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Résumé de la thèse

L’interaction homme-robot est un domaine émergent qui couvre plusieurs
aspects des sciences humaines et d’ingénierie robotique [45]. Le travail effectué
dans cette thèse porte sur les interactions entre l’homme et un robot humanoïde
vu comme un collaborateur dans des scénarios plutôt industriels. Dans ce
contexte, les études que nous avons menées dans la première partie de cette thèse
ont examiné l’influence que peuvent avoir une certaine façon de programmer les
tâches d’un robot humanoïde sur le comportement de partenaires humains. Nous
avons choisi un paradigme de tâches d’inspiration industrielle : Pick-n-Place.
Dans le contexte des interactions homme-robot (pHRI), nous avons développé un
nouveau framework de transfert d’objets bi-manuel utilisant le contrôle corps
complet, et la locomotion d’un robot dans la 2ème partie de cette thèse.

Distinct motor contagions
Lorsqu’un agent humain ou robotique effectue une action suivie de l’observation
de cette action par une personne tièrce, des effets comportementaux implicites
tels que des contagions motrices font que certaines caractéristiques (paramètres
cinématiques, but ou résultat) de cette action deviennent semblables à l’action
observée. Cependant, des études antérieures sur les contagions motrices ont
examiné les effets induits soit pendant l’observation de l’action, soit après, mais
jamais ensemble. C’est pourquoi il n’est pas établi si ces effets sont distincts les
uns des autres, et en quoi ils sont different.

Dans le chapitre 2, au cours du paradigme de tâche de mouvement répétitif
Pick-n-Place, nous avons examiné l’effet des contagions motrices induites chez les
participants pendant (contagions en-ligne) et après (contagions hors-ligne). Les
mêmes mouvements en question sont effectués soit par une personne ou par un
robot humanoïde, le répétiteur par contre est toujours une autre personne. Nous
avons examiné en particulier les trois questions suivantes :

1. Les contagions en-ligne et hors-ligne résultant de l’observation d’un même
mouvement peuvent-elles affecter différentes caractéristiques de mouvement
du participant humain ?

2. Comment les forces des contagions en-ligne et hors-ligne varient-elles selon
la nature de l’agent qui les réalise (c.-à-d. s’il s’agit d’un humain ou d’un
robot) et leur implication sur la personne qui les observe et les réalise de son
côté aussi ?

3. Les contagions en-ligne et hors-ligne sont-elles différentes ou constituent-elles
le même effet observé à différents moments ?
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Nos résultats et conclusions suggèrent que les contagions en-ligne affectent la
fréquence de mouvement du participant tandis que les contagions hors-ligne
affectent leur vitesse de mouvement. De plus, les contagions motrices hors-ligne
étaient principalement notables après l’observation d’une personne. Les effets des
contagions en-ligne étaient les mêmes que celles des personnes et des robots
humanoïdes. Par conséquent, la contagion hors-ligne est peut-être plus sensible à
la nature de l’agent observé. Ces deux contagions ont également été observées
comme étant sensibles aux caractéristiques comportementales de deux personnes,
mais avec les robots, ces contagions motrices n’ont été induites que lorsque les
mouvements du robot étaient une copie du mouvement biologique. Enfin, les
observations générales faites dans ce chapitre mettent l’accent sur notre
hypothèse que des contagions motrices distinctes sont induites chez une personne
qui observe une autre personne (contagions en-ligne et hors-ligne).

Motor contagion influences human
co-worker performance
La présence d’un agent humanoïde influence-t-elle la performance des personnes
qui l’entourent ? Alors que les études passées ont examiné comment les effets des
contagions motrices induites par l’observation des mouvements de l’homme et du
robot ont affecté soit la vitesse de mouvement de l’agent humain, soit la variance
du mouvement, mais jamais les deux ensemble. Par conséquent, nous soutenons
que puisque la précision dans les mouvements avec la vitesse est importante dans
la plupart des tâches industrielles, il est nécessaire de considérer à la fois la
précision et la vitesse de la tâche pour mesurer précisément la performance dans
une tâche.

Dans le Chapitre 3, sous le même paradigme de tâche répétitive et avec l’ajout
de quelques conditions supplémentaires, nous avons systématiquement varié le
comportement du robot, et observé comment la performance d’un observateur
humain est affectée par la présence d’un agent humanoïde. Nous avons également
étudié l’effet de la forme physique du robot humanoïde où le torse et la tête étaient
couverts, et où seul le bras était visible pour les participants humains. Plus tard,
nous avons comparé ces comportements avec ceux d’une personne et examiné
comment le comportement observé change avec l’expérience des robots.

Nos résultats suggèrent que la présence d’un agent humanoïde ou d’une
personne peut influencer les fréquences de performance des participants humains.
Nous avons observé que les participants deviennent plus lents avec un partenaire
observé plus lent, mais aussi plus rapide avec un partenaire observé plus rapide.
Nous avons également soutenu que le rendement doit être mesuré en considérant
la vitesse (ou la fréquence) et l’exactitude des tâches ensemble. Nous avons
montré comment la précision du toucher des participants a changé en même
temps que les contagions.

Nous avons également étudié les effets de la forme physique, en ajoutant deux
conditions dans lesquelles la tête et le torse de l’homme et du robot étaient
couverts, et les participants humains ne pouvaient voir que le bras mobile visible
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de leur collègue. Nos résultats suggèrent que la présence d’un collègue
humanoïde peut affecter la performance humaine, mais seulement lorsque sa
forme humanoïde est visible. De plus, cet effet a été supposément accru par le
fait que les participants humains avaient déjà fait l’expérience d’un robot. Enfin,
nos résultats montrent que la fréquence des tâches humaines, mais non la
précision des tâches, est affectée par l’observation d’un robot humanoïde, à
condition que la tête et le torse du robot soient visibles et que les mouvements
d’inspiration biologique du robot soient réalisés.

Bi-manual and locomotion synchronized
bi-directional object handover
Dans le chapitre 4, nous avons conçu un framework pour le transfert d’un objet
entre un homme et un robot humanoïde dans un contexte d’interaction physique.
Nous avons concentré nos efforts sur l’élaboration d’un framework de transfert
simple mais robuste et efficace. Nous avons introduit un transfert bidirectionnel
intuitif d’objets entre utilisant le contrôle corps complet en synchronization avec
la locomotion. Tout au long de ce chapitre, le problème du transfert
bidirectionnel d’objets entre une personne et un humanoïde a été traité avec la
perspective d’atteindre un mouvement fluide continu et ponctuel. Au départ,
nous avons commencé par concevoir un framework général dans lequel nous
avons développé des modèles pour prédire la position de la main humaine
convergeant au point de transfert, ainsi que pour estimer la configuration de
saisie de l’objet et de la main humaine active pendant le transfert. Nous avons
également conçu un modèle pour minimiser les forces d’interaction lors de la
phase de remise d’un objet de masse inconnu ainsi que pour minimiser la durée
totale de la remise d’un objet. Nous avons conçu ces modèles pour répondre à
trois questions importantes liées à la remise d’objet robot humain —quand
(timing), où (position cartesienne) et comment (orientation et forces
d’interaction) pendant un transfert.

Dans ce framework de transfert, en utilisant le robot humanoïde HRP-2Kai,
nous avons d’abord testé et confirmé la faisabilité de ces modèles dans le scénario
où les collaborateurs humains et robotiques utilisent toujours leur ‘main’ droite
et gauche respectivement. Par la suite, un framework généralisé a été présenté et
testé où les deux collaborateurs ont pu choisir arbitrairement quelle main utiliser.
De plus, grâce au contrôleur natif de bas niveau de notre robot HRP-2Kai, nous
avons pu étendre notre framework de transfert, ce qui a permis au robot d’utiliser
les deux mains (bi-manuel) simultanément pendant le transfert des objets.

De plus, pour un transfert proactif d’un objet entre l’homme et le robot, nous
avons pensé qu’il était important d’envisager la possibilité que le robot fasse un
pas pour transférer ou échanger un objet avec une personne. Notamment, dans
les scénarios où un déplacement sur une courte distance est nécessaire. Nous
avons donc exploré toutes les capacités d’un robot humanoïde bipède et ajouté un
scénario où le robot doit prendre quelques mesures proactives pour transférer ou
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échanger l’objet avec des personnes. Ce scénario a été mis en œuvre sur HRP-2Kai
et testé avec différentes taxonomie de transfert.

Conclusion
Pour conclure cette thèse, les résultats que nous avons obtenus ont contribué au
domaine des interactions homme-robot humanoïde, notamment lors d’une
interaction humain-robot sans contact (HRI) et d’une interaction physique
(pHRI) respectivement. Le travail effectué dans cette thèse est d’inspiration
industrielle, mais nous pensons qu’il pourrait aussi s’appliquer aux problèmes de
services domotiques impliquant un robot humanoïde. Nous avons commencé avec
le scénario d’interaction homme-robot non physique basé sur un exemple de
tâche d’inspiration industrielle Pick-n-Place, puis nous avons avancé vers les
interactions physiques homme-robot avec un exemple de transfert d’objet
bidirectionnel entre un humanoïde et une personne.

Dans le chapitre 2 and 3, nous avons examiné une tâche industrielle empirique
répétitive dans laquelle un participant humain et un robot humanoïde
collaborent l’un près de l’autre. Nous avons principalement choisi la tâche
cyclique et répétitive pick-n-place pour les expériences car nous voulions une
tâche qui soit simple mais riche et qui puisse représenter plusieurs scénarios
industriels. Nous avons constaté qu’il s’agit d’une des tâches les plus courantes
dans les sites de production industriels où les robots sont utilisés. Notez que
cette étude n’a pas tenu compte des effets de facteurs tels que l’âge, les
caractéristiques physiques ou comportementales du partenaire humain. Ils ont
peut-être indirectement affecté ces deux contagions motrices, c’est peut-être un
sujet de discussion intéressant et il faudra l’explorer dans des recherches futures.

Dans l’ensemble, les résultats mentionnés et discutés dans les chapitres 2 et 3
mettent en évidence plusieurs nouvelles caractéristiques de contagions motrices,
mais ouvrent aussi de nouvelles questions pour des recherches futures. On peut
exploiter ces résultats pour personnaliser la conception des robots collaborateurs
dans l’industrie et le sport. Si l’éthique le permet, ces contagions pourraient être
utilisées pour améliorer la performance de travailleurs humains, et par conséquent,
leur productivité.

Enfin, nous concluons le chapitre 4 par un essai préliminaire du framework de
transfert complet sous les scénarios mentionnés ci-dessus, y compris la
locomotion. Nous confirmons que notre framework bidirectionnel de transfert
d’objets est intuitif et adaptable à plusieurs objets aux propriétés physiques
distinctes (forme, taille et masse), y compris les outils industriels. Il n’a besoin
que des informations sur la forme et la taille de l’objet remis, bien que la
connaissance de la masse de l’objet ne soit pas importante au début. Nous avons
confirmé la faisabilité de notre framework de transfert sous plusieurs objets dont
la masse varie de[0, 17 à 1, 1] kg, selon les scénarios mentionnés ci-dessus.
Cependant, au cours de plusieurs essais de transfert, nous signalons que la masse
calculée de l’objet n’est pas exacte et a une erreur marginale de ±10% par
rapport à la masse réelle de l’objet et doit encore être améliorée pour mieux
estimer les forces inertielles en jeu ou pour trouver de meilleurs moyens afin de
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supprimer les décalages des capteurs de force. Bien que cela n’ait pas affecté le
seuil optimal qui est important au moment de la remise de l’objet du robot à une
personne.

Bien que dans l’ensemble notre méthode nous permette de ne pas arrêter le
mouvement de l’effecteur final tout en étant capable de transférer l’objet (dans
les deux sens), si le transfert a lieu alors que les effecteurs finaux humains et
robotiques sont en mouvement, ce problème de transfert serait étendu au problème
de la collaboration et de la manipulation des objets, qui est déjà largement étudié
dans notre groupe de recherche. Nous nous sommes donc concentrés uniquement
sur le problème de transfert bidirectionnel proactif et avons donc décidé de réduire
la vitesse des effecteurs finaux (efv ' 0) au moment du transfert.

En ajoutant une dimension liée à la locomotion, nous ne nous sommes pas
concentrés sur le problème de la planification du mouvement ou de la navigation
dans un environnement encombré, mais nous avons plutôt concentré nos efforts
pour résoudre et optimiser le problème de transfert d’objets qui exige des efforts
partagés immédiats entre la paire homme-robot dans un petit espace où peu de pas
sont nécessaires et suffisants pour un transfert réussi des objets. La méthode que
nous proposons est simple mais efficace pour tirer profit des robots humanoïdes
bipèdes et traiter le problème du transfert bidirectionnel bidirectionnel d’objets
en utilisant le contrôle du corps entier et la locomotion du robot.



Abstract

The work done in this thesis is about the interactions between human and
humanoid robot HRP-2Kai as co-workers in the industrial scenarios. By
interactions, we started with the non-physical human-robot interaction scenario
based on an industrially inspired Pick-n-Place task example and then advanced
towards the physical human-robot interactions with an example of human,
humanoid robot dual-arm bi-directional object handover. The research topics in
the thesis are divided into two categories. In the context of non-physical
human-robot interactions, the studies conducted in the 1st part of this thesis are
mostly motivated by social interactions between human and humanoid robot
co-workers, which deal with the implicit behavioural and cognitive aspects of
interactions. While in the context of physical human-robot interactions, the 2nd
part of this thesis is motivated by the physical manipulations during object
handover between human and humanoid robot co-workers in close proximity
using humanoid robot whole-body control framework and locomotion.

When an individual (human and robot) performs an action followed by the
observation of someone’s action, implicit behavioural effects such as motor
contagions causes certain features (kinematics parameters, goal or outcome) of
that action to become similar to the observed action. However, previous studies
have examined the effects of motor contagions induced either during the
observation of action or after but never together; therefore, it remains unclear
whether and how these effects are distinct from each other.

We designed a paradigm and a repetitive task inspired by the industrial Pick-n-
Place movement task, in first HRI study, we examine the effect of motor contagions
induced in participants during (we call it on-line contagions) and after (off-line
contagions) the observation of the same movements performed by a human, or a
humanoid robot co-worker.

The results from this study have suggested that off-line contagions affects
participant’s movement velocity while on-line contagions affect their movement
frequency. Interestingly, our findings suggest that the nature of the co-worker,
(human or a robot), tend to influence the off-line contagions significantly more
than the on-line contagions.

Moreover, while the past studies have examined how the effects of induced
motor contagions due to the observation of human and robot movements have
affected either human co-worker’s movement velocity or how it affected
movement variance but never both together. Therefore we argue that since
precision in movements along with speed is the key in most industrial tasks,
hence it is necessary to consider both task accuracy and task speed to measure
the performance in a task accurately.

Therefore in second HRI study, under the same paradigm and repetitive
industrial task, we systematically varied the robot behaviour and observed
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whether and how the performance of a human participant is affected by the
presence of the humanoid robot. We also investigated the effect of physical form
of humanoid robot co-worker where the torso and head were covered, and only
the moving arm was visible to the human participants. Later, we compared these
behaviours with a human co-worker and examined how the observed behavioural
effects scale with experience of robots.

Our results show that the human and humanoid robot co-workers have been able
to affect the performance frequencies of the participants, while their task accuracy
remained undisturbed and unaffected. However, with the robot co-worker, this is
true only when the robot head and torso were visible, and a robot made biological
movements.

Next, in pHRI study, we designed an intuitive bi-directional object handover
routine between human and biped humanoid robot co-worker using whole-body
control and locomotion, we designed models to predict and estimate the handover
position in advance along with estimating the grasp configuration of an object and
active human hand during handover trials. We also designed a model to minimize
the interaction forces during the handover of an unknown mass object along with
the timing of the object handover routine.

We mainly focused on three important key features during the human
humanoid robot object handover routine —the timing(s) of handover, the pose of
handover and the magnitude of the interaction forces between human hand(s)
and humanoid robot end-effector(s). Basically we answer the following questions,
—when(timing), where (position in space), how(orientation and interaction
forces) of the handover.

Later, we present a generalized handover controller, where both human and
the robot is capable of selecting either of their hand to handover and exchange
the object. Furthermore, by utilizing a whole-body control configuration, our
handover controller is able to allow the robot to use both hands simultaneously
during the object handover. Depending upon the shape and size of the object that
needs to be transferred.

Finally, we explored the full capabilities of a biped humanoid robot and added a
scenario where the robot needs to proactively take few steps in order to handover or
exchange the object between its human co-worker. We have tested this scenario on
real humanoid robot HRP-2Kai during both when human-robot dyad uses either
single or both hands simultaneously.

Keywords: Robotics, Humanoid robot co-worker, Behavior, Robotic behavior,
Human performance, Motor contagion, Human-robot interaction, Physical human-
robot interaction
Discipline : Systèmes Avancés et Microélectronique

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
UMR 5506 CNRS/Université de Montpellier
Bâtiment 5 - 860 rue de Saint Priest
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Introduction

Humanoid robots are amazing yet complex systems; therefore, during
human-robot interaction, it is crucial to understand what makes the behaviour of
humanoid robot human-alike and the sense of trust that comes with it. In
today’s industry, there is a strong need for collaboration between humans and
robots. These robots are required to move around the human co-worker, interact
with them, understand their need and collaborate with them if need be either in
a close shared workspace or in a large cluttered environment. The core value
behind these human-robot interactions is the safety of both human and robot
co-workers. As suggested by the author Isaac Asimov in his ‘Three Laws of
Robotics’.

1. “Law 1: A robot may not injure a human being or, through inaction, allow
a human being to come to harm.”

2. “Law 2: A robot must obey the orders given it by human beings except
where such orders would conflict with the First Law.”

3. “Law 3: A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law.”

The question that we try to answer here is what kind of behavioural and
algorithmic improvements that we could bring for the better acceptance of a
humanoid robot in industrial scenarios as co-workers? Whether bringing changes
in their appearance or improving their control algorithms would enable them to
act more human-alike during an interaction with a human co-worker?

This thesis contributes in the broad field of human-robot interactions (especially
with the humanoid robot) both at a safer distance and nearby, namely during
a human-robot interaction (HRI) and physical human-robot interaction (pHRI)
respectively. The work done in this thesis is about the interactions between human
and humanoid robot as co-workers in the industrial scenarios. By interactions,
we started with the non-physical human-robot interaction scenario based on an
industrially inspired Pick-n-Place task example and then advanced towards the
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physical human-robot interactions with an example of human-humanoid robot
dual-arm bi-directional object handover.

This thesis has two parts. In the context of non-physical human-robot
interactions, the studies conducted in the 1st part of this thesis are inspired by
social interactions between human and humanoid robot co-workers, which deal
with the implicit behavioural and cognitive aspects of interactions. While in the
context of physical human-robot interactions, the 2nd part of this thesis is
inspired by the physical manipulations and handover of the object between
human and humanoid robot co-workers nearby using robot whole-body control
and locomotion.

Thesis Outline : In an empirical industrial co-worker setting, in one HRI
study (Chapter 2), we examine the effect of motor contagions induced in
participants during and after the observation of the same movements performed
by a human, or a humanoid robot co-worker. While in (Chapter 3), we
systematically varied the robot behavior and observed whether and how the
performance of a human participant is affected by the presence of the humanoid
robot. We also investigated the effect of the physical form of humanoid robot
co-worker where the torso and head were covered, and only the moving arm was
visible to the human participants. Later, we compared these behaviours with a
human co-worker and examined how the observed behavioural effects scale with
experience of robots. Finally, in the pHRI study (Chapter 4), we designed an
intuitive bi-directional object handover framework between a human and a biped
humanoid robot co-worker using whole-body control and locomotion. We
predicted and estimated the handover position and relative orientation of an
object or human hand during a handover and examined the interaction forces
during the handover of an unknown mass object along with the overall duration
of object handover routine.

Next in Chapter 1, we start with the in-depth review of previous works in the
related fields.

2



Chapter 1

State of the art

Robotic platforms with a floating base and whose overall shape and
configuration resemble that of a human body (child or adult) is called humanoid
robots. A humanoid robot (such as Russian space robot ‘Fedor’, ‘iCub’ from
RobotCub, ‘Nao’ from Aldebaran, Boston Dynamics’s ‘Atlas’ or domestic helper
HRP series robots by Kawada industries) generally consists of a head, two arms,
a torso and two legs.

Humanoid robotics design takes inspiration directly from human capabilities.
Previous human-robot interaction studies [27, 54, 97, 101], have shown that the
human acceptance of the robot co-worker during a task increases when the robot
appears and behaves human-like during an interactive task.

In all of our studies, we used biped humanoid robot HRP-2Kai [61] as the robot
co-worker who has two arms and two legs, a head and a torso. HRP-2Kai is a
life-size biped humanoid robot which is 154 cm tall, has 32 degree-of-freedoms and
weighs about 58 kg. It was designed and manufactured by the Kawada Industries,
Inc in collaboration with AIST under Humanoid Robotics Project (HRP).

1.1 Human-robot interaction (HRI)

Human-robot interaction is an emerging field which deals with the study and
research of interactions between humans and robots. HRI research studies aim to
model and design robotic platforms, including improvements of algorithms and
control systems based on human partners’ expectations during interactions such
as remote assistance or collaborative work among co-workers. These interactions
can be divided into two general categories depending on the distance between
human and robot [45]. Interactions that often carry out at a safer distance and
without a need of physical touch (direct or indirect via an object) between
humans and robots are termed as non-physical HRI, while interactions that often
require humans and robots to be in proximity such as during a physical
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State of the art 1.1. Human-robot interaction (HRI)

manipulative event(s) with a goal of achieving a task together, that may involve
touch or contact, transfer, assistance or collaborations are termed as physical
HRI or pHRI. These interactions can also be further distinguished based on the
applications that require social interactions [27, 104] or physical manipulations
during a task. The studies conducted in the 1st part of this thesis are mostly
motivated by social interactions between human and humanoid robot co-workers,
which deal with the implicit behavioural and cognitive aspects of interactions.
While the 2nd part of this thesis is motivated by the physical manipulations of an
object between human and humanoid robot co-workers nearby. Human-robot
social interaction is a vast field in itself; therefore we will not be discussing it in
detail here, rather our focus lies on one particular behavioural aspect of social
interaction, i.e. ‘motor contagion’.

1.1.1 Motor contagion

When an individual performs an action followed by the observation of someone’s
action, implicit behavioural effects such as motor contagions causes certain
features (kinematics parameters, goal or outcome) of that action to become
similar to the observed action. Past two decades of several studies in sports and
psychology have examined and reported various cases of motor contagions in
human behaviours, most of which are induced by the observation of other
humans and in fact robots as well [10, 14, 28, 32, 35, 43, 46, 52, 88, 94]. Due to
increasing usage of robots as co-workers in today’s industries, it is of uttermost
importance to understand the effects of robots on nearby working human
co-workers. In these industrial scenarios where human-robot dyad would
eventually share a workspace and possibly collaborate during a task, by
understanding how the robot behaviour could affect human behaviour can be
proven crucial and beneficial in optimizing and designing robot control to ensure
that robot would be perceived well and won’t cause harm or disturbance to the
human co-workers. While where ethically valid, robots may also be useful to
modulate human co-worker behaviour/performance for the productivity of the
task.

In our studies, specifically in Chapter 2, we divided motor contagions into two
categories depending on when they are induced relative to the observation of the
action performed. We called motor contagions as on-line contagions, that are
induced during the observation of actions performed by another human or robot
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co-worker. One example of on-line contagions would be the study performed
by [66], where they analyzed human participant movements variance when
he/she observed spatially congruent or in-congruent movements made by another
human or robot. Their findings suggest that on-line contagions are induced only
during the observation of human but not with a robot when it made
non-biological movements.

While on the other hand, off-line contagions effects are induced after the
observation of action either by human or robot. One example of this kind of
contagions would be the study by [13], where they analyzed the change in
participant’s hand movements velocity in a task performed with and without an
object, after observing the same movement being performed by a human or a
humanoid robot. The results of this study suggest that the participant’s hand
velocity was subsequently affected after the human and humanoid robot
(biological) movement observation.

However, both on-line contagions [19, 27, 69, 70, 84, 87] and off-line
contagions [12, 51, 55, 56, 65, 82] have been largely studied, but in all these
previous studies, researchers have focused on either type of motor contagions and
never examined or analyzed them together. Hence, it is still unclear, if and how
on-line and off-line motor contagions are different from each other in terms of
the human movement behavioral features they affect and the magnitude of these
effects.

To address this issue, in Chapter 2, we designed a paradigm inspired by the
industrial co-worker setting and examined the differences between the induced
on-line and off-line contagions in participants by the observation of the same
movements performed by both human and humanoid robot co-worker. In our
empirical repetitive industrial task, we carefully varied the behaviour of the co-
worker (human and humanoid robot) and analyzed the induced on-line and off-line
motor contagions in human participant’s behaviour.

1.1.2 Motor contagion: a social influencer

While the studies of the human-robot interaction on motor contagions are
sparse, the results from them suggest that motor contagions due to observation
of robots affect human movement velocity [12, 13, 65, 82], or the human
movement variance [19, 69, 70, 87], but latter studies have reported changes in
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arguably abstract tasks. Also, former studies which showed changes in movement
velocity have not examined how participant movement variance changes with the
change in movement velocity. On the other hand, precision in movements along
with speed is the key in most industrial tasks; hence it is necessary to consider
both task accuracy and task speed (or rather say frequency in case of a repetitive
task) to accurately measure the performance in a task. Therefore it is interesting
to examine how both of these parameters (speed and variance) of human
movements could be affected by observing a humanoid robot co-worker and
whether it is possible to quantify the affected performance of human co-worker
due to motor contagions.

Furthermore, some studies in the past highlight contradictory evidence that
robot co-worker physical form does [27] or does not [70] affect the human
movement’s variance. Though it is unclear regarding the movement speed and
hence performance, finally, it remains to be seen whether and how these effect of
motor contagions on the task performance are to be modulated due to the prior
human experience with robots in general. This issue with performance Vs

experience could be proven crucial in understanding how the continued exposure
of robot co-worker would be on human performance.

We addressed these issues, by further extending our work from Chapter 2 and
by exploiting the behavioral effects of motor contagions on human participant’s
movement speed (frequency) and as well as their task accuracy, after the
observation of same movement by a humanoid robot co-worker and report these
findings in detail in Chapter 3. We also reported our findings on the effect of the
physical form of humanoid robots as well as the magnitude of these effects with
human participants prior experience with robots.

1.2 Physical human-robot interaction (pHRI)

Interactions that often require humans and robots to be in close proximity such
as during a physical manipulative event(s) to achieve a task together that may
involve touch or contact, transfer, assistance or collaborations are considered as
physical human-robot interactions or just pHRI. As mentioned earlier, 2nd part
of this thesis is motivated by the physical manipulations of the object between
human and humanoid robot co-workers nearby.
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State of the art 1.2. Physical human-robot interaction (pHRI)

The usage of robots in personal as well as in commercial sectors have evolved
significantly in recent years. Moreover, robot working and sharing a workspace
with humans as co-workers in these sectors can often lead to opportunities where
human and robot have to work together and collaborate within a confined space.
One of the most often tasks that occurs during this human-robot collaborative
interaction is the handing-over or exchange of an object such as tools in industrial
scenarios or a glass of water in personal scenarios from either robot to human
or vice-versa. This problem of object handover is a complex collaborative task
that occurs seamlessly and effortlessly during the physical interaction between the
human dyads, often without any explicit communication. Some well-known object
handover examples such as “handing over a glass of water to a patient by the
caregiver”, “sharing a tool to a mechanic”, “handing a business card to a client”
and many more are often fundamental in our society. These natural yet simple
physical interactive tasks occur flawlessly multiple times between the human dyads
daily and under several scenarios in space and time. Although handovers are fluent
phase-less natural events between human-human interactions, during the human-
robot dyad interactions, the handover of an object is a challenging task and often
regarded as unnatural (non-biological) behaviour.

This unnatural behaviour mainly arises due to the lack of responsiveness and
unreliability of the robot co-worker, and the safety issues of the human co-worker
during the interaction. In the previous human-robot interaction studies [54, 97,
101] and also in our work Chapter 3, we have shown that the human acceptance of
the robot co-worker during a task increases when the robot appears and behaves
human-like, especially during a collaborative, interactive task. Therefore again
in our next study, we primarily chose to consider humanoid robot HRP-2Kai as
the robot co-worker. In Chapter 4, we mainly focused on solving the problem of
intuitive and proactive bi-directional object handover between human and a biped
humanoid robot dyad using robot Whole-Body Control (WBC) [15, 17, 95, 106].
We formulated our handover problem by taking inspiration and insights from the
previous works in the field of object handover between human-human and human-
robot dyads in general. We will now discuss some of those significant previous
research works.
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1.2.1 Previous handover studies

Overview: Object handover being the most common interactive task and
knowing its significance in daily life; it is evident that object handovers have
been widely studied by the researchers both during the interactions of
human-human and human-robot dyads. These past studies related to object
handovers can be categorized under three main research topics. The prediction
and estimation of human motion towards the handover location and concurrent
robot motion planning towards that location [53, 67, 71, 73, 74, 105, 112]. To
understand and codify the interaction forces that is applied on the object
between the dyads during the handover [29, 30, 76, 79, 90]. To effectively
minimizing the overall handover duration between the dyads [24, 54, 80, 81].

Studies on handover motion: In order for the human-robot object
handovers to be proactively intuitive, the robot must be able to predict and
estimate the human motion in advance. Instead of simply waiting for the object
to be presented by the human at the handover location, the robot must
proactively plan its motion by observing and predicting next human motion and
arrive at the human chosen handover location approximately at the same time.
[71] have compared several mathematical position prediction models where
human is always giver and robot is always receiver. Thanks to these models,
their preliminary results show an overall reduction in handover duration period.
While [68, 86, 96, 110] have developed human hand motion prediction model by
gaining insights learned from the human-human object handover studies.
However, since specifically developing alone position prediction model is not the
main focus of our study; therefore, we primarily decided to accommodate a
simple method to predict the human hand motion using constant velocity based
model. We have further discussed this in detail in Chapter 4.

Studies on handover configuration: Although predicting handover
location is not enough, the robot must also be able to find the most appropriate
configuration to grasp (as receiver) or release (as giver) the object, based on the
comfort and requirement of the human co-worker. Therefore for an intuitive and
smooth handover of an object, the robot should relatively orient its hand (in our
case gripper as the end-effector) and configure accordingly. Though there are
several possible configurations to handover an object, the robot must determine
the correct configuration of its end-effector during the handover which is suitable
and natural for the human. Moreover, according to to [23], we humans prefer
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handover of an object in its default orientation. [6] work suggests that robot
takes human comfort and convenience under consideration to find the
appropriate orientation during the handover, which they gave a higher score
based on the appropriateness and safety. [111] Showcased human-robot object
handover using imitation learning based on human-human demonstration. The
robot relies on the posture of the human participant to determine the pose of
object handover. [67] proposed object handover and grasp planning method that
incorporates cultural etiquette (one-hand, two-hand, two-hand mid-air) based on
the object’s function, object shape and safety of both human and robot.
While [77, 98, 109] estimated the appropriate handover orientation using a 3D
image of the object and by tracking human hand. [72] Introduced a simulated
model planner to grasp the unknown objects during the interactive manipulative
tasks. However even though the handover motion can be planned or optimized
online but it is still essential for the robot to promptly adapt to changes in the
handover location during the interaction, especially at the time of handover or
exchange of the object.

Studies on interaction forces: Previous studies on the forces during these
handover interactions analyzed the relationship between grip force (applied on
the object by the human) and the load force (object weight shared by the
robot). [75] findings suggest a gradual change in the grip force while the human
dyad implicitly share the load force during the transfer of the object. [29]
Investigated the grip forces applied on an object while it is being exchanged
between the human-human dyad during a handover. They found a linear
relationship between these forces, suggesting that the giver is responsible for
safety of object during the transfer and receiver is responsible for the timing of
handover. [79] demonstrated a grasping system based on the 6DOF wrench (force
and torque) feedback that first acknowledges the stable and secure grasp on the
object by the human, only after that the object is released by the robot. [76]
Learned from the insights during the human dyad handovers and developed a
dynamic force controller which significantly reduces the internal forces between
the human-robot dyad compared to the traditional threshold-based controller.
Inspired by the human object grasping, [90] designed a robotic grasping
controller with minimal normal forces while grasping an object to make sure it
does not slip. [85] proposed object re-grasping controller in case of false grasping.
[68] presented a dynamic object handover controller based on the contextual
policy search, where the robot learns about the object handover while interacting
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with the human and dynamically adapts to the motion of the human. [30]
Designed a controller to estimate the applied grip force and load force by
measuring the joint position/angle errors on a compliant underactuated
humanoid hand. However, in most of these studies, knowledge of object mass is a
prerequisite. In our approach, knowing object mass in advance is optional as it
can be calculated during the handover routine, but we do rely on knowing the
object physical, structural properties.

Studies on robot motion planning: Majority of studies related to human-
robot object handovers were carried out in the past with traditional robotic arm
manipulators attached to either a stationary-base or to a wheeled-base mobile
robotic system [23, 53, 68, 76, 111] and latter studies are often related to the robot
motion planning and navigation in an ample space and lacks proactive behaviour
using ‘biped’ locomotion of a humanoid robot which is capable of walking as
human does. To the best of our knowledge, bi-directional object handover with
biped walking has not been considered in the previous works on the human-robot
dyad object handover. However [30, 109] have utilized biped walking capable
humanoid robots in their studies but without considering locomotion. Therefore
for the robot to be sufficiently proactive, we believe it is crucial to consider the
possibility of the robot taking a step to handover or exchange an object with
the human co-worker, in scenarios where short-distance travel is required. We do
not focus on the problem of motion planning or navigation in a large cluttered
environment [67, 74, 105]. However, instead, we concentrated our efforts to solve
and optimize object handover problem which requires immediate shared efforts
between human-robot dyad in a small space where few steps are necessary and
enough for a comfortable and convenient object handover. We proposed simple but
effective methods to take advantage of a biped humanoid robot and deal with the
problem of bi-directional object handover using robot whole-body control. Though
there are many state-of-the-art methods available to generate walking patterns
for a biped humanoid robot, however, the study done in Chapter 4 primarily
adopted the walking pattern generator (WPG) which was designed and tested in
our group [25, 59] along with its native stabilizer [26, 60].

1.2.2 Proactive handover formulation

We concentrated our efforts towards developing a simple yet robust and efficient
handover controller for bi-directional object exchange and transfer between the
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human and the robot co-workers using robot Whole-Body Control (WBC). WBC
allows simultaneous execution of several tasks at once, for example, a humanoid
robot capable of using and configuring either single or both hands during the
handover and manipulation of the object and at the same time, being proactive
and capable of taking few steps or more during the exchange and transfer of the
object. WBC exploits the full potential of the entire floating based robot body
and allows interaction with the environment using multi-contact strategies 1 [106].
Several previous studies such as [54, 101] have treated object handover routine as
a non-continuous entity and analyzed the routine of handover individually into
three main sub-tasks — approach, deliver and retreat. However, we take a similar
approach as one mentioned in the [76, 81] and treat the object handover between
human and humanoid robot co-worker as one-shot continuous fluid motion.

[105, 109] and [67] have adapted object handover and manipulation using
dual-arm motion planning but did not consider robot locomotion. Also, in
previous studies, dual-arm manipulation is limited between robot arms only
without involving human co-worker. Our handover controller, however, enables
both human and robot to utilize either single or both hands simultaneously
during the object handover routine.

We initially formulate our handover problem under the scenario of human-robot
bi-directional object handover using human right hand and robot left end-effector.
We mainly focus on three important key features during the human humanoid
robot object handover routine —the timing(s) of handover, the pose of handover
and the magnitude of the interaction forces between human hand(s) and humanoid
robot end-effector(s). Basically we answer the following questions in Chapter 4,
—when (timing), where (position in space), how (orientation and interaction
forces) of the handover.

Later, we present a generalized handover controller, where both human and the
robot is capable of selecting either of their hand to handover and exchange the
object. Furthermore, by utilizing the WBC configuration, our handover controller
can allow the robot to use both hands (bi-manual) simultaneously during the
object handover, depending upon the shape and size of the object that needs to be
transferred. Our bi-directional handover controller is intuitive; also, it is adaptable
to several objects of distinguishable physical properties (shape, size and mass).
Our handover controller only needs the pertinent information of the environment

1as explained by the IEEE Technical Committee on Whole-Body Control
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(object), mainly the object’s shape and size information, though knowing the mass
of the object is not essential in the beginning.

Finally, we explored the full capabilities of a biped humanoid robot and added
a scenario where the robot needs to proactively take a few steps to handover or
exchange the object between its human co-worker. We have tested this scenario
during both when human-robot dyad uses either single or both hands
simultaneously. Note that by proactive nature of robot, we meant that our
approach did not require a robot to be trained from the human operator, rather
robot behaviour should be able to meet the human co-worker’s expectations.

12



Chapter 2

Distinct motor contagions

Several studies in the past have demonstrated that just by observing an
action performed by human or robot can affect the movements of an observing
human; an effect widely known as motor contagion. Although, these previous
studies have either analyzed the motor contagions induced during (which we call
on-line contagions), or induced after (off-line contagions) the observation of the
robot, but never together. Therefore, it is still unclear whether and how these
two motor contagions differ from each other. In this Chapter, we designed a
paradigm inspired by the industrial co-worker setting and examined the
differences between the induced on-line and off-line contagions in participants by
the observation of the same movements performed by both human and humanoid
robot co-worker. We specifically examined three questions:

1. Can on-line and off-line contagions from the observation of the same
movement affect different movement features of the human participant?

2. How do the strengths of the on-line and off-line contagions vary with the
nature of the co-worker (i.e. if human or robot) and the behaviour of the
co-worker?

3. Consequently, are the on-line and off-line contagions different, or do they
constitute the same effect observed in different instances?

2.1 Materials and methods

2.1.1 Participants

In total, 45 healthy adults participated in our study. Three participants (2 males
and a female of 3 nationalities, 29.6±5, mean±SD, aged 25-35) worked as volunteer
models for capturing the human arm motion data. A total of 42 participants (22
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females, 20 males of 11 nationalities, age between 20-39, mean±SD, 25.9±4.35)
participated as ‘co-worker’ in the main study. All human participants had normal
or corrected to normal vision. However, according to the Edinburgh Handedness
Inventory [89], three of them were left-handed. We had received prior approval
from the local ethics committee at the National Institute of Advanced Industrial
Science and Technology (AIST) in Tsukuba, Japan, to conduct these experiments.

Before beginning the experiment, all participants were carefully instructed
and informed regarding the experiment and task procedure. All of the
participants agreed and gave their written consent to participate in this study.
However, participants were unaware of the motives of the experiment as they
were not told what aspect of their behaviour we will be analyzing later. This
naïve nature of the participants were crucial as to avoid biasing in the results,
since we were mainly interested in the implicit effects of motor contagions. Each
participant was awarded with 2021 Japanese Yen for their valuable contribution.

Participants for the study were recruited through an advertisement via a local
event forum, Facebook page of our experiment and via word of mouth in the
Tsukuba University, Tsukuba, Japan. There were no restrictions, apart from
participants needed to be at least 18 years old to participate in this experiment.

Figure 2.1: Experimental setup: The participants in our experiment worked
in three conditions; (i) with a robot co-worker performing biological movements
(Rbiol), (ii) a human co-worker (H), and (iii) a robot co-worker performing non-
biological movements (Rnonbiol). The coordinate axis defining the movement

setup is indicated in white and fixed on the participant’s table.
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2.1.2 Setup

The experimental setup is shown in (Fig. 2.1). Initially, participants were
requested to sit comfortably on a chair in front of a large table. While the
‘co-worker’ was sitting on the other side of the same table. The ‘co-worker’ was
either a humanoid robot or a human experimenter. A touchscreen was placed
horizontally underneath the table. Both co-worker and participant were
presented with a unique pair of red circles on their respective side of the table.
Each circle for participants had a diameter �5cm and the circles for co-worker
had a diameter �9cm. Also, each pair of circles were at a distance of 50cm from
each other. We had enclosed the experimental setup by movable panels and
covered the panel behind the co-worker with a dark grey curtain.

We placed ten passive reflective markers on the hands, arms, elbows and
shoulders of the participants and co-worker. We used six kestrel infra-red
cameras (Motion Analysis Co.,) at 200Hz to track the position of these
markers.

A biped humanoid robot HRP-2Kai (154cm tall, 58kg, 32DOF) was used as
robot co-worker [61]. A male, trained experimenter (age: 37) was assigned to act
as a human co-worker. During the experiment, both co-workers used their right
hand.

2.1.3 Experimental task and conditions

The task to carry out in our experiment was inspired by the industrial pick-n-place
part-assembly task. Participants were required to touch the red circles repeatedly
on the touchscreen with a stylus in their right hand. The same task was performed
by the co-worker (Human or the HRP-2Kai) in front of the participants. The
participants worked in a series of 50 seconds trials with the co-worker. In each trial,
they initially performed alone for 10 seconds (participant-alone period), performed
with the co-worker for the next 20 seconds (together period), and then relaxed
while watching the co-worker performs its/his task for the last 20 seconds (co-
worker-alone period) (Fig. 2.2A).

We instructed the participants to “always hold the stylus like a stamp and
touch alternatively inside each red circle on the touchscreen with continuous and
smooth hand movements at a comfortable speed”. Participants were not instructed
regarding the movement or speed of their hand trajectories. All participants wore
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Figure 2.2: A) Trial protocol: The participants worked in repeated trials with
either a robot or human co-worker (the figure shows the trial with a human co-
worker). Each trial consisted of a period when the participant worked alone and
co-worker relaxed (participant-alone period), both worked together (together
period), and the co-worker worked alone (co-worker-alone period). The notation
of the kinematic and time variables (represented in general by η) in each period
are shown in the figure. B) The trajectories made by the robot co-worker in the
Rbiol and Rnonbiol conditions. C) The time trajectories followed by the robot
co-worker in the Rnonbiol condition in the Y and Z dimension, and the via-points

(blue circles) used to generate the trajectory.

headphones (through which white noise was sent) and had no audio feedback of
the noise from the moving robot (confirmed in the post-experiment questionnaire).
They were explicitly told to “focus on your own task and ignore the co-worker when
he/it starts after them”.

In total, participants behaviour was tested in six experimental conditions. In
each condition, co-worker’s behaviour, such as physical appearance or movement
trajectory, was changed. In this chapter we only discuss our findings and present
results from three conditions relevant for distinguishing the on-line and off-line
contagions. Whereas in the next Chapter (More than just co-workers), we have
discussed the effect of physical features of the co-worker on the participant’s
behaviour.

In the beginning, the participants worked with a human co-worker in the
Human (H) condition. The HRP-2Kai robot acted as the robot co-worker in the
Robot biological (Rbiol) condition and played back (biological) hand movements.
These biological movements of a human volunteer (blue plot in Fig. 2.2B), were
recorded in a preliminary experiment (also see section 2.1.4). Finally, the
participants worked again with the HRP-2Kai robot as the co-worker, in the
Robot non-biological (Rnonbiol) condition, where the robot now performed a
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non-biological movement profile. This profile was roughly trapezoidal in shape
and velocity profile (magenta plot in Fig. 2.2B).

Each participant worked in three conditions. Our experiment consists of six
condition combination groups, such that each participant in a combination group
worked in the Rbiol condition, and two out of five remaining conditions. This
provided us with the opportunity to compare participant’s behaviour in any
condition and against his/her behaviour in the Rbiol condition. Since each of our
experimental condition lasted over 20 minutes, which made the total time of
experiment over an hour. Therefore to avoid participants being tired, we did not
allow them to experience all the conditions. Note that the order of conditions
was chosen randomly across the participants. In this Chapter we discuss our
results from the participants in Rnonbiol and/or H conditions, in addition to the
behaviour of the same participant’s Rbiol condition.

The participant worked in a series of 10 trials in each condition. The co-
worker performed at a pseudo-randomly selected constant yet unique frequency
(in the range of 0.16 to 1.1Hz) in each trial. This pseudo-random nature of the
co-worker performance was critical to avoid contamination by behavioural drifts
across trials. A metronome using headphones were provided to the human co-
worker (like in [13]), to cue him/her of the required movement frequency, and to
assist in keeping and maintaining the particular movement frequency.

2.1.4 HRP-2Kai movement trajectories

We played back recorded human hand movement as the arm movements of HRP-
2Kai in the Rbiol condition. In a preliminary experiment, we recorded the hand
movements of three volunteers (a female and two males). Motion Analysis Co.,
motion tracking system was used to record their hand movements, while at the
same time, volunteers were cued by an audio metronome to help maintain their
hand movement frequency. These movements were acquired at several frequencies
between 0.16 to 1.1Hz. Interestingly these three volunteers movements were found
statistically similar in the x, y and z velocity profiles (p > 0.05), and showed similar
fashion in movement height with movement frequency, i.e., trajectory height
consistently decreased with the increase of movement frequency. Therefore in this
experiment, we chose to only use the recorded movements from one of the male
volunteers. In order to maintain the trajectory shape and also the characteristic
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variance of human trajectories, we purposely decided that it is better than taking
an average of trajectories by the three volunteers.

In our task, the human movements were distinguished by smooth velocity
changes but did not exhibit any direction changes (via points). Therefore for the
Rnonbiol condition, we designed a via-points based robot trajectory. Inspired by
the industrial manipulators trajectories of constant velocity phase and
trapezoidal shape during pick-n-place task and keeping in mind our HRP-2Kai
joint constraints during fast movements, we redesigned a trapezoidal shape
trajectory for this condition with smooth curves between the acceleration and
deceleration transition phases. Our task required humans to make movements
mainly in the YZ plane. Hence we also designed the robot arm trajectory in the
YZ plane. Using two temporal via-points [11], we designed a smooth piece-wise
polynomial trajectory in position-time using the third-order polynomial
segments. The boundary conditions restricted the slope (velocity) to zero at the
start, the end and the via-points (see Fig. 2.2C). The initial (y0) and final (yf )
positions in Y were set to zero and 50 cm respectively, as per the movements
required by the participants. To give a non-biological behaviour, we set the
maximum Z height (zmax) for the robot in the Rnonbiol condition to 13 cm one
way and 8cm the other.

2.2 Data analysis

2.2.1 Variables

Our analysis is based on the position data of the markers placed on the
participant’s and co-worker’s stylus. In order to bring out the possible
behavioural differences between the movements towards and back between the
touches on the touchscreen, we analyzed behavioural variables across each
movement between the red circles on the touchscreen, which we call as iterations
(such that two consecutive iterations constituted a movement cycle). The
participants and co-workers made non-stop continuous movements between the
touches, and hence we could extract individual iterations by a participant or
co-worker by examining the directional changes of their y-velocity in the
recorded motion capture data. In this chapter, we focused our efforts on the
kinematic variables along the Y and Z axes inside each iteration and analyzed the
maximum movement length (ymax), maximum movement height (zmax),
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maximum absolute velocities (max |ẏ|, max |ż|), mean absolute velocities (|ẏ|,
|ż|), maximum accelerations (max(ÿ), max(z̈)), and minimum accelerations
(min(ÿ), min(z̈)), by the participants and co-workers to understand whether and
how the co-worker behaviour were affected by the on-line and off-line contagions.
In addition to the kinematic variables, we analyzed time between the touches in
each iteration, which we will refer to as the half-time period or (htp).

2.2.2 Participant sample size

We initially conducted our experiment with the sample size of 35 participants such
that all of them participated in the Rbiol condition and 14 participants in each
of the five other conditions. We call it as participant group, where participants
performed in Rbiol condition along with one of the five other condition. Thus
a total of five participant groups. Note that these groups are different from the
previously mentioned six condition combination groups. The number ‘14’ also
represents the participant numbers in similar previous studies [12, 13] and this
participant number ‘14’ also corresponds to the G* power analysis [33] using two-
way one sample T-test (α = 0.05, β = 0.85, d = 0.9) [108] for the biological
experiments. We discovered notable motor contagions in the htps in the Rbiol

condition (median = 0.014, Z(31) = 3.14, p = 0.0016, 3 participants with slopes
beyond the 95% confidence interval were removed as outliers). We thus believed
that a positive htp slope in Rbiol condition as true, and checked the htp values in the
Rbiol conditions in each participant group. But with these participants numbers,
the htp slopes in the Rbiol condition were not significant across the participant
groups (p < 0.05, one-way ANOVA). The htp slope during Rbiol condition were
observed to be significant with two participant groups (p = 0.022, p = 0.038),
marginally significant with other two participant groups (p = 0.07, p = 0.08) and
not significant in one participant group (p = 0.36). Hence, we later proposed
and decided to add 7 participants (50%) across these groups, making a total of
42 participants. This addition of participants ensured that the htp slopes across
the participant groups become similar (P = 0.99; one-way Kruskal-Wallis H-test).
After removal of three outliers, this gave us participants numbers of 13 in the H
condition, 18 in the Rnonbiol, and 39 in total for the Rbiol condition.
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Figure 2.3: Examples of linear regression fits obtained in the H (orange), Rbiol
(blue), Rnonbiol (magenta) conditions: A) off-line contagions in the participant’s
|ẏ| (y-axis) as a function of co-worker’s |ẏ| (x-axis); B) On-line contagions in
the participant’s htps (y-axis) as a function of co-worker’s htps (x-axis). We
used the AIC to choose either a first or second order model to fit the data
for each participant. The lines represent the tangent slopes at the minimal

co-worker feature value.

2.2.3 Quantifying the off-line contagions

After observing the co-worker, we quantified the participant’s change in
behaviour by analyzing how the average value of a given kinematic or time
variable ηp by a participant during the participant-alone period in trial i (ηap(i))
has changed, compared with that of the co-worker in the co-worker-alone period
of the previous trial (ηc(i − 1)). We later used the first-order or second-order
regression model to explain the data and performed the regression using
MATLAB’s fitlm function. The first or second-order regression models were
chosen based on the Akaike Information Criteria, or AIC [5]. Some examples of
fittings are illustrated in (Fig. 2.3A). We then gathered the slope at the
minimum co-worker variable value (min[ηc(i)]) across participants. The gathered
slope data for each variable and condition was then checked for normality using
the Shapiro-Wilk test and further analyzed for a difference from zero either using
a one-sample T-test or a Signed Rank test based on whether the distribution was
normal or not, respectively. (Fig. 2.4A) illustrate the data plots of |ẏ| from the
three reported conditions.
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Figure 2.4: The off-line contagions: Observed changes in the participant’s
|ẏ| and htp in the H (orange plots), Rbiol (blue plots), Rnonbiol (magenta plots)

conditions. All p values are Bonferroni corrected.

2.2.4 Quantifying the on-line contagions

To quantify the effects due to the on-line contagions, we now looked again at the
average value of all analyzed kinematic or time variable ηp but this time in
together period. Note that in order to remove any persistent off-line contagions
in this period, we regressed the change in the participant’s behaviour, between
the together period and alone-period in a trial (ηtp(i) − ηap(i)), and the
corresponding value of the same variable in the co-worker behaviour in the same
trial ηc(i). A first-order or second-order regression model was chosen again using
AIC for each participant, and similarly with the off-line contagion analysis, the
slope of tangent at the minimum co-worker variable value (min[ηc(i)]) was
gathered across participants, then checked for normality using the Shapiro-Wilk,
and finally analyzed for difference from zero using a one-sample T-test or a
Signed Rank test. The (Fig. 2.3B) illustrates the fitting of htp in representative
participants in the three reported conditions and the collection of slopes are in
shown in (Fig. 2.5B).

2.2.5 Statistical correction

As mentioned earlier, every participant in this study performed in three conditions:
the Rbiol condition, and two of the remaining five conditions. therefore we make
two comparisons for each participant, between Rbiol and the two other conditions.
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Correspondingly, in our comparisons in (Fig. 2.5), we use a Bonferroni correction
of (3 conditions − 1) 2, and hence all p values below 0.05 were multiplied by 2.

2.2.6 Movement congruency analysis

Moreover, during the on-line contagions, we also investigated if movement
congruency between the participant and the co-worker influenced the on-line
contagions in |ẏ| and htp of participants. In every iteration, we compared the
velocity of the participant to the velocity of the co-worker and classified it as a
congruent iteration if the co-worker moved in the same direction as the
participant for more than 50% of the iteration time, or otherwise as an
incongruent iteration. We then performed the same regression analysis as
described above to obtain two slopes for each participant, taking either their
congruent or incongruent iterations. Later, we averaged the difference between
the two slopes across the participants to analyze whether congruency affected the
on-line contagions. The plots of the difference of |ẏ| and htp between the
congruent and incongruent iterations are shown in (Fig. 2.6).

2.3 Results

2.3.1 Off-line contagions affect mean velocities but not
htps

Our findings agree with the results of recent studies in the past [65, 82], which
have shown that off-line motor contagions affect the hand movement velocity of
participants. We observed (Fig. 2.4A) a significant positive slope between the
mean absolute y-velocity (|ẏ|) of participants and the human co-worker in the H
condition (median = 0.040, p = 0.017, orange plot in Fig. 2.4A). In the Rbiol

condition, where the robot co-worker HRP-2Kai made the biological movements,
the slope leaned to significance for the |ẏ| velocity (median = 0.017, Z(38) = 1.86,
p = 0.063, blue plot in Fig. 2.4A). Finally in the Rnonbiol condition, when the robot
movement was not biological, the results again agreed with previous works and
the slope between the |ẏ| of participants relative to the |ẏ| of the robot was zero
(p = 0.47, magenta plot in Fig. 2.4A).
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Figure 2.5: The on-line contagions: Observed changes in the participant’s
|ẏ| and htp in the H (orange plots), Rbiol (blue plots), Rnonbiol (magenta plots)

conditions. All p values are Bonferroni corrected.

Also a positive slope has been observed between the maximum absolute
y-velocities (max |ẏ|) of the participants and of the human co-worker in the H
condition (median = 0.54, p = 0.017), however this was not present in the robot
co-worker conditions (Rbiol: p = 0.18; Rnonbiol: p = 0.29). Overall, these
observations agree and support previous results which showed that the mean
velocity of human participants are affected by off-line contagions after seeing a
human or robot co-worker, although only when the robot co-worker performs
biological movements.

Interestingly, the participant’s htps due to off-line contagions remain unaffected,
no significant effect was observed. The htp slopes were observed to be insignificant
with human co-worker in theH condition (median = 0.006, p = 0.06), as well as the
robot co-workers Rbiol: (median = 0.007, Z(38) = 1.89, p = 0.06); Rnonbiol: (median
= -0.002, Z(17) = -0.18, p = 0.25). The p values were marginally insignificant, as
illustrate in (Fig. 2.4B).

Note that in our task, it is entirely reasonable to observe a strong positive
slope in the |ẏ|, but not in the corresponding htps. This is because in our task
the participant movements were mainly in the YZ plane, and hence the htp, which
is measured when the participant touches on the touchscreen, and it depends not
only on the y-velocity, but also the z-velocities of the participant. While on the
contrary, due to the same reason, any effect induced in the |ẏ| would partly show
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up in the htps, and this was probably the reason behind the marginal insignificance
observed in the participant htps.

Finally, we found no effect (p > 0.1) on any of the remaining analyzed
kinematic variables (maximum movement length (ymax), maximum movement
height (zmax), maximum absolute velocities (max |ẏ|, max |ż|), mean absolute
velocity (|ż|), maximum accelerations (max(ÿ), max(z̈)), and minimum
accelerations (min(ÿ), min(z̈))) due to the off-line contagions, in all three
conditions H, Rbiol and Rnonbiol.

2.3.2 On-line contagions affect htps and not mean
velocities

Our findings strongly suggest that the on-line motor contagions are distinct from
off-line motor contagions. Firstly, we measured a significant effect on the htp
of participants when they worked in parallel with the co-worker, unlike off-line
contagions. The slope of htps was strongly significant both when the participants
worked with the robot co-worker who made biological movements (median = 0.017,
Z(38) = 3.70, p = 0.0002, blue plot in Fig. 2.5B) in the Rbiol condition, as well
as when they worked with a human co-worker (median = 0.014, p = 0.0017,
orange plot in Fig. 2.5B) in H condition. As expected, when the robot co-worker’s
movement were non-biological in nature, no effects were observed in Rnonbiol (p =
0.777, magenta plot in Fig. 2.5B).

However, in the H condition, we found an effect on the mean absolute
y-velocity (|ẏ|) of the human participants (median = 0.034, p = 0.022, orange
plot in Fig. 2.5A), but we didn’t find this effect in the Rbiol condition (median =
0.013, Z(38) = 0.13, p = 0.90, blue plot in Fig. 2.5A), nor in the Rnonbiol

condition (p = 0.39, magenta plot in Fig. 2.5A). Suggesting that this effect was
overall absent with the robot co-worker. At last, again with human co-worker,
we noticed some effects in the max(ÿ) and max(z̈), but it was completely absent
in both of the robot co-worker conditions.

Our findings in the Rbiol condition favors the notion that off-line contagions
affect a participant’s htp but not a participant’s |ẏ|. On the other hand, in the H
condition, the effects on both htp and |ẏ| were observed. Therefore to settle this
conflict, we consequently measured if the results in the H condition were
coupled; i.e., whether the |ẏ| was indeed affected in the H condition, or
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Figure 2.6: Effect of congruency on on-line contagions: the difference
in slopes, between the velocity congruent and incongruent iterations across
participants, was zero for both the |ẏ| and htps of participants during the
observation of the human (H, orange plot) condition and robot co-worker (Rbiol,
blue plot) condition. The lack of effect difference suggests that the on-line

contagion does not affect the movement velocities in our study.

whether it was a consequence of the effect on the htp. In the H conditions, we
separated and collected the movement iterations depending on whether the
participant’s movement was predominantly congruent (cong iterations), or
incongruent (in-cong iterations) with an observed (co-worker’s) movement (see
subsection Movement congruency analysis for details), and compared the on-line
contagions in these two types of iterations separately. By cong iterations we
mean, when the co-worker’s movement direction corresponds to that of the
participant, and the in-cong iterations, when the movements direction do not
correspond. In accordance with the previous studies [12, 65, 82], we hypothesized
that if the on-line contagions affect the |ẏ|, then the contagion strength (i.e.

the signed slope), would be significantly different between the cong iterations and
the in-cong iterations. Otherwise, if the on-line contagions are in the htp, which
is a time unit, the congruency of the observed movement (relative to the
participant’s own movement) should not change the strength of the contagions.

Our data analysis and results stipulate no difference in the |ẏ| and htp slopes in
the cong and in-cong iterations of the H condition (p = 0.26 and p = 0.73, orange
plots in Fig. 2.6 respectively). Likewiese, no such difference was either observed
between the slopes of |ẏ| and htp in the cong and in-cong iterations of the Rbiol
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condition (p = 0.76 and p = 0.59, blue plots in Fig. 2.6 respectively). Therefore,
these results strongly emphasize that the on-line contagions predominantly affect
the participant’s htps but not velocity.

2.4 Discussion

We initially asked three particular questions at the beginning of this Chapter,
regarding the effects of a human or humanoid robot co-worker’s action
observation on one’s behaviour, during and after the same action observations.
Our findings agree with the previous works on off-line motor contagion and show
similar results that the mean absolute velocity of human participants in the
predominant movement direction (Y direction, in this study) are implicitly
affected after observing a co-worker (both human and robot). However, with the
robot co-worker, this effect was present only when the robot made biological
movements (Fig. 2.2B, blue plot). On the contrary, due to off-line contagions, we
found minimal effects on the participant’s htps (Fig. 2.4B). While due to the
on-line contagions, we primarily observed the effects in the participant htps
during both, when working with a human or robot co-worker, however with robot
co-worker, again only when the robot made biological movements (Fig. 2.5B). We
also observed an effect on the mean absolute y-velocity of participants when they
worked with human co-workers (Fig. 2.5A), but on the contrary, the iterations
congruency analysis (section Movement congruency analysis) strongly emphasizes
that this effect was in fact a residual effect on the htp. To summarize, our results
suggest that both on-line and off-line contagions affect distinct movement
features of the human participant from the observation of the same movement.
The on-line contagions are more frequent in the frequency or rhythm (quantified
by htp) of the movements, while the off-line contagions mostly affect velocity.

In this study, we quantified the on-line contagions as the relation (slope)
between the difference of the human participant’s movement feature when
working with the co-worker compared to working alone, and the co-workers
feature. This difference extracts the off-line effects in the participant behaviour,
which arises due to the observation of previous and different co-worker
movements. Therefore it is essential to note that the insufficiency to obtain a
particular effect in the on-line contagions analysis, does not necessarily mean
that the effect is absent during these observations of the co-worker. Instead, here,

26



Distinct motor contagions 2.4. Discussion

the analysis of on-line contagions represents particularly the effects that changed
when working alone, in compared to when working parallel to a co-worker.

Interestingly, our findings suggests that the nature of the co-worker, (human
or a robot), tend to influence the off-line contagions significantly more than the
on-line contagions. While with the human co-worker, strong off-line contagions
were measured in the participant’s |ẏ| (p = 0.017, Fig. 2.4A), but with the robot
co-worker, this effect seemed diminished (p = 0.063, Fig. 2.4A). Although the
difference of these effects between the two conditions (p = 0.34) weren’t significant
enough to conclude definitely. However, the effect on the participant’s htps was
clearly visible due to on-line contagions, both with the human co-worker (p =
0.0017, Fig. 2.5B) and robot co-worker (p = 0.0002, Fig. 2.5B), and as well these
affects were not different from each other (p = 0.62).

Finally, the overall observations made in this Chapter emphasize on our
hypothesis that distinct motor contagions are induced in human participant’s
during the observation of a co-worker (on-line contagions) and as well as after
the observations of a co-worker (off-line contagions). These observed distinctions
in the affected movement features and the sensitivity of these effects to the
nature of the co-worker provide a better understanding on how human
movements may be influenced by the robot co-workers working near them. These
insights could be crucial to the physical and behavioural design of robots
working near humans.

In the next chapter, we further explored the topic of motor contagions between
human and humanoid robot co-workers and our findings suggest that by exploiting
motor contagions, one can influence the performance of human co-worker and while
where ethically valid, these motor contagions may also be used to improve worker
performance speed and hence productivity in an industrial task.1

1The video of this study is available at https://youtu.be/eq4UOeJx3cY
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Chapter 3

More than just co-workers

In the previous chapter, we explored distinct motor contagions induced in the
human co-worker during (on-line) and after (off-line) the observation of action by
either the human or robot co-worker. Here, under the same experimental setup
and the task, we focused on exploiting the induced motor contagions in the human
co-worker. We primarily asked one specific question in this Chapter —Does the
presence of a humanoid robot co-worker influence the performance of humans
around it?

During the human-robot interactions, previous studies on motor contagions
have either analyzed the effects of robot co-worker movement observation on
human’s movement velocity or the effects on their movement variance, but never
both together. We argue here that the performance has to be measured
considering together, both the task speed (or frequency) as well as task accuracy.
Therefore in the same experimental task, as discussed in the previous Chapter
section (2.1), along with the addition of three new conditions, by coherently
varying the robot behaviour, we observed how the performance of a human
participant co-worker is affected by the presence of the humanoid robot
co-worker. Where in two new conditions, we investigated the effect of physical
form, by covering the head and torso of the human and robot co-workers in the
human covered and robot covered respective conditions and only the moving
robot arm was visible to the participants. While in the third new condition
(robot non-biol), we investigated the effects of robot movement velocity profile
with the velocity-phases of both industrial and biological trajectories. Finally, as
ground truth, we compared these behaviours with a human co-worker, and also
examined how these observed behavioural effects vary on the scale with the
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experience of robots.

3.1 Materials and methods

The arrangement of experimental setup and task are the same as mentioned in
the Chapter 2. However, the total number of conditions and features analyzed
are different here. To explain clearly and avoid confusion, we have renamed the
conditions as can be seen in (Fig. 3.1) and mentioned some essential details again
in the below subsection.

Figure 3.1: The participants in our experiment worked in six conditions;
with a robot performing biological movements in A) robot co-worker condition;
B) human co-worker condition; to check relevance of human form in C) robot
covered co-worker condition; and D) human covered co-worker condition; E)
a robot co-worker performing non-biological movements in robot non-biol co-
worker condition; F) a robot co-worker performing industrial movements. The

coordinate axis defining the movement setup is indicated in white (A).
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3.1.1 Experimental task and conditions

As mentioned in the previous Chapter, our task was motivated by the industrial
pick-n-place part assembly task, which required the participants to touch
repeatedly inside two static red circles on the touchscreen with a hand stylus.
The participants were only instructed to touch inside each circle consecutively.
However, they were free to touch anywhere inside each circle. During a
preliminary experiment, we discover that the participant’s touches had less than
1 cm standard deviation, both in the x and y movement directions. Therefore,
on purpose, we chose to keep the radius of the touch circles more than 2x times
larger than their standard deviation in the main experiment. Hence the target
size of touch circles was 5 cm in diameter. This increase in the size of touch
circles was crucial to us since the participants were asked to touch the circle in
each trial, but they were free to touch anywhere on the circle. This enabled us to
observe and measure the variance along with standard deviation in the
participant’s touch position (that may result in contagion in their speed) across
our experiment.

A co-worker being the human experimenter or HRP-2Kai humanoid robot
worked on the same task in front of the participants. Again the participants were
asked to perform their task at their own chosen ‘comfortable’ frequency, and
ignore the co-worker. The trial protocol was the same, as mentioned in the
previous Chapter. The participants worked in a series of 50 seconds trials with
the co-worker. In a trial, participants initially performed alone for 10 seconds
(participant-alone period), performed with the co-worker for next 20 seconds
(together period) and then relaxed while watching the co-worker performs the
task for the last 20 seconds (co-worker-alone period) (Fig. 3.2).

All participants wore earbuds and headphones, which enabled them to hear
only white noise and had no external audio feedback; it was later confirmed in the
post-experiment questionnaire, Q6. All participants were instructed to “always
hold the stylus like a stamp and touch alternatively inside each red circle on the
touchscreen with continuous and smooth hand movements at a comfortable speed”.
While they were explicitly told to “focus on your own task and ignore the co-
worker when he/it starts after them”. No other instructions were given regarding
their hand speed and trajectory.

Unlike Chapter 2, here we have studied and analyzed data from all six
experimental conditions. In four conditions, the participants worked with an
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Figure 3.2: The participants worked in repeated trials with either a robot or
human co-worker (the figure shows the trial with a robot co-worker). Each trial
consisted of period when the participant worked alone and co-worker relaxed
(participant-alone period), both worked together (together period), and the co-
worker worked alone (co-worker-alone period). The notation of the time variable

(represented in general by τ) in each period are shown.

HRP-2Kai humanoid robot co-worker, specifically in (a) robot co-worker in which
the robot played back biological movements, and the whole robot was visible to
the participant (b) robot covered co-worker, in which the robot played back
biological movements. However, its head and torso were covered, and the
participant could only see the robot’s moving arm. (c) robot non-biol co-worker,
in which a fully visible robot performed non-biological arm movements, (d) robot
indus co-worker, in which a fully visible robot performed industrial arm
movements. While in the remaining two conditions, participants worked with a
trained human experimenter in, (e) human co-worker and (f) human covered
co-worker, where the head and torso of the human experimenter were covered
(see Fig. 3.1).

In the experiment, all participants worked over ten trials in each condition,
and there were three conditions per experiment. We had six condition
combination groups, see (Table 3.1), and each participant was assigned to one of
that group. Each participant worked in the robot co-worker condition (as a
primary condition), and in addition to two out of five other remaining conditions.
The order of the conditions was balanced across the combination groups. This
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allowed us to compare the behaviour of the same participants in each condition
in a combination group, with their behaviour in the robot co-worker condition.

Table 3.1: condition combination groups (G)

HRP-2Kai in robot co-worker (RV), robot covered co-worker (RC), robot non-biol
co-worker (RN), robot indus co-worker (RI) conditions and Human experimenter
in human co-worker (HV), human covered co-worker (HC) conditions. The order
of conditions in a combination group were randomized across participants.

Sessions/Groups G1 G2 G3 G4 G5 G6
Session 1 RI RC HV RC RN RC
Session 2 RV RI RV HC HV RN
Session 3 RN RV HC RV RV RV

In the robot co-worker conditions, robot movements were a playback of the
human recorded movements of a previous human volunteer (see
subsection HRP-2Kai movement trajectories for details). In this study, we
quantified the participant performance in the trials by their half time periods or
htp (the average time between two consecutive alternate touches, measured using
motion capture system), and the variance of their press location (measured as a
change of mean and standard deviation of their touchscreen presses in the X-Y
plane).

3.1.2 HRP-2Kai movement trajectories

The biological movements that were played on HRP-2Kai in robot co-worker and
robot covered co-worker conditions were a playback of the human arm movements
(Fig. 3.3, blue plot). We have already discussed this in detail in the subsection of
the previous Chapter (2.1.4).

It is well known that human movements can be characterized by a bell-shaped
velocity profile [40]. Generally, when the movements are governed goal-oriented,
(when the end positions of the goal are fixed). In such cases, it is possible to see
a peak of the bell-shaped profile to be shifted forward (in the direction of goal
target) in time when the precision is required near the end of the motion. A
similar case is also valid in our task where the participants were required to
touch inside circles, within a given target region. However, the velocity profiles
of human movements are typically characterized by a single peak. Therefore, to
formulate and design a ‘non-biological’ movement profile for the robot non-biol
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Figure 3.3: The trajectories played by the robot in robot co-worker,
robot covered co-worker, robot non-biol co-worker and robot indus co-worker

conditions.

co-worker condition, which consists of essence from both biological and industrial
movements, we developed a new movement profile with multiple velocity peaks.
This movement profile was developed in position-time (cyan plots in Fig. 3.3)
profile using segments of fifth and third-order polynomials during the lift-off,
carry, set-down phases [11] (see cyan plots in Fig. 3.4). Again, our observations
suggested that human volunteers made movements predominantly in the Y-Z
plane. Therefore, this piece-wise polynomial trajectory for the robot non-biol
co-worker condition was also designed over the y (horizontal) and z (vertical)
dimensions, while x was always kept at constant zero.

Figure 3.4: The time trajectories in the Y and Z axis by the HRP-2Kai in
the robot non-biol co-worker and robot indus co-worker condition, and the via-

points (blue circles) used to generate both trajectories.
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A constant velocity phase characterized the industrial trajectory. Note that this
trajectory is the same as the trajectory in Rnonbiol condition, which was mentioned
in the previous Chapter. We have only changed the name of the trajectory to robot
indus co-worker (magenta plots in Figs. 3.3 and 3.4), again to avoid confusion with
the results of the previous Chapter.

3.2 Data analysis

3.2.1 Variables

Here again, our analysis is based on the position data of both the participant’s
and co-worker’s stylus markers. Precisely here, we analyzed the ‘time’ behavioural
variable across each movement between the red circles on the touchscreen. In this
study, we were interested in the task performance of participants. Therefore we
primarily concentrated on the ‘time’ between alternate touches in each iteration
(a movement between two consecutive alternate touches), which we referred as the
half-time period (htp) or τ , and the location of their touches on the touchscreen (in
the X-Y plane). It is worth mentioning again that both participants and co-workers
were instructed to make non-stop continuous movements between touches at their
comfortable speed. Therefore we were able to tease out the individual iterations
of participants and co-workers by focusing on the changes in the direction of y-
velocity in their recorded motion capture data. We have already analyzed and
discussed the various measures of kinematic parameters such as position, velocity
and acceleration along the Y (horizontal) and Z (vertical) axes over each iteration
in the Chapter 2.

We quantified the motor contagion in a participant’ htp (the average time
between two consecutive alternate touches) by analyzing the change of
participant’s htp between the together period and alone-period (see Fig. 3.2) in a
trial (τ tp(i) − τap (i)), relative to the htp of the co-worker behaviour in the same
trial (τc(i) − Av(τap )), where Av(τap ) represents the average undisturbed htp by a
participants across his/her participant-alone periods. We later regressed the data
obtained on each participant with either a first or second-order regression model.
The regression model was chosen based on the Akaike Information Criteria
(AIC) [5] and using fitlm function of MATLAB. Across participants, we collected
the slope of the tangent at the minimum abscissa value of data
(min[τc(i) − Av(τap )]). These slopes were then checked for normality using
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Figure 3.5: The change of participant’s htp (the average time between two
consecutive alternate touches) between the together period and alone-period
(τ tp(i) − τap (i)), relative to the htp of the co-worker behaviour in the same trial
(τc(i) − Av(τap )), where Av(τap ) represents the average undisturbed htp by a
participant across all his/her participant-alone periods. Note that the (robot or
human) co-worker htp was random across trials, and the data in plots here are
the ensemble of the participant behaviours arranged in increasing co-worker’s
htp on the abscissa. Each plot represent a condition, A) robot co-worker (blue);
B) human co-worker (orange); C) robot covered co-worker (dark blue); D)
human covered co-worker (dark orange); E) robot non-biol co-worker (cyan);
F) robot indus co-worker (magenta) conditions. We used the AIC to choose
either a first or second order model to fit the data for each participant. The

lines represent the tangent slopes at the minimal data abscissa value.
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Shapiro-Wilk test. Finally, data were analyzed for the difference from zero using
a one-sample T-test in case of a normal distribution, otherwise using a Signed
Rank test. (Fig. 3.5), shows the one sample fitting 1 of htp of randomly chosen
participant in each of the six reported condition and the collection of slopes
comparison across six conditions are plotted in (Fig. 3.6). We applied a similar
procedure to analyze the change in average X and average Y press locations of
participants touches, along with the standard deviation of X and Y press
locations relative to the htp of the co-worker behaviour in the same trial
(τc(i)− Av(τap )). (Fig. 3.7) shows the analysis of these slopes.

Next, we examine the significance of the human form; we further extended this
study by adding two more conditions, specifically robot covered co-worker and
human covered co-worker conditions, where we completely covered (hidden) the
head and torso of the co-worker. However, only the moving arm was visible to
the participants (see Fig. 3.1C, D or inset photos in Fig. 3.6) while we kept the
experimental settings and analysis in these two new conditions exactly same as in
the robot co-worker and human co-worker conditions.

3.2.2 Participant sample size

As mentioned earlier in the subsection (Participant sample size) of the previous
Chapter, that we initially recruited 35 participants, all of them participated in
the main robot co-worker condition and two out of remaining five other
conditions, to enable an intra-participant one sample T-test between the robot
co-worker and each of the remaining conditions. These five remaining conditions
namely are human co-worker, robot covered co-worker, human covered
co-worker, robot non-biol co-worker and robot indus co-worker. Thus giving us
five participant group, such that randomly selected 14 participants performed in
robot co-worker condition along with one of the five other conditions. The
number ‘14’ also represents the participant numbers in similar previous
studies [12, 13] and this participant number ‘14’ also corresponds to the G*
power analysis [33] using two-way one sample T-test (α = 0.05, β = 0.85, d =
0.9) [108] for the biological experiments. However, with these participant
numbers, we found that the slopes in the same robot co-worker condition were
not similar among the participant groups (p < 0.05, one-way ANOVA). The htp
slopes of robot co-worker condition were significantly different from zero with

1see (Appendix: Motor contagion) for all participants htp fitting figures in all conditions.
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Figure 3.6: The plot of the collection of slopes which is obtained in (Fig. 3.5
and A.2 to A.6) supplementary figures. The condition-wise comparison of
the change of participants htp with co-worker htp. P-values are Bonferroni
corrected where required. The tangent slope at the minimum data abscissa
value (min[τc(i) − Av(τap )]) was collected across participants (as shown in
Fig. 3.5), checked for normality using the Shapiro-Wilk test and then analyzed
for difference from zero using a one sample T-test (in case the distribution was

normal) or a Signed Rank test.

Figure 3.7: Change of participant touch position with A) robot co-worker
htp; B) human co-worker htp. A similar procedure which was used to quantify
htp was also used here (see subsection Data analysis) to analyze the change in
a participant’s average X press location, average Y press location, standard
deviation of X press location, and standard deviation of Y press locations

relative to the htp of the co-worker behaviour in the same trial.
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two participant groups (p=0.022, and p=0.038), marginally significant in two
participant group (p=0.07, and p=0.08) and not significant in one participant
group (p=0.36). As a majority of the values tended to be significant, hence we
later proposed and decided to add 7 participants (50%) across these groups
(robot covered co-worker, robot non-biol co-worker and robot indus co-worker
conditions), making a total of 42 participants. This addition of participants
ensured that the htp slopes across the participant groups become similar
(P = 0.99; one-way Kruskal-Wallis H-test). After removal of three outliers, this
gave us participants numbers of 13 (human co-worker condition), 13 (human
covered co-worker), 17 (robot covered co-worker), 17 (robot non-biol co-worker),
18 (robot indus co-worker), and 39 in total for the robot co-worker condition, see
(Table 3.2).

Table 3.2: Participant sample size

condition sample size
robot co-worker 39
human co-worker 13

robot covered co-worker 17
human covered co-worker 13
robot non-biol co-worker 17
robot indus co-worker 18

3.2.3 Questionnaire

3.2.3.1 Perception and fatigue

All participants in our experiment had to answer a short six-question
post-experiment questionnaire. A 7 point Likert scale was used to measure the
participants’ response on each of these questions. Participants were requested to
choose a score between 0 to 7, where 0 (Not at all), 7 (very strongly). These
questionnaires were presented after every session they participated in:

Q1. My movements were affected when the agent was working with me.

Q2. My movement speed was changed when the agent was working with me.

Q3. I was tired during the experiment.
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Q4. I could maintain the movement speed that I wanted even when the robot
was performing its task.

Q5. I found it difficult to do my task when the agent was working with me.

Q6. I could hear noises from the co-worker during the experiment.

Q1, Q2, Q4 and Q5 were designed to access whether the participants cognitively
realized the effects on their behaviour due to the co-worker. A score close to
one in Q1, Q2 and Q5 (and a score close to 7 in Q4) indicates that they did
not consciously realize the effects. Therefore we considered the Q4 scores by
subtracting the reported values from 7.

3.2.3.2 Robot exposure questionnaire

Soon after the end of our data collection, we noted that it is vital to measure
the participant’s robot experienced and exposure to robots. Therefore further
questionnaire of four questions was sent to participants:

RQ1. How many hours do you see and/or read about robots on average per week
(include robots on TV)?

RQ2. If you work with robots currently, how many hours do you work with robots
(or on robotics related topics) per week?

RQ3. If you have worked with robots, but do not work anymore, how many hours
have you worked on them?

RQ4. How will you rate your knowledge of robots?

For each question, the participant had to answer in hours and chose between
‘0’, ‘less than 5’, ‘5-10’ ‘10-15’, ‘15-20’, ‘20-25’, ‘25-30’, ‘more than 30’.

3.3 Results

3.3.1 Robot behaviour influences human movement
frequency

(Fig. 3.5) shows the change of participant’s htp (the average time between two
consecutive alternate touches) between the together period and alone-period
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(τ tp(i) − τap (i)), relative to the htp of the co-worker behaviour in the same trial
(τc(i) − Av(τap )), where Av(τap ) represents the average undisturbed htp by a
participants across all his/her participant-alone periods. Note that the htp of
both co-workers (robot and human) was random across trials, and the data of
the participant behaviours are grouped and arranged in increasing order of
co-worker’s htp on the abscissa in (Fig. 3.5). Later the slope of the polynomial at
the lowest data abscissa was collected as a measure of how the participant htp
was affected by the co-worker htp. We found that the slope distribution was not
normal across the participants in the robot co-worker condition (p<0.05,
Shapiro-Wilk test, median=0.017) and distribution was significantly positive
across participants (median=0.017, Z(38)=3.70, p=0.0002, Signed Rank test).
The robot performance htp (hence frequency) has influenced the human
participants, as can be seen by the positive slopes (light blue data) in (Fig. 3.6).
Primarily, the longer htp of the robot has caused the human participant’s htp to
increase (see first quadrants of Fig. 3.5A) but for many participants, this increase
had a threshold after which the participant’s htp decreased. Therefore because of
this behaviour, we found a second-order fit to explain the data better with many
participants using AIC. On the other hand, the shorter htp of the robot (only in
robot co-worker condition) has also caused the participant’s htp to decrease (3rd
quadrants of Fig. 3.5A), emphasizing that a faster robot made the participants’
frequency higher. Not surprisingly, the htp results were similar to the human
co-worker. The positive slopes (orange data) in (Fig. 3.6) illustrates that the
human participants’ performance (median=0.012, p=0.0017, Signed Rank test)
was influenced by the human co-worker’s performance htp (frequency).

3.3.2 Press accuracy in the human not affected by robot
co-worker

We next analyze and measure the task performance of a human co-worker
(participants) as means of whether and how their touch accuracy has changed
alongside the contagions in their htp. It is important to remember that the
provided target circles to the participants were large enough in diameter (5 cm
diameter) and the participants were free of constraints as to where inside the
target circle they should be touching. Hence the positions of participant’s
touches were susceptible to change and could cause an increase in variance
(touch positions) due to their movement speed, without violating the task.
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Although, interestingly, we found that while the participants’ movement
frequency or htp has changed, but we did not find any trend in the participants’
touch accuracy during the task.

Across all participants and when they worked alone in the participant-alone
period, we found the mean touch positions were (X=0.95 cm; Y=1.17 cm), and
the mean standard deviations were (std(X)=0.23 cm; std(Y)=0.79 cm) from the
centre of the circle. It is very crucial to note that the participants were also able to
maintain the same touch positions (there was no change of mean touch positions
X: p=0.64; Y : p=0.86) and mean standard deviations (change of std(X): p=0.56;
std(Y): p=0.41) between when they worked alone and when they worked with the
robot co-worker (Fig. 3.7A), suggesting that the robot did not affect participants
task accuracies.

Similarly in the human co-worker condition in which the participants worked
with another (unfamiliar) human experimenter, we found constant press
accuracy, with no observed changes in the mean touch positions (X: p=0.69; Y :
p=0.83; Fig. 3.7B) and mean standard deviations (std(X): p=0.56; std(Y):
p=0.39; Fig. 3.7B). Remember that the provided target circles to the
participants were large enough in diameter (5 cm diameter), and the participants
were free of constraints as to where inside the target circle they should be
touching. Although the participants could have changed their touch position and
variance while still satisfying the required task, however, but we do not observe
this trend.

In this experiment, together, the lack of change in task accuracy alongside the
change in movement frequency, shows that robot, as well as human co-workers,
were able to influence the participant task performance.

3.3.3 Human form matters

Interestingly, in the robot covered co-worker condition and human covered co-
worker condition, covering the head and torso eliminated the contagions in the
participant’s htp. The participant’s htps were no longer affected in the robot
covered co-worker (T(16)=-0.3, p=0.78; dark blue data in Fig. 3.6) and the human
covered co-worker (T(12)=0.24, p=0.82; dark orange data in Fig. 3.6). These
effects were significantly lower than the effects induced in the same participants
in the robot co-worker condition (T(16)=2.74, p=0.028, Bonferroni corrected, one
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sample T-test between robot co-worker and robot covered co-worker; T(12)=2.50,
p=0.054, Bonferroni corrected, one sample T-test between robot co-worker and
human covered co-worker). These results emphasize that the human form is crucial
for the induction of performance changes.

Finally, previous studies have shown that motor contagions are not present
when the robot movements are not biologically inspired or non-biological
(industrial) in nature [13, 66]. Therefore we added another two conditions (robot
non-biol and robot indus) with robot co-worker (see subsection HRP-2Kai
movement trajectories), in which the participants could see the robot whole
upper body. However, in robot indus condition, robot movements were inspired
from the traditional trapezoidal shape velocity profile trajectory while in the
robot non-biological condition, robot movements were designed by gaining
insights from both the biological and industrial trajectories. Agreeing with
previous studies, we did not find any significant change in htps in this condition
(Z(16)=-1.07, p=0.29 (cyan data); Z(17)=-0.28, p=0.77 (magenta data) in
Fig. 3.6), and these values were different (tending to significance) compared to
the robot co-worker condition of the same participants (robot non-biol condition:
T(16)=2.32, p=0.066, Bonferroni corrected, one sample T-test) and (robot indus
condition: T(17)=2.53, p=0.043, Bonferroni corrected, one sample T-test).

3.3.4 The performance effect were implicit

To further analyze the post-experiment questionnaire across the participants, we
took an average of the scores from Q1, Q2, Q5 and Q4 (value subtracted from 7)
and found the score to be equal to (mean±SD, 1.90±0.18) for the robot
co-worker condition, and (mean±SD, 1.65±0.24) for the human co-worker
condition respectively. The participants did not consciously realize the effects on
their behaviour as suggested by these low scores. The participants were not tired
during the task in each condition, as confirmed by the Q3, the obtained scores of
(mean±SD, 0.96±0.18) across the participants in the robot co-worker condition,
and (mean±SD, 0.75±0.22) in the human co-worker condition. Finally, the
participants did not hear any external audio cues from either the robot’s joints in
the robot co-worker conditions (mean±SD, 0.5±1.25) nor the human co-worker’s
touches in the human co-worker conditions (mean±SD, 0.58±1.36) as confirmed
by Q6.
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Figure 3.8: The plot of the change of participant htp, with respect to their
prior robot exposure and experience (self-scored by participants) showed a

significant correlation between the two.

3.3.4.1 Contagion increases with robot exposure

During the 2nd questionnaire, which we had sent out at the end of our
experiment and data collection. Twenty-three participants had answered on our
robot exposure questionnaire. One participant out of these 23 who rated scored
‘0’ for all questions was removed. We then took the average scores (taking either
one from RQ2 and RQ3, as they were equivalent) for the others and plotted it
against their htp slope in the robot co-worker condition in (Fig. 3.8).
Interestingly, we found a significant positive correlation (Pearson’s R=0.44,
p=0.039) effect, suggesting that the strength of this effect on the participants is
directly proportional to more exposure and experience with robots. This result
also agrees with a recent report where participants with more experience with
robots show higher adaptation to it, see [107].

3.4 Discussion

To summarize the study mentioned in this Chapter, primarily, our findings suggest
that the presence of a humanoid robot co-worker (or a human co-worker) can
influence the performance frequencies of human participants. We observed that
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participants become slower with a slower co-worker, but also faster with faster co-
workers. In this study, we focused on measuring and then examining the change of
participant behaviour ‘relative’ to the robot behaviour. Therefore, to quantify the
motor contagion, we examined the ratio and analyzed the change in participant’s
htp between the together period and alone-period in a trial and relative to the
htp of the co-worker behaviour in the same trial. The negative numerator term
(τ tp(i) − τap (i)) suggests that participants get faster from their initial participant-
alone period htp (movement speed) and vice versa. It is important to note that
the removal (subtraction) in the denominator of Av(τap ) is a constant, which only
shifts the curve in the negative abscissa and does not affect the slope.

Note that the results we obtain here are specific to cyclic or repetitive tasks
since we found that robots are generally employed in industries where typical pick-
n-place tasks are the most common. Although, it has been shown that cyclic and
discrete tasks may be very different in terms of neural processes [92], and further
studies are required to verify whether the effects that we observe here are also valid
for discrete movements. Further studies are also required to understand whether
and how the contagions we observed here are related to Motor entertainment,
which is a phenomenon predominantly defined for rhythmic auditory stimuli [93,
103]. In our task we provided participants with white noise feedback to avoid
hearing noise or audio cues from the moving robot, having said that, it may be
possible the effect we observed here could be a type of visual Motor entertainment.
Though at the moment, nothing can be said more concretely on this topic.

Our results show that the human and humanoid robot co-workers have been able
to affect the performance frequencies of the participants, while their task accuracy
(touch press) remained undisturbed and unaffected (Fig. 3.7). However, with the
robot co-worker, this is true only when the robot head and torso were visible,
and a robot made biological movements. A slower robot co-worker was able to
reduce human performance (in terms of speed and accuracy), while a faster robot
co-worker improves it. Recent studies have pointed out that some specialized
robots can have an impact on both human performance and motivation during
physical [102] and cognitive [36] interactions. However, here in our results, we
show that the mere presence of humanoid robots can instigate effects in human
performance.

Interestingly, among all six conditions that we examined, we only observed
the effect on the movement frequency when the head and torso of the co-worker
(both human and robot) was visible to the participants (Fig. 3.6), Mainly in
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human co-worker condition and robot co-worker condition, suggesting that the
human form plays a determining role for these effects over the biological nature
of the movements made. Instead of using a traditional robotic manipulator, we
primarily investigated the effect of the human form by covering the head and torso
of the humanoid robot due to two main reasons. Firstly, this allowed us to test
the identical physical appearance of the robotic arm and its movement between
the conditions robot co-worker and robot covered co-worker. Therefore we ruled
out the possibility of not having this effect in robot covered co-worker condition
is mere because of two different robots were used. Secondly, this also allowed us
to clarify that induction of motor contagions, and its effect is not influenced by
the presence of a humanoid co-worker or that participants were aware of it, but
rather by the visibility of head and torso of the humanoid robot co-worker. By
using a traditional manipulator, both of these issues would have been remained
unclear. However, these results gave us and other new opportunities for several
new questions to be researched in the near future. First, we now know that the
visibility of the head and torso of a humanoid modulates the motor contagions
in the human co-worker, but the reasons behind this are still unclear. We could
argue that this effect is probably related to aspects of saliency as the torso not
only occupies a more substantial visual field but (especially the head and the eyes)
also probably attract participant attention when present. Second, we examined
the conditions when the head and torso remained static in our task while the
robot co-worker made predominantly arm movements. At this point, it remains
to clarify how the torso movements would affect contagions. While we believe, if
the torso moves in a task, then the effect of the torso’s visibility should increase
as well. Finally, here both the participants and co-workers (human and humanoid
robot HRP-2Kai) performed the same task and we analyzed their behaviour in it,
although this would be very interesting to examine how the contagions manifest in
settings where the co-workers and participants work on different tasks, including
non-industrial task that is explicitly collaborative, or competitive.

Quantitatively speaking, our observed trends were highly significant but not
substantial. However, these trends were noticeable to increase within our
participants, especially with their participant’s robot experience (Fig. 3.8). This
suggests that they can prevail over a long time and are thus may important in
scenarios involving long time robot-human interactions.

In order to moderate or exploit the contagions induced by the humanoid
robot co-worker, one can find these results useful for customizing the design of
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robot co-workers in industries and sports in future studies. Motor contagions
related to body postures or undesirable competitions could affect worker health
and psychology in prolong duration but may be minimized by controlling the
physical appearance and/or kinematics of robot co-workers, while where ethically
valid, contagions may also be used to improve worker performance speed and
hence productivity.2

2The video of this study is available at https://youtu.be/O5ChMWlzZx8
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Chapter 4

Proactive whole-body object
handover

In previous human-robot interaction studies [54, 97, 101] and also in our work
in Chapter 3, we have shown that the human acceptance of the robot co-worker
during a task increases when both the appearance and behaviour (motion) of the
robot are similar to that of humans; especially during an interactive task. In this
study, we also use HRP-2Kai as the robot co-worker.

We discussed our findings in non-physical human-robot interaction. Here we
introduced a framework particularly focused on intuitive and proactive
bi-directional object handover between a human-humanoid dyad using
Whole-Body Control (WBC). This study concerns physical human-robot
interaction (pHRI). We enhance our whole-body motion controller [17] with
tasks to achieve bi-directional object handover between human and humanoid
robot co-workers. We took inspiration and insights from existing state-of-the-art
works in object handover between human-human and human-robot dyads and
extended some ideas to bi-manual and locomotion synchronized handovers.

4.1 Handover routine

We take similar approach as [76, 81] and treat the continuous process of object
handover between human and humanoid as sequence, such that object handover
from human to humanoid is one sequence and return of object to human is another
sequence. These two handover sequences make one handover routine. An overview
of handover sequence is illustrated in (Fig. 4.2).

Within the handover routine, both human and robot always start from a
standing posture (see Fig. 4.1). The robot standing posture has a Center of Mass
CoM(z) height 0.87 meters. We assume that human is ready with the intention
to handover the object if he/she is holding the object in his/her hand. The only
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Figure 4.1: Human and humanoid starting posture.

predefined condition is that human must seriously exchange the object with a
robot in one continuous shot. The human can choose his/her hand configuration,
speed, trajectory and the handover location but within the robot’s reachable
workspace.

During 1st sequence of handover routine, the human carries the object to
different handover locations with distinguishable orientations of the object
carrying hand and tries to give the object to the robot. Similarly, during 2nd

sequence of handover, human approaches somewhere in the robot reachable
workspace to receive the object from robot using his/her choice of hand
orientation and preferred handover location. The robot end-effectors reachable
workspace is given by equation (4.1), object handover can occur as long as
estimated handover location is within this region.

1 =


Xmin <= hPef(x) <= Xmax

Ymin <
hPef(y) <= Ymax

hPef(z) >= CoM(z)

(4.1)

where, hPef is the relative 3D position of active human hand w.r.t robot end-
effector. The default values of Xmin and Xmax are 0.1 and 0.8 meters respectively,
for robot left end-effector Ymin and Ymax are 0.15 and 0.75 meters respectively, while
for robot right end-effector Ymin and Ymax are −0.75 and 0.15 meters respectively.
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Just like during human-human object handover, another thing that we
incorporated in our handover routine is to give visual tracking like behaviour to
HRP-2Kai by following an object or active human hand using robot’s head,
depending on the handover sequence. Using a gaze task (QP tasks), HRP-2Kai
follows object during 1st sequence of handover and follows active human hand
which is approaching to retrieve the object during 2nd sequence.

Hereafter and until section (Either hand generalized handover) we will
formulate the handover routine using human right hand and robot left
end-effector; afterwards we will generalize our one-handed handover routine for
four possible handover combination scenarios:

• human right hand ←→ robot left end-effector

• human left hand ←→ robot left end-effector

• human left hand ←→ robot right end-effector

• human right hand ←→ robot right end-effector

4.2 Experimental setup

Our experiment setup is shown in (Fig. 4.1). Initially, we started by having a
human co-worker and robot co-worker standing comfortably in front of each other
at a distance of 1.2 meters from each other. This distance is known to be the
social distance in human proxemics [47]. Movable panels partially enclosed the
whole setup.

4.2.1 Robot

We used an HRP-2Kai robot [61] as the co-worker. The human and humanoid are
free to use their both hands, end-effectors respectively in handing over the objects.

4.2.2 Mocap

We used motion capture (in short mocap) system manufactured by (Motion
Analysis Co.,), to track and get the position data of the passive reflective
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Figure 4.2: General overview of human humanoid handover sequence. 1st
(human has object) or 2nd (robot has object).
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markers. We used twenty passive reflective markers in several handover scenarios.
We placed four markers on each end-effectors, three markers were placed on the
head of the human co-worker to get his/her position in mocap frame, three
markers were placed on each of the hands of a human co-worker and also on the
object itself. The markers on the human hands and object were utilized to get
their respective position, and orientation in the mocap frame and we used
makers on the robot end-effectors during object handover and release-return of
object from the robot grippers to human co-worker as a substitute to lack of
haptic feedback, see section (Interaction forces model) for more details. These
passive markers were tracked using ten kestrel infra-red cameras, each at 200 Hz.
These mocap markers position data was utilized using a real-time interface
between mocap system (cortex) and ROS called ros-cortex-bridge, which was
designed to transmit this position data to the robot controller in real-time.

4.2.3 Handover object(s)

As shown in (Fig. 4.3), we used three easily distinguishable objects during the
one-handed handover between the human-humanoid dyad. The mass of objects
varies from 0.22 kg to 1.1 kg.

Figure 4.3: Distinguishable shape and mass objects used during one-handed
handover between human and humanoid co-worker.
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4.3 Robot QP controller

We used our research group’s native multi-objective Quadratic Programming
(QP) [106] based low-level Whole-Body Control (WBC) to govern and optimize
the motion of HRP-2Kai. “WBC exploits the full potential of the entire floating
based robot body and allows interaction with the environment using
multi-contact strategies”. It also allows concurrent execution of several tasks at
once, for example using WBC, the humanoid can utilize one or both of its
end-effector(s) to grasp and manipulate the object while at the same time takes a
step forward or backward, allowing itself to reach the handover location.

To realize human, humanoid bi-directional object/tool handover, we introduced
several tasks and formulated them in a quadratic fashion, so it conforms with
QP based controller. The QP enables whole-body control of our HRP2-Kai while
respecting both internal and external constraints. Few such constraints encompass
joints limits, force and torque limits, contact constraints, stability constraints such
as keeping the centre of mass (CoM) inside the support polygon along with self-
collision constraints with the environment and itself while generating optimal joint
trajectories. Below we mentioned some significant constraints that a robot must
satisfy at each time step during human-robot object handover.

4.3.1 QP constraints

The QP controller’s objective is to compute an acceleration of q̈, where q is the
robot configuration vector at each time step (dt) to achieve a set of targets or tasks.
At each dt, the QP is formulated and solved by the LSSOL solver [44]. The tasks
are formulated either linear constraints or quadratic costs [106]. However, we want
to solve these tasks in a best possible manner as a linearization of some tasks may
not be feasible or maybe conflicting, therefore using least-square approximation,
the quadratic cost c corresponding to a task Ti = 0 is given by:

ci(q, q̇, q̈) = 1
2
∥∥∥Jiq̈ + J̇iq̇ − T̈i

∥∥∥2
(4.2)

where Ji the Jacobian matrix of Ti, and the quadratic objective function of QP
controller would be,

min
q̈,τ,f

∑
i∈O

ωici(q, q̇, q̈) + ωf‖f‖2 (4.3)
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which is subject to constraint on equation of motion, as well as other below
mentioned constraints,

M(q)q̈ +N(q, q̇) = JTc f (4.4)

where f is the set of contact forces, M denotes the inertial matrix of the robot,
N accounts for Coriolis and gravity effects, Jc is the Jacobian matrix of all points
of contact.

The QP objective function in equation (4.3) is made of two terms and the tasks
Ti mentioned in next subsection (QP tasks) are weighted against each other by
weight wi based on their relative importance and priority. While the damping
weight wf ensures the smoothness and uniqueness of solution by keeping Hessian
matrix positive definite.

1. Static equilibrium:

τ ≤ J i(qi)Tfi − gi(qi) ≤ τ

where sub-script or super-script i is the i-th robot, qi is the i-th robot
configuration vector, fi is the set of contact forces vector of i-th robot, J is
the Jacobian matrix of all points of contact forces, and τ and τ are the
maximum and minimum steady state torque limits respectively, and g be
the gravity constant.

2. Joint limits:

qi ≤ qi ≤ qi

qi and qi are the lower and upper limits for robot joints.

3. Self collisions:

δ(X i
j(qi), X i

k(qi)) > εjk ∀(j, k) ∈ I i
self collision

δ is the function of distance, X i
j(qi) is the occupied volume by j-th body of

robot in configuration qi, εjk is the pair of user select minimum distances
(j,k) and I i

self collision is the robot sets of self collision pairs.

4. Environment collision:

δ(X i
j(qi), Xk) > εjk ∀(j, k) ∈ I i

robot environment

I i
robot environment is the set of robot environment (object) collision pairs.
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5. Contact Constraint: Icontact = Ji(q)(q̇s(k) − q̇p(k)) = 0
The objective of this constraint is to maintain a null velocity [83] between
the joints of bodies in contact, where p(k) and s(k) are the predecessor and
successor bodies of a robot(s) in contact that imposes a constraint [38].

4.3.2 QP tasks

As mentioned earlier, below, we introduced the following outlined tasks to the
multi-objective QP controller to achieve safe and reliable human-robot object
handover. Let function Ti(q) denote the geometric objectives (task error) that
we require to regulate to zero or maintain above zero, i.e. Ti(q) = 0 and
Ti(q) ≥ 0.

1. Posture task: Tposture = qd − q = 0
Posture task is the first task that is added to the QP controller, it allows the
robot to maintain an initial posture.

2. Com task: TCoM = CoMd − CoM(q) = 0
Com task is used in conjunction with the stability constraint to all time
maintain the CoM position inside the support polygon.

3. Joint limit task: Tjlim = qi ≤ qi ≤ qi

This task is used occasionally whenever there is a need to limit certain joint
movements.

4. Position task at body k: Tpos = rdk − rk(q) = 0
Where, rk and rdk are the current and desired position of i-th robot k-th
body. Robot end-effector position task is used to reach the desired handover
location [106].

5. Orientation task at body k: Tori = Err((Ed
k), Ek(q))

Where, Ek is the orientation of i-th robot body to world. Robot
end-effector orientation task is used to compute orientation relative to
human hand orientation.

6. Gaze task : Tgaze = utarget − u = 0
Where, utarget and u are the target vector in world and body vector that
needs to be oriented respectively. We used gaze task to orient the head
joints of HRP-2Kai towards the active human hand position in the world;
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more details can be found in [91]. Note that by active human hand we meant
by either object carrying human hand during human-to-robot handover trial
or by the hand which is approaching to grasp the object during robot-to-
human handover trial.

4.4 Notations

Let M (Mocap) and R (Robot) be the two fixed frames with the same
orientation that represent both Cartesian coordinate systems and Plücker
coordinate systems denoted by X in the Euclidean space. Both M and R are
defined by their position and orientation of a Cartesian frame, such that MXR

denotes the Plücker coordinate transform which depends only on the position
and orientation of frameM relative to frame R (see Fig 4.4).

Figure 4.4: M and R Cartesian coordinate systems.

• We used 6D spatial vectors to express the pose of human hands and robot
end-effectors as well as objects. We, therefore, adopt a 6D notation based
on spatial vectors, which was explained in Chapter 2 of [38].

• One can receive and control the robot end-effector current orientation
efOR ∈ R3×3 and current position efPR ∈ R3 respectively in the R frame, by
using QP’s Orientation task and Position task (see subsection QP
tasks), therefore,

efXR =
[

efOR efPR
]

(4.5)

• Likewise, hOM ∈ R3×3 and hPM ∈ R3, denotes the human hand h orientation
and position respectively in theM frame, obtained from the L shape body
(see Fig. 4.5), which is later further explained in section (Grasp configuration

55



Proactive whole-body object handover 4.5. Position prediction model

model),

hXM =
[
hOM hPM

]
(4.6)

• hOef ∈ R3×3 and hPef ∈ R3 respectively, denotes the human hand h

orientation and position relative to robot end-effector,

hXef =
[
hOef

hPef

]
(4.7)

• Let oOM ∈ R3×3 and oPM ∈ R3, denotes the object orientation and position
respectively in the M frame, obtained from another L shape body (see
Fig. 4.5) attached on the object.

oXM =
[
oOM oPM

]
(4.8)

• For convenience, we formulated the problem with a common origin O, such
that R ≡M (both frames are located between the feet of robot HRP-2Kai),
therefore, we can get human hand pose w.r.t. or relative to robot end-
effector

hXef = hXM
efXR

−1 (4.9)

• otherwise, when R 6= M , using Plücker transform MXR,

hXef = hXM
MXR

efXR
−1 (4.10)

Note that, the mathematical notations in the following sections follow ISO
guidelines. The Euclidean distance is represented in meters. The time unit is set
in seconds or mentioned otherwise.

4.5 Position prediction model

In case of object handover and when the human co-worker is ready with the
intention to handover the object, instead of merely waiting for the object to be
presented by the human at the handover location, the robot must proactively
plan its own movements by observing past and predicting near-future human
hand movements so that it could arrive at the human chosen handover location
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Figure 4.5: L shape rigid body on the human hand(s)

approximately at same time —either to receive or return the object. Therefore,
the estimation of handover time, as well as the approximation of handover
location, must be realized early during the handover sequence. Note that this
proactive nature of the robot co-worker should also be available when the human
co-worker requests for the object.

Here we designed a prediction model, with robot left end-effector pose efXR

(4.5) and human hand mocap marker position hPM (4.6) as inputs. Note that for
simplicity, we formulated the problem with a common origin O, such that frame
R ≡M . To get the position and orientation of the human hand, we placed a rigid
body with a shape similar to an alphabet L on the wrist of a human hand(s) and
on the object as shown in (Fig. 4.5). The three mocap markers A,B and C make
up the three vertices of L shape body. Note that from onward by hPM we would
mean the position of point A on the L shape body as the human hand marker
position (Fig. 4.5).

The prediction model behaviour can be tuned by two initially required constant
sample size, iobserve —a predefined sample size required to observe the motion of
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the human hand and ipredict —required to predict the human hand position in
advance.

In order for the handover between human and humanoid to be smooth and
intuitive, the robot needs to proactively estimate the near future position of human
hand in advance, during both sequences when robot act as receiver (1st sequence)
or when robot acts as giver (2nd sequence) of a handover routine. Therefore we
formulate the movements of the human hand as a constant velocity based linear
motion model to predict his/her hand (hence handover) position continuously. The
robot observes human hand movements for a predefined sample size iobserve along
with the average velocity of his/her hand during that time and then predicts the
near future human hand movement direction and position using equations (4.11)
and (4.12) for the predefined ipredict sample size.

hV̄M = 1
iobserve

j=iobserve∑
j=1

(hPM(j)− hPM(j − 1))/dt (4.11)

hPM(ipredict) = hV̄M · (ipredict − iobserve) · dt+ hPM(iobserve) (4.12)

where dt is controller run-time, in our case it is 5ms as mentioned earlier in the
section (Robot QP controller). j in equation (4.11) is sample index. hV̄M is the
average human hand movement velocity during iobserve sample size. hPM(ipredict) is
the predicted position of human hand at ipredict. The prediction model updates and
converges itself over time and in doing so updates the robot end-effector position
towards the active human hand, upon condition if predicted position is within the
robot end-effector’s reachable workspace.

Recalling equation (4.9) or (4.10), the updated translation component of plücker
transformation hXef, which provides the predicted position of human hand with
respect to robot end-effector in the robot coordinate system is given by (4.13).

hXef(ipredict) = hXM
MXR

efXR
−1 (4.13)

where, MXR is the Plücker coordinate transform frameM relative to frame R,
if R 6= M .

Finally, the handover location is estimated based on the human hand predicted
position when the following conditions satisfy (4.14), that is when the human hand
velocity is minimum and robot end-effector is closest to the human hand.
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∥∥∥hV̄M∥∥∥ <= 1e−2∥∥∥(hPM(ipredict)− efPR)

∥∥∥ <= 2e−2
(4.14)

where, hPM(ipredict) is the desired position for robot end-effector to reach and
efPR is the actual current position of robot end-effector and also both positions are
in same frame or transformed otherwise. We have also explained the procedure of
predicting human hand position and estimating handover location in Algorithm
(1) of (Appendix: Handover).

In this section, we presented how to predict and estimate the handover
location, though just by knowing the handover location in space is not enough
for an optimal smooth handover of an object. Therefore in next section (Grasp
configuration model), we will present the orientation component of hXef which
gives the graspable relative orientation of robot end-effector w.r.t human hand
or object orientation during handover.

4.6 Grasp configuration model

To take into account comfort and requirement of the human co-worker, it is
pivotal for the robot to be able to find the most appropriate configuration to
grasp (as receiver) or release (as giver) the object [6, 23]. Therefore for an
intuitive and smooth handover of an object, the robot should relatively orient it’s
end-effector and configure according to the orientation of either object (1st

sequence) or human hand (2nd sequence) during the handover routine. Though
there are several possible configurations to handover an object, the robot must
determine the correct configuration of its end-effector during the handover which
is suitable and comfortable enough for the human and could be perceived natural
in the eyes of a human co-worker. Note that in this study, we mainly chose to
handover the object in which it is most commonly being grasped (default
configuration) hence natural to the eyes of the human, one example would be
holding an object such as a water bottle when its cap is in the upright position
during the handover.

We propose a simple method to get the desired object grasping orientation of
robot end-effector either by considering the relative orientation of the active human
hand or the object itself. This handover grasp configuration model consists of two
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sub-models, in first sub-model, we determine the orientation of the active human
hand or object itself. In the second sub-model, we utilize the first sub-model to
continuously get the desired relative orientation of the robot end-effector during
the handover routine.

To determine the object or active human hand orientation, as mentioned in
previous section we placed an L shape rigid body on the wrist of the human hand(s)
and a similar one on the object as well such that during the object handover
scenario, vector ~AB along the longer side and vector ~BC along the shorter side
of the L shape are set to be parallel with the X-axis and Y -axis of the mocap
frameM respectively, as well as orthogonal to each other (as shown in Fig. 4.5).
For simplicity, let us consider x̂ be the unit vector, which is parallel and along the
X-axis and likewise a unit vector ŷ is parallel and along the Y -axis of the mocap
frameM, such that

x̂ =
~AB∥∥∥ ~AB ∥∥∥

ŷ =
~BC∥∥∥ ~BC ∥∥∥

Let hOM in equation (4.6) be the rotation matrix representing the orientation
of human hand (or object) in the mocap frameM and since x̂ ∈ R3 and ŷ ∈ R3

are the two orthogonal unit vectors of an L shape body on each human hand
(Fig. 4.5), therefore a cross product of them would result in another unit vector
ẑ ∈ R3 which is also orthogonal to both x̂ and ŷ. Also using right-hand rule, one
can easily get the direction of the unit vector ẑ by given equation (4.15).

ẑ = x̂× ŷ (4.15)

Furthermore, to represent the orientation of human hand in R3×3, we used
these unit vectors x̂, ŷ and ẑ as columns of the rotation matrix hOM [7, 34, 57] in
equation (4.16), such that these unit vectors x̂, ŷ and ẑ represent human hand (or
object) orientation around the roll − pitch− yaw axes, respectively.

hOM =


x̂.x ˆy.x ˆz.x
x̂.y ŷ.y ˆz.y
x̂.z ŷ.z ˆz.z


3×3

(4.16)
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Therefore, the pose (4.6) of active human hand or object can be determined
using equations (4.12, translation) and (4.16, orientation). Recalling again that
active human hand is the one that carries the object during 1st sequence or the
hand which is approaching to grasp the object during 2nd sequence of a handover
routine.

Figure 4.6: Some possible fixed orientation of HRP-2Kai (left end-effector)
during the handover trials in the robot frame R

HRP-2Kai lacks conventional anthropomorphic hands, but instead it has
gripper (Fig. 4.6) alike hands [62, 100] mainly to increase the manipulability. In
this second sub-model, to continuously determine the desired grasping
configuration of robot end-effector during the handover, we were first required to
know the fixed initial orientation (default) of the robot end-effector and active
human hand, in which object handover is feasible between human and robot
co-workers.

Consequently we considered a initial possible scenario where the robot end-
effector and active human hand orientations are fixed throughout the handover
routine, irrespective of the handover sequence where robot is a giver or receiver.
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Figure 4.7: HRP-2Kai (left end-effector) holding object with fixed orientation
during handover in the robot frame R

Let efInitOR denote the initial and fixed orientation of the robot end-effector in
the robot frame R as shown in (Fig. 4.6, and Fig. 4.7). Whereas, let hInitOM be
the fixed grasping configuration of human hand determine by the equation (4.16),
such that both,


efInitOR ⊂ efOR
hInitOR ⊂ hOM

(4.17)

Note that both of these fixed subsets in equation (4.17) of handover grasping
configuration for human and robot co-workers are selected before the handover
routine based on the known physical, structural properties of the object. Since by
knowing the object shape, it is possible to determine how a human co-worker would
initially grasp the object in its default configuration, assuming that particular
grasp is what seemed natural and comfortable to the human co-worker. Also as
the active human hand (which grasps the object) has L shape body on the wrist,
therefore prior to initiating the handover routine when human co-worker grasps
the object, one can find the efInitOR by aligning the vector ~AB and ~BC of active
human hand L shape with the global X-axis and Y -axis respectively.
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Now, during the handover routine to correctly transform desired human hand
orientation into robot end-effector frame, we further utilize the equation (4.13).
Using QP’s Orientation task [78, 106] (see subsection QP tasks) and compute
the task error Err between current human hand orientation hOM obtained using
equation (4.16) and fixed robot end-effector orientation efInitOR, the resulting
orientation from the Orientation task is the desired robot end-effector
orientation relative to the human hand orientation (see Fig. 4.8, for few of many
possible orientations).

Therefore using fixed orientation component efInitOR and current human hand
orientation hOM from equation (4.16) derived in first sub-model, we further modify
equation (4.13) to get the desired orientation hOef of robot end-effector during the
handover routine.

[
hOef

hPef

]
=
[

hOM
hPM

] [
MOR MPR

] [
efInitOR

efPR
]−1

(4.18)

Figure 4.8: Robot HRP-2Kai (left end-effector) multiple possible object
grasping configurations during the handover trials in the robot frame R.

Finally, one can get the pose of the handover location by using the translation
component of hXef in the equation (4.7) which is updated based on the predicted
position of active human hand (see section Position prediction model) while the
orientation component is updated based on the relative orientation of object during
1st sequence and active human hand during 2nd sequence of a handover routine.
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4.7 Interaction forces model

Another problem that we focused here is related to the timing of grasping and
releasing the object and minimizing the forces during such interactions. The timing
at which the robot should close its gripper(s) to grasp the object, if robot tries to
close too early to grasp the object when a human co-worker is not ready it can
lead to a collision resulting in an accident or if robot waits too long then it may
lead to unreliable behaviour. Along with the previously mentioned problem we
also address here another issue related with the magnitude of interaction forces
between human co-worker hand(s) and robot co-worker end-effector(s) holding the
object during the release of object in the 2nd sequence of handover i.e. when robot
returns the object to the human.

We had to find the equilibrium for the robot to know the appropriate timing at
which the handover should occur, which would be intuitive and can be perceived
natural to the eyes of human (keeping in mind that HRP-2Kai does not have
anthropomorphic hands but rather manipulative grippers). At the same time, we
needed to come up with a solution to keep the magnitude of interaction forces at
a minimum. We came up with two methods to tackle this problem, one highlights
the simplicity and other highlights efficiency, but when used together, we get a
reliable and safest solution possible under such a scenario.

HRP-2Kai is equipped with 6-axis wrist force sensor on both hands, capable of
precisely sensing interaction forces and torques with the environment along x, y, z
axes of the sensor local coordinate frame (let us call it s). We designed a model of
interaction forces which enable the robot end-effector to interact with the object
independent of the knowledge of the object’s mass in advance.

4.7.1 Method 1: mocap markers

Without actual haptic sensor feedback information from the robot end-effector,
we had to rely on the wrist force sensor and mocap markers data of the robot
end-effector (see Fig. 4.9), therefore we used mocap makers in conjunction with
the force feedback from the wrist sensor of HRP-2Kai to know whether the object
is within its vicinity to grasp or not. Mocap makers on the robot end-effector were
crucial to know the relative position of the object from the active human hand
holding it and the robot end-effector. We placed four passive infra-red markers on
the robot end-effector(s) in rectangular-shaped configuration as shown in (Fig. 4.9,
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4.10 and 4.11). Two of the markers were placed parallel and along the local x-axis
of force sensor on the wrist of robot end-effector and rest two markers were placed
on the gripper tips as shown in (Fig. 4.9).

Figure 4.9: Passive IR markers on the robot HRP-2Kai right end-effector.

Let {wa ~P , wb ~P , ga ~P , gb ~P} ∈ R3 be the four position vectors of the mocap
markers that are placed on the robot end-effector wrist and gripper tips
respectively, also let obj ~P ∈ R3 be the position vector of mocap marker that
placed on the object as shown in the (Fig. 4.7 and Fig. 4.8). To get the relative
position of object and active human hand with respect to robot end-effector,
assuming human has the object and is ready with the intent to handover the
object. We utilized basic linear algebra and vector products [8, 18, 31] to get the
area of triangles 4waPwbP gaP , 4waPwbP gbP and 4waPwbP objP using equation
(4.19) such that upon the satisfaction of following conditions in equation (4.21)
would give us the relative position of object. Basically we were interested in the
output of function f(obj ~P ), this function measures the area of triangles formed
by the markers on robot end-effector and the object marker. The positive output
means that object is within the graspable reach of robot end-effector and that
the robot now is ready to close the gripper.

4ABC =

∥∥∥ ~AB × ~AC
∥∥∥

2 (4.19)
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where ~A, ~B, ~C are the three coordinate vectors of a triangle 4ABC,

f(obj ~P ) =


(4waPwbP gaP −4waPwbP objP ) > 0

(4waPwbP gbP −4waPwbP objP ) > 0
(4.20)

if


f(obj ~P ) == 1, within graspable reach

f(obj ~P ) == 0, object outside gripper
(4.21)

Figure 4.10: Passive IR markers on the robot HRP-2Kai right end-effector,
human right hand and object during handover.

We explained further in detail in the subsection (Finite state machine), but
before that, we mention another (Method 2: surface wrench) that we also utilize
for closing gripper when the object is in the vicinity.

4.7.2 Method 2: surface wrench

Just by knowing the relative position of the object w.r.t the robot, end-effector
gripper is not enough for safe and reliable object handover. As the lack of
anthropomorphic hands and the visual features of the manipulative gripper can
be intimidating to some humans. Therefore in conjunction to the mocap
marker-based method mentioned earlier we also computed surf ~f , the gravity-free
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Figure 4.11: HRP-2Kai trying to grasp object using right end-effector.

Figure 4.12: Virtual intrinsic surfaces (green) on robot wrists.

force vector in the intrinsic surface frame surf of the gripper (see Fig. 4.12). Let
s ~f ∈ F 6 denote the gravity-free spatial force vector in the local sensor frame s.
Note that s ~f has both force and couple components, but we were only interested
in the force component. We can easily get the coordinate transformation
between the surface frame and force sensor frame, knowing the body at which
the force sensor is attached.

67



Proactive whole-body object handover 4.7. Interaction forces model

surfXs = surfXb
bXs (4.22)

where, b denotes the body frame at which the force sensor is attached, in our
case force sensor(s) are attached to the wrist(s) of HRP-2Kai.

One can generally obtain the transformation matrix for a force vector as
explained in [38] if X is responsible for coordinate transformation on motion
vectors then using the equation (4.23), X∗ would do the same transformation on
force vectors since both are related [38],

X∗ = X−T (4.23)

therefore, force vector in the surface frame surf can be obtained by utilizing
equations (4.23) and (4.22), we get

surf ~f = surfX∗s
s ~f (4.24)

where, surfX∗s is the transformation matrix for transformation of force vector
from force sensor frame s to gripper intrinsic surface frame surf . Finally we
measure

∣∣∣surf ~f ∣∣∣ (after removing initial offset) along the gripper’s insertion (z)-axis,
during the interaction between object and gripper just prior to handover during
1st sequence and if the measured

∣∣∣surf ~f ∣∣∣ is greater than 5N along with the outcome
of equation (4.20) then it is safe for robot to close the gripper and hence grasp the
object. We further explained complete handover routine utilizing above discussed
methods in the next subsection (Finite state machine).

4.7.3 Finite state machine

The whole handover routine is a continuous process but for clarity we have
divided it into several transition steps of Finite State Machine (FSM) [58], also
(see Fig. 4.14) for graphical implementation and Algorithm (2) of (Appendix:
Handover) as well, the transitions between states are set to be continuous upon
the success of previous transition. To understand the interaction forces model,
let ~F ∈ R3 denote the current gravity-free force sensor reading in the robot frame
R. During 1st sequence of human to robot handover when human holds the
object and starts to approach somewhere with the reachable workspace of robot
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Figure 4.13: human to humanoid object handover, t1 to t8 transition states.

to handover the object (see Fig. 4.13), in such a situation due to any acceleration
of the robot end-effector while approaching towards the object, a wrist force
sensor would only show readings due to the inertial forces [99] that are acting on
the robot end-effector, which we termed zero ~F as force sensor offset reading (see
equation 4.25). Let objF ∈ R3 be the average of contact forces between the
end-effector (gripper) and the environment (object) during the resting (efv = 0)
period of robot end-effector along the xyz axes and let inert ~F be the inertial force
acting on the object due to the acceleration (lets call it efa) of robot end-effector
when moving towards the predicted pose of human hand during the 2nd sequence
of handover as shown in (Fig. 4.15). Let pull ~F be the current minimum
interaction force exerted on the object by the human co-worker and sensed by
the robot wrist force sensor while retreating the object during 2nd sequence of
robot to human handover and let oldT , newT ∈ R3 be the respective initial default
hand-tuned and updated force thresholds. We now explain each state of FSM as
shown in (Fig. 4.14).

t0:
∥∥∥hP − objP

∥∥∥ < 0.02
We start FSM under the assumption that the human co-worker is already
grasping the object, and he/she is ready with the intention of handover. hP
is the position of point A on the L shape body as the human hand marker
position (see Fig. 4.5).
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Figure 4.14: Overview of human humanoid object handover Finite-State-
Machine (FSM)
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Figure 4.15: humanoid to human object handover t9 to t14 transition states.

t1:
∥∥∥hP − efP

∥∥∥ < 0.10
During 1st sequence of handover routine, i.e. human to robot object
handover. We measure the relative position of human hand and robot
end-effector mocap markers, the state transition is successful if the
euclidean distance d is less than 0.1 meters, where d =

∥∥∥hP − efP
∥∥∥. efP is

the average position of gripper tips marker gaP, gbP .

t2: Open Gripper
The robot opens the gripper and presents with its intention to grasp the
object.

t3:
∥∥∥hP − efP

∥∥∥ ≤ 0.05, maintain current pose
To avoid collision between robot end-effector and human hand we reduce the
end-effector velocity (efv ' 0) when the interaction distance d =

∥∥∥hP − efP
∥∥∥

is less than 0.05 meters. We also measure zero ~F as force sensor offset during
this time.

zero ~F = ~F (4.25)
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t4: (surf ~f(z) ≥ 5N) & (f(obj ~P ) == 1)
We declare robot is ready to close the gripper when the object is inside
gripper if output of equations (4.21, 4.24) satisfy together.

t5: Close Gripper
Let close ~F be the measured force reading at the timing of closing gripper.

close ~F = ~F (4.26)

Robot closes gripper; presumably, the object is grasped as well. However, it
is easy to check whether the robot grasps the object or if it is a false close.
It is safe to say that its a false close if output of equation (4.21) is 0, along
with the condition

∥∥∥zero ~F − close ~F
∥∥∥ ' 0, since these are same measured force

sensor offsets. Therefore, in such scenario next transition state would be t6
to open gripper and repeat, otherwise t7, as shown in (Fig. 4.14).

t6: Open Gripper due to false close, otherwise,

t7: This transition confirms that the robot receives the object and now the object
mass can be calculated based on the forces measured during previous states.

objF = 1
n

i=n∑
i=1
|(| ~F| − |zero ~F|)| (4.27)

objF , is pure force sensor reading when efa = 0 and object is grasped by the
robot, n is the low-level controller time-step counter that increments every 5
ms (see subsection Robot QP controller), before transitioning to next state,
we intentionally stay on this state for 1 second i.e. until i == 200 to measure
the average of obj ~F over 200 samples. Finally, object mass can be obtained
using equation (4.28).

objMass =
∥∥∥objF∥∥∥/9.80665 (4.28)

t8: Go to rest pose
Both human and robot return to their resting posture, with the robot
carrying the object. This ends the 1st sequence of handover.

t9: 2nd sequence begins
Robot to human object handover. The robot continues to predict human
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hand position and moves towards it when the human co-worker approaches
somewhere within the robot’s reachable workspace. During this time, we
measure the inert ~F inertial force acting on the object due to the acceleration
of end-effector.

inert ~F = objMass ∗ efa (4.29)

Where, efa, is the average acceleration of the robot end-effector.

t10:
∥∥∥hP − efP

∥∥∥ < 0.05
Once again, we measure the relative position of human hand and robot end-
effector mocap markers, the state transition is successful if the euclidean
distance d =

∥∥∥hP − efP
∥∥∥ is less than 0.05 meters. That means human is

ready with the intention to grasp the object.

t11: Human attempts to retrieve the object

pull ~F = |(| ~F| − |inert ~F| − |zero ~F|)| (4.30)

new ~T = objF + old ~T (4.31)

where, old ~T was hand tuned after several attempts with multiple objects.
Default old ~T values were set to [6, 6, 6] N, after some preliminary trials.

t12: Open Gripper, human grasps the object if both below conditions satisfy


∥∥∥hP − objP

∥∥∥ < 0.02
pull ~F ≥ new ~T , ∨x,∨y,∨z

(4.32)

where,
∥∥∥hP − objP

∥∥∥ is again euclidean distance between human hand and
object mocap markers.

t13: Object returns to the human co-worker, human retreats.

t14: End of 2nd sequence of handover.
Both human and robot returns to their resting posture, with human carrying
the object (see Fig. 4.1).
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Finally, this ends the object handover routine between human and robot co-
workers. Afterwards, we again repeat the handover routine, starting with 1st

sequence of handover.

4.8 Either hand generalized handover

As mentioned in an earlier section (Handover routine), up till now we have
discussed human-robot bi-directional object handover under the scenario where
robot always uses its left end-effector, and human always uses his/her right hand.
However unlike several handover studies in the past [23, 53, 68, 76], we can take
the benefit of having a humanoid at our disposal; therefore we further generalize
our human-humanoid bi-directional object handover routine and extend it by
exploiting either human left or right hand and similarly left or right end-effector
of robot. Basically we extended our one-handed handover routine into four
possible scenarios (see Fig. 4.16) such as,

1. robot left end-effector Refl ←→ human right hand Hr

2. robot left end-effector Refl ←→ human left hand Hl

3. robot right end-effector Refr ←→ human left hand Hl

4. robot right end-effector Refr ←→ human right hand Hr

In this section we will only mention changes that need to be incorporated into
the previous sections for the generalization and extension of previously stated
handover routine to cover above four possible scenarios (Fig. 4.16). We mainly
modify here parameters of FSM states during transitions t0, t1 and t10, which
are already discussed in detail (see subsection Finite state machine). Again we
assumed a human is ready to handover the object if he/she is holding it in his/her
either hand. We have also assumed that just like many humans, our robot also acts
like a right-handed ‘person’, therefore robot right end-effector would get priority
over left in case object is at relatively same distance from both end-effectors or in
case where the handover predicted position is at or converging towards the centre
of robot body. This hand preference is mainly due to a recent study [48], which
showed that right-handed people tend to prefer the right over left hand when they
have the choice of pointing at a target location that is almost equally distant
between both hands.
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object

Hl Hr

Refr Refl

Figure 4.16: Possible handover scenarios between human and humanoid.

In this framework, the choice or preference of employing end-effector (either
left or right) by the robot co-worker is based on the shortest relative distance of
object to either human hand, which can be determined by using equation (4.33)
along with together the direction (mainly along y-axis) and shortest relative
distance of that active human hand with respect to both end-effectors, as per
equations (4.34 and 4.35) respectively. For example, if human is holding object
in his/her right hand hrP and if the estimated predicted position of his/her hand
(see section Position prediction model) is converging somewhere in the negative
y-coordinate space, then robot right end-effector efrP would be utilized to receive
the object during handover as shown in (Fig. 4.17).



∥∥∥hlP − objP
∥∥∥ < ∥∥∥hrP − objP

∥∥∥, human left hand (hlP )

∥∥∥hlP − objP
∥∥∥ > ∥∥∥hrP − objP

∥∥∥, human right hand (hrP )

(4.33)



∥∥∥hP (y)
∥∥∥ > 0.1, robot left end-effector (eflP )

∥∥∥hP (y)
∥∥∥ ≤ 0.1, robot right end-effector (efrP )

(4.34)
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Figure 4.17: Object handover between human right hand and HRP-2Kai right
end-effector.



∥∥∥hP − eflP
∥∥∥ < ∥∥∥hP − efrP

∥∥∥, robot left end-effector (eflP )

∥∥∥hP − eflP
∥∥∥ > ∥∥∥hP − efrP

∥∥∥, robot right end-effector (efrP )

(4.35)

Where hP in equations (4.34 and 4.35) could be either of the human hand
position depending upon equation (4.33). However in cases where there is a
switching of object in between human hands and within the 1st sequence of
handover, such as in some rare case human co-worker may decide to move the
object from his/her left to right hand or vice-versa for any reasons, under those
conditions we rely on the effect of hysteresis for robot to decide whether it needs
to switch end-effector or continue uninterruptedly. But note that we do not
consider the problem of object handover in-between robot end-effectors, therefore
once the object is being handed over to the robot co-worker, i.e. during 2nd

sequence, then the robot would not be able to switch its end-effector, however
the human co-worker is still free to choose either of his/her hand to grasp the
object back. Using the earlier example where human co-worker right hand has
the object, and his/her position is converging somewhere in the negative
y-coordinate space. While during the 1st sequence of handover if human switches
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the object in-between his/her hand —say from right to left hand, then by taking
recent history (direction) of human hand into account we further utilize the
outputs of equations (4.34 and 4.35) to measure change in the direction of human
hand and its shortest relative distance from the end-effectors, and based on these
observations robot decides to act accordingly. By exploiting hysteresis effect, we
make sure that robot does not respond abruptly to changes made by the human.

4.9 Bi-manual handover

It is very natural between humans to use both hands to manipulate a heavy or
large shape object to gain confidence and maintain stability during a physical
interaction or even while performing a collaborative task. Using both hands
together during handing over such an object to one another is no different.
Similarly, in scenarios where the use of the single hand is not enough or feasible
to perform safe and reliable handover of a large, heavy object between human
and humanoid co-workers, then it should also be an obvious choice for the robot
as well to use both hands together whenever necessary.

Here, we extend the handover routine under the scenario of bi-manual large
object transfer between human and humanoid co-workers. We formulate this
handover routine in a manner such that human co-worker is allowed to use either
or both hands to handover/receive the object to/from robot co-worker. However,
the robot would always use both hands while receiving and returning of such
object, given the physical, structural properties of the object.

4.9.1 Handover object(s)

The object(s) (two of them) we chose to handover between human-humanoid
dyads are cylindrical (see Fig. 4.18). We chose these objects purely for simplicity
and demonstration purposes in this study. Though our handover model would
practically work on several distinguishable objects as long as the object’s basic
physical, structural properties are known; however, the mass of the object is
optional. The cylindrical structures we used are hollow yet quite rigid. The inner
ri and outer ro radii for those two objects are [0.055, 0.065] m and [0.07, 0.08] m
respectively, lengths l are [0.90, 0.12] m, and the mass of objects are [0.40, 1.1]
kg, again we don’t need to know mass of object in advance as it can be computed
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Figure 4.18: Hollow cylinder shaft as object for bi-manual handover between
human humanoid. Subplot A) shows inner and outer radius of the hollow
cylinder and placement of the L body shape with o. Subplot B) shows

representation of our method to get the offset for safe handover location.

during handover routine when robot carries the object as already explained
earlier in the subsection (Finite state machine).

Figure 4.19: HRP-2Kai using both end-effectors to manipulate handover
object based on the human hand relative orientation.

Here as well we have placed a L shape rigid body at the centre of the object as
shown in (Fig. 4.18 and Fig. 4.19) with respective xyz local coordinate axes in local
frame o and are along the direction of robot frame axes. The object pose (position
and orientation) is given by oXM (see equation 4.8). Also object orientation can
be formulated similarly to human hand orientation, as explained earlier in section
(Grasp configuration model).
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4.9.2 Constraint motion

Following is an overview of constraint motion during handover routine using both
hands and end-effectors.

• Human moves with the intention to handover the object.
• Both robot end-effectors approaches towards the object.
• Robot receives the object.
• Contacts are established between robot grippers and object surfaces.
• The contact constraint governs robot end-effectors motion under null

velocity.
• Robot end-effectors follows the dominant human hand under the contact

constraint.

Here we approach differently during the 1st and 2nd sequences of handover.
During the 1st sequence of object handover from human to humanoid, we predict
and estimate both human hands positions individually along with estimating the
object orientation. Specifically, we use unique position and orientation tasks
(see subsection QP tasks) to move each of the robot end-effector to the desired
handover location. Once the object is handed over to the robot co-worker and after
grasping it using both end-effectors, we remove the position and orientation

tasks on one of the end-effector at the beginning of 2nd sequence because of the
kinematic contact constraints (see subsection QP constraints) imposed by the
object.

Now we would first introduce contact surfaces and kinematic constraints before
explaining the simultaneous motion of the robot end-effectors due to constraints
imposed by the object during 2nd sequence of handover routine.

Figure 4.20: Robot grippers with graspable internal surfaces.
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Contact surface(s) The contact surfaces or surface patches were initially
defined on the palm of each gripper in advance. Grippers local frame are shown
in (Fig. 4.20). The contacts are established, when during the handover routine
the robot grasps the object and its grippers internal surface come in contact with
the object’s graspable surface. These contacts are necessary to move freely or
limit the motion of end-effectors in one or more direction (3 x translation or 3 x

rotation) [16]. Thus robot may lose one or more degrees of freedom (DOF) in
motion due to the constraints introduced by the object’s body.

Contact kinematics and constraint To allow the concurrent motion of the
robot end-effectors and the object, contacts are defined as the kinematic
constraints in the (Robot QP controller), specifically we used the fixed contact
mode, as defined by the [9], where all six degrees of freedom are constrained (no
translation, no rotation at contact) which restricts and prevents any possibility
of sliding motion between the robot end-effectors and the object. Lets consider
bl, br and bo be the respective left, right end-effectors and object bodies and let vi
be the i-th body velocity. Let jl, and jr be the two joints under the kinematic
constraint between these bodies. Such that, the relative joint velocities vjl and vjr
between these bodies in contact would be given by the set of equations
(4.36) [37] and therefore the velocity constraints between these bodies would be
given by the set of equations (4.37) [83] (see also subsection QP constraints). We
later introduce this velocity constraint to the (Robot QP controller).


vjl = vbl − vbo

vjr = vbr − vbo
(4.36)


Jlo(vbl − vbo) = 0

Jro(vbr − vbo) = 0
(4.37)

where, Jik is the Jacobian matrix of all points of contact forces between i-th
body and k-th body.

1st sequence: before object-robot contacts Under the handover routine
scenarios, we initiate handover 1st sequence when human holds the object and start
approaching somewhere within the reachable workspace of the robot — assuming
that he/she is ready with the intention to handover the object to the robot. The
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human can grasp the object with any possible comfortable orientation using either
left/right or both hands simultaneously and any place on the object’s surface along
its length. The only constraint we put while holding/grasping object was not to
occlude the L shape body and mocap markers on it (see Fig. 4.21 for such possible
pose(s)).

Figure 4.21: Bi-manual object handover between human and humanoid using
both human hands and both end-effectors.

Compared to the one-handed handover scenario, which was discussed in
previous section (Either hand generalized handover), here during human to robot
co-worker object handover sequence instead of just predicting human hand
positions individually like earlier, we also measure the Euclidean distances of
each human hand on the object’s surface w.r.t the object’s centre using the
following set of equations (4.38). These distances act as an offset correction to
the predicted positions of human hands, along the length of the object. These
offsets are essential as they allow the robot to find safe and optimum positions
on the object’s surface to grasp. Also, while making sure end-effectors stay quite
away from the human hands occupied the object’s surface (see Fig. 4.21).
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Moreover, it avoids any possible head-on collision between the end-effectors and
the human hands when the robot tries to approach and grasp the object.

Initially, we predict and estimate human hand positions by utilizing previously
discussed prediction model from section (Position prediction model). Given the
object shape and its structural properties (in our case length of cylindrical shaft),
the offsets along object’s length can be calculated using set of equations (4.38) in
the object local frame o (see Fig. 4.18 B) from the center in both directions. This
offset is then further transformed into the robot frame and finally added to the
already predicted position of the human hands w.r.t robot end-effectors using
equation (4.40).



a =
∥∥∥objP − hP

∥∥∥
b = |l/2− a|

offd = ±2 ∗ a/3 if a ≥ b & a ≤ l/2
offd = ∓2 ∗ b/3 if a < b & a ≤ l/2

(4.38)

where, objP is the centre position given by the mocap marker at its centre, a,
b and offd are the euclidean distances, which provides grasped location of human
hands on the object surface from its centre. Using this crucial information robot
can estimate possible points on the object’s surface, which are available to be
grasped during the handover. Here, h in hP represents either left Hl or right Hr

human hand and the sign of offd depends on the choice of left or right human hand
(see Fig. 4.18 B). Let û = {0, 1, 0} be the free unit vector along the length of the
object, i.e. along the oy-axis of local frame o, therefore offset position vector in
object frame would be given by

offPo = offd û = {0, offd, 0} (4.39)

We know for sure that without these offsets, robot end-effectors would
inevitably collide with the human hands. Since our prediction model is
estimating and predicting the positions of both human hands. Therefore, we
need to introduce these offsets in the predicted positions of human hands relative
to robot end-effectors. We start by measuring these offsets continuously and
from the beginning of handover sequence. This allowed the robot to adjust while
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approaching the object, depending on the human hands grasped location on the
object’s surface. We can obtain the modified predicted positions based on these
offsets using Plücker transformation. We transformed offset position offPo from
object frame to mocap frame offPM by below equation (4.40). Please note, above
offset correction method is also valid during the 2nd sequence of handover when
robot holds the object and approaches towards the human decided handover
location.

Note here, we considered predicted position of the human hand, but to
relatively orient robot end-effectors, we considered the orientation of object but
not the human hand(s). In this example of a cylindrical object, the orientation of
human hand and object is similar however to generalize this for other possible
distinguishable shape objects; it is crucial to consider object’s orientation instead
of the human hand. As for the other shape objects relative human hand’s
orientation to grasp the object may not be feasible to perform by the robot.

offXM = offPo
[
oOM hPM(ipredict)

]
(4.40)

where, oOM provides the orientation of object in the mocap frame (see
equation 4.8) and hPM is the predicted position of human hand(s). Finally, using
equation (4.40), we can replace translation and orientation components of hXM

in the equation (4.13) with offXM , therefore new pose of the handover location
relative to the robot end-effectors would be given by

offXef = offXM
MXR

efXR
−1 (4.41)

Finally, at the handover location, we measure the
∣∣∣surf ~f ∣∣∣ (after removing initial

offset) forces along the both gripper’s insertion (z)-axes during the interaction
between object and gripper just before handover. Handover occurs when

∣∣∣surf ~f ∣∣∣
exceeds 5N on both end-effectors along with the set of following conditions in
equation (4.14) satisfy for both robot end-effectors.

2nd sequence: after object-robot contacts So far we have discussed
estimating and predicting object handover pose for the robot end-effectors during
the 1st sequence of handover routine. Up till now, each robot end-effector motion
was controlled by its own position and orientation task. During the 2nd

sequence of handover routine after the contacts have been established between
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the robot grippers and the object surfaces. Also, because of the introduction of
kinematic constraints imposed by the object on the end-effectors, the robot
cannot move its end-effectors individually. The successive motion of the
end-effectors is therefore now governed by the contact constraint that we
introduce to the robot’s low-level QP controller. This constraint maintains the
contacts between the object and the robot grippers surfaces all the time and the
concurrent motion of the end-effectors is made possible by targeting a null
velocity constraint with the target objective Icontact = 0 at the contact joints
between the object and the end-effectors, see equation (4.37). The contact

constraint is already explained at the beginning of this section and also in the
subsection (QP constraints).

As already mentioned earlier, the human co-worker is allowed to use either
(both) hand(s) to handover/receive the object to/from robot co-worker. Therefore,
when the human starts approaching somewhere within the reachable workspace of
the robot to receive the object. We utilized equation (4.42) to select the dominant
human hand, mainly by measuring the relative distances between the robot end-
effectors and the human hands. We check this condition only once at the beginning
of the 2nd sequence of handover routine after the human hand(s) arrive within the
reachable workspace of the robot.



∥∥∥hrP − eflP
∥∥∥ < ∥∥∥hlP − efrP

∥∥∥, robot left end-effector (eflP )

∥∥∥hrP − eflP
∥∥∥ > ∥∥∥hlP − efrP

∥∥∥, robot right end-effector (efrP )

(4.42)

Where, hlP and hrP are the position vectors of the respective left and right
human hand. Depending on the choice of the dominant human hand, for
example, if the left human hand is selected then we remove the position, and
orientation tasks of the left end-effector and therefore the motion of this
end-effector is now governed using the contact constraint by targeting the
null velocity. By doing this, the robot right end-effector would lead the motion
by predicting and estimating the pose of the dominant human hand. The
problem of predicting and estimating human hand pose can now be treated
similarly to the one-handed handover routine as mentioned in the section (Either
hand generalized handover). Please note, set of equations (4.38) is also valid to
calculate the offset position of end-effector when robot predicts and approaches
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towards the handover location chosen by the dominant human hand. We just
need to replace the human hand position vector hP with the end-effector position
vector efP . Where ef in efP is either left efl or right efr end-effector.

Finally, a handover occurs when the set of conditions in the equation (4.32)
satisfy for both end-effectors (see Finite state machine). Note that the conditions
in the equation (4.32) are valid only if a human tries to pull the object from
the robot. After the robot grippers release the object, we also remove the null
velocity contact constraint between the end-effectors and the object surfaces,
and add again the previously removed position and orientation tasks to that
end-effector. This completes bi-manual handover routine.

4.10 Locomotion and handover

A broad general definition of locomotion describes it as an ability to move from
one place to another, that could be achieved either by walking, running, jumping
and more. Though we are mainly interested in the walking locomotion of a floating
base robots such as our HRP-2Kai in the context of the object handover between
human and robot co-workers. However, after a thorough search of state-of-the-
art research in the related field, none of the previous work on the human-robot
dyad considered object handover and ‘walking’ in a single framework using a biped
humanoid platform such as HRP-2Kai. Therefore in order for the robot to be
sufficiently proactive, we believe it is essential to consider the possibility of a
robot taking a step or two to handover or exchange an object with the human co-
worker, in scenarios where short-distance travel is required, to eventually extend
robot’s reachable workspace. Note that we consider the problem of taking a few
steps to handover/receive the object rather than motion planning and navigation.

Some previous studies on human-human dyad object handover have
demonstrated that we humans are surprisingly able to predict where our partner
would handover an object, often without an explicit communication [63, 64].
However we came across one of such study [49], results of which had shown that
we humans often handover an object at the middle of our interpersonal
distances [47, 101].

Up till now, we formulated our handover problem under the scenario that
both human and especially robot co-worker base (feet) are stationary on their
respective position in the world frame, such that object handover can happen
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just by extending their arms. Next in this section, we further extended our
handover problem and added another dimension in which robot takes a step(s)
(we call it step-walk) to handover or receive the object from the human
co-worker based on the interpersonal distance between them. We have tested this
scenario during both when human-robot dyad uses either one hand or both
hands simultaneously.

4.10.1 Walking pattern generator

Though there are many state-of-the-art methods available to generate walking
pattern for humanoids, however in this study for step-walk locomotion, we
primarily chose to adopt walking pattern generator (WPG) based on the Linear
Inverted Pendulum Mode (LIPM) which was designed and tested in our
group [25, 59] along with its native stabilizer [26, 60].

The goal of WPG is to generate the on-line trajectory PG(t) of the Center of
Mass (CoM) of the robot, while all-time maintaining the Zero Momentum Point
(ZMP) PZ(t) of the robot within the support polygon. This support polygon is
usually defined by the contact points between the robot (feet) and the environment
(floor). During Double Support Phase (DSP) — when both feet are in contact
with the ground, the contact surface corresponds to the convex hull of all possible
(flat) ground contact points. While During the Single Support Phase (SSP) —
when one foot is above the ground (swing state), then this contact surface lies
below the robot foot which supports its weight.

In general, WPG provides CoM trajectory PG(t) and also the trajectory of an
angular-momentum Lc(t), however, when considering Lc = 0, this model can be
reduced to a single output of CoM, and the resulting model is known as Inverted
Pendulum Mode. While if walking is under the assumption of a horizontal flat
surface (as in our handover problem) such that CoM height remains constant,
then this model can be further simplified to Linear Inverted Pendulum Mode,
as given by equation (4.43). LIPM establishes a relationship between ZMP and
CoM of the pendulum, resulting in a dynamical system with CoM jerk as an
input to the system. The desired ZMP trajectory can, therefore, we obtained
by appropriately computing CoM jerk. Moreover, to ensure the balance of biped
robot while walking, WPG task is to minimize the error between the CoM velocity
and a reference velocity (one angular velocity and two translation velocities), also
to minimize CoM jerk while respecting the constraints on the robot ZMP.
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PZ = PG −
h

g
P̈G (4.43)

where g is gravity, h is the constant height of CoM in equation (4.43).
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Figure 4.22: Walking state machine with standing phase, single support phase
(SSP) and double support phase (DSP).

In this study, the number of footsteps (two left and two right), length of
footsteps, duration of single support, double support phases and swing height in
WPG were predefined for robot during forward and backward step-walk. The
WPG can be implemented using three phases of FSM (walking state machine)
—standing phase, double support phase and single support phase as illustrated
in (Fig. 4.22 and Fig. 4.23). We mentioned the parameters to control WPG in
the (Table. 4.1).

Figure 4.23: Bottom view of forward step-walk (4 footsteps) states of WPG:
with starting phase Standing —> DSP —> Right SSP —> DSP —> Left SSP

—> Standing.
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Table 4.1: WPG parameters.

Parameters Values
Total footsteps 4
Footstep length 0.2 meters
Swing height 0.05 meters
SSP duration 0.8 seconds
DSP duration 0.2 seconds

Step-walk duration 4.2 seconds

4.10.2 Step-walk

As said above, the moment at which this step-walk should be triggered depends on
the interpersonal distance between human and robot co-worker bodies and along
with the height of active human hand (zH = hPM(z)) (object carrying/receiving
hand). The interpersonal distance D (4.44) is calculated between the human
co-worker body position bH and the robot co-worker body position bR in the X-
coordinate (walking direction) of world frame. We get the robot body position
by using CoM task (see QP tasks), and as mentioned earlier, three mocap markers
were placed on the head of the human co-worker to get his/her body position.
These three markers make up a circle in xy-plane such that the centre of the circle
is considered as the human co-worker body position. We remind again that we
formulated the problem with a common origin O, therefore R ≡ M (both frames
are located between the feet of robot HRP-2Kai).

D =
∣∣∣bH − bR

∣∣∣ (4.44)

Initially, the problem of handover was formulated under the scenario that both
human and robot co-worker feet are stationary on their respective position in the
world frame; therefore the object handover can happen just by extending their
arm(s) and end-effector(s) respectively. However, with an exception that human
co-worker is allowed to move nearer to the robot co-worker if needed. The initial
interpersonal distance iD between the human and robot co-workers bodies were
approximately kept 1.2 meters, such that object handover is possible as long as
equations (4.1 and 4.45) satisfy,

0 <= iD <= 1.2 (4.45)
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Though, now with the possibility of taking few step(s), our previous handover
routine can be extended further to some possible scenarios (within and beyond
its initially defined reachable workspace) where an object handover could occur
between human and humanoid, either using one hand or both hands together,
even when human co-worker is out of robot’s reachable workspace in the direction
of X-axis.

The key idea here is to trigger the step-walk when human co-worker goes beyond
the robot co-worker’s reachable workspace (stepping backwards) and presents its
intention to handover/receive the object. The intention of human co-worker is
established when the condition (4.46) satisfy followed by the condition (4.47) i.e.
(4.46) & (4.47).

125%(iD) <= D <= 150%(iD) (4.46)

zH >= waistHeight (4.47)

where, waistHeight is the height of respective human co-worker. Also note
that zH is not just any human hand but the active human hand height which
either holds the object during 1st sequence or approaches towards the object to
grasp it during 2nd sequence of a handover routine as shown in (Fig. 4.24).

4.11 Handover task protocol

The handover task protocol is an emblem of our bi-directional object handover
problem between human and humanoid co-workers. It consists of all the models
and methods that we have presented so far. (Position prediction model) for
predicting and estimating the handover location. (Grasp configuration model)
for estimating the orientation of robot end-effector(s), relative to the orientation
of an object or active human hand during handover. (Interaction forces model)
for minimizing the forces during the handover of an unknown mass object.

Moreover, when considering step-walk, the (Handover routine) can be
performed under four possible cases (see Table. 4.2) in which an object handover
could occur between human and humanoid, either when during (Either hand
generalized handover) or (Bi-manual handover) scenarios.
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Figure 4.24: Object handover between human and humanoid co-worker when
robot takes a forward step-walk while attempting to grasp the object.

Table 4.2: Possible object exchange cases during the sequences of a handover
routine.

During both sequences, human co-worker can handover the object while staying at
their starting position or first take a step backward and then handover the object.

1st sequence 2nd sequence
stays stays
stays steps backward

steps backward stays
steps backward steps backward

Within the handover task protocol, each trial of handover routine starts from an
initial posture, standing still with both hands down as shown earlier in (Fig. 4.1),
such that it must satisfy the condition (4.48).

D > 150%(iD) (4.48)

Afterwards, the trial begins when the human co-worker moves to a ‘starting
position’ (4.49), from there it is up to human co-worker, whether he/she chooses
to exchange (handover/receive) object from that stationary position or take a

90



Proactive whole-body object handover 4.12. Discussion

step backward, while at the same time raise his/her active hand, which results in
signaling the robot to trigger the step-walk and eventually exchange the object
with the human co-worker as per the conditions (4.46) & (4.47). Note that we
utilize the fundamentals of hysteresis such that robot would trigger forward step-
walk only when the conditions are valid in following mentioned order (4.48) &
(4.49).

0 <= D <= 1.2 (4.49)

The step-walk is triggered when 125%(iD) <= D <= 150%(iD), where
max(iD) == 1.2, while at the same time zH is above human co-worker’s waist.
This basically agrees with our assumption that human co-worker is ready with
the intention to handover/receive the object.

Finally, once the object handover has occurred, the robot co-worker needs to
go back to its initial starting position, such that it requires to take backward
step-walk to complete the handover sequence. For simplicity, we have coupled the
backward step-walk with the forward step-walk; therefore, backward step-walk
is triggered only when the robot had taken forward step-walk. We trigger the
backward step-walk, once the object is fully grasped by the robot co-worker (1st

sequence), as stated by the transition states t7 and t8 of (Finite state machine) or
by the human co-worker at the end of (2nd sequence), as stated by the transition
states t12 and t13, then the robot safely return its end-effector(s) to a relax/initial
posture and walks back to where it started. This lets completion of one trial of a
handover routine.

4.12 Discussion

To summarize this chapter, we introduced a framework to solve the problem of
intuitive and proactive bi-directional object handover between a human and a
biped humanoid co-worker dyad using whole-body control and locomotion. This
handover framework has been implemented and tested on a real HRP-2Kai. Here
we designed models to answer three important questions —when (timing), where
(position in space) and how (orientation and interaction forces) of the handover
routine. By addressing the common key features of object handover between
human and robot dyad —the timing(s) and overall duration of handover, the pose
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of handover and the magnitude of the interaction forces between human hand(s)
and robot end-effector(s).

During the trials of a handover routine, we found that our (Position
prediction model) is able to predict the human hand position such that robot is
able to proactively plan its end-effector’s motion and arrive at the human chosen
handover location approximately at same time as human co-worker, both during
the 1st sequences and 2nd sequences. This lead to an overall reduction in
handover trial duration, thanks to the approximate prediction and estimation of
handover location in advance. The behaviour of our prediction model can be
tuned by two initially required constant time periods, iobserve and ipredict, though
at the moment we did not test its performance thoroughly. The values of iobserve
and ipredict were set to 20 ms and 200 ms respectively in the preliminary tests.

However, predicting handover location alone is not enough when robot
co-worker is unaware of the grasp configuration that is required to handover the
object. Also to keep in mind the comfort and requirement of the human
co-worker [6], it is pivotal for the robot to be able to find the most appropriate
configuration to grasp (as receiver) or release (as giver) the object. Moreover,
according to [23], we humans prefer the handover of an object in its default
orientation. Therefore, we mainly chose to handover the object in which it is
most commonly being grasped hence the default orientation. We proposed a
method to get the desired object grasping orientation of robot end-effector either
by considering the relative orientation of the active human hand or the object
itself in (Grasp configuration model). The only limitation of this model is its
dependency on the position of L shape mocap markers, that is attached to the
object (1st sequence) and active human hand wrist (2nd sequence). Another thing
to note, in this study, we only considered class of rigid basic straight shape
objects (bottle or pipe); however, it is possible to further generalize this method
to other classes (compound shapes) of objects given the object physical,
structural properties in advance. Because by knowing the object shape, L body
can be placed accordingly and offsets can be created for safer handover between
human and robot co-workers as discussed in section (Bi-manual handover). The
model is adaptable to objects of different mass within consecutive trials.

Another solution that we proposed here using (Interaction forces model) is
related to the timing of grasping and releasing the object while at the same time
minimizing the magnitude of forces during the release of the object in such
interactions. We designed a model of interaction forces using (Finite state
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machine) which enables the robot end-effector to interact with the object
independent of the knowledge of its mass in advance. We proposed two methods
within this model, in first method we made sure that robot grasps/releases the
object only when active human hand is within its gripper’s graspable space using
the mocap markers position and in second method we established the intention
of the human co-worker to handover/receive the object by measuring the offset
free-acting force on the intrinsic surface of the gripper along its insertion (z)-axis
at the time of contact. Moreover, during the 2nd sequence, prior to handover the
object from robot to human co-worker, the object mass has been calculated in
the transition state (t7) of FSM, which was later utilized to set the optimal
threshold (t11) to minimize the interaction force during the release of object.
Though this optimal threshold is dependent on the object mass, but it was
calculated within this model. We have tested this interaction forces model using
a variety of objects with mass ranging from [0.17 to 1.1] kg.

Initially we asked three important questions and we answered them now by
utilizing (Position prediction model) to answer where, we answered when by
utilizing (Position prediction model) and (Interaction forces model) and finally
answered how by using both (Grasp configuration model) and (Interaction forces
model), during a handover routine.

We started the problem of human-robot bi-directional object handover under
the scenario where robot always uses its left end-effector, and human always uses
his/her right hand. Later based on above discussed models, we further generalize
our bi-directional handover routine and extend it into four possible scenarios, robot
left end-effector ←→ human right hand, robot left end-effector ←→ human left
hand, robot right end-effector ←→ human left hand, robot right end-effector ←→
human right hand. In this framework, the choice or preference of employing end-
effector (either left or right) by the robot co-worker was based on the shortest
relative distance of object to either human hand along with together the direction
(mainly along y-axis) and shortest relative distance of active human hand with
respect to both end-effectors. During our preliminary tests with HRP-2Kai and
based on above-defined conditions, we found that the robot was able to choose its
left or right end-effector properly.

Except for a study by [67] which solely focused on grasp planning, we did not
find studies on handover which had involved human co-worker during dual-arm
object manipulation and handover. Therefore we further extended our handover
framework to allow robot co-worker to use both of its end-effectors during object
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Proactive whole-body object handover 4.12. Discussion

manipulation and handover with a human co-worker using whole-body control
configuration. We chose two hollow cylindrical pipes of slightly distinguishable
physical properties for demonstration, however knowing the mass of the object in
advance was again optional. Compared to (Either hand generalized handover)
scenario, here during 1st sequence instead of just predicting human hand
positions individually like earlier, we also measured the Euclidean distances of
each human hand on the object’s surface w.r.t the object’s centre. These
distances acted as an offset correction to the predicted positions of human hands
along the length of the object. These offsets were important as they allowed the
robot to find safe and optimum positions on the object’s surface to grasp. Also,
while making sure end-effectors stay quite away from the human hands occupied
object’s surface. During the 2nd sequence after the robot co-worker grasped the
object, the successive motion of end-effectors was governed by the kinematic
constraint (QP constraints), that was imposed by the object. This constraint
maintained the contacts between the object, and the robot grippers surface all
the time, and the concurrent motions of the end-effectors were made possible by
targeting a null velocity constraint.

Though some studies [105, 109] have adapted object handover and manipulation
using dual-arm motion planning but did not consider robot locomotion. Also, in
these studies, dual-arm manipulation was limited between robot arms. Therefore
in order for the robot to be sufficiently proactive, we believed it was crucial to
consider the possibility of the robot taking a step to handover or exchange an object
with the human co-worker, in scenarios where short-distance travel is required.
Hence we added one final dimension to our handover framework in which we
utilized robot’s whole-body control along with step-walk locomotion (Locomotion
and handover). During the preliminary tests in both (Either hand generalized
handover and Bi-manual handover) scenarios, we confirmed that the robot was
able to take a step-walk forward while at the same time being able to predict the
position of the active human hand to handover the object. In this method, the
step-walk was triggered only when the human co-worker moved away (backwards)
from the robot and still presented his/her intention to handover the object.
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Conclusion

To conclude this thesis, our achieved results contributed in the broad field of
human-robot interactions (especially with the humanoid robot) both at a safer
distance and in close proximity, namely during a human-robot interaction (HRI)
and physical human-robot interaction (pHRI) respectively. The work done in this
thesis was about the interactions between human and biped humanoid robot as ‘co-
workers’ in the industrial scenarios. We started with the non-physical human-robot
interaction scenario based on an industrially inspired Pick-n-Place task example
and then advanced towards the physical human-robot interactions with an example
of human, humanoid bi-manual bi-directional object handover.

Since the beginning, this thesis was divided into two parts. In the context of
non-physical human-robot interactions, the studies conducted in 1st part of this
thesis (Chapter 2 and Chapter 3) were related to the behavioural effects of motor
contagions and motivated by the ‘implicit’ social interactions between human and
humanoid co-workers. While in the context of physical human-robot interactions,
the 2nd part of this thesis (Chapter 4) was motivated by the physical manipulations
of object and handover between nearby human and humanoid using robot whole-
body control framework and locomotion.

We examined an empirical repetitive industrial task in which a human
participant and a humanoid co-worker near each other. We primarily chose cyclic
and repetitive pick-n-place task for the experiments in Chapters 2 and 3, as we
wanted a task that is simple but rich and could represent several industrial
co-worker scenarios. We found that this is one of the most common tasks in
current industrial platforms where robots are often employed.

In Chapter 2, our results and findings suggest that on-line contagions affect
participant’s movement frequency while the off-line contagions affect their
movement velocity. Also, off-line motor contagions were mainly notable after
observing human co-worker, but the effects of on-line contagions were equal with
both human and humanoid co-workers. Therefore, perhaps the off-line contagion
is more sensitive to the nature of the co-worker. These two contagions were also

95



observed to be sensitive to the behavioural features of both co-workers, but with
robot co-worker, these motor contagions were induced only when robot
movements were biological. Note that this study did not consider the effects of
factors such as age, physical or behavioural characteristics of the partner
co-worker. They may have had indirectly affected these two motor contagions,
perhaps its an interesting topic of discussion and need to be explored in future
research. Finally, the overall observations made in this Chapter emphasize on
our hypothesis that distinct motor contagions are induced in human participant’s
during the observation of a co-worker (on-line contagions) and as well as after
the observations of same co-worker (off-line contagions).

In Chapter 3, we further explored our findings from Chapter 2 and under the
same experimental task and set up along with the addition of a few more
conditions. Primarily, our findings suggest that the presence of a humanoid
co-worker (or a human co-worker) can influence the performance frequencies of
human participants. We observed that participants become slower with a slower
co-worker, but also faster with a faster co-worker. We also argued the
performance has to be measured considering together, both task speed (or
frequency) as well as task accuracy. Some previous studies in motor control have
shown that motor noise often constrains human movements, which eventually
increases with the enormity of motor commands in the muscles [50]. This
consequently leads to the trade-off between the speed and accuracy of ordinary
and usual daily life movements [39]. However, by regulating the arm impedance
by muscle co-contraction, one can also modulate the movement
accuracy [20, 41, 42]. Therefore here we showed how touch accuracy of
participants have changed alongside the contagions in their htp and hence
performance of the human co-worker during the task. We also investigated the
effects of physical form, by adding two conditions where both human and robot
co-worker’s head and torso were covered, and human participants were only able
to see visible moving arm of the co-worker. Our findings suggest that the
presence of a humanoid co-worker can affect human performance, but only when
its humanoid form is visible.

Moreover, this effect was supposedly increased with the human participants
having prior robot experience. Finally, our results show that human task
frequency, but not task accuracy, is affected by the observation of a humanoid
co-worker, provided the robot’s head and torso are visible. Note that in
Chapter 3, we quantify the participants level of the robot exposure by a
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self-perceived robot exposure score by themselves rather than the actual robot
exposure. As an actual standard robot exposure questionnaire to measure this
effect is currently absent, and the development of one can be useful to
understand how this effects, such as the one we highlight here, vary over time.

Overall the findings mentioned and discussed in Chapters 2 and 3 highlights
several new features of motor contagions, but also open new questions for future
research. One can find these results useful for customizing the design of robot
co-workers in industries and sports in future studies by moderating or exploiting
these contagions. While if ethically allowed, these contagions could be utilized to
improve co-workers performance speed and hence productivity.

In Chapter 4, we designed a framework to handover an object between human
and robot co-workers in the context of pHRI. We concentrated our efforts towards
developing a simple yet robust and efficient handover framework. We introduced
an intuitive bi-directional object handover routine between a human-humanoid
dyad using whole-body control (WBC) and locomotion. Throughout this chapter,
the problem of bi-directional object handover between human and humanoid co-
worker was treated as one-shot continuous fluid motion. Initially, we started by
designing a general framework and within it developed models to predict human
hand position to converge at the handover location (Position prediction model)
along with estimating the grasp configuration of an object and active human hand
during handover sequence (Grasp configuration model). We also designed a model
(Interaction forces model) to minimize the interaction forces during the handover
of an unknown mass object along with minimizing the overall duration of object
handover routine. We designed these models to answer three important questions
related to human-robot object handover —when (timing), where (position in
space) and how (orientation and interaction forces) during a handover routine.

Within this handover framework, using HRP-2Kai, we first tested and
confirmed the feasibility of these models under the scenario where human and
robot co-workers always use their right hand and left end-effector, respectively.
Later a generalized framework was presented (Either hand generalized handover)
and tested where both human and robot co-workers were able to choose either of
their hand to handover or exchange the object. In addition, thanks to the native
low-level (Robot QP controller) of our robot HRP-2Kai and by utilizing
whole-body control configuration, we were able to extend further our handover
framework, which allowed the robot to use both hands simultaneously during the
object handover routine (Bi-manual handover).
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Furthermore, as mentioned earlier, none of the previous work on the human-
robot dyad considered object handover and ‘walking’ in a single framework using
a biped humanoid platform such as HRP-2Kai. Therefore for a proactive handover
of an object between human and robot we believed it was essential to consider the
possibility of a robot taking a step to handover or exchange an object with the
human co-worker, in scenarios where short-distance travel is required. Hence, we
explored the full capabilities of HRP-2Kai and added a scenario where the robot
needs to proactively take a few steps in order to handover or exchange the object
between its human co-worker. This scenario had been implemented on HRP-2Kai
and tested during both when human-robot dyad uses either single or both hands
simultaneously.

Finally, to conclude our preliminary testing of the complete handover framework
under above-mentioned scenarios, including locomotion. We confirm that our bi-
directional object handover framework is intuitive and adaptable to several objects
of distinguishable physical properties (shape, size and mass), including industrial
tools. It only needs the information of handover object’s shape and size, though
knowing the mass of the object is not important in the beginning. We confirmed
the feasibility of our handover framework under several objects with mass ranges
from [0.17 to 1.1] kg, during above-mentioned scenarios. However, over the course
of several handover routine trials, we report that the calculated object mass is
not accurate and has marginal error of ±10% compared to object’s actual mass
and needs further improvement on better estimation of the inertial forces at play
or better ways to remove offsets from force sensors although it didn’t affect the
optimal threshold which is vital at the time of object handover from robot to
human co-worker.

Though overall our method allows us not to stop the motion of end-effector
and still being able to handover (both ways) the object (see Finite state machine),
however, if the handover occurs while both human and robot end-effectors are
moving then this problem of handover would be extended to the problem of object
collaboration and manipulation, which is already being studied extensively in our
research group [1–4, 21, 22]. Therefore we concentrated solely on the proactive
bi-directional handover problem and hence decided to reduce the end-effectors
velocity (efv ' 0) at the time of handover.

By adding a dimension of step-walk locomotion, We did not focus on the
problem of motion planning or navigation in a large cluttered
environment [67, 74, 105]. However, instead, we concentrated our efforts to solve
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and optimize object handover problem which requires immediate shared efforts
between human-robot dyad in a small space where few steps are necessary and
enough for a comfortable and convenient object handover. Our proposed method
is simple but effective to take advantage of the humanoid robot and deal with
the problem of bi-directional object handover using robot whole-body control.
However, note that in the cases when human co-worker decides to step
backwards, then for sometime after the forward step-walk is triggered, the
interpersonal distance D would become larger than 1.2 meters (since human is
away from the robot), therefore in order for this model to work, the human
co-worker shouldn’t take more than few steps backward. Though at the moment,
step-walk is triggered only when interpersonal distance between the co-workers
becomes greater than 125% <= D <= 150%, however more possibilities
including the estimation of direction in which human co-worker may wish to
move (laterally) and handover the object will be considered in the future scope of
this study.

At last, in the near future, a human-user study will be conducted shortly after
further improving the performance of the overall proactive handover framework
with step-walk locomotion. This handover framework exploits whole-body
control of a biped humanoid robot and can be utilized in several possible
industrial applications where human and robot co-workers need to work
collaboratively.
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Appendix A

Appendix: Motor contagion

Figure A.1: All participants regression fits in the human co-worker condition.
Examples of linear regression fits obtained between the participant’s htp change
between the together and alone conditions (ordinates), as a function of co-
worker’s htps (abscissa). The positive slopes show that the human co-worker’s

performance htp (hence frequency) influenced the human participants.
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Appendix: Motor contagion

F
ig

ur
e

A
.2

:
A
ll
pa

rt
ic
ip
an

ts
re
gr
es
sio

n
fit
s
in

th
e
ro
bo

t
co
-w

or
ke
r
co
nd

iti
on

.
N
ot
e
th
at

m
os
t
pa

rt
ic
ip
an

t
pl
ot
s
sh
ow

a
po

sit
iv
e
slo

pe
in
di
ca
tin

g
th
at

th
e
ro
bo

t
co
-w

or
ke
r’s

pe
rf
or
m
an

ce
ht
p
(h
en

ce
fr
eq
ue

nc
y)

in
flu

en
ce
d
th
e
hu

m
an

pa
rt
ic
ip
an

ts
.

101



Appendix: Motor contagion
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Appendix: Motor contagion

Figure A.4: All participants regression fits in the human covered co-worker
condition. Like in A.3, the slopes were observed to be zero across participants
(Fig. 3.6), indicating that the participant’s htps were not affected in the human

covered co-worker condition
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Appendix: Motor contagion
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Appendix: Motor contagion
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Appendix B

Appendix: Handover

Algorithm 1: linear position prediction model
Input: MXR,

efXR,mocapData

Output: hwpef // predicted waypoints

Data: Initial require: iobserve = 20 ms, ipredict = 200 ms, i = dt = 5 ms
1 i+=dt // increments as per controller run-time (dt)

2 if (i%iobserve) == 0 then
3 for j = 1 to iobserve do
4 hPM = mocapData.handMarker(i− iobserve) + j)

5 hV̄M = 1
iobserve

∑j=iobserve
j=1 (hPM(j)− hPM(j − 1))/dt

/* predict human hand handover position at ipredict */

6 hPM(ipredict) = hV̄M · (ipredict − iobserve) · dt+ hPM(iobserve)
7 hXM =

[
hOM hPM

]

/* transform handover position relative to robot end-effector */

8 hXef(ipredict) = hXM
MXR

efXR
−1

/* way points between human hand and robot end-effector handover

location */

9 Function generateWp(efPR, hPef(ipredict), ipredict):
10 for k = 0 to ipredict do
11 hwpef(k) = [hPef(ipredict)− efPR].( k

ipredict
) + efPR

12 return hwpef
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Appendix: Handover

Algorithm 2: Interaction Forces
Input: F // EF wrist worldWrenchWithoutGravity

Output: pullF , newT // Pull force, new threshold based on object mass

1 if human hand is near robot then
/* when human holds the object */

2 if
∥∥∥hP − efP

∥∥∥ < 0.05 // gripper is empty

3 then
4 Open Gripper
5 zeroF = F // wrench offset

/* when robot holds the object */

6 objF = 1
n

∑i=n
i=1 |(|F| − |zeroF|)|

7 objectMass =
∥∥∥objF∥∥∥/9.80665 // get object mass

8 inertF = objectMass ∗ efAce // efAce - avg end-effector acceleration

9 newT = objF + oldT // Told set to [5,5,5]

10 Function CheckPullForce(∨x,∨y,∨z):
11 pullF = |(|F| − |inertF| − |zeroF|)|
12 if pullF > newT ∨ x,∨y,∨z then
13 release object // release object
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