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Abstract

Cable-Driven Parallel Robots (CDPRs) are parallel manipulators whose rigid links
are replaced by cables. CDPRs combine the advantages of parallel robots with the
properties of cables, leading to potentially very effective mechanisms. The particular
property of cables provide CDPRs several advantages, including larger workspaces,
higher payload-to-weight ratio and lower manufacturing costs. However, when the
working environment is cluttered, CDPRs cannot be used to accomplish complicated
tasks. Under these circumstances, it may be necessary to use Reconfigurable Cable-
Driven Parallel Robots (RCDPRs), whose geometric parameters can be modified in
order to avoid the obstacles contained in the working environment and improve the
RCDPR performances, for instance, higher stiffness, higher payload capability, lower
cable tensions and lower energy consumption. However, for most existing RCDPRs,
the reconfigurability is performed either discrete and manually or continuously, but
with bulky reconfigurable systems.

This doctoral thesis presents a novel concept of Mobile Cable-Driven Parallel
Robots (MCDPRs) as a new robotic system, which uses a combination of mobile
robots and a CDPR. The goal of MCDPRs is to overcome the manual and discrete
reconfigurability of RCDPRs and to develop a mobile, deployable and autonomous
CDPR, which can be configured based on the desired task. Moreover, MCDPRs
present a new technical innovation that could help to bring more flexibility and versa-
tility with respect to existing industrial robotic solutions. Two MCDPR prototypes
have been developed during the course of this thesis. The first MCDPR prototype is
named FASTKIT, whose goal is to provide a low cost and versatile robotic solution
for logistics. The second prototype is named MoPICK, whose targeted applications
are mobile tasks in a constrained environment, for example, a workshop or logistic
operations in a warehouse.

The thesis manuscript is composed of five chapters. The first chapter presents the
state of the art related to cable-driven mechanisms. It also details the two MCDPR
prototypes developed during the course of this thesis.

The second chapter starts by deriving all the necessary conditions that should be
satisfied in order to achieve the static equilibrium of a MCDPR. These equilibrium
conditions are exploited to develop a Tension Distribution Algorithm for the real time
control of a MCDPR. Similarly, the equilibrium conditions are also used in the third
chapter, which analyzes the Wrench-Feasible-Workspace of MCDPRs. Multiple case
studies are investigated in both the chapters to show that the approach is applicable
to both planar and spatial MCDPRs.

The fourth chapter deals with the kinematic performance and twist capabilities
of MCDPRs. The kinematic performance of a MCDPR is analyzed by deriving its
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first-order kinematic model, where each cable of the manipulator is modeled as a
Universal-Prismatic-Spherical kinematic chain. Each mobile base is modeled as a
Revolute-Prismatic-Prismatic kinematic chain. A general kinematic architecture is
also developed for MCDPRs using the aforementioned kinematic chains.

The last chapter of the thesis presents multiple path planning strategies for
MCDPRs, in order to reconfigure the CDPR’s geometric architecture and to perform
the desired task.

Key words: Collaborative Robotics, Mobile Cable Robots, Path Planning,
Workspace analysis, Tension Distribution Algorithm.



Résumé

Les robots parallèles à câble (RPC) sont un type de manipulateurs parallèles dont
les liens rigides sont remplacés par des câbles. Les RPC combinent les avantages
des robots parallèles avec les propriétés des câbles, ce qui conduit à des mécanismes
potentiellement très efficaces. La propriété particulière des câbles offre plusieurs
avantages aux RPCs, tels que un grand espace de travail, un rapport charge utile/poids
plus élevé et des coûts de fabrication plus faible. Cependant, lorsque l’environnement
de travail est encombré, le RPC ne peut pas être utilisé pour accomplir des tâches
complexes. Dans ces circonstances, il peut être nécessaire d’utiliser des robots
parallèles à câble reconfigurables (RPCRs), dont les paramètres géométriques peuvent
être modifiés afin d’éviter les obstacles contenus dans l’environnement de travail
et d’améliorer les performances du RPCR, par exemple, une plus grande raideur,
une capacité de charge utile supérieure, des tensions dans les câble inférieures et
une consommation énergétique moindre. Cependant, pour la plupart des RPCRs
existants, la reconfigurabilité s’effectue soit de manière discrète, soit manuellement.
Elle peut également s’effectuer de manière continue mais généralement avec des
systèmes reconfigurables complexes et volumineux.

Cette thèse de doctorat présente un nouveau concept de robots parallèle à câble
mobile (RPCMs) comme un nouveau système robotique, qui utilise une combinaison
de robots mobiles et un RPC. L’objectif des RPCMs est de surmonter la reconfigura-
bilité manuelle et discrète des RPCRs et de développer un RPC mobile, déployable
et autonome, qui peut être adapté en fonction de la tâche à réaliser. De plus, les
RPCMs présentent une nouvelle innovation technique qui pourrait contribuer à
apporter plus de flexibilité et de polyvalence par rapport aux solutions robotiques
industrielles existantes. Deux prototypes de RPCMs ont été développés au cours
de cette thèse. Le premier prototype RPCM s’appelle FASTKIT, dont l’objectif est
de fournir une solution robotique peu coûteuse et polyvalente pour la logistique. Le
deuxième prototype s’appelle MoPICK, dont les applications ciblées sont des tâches
mobiles dans un environnement contraint, par exemple, un atelier ou des opérations
logistiques dans un entrepôt.

Le manuscrit de thèse est composé de cinq chapitres. Le premier chapitre présente
l’état de l’art sur les robots parallèles entraînés par câbles. Il détaille également les
deux prototypes RPCM développés au cours de cette thèse.

Le deuxième chapitre commence par déterminer toutes les conditions à respecter
pour atteindre l’équilibre statique d’un RPCM. Ces conditions d’équilibre sont
exploitées pour développer un algorithme de distribution des tensions pour le contrôle
en temps réel du RPCM. De même, les conditions d’équilibre sont également utilisées
dans le troisième chapitre, qui analyse l’espace de travail des RPCM. Plusieurs
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études de cas sont examinées dans les deux chapitres pour montrer que l’approche
est applicable aux RPCM planaires et spatiaux.

Le quatrième chapitre traite des performances cinématiques des RPCM. La per-
formance cinématique d’un RPCM est analysée en dérivant son modèle cinématique
de premier ordre, où chaque câble du manipulateur est modélisé comme une chaîne
cinématique sphérique-cardan-prismatique. Alors que chaque base mobile est mod-
élisée comme une chaîne cinématique pivot-glissière-glissière. Un modèle cinématique
globale des RPCM est ensuite obtenu.

Le dernier chapitre de la thèse présente des stratégies de planification de trajec-
toires multiples pour les RPCM, afin de reconfigurer l’architecture géométrique du
RPC et d’effectuer la tâche souhaitée.

Mots clés : Robotique collaborative, robots mobiles à câbles, planification des
trajectoires, analyse de l’espace de travail, algorithme de distribution des tensions.
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Science and technology have a major role in the evolution of our present society by
influencing our daily life. Whether it is the means of transportation, entertainment,
sports or communication, even the most minor aspects of our daily life has been
completely changed by the technology. One emerging field through which science
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(a) n-links serial mechanism (b) m-legs parallel mechanism with n-links per leg

Figure 1.1: Serial and parallel mechanisms

has made a considerable impact on our society is robotics. Over the past 50 years,
robotics have improved our society immensely. With the advancement of technology,
robots are being exploited in almost all the research fields such as civil, engineering,
medicine, agriculture and energy. One of the widely used area of research regarding
the robots are serial and parallel manipulators.

Serial robots are designed as a series of links connected by motor-actuated joints
that extend from a base to an end-effector, typically having an anthropomorphic
architecture described as a “shoulder”, an “elbow”, and a “wrist”. While parallel
robots are closed-loop mechanisms, composed of several independent serial chains,
defined as legs or limbs, connecting the moving-platform to a fixed base [Mer06].
Figure 1.1 illustrates the difference between the serial and parallel mechanisms.

Parallel robots have been part of the robotics landscape for several years. Their
mechanical properties make them most appropriate for tasks that require large pay-
load to weight ratios, high stiffness, precision, repeatability, high payload capabilities
and large dynamic trajectories. One typical parallel robot is the Gough-Stewart
platform, composed of six Universal-Prismatic-Spherical limbs, as shown in Fig. 1.2.
The concept of Gough-Stewart platform has been applied for various applications
such as AMiBA telescope [HAC+09] for motion simulators.

Parallel robots have also been widely used in several industrial applications, most
commonly for manufacturing [CW03, WS02] and pick-and-place operations. The
Delta robot [PRF90, Cla90] is an example of an extensively used parallel robot in
the food and electronic industries for fast pick-and-place operations.
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(a) (b)

Figure 1.2: (a) Original Gough-Stewart platform and its (b) 3D model

1.1 Cable-Driven Parallel Robots (CDPRs)
Cable-driven parallel robots (CDPRs) combine the principles of parallel robots with
the properties of cables, leading to potentially very effective mechanisms. Thus,
CDPRs form a particular class of parallel robots whose moving platform is connected
to a fixed base frame by cables. The connection points between the cables and the
base frame are referred to as exit points. Similarly, the cable attachment points on the
moving-platform are denoted as anchor points. The cables may be coiled/uncoiled by
motorized winches allowing a control system to adjust the cable lengths between the
winch exit points and the anchor points. Appropriate length adjustment of cables
allows one to control the degrees-of-freedom (DoF) of the moving-platform.

CDPRs are said to be advantageous in terms of workspace size, being easy to
reconfigure, having low inertia, high speed motion, high payload to weight ratio
(as cables are flexible members that can support very large tensile loads per mass
unit), having simpler structure and being safer for cooperative tasks. Cables are
much lighter than rigid links of a serial or parallel robot, and very long cables can be
used. As a result, the end-effector of a cable robot can achieve high accelerations and
velocities and work in a very large workspace (e.g., a stadium). The main advantages
of CDPRs over conventional robots are:
Large Workspace: Thanks to the potential high cable lengths, the CDPRs moving-

platform can have larger translational workspace than those parallel robots
composed of rigid links.

High dynamics: CDPRs are capable of generating high speeds and accelerations,
thanks to their lightweight characteristics. For example, the FALCON manipu-
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lator [KCTK97] can achieve a velocity up to 13 m/s, and a peak acceleration
of 43 G.

Large payload capacity: Cable properties provide CDPRs with a high payload
capability. For example, the payload capability of the CoGiRo manipula-
tor [CoG08] is up to 500 kg, while the total mass of the moving components of
the prototype is about 100 kg.

Highly energy efficient: In the case of serial robots, the actuators also have to
bear the weight of the preceding links and actuators in addition to the payload.
This results in high energy consumption. For conventional parallel robots, the
fact that the actuator payload can be shared between their limbs means they
are more energy efficient than serial robots [LB01]. Consequently, the energy
consumption of CDPRs is focused on the motion of the moving-platform and
the payload. It is shared by the number of the lightweight cables, leading to
very low energy consumption and high payload-to-weight ratio.

Low cost: CDPR has usually a simple architecture, mainly composed of cheap and
simple mechanical components. These components are usually standard and
thus having a low manufacturing and maintenance cost.

Modular and reconfigurable: CDPRs have a relatively simple structure. The
assembly and disassembly of these manipulators are easy. Moreover, CDPRs
can easily be made to be modular and reconfigurable.

Classification of CDPRs

CDPRs are generally classified in two categories, i.e, fully suspended and fully
constrained configurations. Both these configurations have their own advantages and
drawbacks.

In fully suspended configuration (see Fig. 1.3a), the cables are usually located on
the top of the structure and the space below the moving-platform is free of cables. The
static equilibrium of the moving-platform is assured by the gravity force generated
by the payload of the moving-platform. The gravity force acts as a virtual cable
pulling the moving platform with a constant force along the gravity direction and is
shared among all the cables. Consequently, suspended CDPRs usually offer higher
payload capabilities and lower energy consumption. Fully suspended configuration
also minimizes the risks of collision between the cables and elements in the workspace.
However, performances of suspended CDPRs are directly related to the payload of
the moving platform. When the payload is low, the stiffness of the CDPR is reduced
and hence, such CDPRs are prone to low platform positioning accuracy, vibrations
and instability.

In fully-constrained configuration (see Fig. 1.3b), cables are coming from both
the top and the bottom of the fixed structure. Since cables cannot push the moving
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(a) (b)

Figure 1.3: (a) Suspended configuration (b) Fully-constrained configuration

platform, redundant cables are usually used to achieve the equilibrium of the fully
constrained CDPRs moving-platform [RGL98], assuming that external wrenches
can be exerted along any direction. Fully-constrained CDPRs are preferred for
applications requiring high stiffness and positioning accuracy and good dynamic
performance. However, they can be problematic in a cluttered environment due to
risk of cable/cable collisions.

1.2 Reconfigurable Cable-Driven Parallel Robots (RCDPRs)
In spite of several advantages of CDPRs, several challenges remain. For example,
CDPRs impose a strong requirement regarding the free circulation of the cables with-
out interference with the environment. Indeed, collision free trajectory generation
must consider all types of collisions, namely, cable/cable, cable/moving-platform, ca-
ble/environment and moving-platform/environment collision type [MTT+99, WSS08].
However, in a cluttered environment, cable collisions with objects cannot be com-
pletely avoided within the CDPR workspace.

In most applications discussed in Sec.2.1, the CDPR has a fixed cable layout
which is determined during its design. In the following, a CDPR cable layout refers
to the positions of the cable exit points and the positions of the connection points
between the cables and the moving-platform. Thus, the aforementioned collisions
can significantly reduce the workspace of a classical CDPR having a fixed cable
layout. Hence, the location of the CDPR’s cable attachment points must be carefully
chosen in order to maximize the manipulator’s workspace. It is therefore reasonable
to adjust their geometry (which has a large influence on the performances) according
to the task requirements and the robot’s environment. Such solutions are named as
Reconfigurable Cable-Driven Parallel Robots (RCDPRs).

RCDPRs are a class of CDPRs whose geometric parameters, such as the locations
of the exit points and the cable connection points on the moving platform, can
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be modified. By changing the manipulator configuration, its workspace may be
enlarged and collisions between the cables and the environment can be avoided. At
the same time, some robot performances may be improved, for instance, higher
stiffness, higher payload capability, larger workspace, lower cable tensions and lower
energy consumption. Classical CDPRs having a fixed cable layout are mostly proven
successful if the tasks to be fulfilled will be simple and the working environment will
not be cluttered. When those assumptions are not satisfied, RCDPRs may be a good
alternative to achieve the prescribed goal.

1.3 Mobile Cable-Driven Parallel Robots (MCDPRs)
To the best of our knowledge, for most existing RCDPRs, the reconfigurability is
performed either discrete and manually or continuously, but with bulky reconfigurable
systems. Moreover, the reconfiguration is usually a costly and time consuming task.
This thesis introduces Mobile Cable-Driven Parallel Robots (MCDPRs) that can be
seen as new types of RCDPRs. The idea for introducing MCDPRs is to overcome
the manual and discrete reconfigurability of RCDPRs such that an autonomous
reconfiguration can be achieved. The goal of MCDPRs is to develop a mobile,
deployable and autonomous CDPRs, that can be adapted based on the desired task.
Section 1.3.1 presents the architecture and parameterization of MCDPRs.

Two MCDPRs prototypes have been developed during the course of this thesis.
The first prototype is named FASTKIT, which is composed of an active and a
passive mobile bases carrying a six DoF moving-platform, pulled by eight cables.
The goal of the FASTKIT project is to provide a low cost and versatile robotic
solution for logistics using a combination of mobile robots and a CDPR. The second
prototype is named MoPICK, composed of a three DoF point mass moving-platform
pulled by four cables mounted on four mobile bases. The targeted applications of
MoPICK are mobile tasks in a constrained environment, for example, a workshop or
logistic operations in a warehouse. Both these MCDPRs prototypes are described in
Secs. 1.3.2 and 1.3.3.

1.3.1 MCDPR Parameterization

A MCDPR is composed of a classical CDPR with m cables and a n DoF moving-
platform mounted on p mobile bases. A concept idea of a MCDPR is illustrated
in Fig. 1.4a with p = 4 mobile bases and n = 6 DoF moving-platform displaced by
m = 8 cables. The cable exit points are a function of the mobile base position and
orientation. Each mobile base can navigate in the environment thus allowing the
system to autonomously alter the geometry of the CDPR. It must be noted that the
mobile bases are planar robots, i.e., they can only navigate in a plane parallel to
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Figure 1.4: (a) A MCDPR with eight cables (m = 8) and four mobile bases (p = 4).
Its moving-platform has six degree-of-freedom (n = 6) (b) jth mobile base with four
wheels (cj = 4)

the ground, thus, accordingly the CDPR carried by the mobile bases can only be
reconfigured in the aforementioned plane. Consequently, the height of the cable exit
points remains constant.

Let mj be the number cables connected to the jth mobile base denoted as Mj,
j = 1, . . . , p. The ith cable attached to Mj is named as Cij , i = 1, . . . ,mj. As a
result, m cables are attached to the moving-platform.

m =
p∑

j=1
mj. (1.1)

Let uij be the unit vector pointing from the anchor point Bij to the exit point Aij

of cable Cij. tij is the Cij cable tension vector expressed as:

tij = uijtij, (1.2)

where tij denotes the tension in the cable Cij. The jth mobile base is assumed to
have cj wheels. Ckj, k = 1, . . . , cj are the contact points between the jth mobile
base Mj and the ground. Figure 1.4b illustrates Mj with four wheels (cj = 4).

Let F0 be the base frame of origin O0 and axes 0x, 0y and 0z while Fbj denotes
the frame attached to Mj with origin Obj and axes bjx, bjy and bjz, illustrated in
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Figure 1.5: FASTKIT concept: A cable-driven parallel robot mounted on two mobile
platforms [PRMG+20]

Fig. 1.4. Mobile bases are assumed to be capable of performing two-DoF translational
motions along x0 and y0 and one-DoF rotational motion about an axis parallel to z0.

1.3.2 FASTKIT
The FASTKIT concept shown in Fig. 1.5, is a MCDPR prototype developed in the
framework of ECHORD++ FASTKIT project1. Figure 1.6 shows the FASTKIT
protoype composed of a n = 6-DoF moving-platform equipped with a gripper, an
active and a passive p = 2 mobile bases connected to each other throughm = 8 cables.
FASTKIT project addresses an industrial need for fast picking and kitting operations
in existing storage facilities while being easy to install, keeping existing infrastructures
and covering large areas. Nowadays, there exist several robotic solutions for logistic
applications. One of the most popular automatic storage systems is the multi-shuttle
system described in [LŠP11, YMQ11], which guarantees high performance in terms
of working rate. The main drawbacks of such systems are the high investment cost,

1FASTKIT Videos: https://www.youtube.com/channel/UCJ8QRs818MBc8YSbn-bZVjA

https://www.youtube.com/channel/UCJ8QRs818MBc8YSbn-bZVjA
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the long installation time and the lack of flexibility.
Such systems are usually installed over large warehouses presenting a high entry

and exit flow of storage boxes. In such conditions, an acceptable Return On Invest-
ment is usually guaranteed. On the other hand, this solution is no longer possible or
profitable for small warehouses, where there is no room for the installation of a large
multi-shuttle system, or for warehouses characterized by a very low entry and exit
flow of storage units, for which the high investment cost of a multi-shuttle solution
is not justified.

On the contrary, FASTKIT is made up of CDPR mounted on two mobile bases.
As a result, it combines the autonomy of mobile robots with the advantages of
CDPR, namely, large workspace, high payload-to-weight ratio, low end-effector
inertia, deployability and reconfigurability. Moreover, CDPRs lead generally to
low cost and easy maintenance solutions. Thanks to their characteristics, CDPRs
can be used for different tasks such as the manipulation of heavy payloads or fast
pick-and-place operations. Indeed, logistics is a very interesting field of application
for CDPRs. Accordingly, FASTKIT aims at providing the user with a flexible and
low cost logistic solution to equip small warehouses.

Therefore, the novelty of FASTKIT lies in the combination of autonomous mobile
platforms and a CDPR. The main challenge in FASTKIT dealt with the design,
modeling, workspace analysis and the synchronization between the CDPR and the
two mobile bases while performing a desired task.

1.3.2.1 Main Components

The main components of FASTKIT are: (i) the main structure, (ii) the actuation
system, (iii) its pulleys, (iv) its moving-platform equipped with a gripper, and
(v) two electrical cabinets. Here are the FASTKIT specifications:

– a desired workspace of 5 meters long by 2 meters high,
– a linear velocity of the moving-plaform equal to 1 m/s,
– a maximum of 12 kg payload.
The 2.4 m high main structure is made up of aluminum profile bars, directly

fixed on the top of the two mobile bases.

Actuation and Transmission System

The actuation system consists of eight identical modules, each module being composed
a motor, a gearbox, an elastic coupling, a transmission shaft, two bearings and a
winch, as shown in Fig. 1.7.

Based on the foregoing specifications, the required maximum cable tension and
maximum cable velocity are equal to 45 N and 2 m/s, respectively. As a result,
8LVA23 B&R motors coupled with 8GP30 B&R gearboxes were selected. Table 1.1
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Figure 1.6: FASTKIT prototype
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(a) CAD modeling (b) Implemented system

Figure 1.7: FASTKIT actuation and transmission system

gives the characteristics of the selected motors.

Pulleys
The pulleys have been designed to minimize friction, allowing the cable to easily roll
around the sheave and that the sheave itself can rotate freely around its vertical
axis. The sheave is equipped with a ball bearing whereas two angular contact ball
bearings are used to free the sheave rotation around the vertical axis.

Figure 1.8a shows the CAD model of the eight pulleys used for the assembly of
the CDPR in a suspended configuration. Figure 1.8b shows the CAD model of the
additional four pulleys that have been designed for the CDPR in a fully constrained
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Requirements
Maximum cable tension 45 N
Maximum cable velocity 2 m/s

Actuators
Actuation system efficiency 70%
Gearhead ratio 5:1

Wrinches
Drum diameter 0.08 m

Motors (working point)
Torque 0.6 Nm
Angular velocity 1600 rpm

Table 1.1: Characteristics of the selected motors

(a) CAD model of the first pulley type (b) CAD model of the second pulley type

Figure 1.8: FASTKIT pulleys

configuration.

Moving-Platform and Gripper

(a) CAD modeling (b) Final assembly

Figure 1.9: Moving-platform with its gripper grabbing a storage unit box
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The moving-platform has been designed to be capable of grasping, carrying and
dropping a box of size 0.4 m × 0.3 m × 0.15 m, which is representative of the storage
units used in logistics. Inner dimensions of the platform are 0.6 m × 0.36 m × 0.2 m.
Figure 1.9a depicts the CAD model of the moving-platform equipped with its gripper.
In this case, the mass of the moving-platform should be a minimum. The actual
moving-platform, shown in Fig. 1.9, weighs 5 Kg. A Firgelli linear motor2 was used to
construct the moving-platform gripper. It should be noted that the moving-platform
tilt, required to grab and release boxes, is also controlled through the cable lengths.

Sick Laser Scanners
Each mobile base is equipped with a s300 sick laser scanner as shown in Fig. 1.5. It
has 3 m field range and 270 degree scanning angle. This kind of scanner is used for
the motion planning and obstacle avoidance during the navigation mode, discussed
in Sec. 1.3.2.3.

Electrical Cabinets
The actuation system of the CDPR is controlled and powered by means of two
electrical cabinets, one installed onto each mobile base. Those two cabinets are
slightly different. Both electrical cabinets are composed of: (i) two variable speed
drives; (ii) two 80V power supplies for the synchronous motors; (iii) one 24V power
supply for the drives and (iv) one safety relay. In addition, the electrical cabinet
embedded in the active mobile base is equipped with an industrial PC that controls
the whole robot. Figure 1.10 shows the main electrical cabinet with the industrial PC.
For the sake of compatibility, the speed drives, the power supplies and the industrial
PC have been provided by the motor supplier, namely, B&R Automation™.

Figure 1.10: The FASTKIT electrical cabinet mounted onto the active mobile base

2https://www.firgelliauto.com/products/mini-track-actuator#ptab-specifications

https://www.firgelliauto.com/products/mini-track-actuator#ptab-specifications
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1.3.2.2 Working modes of FASTKIT

FASTKIT is capable of autonomously navigating in its environment to reach the
task location, this action is referred to as a navigation mode. During this mode,
the two mobile bases are coupled together and act as a single working unit while
the moving-platform is fixed on the two mobile bases (see Fig. 1.11a). The twist of
the moving-platform and the passive mobile base is equal to the twist generated by
the active mobile base. No cable motion is generated during the navigation mode.
In short, FASTKIT acts as a classical mobile robot during the navigation mode.
Navigation mode ends once the desired position, i.e., task location, is attained.

Afterwards, the second working mode, referred to as the task mode, deploys the
system in such a way that its workspace corresponds to the current task specification.
The system calculates the required mobile base position from the desired workspace
and ensures the controllability of the platform during the deployment. Once the
system is successfully deployed, a set of stabilizers is used to ensure the stability of
the prototype. During this mode, the passive mobile base is static while the motion
of the cables and the active mobile base is used to deploy the complete system.
Finally, the moving-platform is moved accurately by the CDPR at high velocity
over a large area by controlling the either the cable tensions or cable velocities. (see
Figs. 1.11b and 1.11c)3.

The major challenges faced during the task mode of FASTKIT occur when the
system has reached the task location and needs to be deployed in order to perform
the desired pick and place operation. The first challenge is to determine if the desired
task is feasible and/or within the reachable workspace. Secondly, the deployment
strategy, i.e., the transition between stowed CDPR and active CDPR, must be
developed. It should be noted that during the task mode, FASTKIT is kinematically
redundant due to the additional mobility of the active mobile base. Thus, the issue
of kinematic redundancy was also required to be addressed during the deployment of
FASTKIT. Although, FASTKIT acts as a classical mobile base during the navigation,
in general, it may not be the case for classical MCDPRs. Hence, a generic planning
approach is required for MCDPRs to perform the desired task. Moreover, the control
laws are also required. The first control law tested on the FASTKIT CDPR is a
velocity control law. However, in order to implement it, its kinematic model must be
derived. While straightforward to implement, a significant difficulty associated with
the velocity controller is the feasible distribution of the tensions among the cables.
Hence, during the task execution and due to model errors, cables may become slack
or conversely, stretched. In order to cope with this undesired behavior, a torque
control can be applied. However, this necessitates a feasible cable tension distribution

3Demonstration of FASTKIT: https://youtu.be/TJSsfjNlvZ4

https://youtu.be/TJSsfjNlvZ4
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(a) navigation mode (b) undeployed configuration at the task
location

Active Mobile Base Passive Mobile Base
(c) deployed configuration at the task location

Figure 1.11: FASTKIT working modes
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Figure 1.12: Architecture of the Fastkit navigation stack. Green boxes represents
software packages, names of packages are in brackets

to effectively move the robot within its workspace.

1.3.2.3 FASTKIT Navigation

As discussed earlier, during the navigation mode, FASTKIT act as a single working
unit, i.e., a single mobile robot. Several approaches exist in the literature for the
motion planning and control of mobile robots [Esk12, PJS06, BHJ+82, CHL+05,
LaV06]. Based on aforementioned techniques, a two dimensional navigation stack4

has been developed by researchers using the Robot Operating System (ROS)5

framework [QCG+09] and used extensively for autonomous navigation of mobile
robots. It is extremely useful for the navigation and path planning of mobile robots.
The job of navigation stack is to produce a safe path for the robot to execute,
by processing data from odometry, i.e., wheels encoders, sensor streams i.e., laser
scanners, and environment map. It is implemented by means a set of interconnected
algorithms. As shown in Fig. 1.12, those algorithms create altogether a complex
decision making process:
Base driver: low-level software to control the velocity of the mobile robot;
Sensor driver: low-level software to get sensor information, in this case scanner

distance readings;
Localization: software to localize the robot in the environment;

4Ros navigation stack [online]. http://wiki.ros.org/navigation
5http://www.ros.org/

http://wiki.ros.org/navigation
http://www.ros.org/
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Collision avoidance: software, with high priority, to compute collision free-path
for the robot w.r.t. environment dynamics ;

Path planning: global planner to compute shortest path to goal;
User Interface: visualization tool to control robot behavior, here we have used

RVIZ, a built-in software in ROS.
Therefore, the robot is able to model its environment, plan and move to a specific goal
while avoiding obstacles. The core of the framework is to provide a set of standards,
namely, sensors information, actuators control and transmission protocols, to allow
users to share work and generic algorithms for multiple and various robotic systems.
The reader is referred to [QCG+09] for further details about the ROS framework.

The key challenge for an autonomous mobile robot relies on the perception of
its environment and the decision it makes accordingly. This means, from the robot
point of view answering questions like: Where am I? Where am I going? How should
I get there? Navigation can therefore be separated in three problematics:

Figure 1.13: Visualization of the planned trajectory towards a goal. The robot is
represented by the green box. The planned trajectory is represented by the blue
arrow, red polygons represent obstacles and red arrow shows the position objective.
Black areas represent the inflation around obstacles for the cost function to guarantee
collision avoidance.

1. Mapping:
In order to autonomously navigate, the first step is to generate a map (see
Fig. 1.13), that is readable by the robot. The map generated by the navigation
stack contains the location of the obstacles, in Fig. 1.13 represented by Red
polygons. The obstacles are projected in to a two dimensional plane (the
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floor), then inflated to create an area around the obstacles (in black) that
guarantee that the robot will not collide with any objects, no matter what is its
orientation. In the navigation stack, the map of the environment is represented
in the form of a cost map. It is a grid map where each cell is assigned a specific
value or cost. Higher costs indicate a smaller distance between the robot and an
obstacle. The inflated obstacles contain maximum cost. Accordingly, obstacle
free regions carry minimum cost.
The navigation stack uses Simultaneous Localization and Mapping (SLAM),
a technique that consists in mapping an environment at the same time that
the robot is moving. In other words, while the robot navigates through an
environment, it gathers information from the environment through its sensors
(for FASKIT sick lasers) and generate and/or update the map. Generally, the
initial map is generated by manually moving the robot in the environment
while running SLAM on it.
Two types of maps are generated by the navigation stack defined as local and
global cost-maps. The global cost-map represents the whole environment(or
a huge portion of it), and is only generated once for a constant environment.
However, the local cost-map moves in the global cost-map in relation to the
robot current position and, in general, formed when moving towards the goal.

2. Localization: The navigation stack uses Adaptive Monte Carlo Localization,
which is a tool that allows to localize the robot in an environment with a
known map. This localization system is based on the Monte Carlo localization
approach which randomly distributes the particles in a known map, representing
the possible robot locations, and then uses a particle filter to determine the
actual robot pose.

3. Planning motion: At the final step, the robot plans and follows a path towards
the goal while it deviates from the obstacles that appear on its path throughout
the course. Path-finding is done by a planner which uses a series of different
algorithms to find the shortest path while avoiding obstacles. Two path planners
are used known as local and global planners. At first, the full path is optimized
by the global planner over the global cost-map. It takes the current robot
position and the goal and traces the trajectory of minimum cost with respect to
the global cost-map. After a path has been obtained, the robot starts following
the path generated by the global planner. During the execution, optimization
of autonomous driving at close proximity is carried out by the local planner
over the local cost-map. The local system detects the nearby obstacles (either
static or dynamic), and is responsible for creating a trajectory roll-out over
the global trajectory, that is able to return to the original trajectory with
an optimal cost. Thus, together both planners find an optimal path given a
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Figure 1.14: FASTKIT control architecture

navigational goal in the real world.

Figure 1.13 shows a result of planned trajectory for FASTKIT in a dynamic
environment using ROS navigation stack. The computed polygons can be seen in
red. Note that if no polygon can be found, a single point still represents the obstacle.
As the environment also contain some dynamic obstacles, hence, the trajectory
generated by the global planner toward the red arrow, i.e., objective, was modified
by the local planner as soon a dynamic obstacle is approached towards the robot. A
simulation video showing the implementation of ROS navigation stack on FASTKIT
can be seen at6.

1.3.2.4 FASTKIT control architecture

The control architecture adopted in the scope of FASTKIT is described in Fig. 1.14.
The control algorithms are written in Matlab and then sent to the industrial PC
through ROS. A ROS package for communicating with the B&R™ motors had
previously been developed. However, it should be noted that ROS cannot run
as fast as the B&R™ industrial PC. Hence, some data might get lost during the
communication and the system no longer conforms to an industrial standards in
terms of robustness and response time.

6https://www.youtube.com/watch?v=VzfasvIjD1w

https://www.youtube.com/watch?v=VzfasvIjD1w
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Moving-
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Figure 1.15: MoPICK a MCDPR prototype. MoPICK is capable of performing
multiple manipulation tasks in a constrained environment, for example, a workshop.

1.3.3 Mobile Pick-and-Place (MoPICK)

A second MCDPR prototype developed in the course of this thesis is named MoPICK7

shown in Fig.1.15. MoPICK is composed of a three DoF point mass moving-
platform pulled by four cables mounted on four mobile bases. MoPICK uses four
Turtlebots [KSJ+16], each with two motorized wheels and two supporting wheels
at the front and rear, as its mobile bases. A cylindrical shaped structure of radius
0.25 m is added to support the aluminum frame which holds the pulleys of the CDPR.
To improve the stability of the mobile bases, four additional caster wheels are added.
Thus, each mobile base has eight wheels in total and the design ensures that at least
five wheels are always in contact with the ground. Indeed, by construction, either
the three rear passive wheels or the three front passive wheels are in contact. The
motorized wheels have individual spring suspensions, which permit ground contact
and thus the ability to drive the base at all times.

MoPICK mobile bases displace via a non-holonomic differential drive mecha-
nism [BL89, MM14]. It means that each mobile base can generate a pure rotational

7Demonstration of MoPICK: https://youtu.be/_zfqtNsrpHI

https://youtu.be/_zfqtNsrpHI
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motion about a vertical axis passing through its geometric center (bjz) and a transla-
tional motion in the direction perpendicular to the axle of the motorized wheels bjx.
The CDPR carried by MoPICK is designed such that the exit points Aij lie on the
aforementioned vertical axis (bjz), preventing changes in the directional vector uij of
the cable Cij due to rotational motion of Mj. Thus, for a given pose of the moving
platform, cable configurations are determined by only localizing the mobile bases in
0x0y plane. The mobile bases are displaced by sending velocity commands to the
motorized wheels while the CDPR is controlled either by defining its cable tensions
or cable velocities.

To avoid slack, the cable tension lower bound is null. The cable tension upper
bound depends on the actuation system used to actuate the cables of the MCDPR,
i.e., motors, winches etc. In MoPICK prototype, Dynamixel MX-64AT actuators
and winches whose drum diameter is equal to 0.2 m, are used, to pull the cables.
Based on the hardware specification and safety issues, the cable tension upper bound
is set to 15 N.

V-REP model of MoPICK:

A dynamic model of the MoPick system is developed using the simulation environment
V-REP [RSF13], shown in Fig. 1.16. The implemented solution enables us to use
the same software in order to control the real or the virtual hardware. As a result
we can test and debug new algorithms in simulation (with a perfectly known ground
truth) before using them on the real team of robots for final tuning and verification,
thus speeding up the development time and easing the debugging process.

The pulleys and cables are modeled as a sequence of joints and mass objects,
as shown in Fig. 1.17. The pulleys are represented as a vertical revolute passive
joint followed by a small spherical mass and a horizontal revolute passive joint. The
cables are modelled as a sequence of prismatic joint, cylindrical mass, prismatic joint,
cylindrical mass and a final spherical joint attaches the cable to the common platform.
The model does not take into account the pulley diameter and the cable sag. The first
prismatic joint allows to control the cable length, while the second prismatic joint is
responsible for the cable behaviour through a specific call-back script that allows to
model the cable elasticity and damping but also the fact that cables transmit the
tension forces but no compression forces. To have a stable simulation, some model
design rules need to be considered [VRE]. In particular the cable masses are slightly
augmented in order to reduce bad conditioning on the solver. In our tests, the Vortex
physical engine gave best results.

The model of the mobile bases is based on an existing TurtleBot model [Veg16].
However, based on the design of MoPICK, a cylinder and four caster wheels are
added to each mobile bases for additional stability (see Fig. 1.16).
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Figure 1.16: V-REP model of MoPICK
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Figure 1.17: The representation of a cable and its pulley in V-REP

1.4 Challenges and Open Issues

As discussed earlier, MCDPRs combine the autonomy of mobile robots with the
advantages of CDPRs; however, the combination of these two types of manipulators
make them more complex. Moreover, their combination also adds constraints to the
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individual sub-systems. In this section, we outline the main aspects of theoretical
and technical issues and challenges raised by the peculiarities of MCDPRs as a
new robotic system arrangement. These issues and challenges were mainly faced
while designing FASTKIT and MoPICK. In the light of these aspects, the main
contributions of this thesis will be defined.

1.4.1 MCDPR Equilibrium
The first step is to investigate the conditions that must be respected in order to keep
the MCDPR in the state of equilibrium. In case of classical CDPRs, the cable exit
points are mounted on a fixed base. As a result, its equilibrium solely depends on the
equilibrium of its moving-platform, which is achieved by balancing the required set
of wrenches with the wrenches generated the cables on the moving-platform, given
the tensions in the cables are within their respective bounds. In contrast, non-fixed
bases may become unstable due to the reaction forces and moments generated by
the tensions in the CDPR cables mounted on it. As a consequence, for MCDRPs,
the stability of their mobile bases must be defined as a function of the cable tensions.
Afterwards, for the analysis of MCDPRs, the stability conditions associated with
the equilibrium of the mobile bases must be taken into account in addition to the
equilibrium of their moving-platform.

1.4.2 Workspace
One of the major challenges during the task mode of FASTKIT, i.e., when the system
reaches at the task location and needs to be deployed in order to perform the desired
pick and place operation, is to determine if the desired task is feasible and within
the reachable workspace. Moreover, from the design point of view, is it important to
investigate to what extent these robots are capable of generating forces and moments
at their moving-platform, while respecting all the equilibrium conditions associated
with the CDPR and the mobile bases. As a result, a methodology to trace the
workspace of MCDPRs is required.

1.4.3 Kinematics
From the design point of view of MCDPRs, in addition to their wrench capabilities,
it is also essential to develop a methodology that can evaluate their kinematic
performance. The kinematic performance of any robotic system can be analyzed
from its first-order kinematic model. Accordingly, to analyze the twist capabilities of
MCDPRs, it is also essential to derive its first-order kinematic model.

Each manipulator type in a MCDPR has its individual kinematic ability, i.e.,
in general, a cable robot has a parallel kinematic architecture while a mobile base
has a serial kinematic architecture. With the integration of these two individual
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architectures, a general kinematic architecture for MCDPRs can be developed, which
can be helpful to derive their first-order kinematic model. The model can be later
exploited to acquire the MCDPR twist capabilities. Furthermore, the aforementioned
model can also be useful for constructing the velocity control law for MCDPRs,
which is quite easy to implement and apply.

1.4.4 MCDPR Redundancy

There are two different types of redundancies in robotic systems. The first type is
actuation redundancy, in which the system possess more number of actuators than
the DoFs of its moving-platform. The second type is kinematic redundancy, in which
the system contains more DoFs compared to the DoFs of the moving-platform, i.e.,
kinematically redundant manipulators posses more controlling variables than needed
for a set of specified tasks. For MCDPRs, we may encounter both of these types of
redundancies. Both of them can be advantageous; however, this comes usually at
the expense of complex analysis of the system.

Actuation redundancy

As detailed earlier, to compensate the uni-directional force constraints in classical
CDPRs, more than n number of cables are used, which generates (m− n) degrees
of actuation redundancy. As a result, an infinite number of possible sets of cable
tensions exists that can keep the moving-platform in a desired pose. However, finding
a feasible distribution of forces among the cables can be quite challenging. The
classical approaches used to determine the feasible distribution of the cable tensions
only take into account the equilibrium of the moving-platform while respecting
the constraints associated to the cable tension limits. However, for MCDPRs, the
stability of the mobile bases must be considered in addition to the cable tension limits
for computing the feasible distribution of the cable tensions. The force distribution
can be later used to develop the torque control laws for MCDPRs.

Kinematic redundancy

One of the objectives of introducing MCDPRs is to achieve a continuous and
autonomous reconfiguration of RCDPRs. However, as a result of the additional
mobility, MCDPRs are kinematically redundant. This is an issue of major relevance
for motion planning and control purposes. This type of redundancy can be exploited
to re-configure the CDPR’s geometric architecture. Thus, motion planning of
such systems should exploit the kinematic redundancy in order to find the feasible
configurations of the system with respect to the desired task.

For FASTKIT, one of the major challenges concerned the deployment strategies
for performing a task safely and reliably. It should be noted that during the task
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mode, FASTKIT is kinematically redundant due to the additional mobility of the
active mobile base. Thus, the issue of kinematic redundancy must also be considered.
Although, FASTKIT acts as a classical mobile base during the navigation, in general,
it may not be the case for classical MCDPRs. For example, in case of MoPICK,
all the mobile bases are active and can move independently. Hence, more generic
planning strategies are required for MCDPRs. This includes redundancy resolution
schemes to avoid collisions with the obstacles in the surrounding environment.

1.5 Thesis Contributions and Organization
In the light of the detailed discussion in Sec. 1.4, the scientific challenges associated
to MCDPRs are grouped into five categories:

1. MCDPR Equilibrium: We began our research by deriving MCDPR’s static
equilibrium conditions. As explained earlier, a classical CDPR connected to
fixed base considers only the static equilibrium of its moving-platform while
respecting the bounds on the cable tensions. In contrast, as a MCDPR possesses
moving bases, additional constraints are generated, which are associated with
stability of the mobile bases. Thus, these stability conditions must be taken into
consideration to ensure the complete equilibrium of a MCDPR. The stability of
a mobile base is characterized by its tipping and sliding conditions. The tipping
conditions depend on the moment generated at the boundaries of the mobile
base footprint. These tipping conditions depend uniquely on the weight of the
mobile base and the tension in the cables mounted on it. Likewise, the sliding
conditions also depend on the weight of the mobile base and the tension in
the cables carried by it. However, the sliding conditions are represented in the
form of a friction cone. For ease of analysis, the non-linear sliding conditions
are linearized and the friction cone is transformed into a four-sided friction
pyramid.

2. Tension Distribution Algorithm for MCDPRs: The control of cable-
driven manipulators with actuation redundancy requires a real-time algorithm
that can compute continuous distribution of the cable tensions. For classical
CDPRs, a geometric approach known as Barycenter/Centroid is frequently
used to acquire a real time, continuous and feasible solution of the cable
tensions, which only considers its lower and uppers bounds imposed by the
actuators and the transmission systems. However, this approach is not directly
applicable on MCDPRs due to the additional conditions associated with the
static equilibrium of the mobile bases.
We have developed a real time Tension Distribution Algorithm (TDA) by

extending the classical Barycenter/Centroid method to MCDPRs. The algo-



1.5 Thesis Contributions and Organization 41

rithm forms a Feasible Cable Tension Domain (FCDT) representing the set of
feasible tensions based on the cable tension limits and the conditions associated
with the static equilibrium of the mobile bases. This FCTD takes the form of
a (m− n)-dimensional convex polytope. The presented TDA finds the vertices
of the feasible polygon or proves that it is null. If the feasible polygon exists
and is determined, then the centroid of the polygon is calculated which is a
solution furthest from all the constraints. The coordinates of the centroid are
used to compute the feasible distribution of the cable tensions. The proposed
algorithm is investigated on multiple case studies including FASTKIT and
MoPICK. The obtained results show that the new set of constraints developed
for MCDPRs are sufficient to compute feasible cable tensions such that they
stay within the required set of limits while ensuring the stability of all the
mobile bases. The algorithm is relevant for real-time implementations, however,
it is only applicable and validated for MCDPRs up to two degrees of actuation
redundancy.

3. Workspace Analysis of MCDPRs: For the desired task to be feasible, it
must be within the region where robot can exert the required set of wrenches
in order to accomplish the task. For this purpose, we have developed a
methodology to determine the Wrench-Feasible Workspace (WFW) of MCDPRs.
Similar to the TDA, the proposed workspace also depends, not only on the
static equilibrium of the moving-platform, but on the static equilibrium of
the mobile bases as well. WFW is traced using Available Wrench Set (AWS)
which defines the set of wrenches the moving-platform can generate. AWS of
MCDPRs takes the form of a n-dimensional convex polytope. The AWS is
constructed using two different approaches, i.e., convex hull and the Hyperplane
Shifting Method (HSM). The convex-hull approach uses the vertices of the
cable tension space to determine the vertices of AWS and forms the boundary
of the convex polytope. HSM allows us to determine the AWS geometrically
by characterizing the facets of the polytope. The equivalence between both the
approaches is also presented. Multiple case studies are investigated in order
to show that the approach is applicable to both planar and spatial MCDPRs.
The approach is experimentally validated on a MCDPR with a point-mass
end-effector and two mobile bases.

4. Kinematic Performances of MCDPRs: To derive the MCDPRs first-order
kinematic model, each cable of the manipulator is modeled as a Universal-
Prismatic-Spherical kinematic chain. Furthermore, as mobile bases are only
capable of generating two-DoF translational motions and one-DoF rotational
motion in a plane, they are modeled as a Revolute-Prismatic-Prismatic kine-
matic chains. By integrating the aforementioned chains, a general kinematic



42 Chapter 1. Introduction

architecture is developed for MCDPRs, where the cables carried by the jth
mobile base are connected in parallel with each other, while the jth mobile
base is linked in series with the aforementioned parallel architecture of the
cables mounted on it. The first-order kinematic model is used to determine the
Available Twist Set (ATS) of MCDPRs by considering both the joint velocity
limits for the cables and the mobile bases. If m = n, ATS will correspond to a
single convex polytope. However, if m > n, ATS will be the region bounded
by Cn

m convex polytopes. Finally, ATS will be used to determine the twist
capacities of the moving-platform.

5. MCDPR Path Planning: The last contribution of the thesis focuses on the
utilization of kinematic redundancy in MCDPRs to find system configurations
that can make the desired tasks feasible while respecting the set of constraints.
Hence, the final chapter of the thesis presents the redundancy planning schemes
for MCDPRs.
Redundancy planning of MCDPRs is presented in two parts. At first, the

problem of determining an optimal path for MCDPRs with one degree of
kinematic redundancy is addressed. The problem to the path planning is
formulated as a bi-objective optimization problem that corresponds to the
minimization of the total trajectory time and maximization of the robot wrench
feasibility throughout the trajectory. FASTKIT is used as a case study with a
desired pick-and-place operation.

The second half of the chapter presents two different path planning strategies
for highly redundant manipulators. The first approach is a sampling based
iterative path planning algorithm which plans the manipulator’s path in two
subsequent stages. In the first stage, the algorithm searches for a feasible and
collision free path of mobile bases. The second stage generates an optimal path
of the moving-platform to reach at the desired pose. The second approach deals
with the path planning of highly redundant MCDPRs using direct transcription
optimization method. It is an optimization based approach where the continu-
ous path planning problem is transcribed into a discrete optimization problem
of N steps, with the goal to maximize the wrench capability of the robot at
each step while minimizing the total path length. The desired moving-platform
poses are enforced using a set of equality constraints. In the direct method,
rather than simulating the continuous evolution of the system, the states at
all way-points are optimized simultaneously. The resulting discrete path is
transformed into a continuous motion profile in time using cubic splines. The
proposed approach is validated through simulation and experimentally on
MoPICK.
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Thesis Organization
This manuscript is organized as follows. Chapter 2 presents the current state-of-the-
art on the most relevant issues to the subject related to this thesis. Chapter 3 starts by
expressing the static equilibrium conditions of the moving-platform and mobile bases.
The chapter uses these conditions to develop a real-time and continuous Tension
Distribution Algorithm for MCDPRs. Similarly, the equilibrium conditions are also
used in Chapter 4, which analyzes the Wrench-Feasible-Workspace of MCDPRs.
Chapter 5 presents the first order kinematic model of MCDPRs. Moreover, based on
the aforementioned model, it investigates the twist capabilities of the manipulator.
Chapter 6 focuses on the redundancy resolution schemes for the reconfiguration
planning of the MCDPR cable layout in order to accomplish the desired task. Finally,
Chapter 7 concludes this manuscript by summarizing the main contributions of this
doctoral thesis and by discussing future research perspectives.
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The aim of this chapter is to review the most relevant issues to the subject related
to this thesis. The first part of the chapter provides an overview on the state of the
art on CDPRs and RCDPRs. This review covers their wide range of applications.
The variety of prototypes developed in the literature reflects the large number of
possibilities offered by cable-driven mechanisms.

One of the fundamental problem in cable-driven mechanisms is the unilateral
actuation constraints of cables. Thus, the review also covers different approaches used
to deal with fundamental problem on finding the suitable cable tension distribution.
This problem arises when the number of actuators is higher than the number of
degrees of freedom of the moving-platform. It becomes much more challenging when
cables are additionally mounted onto the moving bases.
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Afterwards, the review covers multiple approaches for the workspace analysis
of CDPRs in order to characterize their wrench capabilities. Finally, the review is
completed by presenting different path planning strategies.

2.1 Existing CDPRs and their Applications
CDPRs are being used in multiple applications. Research on CDPRs originates
from America in 1984. A cable-controlled parallel manipulator is designed for
underwater operation. In 1989, the RoboCrane project was started in America by
the National Institute of Standards and Technology (NIST), which stand out for
simplicity and extensive use especially in processing machinery, port cargo handling,
bridge construction, welding, airplane paintings and other areas, as shown in Fig 2.1.

Another CDPR prototype, named FALCON [KCTK97], was developed at the
end of the 90s by Kawamura et al from Ritsumeikan University. Falcon is six DoF
cable robot and uses seven cables with an emphasis on achieving high speed for
assembly operations. This CDPR has the ability to reach the linear velocity up to
13 m/s and linear accelerations of 43 G.

In the last decades, research on CDPRs gains wide attention and is highly
motivated by the modern engineering demand for large payload capacity and
workspace. CDPRs have been increasingly and widely applied in relevant tasks,
but mainly in tasks which require a large workspace, e.g., support structures for
giant telescopes [YTWH09], cargo handling [HC04], large-scale assembly and han-
dling operations [PMV10]. Other applications include the broadcasting of sport-
ing events, cargo handling [HC04], warehouse applications [BLS+13], haptic de-
vices [GRR01, FCCG14], motion simulators [MLB+16], and search and rescue de-
ployable platforms [MD10] (see Fig .2.2). In 2013, Pott et al. designed another
family of CDPRs, the IPAnema series [PMK+13], for fast pick-and-place and other
industrial operations (see Fig. 2.6). Some of the world’s well-known CDPR prototypes
and their applications are detailed below.

The Skycam is the most commercially used CDPR, shown in Fig. 2.3. The
Skycam uses a suspended cable configuration with four cables and three degrees of
freedom moving-platform equipped with a camera system. The aim of skycam is to
maneuver the onboard camera in translation in the open space over a playing area
of a stadium or arena. The camera package weighs less than 14 kilograms and can
achieve a velocity up to 13 m/s.

CDPRs have also proven successful for handling heavy payloads in large areas.
Recent studies have been performed in the framework of the CoGiRo (Control
of Giant Robot) ANR project [CoG08]. Its main goal is to propose and validate
innovative methodologies and means to design, calibrate and control CDPRs having
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Figure 2.1: NIST RoboCrane painting an
aeroplane

Figure 2.2: MARIONET-CRANE,
CDPR for search and rescue operations

Figure 2.3: Skycam, a CDPR for broadcasting sport events

Figure 2.4: CoGiRo prototype, developed
by the LIRMM and Tecnalia

Figure 2.5: MPI CableRobot Simulator

a very large workspace and handling heavy payloads. Multiple contributions have
been carried out in the framework of the CoGiRo project. [LGCH13] estimates the
weight of the moving-platform and actuator dynamic parameters which resulted in
better tracking performances. [GCRB12] introduce a new simplified static analysis
of CDPRs by inextensible cables of non-negligible mass. [GCRB15] propose tools to
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Figure 2.6: IPAnema prototype devel-
oped by Fraunhofer IPA

Handle

Sensor

Figure 2.7: CDPR based haptic interface
developed at Université Laval

Figure 2.8: CABLAR CDPR protoype developed by University of Duisburg-Essen

develop an efficient cable layout. The CoGiRo CDPR prototype is shown in Fig. 2.4.
CDPRs have also been used for developing motion simulators. Figure 2.5 shows

a CDPR prototype for motion simulation [MLB+16] developed at the Max Planck
Institute for Biological Cybernetics in cooperation with the Fraunhofer Institute for
Manufacturing Engineering and Automation IPA. This is the first CDPR capable
of transporting humans while at the same time setting new standards in terms of
workspace, acceleration and payload for a motion simulators.

CDPRs can also be used as haptic devices allowing the user to move in large
spaces. The low inertia of CDPRs over a comparatively big workspace makes them
appropriate for large workspace haptic interfaces [GASM08, HKMP15]. One of the
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Figure 2.9: NIST Mobile RoboCrane

CDPR-based prototypes used as a haptic device is named SPIDAR, designed for
complex hand physical interactions [Sat02]. Another CDPR based haptic prototype,
developed at Université Laval, Québec, Canada [FCCG14], is shown in Fig. 2.7.

CABLAR shown in Fig. 2.8 is a fully-constrained CDPR prototype driven by eight
cables and is mainly designed for warehousing and storage retrieval tasks. CABLAR is
capable of generating fast motions while consuming comparably low energy. [BLNS12]
shows that by using by a CDPR based prototype for the transportation of the goods
in logistic applications can drastically reduce the cycle time, which is crucial in such
applications.

2.2 Reconfigurable CDPRs

Several research studies have been performed in the field of Reconfigurable CDPRs.
Preliminary studies on Reconfigurable CDPRs were performed in the context of
the NIST RoboCrane project [BADJ96, BJP+00], as shown in Fig. 2.9. Izard et
al [IGM+13] also studied a family of RCDPRs for industrial applications. Some
interesting tools for the design and control of Reconfigurable Cable-Driven Parallel
Robots were developed in [Bla15] while considering cable sagging and dealing with
uncertainties. Some of the RCDPR prototypes and their applications are detailed
below.
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Figure 2.10: CAROCA prototype located at IRT Jules Verne (Technocampus Ocean)

IRT Jules Verne CAROCA Project
From a mechanical point of view, changing the geometry of CDPR is relatively easy by
modifying the location of the cable exit points. Thus, discrete reconfigurations where
the locations of the cable exit points are selected from a finite set of possible values
were studied in [GCGG15, GCGG16]. Those papers proposed different strategies
to determine an optimized robot architecture based on the required task and the
robot’s environment.

A RCDPR with discrete reconfigurations capabilities is developed at IRT Jules
Verne in the framework of the CAROCA project1, is shown in Fig. 2.10 . CAROCA
project aimed at investigating the performance of CDPRs and RCDPRs for large
scale industrial applications in cluttered industrial environments. The targeted
industrial applications for CAROCA are (i) assembling, sandblasting and painting of
big structures, (ii) inspection and photogrammetry measurement of large parts and
(iii) pick-and-place operations of various parts in terms of mass and shape. CAROCA
prototype is 7 m long, 4 m wide and 3 m high. It is composed of eight cables coiled
around 120 mm diameter HuchezTM winches, which are pulling a moving-platform.

1Evaluation des CApacités de la RObotique à CÂbles dans un contexte industriel
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Figure 2.11: CDPRs with base mobility in multi-domain modeling and simulation
tools [AAK17]

The winches are actuated by synchronous motors having a nominal speed of 2200 rpm
and a nominal torque equal to 15.34 Nm. A two-stage gearbox of reduction ratio
equal to 40 is mounted between each motor and its winch. As a consequence, the
prototype is capable of lifting up to one ton. The prototype has pulleys of radius
150 mm with two degrees of freedom all of which can be remounted to a multitude
of different positions on the frame. Thanks to its reconfigurability, the robot can be
configured in a both suspended or fully-constrained configurations depending on the
application at hand.

CDPRs with base mobility

CDPRs with moving bases have also been investigated in the past. [AAK17] presents a
study on planar CDPR with a base mobility for optimizing the orientation workspace
and stiffness of the moving-platform. Mainly, two different configurations were
analyzed and compared to the traditional fixed-base CDPRs as shown in Fig 2.11.
It has been shown that the rectangular configuration improves the orientation
workspace in one direction, however, it is limited by the nature of the base setup.
The circular configuration exhibited vast improvements both in terms of translational
and rotational workspace. A similar system for optimizing the robot configuration
in order to increase the position accuracy of the moving-platform is presented
in [SRK18].

Another example of a variable structure and reconfigurable CDPR carried by
multiple moving bases for agricultural applications is shown in Fig. 2.12. To meet
higher system flexibility and application requirements in various agricultural plants,
it is convenient to implement these systems by means of mobile pillars that transport
winches and platform, and can be fixed on stand-on legs at some locations to provide
stable CDPR structure [SRB15].
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Figure 2.12: CDPR with mobile pillars for agricultural applications

Figure 2.13: Concept idea of an Extended-crane system

Extended-crane system
Another concept idea of a reconfigurable CDPR is shown in Fig 2.13 represented
as extended-crane system. It represents a combination between a CDPR, multiple
moving units and a conventional crane. The robot configuration is created to
support task decomposition between the overhead crane (mainly performs the weight
balancing and gross motion) and the side cable system (mainly responsible for fine
lateral positioning and orientation). The extended crane can considerably improve
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Figure 2.14: Aerial cable towed prototype developed at LS2N [ECC19]

Figure 2.15: Octahedral version of the FlyCrane system [MFDRGC13]

flexibility and efficiency of assembly of heavy parts with complex irregular geometry.

Aerial cable towed systems

Aerial cable towed systems can also be seen as reconfigurable CDRPs that are
composed of multiple aerial vehicles connected to a rigid body payload or to
a point mass moving-platform through cables as shown in Figs. 2.14 [ECC19]
and 2.15 [MFDRGC13]. Aerial cable towed systems have proved to be useful in
contexts, such as supply delivery missions and rescue operations [BKMO11], as
well as environmental monitoring and surveillance [Wil06]. Compared to classical
CDPRs, the motion planning and control of aerial cable towed systems is much more
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challenging. Moreover, the payload capability of aerial cable towed system largely
depends on the maximum thrust of the aerial vehicles.

2.3 Relevant research issues
This section aims at providing an overview of the current state of the art related
to the subject of this thesis. One of the most challenging issues in cable driven
mechanisms is the unilateral actuation constraints of cables. Indeed, cables can pull,
but not push an object. This issue is also true for MCDPRs. As a consequence,
existing works on tension distribution strategies, wrench capability analysis of CDPRs
and path planning approaches are described thereafter.

2.3.1 Tension Distribution

The static or the dynamic equilibrium of a CDPR is assured by its cable tensions.
Most cable robot systems where solely cables are used to displace the end-effector
require more than n number of cables to compensate their uni-directional force
constraints. Hence, CDPRs contain m− n degrees of actuation redundancy. While
controlling such redundantly actuated manipulators, the distribution of forces among
its cables can be quite challenging. Indeed, at any point along a trajectory, there
exists an infinite number of possible sets of cable tensions that can keep the moving-
platform in equilibrium. If cable tensions are not distributed homogeneously, they
may approach their lower or upper limits. In case of reaching their minimum limit,
cables may become slack, which can lead to lack of stiffness and hence a loss of
control. Therefore, it is important to find a continuous and acceptable distribution
of tensions in the cables to perform a desired task. Non-continuous cable tensions
could be considered as solutions; however, since they are needed for control, such
tensions would cause steps in motor torques, which in turn leads to vibrations and
high mechanical loads.

For classical CDPRs, different approaches were proposed in the literature to
calculate the force distribution among its cables known as Tension Distribution
Algorithms (TDAs). Most of these TDAs optimize the cable tensions based on a
given criterion, while taking into account the constraints on the cable tension limits.
The following section provides a brief overview on the existing TDAs.

The most commonly used TDAs for calculating the force distribution among the
cables of classical CDPRs are the following:

– Gradient-based optimization approach (Verhoeven’s method): [Ver04] addresses
the problem of finding acceptable solutions by transforming it into a nonlinear
optimization problem on a convex polyhedron. The solution of the optimization
problem is unique and continuous in most of the cases. However, due to the
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Method Real-Time
Capable Continuity Redundancy Computational

speed

Gradient-based
optimization no yes any medium

Quadratic
programming yes yes any medium

Linear programming no no any fast

Minimizing norm
solution with Dykstra no no any slow

Centroid/Barycentric yes yes 1, 2 fast

Table 2.1: Comparison between different Tension Distribution Algorithms [Pot14]

nature of the formulated problem, the approach is not suitable for a real time
implementation.

– Quadratic programming: [BPH06] formulates an optimization problem with a
quadratic cost function and with linear constraints on the cable tension limits.
The algorithm is found to be faster in certain examples if a good initial solution
is provided.

– Linear programming Methods: [BJS+09] presents a novel linear program for-
mulation that yields optimally safe tension distributions in classical CDPRs by
the introduction of a slack variable. The slack variable also enables explicit
computation of a near-optimal, feasible starting point. This, in turn, enables
rapid computation of the optimally safe tension distributions. The formulation
also contains a parameter that can be used to steer cable tensions towards
desired regions of operation. [OA05] proposes a method to find a feasible space
for tension distribution described by a set of linear inequalities and to plan the
trajectory of the robot by staying within this feasible space. In general, linear
programming methods cannot guarantee a continuous solution nor suitable for
the real-time control purposes.

– Minimizing norm solution with Dykstra method: [HK07] presents a numerical
procedure based on convex analysis and optimization to calculate the minimum-
norm solution that minimizes the two norm of the cable tension vector. The
procedure is based on convex optimization that utilizes the Dykstra’s alternating
projection algorithm to reach an optimum solution. The algorithm is neither
real-time capable nor can guarantee the continuity of the solutions.
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– Centroid/Barycentric approach: [LG13a, GLRB15] propose a TDA for n-DoF
CDPRs driven by n + 2 cables. The set of feasible cable tensions of n-DoF
(n+ 2)-cable CDPRs is a 2-D convex polygon. The algorithm computes the
vertices of the convex polygon of feasible cable tension distributions by following
the polygon edges in a clockwise or counterclockwise order, or it proves that
this polygon is empty. Once all the polygon vertices are determined, centroid
and/or weighted barycenter tension distributions can be determined directly.
The computation time is driven by triangulations in the r-dimensional space
which become more complex for higher dimensions. Currently, the barycentric
algorithm has been shown for redundancies up to r = m − n = 2. Due to
its geometric nature, the algorithm is efficient and appropriate for real-time
applications.

A summary of the TDA’s mentioned above is given in Table 2.1.
It must be noted that the cable tension distribution is largely influenced by the

cable model. For example, in case of fully suspended CDPRs, the cable tension
distribution makes sense as long as cables are elastic.

2.3.2 Workspace

Substantial work has been reported in the literature on the determination of the
reachable workspaces and equilibrium conditions of CDPRs [Ver04, GG06, VH00,
BEU04, REU04, EUV04, PFAM04]. Generally the workspace of a cable-driven
parallel robot can be defined as the set of its moving-platform poses for which a
particular wrench is feasible, i.e., for which a particular wrench can be generated
at the moving-platform by pulling on it with the cables having positive tensions
[GG06, VH00].

Several workspaces and equilibrium conditions have been defined in the literature
for CDPRs. The two most significant and commonly used definitions of CDPR
workspaces based on the desired task and the wrench requirements of its moving-
platform are the Wrench Feasible Workspace (WFW) and the Wrench Closure
Workspace (WCW) detailed as follows.

Wrench Feasible Workspace
In several applications, it is essential to know, given the limits on the actuation forces
in the cables, whether the robot has ability to generate the required set of wrenches
to perform a desired task, which can be, for example, the displacement of a sensor
mounted on the moving-platform [BRO85] or payload handling [Mer08, ABD93].
These requirements lead to the concept of force feasibility, which verifies if the desired
task can be performed at any chosen configuration. A pose of a CDPR is said to be
wrench-feasible in a particular configuration and for a specified set of wrenches if
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the tension forces in the cables can counteract any external wrench of the specified
set applied to the end-effector [EUV04]. A region is wrench feasible if the robot can
exert the desired set of wrenches at any point within it. This region, referred to as
Wrench Feasible Workspace, constitutes the workspace which is wrench-feasible for a
particular application. It is formally defined as the set of platform poses for which
any wrench of a given set of wrenches can be balanced with wrenches generated by
the cables such that the tension in each cable remains within the lower and upper
bounds [BEU04, REU04, GDM, BREU06].

For any given CDPR configuration, the set of wrenches that can be generated by
the cables on the moving-platform is defined as the Available Wrench Set (AWS).
For classical CDPRs, AWS depends on the robot geometric architecture, i.e., fixed
exit points and cable anchor points on the moving-platform. It also depends on the
configuration as well as on the minimum and maximum acceptable tensions in the
cables. Once the AWS is determined, the robot’s ability to generate the required
set of wrenches to perform a task can be predicted. The set of wrenches required
to complete the desired task, referred to as the Required Wrench Set (RWS), can
only be generated by the robot if and only if it is fully included in AWS. Hence, a
necessary condition to complete the desired task is expressed as:

RWS ⊆ AWS. (2.1)

Thus, if RWS is a subset of the AWS, then all the required wrenches in the task
wrench set can be generated by the robot.

WFW has been extensively used by the researchers. [GKP+08] presents numerical
methods that can be used to determine solutions to the design problem of finding
geometries of fully constrained CDPRs for which a prescribed workspace is fully
inscribed in the WFW. [HFM+05a] presents an approach for the time-optimal
trajectory planning of CDPRs using WFW based on the actuator and cable tension
limits. [LCC18] introduces the concept of a new Cable-Driven Parallel Crane whose
usable workspace is determined with the approach of WFW. [OS14] presents an
optimization based strategy to find an optimal CDPR cable layout, i.e., fixed exit
points and anchor points on the moving-platform, with the objective to maximize
the total orientation of the moving platform determined using WFW.

Wrench Closure Workspace

From a general design point of view, it is of great interest to determine the workspace
that contains the set of moving-platform poses for which any wrench is feasible. Thus
the concept of wrench-closure is introduced that analyzes the ability of the CDPR
moving-platform to support any arbitrary required wrenches. WCW is defined as the
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set of poses of the platform for which any wrench can be generated at the platform
by tightening the cables [GG06, GG05]. A pose of the moving-platform belongs to
the WCW if and only if the static equilibrium of the moving platform is assured by
any non-negative cables tensions.

The WCW is a particular instance of the WFW in which both the required set of
wrenches and the tensions in the cables are not bounded. Hence, unlike the WFW,
the WCW does not depend on the choice of a particular set of wrenches. For CDPRs
having more cables than DoFs, the WCW depends only on the CDPR architecture,
i.e., on the locations of the cable exit points and the positions of the attachment
points of the cables on the moving-platform.

Two necessary conditions must be fulfilled in order to determine the wrench
closure of a given moving-platform pose. Firstly, the wrench matrix defined by
Eq. (3.4) must be full-rank. Secondly, WCW is only applicable on CDPRs with
more cables than DoFs, i.e., WCW can only be traced for the CDPRs whose n-DoF
moving-platform is displaced by at least n+ 1 cables.

WCW has been widely used in grasping problems in order to verify if the gripper
can achieve a stable static equilibrium of the grasped object. A strong similarity
exists between CDPRs and multifinger grasping systems where the wrenches applied
by the cables and fingers have both a unidirectional nature. The connection between
wrench-closure in CDPRs and force-closure grasp (a grasp in which the fingers can
attain a static equilibrium against any arbitrary external wrench applied to the
grasped object) has been presented in [EUV04]. The tools presented in the latter
has been exploited to study the wrench closure in CDPRs. WCW has been studied
for planar CDPRs in [GG06] and for spatial CDPRs in [GMD06].

Other Worksaces for CDPRs
In several applications, the moving-platform may simply have to transport a payload.
This is a particular case of the WFW in which only the gravity wrench due to the
weight of the moving platform is considered. A set of moving-platform poses where
the cables can compensate for its weight are known as Static Feasible Workspace.

Generally, collision free motion is required from the CDPR to prevent any
damage to the CDPR structure and to the objects in the surrounding environment.
Therefore, some other workspaces has been also defined known as Interference Free
Workspace [PCGO10] and Collision Free Workspace [LOZ+09]. Interference Free
Workspace consists of the set of moving platform poses where the cables do not
have any interference with each other. Similarly, the Collision Free Workspace is
compromised of the set of accessible poses of the moving platform where no collision
between the cables and the surrounding environment is guaranteed.

The dynamic equilibrium of the moving platform is investigated using the Dynamic
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Feasible Workspace. By definition, the Dynamic Feasible Workspace is the set of
dynamic feasible moving platform poses. A pose is dynamic feasible if a prescribed
set of moving platform accelerations is feasible, with cable tensions lying in between
given lower and upper bounds. Dynamic workspace has been studied for planar
CDPRs in [BG05] and for spatial CDPRs in [GGC].

2.3.3 Path Planning strategies
Several path planning strategies have been investigated in the literature. Global search
methods such A* and Dijkstra [Dij59], are guaranteed to find optimal trajectories in
a discretized workspace. These algorithms are an ideal choice however they perform
poorly in high dimensions [LaV06] and are seldom used for complex robotic problems
without facilitating search operations by including a heuristic of some kind, for
instance first planning on a lower dimensional manifold [CCL10].

On the other hand, stochastic sampling based motion planning algorithms over-
come the requirement of complete space discretization, by randomly sampling the
state space. The two most popular sampling based planning algorithms are Rapidly-
exploring Random Trees (RRT) [LaV06] and Probalistic Roadmaps [KSLO96]. RRT
grows a tree from an initial configuration in state space to a desired configuration by
generating random control inputs, however a drawback is the requirement to grow a
new tree for any changes in the initial configuration. PRM overcomes this limitation
by simply building a re-usable road-map that covers the region, after which a search
method can be used to rapidly find the shortest path on this road-map. However, this
is no longer valid for dynamic environments. Neither algorithm has optimally guar-
antees, and hence a major improvement is given in [KF11] where two new algorithms
denoted RRT* PRM*, which are provably asymptotically optimal, are proposed.
Nevertheless, in spite of the practical benefit of sampling based algorithms and
their relative ease of implementation there are a number limitations. Convergence
in complex environments requires a large computational time and their finite time
solutions are often of poor quality, indeed the creation of executable trajectories
often necessitates the inclusion of an additional smoothing step, which may affect
the feasibility of the solution. Hence, a popular technique is to initialize a trajectory
optimization algorithm using sampling based methods for instance [KBA17]. Addi-
tionally, it is difficult to embed large number kinodynamic constraints, crucial for
CDPRs, in such algorithms. In particular such constraints may lead to unintuitive
trajectory selections [MSJ+11, AGV+14]. Sampling based methods must be tuned
in order to overcome the well-known narrow passage problem[VS18]. Finally, these
methods are unsuitable for systems where the planning problem changes with discrete
events for instance for locomotion or pushing tasks, where intermediate contact is
made with the environment [OLP19, OLP18].



60 Chapter 2. State of the art

In contrast, trajectory optimization methods can take into account complex
state and environmental constraints. The simplest trajectory optimization approach,
known as the shooting method, selects control inputs and simulates the resulting
motion [Bet98, DBDW06]. The inputs are tuned using the error between the actual
final state and a desired final state. The main advantage of shooting methods is
the guarantee that if a resulting solution is obtained, this solution is continuously
feasible. However, single shooting methods require a very good initial guess or
have trouble finding solutions, often leading to a locally optimal solution in the
neighborhood of the initial guess. This problem may be alleviated by breaking the
trajectory into segments and solving a shooting problem at each segment, known
as multi-shooting [Kel17]. Furthermore, both sampling based methods and direct
transcription methods may be used to obtain an initial guess before using the shooting
method.

On the contrary, direct transcription or collocation methods [PMN+16, WFP+17],
discretize the trajectory into node points. The states and control variables at each
node form the decision variables, while the system evolution i.e, the dynamics between
each node, must be defined in the constraint equations. Often the formulation of the
direct transcription method leads to complexities [PMN+16] while also increasing the
overall problem dimension and therefore the overall computational overhead. Indeed
specialist software (SNOPT) [GMS05] is often required to aid the implementation.
However, direct transcription methods are sparse and the smoothness of the resulting
equations increases computational efficiency [Hub14]. Direct transcription methods
have been successfully applied to robotic system and scenarios with highly non-linear
properties [PCT14, OLP19, LKOP19]. However, unlike shooting method since
dynamics are approximated between each node the results may not be executable on
hardware and thus require post processing.

2.4 Conclusion
This chapter starts by giving a detailed review on classical Cable-Driven Parallel
Robots (CDPRs) and Reconfigurable Cable-Driven Parallel Robots (RCDPRs).
It presents a wide range of their diverse applications. The variety of prototypes
developed in the literature reflects the large number of possibilities offered by the
cable-driven mechanisms. However, it was discussed in Chapter 1 that the classical
CDPRs face several limitations mainly with its fixed cable layout.

The goal of this thesis is to study and develop a robotic system that is capable
of generating all the six degrees-of-freedom of the end-effector while being capable of
applying the wrenches in a large and cluttered environment. In order to develop such a
system, we came up with the idea of Mobile Cable-Driven Parallel Robots (MCDPRs)
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which has the ability to fulfill this requirement. To develop such a hybrid manipulator,
we need to answer several research issues. Firstly, in order to design MCDPRs,
we require appropriate tools to trace their workspaces. Secondly, for the control
purposes, we require a feasible Tension Distribution Algorithm for the MCDPR
cables. Moreover, in order to perform the desired tasks, we also need the trajectory
planning algorithm for MCDPRs.

Section 2.3 briefly presented the state of the art on the aforementioned research
issues associated to cable driven mechanisms. Firstly, different existing methodologies
to calculate the force distribution among the cables of a CDPR were presented. Later
on, a detailed review was presented on the existing methodologies used for the
workspace analysis of CDPRs. Finally, a detailed study was presented on existing
path planning strategies.

To the best of our knowledge, those research issues have not been tackled for
MCDPRs in the literature yet. Therefore, in this thesis, we have done extensive
studies on MCDPRs. Chapter 3 presents a real-time Tension Distribution Algorithm
for MCDPRs. Chapter 4 describes a strategy to trace the workspace of MCDPRs.
Finally, the task-based trajectory planning strategies are presented in 6.
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A real-time control of a MCDPR demands for a real-time cable tension distri-
bution. To avoid steps in the motor torques, the calculated tension distribution
among the cables also has to be continuous along the trajectory. Consequently,
a good TDA is expected to provide a real-time and continuous solution for the
cable tensions. An algorithm is said to be real-time capable if the computation
time is reasonably short, the worst-case computation time can be strictly bounded
and a real-time implementation was reported in the literature [Pot14]. For most of
the TDAs presented in Sec. 2.3.1, finding a suitable distribution of cable tensions
is formulated as an optimization problem, which generally expensive in terms of
computation time because of their iterative nature. Consequently, for real-time
applications, a non-iterative approach is preferred. Therefore, a geometric algorithm,
such as Centroid/Barycentric approach is also required for determining the feasible
distribution of the cable tensions for a MCDPR.

The following sections are focused on extending the aforementioned geometric
TDA developed for classical CDPRs in [LG13a, GLRB15] to MCDPRs, while main-
taining the ability to compute a continuous solution of the cable tensions in real-time.
The presented algorithm is applicable up to two degrees of actuation redundancy.
In case of CDPRs, the algorithm forms a Feasible Cable Tension Domain (FCTD)
representing the set of feasible tensions based on their lower and upper bounds.
In contrast to classical CDPRs, FCTD for MCDPRs must take into account the
conditions associated with the static equilibrium of the mobile bases derived in
Sec. 3.1. The aforementioned FCTD is discussed in Sec. 3.2. Accordingly, a new
TDA aiming at obtaining the centroid/barycenter of the modified FCTD is presented
in Sec. 3.3. Three case studies are discussed in Sec. 3.4 to evaluate the output of the
presented TDA. Finally, Sec. 3.5 concludes this chapter.

3.1 Static Equilibrium of MCDPRs

A MCDPR is in static equilibrium if and only if (iff) its moving-platform and mobile
bases are all in static equilibrium. Therefore, the static equilibrium conditions of the
moving-platform and the mobile bases of MCDPRs are formulated in this section.
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3.1.1 Static Equilibrium of the Moving Platform

The static equilibrium equations of the moving-platform are expressed as [KI93,
HFM+05b]:

p∑
j=1

mj∑
i=1

uijtij = f , (3.1a)

p∑
j=1

mj∑
i=1

crijtij = m, (3.1b)

where f = [fx, f y, f z]T and m = [mx,my,mz]T denote the forces and moments
applied by the cables onto the moving platform. crij gives the direction of the
actuation moment applied by the cable Cij onto the moving-platform expressed as:

crij = rij × uij, (3.2)

where rij is a vector pointing from the origin OP of the moving-platform frame FP

to the cable anchor point Bij. The static equilibrium of the moving-platform is
expressed in a matrix form as:

Wt = w, (3.3)

where W is a (n ×m) wrench matrix mapping the cable tension vector t ∈ Rm

onto the wrenches w ∈ Rn applied by the cables onto the moving-platform.

W =
[
W1 . . . Wj . . . Wp

]
, (3.4)

w =
 f
m

 , (3.5)

t =
[
t1 . . . tj . . . tp

]T
. (3.6)

Wj is a (n ×mj)-dimensional matrix whose columns are the actuation wrenches
exerted by the cables attached to Mj. tj is a mj-dimensional cable tension vector
corresponding to the cables connected to Mj.

tj =
[
t1j . . . tij . . . tmjj

]T
, (3.7a)
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Wj =
[
w1j . . . wij . . . wmjj

]
. (3.7b)

wij is the actuation wrench generated by the cable Cij and is expressed as:

wij =
uij

crij

 . (3.8)

The cable tension are all bounded between a minimum and positive tension tij and a
maximum tension tij

t ≤ t ≤ t, (3.9)

where

t =
[
t11 t21 . . . tm11 t12 . . . tm22 t13 . . . tmpp

]T
, (3.10a)

t =
[
t11 t21 . . . tm11 t12 . . . tm22 t13 . . . tmpp

]T
. (3.10b)

3.1.2 Static Equilibrium of Mobile Bases
The static equilibrium of a wheeled mobile base can be characterized by its tipping
and sliding conditions. To obtain the effect of these conditions on the wrench
abilities of the moving platform, the latter must be first expressed in terms of the
cable tensions. From Fig. 1.4b, equilibrium conditions of Mj can be expressed
as [RLMGC18d]:

wgj +
cj∑

k=1
fckj
−

mj∑
i=1

tij = 0 (3.11a)

gj ×wgj +
cj∑

k=1
ckj × fckj

−
mj∑
i=1

bij × tij = 0 (3.11b)

where fckj
= [fx

ckj
, f y

ckj
, f z

ckj
] denotes the ground contact force at Ckj. gj denotes the

Cartesian coordinate vector of the center of gravity Gj. ckj denotes the Cartesian
coordinate vector of the wheel contact point Ckj. bij denotes the Cartesian coordinate
vector of the platform attachment points Bij. wgj is the weight vector of Mj. The
aforementioned vectors are all expressed in the base frame F0.

Equations (3.11a) and (3.11b) represent the classical static equilibrium conditions
of Mj in terms of the cable tensions. From those equations, Secs. 3.1.2.1 and 3.1.2.2
formulate the static equilibrium conditions corresponding to the tipping and sliding
conditions of mobile bases in terms of cable tensions.
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Figure 3.1: Footprint of Mj with cj = 6 wheels

3.1.2.1 Tipping conditions of the Mobile Bases

The equilibrium towards the tipping of a wheeled robot is defined by an index named
Zero-Moment Point (ZMP) [LGW14, SB04, VB04]. It is the point where the moment
of ground contact forces is reduced to the pivoting moment of friction forces about an
axis normal to the ground. It amounts to the point where the sum of the moments
due to planar ground reaction forces is null. The ZMP of Mj, denoted by Czj, can
be calculated from the wheel contact points Ckj, k = 1, . . . , cj as [Rud14]

czj =
∑cj

k=1 ckjf
z
ckj∑cj

k=1 f
z
ckj

, (3.12)

where czj denotes the Cartesian coordinate vector of Czj. The tipping conditions
depend on the moments generated at the boundaries of the mobile base footprint.
The footprint is formed by joining the contact points Ckj, k = {1, . . . , cj}, selected
counter-clockwise (See Fig. 3.1). The boundary between the two consecutive contact
points Ckj and Ck+1j of Mj is denoted as LCkj

of unit vector uCkj
. Let mCkj

be
the moment generated about LCkj

at the instant when Mj loses contact with the
ground at the points which do not form the boundary LCkj

,

mCkj
= uT

Ckj
((gj−ckj)×wgj) +

mj∑
i=1

uT
Ckj

((ckj−bij)×uij)tij, k = 1, . . . , cj. (3.13)

For Mj to be in static equilibrium, mCkj
, k = 1, . . . , cj , should be negative, namely,

mCkj
≤ 0, k = 1, . . . , cj. (3.14)

Equation (3.14) defines the tipping conditions of Mj expressed in terms of the cable
tensions tij, i = 1, . . . ,mj. Each kth boundary LCkj

is associated with a single
tipping condition. It means that the total number of tipping conditions to be satisfied
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Figure 3.2: Linearized friction pyramid at ZMP (Czj)

for Mj to be in static equilibrium is equal to the number of wheels cj.

3.1.2.2 Sliding conditions of the Mobile Bases

A commonly used model of friction in robotic manipulation is Coulomb law. The law
states that the friction force magnitude in the tangent plane at the contact interface
is related to the normal force magnitude by the friction coefficient µ. Two friction
coefficients are usually defined, a static friction coefficient and a kinetic (or sliding)
friction coefficient. For simplicity, we will assume the simplest Coulomb friction
model with a single friction coefficient which is reasonable for hard and dry materials.

The friction laws can be interpreted in terms of a friction cone where the contact
forces must stay within the cone in order to avoid relative sliding between the
contacting bodies. Hence, the sliding conditions are defined by a friction cone at
each wheel of the mobile base. For the mobile base to be in static equilibrium, the
ground contact force fckj

at Ckj must be within the corresponding kth friction cone.
The frictional effects due to the wheel contact points can be represented as a single
friction cone located at the ZMP expressed as,√

bjfx
czj

2 + bjf y
czj

2 ≤ µ bjf z
czj
, (3.15)

where bjfczj
= [bjfx

czj

bjf y
czj

bjf z
czj

]T represents the ground contact force at ZMP
expressed in frame Fbj. For sake of simplicity and ease of analysis, the sliding
condition is linearized and the friction cone becomes a four-sided friction pyramid
[SCBK17, CPN17] as shown in Fig. 3.2. Consequently, Eq. (3.15) is simplified as
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follows:
1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ

 bjfczj
≤ 04, (3.16)

where µ denotes the friction coefficient between the ground and the wheels of Mj.
Equation (3.16) can be represented in the base frame F0 as

EF
0fczj

≤ 04, (3.17)

where

0fczj
= 0Rbj

bjfczj
, (3.18)

EF =


1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ

 bjR0, (3.19)

04 =
[
0 0 0 0

]T
. (3.20)

0Rbj denotes the rotation matrix from F0 to Fbj . Accordingly, bjR0 is the inverse of
0Rbj. 0fczj

= [0fx
czj

0f y
czj

0f z
czj

]T denotes the ground contact forces at ZMP expressed
in F0:

0fczj
=

cj∑
k=1

fckj
= −wgj +

mj∑
i=1

uijtij. (3.21)

Let Eg
F denotes the gth row of EF , g = 1, . . . , 4. Substituting Eq. (3.21) in Eq. (3.17),

the sliding condition associated to the gth boundary of the friction pyramid can be
expressed as:

mj∑
i=1

Eg
F uijtij − Eg

F wgj ≤ 0, g = 1, . . . , 4 (3.22)

As a result, Eq. (3.22) defines the sliding conditions associated with Mj formulated
in the form of a linearized friction pyramid in terms of the cable tensions tij,
i = 1, . . . ,mj.
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3.2 Feasible Cable Tension Domain of MCDPRs

For classical CDPRs, the FCTD takes the shape of a (m− n)-dimensional convex
polytope. It is formed by mapping the constraints associated to the cable tension
limits into the nullspace of the wrench matrix W. However, due to the additional
static equilibrium conditions discussed in Sec. 3.1.2, the classical approach is not
sufficient to fully characterize the FCTD of MCDPRs [RLMGC18d]. As a conse-
quence, this section presents FCTD for MCDPRs which takes into account the static
equilibrium conditions of the MCDPR mobile bases in addition to the cable tension
limits.

3.2.1 FCTD based on cable tension limits

The FCTD for classical CDPRs is formed by mapping the cable tension limit
constraints into the null space of the wrench matrix W. If the wrench matrix is full
rank, the particular solution of Eq. (3.3), denoted by tP is expressed as,

tP = W+w, (3.23)

where W+ is the Moore Penrose pseudo inverse of the wrench matrix W. A
homogeneous solution tN can be added to the particular solution tP such that:

t = tP + tN =⇒ t = W+w + Nλ (3.24)

where N is the m× (m− n) null space projector of the wrench matrix W, defined
as:

N =



n11

n21
...

nm11

n12
...

nmpp


(3.25)

where each component nij of N in Eq. (3.25) is a (1 × (m − n)) row vector. λ is
a (m− n) dimensional arbitrary vector that moves the particular solution into the
feasible range of cable tensions. The columns of N form a basis of the nullspace
of W. tP is the minimum-norm solution of Eq. (3.3) and tN is the homogeneous
solution that maps λ in to the nullspace of W. According to [LG13a, GLRB15],
there exists a (m−n)-dimensional affine space Σ defined by the solution of Eq. (3.23)
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and another m-dimensional hypercube Ω defined by the feasible cable tensions:

Σ = {t | Wt = w} (3.26)

Ω = {t | t ≤ t ≤ t} (3.27)

The intersection between these two spaces (Σ∩Ω) amounts to a (m−n)-dimensional
convex polytope. Such a polytope exists if and only if the tension distribution admits
at least one solution that satisfies the cable tension limits as well as the equilibrium
of the moving-platform. The (m− n)-dimensional convex polytope is formulated by
the linear inequalities that can be acquired by substituting Eq. (3.24) in Eq. (3.9):

t ≤ tP + Nλ (3.28a)

tP + Nλ ≤ t (3.28b)

Combining the above equations yield:

t− tP ≤ Nλ ≤ t− tP . (3.29)

The above mentioned linear inequalities form a (m−n)-dimensional convex polytope
in the λ-space associated with the constraints on the cable tension limits. Thus, for
a given moving-platform pose of a CDPR, its FCTD corresponds to the (m − n)-
dimensional convex polytope, denoted as ACDP R, can be expressed as:

ACDP R = {λ ∈ Rm−n | t− tP ≤ Nλ ≤ t− tP}. (3.30)

It should be noted that in case of one degree of actuation redundancy, i.e. a CDPR
with n+ 1 cables, the feasible polytope is one dimensional space, i.e., a line.

3.2.2 FCTD based on the tipping conditions of the mobile bases

This section aims at defining the FCTD of MCDPRs by considering the additional
static equilibrium conditions associated with the tipping condition of the mobile
bases presented in Sec. 3.1.2.1. To include the aforementioned conditions of the
mobile bases into the FCTD of CDPRs, they must be first expressed in the λ-space
by substituting the cable tension tij into the tipping conditions (Eq. (3.14)). From
Eq. (3.24), the cable tension tij can be expressed as:

tij = tP ij + nijλ, (3.31)
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where tP ij represents the particular (minimum-norm) solution of the cable Cij. By
substituting Eq. (3.31) into Eq. (3.13), the tipping conditions of Mj takes the form:

mj∑
i=1

uT
Ckj

((ckj − bij)× uij) nijλ ≤ −uT
Ckj

((gj − ckj)×wgj)

−
mj∑
i=1

uT
Ckj

((ckj − bij)× uij) tP ij, k = 1, . . . , cj.

(3.32)

For simplification, Eq. (3.32) can also be expressed in the following form:

nCkj
λ ≤ −MCkj

, k = 1, . . . , cj. (3.33)

where

MCkj
= uT

Ckj
((gj − ckj)×wgj) +

mj∑
i=1

uT
Ckj

((ckj − bij)× uij) tP ij (3.34)

nCkj
=

mj∑
i=1

uT
Ckj

((ckj − bij)× uij) nij (3.35)

MCkj
represents the tipping moment of Mj about LCkj

due to its weight and the
particular solution of the cable tensions tij, i = 1, . . . ,mj. Equation (3.33) defines
the tipping condition for the mobile bases expressed in Eq. (3.14) in the λ-space.
Similarly, the complete system of tipping conditions for a MCDPR can be expressed
in the λ-space as:

m ≤ NC λ ≤ m (3.36)

where

NC =



nC11

nC21
...

nCc11
...

nCcpp


, m =



−∞
−∞
...
−∞
...
−∞


, m =



−MC11

−MC21
...

−MCc11
...

−MCcpp


. (3.37)

The term −∞ are added for the sake of algorithm [GLRB15] as the latter requires
both lower and upper bounds. Equation (3.36) defines FCTD associated to the
tipping conditions of the MCDPR mobile bases.
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3.2.3 FCTD based on the sliding conditions of the mobile bases

Similar to the previous section, the FCTD associated with the sliding conditions can
be defined by mapping the latter into the λ-space. It can be acquired by substituting
the cable tension tij from Eq. (3.31) expressed as a function of λ in the sliding
conditions of Mj define in Eq. (3.22).

mj∑
i=1

Eg
F uijnijλ ≤ Eg

F wgj −
mj∑
i=1

Eg
F uijtP ij, g = 1, . . . , 4. (3.38)

Equation (3.38) can also be expressed in simplified form as:

nF gjλ ≤ F gj, g = 1, . . . , 4, (3.39)

where

nF gj =
mj∑
i=1

Eg
F uijnij, (3.40)

F gj = Eg
F wgj −

mj∑
i=1

Eg
F uijtP ij. (3.41)

Equation (3.39) defines the sliding conditions of Mj into the λ-space. Similarly, the
complete system of sliding conditions for a MCDPR can be expressed in the λ-space
as:

f ≤ Nf λ ≤ f , (3.42)

where

Nf =



nF 11
...

nF 41

nF 12
...

nF 4p


, f =



−∞
...
−∞
−∞
...
−∞


, f =



F 11
...
F 41

F 12
...
F 4p


. (3.43)

3.2.4 FCTD of MCDPRs

Let A denote the FCTD of MCDPRs. It is formed by mapping the static equilibrium
conditions expressed in λ-space (Eqs. (3.36 and (3.42)) onto the (m−n)-dimensional
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FCTD, ACDP R, formed by the cable tension limits defined by Eq. (3.29).

A =
λ ∈ Rm−n |


t− tP

m
f

 ≤


N
NC

NF

λ ≤

t− tP

m
f


. (3.44)

In the following sections, A will be referred to as the feasible polytope.

3.3 Real-time and continuous TDA for MCDPRs
The inequality constraints from Eq. (3.44) are used to compute the feasible distribu-
tion of tensions among the cables using a TDA. As discussed earlier, in this section
an existing geometric TDA defined for classical CDPRs is extended to MCDPRs.
The proposed algorithm only deals with MCDPRs having up to two degrees of
actuation redundancy. Section 3.3.1 presents a TDA for MCDPRs with two degrees
of actuation redundancy. Accordingly, Sec. 3.3.2 discusses a TDA for MCDPRs with
one degree of actuation redundancy.

3.3.1 MCDPRs with two degrees of actuation redundancy
For the MCDPRs with n-DoF moving-platform pulled by n+ 2 cables, A takes the
form of a two-dimensional convex polygon. Each inequality constraint from Eq. (3.44)
defines a two-dimensional line in the λ = [λ1 λ2] space, where the coefficients of λ
define the slope of the corresponding lines. The intersections between these lines
form a feasible polygon. The presented TDA aims to find the vertices of the feasible
polygon or prove that the A is null. If the feasible polygon exists and is determined,
then the centroid of the polygon is calculated. This is the solution that is furthest
from all inequality constraints. Finally, the λ coordinates of the centroid are used to
compute the feasible distribution of tension among the cables using Eq. (3.24). The
algorithm is briefly explained below.

The algorithm starts with the intersection point wij between any two inequality
lines Li and Lj, where each intersection point wij corresponds to a specific value of
λ. After reaching the intersection point wij , the algorithm leaves the current line Lj

and follows the next line Li in order to find the next intersection point wki with line
Lk.

The feasible polygon A is associated with the feasible index set I. The feasible
index set at a given point λ is the set consisting of the indices of the rows of Eq. (3.44)
satisfied at λ, e.g., if the rows 1, 5, 7, and 9 are satisfied, the corresponding feasible
index set is I = {1, 5, 7, 9}. At each intersection point, the feasible index set is
unchanged or modified by adding the corresponding row index of Eq. (3.44). It
means that for each intersection point, the number of rows from Eq. (3.44) satisfied
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at current intersection point should be greater than or equal to the number of rows
satisfied at previous visited points. Accordingly, the algorithm makes sure to converge
toward the solution. The algorithm keeps track of the intersection points and updates
the first vertex of the feasible polytope, denoted as wf , which depends on the update
of feasible index set I. If the feasible index set is updated at intersection point w,
the first vertex of the polytope is updated as wf = w.
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Figure 3.3: MoPICK configuration and Desired Trajectory

Let’s consider that the algorithm has reached a point wcb by first following line La,
then following Lb intersecting with line Lc. The feasible index set Icb at wcb should be
such that Iba ⊆ Icb. If index c is not available in Iba, then Icb = Iba ∪ c as the row c

is now satisfied. Accordingly wf = wcb will become the first vertex of the polytope.
At each update of the feasible index set I, a new feasible polytope is achieved and
the first vertex wf of the polytope is replaced by the current intersection point.
This procedure is repeated until a feasible polytope (if it exists) is found, which is
determined by visiting wf more than once. After computing the feasible polytope,
its centroid, namely the solution furthest away from all the constraints is calculated.
The λ coordinates of the centroid is used to calculate the feasible tension distribution
using Eq. (3.24). The evolution of the algorithm and the resulting feasible polygon
is presented for two different case studies in the following sections.

3.3.1.1 Case Study: Planar MCDPR with two mobile bases and four cables connected
to a point mass moving-platform
The first case study is a planar MCDPR with p = 2 mobile bases carrying m = 4
cables and an n = 2-DoF point mass moving-platform shown in Fig. 3.3. The feasible
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equilibrium conditions of a 2-DoF point mass MCDPR case study

polygon ACDP R based only on the cable tension limits is illustrated in Fig. 3.4, while
the feasible polygon A based on the cable tension limits and the static equilibrium
of the mobile bases is illustrated in Fig. 3.5.

The algorithm starts at an initial intersection point w1 = winit. The arrows indi-
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cate the evolution of the algorithm. For determining ACDP R, the algorithm proceeds
as follows w1, w2, w3, w4, w5, w6, w7, w8 and terminates at wf = w3 as this intersection
point was already visited before. For the determination of A, the algorithm proceeds
as follows w1, w2, w3, w4, w5, w6, w7, w8, w9, , w10 and finally terminates at w5 = wf . It
can be observed that A is smaller than ACDP R and, as a consequence, their centroids
are different. The λ coordinates of ACDP R (A, resp.) centroid is [−32.3, 228.5]
([3.1481, 213.6], resp.).

x [m]

y
 [m]

z 
[m

]

3.5 m

P
1

P
2

P
3

0

Object to
 be picked

Desired
Trajectory

G
1

G
2

0

0

1

2

11

21

31

41

12

22

32

42

Figure 3.6: FASTKIT configuration and desired pick-and-place task

3.3.1.2 Case Study: FASTKIT

The second case study is a MCDPR prototype FASTKIT. It consists of two mobile
bases carrying a CDPR with two degrees of actuation reduncancy. The studied
configuration of the FASTKIT is shown in Fig. 3.6. Accordingly, for the moving-
platform to be in static equilibrium, the polygons ACDP R and A are illustrated in
Figs. 3.7 and 3.8, respectively. Similar to the previous case study, the algorithm
starts at initial intersection point w1 = winit and evolves as indicated by the arrows.
ACDP R is determined by following order of the intersection points w1, w2, . . . , w14

and finally terminates at w9 = wf . Similarly, A is determined by following order of
the intersection points w1, w2, . . . , w13 and terminates at w9 = wf . Similarly as in
previous case study, it can be observed that the additional constraints reduce the
size of the feasible polygon A when compared to ACDP R. The λ coordinates of the



78 Chapter 3. Tension Distribution Algorithm for MCDPRs

-400 -300 -200 -100 0 100 200 300 400 500
-500

-400

-300

-200

-100

0

100

1

2

Min Cable Tension Constraints Max Cable Tension Constraints

l

l

Centroid

CDPR

w init=

w2

w3

w4

w5

w6

w7

w8

w1

w10

w11

w12

w13w14
w9 =wf

L11,min

L21,min

L31,min

L41,min

L12,min

L22,min

L32,min

L41,min

L11,max

L21,max

L31,max

L41,max

L12,max

L22,max

L32,max

L41,max

Figure 3.7: Feasible Polygon considering only cable tension limits of FASTKIT
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Figure 3.8: Feasible Polygon considering both cable tension limits and static equilib-
rium conditions of FASTKIT

centroids of ACDP R and A are [178.4619, −237.6105] and [176.0786, −234.4328],
respectively.

3.3.2 MCDPRs with one degree of actuation redundancy

For MCDPRs with n-DoF moving-platform pulled by n+ 1 cables, A takes the form
of a one dimensional space, i.e., a single dimensional line. Thus, each inequality
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Figure 3.9: MoPICK configuration and Desired Trajectory

constraint from Eq. (3.44) is reduced to an intersection point on a single dimensional
λ-axis. As a consequence, to find the acceptable distribution of the cable tensions,
we have only one DoF to move on a straight line via choosing a suitable λ. In such
a scenario, the feasible polygon will be composed of only two vertices, which are
defined by the two inequality constraints from Eq. (3.44), whose intersection on
the λ-axis satisfy all the rows of Eq. (3.44). Finally, the centroid of the feasible
polygon is used to compute the feasible distribution of tension among the cables
using Eq. (3.24). Based on the above discussion, a simple TDA for MCDPRs with
one degree of actuation redundancy can be provided as:

– Compute the λ-intersections for each inequality constraint from Eq. (3.44).
– For each λ-intersection, compute the corresponding feasible index set I.
– If the feasible polygon exists, there must be two λ-intersections that satisfy all

the inequalities of Eq. (3.44), i.e., the feasible index set I contains the indices
of all the rows of Eq. (3.44).

– Finally, the centroid of the feasible polygon is computed and is used to calculate
the feasible cable tension distribution.
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Figure 3.11: Feasible Polygon considering both cable tension limits and the static
equilibrium conditions of MoPICK

3.3.2.1 Case Study: MoPICK

To examine the FCTD of a MCDPR with one degree of actuation redundancy, we have
considered MoPICK with the configuration understudy shown in Fig. 3.9. For the
moving-platform position to be in static equilibrium, the feasible polygons ACDP R

and A are illustrated in Figs. 3.10 and 3.11, respectively. Similar to the earlier
case studies, it is evident that the additional static equilibrium conditions of the
mobile bases reduce the space of feasible cable tension solutions which satisfy all the
constraints of Eq. (3.44). The λ coordinate of ACDP R centroid is 0, while of A is
1.29, respectively.

3.4 Results of TDA for a desired trajectory

For each MCDPR case study presented in the previous section, the proposed TDA is
validated through simulation on a prescribed test trajectory. The algorithm is assessed
based on the continuity of the solution for the cable tensions, while respecting the



3.4 Results of TDA for a desired trajectory 81

constraints associated to the cable tension limits and the static equilibrium conditions
of the mobile bases.

The constraints associated to the cable tension limits are simply evaluated by
verifying the solution of cable tension lies within its lower and upper bounds t and
t. The tipping conditions are evaluated based on the evolution of the ZMP. For a
concise comparison, the ZMP of each mobile base is normalized between 0 and 1, and
is referred to as normalized ZMP, i.e., if normalized ZMP stays within the defined
limits of 0 and 1, Czj stays within the boundaries of the wheels footprint and all the
tipping conditions associated with Mj are satisfied.

3.4.1 Case Study: Planar MCDPR with two mobile bases and four cables
connected to a point mass moving-platform

For the case study of a MCDPR with a two DoF point mass moving-platform, the
proposed TDA is validated on a test trajectory depicted in Fig. 3.3. It is rectangular
test trajectory designed to displace the point mass moving-platform by sequentially
passing through the points P 1 to P 4. Each corner of the rectangular test trajectory
is a zero velocity point. Total trajectory time is 10 s having 3 s for P 1P 2 and P 3P 4

path while 2 s for P 2P 3 and P 4P 1 path. The moving platform has a mass of 8 kg
while each mobile bases is 150 kg. Dimension of each mobile base is 0.75× 0.64× 0.7
m3. The distance between the two mobile bases is 6 m while the exit points A2j are
located at the height of 3 m. Lower and upper bounds on the cable tension are set
to 0 N and 280 N , respectively.

The evolution of normalized ZMP is illustrated in Fig. 3.12. As mentioned earlier,
the normalized ZMP must lie in between 0 and 1 for the mobile bases to be in
the state of static equilibrium with respect to the tipping conditions. If only the
constraints associated to the cable tension limits are considered, the mobile bases
will tip over during the path 2 − 3 and 4 − 1 as ZMP exits the support polygon.
While considering both cable tension limits and the static equilibrium conditions
associated to the mobile bases, the desired trajectory is completed with the ZMP
remaining within the support polygon. Fig. 3.13 depicts the cable tensions computed
using the FCTD for MCDPRs. The cable tensions are within their respective bounds
throughout the trajectory.

A video showing the evolution of the feasible polygon as a function of time con-
sidering only tension limit constraints and both tension limits and static equilibrium
conditions of the mobile bases can be seen at1. This video also shows the location
the mobile base ZMP as well as some example tipping configurations of the mobile
cable-driven parallel robot under study.

1https://drive.google.com/open?id=1q9GT4hBtZjcmbamsCNy5UIeoGviN8NG0

https://drive.google.com/open?id=1q9GT4hBtZjcmbamsCNy5UIeoGviN8NG0
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3.4.2 FASTKIT

To study the results of the proposed TDA on FASTKIT, a pick-and-place trajectory
is designed depicted in green in Fig. 3.6. The total trajectory time is set to 10 s
and is composed of two distinct paths, i.e., P 1P 2 and P 2P 3, each with maximum
duration of 5 s. The mass of the moving-platform is set to 10 kg and each mobile
base is 150 kg. The trajectory is started with the moving-platform is at P 1 followed
by P 2. An object of 5 kg must be picked at P 2 from the shelf increasing the total
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weight of the moving-platform to 15 kg during the path P 2P 3.
Lower and upper bounds on the cable tension are set to 0 N and 200 N , respec-

tively. The evolution of normalized ZMP for the desired trajectory is illustrated in
Fig. 3.14. It can be observed that by considering only the constraints associated to
the cable tension limits, both the mobile bases tip over as ZMP exits the support
polygon. While taking into account both the cable tension limits and the static equi-
librium conditions associated to the mobile bases, the desired trajectory is completed
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with the ZMP remaining within the support polygon. The evolution of the cable
tensions computed by the modified TDA is shown in Fig. 3.15. It is evident that the
modified TDA generates a continuous profile of the cable tensions, which are kept
within their respective bounds throughout the trajectory. A discontinuity at time
equals to 5 s is due to the change in the moving-platform weight, when the object is
picked from the shelf.

3.4.3 MoPICK
A circular trajectory designed to study the proposed TDA on MoPICK and is
depicted in green in Fig. 3.9. The total time to complete the circular trajectory is
set to 10 s. The weight of the point mass moving-platform is 1 kg, while the weight
of each mobile base is 5 kg. The cable tension lower bound is null while the cable
tension upper bound is set to 15 N .

The evolution of normalized ZMP for the desired circular trajectory is illustrated
in Fig. 3.16. It can be observed that by considering only the constraints associated
to the cable tension limits, the mobile base M1 tips over as its ZMP goes out of the
footprint boundary. While taking into account both the cable tension limits and the
static equilibrium conditions associated to the mobile bases, the desired trajectory
is completed with the ZMP of all the mobile bases remaining within the support
polygon. The evolution of the cable tensions computed by the modified TDA to
generate the desired wrenches on the moving-platform is shown in Fig. 3.17. Similar
to the previous case studies, the modified TDA generated a continuous profile of the
cable tensions, which are within their respective bounds throughout the trajectory.

A simulation video illustrating the evolution of the feasible polygon as a function
of time for the desired circular trajectory considering both cable tension limits and
the static equilibrium conditions of the mobile bases can be seen at2.

3.5 Conclusion
Due to the uni-directional nature of cables, over-constrained CDPRs, i.e., CDPRs
with more cables than the DoF of their moving-platform, are preferred in numerous
applications. However, this leads to actuation redundancy. The control of such
redundantly actuated manipulators requires a real-time algorithm that can compute
continuous distribution of the cable tensions by considering its lower and uppers
bounds imposed by the actuators and the transmission systems. For classical CDPRs,
a geometric approach known as Barycenter/Centroid is frequently used to acquire a
real-time, continuous feasible solution of the cable tensions. However, the approach is
not directly applicable to MCDPRs due to the additional conditions associated with

2https://drive.google.com/open?id=1pmtTmMpQrLgu_vogtv2183HFOAXGpSE8

https://drive.google.com/open?id=1pmtTmMpQrLgu_vogtv2183HFOAXGpSE8
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the static equilibrium of the mobile bases. Therefore, this chapter has introduced a
real-time TDA by extending the classical Barycenter/Centroid method to MCDPRs.

Initially, the static equilibrium conditions of MCDPRs are studied. In contrast to
a classical CDPR, which only considers the static equilibrium of the moving-platform,
for MCDPRs the additional conditions associated with the mobile bases must be
taken into account. The equilibrium of the mobile bases is characterized by their
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tipping and sliding conditions. The tipping conditions depends on the moment
generated at the boundaries of the mobile base footprint. This moment uniquely
depends on the weight of the mobile base and the tension in the cables attached to
it. Likewise, the sliding conditions also depend on the weight of the mobile base and
those cable tensions. However, the sliding conditions are represented in the form of
a friction cone. For ease of analysis, the non-linear sliding conditions are linearized
and the friction cone becomes a four-sided friction pyramid.

Using the aforementioned static equilibrium conditions, a real-time TDA is
developed for MCDPRs. The proposed algorithm forms a FCTD representing the set
of feasible tensions based on the cable tension limits and the conditions associated
with the static equilibrium of the mobile bases. This FCTD takes the form of a
(m − n)-dimensional convex polytope. The presented TDA finds the vertices of
the feasible polygon or proves that it is null. If the feasible polygon exists and is
determined, then the centroid of the polygon will be calculated, which amounts
somehow the solution as far as possible from the constraints. The coordinates of the
centroid are used to compute the feasible distribution of the cable tensions. The
obtained results show that the new set of constraints developed for MCDPRs (Eq.
(3.44)) are sufficient to compute feasible cable tensions such that they stay within
the required set of limits while ensuring the stability of all the mobile bases. The
proposed algorithm was investigated on multiple case studies including FASTKIT
and MoPICK. The algorithm is relevant for real-time implementations, however, it
has only been validated up to two degrees of actuation redundancy.
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In many applications, it is required that the end-effector operates in a particular
workspace with the ability to exert a set of wrenches. In this case, it is appropriate
to consider the Wrench feasible workspace. Moreover, WFW is more relevant from a
practical viewpoint. Despite the fact that much work has been done in the area of
generating WFW workspace of classical CDPRs, however, these techniques cannot
be directly used for MCDPRs due to the additional conditions associated with the
static equilibrium of the mobile bases derived in Chapter 3. Hence, this chapter
presents a methodology to determine the Wrench-Feasible Workspace of MCDPRs.
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Figure 4.1: Methodology used to determine the WFW of a MCDPR

As mentioned earlier, WFW is defined as the set of moving-platform poses for
which the required set of wrenches can be balanced by the AWS, i.e., the wrenches
generated by the cables on the moving-platform. It is shown in [BGM10, GK10]
that the AWS of a classical CDPR takes the form of a n-dimensional zonotope
which is a special class of convex polytope. A zonotope is a type of polytope that
is centrally symmetric. Each face of a zonotope has another face that is parallel to
it [Grü03]. The two widely used approaches to construct convex polytopes are V -
representation, known as the Convex Hull approach, and H -representation, known
as the Hyperplane Shifting Method (HSM).

Determination of the AWS requires a cable tension space. The cable tension space
illustrates the region of acceptable tensions in the cables that can keep the robot
in equilibrium. The cable tension space of classical CDPRs is formed only by the
cable tension limits tij and tij. Contrary to classical CDPRs, the static equilibrium
of the mobile bases, characterized by its tipping and sliding conditions, should be
taken into account in addition to the cable tension limits to determine the cable
tension space of MCDPRs. This cable tension space is exploited to determine the
V -representation of the AWS.

For classical CDPRs, the H -representation of the AWS is defined by constructing
the facets of the polytope and depends on the robot geometric architecture and the
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cable tension limits. However, due to the additional static equilibrium conditions of
the mobile bases, the AWS is no longer a zonotope, but a convex polytope. Therefore,
the H -representation of the AWS for MCDPRs is defined by constructing its facets
using both the cable tension limits and the static equilibrium conditions of the mobile
bases expressed in the wrench space. The aforementioned conditions are originally
derived in the tension space (Eqs. (3.14) and (3.22)) that can be mapped into the
wrench space by solving the static equilibrium of the moving-platform defined by
Eq. (3.3) using Gaussian Elimination Algorithm. Finally, the H -representation of
the AWS is exploited to trace the WFW workspace of MCDPRs. This methodology
is illustrated by the flowchart shown in Fig. 4.1

The rest of the chapter aims at presenting the approach to determine the WFW
for MCDPRs. The cable tension space of MCDPRs is detailed in Sec. 4.1.1. A
methodology to map the static equilibrium conditions of the mobile bases into
the wrench space of the moving-platform is described in Sec. 4.1.2.2. Accordingly,
the AWS of MCDPRs is calculated using both the V -representation and the H -
representation as explained in Sec. 4.1. Section 4.2 explains how the WFW is traced
using H-representation of the AWS. Additionally, three case studies are investigated
in Sec. 4.2 along with the experimental validation of the concept.

4.1 Available Wrench Set for MCDPRs

As mentioned earlier, the AWS of a classical CDPR, denoted as ACDP R, depends
uniquely on the robot’s geometric architecture and the cable tension limits [BGM10,
GK10], expressed as:

ACDP R =

 f
m

 ∈ Rn |

 f
m

 = Wt, tij ≤ tij ≤ tij, i = 1, . . . ,mj, j = 1, . . . , p
.

(4.1)

In contrast, the AWS of MCDPRs cannot be fully characterized by the cable tension
limits as the mobile bases static equilibrium conditions must be considered. Hence,
the AWS of a MCDPR, denoted as A is defined as:

A =

 f
m

 ∈ Rn |

 f
m

 = Wt, tij ≤ tij ≤ tij, mCkj
≤ 0,

EF
0fczj

≤ 04, i = 1, . . . ,mj, k = 1, . . . , cj, j = 1, . . . , p
.

(4.2)
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Figure 4.2: Tension space associated to (a) M1, (b) M2,(c) M3,(d) M4 considering
both the cable tension limits and the static equilibrium of the mobile bases

The expression of the AWS for MCDPRs corresponds to the definition of a con-
vex polytope. Both the above mentioned approaches, i.e., V -representation and
H -representation will be exploited to characterize such convex polytopes. V -
representation is preferred for visualizing the AWS but is computationally more
expensive than H -representation, which is used to determine the relation between
the AWS and the required wrenches to perform a task. The convex-hull approach
uses the vertices of the cable tension space to determine the vertices of AWS and
forms the boundary of the convex polytope, detailed in Sec. 4.1.1. HSM allows us
to determine the AWS geometrically by characterizing the facets of the polytope,
explained in Sec. 4.1.2.

4.1.1 Convex Hull Method

For MCDPRs, AWS takes the form of a convex polytope and is the image of the
tension space under the linear mapping of the wrench matrix W [BGM10, GK10,
RLMGC18a]. Thus V -representation defines the AWS of MCDPRs by finding the
set of vertices forming the boundary of the convex polytope. The vertices of the
AWS are obtained by mapping the tension space vertices into the wrench space under
W. Thus the tension space vertices of a MCDPR should first be defined.

The cable tension space defines the region of acceptable cable tensions which
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maintains the static equilibrium of a MCDPR. As discussed earlier, the tension space
of classical CDPRs is only formed by the cable tension limits and takes the form of a
m-dimensional hypercube [BGM10]. For MCDPRs, the jth mobile base has its own
independent mj-dimensional tension space associated only with its attached cables
of tensions tij, i = 1, . . . ,mj. Therefore, the cable tension space of Mj, denoted
as Tj, is formed by mapping the static equilibrium conditions of the latter defined
by Eqs. (3.14) and (3.22) on the mj-dimensional tension space formed by the cable
tension limits tij and tij, i = 1, . . . ,mj. As an example, Fig. 4.2 illustrates the
tension space associated with each mobile base of a MCDPR shown in Fig 1.4a

Without loss of generality, let’s assume that Tj is composed of vj vertices. Let the
mj-dimensional coordinate vector of the dth vertex of Tj, d = 1, . . . , vj be denoted
as vdj. The vertices of Tj and their coordinates can be obtained using the Double
Description Method [Mot53], which exploits the static equilibrium conditions of Mj

and the bounds on the cable tensions tij, i = 1, . . . ,mj . Let Vj be the set of vertices
of Tj,

Vj = {vdj}, d = 1, . . . , vj. (4.3)

The coordinates of the vertices for Tj can be expressed in a matrix form as:

Vj = [v1j v2j . . . vdj . . .vvjj], (4.4)

where Vj is a (mj × vj) matrix containing the coordinates of the vertices of Tj. Let
v be the total number of vertices formed by the m cables, which is defined by the
product of the number of vertices of the tension space associated to each mobile
base, namely,

v =
p∏

j=1
vj. (4.5)

The vertices of the tension space of a MCDPR can be obtained by taking the
Cartesian product between the vertices of Vj, j = 1, . . . , p. Let V denote the set of
all vertices of the tension space for a given MCDPR. Let V be a (m × v)-matrix
denoting the coordinates of the vertices in V expressed as:

V = [v1 v2 . . . vl . . . vv], (4.6)

where l = 1, . . . , v. vl is a m-dimensional vector representing the coordinates of the
lth vertex of the MCDPR cable tension space noted as T . The image of AWS is
constructed from V under the linear mapping of the wrench matrix W expressed as:
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WA = WV, (4.7)

where WA is a (n× v)-matrix representing the image of the vertices of the MCDPR
tension space into the wrench space. The convex hull of the points whose coordinate
vectors are the columns of WA leads to the AWS of the MCDPR using a numerical
procedure known as quickhull [BDH96].

4.1.2 Hyperplane Shifting Method

Hyperplane Shifting Method is a geometric approach, which defines a convex polytope
as the intersection of the half-spaces bounded by its hyperplanes [GK10]. The classical
HSM used to characterize the AWS of the CDPRs is explained in [BGM10, GK10],
however, this is only applicable if the tension space is a hypercube, i.e., when the facets
of the AWS only comprises the constraints associated with the cable tension limits.
Due to the additional static equilibrium conditions, the classical HSM is therefore
not sufficient to fully characterize the AWS of MCDPRs [RLMGC18a]. Thus, for
MCDPRs, the additional facets of the AWS associated with the static equilibrium of
the mobile bases must be determined. As a consequence, this section introduces an
improved version of HSM while taking into account the static equilibrium conditions
of the MCDPR mobile bases in addition to the cable tension limits.

Section 4.1.2.1 characterizes the facets of the AWS denoted as H +
q , H −

q , associ-
ated with the cable tension limits of MCDPRs, where q = 1, . . . , Cm

n−1 = m!
(m−n+1)!(n−1)! .

To express the facets of the AWS associated with the static equilibrium conditions
of Mj , it is required to map the latter into the wrench space. Therefore, Sec. 4.1.2.2
presents the adopted methodology to map the static equilibrium conditions of Mj

into the wrench space. Eventually, Secs. 4.1.2.3 and 4.1.2.4 present the hyperplanes
associated with both the tipping and sliding conditions of Mj.

4.1.2.1 Hyperplanes associated with Cable Tension Limits
For classical CDPRs, AWS takes the form of a zonotope by considering only the
constraints associated with the cable tension limits [BGM10, GK10]. The facets of
the zonotope are formed by the set of vectors βijuij∆tij, 0 ≤ βij ≤ 1. ∆tij represents
the difference between the maximum and minimum cable tension limits of cable Cij,
expressed as:

∆tij = tij − tij. (4.8)

The shape of the zonotope is formed by the directions of the cable unit vectors
uij while the size of the zonotope depends on ∆tij. However, ∆tij is no longer a
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constant for MCDPRs as illustrated in Fig. 4.2. The property of a zonotope having
parallel facets still holds as the shape of the facets are defined by the cable unit
vectors uij. However the location of the hyperplanes forming the facets of the AWS
is modified leading to a convex polytope with parallel facets. Thus, the hyperplanes
associated with the cable tension limits for MCDPRs are determined using classical
HSM detailed in [BGM10, GK10] and by considering the modified tension space.

The pairs of parallel hyperplanes are determined by the sets of (n− 1) column
vectors of W [BGM10, GK10]. As a consequence, the cable tension limits leads
to Cm

n−1 hyperplanes (H +
q ,H −

q , q = 1, . . . , Cm
n−1). The first step is to obtain the

orientation of those hyperplanes by taking n−1 linear combinations out of m columns
of W. The qth combination, cWq is a (n×n− 1)-matrix containing (n− 1) columns
of W. The remaining m− n+ 1 columns of W are denoted as dWq such that,

W =
[

cWq dWq
]
, q = 1, . . . , Cm

n−1. (4.9)

The orientation of H +
q ,H −

q is defined by the n-dimensional unit vector eq orthogonal
to its facets, expressed as

eq = rq

||rq||
, (4.10)

where rq is a n-dimension vector expressed as the linear combination of the columns
of cWq. The position of H +

q ,H −
q is given by the projection of the MCDPR tension

space vertices on eq. Let lq be a m-dimensional vector representing the projection of
W on eq,

lq = WT eq. (4.11)

It is noteworthy that the projection of the actuation wrenches in cW is null as they
are orthogonal to eq. Let h+

q , h
−
q be the maximum and minimum combinations of lq

with the coordinates of the MCDPR tension space vertices, namely,

h+
q = max

(
vT

l lq, l = 1, . . . , v
)

; h−q = min
(

vT
l lq, l = 1, . . . , v

)
. (4.12)

To completely characterize the location of the hyperplanes, a point p+
q (p−q , resp.)

must be defined on H +
q (H −

q , resp.), expressed as:

p+
q = h+

q eq + Wt; p−q = h−q eq + Wt, (4.13)

where t = [t11, . . . , tij, . . . , tmpp]T is a m-dimensional vector containing the cable
tension lower bounds. Wt defines the wrench generated by the minimum cable
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tensions. The position of H +
q (H −

q , resp.) is determined by a shifting distance d+
q

(d−q , resp.) along eq from the origin, expressed as:

d+
q = eT

q p+
q ; d−q = eT

q p−q . (4.14)

Finally, the respective pairs of hyperplanes H +
q , H −

q are expressed as:

H +
q : eT

q

 f
m

 ≤ d+
q ; H −

q : −eT
q

 f
m

 ≤ d−q . (4.15)

The above procedure is repeated to determine the Cm
n−1 pairs of hyperplanes associated

with the m cables of a MCDPR.

4.1.2.2 Static Equilibrium of Mj in Wrench Space

To map the static equilibrium conditions associated with Mj into the wrench space,
the system of linear equations defined in Eq. (3.3) should be solved. In case m = n

and W is full rank, the cable tensions tij, i = 1, . . . ,mj are expressed as,

t = W−1w. (4.16)

The solutions of the cable tensions tij, i = 1, . . . ,mj extracted from Eq. (4.16)
are substituted in static equilibrium the conditions of Mj defined in Eqs. (3.14)
and (3.22) to map the latter into the wrench space. Thus, if m = n, each static
equilibrium condition in the tension space will also generate a single condition into
the wrench space.

On the contrary, if m > n, there will exist Cm
n = m!

(m−n)!n! number of possible
solutions for tij to map the static equilibrium conditions associated with Mj into
the wrench space. As a consequence, there exists Cm

n number of (n × n) square
sub-matrices of the wrench matrix W denoted as aWs, s = 1, . . . , Cm

n containing
n columns of W. Let ats be a n-dimensional vector containing the cable tensions
associated with the actuation wrenches of aWs. Let aVs be a (n×v) matrix denoting
the coordinates of the tension space vertices of ats. aVs is defined by extracting the
corresponding rows of V from Eq. (4.6) associated with the cable tensions included
in ats. The remaining m − n columns of W and the corresponding cable tension
vector along with the coordinates of the tension space vertices are denoted as bWs,
bts and bVs respectively. Thus for the sth combination, the static equilibrium of
the moving platform defined in Eq. (3.3) can be expressed by splitting the Wrench
matrix into its square sub matrix aWs and the remaining columns bWs as

aWs ats + bWs bts = w =⇒ aWs ats = w− bWs bts s = 1, . . . , Cm
n . (4.17)
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Therefore, the coordinates of the MCDPR tension space vertices in Eq. (4.6) can be
expressed for the sth combination as,

Vs =
aVs

bVs

 =
avs

1 . . . avs
l . . . avs

v

bvs
1 . . . bvs

l . . . bvs
v

 , (4.18)

where avs
l and bvs

l denote the lth column of aVs and bVs, respectively. Equation (4.17)
amounts to a linear system of equations having n number of equations with n

unknowns (ats). The Gaussian Elimination Algorithm [Poo14] is used to solve such
linear system of equations presented in Appendix A. The Algorithm determines the
components of a cable tension vector ats. The meaningful solutions i.e. the solutions
for the cable tensions tij included in ats only are extracted and used to map the
static equilibrium conditions of Mj into the wrench space explained as follows.

Amongst the mj cables attached to Mj, let mja be the number of cables whose
tensions are components of vector ats

j . The tensions of the remaining mjb = mj−mja

cables are the components of vector bts
j . As a consequence, the cable tension vector

tj and its associated actuation wrench matrix Wj defined in Eq. (3.7) can also be
expressed as:

ts
j =

[
ats

j
T bts

j
T
]T

=
[

ats1j . . . atsoj . . . atsmjaj
bts1j . . . btsrj . . . btsmjbj

]T
,

(4.19a)

Ws
j =

[
aws

1j . . . aws
oj . . . aws

mjaj
bws

1j . . . bws
rj . . . bws

mjbj

]
, (4.19b)

where s = 1, . . . , Cm
n . atsoj, o = 1, . . . ,mja and btsrj, r = 1, . . . ,mjb are the oth

and rth components of ats
j and bts

j , respectively. aws
oj (bws

rj, resp.) is the actuation
wrench associated with the cable tension atsoj (btsrj , resp.). Using Gaussian Elimination
Algorithm, the cable tension atsoj, o = 1, . . . ,mja is obtained as:

atsoj =
αs

oj (w− bWs bts)
αs

oj
aws

oj

, o = 1, . . . ,mja, s = 1, . . . , Cm
n (4.20)

where αs
oj is a n-dimensional row vector acquired from Gaussian Elimination Al-

gorithm. As an example, the output of algorithm for the MCDPR in Fig. 1.4a is
presented in Appendix B. From Eq. (4.20), the tensions in the cables attached to
Mj are substituted in the corresponding static equilibrium condition to map it into
the wrench space presented in the following sections.
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4.1.2.3 Hyperplanes associated with the tipping conditions

This section presents the hyperplanes of the AWS associated with the tipping condi-
tions of Mj about the footprint boundary LCkj

, noted as H s
Ckj, k = 1, . . . , cj, s =

1, . . . , Cm
n . Using Eq. (4.19a), the tipping conditions of Mj defined by Eq. (3.13)

about LCkj
is expressed as:

uT
Ckj

((gj − ckj)×wgj) +
mja∑
o=1

uT
Ckj

((ckj − abs
oj)× aus

oj) atsoj

+
mjb∑
r=1

uT
Ckj

((ckj − bbs
rj)× bus

rj) btsrj ≤ 0, k = 1, . . . , cj, s = 1, . . . , Cm
n .

(4.21)

where abs
oj and bbs

rj are the coordinate vectors of the anchor points to which the
cables of tension vectors ats

oj and bts
rj are attached. aus

oj and bus
rj are the directional

vector of those cables. Substituting Eq. (4.20) in Eq. (4.21) yields,

mja∑
o=1

uT
Ckj

((ckj − abs
oj)× aus

oj)αs
oj

αs
oj

aws
oj

 f
m

+
mjb∑
r=1

uT
Ckj

((ckj − bbs
rj)× bus

rj) btsrj

−
mja∑
o=1

uT
Ckj

((ckj − abs
oj)× aus

oj)αs
oj

αs
oj

aws
oj

bWs bts + uT
Ckj

((gj − ckj)×wgj) ≤ 0,

k = 1, . . . , cj, s = 1, . . . , Cm
n .

(4.22)

Equation. (4.22) gives the tipping conditions for Mj expressed in the wrench space.
Eq. (4.22) characterizes a hyperplane H s

Ckj:

H s
Ckj : (es

Ckj)T

 f
m

 ≤ ds
Ckj, k = 1, . . . , cj, s = 1, . . . , Cm

n , (4.23)

where es
Ckj is a n-dimensional unit vector orthogonal to H s

Ckj expressed as:

es
Ckj =

mja∑
o=1

uT
Ckj

((ckj − abs
oj)× aus

oj)
αs

oj
aws

oj

αs
oj, k = 1, . . . , cj, s = 1, . . . , Cm

n . (4.24)

The distance from the origin of the wrench set to hyperplane H s
Ckj along es

Ckj is
defined by ds

Ckj. This distance is a function of the weight of Mj and the cable
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tensions included in bts, namely,

ds
Ckj = max

(mja∑
o=1

uT
Ckj

((ckj − abs
oj)× aus

oj)αs
oj

αs
oj

aws
oj

bWs bvs
l , l = {1, . . . , v}

)

−min
(mjb∑

r=1
uT

Ckj
((ckj − bbs

rj)× bus
rj) bvs

rdj, d = {1, . . . , vj}
)

− uT
Ckj

((gj − ckj)×wgj) ≤ 0, k = 1, . . . , cj, s = 1, . . . , Cm
n .

(4.25)

where bvs
rdj is the rth component of the tension space generated by cable tensions

btsrj, r = 1, . . . ,mjb. The shifting distance ds
Ckj represents the wrench capabilities of

the moving platform against the corresponding tipping conditions about LCkj
for sth

combination. bWs bvs
l represents the wrenches applied by tension space vertices in

bVs along es
Ckj . This must be maximized to acquire the maximum wrench capabilities

of the moving platform. On the contrary, the term uT
Ckj

((ckj − bbs
rj) × bus

rj)btsrj

contributes to the tipping of Mj due to the cable tensions btsrj, r = 1, . . . ,mjb,
and thus should be minimized. Each mobile base generates up to cj × Cm

n possible
hyperplanes corresponding to its tipping conditions.

4.1.2.4 Hyperplanes associated with the sliding conditions

This section describes the hyperplanes of the AWS associated with sliding conditions
of mobile base Mj, noted as H s

F gj, g = 1, . . . , 4, s = 1, . . . , Cm
n , respectively. The

sliding conditions defined by Eq. (3.22) can be expressed using Eq. (4.19a) as,

mja∑
o=1

EF
aus

oj
atsoj +

mjb∑
r=1

EF
bus

rj
btsrj − EF wgj ≤ 04, s = 1, . . . , Cm

n . (4.26)

Substituting Eq. (4.20) in Eq. (4.26) yields:

mja∑
o=1

EF
aus

ojα
s
oj

αs
oj

aws
oj

 f
m

 − mja∑
o=1

EF
aus

ojα
s
oj

αs
oj

aws
oj

bWs bts +
mjb∑
r=1

EF
bus

rj
btsrj

− EF wgj ≤ 04, s = 1, . . . , Cm
n .

(4.27)

Equation (4.27) expresses the sliding conditions of Mj into the wrench space. The
latter can be directly expressed in the form of a hyperplane H s

F gj as,

H s
F gj : (Es

F gj)T

 f
m

 ≤ ds
F gj, s = 1, . . . , Cm

n , g = 1, . . . , 4. (4.28)
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where Es
F gj is a n-dimensional unit vector orthogonal to H s

F gj expressed as:

Es
F gj =

mja∑
o=1

Eg
F

aus
oj α

s
oj

αs
oj

aws
oj

, s = 1, . . . , Cm
n , g = 1, . . . , 4. (4.29)

Eg
F denotes the gth row of EF . The shifted distance of H s

F gj is denoted as ds
F gj:

ds
F gj = max

( mja∑
o=1

EF
aus

ojα
s
oj

αs
oj

aws
oj

bWs bvs
l , l = {1, . . . , v}

)
Eg

F wgj

+ Eg
F wgj −min

(mjb∑
r=1

Eg
F

bus
rj

bvs
rdj, d = {1, . . . , vj}

)
,

s = 1, . . . , Cm
n , g = 1, . . . , 4.

(4.30)

The shifting distance ds
F gj represents the wrench capabilities of the moving

platform with respect to the corresponding sliding conditions associated with the
gth boundary of the linearized friction pyramid of Mj . It should be noted that each
mobile base can generates up to 4× Cm

n possible hyperplanes corresponding to its
sliding conditions.

4.2 Wrench Feasible Workspace of MCDPRs
The capacity margin index µ defined in [GCCRC14, RCCG15] can be used to
calculate if a moving-platform pose is wrench-feasible. It is also known as a measure
of the robustness of the equilibrium of the robot, expressed as,

µ = min ( min µxy), (4.31)

where µxy is the signed distance from the xth vertex of R to the yth facet of A .
µ is positive if and only if all the vertices of RWS are inscribed by A , i.e. the
moving platform has the ability to generate RWS while respecting all the equilibrium
conditions of a MCDPR.

In the following sections the wrench capabilities of three MCDPRs are outlined.
The results are compared with the wrench capabilities of the classical CDPRs which
only considers the constraints associated with the cable tension limits.

4.2.1 Case study: p = 2, m = 4 and n = 2 DoF MCDPR

The first case study is a planar MCDPR with a 1.5kg point mass end-effector shown in
Fig. 4.3a. The corresponding cable tension space is illustrated in Figs. 4.3c and 4.3d.
The AWS defined by the Convex Hull approach is illustrated in Fig. 4.3e. It can be
observed that by considering only the cable tension limit constraints, the AWS in
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black corresponds to the wrench capabilities of a classical CDPR in the form of a
zonotope. On the contrary, by taking into account the additional static equilibrium
conditions associated with the mobile bases, the MCDPR AWS in green is no longer
a zonotope, but a convex polytope.

Figure 4.3f depicts the AWS for the MCDPR configuration shown in Fig. 4.3a,
obtained by the HSM detailed in Sec. 4.1.2. The AWS due to cable tension limits is
split by four additional hyperplanes due to the tipping and friction constraints named
as H 1

t21, H 1
f21, H 6

t12 and H 6
f12 respectively. The hyperplane H 1

t21 (H 6
t12, resp.) is

associated with the tipping of M1 (M2, resp.) at C21 (C12, resp.) for s = 1 (s = 6,
resp.), respectively. Similarly, the hyperplane H 1

f21 (H 6
f12, resp.) is associated with

the sliding of M1 (M2, resp.). The aforementioned hyperplanes are computed using
ats and bts for s = 1 and s = 6, defined as:

at1 =
at111

at121

 , at6 =
at112

at122

 , bt1 =
bt112

bt122

 , bt6 =
bt111

bt121

 . (4.32)

The static workspace of the planar MCDPR is shown in Fig. 4.3b. The green
region corresponds to the static workspace of the manipulator computed based on the
cable tension limits, the mobile base tipping and sliding conditions. The gray region
shows the area that cannot be reached by the point-mass end-effector because of
mobile base tipping and/or sliding. The simulation and the experimental validations
of this case study can be seen in video1.

4.2.2 Case study: p = 4, m = 8 and n = 3 DoF Planar MCDPR

The second case study is a planar MCDPR with n = 3 DoF moving-platform
illustrated in Fig. 4.4a. The modified tension space is computed for a given moving-
platform pose based on the cable tension limits, mobile base tipping and sliding
conditions illustrated in Fig. 4.5. Based on the vertices of the tension space, the
V −representation of the AWS is shown in Fig. 4.4b. The green area depicts the AWS
of the manipulator characterized by the cable tension limits, the mobile base tipping
and sliding conditions. The wrenches that cannot be generated by the end-effector
due to the tipping and/or sliding of mobile bases are illustrated in gray.

Figure 4.6 depicts the hyperplanes associated with the static equilibrium of the
MCDPR under study. The AWS due to cable tension limits is split by additional
four hyperplanes due to the tipping and friction constraints named as H 1

t21, H 2
t21,

H 1
f21 and H 2

f21 respectively. From Fig. 4.5, it appears that only the hyperplanes
associated with the cable tension limits and the static equilibrium conditions of M1

define the facets of the AWS. The static equilibrium conditions of M2 do not affect
1https://youtu.be/UsvBnJ8q2v4
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Figure 4.3: (a) Planar MCDPR with one point-mass end-effector, two mobile
bases and four cables (b) Static workspace (c,d) Modified cable tension space (e)
V −Representation of AWS of a CDPR (in black) and MCDPR (in green) (f) H −
Representation of the AWS formed by the intersection of the hyperplanes
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Figure 4.4: (a) Configuration under study of p = 2, m = 4 and n = 3 MCDPR (b)
Comparison of AWS between CDPR (in black + green) and MCDPR (in green)
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Figure 4.5: (a) T1 and T2 for MCDPR configuration in Fig. 4.4a

T2, and thus do not affect the AWS.

4.2.3 Case study: p = 2, m = 8 and n = 6 DoF Spatial MCDPR

The methodology described in Fig. 4.1 is used to trace the WFW of FASTKIT shown
in Figs. 4.7a and 4.7c for different locations of the mobile bases. The green region
corresponds to the static workspace of FASTKIT determined using the cable tension
limits, the mobile base tipping and sliding conditions. The gray region illustrates the
area that cannot be reached by the end-effector due to the tipping and/or sliding of
the FASTKIT mobile bases. It should be noted that the higher the relative distance
between the mobile bases, the smaller the wrench capability of FASTKIT along the
vertical direction. The evolution of FASTKIT WFW as a function of the relative
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Figure 4.6: Correspondence between the WFW facets obtained with the Convex Hull
approach (in green) and those obtained with HSM (a,b) Mobile Base tipping; (c,d)
Mobile Base sliding for the moving-platform pose shown in Fig. 4.4a

distance between the two mobile bases can be seen in video2.
From the AWS of FASTKIT in the configuration shown in Fig. 4.7a, the maximum

absolute moments (forces, resp.) that the platform can support about (along, resp.)
0x, 0y and 0z axes are illustrated in Fig. 4.8. It can be seen that the wrench capability
of the moving-platform is lower when the mobile bases are moving than when the
the latter are fixed.

4.3 Conclusion

This chapter introduced a methodology to determine the Available Wrench Set of
Mobile Cable-Driven Parallel Robots. The Available Wrench Set is required to
trace the Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots. The
workspace depends, not only on the static equilibrium of the moving-platform, but on
the static equilibrium of the mobile bases as well. The Available Wrench Set takes the
form of a convex polytope and is defined using two different approaches, i.e., Convex
Hull and the Hyperplane Shifting Method. Convex Hull is preferred for visualizing
the AWS but is computationally more expensive than Hyperplane Shifting Method,

2https://youtu.be/EXbp1Bb7OCo
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Figure 4.7: WFW of FASTKIT at different configuration of mobile bases with a
constant moving-platform orientation
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which is used to determine the relation between the AWS and the required wrenches
to perform a task. The former method defines the AWS of MCDPRs by finding the
set of vertices forming the boundary of the convex polytope. The latter method is
a geometric approach, which defines a convex polytope as the intersection of the
half-spaces bounded by its hyperplanes. The equivalence of both approaches are
shown. Compared to the classical Cable-Driven Parallel Robots, the additional static
equilibrium conditions associated with the Mobile Bases may affect the Available
Wrench Set. Multiple case studies are carried out in order to show that the approach
is applicable to both planar and spatial Mobile Cable-Driven Parallel Robots. The
approach was experimentally validated on a Mobile Cable-Driven Parallel Robot
with a point-mass moving-platform and two active mobile bases.
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Both the static and the kinematic aspects should be taken into account during
robot design in order to select the right hardware, e.g., actuators, gearboxes, building
materials etc. Similarly for cable-driven mechanisms, in addition to moving-platform
wrench capabilities, the design of the winches requires knowledge of cable and moving-
platform velocities as their characteristics (motors, gearboxes and drums) are based
on motor torque and velocity. Therefore, during the design of a CDPR, both the
wrench and the kinematic performances are taken into considerations. Multiple
papers deals with the kinematic analysis of parallel manipulators [Mer96, Mer98],
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however, few focus on the twist analysis of CDPRs. [GCG15] extended the approach
of wrench feasibility to evaluate the twist capabilities of CDPRs by introducing
the concept of twist feasibility. A pose of a CDPR moving-platform is said to be
twist-feasible if all the twists (linear velocity and angular velocity combinations),
within a specified set, referred to as Required Twist Set (RTS), can be generated by
the cables on the moving-platform while satisfying the cable speed limits imposed by
the actuators and the transmission systems [LGCC18].

Similarly, from the design point of view of MCDPRs, in addition to their wrench
capabilities, it is essential to develop a methodology that can evaluate their kinematic
performances. The wrench capabilities of MCDPRs are presented in Chapter 4, while
this chapter outlines their kinematic modeling and twist capabilities. Section 5.1
presents the kinematic model of MCDPRs which is derived by modeling cables as
a Universal-Prismatic-Spherical kinematic chains and mobile bases as four-wheeled
planar robots with two-DoF translational motions and one-DoF rotational motion.
Section 5.2 determines the Available Twist Set (ATS) for MCDPRs. The ATS can
be used to obtain the twist capacities of the moving-platform. Section 5.3 presents
the twist capacities of the moving-platform for two different MCDPRs case studies.
Finally, Sec. 5.4 concludes this chapter.

5.1 Kinematic modeling
To analyze the twist capabilities of MCDPRs, it is necessary to derive its first-order
kinematic model. As MCDPRs are composed of two different robotic systems, i.e.,
a cable robot and a mobile base, with each one having its own kinematic abilities;
thus, initially each system is modeled independently. The jth mobile base and its mj

number of cables is denoted as jth PD module, denoted as pdj. Each pdj consists
of a proximal (proxj) and a distal (distj) module. proxj represents jth mobile base
while distj consists of mj number of cables between Mj and the moving-platform.

In this thesis, cables are assumed to be straight and massless, thus can be modeled
as a Universal-Prismatic-Spherical (UPS) kinematic chain where the prismatic joint
is active while the universal and spherical joints are passive. Consequently, Mj

is carrying mj number of Universal-Prismatic-Spherical kinematic chains. On the
other hand, the mobile bases are planar robots with two-DoF translational motions
and one-DoF rotational motion, thus, proxj can be modeled as a virtual Revolute-
Prismatic-Prismatic (RPP) kinematic chain between the base frame F0 and the
frame Fbj attached to Mj. All the joints of the RPP kinematic chain of the proxj

module are set to be active.
Figure. 5.1a shows the MCDPR parameterization with the aforementioned mod-

ules shown for an illustrative example with p = 4 mobile bases and n = 6-DoF
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moving-platform displaced by m = 8 cables. It is worth nothing that all the UPS
kinematic chains within each distj module are connected in parallel with each other,
while distj is linked in series with proxj . As a result, a general kinematic architecture
of a MCDPR can be illustrated as in Fig. 5.1b.

5.1.1 Kinematics of the Distal Module

A classical CDPR is referred to as the distal modules in a MCDPR. Let tdist
MP represent

the twist generated by the distal modules onto the moving-platform which is expressed
as [RGL98, GDM]:

A 0tdist
MP = l̇, (5.1)

where A is the (m× n) parallel Jacobian matrix, containing the actuation wrenches
due to the cables on the moving-platform. For classical CDPRs, this Jacobin matrix
only depends on the pose of the moving-platform. Moreover, from the well-known
kineto-statics duality, the wrench matrix W is closely related to the pose-dependent
kinematic Jacobian of the CDPR, namely,

A = −WT , (5.2)

where W is a wrench matrix defined by Eq. (3.4). l̇ is a m-dimensional cable velocity
vector. Based on the MCDPR parameterization, Eq. (5.1) can be rewritten as:



A1

A2
...

Aj

...
Ap


0tdist

MP =



l̇1

l̇2
...
l̇j

...
l̇p


, (5.3)

Aj contains the actuation wrenches generated by the cables carried by Mj , expressed
as:

Aj = −WT
j , (5.4)

and l̇j is mj-dimensional vector containing the velocities of the cables mounted on
Mj:

l̇j =
[
l̇1j l̇2j . . . l̇ij . . . l̇mjj

]T
. (5.5)
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l̇ij corresponds to the speed of the cable Cij that can be derived using the following
relation:

l̇ij = l̇ij

uij

, (5.6)

where l̇ij is a cable velocity vector defined from the anchor point Bij to cable exit
point Aij expressed as:

l̇ij = aij − bij. (5.7)

Note that in Eq. (5.7), the Cartesian coordinates of the anchor point Bij is expressed
in the base frame F0. In practice, bij is represented in moving-platform frame FP ,
denoted as P bij, which can be transformed in the base frame using the following
relation:

bij = p− 0RP
P bij, (5.8)

where p denotes the position vector of FP in F0. 0RP is the rotation matrix
defining the orientation of the moving-platform, i.e., the orientation of the frame FP

expressed in F0.

5.1.2 Kinematic modeling of a MCDPR

Contrary to classical CDPRs, the twist generated by the proximal modules, i.e.,
mobile bases, must be taken into account in addition of the twist generated by the
distal modules on the MCDPR moving-platform. Let tMP denotes the twist of the
MCDPR moving-platform and is composed of its angular and linear velocities:

tMP =
ω

ṗ

 , (5.9)

where ω = [ωx, ωy, ωz]T and ṗ = [ṗx, ṗy, ṗz]T are the vectors of the moving-platform
angular and linear velocities expressed in F0.

In order to derive the first-order kinematic model of a MCDPR, firstly it is
essential to formulate the twist generated by its jth PD module. Let 0tj

MP be the
twist of the moving-platform due to pdj expressed in F0. 0tj

MP can be computed by
adding the twists generated by each of the individual module of pdj, i.e., proxj and
distj:

0tj
MP = 0tproxj

MP + 0tdistj

MP (5.10)
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where 0tproxj

MP (0tdistj

MP , resp.) is the twist of the moving-platform due to the motion of
the proximal (distal, resp.) module of pdj expressed in F0.

In practice, the twist generated by proxj is expressed in the base frame F0 with
respect to the frame Fbj denoted as 0tproxj

bj . As the proximal modules are being
modeled as a virtual RPP limb, 0tproxj

bj can be written as:

0tproxj

bj = Jbj q̇bj (5.11)

where Jbj is a (6× 3) serial Jacobian matrix of proxj and q̇bj = [θ̇j ρ̇1j ρ̇2j]T is the
virtual joint velocities of the RPP kinematic chain, namely,

0tproxj

bj =
[
ε0zj ε∞1j ε∞2j

] 
θ̇j

ρ̇1j

ρ̇2j

 (5.12)

where ε0zj represent the zero-pitch screw about z-axis, while ε∞1j and ε∞2j represent
the infinite-pitch screws of the jth virtual leg in xy plane, all expressed in F0 (see
Fig. 5.1a). These screws can be defined as:

ε0zj =
 0k

0k× p

 , ε∞1j =
 03

0Rbj
0i

 , ε∞2j =
 03

0Rbj
0j

 (5.13)

where 0i, 0j and 0k denotes the unit vector along the axes 0x, 0y and 0z of the global
frame F0. To construct the twist of proxj in FP , 0tproxj

bj can be transformed into
the moving-platform frame using the following relation:

0tproxj

MP = bjAdP
0tproxj

bj (5.14)

where bjAdP is called the adjoint matrix, which represents the transformation matrix
between twists expressed in Fbj and twist expressed in FP ,

bjAdP =
 I3 03

−bj r̂P I3

 (5.15)

where bj r̂P is the cross-product matrix of vector −−→0bjP expressed in F0. bjtdistj

MP is the
moving-platform twist due to distj expressed in Fbj.

Similarly, the twist generated by the distal modules are also needed to be
formulated in F0. For MCDPRs, by construction distj is carried by proxj; hence,
the twist due to the distj is normally expressed in the frame of attached to proxj,
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i.e., in Fbj, denoted as bjtdist
MP . From Eq. (5.10), 0tdist

MP is expressed as:

0tdistj

MP = 0Rbj
bjtdistj

MP , (5.16)

Where 0Rbj is the augmented rotation matrix which is used to express bjtdistj

MP in F0:

0Rbj =
0Rbj 03

03
0Rbj

 , (5.17)

where 0Rbj is the rotation matrix between frames Fbj and F0.

Substituting Eqs. (5.14) and (5.16) in Eq. (5.10), the twist of the moving-platform
generated by pdj takes the form:

0tj
MP = bjAdP

0tproxj

bj + 0Rbj
bjtdistj

P (5.18)

Upon multiplication of Eq. (5.18) with Aj:

Aj
0tj

MP = Aj
bjAdP Jbj q̇bj + Aj

0Rbj
bjtdistj

MP . (5.19)

Aj
0Rbj

bjtdistj

MP represents the cable velocities of distj (see Eq. (5.3)).

Aj
0tj

MP = Aj
bjAdP Jbj q̇bj + l̇j. (5.20)

The twist of the moving-platform tMP and the twists generated by the limbs are the
same, namely,

0t1
MP = 0t2

MP = 0t3
MP . . . = 0tj

MP . . . = 0tp
MP = tMP (5.21)

Thus, the twist of the moving-platform in terms of all the p number of limbs can be
expressed as:

A1

A2
...

Ap

 tMP =


A1

b1AdP Jb1 0 0 · · · 0
0 A2

b2AdP Jb2 0 · · · 0
... ... ... ...
0 0 0 · · · Ap

bpAdP Jbp

 q̇b + l̇ (5.22)

where q̇b = [q̇b1, q̇b2, . . . , q̇bp]T and l̇ = [l̇1, l̇2, . . . , l̇p]T . Equation (5.22) can be
expressed in the matrix form as:

AtMP = Bbq̇b + l̇ (5.23)
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AtMP = Bq̇ (5.24)

where B = [Bb Im] is a (m × (3p + m))-matrix while q̇ = [q̇b l̇]T is a (3p + m)-
dimensional vector containing all joint velocities. Equation (5.24) represents the first
order kinematic model of MCDPRs.

Comparing the kinematic model of a MCDPR (Eq. (5.1)) with a classical
CDPR (Eq. (5.23)), it can be observed that the former contains an additional
term (Bbq̇b) representing the twist generated by the mobile bases. This additional
twist is more than strictly necessary to control all the DoF of a MCDPR moving-
platform. Thus, this additional twist is refereed to as the kinematic redundancy
in MCDPRs. In general, the degree of kinematic redundancy depends on the total
number of active actuators in q̇b.

5.2 Available Twist Set of MCDPRs

The first-order kinematic model of a manipulator can be used to determine the set of
available twists that can be achieved by its moving-platform. As discussed earlier, for
a classical CDPR, the set of twist feasible poses of its moving platform are known as
Available Twist Set (ATS). A CDPR posture is called twist-feasible if all the twists
within a given set, can be produced at the platform, while respecting given joint
velocity limits [LGCC18]. According to [LGCC18], ATS of a CDPR corresponds
to a convex polytope that can be represented as the intersection of the half-spaces
bounded by its hyperplanes. Such convex polytopes can be determined using the
classcial Hyperplane Shifting Method (HSM) discussed in Chapter 4. Although HSM
can also be utilized to determine the ATS of MCDPRs, the approach in [LGCC18]
is not directly applicable due to the difference in the kinematic models of CDPR
(Eq. 5.1) and MCDPR (Eq. 5.24) as matrix B 6= I.

The solution to Eq. (5.24) determines the ATS of the MCDPR moving-platform.
There exist two possible scenarios to determine the solution of the Eq. (5.24). First,
if the number of cables are equal to the DoF of the moving-platform, i.e., m = n. In
this case, A is a square matrix and Eq. (5.24) can be expressed as:

tMP = A−1B q̇ =⇒ tMP = J q̇ (5.25)

where J is a Jacobian matrix mapping the joint velocities onto the moving-platform
twist. The ATS will correspond to a single convex polytope, constructed under the
mapping of Jacobian J.

Secondly, if m 6= n, matrix A is not square, and there exists in total Cn
m (n× n)
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square sub-matrices of matrix A, denoted by As, s = 1, . . . , Cn
m, obtained by removing

m− n rows from A. For each sub-matrix we can write:

t̂s
MP = (As)−1Bs =⇒ t̂s

MP = Js q̇, s = 1, . . . , Cn
m (5.26)

where t̂s
MP is the twist generated by the sth sub-matrix As out of Cn

m (n×n) square
sub-matrices of matrix A. Bs is a sub matrix of B using corresponding rows that
are chosen in As from A.

In both cases, the classical HSM presented in [BGM10, GK10] is directly applica-
ble to compute all the hyperplanes of the ATS knowing the minimum and maximum
joint velocity limits. For the first scenario, ATS corresponds to a single convex
polytope, while for the second scenario, ATS is the region bounded by Cn

m convex
polytopes.

Similar to the AWS, the ATS of MCDPRs is also a convex polytope, which
strictly depends on the robot configuration and the joint velocity limits, i.e. velocity
limits for the cables and mobile bases. Therefore, similar to Eq. (4.31), the Capacity
Margin index can be used to determine if the given pose is twist feasible by using
the facets of ATS and the vertices of RTS, expressed by ν:

ν = min ( min νx,y) (5.27)

where νx,y is the signed distance from xth vertex of the RTS to the yth face of the
ATS. ν is positive as long as the platform have the ability to generate the RTS.

5.3 Results

The twist feasibility of two different case studies will be investigated. From the ATS
acquired using the kinematic model of a given MCDPR configuration, we study the
difference in the moving platform twist considering fixed and moving mobile bases of
the MCDPRs under study.

5.3.1 Case study: p = 2, m = 4 and n = 2 DoF MCDPR

The first case study is a planar MCDPR with a point mass end-effector shown in
Fig. 5.2a. Each mobile base has only one degree of redundancy along 0i. The joint
velocity limits are defined as:

−0.8 m.s−1 ≤ ρ̇1j ≤ 0.8m.s−1, i = 1, 2, j = 1, 2, (5.28a)

−2m.s−1 ≤ l̇ij ≤ 2m.s−1, i = 1, 2, j = 1, 2, (5.28b)
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Figure 5.2: (a) Configuration under study of p = 2, m = 4 and n = 2 MCDPR (b)
ATS in green for fixed mobile bases (c) ATS in green for moving mobile bases
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Matrix A has six 2× 2 sub-matrices Thus, ATS is the region bounded by the hyper-
planes formed by these six convex polytopes. The difference of ATS between fixed (cor-
respond to a classical CDPR) and moving mobile bases can be observed in Figs. 5.2b
and 5.2c. To illustrate the difference, a RTS equal to [1.15 m.s−1, 1.675 m.s−1]T is
considered, depicted by a red point in Figs. 5.2b and 5.2c. For fixed mobile bases, it
should be noted that RTS is outside the ATS. In contrast, RTS is within the ATS
when the motion of the mobile bases is considered.

5.3.2 Case study: p = 2, m = 8 and n = 6 DoF MCDPR

The Available Twist Set is also used to characterize the twist capabilities of the
FASTKIT moving-platform. The ATS of FASTKIT is obtained from its joint velocity
limits and first-order kinematic model. The joint velocity limits of the active mobile
base (M2) are the following:

−0.2 rad.s−1 ≤ θ̇2 ≤ 0.2 rad.s−1 (5.29)
−0.2 m.s−1 ≤ ρ̇12 ≤ 0.2 m.s−1 (5.30)
−0.2 m.s−1 ≤ ρ̇22 ≤ 0.2 m.s−1 (5.31)

Once FASTKIT is deployed, its passive trailer (M1) is stabilized and does not move.
Therefore, its linear and angular velocities are null, i.e.,

θ̇1 = 0 rad.s−1 (5.32)
ρ̇11 = 0 m.s−1 (5.33)
ρ̇21 = 0 m.s−1 (5.34)

The cable velocity limits of the FASTKIT prototype are the following:

−2 m.s−1 ≤ l̇11, l̇21, l̇31, l̇41, l̇12, l̇22, l̇32, l̇42 ≤ 2 m.s−1 (5.35)

From the ATS of FASTKIT in the configuration shown in Fig. 5.3a, the maximum
angular (linear, resp.) velocities of the moving-platform about (along, resp.) x, y
and z axes are shown in Fig. 5.3b. It can be observed the twist capacity of the
moving-platform is increased when mobile bases are moving compared to the twist
capability for a classical CDPR configuration of FASTKIT with fixed bases.

5.4 Conclusion
This chapter dealt with the kinematic modeling of MCDPRs necessary to analyze its
kinematic performance. Each cable of the manipulator is modeled as a Universal-
Prismatic-Spherical kinematic chain. Furthermore, as mobile bases are planar robots
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with two-DoF translational motions and one-DoF rotational motion; thus, they
may be modeled as a Revolute-Prismatic-Prismatic kinematic chains. A general
kinematic architecture is developed for MCDPRs which treats the system as a hybrid
mechanism with the mobile base in series with a set of parallel cables (see. Fig. 5.1b).

The developed kinematic model was used to determine the Available Twist Set
of MCDPRs by considering the joint velocity limits for the cables and the mobile
bases. If the number of cables are equal to the Degree-of-Freedom of the moving-
platform, the Available Twist Set corresponds to a single convex polytope. However,
if number of cables and the Degree-of-Freedom of the moving-platform are not equal,
the Available Twist Set is the region bounded by Cn

m convex polytopes. Once the
Available Twist Set is computed, the twist capacities of the moving-platform can be
determined.

Two case studies have been investigated in order to illustrate the effect of the
moving mobile bases onto the platform twist. It is observed that the twist capacity
of the moving-platform is higher when the mobile bases are moving compared to
when the latter are fixed. This additional mobility generated by the motion of
the mobile bases is refereed to as the kinematic redundancy in MCDPRs. The
degree of kinematic redundancy depends on the total number of active actuators
in the Revolute-Prismatic-Prismatic kinematic chains. Kinematic redundancy is
advantageous as the supplementary DoF can be used to optimize a secondary criterion
for instance energy minimization or joint limit avoidance. Chapter 6 presents multiple
path planning strategies while addressing the issue of the kinematic redundancy for
MCDPRs.





6
Path Planning of MCDPRs

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Redundancy planning for one degree of Kinematically re-
dundant MCDPRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Optimum Kinematic Redundancy Scheme . . . . . . . . . . . . . 122

6.2.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.3 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Iterative Path Planning Algorithm for MCDPRs . . . . . 130

6.3.1 Task Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.2 Iterative path planning Algorithm . . . . . . . . . . . . . . . . . . . . 132

6.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Optimization based Trajectory Planning of MCDPRs . 137

6.4.1 Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4.3 Comparison with the iterative path planning algorithm . 145

6.4.4 MoPICK Simulation in V-REP . . . . . . . . . . . . . . . . . . . . . . 146



120 Chapter 6. Path Planning of MCDPRs

6.4.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Introduction
One of the main advantages of a MCDPR is the ability to deploy a fast pick-and-place
manipulator throughout a factory or warehouse. To do so, the system must be able
to generate safe trajectories through potentially cluttered environments. While
investigating the kinematic performances of MCDPRs in Chapter 5, it has been
observed that such systems are kinematically redundant due to the added mobility
of the mobile bases, i.e., MCDPR possesses more DoFs than the mobility of the
moving-platform. As a consequence, there exist multiple paths for the MCDPR
mobile bases to displace the moving-platform from one pose to another and to
perform the desired task. Therefore, MCDPRs must be characterized not only based
on their actuation redundancy with respect to the DoF of their moving-platform,
but also by considering the kinematic redundancy due to the moving mobile bases.

While searching for a feasible MCDPR path, kinematic redundancy is viewed
as a reconfiguration of the CDPR geometric architecture caused by the motion
of the mobile bases. As a result, the additional DoF allow the system to modify
the cable layout in order to increase the accessible workspace by enhancing the
wrench capabilities of the system. However, the reconfiguration strategies must
take into account the collisions with the obstacles in the surrounding environment.
For this purpose, kinematic redundancy in MCDPRs can be exploited to optimize
several performance criteria while respecting kinematic and environmental constraints
simultaneously. Accordingly, this chapter presents path planning strategies for
kinematically redundant MCDPRs.

Proposed path planning Strategies for MCDPRs
In this thesis, we examine multiple path planning strategies for MCDPRs based
on the techniques mentioned in Sec. 2.3.3. However, due to the large number of
constraints associated with MCDPRs, the application of these techniques is not
trivial and the implementation is rather challenging. For FASTKIT, we propose
an optimization based path planning approach. As discussed earlier, during the
navigation mode (see Fig. 1.11a), both mobile bases of FASTKIT are coupled together
and act as a single working unit while the moving-platform relative location is fixed.
Therefore, the twist of the moving-platform and the passive mobile base is equal to
the twist generated by the active mobile base. As a result, during the navigation
mode, FASTKIT has neither kinematic nor actuation redundancy. During the task
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mode, the passive mobile base remains static while the motion of the cables and the
active mobile base is used to deploy the complete system (see Figs. 1.11b and 1.11c).
Due to structural constraints, the system can only be deployed in a plane parallel to
the shelf and thus constraining the motion of the active mobile bases along a single
axis i.e., leading to a system with one degree of kinematic redundancy. Therefore,
Sec. 6.2 presents an optimal kinematic redundancy scheme for MCDPRs with one
degree of kinematic redundancy. As a case study, FASTKIT will be used with a
desired pick-and-place operation.

In contrast to FASTKIT, MoPICK is composed of four active mobile bases.
As discussed earlier, the CDPR carried by MoPICK is designed such that its exit
points Aij lie on the axis of bjz, preventing changes in the directional vector uij

of the cable Cij due to rotational motion of Mj. Thus, for a given pose of the
moving-platform, pure rotation of a mobile base will not cause any modification in
the CDPR architecture. As a result, each mobile base only produces two degrees of
kinematic redundancy i.e, along 0x and 0y. Consequently, in total with four mobile
bases, MoPICK has eight degrees of kinematic redundancy.

Two different path planning strategies are developed for MoPICK. The first
approach presented in Sec. 6.3 is a sampling based iterative path planning algorithm
aiming at optimizing the wrench capabilities of its moving-platform. The algorithm
searches for a feasible and continuous path of its mobile bases between the initial and
desired pose of the moving-platform by making a locally optimal choice at each step.
Thus the system’s kinodynamic constraints can be enforced at each instant of the
path. The algorithm decomposes the problem in two parts. The first part obtains a
feasible, continuous and collision free path for the mobile bases. A path is generated
using an iterative procedure by generating a sequence of straight line paths. The
paths are then smoothed using B-Splines. The second part of the algorithm takes
as input the smoothed B-Splines and locally optimizes the moving-platform wrench
capability.

The second approach detailed in Sec. 6.4, uses the direct transcription optimization
method to obtain a feasible path for MoPICK. This optimization based approach
allows us to embed the numerous constraints associated with CDPRs into the
planning problem, while the direct transcription eases the reliance on the initial
guess. The resulting path from direct transcription is transformed into a continuous
motion profile using cubic splines. The results are simulated on the dynamic model of
MoPICK developed using the V-REP environment [RSF13] on two different scenarios.
Additionally, the second scenario is experimentally validated using the MoPICK
prototype.
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6.2 Redundancy planning for one degree of Kinematically redun-
dant MCDPRs
This section presents an optimal path planning scheme for MCDPRs with one degree
of kinematic redundancy. As a case study, the task mode of FASTKIT is investigated.
As detailed earlier, during its task mode, the translational motion of the moving-
platform is constrained to a plane as shown in Figs. 6.1 and 6.2. For ease of analysis,
the task mode is studied in 0x0z plane, i.e., the active mobile base is only capable
of generating a single DoF transnational motion along 0x. The passive mobile base
is denoted as M1, while active mobile base is denoted as M2. The position of M1

(M2, resp.) along 0x is defined by ρ1 (ρ2 resp.) with respect to the frame Fb1 (Fb2,
resp.) attached to it.

As a test scenario we define a pick and place operation, which requires feasible
kinematic redundancy planning of its active mobile base i.e., evolution of ρ2, which
in turn ensures that the moving platforms’ task becomes feasible. In order to do that,
a bi-objective optimization problem is formulated that corresponds to minimization
of the total time to complete the desired operation while maximization of the robot
average robustness index throughout the task.

6.2.1 Optimum Kinematic Redundancy Scheme
This section deals with a methodology that aims to determine the best ρ2 for the
pick-and-place trajectory shown in Fig. 6.2. The methodology is highlighted by
defining a wrench quality criterion and the formulation of a bi-objective optimization
problem, explained in the following sections.

6.2.1.1 Objective Function
The adopted path is composed of two segments, i.e. picking segment discretized
into k1 points and placing segment discretized into k2 − k1 points shown in Fig. 6.2.
Thus the complete path is discretized into k2 points with each point denoted by
k0 such that, k0 = 1, . . . , k1, k1 + 1, . . . , k2. Let t1 (m1, resp.) and t2 (m2, resp.) be
the trajectory time (total moving mass, resp.) for the first and second segments of
pick-and-place operation. It should be noted that the adopted trajectory is linear
and does not require any rotational motion of the moving-platform.

For a fast pick-and-place trajectory operation, it makes sense to minimize the
total trajectory time, thus the first objective function can be expressed as:

Minimize f1 = t1 + t2. (6.1)

The second objective function aims at maximizing the robustness index of the
moving-platform for the complete path, thus the second objective function can be
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Figure 6.1: Parameterization of FASTKIT

expressed as:

Maximize f2 = m1

k1

k1∑
k0=1

µk0 + m2

k2 − k1

k2∑
k0=k1+1

µk0 . (6.2)
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µk0 being the capacity margin defined in Eq. (4.31) and assessed at the k0th point
of the piecewise path. The average robustness index for each segment of the path
in Eq. (6.2) takes into account the mass of the moving-platform as well to have
an equal ratio between the indices as it tends to decrease with the increase in the
moving-platform mass and vice versa.

6.2.1.2 Decision Variables

The decision variable vector of the optimization problem contains the trajectory time
of both the segments (t1, t2) and redundancy planning scheme. Let ρ2k0 denote the
position of M2 at k0th point of the path. Let β denote the redundancy planning
scheme containing the position of M2 for each k0th discretized point such that:

β =
[
ρ21 ρ22 . . . ρ2k1 . . . ρ2k2

]T
, (6.3)

with ρ2 ≤ βk0 ≤ ρ2, k0 = 1, . . . , k1, k1 + 1, . . . , k2, where βk0 denotes the k0th index
of β. ρ2 and ρ2 denote the lower and upper bounds on ρ2.

6.2.1.3 Constraints

Six types of constraints are considered in the optimization problem:
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1. As the passive mobile base is fixed, the velocity of M1 is zero,

ρ̇1 = 0. (6.4)

2. The moving-platform pose must be capable of generating the RWS and RTS
along the trajectory. RWS depends on the mass and the acceleration of the
moving-platform. RTS is equal to the required twist of the moving-platform.
Thus for each k0th trajectory point, the indices µk0 and νk0 from Eqs. (4.31)
and (5.27) must be positive, namely,

µk0 ≥ 0, (6.5a)
νk0 ≥ 0. (6.5b)

Equation (6.5a) ensures that the moving-platform has the ability to generate the
RWS while respecting the cable tension tension limits and the SE constraints
associated with the mobile bases. Equation (6.5b) ensures that the moving-
platform can generate the RTS while respecting the joint velocity limits.

3. ρ2 is bounded between its lower bound ρ2 and its upper bound ρ2 at each k0th
trajectory point, namely,

ρ2 ≤ ρ2k0 ≤ ρ2. (6.6)

4. ρ̇2 is also bounded between its lower bound ρ̇2 and its upper bound ρ̇2 at each
k0th trajectory point, namely,

ρ̇2 ≤ ρ̇2k0 ≤ ρ̇2. (6.7)

5. The path starts at k0 = 1 with the MCDPR in a stowed undeployed configura-
tion. Thus,

ρ21 = ρ2. (6.8)

6. The search for an optimal trajectory time of bounded as:

0 ≤ t1 ≤ t1, (6.9a)
0 ≤ t2 ≤ t2, (6.9b)

where t1 and t2 are the maximum trajectory times for the first and second segments
of the path.
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6.2.1.4 Formulation of the optimization problem

In order to find the optimal kinematic redundancy scheme, the optimization problem
formulated from Eqs. (6.1) to (6.9) is expressed as follows:

Minimize f1(x) = t1 + t2,

Maximize f2(x) = m1

k1

k1∑
k0=1

µk0 + m2

k2 − k1

k2∑
k0=k1+1

µk0 ,

over x = [ β t1 t2 ],
subject to ρ̇1 = 0,

ρ21 = ρ2,

ρ2 ≤ ρ2k0 ≤ ρ2,

ρ̇2 ≤ ρ̇2k0 ≤ ρ̇2,

µk0 ≥ 0,
νk0 ≥ 0,
0 ≤ t1 ≤ t1,

0 ≤ t2 ≤ t2,

k0 = 1, . . . , k1, k1 + 1, . . . , k2.

(6.10)

The optimization problem formulated in Eq. (6.10) attempts to obtain the
trajectory time for each segment and evolution of the active mobile base that
minimize the total trajectory time (f1) and maximize the criterion f2 defined in
Eq. (6.2) while respecting the set of constraints. The optimization problem is solved
for the following case study of FASTKIT.

6.2.2 Case Study

In this section, all the parameters required to acquire and analyze the results for
the path planning problem are presented. Segments of the pick-and-place path are
discretized such that k2 = 2k1 = 100. The maximum trajectory time of each segment
is defined as:

t1 = t2 = 10s. (6.11a)

The mass of the moving-platform is taken as:

m1 = 1kg, m2 = 2.5kg. (6.12)
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Each mobile base of FASTKIT is 150 kg. The joint velocity limits i.e. velocity limits
of the cables and mobile bases are defined as:

ρ̇2 = −0.2m.s−1, ρ̇2 = 0.2m.s−1, (6.13)

−2m.s−1 ≤ l̇ij ≤ 2m.s−1, i = {1, 2}, j = {1, 2}. (6.14)

Based on the hardware specifications of FASTKIT, the lower and upper bounds on
the cable tension limits are set to 0 N and 45 N , respectively. The bounds on the
position of M2 are defined as:

ρ2 = 1.1m, ρ2 = 4m. (6.15)

which means that the robot can be deployed up to a maximum of ρ2 − ρ2 = 2.9 m.

6.2.3 Result Analysis

The only decision variables that are considered to solve the proposed optimization
problem are t1 and t2, respectively. The vector β is searched at each iteration and is
obtained in such a way that it minimizes the objective function f1, maximizes the
objective function f2 and leads to a continuous solution for ρ2 along the trajectory.
The feasible solutions in decision space are illustrated in Fig. 6.3a. On the left side
of the transition curve, there exists no solution between t1 and t2 that respect all
the constraints defined in Eq. (6.10) referred to as unfeasible time set. On the right
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side of the transition curve, each combination between t1 and t2 satisfies all the
constraints of the proposed optimization problem (6.10) and are referred to as the
feasible time set.

The optimization problem in Eq. (6.10) has more than one optimal solution.
These optimal solutions are defined as Pareto-optimal solutions, which cannot be
dominated by any other feasible solution [BABB12, LW09]. The set of all Pareto-
optimal solutions is called as Pareto optimal set, denoted by P , illustrated in Fig. 6.3a.
The Pareto-optimal solutions lie on a boundary in the Performance Function Space
between the two objective functions called Pareto front [WCB+15] shown in Fig. 6.3b.
It can be observed in Fig. 6.3a that most of the Pareto-optimal solution requires
the largest t1. This behavior can be explained from the definition of the adopted
pick-and-place path.

During the first segment of the path (see Fig. 6.2), the platform height is increased
that reduces the AWS along 0z. The RWS due to the acceleration of the moving-
platform tends to decrease with the increase in t1, which results in higher f2 along
the first segment. The situation is opposite for the second segment of the adopted
path as AWS tends to increase along 0z with the decrease in the platform height. A
similar phenomenon can be observed in Fig. 6.3a through transition curve where the
minimum time that is required to find a feasible solution for first segment is equal
to 6 s while it is equal to 1 s only for the second segment. It should be noted that
at t1 = t1, changing t2 does not produce any prominent change in f2 (see Figs. 6.3a
and 6.3b). Thus, it can be concluded that the transition curve i.e. the feasible and
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unfeasible time set is highly dependent of the adopted path.
To illustrate an optimal redundancy scheme, four different Pareto-optimal solu-

tions, i.e. P1,P2, P3 and P4 have been selected in Fig. 6.3. Figures 6.4 to 6.7 show the
index µ as a function of the path point number and ρ2 for the chosen Pareto-optimal
solutions P1, P2, P3 and P4 known as efficiency maps [CDGF13, CGF+14]. The red
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curve in the efficiency maps highlights the optimum redundancy scheme. The white
areas in the map corresponds to the region where the constraints of the proposed
optimization problem are not satisfied. It can be observed that there is a sudden
change in µ at k0 = k2

2 . It is due to the fact that the weight of the moving-platform
is changed at the end of the first segment of pick-and-place operation. Due to
this following reason, the mass of the moving-platform is taken into account in
the definition of the second objective function f2, which is expressed in Eq. (6.2).
The simulation videos for corresponding pick-and-place operation for all the four
Pareto-optimal solutions P1,P2, P3 and P4 can be downloaded at 1.

The presented approach gives satisfactory results for determining the optimal
kinematic redundancy planning; however, is only useful for systems with one degree of
redundancy. Indeed, for MCDPRs with higher degrees of kinematic redundancy, the
analysis of the formulated optimization problem becomes complex. As a consequence,
an optimization based direct transcription method is presented in Sec. 6.4 for highly
redundant manipulators, e.g., MoPICK prototype. Additionally, a sampling based
iterative path planning algorithm is developed detailed in Sec. 6.3.

6.3 Iterative Path Planning Algorithm for MCDPRs
This section presents a sampling based iterative algorithm for highly redundant
MCDPRs. MoPICK prototype is investigated as a case study, with its parameter-

1https://drive.google.com/open?id=18PWHVjZw1ZmYhuV7L5T2EwY5waI2lgNL

https://drive.google.com/open?id=18PWHVjZw1ZmYhuV7L5T2EwY5waI2lgNL
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ization depicted in Fig. 6.8. The algorithm searches for a feasible and continuous
path of its mobile bases between the initial and desired pose of the moving-platform
by making a locally optimal choice at each step. Thus the system’s kinodynamic
constraints are enforced at each instant of the path. The algorithm decomposes the
problem in two parts. The first part aims to find a feasible, continuous and collision
free path for the mobile bases. A path is generated using an iterative procedure by
generating a sequence of straight line paths. The paths are then smoothed using
B-Splines. The second part of the algorithm takes as input the smoothed B-Splines
and locally optimizes the moving-platform’s wrench capability.
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Figure 6.8: MoPICK Parameterization

6.3.1 Task Formulation

For MoPICK, the task is defined as displacing the moving-platform from an initial
position P 1 to a desired position P f while ensuring that the moving-platform passes
through a set of way-points. The task is performed in a constrained environment
having numerous tables and obstacles in it. The way-points on the tables require
a task action, for example grasping and/or releasing an object. Some intermediate
way-points are placed in order to guide the system to navigate between the two
consecutive task locations. These intermediate way-points are interpolated between
the two task locations while maximizing the distance from the nearest obstacle.

Let l be the total number of way-points. Each way-point is denoted as P i,
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i = 1, . . . , l. The Cartesian coordinate vector of the ith way-point is denoted as
pi. The obstacles are defined as cylinders. As discussed earlier, MoPICK mobile
bases are also designed as cylindrical shape with radius of 0.25 m. To avoid collision
between the obstacles and a mobile base, a common practice [CE07] is to inflate the
obstacles by at least the radius of mobile bases in 0x0y plane, denoted as safe region
around obstacles, as illustrated in Fig. 6.9. As a consequence, the mobile bases may
be treated as single points, reducing the complexity of the planning problem.

In order to perform the desired task, a feasible and collision free path of the mobile
bases is required. Accordingly, the path of the moving-platform is also required
to displace it from P 1 to P f by sequentially following the intermediate way-points
P i, i = 1, . . . , l. The following section addresses the aforementioned problem and
presents a sampling based iterative path planning approach for the manipulator
under study.

6.3.2 Iterative path planning Algorithm

In order to find a path between ith and (i+ 1)th way-points, the following steps are
taken. First, let’s assume that a feasible solution has been obtained for the mobile
bases with moving-platform located at P i. The wrench capability of the system
is calculated when the moving-platform is located at P i+1 while the mobile bases
are still located at the solution of previous way-point (P i). The mobile bases are
then iteratively displaced from P i to P i+1 such that each displacement maximizes
the wrench capability while avoiding collisions. This results in a feasible path for
the mobile bases. Given this feasible path for the mobile bases, the path of the
moving-platform is optimized to further increase the wrench capability during the
transition.
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6.3.2.1 Generation of feasible path for mobile bases
The first phase of the algorithm iteratively searches for a collision free continuous
path for the mobile bases between any two way-points of the moving-platform. As
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an illustrative example, we will show how the algorithm evolves and calculates a
continuous path for Mj, j = 1, . . . , 4, between ith and (i+ 1)th way-points shown in
Fig. 6.10a. Let k represents an iteration. Let Mij be a matrix whose kth column
contains the Cartesian coordinate vector of Mj in 0x0y plane at the kth iteration of
the algorithm.

From the initial configuration of the mobile bases at k = 1, the iterative process
starts at k = 2 by displacing the moving-platform at P i+1. This results in the drastic
decrease of the moving-platform wrench capabilities (µ). At each kth iteration, the
algorithm searches for the best step of Mj on a circular grid with a step size dj. On
the corresponding search grid, Mj can either retain its current position or due to the
non-holonomic constraints, can move in the forward, backward, or diagonal directions,
all denoted by ‘+’ in Figs. 6.10a, 6.10b and 6.10c. Let Mj have sj possibilities of
collision free steps. There exists s1 × s2 × s3 × s4 combinations for four mobile bases.
The algorithm chooses the combination that results in the maximum increase in µ.
The matrix Mij is updated with the Cartesian coordinates of the new step taken by
Mj and a line segment is created between its locations at kth and (k− 1)th iteration.
If there are no feasible steps for Mj due the blockage around any obstacle, the step
size (dj) is reduced and the search is repeated until a feasible step is obtained as
illustrated in Fig. 6.10b. The procedure stops at k = ki when µ does not increase
any further (see Fig. 6.10d). For the illustrative example, the evaluation of µ as a
function of iteration number is shown in Fig. 6.10e.

The next phase is to smooth the sequence of straight line segments generated
between the Cartesian coordinates of Mj during the iterative process using B-Splines
[PLH02]. The following function in MATLAB bspline_footpoint2 is used which
requires the two parameters knot sequence and control points to be tuned. It takes
ki Cartesian coordinates of Mj in Mij as input, and generates ten times the smooth
sequence of Cartesian coordinates, denoted as Pij, as depicted in Fig. 6.10f.

The above procedure is repeated to find a collision free continuous path for the
mobile bases between all the way-points of the moving-platform. It is noteworthy to
mention that location of Mj at kith iteration is used as an initial configuration to
compute P(i+1)j, i.e. path of Mj between (i+ 1)th and (i+ 2)th way-points. The
Pseudo-code for generating the path of mobile bases is presented in Algorithm. 1.

6.3.2.2 Generation of the moving-platform optimal path

The second phase of the path planning algorithm generates an optimal path of the
moving-platform, denoted as Pi,MP between ith and (i+ 1)th way-points. Similar
to the first phase, the second phase of the algorithm is also an iterative process
which computes an optimal moving-platform pose for each location of the mobile

2https://www.mathworks.com/matlabcentral/fileexchange/27374-b-splines

https://www.mathworks.com/matlabcentral/fileexchange/27374-b-splines
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Algorithm 1: Generation of mobile bases feasible path between two way-
points
Input : A matrix with initial Cartesian coordinates of mobile bases Mij(1)

Maximum number of iterations kmax

Cartesian coordinates of the moving-platform at (i+ 1)th way-point
pi+1

Output : Feasible Path of mobile bases Pij

Notations : j represents the mobile base number j = 1, . . . , 4
Cartesian Coordinates of Mj at the kth iteration Mij(k)
A vector with Wrench Capability (µ) of the moving-platform at
the kth iteration µ(k)

Invoked functions : Determine smooth path of Mj BSpline(Mij)
1 k = 1; // iteration initialization µ(1) = Determine µ with Mj at Mij(1) and

moving-platform at pi+1 // Section 4.2

2 repeat
3 k = k + 1;
4 Determine the new step of Mj // Section 6.3.2.1
5 Mij(k) = Cartesian coordinates for the new location of Mj

6 µ(k) = Determine µ with Mj at Mij(k) and moving-platform at pi+1

7 until (µ(k) = µ(k − 1) or k > kmax);
8 Pij = BSpline(Mij)
9 return (Pij)

Algorithm 2: Generation of the moving-platform optimal path
Input : Path of mobile bases Pij

Cartesian coordinates of the moving-platform at the ith way-point
pi

Output : Optimal path of moving-platform Pi,MP

Notations : j denotes number of mobile bases j = 1, . . . , 4
Cartesian Coordinates of Mj at rth iteration Pij(r)
Optimal moving-platform pose at rth iteration Pi,MP (r)

Invoked functions : Determine the number of Cartesian coordinates of
Mj in Pij size(Pij)

1 Pi,MP (1) = pi;
2 for r = 2 : size (Pi1) do
3 Pi,MP (r) = Compute optimal moving-platform pose with Mj at Pij(r)

// see Section 6.3.2.2
4 end

bases in Pij, j = 1, . . . , 4. Let r represents an iteration. Total number of iterations
are fixed for the second phase i.e. equal to the number of Cartesian coordinates
of Mj in Pij. Given the initial (pi) moving-platform pose at r = 1, the iterative
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process begins at r = 2. It builds Pi,MP by searching for the best pose of the
moving-platform on a circular grid with a step size dMP . In contrast to mobile
bases, the moving-platform can either retain its previous pose or take a step in all
the neighboring eight directions i.e., forward, back, left, right and diagonals. The
algorithm chooses a step with a maximum µ among all the possible steps. For the
illustrative example, Pi,MP is shown in Fig. 6.10f. The above process is repeated to
find an optimal moving-platform path between all the way-points. The Pseudo-code
used to generate the moving-platform path is presented in Algorithm. 2.

0

2

4

6

8

64 x [m]020

1 Path

2 Path

3 Path

4 Path

    moving-

platform path

y
 [m

]
0

and way-points

Figure 6.11: Path of MoPICK for the required task

6.3.3 Results and Discussion

As discussed in Section 6.3.1, the required task is to displace the MoPICK moving-
platform from point P 1 to Pf by sequentially following the intermediate way-points as
depicted in Fig. 6.9. In order to perform the desired task, the output of the proposed
path planning algorithm is illustrated in Fig. 6.11. The simulation showing the
complete process of comprising the feasible path search and optimal path generation
can be seen at3. The video shows the resultant motion of the complete system along
with the pick-and-place operations performed at the task locations.

3https://youtu.be/0wrdLBvM9-s

https://youtu.be/0wrdLBvM9-s
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The tunning parameters for the proposed MCDPR algorithm are the step sizes of
the search grids, dj, j = 1 . . . , 4 and dMP . It is important to tune these parameters in
order to obtain a feasible path of the MCDPR mobile bases and the moving-platform.
For example, during the first phase of the algorithm, the step size dj must remain
smaller than the diameter of the smallest obstacle in the environment in order
to detect its collision with the mobile bases. However, reducing dj increases the
computation time for calculating the feasible paths. During the second phase of
the algorithm, a very small step size dMP may result in not achieving the desired
moving-platform position due to limited number of discrete points between the two
way-points while a big dMP can generate large discontinuities in the moving-platform
path.

The main drawback of this algorithm is the requirement of a good initial solution
in the form of moving platform way-points. Moreover, the resulting path quality
is often of poor quality with loops and edges that increase the distance traveled.
However, the iterative algorithm is useful if the system needs to be guided through a
cluttered region.

6.4 Optimization based Trajectory Planning of MCDPRs

The second path planning approach developed for highly redundant systems is based
on direct transcription optimization method. As discussed earlier, this optimization
based approach allows us to embed the numerous constraints associated with CDPRs
into the planning problem, while the direct transcription eases the reliance on the
initial guess. The method is based on discretizing the path into N number of points,
and then searching for an optimal MCDPR pose at each point that maximize the
wrench capability of the moving-platform while minimizing the total distance traveled.
Thus, the solution to the optimization problem is in the form of discrete set of optimal
MCDPR poses that are later exploited to generate the continuous motion profiles. A
similar environment is considered as presented in the previous section (see Fig. 6.9);
however, in this case the intermediate way-points are not required. The way-points
are only positioned on the tables requiring a task action. Figure 6.12 shows the
task designed for the direct transcription method, where the goal is to displace the
moving-platform from an initial position P 1 to a desired position P 4 while passing
through the defined way-points denoted as P 2 and P 3. Lets s denotes the total
number of obstacles in the environment. Similar to the previous approach, the qth
obstacle is inflated, q =, 1, . . . , s, and mobile bases are treated as single points.
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Figure 6.12: Test scenario and illustrated environment for direct transcription method

6.4.1 Trajectory Planning

In this section, a two-step trajectory planning method is presented for MCDPRs.
First, direct transcription method is used for the path planning of the robot, which
searches for an optimal geometric path from an initial to a final point. The output
of the direct transcription method is in the form of a discrete set of poses achieved
by minimizing the given criterion while respecting the set of constraints. The second
step is the trajectory planning which uses the set of poses to generate a continuous
motion profile of the robot.

6.4.1.1 Path Planning using Direct Transcription Optimization

In general, the dynamics of a system can be defined by the set of differential equations,

ẋ = f(x, u). (6.16)

where x and u represent the states of the system and the control input. f(·) denotes
the evolution of the system dynamics in time t. Trajectory optimization aims at
finding a control trajectory that minimizes a given criterion subject to the dynamics
constraints in Eq. (6.16). In direct transcription methods, this continuous optimal
control problem is transcribed into a finite-dimensional optimization problem by
discretizing the trajectories over N time steps and solved for states and controls
simultaneously.

State transition between time-steps

The MCDPR is characterized by the position of its mobile bases and its moving
platform. Let pe be a three dimensional vector containing the Cartesian coordinates
of the point-mass moving platform P in F0 at the eth step of the trajectory,
e = 2, . . . , N . Accordingly, let the two-dimensional Cartesian coordinate vector of
Mj in 0x 0y plane be denoted as mj,e at the eth time step. It should be noted that
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the e = 1 represents the given initial configuration of MoPICK. The state of the
MoPICK at the eth time step, is denoted by eleven-dimensional vector xe, expressed
as,

xe =
[
pT

e mT
1,e mT

2,e mT
3,e mT

4,e

]T
, (6.17)

In the direct method rather than simulating the continuous evolution of the system
the states at all way-points are optimized simultaneously. To do so, xe+1 is obtained
from the previous states by forward integration of the velocities. In order to do that,
we use a simple Euler integration of the form:

xe+1 = xe + ẋe+1 ∆t. (6.18)

The product of ∆t and ẋe+1 defines the maximum change in the state variables for
a given time step. Typically in cluttered environments, this should be relatively
small to prevent the optimizer finding solutions that jump over objects. Thus, the
state variables for the optimization problem are defined as x and ẋ both 11(N −
1)−dimensional vectors containing the position and velocity of the platform and the
mobile bases at each time step, namely,

x =
[
xT

2 xT
3 . . . xT

N

]T
, (6.19a)

ẋ =
[
ẋT

2 ẋT
3 . . . ẋT

N

]T
. (6.19b)

For an initial state value denoted xinit and assuming an initial static condition,
Eq. (6.18) can be extended to:

x2 = xinit + ẋ2 ∆t,
x3 = x2 + ẋ3 ∆t,

...
xN = xN−1 + ẋN ∆t.

(6.20)

By re-arranging the above expression into matrix form and gathering all the state
variables to one side a system of linear equality constraints governing the transition
of the system from one time step to the next can be written in terms of the state
variables as follows:

A

 x
ẋ

 = b. (6.21)



140 Chapter 6. Path Planning of MCDPRs

A is a 22(N − 1)-dimensional sparse square matrix and b is a 22(N − 1)-dimensional
sparse vector containing the system initial conditions.

Optimization Procedure

At each step, the MCDPR pose must be wrench feasible with respect to the RWS
(only considering the weight of the moving platform). Additionally, we are interested
in finding a shortest collision free path for the moving platform. Hence, the objective
function of the problem is formulated as follows,

minimize
x2,...,N ,ẋ2,...,N

− k3

N∑
e=2

µk + k4

N∑
e=2

4∑
j=1
‖mj,i −mj,e−1‖2. (6.22)

The first cost term in Eq. (6.22), aims to maximize the capacity margin of the RWS
at each time step while the second term attempts to minimize the total path length
of the mobile bases. The cost weights are tuned as k3 = 0.4, k4 = 0.6.

The system is subject to a set of global equality constraints defined as follows:

pN1 = p2, (6.23)

pN2 = p3, (6.24)

pN = p4, (6.25)

A

 x
ẋ

 = b, (6.26)

where N1 and N2 represent the time steps at the way-points of the moving platform
P 1 and P 2, respectively. The desired poses and way-points are imposed using equality
constraints Eq. (6.23) to Eq. (6.25), while as explained above the system velocities are
constrained by the state transition matrix Eq. (6.26). Furthermore at any time-step
e = 1, . . . , N the following inequality constraints are imposed for jth, j = 1, . . . , 4,
mobile base:

lmin ≤ ‖
[
mT

j,e 1.2
]T
− pe‖ ≤ lmax, (6.27a)

‖mh,e −mj,e‖ ≥ dmin, for h = 1, . . . , 4, h 6= j, (6.27b)

‖mj,i − oq‖2 − rq ≥ 0, for q = 1, . . . , s. (6.27c)
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Equation (6.27a) bounds the cable length between a minimum and maximum length
denoted as lmin and lmax, where 1.2 m is the constant height of the exit points
expressed in F0. Equation (6.27b) ensures the mobile bases do not collide with each
other by defining dmin as a minimum relative distance. Equation (6.27c) ensures
that the distance between the qth augmented obstacle, whose position is defined by
oq and radius is rq, and the mobile base is always greater than 0. Finally, Eq. (6.28b)
enforces bounds on the state variables, i.e.,

xL ≤ xe ≤ xU , (6.28a)

ẋL ≤ ẋe ≤ ẋU . (6.28b)

where xL, xU , ẋL and ẋU represents the lower and upper bounds on xe and ẋe, e =
2, . . . , N , respectively.

6.4.1.2 Generation of Motion Profiles

In this section, the cubic splines approach [AA02] is adopted to obtain a trajectory
profile for the robot. The objective is to generate a continuous trajectory that passes
through the N discrete points obtained from the direct transcription method. To do
so, a single cubic spline s(t) is defined as a function of time t and is composed of
N − 1 cubic polynomials connecting N supporting points. The hth cubic polynomial,
h = 1, . . . , N − 1, connecting the two consecutive supporting points is expressed as,

sh(t) = ah(t− th)3 + bh(t− th)2 + ch(t− th) + dh, (6.29)

where th ≤ t ≤ th+1. th represents the time at the hth supporting point. To
completely characterize the spline s(t), the coefficients ah, bh, ch, and dh, h =
1, . . . , N−1 must be determined while imposing the continuity conditions at first and
second derivative with respect to t at the supporting points. The first and second
derivative of the hth cubic polynomial is given as:

ṡh(t) = 3ah(t− th)2 + 2bh(t− th) + ch, (6.30)

s̈h(t) = 6ah(t− th) + 2bh. (6.31)

The coefficient dh can be obtained from Eq. (6.29) at t = th,

dh = sh(th). (6.32)
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bh and ah can be achieved from Eq. (6.31) at t = th and t = th+1,

s̈h(th) = 2bh =⇒ bh = s̈h(th)
2 , (6.33a)

s̈h(th+1) = 6ah(th+1 − th) + 2bh. (6.33b)

Substituting bh from Eq. (6.33a) into the Eq. (6.33b) yields

ah = s̈h(th+1)− s̈h(th)
6(th+1 − th) . (6.34)

Furthermore, ch can be obtained by substituting ah, bh and dh in Eq. (6.29) at t = th,

ch = ∆sh

∆th
− ∆th(s̈h(th+1) + 2s̈h(th))

6 (6.35)

where

∆sh = sh(th+1)− sh(th), ∆th = th+1 − th. (6.36)

In order to compute the coefficients of the cubic polynomials, the first order
continuity conditions are imposed on the values of sh, h = 1, . . . , N − 1 at the
supporting points. The first order derivatives of the two polynomials sh−1 and sh

joining at th are expressed as

ṡh−1(th) = 3ah−1(∆th−1)2 + 2bh−1(∆th−1) + ch−1, (6.37a)

ṡh(th) = ch−1. (6.37b)

For the first order continuity of s(t) at th, Eqs. (6.37a) and (6.37b) should be equal.
Equating these equations and substituting the corresponding coefficients yields,

∆th−1s̈h(th+1) + 2(∆th + ∆th−1) + (∆th−1)s̈h(th−1) = 6
(∆sh

∆th
− ∆sh−1

∆th−1

)
. (6.38)

Finally, we need to impose the boundary conditions i.e., the first order derivative at
initial and final supporting points should be equal to zero, namely,

ṡ1(t1) = 0, ṡN−1(tN) = 0 (6.39)

Substituting the corresponding coefficients from Eqs. (6.32), (6.33a), (6.34) and
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(6.35) into the (6.39) yields,

2∆t1s̈1(t1) + ∆t1s̈1(t2) = 6∆s1

∆t1
, (6.40a)

∆tN−1s̈N−1(tN−1) + 2∆tN−1s̈N−1(tN) = −6∆sN−1

∆tN−1
. (6.40b)

Furthermore, let s (̈s, resp.) be a N -dimensional vector containing the values of
the cubic spline s(t) (second derivative of s(t) , resp.) at each supporting point,
expressed as:

s =



s(t1)
s(t2)
...

s(tN−1)
s(tN)


, ṡ =



s̈(t1)
s̈(t2)
...

s̈(tN−1)
s̈(tN)


. (6.41)

From the conditions defined in Eqs. (6.38) and (6.40), the relation between s and ṡ
can be expressed as,

Bṡ = 6Cs, (6.42)

where B and C are N ×N matrices expressed as,

B =



2α1 α1 0 0 . . . 0 0 0
α1 2α1α2 α2 0 . . . 0 0 0
0 α2 2α2α3 α3 . . . 0 0 0
... ... . . . . . . . . . . . . ... ...
0 0 0 0 . . . αN−2 2αN−2αN−1 αN−1

0 0 0 0 . . . 0 αN−1 2αN−1


(6.43a)

C =



−β1 β1 0 0 . . . 0 0 0
β1 −β1β2 β2 0 . . . 0 0 0
0 β2 −β2β3 β3 . . . 0 0 0
... ... . . . . . . . . . . . . ... ...
0 0 0 0 . . . βN−2−βN−2βN−1 βN−1

0 0 0 0 . . . 0 βN−1 −βN−1


(6.43b)
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Figure 6.13: MoPICK path from direct transcription method using test scenario

where

αh = ∆th, βh = 1
∆th

, h = 1, . . . , N − 1 (6.44)

The first and the last row of the above matrices impose the boundary conditions
while the intermediate N − 2 rows impose the first order continuity conditions. By
solving Eq. (6.42) for s̈, the coefficients of the polynomials sh, h = 1, . . . , N − 1 are
determined.

6.4.2 Experiments
As discussed in Sec. 1.3.3, mobile bases of MoPICK are controlled by sending
rotational velocity commands to its motarized wheels. Therefore, their continuous
trajectories in F0, obtained from the cubic splines, are transformed into the wheels
rotational velocity using the system’s kinematic model [MM14]. Evidently, wheels
rotational velocities are also continuous. The continuous trajectories do not include
any sharp turns and edges and thus gives an exemption for including the non-
holonomic constraints into the planning problem.

The optimization problem defined by Eqs. (6.22) to (6.28b) is solved using the ©
MATLAB function fmincon. It took 36 minutes and 14 seconds of CPU4 time to
compute the solution of the aforementioned optimization problem with the following

4i7-5500U CPU@2.40GHz
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Figure 6.14: MoPICK velocity profiles for a test scenario

parameters:

N1 = 8, N2 = 32, N = 47, ∆t = 0.75 s. (6.45)

The total trajectory time is set to 85 seconds. Figure 6.13 illustrates the N number
of path points generated using the Direct Transcription method. It should be noted
that a single cubic spline is required for each independent state of the manipulator
defined in Eq. (6.17). Therefore 11 cubic splines are used to generate a continuous
path depicted in Fig. 6.13. Accordingly, the velocity profiles of the moving-platform
and the mobile bases are shown in Fig. 6.14. A simulation video showing the output
of the proposed method can be seen at5.

6.4.3 Comparison with the iterative path planning algorithm

The direct transcription method is compared with a path planning algorithm for
MCDPRs presented in Sec. 6.3, which iteratively searches for a feasible and collision
free path by making a locally optimal choice at each step. The comparison between
the lengths of the MCDPR path acquired from the iterative algorithm (see Fig. 6.11)
and direct transcription (see Fig. 6.13) is shown in Fig. 6.15. The proposed approach
of direct transcription generates a more continuous path with better performance in

5https://youtu.be/kK714kDWUaA, from 0:29 to 0:47

https://youtu.be/kK714kDWUaA
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terms of total distance traveled. In spite of the better quality in resulting trajectories,
the direct transcription method has several limitations. First the number of decision
variables may become computationally more expensive with high DoF MCDPRs,
however this is somewhat mitigated by the sparsity of the state transition matrix.
Secondly, the weights of the costs need to tuned, a time consuming task, to acquire a
feasible trajectory of the system. Finally, as the path is obtained in terms of discrete
points, the approximation between the two consecutive nodes performed by the cubic
splines might not respect all constraints, e.g., collisions with obstacles. This problem
may be resolved by either increasing the safety distance to obstacles or increasing N ,
albeit with added computational cost. Alternatively, the shooting method could be
employed which would used the output of this algorithm as an initial solution.

6.4.4 MoPICK Simulation in V-REP

As explained earlier, a dynamic model of the MoPick is developed using the simulation
environment V-REP [RSF13], to facilitate testing and debugging before hardware
deployment. The V-REP simulation of the resulting trajectory, obtained from the
proposed method, can be seen in this video6. The results may be evaluated by
analyzing the moving platform’s path. Figure 6.16 shows the error between the
desired and actual position of the moving platform in V-REP. It should be noted
that the proposed trajectory is feasible and the moving platform achieves the desired

6https://youtu.be/kK714kDWUaA, from 0:47 to 0:57

https://youtu.be/kK714kDWUaA


6.4 Optimization based Trajectory Planning of MCDPRs 147

Error in Error in Error in x0 y0 z0

t[s]0 20 40 60 80

-20

-10

0

10

20

[m
]

10
-3

Figure 6.16: Error between the actual and the desired moving platform position

4
3

2
0

0.5

1

-0.5 10 0.5 1 01.5 2 2.5 3
x [m]0

y [m
]

0

z
[m
]

0

P1

P2 P3

Figure 6.17: Experimental scenario

path within an acceptable range of errors.

6.4.5 Experimental Validation

The proposed approach is validated experimentally on MoPICK, using an experimen-
tal scenario with two way-points as shown in Figs. 6.17 and 6.18. The parameters
of the direct transcription method are selected as N = 2N1 = 26, ∆t = 0.5 s. The
solution to the optimization problem is obtained in 10 minutes and 36 seconds of
CPU7 time by fmincon. The total trajectory time is set to 40 s for computing
motion profiles using cubic splines. The resultant continuous path is depicted in
Fig. 6.19. Accordingly, the velocity profiles of the moving-platform and the mobile
bases are shown in Fig.6.20. The simulation showing the complete process of search-
ing for a discrete path and generation of the continuous motion profile along with
the simulation and experimental validation can be seen in8. From the results, it is
evident that the output trajectory is continuous, safe and feasible to be implemented

7i7-5500U CPU@2.40GHz
8https://youtu.be/kK714kDWUaA, from 0:03 to 0:29

https://youtu.be/kK714kDWUaA
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6.5 Conclusion
It has been observed that MCDPRs are kinematically redundant due to the additional
mobility of the mobile bases. As a consequence, there exist multiple paths for the
MCDPR mobile bases to displace the moving-platform from one pose to another and
to perform a desired task. Therefore, this chapter focused on the path planning of
MCDPRs.

The first part of the chapter addressed the problem of determining an optimal
path also referred to as a redundancy planning for MCDPRs with one degree of
kinematic redundancy. The path planning problem is formulated as a bi-objective
optimization problem that corresponds to minimization of the total trajectory time
and maximization of the robot average robustness index throughout the trajectory.
FASTKIT is used as a case study with a desired pick-and-place operation.

In contrast to FASTKIT, MoPICK prototype has eight degrees of kinematic
redundancy, thus the second part of the chapter described two different path planning
strategies for highly redundant manipulators. The first approach is a sampling
based iterative path planning algorithm, which plans the manipulator’s path in
two subsequent stages. In the first stage, the algorithm searches for a feasible and
collision free path of mobile bases. The second stage generates an optimal path of
the moving-platform to reach the desired pose. Although the obtained path between
the initial and final poses may not be the shortest one, it leads to a feasible path,
when it exists.

The second approach dealt with the path planning of MoPICK using direct
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transcription optimization method. It is an optimization based approach where
the continuous path planning problem is transcribed into a discrete optimization
problem with N steps. The goal of the optimization problem is to maximize the
wrench capability of the robot at each step while minimizing the total path length.
The desired pose and intermediate way-points are enforced using a set of equality
constraints. In the direct transcription method, rather than simulating the continuous
evolution of the system, the states at all way-points are optimized simultaneously.
The resulting discrete path is transformed into a continuous motion profile in time
using cubic splines. The proposed approach is validated through simulation and
experimentally on MoPICK. Additionally, the direct transcription approach produces
better quality paths in comparison to iterative path planning algorithm.
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7.1 Summary of the Work
During the last decades, several research studies have been performed in the field
of Cable-Driven Parallel Robots (CDPRs). CDPRs provide several advantages,
including a wide workspace and a high payload to weight ratio. However, when the
working environment is cluttered, CDPR cannot be used to accomplish complicated
tasks. The focus of this work was to develop mobile, deployable and autonomous
CDPRs, that can be adapted based on the desired task. As a result, a novel concept
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of Mobile Cable-Driven Parallel Robot (MCDPR) has been introduced in this thesis
using combination of mobile robots and a CDPR.

The contributions of this thesis are about different research aspects of MCDPRs.
The research work has been validated using simulations and when possible using
experiments. Furthermore, two MCDPR prototypes have been developed during
the course of this thesis and are named FASTKIT and MoPICK. In the following, a
description of the contributions of each chapter is briefly discussed.

Chapter 3 presented a real-time Tension Distribution Algorithm for MCDPRs.
The work presented in this chapter has led to the publication of one paper presented
at the international conference [RLMGC18d]. The contributions of this chapter are
divided into two parts.

The first part focused on deriving the MCDPR’s static equilibrium conditions.
Classical CDPR connected to fixed base considers only the static equilibrium of their
moving-platform while respecting the bounds on the cable tensions. In contrast,
as a MCDPR possesses moving bases, additional constraints are generated, which
are associated with stability of the mobile bases. Thus, these stability conditions
must be taken into consideration to ensure the complete equilibrium of a MCDPR.
The stability of a mobile base is characterized by its tipping and sliding conditions.
The tipping conditions depend on the moment generated at the boundaries of the
mobile base footprint. These tipping conditions uniquely depend on the weight of
the mobile base and the tension in the cables attached to it. Likewise, the sliding
conditions also depend on the weight of the mobile base and those cable tensions.
However, the sliding conditions are represented in the form of a friction cone. For
ease of analysis, the non-linear sliding conditions are linearized and the friction cone
is transformed into a four-sided friction pyramid.

Using the aforementioned static equilibrium conditions, the second part of the
chapter presented a Tension Distribution Algorithm for the real-time control of
MCDPRs cables. The algorithm forms a Feasible Cable Tension Domain representing
the set of feasible tensions based on the cable tension limits and the conditions
associated with the static equilibrium of the mobile bases. This Feasible Cable
Tension Domain takes the form of a (m − n)-dimensional convex polytope. The
presented Tension Distribution Algorithm finds the vertices of the feasible polygon
or proves that it is null. If the feasible polygon exists and is determined, then the
centroid of the polygon is calculated which is a solution furthest from all constraints.
The coordinates of the centroid are used to compute the feasible distribution of
the cable tensions. The proposed algorithm is investigated on multiple case studies
including FASTKIT and MoPICK. The obtained results show that the new set of
constraints developed for MCDPRs are sufficient to compute feasible cable tensions
such that they stay within the required set of limits while ensuring the stability of all
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the mobile bases. The algorithm is relevant for real-time implementations, however,
it has only been validated for MCDPRs up to two degrees of actuation redundancy.

Chapter 4 introduced a methodology to determine the Available Wrench Set
of MCDPRs. Similar to the Tension Distribution Algorithm, the workspace also
depends, not only on the static equilibrium of the moving-platform, but on the static
equilibrium of the mobile bases as well. Wrench-Feasible Workspace is traced using
Available Wrench Set which defines the set of wrenches the moving-platform can
generate. Available Wrench Set of MCDPRs takes the form of a n-dimensional convex
polytope. The Available Wrench Set is constructed using two different approaches,
i.e., convex hull and the Hyperplane Shifting Method. The convex-hull approach uses
the vertices of the cable tension space to determine the vertices of Available Wrench
Set and forms the boundary of the convex polytope. The Hyperplane Shifting Method
allows us to determine the Available Wrench Set geometrically by characterizing the
facets of the polytope. The equivalence between both the approaches is also presented.
Multiple case studies are investigated in order to show that the approach is applicable
to both planar and spatial MCDPRs. The approach was experimentally validated on
a MCDPR with a point-mass end-effector and two mobile bases. The work presented
in this chapter has led to the publication of one conference paper [RLMGC18a] and
one journal paper [RLC19].

Chapter 5 dealt with the kinematic modeling and twist capabilities of MCDPRs.
To derive the MCDPRs kinematic model, each cable of the manipulator is modeled
as a Universal-Prismatic-Spherical kinematic chain. Furthermore, as mobile bases are
only capable of generating two-DoF translational motions and one-DoF rotational
motion in a plane, they are modeled as a Revolute-Prismatic-Prismatic kinematic
chains. By integrating the aforementioned chains, a general kinematic architecture
is developed for MCDPRs, where the cables carried by the jth mobile base are
connected in parallel with each other, while the jth mobile base is linked in series
with the aforementioned parallel architecture of the cables mounted on it. The
first-order kinematic model is used to determine the Available Twist Set (ATS) of
MCDPRs by considering the joint velocity limits for the cables and the mobile bases.
If m = n, ATS corresponds to a single convex polytope. However, if m > n, ATS is
the region bounded by Cn

m convex polytopes. Finally, ATS is used to determine the
twist capacities of the moving-platform. The work presented in this chapter has led
to the publication of one conference paper [RLMGC18b]. The hardware design and
software architecture of FASTKIT along with the manipulator’s wrench and twist
analyses are published in the ECHORD++ book [PRMG+20].

Chapter 6 presented multiple path planning strategies for MCDPRs. The work
presented in this chapter has led to the publication of three papers presented at
international conferences [RLMGC18c, RLMGC19, RLSRC19]. The contributions
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of this chapter are divided into two parts.
At first, the problem of determining an optimal path for MCDPRs with one

degree of kinematic redundancy is addressed. The problem to the path planning is
formulated as a bi-objective optimization problem that corresponds to minimization of
the total trajectory time and maximization of the robot wrench feasibility throughout
the trajectory. FASTKIT is used as a case study with a desired pick-and-place
operation.

In the second part of the chapter, two different path planning strategies are
presented for highly redundant manipulators. The first approach is a sampling
based iterative path planning algorithm which plans the manipulator’s path in two
subsequent stages. In the first stage, the algorithm searches for a feasible and
collision free path of mobile bases. The second stage generates an optimal path of the
moving-platform to reach at the desired pose. The second approach dealt with the
path planning of highly redundant MCDPRs using direct transcription optimization
method. It is an optimization based approach where the continuous path planning
problem is transcribed into a discrete optimization problem of N steps, with the
goal to maximize the wrench capability of the robot at each step while minimizing
the total path length. The desired moving-platform poses are enforced using a set
of equality constraints. In the direct transcription method rather than simulating
the continuous evolution of the system, the states at all way-points are optimized
simultaneously. The resulting discrete path is transformed into a continuous motion
profile in time using cubic splines. The proposed approach is validated through
simulation and experimentally on MoPICK.

7.2 Future Work
This thesis could be considered as a first step towards a new topic in robotics, which
indeed requires further studies and investigations to be matured. The foundations
of the topic have been introduced during the course of this thesis together with
preliminary studies and results. Here, we end this thesis by outlining the main
aspects of prospective theoretical and technical research issues and challenges that
can be conducted on MCDPRs in the future. There are several possible avenues for
research stemming from this thesis, proposed thereafter:

7.2.1 Multi-SLAM approach for a MCDPR

The pose of the CDPR moving-platform is completely determined by the location of
the cables exit and anchor points. In contrast to classical CDPRs, the exit points of
MCDPRs are mobile and thus required continuous localization system. Hence, future
work should focus on developing a methodology for localizing all the MCDPR mobile
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bases which are carrying the exit points of the CDPR. As discussed in sec. 1.3.2,
FASTKIT uses a single Simultaneous Localization and Mapping (SLAM) approach
to localize and navigate its mobile bases (during the navigation mode) in a simplified
manner. For highly redundant manipulators such as MoPICK, a single SLAM system
is not enough to completely localize all the mobile bases.

A possible solution would be to use multiple SLAM systems on the MCDPR
mobile bases and to fuse them in order to localize all the mobile bases in the task
space. It must be noted that classical SLAM approach performs three function
simultaneously, i.e., mapping, localization, path planning. However, the classical
global planners in SLAM must be replaced with the planning approaches presented
in Chapter 6.

For fully characterizing the location of the mobiles bases with SLAM, the local
planners must also be developed for the dynamic path planning of the manipulator.
In classical SLAM approach, the local planner is only responsible for detecting
the nearby obstacles (either static of dynamic) and creating a trajectory to avoid
collisions. However, the local planning problem for MCDPRs must consider the
additional constraints associated with the CDPRs.

7.2.2 Moving-platform position accuracy
In addition to the cable exit points, the accurate information about the position
of the anchor points is also desired in order to determine the actual pose of the
moving-platform. Generally, the initial position of the anchor points is determined
using some calibration strategies and later continuous localization is done through
the feedback of encoders (a sensor attached to the motors of the cables) and the
geometric model of the manipulator. During this thesis, cables have been assumed to
be always straight and massless, however in reality it is not the case. The accuracy
of the moving-platform can be substantially improved by considering more complex
CDPR models [Sch17]. For example, in order to describe the small displacement of
the moving-platform due to the non-rigid nature of the cables, elasto-static models
of the cables should be considered. Furthermore, cable sagging is another issue that
should be taken into account in order to improve the moving-platform positioning
accuracy.

Additional approaches such as force sensors to measure cable tensions [PCCP18];
angular position sensors to measure cable angle position [FCCCL16] and exteroceptive
sensors, such as cameras, to measure where the moving-platform is with respect to its
environment [DGA+12, RCM14] could be used. Visual servoying is becoming a more
and more popular technique in order to reduce the uncertainties in the pose of the
MCDPRmoving-platform [ZCPC19]. The fusing between the two locomotion systems,
i.e., the visual servoying locomotion system for the moving-platform and previously
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mentioned Multi-SLAM locomotion system for mobile bases, is an interesting avenue
to improve the MCDPR accuracy and kinematic performance.

7.2.3 MCDPR dynamics and control
It is essential to develop the dynamic model of MCDPRs for comprehensively
analyzing various aspects and characteristics of the system. Moreover, these models
will be very useful to improve the control laws for MCDPRs.

For example, in Chapter 6.4, the approach of direct transcription optimization
is used for the path planning of highly redundant MCDPRs. It is noteworthy that
direct transcription is generally used to compute dynamically-feasible trajectories.
For this purpose, the aforementioned technique of trajectory design is investigated
for MCDPRs. However, the work presented in this thesis is a first step to develop
and validate the approach by considering only the kinematic constraints. Future
work should focus on the extension of the proposed method for online trajectory
planning of MCDPRs by considering a dynamic environment. Consequently, the
system dynamic parameters should be considered in the state transition equations.
For this purpose, the first step will be to develop a complete dynamic model of
MCDPRs in closed form, which will help us analyze the dynamic behavior of the
manipulator.

Once the motion is planned, a robust control scheme is desired in order to follow
the desired trajectories and to perform the required task precisely and accurately.
Multiple control strategies [FFT+04, LNC07, VAT10, LG13b, PCPC18] have been
developed for classical CDPRs in order to derive the moving-platform considering
the limits on the cable tensions. To apply such control schemes to MCDPRs, the
constraints associated with the mobile bases should be additionally considered. The
extensions of these control schemes to MCDPRs will be a very interesting, but
challenging issue that can be addressed in the future.

7.2.4 MCDPR Extension
A possible extension is to embarked a serial robotic arm on the MCDRP moving-
platform. This type of robot will aim to combine the advantages of three types of
robots, i.e., the ability to reach large spaces of a cable-driven robot, the dexter-
ity/range of large orientation of a serial arm and the autonomous reconfiguration of
the cables using mobile bases. In this case, the robotic arm will generate additional
external wrenches onto both the moving platform and the mobile bases. These
wrenches are generated by the motion of the robotic arm and the action performed
by its end-effector. Accordingly, the stability of the moving-platform and the mobile
bases can be influenced. Further research works should be dedicated to the analysis
of such a system.
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A control strategy should be developed specifically for this kind of systems. The
control strategy should integrate the motion planning which can be done using the
direct transcription method. In this case, the degree of kinematic redundancy of
the system will be increased and consequently the number of states. Additional
constraints for avoiding any interference between the cables and the arm should also
be considered.

7.2.5 MCDPR Applications
MCDPRs can be used in multiple applications. Some of the proposed applications
of MCDPRs in the future can be:

– building construction
– pick-and-place operations of large and heavy parts in large and industrial
environment

– agriculture
– logistics
– inspection and scanning of large indoor/outdoor environments





Nomenclature

Abbreviations

CDPRs : Cable-Driven Parallel Robots.
DoF : Degree-of-Freedom.
RCDPRs :Reconfigurable Cable-Driven Parallel Robots.
MCDPRs : Mobile Cable-Driven Parallel Robots.
ROS : Robot Operating System.
SLAM : Simultaneous Localization and Mapping.
TDA : Tension Distribution Algorithm.
FCDT : Feasible Cable Tension Domain.
WFW : Wrench Feasible Workspace.
AWS : Available Wrench Set.
HSM : Hyperplane Shifting Method.
ATS : Available Twist Set.
ZMP : Zero-Moment Point.
WCW : Wrench Closure Workspace.
RWS : Required Wrench Set.
RTS : Required Twist Set.
UPS : Universal-Prismatic-Spherical.
RPP : Revolute-Prismatic-Prismatic.
pdj : jth proximal-distal module of a MCDPR.

General Notation

F0(O0, x0, y0, z0) : base frame centered at O0.
Fbj(Obj, xbj, ybj, zbj) : coordinate frame attached to the jth Mobile Base.
FP (OP , xp, yp, zp) : coordinate frame attached to the moving-platform.
m : total number of cables carried by the MCDPR.
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mj : number of cables attached to the jth mobile base.
n : degree-of-freedom of the moving-platform.
p : total number of mobile bases.
Mj : jth Mobile base.
Cij : ith cable connected to the jth mobile base.
Aij, Bij : cable Cij exit and anchor points depicted in Fig. 1.4a.
uij : directional vector of cable Cij.
tij : tension in the cable Cij

tj : cable tension vector associated to the cables carried by Mj.
Ckj : kth wheel contact point of the jth mobile base.
cj : number of wheels of the jth mobile base.

Chapter 3

f = [fx, f y, f z]T : forces applied by the cables onto the moving-platform.
m = [mx, my, mz]T : moments applied by the cables onto the moving-platform.
crij : direction of the actuation moment applied by the cable Cij onto the moving-

platform.
rij : vector pointing from point OP to point Bij.
wij = [uT

ij, cT
rij]T : actuation wrench generated by the cable Cij

aij : Cartesian coordinate vector of the cable exit point Aij

bij : Cartesian coordinate vector of the platform attachment point Bij

Wj : actuation wrenches exerted by the cables attached to Mj onto the moving-
platform.

W = [W1 W2 . . . ,Wp] : Wrench matrix mapping the cable tension vector onto
the wrenches applied by the cables onto the moving-platform.

w : wrenches applied by the cables onto the moving-platform.
ckj : Cartesian coordinate vector of point Ckj.
fckj

= [fx
ckj
, f y

ckj
, f z

ckj
] : ground contact force at point Ckj.

LCkj
: boundary of the jth mobile base footprint between Ckj and Ck+1j.

uCkj
: directional vector of line LCkj

(see Fig.3.1).
mCkj

: moment generated about LCkj
.

gj : Cartesian coordinate vector of the jth mobile base center of gravity.
wgj : weight of Mj.
bjfczj

,0fczj
: denotes the ground contact forces at ZMP expressed in the frame Fbj

and F0

Ef : Four sides of the friction pyramid
0Rbj : Rotation matrix from F0 to Fbj.
t, t : m-dimensional vectors containing the minimum and maximum limits on the

cable tensions.
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tP : Particular solution of the cable tensions
tN : Homogeneous solution of the cable tensions
N : Null space projector of the wrench matrix
nij : component of N associated with the ith cable of the jth mobile base.
λ : (m− n) dimensional arbitrary vector.
MCkj

: Moment of Mj about LCkj
due to its weight and the particular solution of

tij.
nCkj

: Moment of Mj about LCkj
due to the homogeneous solution of tij.

m : lower limit on the tipping moments of a MCDPR in the λ-space
m : upper limit on the tipping moments of a MCDPR in the λ-space
NC : tipping moment due to the homogeneous solution of all the MCDPR cables.
F gj : sliding of Mj due to its weight and the gth side of the friction pyramid,

g = 1, . . . , 4.
nF gj : sliding of Mj due to the homogeneous solution of tij.
f : lower limit on the sliding conditions of a MCDPR in the λ-space
f : upper limit on the sliding conditions of a MCDPR in the λ-space
Nf : sliding of a MCDPR due to the homogeneous solution of all the cables mounted

on it.
ACDP R : Feasible Cable Tension Domain of a Cable-Driven Parallel Robot.
A : Feasible Cable Tension Domain of a Mobile Cable-Driven Parallel Robot.
Lij,min : constraint line in the λ-space due to the minimum limit on the cable

tension tij.
Lij,max : constraint line in the λ-space due to the maximum limit on the cable

tension tij.
LCkj : constraint line in the λ-space due to the tipping moment on the jth mobile

base about LCkj

Lfgj : constraint line in the λ-space due to the gth side of the friction pyramid,
g = 1, . . . , 4.

Chapter 4

ACDP R : Available Wrench Set of a Cable-Driven Parallel Robot.
A : Available Wrench Set of a Mobile Cable-Driven Parallel Robot.
R : Required Wrench Set.
Tj : Tension Space formed by the cables mounted on Mj.
Vj = [v1j v2j . . .vdj . . .vvj

] : coordinates of the vertices of Tj.
vdj : coordinate vector of the dth vertex of Tj.
T : MCDPR cable Tension Space.
V = [v1 v2 vl . . . .vv] : coordinates of the vertices of the MCDPR cable Tension

Space.
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vl : coordinates of the lth vertex of the MCDPR cable tension space.
v : total number of vertices formed by the m cables.
H +

q ,H −
q : qth pair of hyperplanes associated with the cable tension limits.

aWs : sth n× n sub-matrix of the wrench matrix W, s = 1, . . . , Cm
n .

bWs : those m− n columns of W not located in aWs.
ats, bts : cable tensions associated with the actuation wrenches of aWs, bWs.
aVs, bVs : coordinates of the tension space vertices of ats, bts.
avs

l , bvs
l : lth column of aVs, bVs.

ts
j = [ats

j
T , bts

j
T ]T : sth division of the cable tensions tj into ats

j and bts
j .

atsoj : oth component of ats
j .

btsrj : rth component of bts
j .

aus
oj,

bus
rj : unit vectors of cables whose tension magnitudes are atsoj, btsrj.

abs
oj,

bbs
rj : Coordinate vectors of the anchor points to which the cables of tensions

atsoj, btsrj are attached.
aws

oj,
bws

rj : actuation wrenches associated with the cable tensions atsoj, btsrj.
H s

tkj : sth hyperplane associated with the tipping of Mj about LCkj
.

H s
fgj : sth hyperplane associated with the sliding of Mj in the direction normal to

the gth friction pyramid.
es

tkj, es
fgj : unit vector orthogonal to its hyperplane H s

tkj, H s
fgj.

ds
tkj, ds

fgj : shifting distances from the origin to the hyperplanes H s
tkj, H s

fgj , respec-
tively.

µ : capacity margin index determines the wrench-feasibility of the moving-platform
pose.

Chapter 5

A : (m× n) parallel Jacobian matrix containing the actuation wrenches due to the
cables on the moving-platform.

Aj : actuation wrenches generated by the cables carried by jth mobile base.
l̇j : Velocities of the cables mounted on the jth mobile base.
l̇ij : velocity of the cable Cij.
tMP : twist of the MCDPR moving-platform
0tj

MP : twist of the MCDPR moving-platform due to jth proximal-distal module
expressed in F0

0tproxj

MP : twist of the MCDPR moving-platform due to jth proximal module expressed
in F0

0tdistj

MP : twist of the MCDPR moving-platform due to jth distal module expressed
in F0

ω = [ωx, ωy, ωz]T : moving-platform angular velocity vector expressed in F0

ṗ = [ṗx, ṗy, ṗz]T : moving-platform linear velocity vector expressed in F0
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Jbj : serial Jacobian matrix of proxj

q̇bj = [θ̇j ρ̇1j ρ̇2j]T : virtual joint velocities of the RPP kinematic chain
bjAdP : adjoint matrix representing the transformation matrix between the twists

expressed in Fbj and twist expressed in FP

0Rbj : augmented rotation matrix.
q̇ = [q̇b l̇]T : joint velocity vector
q̇b : joint velocity vector of all the RPP kinematic chains
t̂s

MP : twist generated by the sth sub-matrix As out of Cn
m (n × n) square sub-

matrices of matrix A, s = 1, . . . , Cn
m

ν : capacity margin index determines the twist-feasibility of the moving-platform.

Chapter 6

t1, t2 : trajectory time for the first and second segments of pick-and-place operation
m1,m2 : total mass of the moving-platform for the first and second segments of

pick-and-place operation
k1, k2 : discretization of the path. Picking segment discretized into k1 points and

placing segment discretized into k2 − k1 points.
β : redundancy planning scheme
ρ2k0 : position of M2 at k0th point of the path
ρ2, ρ2 : lower and upper bounds on ρ2

P1,P2, P3, P4 : chosen Pareto-optimal solutions for the analysis as shown in Fig 6.3.
P i : i way-point, i = 1, . . . , l, where l denotes total number of way-points.
pi : Cartesian coordinate vector of the ith way-point.
k : represents an iteration in the first phase of the iterative algorithm.
Mij : A matrix whose kth column contains the Cartesian coordinate vector of the

jth mobile base at the kth iteration of the algorithm.
sj = number of possible collision free steps of the jth mobile base.
dj = step size for searching the next step of the jth mobile base.
Pij : feasible path of mobile bases.
r : represents an iteration in the second phase of the iterative algorithm.
Pi,MP : optimal path of moving-platform.
dMP : step size for searching the best pose of the moving-platform.
s : total number of obstacles in the environment.
oq : position of the q obstacle, q =, 1, . . . , s.
rq : radius of the q obstacle, q =, 1, . . . , s.
N : total number of time steps.
N1, N2 : the time steps at the desired way-points of the moving platform
pe : Cartesian coordinates of the moving platform at the eth step of the trajectory,

e = 2, . . . , N
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mj,e : Cartesian coordinate vector of Mj in 0x 0y plane at the eth step of the
trajectory, e = 2, . . . , N

xe : state of a MCDPR at the eth time step of the trajectory.
A : Sparse square matrix
b : sparse vector containing the system initial conditions
dmin : minimum relative distance between the mobile bases to avoid collisions
s(t) : a cubic spline composed of N − 1 cubic polynomials connecting N supporting

points.
sh : hth cubic polynomial, h = 1, . . . , N − 1, connecting the two consecutive

supporting points.



Appendix A
This appendix presents Gaussian Elimination algorithm, which solves the system of
n linear equations for n-dimensional vector noted as x expressed as:

Ax = b (A.1)

The algorithm consists of two steps. The first step is to create an upper triangular
matrix of A denoted as Au.

Step 1: Create an upper triangular matrix of A

1 i = 0; Au = A; bu = b
2 for k = 1 : n− 1 do
3 if Au(k, k) == 0 then
4 j = k;
5 for j = j + 1 : n do
6 if Au(j, k) == 0 then
7 continue
8 end
9 break

10 end
11 B = Au(k, :); C = bu(k); Au(k, :) = A(j, :);
12 bu(k) = b(j); Au(j, :) = B; bu(j) = C;
13 end
14 for l = 1 + i : n− 1 do
15 L = Au(l + 1, k)/A(

uk, k)
16 Au(l + 1, :) = Au(l + 1, :)− L ∗Au(k, :)
17 bu(l + 1) = bu(l + 1)− L ∗ bu(k)
18 end
19 i = i+ 1;
20 end
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The second step is to use the substitutions from Au to obtain the unknowns i.e.
the components of x.

Step 2: Obtain the unknown x

1 x(n) = bu(n)Au(n, n);
2 for i = n− 1 : −1 : 1 do
3 sum = 0;
4 for j = i+ 1 : n do
5 sum = sum+ Au(i, j) ∗ x(j);
6 end
7 x(i) = (Au(i, i)) ∗ (bu(i)− sum);
8 end



Appendix B

This appendix presents the output of the Gaussian Elimination Algorithm for the
MCDPR understudy in Fig. 1.4a composed of four mobile bases carrying eight cables
named as C11, C21, C12, C22, C13, C23, C14 and C24 connected to a six DOF moving
platform. Let for s = 1, the wrench matrix W and the cable tension vector t are
split as,

at1 =



at111
at121
at112
at122
at113
at123


, bt1 =

bt114
bt124

 , (B.1)

aW1 =
u11 u21 u12 u22 u13 u23

cr11 cr21 cr12 cr22 cr13 cr23

 , bW1 =
u14 u24

cr14 cr24

 . (B.2)

Using GEA to solve for at1, its components are expressed as

at111 = α1
11(w− bWs bts)
α1

11

[
uT

11 cT
r11

]T , at121 = α1
21(w− bWs bts)
α1

21

[
uT

21 cT
r21

]T , (B.3a)

at112 = α1
12(w− bWs bts)
α1

12

[
uT

12 cT
r12

]T , at122 = α1
22(w− bWs bts)
α1

22

[
uT

22 cT
r22

]T , (B.3b)
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at113 = α1
13(w− bWs bts)
α1

13

[
uT

13 cT
r13

]T , at123 = α1
23(w− bWs bts)
α1

23

[
uT

23 cT
r23

]T , (B.3c)

where

α1
11 =



[((cr13 × cr23)T cr22)(u21 × u12)+ [−((u21 × u12)T u22)(cr13 × cr23)−
((cr12 × cr23)T cr13(u21 × u22)+ ((u21 × u22)T u13)(cr12 × cr23)−
((cr12 × cr22)T cr23)(u21 × u13)+ ((u21 × u13)T u23)(cr12 × cr22)−
((cr12 × cr13)T cr22)(u21 × u23)+ ((u21 × u23)T u22)(cr12 × cr13)−
((cr21 × cr23)T cr13)(u12 × u22)+ ((u12 × u22)T u13)(cr21 × cr23)−
((cr23 × cr22)T cr21)(u12 × u13)+ ((u12 × u13)T u21)(cr23 × cr22)−
((cr22 × cr13)T cr21)(u12 × u23)+ ((u12 × u23)T u21)(cr22 × cr13)−
((cr21 × cr12)T cr23)(u22 × u13)+ ((u22 × u13)T u23)(cr21 × cr12)−
((cr21 × cr13)T cr12)(u22 × u23)+ ((u22 × u23)T u12)(cr21 × cr13)−
((cr22 × cr21)T cr12)(u13 × u23)]T ((u13 × u23)T u12)(cr22 × cr21)]T


(B.4)

α1
21 =



[((cr13 × cr23)T cr22)(u11 × u12)+ [−((u11 × u12)T u22)(cr13 × cr23)−
((cr12 × cr23)T cr13)(u11 × u22)+ ((u11 × u22)T u13)(cr12 × cr23)−

((cr12 × cr22)T cr23)(u11 × u13)+ ((u11 × u13)T u23)(cr12 × cr22)−
((cr12 × cr13)T cr22)(u11 × u23)+ ((u11 × u23)T u22)(cr12 × cr13)−
((cr11 × cr23)T cr13)(u12 × u22)+ ((u12 × u22)T u13)(cr11 × cr23)−
((cr23 × cr22)T cr11)(u12 × u13)+ ((u12 × u13)T u11)(cr23 × cr22)−
((cr22 × cr13)T cr11)(u12 × u23)+ ((u12 × u23)T u11)(cr22 × cr13)−
((cr11 × cr12)T cr23)(u22 × u13)+ ((u22 × u13)T u23)(cr11 × cr12)−
((cr11 × cr13)T cr12)(u22 × u23)+ ((u22 × u23)T u12)(cr11 × cr13)−
((cr22 × cr11)T cr12)(u13 × u23)]T ((u13 × u23)T u12)(cr22 × cr11)]T


(B.5)
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α1
12 =



[((cr13 × cr23)T cr22)(u11 × u21)+ [−((u11 × u21)T u22)(cr13 × cr23)−
((cr21 × cr23)T cr13)(u11 × u22)+ ((u11 × u22)T u13)(cr21 × cr23)−
((cr21 × cr22)T cr23)(u11 × u13)+ ((u11 × u13)T u23)(cr21 × cr22)−
((cr21 × cr13)T cr22)(u11 × u23)+ ((u11 × u23)T u22)(cr21 × cr13)−
((cr11 × cr23)T cr13)(u21 × u22)+ ((u21 × u22)T u13)(cr11 × cr23)−
((cr23 × cr22)T cr11)(u21 × u13)+ ((u21 × u13)T u11)(cr23 × cr22)−
((cr22 × cr13)T cr11)(u21 × u23)+ ((u21 × u23)T u11)(cr22 × cr13)−
((cr11 × cr21)T cr23)(u22 × u13)+ ((u22 × u13)T u23)(cr11 × cr21)−
((cr11 × cr13)T cr21)(u22 × u23)+ ((u22 × u23)T u21)(cr11 × cr13)−
((cr22 × cr11)T cr21)(u13 × u23)]T ((u13 × u23)T u21)(cr22 × cr11)]T


(B.6)

α1
22 =



[((cr13 × cr23)T cr12)(u11 × u21)+ [−((u11 × u21)T u12)(cr13 × cr23)−
((cr21 × cr23)T cr13)(u11 × u12)+ ((u11 × u12)T u13)(cr21 × cr23)−
((cr21 × cr12)T cr23)(u11 × u13)+ ((u11 × u13)T u23)(cr21 × cr12)−
((cr21 × cr13)T cr12)(u11 × u23)+ ((u11 × u23)T u12)(cr21 × cr13)−
((cr11 × cr23)T cr13)(u21 × u12)+ ((u21 × u12)T u13)(cr11 × cr23)−
((cr23 × cr12)T cr11)(u21 × u13)+ ((u21 × u13)T u11)(cr23 × cr12)−
((cr12 × cr13)T cr11)(u21 × u23)+ ((u21 × u23)T u11)(cr12 × cr13)−
((cr11 × cr21)T cr23)(u12 × u13)+ ((u12 × u13)T u23)(cr11 × cr21)−
((cr11 × cr13)T cr21)(u12 × u23)+ ((u12 × u23)T u21)(cr11 × cr13)−
((cr12 × cr11)T cr21)(u13 × u23)]T ((u13 × u23)T u21)(cr12 × cr11)]T


(B.7)

α1
13 =



[((cr22 × cr23)T cr12)(u11 × u21)+ [−((u11 × u21)T u12)(cr22 × cr23)−
((cr21 × cr23)T cr22)(u11 × u12)+ ((u11 × u12)T u22)(cr21 × cr23)−
((cr21 × cr12)T cr23)(u11 × u22)+ ((u11 × u22)T u23)(cr21 × cr12)−
((cr21 × cr22)T cr12)(u11 × u23)+ ((u11 × u23)T u12)(cr21 × cr22)−
((cr11 × cr23)T cr22)(u21 × u12)+ ((u21 × u12)T u22)(cr11 × cr23)−
((cr23 × cr12)T cr11)(u21 × u22)+ ((u21 × u22)T u11)(cr23 × cr12)−
((cr12 × cr22)T cr11)(u21 × u23)+ ((u21 × u23)T u11)(cr12 × cr22)−
((cr11 × cr21)T cr23)(u12 × u22)+ ((u12 × u22)T u23)(cr11 × cr21)−
((cr11 × cr22)T cr21)(u12 × u23)+ ((u12 × u23)T u21)(cr11 × cr22)−
((cr12 × cr11)T cr21)(u22 × u23)]T ((u22 × u23)T u21)(cr12 × cr11)]T


(B.8)
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α1
23 =



[((cr22 × cr13)T cr12)(u11 × u21)+ [−((u11 × u21)T u12)(cr22 × cr13)−
((cr21 × cr13)T cr22)(u11 × u12)+ ((u11 × u12)T u22)(cr21 × cr13)−
((cr21 × cr12)T cr13)(u11 × u22)+ ((u11 × u22)T u13)(cr21 × cr12)−
((cr21 × cr22)T cr12)(u11 × u13)+ ((u11 × u13)T u12)(cr21 × cr22)−
((cr11 × cr13)T cr22)(u21 × u12)+ ((u21 × u12)T u22)(cr11 × cr13)−
((cr13 × cr12)T cr11)(u21 × u22)+ ((u21 × u22)T u11)(cr13 × cr12)−
((cr12 × cr22)T cr11)(u21 × u13)+ ((u21 × u13)T u11)(cr12 × cr22)−
((cr11 × cr21)T cr13)(u12 × u22)+ ((u12 × u22)T u13)(cr11 × cr21)−
((cr11 × cr22)T cr21)(u12 × u13)+ ((u12 × u13)T u21)(cr11 × cr22)−
((cr12 × cr11)T cr21)(u22 × u13)]T ((u22 × u13)T u21)(cr12 × cr11)]T


(B.9)

Similarly using GEA, ats is solved and can be expressed similarly to Eq. (B.3)
for any s = 1, . . . , C8

6 combination.
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Titre : Collaborative Robot parallèle à câble mobile 

Mots clés : Robotique Collaborative, Robot parallèle à câble mobile,  Planification de trajectoire, Analyse 

de l'espace de travail, Algorithme de distribution de tension 
Résumé: Cette thèse présente un nouveau concept 

de robots parallèles à câble mobile (RPCM) comme 

un nouveau système robotique.  RPCM est composé 

d'un robot parallèle à câble (RPC) classique monté 

sur plusieurs bases mobiles. Les  RPCMs combinent 

l'autonomie des robots mobiles avec les avantages 

des RPCs, à savoir un grand espace de travail, un 

rapport charge utile/poids élevé, une faible inertie de 

l'effecteur final, une capacité de déploiement et une 

reconfigurabilité. De plus, les  RPCMs présentent une 

nouvelle innovation technique qui pourrait contribuer 

à apporter plus de flexibilité et de polyvalence par 

rapport aux solutions robotiques industrielles 

existantes. 

Deux prototypes de  RPCMs appelés FASTKIT et 

MoPICK ont été développés au cours de cette thèse. 

FASTKIT est composé de deux bases mobiles portant 

une plate-forme mobile à six degrés de liberté, tirée 

par huit câbles, dans le but de fournir une solution 

robotique économique et polyvalente pour la 

logistique.  

MoPICK est composé d'une plate-forme mobile à 

trois degrés de liberté tirée par quatre câbles montés 

sur quatre bases mobiles. Les applications ciblées de 

MoPICK sont des tâches mobiles dans un 

environnement contraint, par exemple un atelier ou 

des opérations logistiques dans un entrepôt. 

Les contributions de cette thèse sont les suivantes. 

Tout d'abord, toutes les conditions nécessaires à 

l'atteinte de l'équilibre statique d'un RPCM sont 

étudiées. Ces conditions sont utilisées pour 

développer un algorithme de distribution de tension 

pour le contrôle en temps réel des câbles RPCM. 

Les conditions d'équilibre sont également utilisées 

pour étudier l'espace de travail clé en main des  

RPCMs. Ensuite, les performances cinématiques et 

les capacités de torsion des  RPCMs sont étudiées. 

Enfin, la dernière partie de la thèse présente des 

stratégies de planification de trajectoires multiples 

pour les  RPCMs afin de reconfigurer l'architecture 

géométrique du RPC pour réaliser la tâche 

souhaitée. 

  

Title : Collaborative Mobile Cable-Driven Parallel Robots 

Keywords : Collaborative Robotics, Mobile Cable Robots, Path Planning, Workspace analysis, Tension 

Distribution Algorithm 
Abstract: This thesis presents a novel concept of 

Mobile Cable-Driven Parallel Robots (MCDPRs) as 

a new robotic system. MCDPR is composed of a 

classical Cable-Driven Parallel Robot (CDPR) 

mounted on multiple mobile bases. MCDPRs 

combines the autonomy of mobile robots with the 

advantages of CDPRs, namely, large workspace, high 

payload-to-weight ratio, low end-effector inertia, 

deployability and reconfigurability. Moreover, 

MCDPRs presents a new technical innovation that 

could help to bring more flexibility and versatility 

with respect to existing industrial robotic solutions.  

Two MCDPRs prototypes named FASTKIT and 

MoPICK have been developed during the course of 

this thesis. FASTKIT is composed of two mobile 

bases carrying a six degrees-of-freedom moving-

platform, pulled by eight cables, with a goal to 

provide a low cost and versatile robotic solution for 

logistics.   

 

MoPICK is composed of a three degrees-of-

freedom moving-platform pulled by four cables 

mounted on four mobile bases. The targeted 

applications of MoPICK are mobile tasks in a 

constrained environment, for example, a workshop 

or logistic operations in a warehouse. 

The contributions of this thesis are as follows. 

Firstly, all the necessary conditions are studied that 

required to achieve the static equilibrium of a 

MCDPR. These conditions are used to develop a 

Tension Distribution Algorithm for the real time 

control of the MCDRP cables. The equilibrium 

conditions are also used to investigate the Wrench-

Feasible-Workspace of MCDPRs. Afterwards, the 

kinematic performance and twist capabilities of the 

MCDPRs are investigated. Finally, the last part of 

the thesis presents multiple path planning strategies 

for MCDPRs in order to reconfigure the CDPR’s 

geometric architecture for performing the desired 

task. 
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