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Introduction

Many, if not all, of us came across a situation of being prescribed a medication that did
not work as it was supposed to and, maybe, even worse, had some unpleasant side effects,
leaving us wondering how such a substance could get into clinical use, why our doctor chose
to prescribe it, and why there was no warning of side effects.

Absence of effects, or even negative effects, of drugs can occur simply because persons differ,
and even established and approved drugs may not work, or do not help, everyone. But what if
there are other mechanisms as well that can lead to the dissemination of less effective drugs,
to doctors prescribing them, and may lead the public into believing in their effectiveness? I
had no idea that such mechanisms can exist before I started my PhD and learned about spin
in reporting research results.

The notion of "spin" comes from the domain of politics, where it denotes a form of propa-
ganda and consists in passing on a biased message to the public, to create a certain (positive or
negative) perception of a person or event (Tye, 1998; Jackson and Jamieson, 2007; Boardman
et al., 2017). Political spin is often related to deception and manipulation.

From politics, the term "spin" came into the domain of scientific research, where it refers to
presenting research results in a more positive (or, rarely, more negative) way that the obtained
evidence justifies. In 2010, Boutron et al. (2010) introduced and defined the term "spin" for
research domain, in particular, for randomized controlled trials (RCTs) - clinical trials studying
a new intervention by comparing it to an established intervention or to a placebo. In RCTs with
non-significant primary outcome, spin is defined as "the use of specific reporting strategies,
from whatever motive, to highlight that the experimental treatment is beneficial, despite a
statistically nonsignificant difference for the primary outcome, or to distract the reader from
statistically nonsignificant results" (Boutron et al., 2010). A variety of terms was used to
denote this phenomenon, such as distorted / misleading presentation, mis-/overinterpretation
of research results; "spin" is now the most commonly accepted term for this phenomenon.

If one looks at the examples of spin provided in the relevant articles, it may seem that
the difference between "spinned" and fair presentation of results is very slight; as a result,
people often wonder if spin is really a problem. To answer this question, Boutron et al. (2014)
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compared how clinicians perceive the treatments presented in abstracts with spin and in the
same abstract rewritten without spin. The authors showed that the clinicians overestimated
the effects of the treatment after reading a "spinned" abstract. Given that the abstract is often
the only part of an article available to wide public free of charge, readers often cannot read the
full text of an article to assess the correctness of conclusions in the abstract. Hence, clinical
decisions can be made on the basis of the information in abstracts; and so spin in abstracts
can have a highly negative impact on clinical decision-making. Interventions with unproved
efficacy or safety can get into production and clinical use (and maybe this is one of the reasons
we have that negative experience with taking medications?).

Spin in research articles can have a wider impact: it was shown to be related to spin in
press releases and health news (Haneef et al., 2015; Yavchitz et al., 2012), and thus can impact
the beliefs and expectations of the public regarding new treatments.

The phenomenon of spin has started to attract attention not only of the research community,
but also of general public during the recent years1. Still, spin often remains unnoticed even
by editors and peer reviewers: recent studies (2016 - 2019) showed that, in RCTs with non-
significant primary outcome, the percentage of abstracts with spin is high in a variety of
domains, such as surgical research (40%) (Fleming, 2016), cardiovascular diseases (57%) (Khan
et al., 2019), cancer (47%) (Vera-Badillo et al., 2016), obesity (46.7%) (Austin et al., 2018),
otolaryngology (70%) (Cooper et al., 2018), anaesthesiology (32.2%) (Kinder et al., 2018), and
wound care (71%) (Lockyer et al., 2013).

Spin is a type of research waste —a problem consisting in spending billions of euros per year
on low-quality studies that have flaws in their design, are poorly reported or never published
(Ioannidis, 2005). In 2014, Macleod et al. (2014) estimated up to 85% of money spent on
clinical research to be wasted yearly. In 2018, Glasziou and Chalmers (2018) stated that
although some progress has been made, the problem is still far from being solved.

As one of the ways of reducing research waste, an assistance to readers in detecting spin
could be useful. Spin can be viewed as a textual phenomenon, related to certain types of
expressions that represent inconsistent or incomplete presentation of information in some parts
of a text. Thus, identifying spin is a text analysis task, consisting in searching for and analysing
certain information in various parts of clinical articles. This task can be performed manually, or
with an automated computerized aid. The motivation for using such aid tool is that modern
technologies allow computers to understand and analyse text on a near-human level with
substantial gain in speed, which means that computer programs can facilitate and speed up the
completion of various text analysis tasks. Nowadays, automated and semi-automated aid tools

1See some blog posts on the topic: https://blogs.plos.org/absolutely-
maybe/2016/03/17/how-to-spot-research-spin-the-case-of-the-not-so-simple-abstract/ (2016),
https://www.medicalnewstoday.com/articles/325952.php (2019).
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are coming into use in different domains: extraction of trial design elements (Kiritchenko et al.,
2010), indexing of medical texts with Medical Subject Headings (MeSH) terms (Mork et al.,
2013), risk of bias assessment and evidence synthesis (Marshall et al., 2015, 2017), systematic
review process (Ananiadou et al., 2009; Blake and Lucic, 2015; O’Mara-Eves et al., 2015),
scientific writing process (Barnes et al., 2015). The majority of the cited tools use methods of
Natural Language Processing (NLP) and machine learning (ML). While a complete automation
of complex text analysis tasks is still not realistic, semi-automation can be successfully used to
extract information relevant for a given task and provide it to human experts, who will make
a final conclusion for the task. Similarly to the listed tasks, NLP and ML methods can be
leveraged to develop and implement algorithms for detecting potential spin and the supporting
information that can help human experts perform assessment of a clinical article for presence
of spin.

The aim of the work presented in this thesis was to develop NLP algorithms to identify
spin and related information elements. We focus on spin in abstracts of articles of RCT, as
RCTs are the main source of data for Evidence-Based Medicine, and abstracts are the most
widely available part of articles.

We conducted a study of types of spin and their textual characteristics, using first the
existing literature describing spin and the provided examples, and second our observations on
a larger corpus of general domain and mental health domain clinical trials. We summarized
our observations in the form of annotation scheme and a provisional scheme of spin detection
algorithms. We developed a set of baseline rule-based algorithms for a number of key tasks. We
explored the possibilities of running a large-scale annotation project for spin annotation and,
after it proved unfeasible, we annotated a set of corpora for the most important tasks with the
efforts of one annotator. We developed and tested a number of machine learning approaches
for the tasks, and chose the best performing approaches for the final implementation of a spin
detection pipeline, released as open source code, supplemented with a simple annotation and
visualization interface.

The outline of this thesis is as follows:

Part I (chapters 1 - 2) describes our first experiments towards the goal of developing a spin
detection pipeline.

Chapter 1 introduces the provisional scheme of a spin detection pipeline and describes
state-of-the art, our experiments and possible directions for future work for three spin-related
tasks: text classification according to study design (to detect RCT reports); classification
of sentences of abstracts to identify sections; and entity extraction (for trial outcomes and
population studied).

Chapter 2 reports on our efforts of collecting a corpus of biomedical articles annotated for



classifiers using manually crafted feature set. Besides, we fine-tuned and tested BERT-based
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spin and spin-related information. It describes the development of an annotation scheme for
spin and related information items, annotation guidelines, and arising difficulties, such as the
level of knowledge required from annotators, choice of a convenient and easy-to-use annotation
tool, and inherent complexity of the task.

Part II (chapters 3 – 6) describes the key algorithms that we built for a spin detection
system.

Chapter 3 describes development and evaluation of algorithms for extracting declared (pri-
mary) and reported outcomes. For this goal, we annotated a corpus for these two types of
entities. We implemented and assessed a number of approaches, including a rule-based base-
line approach and a number of machine learning approaches. We employed and compared
several deep pre-trained language representation models, including BERT (Bidirectional En-
coder Representations from Transformers) (Devlin et al., 2018), BioBERT (Lee et al., 2019)
and SciBERT (Beltagy et al., 2019). We report on the performance of all the models and
approaches.

Chapter 4 reports on the development of a semantic similarity assessment algorithm for
pairs of trial outcomes. Based on the corpus annotated for the outcome extraction task, we
annotated a set of pairs of primary and reported outcomes for their similarity (on a binary
scale). We implemented a number of similarity measures, based on strings, tokens and lemmas,
and distances between phrases in the WordNet semantic network. We trained and tested a
machine learning classifier combining all the measures. Finally, we fine-tuned pre-trained
language models (BERT, BioBERT and SciBERT) on our corpus, which proved to be the
most successful approach.

Chapter 5 describes our proposed algorithm for detection of outcome switching - a type
of spin consisting in unjustified change (omitting or adding) of pre-defined trial outcomes.
The algorithm combines outcome extraction and semantic similarity assessment algorithms
described in the two previous chapters.

Chapter 6 describes our efforts for annotating a corpus and developing an algorithm for
extracting the relation between trial outcomes and their statistical significance levels. For this
purpose, we annotated a corpus for pairs of related outcomes and significance levels (in both
numerical form - p-value - and qualitative form). We tested a number of machine learning

language models, which proved to be superior to the machine classifiers using manually crafted
features.

Part III (chapter 7) is devoted to our implementation efforts.

Chapter 7 describes our spin detection prototype system, called DeSpin (Detector of Spin).
It outlines the textual features of types of spin addressed, the algorithms and methods used as
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well as the best achieved results. The chapter contains a link to an open source release of our
code.

Part IV (chapter8) gives an overview of the difficulties encountered in the course of our
project.

Chapter 8 describes the most important information element in our pipeline: outcomes.
Despite the wide use of this notion, in practice outcomes are highly diverse and lack reporting
standards. We describe the observed diversity in the ways of defining and introducing outcomes
in clinical study reports.
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Chapter 1

Automatic detection of inadequate claims

in biomedical articles: first steps. Anna
Koroleva, Patrick Paroubek. Proceedings of
Workshop on Curative Power of MEdical Data,
Constanta, Romania, September 12-13, 2017.

Context

We analysed the definitions of spin, its types and subtypes in the existing literature to
identify the information elements relevant for spin detection and to outline a provisional scheme
for a spin detection algorithm.

After defining the algorithm scheme, we addressed three tasks that are the core tasks
for spin detection: text classification according to clinical trial design (to detect randomized
controlled trials), classification of sentences in abstracts of scientific articles (to detect the
different sections of the abstract), and entity extraction (to detect outcomes and the population
studied). We reviewed the state of the art for each task, conducted our first experiments for
these tasks in the context of spin detection, and defined possible directions for future work.

Authors’ contributions

The work reported in this chapter was conducted by AK under supervision of PP. AK
was responsible for data collection, experiment and analysis. AK drafted the manuscript. PP
revised the draft critically for important intellectual content.

11



Abstract

In this article we present the first steps in developing an NLP algorithm for automatic
detection of inadequate reporting of research results (known as spin) in biomedical articles.
Inadequate reporting consists in presenting the experimental treatment as having a greater
beneficial effect than it was shown by the research results. We propose a scheme for an
algorithm that would automatically identify important claims in the articles abstracts, extract
possible supporting information from the article and check the adequacy of the claims. We
present the state of the art and our first experiments for three tasks related to spin detection:
classification of articles according to the type of reported clinical trial; classification of sentences
in the abstracts aimed at identifying mentions of the Results and Conclusions of the experiment;
and extraction of some trial characteristics. For each task, we outline possible directions of
further work.

Keywords: Inadequate Reporting, Spin, Biomedical Articles, Text Classification, Entity
Extraction.

Introduction

Inadequate claims, or inadequate reporting, are more commonly referred to as ’spin’. Spin
in scientific research is a way of distorting the presentation of research results by claiming that
they are more positive than what is normally justifiable from the evidences that the experiment
yielded. In our project we deal with spin in articles reporting clinical trials which aim at testing
a new (experimental) intervention by comparing it against a standard (control) treatment. Spin
in medical articles is defined as stating the beneficial effect of the experimental treatment in
terms of efficacy or safety to be greater than it is shown by the research results (Boutron et al.,
2010, 2014; Haneef et al., 2015; Yavchitz et al., 2016). Two examples of conclusions with spin
and the same conclusions rewritten by experts to remove spin are given in Table 1.1.

Spin in the medical field presents an alarming problem as it was proven to change clinicians’
interpretation of the efficacy of the experimental treatment, i.e. it makes clinicians overestimate
the treatment’s beneficial effect (Boutron et al., 2014). Thus, it has a negative impact on the
clinical decision-making. The presence of spin also provokes distorted presentation of research
findings in press releases and health news (Haneef et al., 2015; Yavchitz et al., 2012).

Spin occurs in articles reporting various types of trials (non-randomized controlled trials,
randomized controlled trials, diagnostic accuracy studies) (Boutron et al., 2010, 2014; Lazarus
et al., 2015; Yavchitz et al., 2016). We focus on the randomized controlled trials (RCTs) that
are the primary source of data for evidence-based medicine (EBM). We concentrate now on
spin in abstracts.

The principal objective of our project is to develop an algorithm for automatic spin detection
that would assist scientific authors, readers and peer-reviewers in identifying possible instances

12 Chapter 1



Original (anonymized) conclusion Rewritten conclusion
Treatment A + CAF was well toler-
ated and is suggested to have efficacy
in patients who had not received prior
therapy.

Treatment A + CAF was not more
effective than CAF + placebo in pa-
tients with advanced or recurrent
breast cancer.

This study demonstrated improved
PFS and response for the treatment A
compared with comparator B alone.

The treatment A was not more ef-
fective than comparator B on overall
survival in patients with metastatic
breast cancer.

Table 1.1: Examples of conclusions with spin and the same conclusions rewritten without
spin

of spin. For this purpose we plan to use Natural Language Processing techniques to detect
important claims in scientific articles, extract possible supporting information for them and
evaluate the adequacy of the claims.

The structure of this paper is the following: in section 2 we present existing types of spin
and the supporting information relevant for various types; in section 3 we present the proposed
scheme of our algorithm; in section 4 – 6 we address some of the subtasks of spin detection: we
present the related research, our current work and obtained results, and we provide an outline
of our future work.

Types of spin

Spin in medical articles can be classified into the following types (Boutron et al., 2010;
Lazarus et al., 2015; Yavchitz et al., 2016):

1. misleading reporting of study results: selective reporting (not reporting the primary
outcome; focus on statistically significant secondary outcomes or subgroups of patients);
misleading reporting of study design; not reporting adverse events; linguistic spin; no
consideration of limitations; selective citation of other studies.

2. inadequate interpretation of the results: claiming a beneficial or equivalent effect of the
intervention for statistically non-significant results or with no comparison test performed;
claiming the treatment’s safety for statistically non-significant safety outcomes; interpre-
tation of the results according to statistical significance instead of clinical relevance;
claiming a causal effect between the intervention assessed and the outcome of interest
despite a non-randomized design

3. inadequate extrapolation: inadequate extrapolation from the population, interventions

Chapter 1 13



or outcome actually assessed in the study to a larger population, different interventions
or outcomes; inadequate implications for clinical practice.

Basing on this classification, we can highlight the following categories of supporting in-
formation for spin (information that could prove the conclusions): study design; outcomes
(primary and secondary); statistical significance of results; patient population studied; adverse
events; limitations of a trial; interventions studied.

Algorithm description

Out future algorithm is intended to assist both authors and readers. The default input
of the algorithm is a full-text article with title and abstract. When used by an author, it
may benefit from additional information, e.g. division of the text into structural parts (title,
abstract, body text) or information about the trial (design, interventions, etc.) provided by
the author, by default we suppose that no such information is available; thus, our algorithm
ought to be able to find or infer the required pieces of information.

We propose the following provisionary procedure for spin detection:

1. File preprocessing: if the source file is not in a raw text format (e.g. a .doc of .pdf
document), then convert it.

2. Divide the text into structural parts: title, abstract, body text.

3. Automatically identify whether the text is an article reporting an RCT. If not, it will
not be considered by the algorithm.

4. Automatically classify sentences in the abstract to identify those containing mentions of
RCT results and conclusions. These sentences are supposed to contain important claims
that are to be checked for the presence of spin.

5. Identify the tonality of reported results in the abstract: positive/ neutral / negative /
mixed. If no positive or mixed results are reported, the abstract is considered not to
contain spin.

6. If positive or mixed results are reported, the next stage is information extraction, which
concerns:

∙ Entity extraction. For the moment we are focusing on the types of spin related
to misreporting of outcomes and patient population, thus, our primary goal is to
extract information about pre-defined outcomes, patient population, and statistical
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significance of results. Detecting other types of spin would also require extracting
other information such as interventions examined, or observed adverse events.

∙ Relation extraction: finding relations between entities extracted at the previous
stage, e.g. the link between outcomes and their significance levels, which will be
used to identify the cases where non-significant results are presented as positive.

∙ Exploring specific linguistic features: looking for specific constructions that can
represent a certain type of spin, e.g. similarity statements in the abstract results
and conclusions, advice to use the experimental treatment; other linguistic features
that may be related to spin (e.g. "hedging" —expressions of uncertainty).

7. Look for specific spin markers, e.g.:

∙ Is the primary outcome reported in the abstract? If positive results for the primary
outcome are reported, are they statistically significant?

∙ Is the patient population mentioned in the results/conclusions of the abstract the
same that the population initially studied?

∙ If there is a similarity statement for the two treatments compared, was the trial of
the non-inferiority/equivalence type?

Text classification according to study design

Related work

Identification of RCTs among different types of medical texts has received sufficient atten-
tion since finding RCTs relevant to a given topic is required for systematic reviews and other
tasks in the domain of EBM. In some databases such as Medline, texts are manually anno-
tated with several types of metadata, including Medical Subject Headings (MeSH) terms and
publication types (e.g. "randomized controlled trial", "observational study", etc.). However,
the manual annotation is not always complete and precise; thus, several articles addressed the
problem of creating search strategies for identifying RCTs in Medline (Glanville et al., 2006;
Higgins and Green, 2008; McKibbon et al., 2009). These works explore both annotation meta-
data and terms present in the articles. Although not complete, the annotation metadata has
been proven to be the most useful feature for identifying, RCTs (Glanville et al., 2006).

Cohen et al. (2015) addressed the task of creating a binary classifier aimed at identifying
RCTs in Medline, using the textual features of the title and abstract, bibliographic features
and annotation metadata such as MeSH terms. Manually annotated publication types served
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as a gold standard for classification. The whole corpus consisted of over 5 million articles;
a 7.5% sample was used for training and cross-validation. The classifier performed well with
reported accuracy ≥ 0.984 and F-score ≥ 0.807

Experiments

Our primary aim is to identify RCTs, but we also examine the possibility to distinguish
non-randomized clinical trials as their automatic detection may be useful for future works on
spin identification. Thus, our classification model has three categories: RCT, clinical study
(which means here a non-RCT), and other.

Our corpus is a set of PMC1 articles collected in the course of some previous experiments.
The initial corpus consists of 119,339 texts; using the Medline metadata we obtained the pub-
lication type for 65,396 articles: 3,938 had the type "Randomized controlled trial", 1,139 had
the type "Clinical Trial" (excluding the RCTs) and 60,319 were of other types. A disadvantage
of our corpus is imbalance between the numbers of articles belonging to different types. How-
ever, we were interested in exploring features of the full-text articles and not only of titles and
abstract. Retrieving full-text articles is a complex and time-consuming task. Thus, we decided
to evaluate the quality that we can achieve with this corpus which was already available.

We compared different sets of features. They can be divided into the following types:
information about the structure of the text (division into title, abstract and body text), textual
features (n-grams and their position in the text, i.e., whether an n-gram occurred in the title,
abstract or body text; relative position of an n-gram in the body text), metadata (authors’
names, journal that published the paper). As our future algorithm is to be used for papers yet
unpublished, one of our points of interest was the performance of classifier without the use of
the metadata.

We compared performance of several classifiers implemented in Weka software (Hall et al.,
2008). The best performance was shown by SMO classifier using textual features of the whole
text of articles (title, abstract and body text), taking into account information about the
division of the text into the three structural parts, but excluding metadata. The overall
performance was the following: precision = 0.955, recall = 0.966, F-measure = 0.958. However,
as our corpus is highly imbalanced, we were more interested in the quality of classification for
the two target classes: RCT and clinical study classes. For RCT, the classifier shows relatively
good performance: precision = 0.889, recall = 0.805 and F-measure = 0.845. For the class
"clinical study" the performance is low: precision = 0.318, recall = 0.042 and F-measure =
0.074. These results may stem from the fact that the corpus is highly imbalanced.

1PMC (PubMed Central) is a database of full-text articles in the domains of biomedicine and life sci-
ences. Official site: https://www.ncbi.nlm.nih.gov/pmc/
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Future work

One of the directions for future work is exploring the feasibility of adding syntactic features
to the classification model, e.g. the pairs and triples of the type (Word, Word) or (Word,
Syntactic Group) and (Word, Relation, Word) or (Word, Relation, Syntactic Group), some of
which may be associated with a certain class of texts. We will evaluate the performance of the
classifier with these features added. Another possible way to improve the classification quality
is enlarging the training corpus.

Abstracts sentence classification

Related work

The problem of identifying sentence types in medical articles abstracts (e.g. general cat-
egories such as Introduction, Method, Result, or Conclusion, or more specific types such as
Intervention, Participants and Outcome) has been addressed by several studies (Hirohata et al.,
2008; Kim et al., 2011; McKnight and Srinivasan, 2003; Yamamoto and Takagi, 2005). Simple
bag-of-words approach was explored and showed good performance (McKibbon et al., 2009).
Other features used to enhance the classification performance include: structural information
(position of a sentence within an abstract) (McKnight and Srinivasan, 2003), semantic informa-
tion (semantic categories of words and phrases, obtained through MetaMap (Aronson, 2001)),
sequential information (features of preceding/following sentences) (Hirohata et al., 2008; Kim
et al., 2011). Classifiers used for this task include SVM and CRF. Classifiers are trained on
manually annotated corpora (Kim et al., 2011; McKnight and Srinivasan, 2003; Yamamoto and
Takagi, 2005) or use structured abstracts as gold standard (Hirohata et al., 2008; McKnight
and Srinivasan, 2003; Yamamoto and Takagi, 2005).

Experiments

We seek to classify sentences in the abstracts into three categories: Results, Conclusions
and Other. Following the approach adapted in Hirohata et al. (2008); McKnight and Srinivasan
(2003); Yamamoto and Takagi (2005), we use the structured abstracts as the gold standard.
The structure of abstracts coming from different sources may differ: an abstract may contain
general sections such as Background, Methods, Results, Conclusions, or authors may divide it
into more specific parts such as Problem, Objective, Importance, which correspond to Back-
ground; Participants, Outcomes, Intervention, which correspond to Methods, etc. We chose
the three above-mentioned categories for our classification because Results and Conclusions
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sections are the most important for our final goal of spin detection and because they are among
the basic sections, most often present in structured abstracts.

We explored textual features of the abstracts (n-grams) and structural information (relative
position of a sentence in the abstract). With the use of SMO classifier in Weka we achieved the
following overall performance: precision = 0.899, recall = 0.899. For the class "Conclusion",
precision is 0.915 and recall is 0.844; for the class "Results", precision is 0.896 and recall is
0.888

Future work

Our current results are relatively good and comparable to some of the previously reported
approaches (McKnight and Srinivasan, 2003; Yamamoto and Takagi, 2005), but they are still
lower than the best results obtained for this task, e.g. Hirohata et al. (2008). Our future work
will be aimed at exploring the possibilities to improve the classification quality using semantic
and sequential information as it was done by previous works. We will further test the classifier
on unstructured abstracts.

Information extraction: outcomes and population

Related work

Extraction of entities that represent clinical study characteristics (patient population, in-
terventions, diseases, outcomes, negative side effects, etc.) receives sufficient attention as it
is crucial for automatic text summarization, question-answering systems or tasks related to
creation and use of structured databases.

Some of the authors (Bruijn et al., 2008; Kiritchenko et al., 2010) aimed at extracting a
large variety of information about a trial, such as experimental and control treatment, patients
eligibility criteria, dosage, duration and frequency of treatment administration, sample sizes,
primary and secondary outcomes, financing, etc. Some other works are focused on a limited set
of entities relevant to a certain task, e.g. treatment names, intervention groups and outcomes
(Summerscales et al., 2009, 2011); descriptions and sizes of patient groups, outcomes examined,
and numerical data for outcomes (Summerscales et al., 2011); intervention arms (Chung, 2009);
patient population including general description, sample sizes, medical condition (Raja et al.,
2016; Xu et al., 2007).

We can draw some interesting observations about the approaches and methods used. The
majority of the articles is focused on RCTs; and are aimed at extracting the data from abstracts,
with only a few taking into consideration the whole text of an article (Bruijn et al., 2008;
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Kiritchenko et al., 2010). The most common approach consists of two stages. First, the
sentences are filtered, most often with the use of a classifier, to choose those that are likely
to contain the target entities (Chung, 2009; Bruijn et al., 2008; Kiritchenko et al., 2010; Raja
et al., 2016; Summerscales et al., 2011; Xu et al., 2007); second, the sentences identified at the
first stage are searched for entity mentions, which is done by means of rule based approaches
(Bruijn et al., 2008; Kiritchenko et al., 2010; Raja et al., 2016; Xu et al., 2007) or CRF-based
automatic classifiers (Chung, 2009; Raja et al., 2016). A common approach is thus to combine
the rule-based techniques and machine learning.

Some of the works focused on syntactic features in abstracts since they explore extraction of
relevant information from specific syntactic constructions (Chung, 2009). Semantic information
retrieved with the use of systems such as MetaMap, that links the terms of a text to the terms of
medical thesauri, is frequently used (Chung, 2009; Summerscales et al., 2009, 2011). Semantic
information is reported to be more useful than information about word shape (Summerscales
et al., 2009, 2011).

Experiments

Our first goal is to identify 1) outcomes and 2) patient population, because these two
types of information are most often misrepresented in the medical articles abstracts, with
pre-specified outcomes and population being changed, replaced, or removed.

One of the possible ways to obtain this information is to extract it from trial registries
(online databases containing trial data, with each registered trial assigned a unique identifier).
Trial registration becomes more and more common, and the registration number is likely to
be reported in an article. Registration numbers follow some fixed patterns, including usually
a registry identifier and a trial identifier, e.g. NCT00000001 would be a trial registered at the
ClinicalTrials.gov registry under the number 00000001. Given the registration number, it is
possible to automatically access the webpage of the trial and download the data, which usually
includes the outcomes and patient information. This task belongs rather to the domain of
Document Retrieval and structured information parsing than to NLP, so we will not go into
further details here, though we will likely use data obtained this way in our future work.

We will consider now the NLP task of extracting outcomes and population information
from the articles texts.

Later in the course of our project we will collect a corpus for spin detection and annotate
it for the types of spin and probable supporting information. We plan to implement machine
learning strategies for the task of entity extraction after annotating the corpus; at the current
stage we use a rule-based approach to extract a set of manually identified linguistic construc-
tions. We suppose to use these rules as a baseline and for pre-annotating the corpus to assist
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human annotators. Our rules are implemented as finite-state automata in Unitex (Paumier,
2016), following the successful reports of previous experience along this approach in Friburger
and Maurel (2004); Maurel et al. (2011).

Below we describe the constructions targeted by our rules.

Outcomes

Unlike previous studies, we are not aiming now at extracting outcomes from the phrases
reporting results such as an example from (Summerscales et al., 2009):

(1) Mortality was higher in the quinine than in the artemether.
Some of the most common and alarming types of spin are related to not reporting or

inadequate reporting of the primary outcome; thus, our main task is not only to identify the
outcomes, but to distinguish between primary and secondary ones. We seek thus to detect the
phrases stating explicitly the type of an outcome, e.g.:

(2) The primary outcome was mortality rate.
As such phrases may be absent in the article, we consider more general descriptions of

objectives and measures assessed to be potentially useful for our task, e.g.:
(3) Our goal was to compare mortality rate between patients using treatment A

and placebo.
(4) Mortality rate was measures/assessed/...

Patient population

The most common types of spin concerning patient population include reporting the results
for a subgroup instead of the whole population studied (e.g. for a certain gender, age or
nationality) or presenting a population broader than the one studied (e.g. generalizing the
result achieved for a population with a specified age range to the whole population with the
condition examined). Thus, our main goal is to find the descriptions of patients including
some basic information such as their age and gender and some more specific information
regarding their medical condition. We do not aim at extracting sizes for the whole population
or treatment groups as patients may leave a trial for some reasons, so changes in the number
of participants may occur and are not to be checked by a spin detection algorithm. We do
not aim now at extracting the detailed description of inclusion and exclusion criteria for trial
participants as this information is complex and difficult to extract and analyze. We plan to
explore the possibility to identify population-related types of spin basing on simple descriptions
such as "children aged 8-12 suffering from pneumonia".

We have constructed 9 automata for outcomes and 5 for patient descriptions. Descriptions
of primary outcomes are found in 51% of the texts, with more general constructions describing
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objectives and measures assessed occur in 91.5% and 94% respectively. Patient descriptions
are found in 99.9% of the texts.

Future work

Our next tasks include corpus collection and annotation for further implementation of
machine learning techniques. Besides, we will explore approaches for 1) checking the presence
of the primary outcome in the abstract results/conclusions; 2) checking if the population
mentioned in results/conclusions corresponds to the population studied. These tasks are related
but not identical to the task of textual entailment (Kouylekov and Magnini, 2005), which seeks
to detect if the meaning of one text can be inferred from another text.

For the task of comparing outcomes, there are two possible directions for achieving our goal.
The first way is to extract the outcome from the relevant sentences (such as example (1) above)
and compare them to the outcomes extracted from explicit descriptions. A problem that can
undermine this approach is the difficulty of extracting outcomes from results and conclusions
sentences (Summerscales et al., 2011). The second way is to check the presence of explicitly
described outcome in the relevant sentences (as a string, set of words, set of semantically
related terms, etc.).

For comparing population descriptions, only the first approach is feasible as the absence of
mentions of a population in the results/conclusions does not represent spin.
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Chapter 2

Annotating Spin in Biomedical Scientific

Publications: the case of Randomized

Controlled Trials (RCTs). Anna Koroleva,
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Miyazaki, Japan, May 7-12, 2018

Context

A key element in developing NLP algorithms is data; in particular, substantial amounts of
high-quality annotated data are required for evaluation of any algorithms, including rule-based
ones, and for training supervised machine learning algorithms.

In the previous chapter we identified tasks that are to be included into a spin detection
pipeline. For some of these tasks (e.g. detection of sections in abstracts of scientific articles)
annotated datasets exist and are available. For some others, no datasets were available when we
began working on automatic spin detection. Previous works on spin analysed a limited number
of articles, not aiming at annotating data, and thus did not produce annotated datasets large
enough for the development of NLP algorithms.

Hence, a major step in our project was collecting and annotating of corpora for spin de-
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tection. This chapter reports on our efforts in designing a spin annotation project that we
planned to conduct within our project.
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Abstract

In this paper we report on the collection in the context of the MIROR project of a corpus of
biomedical articles for the task of automatic detection of inadequate claims (spin), which to our
knowledge has never been addressed before. We present the manual annotation model and its
annotation guidelines and describe the planned machine learning experiments and evaluations.

Keywords: spin, annotation scheme, biomedical articles

Introduction

Merriam Webster dictionary defines spin doctor as "a person (such as a political aide)
responsible for ensuring that others interpret an event from a particular point of view"1. In
the context of the MIROR2 project, we address spin in biomedical scientific publications,
where it refers to misleading presentation of scientific results, in particular in articles reporting
randomized controlled trials (RCTs), an important type of clinical trial. In our case, spin
consists in presenting the examined treatment as having greater beneficial effects than the
experiments show (Boutron et al., 2010, 2014; Haneef et al., 2015; Yavchitz et al., 2016).
Spin in RCTs affects clinical decision-making (Boutron et al., 2014) and results in distorted
presentation of research findings in media (Yavchitz et al., 2012; Haneef et al., 2015). We
present here the first steps aiming at proposing an algorithm for automatic spin identification
in biomedical abstracts, something which to the best of our knowledge has not been attempted
before. We present here the construction and annotation of a corpus of medical publication
extracted from PubMed Central3 (PMC) about RCT and describe the annotation model and
guidelines.

1https://www.merriam-webster.com/dictionary
2http://miror-ejd.eu/
3https://www.ncbi.nlm.nih.gov/pmc/
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On spin types

From previous research on spin classification (Boutron et al., 2010; Lazarus et al., 2015;
Yavchitz et al., 2016), we can outline three main types and their subtypes of spin in RCT
reports:

1. misleading reporting of study results:

∙ selective reporting of outcomes (omission of the primary outcome; focus on statis-
tically significant results different from the main outcome);

∙ occulting adverse events;

∙ misleading reporting of study design;

∙ linguistic spin (beautifying formulations);

∙ discarding limitations;

∙ selective citation of other studies

2. inadequate interpretation of the results:

∙ claiming a beneficial effect of the intervention despite statistically non-significant
results;

∙ claiming an equivalent effect of the interventions for statistically non-significant
results;

∙ claiming that the treatment is safe for statistically non-significant safety outcomes;

∙ concluding a beneficial effect despite no comparison test performed;

∙ interpretation of the results according to statistical significance instead of clinical
relevance;

3. inadequate extrapolation:

∙ inadequate extrapolation from the population, interventions or outcome actually
assessed in the study to a larger population, different interventions or outcomes;

∙ inadequate implications for clinical practice.

Example of spin putting focus on secondary result ("improved PFS and response for treat-
ment") instead of the main result, object of the experiment ("survival rate"):

In the rest of this paper, we present our linguistic model of spin (section 2), the annotation
scheme (section 3), the the annotation guidelines (section 4), conclusions and plans for future
work (section 5).
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"This study demonstrates improved PFS and response for the treatment A
compared with comparator B, although this did not result in improved
survival".

Figure 2-1: Example of spin (focus on secondary result)

Model of spin

To the best of our knowledge, this is the first attempt at addressing the analysis of spin in
the biomedical literature from a Natural Language Processing point of view. Spin detection
overlaps partially with previous works in NLP, in particular objectivity/subjectivity identifi-
cation (Wiebe and Riloff, 2005), sentiment analysis (Pak, 2012), fact checking (Nakashole and
Mitchell, 2014) or deception detection (Hancock et al., 2010; Litvinova et al., 2017); a point to
note is that these works address texts of general domain while we deal with spin in biomedical
texts. We regard spin detection as a task most closely related to deception detection. De-
ception is defined as a deliberate act of communicating information that the speaker/author
believes to be false, with the intention to induce listeners/readers to believe a distorted pre-
sentation of the topic. Strictly speaking, spin is not necessarily a form of deception, as the
intention is difficult to establish most of the time, e.g., spin in abstracts may be conditioned by
limited space; by author’s wish to report the results that he/she perceives to be most impor-
tant; by unclear/absent reporting guidelines; by lack of training etc. However, spin is similar
to deception for what concerns its impact and the method required to detect it from textual
content only (Mihalcea and Strapparava, 2009).

Spin can be considered as the most serious form of incomplete or incoherent reporting
of trial data and results (omission or inconsistent presentation of information). We aim at
creating a general model that would be able to represent the information about a trial data
and all possible realizations of spin in reporting.

For trial data, we choose to follow the information structure accepted in trial registries
(official catalogues for registering clinical trials, containing in a structured form trial data
provided by the investigators who carry out a trial).

Trial registries may slightly vary regarding the level of detalisation used for information
presentation, so we reviewed several registries (ClinicalTrials.gov4, ISRCTN5, plus some na-
tional registries) and generalized the categories used. We compiled the following list of data
describing a trial:

∙ Information about interventions: intervention name, dosage, administration schedule,
treatment duration;

4https://clinicaltrials.gov/
5https://www.isrctn.com/ (International Standard Randomised Controlled Trial Number Register)
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Figure 2-2: Excerpt from an RCT description queried on ClinicalTrials.gov with the key-
words: ’RCT insomnia France’

∙ Information about participants: age, gender, health condition, health type, national-
ity/ethnicity, recruitment country/region; information regarding intervention assigned;
other information. Can be represented in a form of a list of inclusion and exclusion
criteria, that can contain all of the above information;

∙ Trial methods / trial design: allocation concealment, allocation type, blinding, sample
sizes for groups examined, study type, study subtype, trial phase, statistical tests used;

∙ Trial objectives / outcomes (with their methods of measurement and associated time
points);

∙ Data about registration: registration number, registration time;

∙ Financing: sponsors;

∙ Hypothesis, hypothesis type;

∙ General information: medical domain;

∙ Summary.

We also introduced some other categories that are not typically present in registries but
that are relevant to trial description: limitations and reported statistical measures.

In order to be able to capture instances of spin, we further need to reflect the following
phenomena:

1. Incomplete reporting, which can take many forms, but we are most interested in omission
of information that is normally supposed to be present in a well-reported abstract, such
as:
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∙ clear definition of the primary outcome;

∙ results for primary outcome;

∙ results for non-significant secondary outcomes;

∙ information about adverse events (their absence should be stated explicitly).

Omission of some other types of information (design, methods, statistical tests used,
etc.) should not be considered as spin but rather as incomplete reporting acting as ’spin
facilitator’ hindering fact checking.

2. Incoherent reporting:

∙ primary outcome described in the trial registry differs from the primary outcome
described in the text;

∙ patient population reported in the abstract does not correspond to the population
studied in its qualitative characteristics (age, gender, etc.);

∙ reported results do not correspond to trial design;

∙ the compared treatments are reported to be similar when the design does not allow
to conclude on similarity (i.e. the trial is not a ’non-inferiority’ of ’equivalence’
trial);

∙ within-group comparison reported when the trial objective was not to examine
changes within groups (i.e. the trial is not a ’before-and-after trial’);

∙ focus on significant secondary outcomes instead of primary outcome;

∙ positive conclusions are made (efficacy stated, treatment recommended for use)
when the primary outcome is not significant.

Incoherence or incompleteness of reporting can be established by checking the complete-
ness of the abstract, discrepancies between abstract and article body or between trial
registry entry (if available) and article content. We thus work with two types of docu-
ments: articles and registry entries. For articles, the model comprises information about
its structure: its division into title, abstract and body text, for registries we rely on their
internal structure, in general a tabular form holding short pieces of text or data.

Annotation scheme

We proposed a description of an algorithm of spin detection elsewhere (Koroleva and
Paroubek, 2017b). The main steps are the following:
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∙ dividing a given article into title, abstract and body text; finding results and conclusions
within the abstract;

∙ identifying positive evaluation of the studied treatment in results/conclusions of the
abstract;

∙ extracting elements of trial data relevant to spin assessment, such as outcomes, patient
population, statistical significance of results;

∙ extracting relation between elements of trial data, such as an outcome and its statistical
significance;

∙ extracting specific constructions possibly related to spin (see below);

∙ final assessment of spin: checking if the information in the results and conclusions of the
abstract corresponds to the extracted trial data, for example, if the pre-defined outcomes
are reported correctly or if the positive evaluation of the treatment is supported by
statistically significant results.

We propose here an annotation scheme comprising the information elements relevant for
the future algorithm. Our annotation scheme is implemented in XML and includes several
levels of information:

1. Document type (article/registry entry).

2. Structural information (for articles). For this annotation level we adopt the existing an-
notation scheme used in PubMed1, simplified for our needs. Our scheme includes journal
name, article title, authors list, abstract, body text, bibliography. Within abstracts,
Results and Conclusions sections are marked.

3. Elements describing the trial (what was studied and how: compared interventions, out-
comes, population studied, statistical measures used, etc.): we introduce a separate tag
for each type of trial data. This decision is motivated by the fact that we need specific
sets of attributes for different types of trial data, and we need to introduce particular
relations for specific types of trial information. As outcome is the most important type
of trial data for spin detection, for outcomes (or trial objectives) we use several tags that
are needed to distinguish between different specific constructions:

The type of an outcome can have three different type attribute values: Prim (primary)
/ Sec (secondary) / None (undefined). Outcome has also an attribute ’status’ which can
have two values: Declared when it is explicitly stated in the text to be an outcome (e.g.
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The <Prol>primary outcome measure will be< /Prol> <Out type="Prim"
Status="Declared">QoL< /Out>, assessed with the ALS Assessment Ques-
tionnaire...

Figure 2-3: Example of annotation for a primary (attribute type is Prim) outcome (Out)
explicitly declared, with the annotation of its linguistic marker (Prol).

Fig 2-3), which is its value by default and Reported, when the outcome is only reported
in results or conclusion section without referring explicitly to its nature.

Our <Prol>secondary aim is< /Prol> <Aim type="Sec">to describe the
costs< /Aim> associated with RESERVE-DSD.

Figure 2-4: The AIM is the objective of the trial.

4. Relations between elements of trial data: relations that link a pair of elements that
describe different features of a single concept, e.g. an outcome with its method of mea-
surement or with its time points, or an intervention to its dosage, administration schedule,
etc.

5. Particular constructions of interest:

∙ Positive evaluations of treatment (positive results regarding the treatment);

∙ Statements of similarity between treatments regarding their efficacy or safety;

∙ Within-group comparisons (statements of changes that occur within a group receiv-
ing the studied treatment, without comparing it to the group receiving the control
treatment);

∙ Recommendations to use treatment.

These include: i) an analysis which shows that the ethnic difference in per-
formance in this 2006/7 <Subj>cohort of Year 3 students< /Subj>
was similar in size to that in <Subj>previous cohorts on the course<
/Subj>.

Figure 2-5: Example of a similarity statement. Subj – trial subjects.

A problem that arises with this type of information consists in deciding which fragment
of text should be annotated. Normally these constructions comprise a whole proposition,
but we can as well highlight some words that are the most ’representative’ of the meaning
of each construction. We choose to annotate the smallest possible fragments that are
indicators of relevant constructions. The motivation behind this decision is the need to
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make the annotation as clear and simple as possible for annotators, and the fact that,
having annotation on word level, we can easily expand it to the sentence level.

6. Annotation for spin: annotation level that is meant to capture all the cases of incoherence
and incompleteness regarding the types of information enumerated above. This type of
annotation resembles most to a well-known task of relation annotation, but here the most
important is not to capture relation that holds between two text fragments, but to mark
the cases when there is no relation when we expect it to exist. For example, a relation
between a declared primary outcome in article text or protocol and a corresponding
reported outcome in abstract means no spin, but a declared primary outcome with no
related reported outcome is a case of spin. A similarity statement is not spin if the trial
was of equivalence type, but it is a spin if there is no text fragment indicating that the
trial belongs to equivalence trials.

To annotate this information, we follow the system accepted in TimeML (Pustejovsky
et al., 2003) annotation for relations: we introduce empty tags that contain reference
to IDs of fragments that are linked in case of good reporting; in case of incoherence/
incompleteness, the tag contains ID of the present text fragment. These tags have an
attribute ’spin’ that is set to ’yes’ or ’no’.

Another form of actual spin or of ’spin facilitator’ is omitting some information about
methods, design or results in the abstract, e.g. not stating clearly the primary outcome.
For this type of omission, we do not need to refer to an ID, we only need an empty tag
to mark which type of information is omitted in abstract.

Thus, the annotation for spin is done on the lowest level: as a relation between text
fragments. We can then calculate the value of ’spin’ attribute for the whole text.

Figure 2-6 shows an example of text with spin (the example comes from the appendix of
Boutron et al. (2014) and the process of assessment of outcome-related spin.

The first step in annotating this text would be to annotate all outcomes reported in the
abstract (IDs 1 – 5) and the declared primary outcome (ID 6). The following steps to fully
annotate all types of spin related to primary outcome would be the following:

1. Check and mark if there is a definition of the primary outcome in the abstract. Here it
is absent (full text if abstract omitted for the sake of space) – we conclude incomplete
reporting.

2. Check and mark if the declared primary outcome is present among the reported outcomes.
Here it can be considered to correspond to the outcomes 3 and 5 – we conclude correct
reporting.
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<Abstract>Abstract
< ... > <Res>Results
< ... > <Out ID="1" Type="None" Status="Reported">The Inter-
national Union Against Cancer R0 resection rate< /Out> was
81.9% after treatment A as compared with 66.7% with surgery alone (P
= .036). The surgery-only group had more <Out ID="2" Type="None"
Status="Reported">lymph node metastases< /Out> than the treatment
A group (76.5% v 61.4%; P = .018). < ... > A <Out ID="3" Type="None"
Status="Reported"> 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 < /Out> benefit could not be shown (hazard
ratio, 0.84; 95% CI, 0.52 to 1.35; P = .466). < /Res>
<Concl>Conclusion
This trial showed a significantly increased <Out ID="4" Type="None"
Status="Reported">R0 resection rate< /Out> but failed to demonstrate
a <Out ID="5" Type="None" Status="Reported"> 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 < /Out>
benefit. < /Concl>
<BodyText>< ... >
The primary end point of this trial was <Out ID="6" Type="Prim"
Status="Declared">overall survival< /Out>. < ... >< /BodyText>

Figure 2-6: Example of annotation of spin for an abstract

3. Check and mark if the primary outcome is presented correctly according to its impor-
tance: it should be presented in the first place without regard to significance of results;
there should be no focus on other outcomes. In this abstract, the insignificant primary
outcome is presented after significant secondary ones – we conclude incoherent reporting
(focus on secondary outcomes).

Annotation guidelines

We plan to combine automatic annotation as first stage, and manual annotation to correct
and complete the annotation. We do not aim at manually annotating all the types of informa-
tion. Most of the trial data not directly relevant to spin detection will be marked automatically
only in trial registry entries, where information is highly structured. We do not thus cover
them in the annotation guidelines.

We described our algorithms of automatic pre-annotation in our previous works (Koroleva
and Paroubek, 2017b,a). These algorithms aim at extracting/annotating the following:

∙ text structure: separating results and conclusions sections in abstracts;

∙ various constructions defining trial outcomes, with special attention to the primary one,
for example:
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1. The primary outcome is <Out Type="Prim" Status="Declared"> emotional dis-
tress (symptoms of depression, anxiety, diabetes-specific stress, and general per-
ceived stress ) < /Out>.

2. This project has one primary aim: to measure <Out Type="Prim" Status= "De-
clared" > the impact of continuity of midwifery care < /Out> compared to routine
care on restricting excessive gestational weight gain in obese women.

3. Sample size A power calculation was carried out for the primary outcome (<Out
Type="Prim" Status="Declared"> health related quality of life measured on the
York version of the SF-12< /Out>).

∙ comparative constructions that are often used to report the trial results. These construc-
tions usually include some of the following elements: compared patient groups, compared
treatments, outcomes that serve as basis for comparison. We mainly focus on extracting
outcomes:

1. <Subj> Patients with TC asthma < /Subj> has significantly higher<Out Type=
"None" Status="Reported"> AQLQ scores < /Out> compared to those with NTC
asthma.

2. Muscarinic agonists appear to reduce <Out Type="None" Status= "Reported">
the potency of beta-agonist bronchodilation < /Out>, possibly through an effect
on adenylyl cyclase 17.

3. <Out Type="None" Status="Reported"> Levels of hs-CRP < /Out> increased
modestly in the ABC / 3TC arm compared with the TDF / FTC the arm.

∙ Description of studied population:

1. We studied <Subj> <Aim Type="None"> 19 consecutive unselected patients who
met the ARDS criteria of the American European Consensus Conference 21. <

/Aim> < /Subj>

2. A total of <Subj> 32 patients aged 12 to 17 years with severe, active and refractory
JoAS < /Subj> were enrolled in a multicenter, randomized, double-blind, placebo-
controlled parallel study of 12 weeks.

These annotations, although not perfectly correct and complete, are hoped to reduce work-
load for annotators: in case pre-annotation is completely correct or completely erroneous, the
annotators will simply need to validate/reject it, reducing the number of cases requiring manual
annotation.
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The current pre-annotated corpus includes 3938 articles on randomized controlled trials in
various medical domains, extracted from PubMed Central. This corpus will serve as basis for
manual annotation.

We will split manual annotation into several stages that would differ regarding their com-
plexity and thus the skills required from the annotators.

Some of the tasks are relatively easy and can be done by annotators who do not have
special knowledge in medical domain. We consider that the tasks that fall into this group
are: explicit descriptions of outcomes, mentions of patient population, statistical measures
(p-value), confidence intervals.

Some other types of information require some special knowledge of medical domain as un-
derstanding of medical terms is needed to correctly interpret the meaning of sentences and
categorize text fragments as representing a certain type of trial data/construction. Following
tasks fall into this category: reported outcomes, similarity statements, within-group compar-
isons, evaluations related to treatment.

The final task of spin annotation (i.e. marking parts of the text that represent coher-
ent and complete reporting for chosen concepts, and marking cases when there is incoher-
ence/incompleteness) is an even more difficult task. The concept of spin in biomedical domain
is not completely formally defined yet, experts in the domain often disagree on classifying
a certain phenomenon as spin or not. For example, some experts regard absence of explicit
definition of the primary outcome in the abstract of an article as definite spin, while others
consider it to represent incomplete reporting but less important than spin. Besides, mismatch
between information in the abstract and in the article (e.g. change of outcomes studied and
reported) is not spin if it has valid scientific justification, which should be provided in the
article. Extraction of such justifications and assessment of their validity would be necessary
to conclude on absence or presence of spin, but it falls outside scope of our work.

Thus, there are several difficulties that we should take into account when developing anno-
tation guidelines:

1. Some of the tasks require at least some level of special medical knowledge, so it is likely
that the annotators will not be linguists and will not have experience in corpus cre-
ation/annotation. This fact should be taken into account when choosing terminology
(no specific linguistic terms) and when defining the task (e.g., be clear about annotating
coordinated elements as separate elements and not one element).

2. Choice of the annotation tool to be used should take into account the complexity of the
task but also the involvement of non-linguists in annotation process. From the point
of view of functionality, the tool should at the very least be able to capture relations,
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potentially embedded. This requirement makes tools not allowing relation annotation,
such as WebAnnotator (Tannier, 2012), not appropriate. After testing and comparing
several tools, we chose the Glozz platform (Widlöcher and Mathet, 2012) as the one that
best corresponds to the needs of the task of full linguistic annotation of spin. Glozz is a
flexible and powerful tool that allows to annotate units (text fragments), their relations
and schemes (which can be seen as higher-level relations that can include one or more
units, relations or other schemes) which covers all possible instances of incompleteness
or incoherence in reporting.

However, demonstration of text annotation with Glozz to a medical expert showed that it
does not meet the requirements of non-linguist annotators: ease of installation of the tool,
amount of time needed for training for a person without previous experience in corpus
annotation, complexity of guidelines describing the task. Consequently, we decided to
replace the task of linguistic annotation of texts by a set of simpler tasks (in the form of
questions) such as the following:

∙ validation/correction of primary outcomes found at the pre-annotation stage;

∙ validation/correction of reported outcomes found at the pre-annotation stage;

∙ establishing if two given (extracted at previous stages) outcomes refer to the same
concept;

∙ identification of similarity statements in the Results and Conclusions of abstracts;

∙ identification of within-group comparisons in the Results and Conclusions of ab-
stracts;

∙ identification of other positive evaluation of the studied treatment in the Results
and Conclusions of abstracts.

We plan to use a web-based survey tool (such as LimeSurvey6) to create questionnaires
containing these questions, generated on the basis of pre-annotation. Using survey tools
for corpus annotation is not typical. Our decision is motivated by several reasons: sur-
vey tools are usually available online and thus do not require any complex installation
procedures (survey participants can access the survey simply by following a link received
by email); survey tools are widely used in medical community and are familiar to the
community. This fact reduces time needed for annotators to learn how to use the tool.
Besides, breaking the task into simple questions, independent one from another, allows
to include into each question a brief guideline on how to answer, thus in most cases

6https://www.limesurvey.org/
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annotators will not need to refer to an extensive external annotation guide. Answering
simple questions is also likely to cause fewer discrepancies between annotators than full
annotation of spin.

3. In case of full linguistic annotation of spin, we should clearly define which pieces of text
to annotate. We anticipate some difficulties in cases when elements of trial data get
embedded one into another. The guidelines should explain whether to annotate these
elements as embedded or as two separate instances linked by a certain type of relation
(e.g. outcome and its method of measurement).

4. Given the complexity of the task, we need to clarify the definition of what should be
considered to be spin. For this, we need to strictly define the types of spin that we focus
on, describe in detail which pieces of information are relevant to these types of spin.
Taking into account lack of agreement between experts in detailed definition of spin, for
our current annotation project we decided to avoid using the notion "spin" and focus on
tasks that are relatively simpler and clearer, such as: annotating outcomes; marking if
pairs of extracted outcomes refer to the same concept; annotating specific constructions
of interest, such as similarity statements or within-group comparisons. This information
would allow to estimate with a certain probability that an article does or does not contain
spin, but the final decision is left to the human readers of the article.

5. The task of developing guidelines must be fulfilled in close collaboration with experts in
medical domain and in the domain of spin in medical texts, in order to verify that all
the definitions regarding medical concepts and spin are correct.

Conclusions and future work

In this paper we described our approach to creation of a corpus of biomedical articles
annotated for spin (distorted reporting) and its supporting information. We briefly outlined the
proposed algorithm of spin detection and summarized our work on automatic pre-annotation
of the corpus. Consequently, we described the annotation scheme that we developed for spin
annotation. We discussed the process of creating the annotation guidelines, provided some
thoughts as for choice of annotation tool and outlined expected challenges.

Our future tasks include running a pilot survey to validate usability of survey format for
our task and evaluate the adequacy and clarity of the questions for annotators. Consequently
we will proceed to a full-scale survey project.
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Chapter 3

Extracting outcomes from articles

reporting randomized controlled trials

using pre-trained deep language

representations. Anna Koroleva, Sanjay
Kamath, Patrick Paroubek. Submitted

Context

Spin is often related to incorrect reporting of trial outcomes, such as outcome switching
(unjustified change of pre-defined outcomes of a trial). Outcomes are thus one of the most
important information elements for spin detection. Extracting trial outcomes is a key task in
a spin detection pipeline. Chapter 1 described our first experiments on this task using simple
local grammars. The following chapter reports on the further work on outcome extraction.

In this chapter, we reviewed the state of the art, including works on sentence classification to
extract sentences describing outcomes and works on outcome extraction as a sequence labelling
task. We defined two types of outcomes (declared and reported), according to the context in
which they are mentioned, relevant for spin detection.

The previous chapter reported on our annotation efforts. Initially we planned to run an
annotation project with several annotators who should be experts in reporting of clinical trials
or in the clinical research in general. However, recruiting several annotators with sufficient
level of expertise and training them to perform linguistic annotation proved to be infeasible
within the given time frame. As an annotated corpus was nevertheless required for our further
experiments, we ran a small-scale annotation project: a single annotator (AK) annotated
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corpora for each of the core tasks of the spin detection pipeline. The volume of the annotated
data is limited but proved to be sufficient to train machine learning algorithms. Annotation by
a single annotator has certain disadvantages, as it is difficult to assess the quality of annotation,
but in the context of our project it had the advantage of allowing to obtain training data within
a reasonable time frame.

In the following chapter, we report on the collection and annotation of corpora for these
two types of outcomes and on our experiments on building rule-based and machine-learning
algorithms. The best performing algorithms for declared and reported outcomes detection were
included into our spin detection pipeline.

Authors’ contributions

AK designed the study described in this chapter and interpreted the data. AK collected and
annotated the corpus. AK and SK conducted the experiments, supervised by PP. AK drafted
the manuscript. SK and PP revised the draft critically for important intellectual content.

Abstract

Objective: Outcomes are the variables monitored during clinical trials to assess the impact
of the intervention studied on the subjects’ health. Automatic extraction of trial outcomes
is essential for automating systematic review process and for checking the completeness and
coherence of reporting to avoid bias and spin. In this work, we provide an overview of the
state-of-the art for outcome extraction, introduce a new freely available corpus with annotations
for two types of outcomes —declared (primary) and reported —and present a deep learning
approach to outcome extraction.

Dataset: We manually annotated a corpus of 2,000 sentences with declared (primary)
outcomes and 1,940 sentences with reported outcomes.

Methods: We used deep neural word embeddings derived from the publicly available BERT
(Bidirectional Encoder Representations from Transformers) pre-trained language representa-
tions to extract trial outcomes from the section defining the primary outcome and the section
reporting reporting the results for an outcome. We compared a simple fine-tuning approach
and an approach using CRF and Bi-LSTM. We assessed the performance of several pre-trained
language models: general domain (BERT), biomedical (BioBERT) and scientific (SciBERT).

Results: Our algorithm achieved the token-level F-measure of 88.52% for primary outcomes
and 79.42% for reported outcomes.

Conclusion: Fine-tuning of language models pre-trained on large domain-specific corpora
show operational performance for automatic outcome extraction.

Keywords: Natural Language Processing, Randomized Controlled Trials, Outcome ex-
traction, Deep Neural Networks, Pre-trained Language Representations
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Introduction

Outcomes of clinical trials are the dependent variables monitored during a trial in order
to establish how they are influenced by independent variables such as the intervention taken,
dosage, or patient characteristics. Outcomes are a key element of trial design, reflecting its
main goal and determining the trial’s statistical power and sample size.

Previous works have shown that outcome extraction is a difficult task because of the di-
versity of outcome mentions and contexts in which they occur. No common textual markers
exist (e.g. capitalization, numerical symbols, cue phrase). Recent research proved that the use
of deep language representations pre-trained on large corpora, such as BERT (Devlin et al.,
2018), outperforms the state-of-the-art results for several natural language processing tasks,
including entity extraction. Pre-training on large domain-specific data can further improve the
results (Lee et al., 2019; Beltagy et al., 2019).

We propose a deep learning approach, using language representations pre-trained on general
domain corpora and on domain-specific datasets to extract trial outcomes. We report on
creating a publicly available annotated corpus for outcome extraction.

Definitions

There are substantial discrepancies in the use of the words "outcome", "endpoint", "out-
come measure" etc., that we describe in detail elsewhere. In brief, there is no agreement
between researchers as for the differences in the meaning and usage of these terms, in practice
they are often considered to be synonyms. In our work, we follow the common practice and
do not distinguish between these notions. We prefer to use the term "outcome".

Following the accepted usage1, we define an outcome as a variable (or measure, or pa-
rameter) monitored during a clinical trial. Outcome in this sense is a type of entity, as it is
understood by the standard entity recognition task. Our definition differs from that given by
Demner-Fushman et al. (2006) who defined an outcome as "sentence(s) that best summarizes
the consequences of an intervention". In our definition an outcome is usually shorter than a
sentence, and it does not refer to trial results ("consequences of an intervention"): the results
are the values of outcomes. Our definition is in line with other works on outcome extraction
(see the Related Works section), as many applications, such as summarization of trial results,
require extracting outcomes on the entity level to allow for further analysis of data for each
individual outcome, which is not possible if extracting only sentences containing outcomes (cf.
Blake and Kehm (2019)).

1e.g. https://rethinkingclinicaltrials.org/chapters/design/choosing-specifying-end-points-
outcomes/choosing-and-specifying-endpoints-and-outcomes-introduction/
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We introduce here the definitions for two types of outcome mentions that are important
for our work: declared and reported outcomes.

Declared outcomes are the mentions of outcomes that occur in contexts that explicitly state
which variables were measured in a trial, e.g. (outcomes are in bold):

The primary outcome of this study was health-related quality of life.

Secondary outcomes included changes in the 6-minute walk distance (6MWD) and
adverse events.

In our study, we were most interested in changes in PHQ-9 scores after the 12-week

trial.

Declared outcomes can be further classified according to their importance as stated by the
authors (primary, secondary, tertiary, or undefined).

Reported outcomes are the mentions of outcomes that occur in contexts that report the
results for the outcomes, e.g. (outcomes are in bold):

The HRQoL was higher in the experimental group.

The mean incremental QALY of intervention was 0.132 (95% CI: 0.104—0.286).

Applications

Extraction of trial outcomes is an important part of systematic review process (Jonnala-
gadda et al., 2015), clinical question answering (Demner-Fushman and Lin, 2007), assessment
of an article for distorted reporting practices such as bias (Higgins et al., 2011), outcome
switching (Goldacre et al., 2016) and spin (Boutron et al., 2010). For us, the main application
of interest is spin detection.

In general, spin is defined as presenting research results as being more positive than the
experiments proved. In particular, in randomized controlled trials (RCTs) assessing a new
intervention, spin consists in exaggerating the beneficial effects (efficacy and/or safety) of
the studied intervention. As RCTs are the main source of information for Evidence-Based
Medicine, spin in RCTs presents a serious threat to the quality of healthcare. The presence
of spin makes clinicians overestimate the effects of the treatment in question (Boutron et al.,
2014), and provokes spin in health news and press releases (Haneef et al., 2015; Yavchitz et al.,
2012), which can affect public expectations regarding the treatment.

One of the most common forms of spin is selective reporting of trial outcomes – reporting
only the outcomes that prove the hypothesis of the authors. To automatically detect this form
of spin, declared and reported trial outcomes need to be extracted, and declared outcomes
must be compared to the reported outcomes to check for mismatches: declared outcomes that
are not reported, or reported outcomes that were not declared.
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Our current work presents the first step of the algorithm of selective outcome reporting
detection and deals with the extraction of declared and reported outcomes. The second step
consists in assessing semantic similarity between pairs of declared and reported outcomes and
will be presented elsewhere.

Related work

As the volume of published biomedical articles grows exponentially (Khare et al., 2014),
manual extraction of clinical trial information becomes infeasible. Several works addressed
the extraction of outcome-related information for facilitating systematic reviews or supporting
clinical question-answering systems.

A number of works addressed extraction of information on clinical trials using the PICO
- Patient/Problem, Intervention, Comparison, Outcome - framework (Richardson et al., 1995)
or its extensions. The majority of works using the PICO framework treat the task as sentence
classification (Demner-Fushman and Lin, 2005; Boudin et al., 2010; Huang et al., 2011; Kim
et al., 2011; gang Cao et al., 2010; Verbeke et al., 2012; Huang et al., 2013; Hassanzadeh et al.,
2014; Jin and Szolovits, 2018). F-measure for outcome sentence extraction varies between 54%
and 88% for different methods (see the systematic review Jonnalagadda et al. (2015)).

Demner-Fushman and Lin (2007); Demner-Fushman et al. (2006) also treated the task of
outcome extraction as text classification. The authors trained several classifiers on a dataset
of 633 MEDLINE citations. Naive Bayes classifier outperformed linear SVM and decision-tree
classifier. The accuracy of outcome sentence identification ranged from 88% to 93%.

However, for some tasks (including spin detection), identification of relevant sentences is not
enough and extracting outcomes at the entity level is required. This task has been addressed by
fewer works than the PICO classification. It is important to distinguish the works addressing
the extraction of declared (primary and secondary) outcomes from those targeting reported
outcomes.

Bruijn et al. (2008) aimed at extracting declared (primary and secondary) outcomes and
their time points, along with other elements of trial design. They point out that the outcomes
of a trial can be poorly defined by referring to "main outcomes" instead of primary and
secondary ones. The authors also note that it is necessary to analyse the whole article, not only
the abstract, e.g. to find secondary outcomes. The system uses a two-step approach: first, a
classifier is applied to identify sentences containing a given type of information; second, regular
expression rules are used to find text fragments corresponding to the target information. The
dataset used in this work consists of 88 randomly selected full-text articles from five medical
journals. For primary and secondary outcomes, only the first step (sentence classification) was
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implemented. Performance for identification of sentences containing outcomes is reported to
be lower that for the other elements. For the primary outcomes, the sentence classification
reaches precision of 87% and recall of 90%; for secondary outcomes, precision was 57% and
recall was 90%.

In their following work (Kiritchenko et al., 2010), the authors further develop their approach
and add rules for extracting text fragments for primary and secondary outcomes. This work
used a different dataset: the initial corpus consisted of 78 manually annotated articles from
five clinical journals that were considered to be representative of general medicine, to which
54 articles from a wider selection of journals were added, resulting in a final training set of
132 articles from 22 clinical journals. The test set contained 50 full-text articles reporting
RCTs from 25 journals. The results were assessed at the sentence and fragment levels. The
sentence classification performance for outcomes is as follows: precision was 66%, recall was
69% for primary outcomes; precision was 69% and recall 79% for secondary outcomes. For
fragment extraction, the authors report for primary outcomes a precision and recall of 97%
for both overlapping and exact matches; for secondary outcomes, precision and recall for exact
matches are 93% and 88% respectively, and for overlapping matches, both precision and recall
are 100%.

Summerscales et al. (2009) addressed the task of identifying treatments, patient groups
and reported outcomes in abstracts of medical articles. The authors created a corpus of
100 abstracts of articles published in the BMJ2, extracted from PubMed3. The corpus of
1,344 sentences contained 1,131 outcomes, 494 out of which were unique. Outcomes vary in
length from 1 to 14 tokens (mean = 3.6). The examples of outcomes given in the article are
noun phrases, but the authors did not specify whether they annotated only noun phrases or
included other syntactic constituents (e.g. verb phrases, adjectives). The authors note that the
boundaries of entities are often ambiguous and annotating each variant is not optimal; thus,
they suggest to evaluate both exact and partial matches. The authors trained a Conditional
Random Field (CRF) classifier to label each word, using features such as the word form,
its POS tag, corresponding Medical Subject Heading ID, its semantic tag(s) (anatomy, time,
disease, symptom, drug, procedure and measurement terms, assigned using lists of terms), the
title of the enclosing section, and four words to the left and right of the word with their POS
and semantic tags. The token-levels results for outcomes are: precision 75%, recall 62%, and
F-measure 68%.

In their following work (Summerscales et al., 2011), the authors enlarge their dataset to
263 abstracts of BMJ articles. A first-order linear-chain CRF classifier on this set yielded a

2https://www.bmj.com/
3http://www.ncbi.nlm.nih.gov/pubmed/
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precision of 56%, recall of 34%, and F-measure of 42% for outcome extraction.

Blake and Lucic (2015) aimed at extracting noun phrases for three items in comparative
sentences: two compared entities (the agent and the object) and the ground for comparison
(endpoint, or outcome). The dataset for this work included the sentences containing all the
three items (agent, object and endpoint), selected from over 2 million sentences from full-text
medical articles. 100 sentences with 656 noun phrases constituted the training set. First the
algorithm finds comparative sentences with the use of a set of adjectives and lexico-syntactic
patterns. Then two classifiers - SVM and Generalized Linear model (GLM) —are used to
predict the roles (agent, object, endpoint) of noun phrases. SVM showed better results that
GLM on the training set (for endpoint, precision=67%, recall=94% and F-measure=78%).
However, on the test set the results were significantly lower: SVM achieved precision of 42%,
recall of 64% and F-measure 51% for endpoint detection. The performance was evaluated
separately on shorter sentences (up to 30 words), where it was higher than on longer sentences.

The following work (Lucic and Blake, 2016) used the information whether the head noun of
the candidate noun phrase denotes an amount or a measure, in order to improve the detection
of the first entity and of the endpoint. The annotation of the corpus was enriched by the
corresponding information, which resulted in an improvement of endpoint detection: precision
was 56% on longer sentences and 58% on shorter ones; recall was 71% on longer sentences and
74% on shorter ones.

A recent work of Nye et al. (2018) describes the development of a crowd-sources corpus of
nearly 5000 abstracts with annotations for patients, interventions and outcomes. The authors
provide the results of two baseline algorithms for extracting these entities. A linear CRF
model, using current, previous and next tokens, pos-tags, and character information as features,
achieved the precision of 83%; recall of 17% and F-measure of 29%. A neural model, based
on a bi-directional LSTM passing distributed vector representations of input tokens to a CRF,
yielded the precision of 69%, recall of 58% and F-measure of 63%.

Dataset

In the course of our work on spin detection, we annotated a corpus of declared and reported
outcomes. The reason for creating this new corpus is the absence of any available resource with
the annotation for these two types of outcome mentions. The only currently available corpus
with outcome annotation, to our knowledge, is that introduced by Nye et al. (2018), which was
not available at the time of the beginning of our work and which does not distinguish between
declared and reported outcomes, while this distinction is of vital importance for our project.
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Our corpus is based on a dataset of 3,938 PMC4 articles, selected from a larger corpus
(119,339) of PMC articles on the basis of being assigned the PubMed publication type "Ran-
domized controlled trial". We annotated a corpus of sentences from full-text articles for two
types of entities: declared outcomes and reported outcomes. For declared outcomes, we anno-
tated only primary outcomes, as they are the most important for our final goal of spin detection
(omission or change of the primary outcome is one of the most common types of spin). The
annotation and extraction of secondary outcomes is one of the directions of future work on
this task.

As it proved to be impossible to run a large-scale annotation project with several expert
annotators, the annotation was performed by AK with guidance by domain experts. We
developed an annotation tool (Koroleva and Paroubek, 2019) for the sake of simplicity, ease of
format conversion and customizing. The annotation uses a CoNLL-like representation scheme
with B (begin) - I (inside) - O (outside) elements.

Declared outcome annotation

Misreporting of the trial outcomes is most often related to the primary outcome of a trial,
thus, the primary outcome presents the highest interest for spin detection. We annotated the
declared outcomes only in the contexts that explicitly state that the outcome was the primary
one in the given trial, e.g. (the outcome is in bold):

The primary outcome was the PHQ-9.

Information about the primary outcome can sometimes be expressed implicitly, in state-
ments about objectives or in descriptions of measured variables. For example, in the absence
of explicit definition of the primary outcome (while secondary outcomes are clearly defined),
the readers can infer that "the human gastrointestinal microbiota" and "metabolic markers of
health" were the primary outcomes in:

We aimed to assess the impact of walnut consumption on the human gastrointestinal

microbiota and metabolic markers of health. Fecal and blood samples were collected at
baseline and at the end of each period to assess secondary outcomes of the study, including
effects of walnut consumption on fecal microbiota and bile acids and metabolic markers of
health.

In the following example "Cognitive functioning" can be interpreted as the trial’s primary
outcome as no other outcome is defined in the abstract:

Cognitive functioning was measured at baseline and after 12 weeks.

To assess the need of including these types of statement in our corpus, we conducted a qual-

4https://www.ncbi.nlm.nih.gov/pmc/
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itative corpus study and consulted our medical advisors (Isabelle Boutron, Patrick Bossuyt and
Liz Wager) in the course of the supporting project (2016-2019). We compared the variables
mentioned in the statements on measured variables ("X was measured", "We aimed at mea-
suring X ", etc.) to the variables explicitly stated to be the primary outcomes in the same
text. Our corpus study showed that the variables described in this type of statements differ
from the explicitly declared primary outcomes: in particular, statements of objectives usually
contain more general description of what was studied (e.g. "efficacy") compared to outcomes
(e.g. "survival" or "quality of life"). Thus, we concluded that these types of statement do not
define a primary outcome. Furthermore, absence of an explicit definition of the trial’s primary
outcome does not conform with good reporting practices (Rennie, 2001; Schulz et al., 2010).
Hence we excluded these types of sentences from our corpus.

To create the corpus for declared primary outcome annotation, we searched the full-text
articles for sentences where both the word "primary" (or its synonyms: "principal", "main",
etc.) and the word "outcome" (or its synonyms: "end-point", "measure", etc.) occur, the
former precedes the latter, and the distance between them is no more than 3 tokens. Regular
expressions were used to search for the terms and Python NLTK library5 was used for sentence
splitting. Out of the sentences corresponding to our criteria, we randomly selected 2,000
sentences, coming from 1,672 articles.

We created two versions of the corpus which differ in annotation of coordinated outcomes.
In the first version of our corpus, we annotated coordinated outcomes as one entity for the
sake of simplifying the annotation task. This version contains 1,253 occurrences of declared
primary outcomes. Further, we created a more elaborated version of the annotation, re-marking
coordinated outcomes as separate entities. This second version contains 1,694 occurrences of
declared primary outcomes. This version will be further used in our target application. The
two versions serve to assess the capabilities of our algorithms to correctly analyse coordinated
entities.

A definition of a primary outcome can include time points, measurement tool, etc. We
annotated the longest continuous text span containing all the relevant information about the
trial’s primary outcome. Declared primary outcomes are most typically represented by noun
phrases, but can also be expressed by verb phrases or clauses:

Our primary outcome measures will be (a) whether the TUPAC guideline recom-

mendations are implemented, and (b) if implemented, the estimated time used for the
counselling.

5http://www.nltk.org
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Reported outcome annotation

We annotated reported outcomes in the abstracts of the articles for which we annotated
the primary outcomes, to allow for further annotation of spin related to incomplete outcome
reporting. We extracted the Results and Conclusions sections of the corresponding articles
(using rules and regular expressions). A number of articles in our corpus are not RCT re-
ports but trial protocols, thus their abstracts did not contain Results and Conclusions. These
abstracts were excluded from the reported outcomes corpus. The final corpus contains 1,940
sentences from 402 articles. A total of 2,251 reported outcomes was annotated.

The ways of reporting outcomes differ, and the same outcome can be reported in several
ways, e.g. the sentence:

Mean total nutrition knowledge score increased by 1.1 in intervention (baseline to
follow-up : 28.3 to 29.2) and 0.3 in control schools (27.3 to 27.6).

can be rewritten as:

The increase in mean total nutrition knowledge score was 1.1 in intervention (baseline
to follow-up : 28.3 to 29.2) and 0.3 in control schools (27.3 to 27.6).

While both sentences report the same outcome, the structure is different, and for the
second sentence both "The increase in mean total nutrition knowledge score" and "mean total
nutrition knowledge score" can be considered to represent the outcome. Besides, there is a
choice whether to include the aggregation method ("mean") into the outcome, or annotate
simply "total nutrition knowledge score". In order to preserve uniformity throughout the
annotation of reported outcomes, we decided to annotate the smallest possible text fragment
referring to an outcome ("total nutrition knowledge score" for the given example) as it allows
to annotate the same text fragment for all the variants of outcome reporting.

Reported outcomes are characterized by high variability from the syntactic point of view.
They can be represented either by a noun phrase:

Overall response rate was 39.1% and 33.3% in 3-weekly and weekly arms.

a verb phrase:

No patients were reintubated.

or an adjective:

The CSOM and MA appeared less responsive following a GLM-diet.

One of the challenges in annotating reported outcomes is classifying reported variable either
as a trial outcome or as a independent variables or covariates6. We decided to annotate all the
mentions of variables (outcomes or not) unless the context of the sentence or the semantics of
the phrase allows to classify it as a non-outcome variable. For example, in the sentence:

6https://methods.sagepub.com/Reference//encyc-of-research-design/n85.xml
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Adjustments for age, gender, and treatment group were performed, but did not change
the results.

the context allows to categorize all the variables as covariates.

It should be noted that this annotation decision leads to some counter-intuitive annotations:
e.g. it can be expected that in a set of coordinated entities, either all the entities should be
annotated as outcomes, or none of them. However, consider the following example:

Age, gender and disease status distribution was similar in both groups.

Here "Age" and "gender" are considered to be independent variables due to their semantics,
while "disease status" can be a dependent variable and will be the only entity annotated as
outcome in this sentence.

There are a few differences between our corpus and the datasets used in previous works on
outcome extraction. We address both declared (primary) and reported outcomes (annotation
and extraction of secondary outcomes has not been covered yet and is a direction for our future
work). We do not limit our dataset in terms of specific types of sentences (e.g. comparative)
or constituents to be annotated (e.g. noun phrases). Our corpus is not limited to specific
journals or topics. Our corpus is publicly available (Koroleva, 2019).

Methods

Baseline

We developed a simple rule-based baseline system, combining syntactic and sequential rules
that cover the most typical patterns in which declared and reported outcomes can occur. For
declared outcomes, sequential rules search for patterns such as:

DET ADJ outcome was DET ADJ* NN

where DET denotes a determiner, ADJ is an adjective, and NN is a common noun. The
sequence matched by "DET ADJ* NN " here is considered to be the outcome. Sequential rules
use the information on tokens, lemmas and pos-tags of the words in the input text.

Syntactic rules search for similar patterns, but use the syntactic dependency graph (tags
and directions of syntactic relations) instead of sequential information, to capture the cases
where the target phrase is separated from the cue phrase (e.g. "DET ADJ outcome was") by
other words.

Our rule-based baseline was designed to detect the declared outcomes in the first version
of the corpus only (coordinated outcomes annotated as single entity). A simple rule-based
approach can hardly be successful in a complex task such as dividing coordinated entities,
hence we did not build a rule-based baseline for the second version of the declared outcomes
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corpus.

For reported outcomes, the searched patterns include the expressions with comparative
meaning, e.g.:

DET ADJ* NN increased.

DET ADJ* NN was higher in the NN arm.

DET ADJ* NN was NUM,

where NUM denotes a numeral. Fragments matched by the patterns in bold are tagged as
reported outcomes.

For pos-tagging and dependency parsing, we used spaCy dependency parser (Honnibal and
Johnson, 2015).

Bi-LSTM-CRF-char algorithm

Our second approach is inspired by the work of Ma and Hovy (2016) and uses the im-
plementation of this method proposed by G.Genthial7. First, the model gets character-level
representations of words from character embeddings using a bi-directional LSTM (bi-LSTM).
After that, the model combines the character-level representation with a GloVe (Pennington
et al., 2014) word vector representation and passes the combined representations to a bi-LSTM
to build contextual representations of words. Finally, a linear chain CRF is applied to decode
the labels. Table 3.1 shows the values of the parameters used in the configuration of the model.

Parameter Value
dim_word 300
dim_char 100

train_embeddings False
nepochs 15
dropout 0.5

batch_size 20
lr_method "adam"

lr 0.001
lr_decay 0.9

clip -1
nepoch_no_imprv 3
hidden_size_char 100
hidden_size_lstm 300

Table 3.1: Training parameters

7https://github.com/guillaumegenthial/sequence_tagging
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BERT-based algorithms: the use of deep pre-trained Language models

Recently, language models pre-trained on large corpora with complex neural network ar-
chitectures have been shown to be useful for several downstream NLP tasks such as question
answering, named entity recognition, natural language inference, etc. by ELMO (Peters et al.,
2018), OpenAI’s GPT (Radford et al., 2018) and Google’s BERT (Devlin et al., 2018). In-
tuition is to build a model trained on a large corpus for a relatively simple task of language
modelling, which can further be modified for complex NLP tasks. There are two approaches
to employing these pre-trained models for supervised downstream tasks:

1. feature-based approach (used in ELMO) relies on task-specific architecture, where pre-
trained representations are included as additional features to existing neural network
models;

2. fine-tuning approach (used in OpenAI GPT and BERT) does not require extensive task-
specific parameters, it simply fine-tunes the pre-trained parameters on a downstream
task.

We compared a number of recent deep pre-trained language models. First, we employed
the BERT (Bidirectional Encoder Representations from Transformers) models which are well
documented with openly available pre-trained weights for the models8. In brief, BERT uses a
masked language model (MLM), randomly masking some input tokens, which allows to pre-
train a deep bidirectional Transformer using both left and right contexts. Representation of a
token combines the corresponding token, segment and position embeddings. The advantage of
BERT compared to ELMO and OpenAI GPT is the deep bi-directionality of the representations
and the size of the training corpus. We chose to use BERT because it outperformed ELMO
and OpenAI GPT on a number of tasks (Devlin et al., 2018). There are several versions of
BERT models: cased and uncased models, differing in the preprocessing of the input data
(lower-cased vs unchanged); and base and large models, differing in the model sizes.

BioBERT (Lee et al., 2019), a domain-specific analogue of BERT, was pre-trained on a large
(18B words) biomedical corpus: PubMed abstracts and PMC full-text articles, in addition to
BERT training data. BioBERT is based on the cased BERT base model. Another domain-
specific version of BERT is SciBERT (Beltagy et al., 2019), trained on a corpus of scientific
texts (3.1B) added to BERT training data. SciBERT provides both cased and uncased models,
with two versions of vocabulary: BaseVocab (the initial BERT general-domain vocabulary)
and SciVocab (the vocabulary built on the scientific corpus). Both BioBERT and SciBERT
outperformed BERT on some tasks of biomedical natural language processing.

Table 3.2 summarizes the training data of BERT, BioBERT and SciBERT.
8https://github.com/google-research/bert
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BERT SciBERT BioBERT
Training
data

BooksCorpus
English
Wikipedia

BooksCorpus
English
Wikipedia
+
Semantic
Scholar
(Biomedical,
Computer
Science)

BooksCorpus
English
Wikipedia
+
PubMed Ab-
stracts
PMC Full-
text articles

Volume
of train-
ing data
(words)

3.3B 6.4B 21.3B

Table 3.2: Training data for BERT/BioBERT/Scibert

The models we evaluated in our experiments include: BERT-base models, both cased
and uncased; BioBERT model; SciBERT models, both cased and uncased, with the SciVocab
vocabulary (recommended by the authors). We did not perform experiments with BERT-Large
due to the lack of resources.

We explored two approached of employing the BERT-based language models for our se-
quence labelling task. The first approach, suggested by the developers of BERT and BioBERT
(Devlin et al., 2018; Lee et al., 2019), employs a simple fine-tuning of the models on our an-
notated datasets. The principle behind this approach is that the pre-trained BERT models
can be fine-tuned for a supervised task with one additional output layer. The one additional
layer parameters along with the whole BERT model parameters are fine-tuned for the intended
task. Table 3.3 summarizes the hyperparameters used for BERT-based models training and
evaluation.

The second approach, suggested by the SciBERT developers (Beltagy et al., 2019), uses
minimal task-specific architecture on top of BERT-based embeddings. A representation of each
token in this model is built by concatenating its BERT embedding and a CNN-based character
embedding. Similarly to the method of Ma and Hovy (2016), a multilayer bi-LSTM is applied
to token embeddings, and a CRF is used on top of the bi-LSTM9.

We compared performance of all the models both with unaltered input data and with lower-
cased input data. It is expected that cased models perform better with unaltered input data,
while uncased models perform better with lower-cased data. All the algorithms were evaluated
on the token level. Machine-learning algorithms were assessed using 10-fold cross-validation

9The configuration and hyperparameters used for training the model can be found at:
https://github.com/allenai/scibert/blob/master/allennlp_config/ner.json.
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Hyperparameter Value Definition
init_checkpoint None Initial checkpoint (usually from a pre-

trained BERT model)
do_lower_case True/False Whether to lower case the input text
max_seq_length 128 The maximum total input sequence

length after WordPiece tokenization
do_train True Whether to run training
use_tpu False Whether to use TPU or GPU/CPU
train_batch_size 32 Total batch size for training
eval_batch_size 8 Total batch size for eval
predict_batch_size 8 Total batch size for predict
learning_rate 5e-5 The initial learning rate for Adam
num_train_epochs 10.0 Total number of training epochs to

perform
warmup_proportion 0.1 Proportion of training to perform lin-

ear learning rate warmup for
save_checkpoints_steps 1000 How often to save the model check-

point
iterations_per_loop 1000 How many steps to make in each esti-

mator call
master None TensorFlow master URL

Table 3.3: BERT/BioBERT/SciBERT hyperparameters

(train-dev-test split was done in proportion 8:1:1). We report the averaged results. We used
Tensorflow for our experiments.

Results and discussion

Tables 3.4, 3.5, 3.6 show the performance of the tested algorithms (all evaluations are done
at the token level). The True value of the do_lower_case flag indicates lower-cased input data.
The suffix "_biLSTM-CRF" for BERT-based model indicates the results of the approach using
CRF on top of bi-LSTM.

Comparison of approaches

Our rule-based system showed reasonable performance for extracting primary outcomes (on
the first version of the corpus), but not reported outcomes, as the latter are highly diverse and
thus rule-based approach is not optimal. The Bi-LSTM-CRF-char algorithm using character
and GloVe token embeddings did not show high performance for our tasks. All BERT-based
models outperformed the Bi-LSTM-CRF-char algorithm and the rule-based baseline with a
large absolute improvement (see Tables 3.4, 3.5, 3.6).
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Algorithm do_lower_case Precision Recall F1
SciBERT-cased False 89.32 87.87 88.52
BioBERT True 88.83 88.24 88.45
BioBERT False 88.44 88.11 88.2
SciBERT-uncased True 88.74 87.51 88.06
SciBERT-cased True 88.34 87.82 88
BERT-cased False 87.73 86.94 87.23
SciBERT-uncased False 88.05 86.24 87.06
BERT-uncased True 87.19 86.55 86.71
BERT-cased True 88.46 85.12 86.68
BERT-uncased False 86.97 86.08 86.42
SciBERT-
uncased_biLSTM-CRF

True 85.01 83.76 84.3

SciBERT-cased_biLSTM-
CRF

True 83.93 83.88 83.88

BioBERT_biLSTM-CRF False 83.43 84.25 83.79
SciBERT-cased_biLSTM-
CRF

False 83.37 83.64 83.49

BioBERT_biLSTM-CRF True 83.12 83.78 83.42
SciBERT-
uncased_biLSTM-CRF

False 80.59 81.76 81.15

BERT-uncased_biLSTM-
CRF

True 80.26 81.52 80.87

BERT-cased_biLSTM-
CRF

False 80.04 80.87 80.38

BERT-cased_biLSTM-
CRF

True 78.3 80.97 79.58

BERT-uncased_biLSTM-
CRF

False 78.49 79.37 78.87

Rule-based - 78.6 68.98 73.51
Bi-LSTM-CRF-char - 59.14 63.41 61.07

Table 3.4: Primary outcome extraction - version 1: results

The fine-tuning approach employing BERT-based models consistently showed better per-
formance than the approach using CRF on top of bi-LSTM with BERT-based embeddings.
For all the tasks, even the best results of the model with CRF were inferior to the lowest
results achieved by fine-tuning. This fact shows that a simple architecture (fine-tuning) can
be superior to more complex (bi-LSTM-CRF) architectures for entity extraction task.

Comparison of BERT-based models

Out of all the tested approaches, fine-tuned BioBERT model showed the best performance
for the second version of primary outcome extraction; fine-tuned SciBERT model outperformed
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Algorithm do_lower_case Precision Recall F1
BioBERT False 86.99 90.07 88.42
SciBERT-cased False 87.52 89.07 88.21
SciBERT-uncased True 87.49 88.92 88.1
SciBERT-cased True 87.39 88.64 87.92
BioBERT True 87.01 88.96 87.9
SciBERT-uncased False 86.57 88.3 87.35
BERT-cased False 86.96 87.41 87.14
BERT-uncased True 86.6 87.39 86.91
BERT-uncased False 86.96 86.87 86.84
BERT-cased True 86.71 87.12 86.81
BioBERT_biLSTM-CRF False 78.82 82 80.34
SciBERT-
uncased_biLSTM-CRF

True 77.52 81.15 79.22

SciBERT-cased_biLSTM-
CRF

False 77.23 80.89 78.95

BioBERT_biLSTM-CRF True 77.86 80.12 78.9
BERT-cased_biLSTM-
CRF

False 78.2 78.84 78.47

SciBERT-cased_biLSTM-
CRF

True 77.05 79.73 78.29

SciBERT-
uncased_biLSTM-CRF

False 77.54 78.67 78.07

BERT-uncased_biLSTM-
CRF

True 76.72 78.73 77.63

BERT-cased_biLSTM-
CRF

True 75.35 77.61 76.41

BERT-uncased_biLSTM-
CRF

False 75.23 76.62 75.79

Bi-LSTM-CRF-char - 49.16 52.21 50.55

Table 3.5: Primary outcome extraction - version 2: results

other systems for the first version of primary outcome extraction (cased model) and reported
outcome extraction (uncased model).

As expected, BERT and SciBERT uncased models performed better with lower-cased input,
while cased models performed better with unchanged input data. On the contrary, BioBERT
model (cased) performed slightly better with lower-cased input for two out of three tasks.
A possible explanation is that BioBERT has the largest amount of training data, where the
majority of the input is naturally in lower case, thus the learnt representations show similar
performance for lower-cased or unchanged input.

Overall, SciBERT and BioBERT outperformed BERT, supporting the hypothesis that mo-
tivated their creation: while pre-training of language representations on large corpora gives
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Algorithm do_lower_case Precision Recall F1
SciBERT-uncased True 81.17 78.09 79.42
BioBERT True 80.38 77.85 78.92
BioBERT False 79.61 77.98 78.6
SciBERT-cased False 79.6 77.65 78.38
SciBERT-cased True 79.24 76.61 77.64
SciBERT-uncased False 79.51 75.5 77.26
BERT-uncased True 78.98 74.96 76.7
BERT-cased False 76.63 74.25 75.18
BERT-cased True 76.7 73.97 75.1
BERT-uncased False 77.28 72.25 74.46
SciBERT-
uncased_biLSTM-CRF

True 68.44 73.47 70.77

BioBERT_biLSTM-CRF False 70.18 71.43 70.63
BioBERT_biLSTM-CRF True 69.09 71.57 70.24
SciBERT-cased_biLSTM-
CRF

False 67.98 72.52 70.11

SciBERT-cased_biLSTM-
CRF

True 66.11 71.16 68.37

SciBERT-
uncased_biLSTM-CRF

False 67.25 69.59 68.18

BERT-cased_biLSTM-
CRF

False 65.98 65.54 65.64

BERT-uncased_biLSTM-
CRF

True 64.6 66.73 65.4

BERT-cased_biLSTM-
CRF

True 64.73 66.49 65.37

BERT-uncased_biLSTM-
CRF

False 62.07 64.98 63.29

Bi-LSTM-CRF-char - 51.12 44.6 47.52
Rule-based - 26.69 55.73 36.09

Table 3.6: Reported outcome extraction: results

good results, adding domain-specific corpora to the pre-training data further improves the
performance they yield. SciBERT and BioBERT show comparable performance, demonstrat-
ing that addition of domain-specific corpus of 3.1B words to the training data (as done by
SciBERT) is sufficient and leads to similar improvements as adding 18B words (as done by
BioBERT).

The performance for the second version of the primary outcomes corpus is very close to the
performance of corresponding models for the first version of the task. These results show that
deep pre-trained language representations successfully handle the extraction of coordinated
entities, which makes it a promising approach to extraction of secondary outcomes, most often
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represented by coordinated syntactic groups.

It is difficult to compare our results directly with the previous works on outcome extraction:
all the works used corpora that vary in volume and that were built on different principles
regarding the selection of sentences and text fragments to annotate; besides, evaluation in
different approaches was performed on different level (sentence, entity, token). Taking into
account this limitations, we can still state that our results are better than the reported results
in the previous comparable works (Summerscales et al., 2009, 2011; Blake and Lucic, 2015;
Lucic and Blake, 2016; Nye et al., 2018). To allow for transparency and reproducibility of
outcome extraction, we released our corpus annotated for declared (primary) and reported
outcomes. It has, however, some limitations: e.g., annotating only explicit definitions of
declared primary outcomes; annotating reported outcome in abstracts only; annotation done
by one annotator.

Conclusions

Automatic extraction of primary and reported outcomes of clinical trials is a vital task for
automating systematic review process, clinical question answering, and assessment of biomed-
ical articles for bias and spin.

We proposed a deep learning approach to trial outcome extraction and tested a number of
pre-trained language representations. Our results show that language models pre-trained on
large general-domain corpora can be successfully employed for extracting complex and varied
entities, even with limited amount of domain specific training data. Pre-training language
models on domain-specific data further improves the performance. Our approach does not
require manual feature engineering or any other task-specific settings.
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Chapter 4

Measuring semantic similarity of clinical

trial outcomes using deep pre-trained

language representations. Anna Koroleva,
Sanjay Kamath, Patrick Paroubek. Journal of
Biomedical Informatics - X

Context

The identification of outcomes that we addressed in the previous chapter is one of the
steps towards a solution for automatic spin detection, but it does not suffice for detection
of outcome-related spin. To identify potential spin, we need to be able to compare various
mentions of outcomes occurring in an article, as one of the most common types of spin is
outcome switching —unjustified change of trial outcomes. The change of the primary outcome
is the most alarming case of outcome switching, as it implies that the main objective of a
given trial is not reported. Identification of primary outcome switching is thus one of the main
elements of our spin detection pipeline.

Outcome switching detection consists of two steps: extraction of declared (primary) and
reported outcomes, as described in the previous chapter, and comparing the extracted declared
(primary) outcome to the extracted reported outcomes to check if the declared (primary)
outcome is present among the reported ones.

The second step of this algorithm consists in assessing the semantic similarity of pairs
of outcomes. This chapter reports on building a corpus of pairs of outcomes annotated for
semantic similarity (on a binary scale) and on our experiments about assessing the semantic

69



similarity of trial outcomes. We reviewed the state of the art for semantic similarity assessment
in the biomedical domain. We tested a number of single similarity measures, machine learning
classifiers using a combination of the single measures, and a deep learning approach consist-
ing in fine-tuning pre-trained language models on our annotated data. The best performing
algorithm was included in our spin detection pipeline.

Authors’ contributions

AK designed the study described in this chapter and interpreted the data. AK collected and
annotated the corpus. AK and SK conducted the experiments, supervised by PP. AK drafted
the manuscript. SK and PP revised the draft critically for important intellectual content.

Abstract

Background: Outcomes are variables monitored during a clinical trial to assess the impact
of an intervention on humans’ health. Automatic assessment of semantic similarity of trial
outcomes is required for a number of tasks, such as detection of outcome switching (unjustified
changes of pre-defined outcomes of a trial) and implementation of Core Outcome Sets (minimal
sets of outcomes that should be reported in a particular medical domain).

Objective: We aimed at building an algorithm for assessing semantic similarity of pairs
of primary and reported outcomes. We focused on approaches that do not require manually
curated domain-specific resources such as ontologies and thesauri.

Methods: We tested several approaches, including single measures of similarity (based on
strings, stems and lemmas, paths and distances in an ontology, and vector representations of
phrases), classifiers using a combination of single measures as features, and a deep learning
approach that consists in fine-tuning pre-trained deep language representations. We tested
language models provided by BERT (trained on general-domain texts), BioBERT and SciB-
ERT (trained on biomedical and scientific texts, respectively). We explored the possibility of
improving the results by taking into account the variants for referring to an outcome (e.g. the
use of a measurement tool name instead on the outcome name; the use of abbreviations). We
release an open corpus with annotation for similarity of pairs of outcomes.

Results: Classifiers using a combination of single measures as features outperformed the
single measures, while deep learning algorithms using BioBERT and SciBERT models out-
performed the classifiers. BioBERT reached the best F-measure of 89.75%. The addition of
variants of outcomes did not improve the results for the best-performing single measures nor
for the classifiers, but it improved the performance of deep learning algorithms: BioBERT
achieved an F-measure of 93.38%.

Conclusions: Deep learning approaches using pre-trained language representations outper-
formed other approaches for similarity assessment of trial outcomes, without relying on any
manually curated domain-specific resources (ontologies and other lexical resources). Addition
of variants of outcomes further improved the performance of deep learning algorithms.

Keywords: Trial outcomes, Semantic similarity, Natural Language Processing, Deep learn-
ing, Pre-trained language representations, Spin detection
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Introduction

Outcomes in clinical research are the variables monitored during clinical trials to assess
how they are affected by the treatment taken or by other parameters. Outcomes are one of the
most important elements of trial design: they represent the objectives of the trial; the primary
outcome (the main monitored variable) is used to determine the trial’s statistical power and
to calculate the needed sample size.

There are several data sources that contain information on trial outcomes. First, outcomes
of clinical trials are recorded in trial registries - open online databases that store information
on planned, ongoing or completed research. Second, outcomes are defined in protocols of clin-
ical trials. Last, outcomes are presented in texts of medical research articles, where they can
occur in two main types of contexts: 1) definition of outcomes that were assessed in the trial
("Primary outcome will be overall survival.") – context similar to that in protocols; and 2)
reporting of results for an outcome ("Patients of the treatment condition showed significantly
greater reduction of co-morbid depression and anxiety as compared to the waiting list con-
dition."). We will refer to the outcomes occurring in the first type of contexts as pre-defined
outcomes, and to the outcomes occurring in the second type of context as reported outcomes.

A number of tasks require comparing two outcomes (from the same or different sources) to
establish if they refer to the same concept.

First of all, assessing similarity between pairs of outcomes is vital to detect outcome switch-
ing. Outcomes should normally be clearly defined before the start of a trial, usually at the
moment of the first registration (Smith et al., 2015; Ghert, 2017), and should not be changed
without a justification. Consistency in trial outcome definition and reporting is essential to
ensure reliability and replicability of a trial’s findings and to avoid false positives based on
reporting only the variables that showed statistically significant results confirming the re-
searchers’ hypothesis. Despite the widely acknowledged importance of proper reporting of
outcomes, outcome switching – omitting pre-defined outcomes of a trial or adding new ones
– remains a common problem in reporting clinical trial results. The COMPare Trials project
(Goldacre et al., 2016, 2019) showed that, in 67 assessed trials, 354 pre-defined outcomes were
not reported, while 357 outcomes that had not been defined in advance were added to the
trial’s report. Outcome switching can occur at several points: pre-defined outcomes in a med-
ical article may be changed compared to those recorded in trial registry/protocol; reported
outcomes in an article may differ compared to those recorded in trial registry/protocol or to
those pre-defined in the article.

Outcome switching is directly related to two well-known problems of medical research
reporting: bias, i.e. choosing only the outcomes supporting the trial hypothesis (Slade et al.,
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2015; Weston et al., 2016; Altman et al., 2017), and spin, i.e. reporting only favourable
outcomes and thus making research results seem more positive than the evidence justifies
(Boutron et al., 2010; Lockyer et al., 2013; Lazarus et al., 2015; Chiu et al., 2017; Diong et al.,
2018; Boutron and Ravaud, 2018). Spin in clinical trials assessing an intervention poses a
serious threat to the quality of health care: clinicians reading trial reports with spin tend to
overestimate the effects of the intervention studied (Boutron et al., 2014). Besides, spin in
research articles causes spin in health news coverage and press releases (Haneef et al., 2015;
Yavchitz et al., 2012), that can raise unjustified positive expectations regarding the intervention
among the public.

Checking an article for outcome switching is a part of assessment for bias and spin. The
checks can be performed at several levels: the outcomes recorded in the corresponding trial
protocol/registry entry should be compared to the primary and secondary outcomes defined in
the article; the pre-defined primary and secondary outcomes (in the protocol/registry and in
the article) should be compared to the outcomes reported in the article. To perform all these
comparisons, it is necessary to assess pairs of outcomes for their semantic similarity.

Another task that requires comparing outcomes concerns the core outcome sets (COS) -
agreed minimum sets of outcomes to be measured in trials in particular domains1. The core
outcome set for a domain that a trial belongs to should be compared to the outcomes defined
in a trial protocol/registry entry, to identify gaps in the trial planning at an early stage and
improve the trial design. Besides, the COS can be compared to the article reporting a trial to
check if results for all the core outcomes are reported.

In this paper, we propose an approach to measuring semantic similarity between phrases
referring to outcomes of clinical trials. It is important to note that an outcome is a complex
notion that is characterized by several aspects:

∙ outcome name: "depression severity";

∙ measurement tool used if the outcome cannot be measured directly: "depression severity
measured by the Beck Depression Inventory-II (BDI-II)",

∙ time points at which the outcome is measured: "differences in the Symptom Index of
Dyspepsia before randomization, 2 weeks and 4 weeks after randomization, and
1 month and 3 months after completing treatment";

∙ patient-level analysis metric, e.g., change from baseline, final value, time to event: "change

from baseline in body mass index (BMI)"

1http://www.comet-initiative.org/glossary/cos/
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∙ population-level aggregation method, e.g. mean, median, proportion: "the mean number
of detected polyps", "the proportion of patients suffering from postoperative major
morbidity and mortality";

∙ type of analysis of results based on the population included, i.e. intention-to-treat anal-
ysis (all the enrolled patients are analyzed, even those who dropped out) or per-protocol
analysis (only the patients who followed the protocol are analyzed): "the change in IOP
from baseline to week 4 at 8 a.m. and 4 p.m. for the per protocol (PP) population

using a "worse eye" analysis";

∙ covariates that the analysis of the outcome is adjusted for: "whole body bone mineral
content of the neonate, adjusted for gestational age and age at neonatal DXA scan";

∙ reasons for using a particular outcome (explanation of relevance, references to previous
works using the outcome): "the physical and mental component scores (PCS and MCS)
of the Short Form 36 (SF-36), a widely used general health status measure".

Outcome mentions necessarily contain the outcome name or the measurement tool name, which
are used to refer to the outcome. However, all the other items are not mandatory. The level of
detail in an outcome mention can differ between different data sources: e.g. registry outcomes
tend to be longer and described in more detail than those defined in the articles. Thus, an
inherent problem for establishing the similarity between two outcomes is comparing detailed
outcome descriptions to under-specified ones. Besides, it is questionable whether two outcomes
differing in e.g. type of analysis (intention-to-treat vs per-protocol) are different outcomes or
different aspects of the same outcome. In this work, we consider two outcomes to refer to the
same concept if the outcome/measurement tool names of the two are the same, disregarding
the other aspects.

To the best of our knowledge, automatic outcome similarity assessment has not been ad-
dressed yet. We present the first corpus of sentences from biomedical articles from PubMed
Central (PMC)2 annotated for outcomes and their semantic similarity. This corpus has been
created in the context of a project aimed at automating spin detection in clinical articles,
which is a part of the Methods in Research on Research (MiRoR) programme3, an interna-
tional multi-disciplinary research project aiming at reducing the waste in biomedical research.

We propose deep learning methods using pre-trained language representations to evaluate
similarity between pairs of outcomes. We compare a number of representations, pre-trained
on general-domain and on domain-specific datasets. We compare the deep learning approach
to some simple baseline similarity measures.

2https://www.ncbi.nlm.nih.gov/pmc/
3http://miror-ejd.eu/
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Related work

The previous work distinguished between the notions of semantic similarity and semantic
relatedness. Pedersen et al. (2005) define relatedness as "the human judgments of the degree
to which a given pair of concepts is related", and state that it is a more general concept of
semantics of two concepts, while similarity is a type of relatedness, usually defined via the "is-
a" relation between the concepts in a taxonomy or ontology. Measuring semantic similarity of
clinical trial outcomes has not been addressed as a separate task before, but semantic similarity
and relatedness assessment and paraphrase recognition attracts substantial attention as it is
required in a wide range of domains and applications. Similarity is measured between long
or short texts or concepts. Measures used are often based on specialized lexical resources
(thesauri, taxonomies). In this section, we provide on overview of several works on similarity
and relatedness in the biomedical domain.

The measures of semantic similarity and relatedness can be divided into the following
groups: string similarity measures, path-based measures, information content-based measures,
and vector-based measures. Similarity and relatedness can be measured on different levels:
word, term, concept, or sentence.

String similarity measures

String-based similarity measures are the simplest similarity measures based only on the
surface form of the compared phrases, without taking into account the semantics. Still, they
find their use in measuring the semantic similarity in the biomedical domain, e.g. the work of
Sogancioglu et al. (2017) used, among other measures of similarity, a number of string-based
measures: q-gram similarity (the number of q-grams from the first string over the q-grams
obtained from the other string), block distance (the sum of the differences of corresponding
components of two compared items), Jaccard similarity (the number of common terms in two
sets over the number of unique terms in them), overlap coefficient (the number of common terms
in two sets divided by the size of the smaller set), and Levenshtein distance (the minimum
number of changes required to transform one string into another).

Ontology-based measures

Path-based measures

Ontologies contain a formal, structured representation of knowledge. A number of similarity
measures based on paths between the concepts in ontologies exist, such as the path similarity
(the shortest path connecting the concepts in the hypernym-hyponym taxonomy); the Leacock-
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Chodorow similarity score (Leacock and Chodorow, 1998) (the shortest path connecting the
concepts and the maximum depth of the taxonomy used); the Wu-Palmer similarity score (Wu
and Palmer, 1994) (the depth of the senses of the concepts in the taxonomy and that of their
most specific ancestor node); a metric of distance in a semantic net, introduced by Rada et al.
(1989), calculated as the average minimum path length between all combinations of pairs of
nodes corresponding to concepts; the minimum number of parent links between the concepts
(Caviedes and Cimino, 2004). The most commonly used ontology in the general domain is
WordNet (Fellbaum, 1998), however, similarity measures based on general-domain resources
are stated to be ineffective for domain-specific tasks (Pedersen et al., 2005). A number of works
proposed to adapt the existing measures of semantic similarity, which are based on WordNet,
to the biomedical domain using the available medical ontologies, in particular SNOMED CT4,
MeSH5 (Medical Subject Headings), or the Gene Ontology (Rada et al., 1989; Pedersen et al.,
2005; McInnes et al., 2009; Lord et al., 2003; Caviedes and Cimino, 2004; Sogancioglu et al.,
2017). Importantly, when similarity is assessed on the sentence level, tools such as Metamap
(Aronson, 2001) are needed to map the sentence text to concepts from the Unified Medical
Language System (UMLS) (Sogancioglu et al., 2017). Metamap finds both words and phrases
corresponding to medical concepts, which makes this approach more reliable that assuming
that each word is a concept.

Information content-based measures

Information content (IC) reflects the amount of information carried by a term in a discourse.
The notion of IC was introduced by Resnik (1995) who proposed to measure the IC of a concept
as 𝐼𝐶(𝑐) = −𝑙𝑜𝑔𝑝(𝑐), where c denotes a concept and p(c) denotes the probability of the concept
c occurring in a corpus. IC can be used to measure the similarity of two concepts by calculating
the amount of information shared by them. Resnik (1995) proposed to measure the similarity
of concepts as the IC of their least common subsumer (the most specific taxonomical ancestor
of the two terms).

IC-based similarity measures have been used in the biomedical domain. Pedersen et al.
(2005) assessed IC-based measures introduced by Resnik (1995) and Lin (1998) on a set of
pairs of medical terms. Sánchez and Batet (2011) proposed an overview of IC-based similarity
measures (e.g. Resnik (1995); Lin (1998)) and developed a method of computing IC from the
taxonomical knowledge in biomedical ontologies, in order to propose new IC-based semantic
similarity measures. Aouicha and Taieb (2016) proposed to measure semantic similarity based
on IC, using topological parameters of the MeSH taxonomy.

4http://www.snomed.org/
5https://www.nlm.nih.gov/mesh/meshhome.html
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A notable work of Harispe et al. (2014) provides a more systematic view at ontology-based
similarity measures. The authors analyzed a number of ontology-based semantic similarity
measures to assess whether some of the existing measures are equivalent and which measures
should be chosen for a particular application. The authors classify the similarity measures into
a few categories: edge-based measures (similarity of two concepts is calculated according to the
strength of their interlinking in an ontology); node-based measures, divided into feature-based
approaches (evaluating a concept by a set of features made of its ancestors) and approaches
based on information theory (similarity of concepts is calculated according to the amount of
information they provide, as a function of their usage in a corpus); and hybrid approaches,
combining edge-based and node-based approaches.

Apart from representing the compared concepts, ontologies can be used to exploit contex-
tual features to assess the similarity of new terms. Spasić and Ananiadou (2004) proposed to
represent the context of a term by syntactic elements annotated with information retrieved
from a medical ontology. The sequences of contextual elements are compared using the edit
distance (number of changes needed to transform one sequence into another).

Vector-based measures

Distributional models of semantics, representing term information as high-dimensional vec-
tors, are successfully used in a number of tasks, including semantic similarity assessment (e.g.
Blacoe and Lapata (2012)). In the biomedical domain, Sogancioglu et al. (2017) used dis-
tributed vector representations of sentences built with the word2vec (Mikolov et al., 2013)
model to compute sentence-level semantic similarity. Henry et al. (2018) compared a number
of multi-word term aggregation methods of distributional context vectors for measuring seman-
tic similarity and relatedness. The methods assessed include summation or mean of component
word vectors, construction of compound vectors using the compoundify tool (a part of the Perl
word2vec interface package6), and construction of concept vectors using MetaMap. None of
the evaluated multi-word term aggregation methods was significantly better than the others.
Park et al. (2019) developed a concept-embedding model of a semantic relatedness measure,
combining the UMLS and Wikipedia as an external resource to obtain contexts texts for words
not presented in the UMLS. Concept vector representations were built upon the context texts
of the concepts. The degree of relatedness of concepts was calculated by the cosine similarity
between corresponding vectors. This approach is stated to overcome the issue of limited word
coverage, which the authors state to pose problems for earlier approaches.

6https://sourceforge.net/projects/word2vec-interface/
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Methods combining several measures

Some approaches combine several of the above-listed measures of similarity and/or related-
ness. Sogancioglu et al. (2017) developed a supervised regression-based model combining the
string similarity measures, ontology-based measures, and distributed vector representations as
features. Henry et al. (2019) developed an approach combining statistical information on co-
occurrences of UMLS concepts with structured knowledge from a taxonomy, based on concept
expansion using hierarchical information from the UMLS.

The common feature of the majority of the listed approaches to semantic similarity assess-
ment is the use of domain-specific resources such as ontologies, that require laborious curation.
Recently, Blagec et al. (2019) suggested an alternative approach to evaluating semantic simi-
larity of sentences from biomedical literature. The authors employed neural embedding models
that are trained in an unsupervised manner on large text corpora without any manual curation
effort needed. The models used in this work were trained on 1.7 million PubMed articles. The
models were evaluated on the BIOSSES dataset of 100 sentence pairs (Sogancioglu et al., 2017).
The unsupervised model based on the Paragraph Vector Distributed Memory algorithm showed
the best results, outperforming the state-of-the-art results for the BIOSSES dataset. The au-
thors also proposed a supervised model including string-based similarity metrics and a neural
embedding model. It was shown to outperform the existing ontology-dependent supervised
state-of-the-art approaches.

Existing datasets

A few datasets annotated for semantic similarity of biomedical concepts or texts exist.
Pedersen et al. (2005) were the first to introduce a set of 30 pairs of medical terms annotated
for semantic relatedness by 12 annotators on a 10-point scale.

Pakhomov et al. (2010b) created a set of 101 medical term pairs that were rated for semantic
relatedness on a 10-point scale by 13 medical coding experts. The set was initially compiled
by a practicing Mayo Clinic physician.

Pakhomov et al. (2010a) compiled a set of 724 pairs of medical terms from the UMLS,
belonging to the categories of disorders, symptoms and drugs. The dataset included only
concepts with at least one single-word term, to control for impact of term complexity on the
judgements on similarity and relatedness. Further, a practicing physician selected pairs of
terms for four categories: completely unrelated, somewhat unrelated, somewhat related, and
closely related. Each category comprised approximately 30 term pairs. The pairs were rated
for semantic similarity and relatedness by 8 medical residents.

The BIOSSES dataset (Sogancioglu et al., 2017) contains 100 pairs of sentences selected
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Paper Similarity
/related-
ness

Items Num-
ber
of
pairs

Scale Selection
process

Num-
ber of
anno-
tators

Competence
of annota-
tors

Pedersen
et al.
(2005)

relatedness medical
terms

30 1-10 manual
selection

12 physicians
and medical
coders

Pakhomov
et al.
(2010b)

relatedness medical
terms

101 1-10 manual
selection

13 medical cod-
ing experts

Pakhomov
et al.
(2010a)

similarity
and relat-
edness

medical
terms

724 0-1600
(pixel
offsets)

two-step
(auto-
mated +
manual)

8 medical resi-
dents

Sogancioglu
et al.
(2017)

similarity sentences 100 0-4 manual
selection

5 unspecified

Wang
et al.
(2018)

similarity sentences 1068 0-5 automatic
selection

2 medical ex-
perts

Table 4.1: Existing datasets annotated for semantic similarity/relatedness in the biomedical
domain

from the Text Analysis Conference Biomedical Summarization Track Training Dataset. The
sentence pairs were rated for similarity on a 5-point scale by five human experts.

Wang et al. (2018) aimed at creating a resource for semantic textual similarity assessment
in the clinical domain. The authors assembled MedSTS, a set of 174,629 sentence pairs from
a clinical corpus at Mayo Clinic. Two medical experts annotated a subset of 1,068 sentence
pairs with similarity scores in the range from 0 to 5.

Table 4.1 summarizes the characteristics of the existing datasets.

Annotation of outcome pairs

For us the application of interest is detection of spin related to incorrect reporting of the
primary outcome in abstracts of articles reporting randomized controlled trials (RCTs), in
particular, omission of the primary outcome. This task is very specific and requires a corpus
with annotations for semantic similarity of pairs of primary and reported outcomes. The task of
semantic similarity assessment of outcomes can be regarded as a subtask of semantic similarity
assessment of medical term pairs, which has been explored in previous works and for which a
few datasets exist. However, there is an inherent difference between a corpus of outcome pairs
and the existing corpora of medical term pairs: while the existing corpora of medical term
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pairs contain terms belonging to different categories (e.g. drugs, symptoms and disorders), all
the terms in a corpus of outcome pairs belong to the same class (outcomes, i.e. measures or
variables). In a corpus containing several categories, it can be expected that the items of the
same category are judged to be more similar to each other than to the items of other categories
(e.g. all the drug names are more similar to each other than to the names of disorders), while
in a corpus with a single category this criterion does not apply. The relation of semantic
similarity is simpler for outcomes: two outcome mentions are either same (refer to the same
measure/variable), or different, hence the relation is binary and can be annotated on a 0-1
scale. On the contrary, in the existing corpora multi-item scales were necessary to annotate
similarity/relatedness (drugs names are more similar to each other than disorder names, but
the level of similarity within the category of drug names vary).

As no corpus with annotation for semantic similarity of outcomes exists, we created and
annotated our own, that we release as a freely available dataset (Koroleva, 2019). It is based on
a set of 3,938 articles from PMC7 with the publication type "Randomized controlled trial". The
corpus annotation proceeded in two steps: annotation of primary and reported outcomes, and
annotation of semantic similarity between them. As it proved to be impossible to recruit within
a reasonable time frame several annotators with sufficient level of expertise in the domain of
medical research reporting, the annotation work was performed by one single annotator with
expertise in NLP, trained and consulted by three experts in clinical research reporting.

Annotation of outcomes

The annotation and extraction of primary and reported outcomes is the subject of a separate
paper, here we only present in brief the annotation principles that are important for the topic
of this paper.

For primary outcome annotation, we aimed at annotating contexts that explicitly define
the primary outcome of a trial, e.g.:

"We selected the shortened version of the Chedoke Arm & Hand Activity Inven-

tory (CAHAI-7) as the primary outcome measure."

To find these contexts, we randomly selected 2,000 sentences that contain the word "pri-
mary" or its synonyms, followed by the word "outcome" or its synonyms, with the distance no
more than 3 token between them. The synonyms of the words "primary" and "outcome" used
in sentence selection are shown in Table 4.2. The sentences were selected from full-text articles.
We annotated the longest continuous text span that includes all the relevant information about
the trial’s outcome, such as measurement tool used, time points, etc.

7https://www.ncbi.nlm.nih.gov/pmc/
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Word Synonyms
primary main, first, principal, final, key
outcome endpoint/end-point/end point, measure, variable, assessment,

parameter, criterion

Table 4.2: Synonyms of the words "primary" and "outcome" used in sentence selection

For reported outcomes annotation, we selected the Results and Conclusions sections of
the abstracts of the articles for which we previously annotated the primary outcomes. 1,940
sentences constituted the corpus for reported outcomes annotation.

Reporting outcomes are characterized by high diversity: they can be expressed by a noun
phrase, a verb phrase or an adjective. The same outcomes can be reported in different ways,
e.g. the following sentences report the same outcome:

1. "At 12-month follow-up, the intervention group showed a significant positive change (OR
= 0.48) in receiving information on healthy computer use compared to the usual
care group."

2. "The intervention group showed a significant positive change (OR = 0.48) in receiving

information on healthy computer use at 12-month follow-up, compared to the usual
care group."

3. "Receiving information on healthy computer use in the intervention group showed
a significant positive change (OR = 0.48) at 12-month follow-up, compared to the usual
care group."

In different variants of the sentence, it is possible to annotate as the outcome either:

1. "change (OR = 0.48) in receiving information on healthy computer use",

2. "receiving information on healthy computer use at 12-month follow-up", or

3. "Receiving information on healthy computer use".

However, it appears reasonable to have the same outcome annotated in all of the variants.
Thus, we annotated the shortest possible text span for reported outcomes.

Annotation of semantic similarity of pairs of outcomes

To annotate the similarity between primary and reported outcomes, we took pairs of sen-
tences from the corpora annotated for outcomes: the first sentence in each pair comes from the
corpus of primary outcomes, the second sentence comes from the corpus of reported outcomes,
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and both sentences are from the same article (to ensure that primary and reported outcomes
exist in the same document, in order to avoid a too high percentage of dissimilar pairs in the
final corpus). We used a binary flag to annotate the pairs of outcomes: if both outcomes
in a pair are considered to refer to the same outcome, the pair is assigned the ’similar’ la-
bel; otherwise the ’dissimilar’ label. Interestingly, outcomes can refer to the same concept by
using antonyms: e.g. "ICP (Intracranial Pressure) control" vs. "uncontrollable intracranial
pressure".

It is important to note that the annotated primary outcomes included all the possible
information items present in the sentence (time points, measurement methods, etc.), while
the annotated reported outcomes contain the minimal information (usually, the outcome or
measurement tool name). Thus, primary outcomes typically contain more information than
reported outcomes. When annotating semantic similarity, we disregarded possible differences
in additional information such as time points: outcomes were annotated as similar if the
outcome/measurement tool used is the same. Table 4.3 shows some examples of the outcome
pairs that were judged to refer to the same (similarity = 1) or different (similarity = 0) concept.

Differences in additional information items (time points, analysis metrics, etc.) are im-
portant for a more fine-grained assessment of outcome similarity. However, annotating this
information would make the annotation much more complex. We regard comparing additional
information on outcomes as a separate task and thus do not include it in the current approach.

Absence of medical knowledge can cause difficulties in annotating outcome similarity. In
cases of doubt, the annotator referred to the whole article text or conducted additional research
to make the final decision. The total of 3,043 pairs of outcomes were annotated: 701 (612 after
deduplication) "similar" and 2,342 (2,187 after deduplication) "dissimilar" pairs.

Expanded dataset

The ways of referring to an outcome may differ: e.g., the outcome defined as "the quality
of life of people with dementia, as assessed by QoL-AD" may be referred to by the outcome
name ("the quality of life of people with dementia") or by the measurement tool name ("QoL-
AD"), which can in turn be used in the abbreviated or full ("Quality of Life-Alzheimer’s
Disease") form. We expect the variability in choosing one of these options to negatively affect
the performance of the similarity assessment. Thus, we tried to account for this variability in
two ways.

First, we searched for abbreviations and their expansions in the full text of the article
where a given outcome occurs, using regular expressions. We chose this approach instead
of using medical thesauri and automated tools such as Metamap (Aronson, 2001) based on
the thesauri, because abbreviations can have several possible expansions depending on the
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Primary outcome Reported outcome Similarity
the change relative to baseline in
the multiple sclerosis functional
composite score (MSFC)

MSFC score 1

the recruitment rate the overall recruitment yield 1
the maximum % fall in FEV1 7
hours after the first AMP chal-
lenge

FEV1 1

ICP control uncontrollable intracranial
pressure

1

body weight body composition 0
the volume of blood loss between
T1 and T4

bleeding duration 0

tube dependency at one-year hospital admission days 0
HbA1c Attendance at yoga classes 0

Table 4.3: Examples of outcomes that are judged as similar(similarity = 1)/different (simi-
larity = 0)

particular medical domain. Thus, selecting the correct expansion from a thesaurus would
require some additional steps such as detecting the topic of the article. On the contrary, in the
text of an article abbreviation expansions are unambiguous. After extracting abbreviations and
their expansions, we replace the abbreviations in the outcome mentions by their expansions.
For example, for the outcome "EBM knowledge" we obtain the expanded variant "evidence-
based medicine knowledge".

Second, we looked for measurement tool names within outcome mentions, using linguistic
markers such as "measured by". We keep the text fragment preceding such markers as the
outcome name, and the text following them as the measurement tool name, e.g. for the
outcome "cognitive functioning, as measured by the ADAS-Cog, a 0—70 point scale with a
higher score indicating worse cognition", we add two variants: "cognitive functioning" and
"the ADAS-Cog, a 0—70 point scale with a higher score indicating worse cognition".

By applying these algorithms, we obtain an expanded version of the corpus which contains
5,050 pairs of outcomes (1,222 similar and 3,828 dissimilar pairs).

Methods

Many existing approaches to semantic similarity assessment rely on manually curated
domain-specific resources, such as ontologies or other lexical resources. Although this kind
of approach can show good results, its disadvantage consists in the limited word coverage of
existing resources and in the need to use tools such as Metamap to map a text to biomedical
concepts, resulting in a complex multi-step system with many dependencies.
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Deep learning approach

In the general domain, it was recently shown that unsupervised pre-training of language
models on a large corpus, followed by fine-tuning of the models for a particular task, improves
the performance of many NLP algorithms, including semantic similarity assessment (Radford
et al., 2018; Devlin et al., 2018). In the biomedical domain, Blagec et al. (2019) showed that
neural embedding models trained on large domain-specific data outperform the state-of-the-art
approaches for similarity assessment.

We explored these novel methods in order to propose an algorithm for assessment of seman-
tic similarity that does not rely on domain-specific resources such as ontologies and taxonomies.
We adopt the approach that was recently introduced by Devlin et al. (2018) and has already
been shown to be highly performant. It consists in fine-tuning language representations that
were pre-trained on large datasets, on a limited amount of task-specific annotated data.

Devlin et al. (2018) proposed a new method of pre-training language representations, called
BERT (Bidirectional Encoder Representations from Transformers). The principle consists in
pre-training language representations with the use of a masked language model (MLM) that
randomly masks some of the input tokens, allowing pre-training of a deep bidirectional Trans-
former on both the left and right context. BERT-based pre-trained models can be easily fine-
tuned for a supervised task by adding an additional output layer. For our semantic similarity
assessment task, we employ the similar architecture as that used for sentence pair classification
by Devlin et al. (2018) in BERT: a self-attention mechanism is used to encode a concatenated
text pair. The task-specific input is fed to the output layer of BERT model, and the end-to-end
fine-tuning of all the model parameters is performed. The details on the implementation can
be found in Devlin et al. (2018).

BERT models were pre-trained on the joint general-domain corpus of English Wikipedia
and BooksCorpus, with the total of 3.3B tokens. Two domain-specific version of BERT are
of interest for our task: BioBERT (Lee et al., 2019), pre-trained on a large biomedical corpus
of PubMed abstracts and PMC full-text articles comprising 18B tokens, added to the initial
BERT training data; and SciBERT (Beltagy et al., 2019), pre-trained on a corpus of scientific
texts with the total of 3.1B tokens, in addition to the initial BERT training corpus.

BERT provides several models: cased and uncased (differing with regard to the input data
preprocessing); base and large (differing with regard to the model size). We fine-tuned and
tested both cased and uncased base models. We did not perform experiments with BERT-Large
due to limited computational resources. BioBERT has only cased model, with a few versions
with different pre-training data (PubMed abstracts only, PMC full-text articles only, or both).
We used the model pre-trained on both datasets. SciBERT provides both cased and uncased
models and has two versions of vocabulary: BaseVocab (the initial BERT general-domain
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vocabulary) and SciVocab (the vocabulary built on the scientific corpus). The uncased model
with SciVocab is recommended by the authors, as this models showed the best performance in
their experiments. We tested both cased and uncased models with SciVocab.

The hyperparameters used for fine-tuning of BERT-based models are shown in the Table
4.4.

Hyperparameter Value Definition
do_lower_case True (uncased

models)/False
(cased models)

Whether to lower case the input
text

max_seq_length 128 The maximum total input sequence
length after WordPiece tokeniza-
tion

train_batch_size 32 Total batch size for training
eval_batch_size 8 Total batch size for eval
predict_batch_size 8 Total batch size for predict
learning_rate 5e-5 The initial learning rate for Adam
num_train_epochs 3.0 Total number of training epochs to

perform
warmup _propor-
tion

0.1 Proportion of training to perform
linear learning rate warmup for

save_checkpoints
_steps

1000 How often to save the model check-
point

iterations_per
_loop

1000 How many steps to make in each
estimator call

use_tpu False Whether to use TPU or GPU/CPU
master None TensorFlow master URL

Table 4.4: BERT/BioBERT/SciBERT hyperparameters

Baseline approach

We compare the BERT-based approaches to a few simple domain-independent baseline
measures that fall into the following categories:

1. string measures:

∙ normalized Levenshtein distance (Miller et al., 2009) (in Tables referred to as lev-
enshtein_norm) - the minimal edit distance between two strings (number of edits
needed to change one string into the other). We calculate the Levenshtein distance
using the Python Levenshtein package and normalize it by dividing it by the length
of the longer string.

∙ a measure based on the Ratcliff and Obershelp algorithm (Ratcliff and Metzener,
1998) (in Tables referred to as difflib) which calculates the number of matching
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characters in two strings divided by the total number of characters. We use the
implementation proposed by the Python difflib library (SequenceMatcher function).

2. lexical measures reflecting the number of lexical items shared by the compared phrases:

∙ the proportion of lemmas occurring in both compared outcomes (in Tables referred
to as lemmas), calculated as the proportion of the lemmas shared by the compared
phrases divided by the length (in lemmas) of the shorter outcome. Lemmatization
was performed with the help of WordNetLemmatizer function of Python NLTK
library.

∙ the proportion of stems occurring in both compared outcomes (in Tables referred to
as stems), calculated as the proportion of the stems shared by the compared phrases
divided by the length (in stems) of the shorter outcome. Stemming was performed
using the PorterStemmer function of Python NLTK library.

In both lexical measures, stop-words and digits were excluded, as well as some words with
general semantics typical for outcome mentions (e.g. "change", "increase", "difference").

3. vector-based measures:

∙ a cosine similarity between the compared outcomes (in Tables referred to as gensim),
using vector representation obtained with Latent Semantic Analysis using singular
value decomposition. We use the implementation proposed by the Python gensim
(Rehurek and Sojka, 2010) library8.

∙ a cosine similarity between the compared outcomes (in Tables referred to as spacy),
using an average of word vectors. We use the implementation proposed by the
Python spaCy (Honnibal and Johnson, 2015) library.

4. ontology-based measures:

∙ path similarity score (in Tables referred to as path) is a WordNet-based measure of
similarity of two word senses calculated as the shortest path connecting them in the
hypernym-hyponym taxonomy.

∙ Leacock-Chodorow similarity score (Leacock and Chodorow, 1998) (in Tables re-
ferred to as lch) is a WordNet-based measure of similarity of two word senses based
on the shortest path connecting them and the maximum depth of the taxonomy in
which they are found.

8https://radimrehurek.com/gensim/tut3.html
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∙ Wu-Palmer similarity score (Wu and Palmer, 1994) (in Tables referred to as wup)
is a WordNet-based measure of similarity of two word senses based on the depth of
the senses in the taxonomy and that of their most specific ancestor node.

For all three measures, we use the functions implemented in the Python NLTK library.
The final scores are calculated as proposed by Mihalcea et al. (2006).

Each of these measures returns a similarity score on a certain scale (most typically, between 0
and 1). After testing several cut-off values, we manually set a threshold for each measure to
maximize the F-measure: pairs of outcomes with the similarity measure above the threshold
are considered similar. The thresholds chosen for each measure are shown in Table 4.5.

Measure Threshold
difflib 0.4
levenshtein_norm 0.3
lemmas 0.6
spacy 0.6
gensim 0.9
stems 0.6
path 0.4
wup 0.5
lch 2.5

Table 4.5: Thresholds set for the similarity measures

Feature-based machine-learning approach

Following the approach proposed by Sogancioglu et al. (2017), we trained and tested a
number of classifiers, taking the above-listed single similarity measures as the input features.
We evaluated several classifiers: Support Vector Machine (SVM) (Cortes and Vapnik, 1995);
Decision Tree Classifier (Rokach and Maimon, 2008); MLP Classifier (von der Malsburg, 1986);
K-neighbors Classifier (Altman, 1992); Gaussian Process Classifier (Rasmussen and Williams,
2005); Random Forest Classifier (Breiman, 2001); Ada Boost Classifier (Freund and Schapire,
1997); Extra Trees Classifier (Geurts et al., 2006); Gradient Boosting Classifier (Friedman,
2002). We used the implementation provided by Python scikit-learn library (Pedregosa et al.,
2011). We performed hyperparameters tuning via exhaustive grid search (with the help of the
scikit-learn GridSearchCV function). The chosen hyperparameters are shown in Table 4.6 (for
the experiments on the original corpus) and Table 4.7 (for the experiments on the expanded
corpus).
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Classifier Hyperparameters
RandomForest max_depth = 25, min_samples_split =

5, n_estimators = 300
MLP activation = ’tanh’, alpha = 0.0001, hid-

den_layer_sizes = (50, 100, 50), learn-
ing_rate = ’constant’, solver = ’adam’

GaussianProcess 1.0 * RBF(1.0)
GradientBoosting default
KNeighbors n_neighbors = 13, p = 1
ExtraTrees default
AdaBoost default
DecisionTree default
SVC C = 1000, gamma = 0.001, kernel = ’rbf’

Table 4.6: Hyperparameters for classifiers on the original corpus

Experiments on the expanded dataset

The expanded dataset (with expanded abbreviations and added variants of referring to an
outcome by the measurement tool name or by the outcome name) is used in the experiments
in the following way. For individual similarity measures, we compare all the combinations
of variants for both outcomes. Out of the similarity scores obtained for all the variants, we
take the maximum value as the final evaluation score. For machine learning approaches, we
expanded the original annotated corpus by the extracted variants of the outcomes. We trained
and tested the machine learning and deep learning approaches on both the original corpus an
on the expanded corpus.

Results and discussion

For the deep learning approach, we performed the evaluation using 10-fold cross-validation,
with the dataset split into train and development sets in the proportion 9:1. The performance
is reported for the development set. For scikit-learn classifiers, we performed 10-fold cross-
validation using the scikit-learn built-in cross_validate function.

Table 4.8 below presents the results of our experiments on the original and expanded cor-
pus, respectively. We use the following notations in the results tables: BioBERT, SciBERT
uncased, SciBERT cased, BERT uncased and BERT cased refer to the results of fine-tuning of
the corresponding language model. RandomForest, MLP, GaussianProcess, GradientBoosting,
KNeighbors, ExtraTrees, AdaBoost, DecisionTree, and SVC refer to the results of the corre-
sponding scikit-learn classifier. stems and lemmas refer to the lexical similarity measures (the
proportion of stems/lemmas occurring in both compared outcomes). gensim and spacy refer
to vector-based measures (cosine similarity as implemented by gensim and spacy packages,
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Classifier Hyperparameters
RandomForest max_depth = 25, min_samples_split =

5, n_estimators = 300
KNeighbors n_neighbors = 9, p = 5
GradientBoosting learning_rate = 0.25, max_depth

= 23.0, max_features = 7,
min_samples_leaf = 0.1,
min_samples_split = 0.2, n_estimators
= 200

MLP activation = ’relu’, alpha = 0.0001, hid-
den_layer_sizes = (50, 100, 50), learn-
ing_rate = ’adaptive’, solver = ’adam’

GaussianProcess 1.0 * RBF(1.0)
ExtraTrees default
AdaBoost learning_rate = 0.1, n_estimators = 500
SVC kernel=’linear’, C=1, random_state=0
DecisionTree max_depth = 1.0, max_features

= 2, min_samples_leaf = 0.1,
min_samples_split = 1.0

Table 4.7: Hyperparameters for classifiers on the expanded corpus

respectively). levenshtein_norm refers to the normalized Levenshtein distance, difflib refers
to the the Ratcliff and Obershelp algorithm-based measure. path refers to the path similar-
ity score; lch refers to the Leacock-Chodorow similarity score; wup refers to the Wu-Palmer
similarity score.

Among the single similarity measures tested on our original (non-expanded) corpus, the
best performance was shown by the stem-based measure (F-measure=71.35%). Among the
classifiers using the combination of measures as features, the best results were achieved by
the Random Forest Classifier (F-measure=84.73%). Among the deep learning models, the
fine-tuned BioBERT model showed the highest performance (F-measure=89.75%).

These results clearly show that, out of the three tested approaches (baseline single similarity
measures, machine learning classifiers using the single measures as features, and deep learning),
the best results on the original corpus were shown by the deep learning approaches. All the
single measures were inferior to the classifiers based on the combination of the single measures.
Thus, we can state the measures complement each other. Further, all the deep learning BERT-
based approaches showed better performance than each of the classifiers, which indicates that
the pre-trained representations are more powerful in reflecting semantic similarity than the
measures used.

On the expanded corpus, the performance of single measures changed slightly compared
to that on the original corpus (cf. Table 4.8). The best result, achieved by the stem-based
measure, was not improved. The performance of machine learning classifiers on the expanded
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On the original corpus On the expanded corpus
Algorithm Precision Recall F1 Precision Recall F1
BioBERT 88.93 90.76 89.75 92.98 93.85 93.38
SciBERT uncased 87.99 90.78 89.3 91.3 91.79 91.51
SciBERT cased 87.31 91.53 89.3 89 92.54 90.69
BERT uncased 85.76 88.15 86.8 89.31 89.12 89.16
RandomForest 86.76 82.92 84.73 74.09 60.12 66.13
BERT cased 83.36 85.2 84.21 88.25 90.1 89.12
MLP 87.79 80.61 83.95 72.21 58.05 63.87
GaussianProcess 86.69 81.11 83.74 72.08 57.13 63.58
GradientBoosting 87.84 79.96 83.63 72.94 58.4 64.72
KNeighbors 87.35 78.81 82.75 75.24 58.13 65.31
ExtraTrees 85.26 79.29 82.08 71.83 57.14 63.47
AdaBoost 86.08 77.99 81.79 72.66 55.87 62.97
DecisionTree 81.66 79.62 80.53 62.73 63.09 60.61
SVC 82.3 78.32 80.19 73.2 54.42 62.26
stems 64.03 80.56 71.35 64.03 80.56 71.35
lemmas 64.75 77.45 70.54 63.18 78.23 69.91
gensim 55.71 83.66 66.88 54.98 79.14 64.89
path 60.06 65.36 62.6 58.04 69.47 63.24
wup 53.26 68.14 59.78 52.15 73.35 60.96
levenshtein_norm 65.87 49.84 56.74 64.64 56.14 60.09
difflib 47.08 71.08 56.64 63.84 61.73 62.77
lch 59.42 53.59 56.36 62.95 25.02 35.81
spacy 35.86 75.65 48.66 35.86 75.65 48.66

Table 4.8: Results

corpus dropped significantly (the highest F-measure was 66.13% vs. 84.73% on the original
corpus). On the contrary, the performance of all the fine-tuned deep learning models was
better on the expanded corpus than on the original corpus. The best result, similarly to the
original corpus, was shown by the fine-tuned BioBERT model: F-measure was 93.38%.

Error analysis

We provide here the error analysis of the best-performing model (fine-tuned BioBERT) on
the original corpus. The most common cases of errors are as follows:

1. Use of abbreviations which leads to false negatives, e.g.:

∙ Uncontrollable intracranial pressure – ICP control

∙ sickness absence – SA days

∙ pain catastrophising – global PC

∙ controlling intracranial pressure – ICP control
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∙ the Yale-Brown Obsessive-Compulsive Scale – the change in YBOCS score from
baseline to endpoint

2. Terms that are semantically close but refer to different measured variables result in false
positives, e.g.:

∙ coma recovery time – total coma duration

∙ patient satisfaction – patient comfort

∙ time to azoospermia time to severe oligozoospermia

In particular, this type of error can be observed when the terms are hyponyms of the
same term, e.g.:

∙ child body mass index (BMI) z-score – parent BMI

∙ foot pain – ’first-step’ pain

∙ the proportion of delivered compressions within target depth compared over a 2-
minute period within the groups and between the groups – the proportion of delivered
compressions below target depth

Besides, this type of error occurs when the outcomes refer to different aspects of one
parameter, e.g.(words indicating the differences in semantics of the phrases are in bold):

∙ the GSRS subscores for abdominal pain – the GSRS total score

∙ The frequency of acute exacerbation – duration of acute exacerbation

∙ costs per quality adjusted life years (cost/QALY) – Quality adjusted life years

∙ time needed to perform the motor task – degree of help needed to perform the task

∙ the mean time to onset of the first 24-h heartburn-free period after initial dosing –
The mean number of heartburn-free days by D7

∙ the proportion of patients with plasma HIV-1 RNA levels <200 copies/mL at week
24 – HIV-1 RNA <50 copies/mL

3. Use of terms for which the similarity can only be established based on domain knowledge
but not by their textual features leads to false negatives, e.g.:

∙ HSCL-25 – the severity of symptoms of depression and anxiety (HSCL-25 is a check-
list measuring the symptoms of anxiety and depression9)

9http://hprt-cambridge.org/screening/hopkins-symptom-checklist/
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∙ response rate – took part in the Link-Up Study

∙ return of final follow-up questionnaire or reminder by the participant – the response
rates

4. Significantly different level of detail in two mentions of the same measure can lead to
false negatives, e.g.:

∙ the incidence of oxygen desaturations defined as a decrease in oxygen saturation ≥
5%, assessed by continuous pulse oxymetry, at any time between the start of the
induction sequence and two minutes after the completion of the intubation – oxygen
desaturations

The best method for assessing semantic similarity

On the original outcome pairs corpus, the best-performing single similarity measure is the
stem-based one (F1 = 71.35%), followed by the lemmas-based and gensim measures (Table
4.8). The gensim measure shows the best recall (83.66%).

All the scikit-learn classifiers trained on the original corpus using the combination of the
single measures as features outperformed single measures (Table 4.8). The best results were
achieved by the Random Forest Classifier (F-measure of 84.73%).

When trained on the original corpus, all the BERT-based models, except for the one using
the BERT cased model, outperformed the feature-based classifiers and single similarity mea-
sures (Table 4.8). The best results were shown by the fine-tuned BioBERT model, reaching the
F-measure of 89.75%. Results of fine-tuned SciBERT models (both cased and uncased) reached
the F-measure of 89.3%, closely following BioBERT; the SciBERT cased model demonstrated
the best recall (91.53%).

These results show that fine-tuned models using deep pre-trained language representations
can outperform all the other tested similarity measures, with an additional advantage of not
requiring any specialized resources or specific text preprocessing such as mapping to the UMLS
concepts. Pre-training of language models on biomedical texts proves to be an advantageous
approach as it allows to learn representations for domain-specific words, including abbrevia-
tions, from the available large unstructured data.

Does the addition of variants of referring to an outcome help?

For the single measures of similarity, expansion of the corpus by the variants of outcomes
improved the performance of Wordnet-based and string-based measures, but did not improve
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the results of the three best-performing measures - stem- and lemma-based ones and the gensim
measure (cf. Table 4.8).

A possible explanation for the absence of improvement in the stem-and lemma-based mea-
sures is that the primary outcomes are usually rather lengthy and detailed, and tend to include
all the variants: abbreviations and their expansions, measurement method. Thus, additional
variants are not in fact needed. For example, the primary outcome "depression severity mea-
sured by the Beck Depression Inventory-II (BDI-II)" may be reported as "depression severity",
"the Beck Depression Inventory-II " or "BDI-II", but all these variants are already present
within the primary outcome mention, thus, measuring the intersection in terms of stems or
lemmas will return a high similarity score. At the same time, for string-based and WordNet-
based measures, addition of variants is useful: for the example above, if the outcome is reported
as "BDI-II ", it will be expanded as "the Beck Depression Inventory-II ", which will have high
similarity scores with the variant "the Beck Depression Inventory-II (BDI-II)" of the primary
outcome.

For the classifiers using single similarity measures as features, adding outcome variants to
the training corpus did not prove useful: the results of the classifiers trained on the corpus
expanded by the outcome variants dropped significantly (cf. Table 4.8).

It should be highlighted that single measures and classifiers in our approach account for
outcome variants in different ways: single measures compare all the pairs of variants and take
the highest score as the final result, thus, low similarity between some of the variants does not
affect the results. On the contrary, the classifiers use the expanded corpus to train, and thus,
pairs of variants with low similarity scores but with the ’similar’ label can negatively impact
the results.

Interestingly, the addition of the variants to the training corpus can be useful: performance
of all the BERT-based systems improved on the corpus expanded by outcome variants (cf.
Table 4.8). The best result was achieved by the fine-tuned BioBERT model, with the F-
measure of 93.38%.

The difference between the results of classifiers using single measures as features and the
fine-tuned BERT-based models on the expanded corpus demonstrates differences between these
approaches. BERT-based models successfully train on the expanded corpus as they use deep
pre-trained language representations and fine-tune to learn the features required for a given
task, while the training of classifiers is likely to be undermined by the pairs of outcome variants
with low scores on the single similarity measures.

The results of these experiments should, however, be taken with caution, as the expansion
of the corpus by outcome variants was performed automatically. We manually checked the
quality of the algorithm, but it does not exclude presence of some noise. Still, we believe that
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this approach is promising for our task.

What metrics are best able to identify similar or dissimilar outcomes?

Out of single similarity measures, the best ability to distinguish between similar and dis-
similar outcomes, in both the original and the expanded corpora, was shown by the stem-based
measure, followed by the lemma-based measure (Table 4.8).

What classifiers are best able to distinguish between similar and dis-

similar outcome pairs?

In our experiments, the Random Forest Classifier showed the best results in the task of
distinguishing between similar and dissimilar outcome pairs, compared to a range of other clas-
sifiers (MLP, Gaussian Process Classifier, Gradient Boosting Classifier, K-neighbors Classifier,
Extra Trees Classifier, Ada Boost Classifier, Decision Tree Classifier, and SVM) (Table 4.8).

What language representation is best able to represent outcomes?

Our experiments showed that the best performance for semantic similarity assessment of
outcomes is shown by the fine-tuned BioBERT model, i.e. a language model pre-trained on a
large (18B tokens) biomedical corpus in addition to a 3.3.B tokens general domain-corpus. This
model outperformed the models trained on the general-domain corpus only (BERT) and the
models trained on a smaller (3.1) corpus of scientific paper in addition to the general domain
corpus (SciBERT) (Tables 4.8).

Conclusion

Evaluation of similarity assessment of trial outcomes is a vital part of tasks such as as-
sessment of an article for outcome switching, reporting bias and spin; besides, it can be used
to improve the adherence to Core Outcomes Sets use. In this work, we introduced a first
open-access corpus of pairs of primary and reported outcomes, annotated on a binary scale
as similar or different. We presented our experiments on developing an algorithm of semantic
similarity assessment not using domain-specific resources such as ontologies and taxonomies.
We tested a number of single similarity measures, classifiers using the combination of single
measures as features, and a number of deep learning models. We explored the possibility of
using variants of referring to outcomes (abbreviations, measurement tool names) to improve
the performance of similarity assessment.
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The best results were shown by the deep learning approach using the BioBERT fine-tuned
model, both on the original corpus and on the corpus expanded by the outcome variants.
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Chapter 5

Towards Automatic Detection of Primary

Outcome Switching in Articles Reporting

Clinical Trials. Anna Koroleva, Patrick
Paroubek. Submitted

Context

As we stated in the previous chapter, outcome switching (adding new outcomes or excluding
pre-defined outcomes without a justification) is one of the most common and alarming types
of spin. Outcome switching is the main type of spin addressed by our spin detection pipeline.
This chapter is aimed at describing how we identify outcome switching using the algorithms
presented in the previous chapters (3 and 4).

Chapter 3 reported on annotating a corpus with primary and reported outcomes and de-
veloping rule-based and machine learning algorithms for detecting trial outcomes. The exper-
iments showed that a deep learning approach consisting in fine-tuning pre-trained language
models on our annotated corpora obtained the best performance. Based on the results of our
experiments, we selected the best fine-tuned model for primary outcome detection (BioBERT)
and for reported outcome detection (SciBERT uncased) to be included as a part of the pipeline
for spin and outcome switching detection.

Chapter 4 reported on annotating a corpus of pairs of outcomes for semantic similarity
and developing algorithms for assessing the similarity of outcomes. The best performance was
shown by BioBERT fine-tuned model, which was included into the spin/outcome switching
detection pipeline.

The following chapter describes the integration of the two functionalities presented above
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into a single algorithm, that is to be used as a decision-supporting system for spin detection.
The presented algorithm is the main contribution of this thesis, since it provides an operational
solution to help authors and peer reviewers in performing outcome switching detection —a task
that, before this PhD project, needed to be done entirely by hand. This thesis is aimed at
establishing a proof that automatic spin detection is possible, even though we only address
here a subset of the possible types of spin, that is frequent and whose potential negative impact
on public health is high.

Authors’ contributions

The work reported in this chapter was conducted by AK under supervision of PP. AK was
responsible for data collection and analysis. SK took part in the conduct of experiments, as
reflected in the Acknowledgements section. AK drafted the manuscript. PP revised the draft
critically for important intellectual content.

Abstract

Background: Outcome switching – changing the pre-defined outcomes of a trial – is one of
the distorted reporting practices in articles presenting results of clinical trials.

Objective: We present the first approach towards automatic detection of primary outcome
switching.

Method: We created a first corpus with outcome switching annotations. We propose to
use a combination of information extraction (deep learning), structured data parsing, and
phrase similarity estimation techniques to detect outcome switching. We assessed the semantic
similarity assessment algorithms on the original corpus and a corpus expanded with variants of
referring to an outcome (using abbreviations/their expansions, outcome name or measurement
tools name).

Results: The annotated corpus contains 2,000 sentences with 1,694 primary outcomes;
1,940 sentences with 2,251 reported outcomes; 3,043 pairs of outcomes annotated for semantic
similarity. Our models achieved the F-measure of 88.42% for primary outcome extraction,
79.42% for reported outcome extraction, and 89.75% and 93.38% for original an expanded
versions of the corpus for semantic similarity evaluation.

Conclusions: We proposed the first algorithm for detecting primary outcome switching.
The algorithm can be used as an aid tool for authors and peer-reviewers.

Keywords: Outcome Switching, Randomized Controlled Trials, Information Extraction,
Natural Language Processing, Semantic Similarity

Background

The variables measured in clinical trials, usually referred to as "outcomes", are one of the
most essential elements of a trial. Outcomes are dependent variables, and trials assess the
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impact on the outcomes of some other (independent) variables such as the treatment used,
dosage, patient characteristics, etc. For scientific soundness, outcomes must be pre-defined
before a trial starts and should not be changed without a valid reason, particularly "the
primary outcome" – the main goal of the experiment. The outcomes of a trial are directly
related to its main objective, e.g. the trial’s statistical power and sample size depend on the
primary outcome chosen. However, a common problem identified when reviewing clinical trial
reports is outcome switching, i.e. the omission of some pre-defined outcomes or the addition
of new outcomes (Goldacre et al., 2016).

Outcome switching presents a serious problem because it leads to bias, i.e. reporting only
the outcomes that prove the hypothesis of the authors (Slade et al., 2015; Weston et al., 2016;
Altman et al., 2017), along with spin, i.e. beautifying of research results by presenting only
favourable outcomes (Boutron et al., 2010; Lockyer et al., 2013; Lazarus et al., 2015; Chiu et al.,
2017; Diong et al., 2018; Boutron and Ravaud, 2018). It has been proved that the presence
of spin can pose a threat to the quality of healthcare: spin makes clinicians overestimate
the effects of the treatment in question, and provokes spin in health news and press releases
(Boutron et al., 2014; Haneef et al., 2015; Yavchitz et al., 2012), which can influence public
perception and expectations regarding the treatment.

Although the problem is known to the medical community (Kay et al., 2012; Delgado and
Delgado, 2017; Jones et al., 2018; Goldacre et al., 2019), to the best of our knowledge, no
attempts have been made yet to automate the process of checking an article for outcome
switching. We report here on the building of a first annotated corpus of sentences from scien-
tific articles from PubMed Central (PMC)1 with annotations relevant for outcome switching
detection and on the development and evaluation of outcome switching detection algorithms
in the context of the Methods in Research on Research (MiRoR) project2, an international
multi-disciplinary research project aiming at improving the quality of biomedical research.

Identifying outcomes and detecting outcome switching is a vital task for a range of ap-
plications, such as systematic reviews, peer reviewing or scientometrics studies. In our case,
the application of interest is detection of spin in texts of articles reporting randomized con-
trolled trials (RCTs) – a clinical trial comparing two interventions (a standard treatment and
an experimental one).

Outcome: definition

Outcome are difficult to define precisely as they can be of many different types and their
description may comprise several items (Chan et al., 2013) involving lexical, syntactic, semantic

1https://www.ncbi.nlm.nih.gov/pmc/
2http://miror-ejd.eu/
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and pragmatic information:

∙ outcome name – general term referring to a measure/variable, which can be numerical
(blood pressure), binary (death), or qualitative (quality of life).

∙ name of the measurement tool (questionnaire, score, etc.) used to measure the outcome,
if it cannot be measured directly;

∙ time points at which the outcome is recorded (baseline, after treatment, etc.);

∙ patient-level analysis metrics (change from baseline, final value, time to event);

∙ population-level method of aggregation (mean, median, proportion of patients).

It is important to distinguish two contexts in which outcome mentions occur (outcomes in
the examples are in bold):

∙ definition of trial outcomes, often specifying the type (primary or secondary):

Primary outcome will be rate of expulsion at 1 year.

∙ reporting of results for an outcome, usually in numerical form or in the form of comparison
between two treatments:

The mean serum 25(OH)D increase in the intervention group was 25 ng/ml (range
1-47 ng/ml).

SFC is superior to FP in reducing airway resistance in mild asthmatics with near
normal FEV 1 values.

State-of-the-art

To our best knowledge, no works has yet tackled the task of outcome switching detection
as a whole. However, its parts (outcome extraction and phrase similarity assessment) have
been addressed.

Outcome extraction

A number of works approached the task of automatic extraction of outcome information
from medical articles. Some of them treated it as a sentence classification task, with Out-
come being one of the target classes, along with Population, Intervention, etc. (Kim et al.,
2011; Amini et al., 2012; Lui, 2012; Mollá, 2012), or with outcome being the only target class
(Demner-Fushman et al., 2006).
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Bruijn et al. (2008); Kiritchenko et al. (2010) addressed the extraction of a number of
trial design elements, including primary and secondary outcomes. The authors used a two-
step approach, combining a classifier to detect relevant sentences for each type of information,
and, for most of the information elements: rules combining regular expressions to extract text
fragments of interest. However, for outcome there were no extraction rules created, thus, the
algorithm is limited to sentence extraction. Precision and recall for sentence extraction are
87% and 90%, respectively.

Summerscales et al. (2009) addressed the extraction of treatments, patient groups and
reported outcomes from abstracts of medical articles. Their corpus includes 100 abstracts
of articles from BMJ3. The authors used a named-entity recognizer based on a Conditional
Random Field (CRF) classifier to classify each token as belonging to a certain entity type.
While testing different entity sets, the authors noted that entity boundaries can be ambiguous,
posing problems for both manual annotation and automatic identification of their precise
boundaries. For exact matches, the best result achieved is a recall of 46%, a precision of
59% and an F-measure of 51%. For partial matches, the best result is a recall of 64%, a
precision of 82% and an F-measure of 72%.

In a more recent work of 2015, Blake and Lucic (2015) addressed the task of analyzing com-
parative sentences to extract the entities being compared (the agent and the object) and the
ground for comparison, i.e. the characteristic with respect to which the entities are compared,
which represents the outcome, or endpoint. Unlike previous work, in this one the authors aim
at extracting noun phrases for outcomes. The training set included 100 sentences with 656 noun
phrases. Comparative sentences were identified using a set of adjectives and lexico-syntactic
patterns. Further, two classifiers, one using an SVM model and the other a generalized linear
model (GLM), were built for noun phrase classification, for each element (agent, object, end-
point). For the endpoint detection, SVM achieved an F-measure 0.78 on the training set, but
only 0.51 on the test set. The performance was better on shorter sentences (up to 30 words).
In a following work, Lucic and Blake (2016) proposed to improve endpoint identification by
determining if the head noun of the candidate noun phrase denotes an amount or a measure.
The authors used for the training set the same 100 sentences as in their previous work, with
enriched annotation. The test set consisted of 132 sentences with up to 40 words, containing
939 noun phrases. The best results achieved were a precision of 56%, a recall of 71% and an
F-measure of 62%.

3https://www.bmj.com/
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Semantic similarity assessment

To our knowledge, assessing the similarity of outcomes has not been addressed yet. For
phrase and short text similarity evaluation, there is a substantial volume of work, proposing
different approaches, from historical symbolic approaches using semantic networks like Word-
Net (Miura and Takagi, 2015) to more recent ones using word embeddings (Martinez-Gil, 2012;
Kenter and de Rijke, 2015; Torabi Asr et al., 2018). Distributional language models represent-
ing terms as high-dimensional vectors proved to be useful for a number of NLP tasks and
have recently been successfully applied for semantic similarity assessment in the biomedical
domain. Sogancioglu et al. (2017) proposed to calculate semantic similarity of sentences us-
ing distributed vector representations based on the word2vec (Mikolov et al., 2013) model.
Henry et al. (2018) assessed several methods for aggregation of distributional context vectors
for multi-word expressions for the task of estimating semantic similarity and relatedness. The
authors evaluated methods such as sum or mean of component word vectors, construction of
compound vectors, and construction of concept vectors using the MetaMap (Aronson, 2001)
tool. Park et al. (2019) proposed a concept-embedding model of a semantic relatedness mea-
sure. They used the Unified Medical Language System (UMLS)4 and Wikipedia as an external
data sources for context texts, that were used to build concept vector representations. Cosine
similarity between vectors was used to evaluate semantic relatedness of concepts.

Dataset

To our knowledge, there is no open corpus available for the task of outcome switching
detection. Still, a very useful data source for this task is provided by trial registries – open
online databases where the information about clinical trials, including primary and secondary
outcomes, is recorded. Preventing outcome switching is one of the purposes that trial registries
serve. Trial registration is mandatory in some countries and encouraged in others. Trials are
assigned a unique identification number upon registration, which should be reported when the
trial results are published. This way, it is possible to associate the description of the primary
and secondary outcomes found in the registry to the outcomes presented in the article. We use
the information from trial registries in our experiments as an external additional data source.

Our main experiments are based on analysing the texts of medical articles. An anno-
tated corpus for the task of outcome switching needs to include the following: annotation
for text structure (abstract, sections within the abstract), trial registration number, primary
and secondary outcomes, reported outcomes; "entity linking" for outcomes (marking chains of

4https://www.nlm.nih.gov/research/umls/index.html
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outcome mentions that refer to the same outcome). The annotation of such a corpus requires
substantial time and effort and annotators with medical expertise familiar with the concept
of outcome switching. We initially planned to recruit annotators with the needed expertise.
However, running a large-scale annotation project was not feasible because of the unavailability
of annotators with the appropriate skills and the cost of the annotation task inherent in its
complexity. The annotation presented here was done by one researcher with NLP expertise,
consulted by medical advisors. It constitutes a minimal corpus for bootstrapping the first
experiments for outcome switching detection that we present here.

Our initial corpus comprises 3,938 articles from PMC, that have the PubMed publication
type RCT. In our current work, we focused on detection switching of the primary outcome,
as it is the most important outcome in clinical trials. We annotated subsets of sentences from
our corpus for each of the following tasks:

1. Primary outcome annotation: we randomly selected 2,000 sentences containing the word
outcome or its contextual synonyms (end-point, measure, etc.) and the word primary
or its contextual synonyms (principal, main, etc.), where the latter precedes the former
with the distance no more than 3 tokens. Sentence splitting was performed with the help
of Python NLTK library5. Search for the terms was done with regular expressions.

We decided to annotate only the sentences where the context explicitly defines the pri-
mary outcome. In some types of statements (statements of objectives, description of
measured variables), information about the primary outcome can be expressed implicitly
and can potentially be inferred from the context, e.g.:

This study investigated the efficacy (trough forced expiratory volume in 1 sec-

ond [FEV1] response) and safety of additional treatment with once-daily tiotropium
18g via the HandiHaler in a primary care COPD population. Secondary endpoints in-
cluded: trough forced vital capacity (FVC) response, weekly use of rescue short-acting
beta-agonist, and exacerbation of COPD (complex of respiratory symptoms/events of >3
days in duration requiring a change in treatment).

Response was assessed quantitatively through health status questionnaires, measures of
breathing control, exercise capacity and physical activity and qualitatively, through struc-
tured interviews with a clinical psychologist.

Our objective was to evaluate the feasibility of comparing these two modes in a ran-
domized trial.

However, after consulting our medical advisors, we decided not to include these types of
sentences in our corpus as they do not necessarily define a (primary) outcome; besides,

5http://www.nltk.org
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absence of explicit primary outcome definition does not conform with proper trial report-
ing practices, reflected in reporting guidelines (Schulz et al., 2010), and may itself be a
marker of outcome switching.

A definition of a primary outcome can be complex and include timepoints, measurement
tool, etc. For each instance, we decided to annotate the longest continuous text span
possible containing all the relevant information about an outcome in a given trial. In our
corpus, we identified 1,694 primary outcome occurrences.

2. Reported outcomes annotation: we selected the Results and Conclusions sections of the
abstracts of the articles for which we annotated the primary outcomes. Search for the
abstract in the article and the subdivision of the abstract into sections was done using a
set of rules and regular expressions. Some of the articles in our corpus turned out to be
not RCT reports but protocols and were missing Results and Conclusion sections.

Ways of reporting an outcome are varied; most typically, it is by means of a noun
phrase, but it can also be done using a verb phrase ("10% of patients died") or an
adjective ("Treatment was cost-effective"). It can be difficult to choose a text span
for annotation, e.g. in a phrase "The difference between group in increase of X at 1
year was observed", all the phrases "the difference between group in increase of X at 1
year", "the difference between group in increase of X", "increase of X" and "X" can
be considered to be reported outcomes. As it seems reasonable to consider that in the
phrase "X increased more in group A than in group B at 1 year" the reported outcome
is the same as in the first example, we decided to annotate the shortest possible text
span for reported outcomes, i.e. only the outcome or measurement tool name ("X" for
the discussed example).

2,251 reported outcomes were annotated.

3. Annotation of relations between a primary outcome and a corresponding reported out-
come: we created a set of pairs of sentences, where the first sentence comes from the
corpus with annotated primary outcomes, the second sentence comes from the corpus
with annotated reported outcomes, and both sentences belong to same text. We consid-
ered outcomes to be similar if the outcome or measurement tool are the same, disregard-
ing timepoints, analysis metrics, etc. This approach is arguable, since the difference in
timepoints between two otherwise similar outcomes can lead consider them as different
outcomes. However, detecting a change in timepoints is a separate task, thus we did not
mark this information, considering it to be a part of the future work.

In total, 3,043 pairs of outcomes were annotated: 701 (612 after deduplication) pairs were
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considered to be "similar" and 2,342 (2,187 after deduplication) pairs were considered
not to be "similar".

There can be several ways of referring to the same outcome. First, abbreviations can
be used instead of full outcome names: e.g. the outcome "patient-perceived recovery
(PPR)" can be referred to as "patient-perceived recovery" or "PPR". Besides, measure-
ment tool name can be used to refer to the outcome it was used to measure: e.g. the
outcome "perceived stress, as measured by the Perceived Stress Scale" can be referred to
as "perceived stress" or "the Perceived Stress Scale". This variability is expected to pose
difficulties for semantic similarity assessment. In an attempt to account for it, we created
an expanded version of the outcome pairs corpus. First, using regular expression rules, we
extracted abbreviation expansions and replaced the abbreviations by the expansions. For
an outcome outcome mention "PPR" we obtained a variant "patient-perceived recovery".
Second, using regular expressions for phrases such as "measured/assessed as/by", we ex-
tracted outcome names and measurement tool names. For the outcome "perceived stress,
as measured by the Perceived Stress Scale", we obtained variants "perceived stress" or
"the Perceived Stress Scale". These new variants were used to add new pairs of simi-
lar/dissimilar to the corpus, thus forming the expanded corpus. We ran our experiments
on both the initial and the expended versions of the corpus.

Our annotated corpora are freely available (Koroleva, 2019a,b).

Methods

Our proposed algorithm for outcome switching detection comprises three steps:

1. Extraction of entities (primary and reported outcomes) from the text of a given article;

2. Extraction the information about outcomes from trial registries;

3. Semantic similarity assessment of pairs of outcomes, taking the outcomes from the first
step as input.

Deep learning methods

Our experiments on outcome extraction and semantic similarity assessment of outcomes
are described in detail elsewhere. Here we briefly present the best performing method, selected
for the implementation in our spin detection pipeline, released as open source code (available
at: https://github.com/aakorolyova/DeSpin). Our selected approach is based on the use of
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language models pre-trained on large corpora, that are further fine-tuned on a limited amount
of annotated data for a downstream task. Approaches using pre-trained language models,
such as ELMO (Peters et al., 2018), OpenAI’s GPT (Radford et al., 2018) and Google’s BERT
(Devlin et al., 2018), achieve the state-of-the-art (SOTA) performance, or even outperform the
current SOTA, for a number of tasks, such as sentence or sentence pair classification, entity
extraction, natural language inference.

We chose to use the BERT-based approach as it was shown to achieve better results on
relevant tasks than ELMO and OpenAI GPT (Devlin et al., 2018). BERT (Bidirectional
Encoder Representations from Transformers) language models are based on a masked language
model (MLM), that randomly masks some input tokens, thus pre-training a deep bidirectional
transformer on both left and right contexts. Token representation used in BERT consists of
the token itself, and segment and position embeddings. BERT models were pre-trained on a
general-domain corpus of 3.3B tokens, combining BooksCorpus and English Wikipedia. BERT
models can be easily fine-tuned on a downstream task by adding one additional output layer.

Two domain-specific versions of BERT were recently released: BioBERT (Lee et al., 2019),
pre-trained on the BERT training data and a biomedical corpus of 18B tokens from PubMed
abstracts and PMC full-text articles; and SciBERT (Beltagy et al., 2019), pre-trained on the
BERT training data and a corpus of scientific (including biomedical) articles of 3.1B tokens.

BERT and SciBERT provide several versions of models: cased (input data unaltered) and
uncased (input data lower-cased); BioBERT has only a cased model. SciBERT provides two
versions of vocabulary: general-domain and scientific (recommended by the authors). In our
experiments, we compared the performance of BERT cased and uncased models, BioBERT
model, and SciBERT cased and uncased models with the scientific vocabulary.

Primary and reported outcome extraction was modelled as sequence labelling task. We
compared two approaches: a simple fine-tuning of pre-trained models, proposed by (Devlin
et al., 2018; Lee et al., 2019); and an approach employing a CRF on top of a Bi-LSTM applied
to token embeddings, as proposed by Beltagy et al. (2019). We used BioBERT6 and SciBERT7

code for named entity recognition.

Outcome similarity assessment was modelled similarly to sentence pair classification task8.
We used the fine-tuning approach for this task. Our similarity assessment algorithm assumes
that the pairs of outcomes have been previously extracted and are given as input.

We assessed the models using 10-fold cross-validation (splitting the data into 10 train-dev-
test sets), we report the averaged results.

6https://github.com/dmis-lab/biobert
7https://github.com/allenai/scibert
8We used BERT code for sentence air classification: run_classifier.py from https://github.com/google-

research/bert
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Trial registry data extraction

An additional step in our algorithm is extraction outcome data from trial registries. We
extract trial registration numbers with the use of regular expressions. Registration numbers
were found in 2796 (71%) text of our initial corpus. We further download and parse registry
entries for a given trial, obtaining data about primary and secondary outcomes. These data
is used in an additional level of checking outcome switching: besides checking coherence of
outcome reporting within the article text (primary outcomes defined in the article vs. reported
outcome in the article), we also check the coherence between the registry and text (primary
outcomes defined in the registry vs. primary outcomes defined in the article; primary outcomes
defined in the registry vs. reported outcomes in the article).

Results

Entity extraction

The results of extraction outcomes using BERT-based models are shown in Tables 5.1
and 5.2. The suffix "_biLSTM-CRF" in model names denoted the approach using CRF and
Bi-LSTM, model names without the suffix refer to the fine-tuning approach.

The fine-tuning approach consistently outperformed the CRF+BiLSTM approach. The
BioBERT model showed the best performance for primary outcome extraction (F-measure
= 88.42%), while the SciBERT uncased model showed the best performance for reported
outcome extraction (F-measure = 79.42%). Overall, models pre-trained on domain-specific
data (BioBERT an SciBERT) outperform BERT, trained on a general-domain corpus.

Algorithm Precision Recall F1
BioBERT 86.99 90.07 88.42
SciBERT-cased 87.52 89.07 88.21
SciBERT-uncased 87.49 88.92 88.1
BERT-cased 86.96 87.41 87.14
BERT-uncased 86.6 87.39 86.91
BioBERT_biLSTM-CRF 78.82 82 80.34
SciBERT-uncased_biLSTM-CRF 77.52 81.15 79.22
SciBERT-cased_biLSTM-CRF 77.23 80.89 78.95
BERT-cased_biLSTM-CRF 78.2 78.84 78.47
BERT-uncased_biLSTM-CRF 76.72 78.73 77.63

Table 5.1: Primary outcome extraction: results

It is difficult to directly compare our results with the results of previous research on out-
come extraction: some of the previous works addressed extraction of outcome information as
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Algorithm Precision Recall F1
SciBERT-uncased 81.17 78.09 79.42
BioBERT 79.61 77.98 78.6
SciBERT-cased 79.6 77.65 78.38
BERT-uncased 78.98 74.96 76.7
BERT-cased 76.63 74.25 75.18
SciBERT-uncased_biLSTM-CRF 68.44 73.47 70.77
BioBERT_biLSTM-CRF 70.18 71.43 70.63
SciBERT-cased_biLSTM-CRF 67.98 72.52 70.11
BERT-cased_biLSTM-CRF 65.98 65.54 65.64
BERT-uncased_biLSTM-CRF 64.6 66.73 65.4

Table 5.2: Reported outcome extraction: results

sentence classification task only, without actual extraction of outcomes; other works chose a
particular type of sentences (such as comparative sentences) to annotate and extract outcomes.
In other cases, annotation conventions are not reported in sufficient detail to compare them
with our annotation (e.g. whether verb phrases and adjectives were annotated as outcomes).
However, our system achieves operational performance for outcome extraction, outperforming
the comparable previous works.

Semantic similarity assessment

Tables 5.3 and 5.4 show the results of semantic similarity assessment of pairs of outcomes
on the original and expanded versions of the corpus. The BioBERT fine-tuned model showed
the best performance on both versions of the corpus; both BioBERT and SciBERT outperform
BERT.

The results of all the models on the expanded corpus are better than the results of the
corresponding models on the original corpus, which proves that addition of outcomes variants
to the corpus improves the fine-tuning performance.

Algorithm Precision Recall F1
BioBERT 88.93 90.76 89.75
SciBERT-uncased 87.99 90.78 89.3
SciBERT-cased 87.31 91.53 89.3
BERT-uncased 85.76 88.15 86.8
BERT-cased 83.36 85.2 84.21

Table 5.3: Results of BERT-based systems on the original corpus
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Algorithm Precision Recall F1
BioBERT 92.98 93.85 93.38
SciBERT-uncased 91.3 91.79 91.51
SciBERT-cased 89 92.54 90.69
BERT-uncased 89.31 89.12 89.16
BERT-cased 88.25 90.1 89.12

Table 5.4: Results of BERT-based systems on the expanded corpus

Proposed algorithm

Table 5.5 summarizes the results of the best-performing models for each task. Fine-
tuned BioBERT model achieved the best results for primary outcome extraction (F-measure
= 88.42%) and semantic similarity assessment (F-measure = 89.75% for the initial corpus and
93.38% for the expanded corpus). For reported outcome extraction, SciBERT uncased model
showed the best performance (F-measure = 79.4%). These models are used in our implementa-
tion of an outcome switching detection algorithm, which forms a part of spin detection pipeline.
The pipeline also incorporates the algorithm for extraction the trial registration number, and
accessing, downloading and parsing the outcome data from the trial registry.

Our implementation of an outcome switching detection algorithm includes the following
steps: extracting primary and reported outcomes from the article, extracting primary outcomes
from the registry, assessing semantic similarity between pairs of outcomes (primary outcomes
in the registry vs. primary outcomes in the article; primary outcomes in the registry vs.
reported outcome in the abstract; primary outcomes in the article vs. reported outcome
in the abstract). The system reports the unmatched primary outcomes. The source code,
implemented in Python, is available at https://github.com/aakorolyova/DeSpin.

Algorithm Model Precision Recall F1
Primary outcomes extraction BioBERT 86.99 90.07 88.42
Reported outcomes extraction SciBERT-

uncased
81.17 78.09 79.42

Outcome similarity assess-
ment (initial corpus)

BioBERT 88.93 90.76 89.75

Outcome similarity assess-
ment (expanded corpus)

BioBERT 92.98 93.85 93.38

Table 5.5: The best achieved results
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Discussion

Possible use of the algorithm

We envisage the usage of our system as a semi-automated aid tool, combining the described
algorithms with the functionality for manual annotation of text spans and relations between
them. This way, the tool would be able to use annotated data from users for cases when our
algorithms make errors, which has two benefits: first, the performance of the system based on
the data provided by users will be higher than the default performance based on the outcome
extraction algorithms; second, if users agree to provide results of their annotation to us, this
would allow to obtain more manually annotated data and to further use machine-learning
algorithms with more data to make the results more accurate.

Limitations

Our work has some limitations. First of all, the annotation was performed by a single
annotator due to infeasibility of running a large annotation project involving several annotators.
We hope that this issue can be resolved in the future by collecting annotations from the users
of the system.

Another limitation is the step-by-step approach that we used in our current implemen-
tation, with the semantic similarity assessment algorithm taking the results of the outcome
extraction as input. We chose this approach for number of reasons: it is relatively simple; it
is a standard approach for similar tasks; models developed for each step (primary outcome
extraction, reported outcomes extraction, outcome similarity assessment) can be used sepa-
rately for other tasks and applications. However, the final performance of this approach can
be hindered by the errors of included algorithms. A possible direction of the future work,
addressing this problem, could be an implementation of an end-to-end system for outcome
switching detection.

Future work

The most challenging task in outcome switching detection pipeline appears to be the extrac-
tion of reported outcomes, currently showing the lowest performance among all the algorithms.
Thus, our future work will aim at improving reported outcome extraction.

Another major objective for the future work is adding algorithms for extraction secondary
outcomes and checking article for secondary outcomes switching.
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Conclusion

Outcome switching is a common and important problem in clinical trials reporting that
can lead to overestimation of the treatment studied and thus can have a detrimental effect on
the clinical practice. Switching (non-reporting or change) of the primary outcome of a clinical
trial is an issue of particular importance as it can cause erroneous interpretation by the trial
results by clinicians and health media.

Assessment for outcome switching is now performed manually. Automated or semi-automated
systems were proved to be useful in various tasks of text analysis. Outcome switching can be
addressed as a task combining entity extraction and semantic similarity assessment.

In this paper, we proposed a first implementation for an outcome switching detection
algorithm. Our proposed pipeline includes algorithms for extraction of primary and reported
outcomes, extracting trial registry data, and evaluation of similarity between the extracted
outcomes. The algorithms achieve operational results and can be further improved over time
with more data collected. The developed algorithms and models are a part of our spin detection
system and are freely available at: https://github.com/aakorolyova/DeSpin.
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Chapter 6

Extracting relations between outcomes

and significance levels in Randomized

Controlled Trials (RCTs) publications.

Anna Koroleva, Patrick Paroubek. Proceedings
of ACL BioNLP Workshop 2019, Florence,
Italy, August 2019

Context

As shown by the chapter 5, we established that automatic detection of spin can be feasible
for the problem of outcome switching. After that, we can start looking at some complementary
issues concerning spin detection, one of them being the significance level of an outcome.

The presence of spin is often related to significance levels of trial outcomes. In particular,
spin is often found in clinical trials with non-significant results for the primary outcome; be-
sides, spin can consist in selecting only significant outcomes for presentation in the abstract of
an article. Hence, identifying significance levels for trial outcomes could be helpful as a part of
a spin detection pipeline. We regard this task as a complementary one as it does not directly
contribute to detection of any type of spin for the moment, but it extracts the information
related to an important risk factor for spin (non-significant outcomes) that can help human
experts in spin detection.

This chapter describes our work on extracting the relation between reported trial outcomes
and significance levels. As a part of the relation extraction algorithm, we used the algorithms
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of reported outcome extraction presented in the chapter 3. This chapter reports on annotating
a corpus and creating machine learning algorithms for relation extraction. The best performing
algorithm was included into our spin detection prototype.

Authors’ contributions

The work reported in this chapter was conducted by AK under supervision of PP. AK was
responsible for data collection and analysis. SK took part in the conduct of experiments, as
reflected in the Acknowledgements section. AK drafted the manuscript. PP revised the draft
critically for important intellectual content.

Abstract

Randomized controlled trials assess the effects of an experimental intervention by comparing
it to a control intervention with regard to some variables - trial outcomes. Statistical hypothesis
testing is used to test if the experimental intervention is superior to the control. Statistical
significance is typically reported for the measured outcomes and is an important characteristic
of the results. We propose a machine learning approach to automatically extract reported
outcomes, significance levels and the relation between them. We annotated a corpus of 663
sentences with 2,552 outcome - significance level relations (1,372 positive and 1,180 negative
relations). We compared several classifiers, using a manually crafted feature set, and a number
of deep learning models. The best performance (F-measure of 94%) was shown by the BioBERT
fine-tuned model.

Introduction

In clinical trials, outcomes are the dependent variables that are monitored to assess how
they are influenced by other, independent, variables (treatment used, dosage, patient charac-
teristics). Outcomes are a central notion for clinical trials.

To assess the impact of different variables on the outcomes, statistical hypothesis testing
is commonly used, giving an estimation of statistical significance – the likelihood that a rela-
tionship between two or more variables is caused by something other than a chance (Schindler,
2015). Statistical significance levels are typically reported along with the trial outcomes as
p-values, with a certain set threshold, where a p-value below the threshold means that the
results are statistically significant, while a p-value above the threshold presents non-significant
results. Hypothesis testing in clinical trials is used in two main cases:

1. In a trial comparing several treatments given to different groups of patients, a difference
in value of an outcome observed between the groups at the end of the trial is evaluated
by hypothesis testing to determine if the difference is due to the difference in medication.
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If the difference is statistically significant, the null hypothesis (the difference between
treatments is due to a chance) is rejected, i.e. the superiority of one treatment over the
other is considered to be proved.

2. When an improvement of an outcome is observed within a group of patients taking
a treatment, hypothesis testing is used to determine if the difference in the outcome
at different time points within the group is due to the treatment. If the results are
statistically significant, it is considered to be proven that the treatment has a positive
effect on the outcome in the given group of patients.

Although p-values are often misused and misinterpreted (Head et al., 2015), extracting signif-
icance levels for trial outcomes is still vital for a number of tasks, such as systematic reviews,
detection of bias and spin. In particular, our application of interest is automatic detection
of spin, or distorted reporting of research results, that consists in presenting an intervention
studied in a trial as having higher beneficial effects than the research has proved. Spin is an
alarming problem in health care as it causes overestimation of the intervention by clinicians
(Boutron et al., 2014) and unjustified positive claims regarding the intervention is health news
and press releases (Haneef et al., 2015; Yavchitz et al., 2012).

Spin is often related to a focus on significant outcomes, and occurs when the primary
outcome (the main variable monitored during a trial) is not significant. Thus, to detect spin,
it is important to identify the significance of outcomes, and especially of the primary outcome.
To our best knowledge, no previous work addressed the extraction of the relation between
outcomes and significance levels. In this paper, we present our approach towards extracting
outcomes, significance levels and relations between them, that can be incorporated into a spin
detection pipeline.

State of the art

Extraction of outcome - significance level relations consists of two parts: entity extraction
(reported outcomes and significance levels) and extraction of the relationship between the
entities. In this section, we present the previous works on these or similar tasks.

Entity extraction

The number of works addressing automatic extraction of significance levels is limited.

Hsu et al. (2012) used regular expressions to extract statistical interpretation, p-values,
confidence intervals, and comparison groups from sentences categorized as "outcomes and
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estimation". The authors report precision of 93%, recall of 88% and F-measure of 90% for this
type of information.

Chavalarias et al. (2016) applied text mining to evaluate the p-values reported in the
abstracts and full texts of biomedical articles published in 1990 – 2015. The authors also
assessed how frequently statistical information is presented in ways other than p-values. P-
values were extracted using a regular expression; the system was evaluated on a manually
annotated dataset. The reported sensitivity (true positive rate) is 96.3% and specificity (true
negative rate) is 99.8%. P-values and qualitative statements about significance were more
common ways of reporting significance than confidence intervals, Bayes factors, or effect sizes.

A few works focused on extracting outcome-related information, addressing it either as a
sentence classification, or as entity extraction task.

Demner-Fushman et al. (2006) defined an outcome as "The sentence(s) that best summarizes
the consequences of an intervention" and thus adopted a sentence classification approach to
extract outcome-related information from medical articles, using a corpus of 633 MEDLINE
citations. The authors tested Naive Bayes, linear SVM and decision-tree classifiers. Naive
Bayes showed the best performance. The reported classification accuracy ranged from 88% to
93%.

One of the notable recent works addressing outcome identification as an entity extraction
task, rather than sentence classification, is (Blake and Lucic, 2015). The authors addressed
a particular type of syntactic constructions – comparative sentences – to extract three items:
the compared entities, referred to as the agent and the object, and the ground for comparison,
referred to as the endpoint (synonymous to outcome). The aim of this work was to extract
corresponding noun phrases. The dataset was based on full-text medical articles and included
only the sentences that contain all the three entities (agent, object and endpoint). The training
set comprised 100 sentences that contain 656 noun phrases. The algorithm proceeds in two
steps: first, comparative sentences are detected with the help of a set of adjectives and lexico-
syntactic patterns. Second, the noun phrases are classified according to their role (agent,
object, endpoint) using SVM and generalized linear model (GLM). On the training set, SVM
showed better performance than GLM, with an F-measure of 78% for the endpoint. However,
on the test set the performance was significantly lower: SVM showed an F-measure of only
51% for the endpoint. The performance was higher on shorter sentences (up to 30 words) than
on the longer ones.

A following work (Lucic and Blake, 2016) aimed at improving the recognition of the first
entity and of the endpoint. The authors propose to use in the classification the information on
whether the head noun of the candidate noun phrase denotes an amount or a measure. The
annotation of the corpus was enriched by the corresponding information. As a result, precision
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of the endpoint detection improved to 56% on longer sentences and 58% on shorter ones; recall
improved to 71% on longer sentences and 74% on shorter ones.

Relation extraction

To our knowledge, extraction of the relation between outcomes and significance levels has
not been addressed yet. In this section, we overview some frameworks for relation extraction
and outline some common features of different approaches in the biomedical relation extraction.

A substantial number of works addressed extracting binary relations, such as protein-
protein interactions or gene-phenotype relation, or complex relations, such as biomolecular
events. A common feature of the works in this domain, noted by Zhou et al. (2014); Lever and
Jones (2017) and still relevant for recent works e.g. Peng and Lu (2017); Asada et al. (2017),
consists in assuming that entities of interest are already extracted and provided to the rela-
tion extraction system as input. Thus, the relation extraction is assessed separately, without
taking into account the performance of entity extraction. We adopt this approach for relation
extraction evaluation in our work, but we provide separate assessment for our algorithms of
entity extraction.

One of the general frameworks for relation extraction in the biomedical domain is proposed
by Zhou et al. (2014). The authors suggest using trigger words to determine the type of a
relation, noting that for some relation types trigger words can be extracted simply with a
dictionary, while for other types, rule-based or machine-learning approaches may be required.
For relation extraction, rule-based methods can be applied, often employing regular expressions
using words or POS tags. Rules can be crafted manually or learned automatically. The
machine learning approaches to binary relation extraction, as the authors note, usually treat
the task as a classification problem. Features for classification often use output of textual
analysis algorithms such as POS-tagging and syntactic parsing. Machine learning approaches
can be divided into feature-based approaches (using syntactic and semantic features) and
kernel approaches (calculating similarity between input sequences based on string or syntactic
representation of the input). Supervised machine learning is a highly successful approach for
binary relation extraction, but its main drawback consists in the need of large amount of
annotated data.

A framework for pattern-based relation extraction is introduced by Peng et al. (2014).
The approach aims at reducing the need for manual annotation. The approach is based on
a user-provided list of trigger words and specifications (the definition of arguments for each
trigger). Variations of lexico-syntactic patterns are derived using this information and are
matched with the input text, detecting the target relations. Some interesting features of the
framework include the following: the use of text simplification to avoid writing rules for all
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existing constructions; the use of referential relations to find the best phrase referring to an
entity. The authors state that their system is characterized by good generalizability due to the
use of language properties and not of task-specific knowledge.

A recent work (Björne and Salakoski, 2018) reports on the development of convolutional
neural networks (CNNs) for event and relation extraction, using Keras (Chollet et al., 2015)
with Tensorflow backend (Abadi et al., 2016). Parallel convolutional layers process the input,
using sequence windows centered around the candidate entity, relation or event. Vector space
embeddings are built for input tokens, including features such as word vectors, POS, entity
features, relative position, etc. The system was tested on several tasks and showed improved
performance and good generalizability.

Our dataset

Corpus creation and annotation

In our previous work on outcome extraction, we manually annotated a corpus for reported
outcomes comprising 1,940 sentences from the Results and Conclusions sections of PMC ar-
ticle abstracts. We used this corpus as a basis for a corpus with annotations for outcome
—significance level relations.

Our corpus contains 2,551 annotated outcomes. Out of the sentences with outcomes, we
selected those where statistical significance levels are supposedly reported (using regular ex-
pressions) and manually annotated relations between outcomes and significance levels. The
annotation was done by one annotator (AK), in consultation with a number of domain experts,
due to infeasibility of recruiting several annotators with sufficient level of expertise within a
reasonable time frame.

The final corpus contains 663 sentences with 2,552 annotated relations, out of which 1,372
relations are "positive" (the significance level is related to the outcome) and 1,180 relations
are "negative" (the significance level is not related to the outcome). The corpus is publicly
available (Koroleva, 2019).

Data description

There are three types of data relevant for this work: outcomes, significance levels, and
relationship between them. In this section, we describe these types of data and the observed
variability in the ways of presenting them.

1. Outcomes
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A trial outcome is, in broad sense, a measure or variable monitored during a trial. It can
be binary (presence of a symptom or state), numerical ("temperature") or qualitative
("burden of disease"). Apart from the general term denoting the outcome, there are
several aspects that define it: a measurement tool (questionnaire, score, etc.) used to
measure the outcome; time points at which the outcome is measured; patient-level anal-
ysis metrics (change from baseline, time to event); population-level aggregation method
(mean, median, proportion of patients with some characteristic).

Generally, there are two main contexts in which outcomes of a clinical trial can be
mentioned: a definition of what the outcomes of a trial were ("Quality of life was
selected as the primary outcome."), and reporting results for an outcome ("Quality of

life was higher in the experimental group than in the control group."). In both cases, a
mention of an outcome may contain the aspects listed above, but does not necessarily
include all of them. In this work, we are interested in the second type of context.

The ways of reporting outcomes are highly diverse. Results for an outcome may be
reported as a value of the outcome measure: for binary outcomes, it refers to pres-
ence/absence of an event or state; for numerical outcome, it is a numerical value; for
qualitative outcome, it is often a value obtained on the associated measurement tool. As
the primary goal of RCTs is to compare two or more interventions, results for an out-
come can be reported as a comparison between the interventions/patient groups, with
or without actual values of the outcome measure. Syntactically, an outcome may be
represented by a noun phrase, a verb phrase, an adjective or a clause. We provide here
some examples of outcome reporting, to give an idea of variability of expressions.

The outcome is reported as a numerical value:

a) The median progression-free survival was 32 days.

The outcome is reported as a comparison between groups, without the values for groups:

b) MMS resulted in more stunting than standard Fe60F (p = 0.02).

The outcome is reported as a numerical value with comparison between groups:

c) The average birth weight was 2694 g and birth length was 47.7 cm, with no differ-
ence among intervention groups.

d) The crude incidence of late rectal toxicity ≥ G2 was 14.0% and 12.3% for the arm
A and B, respectively.

e) More than 96% of patients who received DPT were apyrexial 48 hours after treatment
compared to 83.5% in the AL group (p < 0.001).
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f) The proportion of patients who remained relapse-free at Week 26 did not differ
significantly between the placebo group (5/16, 31%) and the IFN beta-1a 44 mcg biw
(6/17, 35%; p = 0.497), 44 mcg tw (7/16, 44%; p = 0.280) or 66 mcg tw (2/18, 11%; p
= 0.333) groups.

In the latter case, the variation is especially high, and the same outcome may be reported
in several different ways (cf. the examples d, e and f that all talk about a percentage of
patients in which a certain event occurred, but the structure of the phrases differs).

Identifying the textual boundaries of an outcome presents a challenge: for the example d,
it can be "the crude incidence of late rectal toxicity ≥ G2" or "late rectal toxicity ≥ G2";
for the example f, it can be "the proportion of patents who remained relapse-free at Week
26", or "remained relapse-free at Week 26", or simply "relapse-free". This variability
poses difficulties for both annotation and extraction of reported outcomes. In our anno-
tation, we aimed at annotating the minimal possible text span describing an outcome,
not including time points, aggregation and analysis metrics.

2. Significance levels

The ways of presenting significance levels are less diverse than the ways of reporting
outcomes. Typically, significance levels are reported via p-values. Another way of deter-
mining significance of the results is the confidence interval (CI), where a CI comprising
zero denotes non-significant results. In this work, we do not address CIs as they are less
frequently reported (Chavalarias et al., 2016).

Statistical significance can be reported as an exact value of P ("p=0.02"), as P-value
relative to a pre-set threshold ("p<0.05"), or in qualitative form ("significant"/"non-
significant"). We address all these forms of reporting significance.

Although in general the ways of presenting statistical significance are rather uniform,
there are a few cases to be noted:

∙ Coordinated p-values:

For the non-HPD stratum, the intent-to-treat relative risks of spontaneous premature
birth at < 34 and < 37 weeks’ gestation were 0.33 (0.03, 3.16) and 0.49 (0.17, 1.44),
respectively, and they were non-significant (ns) with p = 0.31 and 0.14.

∙ Significance level in score of a negation:

The respiratory rate, chest indrawing, cyanosis, stridor, nasal flaring, wheeze and
fever in both groups recorded at enrollment and parameters did not differ signif-

icantly between the two groups.
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A particular difficulty is presented by the cases in which a negation marker occurs in
the main clause and a significance level in the dependent clause, thus the significance
level is within the scope of the negation, but there is a big linear distance between
them:

Results There was no evidence that an incentive (52% versus 43%, Risk Difference
(RD) -8.8 (95%CI -22.5, 4.8); or abridged questionnaire (46% versus 43%, RD -2.9
(95%CI -16.5, 10.7); statistically significantly improved dentist response rates
compared to a full length questionnaire in RCT A.

3. Relationship between outcomes and significance levels

The correspondence between outcomes and significance levels in a sentence is often not
one-to-one: multiple outcomes can be linked to the same significance level, and vice versa.
Several outcomes are linked to one significance level when outcomes are coordinated:

No significant improvements in lung function, symptoms, or quality of life were
seen.

Several significance levels can be associated to one outcome in a number of cases:

∙ one outcome is linked to two significance levels when a significance level is presented
in both qualitative and numerical form:

Results The response rates were not significantly different Odds Ratio 0.88
(95% confidence intervals 0.48 to 1.63) p = 0.69.

∙ in the case of comparison between patient groups taking different medications, when
there are more than 2 groups, significance can be reported for all pairs of groups;

∙ significance level for difference observed within groups of patients receiving a par-
ticular medication:

[Na] increased significantly in the 0.9% group (+0.20 mmol/L/h [IQR +0.03,
+0.4]; P = 0.02) and increased, but not significantly, in the 0.45% group (+0.08
mmol/L/h [IQR -0.15, +0.16]; P = 0.07).

∙ significance reported for both between- and within-group comparison:

PTEF increased significantly both after albuterol and saline treatments but the
difference between the two treatments was not significant (P = 0.6).

∙ significance for differences within subgroups of patients (e.g. gender or age sub-
groups) receiving a medication;

∙ significance for different types of analysis: intention-to-treat / per protocol:
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Results For BMD, no intent-to-treat analyses were statistically significant; how-
ever, per protocol analyses (ie, only including TC participants who completed ≥ 75%
training requirements) of femoral neck BMD changes were significantly different
between TC and UC (+0.04 vs -0.98%; P = 0.05).

∙ significance for several time points:

Results A significant main effect of time ( p < 0.001) was found for step-counts

attributable to significant increases in steps/day between: pre-intervention ( M =
6941, SD = 3047) and 12 weeks ( M = 9327, SD = 4136), t (78) = - 6.52, p <

0.001, d = 0.66; pre-intervention and 24 weeks ( M = 8804, SD = 4145), t (78) =
- 4.82, p < 0.001, d = 0.52; and pre-intervention and 48 weeks ( M = 8450, SD
= 3855), t (78) = - 4.15, p < 0.001, d = 0.44.

∙ significance level for comparison of various analysis metrics (mean, AUC, etc.)

Methods

To extract the relation between an outcome and its significance level, we propose a 3-step
algorithm: 1) extracting reported outcomes; 2) extracting significance levels; 3) classification
of pairs of outcomes and significance levels to detect those related to each other.

As significance levels are not characterized by high variability, we follow the previous re-
search in using rules (regular expressions and sequential rules using information from pos-
tagging) to extract significance levels.

We present our methods and results for outcome extraction in detail elsewhere, here we
provide a brief summary. We tested several approaches: a baseline approach using sequential
rules using information from pos-tagging; an approach using rules based on syntactic structure
provided by spaCy dependency parser (Honnibal and Johnson, 2015); a combination of bi-
LSTM, CNN and CRF using GloVe (Pennington et al., 2014) word embeddings and character-
level representations (Ma and Hovy, 2016); and a fine-tuned bi-LSTM using BERT (Devlin
et al., 2018) vector word representations.

BERT (Bidirectional Encoder Representations from Transformers) is a recently introduced
approach to pre-training language representations, using a masked language model (MLM)
which randomly masks some input tokens, allowing to pre-train a deep bidirectional Trans-
former using both left and right context. The pre-trained BERT models can be fine-tuned for
supervised downstream tasks by adding one output layer.

BERT was trained on a dataset of 3.3B words combining English Wikipedia and BooksCor-
pus. Two domain-specific versions of BERT are available, pre-trained on a combination of the
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initial BERT corpus and additional domain-specific datasets: BioBERT (Lee et al., 2019),
adding a large biomedical corpus of PubMed abstracts and PMC full-text articles comprising
18B tokens; and SciBERT (Beltagy et al., 2019), adding a corpus of 1.14M full-text papers
from Semantic Scholar with the total of 3.1B tokens. Both BioBERT and SciBERT outperform
BERT on biomedical tasks.

BERT provides several models: uncased (trained on lower-cased data) and cased (trained
on unchanged data); base and large (differing in model sizes). BioBERT is based on the BERT-
base cased model and provides three versions of models: pre-trained on PubMed abstracts,
on PMC full-text articles, or on combination of both. SciBERT has both cased and uncased
models and provides two versions of vocabulary: BaseVocab (the initial BERT vocabulary) and
SciVocab (the vocabulary from the SciBERT corpus). We fine-tuned and tested the BioBERT
model trained on the whole corpus, and both cased and uncased base models for BERT and
SciBERT (using SciVocab). We did not perform experiments with BERT-Large as we do not
have enough resources. We used the code provided by BioBERT for the entity extraction task1.

The relation extraction assumes that the entities have already been extracted and are given
as an input to the algorithm, with the sentence in which they occur. To predict the tag for
outcome - significance level pair, we use machine learning.

As the first approach, we compared several classifiers available in the Python scikit-learn
library (Pedregosa et al., 2011): Support Vector Machine (SVM) (Cortes and Vapnik, 1995);
DecisionTreeClassifier (Rokach and Maimon, 2008); MLPClassifier (von der Malsburg, 1986);
KneighborsClassifier (Altman, 1992); GaussianProcessClassifier (Rasmussen and Williams,
2005); RandomForestClassifier (Breiman, 2001); AdaBoostClassifier (Freund and Schapire,
1997); ExtraTreesClassifier (Geurts et al., 2006); GradientBoostingClassifier (Friedman, 2002).
Feature engineering was performed manually and was based on our observations on the corpus.

Evaluation was performed using 10-fold cross-validation. To account for different random
states, the experiments were run 10 times, we report the average results of the 10 runs. We
performed hyperparameters tuning via exhaustive grid search (with the help of the scikit-learn
GridSearchCV function).

As the second approach, we employed a deep learning approach to relation extraction,
fine-tuning BERT-based models on this task. We tested the same models as for the outcome
extraction. We used the code provided by BioBERT for relation extraction task2. The algo-
rithm takes as input sentences with the two target entities replaced by masks ("@outcome$"
and "@significance$") and positive/negative relation labels assigned to the sentence.

Hyperparameters for entity and relation extraction with BERT-based algorithms are shown

1https://github.com/dmis-lab/biobert/blob/master/run_ner.py
2https://github.com/dmis-lab/biobert/blob/master/run_re.py
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in the Table 6.1. We tested both possible values (True/False) of the hyperparameter "do_lower
_case" (lower-casing the input) for all the models.

Hyperparameter Entity extraction Relation extraction
max_seq_length 128
train_batch_size 32
eval_batch_size 8
predict_batch_size 8
use_tpu False
learning_rate 5e-5 2e-5
num_train_epochs 10.0 3.0
warmup_proportion 0.1
save_checkpoints_steps 1000
iterations_per_loop 1000
tf.master None

Table 6.1: BERT/BioBERT/SciBERT hyperparameters

Algorithm do_lower_case Precision Recall F1
SciBERT uncased True 81.17 78.09 79.42
BioBERT True 80.38 77.85 78.92
BioBERT False 79.61 77.98 78.6
SciBERT cased False 79.6 77.65 78.38
SciBERT cased True 79.24 76.61 77.64
SciBERT uncased False 79.51 75.5 77.26
BERT uncased True 78.98 74.96 76.7
BERT cased False 76.63 74.25 75.18
BERT cased True 76.7 73.97 75.1
BERT uncased False 77.28 72.25 74.46
Bi-LSTM-CNN-
CRF

– 51.12 44.6 47.52

Rule-based – 26.69 55.73 36.09

Table 6.2: Reported outcome extraction results

Features

Features are calculated for each pair of outcome and significance level. They are based
both on the information about these entities (their position, text, etc.) and on the contextual
information (presence of other entities in the sentence, etc.). We used the following binary
(True/False) features:

1. only_out: whether the outcome is the only outcome present in the sentence. If yes, it is
the only candidate that can be related to the present statistical significance values.
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2. only_signif: whether the significance level is the only significance level in the sentence.
If yes, it is the only candidate that can be related to the present outcomes.

3. signif_type_num: whether the significance level is expressed in the numerical form;

4. signif_type_word: whether the significance level is expressed in the qualitative form;

5. signif_exact: whether the exact value of significance level is given ("P = 0.049"), or it is
presented only as comparison to a threshold ("P < 0.05"). Significance levels expressed
in the word form always have "False" value for this feature. We assumed that significance
levels with exact numerical value are less likely to be related to several outcomes that
significance levels with inexact value: obtaining exactly same significance level for several
outcomes seems unlikely.

6. signif_precedes: whether the significance level precedes the outcome. It is especially
pertinent for numerical significance values as they most often follow the related outcome.

7. out_between: whether there is another outcome between the outcome and significance
level in the given pair. The outcome that is closer to a significance level is a more likely
candidate to be related to it.

8. signif_between: whether there is another significance level between the outcome and the
significance level in a given pair. The significance level that is closer to an outcome is a
more likely candidate to be related to it.

9. concessive_between: whether there are words (conjunctions) with consessive semantics
("but", "however", "although", etc.) between the outcome and the significance level in
the pair.

We used the following numerical features:

1. dist: the distance in characters between the outcome and the significance level in the
pair;

2. dist_min_graph: the minimal syntactic distance between the words in the outcome and
the words in the significance level;

3. dist_min_out_preceding: the distance from the outcome of the pair to the nearest
preceding outcome.

4. dist_min_out_following: the distance from the outcome of the pair to the nearest fol-
lowing outcome. The two last features are designed to reflect the information about
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coordination of outcomes (the distances between coordinated entities is typically small),
as coordinated outcomes are likely to be related to the same significance level.

We assessed the importance of the features with the attribute "feature_importances_" of
the RandomForestClassifier. The results are presented in the Table 6.4.

Evaluation

Entity extraction

The rule-based extraction of significance levels shows the following per-token performance:
precision of 99.18%, recall of 96.58% and F-measure of 97.86%.

The results of all the tested approaches to the extraction of reported outcomes are reported
in the Table 6.2. The best performance was achieved by the fine-tuned SciBERT uncased
model: precision was 81.17%, recall was 78.09% and F-measure was 79.42%.

Relation extraction

The baseline value is based on assigning the majority (positive) class to all the entity pairs.
Baseline precision is 53.76%, recall is 100% and F-measure is 69.95%.

The results of the classifiers are presented in the Table 6.3. We present the performance
of the default classifiers and of the classifiers with tuned hyperparameters. All the classifiers
outperformed the baseline. Random Forest Classifier with tuned hyperparameters (max_depth
= 15, min_samples_split = 10, n_estimators = 300) showed the best results, with F-measure
of 91.33%, which is by 21.41% higher than the baseline.

It is interesting to compare the deep learning approach using BERT-based fine-tuned models
(Table 6.5) to the feature-based classifiers: none of the Google BERT models outperformed the
Random Forest Classifier, neither did BioBERT with unchanged input data. However, all the
SciBERT fine-tuned models and the BioBERT model with lower-cased input outperformed
the Random Forest Classifier. Interestingly, BioBERT, which only has a cased model pre-
trained on unchanged data and is thus meant to work with unchanged input, showed the best
performance on lower-cased input for the relation extraction task, achieving the F-measure of
94%.

Conclusion and future work

In this paper, we presented a first approach towards the extraction of the relation between
outcomes of clinical trials and their reported significance levels. We presented our annotated
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corpus for this task and described the ways of reporting outcomes, significance levels and their
relation in a text. We pointed out the difficulties posed by the high diversity of the data.

We crafted a feature set for relation extraction and trained and tested a number of classifiers
for this task. The best performance was shown by the Random Forest classifier, with the F-
measure of 91.33%. Further, we fine-tuned and evaluated a few deep learning models (BERT,
SciBERT, BioBERT). The best performance was achieved by the BioBERT model fine-tuned
on lower-cased data, with F-measure of 94%.

Our relation extraction algorithm assumes that the entities have been previously extracted
and provided as input. An interesting direction for future experiments is building an end-to-
end system extracting both entities and relations, as proposed by Miwa and Bansal (2016) or
Pawar et al. (2017).

As in our algorithm the extraction of the relevant entities (reported outcomes and signifi-
cance levels) is essential for extracting the relations, we reported the results of our experiments
for extracting this task. Extraction of significance levels reaches the F-measure of 97.86%, while
the extraction of reported outcomes shows the F-measure of only 79.42%. Thus, improving
the outcome extraction is the main direction of the future work.

Besides, a very important task for clinical trial data analysis consists in determining the sig-
nificance level for the primary outcome. This task requires two additional steps: 1) identifying
the primary outcome, and 2) establishing the correspondence between the primary outcome
and a reported outcome. We will present our algorithms for these tasks in a separate paper.
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Classifier Hyperparameters Precision Recall F1
RandomForestClassifier max_depth = 15,

min_samples_split
= 10, n_estimators =
300

90.16 92.6 91.33

ExtraTreesClassifier default 89.74 88.53 89.08
GradientBoostingClassifier learning_rate = 0.25,

max_depth = 23.0,
max_features = 7,
min_samples_leaf =
0.1, min_samples_split
= 0.2, n_estimators =
200

88.44 89.8 89.07

RandomForestClassifier default 89.54 88.64 89.03
GaussianProcessClassifier 1.0 * RBF(1.0) 86.99 90.38 88.64
GradientBoostingClassifier default 87.75 89.14 88.4
SVC C = 1000, gamma =

0.0001, kernel = ’rbf’
86.14 89.65 87.79

DecisionTreeClassifier default 87.85 86.83 87.27
MLPClassifier activation = ’tanh’,

alpha = 0.0001, hid-
den_layer_sizes = (50,
100, 50), learning_rate
= ’constant’, solver =
’adam’

84.06 85.15 84.44

MLPClassifier default 84.4 83.34 83.47
KNeighborsClassifier n_neighbors = 7, p =

1
83.37 81.27 82.21

AdaBoostClassifier learning_rate = 0.1,
n_estimators = 500

81.34 83.09 82.16

AdaBoostClassifier default 80.85 82.36 81.53
KNeighborsClassifier default 81.39 79.88 80.55
GaussianProcessClassifier default 79.41 78.86 79.1
SVC default 87.24 64.06 73.77
baseline (majority class) 53.76 100 69.92

Table 6.3: Results of classifiers
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Feature Weight
only_signif 0.21663222
signif_type_num 0.21341347
signif_exact 0.15207938
signif_type_word 0.10103105
dist_min_out_preceding 0.0919397
out_between 0.05683003
dist_min_out_following 0.04683059
concessive_between 0.04260114
only_out 0.02336161
dist 0.02043495
dist_min_graph 0.01794923
signif_precedes 0.01631646
signif_between 0.00058017

Table 6.4: Feature ranking

Algorithm do_lower_case Precision Recall F1
BioBERT True 94.3 94 94
SciBERT cased True 93.9 93.6 93.8
SciBERT cased False 93.5 93.1 93.3
SciBERT uncased False 94.2 92.3 93.3
SciBERT uncased True 94 92.8 93.2
BioBERT False 92.8 89.7 91.1
BERT cased False 91.6 90.2 90.9
BERT uncased True 90.9 90.9 90.8
BERT uncased False 90.4 89.8 90
BERT cased True 89.6 90.5 89.8

Table 6.5: Results of relation extraction with BERT/BioBERT/SciBERT
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Context

This chapter is aimed at presenting the spin detection prototype that resulted from our
work. We describe the types of spin that we addressed and their linguistic characteristics. We
explain how the algorithms introduced in the previous chapters (3, 4 and 6) are combined in
our spin detection pipeline. The following chapter addresses the question of integrating all the
information elements addressed before into a single functionality that could be provided as an
additional functionality to the editing/viewing software used by authors and peer reviewers of
scientific articles.
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Abstract

Background: Improving the quality of medical research reporting is crucial in all efforts
to reduce avoidable waste in research and to improve the quality of health care and health
information. Despite various initiatives aiming at improving research reporting – guidelines,
checklists, authoring aids, peer review procedures, etc. – overinterpretation of research results,
also known as spin, is still a serious issue in research reporting.

Methods: We propose a Natural Language Processing (NLP) system for semi-automatic
detection of spin in scientific articles, here applied to randomized controlled trial (RCTs)
reports. We use a combination of rule-based and machine learning approaches to extract
important information on trial design and to detect potential spin. Along with our entity
extraction algorithms, our system incorporates a simple but powerful interface for manual
annotation of spin, which can also be used as an authoring or peer-reviewing aid.

Results: Our algorithms achieved operational performance for detecting relevant phenom-
ena, F-measure ranging from 79.42 to 97.86% for different tasks. The most difficult task is
extracting reported outcomes.

Conclusion: The proposed tool is the first semi-automated tool for spin detection. It can
be used by both authors and reviewers to detect potential spin, helping to improve the quality
of research results reporting. The tool and the annotated dataset are freely available.

Keywords: Spin, Randomized Controlled Trials, Information Extraction, Prototype, Au-
tomated Aid Tool

Background

Several authors have observed that the quality of reporting research results in the clinical
domain is suboptimal. As a consequence, research findings can often not be replicated, and
billions of euros may be wasted yearly (Ioannidis, 2005).

Numerous initiatives aim at improving the quality of research reporting. Guidelines and
checklists have been developed for every type of clinical research. Still, the quality of re-
porting remains low: authors fail to choose and follow a correct guideline/checklist (Samaan
et al., 2013). Automated tools, such as Penelope1, are introduced to facilitate the use of
guidelines/checklists. It was proved that authoring aids improve the completeness of reporting
(Barnes et al., 2015).

Enhancing the quality of peer reviewing is another step to improve research reporting.
Peer reviewing requires assessing a large number of information items. Nowadays, Natural
Language Processing (NLP) is applied to facilitate laborious manual tasks such as indexing of
medical literature (Huang et al., 2011) and systematic review process (Ananiadou et al., 2009).
Similarly, the peer reviewing process can be partially automated with the help of NLP.

Our project tackles a specific issue of research reporting:spin, also referred to as overinter-

1https://www.penelope.ai/
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pretation of research results. In the context of clinical trials assessing a new (experimental)
intervention, spin consists in exaggerating the beneficial effects of the studied intervention
(Boutron et al., 2010).

Spin was shown to be common in abstracts of articles reporting randomized controlled trials
(RCTs) - clinical trials comparing health interventions, to which participants are allocated
randomly to avoid biases - with non-significant primary outcome in surgical research (40%)
(Fleming, 2016), cardiovascular diseases (57%) (Khan et al., 2019), cancer (47%) (Vera-Badillo
et al., 2016), obesity (46.7%) (Austin et al., 2018), otolaryngology (70%) (Cooper et al., 2018),
anaesthesiology (32.2%) (Kinder et al., 2018), and wound care (71%) (Lockyer et al., 2013).
Although the problem of spin has started to attract attention in the medical community in the
recent years, the shown prevalence of spin proves that it often remains unnoticed by editors
and peer reviewers.

Abstracts are often the only part of the article available to readers, and spin in abstracts
of RCTs poses a serious threat to the quality of health care by causing overestimation of the
intervention by clinicians (Boutron et al., 2014), which may lead to the use of an ineffective
of unsafe intervention in clinical practice. Besides, spin in research articles is linked to spin in
press releases and health news (Yavchitz et al., 2012), which has the negative impact of raising
false expectations regarding the intervention among the public.

The importance of the problem of spin motivated our project, which aims at developing NLP
algorithms to aid authors and readers in detecting spin. We focus on randomized controlled
trials (RCTs) as they are the most important source of evidence for Evidence-based medicine,
and spin in RCTs has high negative impact.

In this paper, we introduce the first prototype of a system, called DeSpin (Detector of
Spin), that automatically detects potential spin in abstracts of RCTs and relevant supporting
information. This prototype comprises a number of algorithms that show operational per-
formance, and a simple interface. We have paid particular attention at developing portable
algorithms that can be built in other clinical text analysis systems.

Our work lies within the scope of the Methods in Research on Research (MiRoR) project2, a
large international collaborative project devoted to improving the planning, conduct, reporting
and peer reviewing of health care research. For the design and development of our toolkit, we
benefited from advice from the MiRoR consortium members experts in medical reporting.

This paper is organized as follows: first, we overview some existing semi-automated aid
systems for authors and readers/reviewers of biomedical articles. Second, we introduce in more
detail the notion of spin, the types of spin that we address, and the related information that is
needed to assess an article for spin. After that, we describe our current algorithms, methods

2http://miror-ejd.eu/
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employed and provide their evaluation. Finally, we discuss the potential future development
of the prototype.

Related work

Although there has been no attempt to automate spin detection in biomedical articles,
a number of works addressed developing automated aid tools to assist authors and readers
of scientific articles in performing various other tasks. Some of these tools were tested and
were shown to reduce the workload and improve the performance of human experts on the
corresponding task.

Authoring aid tools

Barnes et al. (2015) assessed the impact of a writing aid tool based on the CONSORT state-
ment (Schulz et al., 2010) on the completeness of reporting of RCTs. The tools was developed
for six domains of the Methods section (trial design, randomization, blinding, participants, in-
terventions, and outcomes) and consisted of reminders of the corresponding CONSORT item(s),
bullet points enumerating the key elements to report, and good reporting examples. The tool
was assessed in an RCT in which the participants were asked to write a Methods section of
an article based on a trial protocol, either using the aid tool (’intervention’ group) or without
using the tool (’control’ group). The results of 41 participants showed that the mean global
score for reporting completeness was higher with the use of the tool than without it.

Aid tools for readers and reviewers

Kiritchenko et al. (2010) developed a system called ExaCT to automatically extract 21 key
characteristics of clinical trial design, such as treatment names, eligibility criteria, outcomes,
etc. ExaCT consists of an information extraction algorithm that looks for text fragments
corresponding to the target information elements, a web-based user interface through which
human experts can view and correct the suggested fragments.

The National Library of Medicine’s Medical Text Indexer (MTI) is a system providing
automatic recommendations based on the Medical Subject Headings (MeSH) terms for indexing
medical articles (Mork et al., 2013). MTI is used to assist human indexers, catalogers, and
NLM’s History of Medicine Division in their work. Its use by indexers was shown to grow
over years (used to index 15.75% of the articles 2002 vs 62.44% in 2014) and to improve the
performance (precision, recall and F-measure) of indexers (Mork et al., 2017).

Marshall et al. (2015) addressed the task of automating assessment of risk of bias in clinical
trials. Bias is phenomenon related to spin: it is a systematic error or a deviation from the
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truth in the results or conclusions that can cause an under- or overestimation of the effect of
the examined treatment (Higgins and Green, 2008). The authors developed a system called
RobotReviewer that used machine learning to assess an article for the risk of different types of
bias and to extract text fragments that support these judgements. These works showed that
automated risk of bias assessment can be achieve reasonable performance, and the extraction
of supporting text fragments reached similar quality to that of human experts. Marshall et al.
(2017) further developed RobotReviewer, adding functionality for extracting the PICO (Pop-
ulation, Interventions/Comparators, Outcomes) elements from articles and detecting study
design (RCT), for the purpose of automated evidence synthesis. Soboczenski et al. (2019)
assessed RobotReviewer in a user study involving 41 participants, evaluating time spent for
bias assessment, text fragment suggestions by machine learning, and usability of the tool.
Semi-automation in this study was shown to be quicker than manual assessment; 91% of the
automated risk of bias judgments and 62% of supporting text suggestions were accepted by
the human reviewers.

The cited works demonstrate that semi-automated aid tools can prove useful for both
authors and readers/reviewers of medical articles and has a potential to improve the quality
of the articles and facilitate the analysis of the texts.

Spin: definition and types

We adopt the definition and classification of spin introduced by Boutron et al. (2010) and
Lazarus et al. (2015), who divided instances of spin into several types and subtypes.In our
project, we address the following types of spin:

1. Outcome switching – unjustified change of the pre-defined trial outcomes, leading to
reporting only the favourable outcomes that support the hypothesis of the researchers
(Goldacre et al., 2019). Outcome switching is one of the most common types of spin. It
can consist in omitting the primary outcome in the results / conclusions of the abstract,
or in the focus on significant secondary outcomes, e.g.:

The primary end point of this trial was overall survival. <...> This trial showed a
significantly increased R0 resection rate although it failed to demonstrate a survival

benefit.

In this example, the primary outcome ("overall survival"), the results for which were not
favourable, is mentioned in the conclusion, but it is not reported in the first place and
occurs within a concessive clause (starting by "although"). This way of reporting puts
the focus on the other, favourable, outcome ("R0 resection rate").
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2. Interpreting non-significant outcome as a proof of equivalence of the treatments, e.g.:

The median PFS was 10.3 months in the XELIRI and 9.3 months in the FOLFIRI arm
(p = 0.78). Conclusion: The XELIRI regimen showed similar PFS compared to the
FOLFIRI regimen.

The results for the outcome "median PFS" are not significant, which is often erroneously
interpreted as a proof of similarity of the treatments. However, a non-significant result
means that the null hypothesis of a difference could not be rejected, which is not equiva-
lent to a demonstration of similarity of the treatments. This would require the rejection
of the null hypothesis of a difference, or a substantial difference, in outcomes between
treatments.

3. Focus on within-group comparisons, e.g.:

Both groups showed robust improvement in both symptoms and functioning.

The goal of randomized controlled trials is to compare two treatments with regard to some
outcomes. If the superiority of the experimental treatment over the control treatment was
not shown, within-group comparisons (reporting the changes within a group of patients
receiving a treatment, instead of comparing patients receiving different treatments) can
be used to persuade the reader of beneficial effects of the experimental treatment.

Two concepts are vital for spin detection and play a key role in our algorithms:

1. The primary outcome of a trial – the most important variable monitored during the trial
to assess how the studied treatment impacts it. Primary outcomes are recorded in trial
registries (open online databases storing the information about registered clinical trials),
and should be defined in the text of clinical articles, e.g.:

The primary end point was a difference of > 20% in the microvascular flow index

of small vessels among groups.

2. Statistical significance of the primary outcome. Statistical hypothesis testing is used to
check for a significant difference in outcomes between two patient groups, one receiving
the experimental treatment and the other receiving the control treatment. Statistical
significance is often reported as a P-value compared to predefined threshold, usually
set to 0.05. Spin most often occurs when the results for the primary outcome are not
significant (Boutron et al., 2010; Fleming, 2016; Khan et al., 2019; Vera-Badillo et al.,
2016; Austin et al., 2018; Cooper et al., 2018; Kinder et al., 2018; Lockyer et al., 2013),
although trials with significant effect on the primary outcome may also be prone to spin
(Beijers et al., 2017).

150 Chapter 7



Trial results are commonly reported as an effect on the (primary) outcome3, along with
the p-value.

Microcirculatory flow indices of small and medium vessels were significantly

higher in the levosimendan group as compared to the control group (p < 0.05).

Statistical significance levels of trial outcomes are vital for spin detection, as spin is
commonly related to non-significant results for the primary outcome, or to selective
reporting of significant outcomes only.

Implementation

Our prototype allows the user to load a text (with or without annotations), run algorithms,
visualize their output, correct, add or remove annotations. The expected input is an article
reporting an RCT in the text format, including the abstract.

Figure 7-1 shows the interface with an example of a processed text.
The main items of the drop-down menu on the top of the page are Annotations, which

allows to visualize and manage the annotations, and Algorithms, which allows to run the
algorithms listed and explained below to detect potential spin and the related information.
The text fragments identified by the algorithms can be highlighted in the text. A report is
saved into the Metadata section of Annotations menu and can be saved into a file via the
Generate report item of the Algorithms menu.

Algorithms

Detection of spin and related information is a complex task which cannot by fully auto-
mated. Our system is designed as a semi-automated tool that finds potential instances of some
types of spin and extracts the supporting information that can help the user to make the final
decision on the presence of spin. In this section, we present the current functions of the system
according to the types of spin that they are used to detect.

As we aim at detecting spin in the Results and Conclusions sections of articles’ abstracts,
the detection of spin requires an algorithm analyzing the given article to detect its abstract and
the results and conclusions sections within the abstract. We will not mention this algorithm
in the list of algorithms for each spin type to avoid repetition. If we talk about extracting
some information from the abstract, it implies that the text structure analysis algorithm was
applied.

3It is important to distinguish between the notions of outcome, effect and result in this context: an out-
come is a measure/variable monitored during a clinical trial; effect refers to the change in an outcome ob-
served during a trial; trial results refer to the set of effects for all measured outcomes.

Chapter 7 151



Figure 7-1: Example of a processed text

Outcome switching

We focus on the switching (change/omission) of the primary outcome. Primary outcome
switching can occur at several points:

∙ the primary outcome(s) recorded in the trial registry can differ from the primary out-
come(s) declared in the article;

∙ the primary outcome(s) declared in the abstract can differ from the primary outcome(s)
declared in the body of the article;

∙ the primary outcome(s) recorded in the trial registry can be omitted when reporting the
results for the outcomes in the abstract;

∙ the primary outcome(s) recorded in the article can be omitted when reporting the results
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for the outcomes in the abstract.

Primary outcome switching detection involves the following algorithms:

1. Identification of primary outcomes in trial registries and in the article’s text.

2. Identification of reported outcomes from sentences reporting the results, e.g. (reported
outcomes are in bold):

The results of this study showed that symptom Scores in massage group were improved
significantly compared with control group, and the rate of dyspnea, cough and wheeze

in the experimental group than the control group were reduced by approximately 45%,
56% and 52%.

3. Assessment of semantic similarity of pairs of outcomes extracted by the above algorithms
to check for missing outcomes. We perform the assessment for the following sets of
outcomes:

∙ The primary outcome extracted from the registry are compared to the primary
outcome(s) declared in the article;

∙ The primary outcome extracted from the abstract are compared to the primary
outcome(s) declared in the body of the article;

∙ The primary outcome extracted from the article are compared to the outcomes
reported in the abstract;

∙ The primary outcome extracted from the registry are compared to the outcomes
reported in the abstract.

These assessments allow to detect switching of the primary outcome at all the possible
stages. If the primary outcome in the registry and in the article, or in the abstract and
body of the article differ, we conclude that there is potential outcome switching, which
is reported to the user. Similarly, if the primary outcome (from the article or from the
registry) is missing from the list of the reported outcomes, we suspect selective reporting
of outcomes, and the system reports it to the user.

In the example on the page 149, the system should extract "overall survival" as the
primary outcome, and "R0 resection rate" and "survival" as reported outcomes. The
similarity between "overall survival" and "R0 resection rate" is low, while the similarity
between "overall survival" and "survival" is high, thus, we conclude that the primary
outcome "overall survival" is reported as "survival".
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As semantic similarity often depends on the context, the conclusions of the system are
presented to the user, who can check them to make the conclusions on correctness of the
analysis.

4. Assessing the discourse prominence of the reported primary outcome (detected by the
previous algorithms) by checking if it is reported the first place among all the outcomes;
if it is reported in a concessive clause.

In the example above, the system will detect that the primary outcome "survival" is
reported within a concessive clause (starting by "although") and will flag the sentence
as potentially focusing on secondary outcomes.

Interpreting non-significant outcome as a proof of equivalence of the treatments

As we stated above, conclusions on the similarity/equivalence of the studies treatments
are justified only if the trial was of non-inferiority or equivalence type. Thus, we employ two
algorithms to detect this type of spin:

1. Identification of statements of similarity between treatments, e.g.:

Both products caused similar leukocyte counts diminution and had similar safety pro-
files.

2. Identifying the markers of non-inferiority or equivalence trial design, e.g.:

ONCEMRK is a phase 3, multicenter, double-blind, noninferiority trial comparing
raltegravir 1200mg QD with raltegravir 400mg BID in treatment-naive HIV-1–infected
adults.

If there is a statement of similarity of treatments while no markers of non-inferiority /
equivalence design are found, we conclude the presence of spin and report it to the user.

Focus on within-group comparisons

Any statement in the results and conclusions of the abstract that presents a comparison
of two states of a patient group without comparing it to another group is a within-group
comparison. This type of spin is detected by a single algorithm that identifies within-group
comparisons that are further reported to the user:

Young Mania Rating Scale total scores improved with ritanserin.
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Other algorithms

We support extraction of some information that is not directly involved in detection of
spin, but that can currently help user in spin assessment and that can be used in the future
when new spin types are added. The algorithms include:

1. Extraction of measures of statistical significance, both numerical and verbal (in bold):

Study group patients had a significant lower reintubation rate than did controls; six
patients (17%) versus 19 patients (48%), P<0.05; respectively.

2. Extraction of the relation between the reported outcomes and their statistical signifi-
cance, extracted at the previous stages. For the example above, we extract pairs ("rein-
tubation rate", "significant") and ("reintubation rate", "P<0.05").

These algorithms, in combination with the assessment of semantic similarity of extracted
outcomes, allows to identify the significance level for the primary outcome.

3. Identifying "hedge": presenting the findings with a certain level of uncertainty ("hedg-
ing") may result from the absence of sufficient evidence, which is also one cause of spin.
Even if the relation between hedging and spin has not been studied yet, we hypothesize
its existence and thus we decided to extract also markers of hedging (expressions reducing
the certainty of a statement, such as modal verbs, verbs like "suggest", "appear", etc.).

Methods and Results

In this section, we briefly outline the methods used in our algorithms, the datasets used
for evaluation, and the current performance of the algorithms. The details on development of
the algorithms, annotating the data and testing different approaches are described in detail
elsewhere; we provide here only a brief description of the best-performing method for each
task.

The methods we employ can be divided into two groups: machine learning, including deep
learning, used for the core tasks for which we have sufficient training data, and rule-based
methods, used for the simpler tasks or for tasks where we do not have enough data for machine
learning.

Rule-based methods

We developed rules for the following tasks:
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Algorithm Method Annotated dataset Precision Recall F1
Primary outcomes
extraction

Deep
learning

2,000 sentences / 1,694
outcomes

86.99 90.07 88.42

Reported out-
comes extraction

Deep
learning

1,940 sentences / 2,251
outcomes

81.17 78.09 79.42

Outcome similar-
ity assessment

Deep
learning

3,043 pairs of outcomes 88.93 90.76 89.75

Similarity state-
ments extraction

Rules 180 abstracts / 2402
sentences
whole abstract 77.8 87.5 82.4
results and conclusions 85.1 87.5 86.3

Within-group
comparisons

Rules 180 abstracts / 2402
sentences
whole abstract 53.2 90.6 67.1
results and conclusions 71.9 90.6 80.1

Abstract extrac-
tion

Rules 3938 abstracts 94.7 94 94.3

Text structure
analysis: sections
of abstract

Deep
learning

PubMed200k 97.82 95.81 96.8

Extraction of sig-
nificance levels

Rules 664 sentences / 1,188
significance level mark-
ers

99.18 96.58 97.86

Outcome - signif-
icance level rela-
tion extraction

Deep
learning

2,678 pairs of outcomes
and significance level
markers

94.3 94 94

Table 7.1: Overview of algorithms, methods, results and annotated datasets

∙ To find the abstract, we use regular expression rules that are evaluated on the set of 3938
PubMed Central (PMC)4 articles in XML format with a specific tag for the abstract,
used as the gold standard.

∙ To extract outcomes from trial registries, we use regular expressions to extract the trial
registration number from the article; using it, we find on the web, download and parse
the registry entry corresponding to the trial.

∙ To extract significance levels, we use rules based on regular expressions and token, lemma
and pos-tag information.

∙ To assess the discourse prominence of an outcome, to detect "hedge", statements of
similarity between treatments, within-group comparisons and markers of non-inferiority
design, we employ rules based on token, lemma and pos-tag information.

4https://www.ncbi.nlm.nih.gov/pmc/
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We annotated abstracts of 180 articles (2402 sentences) for similarity statements and
within-group comparisons. The proportion of these types of statements in our corpus is
low: we identified only 72 similarity statements and 127 within-group comparisons. The
evaluation of statements of similarity between treatments and within-group comparisons
was performed with two settings: 1) using the whole text of abstracts; 2) using only the
Results and Conclusions sections of the abstract, which expectedly raised the precision
(Table 7.1).

Machine learning methods

For the core tasks of our system, we use a deep learning approach that was recently proved
to be highly successful in many NLP applications. It employs language representations pre-
trained on large unannotated data and fine-tuned on a relatively small amount of annotated
data for a specific downstream task. The language representations that we tested include:
BERT (Bidirectional Encoder Representations from Transformers) models (Devlin et al., 2018),
trained on a general-domain corpus of 3.3B words; BioBERT model (Lee et al., 2019), trained
on the BERT corpus and a biomedical corpus of 18B words; and SciBERT models (Beltagy
et al., 2019), trained on the BERT corpus and a scientific corpus of 3.1B words. For each task,
we chose the best-performing model:

∙ to identify sections within the abstract, we use BioBERT model fine-tuned on the anno-
tated dataset introduced in Dernoncourt and Lee (2017).

∙ to extract primary outcomes, we use the BioBERT model fine-tuned on our manually
annotated corpus of 2000 sentences with 1694 primary outcomes.

∙ to extract reported outcomes, we use the SciBERT model fine-tuned on our manually
annotated corpus of 1940 sentences with 2251 reported outcomes.

∙ to assess the similarity between outcomes, we use the BioBERT model fine-tuned on
3,043 pairs of outcomes annotated for semantic similarity.

∙ to extract the relation between reported outcome and statistical significance levels, we
use the BioBERT model fine-tuned on 2,552 annotated relations.

The current functionality, methods in use, annotated datasets and the best achieved results
are outlined in Table 7.1. Performance is assessed per-token for outcome and significance level
extraction and per-unit for other tasks.
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Conclusions

We presented a first prototype tool for assisting authors and reviewers to detect spin and
related information in abstracts of articles reporting RCTs. The employed algorithms show
operational performance in complex semantic tasks, even with low volume of available anno-
tated data. We envisage two possible applications of our system: as an authoring aid or as
peer-reviewing tool. The authoring aid version can be further developed into an educational
tool, explaining the notion of spin and its types to the user.

Possible directions for future work are improving the implementation (adding prompts
for interaction with the user; facilitating installation process), algorithms (improving current
performance, adding detection of new spin types), application (promoting the tool among the
target audience; encouraging users to submit their manually annotated data, to be used to
retrain and improve the algorithms), and optimization (parallel processing of multiple input
text files). Our system cal be easily incorporated into other text processing tools.

Availability and requirements

Project name: DeSpin

Project home page: The source code and models for the system, together with a short info
file describing how to set it ut, are available at:

https://github.com/aakorolyova/DeSpin

(to be released on GitHub).

Operating system(s): Linux

Programming language: Python3

Other requirements:
Python packages required:

∙ nltk3.4

∙ numpy1.16.4

∙ pandas0.24.1

∙ pickle

∙ sklearn0.20.3

∙ spacy2.0.18
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∙ tensorflow1.13.1

∙ tkinter

∙ unicodedata

∙ urllib

Language models required:

∙ BioBERT – v1.0-pubmed-pmc – Pre-trained weight of BioBERT v1.0 (+PubMed 200K
+PMC 270K):

https://github.com/naver/biobert-pretrained/releases

∙ SciBERT – scibert-scivocab-uncased model for tensorflow:

https://github.com/allenai/scibert

License: TBA

Funding
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Chapter 8

What is a primary outcome? A corpus

study. Anna Koroleva, Elizabeth Wager,
Patrick MM Bossuyt. Submitted

Context

We have shown that spin, at least some types of it such as outcome switching, can be
detected automatically. We found that it can be useful to return to the starting point of our
work with a more informed point of view in order to perform a refinement approach, looking
at improving the definition of what is spin and related notions.

In the course of our work on outcome extraction, we realised that the use of the notion
"outcome" in both articles and trial registries is far from uniform. What is meant by an
"outcome" differs substantially from text to text and from author to author. Although there
are medical dictionaries that define the notion "outcome", there does not seem to have been
any attempt to address the variability that is observed in the real world data. We believe
that describing and understanding the variability in use of the term "outcome" is important
in order to ensure its correct understanding and more uniform use in the future.

Hence, in this chapter we report on a study we did to collect and systematise the data on
the use of the term "outcome" and its possible synonyms ("end point", "measure"), that we
observed in the articles of our corpus and trial registries.

Authors’ contributions

All authors (AK, EW, and PMMB) made substantial contributions to the design and
implementation of the study and to the interpretation of data. AK collected and analyzed the
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data and drafted the manuscript. EW and PMMB revised the draft critically for important
intellectual content.

Abstract

Background: Outcomes are a key element for clinical trials. Despite the existing guidance
on how to report trial outcomes in an informative and complete manner, the reporting quality
remains suboptimal, which poses challenges to both manual and automatic analysis of reports
of clinical trials.

Methods: We conducted a corpus study of 1694 outcomes extracted from research articles
and 6221 outcome entries extracted from trial registries. We used qualitative and quantitative
methods to study the ways primary outcomes are described in the texts of articles reporting
randomized controlled trials and in trial registry entries. We assessed the structure of the
fields dedicated to outcomes in different registries, length of outcomes, presence of related
items (such as measurement tools, time points, analysis metrics used), the consistency in
filling in trial registration fields describing an outcome, the ways of introducing outcomes in
the text and the observed ambiguities.

Results: We found a substantial diversity in how primary outcomes are defined in articles
and registries, in terms of length and the included information. We observed an ambiguity in
the use of the words "outcomes", "end-point", "measure", etc., used to introduce an outcome
in the text. We summarised the differences in the structure of trials registries in terms of the
presence of separate fields for time points and measurement tools and for each of the outcomes
of a trial. We describe inconsistencies in the description of primary outcomes in trial registries,
in particular, in introducing the information about the time points: the structured form for
describing an outcome provided by many registries is often ignored, with time points being
presented both in a separate time point field and in the outcome field, or in the outcome field
instead of the time point field.

Conclusions: There is a great inconsistency in the presentation of clinical trial outcomes in
trial registries and research articles, which creates challenges to analysis of trial reports. Stan-
dardizing the terminology of outcome reporting requires substantial time and effort. Increased
consultation of trial registries by editors and peer reviewers handling the report of a trial could
help reach more consistency between outcomes in registries and articles and increase the rigour
and transparency in reporting clinical trials.

Keywords: Outcomes, Research reporting, Corpus study, Trial registries

Introduction

Outcomes are a key element in clinical trials. Trial outcomes should be pre-defined before
the trial starts and should not be changed without a reasonable explanation.

Pre-defining trial outcomes is vital to avoid selective reporting of significant or positive
outcomes (Andrade, 2015; Ferreira and Maria Patino, 2017). Unjustified changes in the pre-
defined trial outcomes (outcome switching) includes reporting only a number of pre-defined
outcomes (i.e. selective reporting) or adding new outcomes (Goldacre et al., 2016, 2019).
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Outcome switching is a type of reporting bias and spin and leads to unjustified conclusions
and recommendations via reporting only the favourable outcomes that support the hypothesis
of the authors (or the message of the sponsors) (Boutron et al., 2010; Lockyer et al., 2013;
Lazarus et al., 2015; Slade et al., 2015; Weston et al., 2016; Altman et al., 2017; Chiu et al.,
2017; Diong et al., 2018; Boutron and Ravaud, 2018). The presence of spin makes clinicians
overestimate the effects of the experimental treatment (Boutron et al., 2014), which poses a
serious healthcare issue. Besides, spin in research articles provokes spin in health news and
press releases (Haneef et al., 2015; Yavchitz et al., 2012), which can raise false expectations
regarding the treatment among the readers.

Therefore, consistent and complete reporting of results for all pre-defined outcomes is a
matter of high importance. Clear and unambiguous definition of trial outcomes is essential
in any assessment of manuscripts by peer reviewers or systematic reviewers, but it is even
more important for automated data analysis techniques (e.g. Natural Language Processing
- NLP) which are being developed to automate some parts of the systematic review process
(cf. Ananiadou et al. (2009); O’Mara-Eves et al. (2015)) and peer review (cf. Gehringer et al.
(2018); Kang et al. (2018)).

Automatic extraction of trial outcomes from research articles and registries is an essential
part of these applications (Blake and Lucic, 2015). High diversity and ambiguity of natural
language texts have always created difficulties for NLP algorithms; on the contrary, concise and
well-structured statements are rather easy to analyse automatically. Thus, in order to allow
for automated outcome extraction, it is necessary to understand the complexity of this notion
and the related textual expressions, and to try and unify the ways outcomes are presented. An
attempt to standardize the reporting of trial outcomes was made by the CONSORT Statement
for randomized clinical trials (Begg et al., 1996; Schulz et al., 2010), and SPIRIT guideline
(Chan et al., 2013) for protocols of interventional trials. However, a number of studies showed
that the quality of reporting of clinical trials remains suboptimal, despite the widespread
acceptance of the use of guidelines and checklists (Turner et al., 2012; Samaan et al., 2013).

Our primary work lies in the domain of automatic extraction of information, in particular
trial outcomes, from medical articles and trial registries. In the course of our research, we no-
ticed that outcomes of clinical trials are highly diverse with regard to the information included
in the definition, the ways of introducing an outcome in a text and even the ways of presenting
an outcome in registries.

Outcomes of clinical trials can be represented by a binary, numerical or qualitative measure.
Measurement tools (questionnaires, scores) can be used to measure qualitative outcomes. Other
aspects important for trial outcome definition, as stated in the SPIRIT guideline (Chan et al.,
2013) include: analysis metric (e.g., change from baseline, final value, time to event), method of
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aggregation (e.g., median, proportion), and time points. Other items that can be included in an
outcome description are: the chosen method of analysing results (intent-to-treat, per protocol);
covariates that the analysis is adjusted for; reasons for using a particular outcome (such as
explanation of relevance, references to previous works using the outcome). An outcome may
be a composite of several measures or may serve as a surrogate for another outcome (Ferreira
and Maria Patino, 2017).

We conducted this linguistic study based on a corpus of PMC articles and related trial
registry entries, aiming at describing the diversity of the explicit definitions of the primary
outcomes in medical articles and in trial registries to answer the following questions:

∙ what is understood by a primary outcome?

∙ how are primary outcomes presented in an article?

∙ how many primary outcomes can a trial have?

∙ which items are commonly included in a definition of a primary outcome?

∙ what information structure do trial registries use for primary outcomes?

∙ how similar/different are different trial registries with regard to the information struc-
ture?

∙ how similar/different are definitions of the primary outcome in journal articles compared
to those in registries?

Our aim for describing the diversity in presentation of trial outcomes is two-fold. First, the
understanding of the characteristics of outcomes is important for the NLP community working
on automating the identification of trial outcomes. Second, consistency of outcome presentation
in trial registries and research articles is vital to ensure the rigour and transparency in clinical
research reporting, which makes our topic interesting for a broad clinical community.

Methods

We conducted a corpus study of research articles reporting randomized controlled trials
(RCTs) and related trial registry entries.

Trial registration entries were obtained automatically: trial registration numbers were found
in the articles with the help of regular expressions (patterns, consisting of one or more char-
acter literals, operators, or constructs, that are used by a search engine to match the input
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text1); corresponding registry entries were accessed, downloaded in HTML format, which is
a structured format for storing data, and parsed with a Python script to extract the target
data elements (outcomes, time points, measurement methods) from the downloaded structured
registry entry.

The qualitative methods we used consisted in observing and describing the linguistic phe-
nomena in the corpus. The quantitative methods we used include calculation of different
numeric parameters of individual phrases (length measured in words and symbols), of the
corpus in general (numbers of occurrences of certain words and patterns). In particular, we
calculated the number of outcomes that contain words or phrases referring to the measurement
tool used (such as "measured as", "rated using"), to time points (such as "day", "baseline",
"follow up"), to analysis metric (such as words denoting a change: "increase", "improvement";
words denoting time to event), to aggregation method (such as "mean", "median", "propor-
tion"), to type of analysis (such as "intention-to-treat", "per-protocol"). We also calculated
the number of outcomes that state explicitly the between-group comparison performed. Reg-
ular expressions used for each search are presented in the Table 8.1. These expressions were
manually crafted and tested on the corpus of outcomes.

For trial registry data, we performed the search for time points in outcomes extracted from
the registries that do not have separate fields for these types of information and from all the
registries, to check if the difference in structure of registries impacts the way outcomes are
defined.

Apart from that, we report our observations on the usage of the notion of outcome in liter-
ature. Besides, we developed and pilot-tested a survey aimed at primary outcome extraction.
We share some experienced from this pilot.

Data

Articles

Our initial text corpus consisted of 113,339 articles automatically downloaded from PMC.
In order to select the articles reporting RCTs, we ran a script to automatically check the
Publication type field in the metadata of the articles. 47943 articles had no publication type,
and 61458 articles had publication type different from "Randomized controlled trial". This
check resulted in a corpus of 3938 articles from PubMed Central with publication type "Ran-
domized controlled trial". The articles were published between 2000 and 2012. From these

1https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-
reference
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articles, we randomly selected 2,000 sentences (using Python NLTK library2 for sentence split-
ting) containing the words "outcome", "end-point" or other synonyms ("measure, "variable",
etc.) and the word "primary" or its equivalent ("core", "main", etc.), where the latter pre-
cedes the former and the distance between them is not more than 3 words. We manually
annotated primary outcomes with the help of our developed annotation tool. For example,
for a phrase "The primary outcome of our trial was progression-free survival" we annotated
the fragment "progression-free survival". We annotated the longest text fragment containing
information about the primary outcome in a given trial, including time points, measurement
tools, etc. Coordinated outcomes were annotated as separate items, while composite outcomes
were annotated as one item. 1,694 primary outcomes were annotated.

Figure 8-1 shows the number of articles downloaded, checked for publication type, and
included on the final corpus.

We annotated only explicit definitions of the primary outcome. Statements where the in-
formation about the primary outcome can potentially be inferred from the context (statements
of objectives, description of measured variables) were excluded, e.g.:

This study investigated the efficacy (trough forced expiratory volume in 1 second

[FEV1] response) and safety of additional treatment with once-daily tiotropium 18g via the
HandiHaler in a primary care COPD population. Secondary endpoints included: trough forced
vital capacity (FVC) response, weekly use of rescue short-acting beta-agonist, and exacerbation
of COPD (complex of respiratory symptoms/events of >3 days in duration requiring a change
in treatment).

Trial registries

We extracted associated entries for the articles of our corpus. We note that this gives us
a limited dataset of registry entries; a larger dataset could be obtained by a large-scale web
crawling of registries. However, our primary goal remains the analysis of the 3938 articles
of our corpus and a comparison of the ways in which outcomes are presented in the journal
articles with those in the registries. Thus, we did not perform extraction of outcomes from
registry entries unrelated to the articles of our corpus.

If a trial has corresponding entries in several registries, we extracted all entries. We parsed
the following registries: Australian New Zealand Clinical Trials Registry (ANZCTR), Brazilian
Clinical Trials Registry (ReBec), Chinese Clinical Trial Registry (ChiCTR), Clinical Research
Information Service (CriS) of the Republic of Korea, Clinical Trials Registry of India (CTRI),
ClinicalTrials.gov, EU Clinical Trials Register (EU-CTR), German Clinical Trials Register

2http://www.nltk.org
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(Deutsches Register Klinischer Studien – DRKS), International Standard Randomised Con-
trolled Trial Number Register (ISRCTN), Netherlands Trial Registry (NTR), Pan African
Clinical Trials Registry (PACTR), Sri Lanka Clinical Trials Registry (SLCTR), University
hospital Medical Information Network Clinical Trials Registry (UMIN), and WHO Interna-
tional Clinical Trials Registry Platform.

The structure of registries differ: registries may have a separate field for each of listed
outcomes, for time points for each outcome, or for general time points for all outcomes, for
measurement method (tool). The structure of registries with regard to presence of separate
fields is shown in the Table 8.2. ChiCTR has a separate field for the outcome type (pri-
mary/secondary/additional/adverse event).

The WHO portal does not have a visually separated field for time points, but its HTML
structure has a tag for outcome time frames. ClinicalTrials.gov does not have either a visually
separated field of HTML tag, but the outcome time frames are commonly put in square brackets
after the outcome. We considered that these registries have a time points field. Both these
registries have HTML tags for each of listed outcomes.

Usage of the separate fields is not mandatory: the fields for time points and measurement
methods can be left empty; at the same time, information about time points can be duplicated
in the dedicated field and within a description of the corresponding outcome. Several outcomes
can be listed in one field, instead of using several fields provided by a registry.

One registry (EU-CTR) uses the phrase "End point" instead of "outcome" in the name of
the corresponding field.

Registration of several primary outcomes is allowed by registries: several registries have a
possibility of adding multiple fields for primary outcomes, while others use the plural form of the
words "outcome"/"end point" in the field name (ANZCTR, ReBec, CriS, ClinicalTrials.gov,
EU-CTR, SLCTR, UMIN).

We extracted the field describing the primary outcome. We obtained 6,221 unique out-
come registry entries (Table 8.3 shows the numbers of entries from each trial registry in our
dataset), with 3,353 outcomes after normalization and deduplication. Time frames, when
they are presented in square brackets in the text, were removed from the outcome text before
deduplication.
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Analysis

Qualitative analysis

How are primary outcomes introduced in a text?

The most typical way of introducing a primary outcome is to use the words "primary
outcome"; however, both these words can be replaced by their partial synonyms. For the word
"primary", we identified the words "main", "principal", "key" as potential synonyms. For
the word "outcome", we identified the words "end-point" (with spelling variants "end point",
"endpoint"), "measure", "variable", "parameter", "criterion" as potential synonyms. The
most commonly used combinations in our corpus (defined in our search as when the two words
occurred together or with no more than 3 words separating the adjective and noun): "primary
outcome" - 1222 occurrences, "primary measure" - 458 occurrences, "primary end point" (with
spelling variants) – 387 occurrences, "main outcome" = 151 occurrences, "primary variable"
= 75 occurrences. The diversity in term usage may create ambiguity as it is not always clear
whether the term introduces the primary outcome or another type of variable.

The usage of the words "end point" vs. "outcome" presents an interesting issue. Some
sources state that these terms are not exact synonyms. As stated in Curtis et al. (2019), the
word "outcome" usually refers to the measured variable (the authors’ example: "PROMIS
Fatigue score"), while the word "endpoint" is used to refer to the analyzed parameter (the
authors’ example: "change-from-baseline at 6 weeks in mean PROMIS Fatigue score"). On
the other hand, the NCI Dictionary of Cancer Terms interprets an end point as a particular type
of outcome1: "an event or outcome that can be measured objectively to determine whether the
intervention being studied is beneficial". However, we did not observe any semantic difference
between the terms "outcome", "end-point" or "measure" (e.g. they are all used to introduce
the quality of life as the main variable measured in the trial). One out of 14 analyzed trial
registries used the word "end point" instead of "outcome", supporting the hypothesis that
they have synonymous meaning.

However, the word "end-point" is also used to refer to the final time point in a trial, e.g.:

Our primary outcome measures for OCD symptoms were (1) the change in YBOCS score
from baseline to endpoint and (2) the clinical global impression of improvement (CGI-I) at

endpoint.

The primary response variable is change in total MADRS-score at endpoint versus base-
line.

The ambiguity in use of the word "end-point", the disagreements in definitions of end-point
vs. outcome, and the inconsistency between the definitions and the usage of these terms prove

172 Chapter 8



that the usage of terms in this area is still not completely stable, even for such an important
and widely used notion as trial outcomes.

What is considered to be an outcome?

As observed from our data, there are substantial differences in what authors mean by "an
outcome". There are several dimensions of the diversity in defining an outcome. It concerns
first of all the inclusion/exclusion of the relevant items (measurement tools, time points, etc.),
describing what, how, when was measured and how it was analysed. Different combinations of
items are common:

1. outcome measure name only: "disease burden", "BMI". Note that even for qualitative
outcomes "disease burden") measurement tool may not be defined.

2. outcome measure + measurement tool used: "depression measured by the BDI-II", "the
QALY based on the EQ-5D".

3. outcome measure + time points: "claim duration (in days) during 12 months follow-up"

4. outcome measure + analysis metric: "change in SBP", "the change in prevalence of atyp-
ical cells", "time to progression", "the time between study inclusion and first competitive
employment that lasted three months or longer"

5. outcome measure + analysis metric + time points: "change in HOMA index, from week
0 (pre-treatment) to week 6"

6. outcome measure + aggregation metric: "the proportion of women reporting a live birth
defined as the delivery of one or more living infants, >20 weeks gestation or 400 g or
more birth weight"

7. outcome measure + analysis metric + aggregation metric: "mean IMT-CCA change"

8. outcome measure + analysis metric + time points + aggregation metric: "The mean
decrease in HAM-D score from baseline"

Rarely, the type of analysis can be included: "the change in IOP from baseline to week 4 at 8
a.m. and 4 p.m. for the per protocol (PP) population using a "worse eye" analysis".

An outcome description may state that the outcome is a surrogate measure: "a surrogate
marker, Ang-2", - and may also refer to the substituted measure: "the active local radiation
dose leading to metastasis infiltrating T cells as a surrogate parameter for antitumor activity".

Apart from aspects describing what was measured and how, an outcome may explicitly
state the comparison between groups that was performed: "reversal of metabolic syndrome
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in the intervention group subjects compared to controls at 12 months follow-up", "6 MWT
in the treatment group as compared to control group at 180 days post randomization", "a
comparison of the incidence of clinical episodes of malaria in children in the 2 intervention
groups, measured by PCD", "A comparison of intra- and post-dialytic complications among
study groups", "the difference in NSCL / P recurrence rates between the two groups", "the
differences in birth weight between the 2 groups".

Further, the primary outcome can be understood as some target value of a certain variable
to be achieved: "a difference of ≥20% in the microvascular flow index of small vessels among
groups". In this case, "the microvascular flow index of small vessels" is the actual outcome
measure, while "a difference of ≥20%" refers to the target that the researchers expect to
achieve.

Mention of target values can be combined with other items describing an outcome, in
particular with aggregation metric (proportion of patients): "the proportion of subjects who
achieved targets for compression depth", "the proportion of OHCA patients that achieve the
target temperature within six hours of ED arrival". Alternatively, outcome as a target can be
expressed as a definition of an event expected in the intervention group, with no mention of
the controls: "a decrease in carer burden in the intervention group three months after receiving
the DA".

Besides, there is a tendency observed in registries, among our pilot survey participants, in
the literature regarding outcomes, and in the systematic reviews: using the whole sentence
describing an outcome ("The primary outcome of our trial was X measured as Y at time
points 1, 2") as an outcome. In registries, this tendency is observed through the number
of entries in the primary outcome field that contain not only the outcome itself, but a free
text describing it. In the pilot survey, some participants, when asked to extract the primary
outcome from a given text fragment, extract the whole sentence instead of the expected noun
phrase, despite the examples provided in instructions. In literature, some works addressing
extraction of the trial outcomes, address in fact extraction of the sentences. In systematic
reviews, the researchers conducting the information extraction, often copy a whole sentence
describing an outcome to the outcome field of the extraction form.

Of note, one of the works on automatic outcome extraction (Demner-Fushman et al., 2006)
defines an outcome as "The sentence(s) that best summarizes the consequences of an inter-
vention". While in this case the authors refer to reported outcomes and not to the primary
outcome, it is additional evidence of the fact that the term "outcome" may denote not only a
concept, but also a whole sentence where the concept is introduced.
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Quantitative analysis: how great the diversity in primary outcome

definitions is?

Length

The length of outcomes both in the articles and in the registries varied substantially and
differed between the outcomes in the articles and those in the registries (Table 8.4).

Syntactic characteristics

Syntactically, the primary outcome definitions were most often represented by a noun
phrase. But they can also be represented by a verb phrase (13 / 1694 outcomes): "to de-
termine the time from beginning the scenario to correct insertion of the laryngeal airway after
the students’ opinion", - or clause (6 / 1694 outcomes): "whether the GP had provided patients
with a written asthma action plan (WAAP yes / no)".

Multiple primary outcomes

There are 793 multiple (coordinated) primary outcomes in the sentences of our corpus. At
least 800 registry outcomes contain numbered lists.

The way multiple/single outcomes are introduced in a text was not coherent: plural form
of the noun "outcome" (or synonyms) can be used to introduce a single outcome:

Primary outcomes are death from causes at study end (follow-up until at least 46 weeks
after randomization).

Primary endpoints The primary endpoints of the study are the primary patency at
1-year follow-up.

At the same time, singular form of the noun "outcome (or synonyms) can be used to
introduce multiple outcomes:

The primary outcome was HbA1c, lipid levels, blood pressure, BMI after 24 months
of follow-up.

Composite outcomes Composite outcomes were uncommon in our corpus: we identified
15 composite outcomes in texts and 54 in registries.

Registry entries

At least 384 registry outcomes contain the word "primary" or synonyms and "outcome" or
synonyms at a distance no more than 3 words (search for with regular expression

"(primary|main|principal|key)\\s+(\\w+\\s+){0,3}(outcome

|end[ -]*point|measure|variable|parameter|criterion)")
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, i.e. they contain free-text sentences of paragraphs describing the primary outcomes.

Information included in an outcome definition

140 out of 6,221 registry entries do not have registered primary outcomes ("Not provided
at time of registration").

The table 8.5 provides statistics of items that may be included into a definition of a primary
outcome, for outcomes from articles and registries. The percentages for registry outcomes are
calculated on the basis of 3430 deduplicated outcomes.

Out of 3312 deduplicated outcomes extracted from registries with separate field for time
points, 1214 (36.65%) outcomes still contain indications of time points within the text in the
outcome field. This fact means that the researchers either do not use the structure provided
by registries (indication time points in the outcome field), or duplicate this information (in
both outcome field and time points field).

Out of 6029 non-deduplicated outcomes extracted from registries with separate field for
time points,

2731 (45.3%) have non-empty timepoint field. 584 (9.69%) outcomes have a non-empty
timepoint field and an indication of time point within the definition of outcome, e.g.:

Change from Baseline in Dietary KAB Score at 12 months [Time Frame: Baseline & 12
months]

1963 (32.56%) outcomes have an empty time point field and do not have any indication of
time in the outcome definition.

Out of 963 deduplicated outcomes extracted from registries without a separate field for
time points, 629 (65.32%) contain indications of time.

Discussion

When results for outcomes of a trial are reported, they often include several of outcome-
related information items, e.g.:

∙ Time points, analysis metrics:

There were similar, significant improvements in functional capacity for the RT and
NMES groups at week 8 compared to week 1 (p≤0.001) and compared to the control
group (p<0.005).

∙ Time points, aggregation metrics:
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At 5 min post-dose on Day 1, the mean FEV 1 for both indacaterol doses was
significantly higher than placebo (by 120 and 130 mL for indacaterol 150 and 300 𝜇 g,
respectively; p < 0.001) and tiotropium (by 80 mL for both doses; p < 0.001).

∙ Covariates:

Total nutrition knowledge score at follow-up, adjusted for baseline score, deprivation,
and school size, was higher in intervention than in control schools (mean difference =
1.1 ; 95% CI: 0.05 to 2.16; p = 0.042).

∙ Type of analysis:

Results For BMD, no intent-to-treat analyses were statistically significant; however,
per protocol analyses (ie, only including TC participants who completed ≥75% training
requirements) of femoral neck BMD changes were significantly different between TC and
UC (+0.04 vs -0.98%; P = 0.05).

However, as we have shown, these items are rarely present in the description of outcomes.
This fact may pose difficulties when assessing an article for outcome switching and reporting
bias, as it is impossible to define whether all the aspects of a pre-defined outcome correspond
to a reported outcome.

Limitations

This study has a number of limitations.

First, our data covers only the entries from trial registries that correspond to the articles
in our initial corpus. In particular, our sample is imbalanced with regard to the number of
entries from different registries. Obtaining more data from registries could be interesting to
get a more complete view of the topic but it is outside the scope of our current work.

One difficulty in working with registry data is handling duplicate entries. We collected
data from primary registries as well as through the WHO portal. As a result, for some trials
we obtained duplicate entries. To account for this, we removed duplicate outcomes when
analysing outcomes from registries for occurrence of information elements. However, to analyse
the proportion of empty/non-empty time point fields, the analysis was conducted without the
deduplication step because it requires analysis of the registry structure, thus entry from each
registry is considered separately, even if they refer to the same trial.

Second, we did not annotate all the sentences potentially introducing primary outcomes in
the articles. The total number of sentences that contain the words "outcome" or its synonyms
and the word "primary" or its equivalent, where the latter precedes the former within a distance
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of 3 words, is over 10,000, out of which we annotated 2,000 sentences. Annotation of all the
sentences would require significantly more time and effort, which the current annotated set
already provides substantial data to observe the variability in outcome definitions.

Third, some observations that we report from our pilot survey aimed at outcome extraction
are based on a small sample of participants. To estimate the generalizability of these obser-
vations, a large-scale survey would be needed. However, these observations are in line with
tendencies in other data sources, which makes them interesting as supporting findings.

Conclusions

In this corpus study, we showed that primary outcome definitions in medical articles and in
trial registries vary significantly in terms of both length and the included information. Registry
entries tend to contain outcome-related information items, such as time points, measurement
methods, analysis metrics, type of analysis, more often than outcomes from journal articles.
Information on aggregation metric, type of analysis, and covariates used is rarely included in
outcome definitions, although these are vital for understanding the method of analysis of the
outcome in question.

Multiple primary outcomes are common: only 53.2% of annotated outcomes in the articles
were single. Trial registries do not discourage the practice of having multiple outcomes.

There is some redundancy in defining outcomes in articles and registries. First, outcome
definitions may include definition of comparison between treatment groups, which is already
implied by study design. Second, some registry outcomes include a full-text definition of
outcome ("The primary outcome was ..."), instead of the outcome name only.

The ways of introducing an outcome in the text vary and have some ambiguity regarding
the use of the synonyms of the word "outcome" ("end-point", "measure") and of the word
"primary". This can cause incorrect classification of an outcome as the primary one.

The understanding of the term "outcome" can also differ, as some authors interpret outcome
not as a measured variable, but as a target value for a variable. Besides, the term "outcome"
may denote not only a concept, but also a whole sentence where the concept is introduced.

Primary outcomes can be introduced implicitly, as shown by examples, although we have
not studied these cases and their prevalence in detail.

We provided an overview of differences in structure of a number of trial registries: some
registries have separate fields for certain types of information (time points, measurement meth-
ods) or for each of the listed outcomes, thus encouraging a structured description of outcomes,
while other registries have only one field for all outcome-related information.

We showed that researchers registering trials are not consistent in filling registry fields:
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36.65% of outcomes in registries with separate field for time points have the indication of time
points in the outcome field. Some researchers fill the timepoints field but still mention time
points in the outcome field (9.69%). At the same time, more than a half of outcomes from
these registries have an empty timepoint field and no indication of time points in the outcome
field.

All the listed discrepancies in defining an outcome, observed even in a rather small data
sample, prove that the notion of a primary outcome is not as clear and well-defined as it may
seem to be, given the scale and importance of its use. This may lead to difficulties in manual
extraction of trial outcomes by researchers conducting systematic reviews and in assessments
of articles for outcome reporting bias and outcome switching. Further, highly diverse ways
of defining an outcome create obstacles for automatic extraction of outcomes from medical
articles and registries: in particular, to check for outcome switching, the computer needs to
extract all the outcome-related types of information separately, while currently they are mixed
both in registries (despite the expectation that registries provide a structured presentation of
information) and in article texts.

This work revealed a great inconsistency in the ways of how outcomes of clinical trials are
defined and represented. We envisage that the lack of standardization in presenting trial out-
comes is unlikely to change in the near future, as standardizing the terminology of a domain
is always a challenge, it requires substantial time and effort. This fact implies that, in the
foreseeable future, any automated tools aiming to detect outcomes of clinical trials and, conse-
quently, recognise outcome-related spin will be facing the challenges resulting from variability
and lack of consistency in presentation of outcomes.

As a possible way of tackling the problem of inconsistency in outcome presentation, we can
suggest journal editors and peer reviewers to increase the consultation of trial registries when
handling the report of a trial, to aim for more consistency between outcomes in registries and
articles. This could help to increase the rigour and transparency in reporting clinical trials
and to reduce potential spin in reporting trial outcomes, contributing to fair representation of
trial results.

Availability of data and material

The data collected and analyzed in this article is freely available in the Zenodo repository:

http://doi.org/10.5281/zenodo.3343029

http://doi.org/10.5281/zenodo.3234811
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Figures

Figure 8-1: PRISMA flow diagram

PRISMA 2009 Flow Diagram

From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-
Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit www.prisma-statement.org.
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Tables

Item Regular expression

Measure
-ment
tool

^.*((assessed|measured|investigated|analyzed|studied
|examined|evaluated|estimated|calculated|explored|tested|
recorded|based|defined|rated|quantified|marked|determined|
considered)\s+(with|by|as|using|on|through)|using).*$

Time
points

^.*\b(time[ -]*(point|frame)|year|month|week|day|hour|
period|baseline|decade|follow[- ]?up|t\d+)s?\b.*$

Analy-
sis
metric

^.*\b(alteration|amelioration|change|decline|decrease|
drop|elevation|enhancement|fall|gain|improvement|increase|
loss|raise|reduction|rise|worsening|time\s+(to|between))
\b.*$

Aggre-
gation
metric

^.*\b((average|mean|median|AUC)\b|(proportion|percent|
percentage) of).*$

Type
of ana-
lysis

^.*\b(per[- ]?protocol|intent\S*[- ]to[- ]treat|PP|ITT)
\b.*$

Covari-
ates

^.*(adjust|co[ -]*varia).*$

Compari-
son

^.*(comparison|\b(between|among|in|with|to|compared|
difference|relative)\s+(\w+\s+){0,3}(group|arm|treatments|
interventions|control)).*$

Table 8.1: Structure of outcome-related fields in trial registries
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Registry Separate fields for: No
sepa-
rate
fields

time
points
– one
for each
outcome

time
points –
one for
all out-
comes

measure-
ment
method

each of
listed
out-
comes

Australian New Zealand Clinical
Trials Registry (ANZCTR)

+ - - + -

Brazilian Clinical Trials Registry
(ReBec)

- - - - +

Chinese Clinical Trial Registry
(ChiCTR)

+ - + + -

Clinical Research Information
Service (CriS) of the Republic of
Korea

+ - - + -

Clinical Trials Registry of India
(CTRI)

+ - - + -

ClinicalTrials.gov + - - + -
EU Clinical Trials Register (EU-
CTR)

- + - - -

German Clinical Trials Register
(Deutsches Register Klinischer
Studien – DRKS)

- - - - +

International Standard Ran-
domised Controlled Trial Num-
ber Register (ISRCTN)

- - - - +

Netherlands Trial Registry
(NTR)

- + - - -

Pan African Clinical Trials Reg-
istry (PACTR)

- + - - -

Sri Lanka Clinical Trials Reg-
istry (SLCTR)

- + - - -

University hospital Medical In-
formation Network Clinical Tri-
als Registry (UMIN)

- - - - +

WHO International Clinical Tri-
als Registry Platform

+ - - + -

Table 8.2: Structure of outcome-related fields in trial registries
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Registry Number of outcomes
WHO 3386

ISRCTN 1146
NCT 646

ACTRN 564
NTR 332

EUDRACT 49
JPRN-UMIN 32

DRKS 27
CHICTR 22

KCT 10
CTRI 4

SLCTR 3
Total 6221

Table 8.3: Number of entries per registry

Registry outcomes
min max mean st.dev

characters 3 5009 162.01 286.85
words 1 900 28.36 51.39

sentences 1 35 1.82 2.31

Articles outcomes
min max mean st.dev

characters 2 505 53.3 48.91
words 1 116 9.07 8.85

sentences 1 1 1.0 0.0

Table 8.4: Length of outcomes in registries and articles

Item Outcomes in articles
(number/proportion)

Outcomes in registries
(number/proportion)

Measurement
tool

196 (11.57%) 781 (23.29%)

Time points 422 (24.91%) 1241 (37.01%)
Analysis metric 212 (12.51%) 541 (16.13%)
Aggregation
metric

121 (7.14%) 268 (7.99%)

Type of analysis 2 (0.12%) 17 (0.51%)
Covariates 8 (0.47%) 33 (0.98%)
Comparison 52 (3.07%) 152 (4.53%)

Table 8.5: Number/proportion of information items in outcomes in registries and articles
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Summary

In this thesis, we report on our work on developing Natural Language Processing (NLP)
algorithms to aid readers and authors of scientific (biomedical) articles in detecting spin (dis-
torted presentation of research results). Our algorithm focuses on spin in abstracts of articles
reporting Randomized Controlled Trials (RCTs).

We studied the phenomenon of spin from the linguistic point of view to create a description
of its textual features. We annotated a set of corpora for the key tasks of our spin detection
pipeline: extraction of declared (primary) and reported outcomes, assessment of semantic
similarity of pairs of trial outcomes, and extraction of relations between reported outcomes and
their statistical significance levels. Besides, we annotated two smaller corpora for identification
of statements of similarity of treatments and of within-group comparisons.

We developed and tested a number of rule-based and machine learning algorithms for the
key tasks of spin detection (outcome extraction, outcome similarity assessment, and outcome-
significance relation extraction). The best performance was shown by a deep learning ap-
proach that consists in fine-tuning deep pre-trained domain-specific language representations
(BioBERT and SciBERT models) for our downstream tasks. This approach was implemented
in our spin detection prototype system, called DeSpin, released as open source code.

Our prototype includes some other important algorithms, such as text structure analysis
(identification of the abstract of an article, identification of sections within the abstract),
detection of statements of similarity of treatments and of within-group comparisons, extraction
of data from trial registries. Identification of abstract sections is performed with a deep learning
approach using the fine-tuned BioBERT model, while other tasks are performed using a rule-
based approach.

Our prototype system includes a simple annotation and visualization interface.

Chapter 1 presented our first steps in developing NLP algorithms for automatic detection
of spin in biomedical articles. We proposed a scheme for an algorithm for automatic extraction
of important statements in the abstracts of biomedical articles and possible supporting infor-
mation. We addressed three tasks related to spin detection: classification of articles according
to the type of clinical trial (to detect RCT reports), classification of sentences in the abstracts
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aimed at identifying the Results and Conclusions sections, and entity extraction (for trial out-
comes and population studied). We reviewed the state of the art and our first experiments for
these tasks. For each task, we suggested some possible directions of future work.

To evaluate our rule-based algorithms described in the articles above and to train machine
learning algorithms, a corpus annotated with the relevant information is necessary. Chapter
2 describes our efforts in collecting a corpus of biomedical articles and annotating it for spin
and related information. The paper presented an annotation scheme for spin and related
information elements, our annotation guidelines, and difficulties that we faced, such as the
level of expertise required from annotators, choice of an annotation tool, and the complexity
of the task.

Chapter 3 described our experiments on using deep learning for the task of extracting trial
outcomes – variables monitored during clinical trials. Extraction of declared (primary) and
reported outcomes is a key task for spin detection. In this paper, we reviewed the state of the
art for outcome extraction. We introduced our manually annotated corpus of 2,000 sentences
with declared (primary) outcomes and 1,940 sentences with reported outcomes, which is freely
available. We compared two deep learning approaches: a simple fine-tuning approach and an
approach using CRF and Bi-LSTM with character embeddings and embeddings derived from
pre-trained language models. We employed and compared several pre-trained language rep-
resentation models, including BERT (Bidirectional Encoder Representations from Transform-
ers), BioBERT and SciBERT. We compared these approaches to the previously implemented
rule-based baseline (described in previous chapters). The best achieved results were the token-
level F-measure of 88.52% for primary outcomes (BioBERT fine-tuned model) and 79.42% for
reported outcomes (SciBERT fine-tuned model).

Chapter 4 described the development of an algorithm for semantic similarity assessment
of pairs of trial outcomes, as a part of spin detecting pipeline. We aimed at building an
algorithm that does not require manually curated domain-specific resources such as ontologies
and thesauri. Based on the corpus annotated for primary and reported outcomes (described
in the previous chapter), we annotated pairs of primary and reported outcomes for semantic
similarity (on binary scale). The corpus is freely available. We created an expanded corpus
by adding the variants for referring to an outcome (e.g. the use of a measurement tool name
instead on the outcome name; the use of abbreviations).

As a baseline, we used a number of single semantic similarity measures, based on strings,
tokens and lemmas, distances between phrases in the WordNet semantic network, and vector
representations of phrases. We trained and tested a number of machine learning classifiers
using a combination of the single similarity measures as features. Finally, we employed a deep
learning approach that consists in fine-tuning pre-trained deep language representations on the
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corpus of outcome pairs. We tested several language models: BERT (trained on general-domain
texts), BioBERT and SciBERT (trained on biomedical and scientific texts, respectively). The
deep learning approach proved to be superior to other tested approaches. The best result on the
original corpus was shown by the fine-tuned BioBERT model, with the F-measure of 89.75%.
On the expanded corpus, the performance of deep learning algorithms improved compared to
that on the original corpus: BioBERT achieved an F-measure of 93.38%.

Chapter 5 reported on combining the outcome extraction and semantic similarity assess-
ment algorithms (described in the two previous chapters) for developing an algorithm for
detection of outcome switching - a type of spin consisting in unjustified change (omitting or
adding) of pre-defined outcomes of a trial. We focused on the primary outcome switching.
We annotated a corpus with information needed to detect outcome switching: 2,000 sentences
with 1,694 primary outcomes; 1,940 sentences with 2,251 reported outcomes; and 3,043 pairs
of outcomes annotated for semantic similarity. We employed a combination of information
extraction, structured data parsing, and semantic similarity assessment methods to identify
primary outcome switching. The semantic similarity assessment algorithms were evaluated
on the original corpus and on a corpus expanded with variants of referring to an outcome.
The best performance achieved was the F-measure of 88.42% for primary outcome extraction,
79.42% for reported outcome extraction, and 89.75% and 93.38% on the original and expanded
versions of the corpus for semantic similarity evaluation.

Statistical hypothesis testing is commonly used in RCTs to test if the experimental inter-
vention is superior to the control one. Statistical significance levels are often reported for the
trial outcomes. Chapter 6 reported on the development of an algorithm for extracting the
relation between trial outcomes and statistical significance levels. We annotated a corpus of
663 sentences with 2,552 relations between outcomes and significance levels (1,372 positive and
1,180 negative relations). We briefly described our algorithms for entity extraction (reported
outcomes and significance levels) and provided their evaluation. In our relation extraction
experiments, we assumed that the entities (reported outcomes and significance levels) were ex-
tracted at a previous step and could be given to the relation extraction algorithm as input. We
evaluated two approaches for relation extraction: machine learning classifiers, using manually
crafted feature set, and a deep learning approach consisting of fine-tuning pre-trained language
models (BERT, BioBERT and SciBERT). The deep learning approach proved to be superior
to the machine classifiers using manually crafted feature set. The BioBERT fine-tuned model
showed the best performance for the relation extraction (F-measure of 94%).

Chapter 7 outlined the textual features of the types of spin we addressed and introduces
our spin detection prototype system, called DeSpin (Detector of Spin). DeSpin is a Natural
Language Processing (NLP) system for semi-automatic detection of spin in scientific articles,
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in particular in reports of randomized controlled trial (RCTs). DeSpin combines rule-based
and machine learning approaches to detect potential spin and related information. Our algo-
rithms achieved operational performance with the F-measure ranging from 79.42 to 97.86% for
different tasks. The most difficult task is extracting reported outcomes. The proposed tool can
be used by both authors and reviewers to detect potential spin. The tool and the annotated
dataset are freely available.

Chapter 8 reported on a corpus study of 1,694 primary outcomes extracted from research
articles and 6,221 primary outcome entries extracted from trial registries. We studied how
primary outcomes are described in the articles reporting RCTs and in trial registries. We
assessed the structure of the outcome field in registries, length of outcome descriptions, presence
of related items (measurement tools, time points, analysis metrics used, etc.), the consistency
of filling in trial registration fields describing an outcome, the ways of introducing outcomes
in the text and the observed ambiguities. Our work showed that there is a high diversity in
the way outcomes are defined. We observed an ambiguity in the use of the terms "outcomes",
"end-point", "measure", and others that are used to introduce an outcome in the text. The
structure of trials registries differs in terms of the presence of separate fields for time points
and measurement tools and for each of the outcomes of a trial. We observed inconsistencies
in introducing the information about the time points in registries: the structured form for
describing an outcome provided by registries is often ignored, time points being presented
both in a separate time point field and in the outcome field, or in the outcome field instead
of the time point field. The observed inconsistencies pose challenges to both manual and
automatic analysis of clinical trial reports. There is a need to Standardise the terminology of
outcome reporting.

There are a number of important directions for future research on automatic spin detection.
First of all, our prototype system DeSpin needs to be tested with users to estimate its

usability and potential gains in spin detection task performed by humans. The prototype
can be employed in several ways: it can serve as an aid for editors and peer reviewers in
assessing a submitted article for spin; it can serve as a writing aid tool to help authors check
and improve their manuscripts before submission; and it can be used as an educational tool,
defining various types of spin, explaining why they represent inappropriate reporting practices,
and how to avoid them. The algorithms implemented in our prototype can be built in other
systems of medical text analysis or writing aid.

Other directions for future work include the following.

1. Implementing new algorithms for detection of types of spin not covered by our work.

These include e.g. detection of focus on subgroups of patients, or, vice versa, inadequate
extrapolation for a wider population than that studied. Detection of the spin of this type
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would require extracting the population studied (from the article’s text or, alternatively,
from the associated trial registry record) and reported in the abstract, and assessment
of their semantic similarity. Another algorithm vital for spin detection is assessing the
polarity of results and conclusions (positive - neutral - negative) in a given article with
regard to the treatment studied. Positive statements about the treatment in the results
and conclusions can represent spin when the primary outcome is not significant.

2. Detecting the types of spin we addressed in a broader setting.

In particular, we addressed the detection of switching of primary outcomes, but we
did not address switching of secondary outcomes. Detection of this type of spin would
require an additional algorithm for the extraction of secondary outcomes. Our semantic
similarity assessment algorithm can consequently be applied to compare secondary and
reported outcomes to find mismatches.

3. Identifying spin in other types of medical research articles apart from RCTs.

Spin can occur in non-randomized trials, systematic reviews and meta-analyses, diagnos-
tic accuracy studies. Certain types of spin can be common for different types of research,
while other types are specific for a particular study type and thus require separate algo-
rithms for their detection.

4. Identifying spin in other types of texts related to medical research, such as news items
and press releases, that were shown to contain spin, often stemming from spin in the
related research article.

5. Exploring and defining the phenomenon of spin in other research domains; e.g. NLP or
computer science. Until now, spin in research has mainly been addressed in the medical
domain, where it can pose a direct threat to public healthcare. Still, research in other
domains is also prone to spin, as the reasons for "spinning" research results are likely to
be common for various domains. However, research domains other than medicine often
lack precise reporting guidelines, leaving more freedom in what and how to report. This
fact can complexify the definition of spin.

Spin is a complex phenomenon that even humans can find difficult to identify. Still, we
believe that our project demonstrated that detection of spin and related information an be
automated using NLP techniques with sufficient performance to serve as assistance to authors
and readers of scientific articles. As our project was the first one to tackle automatic detection
of spin, we hope that future research will address this topic, bring better results and provide
new tools.





Samenvatting

In dit proefschrift brengen we verslag uit van ons onderzoek rond de ontwikkeling van
NLP-algoritmen (Natural Language Processing) om lezers en auteurs van wetenschappelijke
(biomedische) artikelen te helpen bij het detecteren van "spin": de vervormde presentatie
van onderzoek, waardoor een geflatteerde, te rooskleuriger of zelfs ronduit misleidend beeld
ontstaat van de resultaten van dat onderzoek. Ons onderzoek richtte zich primair op spin in
artikelen die Randomized Controlled Trials (RCT’s) beschrijven.

We bestudeerden het fenomeen spin eerst vanuit taalkundig oogpunt, om op basis hiervan
een beschrijving van de tekstuele kenmerken te kunnen maken. We hebben een aantal corpora
geannoteerd voor de kerntaken in onze pijplijn voor de detectie van spin: dat zijn de extractie
van (primaire) en gerapporteerde uitkomsten, de beoordeling van de semantische gelijkenis
binnen paren van uitkomsten, en de extractie van relaties tussen gerapporteerde uitkomsten
en bijpassende statistische p-waarden. Daarnaast hebben we twee kleinere corpora geanno-
teerd, voor de identificatie van verklaringen van gelijkwaardigheid van behandelingen en van
binnengroepsvergelijkingen (in tegenstelling tot de gebruikelijke vergelijkingen tussen groepen
in RCT).

We hebben een aantal op regels en op machine learning gebaseerde algoritmen ontwikkeld
en getest voor de sleuteltaken bij de detectie van spin. De beste prestaties werden waargenomen
voor benadering op basis van deep learning, die bestaat uit het finetunen van vooraf getrainde,
domeinspecifieke taalrepresentaties ( BioBERT- en SciBERT modellen). Met deze aanpak
bouwden we ons prototype voor de detectie van spin, genaamd DeSpin.

Ons prototype bevat andere algoritmen, zoals voor tekststructuuranalyse (identificatie van
de samenvatting van een artikel, identificatie van secties binnen de samenvatting), voor de
detectie van verklaringen van gelijkwaardigheid van behandelingen en van vergelijkingen binnen
de groep, en voor de extractie van gegevens uit trialregisters. Identificatie van de onderdelen in
een samenvatting bij een onderzoeksverslag wordt uitgevoerd met een benadering op basis van
deep learning, met behulp van een aangepast BioBERT-model, terwijl andere taken worden
uitgevoerd met behulp van een op regels gebaseerde benadering. Ons prototypes kent een
eenvoudige interface voor annotatie en visualisatie.
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Hoofdstuk 1 presenteert onze eerste stappen in het ontwikkelen van NLP-algoritmen voor de
automatische detectie van spin in biomedische artikelen. Het beschrijft een algoritme voor de
automatische extractie van uitspraken in samenvattingen bij biomedische artikelen en eventuele
ondersteunende informatie. We hebben drie taken met betrekking tot spin-detectie aangepakt:
de classificatie van artikelen over clinical trials (om verslagen van RCT’s als dusdanig te herken-
nen), de classificatie van zinnen in de samenvattingen die resultaten en conclusies betreffen,
de extractie van beschrijvingen van de uitkomsten en van de onderzoeksgroep. We hebben
de stand van zaken samengevat alsook onze eerste experimenten voor deze taken beschreven.
Voor elke taak hebben we ook enkele richtingen voor eventueel vervolgonderzoek voorgesteld.

Om onze op regels gebaseerde algoritmen te evalueren en om algoritmen voor machine
learning te trainen hadden we een corpus met de relevante informatie nodig. Hoofdstuk 2
beschrijft onze inspanningen bij het bouwen van een corpus van biomedische artikelen en het
annoteren voor spin. We presenteren een annotatieschema voor spin, onze annotatierichtlijnen,
en schetsten de moeilijkheden waarmee we te kampen hadden, zoals het kennisniveau waarover
de annotatoren moeten kunnen beschikken, de keuze van een annotatietool en de complexiteit
van de taak zelf.

Hoofdstuk 3 bevat een beschrijving van onze experimenten rond het gebruik van deep
learning voor de extractie van de uitkomsten in een RCT. Een sleuteltaak in dit proces is het
detecteren van de beoogde primaire uitkomstmaat en van de feitelijke gerapporteerde uitkomst-
maten. We gingen na hoever we staan in de techniek voor de extractie van dit soort uitkomsten.
We beschrijven ons handmatig geannoteerd corpus van 2,000 zinnen met de primaire uitkom-
stmaten en 1,940 zinnen met gerapporteerde uitkomsten. Dit corpus is vrij beschikbaar. We
vergeleken twee benaderingen voor deep learning: een eenvoudige fine-tuning en een benader-
ing met behulp van CRF en Bi-LSTM met character embeddings en embeddings van vooraf
getrainde taalmodellen. We gebruikten en vergeleken verschillende taalrepresentatiemodellen,
waaronder BERT (Bidirectional Encoder Representations from Transformers), BioBERT en
SciBERT. We hebben deze benaderingen vergeleken met de vorige, op regels gebaseerde aan-
pak. De beste resultaten waren de token-level F-measure van 88.52% voor primaire uitkomsten
(met het BioBERT fine-tuned model) en 79.42% voor gerapporteerde uitkomsten ( met het
SciBERT fine-tuned model).

Hoofdstuk 4 beschrijft de ontwikkeling van een algoritme voor beoordeling van semantische
overeenkomsten tussen paren uitkomsten in een RCT, een onderdeel van onze pijplijn voor
spin-detectie. We wilden een algoritme bouwen dat geen handmatig beheerde, domeinspec-
ifieke bronnen nodig heeft, zoals ontologieën of thesauri. Met het eerder beschreven corpus
hebben we paren van primaire en gerapporteerde uitkomsten geannoteerd op basis van hun
semantische gelijkenis (op een binaire schaal). We hebben een uitgebreid corpus gecreëerd
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door ook varianten in de beschrijving van een uitkomst toe te voegen. Dat kan bijvoorbeeld
de naam van een meetinstrument zijn, in plaats van de uitkomst met naam te noemen, of door
het gebruik van afkortingen.

We startten met een aantal enkele maten voor semantische overeenkomst, op basis van
tekenreeksen, tokens en lemma’s, afstanden tussen woordgroepen in een semantisch WordNet
netwerk en vectorrepresentaties van zinnen. We hebben een aantal classifiers op basis van
machine learning getraind en getest, met behulp van een combinatie van de eerder genoemde
maten voor semantische overeenkomst. Tot slot hebben we een methode op basis van deep
learning toegepast, die bestaat uit het verfijnen van deep language representaties op het cor-
pus van uitkomstparen. We hebben verschillende taalmodellen getest: BERT (getraind in
algemene domeinteksten ), BioBERT en SciBERT (getraind op respectievelijk biomedische en
wetenschappelijke teksten). De aanpak op basis van deep learning bleek superieur aan de an-
dere geteste benaderingen. De beste resultaten werden bereikt met het verfijnde BioBERT-
model, met een F-maat van 89.75%. Op het uitgebreide corpus zagen we betere prestaties
van de deep learning algoritmen, vergeleken met die op het oorspronkelijke corpus: BioBERT
behaalde daar een F-maat van 93.38%.

Hoofdstuk 5 beschrijft onze inspanningen in het combineren van de uitkomstextractie en
algoritmen voor het beoordelen van semantische overeenkomst. Hiermee wilden we een algo-
ritme ontwikkelen voor de detectie van uitkomstruil: een vorm van "spin" die gebaseerd is
op het ongerechtvaardigd wijzigen van vooraf gedefinieerde uitkomsten in een RCT (weglaten
of toevoegen). We hebben ons primair gericht op het veranderen van de primaire uitkomst.
Hiervoor hebben een corpus geannoteerd met de informatie die nodig is om het smokkelen in
uitkomsten te detecteren: 2,000 zinnen met 1,694 primaire uitkomsten, 1,940 zinnen met 2,251
gerapporteerde resultaten en 3,043 paren van uitkomsten, waarbij we de semantische gelijkenis
hebben beoordeeld. We maakten gebruik van een combinatie van informatie-extractie, gestruc-
tureerd data parsing, en methoden om semantische gelijkenis te beoordelen. De algoritmen
voor semantische gelijkenis werden geëvalueerd op het oorspronkelijke corpus en op een corpus
dat was uitgebreid met varianten voor het vermelden van een uitkomst in een RCT. De beste
prestaties waren een F-maat van 88.42% voor de extractie van de primaire uitkomstmaat,
79.42% voor de extractie van de gerapporteerde uitkomst en 89.75% resp. 93.38% de evaluatie
van semantische overeenkomsten in op de originele en in de uitgebreide versie van het corpus.

Statistische hypothesetoetsen worden vaak gebruikt in RCT’s, om na te gaan of een ex-
perimentele behandeling daadwerkelijk superieur aan de controlebehandeling. Gebruikelijk is
dat p-waarden worden gerapporteerd bij de uitkomsten. In Hoofdstuk 6 brengen we verslag
uit van onze inspanningen om een algoritme te ontwikkelen voor het extraheren van de relatie
tussen onderzoeksresultaten en p-waarden. We hebben hiervoor een corpus geannoteerd dat
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bestaat uit 663 zinnen met 2,552 relaties tussen uitkomsten en p-waarden (1,372 positieve en
1,180 negatieve relaties). We beschrijven beknopt onze algoritmen voor de extractie en de
evaluatie. We gingen er daarbij van uit dat de gerapporteerde uitkomsten en de p-waarden
al eerder waren geëxtraheerd, zodat deze vervolgens als input voor een algoritme voor relatie-
extractie kunnen dienen. Wij evalueerden twee benaderingen voor relatie-extractie: machine
learning classifiers, en een benadering op basis van deep learning, met het tunen van getrainde
taalmodellen (BERT, BioBERT en SciBERT). De deep learning aanpak bleek superieur aan
de machine learning classifiers. Het aangepaste BioBERT-model presteerde het best, met een
F-maat van 94%.

Hoofdstuk 7 schetst de tekstuele kenmerken van de soorten spin die we hebben behan-
deld en beschijft ook ons prototype voor spin-detectie, genaamd DeSpin (Detector of Spin).
DeSpin is een systeem op basis van Natural Language Processing voor de semi-automatische
detectie van spin in wetenschappelijke artikelen, en dan in het bijzonder verslagen van geran-
domiseerd vergelijkend onderzoek (randomized controlled trials - RCT’s). DeSpin combineert
regels en machine learning om potentiële spin te detecteren. Onze algoritmen bereikten een
F-maat variërend van 79.42 tot 97.86% in de verschillende taken. De moeilijkste taak bleek
het identificeren van de gerapporteerde uitkomstem.

Hoofdstuk 8 beschrijft een corpusstudie van 1,694 primaire uitkomsten die uit verslagen
van onderzoek zijn gehaald en 6,221 primaire uitkomsten uit trialregisters zijn geplukt. We
hebben onderzocht hoe primaire resultaten worden beschreven in verslagen van RCT’s en
hoe dat gebeurt in trialregisters. We hebben de structuur van het uitkomstveld in registers
beoordeeld, de lengte van uitkomstbeschrijvingen, de aanwezigheid van verwante items (zoals
meetinstrumenten, tijdstippen, gebruikte maten), de consistentie in het invullen van velden
voor uitkomst in trialregisters, de verschillende manieren om uitkomsten in het verslag te
introduceren en de daarbij waargenomen onduidelijkheden. Er bleek een grote diversiteit te
bestaan in de manier waarop de uitkomsten worden gedefinieerd. We zagen dubbelzinnigheid
bij het gebruik van termen als ’uitkomsten’, ’eindpunt’, ’uitkomstmaat’ en alle andere termen
die kunnen worden gebruikt om een uitkomst in de tekst te introduceren. We zagen ook dat de
structuur van trialregisters verschilt, omdat er afzonderlijke veldenbestaan voor meetpunten
en meetinstrumenten, en voor elk van de uitkomsten in een trial. We zagen inconsistenties
bij het invoeren van informatie over de meetpunten in de registers: de structuur die er is
wordt vaak genegeerd, tijdspunten worden twee keer genoemd, of velden worden verward. Dit
soort inconsistenties vormen een behoorlijke uitdaging, zowel voor handmatige als voor een
geautomatiseerde analyse van verslagen van klinisch onderzoek. Al bij al is er een duidelijke
behoefte om de terminologie voor het rapporteren van uitkomsten te standaardiseren.

Na ons onderzoek kunnen we een aantal aanwijzingen geven voor vervolgonderzoek naar de
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automatische detectie van "spin". Om te beginnen moet ons prototype DeSpin verder worden
getest door eindgebruikers, om de bruikbaarheid en potentiële voordelen bij de detectie van
spin te kunnen evalueren. Ons prototype kan op verschillende manieren worden gebruikt: het
kan dienen als hulpmiddel voor de redactie van tijdschriften en voor peer reviewers, als deze
een ingediend artikel op spin moeten beoordelen. Het kan ook dienen als een hulpmiddel
voor auteurs, om hun manuscript te controleren en eventueel te verbeteren, voordat het ter
publicatie bij een tijdschrift wordt aangeboden. Het kan ook educatief worden gebruikt, voor
het illustreren van verschillende soorten spin, om uit te leggen waarom het te vermijden vormen
van rapportage zijn, en hoe deze ook daadwerkelijk kunnen worden vermeden. De algoritmen
die we in ons prototype kan hebben verwerkt kunnen ook worden ingebouwd in andere systemen
voor medische tekstanalyse, of bij het bouwen van een schrijfhulp.

We zien ook meer algemene aanknopingspunten voor verder onderzoek.

1. Nieuwe algoritmen voor detectie van spin

Deze nieuwe algoritmen omvatten bijvoorbeeld het opsporen van een onterechte focus
op subgroepen in trials of van een niet-gefundeerde extrapolatie van de resultaten naar
een bredere populatie dan die was bestudeerd. Om dit te bereiken moet de bestudeerde
populatie worden geïdentificeerd (uit de tekst van het artikel of, anders, uit het trialreg-
ister) en de semantische overeenkomst met de conclusie worden beoordeeld. Een andere
algoritme dat van vitaal belang is voor spindetectie omvat het beoordelen van de richting
van de resultaten en van de conclusies (positief - neutraal - negatief) over de bestudeerde
behandeling. Een positief oordeel over een behandeling in de conclusies kan bijvoorbeeld
niet te rijmen zijn met een effect dat niet statistisch significant is.

2. Het detecteren van de soorten spin in een bredere setting.

We hebben ons in het hier gerapporteerde onderzoek vooral gericht op de detectie van een
wijziging in de primaire uitkomst in een RCT. Ook met secundaire uitkomsten kan echter
worden gesmokkeld. Detectie van deze vorm van spin zou een extra algoritme vereisen,
voor de extractie van secundaire uitkomsten. Ons algoritme voor de beoordeling van
semantische verwantschap kan dan vervolgens worden toegepast om mismatches tussen
vooraf gedefinieerde en feitelijke gerapporteerde secundaire uitkomsten vast te stellen.

3. Identificatie van spin in andere verslagen van klinisch-wetenschappelijk onderzoek.

Spin komt niet alleen bij RCT voor. Ook in verslagen van niet-gerandomiseerde studies,
van systematisch literatuuronderzoek, of bij onderzoek naar diagnostische accuratesse
kan worden gespind. Bepaalde vormen van spin komen bij veel vormen van onderzoek
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voor, terwijl andere vormen meer specifiek zijn voor een bepaald type onderzoek. In dat
geval zijn nieuwe algoritmen nodig voor de signalering.

4. Identificatie van spin in andere teksten over medisch onderzoek, zoals nieuwsitems en
persberichten.

Ook deze kunnen spin bevatten, vaak afkomstig van spin in het onderzoeksverslag zelf.

5. Onderzoek naar spin in andere onderzoeksdomeinen.

Tot nu toe werd het onderzoek naar Spin voornamelijk uitgevoerd in het medische
domein, waar het een directe bedreiging voor de gezondheidszorg kan vormen. Maar
ook in andere vormen van wetenschappelijk onderzoek, buiten het medische, kan spin
voorkomen.

Spin is een complex fenomeen. Zelfs mensen kunnen het niet altijd makkelijk identificeren.
Toch zijn we ervan overtuigd dat ons onderzoek rond de detectie van spin heeft aangetoond
dat het mogelijk is een geautomatiseerd systeem te bouwen dat goed genoeg is om auteurs en
lezers van wetenschappelijke artikelen te ondersteunen bij het herkennen van spin. We hopen
dat toekomstige onderzoekers de draad oppakken, na deze eerste proeve, en nieuwe systemen
gaan bouwen, met nog betere resultaten en nieuwe instrumenten.



Résumé

Dans cette thèse, nous présentons notre travail sur le développement d’algorithmes de
traitement automatique des langues (TAL) pour aider les lecteurs et les auteurs d’articles sci-
entifiques (biomédicaux) à détecter le spin (présentation inadéquate des résultats de recherche).
Notre algorithme se concentre sur le spin dans les résumés d’articles rapportant des essais con-
trôlés randomisés.

Nous avons étudié le phénomène de " spin " du point de vue linguistique pour créer une
description de ses caractéristiques textuelles. Nous avons annoté des corpus pour les tâches
principales de notre chaîne de traitement pour la détection de spin: extraction des résul-
tats —en anglais " outcomes " —déclarés (primaires) et rapportés, évaluation de la similarité
sémantique des paires de résultats d’essais et extraction des relations entre les résultats rap-
portés et leurs niveaux de signification statistique. En outre, nous avons annoté deux corpus
plus petits pour identifier les déclarations de similarité des traitements et les comparaisons
intra-groupe.

Nous avons développé et testé un nombre d’algorithmes d’apprentissage automatique et
d’algorithmes basés sur des règles pour les tâches principales de la détection de spin (ex-
traction des résultats, évaluation de la similarité des résultats et extraction de la relation
résultat-signification statistique). La meilleure performance a été obtenues par une approche
d’apprentissage profond qui consist à adapter les représentations linguistiques pré-apprises spé-
cifiques à un domaine (modèles de BioBERT et SciBERT) à nos tâches. Cette approche a été
mise en œuvre dans notre système prototype de détection de spin, appelé DeSpin, dont le code
source est librement accessible sur un serveur public.

Notre prototype inclut d’autres algorithmes importants, tels que l’analyse de structure de
texte (identification du résumé d’un article, identification de sections dans le résumé), la détec-
tion de déclarations de similarité de traitements et de comparaisons intra-groupe, l’extraction
de données de registres d’essais. L’identification des sections des résumés est effectuée avec une
approche d’apprentissage profond utilisant le modèle BioBERT, tandis que les autres tâches
sont effectuées à l’aide d’une approche basée sur des règles.

Notre système prototype a une interface simple d’annotation et de visualisation.
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Le chapitre 1 a présenté nos premières pas dans le développement d’algorithmes de TAL
pour la détection automatique du spin dans des articles biomédicaux. Nous avons proposé
un schéma pour un algorithme d’extraction automatique d’affirmations importants dans les
résumés d’articles biomédicaux et des informations d’appoint possibles. Nous avons abordé
trois tâches liées à la détection du spin: la classification des articles en fonction du type
d’essai clinique (pour détecter les rapports d’essais randomisés), la classification des phrases
dans les résumés pour identifier les sections Résultats et Conclusions, et l’extraction d’entités
(pour les résultats des essais et la population étudié). Nous avons présenté l’état de l’art et
nos premières expériences pour ces tâches. Pour chaque tâche, nous avons suggéré quelques
directions possibles pour les travaux futurs.

Pour évaluer nos algorithmes à base de règles décrits dans les articles ci-dessus et pour
entrainer des algorithmes d’apprentissage automatique, un corpus annoté avec les informations
pertinentes est nécessaire. Le chapitre 2 décrit nos efforts pour collecter un corpus d’articles
biomédicaux et les annoter pour le spin et les informations d’appoint. Le papier a présenté
un schéma d’annotation pour le spin et l’information liée, nos guidelines d’annotation et les
difficultés que nous avons rencontré, telles que le niveau d’expertise requis des annotateurs, le
choix d’un outil d’annotation et la complexité de la tâche.

Le chapitre 3 a décrit nos expériences d’utilisation de l’apprentissage profond pour ex-
traire les résultats d’un essai - variables surveillées au cours d’essais cliniques. L’extraction
des résultats déclarés (primaires) et rapportés est une tâche principale pour la détection de
spin. Dans cet article, nous avons examiné l’état de l’art pour l’extraction des résultats. Nous
avons présenté notre corpus annoté manuellement de 2 000 phrases avec résultats déclarés (pri-
maires) et 1 940 phrases avec résultats rapportés, qui est disponible gratuitement. Nous avons
comparé deux approches d’apprentissage profond: une approche d’adaptation (" fine-tuning
") simple et une approche utilisant des champs aléatoires conditionnels (CRF) et des réseaux
récurrents bi-directionnels avec mémoire à long terme (Bi-LSTM), en conjonction avec des
plongements lexicaux ("embeddings") de caractères et des plongements lexicaux dérivées de
modèles linguistiques pré-appris. Nous avons utilisé et comparé plusieurs modèles de représen-
tation linguistique pré-appris, notamment le modèle général BERT (Bidirectional Encoder
Representations from Transformers) ansi que le modèles pour le domaine biologie-médecine
BioBERT et le modèle pour le domaine scientifique général SciBERT. Nous avons comparé ces
approches à l’approche de base implementée précédemment (décrite dans les chapitres précé-
dents). Les meilleurs résultats obtenus ont été la F- mesure au niveau des tokens de 88.52%
pour les résultats primaires (fine-tuned BioBERT) et de 79.42% pour les résultats rapportés
(fine-tuned SciBERT).

Le chapitre 4 a décrit le développement d’un algorithme d’évaluation de la similarité sé-
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mantique de paires de résultats d’essais, qui fait partie du pipeline de détection de spin. Notre
objectif a été de construire un algorithme qui ne nécessit pas de ressources spécifiques à un
domaine créés manuellement, telles que des ontologies et des thésaurus. Sur la base du corpus
annoté pour les résultats primaires et rapportés (décrit dans le chapitre précédent), nous avons
annoté des paires de résultats primaires et rapportés pour la similarité sémantique (sur une
échelle binaire). Le corpus est disponible gratuitement. Nous avons créé un corpus étendu en
ajoutant les variantes permettant de faire référence à un résultat (par exemple, l’utilisation
d’un nom d’outil de mesure à la place de l’expression dénommant le résultat; l’utilisation
d’abréviations).

Pour l’approche de base, nous avons utilisé un nombre de mesures de similarité séman-
tique, basées sur des charactères, des tokens et des lemmes, des distances entre des expres-
sions dans le réseau sémantique WordNet et des représentations vectorielles des expressions.
Nous avons entraîné et testé différents classificateurs d’apprentissage automatique en util-
isant une combinaison de mesures de similarité en tant que traits. Enfin, nous avons utilisé
une approche d’apprentissage profond consistant à adpater ("fine tuning") les représentations
linguistiques profondes pré-apprises sur le corpus des paires de résultats. Nous avons testé
plusieurs modèles de langue: BERT ( entraîné sur des textes de domaine général), BioBERT
et SciBERT (entraînés respectivement sur le domaines biomédical et le domaine scientifique
général). L’approche d’apprentissage profond a été supérieure aux autres approches testées.
Le meilleur résultat sur le corpus original a été montré par le modèle BioBERT, avec une
F- mesure de 89.75%. Sur le corpus étendu, la performance des algorithmes d’apprentissage
profond s’est améliorée par rapport à celle du corpus initial: BioBERT a obtenu une F-mesure
de 93.38%.

Le chapitre 5 a décrit les expériences d’utilisation des algorithmes d’extraction de résul-
tats et d’évaluation de la similarité sémantique (décrits dans les deux chapitres précédents)
pour développer un algorithme de détection de la substitution de résultat —en anglais "out-
come switching" —un type de spin consistant en un changement injustifié (en omettant ou en
ajoutant) des résultats définis d’un essai. Nous nous sommes concentrés sur la substitution de
résultat primaire. Nous avons annoté un corpus avec les informations nécessaires à la détection
de substitution de résultat : 2 000 phrases avec 1 694 résultats primaires; 1 940 phrases avec
2 251 résultats rapportés; et 3 043 paires de résultats annotés pour la similarité sémantique.
Nous avons utilisé une combinaison d’extraction d’informations, d’analyse de données struc-
turées et de méthodes d’évaluation de la similarité sémantique pour identifier la substitution
du résultat primaire. Les algorithmes d’évaluation de la similarité sémantique ont été évalués
sur le corpus d’origine et sur un corpus étendu avec des variantes de référence à un résultat.
La meilleure performance obtenue était la F-mesure de 88.42% pour l’extraction des résultats
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primaires, de 79.42 % pour l’extraction des résultats rapportée, et de 89.75% et 93.38% pour
les versions originale et étendue du corpus d’évaluation de similarité sémantique.

Le test d’hypothèse statistique est souvent utilisé dans les essais randomisés pour déterminer
si l’intervention expérimentale est supérieure à celle du groupe de controle. Des niveaux de
signification statistique sont souvent rapportés pour les résultats de l’essai. Le chapitre 6 a
décrit le développement d’un algorithme pour extraire la relation entre les résultats des essais
et les niveaux de signification statistique. Nous avons annoté un corpus de 663 phrases avec
2 552 relations entre les résultats et les niveaux de signification (1 372 relations positives et
1 180 relations négatives). Nous avons brièvement décrit nos algorithmes d’extraction d’entités
(résultats rapportés et niveaux de signification) et fourni leur évaluation. Dans nos expériences
d’extraction de relations, nous avons supposé que les entités (résultats rapportés et niveaux de
signification) avaient été extraites à une étape précédente et pouvaient être passer comme input
à l’algorithme d’extraction de relations. Nous avons évalué deux approches pour l’extraction de
relations: les classificateurs d’apprentissage automatique, en utilisant un ensemble de traits créé
manuellement, et une approche d’apprentissage profond consistant à adapter ("fine-tuning")
des modèles de langue pré-appris (BERT, BioBERT et SciBERT). L’approche d’apprentissage
profond a été supérieure aux classificateurs utilisant des traits créé manuellement. Le modèle
de BioBERT a montré les meilleures performances pour l’extraction de relations (F-mesure de
94%).

Le chapitre 7 a décrit les caractéristiques textuelles des types de spin que nous avons abor-
dés et a présenté notre système prototype de détection de spin, appelé DeSpin (Detector of
Spin). DeSpin est un système de traitement automatiique de langue (TAL) pour la détec-
tion semi-automatique du spin dans les articles scientifiques, en particulier dans les rapports
d’essais contrôlés randomisés. DeSpin combine des approches d’apprentissage automatique et
approches basées sur des règles pour détecter le spin potentiel et les informations associées. Nos
algorithmes ont atteint des performances opérationnelles avec la F-mesure de 79.42 à 97.86%
pour tâches différentes. La tâche la plus difficile consiste à extraire les résultats rapportés.
L’outil proposé peut être utilisé à la fois par les auteurs et les relecteurs pour détecter le spin
potentiel. L’outil et les corpus annotés sont disponibles gratuitement.

Le chapitre 8 a présenté une étude de corpus comprenant 1 694 résultats primaires extraits
d’articles de recherche et 6 221 résultats primaires extraites des registres d’essais. Nous avons
étudié comment les résultats primaires sont décrits dans les articles sur les essais randomisés et
dans les registres d’essais. Nous avons évalué la structure du champ résultat dans les registres,
la longueur des descriptions de résultat, la présence d’éléments liés (outils de mesure, points
de temps, métriques d’analyse utilisées, etc.), la cohérence du remplissage des champs dans
les registres décrivant un résultat, les manières d’introduire des résultats dans le texte et les
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ambiguïtés observées. Nos travaux ont montré qu’il y a une grande diversité dans la définition
des résultats. Nous avons observé une ambiguïté dans l’utilisation des termes "outcomes", "end
point", "measure" et d’autres utilisés pour introduire un résultat dans le texte. La structure
des registres d’essais diffère en ce qui concerne la présence de champs distincts pour les points
de temps et les outils de mesure et pour chacun des résultats d’un essai. Nous avons observé des
incohérences dans l’introduction des informations sur les points de temps dans les registres: la
forme structurée pour décrire un résultat fourni par les registres est souvent ignorée, les points
de temps étant présentés à la fois dans un champ de point de temps séparé et dans le champ
résultat, ou dans le champ résultat au lieu du champ de point de temps. Les incohérences
observées constituent un défi pour l’analyse manuelle et automatique des rapports d’essais
cliniques. Il est nécessaire de normaliser la terminologie utilisée pour rapporter des résultats.

Il y a un nombre de directions importantes pour les recherches futures sur la détection
automatique du spin.

Tout d’abord, notre système prototype DeSpin doit être testé auprès des utilisateurs pour
estimer son utilité et les gains potentiels pour la tâche de détection du spin effectuée par des
humains. Le prototype peut être utilisé de plusieurs manières: il peut aider les rédacteurs et
les relecteurs à évaluer un article soumis pour la présence du spin; il peut servir comme un outil
d’aide à la rédaction pour aider les auteurs à vérifier et à améliorer leurs manuscrits avant de
les soumettre; et il peut être utilisé comme un outil pédagogique, définissant différents types de
spin, expliquant pourquoi ils représentent des pratiques inappropriées et comment les éviter.
Les algorithmes mis en œuvre dans notre prototype peuvent être intégrés à d’autres systèmes
d’analyse de texte médical ou d’aide à l’écriture.

Les autres directions pour les travaux futurs sont les suivantes.

1. Implémentation de nouveaux algorithmes de détection des types de spin non adressés par
nos travaux.

Ceux-ci incluent par exemple détection de la focalisation sur des sous-groupes de patients
ou, à l’inverse, extrapolation inadéquate pour une population plus large que celle étudiée.
La détection du spin de ce type nécessiterait d’extraire la population étudiée (du texte
de l’article ou du registre de l’essai correspondant) et preséntée dans le résumé, ainsi
que d’évaluer leur similarité sémantique. Un autre algorithme essentiel pour la détection
du spin consiste à évaluer la polarité des résultats et des conclusions (positif - neutre -
négatif) dans un article donné en ce qui concerne le traitement étudié. Les déclarations
positives sur le traitement dans les résultats et les conclusions peuvent représenter du
spin si le résultat principal n’est pas significatif.

2. Détecter les types de spin que nous avons adressés dans un contexte plus large.



206

En particulier, nous nous sommes concentrés sur la détection de substitution de résultat
primaire, mais pas sur la substitution des résultats secondaires. La détection de ce
type de spin nécessiterait un algorithme supplémentaire pour l’extraction des résultats
secondaires. Notre algorithme d’évaluation de la similarité sémantique peut donc être
appliqué pour comparer les résultats secondaires et les résultats rapportés afin de détecter
les discordances.

3. Identifier le spin dans d’autres types d’articles de recherche médicale en dehors des essais
randomisés.

Le spin peut apparaître dans des essais non randomisés, des revues systématiques et des
méta-analyses, des études de précision du diagnostic. Certains types de spin peuvent être
communs à différents types de recherche, alors que d’autres types sont spécifiques à un
type d’étude particulier et nécessitent donc des algorithmes distincts pour leur détection.

4. Identifier le spin dans d’autres types de textes liés à la recherche médicale, tels que des
articles de presse et des communiqués de presse, qui peuvent contenir du spin, souvent
lié à spin dans l’article de recherche correspondant

5. Explorer et définir le phénomène de spin dans d’autres domaines de recherche; par exem-
ple TAL ou informatique. Jusqu’à présent, spin dans les recherches ont été principale-
ment abordées dans le domaine médical, où il peut constituer une menace directe pour
la santé publique. Néanmoins, la recherche dans d’autres domaines peut aussi avoir du
spin, car les raisons de "spinning" les résultats de la recherche sont communes à différents
domaines. Cependant, les domaines de recherche autres que la médecine manquent sou-
vent de directives précises sur la présentations des résultats de la recherche, ce qui laisse
plus de liberté quant à ce qu’il faut présented et comment. Ce fait peut complexifier la
définition du spin.

Le spin est un phénomène complexe, difficile à identifier même pour les humains. Néan-
moins, nous croyons que notre projet a montré que la détection de spin et d’informations
d’appoint pouvait être automatisée à l’aide de techniques du TAL avec de le performance suff-
isante pour aider les auteurs et les lecteurs d’articles scientifiques. Comme notre projet a été le
premier à adresser la détection automatique du spin, nous espérons que les recherches futures
aborderont ce sujet, apporteront de meilleurs résultats et fourniront de nouveaux outils.
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Year Work-
load
(Hours)

General courses
Reproducibility - experiences from natural language processing and bioinformatics 2016 0,5
Protocol writing 2016 1
Data Management Plan 2016 1
General introduction to communication 2016 1,75
Social media 2016 1.75
Tools for reproducibility – Github 2016 0,5
Tools for reproducibility – Markdown 2016 0,5
Training through action and collaboration 2016 1
Letters to editors 2016 1
Scientific journals in the 21st century. The editor-in-chief’s perspective 2017 3,5
Science in transition 2017 3,5
Informative bibliometrics 2017 3
From Government to Bench: How a funding agency spends government’s science
budget

2017 3

Integrity in Science 2017 3,5
Patient involvement in research 2017 1,5
Communication of projects 2017 0,5
Writing a plain language summary for one of our recently completed trials 2017 0,5
Evidence-based clinical guideline development 2017 1
Transparency in research 2017 0,5
Exercise following on from publication ethics webinar 2017 0,75
Statistical Analysis Plans 2017 0,5
EQUATOR 2017 0,5
Data sharing 2017 0,5
Implementation science 2017 2
Ethics & STICs 2018 12
Writing grant proposals 2018 4
Facilitating Reflection on Responsible Research and Innovation 2018 3,5
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Parcours de l’après-thèse / what about post-thesis? 2019 5
Peer-review - answering to reviewers and editors 2019 2
Devising your career plan: an alliance between your mind, your heart and your
guts

2019 1

Preparing job applications outside academia: optimizing your written and oral
communication

2019 4

Perfecting your elevator pitch 2019 3,5
The relationships of young scientists with newspapers 2019 2,5
GRADE framework from Evidence to Decision 2019 2,5
Specific courses
Introduction to research on research - Waste in research 2016 1
A review of basic statistical concepts: variability, uncertainty, confidence intervals 2016 1,5
A review of basic statistical concepts: p values, replicability 2016 1,5
Using causal diagrams to understand problems of confounding and selection bias 2016 1
Effect measures, Effect modification and non-collapsibility. Adjustment for con-
founding

2016 1

Identify causal effect parameters which our research is targeting / What assump-
tions are reasonable, how might we approach it?

2016 2

13th EUROLAN School on Natural Language Processing 2017 31
Introduction to Python 2019 3,25
Advanced methods in Research on Research: Use of specific experimental study
design in Research on Research

2017 1,5

Value of Qualitative Research; Introduction to Qualitative Research; Reflexivity;
Planning and Designing a Qualitative Study

2017 1,8

Qualitative Research Methods, Collecting Data; Writing an Interview Guide 2017 1,33
Conducting an Interview; Qualitative Analysis; Analysing Transcribed interview
Data

2017 1,8

Quality in Qualitative Research 2017 1,5
Introduction to core outcome sets 2017 0,5
From quantitative to qualitative: ORBIT - a case study 2017 1,5
Critique a COS paper 2017 0,75
Fundamentals of Natural Language Processing 2018 2
Natural Language Processing - Medical terminology 2018 2
Biomedical text classification (assigning labels to texts) 2018 2
Information extraction (detecting biomedical entities in text) 2018 2
Content analysis 2018 2
Seminars, workshops and master classes
Webinar on research integrity 2017 1
Webinar on meta-analyses and meta-epidemiology 2017 1
Open access and data management 2017 1
Séminaire (post)-doctorant at LIMSI 2017
Webinar on Entrepreneurship 2018 1
Webinar ’The current research climate: changing culture and the incentive sys-
tems’

2018 1,5

P-value workshop 2019 1
Organisational change and identity 2019 1
Webinar on mediation analysis 2019 1
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Presentations
Vers la détection automatique des affirmations inappropriées dans les articles scien-
tifiques, 18e REncontres jeunes Chercheurs en Informatique pour le TAL (RECITAL)

2017

Automatic detection of inadequate claims in biomedical articles: first steps. Workshop
on Curative Power of MEdical Data

2017

On the contribution of specific entity detection and comparative construction to auto-
matic spin detection in biomedical scientific publications. The Second Workshop on Pro-
cessing Emotions, Decisions and Opinions (EDO 2017), The 8th Language and Technol-
ogy Conference (LTC)

2017

Annotating Spin in Biomedical Scientific Publications: the case of Randomized Con-
trolled Trials (RCTs). LREC

2018

Scientific rigour versus power to convince: an NLP approach to detecting distorted con-
clusions in biomedical literature

2018

Demonstrating ConstruKT, a text annotation toolkit for generalized linguistic construc-
tions applied to communication spin. LTC 2019: Demo Session

2019

Extracting relations between outcome and significance level in Randomized Controlled
Trials (RCTs) publications. ACL BioNLP workshop

2019

Analysing clinical trial outcomes in trial registries. TTM-TOTh 2019
A machine learning algorithm and tools for automatic detection of spin (distorted pre-
sentation of results) in articles reporting randomized controlled trials. ICTMC 2019

2019

(Inter)national conferences
18e REncontres jeunes Chercheurs en Informatique pour le TAL (RECITAL 2017), Or-
léans, France, 26 - 30 June 2017

2017

Workshop on Curative Power of MEdical Data, Constanta, Romania, 12 - 13 September
2017

2017

The Second Workshop on Processing Emotions, Decisions and Opinions (EDO 2017),
The 8th Language and Technology Conference (LTC), Poznan, Poland, 2017

2017

LREC 2018, Miazaki, Japan, May 2018 2018
LTC 2019: Demo Session, Poznan, Poland, 2019 2019
ACL BioNLP workshop, Florence, Italy, 2019 2019
TTM-TOTh, Bourget-le-Lac, France, 2019 2019
ICTMC 2019, Brighton, UK, 2019 2019

Other
Secondment at the Cochrane Schizophrenia Group, University of
Nottingham, Nottingham, UK

2017 3 months

Secondment at the AMC, University of Amsterdam, Amsterdam,
Netherlands

2018 2 months

Secondment at the UK EQUATOR Network, University of Ox-
ford, Oxford, UK

2018-2019 2 months

Secondment at the AMC, University of Amsterdam, Amsterdam,
Netherlands

2019 3 months

MiRoR Journal Club 2019 1
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Anna Koroleva, Patrick Paroubek. Extracting relations between outcome and significance
level in Randomized Controlled Trials (RCTs) publications. Proceedings of ACL BioNLP
workshop, 2019
Anna Koroleva, Sanjay Kamath, Patrick Paroubek. Extracting primary and reported outcomes
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tations. Under revision
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Anna Koroleva, Patrick Paroubek. Towards Automatic Detection of Primary Outcome
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and detect spin? Issues and challenges of a novel application of Natural Language Process-
ing: a case study. Under revision
Anna Koroleva, Elizabeth Wager, Patrick Bossuyt. What is an outcome? A corpus study.
Under revision
Anna Koroleva, Camila Olarte Parra, Patrick Paroubek, On improving the implementation of
automatic updating of systematic reviews, JAMIA Open, 2019, ooz044
Other
Anna Koroleva, Corentin Masson, Patrick Paroubek. Analysing clinical trial outcomes in trial
registries. TTM-TOTh 2019
Anna Koroleva, Patrick Paroubek. A machine learning algorithm and tools for automatic de-
tection of spin (distorted presentation of results) in articles reporting randomized controlled
trials. ICTMC 2019, Brighton, UK
Anna Koroleva, Patrick Paroubek. Automating the detection of communication spin in scien-
tific articles reporting Randomized Controlled Trials. In preparation
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