematic control scheme tackled in this
chapter. 29

2.2 Discontinuity of the absolute task orientation 30
2.3 Cooperative task representation . 31
2.4 The Wrench Adapter block . 33
2.5 Wrench representation during dual-arm manipulation of a rigid object . 34
2.6 Retrieving external moments exerted by the human 38
2.7 Representation of the virtual spring-damper systems attached to the

relative and absolute task control frames. 39
2.8 Human-robot co-manipulation of a large object using damping control . 41
2.9 Statistical comparison of efforts required during human-robot collabora-

tive transportation . 44
2.10 Snapshots of the simulated experiment 47
2.11 Absolute task translational twist command generation during the simu-

lated experiment . 48

3.1 Components of the dual-arm kinematic control scheme tackled in this
chapter. 51

3.2 Initial, middle and final configuration reached during the simulated as-
sembly task . 57

3.3 Comparison of joint velocity norms during the assembly task execution
for varying values of λ . 59

3.4 Comparison of joint velocity profiles between full parsimonious and high
parsimonious IK resolution . 61

8 LIST OF FIGURES

3.5 Representation of the absolute task with a mobile base 66
3.6 Evolution of joint group states during the simulated experiment 68
3.7 Evolution of the residual error obtained in the absolute task positions

during the simulated experiment . 69
3.8 Representation of collision avoidance evaluations 75

4.1 Dual-arm kinematic control scheme with transmitted variables 78
4.2 Package architecture of the RKCL framework 80
4.3 RKCL data tree structure . 81
4.4 Synchronization issue example when the control loop and one driver

thread are running . 84
4.5 Parallelization of driver/controller processors in RKCL for dual-arm mo-

bile robot BAZAR . 86
4.6 Benchmarks of the different processes running sequentially in the kine-

matic control loop. 91
4.7 Some snapshots taken during the teaching phase of the experiment . . 93
4.8 View from the BAZAR Microsoft Kinect 94
4.9 Evolution of the tracking error for the cooperative task variables 96
4.10 Evolution of the relative task state and target wrench (z component only) 97

A.1 Kinematic path associated with the task 102

Nomenclature

Bold symbols are for vectors.

Acronyms

CoM Center of Mass
CPU Central Processing Unit
DoF Degrees of Freedom
HMD Head-Mounted Display
HQP Hierarchical Quadratic Programming
pHRI Physical Human-Robot Interaction
PID Packages Integration and Deployment
QP Quadratic Programming
RKCL Robot Kinematics Control Library
V-REP Virtual Robot Experimentation Platform

List of symbols

Ndof Number of robot’s DoF
Neq Number of equality constraints
Ngroup Number of joint groups composing the robot
Nineq Number of inequality constraints
Ntask Number of tasks
T Sampling time
S(ω) Skew-symmetric matrix associated with ω
ε Residual error on the kinematic task
A Linear coefficient matrix of the inequality constraint
B Diagonal damping matrix
F Task space force vector
J Jacobian matrix

10 List of symbols

K Diagonal stiffness matrix
M Task space moment vector
RA
B Rotation matrix expressing the orientation of Frame B with

respect to Frame A
TA
B Homogeneous transformation matrix expressing the pose of

Frame B with respect to Frame A
W Task space wrench vector
q̈ Joint acceleration vector
ẍ Task space acceleration vector
q̇ Joint velocity vector
ẋ Task space velocity vector
b Constant vector of the inequality constraint
c Center of mass vector (in the object’s frame)
g Gravity vector (in the world frame)
pAB Translation vector expressing the position of Frame B with

respect to Frame A
q Joint position vector
x Task space pose vector
Fctrl Control frame
Fref Reference frame
Fw World frame

Introduction

The vision of the industry in all the sectors of European manufacturing has been
progressively changing over the past few years. The mass production approach that
was widely deployed since the early 20th century has recently shifted to a new trend
that leads to the reduction of production lot sizes.

This recent trend results from the combination of multiple factors. The two princi-
pal ones are the deployment of Lean methodology (Nic18) that tends to reduce stocks
as much as possible and the mass customization of products that tends to multiply the
number of product variants to be produced. Unlike the mass-production paradigm
where the equipment is either based on fixed automation or reconfigured over an
extensive-time period, mass-customization has proven more challenging in terms of
production rates and reconfiguration efficiency. One main issue is that the advantages
of industrial robots are not exploited in their full potential within the production plants
due to poor acceptance.

Figure 1 – Vision of the automotive case treated in the VERSATILE project. The dual-arm mobile platform
operates in a changing environment.

One of the main reasons why companies, and particularly SMEs, do not adopt
robots in their production lines involves the lack of flexible equipment. Additionally,
complex manual tasks cannot be fully automated with a good ratio of cost vs robustness
using the traditional manipulators due to three major reasons: 1) traditional manu-
facturing processes are designed for large scale serial production of the same product

12 Introduction

and thus the robots are programmed for repetitive tasks (high-cost engineering and
offline programming). This paradigm, however, does not apply to small scale produc-
tion that may exhibit “one of a kind” product variability. 2) precise and costly jigs
and tooling are required by robots while humans only require a table and their hands
that are dexterous and sensitive enough to perform constrained assembly. 3) the high
cost of cell maintenance and auxiliary systems for a variety of parts makes automation
non-affordable/sustainable under the market uncertainty.

In terms of manufacturing processes, the transition to a small scale production
implies major technological changes, such as the need for flexible equipment that can
be easily adapted to perform new operations.

Motivations

The VERSATILE European project1 in which this thesis lies has been launched to
contribute to the development of the ”factory of the future”. Among different field of
action, VERSATILE intends to increase flexibility and versatility throughout the set
up of dual-arm robotic platforms in production lines, as shown in Fig. 1.

Indeed, dual-arm setups are attractive solutions to meet the growing need for versa-
tility of production lines. Letting several manipulator arms share the same workspace
and operate cooperatively brings the potential of industrial robotics at a higher level.
Similarly to humans, the combination of two arms makes the realization of complex
tasks possible and allows the manipulation of bigger and heavier objects than with a
unique arm only.

Moreover, these platforms can be extended by connecting them to a torso with
articulated joints or/and a mobile base. When the resulting system is controlled as a
whole, this provides even more flexibility by increasing the dimensions of the workspace.

Finally, letting robots physically interact with humans for industrial purposes is a
significant asset. Combining the strength of robots (accuracy, repeatability, efficiency)
with human intelligence allows to rapidly adapt to changes in production lines.

From a control point of view, however, more versatility often means more complex-
ity. Indeed, the resulting structure has a large number of DoF that should be properly
managed to perform a desired operation in the task space. Also, dual-arm cooperation
leads to some specific considerations:

1. Coordination of the arms has to be precisely handled to provide collaborative
motions.

2. Closed kinematic chains are formed when manipulating a common object with
the two arms. In that case, internal wrenches appear in the system and may
create damages if not supervised.

1https://versatile-project.eu/

13

This thesis tackles the aforementioned challenges by proposing a complete frame-
work for dual-arm collaborative manipulators. It relies on the online closed-loop control
scheme depicted in Fig. 2.

Organization of the thesis

The document is organized as follows:

• Chapter 1 gives some background on dual-arm manipulation and task-solving
methods for redundant robots. This chapter also covers the works done on
human-robot physical collaboration in industry with a special focus on force con-
trol strategies and their applications to collaborative object transportation.

• Chapter 2 focuses on task space aspects of the control process. We treat rep-
resentation concerns for dual-arm collaborative manipulators and show how to
express both spatial and interaction data in a relevant and homogeneous manner.
In particular, we include new considerations at the task level to make Physical
Human-Robot Interaction (pHRI) more natural. We then detail our task space
control law which uses this task formalism to provide a tunable compliant behav-
ior combined with an obstacle avoidance strategy.

• Chapter 3 is dedicated to the joint motion control generation based on Quadratic
Programming (QP) optimization of the inverse kinematics problem under joint
velocity constraints. We introduce a Hierarchical Quadratic Programming (HQP)
approach adapted to the cooperative dual-arm case. In case of high redundancy
with respect to the tasks, we propose to exploit remaining DoF to generate par-
simonious solutions, i.e. ones that reduce the number of active joints. We extend
the HQP structure to integrate a second level of hierarchy, at the joint level. This
allows to activate some groups of joints only when necessary, which is particularly
suited for controlling a mobile base. A careful study of constraints is also given
in that chapter.

• Chapter 4 exposes the complete framework organization and its software imple-
mentation. We present Robot Kinematics Control Library (RKCL), the library
specially developed for the kinematic control of dual-arm robots.

Contributions

The main contributions of this work are (cf. Fig. 2):

1© A robust and straightforward representation of tasks for bimanual cooperative
operations, presented in Section 2.1.

2© A Wrench interpretation at the cooperative task space level with extended con-
siderations for pHRI improvement, as detailed in Section 2.2.

14 Introduction

Trajectory

Generator

Sensor data

Task space

trajectory

Wrench Adapter

Joint

command

T sk space

f edback

Inverse

Kinematics

Constraints

Evaluation Constraints

Figure 2 – High level overview of the dual-arm kinematic control scheme.

3© The development of an admittance based task space control law allowing safe
dual-arm manipulation and interaction with the environment, as shown in Sec-
tion 2.3.

4© An original inverse kinematics strategy based on a HQP architecture delivering
a tunable parsimonious use of robot joints, as presented in Section 3.1.3.

5© A new method for controlling robotic extensions of the dual-arm platform (e.g
mobile base) with prioritization at the joint group level to better match the
component specifications. The approach is explained in Section 3.1.5.

6© An in-depth study of constraints to ensure adequate robot behavior. Special
attention has been paid to prevent any kind of collision to occur with the gener-
alization of the Velocity Damper method. Details are given in Section 3.2.

7© The open-source software implementation of the kinematic controller with all the
above-mentioned features. The RKCL framework provides a generic and easy-
to-use solution to control any type of dual-arm robots. We discuss the structure
and give examples in Section 4.1.

15

Personal papers

International Conference Papers

S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, and D. Sallé, “Dual-
arm relative tasks performance using sparse kinematic control,”in IEEE/RSJ Int. Conf.
on Robots and Intelligent Systems, 2018

S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, and D. Sallé, “Ad-
mittance control for collaborative dual-arm manipulation,” in Int. Conf. on Advanced
Robotics, ICAR, 2019

International Journal Papers

A. Cherubini, R. Passama, B. Navarro, M. Sorour, A. Khelloufi, O. Mazhar, S. Tar-
bouriech, J. Zhu, O. Tempier, A. Crosnier et al., “A collaborative robot for the factory
of the future: Bazar,” The Int. Journal of Advanced Manufacturing Technology, pp.
1–17, 2019

16 Introduction

CHAPTER 1

State of the art

This thesis aims to bring new contributions to the control of dual-arm robots in an
industrial context. The way we have conducted our project brings us to establish the
baseline on the following areas of research: first, Section 1.1 gives some background on
multi-arm manipulation with a particular focus on the dual-arm particular case. This
section mainly deals with task representation and specific techniques to perform multi-
arm operations. Then, in Section 1.2, we present the state of the art in task-solving
strategies for redundant robots. We go from general paradigms concerning inverse kine-
matics and optimization processes to their application on dual-arm systems. Finally,
Section 1.3 reviews the most relevant works on physical human-robot collaboration.

1.1 Multi-arm manipulation

Over the last thirty years, important research has been conducted on multi-manipulator
systems (SKN+12). This type of cooperative systems, of which dual-arm is a special
case, can be used to carry large or heavy loads as well as to handle objects firmly
with both hands, providing more stability and accuracy during execution of the task.
However, despite their undeniable usefulness, such systems are complex and require an
advanced control architecture to deal with cooperative issues and internal constraint
management to make adequate use of their potential.

Several approaches have been proposed to address the problem of multi-arm ma-
nipulation.

1.1.1 Augmented object and virtual-linkage

Khatib (Kha88) presented a control scheme using N robots with the same number of
DoF and rigidly connected to a common manipulated object. He called the resulting

18 State of the art

Figure 1.1 – Augmented object model. The operational force fo at the operating point xo is a function of
the individual end-effectors’ wrenches.

system (the end-effector plus the object) the augmented object, since the description
of the overall system takes into account the inertial characteristics of all the effectors
and the object. This augmented object is subjected to an operational force fo at the
operating point xo, as shown in Fig. 1.1. The operational force fo results from the
contribution of all the end-effectors’ wrenches.

By generalizing the operational space formulation from (Kha87) with the augmented
object model, Khatib proposed a torque control approach to regulate the operational
force fo. To do so, he imposed the condition that the desired wrench fi at the end-
effector of arm i should be aligned with fo, as depicted in Fig. 1.1. Given the targeted
wrench fi for each manipulator, the torque command can be directly deduced through
the Jacobian matrix at the several end-effectors.

The main inherent weakness of this method is that internal forces (the ones that
produce stress in the manipulated object) are not taken into account.

To address that problem, the principle of virtual-linkage between the grasping points
was added to the previous model (WK93). Because stress throughout the object is
caused by internal forces while moments imply local stress at the interaction points,
virtual-linkage can be in the form of two different elements: prismatic joints to represent
internal forces due to the interaction between two arms and spherical joints connecting
the prismatic joints to represent the internal moments caused by each actuator (see
Fig. 1.2).

However, internal forces are computed from a quasi-static analysis, meaning that
object velocities and accelerations are not taken into account in this formalism. More-
over, internal moments are not used to resolve internal forces and so the approximation
is only valid when internal moments are very small.

More recently, Sentis et al. (SPK10) applied the virtual-linkage model in the context
of whole-body control of humanoid robots. The model provides a representation of the

1.1 Multi-arm manipulation 19

Figure 1.2 – Virtual-linkage representation: each arm is connected to the others through prismatic joints
to represent internal forces and spherical joints to represent the internal moments.

internal and CoM resultant forces in multi-contact interaction tasks, which allows to
explicitly control the desired contact forces through inverse dynamics using the torques
acting in the nullspace of the motion.

1.1.2 Symmetric control scheme

In (UD88), Uchiyama and Dauchez introduced the concept of symmetric control scheme
for dual-arm robots. To be usable, the method assumes that two arms manipulate a
common tightly grasped object with a very small deformation of it. The principle is
to perform a hybrid control of the robotic system using the relationship between forces
and velocities applied to the object, which involves the following steps:

• Determination of internal/external forces/moments using the principle of “virtual
sticks”; that is, vectors originating from the end-effector frame and ending at the
origin of the reference frame Fa attached to the object, as shown in Fig. 1.3.

• Computation of absolute and relative velocities based on the principle of virtual
work.

• Deduction of absolute and relative poses after integration.

This process allows the two robots to carry an object safely, either by grasping,
pulling, or pushing it, using an absolute and relative description of the task.

20 State of the art

Figure 1.3 – Dual-arm manipulation using the symmetric control representation. Virtual sticks p1 and p2

join at the absolute frame Fa, which is attached to any arbitrary location on the object.

1.1.3 The cooperative task space

Following the same perspective, Chiacchio et al. (CCS96) introduced a kinematic rep-
resentation for dual-arm systems performing cooperative operations. In this approach,
the two arms (referred to with subscripts 1 and 2) are seen as a unique entity and
the collaborative aspect of the process is made possible through the definition of two
complementary tasks, which define the cooperative task space, as depicted in Fig. 1.4:

Figure 1.4 – Representation of the cooperative tasks.

• The absolute task which controls the motion of the robot in the workspace. The
control frame associated with this task is defined in function of the two end-
effector poses, such as:

pa =
p2 + p1

2

Ra = R1R

{
n12,

φ12

2

}
,

(1.1)

with p and R denoting the position vector and rotation matrix, respectively. The
operator R {n, φ} generates the orientation matrix corresponding to a rotation of

1.1 Multi-arm manipulation 21

an angle φ around the unit vector n. In Eq. (1.1), R
{
n12,

φ12
2

}
makes a rotation

about the axis n12 (vector originating at p1 and directed towards p2) by half the
angle φ12 necessary to align R2 with R1.

• The relative task which regulates the relative motion between the two end-
effectors. The control frame associated with this task is attached to the end-
effector of Arm 2 and the reference frame is attached to the one of Arm 1. The
relative task position pr and orientation Rr are obtained through:

pr = p2 − p1

Rr = R1
2,

(1.2)

where R1
2 is the rotation matrix expressing the orientation of Arm 2 with respect

to the frame attached to Arm 1. Note that the choice of the reference arm is
arbitrary, here Arm 1 has been selected.

Contrary to the Symmetric control scheme, this approach only uses spatial infor-
mation to characterize the task. The advantage is that we can relax the assumption of
manipulating a firmly grasped object and apply the concept to any kind of dual-arm
collaborative operations. Nevertheless, operational forces are not taken into account in
this case.

To avoid representation singularities, the unit quaternion has been used in (CCC00)
to describe orientations of the frames. In that paper, they also proposed an indepen-
dent control of the manipulators to manage the cooperative task regulation. They
implemented a torque control law based on kinetostatic filtering of the control action
and internal force feedback. Applied to the manipulation of a firmly grasped object,
the method allows to minimize the internal forces.

Intending to provide a more compact and uniform representation, Adorno et al.
(AFD10) introduced the cooperative dual task-space. They use dual quaternions to
simultaneously describe the position and the orientation of rigid bodies. This simplifies
the task description and provide a singularity free representation for bimanual systems.

Solving the inverse kinematic problem using the cooperative task space formalism
induces the definition of an absolute Ja and relative Jr tasks Jacobian that maps the
joint velocities of the two robots to their motion in task-space. In the original approach
(CCS96), they suggested straightforward definitions of the cooperative task Jacobian
matrices given the Jacobian matrices of each manipulator (J1 and J2), leading to simple
and efficient implementation:

Ja =
[
1
2
J1

1
2
J2

]
Jr =

[
−J1 J2

] (1.3)

Note that these simple definitions are applicable only when the cooperative tasks
are expressed with respect to a fixed frame. However, to fully benefit from the relative
representation, the relative task should be entirely disconnected from the environment.

22 State of the art

This is made possible by expressing the relative task in the frame attached to the
end-effector of the reference arm. In that case, the rotational velocity of the reference
frame can be non-null (SS12) and the initial formulation is no longer valid. Recent
work (JR15) addressed this issue. Considering a fixed world frame referred to as w,
they proposed a new definition of the relative Jacobian:

J =
[
−Ψ1

rΩ
1
wJw1 Ω1

wJw2
]
, (1.4)

with

Ψ1
r =

[
I −S(p1

r)
0 I

]
, Ω1

w =

[
R1
w 0

0 R1
w

]
. (1.5)

When comparing to the original definition, we remark that only the skew-symmetric
matrix S(p1

r) with input vector p1
r has been added to the equation through the term

Ψ1
r. Normally present in parallel mechanisms (Tsa99), the contribution of this term

is negligible as long as the rotational velocity of the reference frame is close to zero,
which is not necessarily the case during dual-arm operations.

1.2 Task-solving approaches for redundant robots

For any robotic system, a kinematic task consists in describing the motion of a frame of
interest (usually the end-effector) attached to the robot. To realize a kinematic control,
the specification of the task in the operational space should be converted into the joint
space, where actuation takes place.

Controlling directly the location of the task frame requires to solve the inverse geo-
metric model of the robot (KD04). However, this method involves complex geometric
computations for high DoF robots and is not suited for multi-task considerations.

Instead, the inversion of the differential kinematics easily allows to execute a desired
Cartesian motion of redundant robots (COW08).

Indeed, there exists a simple linear relation between joint velocities q̇ and task space
velocities ẋ through the Jacobian matrix J:

ẋ = J(q)q̇. (1.6)

In the context of motion control, a robot is qualified as redundant if it has more
DoF than what the task requires. In other words, redundancy arises when there exists
more than one valid solution q̇, with respect to the differential kinematic equation
Eq. (1.6), to fulfill a given task ẋ.

1.2.1 Explicit solutions to the inverse kinematics problem

An explicit resolution of the differential kinematic equation consists in using a gener-
alized inverse of the Jacobian matrix J. Most often, the Moore-Penrose pseudoinverse
J+ is utilized to solve the problem:

1.2 Task-solving approaches for redundant robots 23

q̇ = J+ẋ. (1.7)

The pseudoinverse provides the least square solution to Eq. (1.6). However, one
may want to exploit redundancy for other purposes. In particular, redundant robots
are particularly attractive for multitasking. In fact, extra actuation capabilities can be
used to simultaneously complete several objectives.

There exists an analytical formulation leading to a strict hierarchy of tasks based
on the projection on the null space of the Jacobian (HYN81; SS91). To do so, let
us consider a set of N tasks with decreasing level of priority. The corresponding
task velocity vectors to track are ẋ1, ..., ẋN and the associated Jacobian matrices are
J1, ...,JN . The pseudoinverse resolution Eq. (1.7) can be extended to consider the ith
(i ∈ [2;N]) first successive tasks in a prioritized manner, leading to the joint velocity
solution q̇i defined by:

q̇i = q̇i−1 + (JiPi−1)
+(ẋi − Jiq̇i−1), q̇1 = J+

1 ẋ1 (1.8)

where Pi is projector into the null space of the ith first tasks, such as:

J1i =
[
J1 ... Ji

]T
Pi = (I− J+

1iJ1i),
(1.9)

I being an identity matrix whose size corresponds to the number of DoF of the
robot.

This method guarantees that the tasks of lower priority do not affect the perfor-
mance of the highest priority task. However, there is no assurance that the robot
provides sufficient redundancy to solve secondary tasks. Moreover, conflicts at the
joint level are likely to occur as the task-solving approach does not take into account
the position and velocity limits of the robot. In particular, the joint contributions
intended for lower priority tasks may fail the execution of higher priority tasks be-
cause of exceeding the admissible solution range. Antonelli et al. (AIC09) proposed to
address this problem by scaling down the tasks according to their priorities until the
global solution obeys the joint constraints. In the same perspective, the principle of
the Saturation in the Null Space algorithm (FDLK12) is to successively disable the use
of actuators that would exceed their motion bounds and to redistribute the saturated
contribution of these joints to ensure the satisfaction of all joint constraints.

In recent literature, numerous applications of null space projection for dual-arm
redundancy resolution have been considered. Most of them consist in improving some
arbitrary criteria while solving the relative task only, since relaxing the absolute part
of the cooperative task representation leaves room for optimization. In (HHY15), the
authors extended the Saturation in the Null Space algorithm to handle joint constraints
in the case of dual-arm robots performing relative tasks. The framework is also able
to deal with multi-tasking conflicts both in task and joint spaces by keeping the same
strategy of null space distribution of exceeded joint velocity, which allows sacrificing

24 State of the art

secondary tasks when necessary. Based on a similar hierarchical task-solving method,
Faroni et al. (FBVT16) chose to exploit redundancy to increase manipulability while
taking into account the mechanical boundaries of the joints. An interesting aspect of
that work is that, unlike common approaches, they do not exclusively consider the
local configurations of manipulators to evaluate their criteria. Instead, they apply an
iterative optimization method to assess manipulability for remaining configurations as
well and select the best solution from a global perspective.

Other research has addressed the problem of redundancy resolution for the full
cooperative task. In (FLMO16), Freddi et al. studied redundancy of cooperative ma-
nipulators and also proposed the Jacobian null space method to solve several prioritized
tasks. They provided a case study in which two planar manipulators are mounted on
a mobile base. Using this technique, the platform can successfully move an object
in the space while keeping the relative pose constant and avoiding obstacles. Ortenzi
et al. (OMF+18) used the null space projection to establish a strict priority between
three tasks: the relative part of the cooperative tasks is solved with maximum priority
while the absolute part is projected in its null space. Finally, if the robot is sufficiently
redundant, a lower priority task is processed to avoid joint limits. Experiments with
varying number of DoF for the manipulators demonstrated the proper behavior of the
hierarchical approach.

1.2.2 Numerical optimization approaches

The main drawback of the analytical solutions presented below is that hard constraints
(e.g. physical limits of the robot) cannot be explicitly handled. Indeed, even if some
cost functions aim at preventing from exiting the admissible space, there is no guarantee
that the resulting solution will effectively satisfy the constraints.

To overcome this issue, numerical solvers have been widely adopted in the literature
to solve the inverse kinematics problem. A common approach is to solve a QP with
inequality constraints, as proposed in (DSBDS09). It allows to minimize the l2-norm of
a cost function with the possibility to define a set of constraints to be satisfied at any
time. Solving the inverse kinematic problem consists in minimizing the least square
error on the task tracking, which can be formulated formulated as follows:

min
q̇

‖Jq̇− ẋ‖2

s.t. Aq̇ ≤ b, Cq̇ = d
(1.10)

where A, C are the linear coefficients matrices and b, d the constant vectors in the
equality and inequality constraints.

Based on QP solvers, it is possible to solve a sequence of prioritized tasks using a
Quadratic Programming (QP) architecture (KLW+09; KLW11). As before, let us con-
sider a set of N tasks sorted by decreasing priority level. The iterative process to obtain
the final joint velocity vector solution of the HQP problem is given in Algorithm (1),
where input data J and ẋ are containers vectors of Jacobian matrices and task space

1.2 Task-solving approaches for redundant robots 25

command vectors, respectively, such as J =
[
J1 ... JN

]T
and ẋ =

[
ẋ1 ... ẋN

]T
.

The basic idea of this method is to iteratively augment the equality constraint Cq̇ = d
with the latest optimal solution in the task space. Let us suppose that we just solved
the ith task and q̇i is the solution vector, we augment the equality constraint with
Jiq̇ = Jiq̇i to enforce the solution of task i + 1 to be in the null space of the ith first
tasks. The approach is equivalent to the analytical formulation of strictly hierarchized
tasks presented previously, but with hard constraints specification.

Algorithm 1 Hierarchical Inverse Kinematics

Input: J, ẋ,A,b,C,d
Output: q̇

procedure HQP
C← C, d← d
for i← 1 : N do

q̇← QP(Ji, ẋi,A,b,C,d) . Eq. (1.10)

C←
[
C Ji

]T
d←

[
d Jiq̇

]T
end for

end procedure

in (EMW10), Escande et al. improved the computation time of the solver using a
complete orthogonal decomposition to obtain the null spaces of tasks with a prioritized
hierarchy. This improvement allowed a satisfactory real-time implementation of the
method on humanoid robots (EMW).

Multi-tasking problems can also be tackled with weighting strategies. The idea
here is to assign a weighting factor to each task and combine them to get a unique
cost function. By solving the corresponding optimization problem, the process is able
to find a solution which is a compromise between the different tasks. In this case, the
tasks of lower priority does no longer belong to the null space of higher priority tasks,
meaning that they affect their performance. In particular, weighted approaches based
on QP have been proposed in the literature (SPB11; BK11). If we consider the same
set of N tasks introduced for the HQP problem, the solution of the weighted QP is
obtained by solving the following problem:

min
q̇

N∑
i=1

wi ‖Jiq̇− ẋi‖2

s.t. Aq̇ ≤ b, Cq̇ = d

(1.11)

where wi is the weighting factor associated to task i.
The advantages of such methods are that they are easy to implement and require

to solve only one optimization problem which is more computationally efficient than
the HQP approach. However, it is difficult to anticipate the behavior of a robot which

26 State of the art

adopts this strategy, especially when there are more than two tasks to handle at the
same time.

In recent years, several works have tackled the inverse kinematics problem of dual-
arm robots using numerical solvers. A Constraint-based Programming method (ZM07;
DSBDS09), combining the concepts of the additional tasks (Ser89), the user-defined
objective functions (PA93), and the sub-tasks (TBBD09), has been used to control
dual-arm motion during bi-manual cooperative operations (ÖSKK12). Rather than
searching for the optimal solution, as done in previous works, the authors proposed
to find a feasible good enough solution by reformulating the optimization problem.
Instead of using equality constraints to project a secondary task in the null space of
higher priority tasks, that reduce the dimension of the feasible subset, they expressed
additional tasks in terms of inequalities. This allows to increases the number of tasks
simultaneously manageable, since inequality constraints do not reduce the dimension-
ality of the feasible set in joint space. Wang et al. (WVK+14) extended that work
by including time-dependent equality constraints in a compact and uniform way. In
particular, this makes it possible to track timed trajectories or specify force feedback
constraints.

A HQP framework for dual-arm robot performing relative tasks has been newly
proposed (SD18). In the developed framework, several criteria are optimized in a pri-
oritized order, while ensuring the satisfaction of hard constraints all the time. However,
they do not explicitly explain how the HQP is set up in terms of cost functions and
strict constraints, making it difficult to evaluate.

1.3 Human-robot physical collaboration in indus-

try

Enabling pHRI has tremendous potential and is particularly attractive for industrial
purposes (CPC+16). Combining the strength of robots (accuracy, repeatability, effi-
ciency) with human intelligence allows to rapidly adapt to changes in production lines.
However, requirements for interacting and collaborating with humans in industrial se-
tups are not well formalized and are still a hot topic of research. In particular, safety
concerns have to be clearly established to allow physical contacts between humans and
robots. With a view towards standardization, the International Organization for Stan-
dardization published the ISO10218 standard (ISO11), which specifies velocity, power
and force constraints for any manipulator arm working in presence of a human. Re-
cently, the ISO15066 standard (15016) was defined to provide guidelines for the design
and organization of a cooperative workspace with the aim of reducing the risks to which
people may be exposed. Control of industrial robots for interacting with humans have
to deal with special considerations, as we will see in what follows.

1.3 Human-robot physical collaboration in industry 27

1.3.1 Robot force control for physical collaboration

During physical interaction, haptic data (force/torque) are valuable quantities to con-
sider for the motion control of robots. Hence, a lot of concepts have derived from
force control paradigms in robotics. In particular, impedance control (Hog84) has been
largely adopted in the context of human-robot collaboration (II95; IMM02). Many
works have included human parameters in the design of their controllers. In (DG07),
the authors define a variable damping controller which uses the derivative of the interac-
tion force as a natural sensor of human intention. An admittance control strategy with
estimation of the intended human motion has been proposed in (CAB+07). Thanks to
that, the level of assistance is adjusted to match the needs of the human collaborator.
Some of the approaches are model-based. For instance, in (GKB11), Gribovskaya et al.
combined machine learning techniques with an adaptive impedance control framework
to model an interactive task.

Recently, the cooperative task space representation has been used to perform physi-
cal human-robot collaboration. In (BNU+17), Compliant Movement primitives (DGUP15)
are extended to bimanual cooperative tasks. In this context, a torque controller adopts
a stiff behavior on the relative task while more compliance is given to the absolute
task. In (NLGU16; NLGU18), a cooperative control scheme based on an impedance
law allows performing kinesthetic guiding operations. Adaptation of the stiffness along
the trajectory provides more accuracy to the human co-worker during critical parts of
the task.

1.3.2 Collaborative object transportation

Within the numerous applications engaging pHRI, collaborative carrying has raised
great interest for its ability to facilitate the transportation of bulky objects. Many
researchers have addressed the control problem of a robot system handling an object in
cooperation with a human. Early work involving human-robot object comanipulation
was done by Kosuge et al. (KYT+94). They studied the general case of several humans
collaborating with a multi-arm robotic system. Assuming a rigid grasp and no relative
motion between the arms, the mechanical impedance of the commonly held object is
controlled and the necessary impedance for each robotic arm is deduced.

The need for robotic assistance is particularly desirable for moving cumbersome
objects. In (TAHT02), the author proposes a method to facilitate the cooperative
manipulation of long parts. By setting a virtual nonholonomic constraint at the tip
of the robotic arm, the object’s motion is restricted to a plane to prevent sideslip.
Combining horizontal and vertical movements enables the 6 DoF manipulation of the
object in 3D space. The load sharing during comanipulation is also an important
aspect and effort sharing strategies have been proposed to improve the task performance
(LMH10).

To fully benefit from such cooperative tasks, the mobility of robots is an essential
asset. Initial work in this field involved wheeled mobile manipulators. In (KSK00), the

28 State of the art

dual-arm mobile robot ”MR helper” is able to collaborate with humans using wrench
feedback from each arm’s wrist. The apparent impedance of the object is estimated to
generate the command in the task space. The mobile base and the manipulators are
also connected through an impedance system, ensuring automatic motion coordina-
tion. More recent work on multi-robot cooperative transportation has been proposed
in (ESH13). They presented an impedance-based control architecture that efficiently
manages the coordination of the mobile manipulators by compensating kinematic er-
rors. A decoupled control of the mobile base and manipulators aims at reducing the
impact of disturbances generated by the mobile platforms on the end-effectors. In
(WSKÖ15), a kinematic control strategy for serial-to-parallel structure is given. The
concept of Virtual Kinematic Chains is used to specify the common motion of the
parallel manipulators, instead of using the two manipulators kinematics. Other re-
search activities on collaborative carrying have focused on human-humanoid interac-
tions (BKCK12; ACB+14). In this case, Mobile manipulators use legs instead of wheels
for locomotion, making the control more complex. Although the locomotion mode is
different, the same issue arises in motion coordination between the arms and the mobile
base.

1.4 Conclusion

This section gave an overview of the state of the art in three robotic areas which are at
the core of this thesis: first, we presented the main works done on multi-arm manipula-
tion and specifically on kinematic representation paradigms for bimanual coordinated
operations. Although the notion of cooperative task space has been widely adopted
in the context of dual-arm manipulation, we will see in the next chapter that our ex-
tension improves the original version in terms of robustness and convenience. Then,
we introduced the existing task-solving approaches for redundant robots and their ap-
plications to the inverse kinematic control of dual-arm manipulators. We showed how
QP optimization allows to solve kinematic tasks subject to constraints and how it can
be extended to a stack of QP problems to solve several tasks simultaneously and in a
prioritized manner. In this thesis, we base our task-solving process on HQP adapting it
to the dual-arm case. Relying on this method, we propose several strategies to enhance
the behavior of dual-arm platforms in industrial setups, including parsimonious joint
control and management of mobile capabilities. Finally, we discussed previous works
related to pHRI in industry. We mentioned various contributions in force control
for pHRI and focused on collaborative object transportation. Our work goes beyond
the state of the art by proposing an admittance control law for dual-arm cooperative
operations with additional human considerations which improve the performances of
collaborative object transportation tasks.

The next chapter is dedicated to dual-arm control in the task space. After introduc-
ing our strategy to represent geometric and force information in a unified cooperative
space, we will propose some methods to better interpret force interactions arising during

1.4 Conclusion 29

pHRI. Then, we will detail the implementation of our closed-loop admittance controller
intended for human-robot collaboration.

30 State of the art

CHAPTER 2

Dual-arm task space control

Trajectory

Generator

Sensor data

Task space

trajectory

Forward Kinematics

Wrench Adapter

Joint

command

T sk space

f edback

Task Space

Controller

Inverse

Kinematics

Constraints

Evaluation Constraints

Figure 2.1 – Components of the dual-arm kinematic control scheme tackled in this chapter.

This chapter tackles the collaborative control of dual-arm robots at task level. To be
usable in a control process, all the sensory feedback should be expressed in a common
space. This is the role of the Task Space Adapter block from Fig. 2.1: spatial data are
treated by the Forward Kinematics block while the Wrench adapter block is in charge
of converting efforts measured at the tip of each arm.

Once processed, the task space feedback is transmitted to the Task Space Controller
which combines this information with the task space trajectory to generate the task
command. The aim of this block is to adequately manage the input to deliver a com-
mand which allows to safely manipulate objects and adequately react to interactions
with the environment.

32 Dual-arm task space control

2.1 Task representation for dual-arm robots

The task description in a kinematic controller consists in using spatial information
about a frame of interest to regulate its motion through the actuation of the robot
joints. To characterize a task, the following two elements should be specified (see
Fig. 2.3):

• A control frame (Fctrl): the frame in space whose motion has to be regulated.

• A reference frame (Fref): the frame with respect to which the control frame is
moved.

A task can thus be represented by a homogeneous transformation matrix Tref
ctrl

expressing the pose of the control frame with respect to the reference frame.
As seen in the previous chapter, defining a task for dual-arm cooperative robots

requires specific considerations. In the next section, we will present our extended
version of the Cooperative task representation.

For a single manipulator arm, the control frame is generally attached to the end-
effector. However, for dual-arm coordinated tasks, independent control of the arms
is not an appropriate solution. In Chapter 1, we introduced the cooperative task-
space representation (CCS96) which has been commonly adopted when dealing with
dual-arm robots. Indeed, this paradigm allows defining bimanual operations by way of
meaningful variables divided into absolute and relative components.

Figure 2.2 – Discontinuity of the absolute task orientation. In the original version, there exist two solutions
for the orientation of Fa since it is obtained after applying half the rotation needed to align F1 with F2.

Keeping the same idea, we decided to modify the absolute task definition from
(CCS96) given in Eq. (1.1) for two reasons. First, in the original version, the absolute
frame has a discontinuous orientation since it is defined in function of the orientation of
the two end-effectors. Indeed, as depicted in Fig. 2.2, there exist two distinct solutions
for the orientation part Ra of the absolute task pose depending on the direction of
rotation used to go from F1 to F2. No matter which convention we use, the computation
of Ra may switch from one solution to the other leading to instabilities in the control

2.1 Task representation for dual-arm robots 33

Virtual link

Virtual link

(a) The absolute task

(b) The relative task

Figure 2.3 – Cooperative task representation. (a) The absolute task expresses the pose of any arbitrary
frame in the space (Fctrl) with respect to a fixed world frame (Fref). The kinematic chain associated with
this task uses only one arm and virtual links for joining the frame of interest: one virtual link to attach the
robot reference frame with the world frame and another one to consider the control frame as an extension
of one arm. (b) The relative task expresses the pose of one end-effector (Fctrl) with respect to the other
one (Fref).

process. Second, this approach is not straightforward when it comes to controlling any
arbitrary frame of the workspace. For instance, if one wants to rotate a manipulated
object around a specific frame, it is more convenient to attach the absolute frame to
it.

Thus, we chose to define the absolute frame with respect to only one arm by creating
a virtual link between its end-effector and a point of interest (see Fig. 2.3a). It is not
necessary to explicitly consider the two arms in the absolute task definition because
the relative task automatically handles the motion of the other manipulator. Assuming

34 Dual-arm task space control

that Arm 1 is the reference arm, Eq. (1.1) becomes:

pa = pw1 + Rw
1 p1

a

Ra = Rw
1 R1

a,
(2.1)

where p1
a, R1

a express the pose of the absolute frame with respect to the end-effector
of Arm 1, obtained through the virtual link. Since the orientation part is now expressed
as a function of the orientation of one arm only, there is no more discontinuity problem.

The relative and absolute task are depicted in Fig. 2.3.
Throughout the rest of the document, we assume the following:

• The absolute task expresses the end-effector pose of Arm 1 with respect to some
fixed world frame Fw (superscript w). The corresponding homogeneous transfor-
mation matrix is Ta = Tw

1 .

• Arm 1 is taken as reference in the relative task definition, leading to Tr = T1
2.

2.2 Wrench feedback for safe and collaborative ma-

nipulation

Dual-arm mobile robots are particularly suited for transporting large and heavy objects.
The versatility of such platforms can be better exploited by allowing human-robot
cooperation. Notably, co-manipulation of a shared object is an interesting type of
interaction in an industrial context. This can be used to facilitate the displacement of
an object, by letting the human physically guide the robot towards the target location
without lifting the weight of the object. Also, it can be applied to perform ”teaching
by demonstration” operations. This allows to quickly reconfigure the task of the robot
without programming.

In an open-loop system, the task space command would be directly issued from the
trajectory generator and converted into joint commands without having to worry about
the evolution of the robot and the environment. However, in an unstructured workspace
in which physical interaction with human operators may occur, it is necessary to close
the feedback loop. In this regard, the proposed dual-arm strategy uses wrench feedback
measurements at the wrist of each arm to manage internal constraints and perceive
external forces.

To properly exploit the wrench information, it has to be meaningful in the task
space. This conversion is made by the Wrench Adapter block depicted in Fig. 2. To
improve the quality of the interaction during human-robot collaborative carrying, this
block implements sequential processes to generate the cooperative task wrenches, as
shown in Fig. 2.4.

First, wrench feedback coming from sensors is interpreted at the task frames. Then,
the object weight is removed from the external wrench, as this should not be consid-

2.2 Wrench feedback for safe and collaborative manipulation 35

ered when interacting with the human. By knowing the interaction location, external
moments are finally adapted to follow the direction of the wrench exerted by the human.

Further, by performing damping control on selected absolute task variables (see Sec-
tion 2.3.1), the robot will follow the motion driven by the human operator interacting
with it.

Wrench Adapter

Task space conversion

Cancel object's gravity

Retrieve human intent

Figure 2.4 – The Wrench Adapter block is in charge of computing the cooperative task wrenches Wa, Wr

from wrench measurements at the end-effectors W1, W2. After conversion in the task space, sequential
operations are performed to first remove object weight from the absolute task wrench W̄a and then retrieve
human-robot interaction wrench from the absolute task moment M̂a.

2.2.1 Wrench in the task space

Let us assume that an object is grasped by the two end-effectors, as depicted in Fig. 2.5.
Two kinds of efforts apply to the object: the closed kinematic chain causes internal
stress Wint while external wrenches Wext arise from environmental interactions (e.g.
gravitational forces, interactions with humans, ...). The combination of all these actions
is perceived at the arms’ wrists through forces Fi

i and moments Mi
i (i = 1, 2)1 and gath-

ered in the wrench vectors W1
1 and W2

2 that we write for simplicity W1 =
[
F1 M1

]T
and W2 =

[
F2 M2

]T
.

Let Fo denotes a frame attached to the object where xo and υo are respectively the
pose and twist of Fo with respect to a fixed world frame Fw. The dynamic equation of
the object can be written as follows:

Mo(xo)υ̇o + Co(xo,υo) + Go(xo)η = Wo,ext, (2.2)

where Mo(xo) is the object inertial matrix, Co(xo,υo) is the vector of generalized
centripetal, Coriolis, and gravity forces, Wo,ext is the resultant of wrenches exerted by
external sources on the object and perceived at Fo, Go(xo) =

[
Go1(xo) Go2(xo)

]
is

1Superscript i refers to the frame with respect to which forces and moments are expressed.

36 Dual-arm task space control

Figure 2.5 – Wrench representation during dual-arm manipulation of a rigid object. Wrenches W1 and W2

are measured at the wrist of each arm. They result from external wrenches Wext exerted on the object
and from the internal wrench Wint induced by the tight grasp.

the Grasp matrix (PT16) where Goi(xo) (i ∈ {1, 2}) is a transformation matrix which
maps the velocities of the object onto the velocities of the corresponding end-effector
given as

Goi(xo) = HoiG̃oi(xo). (2.3)

The matrix Hoi is used to provide a contact model between the object and the end-
effector i. In our study, we consider a rigid grasp of the object, meaning that all the
translational and rotational velocity components of the contact point are transmitted
through the contact. In this case, Hoi = I6×6.

The partial grasp matrix G̃oi(xo) is given by:

G̃oi(xo) =

[
I3×3 03×3

S(pwi) I3×3

]
, (2.4)

where S(pwi) is the skew-symmetric matrix with input vector pwi expressing the
translation in the world frame to reach Fo from the end-effector i.

In Eq. (2.2), η =
[
ηT1 ηT2

]T
with ηTi (i ∈ {1, 2}) the vector of contact force and

moment components transmitted through contact i. Again, assuming that the object
is rigidly maintained by the arms, all wrench components are transmitted through the
contact, resulting in:

ηi =

[
Fi

Mi

]
. (2.5)

2.2 Wrench feedback for safe and collaborative manipulation 37

In the context of physical-human robot interaction where the robot has to operate
at low speed, the inertia terms are negligible ans the system can be considered as
quasistatic. With this assumption, Eq. (2.2) is reduced to:

Wo,ext = Go(xo)η, (2.6)

Using Eq. (2.3), Eq. (2.4) and Eq. (2.5), the dynamic equation leads to:

[
Fo,ext

Mo,ext

]
=

[
I3×3 03×3 I3×3 03×3

S(pw1) I3×3 S(pw2) I3×3

]
F1

M1

F2

M2

 , (2.7)

This equation allows to relate the resultant of external wrenches perceived at Fo
with the wrenches measured at each end-effector. By definition, we can directly asso-
ciate external wrenches with the absolute task. Hence, one can retrieve the resultant
forces Fa and moments Ma applied at the absolute task frame Fa (and expressed in
the frame Fw): {

Fa = Fw
1 + Fw

2 ,

Ma = Mw
1 + pw1 × Fw

1 + Mw
2 + pw2 × Fw

2 ,
(2.8)

which is equivalent to the formulation introduced in (UD88), where pw1 , pw2 , are
vectors representing the virtual sticks.

By taking a closer look to Eq. (2.6), we notice that the dimension of Wo,ext is 6
while the dimension of η is twelve. this means that the grasping system is undetermined
(PT16). Let N(Go) denote the null space projection of the grasping matrix, then from
Eq. (2.6) one can write:

η = Go(xo)+Wo,ext +N(Go)Wint (2.9)

Wrenches Wint are referred to as internal object forces. These wrenches are internal
because they do not contribute to the motion of the object, i.e. Go(xo)Wint = 0. By
definition, internal wrenches can be directly associated with the relative task. There
exists an infinite number of combinations of W1 and W2 that satisfy this condition.

As in (UD88), we define the internal wrench vector Wr =
[
Fr Mr

]T
(expressed in

the end-effector frame of Arm 1):
Fr =

1

2
(F1

2 − F1
1),

Mr =
1

2
(M1

2 −M1
1).

(2.10)

The internal wrenches are neither affected by the object’s gravity nor by the inter-
action with the human. Thus, the vector W̄r computed at this point corresponds to
the final internal wrenches, such as W̄r = Wr.

38 Dual-arm task space control

2.2.2 Identification and cancellation of the objects’ gravity ef-
fects

When performing physical interaction with kinesthetic guidance through a commonly
held object, its mass permanently applies external wrenches that should not be inter-
preted as a human action.

To overcome this undesired behavior, we propose a practical method to estimate
and then cancel the effects of the payload.

Similarly to Eq. (2.8), the perceived external wrench in the object’s frame Fo can
be expressed with:

Ww
o =

[
Fw

1 + Fw
2

Mw
1 + Mw

2 + Fw
1 × pw1 + Fw

2 × pw2

]
(2.11)

Where pw1 and pw2 denote the translation vectors going from each end-effector to
the object’s frame, expressed in the world’s frame.

If we consider the manipulated object as a point mass under the sole influence of
gravity (interaction being done at low speed/acceleration), this wrench can also be
estimated as:

Ŵ
w

o =

[
mg

Rw
o c×mg

]
(2.12)

where m is the mass of the object, c the CoM, expressed in the object’s frame, and
g the gravity vector in the world frame.

When considering practical object manipulation, m and c are generally unknown or
not well known. To estimate their parameters, one can collect data while manipulating
the object and use them in a non-linear optimization problem. The problem can be
formulated as follows:

min
z

∥∥∥Ww
o − Ŵ

w

o

∥∥∥
2

s.t. m > 0,
(2.13)

where z is the vector of optimization variables:

z =

[
m
c

]
. (2.14)

Once z that satisfies Eq. (2.13) has been found, it can be used to cancel objects’
gravity effects. This operation is performed by the Cancel object’s gravity block from
Fig. 2.4.

From the cooperative task perspective, the gravity effects of the manipulated object
do not influence internal wrenches. They add however an additional component to the
external wrenches, which should be subtracted to avoid interfering with the interaction.

2.3 Task space control 39

Based on Eq. (2.8) and taking into account the objects’ gravity effects, we can

compute the external wrench vector W̃a =
[
F̃a M̃a

]T
from which objects’ gravity

effects have been removed: {
F̃a = Fa −mg,

M̃a = Ma −Rw
o c×mg,

(2.15)

In Eq. (2.15), Rw
o is the rotation matrix expressing the center of mass c in the world

frame.
The external force is not influenced by the location of the interaction during human-

robot co-manipulation. The vector F̃a computed at this point corresponds to the final
external force, so that F̃a = Fa.

2.2.3 Retrieve human interaction wrench

During human-robot co-manipulation, the location on the object where the human
exerts a force (called interaction point) has an incidence on what is perceived by the
sensors. Indeed, considering the principle of levers, a linear force applied at some point
of the object may create a moment at the grasping points. The bigger the object is,
the more the perception is disturbed.

In (DGB+12), Dumora et al. proposed a statistical model to identify the human
intention during shared human-robot collaborative task, based on haptic measures only.

In this work, we assume that the interaction point is known (e.g. using visual
monitoring). Considering that the weight of the object has been priorly canceled, it
is possible to figure out the effort exerted by the human by removing undesired com-
ponents of the external moment vector M̃a coming from the lever action. In contrast
with (DGB+12), this methods gives an accurate result.

Reusing the principle of virtual sticks, one can easily retrieve the external moments
Ma applied at the interaction point from the following equation:

Ma = M̃a + Fa × pw3,a, (2.16)

where pw3 is the translation vectors going from the absolute task frame to the inter-
action point, as depicted in Fig. 2.6. Note that the computed wrench is still associated
with the absolute task control frame defined by Fa.

2.3 Task space control

The previous section was dedicated to the Task Space Adapter module from Fig. 2
which is in charge of converting the data coming from sensors into usable information
in the task space.

The role of the Dual-Arm Controller block is to provide the joint velocity commands
to the robot from task space information. The block is divided into two sequential

40 Dual-arm task space control

Figure 2.6 – Assuming a rigid grasp, wrenches applied at the absolute frame Fa are reconstructed consid-
ering the virtual sticks p1 and p2. Thereafter, external moments exerted by the human are retrieved from
the virtual stick p3.

2.3 Task space control 41

processes. In this section, we focus on the Task Space Command generation while the
Inverse Kinematics resolution will be the subject of Section 3.1.

The task space command aims at achieving a cooperative kinematic task while
interacting with the environment. For this, we implement the closed-loop admittance
control law described in Section 2.3.1. However, for safety reasons, it is sometimes
preferable to drift from the planned trajectory in order to get away from obstacles.
To this end, we specify in Section 2.4.3 a complementary velocity command which is
activated when approaching obstacles. When this happens, the weighted combination
of the two tasks allows to avoid obstacles while still trying to reach the target.

2.3.1 Closed-loop admittance control for physical interactions

As presented in the previous section, the feedback data coming from the different
sensors are interpreted in the task space. Here, the trajectory from the Trajectory
Generator block is combined with this information to adapt the command to the actual
state of the environment..

To let the robot interact with the environment, let us consider a virtual spring-
damper mechanisms attached to each control frame, as illustrated in Fig. 2.7.

Figure 2.7 – Representation of the virtual spring-damper systems attached to the relative and absolute task
control frames.

In the remainder of this section, without loss of generality, we will treat the general
case of admittance control without distinguishing between the absolute and relative
task, since the process is similar.

42 Dual-arm task space control

Applying Newton’s law on the virtual spring-damper system leads to the dynamic
equation of motion:

W = Kx + Bẋ. (2.17)

This equation relates the wrench W applied by the spring-damper system on the
control frame and the pose x of this control frame by means of a proportional-derivative
controller. The stiffness K and the damping B are positive definite diagonal matrices
representing the gains of the controller.

Let us now instantiate the previous differential equation at the desired values (su-
perscript *):

W∗ = Kx∗ + Bẋ∗. (2.18)

By subtracting Eq. (2.18) from Eq. (2.17), we obtain the closed-loop impedance
control law:

∆W = K∆x + B∆ẋ, (2.19)

with ∆x = x− x∗, ∆ẋ = ẋ− ẋ∗ being the errors between the current and desired
task pose and velocity, respectively.

To realize admittance control, Eq. (2.19) can be rewritten in the following form:

ẋ = ẋ∗ + B−1(∆W −K∆x). (2.20)

For each task variable, a specific behavior can be obtained. In particular, we can
design three control modes from the admittance equation Eq. (2.20) (without loss of
generality, every term is now expressed as a scalar value and index i ∈ [1; 6] is used to
designate a task space DoF):

• Pose control: the controller aims at following the desired pose x∗i and velocity
ẋ∗i delivered by the trajectory generator. Pose feedback is used to compensate
for the error. Wrenches are not used in this control mode and the control goal is
to track the desired x∗i , ẋ

∗
i . The resulting equation is

ẋi = ẋ∗i −
Ki

Bi

∆xi. (2.21)

with Ki

Bi
≥ 0 to ensure proper trajectory tracking and stability of the system.

• Force control: the desired velocity is computed to regulate the applied wrench
to some desired value W ∗

i .

ẋi =
∆Wi

Bi

. (2.22)

2.4 Application to human-robot collaborative transportation 43

• Damping control: this is a particular case of the force control in which W ∗
i = 0.

The robot’s motion is adapted according to the perceived external wrenches. This
mode is particularly interesting to perform kinesthetic guidance (e.g. teaching by
demonstration) where a human operator manually drives the robot by exerting
efforts on it.

ẋi =
Wi

Bi

. (2.23)

Except for these particular cases, the general admittance control equation Eq. (2.20)
can be tuned to give to the robot the desired compliant behavior.

2.4 Application to human-robot collaborative trans-

portation

(a) Experimental setup

(b) Model of the user
skeleton.

(c) Virtual objects seen in the
HMD.

Figure 2.8 – Human-robot co-manipulation of a large object using damping control. The interaction point
is detected by the computer vision system. The current and target location of the object are displayed in
the Head Mounted Display.

The proposed approach has been evaluated through an experimental study con-
ducted on the dual-arm cobot BAZAR (CPN+19). To assess human intention consid-
eration during cooperative manipulation, we set up an original simulated application

44 Dual-arm task space control

scenario: selected participants were asked to achieve interactive tasks with the robot
in the form of a table-moving scenario. The dual-arm robot is in charge of maintaining
the table from one side by regulating internal efforts while the human operator grasps
it on the opposite side with only one hand. The objective is to move the object, with
damping control, from an initial pose in the space to a final one. The human motion
should remain as natural as possible (taking the shortest distance to reach the goal and
applying reasonable efforts).

During the experiments, participants wear a Head-Mounted Display (HMD) in
which the carried table is displayed both at the current (solid) and goal (transparency)
location, as depicted in Fig. 2.8c. The participants’ task is to bring the solid object
on top of the transparent one. The current pose is tracked online and its visualization
in the virtual environment is updated continuously. This way, the user determines
the motion needed to complete the task. Participants randomly execute the operation
with/without the interaction point consideration without knowing it. Screenshots of
the experiment are given in Fig. 2.8a.

Three different operations have been elaborated for this study. In any case, the
relative task is kept in a constant position on every component except for the z trans-
lational axis for which the force is regulated (to maintain the object properly). A
damping term is added to the position control to give some compliance to the system.
From a constant initial pose, a transform is applied to the absolute task for the three
different cases:

1. trany+: translation of 25 cm along y axis. The user can move the object in the
horizontal plane (in translation and rotation).

2. tranz+: translation of 25 cm along z axis. The user can move the object in the
vertical plane in translation and rotate around y axis.

3. rotz+: rotation of 0.5 rad around z axis. The user can move the object in the
horizontal plane (in translation and rotation).

Video of the experiments is available at http://bit.do/e3mxM.

2.4.1 Setup

The BAZAR robot is equipped with two 7-DoF Kuka LWR4 arms. All experiments are
performed on a computer with an Intel(R) Xeon(R) E5-2620 v3 CPU running Linux
with the PREEMPT-RT patch. Our approach has been implemented in C++ using
the RKCL framework (presented in Chapter 4). The Fast Research Interface Library
(FRI)2 is used to communicate with the Kuka arms, and the controller sample time
was set to T = 5 ms.

We tune the gains depending on the control mode: for compliant pose control, we
set B = 150, K = 250 for forces and B = 25, K = 40 for torques; same gains are

2https://cs.stanford.edu/people/tkr/fri/html/

http://bit.do/e3mxM
https://cs.stanford.edu/people/tkr/fri/html/

2.4 Application to human-robot collaborative transportation 45

used for damping controlled variables but the stiffness term is removed (K = 0); for
force-controlled variables, the stiffness gain is also K = 0 while the damping term is
B = 1000 for forces and B = 500 for torques.

We use computer vision to estimate online the position of the interaction point.
The algorithm is based on the OpenPose library (CHS+18) which extracts the set of
2D points composing the skeleton of the persons present in a given color image. By
using a Microsoft Kinect V2 RGB-D camera, we can reproject these 2D points in 3D
using the depth information provided by the sensor, as shown in Fig. 2.8b. We use the
right-hand wrist as the interaction point since OpenPose doesn’t provide a point for
the hand itself. This allows us to position the point of interaction with an accuracy of
a few centimeters3, which is sufficient for our application. In the case of occlusions, the
last interaction point, expressed in the absolute frame, is kept. This hypothesis holds
as long as the operator does not reposition his/her hand while the occlusion occurs.
By using an NVIDIA GTX 1080 Ti GPU, we achieve around 7 estimations per second.

To get reproducible and accurate results to validate the proposed approach, we set
up a virtual reality (VR) system to instruct the operator on the task to achieve. This
system is composed of an HTC Vive Pro HMD, an HTC Vive tracker attached to the
transported object and two fixed Steam VR base stations. This VR system was only
used for validation purposes and is not required in normal operations.

2.4.2 Results

Ten participants performed a total of 15 operations (five for each case, selected in
random order). Several criteria have been evaluated and statistical results are given

in Fig. 2.9. Instantaneous power P has been obtained using the relation P = |−→W · −→̇x |
and the average energy Ē expended during a time interval ∆t arises from Ē = P̄∆t;
P̄ being the average power supplied during the same time interval.

A general observation is that the interaction point consideration greatly improves
task performances. Indeed, the various metrics indicate that all the tasks can be
completed effortlessly when the interaction point is known (orange bars) while it is
much more difficult otherwise (blue bars).

A closer look reveals that the differences are more noticeable for the translation
tasks for which the necessary energy is between 2.5 (for the trany+ task) and 7.9 (for
the tranz+ task) times higher when the interaction point is unknown. By contrast,
the gap is smaller for the rotation task with a ratio of 1.5 for the average energy.
The power consumption is even equivalent in this case with around 0.3W on average.
Referring to Eq. (2.16), this can be explained by the fact that the interaction point
has an influence on the final wrench only in the presence of translational forces. In
practice, it is almost impossible to apply perfect torque on the object without exerting
any residual translation. Thus, the surplus energy supplied to complete the rotx task
without interaction point may result from the greater effort generated to compensate

3Accuracy decreases with distance due to depth inacuraries

46 Dual-arm task space control

Figure 2.9 – Statistical data comparing several metrics for the three different tasks when the interaction
point is taken into account (orange) or not (blue). Results showcase the benefits of our method since less
effort is required by the participants to achieve the tasks.

2.4 Application to human-robot collaborative transportation 47

for the translational error (1.3N against 0.6N), as the motion is less intuitive in this
case.

The task tranz+ is the one that shows the strongest contrast when comparing the
metrics. In particular, the maximum values are extremely higher when the interaction
point is not taken into account. This is also the task in which the data are the most
irregular (highlighted by standard deviation significant values). It seems that, depend-
ing on the participant, the unwanted torque generated when the interaction point is
omitted creates some orientation error that is not trivial to compensate. It would ap-
pear that a task on the horizontal plane is easier to get under control when some error
occurs.

The completion time is not significantly influenced by the method that is used and
is more dependent on the person realizing the task.

2.4.3 Repulsive action for collision avoidance

In the light of factories of the future, environments in which robots operate tend to be
less and less structured. Unexpected events are likely to occur while machines are doing
their job, sometimes leading to dangerous situations. A concrete example of this is the
increasing proximity with human operators. During non-collaborative operations, they
should be treated as obstacles to avoid. There exist different kinds of reactive control
strategies for avoiding collisions, some being more restrictive than others.

One option is to implement the Velocity Damper method introduced in (FT87)
as linear constraints of the inverse kinematics optimization problem as described in
Section 3.2.3. This allows to ensure that a strict minimum distance is always guaranteed
between moving parts of the robot and obstacles. However, using such method, the
robot just reduces its speed until the critical distance is reached and then stops, so the
task cannot be completed. In some situations, it is possible to find another valid path
in the task space by trying to bypass obstacles. Our idea is to combine the use of hard
constraints (see Section 3.2) with a repulsive action included in the cost function of the
absolute task. We describe the latter approach in what follows.

Let us start by defining a repulsive velocity vector using the method presented in
(FKDLK12): let pa be the position vector of the absolute task frame Fa and po the
position of the nearest obstacle point from pa. A repulsive velocity vector ẋ between
these two points is defined as:

ẋ = v(pa,po)
D(pa,po)

‖D(pa,po)‖
, (2.24)

where D(pa,po) is the vector joining po from pa, and v(pa,po) refers to the mag-
nitude of the repulsive vector, such as:

v(pa,po) =
Vmax

1 + e(‖D(pa,po)‖(2/ρ)−1)α
, (2.25)

48 Dual-arm task space control

Vmax being the maximum admissible magnitude, α a shape factor, and ρ the sepa-
ration distance from which the repulsion is activated.

In this work, only the nearest obstacle from the point of interest is kept to evaluate
the repulsive action.

We chose to take into account the repulsive action by performing a weighted com-
bination of the two velocity command vectors applied at the absolute task frame. For
this, we define the weight variable w ∈ [0; 1] to adjust the influence of each task. In the
following equation, we call ẋa1 the admittance velocity command of the absolute task
resulting from Eq. (2.20) and ẋa2 the repulsive action. The final absolute task velocity
command ẋa is obtained with:

ẋa = wẋa1 + (1− w)ẋa2. (2.26)

2.4.4 Simulation experiments

We evaluate the behavior of the task space command by performing a simple simulation
using the Virtual Robot Experimentation Platform (V-REP)4. The task consists in
moving an object with a mobile dual-arm robot between two poses of the workspace,
while a spherical object obstructs the path, as shown in Fig. 2.10. For the absolute
task space variables, the admittance control law is reduced to its pose control version
Eq. (2.21) as wrenches are not taken into account. The goal position to reach in the
absolute task coordinates is at x = +0.8m from the initial state while the center of the
obstacle is located at a position pobs = [0.3, 0,−0.2]T from this same state.

We set a gain of B−1K = 1 to compensate the position error. Parameters for the
repulsive action are Vmax = 1m s−1, α = 6 and ρ = 0.2m. The weight variable from
Eq. (2.26) is set to w = 0.5, meaning that both tasks have the same impact on the
final solution.

The results of this experiment are given in Fig. 2.11. From the beginning of the task
to time t = 1s, only the translational twist from the admittance command is effective.
As long as the absolute task frame is located at a distance d > ρ from the obstacle,
no repulsive action is generated. From t = 1s, the distance is no longer safe and the
collision avoidance strategy starts to be activated. We observe that the repulsive vector
drives the control frame towards the x− and z+ direction, which makes the robot slow
its progression towards the goal and try to pass over the object. This creates some
error on the planned trajectory that the admittance controller starts compensating by
increasing the velocity commands in x+ and z− directions. Thanks to this, the robot
is still able to continue its progress towards the target location, at a slower velocity
and getting around the obstacle. From t = 6.65s, the obstacle has been passed and the
robot finishes the task at time t = 9.14s.

4http://www.coppeliarobotics.com/

2.4 Application to human-robot collaborative transportation 49

(a) Initial state

(b) intermediate state

(c) Final state

Figure 2.10 – Snapshots of the simulated experiment. The dual-arm robot has to bring the object main-
tained with its two arms from an initial pose Finit to a target pose Ftarget. The operation is characterized
by a simple translation along the x axis in the operational space, with respect to the world frame. The
spherical obstacle located along the way produces a repulsive action which makes the robot deviate from
its initial direction but still reach the target location.

50 Dual-arm task space control

0.0

0.2

Ad
m
itt

an
ce

tw
ist

 (m
/s
)

x y z

0.0

0.2

Re
pu

lsi
ve

tw
ist

 (m
/s
)

0 2 4 6 8 10
Time (s)

0.0

0.2

Co
m
m
an

d
tw

ist
 (m

/s
)

Figure 2.11 – Absolute task translational twist command generation during the simulated experiment shown
in Fig. 2.10. The top graph shows the admittance command ẋa1 resulting from Eq. (2.20). It follows
the trajectory sent by the trajectory generator while compensating for the position error. Just below is
represented the repulsive velocity action ẋa2 for collision avoidance. The generated vector points towards
the direction opposite the object and its magnitude increases as it gets closer. Finally, the bottom graph
is the translational twist ẋa sent to the IK process, resulting from the combination of the two previous
commands via Eq. (2.26).

2.5 Conclusion 51

2.5 Conclusion

This section addressed the problem of controlling a dual-arm robot at task level. By
adopting and extending the cooperative task space description, we specify bimanual
operations in a straightforward and robust way. Thanks to the wrench feedback con-
version from the tip of each arm to the cooperative task space, interactions with the
environment are properly interpreted. An admittance based control law uses this in-
formation to generate desired velocity commands. This allows us to propose a hybrid
position/force control strategy by letting the user select the desired control modes for
each task variable.

To allow natural and efficient human-robot collaboration for industrial purposes,
we gave a special focus on object co-manipulation with a dual-arm robot. Notably,
we developed an online method for estimating gravity parameters of the manipulated
object. Then, by applying some treatments on the wrench feedback data during col-
laborative operations, we can compensate the load exerted on the robotic arms to keep
only external efforts applied by the human.

Furthermore, the human’s contact location with the object is crucial information
allowing to retrieve his intention from wrench measured at the arms’ wrist. An ex-
perimental study has been elaborated to simulate a table-moving scenario using a
virtual reality system and computer vision to detect the participant’s hands during
co-manipulation. The results clearly indicate that considering the interaction point is
beneficial for co-manipulation tasks as it is more intuitive and thus requires less energy
to be completed.

Finally, The absolute task admittance command can be complemented with a re-
pulsive action vector to perform collision avoidance. The detection of a close obstacle
leads to the generation of a complementary velocity vector oriented in the opposite
direction and added to the original command with a weighting factor.

In the next chapter, we will focus on solving the inverse kinematics problem to
obtain the command in the joint space, where actuation takes place.

52 Dual-arm task space control

CHAPTER 3

Dual-arm joint motion control

Trajectory

Generator

Sensor data

Task space

trajectory

Wrench Adapter

Joint

command

T sk space

f edback

Inverse

Kinematics

Constraints

Evaluation Constraints

Figure 3.1 – Components of the dual-arm kinematic control scheme tackled in this chapter.

The final process of the dual-arm controller is to solve the inverse kinematics prob-
lem stated in Eq. (1.6), whose aim is to convert the specification of the task in the
operational space into the joint space. This operation is performed by the Inverse
Kinematics block depicted in Fig. 3.1.

In this chapter, we propose several strategies to manage the high number of DoF of
dual-arm robots. The objective is to comply as much as possible with the task control
while ensuring that the robot motion is safe with respect to itself and the environment.
Additionally, redundancy of bimanual platforms leaves room for optimization of any
arbitrary criteria. Considering a dynamic environment populated with humans, we

54 Dual-arm joint motion control

chose to dedicate remaining DoF to reduce the overall displacements in the workspace,
thus limiting the risk of hazardous situation.

It is usual that dual-arm platforms embed robotic extensions such as a mobile base
or an articulated torso. However, the characteristics of such robots generally differ from
the arms. We present in this chapter an original inverse kinematics approach which
deals with extra joints in an appropriate way.

Finally, we give a thorough analysis of the different constraints that should be taken
into account and their formulation in the Constraints Evaluation block of Fig. 3.1.

3.1 Inverse kinematics resolution

In Section 1.2, we reviewed existing methods for solving the inverse kinematics of redun-
dant robots. Although easily implementable and computationally efficient, we showed
the limits of analytical solutions, especially when dealing with highly constrained sys-
tems. In this section, we present several task-solving strategies for dual-arm robots
performing cooperative tasks under hard constraints.

We base our methods on QP/HQP resolution following the general QP equation
given in Eq. (1.10) and the hierarchical extension proposed in Algorithm (1).

In the remainder of the paper, we denote by ε the residual error on the kinematic
task, such as:

ε = ẋ− Jq̇ (3.1)

When ‖ε‖ = 0, the task is tracked without any error.

3.1.1 Solving the cooperative tasks with a unique QP

Considering the cooperative dual-arm task space, both the relative and absolute tasks
have to be satisfied at the same time. A natural approach to solve the problem in one
go is to merge the variables associated with each task to formulate the optimization
problem as in Eq. (1.10).

Let Ja, ẋa and Jr, ẋr be the Jacobian matrices and task space command vectors for
the absolute and the relative tasks, respectively. We gather the dual space information
in the Jacobian matrix Jcoop and task space command vector ẋcoop by performing the
following concatenation operations:{

Jcoop =
[
JTa JTr

]T
,

ẋcoop =
[
ẋTa ẋTr

]T
.

(3.2)

The QP optimization problem can now be rewritten as:

min
q̇

‖Jcoopq̇− ẋcoop‖2

s.t. Aq̇ ≤ b, Cq̇ = d
(3.3)

3.1 Inverse kinematics resolution 55

The solution vector q̇ of Eq. (3.3) is one that minimizes the quadratic error on the
mixed cooperative task space variables. It contains the joint velocity commands for the
whole dual-arm robot. This result is then split to be transmitted to the appropriate
hardware parts. The joint order should correspond to the one used to define the
Jacobian matrices.

The equality and inequality constraints are identical for the absolute and relative
task subproblems, they are reused here to fully specify the admissible solution space.

3.1.2 Parsimonious task-solving approach

Despite an advanced state of the art in the field, one drawback with Eq. (1.10) is the
generation of joint velocities for which every component is non-null, regardless of the
number of DoF controlled in the task space. This minimizes the energy dissipated by
the system but not the robot overall displacement.

In non-rigid industrial settings where the robot’s free space can change, a parsimo-
nious resolution would be more appropriate (GFCA16). Here, we aim at minimizing
the number of joints involved in the task, thus reducing the robot motion.

The corresponding optimization problem is:

min
q̇

‖q̇‖0

s.t. ẋ = Jq̇,
(3.4)

with ‖q̇‖0 the number of nonzero components in q̇. This is a NP-hard problem that
requires a combinatorial approach and dual-arm complexity does not allow to solve it
on line. It has been shown (EB02) that the sparsest solution can also be obtained by
solving the following equivalent problem:

min
q̇

‖q̇‖1

s.t. ẋ = Jq̇.
(3.5)

By easily transforming Eq. (3.5) into a linear program, a sparse solution can be effi-
ciently generated.

Fuchs also proved (Fuc04) that a parametrized quadratic program, known in statis-
tics as the lasso (Least Absolute Shrinkage and Selection Operator), and expressed
as:

min
q̇

1

2
‖Jq̇− ẋ‖22 + β ‖q̇‖1 , β ∈

[
0+;
∥∥JT ẋ

∥∥
∞

]
(3.6)

converges to the same minimum point solution, i.e. having least l1-norm, when β = 0+.
The advantage of using Eq. (3.6) instead of Eq. (3.5) is that the kinematic problem is
formulated as a cost function and not as an equality constraint. This leads to a softer
behavior, since a solution is always found. In fact, the optimization process tries to
minimize the tracking error of the task. If the kinematic problem is undetermined and

56 Dual-arm joint motion control

several solutions exist, then the sparsest one is returned. Instead, with Eq. (3.5), no
valid solution is computed when ‖ε‖ > 0.

An algorithm for solving this optimization problem, while also including both equal-
ity and inequality constraints, has been proposed in (GZ16). The objective is to find a
solution to the constrained lasso problem:

min
q̇

1

2
‖Jq̇− ẋ‖22 + β ‖q̇‖1 , β ∈

[
0+;
∥∥JT ẋ

∥∥
∞

]
s.t. Aq̇ ≤ b, Cq̇ = d

(3.7)

In (GZ16), the problem is reformulated as a standard QP: the l1 penalty term ‖q̇‖1 can
be handled by decomposing q̇ into its positive and negative parts, such as q̇ = q̇+− q̇−

with q̇+ ≥ 0, q̇− ≥ 0. Then, plugging ‖q̇‖1 = q̇+ + q̇− in Eq. (3.7):

min
q̇

1

2

(
q̇+

q̇−

)T (
JTJ −JTJ
−JTJ JTJ

)(
q̇+

q̇−

)
+

(
β12Ndof

−
(

JT ẋ
−JT ẋ

))T (
q̇+

q̇−

)
s.t.

(
A −A

)(q̇+

q̇−

)
≤ b,

(
C −C

)(q̇+

q̇−

)
= d,

q̇+ ≥ 0, q̇− ≥ 0

(3.8)

which is the formulation of a standard QP of 2Ndof variables, Ndof being the dimension
of q.

3.1.3 Hierarchical inverse kinematics strategy

In Section 1.2.2, we introduced the hierarchical resolution of the inverse kinematics
problem. It consists in solving a sequence of QP for which the solution space of a given
task is restricted to the null-space of higher priority tasks. This way, tasks that have
less priority do not interfere with the others.

We recall the general formulation of the prioritized inverse kinematics problem
based on HQP. To do so, let us consider a set of N tasks sorted by decreasing order of
priority. The solution vector q̇i which allows the ith (i ∈ [2;N]) task to be executed
with lower priority with respect to the previous i− 1 tasks is given by:

3.1 Inverse kinematics resolution 57

q̇i ∈ min
q̇

fi(q̇)

s.t. Q̇ ≤ q̇ ≤ Q̇,

Aq̇ ≤ b,

fi−1(q̇) = fi−1(q̇i−1),

...,

f1(q̇) = f1(q̇1),

(3.9)

where fi is the cost function associated with task i,Q̇ and Q̇ are respectively the
lower and upper bounds of the joint velocity vector (details are given in the next
section). The equality constraints are used to restrict the solution space to the null
space of higher priority tasks.

3.1.3.1 HQP for dual-arm robots performing cooperative tasks

Considering the cooperative dual-arm task space, both the relative and absolute tasks
have to be satisfied at the same time (see Section 2.1). However, a relevant choice
is to prioritize the relative task over the absolute one. Indeed, it is critical to ensure
the relative task is fulfilled during bimanual manipulation of an object, to avoid the
generation of undesired internal stress and damage the object and/or the robot.

Applied to the cooperative dual-arm task space and taking into account joint lim-
its and collision avoidance, the highest priority task is solved through the following
optimization problem:

q̇1 ∈ min
q̇

‖Jrq̇− ẋr‖2

s.t. Q̇ ≤ q̇ ≤ Q̇,

Aq̇ ≤ b,

(3.10)

where Jr, ẋr, are the Jacobian matrix and task space command vector associated
with the relative task.

The obtained solution vector q̇1 is then used to provide the null-space condition to
the second task, that is expressed as:

q̇2 ∈ min
q̇

‖Jaq̇− ẋa‖2

s.t. Q̇ ≤ q̇ ≤ Q̇,

Aq̇ ≤ b,

Jrq̇ = Jrq̇1,

(3.11)

where Ja, ẋa, are the Jacobian matrix and task space command vector associated
with the absolute task. The relative task solution has been added as a constraint to the

58 Dual-arm joint motion control

problem to avoid interfering with it. Using this formulation, the absolute task error is
minimized as long as the resulting joint velocity vector provides the best solution for
Eq. (3.10). If no more DoF are available after solving the relative task, this process
will have no impact on the final solution, i.e. q̇2 = q̇1 will be obtained from Eq. (3.11).

3.1.3.2 Adding tunable parsimonious control

In some situations, redundancy is still available after solving all the tasks. It happens
for instance when the dual-arm robot has a high overall number of joints (directly from
the arms or coming from additional joints in the torso). It is also the case when the
cooperative task is not fully specified. In particular, many industrial applications can
be performed by only controlling the coordination of the arms’ relative motions (see
Section 3.1.4).

In that case, it would be interesting to adopt the parsimonious approach presented
in Section 3.1.2.

However, taking the sparsest solution, in the sense of minimizing the l1-norm of joint
velocities, sometimes leads to undesired behavior on dual-arm robots. Indeed, due to
the geometric symmetry of such systems (the two arms are generally identical) and to
the local property of the controller, several solutions that activate completely different
joints may have equivalent cost. Consequently, from one time step to the other, the
set of joints that are actuated might switch and create chattering phenomena.

To overcome this issue, we decided to implement a third task in the hierarchy that is
in charge of managing the level of sparsity of the solution. Instead of choosing between
the standard least l2-norm solution, that results in the permanent activation of almost
every joint, and the fully sparse least l1-norm solution, that creates violent changes
in joints actuation, we propose an alternative approach that consists in regulating the
proportion of the norms that are minimized.

Practically, the task with the least priority is defined by the following optimization
problem:

q̇3 ∈ min
q̇

(1− λ) ‖q̇‖22 + λ ‖q̇‖1 , 0 ≤ λ ≤ 1

s.t. Q̇ ≤ q̇ ≤ Q̇,

Aq̇ ≤ b,

Jrq̇ = Jrq̇1,

Jaq̇ = Jaq̇2,

(3.12)

The tunable parameter λ ∈ [0; 1] in the cost function is used to distribute the
weight assigned to each norm. Setting λ = 0 is equivalent to performing standard l2-
norm minimization while λ = 1 provides the sparsest solution, which is identical to the
solution of Eq. (3.7). An interesting trade-off is to take a low value of λ (e.g. λ = 0.1)
to take advantage of parsimony while avoiding its side effect.

3.1 Inverse kinematics resolution 59

The equality constraints enforce the solution to be in the null-space of the absolute
task which is itself in the null-space of the relative task, thus respecting the hierarchy.
If no more redundancy is available after solving the kinematic tasks, this process would
have no impact on the final solution, i.e. q̇3 = q̇2 would be obtained from Eq. (3.12).

3.1.4 Application to relative tasks

(a) Initial robot configuration

(b) First relative pose target reached

(c) Final relative pose target reached

Figure 3.2 – Initial, middle and final configuration reached during the simulated assembly task. Pictures
on the left are taken when the task are solved with the standard inverse kinematics method (no sparsity)
while those on the right result from the fully parsimonious task-solving strategy.

Despite the high number of DoF, a dual-arm system is generally ”not very redun-
dant”. In fact, the task is often specified by 12 parameters (6 for the pose of each

60 Dual-arm joint motion control

end-effector). Manipulators commonly used in the industry have 6 or 7 DoF, meaning
that the overall dual-arm platform will have 12 or 14 DoF. In such cases, the robot is
not (or slightly) redundant with respect to the task as all (or almost all) the joints are
required to achieve it.

Many industrial bimanual applications require the coordination of the arms’ relative
motions without having to specify the task in the workspace. Notably, this happens
when an object is held by one manipulator while the other realizes a manufacturing
operation on it with a tool. Examples of such tasks are assembling (AVK16), sculpting
(OCB08) or welding (AL89). For this category of operations, the absolute task is free,
meaning that there is no control on the location in the workspace where the robot
performs. This increases the redundancy with respect to the task as 6 DoF are added
to its null space.

We demonstrate the performance of our hierarchical inverse kinematics strategy
through an assembly task scenario involving the control of the relative task only.

We perform the operation on the real dual-arm cobot BAZAR. The objective is to
simulate a peg-in-hole insertion: a peg is attached to one arm while a shape with the
corresponding hole is fixed to the other. Screwing motion is also required to realize the
insertion. The task is divided into two parts:

• At the beginning, the two arms are located far from each other as in Fig. 3.2a.
The first relative motion aims at bringing the objects closer and aligning the peg
with the hole, as shown in the left pictures of Fig. 3.2b.

• Then, the screwing operation is performed to insert the peg in the hole. The
robot has to rotate one full turn to accomplish the task. Final configurations
reached are shown in Fig. 3.2c.

To evaluate the effect of the sparsity parameter λ from Eq. (3.12), the scenario
is performed with five different task-solving configurations: λ = 0 (regular QP, no
sparsity), λ = 0.25, λ = 0.5, λ = 0.75 and λ = 1 (fully sparse). Hard constraints
detailed in Section 3.2 are integrated in any case.

Table 3.1 – Comparison of the methods during the assembly tasks using different metrics.

Metric λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1∫∞
0 ||q̇||0dt 13.64 6.48 3.77 3.33 3.14∫∞
0 ||q̇||1dt 0.392 0.319 0.314 0.314 0.314∫∞
0 ||q̇||2dt 0.023 0.037 0.044 0.047 0.058

From a high-level point of view, Fig. 3.2 shows initial and final configurations ob-
tained for the screwing task with extreme values of λ. This highlights the behavioral
differences between the l1-norm and l2-norm minimization methods in terms of gener-
ated motions. Indeed, the screwing operation, that could be intuitively performed by

3.1 Inverse kinematics resolution 61

0 10 20 30 40
Time (s)

0

2

4

6

8

10

12

14
||q̇

|| 0
λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 Task transition

(a) l0-norm

0 10 20 30 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

||q̇
|| 1

(r
ad
/s
)

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 Task transition

(b) l1-norm

0 10 20 30 40
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||q̇
|| 2

(r
ad
/s
)

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 Task transition

(c) l2-norm

Figure 3.3 – Comparison of joint velocity norms during the assembly task execution for varying values of
λ. A threshold of 1× 10−3 rad s−1 is taken to differentiate active from inactive joints (l0-norm).

a simple action, generated a high occupancy of the workspace using the standard QP
with least square error minimization. Conversely, the parsimonious solution has re-

62 Dual-arm joint motion control

sulted in local and economic movements as demonstrated by the right side of Fig. 3.2b
and Fig. 3.2c that shows similar intermediate and final configurations, except for the
grippers’ orientations.

Numerical results from Fig. 3.3 and Table (3.1) confirm this observation. The overall
number of actuated joints as well as the sum of absolute joint velocities are reduced
when λ increases. Indeed, aligning both end-effectors from an arbitrary configuration
required the use of six joints for the most part with λ = 1, corresponding to the number
of controlled task variables. Giving more weight to the l2-norm minimization leads to
the progressive activation of extra joints.

Even fewer joints are needed to execute the screwing movement, because of the
geometric properties of the operation. With λ > 0.25 the task can be achieved using
only two joints on average. As expected, the standard QP approach with λ = 0
minimizes the energy consumption during the task. However, this resolution involves
the use of almost every joint, regardless of the geometric complexity of the task.

We notice close results for the different metrics with λ > 0 and particularly for
the l1-norm. In fact, the influence of the weighting factor is not proportionnal to its
value because the order of magnitudes of ‖q̇‖2 and ‖q̇‖1 in Eq. (3.12) are not the same.
Referring to Table (3.1), there is a factor of about 10 between them, meaning that even
a low value of λ strongly influences the task resolution in favor of sparsity.

We observe some sudden changes in the metric magnitudes during the task execu-
tion. For instance, at time t = 26s, the number of active joints for the case λ = 1
quickly raises from 1 to 11 and the l1-norm increases by a factor 2.5 in a very short
time. This is due to the algorithms which are local and do not ensure global opti-
mality. For some constrained joint configurations, the robot loses manipulability and
additional joints should be enabled to fulfill the task.

The fully sparse approach performs slightly better than hybrid l1-norm/l2-norm
in terms of reduction of the number of activated joints. However, optimizing the l1-
norm only can potentially induce undesired behavior. Indeed, let us focus on the joint
velocity profiles depicted in Fig. 3.4. For the sparse approach (Fig. 3.4a), we observe
some chattering effect on the last joints of each arm between t = 12s and t = 26s.
In fact, there is no best solution, regarding the l1-norm minimization, between using
one joint or another. Hence, the optimization process variably distributes the efforts
between the joints which causes unnecessary velocity variations. Based on Fig. 3.4b,
we show that even a small influence of the l2-norm minimization allows to prevent this
phenomenon from happening.

3.1.5 Extension to other robots

Flexibility of production lines is a crucial aspect towards the development of the ”factory
of the future”. Endowing dual-arm robots with mobile capabilities or moving torso
enhances the versatility of such systems by widening the accessible area in which they
can operate.

Several variations for extending a dual-arm robot are possible. For instance, there

3.1 Inverse kinematics resolution 63

−0.2

0.0

0.2

0.4

V
el
oc
it
y
(r
ad
/s
)

Left arm

J1 J2 J3 J4 J5 J6 J7 Task transition

0 10 20 30 40
Time (s)

−0.2

0.0

0.2

0.4

V
el
oc
it
y
(r
ad
/s
)

Right arm

(a) Robot joint velocity with λ = 1

−0.2

0.0

0.2

0.4

V
el
oc
it
y
(r
ad
/s
)

Left arm

J1 J2 J3 J4 J5 J6 J7 Task transition

0 10 20 30 40
Time (s)

−0.2

0.0

0.2

0.4

V
el
oc
it
y
(r
ad
/s
)

Right arm

(b) Robot joint velocity with λ = 0.75

Figure 3.4 – Comparison of joint velocity profiles between full parsimonious IK resolution (λ = 1) and high
parsimonious with some l2-norm consideration (λ = 0.75) during the assembly task execution. Minimizing
the l1-norm only creates some chattering effect. This phenomena disappears when switching to a hybrid
l1-norm/l2-norm task solving strategy.

exist many kinds of wheeled platforms (e.g. steerable wheeled, Swedish wheels, etc ...)
for which features (holonomic, omnidirectional) and control strategies may vary. Also,
it might be possible to mount specific articulated tools to expand the arms (e.g robotic

64 Dual-arm joint motion control

hands) which will provide additional joints at the top of the kinematic system.

3.1.5.1 Control strategy

A naive approach would be to simply consider the additional DoF coming from the
additional robot as an extension of the arms and to solve the inverse kinematics problem
of the whole system in one go. However, this method is not appropriate as the extended
robot and the manipulators may behave differently. In particular, this might be due
to:

• their responsiveness. For instance, due to the high inertia of the platform (that
supports the entire weight of the dual-arm robot plus generally some embedded
equipment), the base cannot provide high accelerations and thus it cannot be
used to react promptly to sudden change as the arms do.

• their accuracy. For example, mobile platforms that use odometry data to estimate
their precision are generally less precise than robotic arms.

One solution would be to weight the joint contribution in the the QP cost function in
order to penalize the use of joints which are less adapted to reactive control. However,
when there are more than two groups, it becomes difficult to precisely evaluate the
contribution of each group using a weighting strategy.

Instead, we propose a hierarchical control structure at the joint level by setting
priority between joint groups. Basically, each task is first solved with the joint group
of highest priority. If the vector of residual error ε is non-null (see Eq. (3.1)), then
it is forwarded to another optimization process whose decision variables refer to the
next joint group regarding priorities. The procedure is repeated until the task is solved
without any error or all the joint groups have been involved in the resolution.

Let us suppose that the robot is made of Ngroup joint groups, going from priority 1
to Ngroup, and only one task has to be performed. The velocity vector command q̇i for
the joint group of priority i (0 ≤ i ≤ Ngroup) is computed as follows:

q̇i ∈ min
q̇

‖Jiq̇− εi-1‖2

s.t. Aiq̇ ≤ bi-1,
(3.13)

where Ji ∈ R6×Ndof(i) (Ndof(i) being the number of DoF for the joint group i) is the
Jacobian matrix associated with the task and for which only the columns related to
the joint group i have been kept, i.e. Ji = ∂q̇i

∂ẋ
, εi is the residual error remaining on the

task after solving the problem with the joint group i:

εi = ẋ−
i∑

k=1

Jkq̇k, (3.14)

Ai ∈ RNineq×Ndof(i) is the linear coefficients matrix of the inequality constraints for
which only the columns related to the joint group i have been kept, and bi is the

3.1 Inverse kinematics resolution 65

constant vector of the inequality constraint after solving the problem with the joint
group i:

bi = b−
i∑

k=1

Akq̇k. (3.15)

Hence, both the cost function and the inequality constraint take into account the
impact of the joint velocities which have been already computed (because of higher
priority group).

Algorithm 2 Double-layer Hierarchical Inverse Kinematics

Input: J, ẋ,A,b, Q̇, Q̇
Output: q̇

procedure HierarchicalInverseKinematics

q̇ =
[
q̇1 ... q̇Ngroup

]T
for i← 1 : Ngroup do

q̇i ← MinimizeJointVelocity(Q̇, Q̇)
Ci,0 ← []
di,0 ← []

end for
for j ← 1 : Ntask do
ε0,j ← ẋj
b0,j ← b
i← 1
while i ≤ Ngroup AND ‖εi,j‖ > 0 do

q̇i ← QP(Ji,j, εi-1,j,Ai,bi-1,j,Ci-1,j,di-1,j)
εi,j ← εi-1,j − Jiq̇i
bi,j ← bi-1,j −Aiq̇i
Ci,j ←

[
Ci,j-1 Ji,j

]T
di,j ←

[
di,j-1 Ji,jq̇i

]T
i← i+ 1

end while
end for

end procedure

Let us now consider Ntask tasks to be solved simultaneously, going from priority 1
to Ntask. Our inverse kinematics approach allows to set up a double-layer hierarchical
approach: the first one being at the task level and the second one at the joint group
level. The velocity vector command q̇i,j for the joint of priority i (0 ≤ i ≤ Ngroup)
regarding the task of priority j (0 ≤ j ≤ Ntask) is computed as follows:

66 Dual-arm joint motion control

q̇i,j ∈ min
q̇

‖Ji,jq̇− εi-1,j‖2

s.t. Aiq̇ ≤ bi-1,

Ji,j-1q̇ = Ji,j-1q̇i,j-1,

...,

Ji,1q̇ = Ji,1q̇i,1,

(3.16)

where Ji,j ∈ R6×Ndof(i) is the Jacobian matrix associated with task j and for which

only the columns related to the joint group i have been kept, i.e. Ji,j = ∂q̇i

∂ẋj
and εi,j is

the residual error remaining on task j after solving the problem with the joint group i:

εi,j = ẋj −
i∑

k=1

Jk,jq̇k. (3.17)

Thus, using the double-layer hierarchical structure, the final joint velocity com-
mand sent to the joint group i is obtained after solving the lowest priority task. The
corresponding vector is given by q̇i,Ntask

.
Note that if the task j can be satisfied after solving the problem with the joint

group i < Ngroup, it is useless to continue the resolution procedure for the successive
groups regarding this task as it will have no effect. Indeed, the computation of the joint
velocity vector for the group i < k ≤ Ngroup will necessarily end up to q̇k,j = 0Ndof(i)

for j = 1 or q̇k,j = q̇k,j-1 for j > 1.
The complete hierarchical inverse kinematics process is described in Algorithm (2).

The QP optimization process is referred to as the function

q̇ = QP(J, ẋ,A,b,C,d), (3.18)

for which the parameters correspond to the variables defined in Eq. (1.10).
It must be pointed out that the input data J and ẋ in Algorithm (2) are containers

vectors of Jacobian matrices and task space command vectors, respectively, such as

J =
[
J1 ... JNtask

]T
and ẋ =

[
ẋ1 ... ẋNtask

]T
, each element being associated with

the task of corresponding priority. Similarly, the output data q̇ is the container vector

of the joint velocity vector for each joint group, such as q̇ =
[
q̇1 ... q̇Ngroup

]T
. When

two subscripts are used, e.g Ji,j, this means that only the components belonging to
a specific joint are extracted from the variable. In this example, only the elements
associated with joint group i are extracted from the matrix Jj related to task j.

When entering the double-layer hierarchical inverse kinematics process, the first step
consists in precomputing the velocity vector for each joint group with the minimum
norm allowed by the constraints. In other words, it is desired to reset every joint
group to have zero velocity, but due to the deceleration constraint, this might not be
possible. This operation is performed by the procedure MinimizeJointVelocity detailed
in Algorithm (3).

3.1 Inverse kinematics resolution 67

This initialization process is required to ensure that the hierarchy between groups
is respected. Indeed, the joint group of highest priority should solve the tasks first,
with minimal contribution of other groups. This allows to slow down and then stop
the joint groups that are no longer needed at some point.

Algorithm 3 Minimize joint velocity

Input: Q̇, Q̇
Output: q̇

procedure MinimizeJointVelocity

q̇ =
[
q̇1 ... q̇Ndof

]T
for i← 1 : Ndof do

if Q̇ > 0 then

q̇i ← Q̇

else if Q̇ < 0 then

q̇i ← Q̇
else

q̇i ← 0
end if

end for
return q̇

end procedure

As presented, the Double-layer Hierarchical Inverse Kinematics algorithm is fully
generic as it can be applied to any type of robot performing any kind of task.

3.1.5.2 Application to mobile dual-arm cooperative task control

In this work, we will treat the case of a dual manipulator mounted on a steerable
wheeled mobile robot. This corresponds to a non-holonomic omnidirectional robot,
meaning that it requires initializing the steer joint configuration to perform arbitrarily
three-dimensional trajectories in the plane of motion. In this chapter, the kinematic
representation of the mobile platform is restricted to 3 DoF in Cartesian space. The
specific management of the wheels for reactive control purposes is based on the motion
discontinuity-robust controller for steerable mobile robots, introduced in (SCFP17).

The mobile robot is defined by two successive prismatic joints (motion along x, y in
the world frame) followed by one revolute joint (rotation around z in the world frame)
that are added at the root of the dual-arm robot kinematic chain.

From the cooperative task space perspective, the integration of the mobile base
in the representation is straightforward. The extension of the kinematic chain has
obviously no effect on the relative task since the motion generated by the wheels leads
to identical displacements of the arms. However, it affects the absolute task: the 3

68 Dual-arm joint motion control

DoF added by the mobile base in the Cartesian space directly modify the pose of the
absolute task frame, as shown in Fig. 3.5.

Figure 3.5 – Representation of the absolute task with a mobile base. Three Cartesian joints are added at
the root of the mobile robot’s kinematic structure and influence this task.

Taking into account the relatively low reactivity of the mobile part, we establish a
relevant hierarchical control strategy: only the arms are engaged as long as they are
sufficient to fulfill the task. Whenever some error ε remains on the absolute task after
solving Eq. (3.11) with the arms, the mobile base is activated to compensate it. This
strategy is particularly interesting as it lets the arms operate locally and it switches to
the wheels when the target exits the arms’ reachable space.

The mobile base joint velocity vector q̇mob that follows this strategy is obtained by
solving the optimization problem:

q̇mob ∈ min
q̇

‖Ja,mobq̇− εa,arms‖2

s.t. Amobq̇ ≤ b−Aarmsq̇arms,
(3.19)

where q̇arms, Aarms are the joint velocity vector and inequality linear coefficients,
respectively, resulting from Eq. (3.11). The residual error on the absolute task εa,arms

3.1 Inverse kinematics resolution 69

is obtained after solving the inverse kinematics problem with the arms (see Eq. (3.1)).
Subscripts mob/arms are used here to differentiate the joint groups related to the
corresponding variable.

Note that the cost function and inequality constraint take into account the effect
of the computed arms’ joint velocities on the current task and obstacle avoidance con-
straint, respectively. In fact, task space constraints represented by the linear inequality
are used to restrict the motion of some arbitrary Cartesian points in space. To make
it possible, these points have to be controllable (i.e. affected by the robot movements).
Yet, some of these points may be influenced by the motion of both the arms and the
mobile base. In this case, since the arms’ joint velocity command has already been
computed at this control step, the anticipated effects on the motion of these points are
used to update the constraint.

3.1.5.3 Simulations

Using the same simulated scenario as in Section 2.4.4, we validate our joint group
prioritization strategy. We recall that the task specifications for this scenario are to
move an object grasped with the two arms to a target frame located at a distance
d = 0.8m on the world frame x+ axis (in front of the robot). This target location is
unreachable with the arms only and requires the motion of the base.

Fig. 3.6 shows the role of each joint group in the task completion. We quantify the
contribution γk of joint group k (k ∈ [1; 3]) as a ratio of the overall generated velocities:

γk =
‖q̇k‖

‖q̇1‖+ ‖q̇2‖+ ‖q̇3‖+ ε0
, with ε0 = 0+ (3.20)

In a first stage (from time t = 0s to t = 9s), the use of the arms is sufficient to track
the absolute task space trajectory without any error. During this period, the mobile
base does not provide any contribution. Then, from t = 9s, the constraints brought by
the relative task, to keep maintaining the object, do not allow to perfectly follow the
trajectory generated for the absolute task frame. After solving the inverse kinematics
optimization problem with the arms only, some residual error εa,arms starts to appear
and the cost function in (3.19) requires the mobile base actuation to be minimized.
From then on, the contribution of the arms decreases until it becomes null at t = 10.2s.
In the subsequent phase, the work becomes progressively balanced between the joint
groups as the object approaches the spherical obstacle: the mobile base keeps going
towards the final destination on the x+ axis while the arms are used again to bypass
the object (see Fig. 2.10). The evolution of the residual error on the absolute task
positions shown in Fig. 3.7 reveals that the mobile base is able to fully eliminate the
remaining error on the x and y axes while the error on the z axis cannot be corrected.

70 Dual-arm joint motion control

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Po
sit

io
n

(ra
d)

Left arm joint state

J1 J2 J3 J4 J5 J6 J7

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Po
sit

io
n

(ra
d)

Right arm joint state

J1 J2 J3 J4 J5 J6 J7

0.0

0.1

0.2

0.3

0.4

0.5

Po
sit

io
n

(m
 o

r r
ad

)

Mobile base cartesian state
pos x pos y rot z

6 8 10 12 14
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
te

Joint group contribution γ
Left arm Right arm Mobile base

Figure 3.6 – Evolution of joint group states during the simulated experiment. Since the left and right arms
have the highest priority in the task solving process, in the first stage they fully contribute to move the
control frame towards the target. Once the workspace limits for the arms approach, the mobile base is
activated to compensate for the tracking error on the trajectory. Arms and mobile base work jointly during
the second phase of the experiment to achieve the task while avoiding an obstacle.

3.2 Hard constraints consideration 71

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ve
lo
cit

y
er
ro
r (

m
/s
)

Residual error (arms only)
x y z

6 8 10 12 14
Time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ve
lo
cit

y
er
ro
r (

m
/s
)

Final Residual error
x y z

Figure 3.7 – Evolution of the residual error obtained in the absolute task positions during the simulated
experiment. The top figure shows the residual error εa,arms after solving the inverse kinematics problem
with the arms only, while the bottom figure is the final residual error after involving the base.

3.2 Hard constraints consideration

We distinguish two types of constraints: first, the physical limits of robots lead to the
specification of admissible ranges of joint solutions. It applies at the position, velocity
and acceleration level. Second, constraints also appear in the Cartesian space. To avoid
hazardous motion in the workspace, one might set velocity and/or acceleration limits
on some specific frames. Furthermore, obstacles of the environment can be considered
under the form of collision avoidance constraints. In the following section, we detail
each of these.

3.2.1 Joint limits

Let us define the following bounds on the joint positions, velocities and accelerations:

q ≤ q ≤ q,

q̇ ≤ q̇ ≤ q̇,

q̈ ≤ q̈ ≤ q̈.

(3.21)

Note that the acceleration constraint is not constant over the state of the robot as

72 Dual-arm joint motion control

it depends on the dynamic of the system. However, we use constant bounds because
we intentionally do not integrate dynamic considerations in our control strategy.

Since the control variables are joint velocities, we want to express the position and
acceleration constraints as velocity constraints.

Considering a discrete control loop at iteration k and of sampling time T > 0, as-
suming that the joint velocity and acceleration remain constant between two iterations,
joint constraints that have to be satisfied at k + 1 can be rewritten as:

q− qk
T

≤ q̇ ≤ q− qk
T

,

q̇ ≤ q̇ ≤ q̇,

q̈T + q̇k ≤ q̇ ≤ q̈T + q̇k.

(3.22)

An additional constraint is needed to ensure consistency between the position and
acceleration limits. In fact, if one of the joints has to stop promptly due to position
bound proximity, the acceleration constraint might be violated.

In (FDLK12), Flacco et al. showed that to avoid conflicting constraints, the follow-
ing bounds should be used:

−
√

2q̈(q− qk) ≤ q̇ ≤
√

2q̈(q− qk). (3.23)

Contrary to (FDLK12), we decided not to replace the original acceleration con-
straint by Eq. (3.23) because in this case acceleration bounds are only active close to
the limits, possibly leading to excessive torque generation in the middle of the range.
However, the position constraint becomes unnecessary as Eq. (3.23) defines a subspace
of it.

Hence, from Eq. (3.22) and Eq. (3.23), we keep the most restrictive condition for

each joint and we define the final lower and upper bounds, respectively Q̇ and Q̇:

Q̇ = max
{
−
√

2q̈(q− qk) ; q̇ ; q̈T + q̇k

}
Q̇ = min

{√
2q̈(q− qk) ; q̇ ; q̈T + q̇k

}
,

(3.24)

so that Eq. (3.21) breaks down to:

Q̇ ≤ q̇ ≤ Q̇. (3.25)

3.2.2 Task space limits

Setting bounds at the joint level is crucial for ensuring the safety of hardware compo-
nents. However, the robot motion in the task space should also be monitored when

3.2 Hard constraints consideration 73

dealing with shared human-robot environments. Indeed, for high DoF robotic arms,
the motion generated at the tip may exceed a tolerable safety threshold due to the
cumulative contribution of every joint.

One initial action to alleviate this effect is to tackle the problem from the task space
command either by saturating or by scaling the task space command velocity vectors
to fit inside the delimited bounds. The problems with this method are:

1. by integrating the limits in the cost function of an optimization problem (see Sec-
tion 3.1), there is no certainty that the computed solution fulfills the constraints.

2. considering the cooperative task space, setting the constraints on the absolute
and relative control frames is probably not the best choice as it does not directly
reflect the actual motion of each manipulator.

Instead, we propose to define velocity and acceleration constraints at the tip of the
two arms:

ẋ ≤ ẋ ≤ ẋ,

ẍ ≤ ẍ ≤ ẍ,
(3.26)

where ẋ, ẍ are the 6D twist and acceleration of one end-effector (the same process
applies for the other arm), T the sampling period, ẋ, ẋ the lower and upper velocity
bounds and ẍ, ẍ the lower and upper acceleration bounds.

From Eq. (1.6), we can express the twist and acceleration vectors with respect to
the arm joint velocity q̇ and acceleration q̈:

ẋ = Jq̇,

ẍ = Jq̈ + J̇q̇,
(3.27)

where Jk is the Jacobian matrix computed at the tip of the arm and J̇ its time
derivative. Similar to the joint case, we want to express the task space bounds as joint
velocity constraints. Using Eq. (3.27), Eq. (3.26) can be rewritten as:

ẋ ≤ Jq̇ ≤ ẋ,

ẍ ≤ Jq̈ + J̇q̇ ≤ ẍ,
(3.28)

Considering a discrete control loop at iteration k and of sampling time T > 0,
assuming that the joint acceleration remains constant between two iterations, the task
acceleration constraint that have to be satisfied at k + 1 can be rewritten as:

ẍ ≤ 1

T
J(q̇− q̇k) + J̇q̇ ≤ ẍ, (3.29)

Finally, by reorganizing Eq. (3.29), the task space acceleration constraint is equiv-
alent to the following joint velocity constraint:

74 Dual-arm joint motion control

ẍ +
1

T
Jq̇k ≤

(
1

T
J + J̇

)
q̇ ≤ ẍ +

1

T
Jq̇k, (3.30)

3.2.3 Collision avoidance hard constraints

For a dual-arm system operating in dynamic cluttered environments, both collision with
objects of the world and self-collision may occur. Many research activities have focused
on tackling the collision avoidance issue at the planning level (LaV06). Resulting
algorithms aim at finding a collision-free path to join a final state from an initial one.
Although effective, these approaches are time-consuming. It makes them unsuitable
for changing environments that require online computation.

A real-time obstacle avoidance method has been introduced by Khatib in (Kha86).
The concept of artificial potential fields is presented in this paper: these are virtual
repulsive forces emanating from obstacles and input to the task space command, to
remain far from obstacles.

Another local approach has been proposed in (FT87). The main difference with
the artificial potential field method is that collision avoidance constraints are separated
from the task description. This way, it is possible to precisely control the different
aspects of the problem. The obstacle avoidance strategy is expressed as linear con-
straints using Velocity Damper. This concept has recently been applied to dual-arm
manipulators performing relative tasks (SD18). Avoiding Collisions with objects of
the workspace and self-collisions is possible by defining constraints in an optimization
framework.

In our work, we extend the method of Velocity damper to the general case of
kinematic chains having a tree structure. Thus, it can be applied to standard dual-arm
robots, but also to the ones equipped with joints on the torso, a mobile base, and so
on.

Let us consider one collision evaluation (either with an obstacle of the world or be-
tween the robot’s parts). The current distance d that separates the bodies is measured
between the critical points p1 and p2.

We recall the definition of the Velocity Damper ḋ∗:

ḋ∗ = −ξ d− ds
di − ds

, d ≤ di, (3.31)

with di the influence distance from which the constraint is activated, ds the safety
distance that must separate two bodies at any time, d the current distance between
the bodies, and ξ a positive gain for tuning the convergence speed.

The derived inequality constraint is simply given by:

ḋ ≥ ḋ∗, (3.32)

with ḋ being the current velocity between the bodies.

3.2 Hard constraints consideration 75

In concrete terms, when two bodies are separated by a distance smaller than di,
their relative speed becomes bounded. If they keep getting closer, the motion is slowed
down until the safety distance is reached. Then, when d = ds the constraint Eq. (3.32)
becomes ḋ ≥ 0 meaning that the only admissible motion between the bodies is one
that maintains or increases their relative distance.

To apply such method to a robot, the relative velocity ḋ should be controllable.
The generic expression to formulate it in function of of joint velocities is:

ḋ = nTJpq̇d, (3.33)

n being the normalized vector joining the critical points p1 and p2 on the objects,
as illustrated in Fig. 3.8, such as:

n =
p1 − p2

‖p1 − p2‖
, (3.34)

The Jacobian matrix Jp ∈ R3×Ns is computed at the point p1 and takes as reference
the point p2. It takes only the position part of the Jacobian. It includes all the Ns

joints playing a role in the variation of the distance between these two points. These
also correspond to the ones selected in the joint velocity vector q̇d.

From Eq. (3.33) can be derived the Jacobian matrix Jd ∈ R1×Ns expressing the
influence of the selected joints on the distance variation, such as Jd = nTJp, leading
to:

ḋ = Jdq̇d. (3.35)

To illustrate this, we present two different types of collision avoidance evaluations
for which the computation of ḋ and ḋ∗ is detailed.

To do so, let us consider a mobile dual-arm robot equipped with two n-DoF arms,
and for which m-DoF are added by the mobile base.

We denote as qb =
[
qb(1) ... qb(m)

]T
, q1 =

[
q1(1) ... q1(n)

]T
, and q2 =[

q2(1) ... q2(n)
]T

the vector of joint position for the mobile base, the first arm (Arm
1), and the second arm (Arm 2), respectively.

Collision with an obstacle: the first kind of collision that may happen involves a
robot part and an obstacle of the world. An example is given in Fig. 3.8a in which one
robot’s arm is close to a table.

It is assumed that the point p1 belongs to the link from Arm 1 preceded by joint
i (1 ≤ i ≤ n). The point p2 is located on the surface of the table.

In this case, all the joints from the mobile base and the first i joints from Arm 1
influence the distance d between the objects.

The joint velocity vector q̇d is thus define as :

q̇d =
[
q̇b(1) ... q̇b(m) q̇1(1) ... q̇1(i)

]T
, (3.36)

76 Dual-arm joint motion control

and the Jacobian matrix Jp as :

Jp =
[
Jb(1) ... Jb(m) J1(1) ... J1(i)

]T
, (3.37)

where Jb(x) (1 ≤ x ≤ m) and J1(y) (1 ≤ y ≤ n) are 3D vectors expressing the
influence of joint x from the mobile base (resp. joint y from Arm 1) on the position of
point p1. The Jacobians are expressed with respect to a fixed world frame.

Self-collision: other than hitting an obstacle from the environment, there is also a
risk that the robot collides with itself. In particular, collision between the arms is
likely to occur. An example of self-collision evaluation is given in Fig. 3.8b, in which
the critical points are located on the wrist of each arm.

It is assumed that the point p1 belongs to the link from Arm 1 preceded by joint
i (1 ≤ i ≤ n) and the point p2 belongs to the link from Arm 2 preceded by joint j
(1 ≤ j ≤ n).

In this case, the first i joints from Arm 1 and the first j joints from Arm 2 influence
the distance d between the objects.

Note that the mobile base does not have any effect on the variation of the distance
and can be omitted for self-collision evaluations.

In this example, the joint velocity vector q̇d is define as :

q̇d =
[
q̇2(j) ... q̇2(1) q̇1(1) ... q̇1(i)

]T
, (3.38)

and the Jacobian matrix Jp as :

Jp =
[
J2(j) ... J2(1) J1(1) ... J1(i)

]T
, (3.39)

where J1(x) (1 ≤ x ≤ n) and J2(y) (1 ≤ y ≤ n) are 3D vectors expressing the
influence of joint x from Arm 1 (resp. joint y from Arm 2) on the position of point
p1 with respect to a reference frame Fref arbitrarily attached to the link holding point
p2. Details on how to compute Jp are given in Appendix A.

In this case, vector n defined in Eq. (3.34) should also be expressed with respect to
Fref for consistency.

At each time step, a collision avoidance constraint is generated for all pairs of po-
tentially colliding parts (including collisions with an obstacle and self-collisions) which
are separated by a distance d ≤ di. Referring to Eq. (3.32), Eq. (3.35), we can specify
a constraint in function of joint velocities under the standard form of linear inequality
equations:

Aq̇ ≤ b, (3.40)

with A = −Jd and b = −ḋ∗.

3.2 Hard constraints consideration 77

(a) Collision with an object of the
workspace

(b) Self-collision between the arms

Figure 3.8 – Representation of collision avoidance evaluations. On the left, the robot’s arm is close to
a table while on the right self-collision is assessed. Points p1 and p2 are the critical points defining the
minimal distance d between the parts. The Jacobian matrix Jd reveals the influence of the joints involved
on the distance variation.

78 Dual-arm joint motion control

3.3 Conclusion

We proposed in this chapter to tackle the inverse kinematics problem for a dual-arm
robot performing cooperative tasks. We suggested different methods for solving the
inverse kinematics. All are based on QP optimization to find solutions that satisfy
the constrained listed above. First, we proposed to gather the resolution of the two
cooperative tasks in one optimization problem.

Because relative motions are generally more critical than absolute ones, we devel-
oped a HQP strategy that gives priority to the relative task. After introducing the
notion of parsimony, we integrated an additional task which aims at tuning the level
of sparsity that we want the robot to adopt. When the robot is highly redundant with
respect to the task, we showed how this parameter influences the number of activated
joints.

We then tackled the issue of using additional robots to extend the dual-arm plat-
form. Because they usually behave differently than the arms, we believe that they
should not be used the same way. Instead, we proposed to classify the extra joints
brought by the additive robot in a second joint group and adopt a hierarchical strat-
egy at the joint group level for the task-solving process: one can choose to solve the
tasks with a selected set of joints and only use secondary joints when necessary. This
method is especially interesting for controlling dual-arm robots endowed with mobile
capabilities as it lets the arms operate locally and activates the wheeled system for
large motions only.

To ensure the proper and safe motion of the joints, we stated a set of hard constraints
that defines the solution space. First, position, velocity and acceleration limits of the
joints were combined to determine the velocity bounds. This allows to cope with the
physical capabilities of the hardware components. Then, constraints were specified at
the task level to provide safe motions of the tools and prevent hazardous situations
for human operators working around the robot. We strengthened the safety aspect
by adding constraints for collision avoidance. Using a velocity damper, the constraint
forces the robot to slow down then stop when getting too close from an obstacle. This
applies to avoiding collisions with an obstacle of the workspace as well as self-collision
between robot parts.

The next chapter will be dedicated to the software developments carried out during
this thesis. They have led to the creation of a complete software library intended for
the kinematic control of redundant robots.

CHAPTER 4

Kinematic control framework:
RKCL library development

In this chapter, we present the software developments implementing the complete on-
line kinematic controller for dual-arm collaborative tasks in unstructured industrial
environments.

Let us first summarize how the different elements seen so far are combined together
to make the whole control process work, by referring to the closed-loop control scheme
with input/output data depicted in Fig. 4.1.

In Chapter 2, we explained how the information is converted and then exploited
in the cooperative task space. Joint position mq coming from the robot encoders is
processed by the Forward Kinematics block to get the poses mxa,

mxr and Jacobian
matrices mJa,

mJr in the cooperative space. Wrench feedback mW1,
mW2 coming from

F/T sensors mounted at the arms’ wrist are transformed by the Wrench Adapter block
into cooperative task space vectors mWa,

mWr. As seen in Section 2.2, additional
treatment can be applied on the wrench when dealing with human-robot comanipula-
tion, to enhance the quality of the interaction. Once all the feedback data has been
interpreted in the task space, it is send to the Task Space Command block. This block
also receives the feedforward task space trajectory consisting of the absolute x∗a and
relative x∗r desired poses as well as the absolute ẋ∗a and relative ẋ∗r desired velocities.
Then, it generates the task space command cẋa and cẋr as detailed in Section 2.3.

Chapter 3 was dedicated to the generation of joint motion command cq̇ from the
task space command cẋa and cẋr, taking into account the admissible range on the

joint velocities, bounded by Q̇ and Q̇, and the collision avoidance inequality constraint
defined by Aq̇ ≤ b.

Our control framework is intended to be generic in the sense that the method can be
applied to every type of dual-arm robots: the two arms might be different and with any

80 Kinematic control framework: RKCL library development

Trajectory

Generator

Sensor data

Task space

trajectory

Wrench Adapter

Joint command

Inverse

Kinematics

Figure 4.1 – Dual-arm kinematic control scheme with transmitted variables. The absolute (subscript ’a’)
and relative (subscript ’r’) tasks are controlled. The Task Space Adapter converts measurements (superscipt
’m’) of joint positions mq and wrench mW1, mW2 at the wrist of each arm into task space poses mxa, mxr,
wrenches mWa, mWr and extracts task space Jacobian matrices mJa, mJr. The Dual-arm Controller
then generates the command (superscipt ’c’) at the task space level cẋa, cẋr from these feedback values
and the desired (superscript ’*’) task space trajectory. Finally, the inverse kinematics provides the joint
velocity command cq̇ sent to the robot.

4.1 Software developments in RKCL 81

number of DoF (note however that the system will perform properly only if an overall
minimum number of DoF is respected). Besides the two arms, dual-arm platforms may
be extended with additional joints, usually provided by the use of a mobile base or an
articulated torso. In Section 3.1.5, we discussed the approach we have developed to
incorporate extra DoF in the kinematic model of the robot and the control strategy we
have adopted to make adequate use of them.

4.1 Software developments in RKCL

To perform dual-arm operations on real and simulated environments, a dedicated kine-
matic controller library called RKCL has been developed during this thesis. Originally
specific to dual-arm robots performing cooperative tasks, a complete refactoring of the
library has been done to be more flexible regarding the type of robots which can be
controlled. Indeed, as we discussed in the previous sections, dual-arm robotic platforms
might be made of several components extending the two manipulators, such as mobile
base or articulated torsos. In fact, there are plenty of combinations that can be used to
compose those robots. At some point, we realized that it was not appropriate to deal
with particular cases but rather to adopt a generic approach that covers every system.
The common thread between all those platforms lies in their kinematic representation:
the kinematic chain created by the joints’ path form a tree structure with at least
two branches (the arms) and with a shared root (the world frame). In that respect,
we designed the library to be suitable for any robot with a kinematic tree structure,
dual-arm robots being one particular case.

4.1.1 RKCL main concepts

The philosophy behind RKCL is to provide an extensible library that can easily in-
tegrate additional features and additional robots over time. To do so, we decided
to organize the project as a framework of packages, each of them relying on a core
component. The architecture of the library is depicted in Fig. 4.2.

Most of the library is freely available online under the GNU LGPL license 1. Only
some specific packages are the property of Tecnalia and cannot be publicly accessed.
The library is written in C++ to maximize application performance and flexibility by
taking advantage of object-oriented design benefits.

The PID2 projects development methodology is used to manage packages. Based
on CMake and Git, it provides:

• Common and formal structure for projects.

• Uniform project life-cycle.

1https://www.gnu.org/licenses/lgpl-3.0.en.html
2http://pid.lirmm.net/pid-framework/

82 Kinematic control framework: RKCL library development

robot

 joint_groups

 control_frames

 joint_controller

 task_controller

 ik_controller

Package containing resources to use the

Bazar mobile dual-arm platform from LIRMM.

Application package using the

Bazar mobile dual-arm platform from LIRMM.

RKCL wrapper for the

neobotix mpo700 mobile platform

Online trajectory generation for RKCL

based on Reflexxes library

Contain resources to use the Vulcano

mobile dual-arm platform from Tecnalia.

Application package using the Vulcano

mobile dual-arm platform from Tecnalia.

Collision avoidance for RKCL using sch-core

 wrench_adapter

 data_logger

Core classes

Forward kinematic for RKCL using RBDyn

Utility class to facilitate the creation

 of applications

FRI driver (Kuka arm) wrapped in RKCL

ATI F/T sensor driver for RKCL

Communicate with the simulation

environment V-REP

Integrate RKCL in the ROS ecosystem

Main processes

(wrapper library)

Application / Simulation

common classes

Bazar robot (LIRMM) Vulcano robot (Tecnalia)*

Drivers / Models

Applications Applications

Drivers / Models

* Proprietary packages

Figure 4.2 – Package architecture of the RKCL framework. Packages in green have been developed from
scratch and are part of our contributions while packages in orange are based on external dependencies with
integration in RKCL. The core classes contain the elementary data and processors to run the control loop.
External libraries are also wrapped in RKCL to provide the main features (forward kinematics, trajectory
generation, collision avoidance) to the controller. Several packages have been created for each dual-arm
platform (BAZAR and Vulcano) gathering the robots’ models but also the drivers for input/output data
transmission. Applications packages for these platforms are used to perform different scenarios through
simulation and real experiments. Dashed arrows represent direct dependencies between components (the
targeted one depending on the other).

4.1 Software developments in RKCL 83

• Automating build/deployment/publishing processes.

robot

joint_group_1

joint_group_2

joint_group_Ngroup

control_frame_1

control_frame_2

control_frame_Ntask

state goal target command

JointData

limits

JointGroupVector ControlFrameVector

JointGroup

JointLimits

state goal target command limits

ControlFrame

position forcevelocity acceleration

min_pos

FrameData FrameLimits

pose forcevelocity acceleration jacobian_1

jacobian_2

FrameKinematics

Figure 4.3 – RKCL data tree structure. At the root, the robot consists of a variable number of joint group
and control frame, each of which contains the variables used by the controller.

The rkcl-core package is the foundation of the kinematic control library. It contains
the fundamental data and processor classes used in the control loop, as listed in Fig. 4.2.
In RKCL, the core object is a robot. It gathers the essential data needed to execute
the control loop. It is made of the tree data structure shown in Fig. 4.3.

The robot component is initialized with a description file that provides the model
of the robot. Then, it is possible to classify the joints extracted from the kinematic
model into several joint group. This categorization allows assigning a priority to each
joint group to perform the double-layer hierarchical inverse kinematics process pre-
sented in the previous section. The classification is arbitrary and is left free to the
user. For instance, the two arms might be treated as a unique joint group if they are
identical but could also be split into two groups if they have different properties (e.g.
control time step) or if it is desired to favor the use of one arm over the other.

A control frame object is added to the robot each time a task is defined. It holds
the information related to the current state of control. It also carries the limits of the
control frame in the Cartesian space and the Jacobian matrices for every joint group.

Referring to Fig. 4.2, the basics processors provided by the rkcl-core package are
the joint controller, the task controller and the ik controller. The joint controller is
used in a dedicated control loop to reach a specific joint configuration for the robot
(e.g. at initialization), given the joint position constraints and maximum admitted ve-
locity/acceleration. Complementary but not necessary features are implemented in the
rkcl-utils library that is also part of the core package. In particular, the wrench adapter
process, whose actions are depicted in Fig. 2.4, is required only for cooperative tasks
with wrench control.

84 Kinematic control framework: RKCL library development

External open-source libraries have also been wrapped in RKCL providing the main
features to the controller:

• Forward kinematics adapted from the RBDyn library3 which provides a set of
class and function to model the dynamics of rigid body systems. The implemen-
tation is based on Roy Featherstone Rigid Body Dynamics Algorithms book and
other state of the art publications.

• Online trajectory generation based on Reflexxes4 (Krö11).

• Collision avoidance evaluating distance with sch-core5, an efficient implementa-
tion of GJK algorithm for proximity queries between convex shapes. Collision
objects are represented with sphere or superellipsoid (Bar81) geometric shapes.
The former requires less computational efforts to perform proximity queries but
the later gives better approximations of arbitrary objects.

To facilitate the creation of applications, we have also developed the app utility
class. It allows us to manage efficiently the different processors in the control loop and
offers a quick and easy way to configure a new application.

An interface for the robotics simulator V-REP6 is available in RKCL. Thus, the
user can choose between launching an application on a real platform or on simulation.

4.1.2 Synchronization issues

The generic kinematic control approach we present in this chapter, allowing to deal
with multiple robots in a unique control loop, leads to synchronization issues. Indeed,
different types of machines with varying control time steps may constitute the whole
robotic platform. Also, it is often not possible to use a common synchronization signal
between the robots, which means that they usually operate at different times. There
is no general way of solving this problem as communication aspects depend on robot
manufacturers.

Instead, in keeping with the focus of making RKCL a generic and easy-to-use solu-
tion for kinematic control of various robots, we accepted the fact that robots may be
unsynchronized and decided to deal with this in such a way that it does not noticeably
affect the performances of the system.

In this regard, we propose to separate the execution of communication drivers
from the controller by adopting a parallelization strategy. The case of BAZAR robot,
equipped with two arms, a mobile base, and two force sensors at the arms’ wrist is
illustrated in Fig. 4.5.

3https://github.com/jrl-umi3218/RBDyn
4http://www.reflexxes.ws/
5https://github.com/jrl-umi3218/sch-core
6http://www.coppeliarobotics.com/

4.1 Software developments in RKCL 85

The ecosystem is composed of a unique kinematic control loop that executes the
different processors sequentially and several drivers in charge of exchanging data be-
tween the hardware components and the controller. Each thread runs independently
and at varying frequency: the drivers are triggered by the reception of new data coming
from sensors, meaning that the time rate is fixed by the associated component.

The setting of the time step for the kinematic control loop, however, is arbitrary
and left free to the user. Nevertheless, this choice will strongly impact the accuracy by
influencing the tracking error of the task. The best solution is to align the control loop
time step value with the highest frequency driver. Indeed, increasing the frequency has
no positive effect and just induces unnecessary computations. Decreasing it degrades
the performance of the controller for two reasons:

1. There is an interest in executing a new control step as soon as new input data are
available. If at least one of the drivers is updated more often than the kinematic
control loop, this means that some input information might not be treated by
the controller which results in suboptimal behavior.

2. The joint limits constraints addressed in Section 3.2 take into account the position
boundaries and maximum admissible acceleration/deceleration under the form of
velocity bounds. However, this formulation is no longer valid when joint drivers
are not synchronized with the controller.

In fact, the synchronization issue prevents from precisely managing the joint con-
straints and impels us to adopt a conservative approach. To do so, let us consider the
simple case of a unique joint driver thread which time step is Tjoint and the kinematic
control loop running every Ttask. The joint driver process takes ∆tjoint to be completed
while the control loop computation time is ∆ttask. We assume that input data are read
at the beginning of a process and changes become effective once it is ended. The length
of time during which a joint command is being executed is denoted by ∆tq̇.

As depicted in Fig. 4.4 the command computed at time t by the kinematic controller
is executed during Tjoint+Ttask in the worst case, whereas it was supposed to be effective
for Tjoint only. In fact, this is the control loop that induces modifications in the joint
command. Hence, the span ∆tq̇ is lower bounded by ∆t−q̇ as follows:

∆t−q̇ =

{
Ttask if Tjoint ≤ Ttask,

Tjoint otherwise.
(4.1)

Depending on the synchronization between the control thread and the driver thread,
some additional delay may arise and the command might be extended even longer than
expected. In the worst case, the command computed by the control is made available
just after the driver loop has begun, so the old data is considered. In this situation, a
delay of Tjoint is added to the system. This allows to define the upper bound ∆t+q̇ of
∆tq̇:

86 Kinematic control framework: RKCL library development

∆t+q̇ =

{
Ttask + Tjoint if Tjoint ≤ Ttask,

Tjoint otherwise.
(4.2)

Logically, setting Tjoint ≥ Ttask does not cause any perturbation in terms of com-
mand duration because it ensures that a new command has been generated between
two driver time steps.

In what follows, we will see how we take into account synchronization issues in the
joint constraints determination.

Time

Thread state

ON

OFF

Driver loop process

Control loop process

Figure 4.4 – Synchronization issue example when the control loop and one driver thread are running. This
figure illustrates the worst case scenario where the velocity command q̇k is effective for ∆tq̇ = Tjoint+Ttask
instead of Tjoint. The fact that the control rate is slower that the driver rate implies that the same joint
command is executed for at least Ttask. Moreover, when the control thread and the driver thread are
totally unsynchronized (the command computed by the control is published just after the driver loop has
begun), the same command is still maintained for Tjoint.

First, let us focus on the acceleration constraint. In Eq. (3.22), we expressed this
constraint as joint velocity boundaries by performing a simple discrete-time integration.

The more restrictive bounds for this constraint are obtained for ∆tq̇ = ∆t−q̇ . Hence,
we ensure that the constraint is never violated by setting:

q̈∆t−q̇ + q̇k ≤ q̇ ≤ q̈∆t−q̇ + q̇k. (4.3)

For the deceleration/position constraint, we recall from Eq. (3.23) that the bounds
on the joint velocity command are not time-dependent. In fact, they are expressed as
a function of the current state qk. However, to ensure that it is always possible to
decelerate and stop before reaching the position limit, we do not rely on the current

4.1 Software developments in RKCL 87

but on the future state. In this case, we have to consider the maximum duration
∆tq̇ = ∆t+q̇ for which the joint command is executed to compute the future minimum
q
k+1

and maximum qk+1 state that might be reached at the next iteration:

q
k+1

= qk + max
{
q̇ ; q̈T + q̇k

}
∗∆t+q̇ ,

qk+1 = qk + min
{
q̇ ; q̈T + q̇k

}
∗∆t+q̇ .

(4.4)

The deceleration/position constraint which should be verified at any time, taking
into account synchronization issues, becomes:

−
√

2q̈(q− q
k+1

) ≤ q̇ ≤
√

2q̈(q− qk+1). (4.5)

Hence, from Eq. (4.3) and Eq. (4.5), we keep the most restrictive condition for each
joint and we replace the final lower and upper bounds defined in Eq. (3.24) by:

Q̇ = max
{
−
√

2q̈(q− q
k+1

) ; q̇ ; q̈∆t−q̇ + q̇k

}
Q̇ = min

{√
2q̈(q− qk+1) ; q̇ ; q̈∆t−q̇ + q̇k

}
,

(4.6)

4.1.3 Example

We present here a short application example setting up a dual-arm robot scenario
using RKCL. The code is split into three different files: the main file which is executed,
the application utility file which manages the execution of the controller, and the
configuration file where the user can parametrize everything related to the application
(configure the robot, tune the various gains, specify the tasks...).

In this example, the dual-arm platform BAZAR is used to perform collaborative
tasks. An initialization phase consists in reaching a starting joints configuration. After
that, the robot should execute a sequence of tasks in the Cartesian space and stop
when they have all been completed.

The main file is given below. Comments have been added to make it self-explanatory.
One may notice that the file contains only a few lines of code. In fact, all the
parametrization and call to functions are done in the background thanks to the appli-
cation utility object and configuration file.

1 // Inc lude a l l needed dependenc ies to use the BAZAR robot
2 #inc lude <r k c l / robots / bazar . h>
3

4

5 i n t main ()
6 {
7 //Load the c o n f i g u r a t i o n f i l e (f u r t h e r de s c r ibed)

88 Kinematic control framework: RKCL library development

Arm 1 Command

Arm 1 State

Arm 2

Command

Arm 2

State

Mobile Base

Command

Mobile Base

State

F/T Sensors State

F/T Sensors State

Arm 2

Command

Arm 2

State

Arm 2

Command

Arm 2

State

Mobile Base

Command

Mobile Base

State

RGB-D

Sensor State

3D Skeleton points

Figure 4.5 – Parallelization of driver/controller processors in RKCL for dual-arm mobile robot BAZAR.
Each thread is executed independently and at its proper time rate, managed by the Sync block. When
new data are available (either state for the controller or command for the drivers) they are sent to the
concerned processors which will put them into effect at the next iteration.

4.1 Software developments in RKCL 89

8 auto conf = YAML: : LoadFi le (”b a z a r c o n f i g . yaml ”) ;
9

10 // Create an a p p l i c a t i o n u t i l i t y ob j e c t (f u r t h e r de s c r ibed)
11 auto app = r k c l : : AppUti l i ty : : c r e a t e (conf) ;
12

13 // S ta r t i ng j o i n t c o n t r o l by load ing the i n i t i a l task
14 app . conf igureTask (0) ;
15

16 // Var iab le i n d i c a t i n g i f the cur rent task has been completed
17 bool done = f a l s e ;
18 whi le (not done)
19 {
20 // Execute one s tep o f the j o i n t c o n t r o l loop
21 app . runJointSpaceLoop () ;
22

23 //Keep loop ing u n t i l a l l j o i n t groups have reached the d e s i r e d
c o n f i g u r a t i o n

24 done = true ;
25 f o r (auto j o i n t c o n t r o l l e r : app . g e t J o i n t C o n t r o l l e r s ())
26 done &= j o i n t c o n t r o l l e r −>isTaskCompleted () ;
27 }
28

29 //Load the f i r s t task in the Cartes ian space
30 app . nextTask () ;
31 done = f a l s e ;
32 whi le (not done)
33 {
34 // Execute one s tep o f the task space c o n t r o l loop
35 app . runTaskSpaceLoop () ;
36

37 //Keep loop ing u n t i l the goa l pose has been reached f o r a l l t a sk s
38 done &= app . getTaskSpaceContro l l e r ()−>areTasksCompleted () ;
39

40 // I f the cur rent task i s completed , move on to the next one .
Return f a l s e i f no more task remains

41 i f (done)
42 done = not app . nextTask () ;
43 }
44 //End the a p p l i c a t i o n (stop the proce s so r s , c l o s e the communication

with dr iv e r s , . . .)
45 app . end () ;
46 }

The configuration file loaded at the beginning of the application is written in YAML
data-serialization language7. It allows to get an ordered structure of parameters from
the program side and dispatch the information to the concerned data or processors
during initialization.

Here is an extract taken from the configuration file referred to as ”bazar config.yaml”
in the main program, which aims at setting up the robot and various classes:

7https://yaml.org/

90 Kinematic control framework: RKCL library development

1 robot :
2 j o i n t g r o u p s :
3 − name : l e f t a r m
4 p r i o r i t y : 1
5 j o i n t s : [j o i n t 1 l e f t , j o i n t 2 l e f t , j o i n t 3 l e f t , j o i n t 4 l e f t ,

j o i n t 5 l e f t , j o i n t 6 l e f t , j o i n t 7 l e f t]
6 c o n t r o l t i m e s t e p : 0 .001
7

8 − name : r ight arm
9 p r i o r i t y : 1

10 j o i n t s : [j o i n t 1 r i g h t , j o i n t 2 r i g h t , j o i n t 3 r i g h t , j o i n t 4 r i g h t
, j o i n t 5 r i g h t , j o i n t 6 r i g h t , j o i n t 7 r i g h t]

11 c o n t r o l t i m e s t e p : 0 .001
12

13 − name : mobi le base
14 p r i o r i t y : 2
15 j o i n t s : [j o i n t1 ba s e , j o i n t2 ba s e , j o i n t 3 b a s e]
16 c o n t r o l t i m e s t e p : 0 .02
17

18 co n t ro l f r am es :
19 − name : r e l a t i v e t a s k
20 t a s k p r i o r i t y : 1 // Decreas ing p r i o r i t y l e v e l
21 body name : end−e f f e c t o r r i g h t
22 ref body name : end−e f f e c t o r l e f t
23 ga ins :
24 p ro po r t i o na l : [1 0 , 10 , 10 , 10 , 10 , 10]
25

26 − name : a b s o l u t e t a s k
27 t a s k p r i o r i t y : 2
28 body name : abso lute f rame
29 ref body name : world
30 ga ins :
31 p ro po r t i o na l : [1 0 , 10 , 10 , 10 , 10 , 10]
32

33 model :
34 path : bazar model . yaml
35

36 app :
37 t a s k c o n f i g f i l e s :
38 − name : j o i n t i n i t . yaml
39 − name : task 1 . yaml
40 − name : task 2 . yaml

Following this configuration file example, the robot structure represented in Fig. 4.3
is assigned three joint group: the two arms corresponding to the manipulator robot
Kuka LWR4+ with a control time step of 1ms and the Neobotix MPO-700 mobile
base which runs at 20ms. The two arms have maximum priority due to their high
responsiveness and accuracy, while the mobile base with more inertia and lower control
frequency has the least priority. It is used to assist the arms in case of large motions
in the workspace. Each joint group is associated with a vector of joints, defined in the

4.1 Software developments in RKCL 91

robot model ”bazar model.yaml”.
The robot holds two control frames referring to the cooperative tasks. As explained

in Chapter 3, the priority is given to the relative task over the absolute task. A
control frame is characterized by the link that is controlled (”body name”) and the link
whose attached frame serves as a reference (”ref body name”). This information is also
extracted from the model file.

The scenario for the application is configured at the end. The list of YAML file
which is enumerated using ”task config files” is stored at the beginning of the applica-
tion. In the main file, the methods configureTask() (line 14) or nextTask() (line 42)
are called to load a desired task. A task is simply updated by setting the goal data
associated with the control frame, as in the following example:

1 robot :
2 co n t ro l f r am es :
3 − name : r e l a t i v e t a s k
4 // P o s s i b l e va lue s : ’ none ’ , ’ pos ’ , ’ f o r c e ’ , ’damp ’ or ’adm ’
5 control mode : [pos , pos , pos , pos , pos , pos]
6 goa l :
7 pose : [0 , 0 , 0 . 2 , −3.14 , 0 , 0]
8

9 − name : a b s o l u t e t a s k
10 control mode : [pos , pos , pos , pos , pos , pos]
11 goa l :
12 pose : [0 . 5 , 0 , 1 . 5 , 1 . 57 , 0 , 0]

Finally, let us briefly describe the role of the AppUtility class. As its name implies, it
has been implemented to ease the development of applications by handling the control
loops and processors that should be executed inside them. In fact, no matter what
the scenario is, there exists a common structure between every application. In the
previous subsection, we mentioned how we deal with synchronization issues. Here, the
AppUtility is in charge of managing the parallelization by adopting a multithreading
approach: a dedicated communication loop is created for each joint group while a
unique task space control loop refreshes the joint command for all the groups. The
content of the control loop is reduced to a sequential call to the various processors
presented throughout this thesis:

1 bool AppUti l i ty : : runTaskSpaceLoop ()
2 {
3 // Wait f o r the c y c l e time duration , from l a s t c a l l
4 waitNextCycle () ;
5

6 bool a l l o k = true ;
7

8 a l l o k &= ta sk spac e o tg () ;
9

10 a l l o k &= wrench adapter () ;
11 a l l o k &= forward k inemat i c s () ;
12 a l l o k &= c o l l i s i o n a v o i d a n c e () ;
13

92 Kinematic control framework: RKCL library development

14 a l l o k &= t a s k s p a c e c o n t r o l l e r () ;
15 a l l o k &= i k c o n t r o l l e r () ;
16

17 re turn a l l o k ;
18 }

All the processors listed above have been given a pointer to the robot element, which
makes them able to modify the data internally without passing parameters. At the end
of the task space control loop, a new vector of joint velocity command is available for
every joint group and will be applied at the next iteration of the corresponding joint
communication loop.

4.1.4 Benchmarks

To perform online control in changing industrial environments where safety of individu-
als is engaged, responsiveness of robots is a key parameter. In case of unforeseen event,
the robot should be able to react promptly to avoid collisions or reduce damages if an
impact is inevitable. Furthermore, performing pHRI require a high control frequency
to ensure smooth and appropriate motions of the robot. Thus, it is crucial that the
controller presented here and its implementation in RKCL are fast enough to comply
with timing constraints.

We assessed the performance of the library by running some benchmarks on a
computer with Intel(R) Core(TM) i7-6600U CPU running Linux. In this experiment,
we performed a simple pose control with trajectory tracking on the dual-arm robot
BAZAR. We placed five obstacles at random locations in the workspace to evaluate the
process in a cluttered environment. In Fig. 4.6, we present the results of the benchmarks
for the most computationally demanding processes of the kinematic control loop. We
selected randomly 1000 time steps among the whole task execution and evaluated
the computation time for each process. On Fig. 4.6a – 4.6e, we indicate the average
computation time t and the standard deviation σ recorded over the 1000 iterations.
The first thing to be pointed out is that we notice significant disparities among the
processes in terms of computation time. This observation is highlighted by Fig. 4.6f
which shows the computing-time distribution. The collision avoidance process is by far
the most computationally intensive since it is responsible for around 63% of the total
calculation time. On average, the collision avoidance process requires t = 0.8ms which
is substantial in the context of reactive control. However, we could easily mitigate this
problem by executing this process in a separate thread. In any case, vision systems or
other sensory equipments that are used to locate obstacles are generally slow, meaning
that it would be useless to perform this operation at higher frequency. Apart from
the collision avoidance process, the other units of the controller are executed within a
reasonable time. As expected, the inverse kinematics resolution, including the HQP
architecture, takes the most time among the remaining processes. With a computation
time of less than t = 0.3ms on average and σ = 35µs, it allows to let the whole control
loop run at 1kHz, which is suitable for pHRI under proper conditions.

4.2 Application to teaching-by-demonstration 93

0 200 400 600 800 1000
Iteration

50

100

150

200

250

300

350

Ti
m

e
(μ

s)

t = 72.564μs
σ = 16.772μs

Computation time
Average

(a) Trajectory Generation process duration.

0 200 400 600 800 1000
Iteration

50

100

150

200

250

Ti
m

e
(μ

s)

t = 120.401μs
σ = 20.873μs

Computation time
Average

(b) Forward Kinematics process duration.

0 200 400 600 800 1000
Iteration

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(μ

s)

t = 819.157μs
σ = 91.079μs

Computation time
Average

(c) Collision Avoidance process duration.

0 200 400 600 800 1000
Iteration

0

10

20

30

40

50

60

70

Ti
m

e
(μ

s)

t = 7.823μs
σ = 2.393μs

Computation time
Average

(d) Task Control process duration.

0 200 400 600 800 1000
Iteration

100

200

300

400

500

Ti
m

e
(μ

s)

t = 286.966μs
σ = 35.310μs

Computation time
Average

(e) Inverse Kinematics process duration.

Collision Avoidance

62.7%

Forward Kinematics

9.2%

Inverse Kinematics
21.9%

Trajectory Generation

5.6%

Task Control

0.6%

(f) Distribution of the computational burden
between the processes.

Figure 4.6 – Benchmarks of the different processes running sequentially in the kinematic control loop.

4.2 Application to teaching-by-demonstration

In this section, we elaborate an industrial application fully illustrating the different
features of our collaborative framework. Teaching-by-demonstration is a good technique
to promote greater flexibility and agility in the industry. Instead of spending time and
money in reprogramming robots offline, teaching-by-demonstration allows to easily and
intuitively reconfigure the tasks when changing production lines.

4.2.1 Description of the scenario

The objective of this experiment is to quickly configure the robot so that it can repeat-
edly move boxes with its two arms from an initial location to a desired destination. A
video of the experiments is available at https://youtu.be/2ihgqm4MCEQ. The scenario
is divided into two parts :

94 Kinematic control framework: RKCL library development

1. the teaching phase - the robot is in compliant mode. A human operator
can physically interact with it to teach the successive sequences to perform to
accomplish the whole task. To manage the consecutive operations, we design
a set of tasks to be loaded sequentially. This is represented in Fig. 4.7 using
snapshots of the experiments. Thanks to our framework, we develop a hybrid
position/force learning strategy in the cooperative task space: target waypoints
are recorded for the absolute task frame in order to reach and then move the
object in the workspace while wrench measurements on the relative tasks are
stored to apply desired internal wrench on the box during the manipulation.
Besides providing safe manipulation, this allows repeating the operation properly
without the need for high accuracy. In particular, the robot can complete the
task even if the object is not precisely located at the same place as it was during
the teaching phase, or if the object’s dimensions have (slightly) changed.

2. the replay phase - the robot autonomously reproduces the set of subtasks
learned during the teaching phase. Online trajectory generation is performed to
reach the successive waypoints for the absolute task frame and internal wrench
regulation allows to grasp/release the object. The human operator, previously
seen as a collaborator, is now considered as an obstacle. Thus, we use computer
vision to detect and locate the human skeleton in the 3D Cartesian space. We
apply the repulsive action on the absolute task to prevent from being too close
to unpredictable obstacles without interrupting the task.

4.2.2 Setup

For this experiment, we use the same setup as the one presented in Section 2.4.1, except
that here the Neobotix MPO-700 omnidirectional mobile base of the dual-arm cobot
BAZAR is enabled with a time rate Tmob = 20 ms. As a reminder, the Kuka arms run
at Tarms = 5 ms, which is also the time step used for the main control loop.

During the replay phase, the Reflexxes Motion Library is used to generate trajec-
tories between the stored waypoints. To set up the trajectory profile, we specify the
following parameters: maximum translational veclocity 0.5m s−1, maximum rotational
veclocity 0.5rad s−1, maximum translational acceleration 0.2m s−2, and maximum ro-
tational acceleration 0.2rad s−2.

As in Section 2.4.1, computer vision is used to estimate online the location of the
human operator, as shown in Fig. 4.8.

4.2.3 Results

To assess the performance of our mobile dual-arm collaborative framework RKCL and
demonstrate that it provides a suitable solution for flexible industrial applications, let
us first focus on the reproducibility of the taught operations. Fig. 4.9 shows the logged
error for both the relative and absolute tasks during the whole replay phase. For the

4.2 Application to teaching-by-demonstration 95

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7 – Some snapshots taken during the teaching phase of the experiment: (a) The operator moves
the whole dual-arm platform to a workable location using the mobile base. (b) The operator brings the
robot to the first waypoint. (c) The robot is ready to grasp the box. (d) The operator teaches the internal
force required to maintain the object. (e) The robot lifts the box to the first waypoint shown by the user.
(f) The operator guides the robot towards the deposit station. (g) The operator shows where to release
the box. (h) The robot releases the object. (i) The robot is taught how to move its end-effectors away
from the box.

relative task, the pos z and rot z error on the pose tracking have been omitted, because
pos z is force-controlled and rot z has been left free to give more redundancy to the
system without compromising the task.

Since we assign maximum priority to the relative task, its error is negligible: the
average error is 2× 10−4m for translation and 4× 10−4rad for orientation. More im-
portantly, the error magnitude never exceeds 2× 10−3m for the position variables and
4× 10−3rad for the orientation, which means that the object is always held firmly. The

96 Kinematic control framework: RKCL library development

Figure 4.8 – View from the BAZAR Microsoft Kinect. The human is detected and his skeleton projected
in the 3D space using depth. During the replay phase, people entering the robot’s workspace are treated
as obstacles to avoid.

4.2 Application to teaching-by-demonstration 97

low error comes from the damping term used to make the system compliant.
The absolute task error, i.e. the error with respect to the planned trajectories

generated with the stored waypoints, is much higher: the average is 2× 10−2m for
the position and 1× 10−2rad for the orientation. The maxima almost reach 0.15m
and 0.15rad regarding respectively the position and orientation components. There
are several reasons for this: on one hand, the absolute task is set as secondary in the
optimization problem. Hence, when the robot is in a low manipulability configuration
and loses some DoF, the efforts turn in favor of the relative task. On the other hand, the
collision avoidance strategy adopted during the replay phase leads to some deviations
from the initial trajectory. In particular, this explains the important error observed
between time t = 10s and t = 28s and then between time t = 40s and t = 60s. It is
important to note that despite these significant errors, the robot is able to complete
the task safely (without hitting the operator nor other obstacles).

We also evaluate safety by focusing on internal constraints arising during object
transportation. In Fig. 4.10, we show the evolution of the state and target wrench
values for the z component of the relative task (in charge of tightening the arms)
during both the teaching and replay phases. At time t = 128s, the human operator
teaches the reference force to the robot by applying the desired pressure on the object
with the tools, as shown in Fig. 4.7d. The reference force of 17.5N is then used during
the replay phase to grasp the box and to regulate internal stress. As we can see, there
is a delay of a few seconds between the time when the reference force is set and the
time it is reached. During this phase, the robot slowly tightens the arms before going in
contact with the object. The object seizure creates a slight overshoot of the reference
(around 5N) which can be alleviated by adding a derivative term on the command law.

Note that the undesired variations from zero observed during the teaching phase
are caused by the operator which guides the robot. Indeed, it sometimes happens that
he applies unbalanced wrenches on the two arms to move the robot in the workspace.
This emulates internal wrenches but does not affect the teaching process.

98 Kinematic control framework: RKCL library development

(a) Relative task pose error

(b) Absolute task pose error

Figure 4.9 – Evolution of the tracking error for the cooperative task variables. Thanks to the hierarchical
inverse kinematics strategy, the relative task has negligible error throughout the whole operation ensuring
the safe manipulation of the object. Due to the lower priority assigned to the absolute task, we naturally
record greater deviations with regards to the initially planned trajectory. In addition to that, the repulsive
effect generated by surrounding obstacles temporarily pulls the robot away from the straight path.

4.2 Application to teaching-by-demonstration 99

Figure 4.10 – Evolution of the relative task state and target wrench (z component only). The reference
value stored during the teaching phase is properly replicated during the replay phase, to safely manipulate
the box.

100 Kinematic control framework: RKCL library development

4.3 Conclusion

This chapter gave an overlook of the dual-arm kinematic control framework developed
in the scope of this thesis. After summarizing the overall functioning of the control loop,
We introduced RKCL, the kinematic control library which implements all the features
presented in this thesis. Based on a generic core component, many functionalities are
available through the inclusion of additional packages. In particular, we implemented
the drivers to communicate with the different parts of the robot. The library can be
easily completed with new robots and features. The multi-robot approach requires
to take into account the various control frequencies of the independent components.
To do so, a unique control loop manages the execution of the different processes and
establishes an unsynchronized communication with every hardware part to get updated
states and send the computed command.

Finally, we proposed to spotlight the dual-arm collaborative framework by imple-
menting a teaching-by-demonstration application on the BAZAR cobot. The results
show that a human operator with no specific knowledge in robotics can configure new
operations quickly and easily.

Conclusion

In this thesis, we addressed the control problem of dual-arm collaborative robots in-
tended to be used in modern industrial setups. This type of platforms benefits from the
dexterity and accuracy of the two arms which, used cooperatively, can achieve a wide
range of complex operations. Our work aims at providing a generic control strategy
which takes full advantage of dual-arm robot capabilities.

We first tackled the control issues by stating a relevant representation of coopera-
tive tasks. We extended the so-called cooperative task representation which fully char-
acterizes the operational space for bi-manual cooperative control with geometrically
meaningful motion variables. Compared to the original definition, our version avoids
representation singularity and offers a simple and intuitive manner to describe most
manufacturing operations. We use wrench feedback measured at the tip of each arm
to manage both internal constraints arising during dual-arm manipulation of objects
and perceive external forces which makes the robot able to interact with the environ-
ment. Additionally, we include new considerations from wrench feedback to enhance
the quality of pHRI. In particular, the proposed method intends to make cooperative
object transportation more natural and efficient by acting on two levels: estimating and
compensating gravity effects on one side, and retrieving human interaction wrench on
the other. We designed a closed-loop admittance controller which can adopt a specific
behavior for each task variable to safely interact with the environment.

Then, we dealt with the issue of how to transfer the task space command to the
joint space, to enable the robot actuation. We proposed several task-solving strategies
based on QP optimization which includes this set of hard constraints. Among the alter-
natives, we want to emphasize the parsimonious approach, that consist in minimizing
the number of joints actuated to complete a given task. However, we showed that the
sparsest solutions to IK problems often leads to chattering effects. To overcome this,
we implemented a HQP architecture in which the last resolution process allows to tune
the desired level of sparsity. During experiments, we observed that a minor reduction
of parsimony is sufficient to solve the problem. Beyond that, our HQP implementation
allows to establish a task prioritization strategy between the cooperative tasks with the
aim of devoting maximum efforts to satisfy the relative task requirements; in particu-
lar, this ensures safe manipulation of objects. We expanded the scope of our kinematic

102 Conclusion

control strategy to any dual-arm platform with additional actuation capabilities. To
do so, we developed an original approach in which robot joints are classified in sev-
eral groups with priority assigned to them. The group of highest priority first tries to
solve the tasks, and other groups are then involve only if residual error remains. This
strategy is applied to dual-arm mobile robots where extra joints are engaged only for
large motions. In unstructured workspace populated by humans, it is imperative to
avoid brutal motions of the robot and anticipate dangerous situations. Hence, we gave
a thorough analysis of constraints that must be respected at all time to ensure proper
performance of robots. The management of admissible solutions is done both at joint
and task levels.

The last chapter was dedicated focused on how all the components of the control
framework work together. All the developments have been implemented in the kine-
matic control library RKCL. To deal with different attributes of hardware components,
the main control loop establishes unsynchronized communications with every part of
the robot. The resulting delays are adequately handled to prevent from violating hard
constraints. We spotlight our control framework with a ”teaching-by-demonstration”
application on the BAZAR cobot. The results show that a human operator with no
specific knowledge in robotics can configure new operations in a quick and easy manner.

The solutions provided in this thesis attempt to facilitate and make safer the deploy-
ment of autonomous dual-arm robots in assembly units. However, there is still plenty
of room for improvements as our method presents some disadvantages. The main one
lies in the fact that our controller is purely local. Indeed, it considers only the current
state of the robot and the environment to compute the command for the next step.
Without a global view of the task, there is no guarantee that a feasible solution can be
found. In addition, dual-arm robots are subject to a large variety of constraints and,
as a result, are likely to get stuck in local minima. An interesting approach would be
to combine our reactive controller with global resolution techniques, such as motion
planning. For instance, the sampling-based path planner proposed in (GCS08) could be
processed offline to provide an initial task-space solution that would be adapted online
by the reactive controller, taking into account changes of the environment. An other
idea is to explore predictive strategies for the online redundancy resolution. Indeed,
using a predictive model would result in a more efficient handling of constraints and
would probably provide overall better performances. Existing works on model predic-
tive control of redundant manipulators (SBB+14; Zub15; FBTV17) have demonstrated
their efficiency and could be extended to the dual-arm case.

Finally, being exclusively based on kinematics, our framework cannot include dy-
namics constraints, such as torque limitations, or incorporate robots that rely on a
dynamic model and on torque control. These issues will be investigated for future
versions of RKCL, to make the library usable in more cases.

APPENDIX A

Jacobian computation

The notion of kinematic Jacobian is at the heart of our controller since it allows to
relate Cartesian motions of some frames of interest attached to the robot with its joint
displacements. There exists a simple and computationally efficient way of computing
the Jacobian matrix through the geometric method.

Let us consider a manipulator arm with n DoF. The geometric Jacobian J ∈ R6×n

associated with its end-effector (subscript ’e’) is divided into a position part JP and an
orientation part JO, such as:

J =

JP1 JPn
...

JO1 JOn

 , (A.1)

where JPi, JOi are the (3 × 1) column vectors expressing the relation between the
velocity of joint i and the translational and rotational velocity of the control frame,
respectively.

Based on (SSVO10), the geometric Jacobian can be simply computed, depending
on the type of joints, using the direct kinematics relations:

[
JPi
JOi

]
=


[
zi−1

0

]
for a prismatic joint[

zi−1 × (pe − pi−1)
zi−1

]
for a revolute joint

(A.2)

where zi−1 is the unit vector of Joint i axis, pe is the position of the end-effector
and pi−1 the position of the origin of joint i, all expressed in a fixed reference frame.

As shown in Section 1.1.3, the Jacobian matrices associated with a dual-arm robot
performing absolute and relative tasks can be directly expressed from the individual
Jacobian of the manipulators.

104 Jacobian computation

However, with the aim of providing a flexible framework (see Chapter 4), we want
to be capable of defining and solving any kinematic task. Additionally, to evaluate
the collision avoidance inequality constraint defined in Eq. (3.40), we should be able to
compute the Jacobian matrix between different parts of the robot.

We addressed these issues by proposing a generic approach to formulate the Jaco-
bian matrix between any points of a kinematic chain, and expressed in an arbitrary
reference frame, as long as they belong to the same kinematic tree structure.

Figure A.1 – Kinematic path associated with the task consisting of the control frame Fctrl and the reference
frame Fref . The geometric Jacobian computation from (SSVO10) is simply adapted to obtain the Jacobian
matrix related to any arbitrary task.

Let us illustrate the method by referring to the dual-arm case depicted in Fig. A.1.
In this example, we want to compute the Jacobian matrix associated with the control
frame Fctrl and the reference frame Fref located on each arm of a bimanual robot.
First, let us create a virtual link that joins the initial joint of the two arms. This allows
to clearly identify the kinematic path which connects Fref to Fctrl.

We keep the same convention as in Eq. (A.2) to be homogeneous with the formu-
lation used in (SSVO10). In our case, joint indices are incremented according to the
kinematic path as shown in Fig. A.1. We differentiate the computation of the geometric
Jacobian vectors JPi and JOi defined in Eq. (A.2) depending on whether the kinematic
path at Joint i points towards the root of the tree or a leaf. In our example, Joint 3 is
in the ”good” direction (the path points towards an end-effector) while Joint 1 and 2
are directed towards the root (the path points towards Fw). In the first case, Eq. (A.2)
is reformulated as follows:

[
JPi
JOi

]
=


[
zrefi−1

0

]
for a prismatic joint[

zrefi−1 × (prefctrl − prefi−1)

zrefi−1

]
for a revolute joint

(A.3)

105

where prefctrl expresses the position of frame Fctrl in Fref and pi−1 the position of

the origin of joint i in Fref . A particular attention should be given to zrefi−1, which
corresponds to the unit vector of Joint i axis with respect to Fref : the joint actuation
will have the reverse effect if, at its location, the kinematic path does not follow the
direction of the tree (Joint 1 and 2 in Fig. A.1). In this case, the geometric Jacobian
vectors are obtained through:

[
JPi
JOi

]
=


[
−zrefi−1

0

]
for a prismatic joint[

−zrefi−1 × (prefctrl − prefi−1)

−zrefi−1

]
for a revolute joint

(A.4)

106 Jacobian computation

Bibliography

[15016] “Robots and robotic devices–collaborative robots,” International Organi-
zation for Standardization, Geneva, CH, Standard, 2016.

[ACB+14] D. J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Kheddar,
“Collaborative human-humanoid carrying using vision and haptic sensing,”
in IEEE Int. Conf. on Robotics and Automation, 2014, pp. 607–612.

[AFD10] B. V. Adorno, P. Fraisse, and S. Druon, “Dual position control strate-
gies using the cooperative dual task-space framework,” in IEEE/RSJ Int.
Conf. on Robots and Intelligent Systems, 2010, pp. 3955–3960.

[AIC09] G. Antonelli, G. Indiveri, and S. Chiaverini, “Prioritized closed-loop in-
verse kinematic algorithms for redundant robotic systems with velocity
saturations,” in IEEE/RSJ Int. Conf. on Robots and Intelligent Systems,
2009, pp. 5892–5897.

[AL89] S. Ahmad and S. Luo, “Coordinated motion control of multiple robotic
devices for welding and redundancy coordination through constrained op-
timization in cartesian space,” IEEE Trans. on Robotics and Automation,
vol. 5, no. 4, pp. 409–417, 1989.

[AVK16] D. Almeida, F. E. Vina, and Y. Karayiannidis, “Bimanual folding assem-
bly: Switched control and contact point estimation,” in IEEE-RAS Int.
Conf. on Humanoid Robots, 2016.

[Bar81] A. H. Barr, “Superquadrics and angle-preserving transformations,” IEEE
Computer graphics and Applications, vol. 1, no. 1, pp. 11–23, 1981.

[BK11] K. Bouyarmane and A. Kheddar, “Using a multi-objective controller to
synthesize simulated humanoid robot motion with changing contact con-
figurations,” in IEEE/RSJ Int. Conf. on Robots and Intelligent Systems,
2011, pp. 4414–4419.

108 BIBLIOGRAPHY

[BKCK12] A. Bussy, A. Kheddar, A. Crosnier, and F. Keith, “Human-humanoid
haptic joint object transportation case study,” in IEEE/RSJ Int. Conf.
on Robots and Intelligent Systems, 2012, pp. 3633–3638.

[BNU+17] A. Batinica, B. Nemec, A. Ude, M. Raković, and A. Gams, “Compliant
movement primitives in a bimanual setting,” in IEEE-RAS Int. Conf. on
Humanoid Robots, 2017, pp. 365–371.

[CAB+07] B. Corteville, E. Aertbeliën, H. Bruyninckx, J. De Schutter, and
H. Van Brussel, “Human-inspired robot assistant for fast point-to-point
movements,” in IEEE Int. Conf. on Robotics and Automation, 2007, pp.
3639–3644.

[CCC00] F. Caccavale, P. Chiacchio, and S. Chiaverini, “Task-space regulation of
cooperative manipulators,” Automatica, vol. 36, no. 6, pp. 879–887, 2000.

[CCS96] P. Chiacchio, S. Chiaverini, and B. Siciliano, “Direct and inverse kinemat-
ics for coordinated motion tasks of a two-manipulator system,” Journal of
dynamic systems, measurement, and control, vol. 118, no. 4, pp. 691–697,
1996.

[CHS+18] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose:
realtime multi-person 2D pose estimation using Part Affinity Fields,” in
arXiv preprint arXiv:1812.08008, 2018.

[COW08] S. Chiaverini, G. Oriolo, and I. D. Walker, “Kinematically redundant ma-
nipulators,” Springer handbook of robotics, pp. 245–268, 2008.

[CPC+16] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse,
“Collaborative manufacturing with physical human–robot interaction,”
Robotics and Computer-Integrated Manufacturing, vol. 40, pp. 1–13, 2016.

[CPN+19] A. Cherubini, R. Passama, B. Navarro, M. Sorour, A. Khelloufi,
O. Mazhar, S. Tarbouriech, J. Zhu, O. Tempier, A. Crosnier et al., “A
collaborative robot for the factory of the future: Bazar,” The Int. Journal
of Advanced Manufacturing Technology, pp. 1–17, 2019.

[DG07] V. Duchaine and C. M. Gosselin, “General model of human-robot cooper-
ation using a novel velocity based variable impedance control,” in IEEE
Conf. and Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, 2007, pp. 446–451.

[DGB+12] J. Dumora, F. Geffard, C. Bidard, T. Brouillet, and P. Fraisse, “Exper-
imental study on haptic communication of a human in a shared human-
robot collaborative task,” in IEEE/RSJ Int. Conf. on Robots and Intelli-
gent Systems, 2012, pp. 5137–5144.

BIBLIOGRAPHY 109

[DGUP15] M. Denǐsa, A. Gams, A. Ude, and T. Petrič, “Learning compliant move-
ment primitives through demonstration and statistical generalization,”
IEEE/ASME transactions on mechatronics, vol. 21, no. 5, pp. 2581–2594,
2015.

[DSBDS09] W. Decré, R. Smits, H. Bruyninckx, and J. De Schutter, “Extending itasc
to support inequality constraints and non-instantaneous task specifica-
tion,” in IEEE Int. Conf. on Robotics and Automation, 2009, pp. 964–971.

[EB02] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle and
sparse representation in pairs of bases,” IEEE Trans. on Information The-
ory, vol. 48, no. 9, pp. 2558–2567, 2002.

[EMW] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic pro-
gramming: Fast online humanoid-robot motion generation,” Int. Journal
of Robotics Research.

[EMW10] A. Escande, N. Mansard, and P.-B. Wieber, “Fast resolution of hierar-
chized inverse kinematics with inequality constraints,” in IEEE Int. Conf.
on Robotics and Automation, 2010, pp. 3733–3738.

[ESH13] S. Erhart, D. Sieber, and S. Hirche, “An impedance-based control ar-
chitecture for multi-robot cooperative dual-arm mobile manipulation,” in
IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, 2013, pp. 315–
322.

[FBTV17] M. Faroni, M. Beschi, L. M. Tosatti, and A. Visioli, “A predictive approach
to redundancy resolution for robot manipulators,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 8975–8980, 2017.

[FBVT16] M. Faroni, M. Beschi, A. Visioli, and L. M. Tosatti, “A global approach
to manipulability optimisation for a dual-arm manipulator,” in IEEE Int.
Conf. on Emerging Technologies and Factory Automation (ETFA), 2016.

[FDLK12] F. Flacco, A. De Luca, and O. Khatib, “Motion control of redundant
robots under joint constraints: Saturation in the null space,” in IEEE Int.
Conf. on Robotics and Automation, 2012, pp. 285–292.

[FKDLK12] F. Flacco, T. Kröger, A. De Luca, and O. Khatib,“A depth space approach
to human-robot collision avoidance,” in IEEE Int. Conf. on Robotics and
Automation, 2012, pp. 338–345.

[FLMO16] A. Freddi, S. Longhi, A. Monteriù, and D. Ortenzi, “Redundancy analysis
of cooperative dual-arm manipulators,” Int. Journal of Advanced Robotic
Systems, vol. 13, no. 5, 2016.

110 BIBLIOGRAPHY

[FT87] B. Faverjon and P. Tournassoud, “A local based approach for path plan-
ning of manipulators with a high number of degrees of freedom,” Ph.D.
dissertation, INRIA, 1987.

[Fuc04] J.-J. Fuchs, “On sparse representations in arbitrary redundant bases,”
IEEE trans. on Information theory, vol. 50, no. 6, pp. 1341–1344, 2004.

[GCS08] M. Gharbi, J. Cortés, and T. Simeon, “A sampling-based path planner for
dual-arm manipulation,” in IEEE/ASME Int. Conf. on Advanced Intelli-
gent Mechatronics, 2008, pp. 383–388.

[GFCA16] V. M. Gonçalves, P. Fraisse, A. Crosnier, and B. V. Adorno, “Parsimo-
nious kinematic control of highly redundant robots,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 65–72, 2016.

[GKB11] E. Gribovskaya, A. Kheddar, and A. Billard, “Motion learning and adap-
tive impedance for robot control during physical interaction with humans,”
in IEEE Int. Conf. on Robotics and Automation, 2011, pp. 4326–4332.

[GZ16] B. R. Gaines and H. Zhou, “Algorithms for fitting the constrained lasso,”
arXiv preprint arXiv:1611.01511, 2016.

[HHY15] Y. Hu, B. Huang, and G.-Z. Yang, “Task-priority redundancy resolu-
tion for co-operative control under task conflicts and joint constraints,”
in IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, 2015.

[Hog84] N. Hogan, “Impedance control: An approach to manipulation,” in IEEE
American control conference, 1984, pp. 304–313.

[HYN81] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and control
of articulated robot arms with redundancy,” IFAC Proceedings Volumes,
vol. 14, no. 2, pp. 1927–1932, 1981.

[II95] R. Ikeura and H. Inooka, “Variable impedance control of a robot for coop-
eration with a human,” in IEEE Int. Conf. on Robotics and Automation,
vol. 3, 1995, pp. 3097–3102.

[IMM02] R. Ikeura, T. Moriguchi, and K. Mizutani, “Optimal variable impedance
control for a robot and its application to lifting an object with a human,”
in IEEE Int. Workshop on Robot and Human Interactive Communication,
2002, pp. 500–505.

[ISO11] “Robot for industrial environments - safety requirements - part 1: Robot,”
International Organization for Standardization, Geneva, CH, Standard,
2011.

BIBLIOGRAPHY 111

[JR15] R. S. Jamisola and R. G. Roberts, “A more compact expression of rel-
ative jacobian based on individual manipulator jacobians,” Robotics and
Autonomous Systems, vol. 63, no. P1, pp. 158–164, 2015.

[KD04] W. Khalil and E. Dombre, Modeling, identification and control of robots.
Butterworth-Heinemann, 2004.

[Kha86] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[Kha87] O. Khatib, “A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation,” IEEE Journal on Robotics
and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[Kha88] O. Khatib, “Object manipulation in a multi-effector robot system,” in Pro-
ceedings of the 4th international symposium on Robotics Research. MIT
Press, 1988, pp. 137–144.

[KLW+09] O. Kanoun, F. Lamiraux, P.-B. Wieber, F. Kanehiro, E. Yoshida, and J.-P.
Laumond,“Prioritizing linear equality and inequality systems: application
to local motion planning for redundant robots,” in IEEE Int. Conf. on
Robotics and Automation, 2009, pp. 2939–2944.

[KLW11] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of redun-
dant manipulators: Generalizing the task-priority framework to inequality
task,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792, 2011.

[Krö11] T. Kröger, “Opening the door to new sensor-based robot applications—the
reflexxes motion libraries,” in IEEE Int. Conf. on Robotics and Automa-
tion, 2011.

[KSK00] K. Kosuge, M. Sato, and N. Kazamura, “Mobile robot helper,” in IEEE
Int. Conf. on Robotics and Automation, vol. 1, 2000, pp. 583–588.

[KYT+94] K. Kosuge, H. Yoshida, D. Taguchi, T. Fukuda, K. Hariki, K. Kanitani,
and M. Sakai, “Robot-human collaboration for new robotic applications,”
in Proceedings of IECON’94-20th Annual Conf. of IEEE Industrial Elec-
tronics, vol. 2. IEEE, 1994, pp. 713–718.

[LaV06] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[LMH10] M. Lawitzky, A. Mörtl, and S. Hirche, “Load sharing in human-robot
cooperative manipulation,” in IEEE Int. Symposium on Robot and Human
Interactive Communication, 2010, pp. 185–191.

[Nic18] J. Nicholas, Lean production for competitive advantage: a comprehensive
guide to lean methodologies and management practices. Productivity
Press, 2018.

112 BIBLIOGRAPHY

[NLGU16] B. Nemec, N. Likar, A. Gams, and A. Ude, “Bimanual human robot co-
operation with adaptive stiffness control,” in IEEE-RAS Int. Conf. on
Humanoid Robots, 2016, pp. 607–613.

[NLGU18] B. Nemec, N. Likar, A. Gams, and A. Ude, “Adaptive human robot co-
operation scheme for bimanual robots,” in Advances in Robot Kinematics.
Springer, 2018, pp. 371–380.

[OCB08] W. Owen, E. Croft, and B. Benhabib, “Stiffness optimization for two-
armed robotic sculpting,” Industrial Robot: An International Journal,
vol. 35, no. 1, pp. 46–57, 2008.

[OMF+18] D. Ortenzi, R. Muthusamy, A. Freddi, A. Monteriù, and V. Kyrki, “Dual-
arm cooperative manipulation under joint limit constraints,” Robotics and
Autonomous Systems, vol. 99, pp. 110–120, 2018.

[ÖSKK12] P. Ögren, C. Smith, Y. Karayiannidis, and D. Kragic, “A multi objective
control approach to online dual arm manipulation1,” IFAC Proceedings
Volumes, vol. 45, no. 22, pp. 747–752, 2012.

[PA93] Z.-X. Peng and N. Adachi, “Compliant motion control of kinematically re-
dundant manipulators,” IEEE Trans. on Robotics and Automation, vol. 9,
no. 6, pp. 831–836, 1993.

[PT16] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer handbook of
robotics. Springer, 2016, pp. 955–988.

[SBB+14] C. Schuetz, T. Buschmann, J. Baur, J. Pfaff, and H. Ulbrich, “Predictive
online inverse kinematics for redundant manipulators,” in IEEE Int. Conf.
on Robotics and Automation, 2014, pp. 5056–5061.

[SCFP17] M. Sorour, A. Cherubini, P. Fraisse, and R. Passama, “Motion
discontinuity-robust controller for steerable mobile robots,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 452–459, 2017.

[SD18] S. Stavridis and Z. Doulgeri, “Bimanual assembly of two parts with relative
motion generation and task related optimization,” in IEEE/RSJ Int. Conf.
on Robots and Intelligent Systems, 2018, pp. 7131–7136.

[Ser89] H. Seraji, “Configuration control of redundant manipulators: Theory and
implementation,” IEEE Trans. on Robotics and Automation, vol. 5, no. 4,
pp. 472–490, 1989.

[SKN+12] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Di-
marogonas, and D. Kragic, “Dual arm manipulation—a survey,” Robotics
and Autonomous Systems, vol. 60, no. 10, pp. 1340–1353, 2012.

BIBLIOGRAPHY 113

[SPB11] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,” in
IEEE Int. Conf. on Robotics and Automation, 2011, pp. 1283–1290.

[SPK10] L. Sentis, J. Park, and O. Khatib, “Compliant control of multicontact and
center-of-mass behaviors in humanoid robots,” IEEE Trans. on Robotics,
vol. 26, no. 3, pp. 483–501, 2010.

[SS91] B. Siciliano and J.-J. Slotine, “A general framework for managing multiple
tasks in highly redundant robotic systems,” in proceeding of 5th Interna-
tional Conference on Advanced Robotics, vol. 2, 1991, pp. 1211–1216.

[SS12] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators.
Springer Science & Business Media, 2012.

[SSVO10] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

[TAHT02] T. Takubo, H. Arai, Y. Hayashibara, and K. Tanie, “Human-robot coop-
erative manipulation using a virtual nonholonomic constraint,” The Int.
Journal of Robotics Research, vol. 21, no. 5-6, pp. 541–553, 2002.

[TBBD09] E. Tatlicioglu, D. Braganza, T. C. Burg, and D. M. Dawson, “Adaptive
control of redundant robot manipulators with sub-task objectives,” Robot-
ica, vol. 27, no. 6, pp. 873–881, 2009.

[TNF+18] S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, and
D. Sallé, “Dual-arm relative tasks performance using sparse kinematic
control,” in IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, 2018.

[TNF+19] S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, and
D. Sallé, “Admittance control for collaborative dual-arm manipulation,”
in Int. Conf. on Advanced Robotics, ICAR, 2019.

[Tsa99] L.-W. Tsai, Robot analysis: the mechanics of serial and parallel manipu-
lators. John Wiley & Sons, 1999.

[UD88] M. Uchiyama and P. Dauchez, “A symmetric hybrid position/force control
scheme for the coordination of two robots,” in IEEE/RSJ Int. Conf. on
Robots and Intelligent Systems, 1988, pp. 350–356.

[WK93] D. Williams and O. Khatib, “The virtual linkage: A model for internal
forces in multi-grasp manipulation,” in IEEE Int. Conf. on Robotics and
Automation, 1993, pp. 1025–1030.

114 BIBLIOGRAPHY

[WSKÖ15] Y. Wang, C. Smith, Y. Karayiannidis, and P. Ögren, “Cooperative control
of a serial-to-parallel structure using a virtual kinematic chain in a mobile
dual-arm manipulation application,” in IEEE/RSJ Int. Conf. on Robots
and Intelligent Systems, 2015, pp. 2372–2379.

[WVK+14] Y. Wang, F. Vina, Y. Karayiannidis, C. Smith, and P. Ogren, “Dual
arm manipulation using constraint based programming,” IFAC Proceed-
ings Volumes, vol. 47, no. 3, pp. 311–319, 2014.

[ZM07] Y. Zhang and S. Ma, “Minimum-energy redundancy resolution of robot
manipulators unified by quadratic programming and its online solution,”
in IEEE Int. Conf. on Mechatronics and Automation, 2007, pp. 3232–
3237.

[Zub15] A. Zube, “Cartesian nonlinear model predictive control of redundant ma-
nipulators considering obstacles,” in IEEE Int. Conf. on Industrial Tech-
nology (ICIT), 2015, pp. 137–142.

	List of Figures
	Nomenclature
	Introduction
	State of the art
	Multi-arm manipulation
	Augmented object and virtual-linkage
	Symmetric control scheme
	The cooperative task space

	Task-solving approaches for redundant robots
	Explicit solutions to the inverse kinematics problem
	Numerical optimization approaches

	Human-robot physical collaboration in industry
	Robot force control for physical collaboration
	Collaborative object transportation

	Conclusion

	Dual-arm task space control
	Task representation for dual-arm robots
	Wrench feedback for safe and collaborative manipulation
	Wrench in the task space
	Identification and cancellation of the objects' gravity effects
	Retrieve human interaction wrench

	Task space control
	Closed-loop admittance control for physical interactions

	Application to human-robot collaborative transportation
	Setup
	Results
	Repulsive action for collision avoidance
	Simulation experiments

	Conclusion

	Dual-arm joint motion control
	Inverse kinematics resolution
	Solving the cooperative tasks with a unique qp
	Parsimonious task-solving approach
	Hierarchical inverse kinematics strategy
	Application to relative tasks
	Extension to other robots

	Hard constraints consideration
	Joint limits
	Task space limits
	Collision avoidance hard constraints

	Conclusion

	Kinematic control framework: rkcl library development
	Software developments in rkcl
	rkcl main concepts
	Synchronization issues
	Example
	Benchmarks

	Application to teaching-by-demonstration
	Description of the scenario
	Setup
	Results

	Conclusion

	Conclusion
	Jacobian computation
	Bibliography

