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Abstract

Photonics has emerged a platform where electromagnetic waves (or photons) propagate in-
side a crystal (like Bloch waves) formed by the underlying discrete degrees of freedom, e.g.,
waveguide arrays. These waves cannot propagate if the incident frequency lies within the
so-called photonic bandgap, then these waves are known as evanescent waves. Thus, the
crystal behaves as a reflector to these waves. However, if there are modes for which there
exist boundary waves that connect the bandgap, then these waves can exist at the boundary
without leaking into the bulk. This is analogous to the chiral motion of electrons at the
quantum Hall edges, with an extra ingredient of time-reversal symmetry breaking in pho-
tonic crystals via some gyromagnetic properties of the sample, or inherent time dependence
of the system. In the latter case, when the system, specifically, driven periodically then the
more exotic non-equilibrium phases can also be observed in these lattices.

In this work, we explore the topological properties in these periodically driven photonic
lattices. For instance, how fundamental symmetries, e.g., particle-hole symmetry, can be
implemented to engineer topology in 1D. We find a connection between crystalline symme-
tries and the fundamental symmetries, which facilitate such implementation. Moreover, a
synthetic dimension can be introduced in these lattices that simulate higher dimensional
physics. The difference between synthetic and spatial dimension becomes apparent when
a specific crystalline symmetry, like inversion, is broken in these systems. This breaking
changes a direct bandgap to an indirect one which manifests in the winding of bands in
the quasienergy band spectrum. If it is broken in the synthetic dimension, it results in an
interplay of two topological properties: one is the winding of the quasienergy bands, and the
other one is the presence of chiral edge states in the finite geometry. This former property of
winding manifests as Bloch oscillations of wavepackets, where we show that the stationary
points in these oscillations are related to the winding number of the bands. This topological
property can thus be probed directly in an experiment by the state-of-art technology. How-
ever, if this symmetry is broken in the spatial dimension, the winding of bands manifest as
a quantized drift of mean position, which is still characterized by a winding number of the
bands. Furthermore, we show that a different gapless regime can also be engineered while
preserving the inversion symmetry. In this regime, the topology can be captured by enclos-
ing the degeneracies in parameter space and calculating the Berry flux piercing through the
enclosed surface. In this case, some of the degeneracies can host chiral edge states along
with other protected ones at the same quasienergy.
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Chapter 1

Introduction

1.1 Topological insulators and beyond

The most remarkable discovery of QHE (Klitzing et al. 1980) has opened the field of topolog-
ical insulators. It showed the presence of a phase transition which cannot be explained by the
versatile Landau theory of symmetry breaking (Landau 1937). Later, Thouless showed that
one could obtain a similar 2D topological insulator by introducing an adiabatically varying
potential V(¢) to a 1D system (Thouless 1983). The similarity between both comes from the
fact that the same Chern number C' distinguishes the topological phases. In the first case, C
predicts the number of non-trivial chiral edge states, and its sign dictates their direction of
motion (or chirality). In the Thouless case, it corresponds to the amount of charge pumped
after a period T, where V(t+7T) = V (¢), and sign (of C') corresponds to the direction of the
charge pumped with respect to the direction of variation of the potential. It can be inferred
from both the cases how a topological number (i.e., Chern number) manifests and can be
probed experimentally by measuring an observable quantity, namely, the Hall conductance or
the quantized number of pumped particles. This connection between the topological invari-
ant and the presence of edge states is the most remarkable signature of topological systems,
also known as bulk edge correspondence (Hatsugai 1993a,b; M. S. Rudner et al. 2013). In
2005, Kane and Mele predicted another example of topological insulator in the 2D fermionic
system, but in the absence of magnetic field with strong spin-orbit couplings, known as the
quantum spin Hall effect (Bernevig, Hughes, et al. 2006; Bernevig and Zhang 2006; Fu et al.
2007; Kane et al. 2005; J. E. Moore et al. 2007; Roy 2009), which was later confirmed
experimentally (Hsieh et al. 2008; Konig et al. 2007; Roth et al. 2009). In contrast to the
QHE, where the magnetic field breaks time-reversal symmetry, the quantum spin Hall effect
restores it. Later, more other discoveries like 3D topological insulators showed the connec-
tion between the presence of topological insulators and symmetries. That posed a question:
how many distinct topological insulators do exist in nature? Altland and Zirnbauer took
a step in this direction in their seminal work (Altland et al. 1997; Kitaev 2009; Zirnbauer
1996), where they identified 10 symmetry classes responsible for giving non-trivial topolog-
ical insulators depending on the dimension of the system. This classification contains SSH
model (Su et al. 1980a) in 1D, QHE and quantum spin Hall effect in 2D(Bernevig, Hughes,
et al. 2006; Bernevig and Zhang 2006; Kane et al. 2005; Klitzing et al. 1980; Thouless et al.



1982), and 3D topological insulators (M. Zahid Hasan et al. 2011; Joel E. Moore 2013), just
to say few.

The search for distinct topological phases motivates us to look beyond the static regime.
To go beyond the Thouless pump, where time varies adiabatically, one needs to consider
general time dependence (e.g. diabatic). The next right candidate (or regime) became
apparent to be periodically driven systems. Remarkably, there exist many domains to sim-
ulate the topological behavior in this regime. For example, in artificial systems, a periodic
discrete-time quantum walks in 1D (Asbéth 2012; Kitagawa, M. S. Rudner, et al. 2010); in
optical lattices, where atoms are trapped by lasers to simulate a solid-state system, it gives
more flexibility and controllability', which facilitated the first experimental implementation
of the Haldane model by circular modulation of each lattice position (Jotzu et al. 2014).
The same setup of optical lattices allowed to theoretically propose to observe the fractional
quantum Hall state of atoms by combining periodically time-varying quadrupolar potential
(V(t) = V,psinwt) and modulation of tunneling in time (by varying the laser intensity)
(Sgrensen et al. 2005). There are several other techniques to drive the system periodically,
e.g. by injecting an electromagnetic wave to a quantum system. That in turn can induce
topology to the system, which otherwise is absent. If this electromagnetic wave is circularly
polarized, then it can gap the Dirac cone in graphene, it gives rise to photoinduced (changing
the laser intensity with time) dc Hall current (Oka et al. 2009), this photoinducing can tune
a conventional insulator into a quantum spin Hall system (Inoue et al. 2010). There are sev-
eral other studies that have shown the richness of this regime, more specifically on irradiated
graphene Ref (Calvo et al. 2011; Delplace, A. Goémez-Ledn, et al. 2013; A. Gémez-Ledn et al.
2014; Sie et al. 2015). In the case of quantum systems, it was predicted that by irradiating a
semiconductor well can give rise to a non-equilibrium phase, known as “Floquet topological
insulator” (Netanel H Lindner et al. 2011), which was later confirmed experimentally (Mah-
mood et al. 2016; Mclver et al. 2020; Y. H. Wang et al. 2013). An early review article can
be found in Ref (Cayssol et al. 2013).

Topological phases are not only restricted to solid-state systems but other systems. The
reason being the topological properties are captured by topological invariant, e.g., Chern
number emerges from single-particle formalism, and another vital element comes from the
underlying wave nature, e.g., electron waves in quantum systems. These two ingredients
together rendered to look for non-trivial phases beyond the quantum domain. It is ascer-
tained in numerous classical systems. In particular in the photonics, Raghu and Haldane
(Haldane et al. 2008; Raghu et al. 2008) theoretically proposed to implement the QHE in
photonics. That was later observed in photonics in a 2D photonic crystal (Zheng Wang et al.
2009), quite recently, the Haldane model has experimentally been observed in coupled ring
resonators (Mittal et al. 2019). In the case of periodically driven systems using photonics
waveguide arrays, it leads to the observation of first of its kind “photonic Floquet topological
insulator” (Rechtsman et al. 2013). The examples also emerged in other classical systems,
e.g., in acoustic waves (Fleury et al. 2016), geophysical or astrophysical flows (Delplace,
Marston, et al. 2017; Perrot et al. 2019), active matter (Shankar et al. 2017; Souslov, Das-

L As one can generate different lattice geometries by changing the angles, wavelengths and polarizations
of laser beams



biswas, et al. 2019; Souslov, Zuiden, et al. 2017), just to say few. Surprisingly, as driving can
induce novel topology, introducing a disorder to otherwise a clean system can also induce a
non-trivial topology. For example, topological Anderson insulator was predicted in a static
case (Groth et al. 2009; Guo et al. 2010; J. Li et al. 2009; C. Liu et al. 2017) and later also
shown to be present in the periodically driven systems, known as Floquet Anderson insulator
(Titum, Berg, et al. 2016; Titum, Netanel H. Lindner, et al. 2015). Despite the disorder,
the topology manifests with the presence of enhanced transport at the edges, which was
confirmed in the photonics experiment by the observation of photonic topological Anderson
insulator (Stiitzer et al. 2018). In parallel, this promised to extend the domain of topology
from regular crystalline structure to the amorphous solid, since topological edge states are
protected against weak disorder. These symmetry protected edge states still exist up to some
lattice density with random lattice points (Agarwala et al. 2017; Costa et al. 2019). Very
recently, photonic topological edge states in the amorphous regime have been experimentally
observed(P. Zhou et al. 2020).

Nevertheless, the topology is not restricted only to systems with gapped spectra, where
all the above examples fall. It also extends to the gapless regime. This lead to the search to
look for topological properties of waves inside the crystals beyond conventional topological
insulators (M. Z. Hasan et al. 2010; Xiao et al. 2010). They can be semimetals and even
metals (Armitage et al. 2018; Bahari et al. 2019; Burkov 2016; Kumar et al. 2019; S. Sun
et al. 2020; Y. B. Yang et al. 2019; Ying et al. 2018, 2019; Z. Zhu, Winkler, et al. 2016).
These topological gapless materials, unlike insulators, do not possess any well-defined gap,
and in literature, all of these come under the same umbrella of topological metals (Armitage
et al. 2018).

Topological gapless material classification according to various features (S. Li et
al. 2020):

e Firstly, it can be based on the dimensionality of the band crossings near the Fermi
energy, as shown in Fig. 1.1.

— For example, for a 3D material, the band crossing can namely be nodal-point
(0D) (Burkov et al. 2011; Koshino et al. 2016), nodal-line (1D) (Fang, Weng,
et al. 2016; Koshino et al. 2016), and nodal-surface (2D) (Wu, Y. Liu, et al. 2018)
topological metals.
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(b)

Figure 1.1: Classification on the basis of dimension of band crossing for (a) a nodal point
and (b) Nodal line. From Koshino et al. 2016.

e Secondly, based on the degree of the degeneracy of the band crossings, as sketched in
Fig.1.2.

7\
A

S

(b)

Figure 1.2: Classification on the basis of degree of band crossing for (a) a Dirac semimetal
with four fold degeneracy and (b) a Weyl semimetal with two fold degeneracy

— For instance, in 3D, breaking inversion and time-reversal symmetry leads to Weyl
semimetals cited as two-fold degenerate nodal points topological metals (Mu-
rakami 2007; Murakami et al. 2007; Wan et al. 2011). In contrast, Dirac semimet-
als keep these symmetries intact and are referred to as topological metals with
four fold degenerate nodal points (Zhijun Wang, Y. Sun, et al. 2012; Zhijun Wang,
Weng, et al. 2013; Young et al. 2012).

e Thirdly, the nature of dispersion around the band touching, as sketched in Fig.1.3.

11



Figure 1.3: Classification on the basis of dispersion around the band crossing for (a) a linear
and (b) a quadratic

— For instance, the presence of a linear, quadratic or cubic dispersion as leading
order terms in the Hamiltonian around nodal points or lines (Fang, Gilbert, et al.
2012; X.-P. Li et al. 2019; Wu, Yu, et al. 2019; B.-J. Yang et al. 2014; Yu et al.
2019; Z. Zhu, Y. Liu, et al. 2018)?.

e Fourthly, still based on dispersion but also taking into account the sign of the slope
of the band crossings, however, specific to linear band crossings (S. Li et al. 2020), as
sketched in Fig. 1.4.

Figure 1.4: Weyl semimetal of (a) type I and (b) type II. From Ref(Soluyanov et al. 2015).

— For example, Weyl semimetals of type-I contain a nodal point at the band crossing,
while Weyl semimetals of type-I1 is tilted with respect to the energy (vertical) axis
that have the same sign for the slopes of the two bands, as sketched in Fig. 1.4.
However, both of them share the same topological properties, since both lacks any
symmetries. The only difference is in their physical properties like conduction,

2A 3D crystal with only symmetry of n fold rotation symmetry about z axis, for n = 2,3,4,6, on
expanding around the band touching will give rise to a Hamiltonian whose leading order term is (quadratic)
o (ak? + bk?)oy, where k/os = 0, + io, (Fang, Gilbert, et al. 2012)

12



originating from the difference in their Fermi surface. For types-I, it is a Fermi
point, and for types-II, there are Fermi pockets(Soluyanov et al. 2015).

e Lastly, based on the topology. When there is an indirect gap, they can be classified
according to the global topology of their spectrally isolated bands over the Brillouin
zone Fig. 3.7°(Palumbo et al. 2015; Ying et al. 2018, 2019). When there are no gaps
(direct or indirect), they can be characterized locally by the robustness of their nodal
points or lines, that is somehow analogous to topological defects in reciprocal space.

— For example, in Weyl semimetals, the degeneracy (or nodal point) is completely
robust against any Hermitian disorder. These nodal points are monopoles of Berry
curvature, and their robustness can be quantified by defining a Berry flux piercing
through a closed surface in momentum space enclosing them (G. E. Volovik 2009).
However, if there is a well-defined gap (direct or indirect) topology can be defined
using standard tools, where the topology is captured by the full Hamiltonian®.

3Since, by restoring inversion symmetry one can define a meaningful topological invariant—in other words,
continuously deforming the bands without crossing the transition point.

4The full Hamiltonian refers that it is not approximated like in Weyl semimetal, where it is linearized
around the band touching.

13
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1.2 Outline

The Fig. 1.5 shows a heuristic topological classification. If we follow it then, firstly, the system
can be classified based on Hamiltonian time dependence, if there is no time dependence we fall
in stationary regime, whereas if the Hamiltonian is periodic under time H(t +T) = H(t),
then it falls in Floquet class. Then these classes can be further divided based on their
spectrum, i.e., if the system posses any gaps, then it can host a topological edge state.
In the case of the Floquet system, the gapped phase can be further subdivided into two,
where topology in one case is quite similar to the static systems, and it is determined by the
effective Hamiltonian. The other class has no analog in the static regime, and it is specific
to the Floquet systems (M. S. Rudner et al. 2013). There is also a similar relation between
symmetries and the dimension of the system in the Floquet system (Roy and Harper 2017),
like AZ classification. I will present in the second chapter how these (abstract) symmetries
(e.g. particle-hole) can be engineered in the photonic waveguide arrays, whose introduction
shall follow in the next section. The spectrum here still possesses a well-defined gap.

Now, if the system is gapless, which means there are bulk states at each energy. Then for

the stationary case, this can happen if the system initially has a well-defined gap, where the
two bands are well separated in energy, then by breaking some symmetry(s), for instance,
inversion symmetry, the spectrum can continuously deform into an indirect gap along with
the edge states. If we define a Fermi level in the gap when there was a direct gap, then in
the indirect case, the contribution at the Fermi level not only comes from the edge states but
also the bands. Surprisingly, the situation in the Floquet system is very interesting, where
both the quasimomenta axis and the (quasi-)energy axis are periodic. I shall present a situa-
tion in 2D in this regime of inversion symmetry breaking in chapter third, where the system
under consideration will show the fully gapless spectrum and wind in BZ. It may fall in the
fourth class of the gapless classification (of the previous section), where all the bands have
the same sign for the group velocity of the bands but with no counterpart in the stationary
regime. Moreover, this symmetry can be broken along a spatial dimension or some synthetic
dimension, the bulk spectrum does not seem to differ, but the topological properties manifest
differently. There are many platforms to realize this Floquet phenomenon like photonics,
acoustics, or ultracold atoms, I primarily stick to the photonics. Unlike in the electronic
systems where standard conductivity experiments can probe this indirect gap (Ying et al.
2018), I present in the same third chapter how in the photonics, these two different inversion
symmetry breaking cases, namely spatial and synthetic can be implemented and how their
manifestation can be probed.
Moreover, the gapless situation can also appear through the presence of robust degeneracies.
In the stationary case, the well-known examples are the 3D Weyl semimetals, whose topolo-
gies are captured by their degeneracies in momentum space. I will present a similar gapless
regime example in the 2D Floquet system, whose topology is captured similarly in chapter4.
I present two systems, where one breaks inversion symmetry to show the gapless phase and
another show gapless regime while preserving the inversion symmetry.
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1.3 Photonics

The photonics (Joannopoulos J. D. et al. 2008) has emerged as an eminent platform to
engineer and probe topological properties of waves. The topological properties like chiral edge
states, were first predicted and also observed in condensed matter systems, which then spread
to many domains, e.g., photonics (Haldane et al. 2008; Raghu et al. 2008), acoustics (Fleury
et al. 2016), metamaterials (Krishnamoorthy et al. 2012), circuits (Lee, Imhof, et al. 2017),
cold atoms (Cooper et al. 2019), and many more. We consider one such platform, namely
photonics, where similar topological properties were seen, e.g., unidirectional propagation of
light in photonic crystals (Rechtsman et al. 2013; Zheng Wang et al. 2009). Photonics is a vast
field in itself where periodic arrangements of dielectric materials can form a lattice and guide
the motion of photons, and these dielectrics are analogous to atoms in a lattice. These lattices
can host topological edge states ranging from dielectric metamaterial (Khanikaev, Hossein
Mousavi, et al. 2013), microwave cavities (Hu et al. 2015a), dielectric resonators (Bellec,
Ulrich Kuhl, et al. 2013; U. Kuhl et al. 2010),coupled-ring optical resonators (CROW) (F.
Gao et al. 2016; Hafezi et al. 2011), evanescently coupled waveguide arrays (Rechtsman et
al. 2013; Szameit and Stefan Nolte 2010), circular fibers (Wimmer, Mohammed-Ali Miri,
et al. 2015; Wimmer, Hannah M Price, et al. 2017), photonic quantum walk (Kitagawa,
Matthew A Broome, et al. 2012), just to say few. The biggest plus point of the photonics
is that it is classical, besides the photonic quantum walk. For this reason, phenomenon
like nonhermiticity (Feng et al. 2017; El-Ganainy et al. 2018a; Zhao et al. 2018), where the
parity and time-reversal symmetry is broken, can be engineered and it has been linked to
novel applications like topological lasers (Bandres et al. 2018; Shao et al. 2020; Zeng et al.
2020).

I shall give a brief overview of the the three setups, namely evanescently coupled waveg-
uide arrays, circular fibers, and photonic quantum walk, mainly because of their proximity
to my projects. In these three setups, evanescently coupled waveguide arrays, and circular
fibers form the underlying lattice where the electromagnetic waves propagate analogous to
the electronic waves in a crystal. Similarly, in the photonic quantum walk, the photons
propagate.

Specifically, we discuss the planar waveguide, where the boundary conditions give rise
to the mode expansion, which in turn predicts the mode allowed for propagation. Keeping
this as a background, we go to the next stage, where the array of such waveguides can be
evanescently coupled through the modes. I will present two cases: (i) between the incom-
ing and outgoing waves within the same waveguide, and (ii) between different but nearby
waveguides. As we will see, this latter case would be analogous to the tight-binding model
of electrons.

1.4 Waveguide: optical fiber

We start with the very basics of the planar waveguides. The most fundamental building
block of any photonics waveguide network is a waveguide. It consists of a core, where mostly
the light is confined, and it is surrounded by a cladding, as shown in Fig 1.6. More details
of this section can be found in (Okamoto 2006) and (Amnon Yariv 1991).
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If a light is injected at an incident angle 6 to the normal to the boundary, using Snell’s law
for an angle of refraction ¢, the critical condition for the total internal reflection is

6 < sin"'y/n? —n2 = O, (1.1)
Omax = y/nT —nd, (1.2)
Qbmax ~ emax/nl' (13)

Usually, the refractive index difference between core and cladding is of the order of 10~2 this
allows us to write the equation(1.2) for the maximum acceptance angle of the waveguide.
Thus, the maximum angle for the propagation of light inside the core is ¢nay, given by
equation(1.3).

X
Ny
X=da
7 Core n,
r=0 nl
0
X =—da
Cladding n
9 n N,

57

Figure 1.6: Basic geometry of an optical fiber with refractive index higher in the core (n4)
than in the cladding (ng)

Even though the angle ¢ is chosen smaller than ¢,..,, the light rays with an arbitrary
angle ¢ can not propagate inside the waveguide. Only some specific values of ¢’s are allowed,
for instance ¢ < ¢nax, where each different values of angle ¢ corresponds to a specific
(propagating) mode. These modes are analogous to the allowed energy levels in quantum
mechanics, e.g., particle in a box. We will not go into much details on the modes as they
can easily be found in the standard textbook.

There are different types of structures (or geometry) for waveguides, as shown in Fig 1.7,
mostly depending on—

(1) the operating frequency bandwidth, for example, in the case of coaxial cable is below
3GHz,

(2) the amount of power to be transferred from one point in space to another, which in the
coaxial cable is of the order of 1 kilowatt at 100 MHz (it decreases to 200 watt at 2GHz due
to heating losses), and

(3) the amount of tolerable transmission losses. The coaxial cable has 3 decibels per 100 m
at 100MHz, which increases to 10 decibels per 100 m at 1 GHz (which means more loss), for
more details see Orfanidis 2016.
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Figure 1.7: Optical waveguides of different geometries, from Orfanidis 2016

1.5 Propagation along a waveguide: Paraxial approxi-
mation

Another essential aspect besides the allowed mode of light propagation inside an optical
fiber is the confinement of a light beam along the propagation axis. If the light beam is
propagating along z direction (axis of the waveguide) such that the variations along the
transverse plane (comprised of x and y) in comparison to z are very small, for example, in
the case of a laser beam. Then this corresponds to a wavevector component along the z
direction to be greater than those in the x and y directions, kg ~ k., > k,,, this is referred
to as the parazial approximation.

Maxwell’s wave equation governs the propagation of an electromagnetic wave in a source
free, non-magnetic material with spatially dependent dielectric constant e(r):

v(v-E(r,t))—v2E(r,t) - —g(r)%E(r,t),

—V(M>—V2E(r) - —e(r)(ﬂ)QE(r) (1.4)

e(r) c

where electric field E(r,t) = E(r)e™!, w is the frequency of light, and ¢ is the speed of light
in vacuum.

If the e(r) = ¢ + de(r) does not vary from its surrounding value gy = n2, we can neglect
spatially varying term in eq.(1.4), that gives us

W

VE(r) — s(r)(—>2E(r). (1.5)

C

Let us apply the paraxial approximation to equation(1.5), where the electric field can be
decomposed into two parts: one that is the axially slowly varying envelope term &(z,y, 2)
and another one that is the rapidly varying term e**00% where ny is the refractive index of
the cladding (or surrounding):

E(z,y,2) = E(x,y,z)e™om, (1.6)
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By substituting this eq(1.6) in eq(1.5), it gives us

V2E —niE = 0 (1.7)
0?E o€
Vi€ + — ooz T 2ikono - +ki(n? —nd)E = 0. (1.8)
The envelope term varies very slowly along z, i.e., | 2% 822 fl< | , this simplifies the equation
to
V2E + 2@1{:07108 +ki(n?—ndE = 0 (1.9)
where spatial transverse Laplacian is given by
0? 82
Vi = Ox? ay
Also, assuming the weakly guiding conditions’, we can approximate (n? —n2) = 2ng(n;—ng)°.
o€ 1
Z]{;O py = — ( Ok'2ng + (n1 - TL[))((:) (]_]_0)
'7\85( ) >—\2V + An | &( ) (1.11)
IN—E(v,y,2) = n T :
82 'Y, 277/0 T ' Y,

where X = 1/ko and An = n; —ny is the change in the refractive index from the bulk (ng) to
the propagating medium (n;), this equation(1.11) is known as parazial Helmholtz equation.
It is very similar in form to the Schrodinger’s equation,

G, R _,
Zha\lf(x,y,z,t) - (_%v +V(I,y72,t)) \Il($7yaz7t) (112)

A correspondence between Schrodinger’s equation and paraxial Helmholtz’s equation can
be made, where

Schrodinger’s equation | paraxial Helmholtz’s equation
time ¢ propagation axis z
mass m bulk refractive index ng
Planck’s constant A reduced wavelength X
Potential V' refractive index change An

Instead of wave packet evolution in time governed by Schrédinger’s equation(1.12), we
have a wave packet (electric field envelope) evolving along the propagation axis (z) (1.11).
That facilitates monitoring the light propagation by direct observation in space, and as a
result, preventing the problem of resolution of short time scales, which may arise in the
case of electron. Another significant advantage, the experiments can be carried out at room

Sweakly guiding refers to when the difference between the refractive indexes of the core(or film) and the
cladding is very small.

6(n? —nd) = (n1 + no)(n1 — ng) = 2no(n1 — ng), n1 =~ ng
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temperature, unlike in solid-states, where thermal energy contribution is significant at room
temperature and can thus be a downside. Besides, there is one dissimilarity between both
equations, electrons are more localized at a lower potential since it minimizes their total
energy. In contrast, there is a negative sign in front of An, meaning that an electromagnetic
wave is more localized when the medium has a higher refractive index than the surrounding
environment, this guides the motion of electromagnetic waves inside the waveguide.

1.6 Coupling between guided modes

In quantum mechanics, if the potential has spatial periodicity V(r 4+ a) = V (r), it provides
an underlying lattice structure. Similarly, the correspondence between quantum mechanics
and paraxial Helmholtz’s equation also extends in this direction, where the waveguides spa-
tial periodicity (An(r + a) = An(r)) is analogous to atoms in a conventional lattice. It is
captured by coupled mode theory, where more detailed information can be found in books
of Okamoto (Okamoto 2006) and Yariv (Amnon Yariv 1991). The present section is heavily
drawn from these two books.

Until now, we assumed propagation of light in a single waveguide. However, if there
is more than one waveguide adjacent to each other at a relatively close distance, then the
co-propagating or contra-propagating light beams can interact and can give rise to two sce-
narios. One is desirable, as in the case of directional couplers, where this results in the
coupling of modes, and the power is transferred from one waveguide to another. Another is
undesirable, where it can result in a phenomenon of interference of modes called crosstalk.
I stick to the positive aspect of it that is the coupling of modes. In this section, I present
a brief sketch of this mutual interaction between two propagating modes, which falls under
the formalism of coupled-mode theory (A. Yariv 1973).

Let us consider a case of two waveguides (as shown in Fig 1.8), where each waveguide
supports its corresponding modes. If these two waveguides are far apart, then their modes do
not couple and can continue unperturbed. However, if they are close, where the distance is
such that the electromagnetic field distribution is significantly the same as in the former case,
then the coupled waveguides propagation features can be understood by the perturbation
method (Marcuse 1973). This is very analogous to the case of the hybridization of energy
levels in solid-state due to the presence of more number of atoms in close vicinity.

The eigenmodes in each (optical) waveguide before the coupling of mode satisfy Maxwell’s
equations for the electric field E; (where real field E; = Re[E;]) and magnetic field H; in the
form

VxE = —iwpH,  (I=11I)
VxH = iwen’E,. (1.13)
To write electromagnetic fields of the coupled waveguide (see Fig 1.8) we assume that it
can be written as the sum of eigenmodes of each waveguide-
E = A(2)E; + B(2)Ey,
H = A(z)I:II + B(z)I:IH (1.14)
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Figure 1.8: Directional coupling of two waveguides

In quantum mechanics, the above equation can be thought of as expressing a (perturbed)
state vector in terms of eigenstates.

The full electromagnetic fields of coupled waveguide E and H satisfy similar to equa-
tion(1.13)

V x E = —iwpH
V x H = —iweon’*H (1.15)

where n? gives the total refractive index distribution in the full coupled waveguide.

By substituting eq.(1.14) in eq.(1.15), we obtain following relation for the amplitudes’,

.~ dA .~ dB
(Z X E])@ + (Z X E[])E = O, (]_].6)

. o~ dA .~ dB dB | -~ . =
(2 x HI)E + (2 x HH)E — dweg(n? — n%)EAE[ —iweg(n® —n3,)BE;; = 0.(1.17)

We can decompose the eigenmodes of each waveguide E; and H; in axial and transverse
component as,

E = &
I:Il = ?—Zlewlz (118)

By substituting above eq.(1.18) in eq.(1.16), we obtain the simplified coupled equation for
the amplitudes variation along propagation axis as

dA dB _, ,
PPl CI,IId_eH(BQ_ﬁl)Z —ixrA — iy Bet R0 =,
z z
dB dA _, 4
ot cfz,fd—e*l(ﬁfﬁﬂz —ix B — ik Ae” iRz — (1.19)
z z

dA
"where we are using the identity V x (AE) = VAX E+ AV x E = q (2xE;)+ AV X E

z
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where coeflicients are

1 o0 Lo
Kim = ﬁlwfo/ dr(n®* —n2 )& - Em, (1.20)
]_ > - — — —
Clm = —/ dr<8,* X Hopp + Em X Hi) . (I,m)e{l,I1} (1.21)
Nl —00 z
1 oo L o
= e / dr(n? — n2)E* . & (1.22)

with normalization N; = ffooo dr ((5_';* X 7-21 + 5[ X 7—22‘) 8 where integration domain is r =
{z,y}. Here, Ky, refers to mode coupling coefficient of the directional coupling analogous to

tunnelling coefficient in tight binding formalism and it depends on the overlap of evanescent
waves of [,m. Let us consider Fig. 1.9, where waveguide [ exist for z < 0 and waveguide 11
exist for z > 0. When the light beam is incident on waveguide I, E; then at z = 0 it excites
the eigenmode of the waveguide 11, E;;, this coupling or excitation efficiency is captured in
c1,m also known as the butt coupling coefficient. x; denotes the amount of contribution coming
to A from B, and vice versa’, this can be seen as an analogue of an onsite potential term in
quantum mechanics. In most of the cases, ¢;,, and x; are neglected as their contribution is
far less than that of ;,,. However, they may be important for the full treatment of mode
coupling effects.

Ty

Waveguide 1

Waveguide 11

Eu
Figure 1.9: Butt coupling coefficient

We keep ¢, = x; = 0, unless otherwise specified. This greatly simplifies the equa-
tion(1.19) which can easily be generalised to more than two waveguides as

8Here 2"

component arise because when we substitute eq(1.14) in corresponding equation for electro-
magnetic fields eq(1.13). Then V x (A(2)€) = A(2)V x € + VA(2) x £ = A(2)V x € + (dA/dz) n. xE.

9Since, x; is only non-zero inside the core of waveguide I1 (where n = nj;), vice-versa.

22



dA,,
dz

= iRy Ay € P’ 2 (1.23)

where A,, is the amplitude in the m*"* waveguide with nearest neighbours m’. Just as a note
there is an another way establishing the coupling of modes due to waveguide imperfections,
a very brief sketch can be found in the appendix(5.1).

1.7 From coupled waveguide array to other photonics
platforms

1.7.1 Experimental platform 1: Waveguide arrays

The two essential ingredients, namely, paraxial Helmholtz’s equation and coupled-mode the-
ory, enable us to explore the realm of solid-state phenomena governed by quantum mechanics
in the classical domain of evanescently coupled optical waveguide array. These arrays were
first proposed theoretically by Jones in 1965 (Jones 1965). Later, they were first engineered
experimentally in 1973 on a GaAs substrate by Yariv’s group (Somekh et al. 1973).

In the beginning, the idea was to map solid-state phenomena like Bloch oscillations to
coupled waveguide networks, and later they seem to possess features only specific to these
arrays. For example, due to underlying discrete structure!’, these coupled waveguide arrays
display properties very different from the continuous and homogeneous media. When light
undergoes diffraction in air (continuous medium) it has normal behaviour of spreading as
shown in Fig 1.10(a), while in the discrete case of i.e., evanescently coupled waveguide arrays
in Fig 1.10(c) light undergoes discrete diffraction as shown in Fig 1.10(b) (Eisenberg et al.
2000; T. Pertsch, Zentgraf, et al. 2002; Szameit, Dreisow, and Stefan Nolte 2012; Szameit
and Stefan Nolte 2010).

Along with the analogies with quantum mechanics, in the 90s, Carl Zener (Zener et al.
1934)predicted an unintuitive phenomenon that when electrons in a lattice are in the presence
of an electric field, they undergo oscillations, also known as Bloch oscillations. Intuitively, a
charged particle should experience the Lorentz force that accelerates it instead of oscillating.
In optical waveguides, this can be imposed by a transverse potential gradient whose role
is played by a refractive index here. This potential gradient can be attained by linearly
increasing the refractive index of the individual waveguides, which gives rise to optical Bloch
oscillation, they were observed in 1D (Morandotti et al. 1999; T. Pertsch, Dannberg, et al.
1999), and in 2D (Trompeter et al. 2006). However, there is a clever way to implement
this gradient, and it is by curving the waveguides as proposed in 1999 for 1D (Lenz et al.
1999) and observed in 1D erbium-doped curved waveguide arrays (Chiodo et al. 2006). The
relation between curving and the transverse potential becomes evident by going into the
frame of reference of curved coordinates of the waveguide, where there is an extra term in
equation(1.11), acting as a transverse force responsible for optical Bloch oscillations.

10This causes the anisotropy in the medium and giving rise to anomalous refraction
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Figure 1.10: Diffraction of a light beam in a (a) continuous medium, (b) waveguide array with
periodically varying refractive index along the transverse axis. Where array of waveguides
is shown in (c). Fig. is from (Szameit and Stefan Nolte 2010)
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Figure 1.11: fs-laser writing of waveguide arrays in fused silica. (a) The intense fs-laser
breaks the silica ring into small rings, which leads to densification or an increase in the
refractive index in that region, and this is done by shining (b) a fs-laser along with a lens to
focus on a particular region of interest. This supports a mode at wavelength A = 633 nm,
Fig. is from (Szameit and Stefan Nolte 2010)

Moreover, the experimental implementation of waveguide arrays mostly began with Al-
GaAs semiconductors (Morandotti et al. 1999; T. Pertsch, Dannberg, et al. 1999; Somekh et
al. 1973). The major technical breakthrough came after the first femtosecond laser-written
waveguides in the Nolte group (S. Nolte et al. 2003; Szameit, Dreisow, and Stefan Nolte
2012; Szameit and Stefan Nolte 2010). These waveguides are written in fused silica by in-
jecting a femtosecond laser (fs-laser) pulses, as shown in Fig 1.11(b). This changes the local
refractive index of the material and increasing the refractive index (see Fig 1.11(a)). Dif-
ferent refractive index can be engineered by controlling the writing speed of the fs-laser on
the sample, as sketched in Fig. 1.12(b). This approach versatility has helped in developing
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waveguide arrays (consisting of a bunch of waveguides inside the silica medium) in 2D and
3D (Szameit, Dreisow, and Stefan Nolte 2012; Szameit and Stefan Nolte 2010). In this array
geometry, the distance between the waveguides [,, depends on the desired coupling x'' and
the incident light wavelength A, this is sketched in Fig. 1.12(a,c).
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Figure 1.12: (a) Desired coupling between the two waveguides can depend on the waveg-
uide separation length /,, and incident light wavelength A, figure is from (Szameit, Dreisow,
Thomas Pertsch, et al. 2007), by controlling (b) the writing speed of the laser on the silica
(see Fig.1.11(b)) desired refractive index for the waveguide can be obtained, figure is from
(Blémer et al. 2006). (c) A two waveguides setup stressed with number I for red and 17 for
blue. The waveguides are monomodes, (i.e. allowing only single mode).

For example, for A = 800nm, it corresponds to a transverse waveguide spacing in the
range 14 — 30pum. The propagation length of the sample is around 7 — 10 cm, with a width
of around 100 pm. Then the evolution of the light beam can be detected by the fluorescence
spectroscopy technique.

Time dependent Hamiltonian realization

The resemblance of the waveguide propagation axis (or z—axis) with the time axis allows to
engineer systems that are described by time-dependent Hamiltonian (see eq.(1.11)).

HSometimes, if the waveguides are not straight but bent then the coupling also depends on the relative
angle between them.
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Let us consider a simple example of only two waveguides, as shown in red and blue color
in Fig. 1.12, where the amplitude and the propagation vector in the first waveguide (in red)
is A and (7, and in the second waveguide (in blue) is B and fj;, respectively. For simplicity,
we can consider the propagation wavenumber 8; = f;;'?. The coupling between the two
waveguides is k = Ky ;1 = K1 (see eq.(1.20)). Then the evolution of amplitudes along the
propagation axis z can be described in this array by using coupled-mode theory equations

(see eq.(1.23)) as,
- (48)-C D)

where A(z) = dA(z)/dz. The coupling matrix K form in A(z) = KA(z) coincides with the
form of tight-binding Hamiltonian, in the basis of waveguides and in units of [L™!] instead
that of an energy.

Then the solution of these coupled equations can easily be found by differentiating one of
the equation and substituting it from another, which gives

d*A(2) 2
d22 = —K A(Z),
A(z) = Agcoskz. (1.25)

The similar equation follows for the amplitude B(z), where in eq.(1.25), we have chosen an
initial condition. We incident a light beam only in the first waveguide (in red) of amplitude
Ay, this translates to say that A(z = 0) = Ag and B(z = 0) = 0. Then after a propagation
length of z = I, = 2(p + 1)7/2k, for some p € Z, all the light beam is transferred to
the second waveguide (in blue), this is known as coupling length. It shows along with the
eq.(1.25) that the light beam keeps oscillating from one waveguide to another. If the number
of waveguides is increased in the array, this leads to a cascading process, where light beam
from m' waveguide is transferred to (m — 1) and (m+ 1) after some propagation length,
this results into a discrete diffraction Fig. 1.10(a).

Additionally, here the experimentally measurable quantities are output intensities, [, =
|A(2)|%, Is = |B(2)/?, they in turn can determine the coupling constant between the waveg-
uides

1 I
= —arct — 1.26
K ~ arctan T, (1.26)

12This means the identical modes are allowed in both the waveguides. In other words, two copies of same
waveguide. By choosing a different geometry for waveguide I with respect to II can give 57 # Brr, we are
not interested in those cases for the time being. Besides, the amplitudes can still be chosen different by
initial condition.
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Figure 1.13: A waveguide array containing two waveguides with periodic modulation of
period Z along z (time) axis.

In the last case, we consider a z-independent coupling between the waveguide, i.e., k(z) =
k. However, if the k(z) depends on z then it mimics a time-dependent Hamiltonian system

(see eq.(1.24)). For two waveguides, with z (or time) dependent coupling the evolution of
amplitudes can be written as

(- () ()

Above eq.(1.27) can easily be generalized along four directions.

e First, if we consider a waveguide array where these two waveguides as a unitcell form a
lattice along transverse axis (x), then the coupling matrix can be Bloch diagonalized.
Then the coupling matrix K transforms into-

o (ol ", am

where a, is the lattice constant and k, is the Bloch quasimomentum (or Fourier con-
jugate variable of z).

e Second, the size of this Bloch diagonalized coupling matrix encodes the information
of the degree of freedom in the lattice. Hence this can be extended to any number of
waveguides.
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e Third, the periodicity of the waveguide array along the z (or time) axis, as sketched
in Fig. 1.13, mimics the dynamics of periodically time dependent Hamiltonian (see
eq.(1.11)), we discuss them in chapter(2). This is encoded in the couplings, where they
are periodic in z with period Z, K(z 4+ Z) = K(z2).

e Lastly, the dimension of the system can be extended from 1D to 2D, by exploiting also
the y-axis and stacking the waveguides along that direction (see Fig. 1.12). Then the
refractive index is periodic along both axes x and y, i.e., An(z+a,,y+a,) = An(z,y).
This redefines the above coupling matrix K eq.(1.28), with couplings x; in = and ks in
y plane as

ikray 1Ky ay
0 r1(z)e + ka(2)e > ' (1.29)

IC = (K1<z)eik1az + KQ(Z)efikyay 0

This platform will be heavily discussed at the end of the chapter(2), where we will address
the first three points in detail.

The governing equation for the evolution of light inside the waveguides has only two
special dimensions (see eq(1.11)), this restricts us to go beyond 2D. However, relaxing the
condition of monochromaticity can allow us to use temporal direction as another coordinate
(x,y,t). This is reflected by adding the time-dependent term in eq(1.11), where this term
additional term corresponds to the kinetic energy of slowly varying envelope term coming
from ¢t (Ozawa, Hannah M. Price, Amo, et al. 2019),

XQ 1 82

Y, 9
_ . —= — _— A _— N 1.
z?\azf(z, y,t;2) (Qno V7 + An+ S 8t2) E(x,y,t; 2) (1.30)

where m; = —(d*k(w)/dw?)/ng with k(w) = n(w)w/c is proportional to the group velocity
in a frequency dependent refractive index medium. Moreover, the dimension can also be
extended by employing synthetic gauge fields (Ke et al. 2016; Zilberberg et al. 2018) or the
different waveguide modes (Lustig et al. 2019) in the system, whose more detailed review
and analysis will be presented in chapter(3).

1.7.2 Experimental platform 2:Optical mesh lattices

There is another equivalent platform in classical photonics to engineer a periodically time-
dependent dynamics of a quantum Hamiltonian, where the time dependence of coupling pa-
rameters is encoded in terms of time-dependent scattering matrices. These time-dependent
matrices are identical to the one that appears also at the coupling region between the waveg-
uides in the waveguide arrays (see Fig. 1.13). This platform was developed in Ulf Peschel
group in Jena (Regensburger, Bersch, Hinrichs, et al. 2011; Wimmer, Mohammed-Ali Miri,
et al. 2015; Wimmer, Hannah M Price, et al. 2017; Wimmer, Regensburger, et al. 2013).
Let us describe this second platform, which consists in two spatially separated circular
optical fibers, as shown in Fig. 1.14. They only differ in their length, where the loop v (on
the left) of length L + AL is longer than the loop u (on the right) of length L by an amount
AL. The two optical fibers are coupled by a standard coupler or known as a beam-splitter,
shown with a black-gray box, in Fig. 1.14. It contains two inputs and two outputs, and it

28



decides the division of light intensity (or amplitude) going to each of the two outputs. For
example, if it is a 50:50 beam splitter, then any input, it splits light amplitude into half for

N\
v E u
. AN

L+ AL L

Figure 1.14: A pair of circular fibers (or waveguides) coupled through a coupler shown in
black. The dimensions are L ~ 5km and AL = 8m.

The process starts by injecting a pulse of light, much shorter than the loops, of amplitude
A in one of the optical fiber, say the loop v. Then the beam travels inside the large loop before
it encounters a beam-splitter, which splits the light amplitude into two parts. Considering
a 50:50 splitting for simplicity. This means a light amplitude splits into two halves, of
amplitude A/2 entering in each of the optical fibers. This is the only region where transverse
coupling between the two fibers takes place.

) 1 L

l [+2 time

j=1 j=2 j=3

Figure 1.15: Recording of time multiplexing of pulses in one of the loops. The pulses color
represent the respective loop they come from, where red correspond to loop v and blue to
loop wu.

Then owing to the length difference AL, the light beam lasts a shorter time T, in the
loop u than it does in loop v. In the longtime, this generates time-multiplexed pulses, where
pulses in shorter loops advance by AL/cgper, Where caper is the speed of light inside the fiber,
in comparison to the longer one, where they are delayed by the same amount in comparison
to the shorter one, as shown in Fig. 1.15. There are two time scales here, one is the shorter
time [ = T, — T\, = AL/cgper and the other one is the longer time j = T, + T,,. The shorter
time differentiates between the two loops, where it decides the temporal position [ depending
on the pulse origination if it comes from shorter (1) or longer (I + 2) loop, while the longer
time scale counts the total round trips j, i.e., one round through the longer (shorter) loop
and one round through the shorter (longer) loop. In the long run, this effectively generates
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an optical mesh lattice, where [ is encoded in the transverse axis, and j in the propagation
axis, as shown in Fig. 1.16. It can be seen after j rounds in this optical mesh lattice that the

transverse axis

J
2 j+1
©
C
k)
© .
o j+2
Q
o
o}
j+3
j+4

[-3 [-2 -1 [ [+ 1 [+2 I1+3
Figure 1.16: Optical mesh lattice generated by two time scales, where the shorter time scale
is encoded along the transverse axis (z) and the longer time scale along the propagation axis

(y)-

pulse coming from loop u is advanced in time with respect to that of loop v. Thus it goes to
the left (shown with a link in blue in Fig. 1.16) designated by the temporal position label [.
However, the pulse coming from loop v is delayed. Hence it goes to the right (shown with a
link in red in Fig. 1.16). The (scattering) node, where these two links meet the coupler (or
the beam splitter), is displayed by S,

S, = % C i) | (1.31)

Similarly to the waveguide case, the periodicity of the coupler (that stores the coupling infor-
mation between the two fibers) along the propagation axis, determines the time periodicity
of the lattice. In this simple case, where the scattering node is same along transverse and
propagation axis, i.e., satisfies S1(j + 2,1+ 2) = S1(j, 1), which defines a unitcell emphasized
with dotted black square in Fig. 1.16, where S;(j = time step, [ = position).

In a more general case, the scattering node can change along both axes, while maintaining
periodicity along each axes. Likewise before, this formalism can be extended.
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o All the distinct nodes denoted by S ; along the transverse axis, i.e., Sy ; for [ # I, is
Si; # Sy j, this decide the degrees of freedom in the system (Mohammad-Ali Miri et al.
2012; Regensburger, Bersch, Hinrichs, et al. 2011; Regensburger, Bersch, Mohammad-
Ali Miri, et al. 2012). For example, if there are n; distinct nodes then there are total
2n; links entering these nodes or 2n; degrees of freedom (i.e. Siton,; = Si;). This is
similar to have 2n; waveguides in the unitcell.

e Like in the waveguide arrays, the number of distinct nodes along the propagation
axis corresponds to the number of time steps similar to a quantum walk or in case of
waveguides array (see chapter(4)). For example, if there are n; steps, where n; € 2Z
then S 0,;, = Si;). The evenness of n; comes from the underlying evenness of the
number of circular fibers. In the waveguide arrays, this corresponds to a case where the
number of waveguides are even, and with half of the intracell couplings and another
half intercell.

e The dimension of the system can interestingly be increased by introducing a synthetic
gauge field(Mohammad-Ali Miri et al. 2012; Regensburger, Bersch, Hinrichs, et al.
2011; Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012; Wimmer, Mohammed-
Ali Miri, et al. 2015; Wimmer, Hannah M Price, et al. 2017). This can be achieved by
introducing a phase modulator in one of the circular fibers.

This platform will be discussed heavily along with the above points through the scattering
network (see Fig. 1.16) in the chapter(3) and (4).

1.7.3 Quantum walk setup: Experimental platform 3

Till now, we mostly discussed the realization of quantum Hamiltonians in classical systems.
However, there are a lot of platforms in the quantum regime For instance, in optical mesh
lattices of single photons (M. A. Broome et al. 2010; Kitagawa, Matthew A Broome, et al.
2012; Schreiber, Cassemiro, Poto ¢ek, Gabris, Jex, et al. 2011; Schreiber, Cassemiro, Poto
cek, Gabris, Mosley, et al. 2010) or entangled photons(Crespi et al. 2013; Sansoni et al.
2012), ion traps (Schmitz et al. 2009), and photonic waveguides array with single-photons
(Bromberg et al. 2009; Perets et al. 2008) or correlated photons (Matthews et al. 2013;
Peruzzo et al. 2010). We focus our attention very briefly on an optical mesh lattice incident
with a single photon or more comfortably known as a photonic quantum walk, as shown in
Fig. 1.17.
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Figure 1.17: Experimental setup of a photonic quantum walk. Here, the degrees of free-
dom are the two polarization states of photons, namely horizontal |H) and vertical |V).
This polarization in a single photon is encoded through SPDC. The photon undergoes a
polarization-dependent rotations R(f;—12), and translations 7j_;,. Image is taken from
Kitagawa, Matthew A Broome, et al. 2012.

A photon generates a quantum walk in a 1D lattice (see Fig. 1.17) (Kitagawa, Matthew
A Broome, et al. 2012). This is achieved by a polarized photon with horizontal |H) and
vertical |V) polarization states, which undergoes unitary transformations during discrete
time steps evolutions. In the first step, there is a polarization-dependent rotation R(6;) of
the single photon-induced via a suitable wave plate. Then there is a polarization-dependent
translation 7 (using a calcite beam displacer) where |H) is moved by one lattice to the
right. Subsequently, there is a second rotation R(6,), and at last another translation 75 of
|V} to the left. These four steps constitute one complete step of this quantum walk, which
is periodically reproduced. Here, the degree of freedom is decided by the two polarization
states of the photons. The information of the coupling similar to before is encoded in the
parameters ¢, . Moreover, the big advantage of this setup is that it can be more useful
to study features more dominant in the quantum regime, e.g., quantum entanglement or
quantum correlations. The properties

These three platforms are summarized below:
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Table 1.1: Comparison between the platforms

Waveguides array or
Optical mesh lattice

Photonic quantum walk

Ingredients

Classical electromagnetic wave

Photons

Entanglement

Amplifiers do not preserve quan-
tum coherence

In presence of more than one
photon (Crespi et al. 2013;
Matthews et al. 2013; Peruzzo
et al. 2010; Sansoni et al. 2012).

Non-Hermitian physics

This could be induced via losses
and gain with the help of refrac-
tive index (Feng et al. 2017; El-
Ganainy et al. 2018b; Zhao et al.
2018)

This is not possible, since the
underlying quantum mechanics
is Hermitian.

Detection

Fluorescence spectroscopy mea-
surement (Mayers et al. 2005;
Oki et al. 2002) or Inten-
sity measurement using photo-
diode (Mohammad-Ali Miri et
al. 2012; Regensburger, Bersch,
Hinrichs, et al. 2011; Regens-
burger, Bersch, Mohammad-
Ali Miri, et al. 2012; Wim-
mer, Mohammed-Ali Miri, et
al. 2015; Wimmer, Hannah M
Price, et al. 2017)

Probability distribution is im-
aged with a single- photon
avalanche detector (Kitagawa,
Matthew A Broome, et al. 2012)
or photon correlations are de-
tected using conditional mea-
surement (Crespi et al. 2013; Pe-
ruzzo et al. 2010; Rohde et al.
2011; Sansoni et al. 2012).

1.8 Topology as a tool for physicists

Here I give a heuristic introduction to topological tools required to capture the topological
properties in the gapless regime.

Topology is a branch of mathematics that is concerned with the properties of objects
which are invariant under continuous deformations, such as stretching or bending. As an
example, a hollow cylinder, a smooth solid sphere, or a rough surface potato are the same.
That means topology is insensitive to the local details, and a potato can be continuously
deformed into a solid smooth sphere, while it can not be deformed into a hollow cylinder,
which has a hole at the center. All the objects which can be continuously deformed into
each other are characterized by the same invariant that smoothens out the local details.
This invariant, or topological invariant, for instance, can be the number of holes in an
object, which is zero for the potato and 1 for the hollow cylinder. There is a well known
formula from differential geometry, where this invariant can be defined mathematically for
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a manifold M (in our example, it is a cylinder or a sphere) as —

1
x=— [ KdA (1.32)
2 Sy
where K is the total curvature or Gaussian curvature, and dA is the element of area of the
surface. This y in above equation is in turn related to the number of holes (or genus) by the
relation

X =2-—2g. (1.33)

This can be seen, for example, for a sphere, which has K = 1/R?  which means y = 2. So
the number holes in a sphere is ¢ = 0. Here, x is known as Euler characteristic. Then all
objects (or manifolds) that share the same genus can be continuously deformed into each
other, and they form an equivalence class. A sketch of objects with different genus is shown
in Fig. 1.18. The most remarkable thing about equation(1.32), which is also known as Gauss-
Bonnet theorem, is that it connects a geometrical aspect (e.g., curvature, a local aspect) of
a manifold to its topology (e.g., global aspects, like holes).

p—

(a) g=0 (b) g =1 () g=2
Figure 1.18: Manifolds with different genus (a) sphere, (b) doughnut and (c) double dough-
nut. Image is from Wikipedia/Genus(mathematics)

1.9 Homotopy

We can formalize our discussion of continuous deformation of objects to curves on a manifold.
As we shall see, this gives rise to other kinds of topological invariants. This section is heavily
drawn from the Nakahara (Nakahara 2003).

1.9.1 Continuous deformations of loops and maps

Let us consider two discs, as shown in Fig 1.19. One disc is a regular one, whereas the other
one has one hole inside. The difference between these discs become apparent by drawing a
loop (or a closed curve). In the second disc Y, any loops can be continuously shrunk to a
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point. In contrast, any loop in X can not be continuously shrunk to a point. For example,
loop 7;=345 experience an obstruction in the middle of the disc, prohibiting them from being
shrunk to a point. On shrinking the cylinder of the previous example, we obtain this disc.

Y
(b)
Figure 1.19: A disc (a) with a hole and (b) without a hole. Different loops are shown g;.

However, some loops can be shrunk to a point in X, for example v5. We say a loop
7; is homotopic to ~j, if v; can be obtained from ~; by a continuous deformation. For
example, any loop in Y is homotopic to a point, while this is not the case in X. Apparently,
a “is homotopic to” b is an equivalence relation between a and b, denoted as a ~ b. The
equivalence class of this equivalence relation is called the homotopy class (in which @ and b
falls together). In our example, there is only one homotopy class associated to Y. However,
in X, each distinct loops that encircle the hole ‘n’ times fall in a different homotopy class.
Moreover, the winding of loop has an orientation; if it winds clockwise n < 0, n > 0 if
counter-clockwise, n = 0 if there is no winding around the hole. This homotopy class is

characterized by n € Z.

¥2(s)
k.
3
o
t do H(s, 1) do Z-g_
°Q
g‘.
=
w'.
y1(s)
S

Figure 1.20: The interpolating map H from loop 7v; to 7,
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Let us put this in a more elegant way. Let us consider a continuous map ~: [0,1] — X
is defined as a path if the initial point v(0) = x¢ and final point v(1) = x, where z; € X.
Similarly, if v(0) = (1) = xo then it defines a loop at zy.

If there are two loops 71, 72: [0,1] — X at say xy. They are said to be homotopic, if there
exists a continuous map H : [0,1] x [0,1] — X such that

H(s,0) =7(s), H(s,1) ="(s) Vse[0,1] (1.34)
H(0,t) = H(1,t) =x9 Vte[0,1] (1.35)
The interpolating map H is called homotopy between v, and ~,, as shown pictorially in

Fig. 1.20.
The idea of homotopy of loops can be extended to arbitrary maps. Let f,g: X — Y be
a continuous map. If there also exists a continuous map H : [0,1] x X — Y such that

H(z,0) = f(z), H(z,1)=g(x) VreX (1.36)

then f is said to be homotopic to g the map H is called a homotopy between f and g.

In addition to continuous deformation of loops or maps, but underlying spaces X, and Y
can also be continuously expanded. If we consider X to be a disc with a hole, on expanding its
boundaries gives X = R {0} this is a circle ~ S'. Correspondingly, different windings on S*
fall in different homotopy classes. It turns out, the set of homotopy classes is endowed with
a group structure. Here the set of homotopy classes of loops in X is known as fundamental
group or Poincaré group, denoted by m(X) = m,(S') = Z. Just to show how calculating
the higher homotopy group becomes very complicated as the dimensions of the underlying
space increase S™ is shown in Fig. 1.21.

1.9.2 Winding number

There is a more intuitive way to calculate the winding of loops on a circle S*. That can be
seen by parametrizing the circle by an angle ¢, as sketched in Fig. 1.22. Let us consider
a continuous map g(y) : S* — U(1), where g(p) = €. This means, we can associate a
complex phase to every point on the circle with above defined relation. The map does not
need to be one-to-one; in fact, it can be two-to-one or many-to-one, as we see. Let us consider
the case a(p) = 2y, as shown in Fig. 1.23. Then, ¢ = 0 implies g(¢ = 0) =1 € U(1) (shown
with green arrow) ¢ = 7/2 implies g(p) = —1 (shown with red arrow),
¢ = m implies g(¢p = 0) = 1 (shown with green arrow) ¢ = 37/2 implies g(¢) = —1 (shown
with red arrow) .

This tells us how much time U(1) wraps around S' (as ¢), this is known as winding
number.
However, there is a clever way and an elegant way to extract the winding number of an
arbitrary map with g(¢) = ™) where a(p) = ne:

1 2

- dpag™! 1.
Vo= g ) de (©)0p9(¢); (1.37)
1 o —to . 1o’
= 5 i dpe 20 a (@)™, (1.38)
= n. (1.39)
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Figure 1.21: The higher homotopy groups 7, for n dimensional spheres denoted as S™. The
0 entries show trivial group, where the loops or higher dimensional enclosing surfaces can be
shrunk to a point. The non-zero entries show the non-trivial part either infinite cyclic Z or
finitely cyclic Z,,, for m # {0,1}. Taken from Ref(Program 2013).

Figure 1.22: The interpolating map H from loop 7v; to s

Then all homotopic classes for different n are characterized by a homotopic invariant v (or
winding number). This invariant does not change under smoothly deforming g().

1.9.3 Degree of a map

The winding number can be generalized to higher dimensions. There is an equivalent but
more handy way to define winding for the same continuous map ¢ : X — S!. This can
be done by considering the same disc X with a hole at the centre, however extending the
boundaries to infinity (~ R? {0} ~ S') (see Fig. 1.19a). A semi-infinite line originating from
the hole (or singularity) is drawn going towards infinity, as sketched with a dotted line in
Fig. 1.24. Then the number of intersections of a loop with this line taking into account also
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aQ

v

3r/2

X ~ R?/{0} ~ S! U(1) ~ C/{0}
Figure 1.23: The map S' — U(1) for a(p) = 2¢.

the orientation of the loop gives exactly the winding number v. The later (orientation) is
shown with the sign + for the loops intersecting the dotted line from the top (or are oriented
counter-clockwise) or — for the loops intersecting the dotted line from the bottom (or are
oriented clockwise) in Fig. 1.19a. It turn out, this sign for an arbitrarily oriented loop can be

X ~ R?*/{0} ~ S!

Figure 1.24: Counting of intersections of loops with the semi-infinite dotted line. The

orientation of the loop (either cutting from the top or from the bottom the line) decides the
sign.
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extracted by parametrizing the loop with a vector 7(¢) whose origin is the same singularity.
Then it is sign of the vector product of 7(¢) with the tangent vector 7(¢) and the normal

vector n, at the dotted line (inclined at an angle pg). In addition, the intersection with a
(0)
J

t§0) ~ g (o). This gives winding (or degree) of g as

given loop g takes place for some images g(t;’) = ¢o. This in return gives us the pre-images

vig) = deglo)= Y. s |[t) x Flns]

O %g=1(¢0)

— Z sgn [%M] : (1.40)

#2291 (o)

There are two reasons to formulate the winding number in this way. First, there no
integral evaluation, and secondly, the generalization to higher dimensions is quite simple. It
can be seen for a general case, the degree (or winding number) of a map g : X — Y between
two orientable surfaces with same dimensions is

vg) = Y sen {da(?ﬁ?)

{21 (yo)

yol . (1.41)

where x € X and y € Y, and the factor inside the determinant is the Jacobian matrix
corresponding to the transfer of coordinates from x to y. This definition in terms of degree
does not depend on the choice of image yy. It is a homotopy invariant generalizing the
winding number to higher dimensional manifolds from a map g: S' — S

1.10 Berry curvature and Chern number

The topological invariant has also pervaded in the physical systems, e.g., the quantum Hall
effect (QHE) in 1980 by the von Klitzing group (Klitzing et al. 1980). This effect arises
when a strong magnetic field is applied to a 2D electron gas, which leads to the vanishing
longitudinal conductivity, whereas the transverse conductivity is still non-zero. That can be
explained from a semiclassical picture of electrons experiencing the Lorentz force due to the
magnetic field B. Then this force makes the electrons to exhibit close cyclotron orbits with
cyclotron frequency w, = eB/m,, where e is the electronic charge and m, is the mass of
electron. As can be seen from a sketch in Fig. 1.25, these orbits experience an obstruction
in making close circles at the boundaries, where they instead propagate. It becomes the
source of conductivity in this 2D sample, where the bulk of the sample is insulating, which
means there is no net motion of electrons. Remarkably, this (transverse) conductivity is very

precisely quantized, given by

62

1 =N (1.42)

where h is the Planck’s constant and n is an integer, oy is also known as quantum Hall
conductivity. Not long after the QHE discovery, Thouless, Kohmoto, Nightingale, and Nijs
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Figure 1.25: In the semiclassical picture, electrons are making cyclotron orbits under the
influence of the Lorentz force. The electrons at the boundaries are unable to make a circular
round, instead are skipping orbits.

X

in their seminal work (Kohmoto 1985; Thouless et al. 1982) showed the topological origin of
this quantum Hall conductivity,

2
e
J

where the sum runs over all filled states or bands, and Cj is called TKNN invariant or
(first) Chern number. It can be expressed as an integral of a local quantity known as Berry
curvature over the Brillouin zone (BZ)

1
Cj=— /B  dhadliy 2y ke, ) (1.44)

2

This equation is similar to the Gauss-Bonnet theorem (in eq.(1.32)), where the integral was
over the local quantity Gaussian curvature, here it is over the Berry curvature. We saw that
the Euler characteristic xy gave the relation with the number of holes. Likewise, we can be
curious about what does C relates to (or counts)?
Beyond the semiclassical picture, these skipping orbits are related to the edge states propa-
gating at the boundaries in the quantum picture. The Chern number counts the number of
such edge states, as sketched in Fig. 1.26. As can be seen from this figure, when the edge
states leave a band. The corresponding band loses one state, and this is captured by this
Chern number as C' = —1, and the other band has C' = +1, since it has gained one state.
Even though there is a bulk gap, the edge states are conducting, if the Fermi energy lies
in the gap, where the Chern number of the bands captures this physical property. These
insulators are known as Chern insulators, a subclass of a big family of topological insulators.
We can more formally define what a Berry curvature is, how it is expressed in terms of
more fundamental quantities like the eigenstates of the system.
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Energy

Figure 1.26: The edge state bridges the bulk gap. It leaves the lower band and merges to
the upper band when varying k,. This is referred to as a spectral flow. This lower band as
lost one state, where this is captured by C' = —1, while the upper band has C' = +1 since it
has gained one state.

1.10.1 Topology of eigenstates

Let us consider a Hamiltonian H that is parametrized by a set of parameters, denoted by
G = (G4, Gy, ...), we are concerned with the adiabatic evolution of the system as G moves
slow enough along a closed path C'in parameter space such that we can define an eigenvalue
equation

H(G)[y;) = E;(G)|iy) (1.45)

If the system is prepared in one of the eigenstates and the system adiabatically evolves by
changing G, then due to the adiabatic theorem, the system remains in the same eigenspace.
However, after one full evolution when the parameter G returns to its initial value, the
eigenstate acquires a phase with respect to the initial value (Xiao et al. 2010). This phase
contains the dynamical phase and geometric phase. This geometric phase «y; can be expressed
as

’yj:/dG'Aj(G), (1.46)
C
where A; is

A4/(G) = i{yy (G 7g 44(G) (147)

This vector A(G) is known as the Berry connection and the geometric phase «y is known as
the Berry phase (Berry 1984). Now, we can define the Berry curvature as,

0,(G)=VAA (1.48)

where A becomes a vector product if the parameter space is 3D. Unlike Berry connection,
which is gauge dependent quantity (i.e., under t; — ¢(G) A has gauge dependent term,
see eq.(1.47)), Berry curvature is a gauge invariant and a physical observable. Furthermore,
it can be used to calculate the Chern number defined in the quantum Hall effect in eq.(3.15).
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The Chern number may appear in topological band theory in mainly two contexts, one in the
gapped band structure, which is the case of QHE and other in gapless one. This topological
invariant also appear in the gapless systems like Weyl semimetals, where it has different
interpretation than the number of edge states in QHE.

In order to capture the topology in gapless systems the above defined Berry curvature
2;(G) besides in differential form can also be expressed in terms of eigenstates, which can
be derived by taking the derivative with respect to G of the eigenvalue equation(1.45) and
using completeness of eigenstates'® gives,

(Vi10a,, H [¥r) (Vr|0c, H|1;)
_zn;]z; : CEA 124G, A dG,, (1.49)

where 0g, = ETem i(G) =0,

using the anti-symmetry property of wedge product. Another important observation comes
from the denominator, which vanishes at degeneracy points i.e., when E;(Gg) = Ei(Go).
Thus, these degeneracies are either source or sink of Berry curvature, and it is singular at
these points, which are called Berry monopoles. If these monopoles are enclosed by a surface
(in parameter space or BZ), then the surface is pierced by a flux. The origin of the flux is
connected to the fact that these monopoles carry charges, as sketched in Fig. 1.27. It turns
out; this charge is an integer-valued topological number that can be quantified in terms of
first Chern number C

1
=— [ Q. 1.
¢ =5 .9 (1.50)

The sign of C; decides in turn the sign of the topological charge, in this regard €2, is also
called Berry flur that pierce the surface enclosing the degeneracy (see Fig. 1.27). This is
the same charge that also appears in the topological classification of Weyl nodes, where
G = G,=1.3 is replaced by the Bloch vectors k = {k,, k,, k.}. It turns out that this Chern
number C is related to the degree of Hamiltonian, where degree is defined in eq.(1.41). The
degree of Hamiltonian can be defined by considering a 2 Hamiltonian, which can always be
decomposed in terms of Pauli matrix o as

H(G)=h(G)-o (1.51)

where we have neglected any global shift i.e. ho(G) = 0, which can be removed by redefining
the origin for the energy. Then eigenenergies is expressed as

E. = +|[h(G)]|. (1.52)

At a degeneracy point, we have Go, F1(Go) = 0 = [|h(Gy)||. This creates an obstruction in
defining the normalized eigenvectors h = h(G)/||h(G)|| at these points. However, they are
well defined, if we remove this degeneracy(s) point. These normalized eigenvectors defines a

131.6. Z_j |’l/)J> <1,ZJJ |: Identity.
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(b)

Figure 1.27: The topological charge associated with degeneracy situated at the origin, for
(a) a positive charge the (Berry) flux goes outwards from the origin, and for (b) a negative
charge, it comes inwardly.

map from parameter space to the unit sphere h: G\{Go} — S2. For this case, the degree of
this map can be expressed in terms of the above defined Chern number eq.(1.50) as following,

Cy = Fdegh. (1.53)

This expression shows the connection between the topological charge enclosed in the pa-
rameter space with the degree of Hamiltonian map that determines the homotopy invariant
connected to the wrapping number over the sphere (5?). This makes it convenient to calcu-
late the Chern number by wrapping around the degeneracy (see Fig. 1.24). Thus, instead of
calculating the integral in eq.(1.50), we can compute the pre-images as

Oc,he Oc hy Og h.

C= Z sgndet 8G2hx 8G2hy 8G2hz |t0:h(G0) (154)
Go=h"1(to) aGth 8G3hy 8G3hz

where ty is any regular point so that the determinant is not singular, Gy are previously
defined degeneracies in the parameter space (such that F,(Gg) = E_(Gy)). We removed
the little hat from the h, because the magnitude ||h|| does not affect the sign of the charge.

A quick example to see the ease of this formula is defining the topological charge for the
Weyl nodes. By linearizing the Hamiltonian near the Weyl points gives h = £k. Then the
topological charge of the Weyl nodes is C = +1. We shall come back to this formula in our
last chapter, where we will encounter similar degeneracies.
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Chapter 2

Floquet formalism: implementation in
waveguide arrays

2.1 Introduction

In the current chapter, I discuss how periodic driving a system can induce novel topological
phenomena, without any counterpart in the static regime. This driving translates to say that
Hamiltonian has a time translational symmetry, H(t+ 1) = H(t), where T is the period of a
drive. This time dependence forbids to define a precise ground state of the system unlike in
static or equilibrium'. Despite this, such time-dependent systems phenomena can give rise
to many novel phenomena. For example, the presence of non-trivial edge states even though
the band topological invariants vanish (M. S. Rudner et al. 2013).

2.2 Periodically driven systems

To look for a general solution for a particular class of ordinary differential equations was one
of the significantly focused domains of interest during the 16*-17"" century or even till now.
As the description of a natural phenomenon, like the beating of a drum or the oscillation
of a pendulum, involves such equations. A particular class of such equations was when the
coefficients are periodic under either space, time, or both. Then Floquet theorem given by
Gaston Floquet in 1883 (Floquet 1883), later by George Hill (Hill 1886), gives the canonical
form of the solutions. Again discovered by Lyapunov (Lyapunov 1896) and by Felix Bloch
in 1928(Bloch 1929), in the context of periodic quantum Hamiltonian in space, giving rise
to band theory.

In physics, we stick to the terminology “Floquet theory” when the system has time pe-
riodicity and “Bloch theory” for space periodicity. I keep this convention.

The case of time-periodic Hamiltonians, which I am mostly interested in, was first studied

L As the (quasi) energy spectrum lies on a circle, so it is ambiguous to define low energy states or bands
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by Shirley (Shirley 1965), Keldysh (Keldysh et al. 1965), Zel’dovich (Zel’Dovich 1967) and
later a full framework was developed by Sambe (Sambe 1973). Then it was extended from
one mode to the case of multiple modes (T.-S. Ho et al. 1983), and a detailed review can
be found in Ref(Chu et al. 2004). A comprehensive survey of a periodically driven two-level
system can be found in Ref (Dion et al. 1976). For more pedagogical view one can refer to
notes by P. Hanggi (Hénggi 1998) or to the thesis of Michael Fruchart (Fruchart 2016) or
Alvaro Gémez Leén (Leén 2014).

2.2.1 Floquet formalism

Let us consider a closed quantum system, described by a Hamiltonian H, which is non-
interacting and periodically driven with period 7', such that H(t +T) = H(t). This driving
can be achieved, for example, by emitting an electromagnetic wave on a quantum system
(Netanel H Lindner et al. 2011; Y. H. Wang et al. 2013) or by periodically shaking the optical
lattices (Jotzu et al. 2014; Lignier et al. 2007; Parker et al. 2013; Struck, Olschléiger, et al.
2012; Struck, Weinberg, et al. 2013) or by employing the periodicity along the propagation
axis in optically coupled waveguides network (Ozawa, Hannah M. Price, Amo, et al. 2019;
Szameit and Stefan Nolte 2010).

The system is initially prepared in a state | V(7 %)) evolves according to the evolution
operator U(t,tg) to a state |U(7,t)) = U(T;t,10)|V(7, t)), at later time t. |W(7, o)) satisfies
Schrodinger equation,

D)

T = H(7t)|VY(7, 1)), (2.1)

where the Hamiltonian generates the evolution (h = 1),

Ut t) = Texp| i / tdt’H(F,t’)] (2.2)
U(Fit,te) = Jim exp [—z'(NH)AtH(t)} . exp [—z’ZAtH(t0+At)] exp [—z’AtH(to)].
(2.3)

where N = (t — t)/At.

A stationary Hamiltonian is also periodically driven with T" = 0, however, corresponding
evolution operator is “trivial”?.

However, a non-trivial and interesting physics emerges when Hamiltonian is driven peri-
odically with period T' (or with single driving frequency w = 27/T, where T # 0) i.e.
H(t+T) = H(t). Likewise, the evolution of the states is still described by equation (2.2).

Here, the evolution operator satisfies a multiplication rule,

2In the sense that the system has well defined eigenstates. So, if the system is prepared in one of the
eigenstates, it will remain in it forever. The time evolution will only give a definite dynamical phase to the
eigenstates depending on the initial and final times.
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U(tf7 tz) = U(tf, tintermediate) U(tintermediatey tz) (24)

which means that the time evolution from the initial time ¢; to the final one ¢y can written
as a product from initial to some arbitrary intermediate time ¢ and then from there to the
final time. As shown pictorially in Fig. 2.1.

U(tintermea’iate’ ti) )

tintermediate)

UG,

o
4 i tintermediate l}”

Figure 2.1: Multiplication rule for time evolution operator

We follow the decomposition of eq(2.1), with H(t) = Ho+V (t), V(t+T) = V (¢) (position
dependence is dropped, for the sake of clarity) , where we assume that H, has a complete
set of eigenstates ¢, with eigenvalues F,,.

According to Floquet theory there exists a solution to eq(2.1),

|W;(t)) = e_i%jt\q’j(t)%
(W;(t+T)) = e "= |W;(t))

where |®;(t+ 1)) = |®;(¢)), at t =T, |®;(T")) is referred to as a Floguet state, and ¢; is a
real valued number known as the quasienergy, which is only define uniquely up to multiples
of w = 27/T. It is the total phase acquired by the state when the system has evolved by
one period, it can be seen from equation (2.6). The Floquet theorem can be seen as a time
analog of Bloch theorem, where quasimomentum is analogous to quasienergy. However, both
do not play the same roles.

By substituting eq(2.5) in eq(2.1), it gives

sty = HE ) (2.7
HO)[P;(8) = €5[P;(¢)) (2.8)

0
where H(t) = H(t) —i— is a Hermitian operator satisfying above eigenvalue equation. Prob-

lem boils down to solve equation (2.8).

In terms of numerical computation, we can separate Floquet formalism into two cases.
In the first case, if Hamiltonian has continuous-time dependence, where we use the Sambe
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Hamiltonian approach. In another case, Hamiltonians have a discrete-time dependence. For
example, in quantum walks, we make use of the scattering network framework to describe
the dynamics of the system.

Continuous-time dependence

When the Hamiltonian depends on time in a continous fashion, e.g. H(t) = Hycoswt. Then
it gives rise to an integral equation (2.8). This can be seen by a Fourier decomposition of
|®(t + T)), since |®(t+T)) = |(t)),

|D(1)) = /_OO dw ™| ®(w)) (2.9)

o0

for the case of monochromatic frequency w = 27/T, in which one is mostly interested in, the
above expression can further be rewritten in some time independent basis |a)?,

oo

() =) Palt)]a), Bu(t) = Y o™ (2.10)

m=—0Q

Substituting above equation in eq(2.7), we get a stationary Schrodinger like equation for
Fourier amplitudes as

HIEo5" = (e —nw)all, (2.11)

«

rr(m—n 1 . . . .
where Héﬂ ) = > sm T fT dte’™m=wt(o| H(t)|B) is the Fourier transform of H(t) and is

known as Floquet Hamiltonian.
In above equation, (a] lives in some Hilbert space R, satisfying

(alB) = bag, (2.12)
similarly, the temporal part ™ lives in Hilbert space T ,
T
7 / dt P=mt — 5 (2.13)
They form a complete set of basis,

D Dn(t)Da () =t — 1) (2.14)

Essentially, the Hermitian operator H in eq(2.8) lives in a Hilbert space composed of
R & T. This space is sometimes referred to as Sambe space (Sambe 1973), in literature. The
states form a complete set in the R ® T.

3For a N level system, |a) will correspond to |a) =1,2,---, N
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In the R.H.S of the eq(2.11), the first term can be interpreted as an onsite energy term
and the second term as the number of photons absorbed or emitted by the system. This
term (nw in eq(2.8)) can be interpreted as an effective electric field in an analogy with the
Wannier-Stark ladder on a Floquet lattice generated by commensurate or incommensurate
frequency drives (Chu et al. 2004; Martin et al. 2017). For example, if we subject a physical
system to two incommensurate drives wy, and ws, then its dynamics can be represented on
a two-dimensional Floquet lattice, where the hopping energies along one axis j of the lattice
corresponds to either absorb (along +j) or emit (along —j) a photon of frequency w;.

Now, what remains to be solved is the L.H.S of the eq(2.11), which is an infinite-
dimensional matrix. We consider some particular cases to calculate the quasienergy spectrum
and Floquet states.

Considering a harmonic drive of period T = 27 /w, then H(t) = Hy + de™! + §le=t,
where the Floquet Hamiltonian has a tridiagonal form,

n - 4+1 0 -1 --
m
H()‘i‘(x) )

H= st Hy 6 +01 (2.15)
(ST Ho—w 1

The diagonal term in the above Floquet Hamiltonian is frequency-dependent, in the sense
that they are copies of Hy just shifted by the multiples of the driving frequency, where the
dimension of Hj encodes the degree of freedom in the system, like the number of orbitals in
a unitcell. This redundancy of multiple copies of Hj reflects from the wavefunction(2.5) by
substituting(2.10) and considering it in the present case by a shift of kw of the quasienergy,
it gives

‘\Ifj(t» _ e*i(€j+kw)t Z ¢&m)eikwteimwt (2.16)

m=—0Q

where shifting the Fourier mode cancels the shift contribution in quasienergy. Moreover,
off-diagonal terms connects (or hybridize) the different “copies”: as mentioned before, either
the system gains one photon (e™!) from the drive or loses on photon (e™®*) to the drive.
For arbitrary drive, i.e., H(t) = Hy + 6e! + §Te~"“! where p € Z, there is a hybridization
of bands separated by an energy gap pw (Rudner n.d.).

Interestingly, in this situation, the Floquet matrix eq(2.15) can be thought of as a tight-
binding Hamiltonian on some lattice. The hoppings are being mediated by d’s with the
Wannier-Stark like onsite potential (Gliick et al. 2002; A. Gémez-Leén et al. 2013; Martin
et al. 2017), as shown in Fig 2.2. It reminds us of the presence of an electric field in a lattice
that gives rise to a Bloch oscillation of an electron in a band, with bandwidth or kinetic
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Figure 2.2: Tight binding model with Floquet Hamiltonian

energy of 26. It means electron can take or give at a maximum energy of 26. It allows us to
define a (kinetic) energy window of 20 (see Fig 2.2), beyond which the wavefunction starts
to decay. This justifies in truncating an infinite-dimensional Floquet matrix to a finite one.

2.2.2 Stepwise Hamiltonian: discrete time dynamics

Now we digress our discussion from the continuous case to the stepwise Hamiltonians or
stepwise evolutions, where the stepwise sequence is periodic in time. From equation(2.2), for
t="T and ty = 0, we get

T
U(T,0) = T exp [—7; / dt'H(t’)} = o HYIT (2.17)
0

where full time evolution operator or U(T,0) is known as Floquet evolution operator or
Floguet operator,

U(T,0)[;(T)) = &= [T;(T)). (2.18)

Similarly, we can define the effective Hamiltonian H.; as,
H = %log U(T,0), (2.19)

ST = 3 g [e1] [0, () (W,(T)], (220)

this can be seen as a restatement of the previous definition of quasienergy, where they are
the eigenstates of the effective Hamiltonian. Unlike the Floquet Hamiltonian eq(2.8), the
effective Hamiltonian is time-independent (Kitagawa, Berg, et al. 2010; M. S. Rudner et al.
2013).

There are two-time scales in Floquet theory with respect to the driving period 7', namely
long and short. The Floquet theory allows us to separate these two-time scales. The long
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time dynamics come from the effective Hamiltonian, where it generates the bulk time evo-
lution when examined stroboscopically at integer multiples of the driving period 7', which
is identical to the Floquet operator U(7T'). This can be seen from the multiplication rule

eq(2.4)

U(nT) = U™(T). (2.21)

This can written in more generally as
Ut+nT)=U@t)U™T). (2.22)

The short time scale is generated by evolution operator itself at intermediate times between
initial ¢; one full period t; +T(2.2). Floquet theory allows us to write the evolution operator
with the two contributions as,

U(t) = V(t)e (2.23)

where, V(t +T) = V(t) is known as periodized evolution operator that contains the short
time scales. The above equation is very analogous to equation(2.5), however, in the operator
form. In the next chapter, I shall show how the stepwise Hamiltonian (or discrete evolution)
can easily be formulated in the scattering matrix framework.

2.2.3 Topological properties arising in Floquet systems

In the current subsection, I present a very brief description of the topology in the Floquet
domain and the symmetries that are responsible for non-trivial topology. The topology
in this domain differs from the static regime. In the static case, we look for the maps
from the Brillouin Zone (BZ) to the Hamiltonian matrices (of dimension m, for m bands),
which defines a closed loop in the space of m x m Hamiltonian matrices. This loop can be
characterized in terms of homotopy, where all such loops that can be smoothly deformed into
each other define an equivalence or homotopy class, which can thus be characterized by an
invariant. However, in a periodically driven case, we look for maps from the Brillouin Zone
times 7' (time) to space of Unitary matrices (of dimension m, for m bands), BZ x T' —»
U(m). In the Floquet case, the number of bands is the same as the number of gaps, unlike
static case. It gives rise to a regime not to be reproducible in the static case.

The topology in the Floquet regime can be divided into two classes (Nakagawa et al.
2020). In one of the class, the topology is characterized by the effective Hamiltonian or
equivalently by the Floquet operator, involving the topology of gapped quasienergy spectra,
e.g., Floquet Chern insulators (Budich et al. 2017; A. Gémez-Leén et al. 2013; Jiang et al.
2011; Kitagawa, Berg, et al. 2010; Kitagawa, Matthew A Broome, et al. 2012; Kitagawa,
Oka, et al. 2011; Kundu et al. 2014; Netanel H Lindner et al. 2011; Oka et al. 2009; X.-Q.
Sun et al. 2018). Another class is where the full dynamics of evolution operator characterize
the topology during one period. This could give rise to the anomalous Floquet topological
insulators (Delplace, Fruchart, et al. 2017; Fruchart 2016; Morimoto et al. 2017; Nathan
et al. 2015; Roy and Harper 2017; M. S. Rudner et al. 2013; Yao, Yan, et al. 2017). This
later one has no static part; even if the effective Hamiltonian is topologically trivial, the
topology of the time evolution operator during one period can still be nontrivial.
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Topology and symmetries

We assume that the Floquet operator U(T') has translational symmetry, however, this con-
straint can also be relaxed for calculating topological invariants (Fulga et al. 2016; Titum,
Berg, et al. 2016). Recently, a formal bulk edge correspondence has been made in the absence
of translational symmetry (Graf et al. 2018).

In eq(2.23), we can rewrite effective Hamiltonian with a branch cut as,

Vo(t) = U(t)e HE"t (2.24)

where the branch cut dependence comes from H¢// = %loge Uu(r).

Topology in static or periodically driven systems depends on the dimension of the sys-
tem and on the symmetries that constrain the quasienergy spectrum and states. Here, the
symmetries are particle-hole or charge conjugation C, time-reversal © and chiral symmetry
.

The particle-hole symmetry acts on the evolution operator, the effective Hamiltonian and
the periodized evolution operator, respectively, here C is anti-unitary

CU(k,t)C™" = U(—k,t), (2.25)
CHYI (e — —H”;f(k)vLQ%]l (2.26)
CVE (k) et = VT (—k, t)e 2T (2.27)

Similarly, for the anti-unitary time-reversal operator O, it follows
OU(k,t)0™! = U(—k,—t), (2.28)
OHI (kYO = HYI(—k) (2.29)
VI (k) o™t = VI (—k —t). (2.30)

Lastly, the unitary operator of chiral symmetry satisfies

LUk, )Lt = Uk, —t), (2.31)
THS (R = Hfff(k)JrQ%]l (2.32)
TVA (e, )0 = VT (ke —t)ei2mt/T (2.33)

My main interest lies in photonics, which serves as an underlying platform to engineer
these symmetries. I'll show you my result of how different symmetries can be engineered
in an evanescently coupled waveguide network in 1D, and that can be generalized to higher
dimensions.

2.3 Engineering symmetries in evanescently coupled
optical waveguide array

Photonics provides a versatile platform to experimentally realize phenomena of quantum
(solid-state) systems, where the photons (quantum) or electromagnetic waves (classical)
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mimics the analogous properties of electrons, like the robust unidirectional motion of light
and non-diffracting light propagation, which has promising applications (Bellec, Michel, et
al. 2017; Zheng Wang et al. 2009).

In this section, we are interested in engineering topology in 1D waveguide arrays by ex-
ploiting the connection between lattice (crystalline) symmetry of waveguides, e.g., inversion
symmetry, with the symmetries responsible for non-trivial topology e.g., particle-hole.

Crystalline symmetries play a vital role in constraining the energy spectrum and also
on the topology. This symmetry is shared by Hamiltonian along with its spectrum. For
example, graphene has rotational symmetry C5 that it is shared by the position of Dirac
points in BZ. If this symmetry is broken, for instance, by allowing anisotropic hoppings,
then it is also broken in the BZ. Moreover, the Dirac points for some choice of anisotropic
hoppings can even fuse together, and annihilate (Goerbig et al. 2008; Hasegawa et al. 2006;
Montambaux et al. 2009a; Pereira et al. 2009; Wunsch et al. 2008; S.-L. Zhu et al. 2007).

Here, I shall show how some of these crystalline symmetries in photonics waveguide arrays
are connected to fundamental symmetries like chiral symmetry, time-reversal symmetry, and
particle-hole symmetry in 1D. To these crystalline symmetries another essential ingredient
can be added it is the underlying bipartite structure of the lattice. These two together play
a vital role in determining the significance of these fundamental symmetries. For example,
what does it mean to have a particle-hole symmetry in a photonic waveguide array? As
there are no particles or holes, but only electromagnetic waves propagating in a waveguide
array lattice. Besides these three fundamental symmetries, there exists another symmetry
responsible for giving rise to the non-trivial topology in 1D since non-trivial topology can
not appear in the absence of any symmetry, in 1D.

In the present section, I shall show this connection for 1D waveguide arrays. Engineering,
some of these symmetries like particle-hole and chiral, can give rise to a non-trivial topology
in 1D. Moreover, to make things concrete, I shall also show how relaxing the constraints put
forth by these symmetries can also lift them.

2.4 Symmetries in photonic waveguide array

In our case, we consider evanescently coupled optical waveguide arrays in 1D, where the
refractive index is periodically modulated only along one of the direction, let us say z-
axis. As we have seen at the end of chapter(1) that if the Hamiltonian is stationary, the
coupling k between the waveguides do not change along the propagation axis (z-axis), as
shown in Fig. 2.3a. Likewise, in the case of driven Hamiltonian, couplings do change along
the propagation axis. But we are interested in periodically driven systems, i.e., when the
couplings are also periodic along the propagation axis, as shown in Fig. 2.3b. Here, the
couplings kj—1 2 repeat after a period Z of the lattice.
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(a)

Figure 2.3: 1D waveguide array when the couplings are (a) constant along z, an analogue of
static Hamiltonian, (b) periodic along z, a analogue of periodically driven systems

In photonics, the relevant symmetries that may give rise to non-trivial topology are the
time-reversal symmetry (TRS), which here referred to as z-reversal symmetry (2-RS)?, chiral
symmetry(CS) and particle-hole symmetry (PHS), where recall these symmetries at the level
of time-dependent Bloch Hamiltonian H (k, 2),

L.H(:)T,'=—H(-=2) (2.34)
0.H(k,2)0;' = H*(—k,—z) (2.35)
CH(k,z)C™' = —H*(—k,z). (2.36)

(2.37)

Besides, we discuss two other symmetries of crystalline nature, which are not precisely
additional symmetries but are of equal importance in waveguide array, namely bipartite
symmetry (BPS) and z-reflection symmetry (z-Ref).

2.4.1 Lattice symmetries
Bipartite symmetry

A lattice is said to be BPS when the degrees of freedom (spin, orbitals, sublattices, or any
combination of them) can be grouped into two uncoupled families. Let us say that these
two families are A, and B then BPS can pictorially be shown as in Fig. (2.4) (Asbéth et al.
2016). The well-known examples are that of the two sublattices in SSH model (Su et al.
1980b) or two families in the Lieb lattice (Weeks et al. 2010a),

If Py and Pp are orthogonal projectors corresponding to the two families, then BPS
means that we can write H as,

H = PyHPp+ PgHPy,
P4HP, = PyHPg=0. (2.38)

This guarantees the non-zero elements to be present only in the off-diagonal sector in the
Hamiltonian if written in a A and B basis. It can be seen more clearly in writing the

1as Maxwell’s equations are already TRS
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Figure 2.4: Bipartite structure of a lattice, where there is no coupling within the family only
between the families

Hamiltonian in this sublattice basis (A and B), where there are n elements of A and m
elements of B in a unitcell then

H - (BO A’g;”), (2.39)
mXm
B,HB,' = —H (2.40)

where B, is BPS operator can be written as
B, = (ﬂ%m 0 ) . (2.41)

z-Reflection symmetry

The z-Ref is unitary symmetry denoted by R., it holds as long as there exists a symmetry
axis zp : z — —z of the lattice. This can be seen for the waveguide Fig. 2.3b by considering
its unitcell, which fulfils above condition at z = zp = Z/2, as shown in Fig. 2.5.

R.H(2)R,' = H(—=2) (2.42)
If there exists a symmetric axis zo which is not origin, then this can be rewritten as,

R.H(2)R;' = H(z— 2) (2.43)
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Figure 2.5: 2-Ref space unitcell

2.4.2 Fundamental symmetries in photonics
Chiral symmetry

CS is a unitary operator I' that anti-commutes with the stationary Hamiltonian H
HI = —H. (2.44)

Such that I' = I'" = I'"! and thus I'> = 1°.
The similar condition is also satisfied by the BPS operator B, (see eq(2.40)), if the

Hamiltonian is written in proper basis, i.e. A and B. Using the definition from eq(2.38), we
can write

['=Py— Pg (2.45)

where the precise form for the I' comes from eq.(2.41). This is an equivalent and sufficient
definition of CS (Asbéth et al. 2016).

Let us take an example of Lieb lattice (Weeks et al. 2010a), as shown in Fig. 2.6. There is
only hopping between the nearest neighbours, shown with thick black arrow. It has BPS,
where two families are A = {a,c} and B = {b} (see Fig. 2.4). Then the Hamiltonian written
in the proper basis {a, ¢, b} comes out to be

0 0 «
H = (oo 8]. (2.46)
a B 0
Then the CS or BPS operator satisfying eq.(2.44),(2.40) in the same basis is
. . ]12><2 0
=B, = < . —1lm> . (2.47)

5In general, any gauge dependence can be removed by redefinition. If I'? = €?, then the I' — e~ %¢/2T
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(a) (b)
Figure 2.6: (a) Lieb lattice containing three types of atoms denoted by a, b and ¢, where
hoppings are only among nearest neighbours, namely «, 5, unitcell is emphasized by dotted
square in (b)

Recently, in the same static regime, it was shown that to explain the full topology of
chiral symmetric systems, e.g., the unitcell choice dependent topological zero modes in the
SSH model(Asbdth et al. 2016) requires not only the description of bulk Hamiltonian but also
the underlying real-space lattice (Guzmén et al. 2020). Since the 1D topological invariant
Zak phase is a unitcell dependent quantity in SSH ( i.e., not a gauge-invariant) and it is only
meaningful to take its difference between the two phases, namely topological and trivial (or
between the two unitcell choices).

The definition of CS changes in time-dependent case to

DLH = —H(—2) (2.48)

where I', is a chiral symmetry operator in time-dependent case.
Unlike in static cases, CS is non-local in time now. If we have translational symmetry in the
system along with the periodic driven Hamiltonian then,

D.H(k, )T = —H(k,Z — 2), (2.49)
which can be rewritten in terms of evolution operator as,
LUk, 2T = Uk, —2). (2.50)

From eq(2.49), we see that there are unique points for which CS is local in time, for
instance, when zy = 0 or Z/2.

At these points, CS can be defined locally, and these point(s) serves as a chiral symmetric
point®. About these points, evolution is time-symmetric, e.g., T, U (k,0)T;! = U(k,0).

6Not necessarily these points, but also by redefining origin in some cases, e.g., H = Hq + V sin(wz), then
20 = 20+ 7/2
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CS for the Floquet systems requires two essential ingredients. One is reminiscent of the
static case, i.e., BPS, another one is z-Ref in the lattice. We can then decompose CS as the
product of BPS and z-Ref.

B,R.H(k,2)R;'B, ' = —H(k,z — Z). (2.51)

where zo = Z for Chiral operator I'..

Interestingly, CS can still hold if both of these symmetries are simultaneously broken. This
shall motivate us to look for precise condition for CS to hold, e.g. on the structure of
Hamiltonian. Since, in stationary case, the CS or BPS Hamiltonian is off-diagonal (see
eq.(2.39)). Let us consider a Hamiltonian H(z), which breaks both of the symmetries,
namely z-Ref and BPS,

H2) V sin(z) Jy cos(z) + Joe'™
=\ cos(z) + Joe ™k V sin(z) '

H(z) breaks both BPS by the onsite potential and z-Ref (eq(2.42)) for the above choice of
couplings, and the onsite potential, while still preserving the CS (where o, is the CS opera-
tor).

(2.52)

We can ask a general question, what are the constraints does CS put on H (we omit k
label in H, since CS does not depend on it). These constraints are present irrespective of the
case if both z-Ref and BPS are present, or both are absent together. To determine that, let us
assume a periodically time-dependent Hamiltonian H(z) with a period Z (H(z+Z2) = H(z))
and with N (sublattice) degrees of freedom. This H(z) has a CS operator I',, then taking
determinant on the eq.(2.49) gives,

det(T,)det(H(2)) = (=1)Vdet(H(Z — 2))det(T,),
det(H(2)) = (=1D)Ndet(H(Z — 2)).
This equation simplifies for two chiral symmetric point, namely zg = 0, Z/2 as
det(H(Z/2)) = (—=1)Ndet(H(Z/2)) , (2.53)
det(H(0)) = (=1)"det(H(0)). (2.54)

It shows that determinant puts a constraint on Hamiltonian for odd values of N, where it
should vanish at z = 0 and z = Z/2.
Similarly, if we take the trace of eq(2.49), it yields

tr(H(z)) = —tr(H(Z - 2)),
(2.55)

where,

7&07 Z#Zo

For zy = 0, 7Z/2, irrespective of the value of N, the tr H(z) vanishes identically. This can
mean, for instance, for the two atoms in a unitcell that either the onsite potential is zero

0 -
trH(z)z{’ T
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identically for each of them, or it is opposite. These two situations are actually our two cases
where either both z-Ref and BPS are present or absent.

The above chiral constraints on Hamiltonian can be thought more general than to check if
the two respective symmetries are present or not since they do not depend on those symme-
tries. It contradicts the point mentioned in the ref(Bellec, Michel, et al. 2017), where the
authors said, as long as there exists a symmetry axis z — —z of the lattice with respect
to some origin, the Floquet operator holds a chiral symmetry. Here, we have shown that
reflection symmetry alone is not sufficient to induce CS, while z-Ref and BPS are. It can be
summarised as,

e 2-Ref and BPS = CS
e CS % 2-Ref and BPS

z-Reversal symmetry

The z-RS is an anti-unitary operator denoted by ©,, which commutes with the (time-
dependent) Bloch Hamiltonian H(k,z). Here, we have ©2 = +1. To look for a system
with ©2 = —1 would be interesting, as, for 2D, it gives rise to a remarkable quantum spin
hall effect. However in photonics to achieve fermionic TRS is not apparent due to the un-
derlying bosonic nature of photons, while using photon’s polarization as a pseudospin can
be achieved, and it was shown experimentally in stationary (Albert et al. 2015; Hafezi et al.
2011) and also in Floquet case using waveguide array (Maczewsky et al. 2018).

If ©, = 6,K, where K is conjugation, then in unitary form

0.H(k,2)00 = H*(—k,—2) (2.56)

It is important to note that for photonics waveguide array, all the couplings are real, and
only the complex dependence is in the Bloch phase” (Szameit and Stefan Nolte 2010). We
can call this photonic Bloch Hamiltonian as H,, it satisfies

Hy(=k) = Hy(k) (2.57)

So, this yields for H, and photonic evolution operator U, a symmetry condition same as the
z-Ref (see (2.42))

0.H,(k,2)00 = Hy(k,Z — z) (2.58)

0.Up(k,2)0] = Ui(—k,—z). (2.59)

We can infer from CS case that here also exists a zg point, about which evolution is symmet-

ric. eq.(2.58) is precisely the z-Ref equation(2.42). In the photonic version of Hamiltonian,

the z-RS acts as unitary instead of anti-unitary, due to the underlying real nature of real

space Hamiltonian (i.e. H(z)), this shows the close connection of z-RS in photonics with
z-Ref symmetry, which we exploit in next section.

"In general, complex couplings can appear in an effective Hamiltonian form. Besides, at most, there can
be extra phases, coming from synthetic gauge fields (Wimmer, Hannah M Price, et al. 2017), they can be
considered at the same level as Bloch quasimomentum k. Thus, this k£ can be though of as a generalized
quasimomenta.

o8



Particle-hole symmetry

Particle-Hole Symmetry, C' = CK, refers to an anti-unitary operator which anti-commutes
with Hamiltonian, we have C? = +1. At the level of z-dependent and Bloch Hamiltonian
and photonic Bloch Hamiltonian, it satisfies

CH(k,2)C™' = —H*(—k,2),
CH,(k,2)C™' = —Hy(k,2) (2.60)

In general, C can depend on the origin, say kg, let us represent the Hamiltonian with this
dependence as H. For instance, 1D SSH model with three atoms in a unitcell with non-zero
couplings between each of the atoms,

CH(k+ko,2)C" = —H*(—k+ ko, 2),
CH (k4 ko, 2)C™" = —H(—k+ ko, 2) (2.61)

Let us call the origin dependent PHS to be the shifted-PHS (or s-PHS).

Similarly, here, PHS acts as a unitary symmetry on photonic Hamiltonian (H,). Importantly
eq(2.60) is identical to the eq(2.44), meaning that if there is a BPS, then we can define the
PHS operator from eq.(2.41). Surprisingly, this does not hold for s-PHS, which only exists
when there is no bipartite symmetry. In other words, PHS and s-PHS are mutually exclusive
and s-PHS is always non-bipartite but not vice-versa.

Constraints on PHS from eq(2.60) for photonic Hamiltonians at any value of z are

det(C)det(H,) = (—1)"det(H,)det(C),
det(H,) = (—1)det(H,) (2.62)

It shows that determinant puts a constraint on Hamiltonian for odd values of N similar to
I'., however, irrespective of the value of z since time is irrelevant for BPS to hold.
However, the trace is identically zero.

tr(CH,C™") = —tr(H,),
tr(H,) = 0 (2.63)

Trace can only be zero if there is no onsite term in the H,. Yet, for any value of IV, it is pos-
sible to choose onsite terms such that there sum vanishes. Nevertheless, this condition alone
is not sufficient; one needs to take into account the determinant condition as well. We have
not considered the case for H; since the form of the Hamiltonian is not the same on either
side of the eq.(2.61). All the different symmetries acting on time-dependent Hamiltonians,
evolution operators, and photonic Hamiltonians, along with the constraint they put on the
spectrum, are tabulated in Tab(2.1). We can ask if there is more than one symmetry in the
system then what kind of symmetries are compatible with each other. For instance, s-PHS
and PHS can not be present together. Fig. 2.7 shows the compatibility between different
types of symmetries.
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Symmetries H(k,z) U(k,z) H,(k,z) Constraint on eigenvalues
BPS —H(k,2) Uk, 2) —H,(k,z) {E(k), -E(k)}
z-Ref H(k,—2z) Uk, —z) Hy(k,—z) No constraints
CS —H(k,—z) Uk, —z) —H,(k,—z) {E(k), -E(k)}
z-RS H*(—k,—z) U*(—k,—2) H,(k,—=z) {E(k), E(—k)}
PHS —H*(—k, z) U*(—k, z) —H,(k,z) {E(k), - E(—k)}
s-PHS —H*(—=k + ko, 2) | U(=k + ko, Z) | —H,(k — ko, 2) {E(k+ ko), - E(—k + ko)}

Table 2.1: Different symmetries are acting on time-dependent Hamiltonian, evolution oper-
ator, and photonic Hamiltonian with their constraints on eigenvalues.

PHS| < BPS

Figure 2.7: Symmetries compatibility relation in Photonic lattices

2.4.3 Engineering symmetries in photonic waveguide arrays and
boundary modes

In this section, we consider examples in 1D waveguide (WG) array from each region of the
graph shown in Fig. 2.7, with symmetry operations shown in Table(2.1). To investigate
which symmetries can give rise to non-trivial edge states in 1D finite waveguide array.

Chiral Symmetry

In 1D photonic WG array Fig. 2.8, there are two cases with CS for a periodically driven
Hamiltonian, namely if both are present BPS and z-Ref or are absent.

To engineer a waveguide array with CS, either we can implement both the lattice symmetries,
namely BPS and z-Ref, or, the product of symmetries PHS and z-RS (i.e., PHS and TRS),
as shown for 2WGs network with a period Z in Fig. 2.8a. For this case photonic Hamiltonian
for two steps (0), looks like
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Figure 2.8: 1D waveguide arrays with 2 WG in a unitcell with a period Z (a) with zero-onsite
potential is BPS and z-Ref (b) with non-zero time varying potential shown as a varying color
along z—axis breaks BPS and z-Ref

0 &

D (k) — 1

HV(k) = (m o) 0<z<2Z/2 (2.64)

HY(k) = 0 e Z/2<z2<Z (2.65)
P Koe ® 0 - '

Differently, breaking both BPS and z-Ref also achieves this condition, while respecting the
constraints on the Hamiltonian eq(2.54),(2.55). BPS breaks in the presence of an onsite
potential term V(z) since it allows coupling within the same family, which otherwise is
forbidden. Besides, modifying this onsite potential V(z) in such a way that it breaks reflection
condition V' (z+z) = V(—z+zp), this also breaks the z-Ref symmetry, as shown in Fig. 2.8b.
In waveguide arrays this potential can be attained by periodically modulating the refractive
index along z-axis, e.g. ngsin(z) (Ke et al. 2016). Likewise, the photonic Hamiltonian

_ V sin(z) k1h|Z)2 = 2] + kohlz — Z)2)ek
)= < k1h|Z)2 — 2] + Kkohlz — Z/2]e7* V sin(z) ) (2.66)

where h[Z/2 — z] is a Heaviside step function, hlz] =0,z <0 or =1,z > 0.

In 1D Floquet system with CS, we can expect non-trivial topology, which manifest with
the presence of boundary modes in a finite system (Asbéth et al. 2014; Bellec, Michel, et al.
2017; Fruchart 2016; Roy and Harper 2017), for the Hamiltonian in eq(2.64). We consider
a finite geometry with 20 unitcells along the z-axis in Fig. 2.8a. For the numerical con-
venience this geometry is coupled at both the boundaries with another finite network but
with a different choice of couplings parameters r;_ o, forming a cylindrical geometry®, as

8This choice of geometry allows us to get rid of additional edge states.
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shown in Fig. 2.9a. By choosing the coupling parameters in one region k1 < k2 (shown in
red in Fig. 2.9a) and in another (k] =)k > ko = (k4) (shown in blue). Then the edge states
appear at the interface between these two regions, where the energy gap closes, namely at
quasienergy 0 and 7. The results are shown in Fig. 2.9b. In the presence of BPS and z-Ref,
on changing the interface coupling parameter, 7, the states at the interface remain robust.
However, breaking the CS with the onsite potential enforces the edge states to couple to the
bands, as shown in Fig. 2.9c.

1/2

=7n/4—-0.6

’
2

K
Quasienergy € Z/1t
o

-1/2

K| = ml4,
Interface coupling paramater T

0 1 2
Interface coupling /7T Interface coupling t/7t

(a) (b) (c)
Figure 2.9: Presence of edge states at quasienergy 0 and 7 (a) for cylindrical geometry, (b)

when the interface parameter 7 is changed, the states remain robust in presence of BPS and
z-Ref, and (c) they are coupled to the bands when CS is broken with BPS and z-Ref.

Particle-hole symmetry

In a 1D photonic waveguide array, PHS can be realized by implementing a bipartite structure.
Previously, the 2WGs network was satisfying BPS (see Fig. 2.8a for Hamiltonian eq.(2.64)).
Nevertheless, let us take examples beyond 2WG but with BPS. For instance, the 3WGs
array, shown in Fig. 2.10a. It contains couplings between the waveguide as

154(in green) and 2"(in red) denoted by — 01, 0 <z < Z/3
H(z) = ¢ 2™and 3" (in black) — 63 Z]3<2<27Z/3
2" (in green) and 1%(in green) — 0y 2Z/3<z2<Z
where first two are within the unitcells and last one is outside the unitcell and when the third
waveguide is out of the plane it is dashed black. However, there is no coupling between 3¢

and 1°' to maintain BPS. This model can be thought of a 1D version of Lieb lattice (Weeks
et al. 2010b).
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Interface coupling /7t Interface coupling t/7t

(b) ()

Figure 2.10: (a) 3 WGs PHS network with bipartite structure, considering its finite version
(a) edge states are robust at ¢ = m under a change in interface coupling parameter, whereas
(b) breaking of bipartiteness destroys the topological states.

Similarly, in 1D with particle-hole symmetry, we can expect non-trivial topology. It is
confirmed by considering the same geometry, where non-trivial states appear at the interface,
as shown in Fig. 2.10b. Moreover, the number of bands being odd, the only place where
non-trivial states appear are necessarily at quasienergy 7 since there is a band at quasienergy
0, thus forbidding any gap. Consequently, PHS does not protect other edge states at any
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quasienergy. This comes from the fact that other quasienergies are not respected under PHS,
e(k) — —e(k), only 0 and 7 are invariant under this.

Breaking PHS would require to break the constraints derived in eq(2.62)-(2.63). One way
to do so is to repeat what we did for CS, i.e., to introduce some constant onsite potential.
This indeed destroys the edge states at € = 7, as confirmed in Fig. 2.10c, where we introduce
the constant onsite potential on each of the WGs at only initial time 0 < z < Z/3. Moreover,
there is another way to break PHS would be to break BPS by introducing specific couplings
in the model, e.g., restoring the coupling between the 3¢ and 1% waveguide.

shifted Particle-hole symmetry

This symmetry is only present when PHS is absent. To do so, we introduce a coupling
between the 3"¢ and the 1" waveguide, which respects the constraint and, at the same time,
beaks BPS or PHS. This can be achieved as shown in Fig. 2.11, with the couplings between
the waveguides

15%(in black) and 2°¢(in blue) = 0, 0< 2z < Z/3
H(z) = ¢ 2"dand 3"(in green ) — 63 Z]3<2<2Z/3
34 and 1% —>031 2Z/3§Z<Z

This choice breaks all the symmetries CS, PHS and 2-RS, as per our interpretation from last
section with the lattice symmetries.

64



012

e — |

—
—
N

Quasienergy € Z/rt
o

|
—
—
A=)

1 N ——
0 1 20 1 B
Interface coupling /7T Interface coupling /1

(b) (c)
Figure 2.11: (a) 3 WGs s-PHS network, with edge state spectrum (b) appearance of edge
states in presence of s-PHS (b) breaking of s-PHS
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However, in 1D without such symmetries, we do not expect any non-trivial topology to
appear (Roy and Harper 2017). Surprisingly, the robust edge states are present (2.10b) at
quasienergy 7, like before. The existence of these topological edge states in 1D tells us that
there is indeed some symmetry responsible for their protection. This symmetry is what we
call shifted particle-hole symmetry. There are two reasons to use this terminology. First,
when the spectrum is shifted by & — k + ko, it has the particle-hole symmetric spectrum
{e(k),—e(—k)}. Second, there exists an antiunitary operator that anti-commutes with the
Hamiltonian.

Likewise, using these two reasons of its connection with PHS, we can follow the same
strategy to introduce a constant onsite potential on each of the waveguides at initial time
0 < z < Z/3 breaks s-PHS, and this leads to the disappearance of 7 state, as expected in
1D in the absence of any of these symmetries.

z-reversal symmetry

If the waveguide array respects z-Ref symmetry, then it also respects z-reversal symmetry.
To consider a network with only this symmetry would be to go again beyond 2WGs, as it
already has CS and PHS. So, the next possibility is to look for three waveguides in a unitcell,
as shown in Fig. 2.12a, where there is a coupling between the waveguides

H(z) = {1St(red) and 2% (green) — 015 also 2"¢ and 3"¢(blue) — 03 0< 2z < Z/2

34 and 15 — 65 ZR2<z2<Z

the last coupling is outside the unitcell.
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Figure 2.12: (a) 3 WGs with z-RS network, with edge state spectrum (b) absence of edge
states

Far from surprising, there is no nontrivial topology solely coming from 2-RS in 1D.
Considering a finite geometry confirms this assertion, where we consider a network with 40
unitcells but sharing the boundaries with vacuum, unlike previously”. In this case, we fix
the values of coupling parameter 6,5 and 693 and varying the 03; parameter. We see that
for any choice of coupling parameters, the system only posses trivial edge states that only
depends on how the network terminates, as shown in the fig 2.12a.

Inversion symmetry

For the sake of completion, we discuss tnversion symmetry, which is not responsible for
any non-trivial topology. However, it is unusual in the presence of another symmetry, e.g.
time-reversal symmetry, which can give rise to the non-trivial topology in 2D, as it simplifies
the calculation of topological invariant (Fu et al. 2007). However, we consider it in its parent
form that is without any other symmetry. Then at the level of Hamiltonian H(z, z) or Bloch
Hamiltonian, H (k, z), it follows

PH(x,2)P™' = or
PH(k,2)P~' = H(—k,z) (2.67)

|
X

|
=
Ny

where P is an inversion symmetry operator. This symmetry can be implemented in a 2WGs
network where we have two different successive intra coupling separated in time and fol-
lowed by an intercoupling, as shown in fig 2.13. The respective couplings are between the

9Due to absence of two different topological regime, namely trivial and topological, we cannot use previous
geometry.
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waveguides are

15t(in black) and 2™(in blue) — 61, 0< 2 < Z/3
H(z) = ¢ 1"and 2"(in green) — 619 Z/3<z<2Z/3
2'd and 15 — Oy 27/3<z2< 7

where the only the last coupling connects two unitcell.

=

S

021 S

k5

2

0121 3
012

Coupling parameter 8,¢/77

(a) (b)

Figure 2.13: (a) 2Wg with Inversion Symmetry network, with edge state spectrum (b)
absence of edge states

The choice of two successive different intra couplings breaks z-RS. However, the network
is still bipartite, so to break PHS, we added constant but same onsite potential on both the
waveguides. On considering a similar finite geometry of 40 unitcells with boundaries with
the vacuum. As expected by fixing the values of coupling parameter 6,5 and 615, and varying
the 091 parameter, the edge state spectrum only has trivial edge states.

2.5 Summary of chapter 3

We saw a connection between the symmetries responsible for non-trivial topology and the
lattice symmetries. Moreover, we also saw how engineering particular symmetries induces
topology to the 1D photonic waveguide array, e.g., CS, PHS, s-PHS, but 2-RS alone can not.
We discussed how PHS is responsible for bipartiteness or BPS in the photonic system. How
CS can be viewed in two ways, the first composition of BS and z-symmetric lattice, second,
without BS and z-symmetric, which is achieved by an odd function of z at onsite term. 2-RS
can be thought as a consequence of the presence of a symmetry axis z — —z of the lattice
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with respect to some origin, i.e., z-Ref. Only non-trivial topology comes when there are two
other symmetries along with z-RS, colored region Fig. (2.7). At last, we saw the consequences
of inversion symmetry in 1D to be trivial on topology, similar to 2-RS. In future, we can
think of how complex couplings can be introduced, where our some of the interpretations
will break. Moreover, how symmetries fermionic symmetries can be implemented C? = —1
or ©% = —1. The later symmetry has recently been implemented in the waveguide setup in
the Szamiet’s group (Maczewsky et al. 2018). To the best of my knowledge, C* = —1 is still
missing.
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Chapter 3

Beyond Floquet insulators 1:
Winding regime

3.1 Introduction

After the discovery of the quantum Hall effect in 1980, the most perplexing question was
how can electrons delocalize at the phase transition between quantum Hall plateaus in 2D
in the presence of a disordered potential since this was not in compliance with the Anderson
theory of localization (Anderson 1958). Later, this mystery was resolved in the semi-classical
picture where electrons of some fixed energy or at an equipotential can percolate through the
disorder. The external strong magnetic field directs the direction of the electron wavepackets
inside each equipotential—thus allowing electrons to delocalize instead of undergoing strong
localization. Chalker, Coddington, and Ho (Chalker et al. 1988; C.-M. Ho et al. 1996)
proposed the first solution in this direction, where they proposed an oriented scattering
network model for electron wave propagation on a random network, as sketched in Fig. 3.1.
In this scattering matrix network, the orientation refers to a specific direction of flow. For
instance, here, this preferential direction is a consequence of breaking time-reversal symmetry
due to the external magnetic field. Also, it can be a directed flow of electrons in a lattice in
the presence of an electric field, where electrons only follow the direction of electric field.

N

Figure 3.1: Sketch of a scattering network, where at each scattering node S the number of

incoming arrows are the same as the number of outgoing ones. Thus, preserving unitarity
of S.

In 2013, G. Q. Liang, Y. D. Chong, and M. Pasek (Liang et al. 2013; Pasek et al. 2014)
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proposed a similar scattering model to study the propagation of light inside the coupled-
resonator optical waveguides (CROW) model. In this model, the unitary scattering matrix
represents the coupling between resonators, which stores the local information of transmission
and reflection between the resonators, thus allowing this formalism to address problems
beyond the Hamiltonian formalism or tight-binding models. A similar framework was also
used in the array of acoustic networks (Khanikaev, Fleury, et al. 2015), showing the versatility
of the network and experimental feasibility. The system considered in this framework thought
of as an oriented scattering network. The arrows or links connecting the scattering matrices
have specific orientation for the flows that are from incoming states to outgoing ones.

Interestingly, every continuously time-dependent Hamiltonian can be decomposed into
discrete-time Hamiltonians eq(2.3). These, in turn, can be replaced by successive time-
ordered scattering matrices—thus allowing to formulate this problem in terms of similar
formalism where this order is maintained. However, we restrict ourselves to the periodically
driven system, where such scattering matrices ordering repeats after one period. For instance,
this appears in the quantum domain, where photons perform periodic discrete-time quantum
walks (Kitagawa, Matthew A Broome, et al. 2012). The Floquet operator here after one
period T can be decomposed for N total walks into time-ordered stepwise scattering events
(Up(T) = Sy -+ 51, S; = e5T/N) . This situation can also appear in the classical domain,
where light propagates inside the waveguides networks, the amplitudes of scattering matrices
encode the couplings between the waveguides. Even though in these cases there is no explicit
time, but can still host topological edge modes(Delplace 2019; Delplace, Fruchart, et al. 2017;
Kitagawa, Oka, et al. 2011; Kitagawa, M. S. Rudner, et al. 2010; Clément Tauber et al. 2015).

Beyond theory, discrete-time dynamics have been implemented in different experimen-
tal platforms, ranging from the quantum regime in photonic quantum walks (Kitagawa,
Matthew A Broome, et al. 2012) to the classical regime in the circular fibers (Regensburger,
Bersch, Hinrichs, et al. 2011), waveguide arrays (Rechtsman et al. 2013) and electromagnetic
metamaterials (Khanikaev, Hossein Mousavi, et al. 2013) and in microwaves in coaxial cables
(Hu et al. 2015a), to cite a few.

This chapter is organized as follows. After giving a brief introduction to the oriented
scattering network model, I shall propose four different models in 2D, namely I, 11, I11,
and IV that differ by their symmetries. These symmetries dictate the topological properties
in each model, where all of these models are only realizable in the Floquet regime.

3.2 Scattering network models

As we saw in chapter (1.7) that different photonic setups can serve as platforms to observe
phenomena predicted in solid-state systems. On the contrary, there are specific topologi-
cal properties that are not realizable in the solid-state systems, like topological properties
of non-Hermitian physics, but these scattering network models allow us to explore them.
Interestingly, all different photonic platforms in of sec(1.3) can be formulated in one com-
mon framework, of the scattering network model, where scattering amplitudes encode the
information of coupling among the elements of the network, e.g., among the waveguides
in waveguide arrays. The scattering network model, where scattering amplitudes encode
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the information of coupling among the elements of the network, e.g., among the waveg-
uides in waveguide arrays. To introduce our scattering network model, let us consider a
one-dimensional spatial lattice of periodic discrete-time evolutions represented by oriented
scattering networks, as sketched in Fig. 3.2. In this network, an initial state of a system
is described by the superposition over amplitudes of incoming arrows (or oriented links).
The number of these incoming arrows encodes the degrees of freedom in the system, e.g.,
the different polarization states (horizontal or vertical) of the photon in photonic quantum
walk(Kitagawa, Matthew A Broome, et al. 2012) or the number of waveguides in a unitcell
in a lattice. two oriented links, one going to the right (shown in red) with amplitude g5o3"°"
and another to the left (shown in blue) P> Then the state evolves in discrete time
from top to bottom followed by a unitary scattering process at each time step j denoted by
scattering matrix S;. From here, the respective amplitudes are scattered towards the next

links depending on their orientation of left (blue arrow) or right (red arrow).

T

j+w

-2 -1 l [+1 [+2

Figure 3.2: Two-dimensional oriented scattering lattice where the y axis plays the role of
time and x axis of position. A time period consists of N successive steps represented by N
2 x 2 scattering matrices S;. A phase ¢, is added for the states scattered out of the node j
and propagating leftwards (shown with blue arrows). A dashed black rectangle emphasizes
the unit cell of this lattice.

In addition to these scattering processes, we introduce a phase shift ¢; carried by the
states along each link (Wimmer, Mohammed-Ali Miri, et al. 2015; Wimmer, Hannah M
Price, et al. 2017; Wimmer, Regensburger, et al. 2013), see Fig. 3.2. We only consider a
non-zero phase shift ¢, for the leftward going states (as depicted in Fig. 3.2). The critical
point is that we allow the value of this phase to vary with time j.

Then, the evolution of incoming amplitudes from time step j to 7 + 1 connected through
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the scattering matrix S; can be projected into a pair of equations of the form
af ™t = (cosb;ad, | +ising; Bl )e'” (3.1)
5{“ = (isin Qjoz{_l -+ cos Qjﬁlj_l) ) '

Assuming the particular form for the scattering nodes (or matrix) as

S, = (cosé’j zsméj) ' (3.2)

tsinf@; cosb;

In general case, we can associate a phase to each of the oriented links as gbéeﬁ and qb;ight.
Then employing a gauge transformation of

. 02 P
al — e T l%e3% ] (3.3)

we can transfer the phase from both the links to only one of the links, e.g. to the left
link (shown in blue in Fig. 3.2). Similarly, the phase ¢ could also vary along position [
(Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012), which again using proper gauge
transformation,

~j dng _ii2g ilp g
& — ez T%M1%0] (3.4)

can lead to only time dependence (Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012).

One period of evolution corresponds to the time-ordered product of N such scattering
events (Sy - --51) acting on the initial state, as emphasized by a unitcell with dashed black
in Fig. 3.2. Here, this time ordered product of the scattering matrices after one period is
the Floquet operator. The scattering matrices retain the time periodicity as S; n = 5j.
This network can thus model a 1D Floquet quantum walk. The topological properties
concerning such Floquet operators of these scattering networks have been studied recently
in 2D (Delplace 2019; Hu et al. 2015b; Liang et al. 2013; Pasek et al. 2014) and also in 3D
(H. Wang et al. 2016).

Assuming the discrete translational invariance along x axis, a Bloch-Floquet operator Up
reads as

UF<kx7 {¢]}) = Bmod(NQ)(kx)SND(¢N)----Bl<kx)SID(¢l)u (35)
oika i
Bilk) = (5 o) B = (4 ) pe=( ) 6o

Here, we assume a pattern for the phase shifts of the form ¢; = Q;¢ that preserves the
periodicity of the network, where (); is some rational number that will be specified later.
This ¢ gives us a second-time scale with respect to one drive period N in the network.
Hence, it may look like that the network is not any more periodic in time. However, we
consider the case where variation in ¢ is so small in comparison to the Floquet period N,
that, the long time stroboscopic dynamics can be described by the adiabatically modulated
Floquet operator when continuously varying the phase parameter ¢ € [0,27]. Then, the
Floquet operator Up(k., ¢,{6;}) depends on the quasimomentum along the x direction, k.,
the “synthetic quasimomentum” ¢ and the set of parameters {6;}, where j runs from 1 to N.
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The former k, and ¢ lie at the same footings, thus they constitute a 2D synthetic Brillouin
Zone (BZ), whereas 6; (i.e., coupling parameters) predicts the topological regime. Note
that the Floquet operator depends periodically on its parameters. Moreover, by considering
some of the coupling parameters as other synthetic dimensions could provide an interesting
framework to investigate topology in higher dimensions (e.g., >2).

The synthetic dimension ¢ in the context of photonics comes from two reasons. First,
either by the phase shift of the light beam due to some extra path length that is being
our case, implemented in circular fibers (Regensburger, Bersch, Hinrichs, et al. 2011; Wim-
mer, Mohammed-Ali Miri, et al. 2015; Wimmer, Hannah M Price, et al. 2017; Wimmer,
Regensburger, et al. 2013), and resonator network model (Hafezi et al. 2011). Secondly,
by considering different modes of the resonator (Ozawa, Hannah M. Price, Goldman, et al.
2016)or, the waveguide (Lustig et al. 2019) as a synthetic dimension. Furthermore, it can
also come through quasiperiodicity, where 1D quasicrystal can possess properties of 2D pe-
riodic crystal (Kraus, Lahini, et al. 2012; Kraus, Ringel, et al. 2013; Kraus and Zilberberg
2012; Verbin, Zilberberg, Kraus, et al. 2013; Verbin, Zilberberg, Lahini, et al. 2015). This
case will be similar to our, where mapping to a 2D crystal involves one of the dimension to
behave as an adiabatic parameter. Thus, tuning this parameter in the topological regime can
make the system behave like a topological pump (Thouless 1983), which has been observed
in the photonics domain (Kraus, Lahini, et al. 2012; Kraus, Ringel, et al. 2013; Kraus and
Zilberberg 2012; Tangpanitanon et al. 2016; Zilberberg et al. 2018) and in cold atoms (M.
Lohse et al. 2016; Michael Lohse et al. 2018; Nakajima et al. 2016).

Model I: Wimmer, Hannah M Price, et al. 2017.

Let us consider the above scattering network (Fig. 3.2) in the simple case where N = 2
steps with ¢; = +¢, 92 = —¢. In addition to that, it gives two parameters to tune with,
namely {60;,6,}. Note that the net phase inside the unitcell is zero. Now, by diagonalizing
the Floquet operator eq(3.5), we get two quasienergy bands e (k,, ¢). As shown in Fig. 3.3a,
the quasienergy spectrum ¢ is fully gapless for the critical value of parameters 6,_1 o = /4.

This network generalizes previous models whose topological properties have been investi-
gated experimentally in photonics setups. For instance, when N = 2 and in the absence of a
phase shift (¢ = 0), the model describes 1D photonic quantum walk (Kitagawa, Matthew A
Broome, et al. 2012) and 1D laser-written photonic waveguide arrays in silica (Bellec, Michel,
et al. 2017), in which boundary modes have been observed. For non-vanishing ¢ but still
N =2, with ¢1 = +¢, 92 = —¢ together with the fixed coupling parameters 6,1 o = 7/4,
it describes pair of coupled optical fiber loops in which the Berry curvature was measured
using wavepacket dynamics (Wimmer, Hannah M Price, et al. 2017). We take a step ahead
of (Wimmer, Hannah M Price, et al. 2017), where we allow the couplings to change from (a
critical) value 01 » = 7/4 to arbitrary values, this gaps the spectrum at € = 0, 7, as shown
in Fig. 3.3b.

In this model, the symmetry(s) prevailing can be determined by the Floquet operator

[eq(3.5)].
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Figure 3.3: Bulk bands for ¢ = ¢; = —¢» (a) touching for #;_, , = 7/4 at quasienergy € =0

and 7 (b) gap opening for 0; # 65 at ¢ =0 and 7

UF(kxa¢) - BO(kx)SQDE_Qs)BI(kx)SlD(—i_Qé)a
= B(k./2)S:D'(6/2)B(k./2)5:D(6/2).

eikx/Q 0 - ei¢/2 0
B(k,/2) = ( 0 e—ikz/2>’ D(¢/2) = ( 0 e—i¢/2>'

The Floquet operator eq(3.8) is symmetric under inversion operator P
PUF(k:m ¢)7)—1 - UF(_kxa _¢)
0.Ur(ke, 9)or = B'(k:/2)S:D(¢/2)B" (ks/2)$1.D"(6/2),
= Ur(—ks,—9)

where o, is the standard Pauli matrix.
It is also symmetric under particle hole operator C' = CK

CUrp(ky, 9)C™" = Up(~ke, —0)
oyUr ke, $)oy = Bl(k/2)S1D(¢/2) B! (k. /2)S]D'(¢/2),
= U;(_kx;_(b)'

where o, is the standard Pauli matrix.

(3.10)

(3.11)

(3.12)

(3.13)

It turns out that in the present case for each gapped phase, one can find specific values of
the coupling parameters #; and 65, such that the Floquet evolution operator satisfies another
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symmetry, namely phase rotation (Delplace, Fruchart, et al. 2017), LUpL™! = U with

L (3 eEL) . (3.14)

It follows from this symmetry that the Chern number C;

1 o 0 .
Cj= 4 /BZ dk,de (a—qs(wmakzwﬁ — a—,ﬁ(%l@l%) (3.15)

for each band necessarily vanishes (Delplace, Fruchart, et al. 2017), where 1); are quasi
eigenstates, and therefore, the only two distinct topological regimes one can generate with
N = 2 are either trivial or anomalous. This is confirmed in topological phase diagram for
the above model, as a function of 6,— » in Fig. 3.4.

2

3/2

1/2

0 1/2 1 3/2 2
91/’/T

Figure 3.4: Topological phase diagram showing the presence of anomalous topological
regime (color orange) and trivial regime (color white) as a function of coupling parame-
ters. The boundaries between the two colors corresponds to the closing of the spectral gap
of quasienergy at ¢ = 0, 7.

In 2D with particle-hole symmetry, one expects to have a non-trivial topology. To inves-
tigate it, we determine the edge states spectrum, by considering a similar finite geometry
along the a-direction, as discussed previously. It leads to two boundaries (one at the left and
another at the right), to which we numerically couple another topological regime, making
it periodic along x together with ¢, therefore forming a torus like geometry, as sketched in
Fig. 3.5a. If z runs from 0 to L, then 0 < x < L/2 is chosen in one regime (i.e., one choice
of coupling parameters) and another in L/2 < x < L, with L = 100 or 50 unitcells in each
region. Then the edge states appear at these two interfaces at = 0 and L/2, respectively.
In general, the coupling parameters differ in each region, denoted by 6’_, , in blue region,
and 6,_ 5 in red region (see Fig. 3.5a). However, if both regions are chosen to be the same
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(i-e., same coupling parameters ¢_, , = 0= 2), then there are no topological edge states, as
confirmed in Fig. 3.5b. Then on tuning coupling parameters, they reach a critical point at
;-1 2 = m/4 in each region, leading to band touching at each of the quasienergies ¢ = 0, 7.
However, changing parameters in one of the regions to 6; = 7/4,0y = 7/4 — 0.6 and another
0, = w/4—0.6,0, = 7/4 gives rise to topological chiral edge states in each of the quasienergy
gap € = 0, m, although the Chern number in each band vanishes. This regime is known as
Floquet topological anomalous insulator.

=7x/4-0.6
T =43

Quasienergy
Quasienergy
Quasienergy

]

<3

I
R

0 =

1
I

(c)
Figure 3.5: Calculated bands for a cylinder geometry (a), when both the regimes (¢_, , =
6;=12) (b) are §; = 7/4 — 0.6, 02 = 7/4, which gives trivial insulating regime, (b) the bands
touch at the critical point for ¢_, , = 012 = 7/4 in each region and under go to (c)
anomalous Floquet topological insulating regime when one is ¢ = 7/4,0, = 7/4 — 0.6 and
another 0, = w/4 — 0.6,0, = 7/4.

Interface coupling paramater

There are only two regimes in this model, either trivial or anomalous. This is clearly
confirmed in the edge state spectrum (see Fig 3.5) and more completely in the topological
phase spectrum in Fig 3.4. However, allowing more steps (> 2) can give rise to other regimes,
e.g., a Floquet Chern insulator, as shown in Fig. 3.6, where phase rotation symmetry is
broken.
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Figure 3.6: Floquet Chern insulator for N = 4 time steps, for ¢; = +2¢, ¢ = —¢, ¢1 = 0,
and ¢; = +¢.

3.3 Beyond Floquet Topological insulators

One way to go beyond the usual topological insulators is to continuously deform the bands
in such a way that it would tilt them, and the gap becomes incomplete while the bands
still do not touch. It was proposed in the Lieb lattice model (Palumbo et al. 2015), in the
superconductors (Ying et al. 2018, 2019) and Floquet system(L. Zhou et al. 2016). In that
case, gaps can still host chiral edge states that, in this case, would coexist with bulk states
at the same energy but with different quasimomenta. This gives rise to a topological metal.

More recently, it was proposed that threading a net flux ® through a superconductor in
a cylindrical geometry can break inversion symmetry and lead to such a “metallic regime”
(Ying et al. 2018), as sketched in Fig 3.7b. A similar idea was proposed in periodically driven
cold atoms by breaking inversion symmetry with onsite potential, which leads to topological
phase transition taking place between gapless regimes (L. Zhou et al. 2016). Besides, it was
seen that even in the quantum spin Hall effect, there is a contribution of bulk conductance
to the helical edge states, hence prohibiting exact quantized edge conductance (Knez et al.
2011). It was shown to be connected to the metallic behavior of bulk states along with the
edge states (C.-Z. Chen et al. 2019).

Now, we extend the above idea to the scattering matrix network. Previously, we con-
sidered the case of net phase in the unitcell to be zero, ¢; + ¢ = 0. This condition helps
us to keep intact the inversion symmetry in the model I (see eq(3.10)). We distinguish two
ways to break inversion symmetry in this scattering framework. In one case, we break it by
keeping a net non zero phase inside the unitcell, namely model II. In other words, we break
inversion symmetry along the synthetic dimension by allowing higher asymmetric hoppings
in this dimension in time. In another case, we break inversion symmetry along the real or
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Figure 3.7: Topological transition on changing the flux ® through the unitcell (a) trivial
metal and (b) topological metal, from Ref(Ying et al. 2018)

spatial dimension (i.e., z), namely model III. These two different ways of breaking inversion
symmetry give rise to two different types of topological metallic regimes with specific physi-
cal manifestations. In one case, it gives rise to Bloch oscillations of wavepackets, and in the
other case, it gives rise to a transverse quantized drift of wavepacket motion. This clearly
distinguishes inversion symmetry breaking in synthetic and real dimensions. At the end we
club these two aspects in a single model, namely model IV, to explore complex wavepackets
motion.

3.3.1 Model II: Inversion symmetry breaking in synthetic dimen-
sion and Bloch oscillations
Let us introduce our first model of breaking inversion symmetry in the synthetic dimension
by allowing a net phase in the unitcell.
We consider only two steps N = 2 but with ¢; = +¢ and ¢ = —2¢, as sketched in

Fig 3.8. This existence of a net phase in the unit cell, (i.e. ¢ + ¢o # 0, with ¢; and ¢,
proportional to ¢) breaks this symmetry. This can be shown from eq(3.8), where now

Up(ka, ) = " D92 Bk, /2) Sy D(¢/2) B(ky/2) Sy D(¢1/2) (3.16)

Next we notice that o,B(k./2)0, = B(—k./2) and 0,D(¢;/2)0. = D(—¢;/2) where we
recall that ¢; is proportional to ¢. Therefore, the net phase, in the phase factor in Eq.
(3.16) prevents Ur to be inversion symmetric that is

UxUF(kx7 Qb)O'x 7é UF(_kx; _¢> . (317)

Remarkably, the consequence of this symmetry breaking can be seen on the quasienergy
spectrum ¢, where bands wind in ¢ axis, as illustrated in Fig. 3.3a. This net flux of —¢ is
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Figure 3.8: Two-dimensional oriented scattering lattice for N = 2 successive steps. A phase
¢1 = +¢ and ¢y = —2¢ is added for the states scattered out the nodes S; and S5. The unit
cell of this lattice is emphasized by a dashed black rectangle.

reflected in the negative sign of the “group velocity” Oye of either band for any values of ¢
(see Fig 3.9a).

A winding number, v, can capture the winding of the bands along ¢ axis. For two
steps periodic dynamics, so that the two distinct phase shifts are ¢, = (my/n1)¢ and ¢ =
(mg/n2)¢, where m;,n; € Z. As already discussed by Kitagawa, Berg, et al. 2010, the
winding of the quasienergy bands along ¢ with condition |m;/nq|# |ms/ns|, defined as

1 2my(¢1,42) .
v = 5| de tr [UF 6¢UF}

271y (¢1,42) agp
- Z o / Ao (3.18)

wherein the last equation(3.18), the sum runs over all the bands since the number of bands p is
even, or more precisely, the number of links entering a scattering node, then the winding num-
ber is also an even integer. The v(¢y, ¢2) as T, = 27y(¢1, ¢2) sets the period in the ¢ direc-

tion. It is equal to twice the least common multiple of [(m;/n; — ma/ns) ™Y, (my/ny + ma/ny)~

(see Appendix(5.2)).
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Figure 3.9: (a)Quasienergy spectrum with a winding vy = —2 obtained for #; = 7/4,

0y =7/4—0.6, p1 = ¢ and ¢y = —2¢. (b) Values of v, for integer values of m;/n;.

A direct calculation finally leads to the simple result

_Ls (ﬂ + @> €2z (3.19)

l/¢ =
2 \ ng N9

which remarkably does not depend either on the quasimomentum k, or on the scattering
parameters {0;}. A diagram is representing the different values for winding number v, as a
function of m;/n;, where m;/n; € Z, is shown in figure 3.9b.

3.4 Bloch oscillation induced by time-varying vector
potential

The presence of a net ¢ in the unit cell is connected to the presence of a time varying
potential, this extra phase redefines k, (via Peierls substitution) in Floquet operator as
k — k, where k = k + ¢. Before going to section where we discuss the manifestation of the
winding of bands, we can inspect what an extra ¢ or a time varying vector potential leads
to, since in our case ¢ varies with time (Fig. 3.2). Let us demonstrate it by considering a
1D non-interacting lattice of single atom in a unitcell, denoted as a, as shown in Fig 3.10.
There is a hopping energy .J; between the unitcells, assumed to be real for simplicity. In
addition, there is an electric field E = E,% acting on an electron of charge e. The origin
of this electric field is a time dependent vector potential A = A,z as E = —0A/0t. Using

Peierls substitution, this amounts to multiply J; by a phase ¢ S dat A ),
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Figure 3.10: Lattice model realization of Bloch oscillation due to time dependent vector
potential A.

The Hamiltonian H takes the form

N
H=— qeel 7 A0y (0 41 4 he. (3.20)

Using the translational symmetry in the system, assuming lattice constant to be unity;,
and A,(t) = —E,t. The energy eigenvalues are

E(ky) = —2Jycos(—eE,t+ k). (3.21)

If we consider eFE,t as a parameter, varying very slowly (via slow tuning of ¢), then
eigenvalues in eq(3.21) are well defined. The corresponding group velocity v,

o0& (k,
Ug(k?x) = agf )7

= 2Jysin(eE,t + k) (3.22)

By integrating the above equation(3.22) in time, we get the centre of mass motion tra-
jectory

"9 (k)
Yy _ €z
X (ks t) = /0 T

2
_ ;E’1 {cos (eEut’ + k) — cos (ky)} (3.23)
€Ly

Defining x(t) = eFE,t and for some fix value of k, = k.o, on tuning x(¢), the wavepacket
undergoes oscillations eq(3.23) conserving the initial momentum k.o (Krieger et al. 1986)

The gauge transformation in eq(3.4) shows the equivalence between the position-dependent
phase and time-dependent phase, see eq(3.4). In other words, it a gauge transformation from
the scalar potential (®) to the vector potential (A), this interpretation was missing in the
Ref(Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012).
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Physical manifestation of the winding number v,

We can already inspect the manifestation of the net phase, where a striking consequence
of the winding of the bulk bands is seen in the unconventional dynamics of wavepackets in
position space when adiabatically increasing the coordinate ¢.

0 ]_ 1 -(C)¢=0 I ]
i vy=2 [OF=0 T -
(a)' (b) w O ]
-1 l
000 0 Qo=
1000 F 4F - - - - - - - - -k = = e 0 e — =
\m \_3/’—__\_
— 1
) !
@ n B R Of(e)p=2m ’ 7
2000 L - - &Y=t o _
GE-’ \: L _ - - T - o
SUUY S | M=3n ' —
\:-1‘~ _____ —— T T
Yol N\ |
4000 — ' ' 2 '
0 2 4-1000 -500 0 -1 0 1
d/m Site position 1 k/m

Figure 3.11: (a) Adiabatic increase of ¢ leads to (b) a standard Bloch oscillation (v, = —2) of
a wavepacket injected in the scattering network at time j = 0 and position [ = 0. Colorscale:
intensity (Jo7|2+|67]?) of the wavepacket, injected with a Gaussian shape (with a rms width
of 10 sites) in one band [the blue band shown in Fig. 3.9(a)]. Dashed black line on top of
simulation represents analytical calculation of the centre of mass motion of a wavepacket
from eq(3.23). (b) shows one period T of oscillation for the values of (my, mq, ny, ny),
01, 0y as (1,-2,1,1), n/4, w/4 — 0.5. In (c)-(f), the norm of the 2D Fourier transform of the
wavepacket (« part) after having evolved to the time step indicated by the horizontal lines
in (b), and both the solid and the dashed red lines represent numerically calculated bands
[from eq(5.34)]. The vertical scales differ in each panel, where the green arrows show the
direction in which the bands wind when ¢ increases. The simulations are done by Clément
Evain in PhLAM, Lille.

Figure 3.11(b) shows the m-time evolution of a Gaussian wavepacket injected at m = 0
in the blue band of Fig. 3.9(a) with £ = 0, when ¢ is adiabatically increased from 0 to 4
o(m) = pom, with ¢y = 27/2000 [see Fig. 3.11(a)]. Here, ¢y is the rate of variation of ¢
with time (not to be confused with the one period of Floquet). The value ¢g = 27/2000
means that after 2000 turns, the value ¢ has changed by a value 27. Far from general fact,
it is a matter of choice for experimentalist. To compute the spatio-temporal dynamics, we
apply Eq. (3.1) to the initial wavepacket. The wavepacket periodically oscillates in space
coordinate while keeping k constant. This can be readily seen in Fig. 3.11(c)-(f), where
we show the two-dimensional Fourier transform of the wavepacket after having evolved to
the time step indicated by the horizontal lines in Fig. 3.11(b). These panels provide an
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understanding of the mechanism behind the oscillations: as ¢ is adiabatically increased, the
band dispersions are displaced in a diagonal direction in quasienergy-k space [green arrows in
Fig. 3.11(c)-(f)], a direct consequence of the winding of the bands. Therefore, a wavepacket
with a given k is subject to group velocities that change sign when ¢(m) increases, resulting
in periodic oscillations in the spatial coordinate. Even though the simulations are done for
k = 0, however, different choices of k, will only result in a phase (or vertical) shift of the
oscillations. A simple example demonstrates this after the end of this subsection.

An analytical calculation of the center of mass motion of the wavepacket centered at a
given k, can be deduced from the group velocity in parameter space (see Appendix(5.2))

Xzt = [ ar2ellol, (3.24)
o) N

where ¢(7) = ¢o7 varies linearly, and the continuous time variable ¢ extrapolates the discrete-
time m, this semi-classical trajectory, shown in dashed black lines in Fig. 3.11(b), fits the
simulation plot perfectly. Moreover, the period of Bloch oscillations Tz comes from the
period of X, which in turn comes from quasienergy periodicity in ¢, thus 75 = Ty /¢o. This
directly relates the Bloch oscillations period to the quasienergy winding number via eq(3.19)
as

Ty = XV (3.26)

¢0 (ﬂ + m)
ni n2

The physical origin of these oscillation comes from the fact that the modulation of the
phase shifts ¢ along the propagation is analogous to a time-varying vector potential acting
on a charged particle of unit charge in a lattice that induces a (fictitious) electric field E on
it. One thus expects that a wavepacket corresponding to this charged particle is subjected
to the resulting electric force to be displaced accordingly in the lattice, finally leading to
Bloch oscillations with period T = 27/ E. We recognize in eq(3.26) the (fictitious) average
electric field as E' = (Ey+ E»)/2, where E; = ZL—;% for time step j. Interestingly, the winding
number v, modifies this expression. Thus, higher winding numbers will not only change the
oscillation period but will also yield more stationary points within the period. Remarkably,
these number of stationary points Mg in a Bloch period is precisely

Ns = |yl (3.27)

which bestows a topological property of Bloch oscillations. Fig. 3.11 shows the standard
Bloch oscillation with Ng = |vg|= 2, and the more exotic oscillations with Ng = |v4|= 6,8
are shown in Fig. 3.12. The opposite sign for vy will give rise to the trajectory in out of phase
to their counterpart. The Fig. 3.13 shows an interplay of winding number, Bloch period,

and the net phase in the unitcell Am/An = <m + m)

ny ng J°
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3.5 v, can always be connected to Bloch oscillations

We can demonstrate the presence of winding and Bloch oscillations in a very intuitive model.
Let us consider a 1D non-interacting and periodically driven lattice with period 7', composed
of two atoms in a unitcell, denoted by a and b, as shown in Fig 3.14. Here, one driving period
T constitutes three steps. At first step, time t = 0, there are no hoppings but a non-zero
potential V, for atom a. A second step, t = T'/3, there is only hopping .J; within the unitcell.
At the final step, t = 27'/3, there is only hopping Jo between the unitcells, all hoppings are
assumed to be real for simplicity.

Vl a Vl a Vl a

Vlu
o<z @ ® @ ® @ e O

N\ 7 N\ N\ 7 N\
13<t<273 @ @ a b a b a b
~_ ~__— N ~

<< @ @ © @ © O @ O

X x+1 x+2 x+3
Figure 3.14: Lattice model realization of Floquet winding bands.

The stepwise Hamiltonian along with respective evolution operator under translational
symmetry comes out to be

(Ve 0 _ imTys_ (€790

H = < . 0) L Ui=ce (% (3.28)
. 0 Jl _ —iHT/3 __ COS 01 —18in 01

Hy = <J1 O) » La=e - \—isinf; cosb, (3.29)

. — 0 Joeika U — o tHsT/3 _ cos B, —ie™*= sin 6,
3 Jye ke 0 » 3 —ie~ "%z gin @, cos 0, '

(3.30)

where 0; = J;T/3 and ¢, = V,T/3. Note, that we have evaluated the evolution operator only
at their respective or fix times, instead of evaluating them at stepwise time interval. For ex-
ample, Uy should have been written for time interval 7'/3 < t < 27'/3 as e~ H2(t=T/3)e=HT/3,
We are interested in the Floquet operator, so we do not specify evolution operator in this
stepwise evolution form.

Then the Floquet operator is Up = U3UsU;. This asymmetric net potential V, in the unitcell
breaks the inversion symmetry of the evolution operator. It is reflected in the winding of the
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bulk quasienergy bands, as shown in Fig 3.15. Similarly, the consequence of these windings
are the wavepacket oscillations, while the origin is the same the fictitious electric field. We
demonstrate it,

Us = e 9/2B(ky/2)S3B (k2 /2)D(¢a/2)S1, (3.31)
e~ /2 B(k,/2)Sy B (k,/2)S, (3.32)

where B and D are defined in eq(3.9) In the last equation(3.32), k,/2 = (ky + ¢4)/2 has
been re-defined, which can be linked to the presence of a vector potential (p, — p. + ¢A,).
Moreover, this equation separates into two parts— one is the “winding factor” e=**+/2_ and the
other is a sinusoidal periodic term f(k,, ¢,), this is reminiscent of the non-winding version.
This former part results into the winding of the quasienergy bands eq(3.19), which in the
scattering case was ¢'(?1792)/2 for the non-zero winding condition (¢, =)@, + ¢2 # 0.

JT

Quasienergy
<

b_1 K/TT
0 1 2 3 4
Q51T

Figure 3.15: Quasienergy spectrum showing winding along ¢,.

There is another type of winding which does not give rise to any oscillations, and we
call it winding regime of type 2. One way to engineer this regime is by restoring inversion
symmetry in synthetic space while keeping non-zero onsite potential. For instance, in our
previous example of winding in the Hamiltonian model, for the first time step, we introduce
the same potential V, for both atoms, see eq(3.28), it helps us in restoring inversion symme-
try in the synthetic dimension (see eq(3.10)). Now, U; = e¢®e1, (1, is the identity matrix).
This factor directly adds to the quasienergy', which gives rise to a winding along the ¢, axis.

e = Zj ei(s-f+¢“)73j, where P; is a projector onto band j.
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Thus, in the general situation, we can have two types of winding regime, as summarized

in this table:

Properties

Winding regime of type 1

Winding regime of type 2

1. Inversion symmetry
(responsible symmetry)

Breaking along synthetic axis
with net potential in the unit-
cell.

Preserving along synthetic axis
with net potential in the unit-
cell.

2. Consequences

Bloch oscillations for fixed

quasimomentum.

Absence of oscillations.

3. Physical origin

Presence of a fictitious electric
field E, generated by a time
varying vector potential A.

Absence of fictitious electric
field E or vector potential A.

4. Implementation (at
the level of Hamiltonian)

At first time step, introducing
asymmetric potential V, # V,
(see the model and eq(3.10))

At first time step, introducing
symmetric potential V, = V,
(see the model and eq(3.10)).

3.6 Eigenspace anholonomy

Interestingly, if we look at closely the Floquet operator in eq(3.5), it is always periodic under
¢; + 2pm, where p € Z

Up(ky, i +2pm) = B(ky/2)S2D (¢ + 2pm) B(k,/2)S1D(¢1 + 2p7),

Up (ks ¢3). (3.33)

However, this is not the case for the quasienergies when they wind. For instance, when
¢1 = +¢ and ¢ = —2¢, they are periodic after 47, e(¢ +4pm) (see Fig 3.9a and a derivation
in Appendix(5.2)). On the other hand, let us consider the quasienergy spectrum over a
period of Ug, as shown in Fig 3.16. To begin with, if initially the system is in eigenstate
|W,eq(kzo, @) at some fix k, = kyo, then by changing ¢, we follow the blue arrow going
towards the blue-colored band, and it appears at the other (blue colored) band. In other
words, we have parallel transported an eigenstate |W,eq(kzo,® + 27)) = |Wpie(kzo, @)) to
its orthogonal state. This has been referred to as eigenspace anholonomy or eigenspace
holonomy (Cheon 1998; Miyamoto et al. 2007; Tanaka et al. 2007; L. Zhou et al. 2016). It is
completely different from the Wilczek-Zee’s phase holonomy (Wilczek et al. 1984), which is
concerned with the change of an eigenvector in a degenerate and single eigenspace in which
the eigenvector can rotate due to degeneracy. Moreover, holonomies also appear when a
system is prepared in its eigenstate, assumed to be non-degenerate and discrete. Tuning
a parameter of the Hamiltonian adiabatically, the system remains in the eigenstate due to
the adiabatic theorem(Born et al. 1928). However, when the parameter returns to its initial
value, after traversing a cyclic path adiabatically, the final and initial states differ by a
phase. This phase difference contains two pieces of information: one about the dynamical
phase and the other one of the geometric phase. This later phase is also referred to as phase
holonomy or, more commonly, the Berry phase(Berry 1984), while in this case, the eigenstate
remains the same (up to a phase) after one adiabatic period, but it the eigenstates changes
in eigenspace holonomy.
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Figure 3.16: Quasienergy spectrum of Fig 3.9a over a period of 27 in ¢ of 2Up.
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If we symmetrize (as we did in eq(3.8)) the Floquet operator expression eq(3.33), we get

Ur(ky, di) = 2Bk, /2)S,D(d2/2) Bk, /2)51D(¢1/2),
@927 (K, b4). (3.34)

where D(¢;/2) is defined in eq(3.9). Whenever, (¢1 + ¢2)/2¢ is an integer this discrepancy
of periodicity under ¢ does not arise. Both quasienergy and Floquet operator share the
same periodicity of 27 this is the case in model I, where ¢; + ¢ = 0. However, if this
does not hold as in model /1, then we can expect eigenspace holonomy as per the Floquet
period consideration. On the contrary to all of this, we showed that the periodicity of
quasienergy under ¢ could not be explained directly from the Floquet operator, instead,
from (the analytical, if exists) the quasienergy expression, which was not considered in the
past works, Miyamoto et al. 2007; Tanaka et al. 2007; L. Zhou et al. 2016.
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Presence of chiral edge states Model 11

Quasienergy &/t
Quasienergy &/t

(b)

Figure 3.17: Quasienergy in cylindrical geometry bands (a) when both the regimes are
0, = /4 — 0.6,0 = w/4, which gives trivial insulating regime and (b) anomalous Floquet
topological insulating regime when one is ¢, = n/4,0 = w/4 — 0.6 and another 0; =
/4 —0.6,6, = 7/4.

The Floquet winding regime combines two distinct topological properties— the winding
of bulk bands, as we saw, and the existence of chiral edge states that we discuss now.
Accordingly, a topological transition can be induced in this regime on top of these robust
winding of bulk bands. This, in principle, could already be inferred from the discussion of
the model I with inversion symmetry in the section(3.2), exhibiting the chiral edge states
shown in Fig. 3.5. The only thing we have done so far is breaking inversion symmetry in the
synthetic dimension, which does not affect the topology (Fu et al. 2007) while still preserving
particle-hole symmetry. Thus model II shares the same topological phase diagram as that
of model I (see Fig. 3.4).

To investigate the second topological property, we consider the edge states spectrum,
in a similar finite cylindrical geometry, finite along z-direction while periodic ¢. If both
regions in this geometry are chosen in the same topological regimes by proper choice of
coupling parameters (from the phase diagram in Fig. 3.4), then there are no edge states. It
corresponds to the trivial regime shown in Fig. 3.5b. The Floquet anomalous topological
regime, in contrast, exhibits chiral edge states in each indirect quasienergy gap. Indeed,
even though the spectrum in this regime is fully gapless, in the sense that for any values of
the quasienergy, there exists an allowed bulk state, the bulk quasienergy bands e(k,, ¢) in
the synthetic Brillouin zone are separated and do not touch. The chiral edge states remain
topologically robust under the perturbation in the interface coupling parameters. Moreover,
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the winding regime still keeps the phase rotation symmetry (Delplace, Fruchart, et al. 2017)
of the insulating regime, implying that the Chern number vanishes identically for each band.
It gives rise to only the two distinct insulating regimes aforementioned (see Fig.3.17).

The presence of chiral edge states in the winding regime manifests one remarkable feature.
In this regime, all the states have a “synthetic group velocity” with the same sign except
for the chiral edge states localized on one of the two edges, shown in red and marked by a
black arrow in Fig. 3.17b. This peculiar property results from the interplay of two distinct
topological properties, namely the winding of the bulk bands and the chirality of the edge
states that have to be reversed for the two edges.

3.6.1 Model III: Inversion symmetry breaking in spatial dimen-
sion and Thouless pumping

A winding of the quasienergy bands along k, can similarly be obtained by breaking inversion
symmetry in the real spatial dimension. In a simple model with two time-steps, this can be
achieved by connecting to the next nearest nodes of the network, as sketched in Fig. 3.18.
The first time step matches with previous models, where scattering nodes S; at time j are
connected to their nearest neighbor nodes S at time j + 1. However, it differs at the second
(or final) time step, where right going arrows (in red) link to the next-nearest neighbor
nodes but keeping the nearest-neighbors along left. This changes the evolution equations of
motions for the scattering amplitudes at two steps, thus allowing us to write a more general
equation for the two steps as

- . o ‘ n
O‘g+l1 = (cos Qjoz{HZ + ¢ sin 9j5;+l2)e’¢1
o o ‘ ,
Bl = (isin;a),, +cosb;fl,, ), (3.35)
42 TR TR
oz{+l3 = (cos 9j+1a{+zl + i sin 9j+1ﬁ{+ll)ez¢7+l
j+2 - i1 j+1
Bis, = (isinbjn00], +cosfinB,). (3.36)

Here [; are the links connecting the scattering nodes at time step j +p—1 to j + p, for some
integer p. We can again define [; in terms of r;/s; as,

o la — 13

S1 N 2 ’

T2 (lg - lg) + (lo - ll)

= = 3.37
- - , (3:37)

Previously, there was only one compact evolution equation for the amplitudes for two-time
steps (see eq.(3.1)). Due to the asymmetric nature of couplings at the two-time steps in
model 11, the evolution equations split at these time steps. The above relations in eq.(3.37)
quantify these anisotropic couplings at the those time steps. For our present case, the link
parameters are respectively as [p = —2,1; = —1,ly = 0,l3 = —2,l; = —5. This gives
r1/s1 = 1 and ry/s9 = —2. These following parameters r;/s; characterize the anisotropy in
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Figure 3.18: Two-steps scattering network implements the next nearest coupling in the
second step. A dashed black rectangle emphasizes the unit cell of this lattice.

the coupling that connects the nodes at time j. These are equivalent to m;/n; parameters
in the former case of a winding in ¢. Thus, this anisotropy in the couplings breaks inversion
symmetry in the spatial dimension, as can be seen from eq(3.10). This breaking reflects in
the winding of the quasienergy bulk bands along k,, as shown in Fig.3.19.
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Figure 3.19: Floquet quasienergy bands winding along the quasimomentum axis k,, an

implication of inversion symmetry breaking in spatial dimension, for (a) v, = —2 for ¢; = +¢,
o = —2¢, and (b) vy = +6 for ¢, = +4¢, ¢ = —0¢.

This winding of the bulk bands can be captured similarly by a winding number. The
linking of nodes at two-time steps amounts to say ky = (r1/s1)k, and ko = (r9/s2)k,, where
i, 8; € Z depend on the lattice geometry, and with |ry/si|# |ra/sa|. The winding number of
the quasienergy bands along k, then reads

I
ve = — | dkotr [U;lakm UF} €2z (3.38)
2w J,
where T}, = 27my(ky, ko) sets the length of the Brillouin along k, and it is equal to 27
times twice the least common multiple of [(r;/s1 —72/s2)7 , (r1/s1 +1r2/82)7 1] (see Ap-
pendix(5.2)). A direct calculation leads to the expression

T,
vy = =& (ﬂ + 9) . (3.39)

2 S1 S9
similar to that obtained for v, (see eq.(3.19)). The bulk quasienergy bands in Fig. 3.19
carries different winding number given by above equation3.39, where Fig. 3.19a shows for
winding number v, = —2, and Fig. 3.19b for v, = +6.

Physical manifestation of the winding number v

Similarly to the case of the winding of the quasienergy in ¢, the Floquet operator can be
thought of as being made up of two factors (see eq(3.32)). The first one is the reminiscent
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of non-winding ,we denote this by f(k.,¢). Another factor is arising from the winding (or
71/81+179/52 # 0) part, of the form e*1:k2) where g(ki, ky) = g(r;j/sj)ks (exact form can be
found in Appendix(5.2)). This latter part is the one that directly adds to the quasienergy
€ =e+g(rj/sj)ky. This gives the group velocity as

0¢ Oe

Ok, Ok,

+9(r/55) (3.40)

A striking consequence is a quantized transverse drift of a wavepacket in position space (this
comes from g(r;/s;) > Oe/Ok,). This quantized transverse drift ()7, of the center of the
mass of the wavepacket in the n'® band is directly related to the winding number v, (see
eq(3.39)) (Kitagawa, Berg, et al. 2010).

One Floquet period T
N

43210 1 2 3 4 5 6
Site location /

Figure 3.20: Quantized displacement of the mean particle position with associated winding
numbers v.

@ = [ [ b el ) (3.1

B m/o a7 / e (s O UFMH (t, ), 2U 0 (50))  (342)

Tk
dk, .
= | g Onlk O)Up OUr[vn(k; 0)) (3.43)
2w n
= —ﬁmy,(c) (3.44)
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where we used the Heisenberg picture, & = 0H/0k = i[H, %], to get this final elegant answer.
This expression connects the mean particle position in the n** band to the winding number
of n'"* band, i.e.,u,ﬁ") times the stroboscopic time m.

Such a drift was introduced initially by Thouless but in a completely different context,
where the pumped current quantization roots in the first Chern number of the instantaneous
states of the adiabatically driven periodic Hamiltonian parametrized over the synthetic Bril-
louin zone span by (¢, k). The big difference between the Thouless pump and our model III
comes by considering the semi-classical motion equation of wavepackets (see eq.(3.23)). In
the semi-classical equation of motion, the evolution equation of a wavepacket has two main
contributions: first, the group velocity part, and second, the Berry curvature part, which is

coming from adiabatic correction (from perturbation theory) (Xiao et al. 2010). This gives

for our model Be(k p
o _ %k0)  D00m ) (3.45)

group velocity — Ok ot

In our case, the first term characterizes the winding number v, (or vy) in eq.(3.39), while the
second term characterizes the Chern number for Thouless pump. Besides, our case is not
adiabatic for the transverse drift case as it takes the Floquet time (m7') as an input, while
the Thouless case is an adiabatic pump. Moreover, for the Thoules case, if we consider an
example of two bands, then the value of the total Chern number should vanish. Hence, each
band will have an opposite Chern number (or Berry curvature in above expression eq.(3.45)),
which means both bands experience opposite transverse force. On the contrary, in our case,
there is no such restriction since both bands share the same topological invariant.

Importantly, the winding in ¢ (by breaking inversion symmetry in synthetic dimension)
can also be engineered at the level of a stepwise time-dependent Hamiltonian (Gong2016)
(see Fig 3.14). In contrast, a quasienergy winding in k, (by breaking spatial inversion
symmetry) requires the presence of a momentum dependent potential (as can be seen from
eq(3.28)), which is far from being trivial to engineer. Kitagawa et al. (Kitagawa, Berg, et al.
2010) proposed a 1D non-interacting spin-1/2 chain model on a lattice. In this model, there
is a time-dependent lattice potential which only affects the spin of one kind, say spin up, and
moves slowly to the right, such that after one full modulation, it shifts by exactly [ times
the lattice constant, where [ is an integer. Then by adiabatically modulating this potential,
it moves the spin-up particles from a un<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>