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Abstract

Photonics has emerged a platform where electromagnetic waves (or photons) propagate in-
side a crystal (like Bloch waves) formed by the underlying discrete degrees of freedom, e.g.,
waveguide arrays. These waves cannot propagate if the incident frequency lies within the
so-called photonic bandgap, then these waves are known as evanescent waves. Thus, the
crystal behaves as a reflector to these waves. However, if there are modes for which there
exist boundary waves that connect the bandgap, then these waves can exist at the boundary
without leaking into the bulk. This is analogous to the chiral motion of electrons at the
quantum Hall edges, with an extra ingredient of time-reversal symmetry breaking in pho-
tonic crystals via some gyromagnetic properties of the sample, or inherent time dependence
of the system. In the latter case, when the system, specifically, driven periodically then the
more exotic non-equilibrium phases can also be observed in these lattices.
In this work, we explore the topological properties in these periodically driven photonic
lattices. For instance, how fundamental symmetries, e.g., particle-hole symmetry, can be
implemented to engineer topology in 1D. We find a connection between crystalline symme-
tries and the fundamental symmetries, which facilitate such implementation. Moreover, a
synthetic dimension can be introduced in these lattices that simulate higher dimensional
physics. The difference between synthetic and spatial dimension becomes apparent when
a specific crystalline symmetry, like inversion, is broken in these systems. This breaking
changes a direct bandgap to an indirect one which manifests in the winding of bands in
the quasienergy band spectrum. If it is broken in the synthetic dimension, it results in an
interplay of two topological properties: one is the winding of the quasienergy bands, and the
other one is the presence of chiral edge states in the finite geometry. This former property of
winding manifests as Bloch oscillations of wavepackets, where we show that the stationary
points in these oscillations are related to the winding number of the bands. This topological
property can thus be probed directly in an experiment by the state-of-art technology. How-
ever, if this symmetry is broken in the spatial dimension, the winding of bands manifest as
a quantized drift of mean position, which is still characterized by a winding number of the
bands. Furthermore, we show that a different gapless regime can also be engineered while
preserving the inversion symmetry. In this regime, the topology can be captured by enclos-
ing the degeneracies in parameter space and calculating the Berry flux piercing through the
enclosed surface. In this case, some of the degeneracies can host chiral edge states along
with other protected ones at the same quasienergy.
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Chamonix with Shweta, Nupur, and Santosh; Nice birthday cake form Lina and Yeraldinne;
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Chapter 1

Introduction

1.1 Topological insulators and beyond

The most remarkable discovery of QHE (Klitzing et al. 1980) has opened the field of topolog-
ical insulators. It showed the presence of a phase transition which cannot be explained by the
versatile Landau theory of symmetry breaking (Landau 1937). Later, Thouless showed that
one could obtain a similar 2D topological insulator by introducing an adiabatically varying
potential V (t) to a 1D system (Thouless 1983). The similarity between both comes from the
fact that the same Chern number C distinguishes the topological phases. In the first case, C
predicts the number of non-trivial chiral edge states, and its sign dictates their direction of
motion (or chirality). In the Thouless case, it corresponds to the amount of charge pumped
after a period T, where V (t+T ) = V (t), and sign (of C) corresponds to the direction of the
charge pumped with respect to the direction of variation of the potential. It can be inferred
from both the cases how a topological number (i.e., Chern number) manifests and can be
probed experimentally by measuring an observable quantity, namely, the Hall conductance or
the quantized number of pumped particles. This connection between the topological invari-
ant and the presence of edge states is the most remarkable signature of topological systems,
also known as bulk edge correspondence (Hatsugai 1993a,b; M. S. Rudner et al. 2013). In
2005, Kane and Mele predicted another example of topological insulator in the 2D fermionic
system, but in the absence of magnetic field with strong spin-orbit couplings, known as the
quantum spin Hall effect (Bernevig, Hughes, et al. 2006; Bernevig and Zhang 2006; Fu et al.
2007; Kane et al. 2005; J. E. Moore et al. 2007; Roy 2009), which was later confirmed
experimentally (Hsieh et al. 2008; König et al. 2007; Roth et al. 2009). In contrast to the
QHE, where the magnetic field breaks time-reversal symmetry, the quantum spin Hall effect
restores it. Later, more other discoveries like 3D topological insulators showed the connec-
tion between the presence of topological insulators and symmetries. That posed a question:
how many distinct topological insulators do exist in nature? Altland and Zirnbauer took
a step in this direction in their seminal work (Altland et al. 1997; Kitaev 2009; Zirnbauer
1996), where they identified 10 symmetry classes responsible for giving non-trivial topolog-
ical insulators depending on the dimension of the system. This classification contains SSH
model (Su et al. 1980a) in 1D, QHE and quantum spin Hall effect in 2D(Bernevig, Hughes,
et al. 2006; Bernevig and Zhang 2006; Kane et al. 2005; Klitzing et al. 1980; Thouless et al.
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1982), and 3D topological insulators (M. Zahid Hasan et al. 2011; Joel E. Moore 2013), just
to say few.

The search for distinct topological phases motivates us to look beyond the static regime.
To go beyond the Thouless pump, where time varies adiabatically, one needs to consider
general time dependence (e.g. diabatic). The next right candidate (or regime) became
apparent to be periodically driven systems. Remarkably, there exist many domains to sim-
ulate the topological behavior in this regime. For example, in artificial systems, a periodic
discrete-time quantum walks in 1D (Asbóth 2012; Kitagawa, M. S. Rudner, et al. 2010); in
optical lattices, where atoms are trapped by lasers to simulate a solid-state system, it gives
more flexibility and controllability1, which facilitated the first experimental implementation
of the Haldane model by circular modulation of each lattice position (Jotzu et al. 2014).
The same setup of optical lattices allowed to theoretically propose to observe the fractional
quantum Hall state of atoms by combining periodically time-varying quadrupolar potential
(V (t) = Vqp sin!t) and modulation of tunneling in time (by varying the laser intensity)
(Sørensen et al. 2005). There are several other techniques to drive the system periodically,
e.g. by injecting an electromagnetic wave to a quantum system. That in turn can induce
topology to the system, which otherwise is absent. If this electromagnetic wave is circularly
polarized, then it can gap the Dirac cone in graphene, it gives rise to photoinduced (changing
the laser intensity with time) dc Hall current (Oka et al. 2009), this photoinducing can tune
a conventional insulator into a quantum spin Hall system (Inoue et al. 2010). There are sev-
eral other studies that have shown the richness of this regime, more specifically on irradiated
graphene Ref (Calvo et al. 2011; Delplace, Á. Gómez-León, et al. 2013; Á. Gómez-León et al.
2014; Sie et al. 2015). In the case of quantum systems, it was predicted that by irradiating a
semiconductor well can give rise to a non-equilibrium phase, known as “Floquet topological
insulator” (Netanel H Lindner et al. 2011), which was later confirmed experimentally (Mah-
mood et al. 2016; McIver et al. 2020; Y. H. Wang et al. 2013). An early review article can
be found in Ref (Cayssol et al. 2013).

Topological phases are not only restricted to solid-state systems but other systems. The
reason being the topological properties are captured by topological invariant, e.g., Chern
number emerges from single-particle formalism, and another vital element comes from the
underlying wave nature, e.g., electron waves in quantum systems. These two ingredients
together rendered to look for non-trivial phases beyond the quantum domain. It is ascer-
tained in numerous classical systems. In particular in the photonics, Raghu and Haldane
(Haldane et al. 2008; Raghu et al. 2008) theoretically proposed to implement the QHE in
photonics. That was later observed in photonics in a 2D photonic crystal (Zheng Wang et al.
2009), quite recently, the Haldane model has experimentally been observed in coupled ring
resonators (Mittal et al. 2019). In the case of periodically driven systems using photonics
waveguide arrays, it leads to the observation of first of its kind “photonic Floquet topological
insulator” (Rechtsman et al. 2013). The examples also emerged in other classical systems,
e.g., in acoustic waves (Fleury et al. 2016), geophysical or astrophysical flows (Delplace,
Marston, et al. 2017; Perrot et al. 2019), active matter (Shankar et al. 2017; Souslov, Das-

1As one can generate different lattice geometries by changing the angles, wavelengths and polarizations
of laser beams
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biswas, et al. 2019; Souslov, Zuiden, et al. 2017), just to say few. Surprisingly, as driving can
induce novel topology, introducing a disorder to otherwise a clean system can also induce a
non-trivial topology. For example, topological Anderson insulator was predicted in a static
case (Groth et al. 2009; Guo et al. 2010; J. Li et al. 2009; C. Liu et al. 2017) and later also
shown to be present in the periodically driven systems, known as Floquet Anderson insulator
(Titum, Berg, et al. 2016; Titum, Netanel H. Lindner, et al. 2015). Despite the disorder,
the topology manifests with the presence of enhanced transport at the edges, which was
confirmed in the photonics experiment by the observation of photonic topological Anderson
insulator (Stützer et al. 2018). In parallel, this promised to extend the domain of topology
from regular crystalline structure to the amorphous solid, since topological edge states are
protected against weak disorder. These symmetry protected edge states still exist up to some
lattice density with random lattice points (Agarwala et al. 2017; Costa et al. 2019). Very
recently, photonic topological edge states in the amorphous regime have been experimentally
observed(P. Zhou et al. 2020).

Nevertheless, the topology is not restricted only to systems with gapped spectra, where
all the above examples fall. It also extends to the gapless regime. This lead to the search to
look for topological properties of waves inside the crystals beyond conventional topological
insulators (M. Z. Hasan et al. 2010; Xiao et al. 2010). They can be semimetals and even
metals (Armitage et al. 2018; Bahari et al. 2019; Burkov 2016; Kumar et al. 2019; S. Sun
et al. 2020; Y. B. Yang et al. 2019; Ying et al. 2018, 2019; Z. Zhu, Winkler, et al. 2016).
These topological gapless materials, unlike insulators, do not possess any well-defined gap,
and in literature, all of these come under the same umbrella of topological metals (Armitage
et al. 2018).
Topological gapless material classification according to various features (S. Li et
al. 2020):

• Firstly, it can be based on the dimensionality of the band crossings near the Fermi
energy, as shown in Fig. 1.1.

– For example, for a 3D material, the band crossing can namely be nodal-point
(0D) (Burkov et al. 2011; Koshino et al. 2016), nodal-line (1D) (Fang, Weng,
et al. 2016; Koshino et al. 2016), and nodal-surface (2D) (Wu, Y. Liu, et al. 2018)
topological metals.
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originating from the difference in their Fermi surface. For types-I, it is a Fermi
point, and for types-II, there are Fermi pockets(Soluyanov et al. 2015).

• Lastly, based on the topology. When there is an indirect gap, they can be classified
according to the global topology of their spectrally isolated bands over the Brillouin
zone Fig. 3.73(Palumbo et al. 2015; Ying et al. 2018, 2019). When there are no gaps
(direct or indirect), they can be characterized locally by the robustness of their nodal
points or lines, that is somehow analogous to topological defects in reciprocal space.

– For example, in Weyl semimetals, the degeneracy (or nodal point) is completely
robust against any Hermitian disorder. These nodal points are monopoles of Berry
curvature, and their robustness can be quantified by defining a Berry flux piercing
through a closed surface in momentum space enclosing them (G. E. Volovik 2009).
However, if there is a well-defined gap (direct or indirect) topology can be defined
using standard tools, where the topology is captured by the full Hamiltonian4.

3Since, by restoring inversion symmetry one can define a meaningful topological invariant—in other words,
continuously deforming the bands without crossing the transition point.

4The full Hamiltonian refers that it is not approximated like in Weyl semimetal, where it is linearized
around the band touching.
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1.2 Outline

The Fig. 1.5 shows a heuristic topological classification. If we follow it then, firstly, the system
can be classified based on Hamiltonian time dependence, if there is no time dependence we fall
in stationary regime, whereas if the Hamiltonian is periodic under time H(t + T ) = H(t),
then it falls in Floquet class. Then these classes can be further divided based on their
spectrum, i.e., if the system posses any gaps, then it can host a topological edge state.
In the case of the Floquet system, the gapped phase can be further subdivided into two,
where topology in one case is quite similar to the static systems, and it is determined by the
effective Hamiltonian. The other class has no analog in the static regime, and it is specific
to the Floquet systems (M. S. Rudner et al. 2013). There is also a similar relation between
symmetries and the dimension of the system in the Floquet system (Roy and Harper 2017),
like AZ classification. I will present in the second chapter how these (abstract) symmetries
(e.g. particle-hole) can be engineered in the photonic waveguide arrays, whose introduction
shall follow in the next section. The spectrum here still possesses a well-defined gap.

Now, if the system is gapless, which means there are bulk states at each energy. Then for
the stationary case, this can happen if the system initially has a well-defined gap, where the
two bands are well separated in energy, then by breaking some symmetry(s), for instance,
inversion symmetry, the spectrum can continuously deform into an indirect gap along with
the edge states. If we define a Fermi level in the gap when there was a direct gap, then in
the indirect case, the contribution at the Fermi level not only comes from the edge states but
also the bands. Surprisingly, the situation in the Floquet system is very interesting, where
both the quasimomenta axis and the (quasi-)energy axis are periodic. I shall present a situa-
tion in 2D in this regime of inversion symmetry breaking in chapter third, where the system
under consideration will show the fully gapless spectrum and wind in BZ. It may fall in the
fourth class of the gapless classification (of the previous section), where all the bands have
the same sign for the group velocity of the bands but with no counterpart in the stationary
regime. Moreover, this symmetry can be broken along a spatial dimension or some synthetic
dimension, the bulk spectrum does not seem to differ, but the topological properties manifest
differently. There are many platforms to realize this Floquet phenomenon like photonics,
acoustics, or ultracold atoms, I primarily stick to the photonics. Unlike in the electronic
systems where standard conductivity experiments can probe this indirect gap (Ying et al.
2018), I present in the same third chapter how in the photonics, these two different inversion
symmetry breaking cases, namely spatial and synthetic can be implemented and how their
manifestation can be probed.
Moreover, the gapless situation can also appear through the presence of robust degeneracies.
In the stationary case, the well-known examples are the 3D Weyl semimetals, whose topolo-
gies are captured by their degeneracies in momentum space. I will present a similar gapless
regime example in the 2D Floquet system, whose topology is captured similarly in chapter4.
I present two systems, where one breaks inversion symmetry to show the gapless phase and
another show gapless regime while preserving the inversion symmetry.
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1.3 Photonics

The photonics (Joannopoulos J. D. et al. 2008) has emerged as an eminent platform to
engineer and probe topological properties of waves. The topological properties like chiral edge
states, were first predicted and also observed in condensed matter systems, which then spread
to many domains, e.g., photonics (Haldane et al. 2008; Raghu et al. 2008), acoustics (Fleury
et al. 2016), metamaterials (Krishnamoorthy et al. 2012), circuits (Lee, Imhof, et al. 2017),
cold atoms (Cooper et al. 2019), and many more. We consider one such platform, namely
photonics, where similar topological properties were seen, e.g., unidirectional propagation of
light in photonic crystals (Rechtsman et al. 2013; ZhengWang et al. 2009). Photonics is a vast
field in itself where periodic arrangements of dielectric materials can form a lattice and guide
the motion of photons, and these dielectrics are analogous to atoms in a lattice. These lattices
can host topological edge states ranging from dielectric metamaterial (Khanikaev, Hossein
Mousavi, et al. 2013), microwave cavities (Hu et al. 2015a), dielectric resonators (Bellec,
Ulrich Kuhl, et al. 2013; U. Kuhl et al. 2010),coupled-ring optical resonators (CROW) (F.
Gao et al. 2016; Hafezi et al. 2011), evanescently coupled waveguide arrays (Rechtsman et
al. 2013; Szameit and Stefan Nolte 2010), circular fibers (Wimmer, Mohammed-Ali Miri,
et al. 2015; Wimmer, Hannah M Price, et al. 2017), photonic quantum walk (Kitagawa,
Matthew A Broome, et al. 2012), just to say few. The biggest plus point of the photonics
is that it is classical, besides the photonic quantum walk. For this reason, phenomenon
like nonhermiticity (Feng et al. 2017; El-Ganainy et al. 2018a; Zhao et al. 2018), where the
parity and time-reversal symmetry is broken, can be engineered and it has been linked to
novel applications like topological lasers (Bandres et al. 2018; Shao et al. 2020; Zeng et al.
2020).

I shall give a brief overview of the the three setups, namely evanescently coupled waveg-
uide arrays, circular fibers, and photonic quantum walk, mainly because of their proximity
to my projects. In these three setups, evanescently coupled waveguide arrays, and circular
fibers form the underlying lattice where the electromagnetic waves propagate analogous to
the electronic waves in a crystal. Similarly, in the photonic quantum walk, the photons
propagate.

Specifically, we discuss the planar waveguide, where the boundary conditions give rise
to the mode expansion, which in turn predicts the mode allowed for propagation. Keeping
this as a background, we go to the next stage, where the array of such waveguides can be
evanescently coupled through the modes. I will present two cases: (i) between the incom-
ing and outgoing waves within the same waveguide, and (ii) between different but nearby
waveguides. As we will see, this latter case would be analogous to the tight-binding model
of electrons.

1.4 Waveguide: optical fiber

We start with the very basics of the planar waveguides. The most fundamental building
block of any photonics waveguide network is a waveguide. It consists of a core, where mostly
the light is confined, and it is surrounded by a cladding, as shown in Fig 1.6. More details
of this section can be found in (Okamoto 2006) and (Amnon Yariv 1991).
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If a light is injected at an incident angle ✓ to the normal to the boundary, using Snell’s law
for an angle of refraction �, the critical condition for the total internal reflection is

✓  sin�1
q

n2
1 � n2

0 ⌘ ✓max, (1.1)

✓max ⇡
q

n2
1 � n2

0, (1.2)

�max ⇡ ✓max/n1. (1.3)

Usually, the refractive index difference between core and cladding is of the order of 10�2 this
allows us to write the equation(1.2) for the maximum acceptance angle of the waveguide.
Thus, the maximum angle for the propagation of light inside the core is �max, given by
equation(1.3).

Figure 1.6: Basic geometry of an optical fiber with refractive index higher in the core (n1)
than in the cladding (n0)

Even though the angle � is chosen smaller than �max, the light rays with an arbitrary
angle � can not propagate inside the waveguide. Only some specific values of �’s are allowed,
for instance �  �max, where each different values of angle � corresponds to a specific
(propagating) mode. These modes are analogous to the allowed energy levels in quantum
mechanics, e.g., particle in a box. We will not go into much details on the modes as they
can easily be found in the standard textbook.

There are different types of structures (or geometry) for waveguides, as shown in Fig 1.7,
mostly depending on�
(1) the operating frequency bandwidth, for example, in the case of coaxial cable is below
3GHz,
(2) the amount of power to be transferred from one point in space to another, which in the
coaxial cable is of the order of 1 kilowatt at 100 MHz (it decreases to 200 watt at 2GHz due
to heating losses), and
(3) the amount of tolerable transmission losses. The coaxial cable has 3 decibels per 100 m
at 100MHz, which increases to 10 decibels per 100 m at 1 GHz (which means more loss), for
more details see Orfanidis 2016.
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By substituting this eq(1.6) in eq(1.5), it gives us

r2E � n2
0E = 0 (1.7)

r2
TE +

@2E

@z2
+ 2ik0n0

@E

@z
+ k2

0(n
2
1 � n2

0)E = 0. (1.8)

The envelope term varies very slowly along z, i.e., |@
2E

@z2
|⌧ |@E

@z
|, this simplifies the equation

to

r2
TE + 2ik0n0

@E

@z
+ k2

0(n
2
1 � n2

0)E = 0 (1.9)

where spatial transverse Laplacian is given by

r2
T ⌘ @2

@x2
+

@2

@y2
.

Also, assuming the weakly guiding conditions5, we can approximate (n2
1�n2

0)
⇠= 2n0(n1�n0)

6.

ik0
@E

@z
= �

✓

1

2n0k2
0

r2
TE + (n1 � n0)E

◆

, (1.10)

i�̄
@

@z
E(x, y, z) = �

✓

�̄2

2n0

r2
T +∆n

◆

E(x, y, z) (1.11)

where �̄ = 1/k0 and ∆n = n1�n0 is the change in the refractive index from the bulk (n0) to
the propagating medium (n1), this equation(1.11) is known as paraxial Helmholtz equation.
It is very similar in form to the Schrödinger’s equation,

ih̄
@

@t
Ψ(x, y, z, t) =

✓

� h̄2

2m
r2 + V (x, y, z, t)

◆

Ψ(x, y, z, t) (1.12)

A correspondence between Schrödinger’s equation and paraxial Helmholtz’s equation can
be made, where

Schrödinger’s equation paraxial Helmholtz’s equation

time t propagation axis z
mass m bulk refractive index n0

Planck’s constant h̄ reduced wavelength �̄
Potential V refractive index change ∆n

Instead of wave packet evolution in time governed by Schrödinger’s equation(1.12), we
have a wave packet (electric field envelope) evolving along the propagation axis (z) (1.11).
That facilitates monitoring the light propagation by direct observation in space, and as a
result, preventing the problem of resolution of short time scales, which may arise in the
case of electron. Another significant advantage, the experiments can be carried out at room

5weakly guiding refers to when the difference between the refractive indexes of the core(or film) and the
cladding is very small.

6(n2

1
� n2

0
) = (n1 + n0)(n1 � n0) = 2n0(n1 � n0), n1 ⇡ n0
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temperature, unlike in solid-states, where thermal energy contribution is significant at room
temperature and can thus be a downside. Besides, there is one dissimilarity between both
equations, electrons are more localized at a lower potential since it minimizes their total
energy. In contrast, there is a negative sign in front of ∆n, meaning that an electromagnetic
wave is more localized when the medium has a higher refractive index than the surrounding
environment, this guides the motion of electromagnetic waves inside the waveguide.

1.6 Coupling between guided modes

In quantum mechanics, if the potential has spatial periodicity V (r + a) = V (r), it provides
an underlying lattice structure. Similarly, the correspondence between quantum mechanics
and paraxial Helmholtz’s equation also extends in this direction, where the waveguides spa-
tial periodicity (∆n(r + a) = ∆n(r)) is analogous to atoms in a conventional lattice. It is
captured by coupled mode theory, where more detailed information can be found in books
of Okamoto (Okamoto 2006) and Yariv (Amnon Yariv 1991). The present section is heavily
drawn from these two books.

Until now, we assumed propagation of light in a single waveguide. However, if there
is more than one waveguide adjacent to each other at a relatively close distance, then the
co-propagating or contra-propagating light beams can interact and can give rise to two sce-
narios. One is desirable, as in the case of directional couplers, where this results in the
coupling of modes, and the power is transferred from one waveguide to another. Another is
undesirable, where it can result in a phenomenon of interference of modes called crosstalk.
I stick to the positive aspect of it that is the coupling of modes. In this section, I present
a brief sketch of this mutual interaction between two propagating modes, which falls under
the formalism of coupled-mode theory (A. Yariv 1973).

Let us consider a case of two waveguides (as shown in Fig 1.8), where each waveguide
supports its corresponding modes. If these two waveguides are far apart, then their modes do
not couple and can continue unperturbed. However, if they are close, where the distance is
such that the electromagnetic field distribution is significantly the same as in the former case,
then the coupled waveguides propagation features can be understood by the perturbation
method (Marcuse 1973). This is very analogous to the case of the hybridization of energy
levels in solid-state due to the presence of more number of atoms in close vicinity.

The eigenmodes in each (optical) waveguide before the coupling of mode satisfy Maxwell’s
equations for the electric field Ẽl (where real field El = Re[Ẽl]) and magnetic field H̃l in the
form

r⇥ Ẽl = �i!µ0H̃l (l = I, II)

r⇥ H̃l = i!"0n
2
l Ẽl. (1.13)

To write electromagnetic fields of the coupled waveguide (see Fig 1.8) we assume that it
can be written as the sum of eigenmodes of each waveguide-

Ẽ = A(z)ẼI +B(z)ẼII ,

H̃ = A(z)H̃I +B(z)H̃II (1.14)
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Figure 1.8: Directional coupling of two waveguides

In quantum mechanics, the above equation can be thought of as expressing a (perturbed)
state vector in terms of eigenstates.

The full electromagnetic fields of coupled waveguide Ẽ and H̃ satisfy similar to equa-
tion(1.13)

r⇥ Ẽ = �i!µ0H̃

r⇥ H̃ = �i!"0n
2H̃ (1.15)

where n2 gives the total refractive index distribution in the full coupled waveguide.

By substituting eq.(1.14) in eq.(1.15), we obtain following relation for the amplitudes7,

(ẑ ⇥ ẼI)
dA

dz
+ (ẑ ⇥ ẼII)

dB

dz
= 0, (1.16)

(ẑ ⇥ H̃I)
dA

dz
+ (ẑ ⇥ H̃II)

dB

dz
� i!"0(n

2 � n2
I)
dB

dz
AẼI � i!"0(n

2 � n2
II)BẼII = 0. (1.17)

We can decompose the eigenmodes of each waveguide Ẽl and H̃l in axial and transverse
component as,

Ẽl = ~Ele
i�lz

H̃l = ~Hle
i�lz (1.18)

By substituting above eq.(1.18) in eq.(1.16), we obtain the simplified coupled equation for
the amplitudes variation along propagation axis as

dA

dz
+ cI,II

dB

dz
e+i(�2��1)z � i�IA� iI,IIBe+i(�2��1)z = 0,

dB

dz
+ cII,I

dA

dz
e�i(�2��1)z � i�IIB � iII,IAe

�i(�2��1)z = 0 (1.19)

7where we are using the identity r⇥ (AE) = rA⇥E+Ar⇥E =
dA

dz
(ẑ ⇥E1) +Ar⇥E
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where coefficients are

l,m =
1

Nl

!"0

Z 1

�1

dr(n2 � n2
m)~E

⇤
l · ~Em, (1.20)

cl,m =
1

Nl

Z 1

�1

dr
⇣

~E⇤
l ⇥ ~Hm + ~Em ⇥ ~H⇤

l

⌘

z
, (l,m) 2 {I, II} (1.21)

�l =
1

Nl

!"0

Z 1

�1

dr(n2 � n2
l )~E

⇤
l · ~El (1.22)

with normalization Nl =
R1

�1
dr
⇣

~E⇤
l ⇥ ~Hl + ~El ⇥ ~H⇤

l

⌘

z

8 where integration domain is r =

{x, y}. Here, lm refers to mode coupling coefficient of the directional coupling analogous to
tunnelling coefficient in tight binding formalism and it depends on the overlap of evanescent
waves of l,m. Let us consider Fig. 1.9, where waveguide I exist for z < 0 and waveguide II
exist for z � 0. When the light beam is incident on waveguide I, EI then at z = 0 it excites
the eigenmode of the waveguide II, EII , this coupling or excitation efficiency is captured in
cl,m also known as the butt coupling coefficient. �l denotes the amount of contribution coming
to A from B, and vice versa9, this can be seen as an analogue of an onsite potential term in
quantum mechanics. In most of the cases, cl,m and �l are neglected as their contribution is
far less than that of l,m. However, they may be important for the full treatment of mode
coupling effects.

EI

EII

Figure 1.9: Butt coupling coefficient

We keep clm = �l = 0, unless otherwise specified. This greatly simplifies the equa-
tion(1.19) which can easily be generalised to more than two waveguides as

8Here zth component arise because when we substitute eq(1.14) in corresponding equation for electro-

magnetic fields eq(1.13). Then r⇥ (A(z)~E) = A(z)r⇥ ~E +rA(z)⇥ ~E = A(z)r⇥ ~E +
⇣

dA/dz
⌘

nz ⇥ ~E .
9Since, �I is only non-zero inside the core of waveguide II (where n = nII), vice-versa.
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dAm

dz
= imm0Am0e+i�mm0z (1.23)

where Am is the amplitude in the mth waveguide with nearest neighbours m0. Just as a note
there is an another way establishing the coupling of modes due to waveguide imperfections,
a very brief sketch can be found in the appendix(5.1).

1.7 From coupled waveguide array to other photonics

platforms

1.7.1 Experimental platform 1: Waveguide arrays

The two essential ingredients, namely, paraxial Helmholtz’s equation and coupled-mode the-
ory, enable us to explore the realm of solid-state phenomena governed by quantum mechanics
in the classical domain of evanescently coupled optical waveguide array. These arrays were
first proposed theoretically by Jones in 1965 (Jones 1965). Later, they were first engineered
experimentally in 1973 on a GaAs substrate by Yariv’s group (Somekh et al. 1973).

In the beginning, the idea was to map solid-state phenomena like Bloch oscillations to
coupled waveguide networks, and later they seem to possess features only specific to these
arrays. For example, due to underlying discrete structure10, these coupled waveguide arrays
display properties very different from the continuous and homogeneous media. When light
undergoes diffraction in air (continuous medium) it has normal behaviour of spreading as
shown in Fig 1.10(a), while in the discrete case of i.e., evanescently coupled waveguide arrays
in Fig 1.10(c) light undergoes discrete diffraction as shown in Fig 1.10(b) (Eisenberg et al.
2000; T. Pertsch, Zentgraf, et al. 2002; Szameit, Dreisow, and Stefan Nolte 2012; Szameit
and Stefan Nolte 2010).

Along with the analogies with quantum mechanics, in the 90s, Carl Zener (Zener et al.
1934)predicted an unintuitive phenomenon that when electrons in a lattice are in the presence
of an electric field, they undergo oscillations, also known as Bloch oscillations. Intuitively, a
charged particle should experience the Lorentz force that accelerates it instead of oscillating.
In optical waveguides, this can be imposed by a transverse potential gradient whose role
is played by a refractive index here. This potential gradient can be attained by linearly
increasing the refractive index of the individual waveguides, which gives rise to optical Bloch
oscillation, they were observed in 1D (Morandotti et al. 1999; T. Pertsch, Dannberg, et al.
1999), and in 2D (Trompeter et al. 2006). However, there is a clever way to implement
this gradient, and it is by curving the waveguides as proposed in 1999 for 1D (Lenz et al.
1999) and observed in 1D erbium-doped curved waveguide arrays (Chiodo et al. 2006). The
relation between curving and the transverse potential becomes evident by going into the
frame of reference of curved coordinates of the waveguide, where there is an extra term in
equation(1.11), acting as a transverse force responsible for optical Bloch oscillations.

10This causes the anisotropy in the medium and giving rise to anomalous refraction
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Let us consider a simple example of only two waveguides, as shown in red and blue color
in Fig. 1.12, where the amplitude and the propagation vector in the first waveguide (in red)
is A and �I , and in the second waveguide (in blue) is B and �II , respectively. For simplicity,
we can consider the propagation wavenumber �I = �II

12. The coupling between the two
waveguides is  = I,II = II,I (see eq.(1.20)). Then the evolution of amplitudes along the
propagation axis z can be described in this array by using coupled-mode theory equations
(see eq.(1.23)) as,

� i

✓

Ȧ(z)

Ḃ(z)

◆

=

✓

0 

 0

◆✓

A(z)
B(z)

◆

(1.24)

where Ȧ(z) = dA(z)/dz. The coupling matrix K form in Ȧ(z) = KA(z) coincides with the
form of tight-binding Hamiltonian, in the basis of waveguides and in units of [L�1] instead
that of an energy.
Then the solution of these coupled equations can easily be found by differentiating one of
the equation and substituting it from another, which gives

d2A(z)

dz2
= �2A(z),

A(z) = A0 cosz. (1.25)

The similar equation follows for the amplitude B(z), where in eq.(1.25), we have chosen an
initial condition. We incident a light beam only in the first waveguide (in red) of amplitude
A0, this translates to say that A(z = 0) = A0 and B(z = 0) = 0. Then after a propagation
length of z = lc = 2(p + 1)⇡/2, for some p 2 Z, all the light beam is transferred to
the second waveguide (in blue), this is known as coupling length. It shows along with the
eq.(1.25) that the light beam keeps oscillating from one waveguide to another. If the number
of waveguides is increased in the array, this leads to a cascading process, where light beam
from mth waveguide is transferred to (m� 1)th and (m+1)th after some propagation length,
this results into a discrete diffraction Fig. 1.10(a).

Additionally, here the experimentally measurable quantities are output intensities, IA =
|A(z)|2, IB = |B(z)|2, they in turn can determine the coupling constant between the waveg-
uides

 =
1

z
arctan

r

IA
IB

(1.26)

12This means the identical modes are allowed in both the waveguides. In other words, two copies of same
waveguide. By choosing a different geometry for waveguide I with respect to II can give �I 6= �II , we are
not interested in those cases for the time being. Besides, the amplitudes can still be chosen different by
initial condition.
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Figure 1.13: A waveguide array containing two waveguides with periodic modulation of
period Z along z (time) axis.

In the last case, we consider a z-independent coupling between the waveguide, i.e., (z) =
. However, if the (z) depends on z then it mimics a time-dependent Hamiltonian system
(see eq.(1.24)). For two waveguides, with z (or time) dependent coupling the evolution of
amplitudes can be written as

� i

✓

Ȧ(z)

Ḃ(z)

◆

=

✓

0 (z)
(z) 0

◆✓

A(z)
B(z)

◆

(1.27)

Above eq.(1.27) can easily be generalized along four directions.

• First, if we consider a waveguide array where these two waveguides as a unitcell form a
lattice along transverse axis (x), then the coupling matrix can be Bloch diagonalized.
Then the coupling matrix K transforms into-

K =

✓

0 (z)eikxax

(z)e�ikxax 0

◆

, (1.28)

where ax is the lattice constant and kx is the Bloch quasimomentum (or Fourier con-
jugate variable of x).

• Second, the size of this Bloch diagonalized coupling matrix encodes the information
of the degree of freedom in the lattice. Hence this can be extended to any number of
waveguides.
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• Third, the periodicity of the waveguide array along the z (or time) axis, as sketched
in Fig. 1.13, mimics the dynamics of periodically time dependent Hamiltonian (see
eq.(1.11)), we discuss them in chapter(2). This is encoded in the couplings, where they
are periodic in z with period Z, K(z + Z) = K(z).

• Lastly, the dimension of the system can be extended from 1D to 2D, by exploiting also
the y-axis and stacking the waveguides along that direction (see Fig. 1.12). Then the
refractive index is periodic along both axes x and y, i.e., ∆n(x+ax, y+ay) = ∆n(x, y).
This redefines the above coupling matrix K eq.(1.28), with couplings 1 in x and 2 in
y plane as

K =

✓

0 1(z)e
ikxax + 2(z)e

ikyay

1(z)e
�ikxax + 2(z)e

�ikyay 0

◆

. (1.29)

This platform will be heavily discussed at the end of the chapter(2), where we will address
the first three points in detail.

The governing equation for the evolution of light inside the waveguides has only two
special dimensions (see eq(1.11)), this restricts us to go beyond 2D. However, relaxing the
condition of monochromaticity can allow us to use temporal direction as another coordinate
(x, y, t). This is reflected by adding the time-dependent term in eq(1.11), where this term
additional term corresponds to the kinetic energy of slowly varying envelope term coming
from t (Ozawa, Hannah M. Price, Amo, et al. 2019),

i�̄
@

@z
E(x, y, t; z) = �

✓

�̄2

2n0

r2
T +∆n+

1

2mt

@2

@t2

◆

E(x, y, t; z) (1.30)

where mt = �(d2k(!)/d!2)/n0 with k(!) = n(!)!/c is proportional to the group velocity
in a frequency dependent refractive index medium. Moreover, the dimension can also be
extended by employing synthetic gauge fields (Ke et al. 2016; Zilberberg et al. 2018) or the
different waveguide modes (Lustig et al. 2019) in the system, whose more detailed review
and analysis will be presented in chapter(3).

1.7.2 Experimental platform 2:Optical mesh lattices

There is another equivalent platform in classical photonics to engineer a periodically time-
dependent dynamics of a quantum Hamiltonian, where the time dependence of coupling pa-
rameters is encoded in terms of time-dependent scattering matrices. These time-dependent
matrices are identical to the one that appears also at the coupling region between the waveg-
uides in the waveguide arrays (see Fig. 1.13). This platform was developed in Ulf Peschel
group in Jena (Regensburger, Bersch, Hinrichs, et al. 2011; Wimmer, Mohammed-Ali Miri,
et al. 2015; Wimmer, Hannah M Price, et al. 2017; Wimmer, Regensburger, et al. 2013).

Let us describe this second platform, which consists in two spatially separated circular
optical fibers, as shown in Fig. 1.14. They only differ in their length, where the loop v (on
the left) of length L+∆L is longer than the loop u (on the right) of length L by an amount
∆L. The two optical fibers are coupled by a standard coupler or known as a beam-splitter,
shown with a black-gray box, in Fig. 1.14. It contains two inputs and two outputs, and it

28



decides the division of light intensity (or amplitude) going to each of the two outputs. For
example, if it is a 50:50 beam splitter, then any input, it splits light amplitude into half for
each of the output.

v u

L + �L L

Figure 1.14: A pair of circular fibers (or waveguides) coupled through a coupler shown in
black. The dimensions are L ⇠ 5km and ∆L = 8m.

The process starts by injecting a pulse of light, much shorter than the loops, of amplitude
A in one of the optical fiber, say the loop v. Then the beam travels inside the large loop before
it encounters a beam-splitter, which splits the light amplitude into two parts. Considering
a 50:50 splitting for simplicity. This means a light amplitude splits into two halves, of
amplitude A/2 entering in each of the optical fibers. This is the only region where transverse
coupling between the two fibers takes place.

j = 1 j = 2 j = 3

time

A

l l + 2

Figure 1.15: Recording of time multiplexing of pulses in one of the loops. The pulses color
represent the respective loop they come from, where red correspond to loop v and blue to
loop u.

Then owing to the length difference ∆L, the light beam lasts a shorter time Tu in the
loop u than it does in loop v. In the longtime, this generates time-multiplexed pulses, where
pulses in shorter loops advance by ∆L/cfiber, where cfiber is the speed of light inside the fiber,
in comparison to the longer one, where they are delayed by the same amount in comparison
to the shorter one, as shown in Fig. 1.15. There are two time scales here, one is the shorter
time l = Tv � Tu = ∆L/cfiber and the other one is the longer time j = Tv + Tu. The shorter
time differentiates between the two loops, where it decides the temporal position l depending
on the pulse origination if it comes from shorter (l) or longer (l + 2) loop, while the longer
time scale counts the total round trips j, i.e., one round through the longer (shorter) loop
and one round through the shorter (longer) loop. In the long run, this effectively generates
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an optical mesh lattice, where l is encoded in the transverse axis, and j in the propagation
axis, as shown in Fig. 1.16. It can be seen after j rounds in this optical mesh lattice that the
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Figure 1.16: Optical mesh lattice generated by two time scales, where the shorter time scale
is encoded along the transverse axis (x) and the longer time scale along the propagation axis
(y).

pulse coming from loop u is advanced in time with respect to that of loop v. Thus it goes to
the left (shown with a link in blue in Fig. 1.16) designated by the temporal position label l.
However, the pulse coming from loop v is delayed. Hence it goes to the right (shown with a
link in red in Fig. 1.16). The (scattering) node, where these two links meet the coupler (or
the beam splitter), is displayed by S1,

S1 =
1p
2

✓

1 i
i 1

◆

. (1.31)

Similarly to the waveguide case, the periodicity of the coupler (that stores the coupling infor-
mation between the two fibers) along the propagation axis, determines the time periodicity
of the lattice. In this simple case, where the scattering node is same along transverse and
propagation axis, i.e., satisfies S1(j+2, l+2) = S1(j, l), which defines a unitcell emphasized
with dotted black square in Fig. 1.16, where S1(j = time step, l = position).

In a more general case, the scattering node can change along both axes, while maintaining
periodicity along each axes. Likewise before, this formalism can be extended.
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• All the distinct nodes denoted by Sl,j along the transverse axis, i.e., Sl0,j for l 6= l0, is
Sl,j 6= Sl0,j, this decide the degrees of freedom in the system (Mohammad-Ali Miri et al.
2012; Regensburger, Bersch, Hinrichs, et al. 2011; Regensburger, Bersch, Mohammad-
Ali Miri, et al. 2012). For example, if there are nl distinct nodes then there are total
2nl links entering these nodes or 2nl degrees of freedom (i.e. Sl+2nl,j = Sl,j). This is
similar to have 2nl waveguides in the unitcell.

• Like in the waveguide arrays, the number of distinct nodes along the propagation
axis corresponds to the number of time steps similar to a quantum walk or in case of
waveguides array (see chapter(4)). For example, if there are nj steps, where nj 2 2Z
then Sl,j+2nj

= Sl,j). The evenness of nj comes from the underlying evenness of the
number of circular fibers. In the waveguide arrays, this corresponds to a case where the
number of waveguides are even, and with half of the intracell couplings and another
half intercell.

• The dimension of the system can interestingly be increased by introducing a synthetic
gauge field(Mohammad-Ali Miri et al. 2012; Regensburger, Bersch, Hinrichs, et al.
2011; Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012; Wimmer, Mohammed-
Ali Miri, et al. 2015; Wimmer, Hannah M Price, et al. 2017). This can be achieved by
introducing a phase modulator in one of the circular fibers.

This platform will be discussed heavily along with the above points through the scattering
network (see Fig. 1.16) in the chapter(3) and (4).

1.7.3 Quantum walk setup: Experimental platform 3

Till now, we mostly discussed the realization of quantum Hamiltonians in classical systems.
However, there are a lot of platforms in the quantum regime For instance, in optical mesh
lattices of single photons (M. A. Broome et al. 2010; Kitagawa, Matthew A Broome, et al.
2012; Schreiber, Cassemiro, Poto ček, Gábris, Jex, et al. 2011; Schreiber, Cassemiro, Poto
ček, Gábris, Mosley, et al. 2010) or entangled photons(Crespi et al. 2013; Sansoni et al.
2012), ion traps (Schmitz et al. 2009), and photonic waveguides array with single-photons
(Bromberg et al. 2009; Perets et al. 2008) or correlated photons (Matthews et al. 2013;
Peruzzo et al. 2010). We focus our attention very briefly on an optical mesh lattice incident
with a single photon or more comfortably known as a photonic quantum walk, as shown in
Fig. 1.17.
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Figure 1.17: Experimental setup of a photonic quantum walk. Here, the degrees of free-
dom are the two polarization states of photons, namely horizontal |Hi and vertical |V i.
This polarization in a single photon is encoded through SPDC. The photon undergoes a
polarization-dependent rotations R(✓j=1,2), and translations Tj=1,2. Image is taken from
Kitagawa, Matthew A Broome, et al. 2012.

A photon generates a quantum walk in a 1D lattice (see Fig. 1.17) (Kitagawa, Matthew
A Broome, et al. 2012). This is achieved by a polarized photon with horizontal |Hi and
vertical |V i polarization states, which undergoes unitary transformations during discrete
time steps evolutions. In the first step, there is a polarization-dependent rotation R(✓1) of
the single photon-induced via a suitable wave plate. Then there is a polarization-dependent
translation T1 (using a calcite beam displacer) where |Hi is moved by one lattice to the
right. Subsequently, there is a second rotation R(✓2), and at last another translation T2 of
|V i to the left. These four steps constitute one complete step of this quantum walk, which
is periodically reproduced. Here, the degree of freedom is decided by the two polarization
states of the photons. The information of the coupling similar to before is encoded in the
parameters ✓j=1,2. Moreover, the big advantage of this setup is that it can be more useful
to study features more dominant in the quantum regime, e.g., quantum entanglement or
quantum correlations. The properties

These three platforms are summarized below:
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Table 1.1: Comparison between the platforms

Waveguides array or
Optical mesh lattice

Photonic quantum walk

Ingredients Classical electromagnetic wave Photons

Entanglement Amplifiers do not preserve quan-
tum coherence

In presence of more than one
photon (Crespi et al. 2013;
Matthews et al. 2013; Peruzzo
et al. 2010; Sansoni et al. 2012).

Non-Hermitian physics This could be induced via losses
and gain with the help of refrac-
tive index (Feng et al. 2017; El-
Ganainy et al. 2018b; Zhao et al.
2018)

This is not possible, since the
underlying quantum mechanics
is Hermitian.

Detection Fluorescence spectroscopy mea-
surement (Mayers et al. 2005;
Oki et al. 2002) or Inten-
sity measurement using photo-
diode (Mohammad-Ali Miri et
al. 2012; Regensburger, Bersch,
Hinrichs, et al. 2011; Regens-
burger, Bersch, Mohammad-
Ali Miri, et al. 2012; Wim-
mer, Mohammed-Ali Miri, et
al. 2015; Wimmer, Hannah M
Price, et al. 2017)

Probability distribution is im-
aged with a single- photon
avalanche detector (Kitagawa,
Matthew A Broome, et al. 2012)
or photon correlations are de-
tected using conditional mea-
surement (Crespi et al. 2013; Pe-
ruzzo et al. 2010; Rohde et al.
2011; Sansoni et al. 2012).

1.8 Topology as a tool for physicists

Here I give a heuristic introduction to topological tools required to capture the topological
properties in the gapless regime.

Topology is a branch of mathematics that is concerned with the properties of objects
which are invariant under continuous deformations, such as stretching or bending. As an
example, a hollow cylinder, a smooth solid sphere, or a rough surface potato are the same.
That means topology is insensitive to the local details, and a potato can be continuously
deformed into a solid smooth sphere, while it can not be deformed into a hollow cylinder,
which has a hole at the center. All the objects which can be continuously deformed into
each other are characterized by the same invariant that smoothens out the local details.
This invariant, or topological invariant, for instance, can be the number of holes in an
object, which is zero for the potato and 1 for the hollow cylinder. There is a well known
formula from differential geometry, where this invariant can be defined mathematically for
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Let us put this in a more elegant way. Let us consider a continuous map �: [0,1] ! X
is defined as a path if the initial point �(0) = x0 and final point �(1) = x1, where xj 2 X.
Similarly, if �(0) = �(1) = x0 then it defines a loop at x0.

If there are two loops �1, �2: [0,1] ! X at say x0. They are said to be homotopic, if there
exists a continuous map H : [0, 1]⇥ [0, 1] ! X such that

H(s, 0) = �1(s), H(s, 1) = �2(s) 8s 2 [0, 1] (1.34)

H(0, t) = H(1, t) = x0 8t 2 [0, 1] (1.35)

The interpolating map H is called homotopy between �1 and �2, as shown pictorially in
Fig. 1.20.

The idea of homotopy of loops can be extended to arbitrary maps. Let f, g: X ! Y be
a continuous map. If there also exists a continuous map H : [0, 1]⇥X ! Y such that

H(x, 0) = f(x), H(x, 1) = g(x) 8x 2 X (1.36)

then f is said to be homotopic to g the map H is called a homotopy between f and g.
In addition to continuous deformation of loops or maps, but underlying spaces X, and Y

can also be continuously expanded. If we considerX to be a disc with a hole, on expanding its
boundaries gives X ⌘ R {0} this is a circle ⇠ S1. Correspondingly, different windings on S1

fall in different homotopy classes. It turns out, the set of homotopy classes is endowed with
a group structure. Here the set of homotopy classes of loops in X is known as fundamental
group or Poincaré group, denoted by ⇡1(X) ⌘ ⇡1(S

1) = Z. Just to show how calculating
the higher homotopy group becomes very complicated as the dimensions of the underlying
space increase Sn is shown in Fig. 1.21.

1.9.2 Winding number

There is a more intuitive way to calculate the winding of loops on a circle S1. That can be
seen by parametrizing the circle by an angle ', as sketched in Fig. 1.22. Let us consider
a continuous map g(') : S1 ! U(1), where g(') = ei↵('). This means, we can associate a
complex phase to every point on the circle with above defined relation. The map does not
need to be one-to-one; in fact, it can be two-to-one or many-to-one, as we see. Let us consider
the case ↵(') = 2', as shown in Fig. 1.23. Then, ' = 0 implies g(' = 0) = 1 2 U(1) (shown
with green arrow) ' = ⇡/2 implies g(') = �1 (shown with red arrow),
' = ⇡ implies g(' = 0) = 1 (shown with green arrow) ' = 3⇡/2 implies g(') = �1 (shown
with red arrow) .

This tells us how much time U(1) wraps around S1 (as '), this is known as winding
number.
However, there is a clever way and an elegant way to extract the winding number of an
arbitrary map with g(') = ei↵('), where ↵(') = n':

⌫ =
1

2⇡i

Z 2⇡

0

d'g�1(')@'g('), (1.37)

=
1

2⇡i

Z 2⇡

0

d'e�i↵(')i@'↵(')e
i↵('), (1.38)

= n. (1.39)
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Figure 1.21: The higher homotopy groups ⇡n for n dimensional spheres denoted as Sn. The
0 entries show trivial group, where the loops or higher dimensional enclosing surfaces can be
shrunk to a point. The non-zero entries show the non-trivial part either infinite cyclic Z or
finitely cyclic Zm, for m 6= {0, 1}. Taken from Ref(Program 2013).

�

Figure 1.22: The interpolating map H from loop �1 to �2

Then all homotopic classes for different n are characterized by a homotopic invariant ⌫ (or
winding number). This invariant does not change under smoothly deforming g(').

1.9.3 Degree of a map

The winding number can be generalized to higher dimensions. There is an equivalent but
more handy way to define winding for the same continuous map g : X ! S1. This can
be done by considering the same disc X with a hole at the centre, however extending the
boundaries to infinity (' R

2 {0} ' S1) (see Fig. 1.19a). A semi-infinite line originating from
the hole (or singularity) is drawn going towards infinity, as sketched with a dotted line in
Fig. 1.24. Then the number of intersections of a loop with this line taking into account also
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extracted by parametrizing the loop with a vector ~r(t) whose origin is the same singularity.
Then it is sign of the vector product of ~r(t) with the tangent vector ~̇r(t) and the normal
vector n̂z at the dotted line (inclined at an angle '0). In addition, the intersection with a

given loop g takes place for some images g(t
(0)
j ) = '0. This in return gives us the pre-images

t
(0)
j ⇡ g�1(�0). This gives winding (or degree) of g as

⌫(g) = deg(g) =
X

t
(0)
j ⇡g�1(�0)

sgn
h

~r(t)⇥ ~̇r(t)|'0 ·n̂z

i

,

=
X

t
(0)
j ⇡g�1('0)

sgn



d�

dt
|'0

�

. (1.40)

There are two reasons to formulate the winding number in this way. First, there no
integral evaluation, and secondly, the generalization to higher dimensions is quite simple. It
can be seen for a general case, the degree (or winding number) of a map g : X ! Y between
two orientable surfaces with same dimensions is

⌫(g) =
X

x
(0)
j ⇡g�1(y0)

sgn



det

✓

@y↵

@x�

◆�

�

�

�

y0

�

. (1.41)

where x 2 X and y 2 Y , and the factor inside the determinant is the Jacobian matrix
corresponding to the transfer of coordinates from x to y. This definition in terms of degree
does not depend on the choice of image y0. It is a homotopy invariant generalizing the
winding number to higher dimensional manifolds from a map g: S1 ! S1.

1.10 Berry curvature and Chern number

The topological invariant has also pervaded in the physical systems, e.g., the quantum Hall
effect (QHE) in 1980 by the von Klitzing group (Klitzing et al. 1980). This effect arises
when a strong magnetic field is applied to a 2D electron gas, which leads to the vanishing
longitudinal conductivity, whereas the transverse conductivity is still non-zero. That can be
explained from a semiclassical picture of electrons experiencing the Lorentz force due to the
magnetic field B. Then this force makes the electrons to exhibit close cyclotron orbits with
cyclotron frequency !c = eB/me, where e is the electronic charge and me is the mass of
electron. As can be seen from a sketch in Fig. 1.25, these orbits experience an obstruction
in making close circles at the boundaries, where they instead propagate. It becomes the
source of conductivity in this 2D sample, where the bulk of the sample is insulating, which
means there is no net motion of electrons. Remarkably, this (transverse) conductivity is very
precisely quantized, given by

�H = n
e2

h
. (1.42)

where h is the Planck’s constant and n is an integer, �H is also known as quantum Hall
conductivity. Not long after the QHE discovery, Thouless, Kohmoto, Nightingale, and Nijs
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C = + 1

C = − 1
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Figure 1.26: The edge state bridges the bulk gap. It leaves the lower band and merges to
the upper band when varying ky. This is referred to as a spectral flow. This lower band as
lost one state, where this is captured by C = �1, while the upper band has C = +1 since it
has gained one state.

1.10.1 Topology of eigenstates

Let us consider a Hamiltonian H that is parametrized by a set of parameters, denoted by
G = (G1, G2, ...), we are concerned with the adiabatic evolution of the system as G moves
slow enough along a closed path C in parameter space such that we can define an eigenvalue
equation

H(G)| ji = Ej(G)| ji (1.45)

If the system is prepared in one of the eigenstates and the system adiabatically evolves by
changing G, then due to the adiabatic theorem, the system remains in the same eigenspace.
However, after one full evolution when the parameter G returns to its initial value, the
eigenstate acquires a phase with respect to the initial value (Xiao et al. 2010). This phase
contains the dynamical phase and geometric phase. This geometric phase �j can be expressed
as

�j =

Z

C

dG · Aj(G), (1.46)

where Aj is

Aj(G) = ih j(G)|
@

@G
| j(G)i (1.47)

This vector A(G) is known as the Berry connection and the geometric phase � is known as
the Berry phase (Berry 1984). Now, we can define the Berry curvature as,

Ωj(G) = r^A (1.48)

where ^ becomes a vector product if the parameter space is 3D. Unlike Berry connection,
which is gauge dependent quantity (i.e., under  j ! ei↵(G), A has gauge dependent term,
see eq.(1.47)), Berry curvature is a gauge invariant and a physical observable. Furthermore,
it can be used to calculate the Chern number defined in the quantum Hall effect in eq.(3.15).
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The Chern number may appear in topological band theory in mainly two contexts, one in the
gapped band structure, which is the case of QHE and other in gapless one. This topological
invariant also appear in the gapless systems like Weyl semimetals, where it has different
interpretation than the number of edge states in QHE.

In order to capture the topology in gapless systems the above defined Berry curvature
Ωj(G) besides in differential form can also be expressed in terms of eigenstates, which can
be derived by taking the derivative with respect to G of the eigenvalue equation(1.45) and
using completeness of eigenstates13 gives,

Ωj(G) = i
X

m 6=n

X

j,k

h j|@Gm
H| kih k|@Gn

H| ji
(Ej � Ek)2

dGm ^ dGn (1.49)

where @Gn
=

@

@Gn

. Expressing Berry curvature in the above form tells us that
P

j Ωj(G) = 0,

using the anti-symmetry property of wedge product. Another important observation comes
from the denominator, which vanishes at degeneracy points i.e., when Ej(G0) = Ek(G0).
Thus, these degeneracies are either source or sink of Berry curvature, and it is singular at
these points, which are called Berry monopoles. If these monopoles are enclosed by a surface
(in parameter space or BZ), then the surface is pierced by a flux. The origin of the flux is
connected to the fact that these monopoles carry charges, as sketched in Fig. 1.27. It turns
out; this charge is an integer-valued topological number that can be quantified in terms of
first Chern number C

Cj =
1

2⇡

Z

S2

Ωj. (1.50)

The sign of Cj decides in turn the sign of the topological charge, in this regard Ωj is also
called Berry flux that pierce the surface enclosing the degeneracy (see Fig. 1.27). This is
the same charge that also appears in the topological classification of Weyl nodes, where
G = Gi=1..3 is replaced by the Bloch vectors k = {kx, ky, kz}. It turns out that this Chern
number C is related to the degree of Hamiltonian, where degree is defined in eq.(1.41). The
degree of Hamiltonian can be defined by considering a 2 Hamiltonian, which can always be
decomposed in terms of Pauli matrix σ as

H(G) = h(G) · σ (1.51)

where we have neglected any global shift i.e. h0(G) = 0, which can be removed by redefining
the origin for the energy. Then eigenenergies is expressed as

E± = ±||h(G)||. (1.52)

At a degeneracy point, we have G0, E±(G0) = 0 = ||h(G0)||. This creates an obstruction in
defining the normalized eigenvectors ĥ ⌘ h(G)/||h(G)|| at these points. However, they are
well defined, if we remove this degeneracy(s) point. These normalized eigenvectors defines a

13i.e.
P

j | jih j |= Identity.
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Chapter 2

Floquet formalism: implementation in

waveguide arrays

2.1 Introduction

In the current chapter, I discuss how periodic driving a system can induce novel topological
phenomena, without any counterpart in the static regime. This driving translates to say that
Hamiltonian has a time translational symmetry, H(t+T ) = H(t), where T is the period of a
drive. This time dependence forbids to define a precise ground state of the system unlike in
static or equilibrium1. Despite this, such time-dependent systems phenomena can give rise
to many novel phenomena. For example, the presence of non-trivial edge states even though
the band topological invariants vanish (M. S. Rudner et al. 2013).

2.2 Periodically driven systems

To look for a general solution for a particular class of ordinary differential equations was one
of the significantly focused domains of interest during the 16th-17th century or even till now.
As the description of a natural phenomenon, like the beating of a drum or the oscillation
of a pendulum, involves such equations. A particular class of such equations was when the
coefficients are periodic under either space, time, or both. Then Floquet theorem given by
Gaston Floquet in 1883 (Floquet 1883), later by George Hill (Hill 1886), gives the canonical
form of the solutions. Again discovered by Lyapunov (Lyapunov 1896) and by Felix Bloch
in 1928(Bloch 1929), in the context of periodic quantum Hamiltonian in space, giving rise
to band theory.

In physics, we stick to the terminology “Floquet theory” when the system has time pe-
riodicity and “Bloch theory” for space periodicity. I keep this convention.

The case of time-periodic Hamiltonians, which I am mostly interested in, was first studied

1As the (quasi) energy spectrum lies on a circle, so it is ambiguous to define low energy states or bands
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by Shirley (Shirley 1965), Keldysh (Keldysh et al. 1965), Zel’dovich (Zel’Dovich 1967) and
later a full framework was developed by Sambe (Sambe 1973). Then it was extended from
one mode to the case of multiple modes (T.-S. Ho et al. 1983), and a detailed review can
be found in Ref(Chu et al. 2004). A comprehensive survey of a periodically driven two-level
system can be found in Ref (Dion et al. 1976). For more pedagogical view one can refer to
notes by P. Hänggi (Hänggi 1998) or to the thesis of Michael Fruchart (Fruchart 2016) or
Álvaro Gómez León (León 2014).

2.2.1 Floquet formalism

Let us consider a closed quantum system, described by a Hamiltonian H, which is non-
interacting and periodically driven with period T , such that H(t+ T ) = H(t). This driving
can be achieved, for example, by emitting an electromagnetic wave on a quantum system
(Netanel H Lindner et al. 2011; Y. H. Wang et al. 2013) or by periodically shaking the optical
lattices (Jotzu et al. 2014; Lignier et al. 2007; Parker et al. 2013; Struck, Ölschläger, et al.
2012; Struck, Weinberg, et al. 2013) or by employing the periodicity along the propagation
axis in optically coupled waveguides network (Ozawa, Hannah M. Price, Amo, et al. 2019;
Szameit and Stefan Nolte 2010).

The system is initially prepared in a state |Ψ(~r, t0)i evolves according to the evolution
operator U(t, t0) to a state |Ψ(~r, t)i = U(~r; t, t0)|Ψ(~r, t0)i, at later time t. |Ψ(~r, t0)i satisfies
Schrödinger equation,

i
@|Ψ(~r, t)i

@t
= H(~r, t)|Ψ(~r, t)i, (2.1)

where the Hamiltonian generates the evolution (h̄ = 1),

U(~r; t, t0) = T exp
h

� i

Z t

t0

dt0 H(~r, t0)
i

(2.2)

U(~r; t, t0) = lim
∆t!0

exp
h

� i(N + 1)∆tH(t)
i

· · · exp
h

� i2∆tH(t0 +∆t)
i

exp
h

� i∆tH(t0)
i

.

(2.3)

where N = (t� t0)/∆t.
A stationary Hamiltonian is also periodically driven with T = 0, however, corresponding
evolution operator is “trivial”2.
However, a non-trivial and interesting physics emerges when Hamiltonian is driven peri-
odically with period T (or with single driving frequency ! = 2⇡/T , where T 6= 0) i.e.
H(t+ T ) = H(t). Likewise, the evolution of the states is still described by equation (2.2).

Here, the evolution operator satisfies a multiplication rule,

2In the sense that the system has well defined eigenstates. So, if the system is prepared in one of the
eigenstates, it will remain in it forever. The time evolution will only give a definite dynamical phase to the
eigenstates depending on the initial and final times.
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U(tf , ti) = U(tf , tintermediate)U(tintermediate, ti) (2.4)

which means that the time evolution from the initial time ti to the final one tf can written
as a product from initial to some arbitrary intermediate time t and then from there to the
final time. As shown pictorially in Fig. 2.1.

ti tintermediate tf

U(tintermediate, ti) U(tf , tintermediate)

U(tf, ti)

Figure 2.1: Multiplication rule for time evolution operator

We follow the decomposition of eq(2.1), with H(t) = H0+V (t), V (t+T ) = V (t) (position
dependence is dropped, for the sake of clarity) , where we assume that H0 has a complete
set of eigenstates �n with eigenvalues En.
According to Floquet theory there exists a solution to eq(2.1),

|Ψj(t)i = e�i"jt|Φj(t)i, (2.5)

|Ψj(t+ T )i = e�i"jT |Ψj(t)i (2.6)

where |Φj(t + T )i = |Φj(t)i, at t = T , |Φj(T )i is referred to as a Floquet state, and "j is a
real valued number known as the quasienergy, which is only define uniquely up to multiples
of ! = 2⇡/T . It is the total phase acquired by the state when the system has evolved by
one period, it can be seen from equation (2.6). The Floquet theorem can be seen as a time
analog of Bloch theorem, where quasimomentum is analogous to quasienergy. However, both
do not play the same roles.

By substituting eq(2.5) in eq(2.1), it gives

h

"j + i
@

@t

i

|Φj(t)i = H(t)|Φj(t)i (2.7)

H(t)|Φj(t)i = "j|Φj(t)i (2.8)

where H(t) ⌘ H(t)�i
@

@t
is a Hermitian operator satisfying above eigenvalue equation. Prob-

lem boils down to solve equation (2.8).

In terms of numerical computation, we can separate Floquet formalism into two cases.
In the first case, if Hamiltonian has continuous-time dependence, where we use the Sambe
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Hamiltonian approach. In another case, Hamiltonians have a discrete-time dependence. For
example, in quantum walks, we make use of the scattering network framework to describe
the dynamics of the system.

Continuous-time dependence

When the Hamiltonian depends on time in a continous fashion, e.g. H(t) = H0 cos!t. Then
it gives rise to an integral equation (2.8). This can be seen by a Fourier decomposition of
|Φ(t+ T )i, since |Φ(t+ T )i = |Φ(t)i,

|Φ(t)i =
Z 1

�1

d! ei!t|Φ(!)i (2.9)

for the case of monochromatic frequency ! = 2⇡/T , in which one is mostly interested in, the
above expression can further be rewritten in some time independent basis |↵i3,

|Φ(t)i =
X

↵

Φ↵(t)|↵i, Φ↵(t) =
1
X

m=�1

�(m)
↵ eim!t (2.10)

Substituting above equation in eq(2.7), we get a stationary Schrödinger like equation for
Fourier amplitudes as

H̃
(m�n)
↵� �

(m)
� = ("� n!)�(n)

↵ , (2.11)

where H̃
(m�n)
↵� =

P

�,m

1

T

R T
dtei(m�n)!th↵|H(t)|�i is the Fourier transform of H(t) and is

known as Floquet Hamiltonian.
In above equation, h↵| lives in some Hilbert space R, satisfying

h↵|�i = �↵�, (2.12)

similarly, the temporal part ein!t lives in Hilbert space T ,

1

T

Z T

dt ei(p�m)!t = �m,p, (2.13)

They form a complete set of basis,

X

↵

Φ
⇤
↵(t)Φ↵(t

0) = �(t� t0) (2.14)

Essentially, the Hermitian operator H in eq(2.8) lives in a Hilbert space composed of
R⌦T . This space is sometimes referred to as Sambe space (Sambe 1973), in literature. The
states form a complete set in the R⌦ T .

3For a N level system, |↵i will correspond to |↵i = 1, 2, · · · , N
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In the R.H.S of the eq(2.11), the first term can be interpreted as an onsite energy term
and the second term as the number of photons absorbed or emitted by the system. This
term (n! in eq(2.8)) can be interpreted as an effective electric field in an analogy with the
Wannier-Stark ladder on a Floquet lattice generated by commensurate or incommensurate
frequency drives (Chu et al. 2004; Martin et al. 2017). For example, if we subject a physical
system to two incommensurate drives !1, and !2, then its dynamics can be represented on
a two-dimensional Floquet lattice, where the hopping energies along one axis j of the lattice
corresponds to either absorb (along +j) or emit (along �j) a photon of frequency !j.

Now, what remains to be solved is the L.H.S of the eq(2.11), which is an infinite-
dimensional matrix. We consider some particular cases to calculate the quasienergy spectrum
and Floquet states.

Considering a harmonic drive of period T = 2⇡/!, then H(t) = H0 + �ei!t + �†e�i!t,
where the Floquet Hamiltonian has a tridiagonal form,

n · · · + 1 0 � 1 · · ·

H =

0

B

B

B

B

B

@

. . .

H0 + ! �

�† H0 �

�† H0 � !
. . .

1

C

C

C

C

C

A

m
...
+1

0
�1
...

(2.15)

The diagonal term in the above Floquet Hamiltonian is frequency-dependent, in the sense
that they are copies of H0 just shifted by the multiples of the driving frequency, where the
dimension of H0 encodes the degree of freedom in the system, like the number of orbitals in
a unitcell. This redundancy of multiple copies of H0 reflects from the wavefunction(2.5) by
substituting(2.10) and considering it in the present case by a shift of k! of the quasienergy,
it gives

|Ψj(t)i = e�i("j+k!)t

1
X

m̃=�1

�(m̃)
↵ eik!teim̃!t (2.16)

where shifting the Fourier mode cancels the shift contribution in quasienergy. Moreover,
off-diagonal terms connects (or hybridize) the different “copies”: as mentioned before, either
the system gains one photon (ei!t) from the drive or loses on photon (e�i!t) to the drive.
For arbitrary drive, i.e., H(t) = H0 + �eip!t + �†e�ip!t where p 2 Z, there is a hybridization
of bands separated by an energy gap p! (Rudner n.d.).

Interestingly, in this situation, the Floquet matrix eq(2.15) can be thought of as a tight-
binding Hamiltonian on some lattice. The hoppings are being mediated by �’s with the
Wannier-Stark like onsite potential (Glück et al. 2002; A. Gómez-León et al. 2013; Martin
et al. 2017), as shown in Fig 2.2. It reminds us of the presence of an electric field in a lattice
that gives rise to a Bloch oscillation of an electron in a band, with bandwidth or kinetic
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Figure 2.2: Tight binding model with Floquet Hamiltonian

energy of 2�. It means electron can take or give at a maximum energy of 2�. It allows us to
define a (kinetic) energy window of 2� (see Fig 2.2), beyond which the wavefunction starts
to decay. This justifies in truncating an infinite-dimensional Floquet matrix to a finite one.

2.2.2 Stepwise Hamiltonian: discrete time dynamics

Now we digress our discussion from the continuous case to the stepwise Hamiltonians or
stepwise evolutions, where the stepwise sequence is periodic in time. From equation(2.2), for
t = T and t0 = 0, we get

U(T, 0) = T exp
h

� i

Z T

0

dt0H(t0)
i

⌘ e�iHeffT (2.17)

where full time evolution operator or U(T, 0) is known as Floquet evolution operator or
Floquet operator,

U(T, 0)|Ψj(T )i = ei"jT |Ψj(T )i. (2.18)

Similarly, we can define the effective Hamiltonian Heff as,

Heff =
i

T
logU(T, 0), (2.19)

Heff =
i

T

X

j

log
⇥

ei"jT
⇤

|Ψj(T )ihΨj(T )|. (2.20)

this can be seen as a restatement of the previous definition of quasienergy, where they are
the eigenstates of the effective Hamiltonian. Unlike the Floquet Hamiltonian eq(2.8), the
effective Hamiltonian is time-independent (Kitagawa, Berg, et al. 2010; M. S. Rudner et al.
2013).
There are two-time scales in Floquet theory with respect to the driving period T , namely
long and short. The Floquet theory allows us to separate these two-time scales. The long
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time dynamics come from the effective Hamiltonian, where it generates the bulk time evo-
lution when examined stroboscopically at integer multiples of the driving period T , which
is identical to the Floquet operator U(T ). This can be seen from the multiplication rule
eq(2.4)

U(nT ) = Un(T ). (2.21)

This can written in more generally as

U(t+ nT ) = U(t)Un(T ). (2.22)

The short time scale is generated by evolution operator itself at intermediate times between
initial ti one full period ti+T (2.2). Floquet theory allows us to write the evolution operator
with the two contributions as,

U(t) = V (t)e�iHeff t (2.23)

where, V (t + T ) = V (t) is known as periodized evolution operator that contains the short
time scales. The above equation is very analogous to equation(2.5), however, in the operator
form. In the next chapter, I shall show how the stepwise Hamiltonian (or discrete evolution)
can easily be formulated in the scattering matrix framework.

2.2.3 Topological properties arising in Floquet systems

In the current subsection, I present a very brief description of the topology in the Floquet
domain and the symmetries that are responsible for non-trivial topology. The topology
in this domain differs from the static regime. In the static case, we look for the maps
from the Brillouin Zone (BZ) to the Hamiltonian matrices (of dimension m, for m bands),
which defines a closed loop in the space of m ⇥m Hamiltonian matrices. This loop can be
characterized in terms of homotopy, where all such loops that can be smoothly deformed into
each other define an equivalence or homotopy class, which can thus be characterized by an
invariant. However, in a periodically driven case, we look for maps from the Brillouin Zone
times T (time) to space of Unitary matrices (of dimension m, for m bands), BZ ⇥ T �!
U(m). In the Floquet case, the number of bands is the same as the number of gaps, unlike
static case. It gives rise to a regime not to be reproducible in the static case.

The topology in the Floquet regime can be divided into two classes (Nakagawa et al.
2020). In one of the class, the topology is characterized by the effective Hamiltonian or
equivalently by the Floquet operator, involving the topology of gapped quasienergy spectra,
e.g., Floquet Chern insulators (Budich et al. 2017; A. Gómez-León et al. 2013; Jiang et al.
2011; Kitagawa, Berg, et al. 2010; Kitagawa, Matthew A Broome, et al. 2012; Kitagawa,
Oka, et al. 2011; Kundu et al. 2014; Netanel H Lindner et al. 2011; Oka et al. 2009; X.-Q.
Sun et al. 2018). Another class is where the full dynamics of evolution operator characterize
the topology during one period. This could give rise to the anomalous Floquet topological
insulators (Delplace, Fruchart, et al. 2017; Fruchart 2016; Morimoto et al. 2017; Nathan
et al. 2015; Roy and Harper 2017; M. S. Rudner et al. 2013; Yao, Yan, et al. 2017). This
later one has no static part; even if the effective Hamiltonian is topologically trivial, the
topology of the time evolution operator during one period can still be nontrivial.
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Topology and symmetries

We assume that the Floquet operator U(T ) has translational symmetry, however, this con-
straint can also be relaxed for calculating topological invariants (Fulga et al. 2016; Titum,
Berg, et al. 2016). Recently, a formal bulk edge correspondence has been made in the absence
of translational symmetry (Graf et al. 2018).

In eq(2.23), we can rewrite effective Hamiltonian with a branch cut as,

V"(t) = U(t)e�iHeff
ε t (2.24)

where the branch cut dependence comes from Heff
" = i

T
log" U(T ).

Topology in static or periodically driven systems depends on the dimension of the sys-
tem and on the symmetries that constrain the quasienergy spectrum and states. Here, the
symmetries are particle-hole or charge conjugation C, time-reversal Θ and chiral symmetry
Γ.
The particle-hole symmetry acts on the evolution operator, the effective Hamiltonian and
the periodized evolution operator, respectively, here C is anti-unitary

CU(k, t)C�1 = U(�k, t), (2.25)

CHeff
" (k)C�1 = �Heff

�" (k) +
2⇡

T
1 (2.26)

CV eff
" (k, t)C�1 = V eff

�" (�k, t)e�i2⇡t/T . (2.27)

Similarly, for the anti-unitary time-reversal operator Θ, it follows

ΘU(k, t)Θ�1 = U(�k,�t), (2.28)

ΘHeff
" (k)Θ�1 = Heff

" (�k) (2.29)

ΘV eff
" (k, t)Θ�1 = V eff

" (�k,�t). (2.30)

Lastly, the unitary operator of chiral symmetry satisfies

ΓU(k, t)Γ�1 = U(k,�t), (2.31)

ΓHeff
" (k)Γ�1 = Heff

" (k) +
2⇡

T
1 (2.32)

ΓV eff
" (k, t)Γ�1 = V eff

�" (k,�t)ei2⇡t/T (2.33)

My main interest lies in photonics, which serves as an underlying platform to engineer
these symmetries. I’ll show you my result of how different symmetries can be engineered
in an evanescently coupled waveguide network in 1D, and that can be generalized to higher
dimensions.

2.3 Engineering symmetries in evanescently coupled

optical waveguide array

Photonics provides a versatile platform to experimentally realize phenomena of quantum
(solid-state) systems, where the photons (quantum) or electromagnetic waves (classical)
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mimics the analogous properties of electrons, like the robust unidirectional motion of light
and non-diffracting light propagation, which has promising applications (Bellec, Michel, et
al. 2017; Zheng Wang et al. 2009).

In this section, we are interested in engineering topology in 1D waveguide arrays by ex-
ploiting the connection between lattice (crystalline) symmetry of waveguides, e.g., inversion
symmetry, with the symmetries responsible for non-trivial topology e.g., particle-hole.

Crystalline symmetries play a vital role in constraining the energy spectrum and also
on the topology. This symmetry is shared by Hamiltonian along with its spectrum. For
example, graphene has rotational symmetry C3 that it is shared by the position of Dirac
points in BZ. If this symmetry is broken, for instance, by allowing anisotropic hoppings,
then it is also broken in the BZ. Moreover, the Dirac points for some choice of anisotropic
hoppings can even fuse together, and annihilate (Goerbig et al. 2008; Hasegawa et al. 2006;
Montambaux et al. 2009a; Pereira et al. 2009; Wunsch et al. 2008; S.-L. Zhu et al. 2007).

Here, I shall show how some of these crystalline symmetries in photonics waveguide arrays
are connected to fundamental symmetries like chiral symmetry, time-reversal symmetry, and
particle-hole symmetry in 1D. To these crystalline symmetries another essential ingredient
can be added it is the underlying bipartite structure of the lattice. These two together play
a vital role in determining the significance of these fundamental symmetries. For example,
what does it mean to have a particle-hole symmetry in a photonic waveguide array? As
there are no particles or holes, but only electromagnetic waves propagating in a waveguide
array lattice. Besides these three fundamental symmetries, there exists another symmetry
responsible for giving rise to the non-trivial topology in 1D since non-trivial topology can
not appear in the absence of any symmetry, in 1D.

In the present section, I shall show this connection for 1D waveguide arrays. Engineering,
some of these symmetries like particle-hole and chiral, can give rise to a non-trivial topology
in 1D. Moreover, to make things concrete, I shall also show how relaxing the constraints put
forth by these symmetries can also lift them.

2.4 Symmetries in photonic waveguide array

In our case, we consider evanescently coupled optical waveguide arrays in 1D, where the
refractive index is periodically modulated only along one of the direction, let us say x -
axis. As we have seen at the end of chapter(1) that if the Hamiltonian is stationary, the
coupling  between the waveguides do not change along the propagation axis (z -axis), as
shown in Fig. 2.3a. Likewise, in the case of driven Hamiltonian, couplings do change along
the propagation axis. But we are interested in periodically driven systems, i.e., when the
couplings are also periodic along the propagation axis, as shown in Fig. 2.3b. Here, the
couplings j=1,2 repeat after a period Z of the lattice.
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Figure 2.3: 1D waveguide array when the couplings are (a) constant along z, an analogue of
static Hamiltonian, (b) periodic along z, a analogue of periodically driven systems

In photonics, the relevant symmetries that may give rise to non-trivial topology are the
time-reversal symmetry (TRS), which here referred to as z -reversal symmetry (z -RS)4, chiral
symmetry(CS) and particle-hole symmetry (PHS), where recall these symmetries at the level
of time-dependent Bloch Hamiltonian H(k, z),

ΓzH(z)Γ�1
z = �H(�z) (2.34)

✓zH(k, z)✓�1
z = H⇤(�k,�z) (2.35)

CH(k, z)C�1 = �H⇤(�k, z). (2.36)

(2.37)

Besides, we discuss two other symmetries of crystalline nature, which are not precisely
additional symmetries but are of equal importance in waveguide array, namely bipartite
symmetry (BPS) and z -reflection symmetry (z -Ref).

2.4.1 Lattice symmetries

Bipartite symmetry

A lattice is said to be BPS when the degrees of freedom (spin, orbitals, sublattices, or any
combination of them) can be grouped into two uncoupled families. Let us say that these
two families are A, and B then BPS can pictorially be shown as in Fig. (2.4) (Asbóth et al.
2016). The well-known examples are that of the two sublattices in SSH model (Su et al.
1980b) or two families in the Lieb lattice (Weeks et al. 2010a),

If PA and PB are orthogonal projectors corresponding to the two families, then BPS
means that we can write H as,

H = PAHPB + PBHPA,

PAHPA = PBHPB = 0. (2.38)

This guarantees the non-zero elements to be present only in the off-diagonal sector in the
Hamiltonian if written in a A and B basis. It can be seen more clearly in writing the

4as Maxwell’s equations are already TRS
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Figure 2.4: Bipartite structure of a lattice, where there is no coupling within the family only
between the families

Hamiltonian in this sublattice basis (A and B), where there are n elements of A and m
elements of B in a unitcell then

H =

✓

0 An⇥n

Bm⇥m 0

◆

, (2.39)

BpHB�1
p = �H (2.40)

where Bp is BPS operator can be written as

Bp =

✓

1n⇥n 0
0 �1m⇥m

◆

. (2.41)

z -Reflection symmetry

The z -Ref is unitary symmetry denoted by Rz, it holds as long as there exists a symmetry
axis z0 : z ! �z of the lattice. This can be seen for the waveguide Fig. 2.3b by considering
its unitcell, which fulfils above condition at z = z0 = Z/2, as shown in Fig. 2.5.

RzH(z)R�1
z = H(�z) (2.42)

If there exists a symmetric axis z0 which is not origin, then this can be rewritten as,

RzH(z)R�1
z = H(z0 � z) (2.43)

54



x

z

z = z
0

�
1

�
1

Z

Figure 2.5: z -Ref space unitcell

2.4.2 Fundamental symmetries in photonics

Chiral symmetry

CS is a unitary operator Γ that anti-commutes with the stationary Hamiltonian H

ΓHΓ ⌘ �H. (2.44)

Such that Γ = Γ† = Γ�1 and thus Γ2 = 1
5.

The similar condition is also satisfied by the BPS operator Bp (see eq(2.40)), if the
Hamiltonian is written in proper basis, i.e. A and B. Using the definition from eq(2.38), we
can write

Γ = PA � PB (2.45)

where the precise form for the Γ comes from eq.(2.41). This is an equivalent and sufficient
definition of CS (Asbóth et al. 2016).
Let us take an example of Lieb lattice (Weeks et al. 2010a), as shown in Fig. 2.6. There is
only hopping between the nearest neighbours, shown with thick black arrow. It has BPS,
where two families are A = {a, c} and B = {b} (see Fig. 2.4). Then the Hamiltonian written
in the proper basis {a, c, b} comes out to be

H =

0

@

0 0 ↵

0 0 �

↵ � 0

1

A . (2.46)

Then the CS or BPS operator satisfying eq.(2.44),(2.40) in the same basis is

Γ = Bp =

✓

12⇥2 0
0 �11⇥1

◆

. (2.47)

5In general, any gauge dependence can be removed by redefinition. If Γ2 = eiφ, then the Γ ! e−iφ/2
Γ
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Figure 2.6: (a) Lieb lattice containing three types of atoms denoted by a, b and c, where
hoppings are only among nearest neighbours, namely ↵, �, unitcell is emphasized by dotted
square in (b)

Recently, in the same static regime, it was shown that to explain the full topology of
chiral symmetric systems, e.g., the unitcell choice dependent topological zero modes in the
SSH model(Asbóth et al. 2016) requires not only the description of bulk Hamiltonian but also
the underlying real-space lattice (Guzmán et al. 2020). Since the 1D topological invariant
Zak phase is a unitcell dependent quantity in SSH ( i.e., not a gauge-invariant) and it is only
meaningful to take its difference between the two phases, namely topological and trivial (or
between the two unitcell choices).

The definition of CS changes in time-dependent case to

ΓzH(z)Γ�1
z = �H(�z) (2.48)

where Γz is a chiral symmetry operator in time-dependent case.
Unlike in static cases, CS is non-local in time now. If we have translational symmetry in the
system along with the periodic driven Hamiltonian then,

ΓzH(k, z)Γ�1
z = �H(k, Z � z), (2.49)

which can be rewritten in terms of evolution operator as,

ΓzU(k, z)Γ�1
z = U(k,�z). (2.50)

From eq(2.49), we see that there are unique points for which CS is local in time, for
instance, when z0 = 0 or Z/2.

At these points, CS can be defined locally, and these point(s) serves as a chiral symmetric
point6. About these points, evolution is time-symmetric, e.g., ΓzU(k, 0)Γ�1

z = U(k, 0).

6Not necessarily these points, but also by redefining origin in some cases, e.g., H = H0 +V sin(!z), then
z0 ! z0 + ⇡/2
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CS for the Floquet systems requires two essential ingredients. One is reminiscent of the
static case, i.e., BPS, another one is z -Ref in the lattice. We can then decompose CS as the
product of BPS and z -Ref.

BpRzH(k, z)R�1
z B�1

p = �H(k, z0 � Z). (2.51)

where z0 = Z for Chiral operator Γz.
Interestingly, CS can still hold if both of these symmetries are simultaneously broken. This
shall motivate us to look for precise condition for CS to hold, e.g. on the structure of
Hamiltonian. Since, in stationary case, the CS or BPS Hamiltonian is off-diagonal (see
eq.(2.39)). Let us consider a Hamiltonian H(z), which breaks both of the symmetries,
namely z -Ref and BPS,

H(z) =

✓

V sin(z) J1 cos(z) + J2e
ik

J1 cos(z) + J2e
�ik V sin(z)

◆

. (2.52)

H(z) breaks both BPS by the onsite potential and z -Ref (eq(2.42)) for the above choice of
couplings, and the onsite potential, while still preserving the CS (where �x is the CS opera-
tor).

We can ask a general question, what are the constraints does CS put on H (we omit k
label in H, since CS does not depend on it). These constraints are present irrespective of the
case if both z -Ref and BPS are present, or both are absent together. To determine that, let us
assume a periodically time-dependent Hamiltonian H(z) with a period Z (H(z+Z) = H(z))
and with N (sublattice) degrees of freedom. This H(z) has a CS operator Γz, then taking
determinant on the eq.(2.49) gives,

det(Γz) det(H(z)) = (�1)N det(H(Z � z)) det(Γz),

det(H(z)) = (�1)N det(H(Z � z)).

This equation simplifies for two chiral symmetric point, namely z0 = 0, Z/2 as

det(H(Z/2)) = (�1)N det(H(Z/2)) , (2.53)

det(H(0)) = (�1)N det(H(0)). (2.54)

It shows that determinant puts a constraint on Hamiltonian for odd values of N , where it
should vanish at z = 0 and z = Z/2.

Similarly, if we take the trace of eq(2.49), it yields

tr(H(z)) = � tr(H(Z � z)),

(2.55)

where,

trH(z) =

(

0, z = z0

6= 0, z 6= z0

For z0 = 0, Z/2, irrespective of the value of N , the trH(z) vanishes identically. This can
mean, for instance, for the two atoms in a unitcell that either the onsite potential is zero
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identically for each of them, or it is opposite. These two situations are actually our two cases
where either both z -Ref and BPS are present or absent.
The above chiral constraints on Hamiltonian can be thought more general than to check if
the two respective symmetries are present or not since they do not depend on those symme-
tries. It contradicts the point mentioned in the ref(Bellec, Michel, et al. 2017), where the
authors said, as long as there exists a symmetry axis z ! �z of the lattice with respect
to some origin, the Floquet operator holds a chiral symmetry. Here, we have shown that
reflection symmetry alone is not sufficient to induce CS, while z -Ref and BPS are. It can be
summarised as,

• z -Ref and BPS ) CS

• CS ; z -Ref and BPS

z -Reversal symmetry

The z -RS is an anti-unitary operator denoted by Θz, which commutes with the (time-
dependent) Bloch Hamiltonian H(k, z). Here, we have Θ2

z = +1. To look for a system
with Θ2

z = �1 would be interesting, as, for 2D, it gives rise to a remarkable quantum spin
hall effect. However in photonics to achieve fermionic TRS is not apparent due to the un-
derlying bosonic nature of photons, while using photon’s polarization as a pseudospin can
be achieved, and it was shown experimentally in stationary (Albert et al. 2015; Hafezi et al.
2011) and also in Floquet case using waveguide array (Maczewsky et al. 2018).
If Θz = ✓zK, where K is conjugation, then in unitary form

✓zH(k, z)✓†z = H⇤(�k,�z) (2.56)

It is important to note that for photonics waveguide array, all the couplings are real, and
only the complex dependence is in the Bloch phase7 (Szameit and Stefan Nolte 2010). We
can call this photonic Bloch Hamiltonian as Hp, it satisfies

H⇤
p (�k) = Hp(k) (2.57)

So, this yields for Hp and photonic evolution operator Up a symmetry condition same as the
z -Ref (see (2.42))

✓zHp(k, z)✓
†
z = Hp(k, Z � z) (2.58)

✓zUp(k, z)✓
†
z = U⇤

p (�k,�z). (2.59)

We can infer from CS case that here also exists a z0 point, about which evolution is symmet-
ric. eq.(2.58) is precisely the z -Ref equation(2.42). In the photonic version of Hamiltonian,
the z -RS acts as unitary instead of anti-unitary, due to the underlying real nature of real
space Hamiltonian (i.e. H(x)), this shows the close connection of z -RS in photonics with
z-Ref symmetry, which we exploit in next section.

7In general, complex couplings can appear in an effective Hamiltonian form. Besides, at most, there can
be extra phases, coming from synthetic gauge fields (Wimmer, Hannah M Price, et al. 2017), they can be
considered at the same level as Bloch quasimomentum k. Thus, this k can be though of as a generalized
quasimomenta.
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Particle-hole symmetry

Particle-Hole Symmetry, C = CK, refers to an anti-unitary operator which anti-commutes
with Hamiltonian, we have C2 = +1. At the level of z -dependent and Bloch Hamiltonian
and photonic Bloch Hamiltonian, it satisfies

CH(k, z)C�1 = �H⇤(�k, z),

CHp(k, z)C
�1 = �Hp(k, z) (2.60)

In general, C can depend on the origin, say k0, let us represent the Hamiltonian with this
dependence as Hs

p . For instance, 1D SSH model with three atoms in a unitcell with non-zero
couplings between each of the atoms,

CH(k + k0, z)C
�1 = �H⇤(�k + k0, z),

CHs
p(k + k0, z)C

�1 = �Hs⇤
p (�k + k0, z) (2.61)

Let us call the origin dependent PHS to be the shifted -PHS (or s-PHS).
Similarly, here, PHS acts as a unitary symmetry on photonic Hamiltonian (Hp). Importantly
eq(2.60) is identical to the eq(2.44), meaning that if there is a BPS, then we can define the
PHS operator from eq.(2.41). Surprisingly, this does not hold for s-PHS, which only exists
when there is no bipartite symmetry. In other words, PHS and s-PHS are mutually exclusive
and s-PHS is always non-bipartite but not vice-versa.
Constraints on PHS from eq(2.60) for photonic Hamiltonians at any value of z are

det(C) det(Hp) = (�1)N det(Hp) det(C),

det(Hp) = (�1)N det(Hp) (2.62)

It shows that determinant puts a constraint on Hamiltonian for odd values of N similar to
Γz, however, irrespective of the value of z since time is irrelevant for BPS to hold.

However, the trace is identically zero.

tr(CHpC
�1) = �tr(Hp),

tr(Hp) = 0 (2.63)

Trace can only be zero if there is no onsite term in the Hp. Yet, for any value of N , it is pos-
sible to choose onsite terms such that there sum vanishes. Nevertheless, this condition alone
is not sufficient; one needs to take into account the determinant condition as well. We have
not considered the case for Hs

p since the form of the Hamiltonian is not the same on either
side of the eq.(2.61). All the different symmetries acting on time-dependent Hamiltonians,
evolution operators, and photonic Hamiltonians, along with the constraint they put on the
spectrum, are tabulated in Tab(2.1). We can ask if there is more than one symmetry in the
system then what kind of symmetries are compatible with each other. For instance, s-PHS
and PHS can not be present together. Fig. 2.7 shows the compatibility between different
types of symmetries.
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Symmetries H(k,z) U(k,z) Hp(k,z) Constraint on eigenvalues
BPS �H(k, z) U�1(k, z) �Hp(k, z) {E(k), -E(k)}
z -Ref H(k,�z) U�1(k,�z) Hp(k,�z) No constraints
CS �H(k,�z) U(k,�z) �Hp(k,�z) {E(k), -E(k)}
z -RS H⇤(�k,�z) U⇤(�k,�z) Hp(k,�z) {E(k), E(�k)}
PHS �H⇤(�k, z) U⇤(�k, z) �Hp(k, z) {E(k), - E(�k)}
s-PHS �H⇤(�k + k0, z) U⇤(�k + k0, Z) �Hp(k � k0, z) {E(k + k0), - E(�k + k0)}

Table 2.1: Different symmetries are acting on time-dependent Hamiltonian, evolution oper-
ator, and photonic Hamiltonian with their constraints on eigenvalues.

CSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCSCS

z-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refz-RS ⇔ z-Refs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHSs-PHS

PHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPSPHS ⇔ BPS

Figure 2.7: Symmetries compatibility relation in Photonic lattices

2.4.3 Engineering symmetries in photonic waveguide arrays and

boundary modes

In this section, we consider examples in 1D waveguide (WG) array from each region of the
graph shown in Fig. 2.7, with symmetry operations shown in Table(2.1). To investigate
which symmetries can give rise to non-trivial edge states in 1D finite waveguide array.

Chiral Symmetry

In 1D photonic WG array Fig. 2.8, there are two cases with CS for a periodically driven
Hamiltonian, namely if both are present BPS and z -Ref or are absent.
To engineer a waveguide array with CS, either we can implement both the lattice symmetries,
namely BPS and z -Ref, or, the product of symmetries PHS and z -RS (i.e., PHS and TRS),
as shown for 2WGs network with a period Z in Fig. 2.8a. For this case photonic Hamiltonian
for two steps (0), looks like
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κ2

κ1

Z/2

Z/2z

x

(a)

κ2

κ1

(b)

Figure 2.8: 1D waveguide arrays with 2 WG in a unitcell with a period Z (a) with zero-onsite
potential is BPS and z -Ref (b) with non-zero time varying potential shown as a varying color
along z�axis breaks BPS and z -Ref

H(1)
p (k) =

✓

0 1
1 0

◆

0  z < Z/2 (2.64)

H(2)
p (k) =

✓

0 2e
ik

2e
�ik 0

◆

Z/2  z < Z (2.65)

Differently, breaking both BPS and z -Ref also achieves this condition, while respecting the
constraints on the Hamiltonian eq(2.54),(2.55). BPS breaks in the presence of an onsite
potential term V(z) since it allows coupling within the same family, which otherwise is
forbidden. Besides, modifying this onsite potential V(z) in such a way that it breaks reflection
condition V (z+z0) = V (�z+z0), this also breaks the z -Ref symmetry, as shown in Fig. 2.8b.
In waveguide arrays this potential can be attained by periodically modulating the refractive
index along z -axis, e.g. n0 sin(z) (Ke et al. 2016). Likewise, the photonic Hamiltonian

H(z) =

✓

V sin(z) 1h[Z/2� z] + 2h[z � Z/2]eik

1h[Z/2� z] + 2h[z � Z/2]e�ik V sin(z)

◆

(2.66)

where h[Z/2� z] is a Heaviside step function, h[x] = 0, x < 0 or = 1, x � 0.
In 1D Floquet system with CS, we can expect non-trivial topology, which manifest with

the presence of boundary modes in a finite system (Asbóth et al. 2014; Bellec, Michel, et al.
2017; Fruchart 2016; Roy and Harper 2017), for the Hamiltonian in eq(2.64). We consider
a finite geometry with 20 unitcells along the x-axis in Fig. 2.8a. For the numerical con-
venience this geometry is coupled at both the boundaries with another finite network but
with a different choice of couplings parameters j=1,2, forming a cylindrical geometry8, as

8This choice of geometry allows us to get rid of additional edge states.
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κ23

κ21i

z = 0

z = Z/3

z = 2Z/3

x

z

(a)

(b) (c)

Figure 2.10: (a) 3 WGs PHS network with bipartite structure, considering its finite version
(a) edge states are robust at " = ⇡ under a change in interface coupling parameter, whereas
(b) breaking of bipartiteness destroys the topological states.

Similarly, in 1D with particle-hole symmetry, we can expect non-trivial topology. It is
confirmed by considering the same geometry, where non-trivial states appear at the interface,
as shown in Fig. 2.10b. Moreover, the number of bands being odd, the only place where
non-trivial states appear are necessarily at quasienergy ⇡ since there is a band at quasienergy
0, thus forbidding any gap. Consequently, PHS does not protect other edge states at any
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quasienergy. This comes from the fact that other quasienergies are not respected under PHS,
"(k) ! �"(k), only 0 and ⇡ are invariant under this.

Breaking PHS would require to break the constraints derived in eq(2.62)-(2.63). One way
to do so is to repeat what we did for CS, i.e., to introduce some constant onsite potential.
This indeed destroys the edge states at " = ⇡, as confirmed in Fig. 2.10c, where we introduce
the constant onsite potential on each of the WGs at only initial time 0  z < Z/3. Moreover,
there is another way to break PHS would be to break BPS by introducing specific couplings
in the model, e.g., restoring the coupling between the 3rd and 1st waveguide.

shifted Particle-hole symmetry

This symmetry is only present when PHS is absent. To do so, we introduce a coupling
between the 3rd and the 1st waveguide, which respects the constraint and, at the same time,
beaks BPS or PHS. This can be achieved as shown in Fig. 2.11, with the couplings between
the waveguides

H(z) =

8

>

<

>

:

1st(in black) and 2nd(in blue) ! ✓12 0  z < Z/3

2ndand 3rd(in green ) ! ✓23 Z/3  z < 2Z/3

3rd and 1st ! ✓31 2Z/3  z < Z

This choice breaks all the symmetries CS, PHS and z -RS, as per our interpretation from last
section with the lattice symmetries.
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Figure 2.11: (a) 3 WGs s-PHS network, with edge state spectrum (b) appearance of edge
states in presence of s-PHS (b) breaking of s-PHS
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However, in 1D without such symmetries, we do not expect any non-trivial topology to
appear (Roy and Harper 2017). Surprisingly, the robust edge states are present (2.10b) at
quasienergy ⇡, like before. The existence of these topological edge states in 1D tells us that
there is indeed some symmetry responsible for their protection. This symmetry is what we
call shifted particle-hole symmetry. There are two reasons to use this terminology. First,
when the spectrum is shifted by k ! k + k0, it has the particle-hole symmetric spectrum
{"(k),�"(�k)}. Second, there exists an antiunitary operator that anti-commutes with the
Hamiltonian.

Likewise, using these two reasons of its connection with PHS, we can follow the same
strategy to introduce a constant onsite potential on each of the waveguides at initial time
0  z < Z/3 breaks s-PHS, and this leads to the disappearance of ⇡ state, as expected in
1D in the absence of any of these symmetries.

z -reversal symmetry

If the waveguide array respects z -Ref symmetry, then it also respects z -reversal symmetry.
To consider a network with only this symmetry would be to go again beyond 2WGs, as it
already has CS and PHS. So, the next possibility is to look for three waveguides in a unitcell,
as shown in Fig. 2.12a, where there is a coupling between the waveguides

H(z) =

(

1st(red) and 2nd(green) ! ✓12 also 2nd and 3rd(blue) ! ✓23 0  z < Z/2

3rd and 1st ! ✓31 Z/2  z < Z

the last coupling is outside the unitcell.
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Z/2z
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Figure 2.12: (a) 3 WGs with z -RS network, with edge state spectrum (b) absence of edge
states

Far from surprising, there is no nontrivial topology solely coming from z -RS in 1D.
Considering a finite geometry confirms this assertion, where we consider a network with 40
unitcells but sharing the boundaries with vacuum, unlike previously9. In this case, we fix
the values of coupling parameter ✓12 and ✓23 and varying the ✓31 parameter. We see that
for any choice of coupling parameters, the system only posses trivial edge states that only
depends on how the network terminates, as shown in the fig 2.12a.

Inversion symmetry

For the sake of completion, we discuss inversion symmetry, which is not responsible for
any non-trivial topology. However, it is unusual in the presence of another symmetry, e.g.
time-reversal symmetry, which can give rise to the non-trivial topology in 2D, as it simplifies
the calculation of topological invariant (Fu et al. 2007). However, we consider it in its parent
form that is without any other symmetry. Then at the level of Hamiltonian H(x, z) or Bloch
Hamiltonian, H(k, z), it follows

PH(x, z)P�1 = H(�x, z), or

PH(k, z)P�1 = H(�k, z) (2.67)

where P is an inversion symmetry operator. This symmetry can be implemented in a 2WGs
network where we have two different successive intra coupling separated in time and fol-
lowed by an intercoupling, as shown in fig 2.13. The respective couplings are between the

9Due to absence of two different topological regime, namely trivial and topological, we cannot use previous
geometry.
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waveguides are

H(z) =

8

>

<

>

:

1st(in black) and 2nd(in blue) ! ✓12 0  z < Z/3

1ndand 2rd(in green) ! ✓121 Z/3  z < 2Z/3

2rd and 1st ! ✓21 2Z/3  z < Z

where the only the last coupling connects two unitcell.

θ121

θ12

θ21

(a) (b)

Figure 2.13: (a) 2Wg with Inversion Symmetry network, with edge state spectrum (b)
absence of edge states

The choice of two successive different intra couplings breaks z -RS. However, the network
is still bipartite, so to break PHS, we added constant but same onsite potential on both the
waveguides. On considering a similar finite geometry of 40 unitcells with boundaries with
the vacuum. As expected by fixing the values of coupling parameter ✓12 and ✓121 and varying
the ✓21 parameter, the edge state spectrum only has trivial edge states.

2.5 Summary of chapter 3

We saw a connection between the symmetries responsible for non-trivial topology and the
lattice symmetries. Moreover, we also saw how engineering particular symmetries induces
topology to the 1D photonic waveguide array, e.g., CS, PHS, s-PHS, but z -RS alone can not.
We discussed how PHS is responsible for bipartiteness or BPS in the photonic system. How
CS can be viewed in two ways, the first composition of BS and z -symmetric lattice, second,
without BS and z -symmetric, which is achieved by an odd function of z at onsite term. z -RS
can be thought as a consequence of the presence of a symmetry axis z ! �z of the lattice
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with respect to some origin, i.e., z -Ref. Only non-trivial topology comes when there are two
other symmetries along with z-RS, colored region Fig. (2.7). At last, we saw the consequences
of inversion symmetry in 1D to be trivial on topology, similar to z -RS. In future, we can
think of how complex couplings can be introduced, where our some of the interpretations
will break. Moreover, how symmetries fermionic symmetries can be implemented C2 = �1
or Θ2 = �1. The later symmetry has recently been implemented in the waveguide setup in
the Szamiet’s group (Maczewsky et al. 2018). To the best of my knowledge, C2 = �1 is still
missing.
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Chapter 3

Beyond Floquet insulators 1:

Winding regime

3.1 Introduction

After the discovery of the quantum Hall effect in 1980, the most perplexing question was
how can electrons delocalize at the phase transition between quantum Hall plateaus in 2D
in the presence of a disordered potential since this was not in compliance with the Anderson
theory of localization (Anderson 1958). Later, this mystery was resolved in the semi-classical
picture where electrons of some fixed energy or at an equipotential can percolate through the
disorder. The external strong magnetic field directs the direction of the electron wavepackets
inside each equipotential—thus allowing electrons to delocalize instead of undergoing strong
localization. Chalker, Coddington, and Ho (Chalker et al. 1988; C.-M. Ho et al. 1996)
proposed the first solution in this direction, where they proposed an oriented scattering
network model for electron wave propagation on a random network, as sketched in Fig. 3.1.
In this scattering matrix network, the orientation refers to a specific direction of flow. For
instance, here, this preferential direction is a consequence of breaking time-reversal symmetry
due to the external magnetic field. Also, it can be a directed flow of electrons in a lattice in
the presence of an electric field, where electrons only follow the direction of electric field.

SS

S

Figure 3.1: Sketch of a scattering network, where at each scattering node S the number of
incoming arrows are the same as the number of outgoing ones. Thus, preserving unitarity
of S.

In 2013, G. Q. Liang, Y. D. Chong, and M. Pasek (Liang et al. 2013; Pasek et al. 2014)
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proposed a similar scattering model to study the propagation of light inside the coupled-
resonator optical waveguides (CROW) model. In this model, the unitary scattering matrix
represents the coupling between resonators, which stores the local information of transmission
and reflection between the resonators, thus allowing this formalism to address problems
beyond the Hamiltonian formalism or tight-binding models. A similar framework was also
used in the array of acoustic networks (Khanikaev, Fleury, et al. 2015), showing the versatility
of the network and experimental feasibility. The system considered in this framework thought
of as an oriented scattering network. The arrows or links connecting the scattering matrices
have specific orientation for the flows that are from incoming states to outgoing ones.

Interestingly, every continuously time-dependent Hamiltonian can be decomposed into
discrete-time Hamiltonians eq(2.3). These, in turn, can be replaced by successive time-
ordered scattering matrices—thus allowing to formulate this problem in terms of similar
formalism where this order is maintained. However, we restrict ourselves to the periodically
driven system, where such scattering matrices ordering repeats after one period. For instance,
this appears in the quantum domain, where photons perform periodic discrete-time quantum
walks (Kitagawa, Matthew A Broome, et al. 2012). The Floquet operator here after one
period T can be decomposed for N total walks into time-ordered stepwise scattering events
(UF (T ) = SN · · ·S1, Sj = eiHjT/N). This situation can also appear in the classical domain,
where light propagates inside the waveguides networks, the amplitudes of scattering matrices
encode the couplings between the waveguides. Even though in these cases there is no explicit
time, but can still host topological edge modes(Delplace 2019; Delplace, Fruchart, et al. 2017;
Kitagawa, Oka, et al. 2011; Kitagawa, M. S. Rudner, et al. 2010; Clément Tauber et al. 2015).

Beyond theory, discrete-time dynamics have been implemented in different experimen-
tal platforms, ranging from the quantum regime in photonic quantum walks (Kitagawa,
Matthew A Broome, et al. 2012) to the classical regime in the circular fibers (Regensburger,
Bersch, Hinrichs, et al. 2011), waveguide arrays (Rechtsman et al. 2013) and electromagnetic
metamaterials (Khanikaev, Hossein Mousavi, et al. 2013) and in microwaves in coaxial cables
(Hu et al. 2015a), to cite a few.

This chapter is organized as follows. After giving a brief introduction to the oriented
scattering network model, I shall propose four different models in 2D, namely I, II, III,
and IV that differ by their symmetries. These symmetries dictate the topological properties
in each model, where all of these models are only realizable in the Floquet regime.

3.2 Scattering network models

As we saw in chapter (1.7) that different photonic setups can serve as platforms to observe
phenomena predicted in solid-state systems. On the contrary, there are specific topologi-
cal properties that are not realizable in the solid-state systems, like topological properties
of non-Hermitian physics, but these scattering network models allow us to explore them.
Interestingly, all different photonic platforms in of sec(1.3) can be formulated in one com-
mon framework, of the scattering network model, where scattering amplitudes encode the
information of coupling among the elements of the network, e.g., among the waveguides
in waveguide arrays. The scattering network model, where scattering amplitudes encode
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the information of coupling among the elements of the network, e.g., among the waveg-
uides in waveguide arrays. To introduce our scattering network model, let us consider a
one-dimensional spatial lattice of periodic discrete-time evolutions represented by oriented
scattering networks, as sketched in Fig. 3.2. In this network, an initial state of a system
is described by the superposition over amplitudes of incoming arrows (or oriented links).
The number of these incoming arrows encodes the degrees of freedom in the system, e.g.,
the different polarization states (horizontal or vertical) of the photon in photonic quantum
walk(Kitagawa, Matthew A Broome, et al. 2012) or the number of waveguides in a unitcell
in a lattice. two oriented links, one going to the right (shown in red) with amplitude �position

time

and another to the left (shown in blue) ↵position
time . Then the state evolves in discrete time

from top to bottom followed by a unitary scattering process at each time step j denoted by
scattering matrix Sj. From here, the respective amplitudes are scattered towards the next
links depending on their orientation of left (blue arrow) or right (red arrow).
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Figure 3.2: Two-dimensional oriented scattering lattice where the y axis plays the role of
time and x axis of position. A time period consists of N successive steps represented by N
2⇥ 2 scattering matrices Sj. A phase �j is added for the states scattered out of the node j
and propagating leftwards (shown with blue arrows). A dashed black rectangle emphasizes
the unit cell of this lattice.

In addition to these scattering processes, we introduce a phase shift �j carried by the
states along each link (Wimmer, Mohammed-Ali Miri, et al. 2015; Wimmer, Hannah M
Price, et al. 2017; Wimmer, Regensburger, et al. 2013), see Fig. 3.2. We only consider a
non-zero phase shift �j for the leftward going states (as depicted in Fig. 3.2). The critical
point is that we allow the value of this phase to vary with time j.

Then, the evolution of incoming amplitudes from time step j to j+1 connected through
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the scattering matrix Sj can be projected into a pair of equations of the form

↵
j+1
l = (cos ✓j↵

j
l+1 + i sin ✓j�

j
l+1)e

i�j

�
j+1
l = (i sin ✓j↵

j
l�1 + cos ✓j�

j
l�1) .

(3.1)

Assuming the particular form for the scattering nodes (or matrix) as

Sj =

✓

cos ✓j i sin ✓j
i sin ✓j cos ✓j

◆

. (3.2)

In general case, we can associate a phase to each of the oriented links as �left
j and �right

j .
Then employing a gauge transformation of

↵̃
j
l ! e�in

2

2
�e�i j

2
�↵

j
l , (3.3)

we can transfer the phase from both the links to only one of the links, e.g. to the left
link (shown in blue in Fig. 3.2). Similarly, the phase � could also vary along position l
(Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012), which again using proper gauge
transformation,

↵̃
j
l ! ei

jn

2
�e�i j

2

4
�ei

j

4
�↵

j
l , (3.4)

can lead to only time dependence (Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012).
One period of evolution corresponds to the time-ordered product of N such scattering

events (SN · · ·S1) acting on the initial state, as emphasized by a unitcell with dashed black
in Fig. 3.2. Here, this time ordered product of the scattering matrices after one period is
the Floquet operator. The scattering matrices retain the time periodicity as Sj+N = Sj.
This network can thus model a 1D Floquet quantum walk. The topological properties
concerning such Floquet operators of these scattering networks have been studied recently
in 2D (Delplace 2019; Hu et al. 2015b; Liang et al. 2013; Pasek et al. 2014) and also in 3D
(H. Wang et al. 2016).

Assuming the discrete translational invariance along x axis, a Bloch-Floquet operator UF

reads as

UF (kx, {�j}) = Bmod(N,2)(kx)SND(�N)....B1(kx)S1D(�1), (3.5)

B1(kx) =

✓

1 0
0 e�ikx

◆

, B0(kx) =

✓

eikx 0
0 1

◆

, D(�j) =

✓

ei�j 0
0 1

◆

(3.6)

Here, we assume a pattern for the phase shifts of the form �j = Qj� that preserves the
periodicity of the network, where Qj is some rational number that will be specified later.
This � gives us a second-time scale with respect to one drive period N in the network.
Hence, it may look like that the network is not any more periodic in time. However, we
consider the case where variation in � is so small in comparison to the Floquet period N ,
that, the long time stroboscopic dynamics can be described by the adiabatically modulated
Floquet operator when continuously varying the phase parameter � 2 [0, 2⇡]. Then, the
Floquet operator UF (kx,�, {✓j}) depends on the quasimomentum along the x direction, kx,
the “synthetic quasimomentum” � and the set of parameters {✓j}, where j runs from 1 to N .
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The former kx and � lie at the same footings, thus they constitute a 2D synthetic Brillouin
Zone (BZ), whereas ✓j (i.e., coupling parameters) predicts the topological regime. Note
that the Floquet operator depends periodically on its parameters. Moreover, by considering
some of the coupling parameters as other synthetic dimensions could provide an interesting
framework to investigate topology in higher dimensions (e.g., >2).

The synthetic dimension � in the context of photonics comes from two reasons. First,
either by the phase shift of the light beam due to some extra path length that is being
our case, implemented in circular fibers (Regensburger, Bersch, Hinrichs, et al. 2011; Wim-
mer, Mohammed-Ali Miri, et al. 2015; Wimmer, Hannah M Price, et al. 2017; Wimmer,
Regensburger, et al. 2013), and resonator network model (Hafezi et al. 2011). Secondly,
by considering different modes of the resonator (Ozawa, Hannah M. Price, Goldman, et al.
2016)or, the waveguide (Lustig et al. 2019) as a synthetic dimension. Furthermore, it can
also come through quasiperiodicity, where 1D quasicrystal can possess properties of 2D pe-
riodic crystal (Kraus, Lahini, et al. 2012; Kraus, Ringel, et al. 2013; Kraus and Zilberberg
2012; Verbin, Zilberberg, Kraus, et al. 2013; Verbin, Zilberberg, Lahini, et al. 2015). This
case will be similar to our, where mapping to a 2D crystal involves one of the dimension to
behave as an adiabatic parameter. Thus, tuning this parameter in the topological regime can
make the system behave like a topological pump (Thouless 1983), which has been observed
in the photonics domain (Kraus, Lahini, et al. 2012; Kraus, Ringel, et al. 2013; Kraus and
Zilberberg 2012; Tangpanitanon et al. 2016; Zilberberg et al. 2018) and in cold atoms (M.
Lohse et al. 2016; Michael Lohse et al. 2018; Nakajima et al. 2016).

Model I: Wimmer, Hannah M Price, et al. 2017.

Let us consider the above scattering network (Fig. 3.2) in the simple case where N = 2
steps with �1 = +�,�2 = ��. In addition to that, it gives two parameters to tune with,
namely {✓1, ✓2}. Note that the net phase inside the unitcell is zero. Now, by diagonalizing
the Floquet operator eq(3.5), we get two quasienergy bands "±(kx,�). As shown in Fig. 3.3a,
the quasienergy spectrum " is fully gapless for the critical value of parameters ✓j=1,2 = ⇡/4.

This network generalizes previous models whose topological properties have been investi-
gated experimentally in photonics setups. For instance, when N = 2 and in the absence of a
phase shift (� = 0), the model describes 1D photonic quantum walk (Kitagawa, Matthew A
Broome, et al. 2012) and 1D laser-written photonic waveguide arrays in silica (Bellec, Michel,
et al. 2017), in which boundary modes have been observed. For non-vanishing � but still
N = 2, with �1 = +�,�2 = �� together with the fixed coupling parameters ✓j=1,2 = ⇡/4,
it describes pair of coupled optical fiber loops in which the Berry curvature was measured
using wavepacket dynamics (Wimmer, Hannah M Price, et al. 2017). We take a step ahead
of (Wimmer, Hannah M Price, et al. 2017), where we allow the couplings to change from (a
critical) value ✓j=1,2 = ⇡/4 to arbitrary values, this gaps the spectrum at " = 0, ⇡, as shown
in Fig. 3.3b.

In this model, the symmetry(s) prevailing can be determined by the Floquet operator
[eq(3.5)].
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symmetry, namely phase rotation (Delplace, Fruchart, et al. 2017), LUFL
�1 = ei⇡UF with

L =

✓

1 0
0 ei⇡

◆

. (3.14)

It follows from this symmetry that the Chern number Cj

Cj =
1

2⇡

Z

BZ

dkxd�

✓

@

@�
h j|i@kx | ji �

@

@kx
h j|i@�| j

◆

(3.15)

for each band necessarily vanishes (Delplace, Fruchart, et al. 2017), where  j are quasi
eigenstates, and therefore, the only two distinct topological regimes one can generate with
N = 2 are either trivial or anomalous. This is confirmed in topological phase diagram for
the above model, as a function of ✓j=1,2 in Fig. 3.4.
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Figure 3.4: Topological phase diagram showing the presence of anomalous topological
regime (color orange) and trivial regime (color white) as a function of coupling parame-
ters. The boundaries between the two colors corresponds to the closing of the spectral gap
of quasienergy at " = 0, ⇡.

In 2D with particle-hole symmetry, one expects to have a non-trivial topology. To inves-
tigate it, we determine the edge states spectrum, by considering a similar finite geometry
along the x-direction, as discussed previously. It leads to two boundaries (one at the left and
another at the right), to which we numerically couple another topological regime, making
it periodic along x together with �, therefore forming a torus like geometry, as sketched in
Fig. 3.5a. If x runs from 0 to L, then 0  x  L/2 is chosen in one regime (i.e., one choice
of coupling parameters) and another in L/2  x  L, with L = 100 or 50 unitcells in each
region. Then the edge states appear at these two interfaces at x = 0 and L/2, respectively.
In general, the coupling parameters differ in each region, denoted by ✓0j=1,2 in blue region,
and ✓j=1,2 in red region (see Fig. 3.5a). However, if both regions are chosen to be the same
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Figure 3.6: Floquet Chern insulator for N = 4 time steps, for �1 = +2�, �2 = ��, �1 = 0,
and �1 = +�.

3.3 Beyond Floquet Topological insulators

One way to go beyond the usual topological insulators is to continuously deform the bands
in such a way that it would tilt them, and the gap becomes incomplete while the bands
still do not touch. It was proposed in the Lieb lattice model (Palumbo et al. 2015), in the
superconductors (Ying et al. 2018, 2019) and Floquet system(L. Zhou et al. 2016). In that
case, gaps can still host chiral edge states that, in this case, would coexist with bulk states
at the same energy but with different quasimomenta. This gives rise to a topological metal.

More recently, it was proposed that threading a net flux Φ through a superconductor in
a cylindrical geometry can break inversion symmetry and lead to such a “metallic regime”
(Ying et al. 2018), as sketched in Fig 3.7b. A similar idea was proposed in periodically driven
cold atoms by breaking inversion symmetry with onsite potential, which leads to topological
phase transition taking place between gapless regimes (L. Zhou et al. 2016). Besides, it was
seen that even in the quantum spin Hall effect, there is a contribution of bulk conductance
to the helical edge states, hence prohibiting exact quantized edge conductance (Knez et al.
2011). It was shown to be connected to the metallic behavior of bulk states along with the
edge states (C.-Z. Chen et al. 2019).

Now, we extend the above idea to the scattering matrix network. Previously, we con-
sidered the case of net phase in the unitcell to be zero, �1 + �2 = 0. This condition helps
us to keep intact the inversion symmetry in the model I (see eq(3.10)). We distinguish two
ways to break inversion symmetry in this scattering framework. In one case, we break it by
keeping a net non zero phase inside the unitcell, namely model II. In other words, we break
inversion symmetry along the synthetic dimension by allowing higher asymmetric hoppings
in this dimension in time. In another case, we break inversion symmetry along the real or
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Figure 3.7: Topological transition on changing the flux Φ through the unitcell (a) trivial
metal and (b) topological metal, from Ref(Ying et al. 2018)

spatial dimension (i.e., x), namely model III. These two different ways of breaking inversion
symmetry give rise to two different types of topological metallic regimes with specific physi-
cal manifestations. In one case, it gives rise to Bloch oscillations of wavepackets, and in the
other case, it gives rise to a transverse quantized drift of wavepacket motion. This clearly
distinguishes inversion symmetry breaking in synthetic and real dimensions. At the end we
club these two aspects in a single model, namely model IV, to explore complex wavepackets
motion.

3.3.1 Model II: Inversion symmetry breaking in synthetic dimen-

sion and Bloch oscillations

Let us introduce our first model of breaking inversion symmetry in the synthetic dimension
by allowing a net phase in the unitcell.

We consider only two steps N = 2 but with �1 = +� and �2 = �2�, as sketched in
Fig 3.8. This existence of a net phase in the unit cell, (i.e. �1 + �2 6= 0, with �1 and �2

proportional to �) breaks this symmetry. This can be shown from eq(3.8), where now

UF (kx,�) = ei(�1+�2)/2B(kx/2)S2 D̃(�2/2)B(kx/2)S1 D̃(�1/2) (3.16)

Next we notice that �xB(kx/2)�x = B(�kx/2) and �xD̃(�j/2)�x = D̃(��j/2) where we
recall that �j is proportional to �. Therefore, the net phase, in the phase factor in Eq.
(3.16) prevents UF to be inversion symmetric that is

�xUF (kx,�)�x 6= UF (�kx,��) . (3.17)

Remarkably, the consequence of this symmetry breaking can be seen on the quasienergy
spectrum ", where bands wind in � axis, as illustrated in Fig. 3.3a. This net flux of �� is
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Figure 3.8: Two-dimensional oriented scattering lattice for N = 2 successive steps. A phase
�1 = +� and �2 = �2� is added for the states scattered out the nodes S1 and S2. The unit
cell of this lattice is emphasized by a dashed black rectangle.

reflected in the negative sign of the “group velocity” @�" of either band for any values of �
(see Fig 3.9a).

A winding number, ⌫� can capture the winding of the bands along � axis. For two
steps periodic dynamics, so that the two distinct phase shifts are �1 = (m1/n1)� and �2 =
(m2/n2)�, where mi, ni 2 Z. As already discussed by Kitagawa, Berg, et al. 2010, the
winding of the quasienergy bands along � with condition |m1/n1| 6= |m2/n2|, defined as

⌫� ⌘ 1

2⇡i

Z 2⇡�(�1,�2)

0

d� tr
h

U�1
F @�UF

i

=
X

p

1

2⇡

Z 2⇡�(�1,�2)

0

d�
@"p

@�
, (3.18)

wherein the last equation(3.18), the sum runs over all the bands since the number of bands p is
even, or more precisely, the number of links entering a scattering node, then the winding num-
ber is also an even integer. The �(�1,�2) as T� ⌘ 2⇡�(�1,�2) sets the period in the � direc-
tion. It is equal to twice the least common multiple of [(m1/n1 �m2/n2)

�1, (m1/n1 +m2/n2)
�1]

(see Appendix(5.2)).
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Figure 3.10: Lattice model realization of Bloch oscillation due to time dependent vector
potential A.

The Hamiltonian H takes the form

H = �
N
X

x

J1e
ie

R x+1
x

dx0A(x0,t)|xihx+ 1|+h.c. (3.20)

Using the translational symmetry in the system, assuming lattice constant to be unity,
and Ax(t) = �Ext. The energy eigenvalues are

E(kx) = �2J1 cos (�eExt+ kx) . (3.21)

If we consider eExt as a parameter, varying very slowly (via slow tuning of t), then
eigenvalues in eq(3.21) are well defined. The corresponding group velocity vg

vg(kx) =
@E(kx)

@kx
,

= 2J1 sin (eExt+ kx) (3.22)

By integrating the above equation(3.22) in time, we get the centre of mass motion tra-
jectory

X(kx; t
0) =

Z t0

0

dt
@E(kx)

@kx
,

= � 2J1
eEx

{cos (eExt
0 + kx)� cos (kx)} (3.23)

Defining �(t) = eExt and for some fix value of kx = kx0, on tuning �(t), the wavepacket
undergoes oscillations eq(3.23) conserving the initial momentum kx0 (Krieger et al. 1986)

The gauge transformation in eq(3.4) shows the equivalence between the position-dependent
phase and time-dependent phase, see eq(3.4). In other words, it a gauge transformation from
the scalar potential (Φ) to the vector potential (A), this interpretation was missing in the
Ref(Regensburger, Bersch, Mohammad-Ali Miri, et al. 2012).
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understanding of the mechanism behind the oscillations: as � is adiabatically increased, the
band dispersions are displaced in a diagonal direction in quasienergy-k space [green arrows in
Fig. 3.11(c)-(f)], a direct consequence of the winding of the bands. Therefore, a wavepacket
with a given k is subject to group velocities that change sign when �(m) increases, resulting
in periodic oscillations in the spatial coordinate. Even though the simulations are done for
k = 0, however, different choices of kx will only result in a phase (or vertical) shift of the
oscillations. A simple example demonstrates this after the end of this subsection.

An analytical calculation of the center of mass motion of the wavepacket centered at a
given kx can be deduced from the group velocity in parameter space (see Appendix(5.2))

X(kx; t) =

Z t

0

dt
@"(kx,�(⌧))

@kx
t, (3.24)

X(kx; t) =

Z �(t)

0

d�
@"(kx,�(⌧))

@kx
�̇(⌧)�1, (3.25)

where �(⌧) = �0⌧ varies linearly, and the continuous time variable t extrapolates the discrete-
time m, this semi-classical trajectory, shown in dashed black lines in Fig. 3.11(b), fits the
simulation plot perfectly. Moreover, the period of Bloch oscillations TB comes from the
period of X, which in turn comes from quasienergy periodicity in �, thus TB = T�/�0. This
directly relates the Bloch oscillations period to the quasienergy winding number via eq(3.19)
as

TB =
2⇡

�0

⌫�
⇣

m1

n1
+ m2

n2

⌘ . (3.26)

The physical origin of these oscillation comes from the fact that the modulation of the
phase shifts � along the propagation is analogous to a time-varying vector potential acting
on a charged particle of unit charge in a lattice that induces a (fictitious) electric field E on
it. One thus expects that a wavepacket corresponding to this charged particle is subjected
to the resulting electric force to be displaced accordingly in the lattice, finally leading to
Bloch oscillations with period TB = 2⇡/E. We recognize in eq(3.26) the (fictitious) average
electric field as E = (E1+E2)/2, where Ej =

mj

nj

�0

2
for time step j. Interestingly, the winding

number ⌫� modifies this expression. Thus, higher winding numbers will not only change the
oscillation period but will also yield more stationary points within the period. Remarkably,
these number of stationary points NS in a Bloch period is precisely

NS = |⌫�| (3.27)

which bestows a topological property of Bloch oscillations. Fig. 3.11 shows the standard
Bloch oscillation with NS = |⌫�|= 2, and the more exotic oscillations with NS = |⌫�|= 6, 8
are shown in Fig. 3.12. The opposite sign for ⌫� will give rise to the trajectory in out of phase
to their counterpart. The Fig. 3.13 shows an interplay of winding number, Bloch period,

and the net phase in the unitcell ∆m/∆n =
⇣

m1

n1
+ m2

n2

⌘

.
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or T and the net non-zero phase shift in the unit cell ∆m/∆n. By fixing the value of
∆n also decreases the value of ⌫�. By fixing the value of (c)-(d) ⌫� = 4, on increasing the
Fixing (e)-(f) ∆m/∆n = �1/2, increasing |⌫�| (or decreasing ⌫�) also increases the value
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3.5 ⌫� can always be connected to Bloch oscillations

We can demonstrate the presence of winding and Bloch oscillations in a very intuitive model.
Let us consider a 1D non-interacting and periodically driven lattice with period T , composed
of two atoms in a unitcell, denoted by a and b, as shown in Fig 3.14. Here, one driving period
T constitutes three steps. At first step, time t = 0, there are no hoppings but a non-zero
potential Va for atom a. A second step, t = T/3, there is only hopping J1 within the unitcell.
At the final step, t = 2T/3, there is only hopping J2 between the unitcells, all hoppings are
assumed to be real for simplicity.

a a a ab b b b

�J1

a a a ab b b b

x x + 1 x + 2 x + 3

�J2

T/3 < t � 2T/3

2T/3 < t � T

a a a ab b b b0 < t � T/3

V1a
V1a

V1a
V1a

Figure 3.14: Lattice model realization of Floquet winding bands.

The stepwise Hamiltonian along with respective evolution operator under translational
symmetry comes out to be

H1 =

✓

Va 0
0 0

◆

, U1 = e�iH1T/3 =

✓

e�i�a 0
0 1

◆

(3.28)

H2 =

✓

0 J1
J1 0

◆

, U2 = e�iH2T/3 =

✓

cos ✓1 �i sin ✓1
�i sin ✓1 cos ✓1

◆

(3.29)

H3 =

✓

0 J2e
ikx

J2e
�ikx 0

◆

, U3 = e�iH3T/3 =

✓

cos ✓2 �ieikx sin ✓2
�ie�ikx sin ✓2 cos ✓2

◆

.

(3.30)

where ✓i = JiT/3 and �a = VaT/3. Note, that we have evaluated the evolution operator only
at their respective or fix times, instead of evaluating them at stepwise time interval. For ex-
ample, U2 should have been written for time interval T/3  t < 2T/3 as e�iH2(t�T/3)e�iH1T/3.
We are interested in the Floquet operator, so we do not specify evolution operator in this
stepwise evolution form.
Then the Floquet operator is UF = U3U2U1. This asymmetric net potential Va in the unitcell
breaks the inversion symmetry of the evolution operator. It is reflected in the winding of the
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Thus, in the general situation, we can have two types of winding regime, as summarized
in this table:
Properties Winding regime of type 1 Winding regime of type 2

1. Inversion symmetry
(responsible symmetry)

Breaking along synthetic axis
with net potential in the unit-
cell.

Preserving along synthetic axis
with net potential in the unit-
cell.

2. Consequences Bloch oscillations for fixed
quasimomentum.

Absence of oscillations.

3. Physical origin Presence of a fictitious electric
field E, generated by a time
varying vector potential A.

Absence of fictitious electric
field E or vector potential A.

4. Implementation (at
the level of Hamiltonian)

At first time step, introducing
asymmetric potential Va 6= Vb

(see the model and eq(3.10))

At first time step, introducing
symmetric potential Va = Vb

(see the model and eq(3.10)).

3.6 Eigenspace anholonomy

Interestingly, if we look at closely the Floquet operator in eq(3.5), it is always periodic under
�i + 2p⇡, where p 2 Z

UF (kx,�i + 2p⇡) = B(kx/2)S2D(�2 + 2p⇡)B(kx/2)S1D(�1 + 2p⇡),

= UF (kx,�i). (3.33)

However, this is not the case for the quasienergies when they wind. For instance, when
�1 = +� and �2 = �2�, they are periodic after 4⇡, "(�+4p⇡) (see Fig 3.9a and a derivation
in Appendix(5.2)). On the other hand, let us consider the quasienergy spectrum over a
period of UF , as shown in Fig 3.16. To begin with, if initially the system is in eigenstate
|Ψred(kx0,�)i at some fix kx = kx0, then by changing �, we follow the blue arrow going
towards the blue-colored band, and it appears at the other (blue colored) band. In other
words, we have parallel transported an eigenstate |Ψred(kx0,� + 2⇡)i = |Ψblue(kx0,�)i to
its orthogonal state. This has been referred to as eigenspace anholonomy or eigenspace
holonomy (Cheon 1998; Miyamoto et al. 2007; Tanaka et al. 2007; L. Zhou et al. 2016). It is
completely different from the Wilczek-Zee’s phase holonomy (Wilczek et al. 1984), which is
concerned with the change of an eigenvector in a degenerate and single eigenspace in which
the eigenvector can rotate due to degeneracy. Moreover, holonomies also appear when a
system is prepared in its eigenstate, assumed to be non-degenerate and discrete. Tuning
a parameter of the Hamiltonian adiabatically, the system remains in the eigenstate due to
the adiabatic theorem(Born et al. 1928). However, when the parameter returns to its initial
value, after traversing a cyclic path adiabatically, the final and initial states differ by a
phase. This phase difference contains two pieces of information: one about the dynamical
phase and the other one of the geometric phase. This later phase is also referred to as phase
holonomy or, more commonly, the Berry phase(Berry 1984), while in this case, the eigenstate
remains the same (up to a phase) after one adiabatic period, but it the eigenstates changes
in eigenspace holonomy.
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Presence of chiral edge states Model II

(a) (b)

Figure 3.17: Quasienergy in cylindrical geometry bands (a) when both the regimes are
✓1 = ⇡/4 � 0.6, ✓2 = ⇡/4, which gives trivial insulating regime and (b) anomalous Floquet
topological insulating regime when one is ✓1 = ⇡/4, ✓2 = ⇡/4 � 0.6 and another ✓1 =
⇡/4� 0.6, ✓2 = ⇡/4.

The Floquet winding regime combines two distinct topological properties� the winding
of bulk bands, as we saw, and the existence of chiral edge states that we discuss now.
Accordingly, a topological transition can be induced in this regime on top of these robust
winding of bulk bands. This, in principle, could already be inferred from the discussion of
the model I with inversion symmetry in the section(3.2), exhibiting the chiral edge states
shown in Fig. 3.5. The only thing we have done so far is breaking inversion symmetry in the
synthetic dimension, which does not affect the topology (Fu et al. 2007) while still preserving
particle-hole symmetry. Thus model II shares the same topological phase diagram as that
of model I (see Fig. 3.4).

To investigate the second topological property, we consider the edge states spectrum,
in a similar finite cylindrical geometry, finite along x-direction while periodic �. If both
regions in this geometry are chosen in the same topological regimes by proper choice of
coupling parameters (from the phase diagram in Fig. 3.4), then there are no edge states. It
corresponds to the trivial regime shown in Fig. 3.5b. The Floquet anomalous topological
regime, in contrast, exhibits chiral edge states in each indirect quasienergy gap. Indeed,
even though the spectrum in this regime is fully gapless, in the sense that for any values of
the quasienergy, there exists an allowed bulk state, the bulk quasienergy bands "(kx,�) in
the synthetic Brillouin zone are separated and do not touch. The chiral edge states remain
topologically robust under the perturbation in the interface coupling parameters. Moreover,
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the winding regime still keeps the phase rotation symmetry (Delplace, Fruchart, et al. 2017)
of the insulating regime, implying that the Chern number vanishes identically for each band.
It gives rise to only the two distinct insulating regimes aforementioned (see Fig.3.17).

The presence of chiral edge states in the winding regime manifests one remarkable feature.
In this regime, all the states have a “synthetic group velocity” with the same sign except
for the chiral edge states localized on one of the two edges, shown in red and marked by a
black arrow in Fig. 3.17b. This peculiar property results from the interplay of two distinct
topological properties, namely the winding of the bulk bands and the chirality of the edge
states that have to be reversed for the two edges.

3.6.1 Model III: Inversion symmetry breaking in spatial dimen-

sion and Thouless pumping

A winding of the quasienergy bands along kx can similarly be obtained by breaking inversion
symmetry in the real spatial dimension. In a simple model with two time-steps, this can be
achieved by connecting to the next nearest nodes of the network, as sketched in Fig. 3.18.
The first time step matches with previous models, where scattering nodes S1 at time j are
connected to their nearest neighbor nodes S2 at time j+1. However, it differs at the second
(or final) time step, where right going arrows (in red) link to the next-nearest neighbor
nodes but keeping the nearest-neighbors along left. This changes the evolution equations of
motions for the scattering amplitudes at two steps, thus allowing us to write a more general
equation for the two steps as

↵
j+1
l+l1

= (cos ✓j↵
j
l+l2

+ i sin ✓j�
j
l+l2

)ei�j

�
j+1
l+l1

= (i sin ✓j↵
j
l+l0

+ cos ✓j�
j
l+l0

) , (3.35)

↵
j+2
l+l3

= (cos ✓j+1↵
j+1
l+l1

+ i sin ✓j+1�
j+1
l+l1

)ei�j+1

�
j+2
l+l3

= (i sin ✓j+1↵
j+1
l+l4

+ cos ✓j+1�
j+1
l+l4

) . (3.36)

Here lj are the links connecting the scattering nodes at time step j+ p� 1 to j+ p, for some
integer p. We can again define lj in terms of rj/sj as,

r1
s1

=
l2 � l3

2
,

r2
s2

=
(l2 � l3) + (l0 � l1)

2
, (3.37)

Previously, there was only one compact evolution equation for the amplitudes for two-time
steps (see eq.(3.1)). Due to the asymmetric nature of couplings at the two-time steps in
model III, the evolution equations split at these time steps. The above relations in eq.(3.37)
quantify these anisotropic couplings at the those time steps. For our present case, the link
parameters are respectively as l0 = �2, l1 = �1, l2 = 0, l3 = �2, l4 = �5. This gives
r1/s1 = 1 and r2/s2 = �2. These following parameters rj/sj characterize the anisotropy in
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Figure 3.18: Two-steps scattering network implements the next nearest coupling in the
second step. A dashed black rectangle emphasizes the unit cell of this lattice.

the coupling that connects the nodes at time j. These are equivalent to mj/nj parameters
in the former case of a winding in �. Thus, this anisotropy in the couplings breaks inversion
symmetry in the spatial dimension, as can be seen from eq(3.10). This breaking reflects in
the winding of the quasienergy bulk bands along kx, as shown in Fig.3.19.
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where we used the Heisenberg picture, ẋ = @H/@k = i[H, x̂], to get this final elegant answer.
This expression connects the mean particle position in the nth band to the winding number
of nth band, i.e.,⌫

(n)
k times the stroboscopic time m.

Such a drift was introduced initially by Thouless but in a completely different context,
where the pumped current quantization roots in the first Chern number of the instantaneous
states of the adiabatically driven periodic Hamiltonian parametrized over the synthetic Bril-
louin zone span by (t, kx). The big difference between the Thouless pump and our model III
comes by considering the semi-classical motion equation of wavepackets (see eq.(3.23)). In
the semi-classical equation of motion, the evolution equation of a wavepacket has two main
contributions: first, the group velocity part, and second, the Berry curvature part, which is
coming from adiabatic correction (from perturbation theory) (Xiao et al. 2010). This gives
for our model

v
(n)
group velocity =

@"(k,�)

@k
+
@�

@t
Ω

(n)(k,�). (3.45)

In our case, the first term characterizes the winding number ⌫k (or ⌫�) in eq.(3.39), while the
second term characterizes the Chern number for Thouless pump. Besides, our case is not
adiabatic for the transverse drift case as it takes the Floquet time (mT ) as an input, while
the Thouless case is an adiabatic pump. Moreover, for the Thoules case, if we consider an
example of two bands, then the value of the total Chern number should vanish. Hence, each
band will have an opposite Chern number (or Berry curvature in above expression eq.(3.45)),
which means both bands experience opposite transverse force. On the contrary, in our case,
there is no such restriction since both bands share the same topological invariant.

Importantly, the winding in � (by breaking inversion symmetry in synthetic dimension)
can also be engineered at the level of a stepwise time-dependent Hamiltonian (Gong2016)
(see Fig 3.14). In contrast, a quasienergy winding in kx (by breaking spatial inversion
symmetry) requires the presence of a momentum dependent potential (as can be seen from
eq(3.28)), which is far from being trivial to engineer. Kitagawa et al. (Kitagawa, Berg, et al.
2010) proposed a 1D non-interacting spin-1/2 chain model on a lattice. In this model, there
is a time-dependent lattice potential which only affects the spin of one kind, say spin up, and
moves slowly to the right, such that after one full modulation, it shifts by exactly l times
the lattice constant, where l is an integer. Then by adiabatically modulating this potential,
it moves the spin-up particles from a unit cell at position x to another unit cell at x + l
to the right, whereas spin down remains unaffected. This reflects on the quasienergy band
spectrum as the spin-up band winds l times while the spin-down band remains flat. However,
this model is experimentally non-trivial to realize. Interestingly, as we saw this similar
winding can be engineered in scattering network. Consequently, it is fully implementable
experimentally.
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Edge states in Model III

(a) (b)

Figure 3.21: Quasienergy spectra in cylindrical geometry for ⌫k = �2, (a) when both the
regimes are ✓1 = ⇡/4�0.6, ✓2 = ⇡/4, which gives trivial insulating regime and (b) anomalous
Floquet topological insulating regime when one is ✓1 = ⇡/4, ✓2 = ⇡/4 � 0.6 and another
✓1 = ⇡/4� 0.6, ✓2 = ⇡/4.

We consider the quasienergy edge state spectrum for model III in a similar cylindrical ge-
ometry along the x axis. Likewise, phase rotation symmetry precludes only two regimes,
depending on the choice of coupling parameters from the same phase diagram in Fig. 3.5b,
namely the trivial and Floquet anomalous regimes, as shown in Fig. 3.21.

Interestingly, in this case, the bands wind along the kx direction, while they are fully
gapless in the � direction, as reflected in the spectrum in Fig. 3.21. Moreover, unlike model
II, the edge states are embedded within the bulk. So, any perturbation in the coupling
parameters at the interface can result in the coupling of the edge states with the bulk bands.
In the next chapter(4), we shall see another situation where similar properties of edge states
being embedded in bulk arise but for entirely different reasons.

3.6.2 Model IV: inversion symmetry breaking along both syn-

thetic and real dimension

In the general case, breaking inversion symmetry be achieved in either dimension, namely kx
and �. This can be realized in the scattering network (see Fig. 3.18) yielding winding along
kx by adding �1 + �2 6= 0. The combination of these two windings gives rise to an intricate
quasienergy spectrum, showing such combined windings in Fig. 3.22.
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Fig. 3.23. In this figure, the number of turning points gives the value of ⌫�, they are marked
with small circles for the last curve that has ⌫k = �8, the number tallies with their ⌫k.
Likewise, the slope of each curve is the manifestation of ⌫k. All plots are for an initial value
of kx = kx0 (see eq.(3.23)). However, changing the value of kx0 only shifts the wavepackets
oscillations vertically, as shown with an inset at the left bottom in Fig. 3.23, and leaving the
number of sub-oscillations unchanged.

Edge states in Model IV

We consider the quasienergy edge state spectrum for model IV. Similarly, considering the
finite geometry leads to only two regimes depending on the choice of coupling parameters
from the same phase diagram in Fig. 3.5b, the trivial and the Floquet anomalous regimes,
as shown in Fig. 3.24.

(a) (b)

Figure 3.24: Quasienergy spectra in cylindrical geometry bands (a) when both the regimes
are ✓1 = ⇡/4 � 0.6, ✓2 = ⇡/4, which gives trivial insulating regime and (b) anomalous
Floquet topological insulating regime when one is ✓1 = ⇡/4, ✓2 = ⇡/4 � 0.6 and another
✓1 = ⇡/4� 0.6, ✓2 = ⇡/4.

In this case, the bands wind along kx and �. Thus they are fully gapless in the � direction,
as reflected in the spectrum in Fig. 3.24. Still this does not prevent the existence of edge
states, since the bulk bands do not touch, thus allowing the standard definitions of bulk
topological invariants.
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Figure 3.25: A general winding is made up of {⌫�, ⌫k} and they can be represented on a
torus using the underlying manifold of BZ. Then the number of windings along the bigger
circle represents ⌫� and smaller one ⌫k, where the counter-clockwise direction can be chosen
as a convention for positive values.

3.6.3 Summary of chapter 4: Main results

• In the oriented scattering network with two time-steps, lifting the condition of the
same coupling parameters, i.e., ✓1 6= ✓2, the two gaps emerged at 0 and pi, hosting
chiral edge states in the topological regime. There are only two topological regimes in
this model, namely the trivial and the anomalous Floquet regime due to phase rotation
symmetry.

• Adding a net phase in the unitcell yields inversion symmetry breaking along the syn-
thetic dimension, and this manifests as the winding of the quasienergy bulk bands. This
net phase is connected to a non-zero time-dependent vector potential, which gives rise
to a fictitious electric field. In turn, this electric field can lead to Bloch oscillations,
where the number turning (or stationary) points are given by the winding number ⌫�
of the bands. This topological property can thus be probed directly in a photonic
experimental setup by the state-of-art technology.

• The winding of the bands in � along with the chiral edge states brings a situation where
one of the chiral edge states propagates opposite to the net synthetic group velocity
of the bands and these two topological properties, winding, and the chiral edge states,
only combines for the Floquet system.

• When inversion symmetry is broken along the spatial dimension, instead of net direc-
tion to the synthetic group velocity, there is a net direction to the actual group velocity.
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It manifests as a transverse drift of the wavepacket, where the amount of drift is con-
nected to another winding number ⌫k. As a remarkable consequence, if we consider the
finite geometry, then the edge states are embedded in the bulk quasienergy spectrum.

• Finally, these two results can be put in the same bowl, namely winding in both �, and
k, where each preserves its physical manifestation, transverse drift, and oscillations.
Here, the BZ is a torus with two periodic axes kx and �, then these two winding
numbers correspond to two different loops on the torus, as sketched in Fig. 3.25, where
these two loops can not be continuously deformed into each other.

100



Chapter 4

Beyond Floquet insulators 2:

Semi-metallic regime

4.1 Introduction

In this chapter, we present another gapless scenario in the 2D Floquet scattering network
model. The most characteristic feature shown by this gapless model is the number of degen-
eracies can be selectively manipulated at the Fermi level (in our case, " = 0 or at " = ⇡). It
can be seen as a phase transition from D number of degeneracies to the D� d degeneracies.
Roughly speaking, this model mixes the Weyl and the usual topological insulator properties
classification. At the same quasienergy ", there are protected degeneracies (Weyl type) and
also chiral edge states but at a different points in the BZ.

4.2 Semimetal Model 1: Gapless states in four-steps

networks

To go beyond a model that only possesses two regimes, namely trivially gapped or Floquet
anomalous insulators (chapter(3)) while keeping the inversion symmetry, one way would be
to increase the number of steps along the transverse axis, and another way is by increasing
the time steps in the Floquet period, as shown in Fig. 4.1. As a result, this leads to the
first increment in the number of tuning (or coupling) parameters, thus ensuring that the
phase rotation symmetry breaks (Delplace, Fruchart, et al. 2017). Hence more regimes can
be expected, for example, the Floquet Chern insulator (see Fig. 3.6). Lastly, the number of
bands touchings at the same quasienergy in the BZ also increases. Their stability depends
on different (combination of) parameters than the pre-existing ones.1

We choose the second option of increasing the size of the unitcell along the time axis.
Let us consider a period of N = 4 steps in one Floquet period, and fixing the distinct phase
shifts inside a unit cell as �1 = +�,�2 = ��,�3 = +�, and �4 = ��. Note that the net

1For example, in two steps models, the stability of Dirac points requires ✓1 � ✓2 = 0. Hence, for more
parameters (say N) ensure more such different combinations of these parameters, like

PN
j ⇢j✓j = 0, where

⇢j = +/�, to satisfy and thus ensuring their stabilities.
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Figure 4.1: A general version of previously oriented scattering lattice. A time period consists
of N successive steps. The scattering matrix, along with the phase �l,j, not only depends on
time j now but also on the position l. A black dashed rectangle emphasizes the unit cell of
this lattice.

phase inside the unit cell is zero, which conserves inversion symmetry along the synthetic
dimension �, thus avoiding any winding of the quasienergy bands (chapter(3)). This model
can be seen as just two copies of model I (see(3.2)) in one period. Thus conserving the
inversion and particle-hole symmetry, like before.

Using the spatial periodicity along x, i.e. ✓l,j = ✓j the Floquet-Bloch evolution opera-
tor can be written as the succession of translation-like T± operations and local scattering
processes Sj as

UF (�, kx; {✓j}) = T�S4T+S3T�S2T+S1 (4.1)
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4.2.1 Selective manipulation of degeneracy in semimetal model 1

Once deviating from the critical point, it is then possible to lift some of these degeneracies,
while leaving untouched the other ones. The conditions required to lift a specific nodal
point or a nodal line are then inferred by expanding the Floquet operator UF in coupling
parameters around these degeneracies away from ✓j = ⇡/4.

At the two Dirac points sitting at " = 0, namely A0 and B0, the Floquet operator must
satisfy UF = 12, where 12 is the identity matrix of size 2⇥ 2. Substituting their coordinates
(�, kx) (see Fig. 4.2) respectively (0, ⇡) and (⇡, 0) in equation(3.5) and then expanding in
scattering parameters around the critical point {✓j = ⇡/4 ! ⇡/4+ �✓j}, yields the constrain

S(��✓1 + �✓2 � �✓3 + �✓4) = 12 at A0 and B0 (4.4)

(where S(✓j) ⌘ Sj), which is only satisfied when ��✓1+�✓2��✓3+�✓4 = 0 holds. Conversely,
a gap opens at A0 and B0 when this condition is not fulfilled. An interesting twist comes
at " = ⇡, where now the Floquet operator must satisfy UF = �12. Expanding the Floquet
operator in scattering parameters for the four degeneracy lines kx ± � = 0 and kx ± � = 2⇡,
yields the condition

S(�✓1 + �✓2 + �✓3 + �✓4) = 12 (4.5)

that clearly differs from the condition (4.4). Furthermore, there are two special points,
namely A⇡ at (� = ⇡/2, kx = ⇡/2) and B⇡ at (� = 3⇡/2, kx = �⇡/2), shown with blue
dots in Fig 4.2, where this expansion does not hold. There, one finds a third condition that
reads

S(�✓1 � �✓2 � �✓3 + �✓4) = 12 at A⇡ and B⇡ . (4.6)

To summarize, the different gap opening terms �✓j follow from

⌫1�✓1 + ⌫2�✓2 + ⌫3�✓3 + ⌫4�✓4 6= 0 (4.7)

with combinations of ⌫j = ±1, as summarized in Table 4.1.
Thus, doubling the “time period” of the network indeed brings new degeneracies, namely,
A0,⇡ and B0,⇡. However, degeneracies at a fixed quasienergy, 0 or ⇡, are (un)stable under
the same perturbations �✓j. The only exception being at " = ⇡ where the degeneracy lines
(in eq(4.5)) and degeneracy points (in eq(4.6)) do not share the same stability, and hence
can be gapped separately.

4.3 Semimetal Model 2: Selective manipulation of de-

generacies instabilities

In semimetal(SM) model 1, we have a symmetry of Floquet operator which is responsible
for the appearance of the nodal line at the quasienergy " = ⇡ at critical point ✓j=1..4 = ⇡/4.
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Quasienergy Degeneracy points ⌫1 ⌫2 ⌫3 ⌫4

" = 0
B0 � + � +
A0 � + � +

" = ⇡

kx ± � = 0, 2⇡
(excluding A⇡, B⇡)

+ + + +

A⇡ + � � +
B⇡ + � � +

Table 4.1: Stability of the different band touchings (points or lines) under a perturbation
⌫j�✓j. Nodal points at " = 0 or ⇡ have the same stability: they are gapped together, even
though a point at a given " can be gapped while the other pair remains stable.

That is an exchange symmetry of k $ �. Thus quasienergy spectrum is unaffected by this
symmetry. It can be demonstrated by taking a cyclic permutation of Eq(4.1),

UF (�, kx; ✓j = ⇡/4) = T�S4T+S3T�S2T+S1,

= T+S1T�S4T+S3T�S2,

= T+S4T�S3T+S2T�S1 (4.8)

where we used the fact that at critical value ✓j=1..4 = ⇡/4 all scattering matrices are identical
(see eq.(4.3)) i.e.,

Sj=1..4 =
1p
2

✓

1 i
i 1

◆

.

This property yields an exchange k $ �.
However, this exchange symmetry of quasimomenta can be broken by employing the different
phase pattern than that of SM model 1.

We now propose the following phase shift pattern that decorates the four-step period :
�1 = +2�,�2 = ��,�3 = 0, and �4 = ��. This choice clearly breaks the previous prevailing
exchange symmetry, as can be seen from Eq(4.9). Also, this choice still preservers

P

�j = 0
and thus prevents windings of the quasienergy bands (see chapter(3)). The new Floquet
operator reads

UF (�, kx; ✓j) = B(kx)S4D(��)B(kx)S3B(kx)S2D(��)B(kx)S1D(+2�)

= T (kx + 2�)S4T (kx � �)S3T (kx)S2T (kx � �)S1 (4.9)

where the previously defined T in Eq.(4.2) has been used in the form of T± = T (kx ± �),
and D(�) and B(kx) are the same as in Eq.(3.9).

Similarly, the consequence of this breaking of exchange symmetry can be seen on the
quasienergy spectrum calculated from the Bloch-Floquet operator (4.9), and depicted in
Fig. 4.3 at the critical point {✓j = ⇡/4}. This spectrum is still fully gapless, but now the
two bands touch at " = 0 and " = ⇡ only at points, either linearly in both directions (Dirac
points A0, C0, A⇡ and C⇡) or linearly in one direction and quadratically in the other one
(known as semi-Dirac points, namely at B0 and B⇡) (S. Banerjee et al. 2009; Swapnonil
Banerjee 2015; Huang et al. 2015; Mawrie et al. 2019; Montambaux et al. 2009b; Zhong
et al. 2017).
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4.4.1 Topological charge of degeneracy points

In the vicinity of each band touching point X, one can expand the (dimensionless) effective
Hamiltonian defined via the Floquet operator as

UF = e�iHX

eff (4.11)

at the lowest order terms in mass term m, phase shift �� and quasimomentum �kx. Such
Hamiltonians have the generic form

HX
eff(��, �kx,m) = hX · σ (4.12)

where σ is the vector of Pauli matrices and hX defines a family of continuous maps from R
3

to R
3. Therefore, hX/|hX | defines continuous maps from parameter space R3\{X} to target

space S2 that are classified by the homotopy group ⇡2(S
2) = Z. The elements of this group

are integer numbers that tell how many times hX/|hX | warps the sphere. They are given by
the degree of hX defined as

deg(hX) =
X

p
(0)
i

sgn

"

det

 

@hX
j

@�i

!

|h(0)

#

(4.13)

where the pre-images p
(0)
i = (��

(0)
i , �k

(0)
xi ,m

(0)
i ) satisfy h(p

(0)
i ) = h(0), with h(0) an arbitrary

vector in R
3, and where {�i} stands for {��, �kx,m±}.

For a two band Hamiltonian, this degree is directly related to the Chern number C± of
the continuous family of normalized eigenstates  ±(��, �kx,m) of HX

eff as

C± = ⌥ deghX . (4.14)

Importantly, a nonvanishing value of Cn is known to guarantee the existence of a spectral flow
towards bands n when the mass term (m± here) is varied in space and changes sign(Delplace,
Marston, et al. 2017; Faure 2019; Marciani et al. 2019; Nakahara 2003; Perrot et al. 2019;
G. E. Volovik 2009). As we saw in the introduction, this Chern number is different from the
band Chern number Cj that is usually computed for the isolates bands of a gapped spectrum
of the entire BZ. This Chern number Cj characterizes Chern insulators, and is ill-defined if
the bands touch, like in our semmetallic phase. In contrast, C (eq(4.14)) characterizes nodal
points in 3 paramter space, and thus suitable for our gapless model.
This spectral flow usually consists in a unidirectional mode, localized where the mass term
vanishes, and whose (quasi-)energy bridges a spectral gap when a parameter (here �) is
tuned.

In the following, we compute this topological index (via the degree formula (4.13)) for
different band touching points (Dirac and semi-Dirac) and check numerically that their value
correctly predicts a spectral flow of localized modes, even in the absence of a gap.

4.4.2 Spectral flow induced by a spatial variation of m+

According to Table 4.2, the degeneracy points A0 and B⇡ are both lifted when m+ 6= 0. One
can thus assign them a topological charge (in the sense of section 4.4.1) by computing the
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m±(x)

x

Interfaces Interfaces

Figure 4.6: Spectral flow is observed when mass term changes sign, where it cuts twice the
x�axis.

bridge a spectral gap. Note that the situation is, however, different from what is currently
encountered in topological insulating phases, since the two bands actually touch at " = ⇡ at
two other points of the Brillouin zone, A⇡ and C⇡, that are stable against the perturbation
in m+. Therefore, these chiral states cannot be interpreted as the interface modes between
two distinct topological (e.g., Chern) insulators, as they appear at the interface between two
gapless semimetals. The situation is maybe even more unusual with A0, since its � coordi-
nate matches that of semi-Dirac degeneracy B0 (see Fig. 4.3) which remains stable under the
perturbation in m+, according to Table 4.2. It follows that the spectral flow coexists with
bulk modes and does not bridge a gap, as shown in Fig. 4.7b. Notice that the direction of
the spectral flow is the same for B⇡ and A0, in agreement with the common value of their
topological charge.

4.4.3 Spectral flow induced by a spatial variation of m�

Similarly, a spatial variation of the mass term m� leads to a topological spectral flow for
B0, C0, A⇡ and C⇡ when � is varied, provided m� changes sign. Let us focus on B0, which
is a semi-Dirac point since their topological charge and their associated spectral flow is
overlooked in the literature in comparison to Dirac points. An expansion of the effective
Hamiltonian HB0

eff = hB0 · σ in coupling parameters and quasimomenta gives

hB0(��, �kx,m�) =

0

@

�2m� � �kx
2
(��+ �kx)

2��m�

��� �kx

1

A (4.17)

The eigenvalues "± = ±|hB0 | yields a semi-Dirac behavior when m� = 0, as announced (see
Fig. 4.8). The introduction of m� opens a gap, and allows us to define the topological charge
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(a) Spectral flow associated to Bπ (b) Spectral flow associated to A0, with stable B0.

Figure 4.7: Existence of chiral edge modes where the mass term m+ changes sign twice with
x (periodic geometry). For degeneracy point (a) A0 at quasienergy 0, which exists along
with the gapless B0 and another for (b) B⇡ at quasienergy ⇡.

of this degeneracy point as

deg(hB0) =
X

p
(0)
i

sgn det

0

@

� �kx
2

2m� 1

��kx � ��

2
0 �1

�2 2�� 0

1

A

=
X

p
(0)
i

sgn [4m� � (3�kx + ��)��] (4.18)

One can evaluate the pre-images by fixing a direction for hB0 , say along z. This imposes
the three following conditions

�4m� = �kx(��+ �kx) (4.19a)

��m� = 0 (4.19b)

�� > �kx (4.19c)

Three pre-images (�i, kx,i,mi) are found to satisfy these conditions : p
(0)
1 = (�k1, k1, 0) with

k1 > 0, p
(0)
2 = (0, k2,�k2

2/4) with k2 < 0 and p
(0)
3 = (�3, 0, 0) with �3 > 0. The pre-image p

(0)
1

yields a positive contribution to the sum (4.18) while both p
(0)
2 and p

(0)
3 contribute negatively,

so that finally deghB0 = �1. A similar calculation leads to deghCπ = +1, deghAπ = +1
and deghC0 = +1.

Accordingly, a numerical calculation is performed in a periodic geometry where m�(l)
changes sign twice when varying with the discrete position index l on the network (see
Fig. 4.6). Spectral flows are found in agreement with the value of the topological charge.
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The existence of a spectral flow when a mass term is continuously varied and changes sign
is traditionally understood as a mode emerging at the interface between two topologically
nonequivalent systems. This description is, of course, meaningful provided that each system’s
topology is well defined in itself, when the mass term is fixed, like in topological insulators.
However, it is not always the case. In particular, in continuous media, the Chern numbers C
of the bands are only well defined when the projectors are regularized at infinity (Silveirinha
2015; Souslov, Dasbiswas, et al. 2019; C. Tauber et al. 2019, 2020; G. Volovik 1988). Here,
we have provided another model in which the topological properties of the bulk bands are ill-
defined but where chiral edge states with a well defined topological origin can however exist.
In all these situation, the topological charge approach used here remains thus a powerful
valid strategy (Delplace, Marston, et al. 2017; Marciani et al. 2019; Perrot et al. 2019).
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4.5 Chiral edge states in gapless systems
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Figure 4.10: Quasienergy spectra of the four-step Floquet operator for �1 = ��2 = �3 =
��4 = � in finite geometry as a function of either m+ or m�. Imposing a vanishing of either
m+ or m� prevents a gap opening at 0 and ⇡ so that all the spectra are gapless. The two
insets (a1) and (e1) show edge states at " = 0 that merge to the bulk bands and disappear,
unlike other chiral edge states for m± < 0 that live in local gaps.
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Since the topological spectral flow consists in confined modes at the frontier between two
domains ofm± with opposite signs, a natural question to ask is thus whether chiral states may
exist at the boundary of a finite network with a fixed mass term m±, that is specifically when
the Chern number C of the bands (to be distinguished from the Chern numbers assigned to
the degeneracy C (4.14)) cannot be defined. Quasienergy spectra computed in that geometry
are shown in figure 4.10 for different values of uniform m±, and different observations can be
drawn. We find chiral edge states (with respect to �) at A⇡, C⇡ and C0 when m� > 0, and
at B⇡ when m+ < 0. Edge states are also found around A0 for m+ < 0 and B0 for m� < 0,
where the gap remains close.

The first remark is that the sign of m± that gives rise to edge states does not seem
obviously related to the topological charge computed above. Moreover, while these edge
states look very similar to what can be found in gapped systems for A⇡, C⇡, C0 and B⇡, as
they bridge a local gap, the situation is different for A0 and B0 that are affected by the bulk
modes. The inset figures show that these edge states actually do not connect the two bands,
but eventually couple to the bulk modes and disappear (figures 4.10 (a1) and (e1)). This is
in sharp contrast with the continuous interfaces in m± that revealed a continuous spectral
flow through the bulk modes (figures 4.7b and 4.9b).

4.6 Summary of Chapter 5 and perspectives

• In a 2D Floquet system, there exists a regime with a gapless spectrum that prohibits
the definition of a Chern number for the bands and also the Floquet gap index. We
saw that in this gapless spectrum, each nodal point (or line) had associated mass term.
If at given quasienergy, there is more than one different mass term, then the mass term
shared by the same nodal points (or line) can be lifted all together without affecting
the other ones. For this, we provided a general recipe to calculate this mass term.
Likewise, by considering a mass term as a continuous function of the position that
changes sign, the system then host topological chiral spectral flows of interface states,
which can be captured by topological charge. The sign of this charge predicts the
direction of the spectral flow. These spectral flows can be interpreted as robust chiral
states at the interface between gapless semimetallic phases.

• In the last part, we saw that by considering a finite geometry with open boundary
conditions, all the nodal points which are not affected by the bulk modes in the sense
of stability under different mass terms, show similar spectral flow to the continuous
case, whereas the nodal points that are affected by the bulk modes are in sharp contrast
to the continuous case. However, the direction of the spectral flow cannot be a priori
known from the edge state spectrum, while in the continuous case, it was one to one
with the sign of the topological charge.

• In our semimetal model 1 and 2 there is a priori no need for the system to be Floquet.
So, it would be tempting to look for their counterparts in static regime.

• It would be interesting to extend the above model to 3D by introducing another syn-
thetic dimension. It will allow us to look for Weyl semimetal like a phase in this simple
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model. Recently, the Weyl semimetal type I has been observed in a double-gyroid 3D
photonic crystal with inversion-breaking (Lu et al. 2015) and type II in the 3D laser-
written waveguides (Noh et al. 2017). However, both the experimental setups require
high-level manufacturing precision, whereas this can be observed in a far more simply
in a photonic setup, e.g., circular fibers.
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Chapter 5

Appendix

5.1 Demonstration of coupled mode theory: due to

waveguide imperfections

If we perturb the waveguide,where the perturbation can come from waveguide imperfec-
tions, bending, or surface corrugations. This perturbation perturbs the modes and couples
the energy between them (this is very much analogous to the presence of potential term
in Schrödinger’s equation(1.12), which connects the different states). This boils down to
say, when a pure mode is excited in the in the waveguide, then some of its power can get
transferred to other modes.

The perturbation to the modes will be described in terms of distributed polarization
source, Ppert, which accounts for the deviation of the dielectric polarization from the one in
unperturbed mode.
Confined mode can be excited and propagate along the axis of the waveguide structure
independently provided the dielectric constant ε(x, y) = "0n

2(x, y), remains independent of
z. However, if there is a dielectric perturbation ∆"(x, y, z) due to waveguide imperfections,
bending, or the surface corrugations, result in to the coupling of propagating modes. Which
means, if we have excited a pure mode at the beginning of the waveguide, then some of
its power may be transferred to other modes. The details of the coupling depends on the
dielectric perturbation, i.e. ∆"(x, y, z).

D = "E = "0E+P (5.1)

(5.2)

Now, any perturbation can be written as, which

D̃ = "E+Ppert (5.3)

Then we can write the wave equation,

r2E = µ"0
@2E

@t2
+ µ

@2P

@t2
(5.4)
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So the total medium polarization,

P(r, t) = P0(r, t) + Ppert(r, t), (5.5)

where, (5.6)

P0(r, t) = ("(r)� "0)E(r, t) (5.7)

is the polarization induced by the E(r, t) in the unperturbed waveguide (one with dielectric
constant "(r))

r2Ey � µ"(r)
@2Ey

@t2
= µ

@2Ppert

@t2
(5.8)

and similar expression for Ex and Ez, in general.
We will only consider the coupling between the guided modes not with the unguided (radia-
tion) modes. The field in the perturbed waveguide can be written in terms of the eigenmodes
expansion

Ey(x, z, t) =
1

2

X

m

Am(z)E
(m)
y (x)ei(!t��mz) + c.c (5.9)

To say some words about the above equation, what precisely we have done is that we used
unperturbed eigenmode expansion for solving the perturbation. This is very much similar
to or analogous to time dependent perturbation theory in quantum mechanics1

Each mth eigenmode satisfies2

✓

@2

@x2
� �2

m

◆

E (m)
y (r) + !2µ"(r)E (m)

y (r) = 0 (5.10)

Our goal is to develop an expansion for the coupling between amplitudes of the individual
modes of the waveguide.

• If there is no coupling(i.e. no perturbation) : we will get the independent some of the
eigenmodes in (5.9).

• If there is a coupling: then modes will vary with position.

Let us derive equation for amplitude by substituting (5.9) in (5.8)

ei!t
1

2

X

m

h

✓

d2Am(z)

dz2
� 2i�m

dAm(z)

dz
+ (!2µ"(r)� �2

m)Am

◆

E (m)
y (x)e�i�mz

+
@2E (m)

y

@x2
Ame

�i�mz
i

+ c.c = µ
@2Ppert

@t2
(5.11)

For further simplification we will make use of the paraxial approximation discussed in sec-
tion(1.5). We assume slow variation along the axis of propagation z,

�

�

�

�

d2Am(z)

dz2

�

�

�

�

⌧ �m

�

�

�

�

dAm(z)

dz

�

�

�

�

(5.12)

1There we have 'n, as the solution for steady state Hamiltonian (H0) and we write time dependent
perturbation, H1(t), in terms of Ψ(t) =

P

n cn(t)'n · · ·. Where our Am(z) are analogous to cn(t).
2similar to the one in QM, H0'n = En'n, when H1 ! 0, and here when Ppert ! 0
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Then the above equation is simplified to, also making use of (5.10)

X

m

�i�m
dAm(z)

dz
E (m)
y (x)ei(!t��mz) + c.c = µ

@2Ppert

@t2
(5.13)

To simplify this further we make use of orthogonality relation of the modes,

dA
(�)
s (z)

dz
ei(!t+�mz) � dA

(+)
s (z)

dz
ei(!t��mz) � c.c = � i

2!

@2

@t2

Z 1

�1

dxPpertE
(s)
y (x),

(5.14)

it is important to recall that the m summation in (5.13), contains two terms ±|m| for each

|m| involving E (m)
y (x). Where (+) designates the propagation along +z axis and (�) desig-

nates the propagation along �z axis.

We can see from (5.14), that amount of variation of sth amplitude with respect to prop-
agation axis is proportional to the degree of overlap of perturbed polarization(Ppert) with

modal distribution field E (s)
y (x).

Equation (5.14) will be the platform or primary equation for different mode interactions.
Different situation will correspond to different driving term i.e. RHS of (5.14).

We consider the 2D oriented scattering network defined in the main text, and reproduced
in figure 5.1 for the time period of N = 2 steps. We detail in this section the derivation of
the evolution operator, its quasienergies and the center of mass trajectories showing Bloch
oscillations.

5.1.1 Derivation of the Floquet evolution operator

The oriented network shown in figure 5.1 is constituted of two distinct successive scattering
nodes S1 and S2. The incoming arrow from left (right) toward the S1 node is denoted by
a1 (b1). It denotes a time evolution from the time step j � 1 to time step j. Similarly, the
outgoing arrows are denoted by a2, b2. These four oriented paths and the two scattering
nodes constitute the unit cell of the network, that is emphasized with a dashed square in
figure 5.1. The dynamics is then given by the relations

✓

a2(j, l + 1)
b2(j, l � 1)

◆

= S1

✓

a1(j � 1, l)
b1(j � 1, l)

◆

(5.15)

and
✓

a1(j � 1, l)
b1(j � 1, l)

◆

= S2

✓

a2(j � 2, l + 1)
b2(j � 2, l � 1)

◆

, (5.16)

which can be grouped together as

0

B

B

@

a1(j � 1, l)
b1(j � 1, l)
a2(j, l + 1)
b2(j, l � 1)

1

C

C

A

=

✓

0 S2

S1 0

◆

0

B

B

@

a1(j � 1, l)
b1(j � 1, l)

a2(j � 2, l + 1)
b2(j � 2, l � 1)

1

C

C

A

. (5.17)
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Figure 5.1: 2D oriented two-steps scattering network model with a preferential direction
from top to bottom.

The current scattering matrix notations correspond to that of the main text (Eq.(2)), as
follows a1(j�1, l) = ↵

j�1
l , b1(j�1, l) = �

j�1
l , similarly, a2(j, l+1) = ↵

j
l+1, b2(j, l�1) = �

j
l�1.

Using translation symmetry of the scattering network, we can Fourier decompose as

✓

am(j, l)
bm(j, l)

◆

=
X

kx,ky

ei
~k.(lêx+jêy)/2

✓

am(kx, ky)
bm(kx, ky)

◆

, m = 1, 2 . (5.18)

This gives,

0

B

B

@

a1(kx, ky)
b1(kx, ky)
a2(kx, ky)
b2(kx, ky)

1

C

C

A

=

0

B

B

@

0 0 s112 eikx/2e�iky/2 s122 e�ikx/2e�iky/2

0 0 s212 eikx/2e�iky/2 s222 e�ikx/2e�iky/2

s111 eikx/2e�iky/2 s121 e�ikx/2e�iky/2 0 0
s211 eikx/2e�iky/2 s221 e�ikx/2e�iky/2 0 0

1

C

C

A

0

B

B

@

a1(kx, ky)
b1(kx, ky)
a2(kx, ky)
b2(kx, ky)

1

C

C

A

(5.19)
 

~a1(~k)

~a2(~k)

!

=

 

0 S2(~k)

S1(~k) 0

! 

~a1(~k)

~a2(~k)

!

(5.20)

where ~a1(~k) = {a1(~k), b1(~k)} and sm1m2
j (m1,m2 = 1, 2), are the scattering coefficients of the
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scattering matrix Sj. In the main text, we choose the specific form

Sj =

✓

cos ✓j i sin ✓j
i sin ✓j cos ✓j

◆

. (5.21)

although, the calculations are independent of this specific form. Squaring Eq.(5.20) allows
one to define the Floquet operators starting for different time origins as

 

S2(~k)S1(~k) 0

0 S1(~k)S2(~k)

!

=

 

U21
F (~k) 0

0 U12
F (~k)

!

(5.22)

Substituting Eq.(5.21) gives more specifically

U21
F (~k) =

✓

e�iky(eikx cos ✓1 cos ✓2 � sin ✓1 sin ✓2) ie�iky(cos ✓2 sin ✓1 + e�ikx cos ✓1 sin ✓2)
ie�iky(cos ✓2 sin ✓1 + eikx cos ✓1 sin ✓2) e�iky(e�ikx cos ✓1 cos ✓2 � sin ✓1 sin ✓2)

◆

(5.23)

U12
F (~k) =

✓

e�iky(eikx cos ✓1 cos ✓2 � sin ✓1 sin ✓2) ie�iky(e�ikx cos ✓2 sin ✓1 + cos ✓1 sin ✓2)
ie�iky(eikx cos ✓2 sin ✓1 + cos ✓1 sin ✓2) e�iky(e�ikx cos ✓1 cos ✓2 � sin ✓1 sin ✓2)

◆

(5.24)

Then, we add a phase � to the bj amplitudes, that is to the blue arrows in Fig. (5.1), such
that b1 ! b1e

i�2 and b2 ! b2e
i�1 . Then in Eq.(5.19), s122 and s222 will be multiplied by ei�1 ,

likewise, s121 and s221 are multiplied by ei�2 . That gives

U21
F (~k,�) = e�iky

✓

eikx cos ✓1 cos ✓2 � ei�1 sin ✓1 sin ✓2 i(ei�2 cos ✓2 sin ✓1 + e�ikx cos ✓1 sin ✓2)
i(ei�1 cos ✓2 sin ✓1 + eikx cos ✓1 sin ✓2) e�ikx cos ✓1 cos ✓2 � ei�2 sin ✓1 sin ✓2

◆

(5.25)

U12
F (~k,�) = e�iky

✓

eikx cos ✓1 cos ✓2 � ei�2 sin ✓1 sin ✓2 i(e�ikx cos ✓2 sin ✓1 + ei�1 cos ✓1 sin ✓2)
i(eikx cos ✓2 sin ✓1 + ei�2 cos ✓1 sin ✓2) e�ikx cos ✓1 cos ✓2 � ei�1 sin ✓1 sin ✓2

◆

.

(5.26)

These two evolution operators describe the same physical system, and either of them can be
used to compute the quasienergy spectrum and the winding numbers. The common phase
factor exp{�iky} in Eqs.(5.25)-(5.26) is reminiscent of the preferential orientation of the
network from top to bottom. This is the only ky dependence of the evolution operator on
the network. In the main text, the Floquet operator refers to U21

F where this phase factor is
factorized out, that is

UF (kx,�) ⌘ U21
F (k,�)eiky (5.27)

and we set kx = k through out the paper. The eigenvalues of UF are defined as e�i✏T ⌘ ei",
where the dimensionless quasienergy " is the quantity considered in the main text. Then the
Floquet operator can usefully be factorized as

UF = B0(k)S2D(�2)B1(k)S1D(�1), (5.28)

where

B1(k) =

✓

1 0
0 e�ik

◆

, B0 =

✓

eik 0
0 1

◆

, Dj = D(�j) =

✓

1 0
0 ei�j

◆

. (5.29)

121



5.1.2 Derivation of the quasienergy bands

Let us derive now the quasienergy bands of the scattering model, that is, diagonalizing the
Floquet operator. This can be carried out analytically either by a direct diagonalization of
UF or equivalently by decomposing the evolution as in Ref (Wimmer, Hannah M Price, et al.
2017). Let us detail the second strategy. Using the same terminology as in the main text,
where right going arrows are denoted with ↵ and left going with �, then the time evolution
is described by

↵m+1
l = (cos ✓1↵

m
l+1 + i sin ✓1�

m
l+1)e

i�1 ,

�m+1
l = cos ✓1�

m
l�1 + i sin ✓1↵

m
l�1 (5.30)

for the first step and

↵m+2
l�1 =

�

cos ✓2↵
m+1
l + i sin ✓2�

m
l

�

ei�2 ,

�m+2
l�1 = cos ✓2�

m
l�2 + i sin ✓2↵

m
l�2 (5.31)

for the second (final) step. Using Floquet-Bloch ansatz,

✓

↵m
l

�m
l

◆

=

✓

A
B

◆

ei"m/2eikl/2 (5.32)

and substituting Eq.(5.30) in (5.31) using Eq.(5.32) gives the determinant problem

e2i" �
⇥

cos ✓1 cos ✓2
�

eikei(�1+�2) + e�ik
�

� sin ✓1 sin ✓2
�

ei�1 + ei�2
�⇤

ei" + ei(�1+�2) = 0 .(5.33)

By rewriting the Eq.(5.33), we get the relation

cos

✓

"� �1 + �2

2

◆

= cos ✓1 cos ✓2 cos

✓

k +
�1 + �2

2

◆

� sin ✓1 sin ✓2 cos

✓

�1 � �2

2

◆

,

that leads to

"(k,�) = ± cos�1



cos ✓1 cos ✓2 cos

✓

�k +
�1 + �2

2

◆

� sin ✓1 sin ✓2 cos

✓

�1 � �2

2

◆�

+

✓

�1 + �2

2

◆

.(5.34)

We can finally substitute the general form for the �’s to �j = (mj/nj)�, to get the expression

"(k,�) = ± cos�1



cos ✓1 cos ✓2 cos

✓

�k +



m1

n1
+

m2

n2

�

�

2

◆

� sin ✓1 sin ✓2 cos

✓

m1

n1
� m2

n2

�

�

2

◆�

+



m1

n1
+

m2

n2

�

�

2
(5.35)

for the quasienergy bands.

5.1.3 Derivation of the group velocities

Let us introduce ∆� ⌘ m1
n1

� m2
n2

and ∆
+ ⌘ m1

n1
+ m2

n2
. Then the “synthetic group velocity” is defined

as

v�(k,�) ⌘ @"(k,�)

@�
(5.36)
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where we substitute the Eq. (5.35) of the quasienergy bands to get

v�(k,�) =
1

2
∆

+ ⌥ 1

2

∆
� sin ✓1 sin ✓2 sin

�

1
2�∆

�
�

�∆
+ cos ✓1 cos ✓2 sin

�

k + 1
2�∆

+
�

q

1�
�

cos ✓1 cos ✓2 cos
�

k + 1
2�∆

+
�

� sin ✓1 sin ✓2 cos
�

1
2�∆

�
��2

.(5.37)

Similarly, the transverse group velocity is

vk(k,�) =
@"(k,�)

@k
(5.38)

vk(k,�) = ±
cos ✓1 cos ✓2 sin

�

k + 1
2�∆

+
�

q

1�
�

cos ✓1 cos ✓2 cos
�

k + 1
2�∆

+
�

� sin ✓1 sin ✓2 cos
�

1
2�∆

�
��

2
. (5.39)

For our case (m1 = 1, n1 = 1,m2 = �2, n2 = 1), energy dispersion relation simplifies to

"(k,�) = ± cos�1



cos ✓1 cos ✓2 cos

✓

k � �

2

◆

� sin ✓1 sin ✓2 cos

✓

3�

2

◆�

+
�

2
. (5.40)

Similarly, the expression for both the group and the synthetic group velocity is

vgk(k,�) = ±
cos ✓1 cos ✓2 sin

⇣

k � �
2

⌘

r

1�
⇣

cos ✓1 cos ✓2 cos
⇣

k � �
2

⌘

� sin ✓1 sin ✓2 cos
⇣

3�
2

⌘⌘

2

, (5.41)

vg�(k,�) =
1

2
⌥

3
2 sin ✓1 sin ✓2 sin

⇣

3�
2

⌘

+ 1
2 cos ✓1 cos ✓2 sin

⇣

k � �
2

⌘

r

1�
⇣

cos ✓1 cos ✓2 cos
⇣

k � �
2

⌘

� sin ✓1 sin ✓2 cos
⇣

3�
2

⌘⌘2
. (5.42)

Mathematically, the numerator in the Eq.(5.38) for group velocity contains the term sin
�

k + 1
2�∆

+
�

,
which can essentially change the sign on changing �, for some fixed value of k = k0. It only happens
because ∆

+ is non-zero in case of winding in � that gives rise to the wave-packet oscillations.

Along the same lines, we can calculate the motion of centre of mass from Eq. (5.41), for arbitrary
k as,

X(t0, k) =

Z t0

0
d� vgk(�(t), k)

✓

@�

@t

◆�1

,

=

Z t0

0
d� vgk(�(t), k) (5.43)

where in the last equation, we used the case where � varies linearly with the time with unit slope,
and t0 is the y�axis in Fig. 3.11.

5.2 Calculation of the winding number ⌫�

Let us compute the winding number ⌫� defined in the main text, for N = 2 time-steps, where the
Floquet operator UF (k,�) given in Eq. (5.28) with �1 = (m1/n1)� and �2 = (m2/n2)�. When

123



|m1/n1| 6= |m2/n2|, then

⌫� =
1

2⇡i

Z Tφ

0
d�Tr

⇥

U�1
F @�UF

⇤

(5.44)

=
1

2⇡i

Z Tφ

0
d�Tr

h

D†
1S

†
1B

†
1(k)D

†
2S

†
2B

†
0(k)@�{D1S1B1(k)D2S2B0(k)}

i

(5.45)

=
1

2⇡i

Z Tφ

0
d�Tr

h

D†
2@�D2 +D†

1@�D1

i

(5.46)

where the period of T� of the quasienergy in � is inferred from the analytical expression (5.35).
More precisely, it reads

T� = 2⇡ LCM

"

2
m1
n1

� m2
n2

,
2

m1
n1

+ m2
n2

#

(5.47)

where LCM stands for least common multiple. Replacing the Dj ’s matrices by their expression,
one gets

⌫� =
1

2⇡i

Z 2⇡ LCM

"

2
m1
n1

�
m2
n2

, 2
m1
n1

+
m2
n2

#

0
d�Tr



i
m1

n1
+ i

m2

n2

�

,

= 2 LCM

"

1
m1
n1

� m2
n2

,
1

m1
n1

+ m2
n2

#

✓

m1

n1
+

m2

n2

◆

,

= 2 LCM



2n1n2

m1n2 �m2n1
,

2n1n2

m1n2 +m2n1

�✓

m1

n1
+

m2

n2

◆

,

⌫� =
T�

2⇡

✓

m1

n1
+

m2

n2

◆

. (5.48)

5.3 Relation between winding number and the station-

ary points

Consider a situation where the quasienergy bands wind along �, and let us count the number of
stationary points dXc

dt in Eq.(5.43) over one Bloch period of oscillation. These points are determined
by the vanishing of the group velocity vk. Therefore, it suffices to find the number of roots in � of
Eq.(5.38), which are given by

cos ✓1 cos ✓2 sin

✓

1

2
�∆+

◆

= 0 (5.49)

This leads to

1

2
�∆+ = p⇡, p 2 Z

� = 2p⇡
1

∆+
. (5.50)

which can be expressed in terms of the winding number given by Eq.(5.48) as

� = p
T�

⌫�
. (5.51)
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Hence, over one oscillation period, p takes values from the set {1, ..., |⌫�|}, and thus the group
velocity vanishes ⌫� times. Then, following the same lines, one can easily check that the second
derivative also vanishes at these same points. There are therefore ⌫� turning points per period of
Bloch oscillation.

5.4 Fictitious electric field in the network model

5.4.1 Gauge transformation from a uniform electric field to wind-

ing bands with an adiabatic increase of �

As pointed out by M. Wimmer et al. in Ref. (Wimmer, Mohammed-Ali Miri, et al. 2015) in the
case of a single step model (N = 1) with an adiabatic increase of the phase factor �(j) = �0 j, the
gauge transformation:

↵
j+1
l = ↵̃

j+1
l e�

iljγ0
2

+
ij2γ0

4
�

ijγ0
4

�
j+1
l = �̃

j+1
l e�

iljγ0
2

+
ij2γ0

4
�

ijγ0
4

(5.52)

results in a set of equations in which the phase factor does not depend anymore on the time step,
but presents a uniform gradient of phase :

↵̃
j+1
l = (cos ✓j↵̃

j
l+1 + i sin ✓m�̃

j
l+1)e

iγ0l
2

�̃
j+1
l = (i sin ✓j↵̃

j
l�1 + cos ✓m�̃

j
l�1)e

iγ0l
2 .

(5.53)

This set of equations corresponds to a scattering network subject to a homogeneous spatial
phase gradient V = E · l, where E = �0/2 can be interpreted as a homogeneous electric field along
the l direction. When considering an initial wavepacket, the time evolution results in standard
Bloch oscillations with period T = 2⇡/E = 4⇡/�0.

The same gauge transformation can be applied to each of the two-steps of the model with n = 2
discussed in the main text subject to an adiabatic increase of �(j) = +�0j (Fig. 3 of the main text).

Recall that in the first step �1(j) = (m1/n1)�0j and in the second step �2(j) = (m2/n2)�0j.
The transformation (5.52) results in a set of the Bloch-like Eqs.(5.53) for each of the two Floquet
steps, each set characterized by a constant electric field in space. In the first step, the electric field
is E1 = (m1/n1)�0/2, and in the second step is E2 = (m2/n2)�0/2. Therefore, we get back the
Bloch oscillation picture in this case with an electric field that alternates between E1 and E2 at
each subsequent step. The period TB of the oscillations can be computed from the average electric
field (E1 + E2)/2 over a full Floquet cycle.

The above discussion can also be simply understood from basic classical electrodynamics ar-
guments (Krieger et al. 1986; Zak 1988). Indeed, in its most general form, an electric field can be
expressed as E = �rV + @A/@t. The Eq.(5.52) is the gauge transformation that transforms a
gradient of spatial potential V , to a time-varying vector potential A.

5.4.2 Fictitious uniform electric field from a fictitious vector po-

tential

The above discussion can also seen from the Floquet operator Eq.(5.28) (also defined in eq.(3) in
the main text) using the simplification as in Eq.(3.16),

UF (k,�) = ei(�1+�2)/2B(k)S2 D̃(�2)B(k)S1 D̃(�1) , (5.54)
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where B and D̃ are defined in Eq.(??) and Eq.(??). Then UF can be further simplified by combining
two diagonal matrices D̃ and B together, to give C̃ as

UF (k,�) = ei(�1+�2)/2 C̃1(k̃1)S2 C̃2(k̃2)S1, (5.55)

where C̃j(k̃j) =

 

eik̃j/2 0

0 e�ik̃j/2

!

(5.56)

where k̃j = k��j . This form of the Floquet operator can be thought as describing a 1D lattice that
is periodically driven in the presence of a time-varying vector potential A(t) = Et. The period T
of this driving consists of two-steps where the vector potential redefines the Bloch momentum via
Peierls’ substitution. In the first step, for some fictitious charge q, �1 = qA1 = qE1t that generates
a fictitious electric field of magnitude E1. Similarly, during the second step, �2 = qA2 = qE2t.
This electric field translates in our case as �1 = �2� = �2qE and �2 = +� = +qE. Thus, it gives
rise to a net electric field E1 + E2 6= 0, which is responsible for the Bloch oscillations.

5.5 Extended network model for quasienergy winding

in k

5.5.1 Derivation of the winding number ⌫k

For an arbitrary winding number in k and �, the Floquet operator reads

UF (k,�) = B0(k2)S2D(�2)B1(k1)S1D(�1) (5.57)

where, kj ⌘
✓

rj
sj

◆

k and �j ⌘
✓

mj
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◆

�. This gives the quasienergies "±(k,�)
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(5.58)

where, �+ ⌘ r1
s1

+ r2
s2

and �� ⌘ r1
s1

� r2
s2
. In the absence of a quasienergy winding along � (or k), the

corresponding �+ (∆+) terms vanish. The group velocity can then be derived exactly as
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1
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(5.59)
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Next, the winding number in k can be computed similarly to ⌫� as

⌫k ⌘ 1

2⇡i

Z Tk

0
dkTr
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U�1
F @kUF
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(5.60)

=
1

2⇡i

Z Tk

0
dkTr



i
r1
s1

+ i
r2
s2

�

,

= 2 LCM

"

1
r1
s1

� r2
s2

,
1

r1
s1

+ r2
s2

#

✓

r1
s1

+
r2
s2

◆

,

= 2 LCM



2s1s2
r1s2 � r2s1

,
2s1s2

r1s2 + r2s1

�✓

r1
s1

+
r2
s2

◆

,

⌫k =
Tk

2⇡

✓

r1
s1

+
r2
s2

◆

(5.61)

where Tk = 2⇡ LCM



2
r1
s1

�
r2
s2

, 2
r1
s1

+
r2
s2

�

.

5.6 Relation between the winding number ⌫k and the

quantized drift ∆x

Let us introduce the mean current over a Floquet period T as

J ⌘
Z T

0

dt

T
j(t) (5.62)

that we express in terms of the instantaneous current j(t)

j(t) =

Z Tk

0

dk

Tk
h (k, t)|dx(t)

dt
| (k, t)i, (5.63)

where | (k, t)i is an arbitrary evolving Bloch state, i.e. | (k, t)i = U(k; t, 0)| (k, 0)i with U(k; t, 0)
the Block evolution operator from time t = 0 to arbitrary time t < T . Rewriting U(k; t, 0) =

U(k; t, T )U(k;T, t), and using the relation i@UF

@k =
R T
0 dt U(k;T, t) @H(k,t)

@k U(k; t, 0), where H(k, t+
T ) = H(k, t) is the periodically driven Bloch Hamiltonian, the mean current can be written in
terms of the Floquet operator only

J = �2⇡/Tk

T

Z Tk

0

dk

2⇡i
h (k, 0)|U�1

F

@UF

@k
| (k, 0)i (5.64)

Equivalently, one assigns a mean displacement ∆x = TJ to this current.

5.6.1 Adiabatic regime

Consider an instantaneous eigenstate '(n)(k, t) of H(k, t), such that  (k, 0) = '(n)(k, t = 0).
In the adiabatic limit, '(n)(k, t) remains an eigenstate of H(k, t) at each time. After a cycle
t : 0 ! T , '(n)(k, 0) can only acquire a phase, which is by definition the quasienergy ✏nT . It
is thus an eigenstate of the Floquet operator, which therefore allows the spectral decomposition
UF =

PN
n exp(�i✏nT )|'

(n)(k, 0)ih'(n)(k, 0)|, so that the mean current (5.64) simply becomes

J
(n)
ad = �2⇡/Tk

T

Z Tk

0

dk

2⇡

@"n

@k
(5.65)
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where the dimensionless quasienergy "n = �✏n T corresponds to that of the main text. The adia-
batic pumped current is quantized in terms of the quasienergy winding numbers along the k direc-
tion, as found in Ref (Kitagawa, Berg, et al. 2010). As pioneered by Thouless (Thouless 1983), this
quantization can be consistently rephrased in terms of the Chern numbers Cn of the adiabatically
driven eigenstates '(n)(k, t) that defined a U(1)�fiber bundle over the two-dimensional torus span
by (k, t), assuming the instantaneous energy band En(k, t) (the eigenvalue of H(k, t)) remains well
separated from the other bands. One way to see the connection between the two topological points
of view consists in identifying the quasienergy in terms of the dynamical phase and the geometrical
Berry phase

✏nT = EnT + i

Z T

0
dth'(n)(k, t)|@t|'

(n)(k, t)i . (5.66)

Taking, the “winding” of this expression, that is applying
R

dk@k yields

�
Z

dk

2⇡
@k"n = i

Z

dk

2⇡

Z T

0
@kdth'(n)(k, t)|@t|'

(n)(k, t)i (5.67)

since the instantaneous energy band En(k, t) cannot wind along k. Inserting the relation @kh'|@t'i =
h@k'|@t'i�h@t'|@k'i+@th'|@k'i, into the right-hand side of (5.67), the quasienergy winding reads
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1
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Z
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where F
(n)
k,t is the Berry curvature and Z(n)(t) is the time-dependent Zak phase of the instantaneous

state '(n), i.e. Z(n)(t) ⌘ i
R

dkh'(n)(k, t)|@k'
(n)(k, t)i. After an adiabatic cycle, one has Z(n)(T ) =

Z(n)(0), which leads to the relation between the winding number ⌫
(n)
k of the quasienergy band n in

the k direction and the Chern number Cn of the adiabatically periodically driven Bloch eigenstate
'(n)(k, t)

�
Z

dk

2⇡
@k"n = Cn . (5.69)

When the ↵ lowest bands are filled, the adiabatic pumped current reads

J̄↵ =

↵
X

n=1

J
(n)
ad =

2⇡/Tk

T

↵
X

n=1

Cn (5.70)

in agreement with the famous Thouless result on adiabatic pumping. Clearly, if all the bands are
filled, then J̄N = ⌫k = 0 owing to the vanishing sum of the Chern numbers over all the bands.

5.6.2 Non-adiabatic regime

We now consider the case where the instantaneous eigenstates '(n)(k, t) do not remain eigenstates
during the evolution, so that the total mean current J̄N reads

J̄N =

N
X

n=1

Z T

0

dt

T

Z Tk

0

dk

Tk
h'(n)(k, t)|
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= �2⇡/Tk

T
⌫k (5.73)
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with ⌫k 2 Z is the winding number of the map k 2 S1 ! UF 2 U(N), and whose another expression
is given by Eq.(9) of the main text. Moreover, since trU�1

F
@UF

@k = @
@k ln detUF , this winding number

reads

⌫k =
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2⇡

@"n

@k
(5.74)

so that the mean displacement ∆x = T J̄N , after P periods T , can be expressed in terms of the
sum of the winding of the quasienergies of all the bands

∆x = �P
2⇡

Tk

N
X

n=1

Z Tk

0

dk
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@"n

@k
(5.75)
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Chapter 6

Conclusion and perspectives

This thesis has presented a theoretical exploration of topological properties of 2D periodically
driven systems in the context of photonics. In the first part, topological regimes beyond that of
band insulators are investigated. We have shown the existence of two new topological regimes:
the first one is analogous to a semimetallic phase, while the other one exploits the winding of the
spectrum thus having no static counterpart. Despite the existence of gapless edge states along
with the gapless bulk states, in both the cases, their topological description strongly differs. In the
winding regime, one can define a meaningful topological invariant by continuously deforming the
bands to end up with a direct bandgap. In this regime, there exists an interplay of two topological
properties: one is the winding of the quasienergy bands, and the other is the presence of chiral
edge states in finite geometry. The former property manifests as Bloch oscillations of wavepackets,
where stationary points in the oscillations are related to the winding number of the bands. This
topological property can thus be probed directly in an experiment by the state-of-art technology.
For instance, in waveguide arrays (Bellec, Michel, et al. 2017; Rechtsman et al. 2013), circular fibers
(Regensburger, Bersch, Hinrichs, et al. 2011; Wimmer, Mohammed-Ali Miri, et al. 2015; Wimmer,
Hannah M Price, et al. 2017; Wimmer, Regensburger, et al. 2013) or even quantum walks (L. Zhou
et al. 2016). Moreover, the experiments are currently going in the group of Alberto Amo, PhLAM
Lille.
In the second regime (semimetallic), we see how degeneracies can be specifically manipulated at
the quasienergy 0 or ⇡. Unlike the previous regime, as a consequence of the absence of any kind of
gap (direct or indirect) the topology can be captured by enclosing the degeneracies in parameter
space and calculating the Berry flux piercing through the enclosed surface.

In the second part of this thesis, we explored how topological properties can be engineered
in 1D arrays of evanescently coupled optical waveguides. This is made possible by the interplay
between crystalline symmetries of the network and the fundamental symmetries responsible for
topology like chiral symmetry. However, due to the generalities of the argument, these concepts
can easily be extended to higher dimensions, as well. In these same 1D waveguide networks, we
identify the link between breaking bipartiteness of the structure and existence of a symmetry that
has been overlooked before, namely the shifted-particle hole symmetry. We clearly point out in the
same waveguide arrays its dissimilarity with respect to usual particle-hole symmetry. Similar to
particle-hole symmetry, it is also responsible for giving rise to non-trivial topological properties..

Future directions of this study could include how non-Hermiticity can affect the Bloch os-
cillations and the definition of winding number. In other works, Bloch oscillations have been
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observed in non-Hermitian systems that give rise to interesting phenomena, like unidirectional
(or non-reciprocal) Bloch oscillations (Longhi 2009; Y.-l. Xu et al. 2016), super-Bloch oscillations
(Turker et al. 2016), secondary emissions and resonant restoration of PT symmetry (Wimmer,
Mohammed-Ali Miri, et al. 2015), there has been a proposal to probe the non-Hermitian skin effect
(i.e. squeezing of bulk states to the edges)1 by means of frequency Bloch oscillations (instead of
usual lattice Bloch oscillations) (Qin et al. 2020).

Likewise, we can ask the non-Hermitian effects to quantized drift. In the recent works, it was
seen that topological pumping in non-Hermitian systems can be realized without any dynamical
control of (any) parameters of the Hamiltonian. This pumping can occur spontaneously, without
having any analog in Hermitian systems (Yuce 2019). Quite recently, the spectral topology of
non-Hermitian pumping has been classified using graph-theory, which is distinct from conventional
topological classifications of the eigenstate (Lee, L. Li, et al. 2019).

1In a finite system, all the eigenmodes are localized at the boundaries. Thus, system is devoid of any
extended states, even in the absence of any disorder. This has been connected to the non-Bloch behaviour
of the eigenstates (Xiong 2018; Yao, Song, et al. 2018).
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Gómez-León, A. et al. (May 2013). “Floquet-Bloch Theory and Topology in Periodically
Driven Lattices”. In: Phys. Rev. Lett. 110 (20), p. 200403. doi: 10.1103/PhysRevLett.
110.200403. url: https://link.aps.org/doi/10.1103/PhysRevLett.110.200403.
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