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Photonics has emerged a platform where electromagnetic waves (or photons) propagate inside a crystal (like Bloch waves) formed by the underlying discrete degrees of freedom, e.g., waveguide arrays. These waves cannot propagate if the incident frequency lies within the so-called photonic bandgap, then these waves are known as evanescent waves. Thus, the crystal behaves as a reflector to these waves. However, if there are modes for which there exist boundary waves that connect the bandgap, then these waves can exist at the boundary without leaking into the bulk. This is analogous to the chiral motion of electrons at the quantum Hall edges, with an extra ingredient of time-reversal symmetry breaking in photonic crystals via some gyromagnetic properties of the sample, or inherent time dependence of the system. In the latter case, when the system, specifically, driven periodically then the more exotic non-equilibrium phases can also be observed in these lattices. In this work, we explore the topological properties in these periodically driven photonic lattices. For instance, how fundamental symmetries, e.g., particle-hole symmetry, can be implemented to engineer topology in 1D. We find a connection between crystalline symmetries and the fundamental symmetries, which facilitate such implementation. Moreover, a synthetic dimension can be introduced in these lattices that simulate higher dimensional physics. The difference between synthetic and spatial dimension becomes apparent when a specific crystalline symmetry, like inversion, is broken in these systems. This breaking changes a direct bandgap to an indirect one which manifests in the winding of bands in the quasienergy band spectrum. If it is broken in the synthetic dimension, it results in an interplay of two topological properties: one is the winding of the quasienergy bands, and the other one is the presence of chiral edge states in the finite geometry. This former property of winding manifests as Bloch oscillations of wavepackets, where we show that the stationary points in these oscillations are related to the winding number of the bands. This topological property can thus be probed directly in an experiment by the state-of-art technology. However, if this symmetry is broken in the spatial dimension, the winding of bands manifest as aq u a n t i z e dd r i f to fm e a np o s i t i o n ,w h i c hi ss t i l lc h a r a c t e r i z e db yaw i n d i n gn u m b e ro ft h e bands. Furthermore, we show that a different gapless regime can also be engineered while preserving the inversion symmetry. In this regime, the topology can be captured by enclosing the degeneracies in parameter space and calculating the Berry flux piercing through the enclosed surface. In this case, some of the degeneracies can host chiral edge states along with other protected ones at the same quasienergy.
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Topological insulators and beyond

The most remarkable discovery of QHE [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF])hasopenedthefieldoftopological insulators. It showed the presence of a phase transition which cannot be explained by the versatile Landau theory of symmetry breaking [START_REF] Landau | On the theory of phase transitions[END_REF]. Later, Thouless showed that one could obtain a similar 2D topological insulator by introducing an adiabatically varying potential V (t)toa1Dsystem(Thouless1983). The similarity between both comes from the fact that the same Chern number C distinguishes the topological phases. In the first case, C predicts the number of non-trivial chiral edge states, and its sign dictates their direction of motion (or chirality). In the Thouless case, it corresponds to the amount of charge pumped after a period T, where V (t + T )=V (t), and sign (of C) corresponds to the direction of the charge pumped with respect to the direction of variation of the potential. It can be inferred from both the cases how a topological number (i.e., Chern number) manifests and can be probed experimentally by measuring an observable quantity, namely, the Hall conductance or the quantized number of pumped particles. This connection between the topological invariant and the presence of edge states is the most remarkable signature of topological systems, also known as bulk edge correspondence (Hatsugai 1993a,b;M .S .R u d n e re ta l .2013). In 2005, Kane and Mele predicted another example of topological insulator in the 2D fermionic system, but in the absence of magnetic field with strong spin-orbit couplings, known as the quantum spin Hall effect [START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF];B e r n e v i ga n dZ h a n g2006;F ue ta l . 2007;K a n ee ta l .2005; J. E. [START_REF] Moore | Topological invariants of time-reversal-invariant band structures[END_REF];R o y2009), which was later confirmed experimentally [START_REF] Hsieh | A topological Dirac insulator in a quantum spin Hall phase[END_REF];K ö n i ge ta l .2007;R o t he ta l .2009). In contrast to the QHE, where the magnetic field breaks time-reversal symmetry, the quantum spin Hall effect restores it. Later, more other discoveries like 3D topological insulators showed the connection between the presence of topological insulators and symmetries. That posed a question: how many distinct topological insulators do exist in nature? Altland and Zirnbauer took a step in this direction in their seminal work [START_REF] Altland | Nonstandard symmetry classes in mesoscopic normalsuperconducting hybrid structures[END_REF];K i t a e v2009;Z i r n b a u e r 1996), where they identified 10 symmetry classes responsible for giving non-trivial topological insulators depending on the dimension of the system. This classification contains SSH model (Su et al. 1980a) in 1D, QHE and quantum spin Hall effect in 2D [START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF][START_REF] Bernevig | Quantum Spin Hall Effect[END_REF];K a n ee ta l .2005;K l i t z i n ge ta l .1980;T h o u l e s se ta l .

1982), and 3D topological insulators (M. Zahid [START_REF] Hasan | Three-Dimensional Topological Insulators[END_REF]; Joel E. Moore 2013), just to say few.

The search for distinct topological phases motivates us to look beyond the static regime. To go b eyond the Thouless pump, where time varies adiabatically, one needs to consider general time dependence (e.g. diabatic). The next right candidate (or regime) became apparent to be periodically driven systems. Remarkably, there exist many domains to simulate the topological behavior in this regime. For example, in artificial systems, a periodic discrete-time quantum walks in 1D [START_REF] Asbóth | Symmetries, topological phases, and bound states in the onedimensional quantum walk[END_REF];K i t a g a w a ,M .S .R u d n e r ,e ta l .2010); in optical lattices, where atoms are trapped by lasers to simulate a solid-state system, it gives more flexibility and controllability1 ,w h i c hf a c i l i t a t e dt h efi r s te x pe r i m e n t a li m p l e m e n t a t i o n of the Haldane model by circular modulation of each lattice position [START_REF] Jotzu | Experimental realization of the topological Haldane model with ultracold fermions[END_REF]. The same setup of optical lattices allowed to theoretically propose to observe the fractional quantum Hall state of atoms by combining periodically time-varying quadrupolar potential (V (t)=V qp sin !t)a n dm o d u l a t i o no ft u n n e l i n gi nt i m e( b yv a r y i n gt h el a s e ri n t e n s i t y ) [START_REF] Sørensen | Fractional Quantum Hall States of Atoms in Optical Lattices[END_REF]. There are several other techniques to drive the system periodically, e.g. by injecting an electromagnetic wave to a quantum system. That in turn can induce topology to the system, which otherwise is absent. If this electromagnetic wave is circularly polarized, then it can gap the Dirac cone in graphene, it gives rise to photoinduced (changing the laser intensity with time) dc Hall current [START_REF] Oka | Photovoltaic Hall effect in graphene[END_REF], this photoinducing can tune a conventional insulator into a quantum spin Hall system [START_REF] Inoue | Photoinduced Transition between Conventional and Top ological Insulators in Two-Dimensional Electronic Systems[END_REF]. There are several other studies that have shown the richness of this regime, more specifically on irradiated graphene Ref [START_REF] Calvo | Tuning laser-induced band gaps in graphene[END_REF]Delplace, Á. Gómez-León, et al. 2013;Á. Gómez-León et al. 2014;Siee tal.2015). In the case of quantum systems, it was predicted that by irradiating a semiconductor well can give rise to a non-equilibrium phase, known as "Floquet topological insulator" (Netanel H [START_REF] Lindner | Floquet topological insulator in semiconductor quantum wells[END_REF], which was later confirmed experimentally [START_REF] Mahmood | Selective scattering between Floquet-Bloch and Volkov states in a topological insulator[END_REF];M c I v e re ta l .2020; Y. H. [START_REF] Wang | Three-dimensional Dirac semimetal and quantum transport in Cd 3 As 2[END_REF]). An early review article can be found in Ref [START_REF] Cayssol | Floquet topological insulators[END_REF].

Top ological phases are not only restricted to solid-state systems but other systems. The reason being the topological properties are captured by topological invariant, e.g., Chern number emerges from single-particle formalism, and another vital element comes from the underlying wave nature, e.g., electron waves in quantum systems. These two ingredients together rendered to look for non-trivial phases beyond the quantum domain. It is ascertained in numerous classical systems. In particular in the photonics, Raghu and Haldane [START_REF] Haldane | Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry[END_REF];R a g h ue ta l .2008) theoretically proposed to implement the QHE in photonics. That was later observed in photonics in a 2D photonic crystal (Zheng [START_REF] Wang | Observation of unidirectional backscattering-immune top ological electromagnetic states[END_REF], quite recently, the Haldane model has experimentally been observed in coupled ring resonators [START_REF] Mittal | Photonic Anomalous Quantum Hall Effect[END_REF]). In the case of periodically driven systems using photonics waveguide arrays, it leads to the observation of first of its kind "photonic Floquet topological insulator" [START_REF] Rechtsman | Photonic Floquet topological insulators[END_REF]. The examples also emerged in other classical systems, e.g., in acoustic waves [START_REF] Fleury | Floquet topological insulators for sound[END_REF], geophysical or astrophysical flows [START_REF] Delplace | Topological origin of equatorial waves[END_REF];P e r r o te ta l .2019), active matter [START_REF] Shankar | Topological Sound and Flocking on Curved Surfaces[END_REF]S o u s l o v ,D a s -biswas, et al. 2019;[START_REF] Souslov | Topological sound in active-liquid metamaterials[END_REF], just to say few. Surprisingly, as driving can induce novel topology, introducing a disorder to otherwise a clean system can also induce a non-trivial topology. For example, topological Anderson insulator was predicted in a static case [START_REF] Groth | Theory of the Topological Anderson Insulator[END_REF];G u oe ta l .2010; J. [START_REF] Li | Topological Anderson Insulator[END_REF];C .L i ue ta l .2017)a n dl a t e ra l s o shown to be present in the periodically driven systems, known as Floquet Anderson insulator (Titum, Berg, et al. 2016;[START_REF] Titum | Disorder-Induced Floquet Topological Insulators[END_REF]. Despite the disorder, the topology manifests with the presence of enhanced transport at the edges, which was confirmed in the photonics experiment by the observation of photonic topological Anderson insulator [START_REF] Stützer | Photonic topological Anderson insulators[END_REF]. In parallel, this promised to extend the domain of topology from regular crystalline structure to the amorphous solid, since topological edge states are protected against weak disorder. These symmetry protected edge states still exist up to some lattice density with random lattice points [START_REF] Agarwala | Topological Insulators in Amorphous Systems[END_REF];C o s t ae ta l .2019). Very recently, photonic topological edge states in the amorphous regime have been experimentally observed(P. [START_REF] Zhou | Amorphous photonic topological insulator[END_REF].

Nevertheless, the topology is not restricted only to systems with gapped spectra, where all the above examples fall. It also extends to the gapless regime. This lead to the search to look for topological properties of waves inside the crystals beyond conventional topological insulators (M. Z. [START_REF] Hasan | Colloquium: Topological insulators[END_REF][START_REF] Xiao | Berry phase effects on electronic properties[END_REF]. They can be semimetals and even metals [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF];B a h a r ie ta l .2019;B u r k o v2016;K u m a re ta l .2019;S .S u n et al. 2020; Y. B. [START_REF] Yang | Topological Amorphous Metals[END_REF][START_REF] Ying | Symmetry-Protected Topological Metals[END_REF]Ying et al. , 2019;;Z. Zhu, Winkler, et al. 2016). These topological gapless materials, unlike insulators, do not possess any well-defined gap, and in literature, all of these come under the same umbrella of topological metals [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF]). Topological gapless material classification according to various features (S. [START_REF] Li | Type-II topological metals[END_REF]):

• Firstly, it can be based on the dimensionality of the band crossings near the Fermi energy, as shown in Fig. 1.1.

-For example, for a 3D material, the band crossing can namely b e no dal-p oint (0D) [START_REF] Burkov | Topological nodal semimetals[END_REF];K o s h i n oe ta l .2016), nodal-line (1D) [START_REF] Fang | Topological nodal line semimetals[END_REF]Koshinoetal.2016), and nodal-surface (2D) (Wu, Y. Liu, et al. 2018) topological metals.

originating from the difference in their Fermi surface. For types-I, it is a Fermi point, and for types-II, there are Fermi pockets [START_REF] Soluyanov | Type-II Weyl semimetals[END_REF].

• Lastly, based on the topology. When there is an indirect gap, they can be classified according to the global topology of their spectrally isolated bands over the Brillouin zone Fig. 3.73 [START_REF] Palumbo | Two-dimensional Chern semimetals on the Lieb lattice[END_REF][START_REF] Ying | Symmetry-Protected Topological Metals[END_REF]Ying et al. , 2019)). When there are no gaps (direct or indirect), they can be characterized locally by the robustness of their nodal points or lines, that is somehow analogous to topological defects in reciprocal space.

-For example, in Weyl semimetals, the degeneracy (or no dal p oint) is completely robust against any Hermitian disorder. These nodal points are monopoles of Berry curvature, and their robustness can be quantified by defining a Berry flux piercing through a closed surface in momentum space enclosing them (G. E. [START_REF] Volovik | The Universe in a Helium Droplet[END_REF]. However, if there is a well-defined gap (direct or indirect) topology can be defined using standard tools, where the topology is captured by the full Hamiltonian4 .

Outline

The Fig. 1.5 shows a heuristic topological classification. If we follow it then, firstly, the system can be classified based on Hamiltonian time dependence, if there is no time dependence we fall in stationary regime, whereas if the Hamiltonian is periodic under time H(t + T )=H(t), then it falls in Floquet class. Then these classes can be further divided based on their spectrum, i.e., if the system posses any gaps, then it can host a topological edge state.

In the case of the Floquet system, the gapped phase can be further subdivided into two, where topology in one case is quite similar to the static systems, and it is determined by the effective Hamiltonian. The other class has no analog in the static regime, and it is specific to the Floquet systems (M. S. [START_REF] Rudner | Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems[END_REF]. There is also a similar relation between symmetries and the dimension of the system in the Floquet system [START_REF] Roy | Periodic table for Floquet topological insulators[END_REF], like AZ classification. I will present in the second chapter how these (abstract) symmetries (e.g. particle-hole) can be engineered in the photonic waveguide arrays, whose introduction shall follow in the next section. The spectrum here still possesses a well-defined gap. Now, if the system is gapless, which means there are bulk states at each energy. Then for the stationary case, this can happen if the system initially has a well-defined gap, where the two bands are well separated in energy, then by breaking some symmetry(s), for instance, inversion symmetry, the spectrum can continuously deform into an indirect gap along with the edge states. If we define a Fermi level in the gap when there was a direct gap, then in the indirect case, the contribution at the Fermi level not only comes from the edge states but also the bands. Surprisingly, the situation in the Floquet system is very interesting, where both the quasimomenta axis and the (quasi-)energy axis are periodic. I shall present a situation in 2D in this regime of inversion symmetry breaking in chapter third, where the system under consideration will show the fully gapless spectrum and wind in BZ. It may fall in the fourth class of the gapless classification (of the previous section), where all the bands have the same sign for the group velocity of the bands but with no counterpart in the stationary regime. Moreover, this symmetry can be broken along a spatial dimension or some synthetic dimension, the bulk spectrum does not seem to differ, but the topological properties manifest differently. There are many platforms to realize this Floquet phenomenon like photonics, acoustics, or ultracold atoms, I primarily stick to the photonics. Unlike in the electronic systems where standard conductivity experiments can probe this indirect gap [START_REF] Ying | Symmetry-Protected Topological Metals[END_REF], I present in the same third chapter how in the photonics, these two different inversion symmetry breaking cases, namely spatial and synthetic can be implemented and how their manifestation can be probed. Moreover, the gapless situation can also appear through the presence of robust degeneracies. In the stationary case, the well-known examples are the 3D Weyl semimetals, whose topologies are captured by their degeneracies in momentum space. I will present a similar gapless regime example in the 2D Floquet system, whose topology is captured similarly in chapter4. I present two systems, where one breaks inversion symmetry to show the gapless phase and another show gapless regime while preserving the inversion symmetry.

Photonics

The photonics [START_REF] Joannopoulos | Photonic Crystals: Molding the Flow of Light -Second Edition[END_REF])h a se m e r g e da sa ne m i n e n tp l a t f o r mt o engineer and probe topological properties of waves. The topological properties like chiral edge states, were first predicted and also observed in condensed matter systems, which then spread to many domains, e.g., photonics [START_REF] Haldane | Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry[END_REF];R a g h ue ta l .2008), acoustics [START_REF] Fleury | Floquet topological insulators for sound[END_REF], metamaterials [START_REF] Krishnamoorthy | Topological Transitions in Metamaterials[END_REF], circuits [START_REF] Lee | Topolectrical circuits[END_REF], cold atoms [START_REF] Cooper | Topological bands for ultracold atoms[END_REF], and many more. We consider one such platform, namely photonics, where similar topological properties were seen, e.g., unidirectional propagation of light in photonic crystals [START_REF] Rechtsman | Photonic Floquet topological insulators[END_REF]ZhengW angetal.2009). Photonics is a vast field in itself where periodic arrangements of dielectric materials can form a lattice and guide the motion of photons, and these dielectrics are analogous to atoms in a lattice. These lattices can host topological edge states ranging from dielectric metamaterial [START_REF] Khanikaev | Photonic topological insulators[END_REF], microwave cavities (Hu et al. 2015a), dielectric resonators [START_REF] Bellec | Topological Transition of Dirac Points in a Microwave Experiment[END_REF]; U. [START_REF] Kuhl | Dirac point and edge states in a microwave realization of tightbinding graphene-like structures[END_REF],coupled-ring optical resonators (CROW) (F. [START_REF] Gao | Probing topological protection using a designer surface plasmon structure[END_REF][START_REF] Hafezi | Robust optical delay lines with topological protection[END_REF], evanescently coupled waveguide arrays [START_REF] Rechtsman | Photonic Floquet topological insulators[END_REF][START_REF] Szameit | Discrete optics in femtosecond-laserwritten photonic structures[END_REF], circular fibers [START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF][START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF], photonic quantum walk [START_REF] Kitagawa | Observation of topologically protected bound states in photonic quantum walks[END_REF], just to say few. The biggest plus point of the photonics is that it is classical, besides the photonic quantum walk. For this reason, phenomenon like nonhermiticity [START_REF] Feng | Non-Hermitian photonics based on parity-time symmetry[END_REF];E l -G a n a i n ye ta l .2018a;Z h a oe ta l .2018), where the parity and time-reversal symmetry is broken, can be engineered and it has been linked to novel applications like topological lasers [START_REF] Bandres | Topological insulator laser: Experiments[END_REF];S h a oe ta l .2020;Z e n ge ta l . 2020).

Is h a l lg i v eab r i e fo v e r v i e wo ft h et h et h r e es e t u p s ,n a m e l ye v a n e s c e n t l yc o u p l e dw a v e guide arrays, circular fibers, and photonic quantum walk, mainly because of their proximity to my projects. In these three setups, evanescently coupled waveguide arrays, and circular fibers form the underlying lattice where the electromagnetic waves propagate analogous to the electronic waves in a crystal. Similarly, in the photonic quantum walk, the photons propagate.

Specifically, we discuss the planar waveguide, where the boundary conditions give rise to the mode expansion, which in turn predicts the mode allowed for propagation. Keeping this as a background, we go to the next stage, where the array of such waveguides can be evanescently coupled through the modes. I will present two cases: (i) between the incoming and outgoing waves within the same waveguide, and (ii) between different but nearby waveguides. As we will see, this latter case would be analogous to the tight-binding model of electrons.

Waveguide: optical fiber

We start with the very basics of the planar waveguides. The most fundamental building block of any photonics waveguide network is a waveguide. It consists of a core, where mostly the light is confined, and it is surrounded by a cladding, as shown in Fig 1 .6.M o r ed e t a i l s of this section can be found in [START_REF] Okamoto | Fundamentals of Optical Waveguides[END_REF][START_REF] Yariv | Optical electronics.SaundersCollegePubl[END_REF].

If a light is injected at an incident angle ✓ to the normal to the boundary, using Snell's law for an angle of refraction ,t h ec r i t i c a lc o n d i t i o nf o rt h et o t a li n t e r n a lr e fl e c t i o ni s

✓  sin 1 q n 2 1 n 2 0 ⌘ ✓ max , (1.1) ✓ max ⇡ q n 2 1 n 2 0 , (1.2) max ⇡ ✓ max /n 1 . (1.3)
Usually, the refractive index difference between core and cladding is of the order of 10 2 this allows us to write the equation(1.2)f o rt h em a x i m u ma c c e p t a n c ea n g l eo ft h ew a v e g u i d e . Thus, the maximum angle for the propagation of light inside the core is max ,g i v e nb y equation(1.3).

Figure 1.6: Basic geometry of an optical fiber with refractive index higher in the core (n 1 ) than in the cladding (n 0 )

Even though the angle is chosen smaller than max ,t h el i g h tr a y sw i t ha na r b i t r a r y angle can not propagate inside the waveguide. Only some specific values of 's are allowed, for instance  max ,w h e r ee a c hd i ff e r e n tv a l u e so fa n g l e corresponds to a specific (propagating) mode. These modes are analogous to the allowed energy levels in quantum mechanics, e.g., particle in a box. We will not go into much details on the modes as they can easily be found in the standard textbook.

There are different types of structures (or geometry) for waveguides, as shown in Fig 1 .7, mostly depending on (1) the operating frequency bandwidth, for example, in the case of coaxial cable is below 3GHz, (2) the amount of power to be transferred from one point in space to another, which in the coaxial cable is of the order of 1 kilowatt at 100 MHz (it decreases to 200 watt at 2GHz due to heating losses), and (3) the amount of tolerable transmission losses. The coaxial cable has 3 decibels per 100 m at 100MHz, which increases to 10 decibels per 100 m at 1 GHz (which means more loss), for more details see [START_REF] Orfanidis | Electromagnetic Waves and Antennas[END_REF] By substituting this eq(1.6)i ne q ( 1.5), it gives us

r 2 E n 2 0 E =0 (1.7) r 2 T E + @ 2 E @z 2 +2ik 0 n 0 @E @z + k 2 0 (n 2 1 n 2 0 )E =0 . (1.8)
The envelope term varies very slowly along z,i . e . ,| @ 2 E @z 2 |⌧ | @E @z |,t h i ss i m p l i fi e st h ee q u a t i o n to

r 2 T E +2ik 0 n 0 @E @z + k 2 0 (n 2 1 n 2 0 )E =0 (1.9)
where spatial transverse Laplacian is given by

r 2 T ⌘ @ 2 @x 2 + @ 2 @y 2 .
Also, assuming the weakly guiding conditions 5 ,wecanapproximate(n

2 1 n 2 0 ) ⇠ = 2n 0 (n 1 n 0 ) 6 . ik 0 @E @z = ✓ 1 2n 0 k 2 0 r 2 T E +(n 1 n 0 )E ◆ , (1.10) i¯ @ @z E(x, y, z)= ✓ ¯ 2 2n 0 r 2 T +∆n ◆ E(x, y, z) (1.11)
where ¯ =1/k 0 and ∆n = n 1 n 0 is the change in the refractive index from the bulk (n 0 )to the propagating medium (n 1 ), this Instead of wave packet evolution in time governed by Schrödinger's equation(1.12), we have a wave packet (electric field envelope) evolving along the propagation axis (z)( 1.11). That facilitates monitoring the light propagation by direct observation in space, and as a result, preventing the problem of resolution of short time scales, which may arise in the case of electron. Another significant advantage, the experiments can be carried out at room 5 weakly guiding refers to when the difference between the refractive indexes of the core(or film) and the cladding is very small.

6 (n 2 1 n 2 0 )=(n 1 + n 0 )(n 1 n 0 )=2n 0 (n 1 n 0 ), n 1 ⇡ n 0
temperature, unlike in solid-states, where thermal energy contribution is significant at room temperature and can thus be a downside. Besides, there is one dissimilarity between both equations, electrons are more localized at a lower potential since it minimizes their total energy. In contrast, there is a negative sign in front of ∆n,me aningthatane le c tromagne tic wave is more localized when the medium has a higher refractive index than the surrounding environment, this guides the motion of electromagnetic waves inside the waveguide.

Coupling between guided modes

In quantum mechanics, if the potential has spatial periodicity V (r + a)=V (r), it provides an underlying lattice structure. Similarly, the correspondence between quantum mechanics and paraxial Helmholtz's equation also extends in this direction, where the waveguides spatial periodicity (∆n(r + a)=∆ n(r)) is analogous to atoms in a conventional lattice. It is captured by coupled mode theory, where more detailed information can be found in books of Okamoto [START_REF] Okamoto | Fundamentals of Optical Waveguides[END_REF] and [START_REF] Yariv | Optical electronics.SaundersCollegePubl[END_REF]. The present section is heavily drawn from these two books.

Until now, we assumed propagation of light in a single waveguide. However, if there is more than one waveguide adjacent to each other at a relatively close distance, then the co-propagating or contra-propagating light beams can interact and can give rise to two scenarios. One is desirable, as in the case of directional couplers, where this results in the coupling of modes, and the power is transferred from one waveguide to another. Another is undesirable, where it can result in a phenomenon of interference of modes called crosstalk. Is t i c kt ot h ep o s i t i v ea s p e c to fi tt h a ti st h ec o u p l i n go fm o d e s . I nt h i ss e c t i o n ,Ip r e s e n t a brief sketch of this mutual interaction between two propagating modes, which falls under the formalism of coupled-mode theory (A. [START_REF] Yariv | Coupled-mode theory for guided-wave optics[END_REF].

Let us consider a case of two waveguides (as shown in Fig 1 .8), where each waveguide supports its corresponding modes. If these two waveguides are far apart, then their modes do not couple and can continue unperturbed. However, if they are close, where the distance is such that the electromagnetic field distribution is significantly the same as in the former case, then the coupled waveguides propagation features can be understood by the perturbation method [START_REF] Marcuse | Light transmission optics[END_REF]. This is very analogous to the case of the hybridization of energy levels in solid-state due to the presence of more number of atoms in close vicinity.

The eigenmodes in each (optical) waveguide before the coupling of mode satisfy Maxwell's equations for the electric field Ẽl (where real field E l =Re[ Ẽl ]) and magnetic field Hl in the form In quantum mechanics, the above equation can be thought of as expressing a (perturbed) state vector in terms of eigenstates.

r⇥ Ẽl = i!µ 0 Hl (l = I,II) r⇥ Hl = i!" 0 n 2 l Ẽl . ( 1 
The full electromagnetic fields of coupled waveguide Ẽ and H satisfy similar to equation(1.13)

r⇥ Ẽ = i!µ 0 H r⇥ H = i!" 0 n 2 H (1.15)
where n 2 gives the total refractive index distribution in the full coupled waveguide.

By substituting eq.(1.14)i ne q . ( 1.15), we obtain following relation for the amplitudes7 ,

(ẑ ⇥ ẼI ) dA dz +(ẑ ⇥ ẼII ) dB dz =0 , (1.16) (ẑ ⇥ HI ) dA dz +(ẑ ⇥ HII ) dB dz i!" 0 (n 2 n 2 I ) dB dz A ẼI i!" 0 (n 2 n 2 II )B ẼII =0 . (1.17)
We can decompose the eigenmodes of each waveguide Ẽl and Hl in axial and transverse component as, Ẽl = Ẽl e i l z Hl = Hl e i l z

(1.18)

By substituting above eq.(1.18)i ne q . ( 1.16), we obtain the simplified coupled equation for the amplitudes variation along propagation axis as

dA dz + c I,II dB dz e +i( 2 1 )z i I A i I,II Be +i( 2 1 )z =0 , dB dz + c II,I dA dz e i( 2 1 )z i II B i II,I Ae i( 2 1 )z =0 (1.19)
where coefficients are

 l,m = 1 N l !" 0 Z 1 1 dr(n 2 n 2 m ) Ẽ⇤ l • Ẽm , (1.20) c l,m = 1 N l Z 1 1 dr ⇣ Ẽ⇤ l ⇥ Hm + Ẽm ⇥ H⇤ l ⌘ z , (l, m) 2{I,II} (1.21) l = 1 N l !" 0 Z 1 1 dr(n 2 n 2 l ) Ẽ⇤ l • Ẽl (1.22) with normalization N l = R 1 1 dr ⇣ Ẽ⇤ l ⇥ Hl + Ẽl ⇥ H⇤ l ⌘ z 8
where integration domain is r = {x, y}. Here,  lm refers to mode coupling coefficient of the directional coupling analogous to tunnelling coefficient in tight binding formalism and it depends on the overlap of evanescent waves of l, m. Let us consider Fig. 1.9,w h e r ew a v e g u i d eI exist for z<0a n dw a v e g u i d eII exist for z 0. When the light beam is incident on waveguide I, E I then at z =0itexcites the eigenmode of the waveguide II, E II , this coupling or excitation efficiency is captured in c l,m also known as the butt coupling coefficient. l denotes the amount of contribution coming to A from B,a n dv i c ev e r s a 9 ,t h i sc a nbes e e na sa na n a l o g u eo fa no n s i t epo t e n t i a lt e r mi n quantum mechanics. In most of the cases, c l,m and l are neglected as their contribution is far less than that of  l,m . However, they may be important for the full treatment of mode coupling effects. 

E I E II
m dz = i mm 0 A m 0 e +i mm 0 z (1.23)
where A m is the amplitude in the m th waveguide with nearest neighbours m 0 . Just as a note there is an another way establishing the coupling of modes due to waveguide imperfections, a very brief sketch can be found in the appendix(5.1).

1.7 From coupled waveguide array to other photonics platforms 1.7.1 Experimental platform 1: Waveguide arrays

The two essential ingredients, namely, paraxial Helmholtz's equation and coupled-mode theory, enable us to explore the realm of solid-state phenomena governed by quantum mechanics in the classical domain of evanescently coupled optical waveguide array. These arrays were first proposed theoretically by [START_REF] Jones | Coupling of Optical Fibers and Scattering in Fibers⇤[END_REF][START_REF] Jones | Coupling of Optical Fibers and Scattering in Fibers⇤[END_REF]. Later, they were first engineered experimentally in 1973 on a GaAs substrate by Yariv's group [START_REF] Somekh | Channel optical waveguide directional couplers[END_REF]).

In the beginning, the idea was to map solid-state phenomena like Bloch oscillations to coupled waveguide networks, and later they seem to possess features only specific to these arrays. For example, due to underlying discrete structure10 ,t h e s ec o u p l e dw a v e g u i d ea r r a y s display properties very different from the continuous and homogeneous media. Along with the analogies with quantum mechanics, in the 90s, Carl Zener [START_REF] Zener | A theory of the electrical breakdown of solid dielectrics[END_REF]predicted an unintuitive phenomenon that when electrons in a lattice are in the presence of an electric field, they undergo oscillations, also known as Bloch oscillations. Intuitively, a charged particle should experience the Lorentz force that accelerates it instead of oscillating. In optical waveguides, this can be imposed by a transverse potential gradient whose role is played by a refractive index here. This potential gradient can be attained by linearly increasing the refractive index of the individual waveguides, which gives rise to optical Bloch oscillation, they were observed in 1D [START_REF] Morandotti | Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations[END_REF];T .P e r t s c h ,D a n n b e r g ,e ta l . 1999), and in 2D [START_REF] Trompeter | Bloch Oscillations and Zener Tunneling in Two-Dimensional Photonic Lattices[END_REF]. However, there is a clever way to implement this gradient, and it is by curving the waveguides as proposed in 1999 for 1D [START_REF] Lenz | Bloch Oscillations in an Array of Curved Optical Waveguides[END_REF] Let us consider a simple example of only two waveguides, as shown in red and blue color in Fig. 1.12,w h e r et h ea m p l i t u d ea n dt h ep r o p a g a t i o nv e c t o ri nt h efi r s tw a v e g u i d e( i nr e d ) is A and I ,andinthesecondw a v eguide(inblue)isB and II ,respectiv ely . F orsimplicit y , we can consider the propagation wavenumber I = II12 . The coupling between the two waveguides is  =  I,II =  II,I (see eq.(1.20)). Then the evolution of amplitudes along the propagation axis z can be described in this array by using coupled-mode theory equations (see eq.(1.23)) as,

i ✓ Ȧ(z) Ḃ(z) ◆ = ✓ 0   0 ◆✓ A(z) B(z) ◆ (1.24)
where Ȧ(z)=d A(z)/dz.T h ec o u p l i n gm a t r i xK form in Ȧ(z)=KA(z)c o i n c i d e sw i t ht h e form of tight-binding Hamiltonian, in the basis of waveguides and in units of [L 1 ]i n s t e a d that of an energy.

Then the solution of these coupled equations can easily be found by differentiating one of the equation and substituting it from another, which gives

d 2 A(z) dz 2 =  2 A(z), A(z)=A 0 cos z. (1.25)
The similar equation follows for the amplitude B(z), where in eq.(1.25), we have chosen an initial condition. We incident a light beam only in the first waveguide (in red) of amplitude A 0 ,t h i st r a n s l a t e st os a yt h a tA(z =0 )=A 0 and B(z =0 )=0 . T h e na f t e rap r o p a g a t i o n length of z = l c =2 ( p +1 ) ⇡/2,f o rs o m ep 2 Z,a l lt h el i g h tb e a mi st r a n s f e r r e dt o the second waveguide (in blue), this is known as coupling length. It shows along with the eq.(1.25)thatthelightbeamkeepsoscillatingfromonew a v eguidetoanother. Ifthen um ber of waveguides is increased in the array, this leads to a cascading process, where light beam from m th waveguide is transferred to (m 1) th and (m +1) th after some propagation length, this results into a discrete diffraction Fig. 1.10(a). Additionally, here the experimentally measurable quantities are output intensities,

I A = |A(z)| 2 ,I B = |B(z)| 2 ,
t h e yi nt u r nc a nd e t e r m i n et h ec o u p l i n gc o n s t a n tb e t w e e nt h ew a v e guides

 = 1 z arctan r I A I B (1.26) x z z = 0 z = Z/2 z = Z I II One period
Figure 1.13: A waveguide array containing two waveguides with periodic modulation of period Z along z (time) axis.

In the last case, we consider a z-independent coupling between the waveguide, i.e., (z)= . However, if the (z)d e p e n d so nz then it mimics a time-dependent Hamiltonian system (see eq.(1.24)). For two waveguides, with z (or time) dependent coupling the evolution of amplitudes can be written as

i ✓ Ȧ(z) Ḃ(z) ◆ = ✓ 0 (z) (z)0 ◆✓ A(z) B(z) ◆ (1.27)
Above eq.(1.27)c a ne a s i l ybeg e n e r a l i z e da l o n gf o u rd i r e c t i o n s .

• First, if we consider a waveguide array where these two waveguides as a unitcell form a lattice along transverse axis (x), then the coupling matrix can be Bloch diagonalized.

Then the coupling matrix K transforms into-

K = ✓ 0 (z)e ikxax (z)e ikxax 0 ◆ , (1.28)
where a x is the lattice constant and k x is the Bloch quasimomentum (or Fourier conjugate variable of x).

• Second, the size of this Bloch diagonalized coupling matrix encodes the information of the degree of freedom in the lattice. Hence this can be extended to any number of waveguides.

• Third, the periodicity of the waveguide array along the z (or time) axis, as sketched in Fig. 1.13, mimics the dynamics of periodically time dependent Hamiltonian (see eq.(1.11)), we discuss them in chapter(2). This is encoded in the couplings, where they are periodic in z with period Z, K(z + Z)=K(z).

• Lastly, the dimension of the system can be extended from 1D to 2D, by exploiting also the y-axis and stacking the waveguides along that direction (see Fig. 1.12). Then the refractive index is periodic along both axes x and y, i.e., ∆n(x + a x ,y+ a y )=∆n(x, y). This redefines the above coupling matrix K eq.(1.28), with couplings  1 in x and  2 in y plane as

K = ✓ 0  1 (z)e ikxax +  2 (z)e ikyay  1 (z)e ikxax +  2 (z)e ikyay 0 ◆ . (1.29)
This platform will be heavily discussed at the end of the chapter(2), where we will address the first three points in detail.

The governing equation for the evolution of light inside the waveguides has only two special dimensions (see eq(1.11)), this restricts us to go beyond 2D. However, relaxing the condition of monochromaticity can allow us to use temporal direction as another coordinate (x, y, t). This is reflected by adding the time-dependent term in eq(1.11), where this term additional term corresponds to the kinetic energy of slowly varying envelope term coming from t [START_REF] Ozawa | Topological photonics[END_REF],

i¯ @ @z E(x, y, t; z)= ✓ ¯ 2 2n 0 r 2 T +∆n + 1 2m t @ 2 @t 2 ◆ E(x, y, t; z) (1.30)
where m t = (d 2 k(!)/d! 2 )/n 0 with k(!)=n(!)!/c is proportional to the group velocity in a frequency dependent refractive index medium. Moreover, the dimension can also be extended by employing synthetic gauge fields [START_REF] Ke | Topological phase transitions and Thouless pumping of light in photonic waveguide arrays[END_REF];Z i l b e r b e r ge ta l .2018)o rt h e different waveguide modes [START_REF] Lustig | Photonic topological insulator in synthetic dimensions[END_REF]i nt h es y s t e m ,w h o s em o r ed e t a i l e dr e v i e w and analysis will be presented in chapter(3).

Experimental platform 2:Optical mesh lattices

There is another equivalent platform in classical photonics to engineer a periodically timedependent dynamics of a quantum Hamiltonian, where the time dependence of coupling parameters is encoded in terms of time-dependent scattering matrices. These time-dependent matrices are identical to the one that appears also at the coupling region between the waveguides in the waveguide arrays (see Fig. 1.13). This platform was developed in Ulf Peschel group in Jena [START_REF] Regensburger | Photon Propagation in a Discrete Fiber Network: An Interplay of Coherence and Losses[END_REF][START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF][START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF][START_REF] Wimmer | Optical diametric drive acceleration through action-reaction symmetry breaking[END_REF].

Let us describe this second platform, which consists in two spatially separated circular optical fibers, as shown in Fig. 1.14.T h e yo n l yd i ff e ri nt h e i rl e n g t h ,w h e r et h el o o pv (on the left) of length L +∆L is longer than the loop u (on the right) of length L by an amount ∆L.T h et w oo p t i c a lfi b e r sa r ec o u p l e db yas t a n d a r dc o u p l e ro rk n o w na sab e a m -s p l i t t e r , shown with a black-gray box, in Fig. 1.14.I tc o n t a i n st w oi n p u t sa n dt w oo u t p u t s ,a n di t decides the division of light intensity (or amplitude) going to each of the two outputs. For example, if it is a 50:50 beam splitter, then any input, it splits light amplitude into half for each of the output. The process starts by injecting a pulse of light, much shorter than the loops, of amplitude A in one of the optical fiber, say the loop v.T h e nt h eb e a mt r a v e l si n s i d et h el a r g el o o pb e f o r e it encounters a beam-splitter, which splits the light amplitude into two parts. Considering a5 0 : 5 0s p l i t t i n gf o rs i m p l i c i t y . T h i sm e a n sal i g h ta m p l i t u d es p l i t si n t ot w oh a l v e s ,o f amplitude A/2enteringineachoftheopticalfibers. Thisistheonlyregionwheretransverse coupling between the two fibers takes place. Then owing to the length difference ∆L,t h el i g h tb e a ml a s t sas h o r t e rt i m eT u in the loop u than it does in loop v. In the longtime, this generates time-multiplexed pulses, where pulses in shorter loops advance by ∆L/c fiber ,wherec fiber is the speed of light inside the fiber, in comparison to the longer one, where they are delayed by the same amount in comparison to the shorter one, as shown in Fig. 1.15.T h e r ea r et w ot i m es c a l e sh e r e ,o n ei st h es h o r t e r time l = T v T u =∆L/c fiber and the other one is the longer time j = T v + T u .T h es h o r t e r time differentiates between the two loops, where it decides the temporal position l depending on the pulse origination if it comes from shorter (l)o rl o n g e r( l +2) loop, while the longer time scale counts the total round trips j, i.e., one round through the longer (shorter) loop and one round through the shorter (longer) loop. In the long run, this effectively generates an optical mesh lattice, where l is encoded in the transverse axis, and j in the propagation axis, as shown in Fig. 1.16.I tc a nb es e e na f t e rj rounds in this optical mesh lattice that the pulse coming from loop u is advanced in time with respect to that of loop v. Thus it goes to the left (shown with a link in blue in Fig. 1.16)d e s i g n a t e db yt h et e m po r a lpo s i t i o nl a be ll. However, the pulse coming from loop v is delayed. Hence it goes to the right (shown with a link in red in Fig. 1.16). The (scattering) node, where these two links meet the coupler (or the beam splitter), is displayed by S 1 ,

φ S 1 +φ S 1 -φ S 1 φ S 1 +φ S 1 -φ S 1 +φ S 1 -φ S 1 φ S 1 +φ S 1 -φ S 1 +φ S 1 -φ S 1 +φ S 1 -φ S 1 φ S 1 - +φ S 1 -φ S 1 +φ S 1 -φ S 1 +φ S 1 - +φ S 1 -φ S 1 +φ S 1 - +φ S 1 j j + 1 j + 2 j + 3 j + 4 l + 1 l + 2 l + 3 l 3 l 2 l 1 l
S 1 = 1 p 2 ✓ 1 i i 1 ◆ . (1.31)
Similarly to the waveguide case, the periodicity of the coupler (that stores the coupling information between the two fibers) along the propagation axis, determines the time periodicity of the lattice. In this simple case, where the scattering node is same along transverse and propagation axis, i.e., satisfies S 1 (j +2,l+2) = S 1 (j, l), which defines a unitcell emphasized with dotted black square in Fig. 1.16,w h e r eS 1 (j =timestep,l =position). In a more general case, the scattering node can change along both axes, while maintaining periodicity along each axes. Likewise before, this formalism can be extended.

• All the distinct nodes denoted by S l,j along the transverse axis, i.e., S l 0 ,j for l 6 = l 0 ,i s S l,j 6 = S l 0 ,j , this decide the degrees of freedom in the system (Mohammad-Ali [START_REF] Miri | Optical mesh lattices with PT symmetry[END_REF][START_REF] Regensburger | Photon Propagation in a Discrete Fiber Network: An Interplay of Coherence and Losses[END_REF];R e g e n s b u r g e r ,B e r s c h ,M o h a m m a d -Ali [START_REF] Miri | Optical mesh lattices with PT symmetry[END_REF]. For example, if there are n l distinct nodes then there are total 2n l links entering these nodes or 2n l degrees of freedom (i.e. S l+2n l ,j = S l,j ). This is similar to have 2n l waveguides in the unitcell.

• Like in the waveguide arrays, the number of distinct nodes along the propagation axis corresponds to the number of time steps similar to a quantum walk or in case of waveguides array (see chapter(4)). For example, if there are n j steps, where n j 2 2Z then S l,j+2n j = S l,j ). The evenness of n j comes from the underlying evenness of the number of circular fibers. In the waveguide arrays, this corresponds to a case where the number of waveguides are even, and with half of the intracell couplings and another half intercell.

• The dimension of the system can interestingly be increased by introducing a synthetic gauge field(Mohammad-Ali [START_REF] Miri | Optical mesh lattices with PT symmetry[END_REF][START_REF] Regensburger | Photon Propagation in a Discrete Fiber Network: An Interplay of Coherence and Losses[END_REF][START_REF] Regensburger | Parity-time synthetic photonic lattices[END_REF][START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF][START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF]. This can be achieved by introducing a phase modulator in one of the circular fibers. This platform will be discussed heavily along with the above points through the scattering network (see Fig. 1.16)i nt h ec h a p t e r ( 3)a n d( 4). [START_REF] Schmitz | Quantum Walk of a Trapped Ion in Phase Space[END_REF], and photonic waveguides array with single-photons [START_REF] Bromberg | Quantum and Classical Correlations in Waveguide Lattices[END_REF];P e r e t se ta l .2008) or correlated photons [START_REF] Matthews | Observing fermionic statistics with photons in arbitrary processes[END_REF][START_REF] Peruzzo | Quantum Walks of Correlated Photons[END_REF]. We focus our attention very briefly on an optical mesh lattice incident with a single photon or more comfortably known as a photonic quantum walk, as shown in Fig. 1.17. A photon generates a quantum walk in a 1D lattice (see Fig. 1.17)( K i t a g a w a ,M a t t h e w AB r o o m e ,e ta l .2012). This is achieved by a polarized photon with horizontal |Hi and vertical |V i polarization states, which undergoes unitary transformations during discrete time steps evolutions. In the first step, there is a polarization-dependent rotation R(✓ 1 )o f the single photon-induced via a suitable wave plate. Then there is a polarization-dependent translation T 1 (using a calcite beam displacer) where |Hi is moved by one lattice to the right. Subsequently, there is a second rotation R(✓ 2 ), and at last another translation T 2 of |V i to the left. These four steps constitute one complete step of this quantum walk, which is periodically reproduced. Here, the degree of freedom is decided by the two polarization states of the photons. The information of the coupling similar to before is encoded in the parameters ✓ j=1,2 .M o r e o v e r ,t h eb i ga d v a n t a g eo ft h i ss e t u pi st h a ti tc a nb em o r eu s e f u l to study features more dominant in the quantum regime, e.g., quantum entanglement or quantum correlations. The properties These three platforms are summarized below: In presence of more than one photon [START_REF] Crespi | Anderson localization of entangled photons in an integrated quantum walk[END_REF][START_REF] Matthews | Observing fermionic statistics with photons in arbitrary processes[END_REF];P e r u z z o et al. 2010; [START_REF] Sansoni | Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics[END_REF].

Non-Hermitian physics

This could be induced via losses and gain with the help of refractive index [START_REF] Feng | Non-Hermitian photonics based on parity-time symmetry[END_REF]E l -Ganainy et al. 2018b;[START_REF] Zhao | Parity-time symmetric photonics[END_REF] This is not possible, since the underlying quantum mechanics is Hermitian.

Detection

Fluorescence spectroscopy measurement [START_REF] Mayers | Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources for Spectroscopy in Microchannels[END_REF][START_REF] Oki | Multiwavelength distributed-feedback dye laser array and its application to spectroscopy[END_REF] or Intensity measurement using photodiode (Mohammad-Ali [START_REF] Miri | Optical mesh lattices with PT symmetry[END_REF][START_REF] Regensburger | Photon Propagation in a Discrete Fiber Network: An Interplay of Coherence and Losses[END_REF][START_REF] Regensburger | Parity-time synthetic photonic lattices[END_REF];W i mmer, Mohammed-Ali [START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF][START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF] Probability distribution is imaged with a single-photon avalanche detector [START_REF] Kitagawa | Observation of topologically protected bound states in photonic quantum walks[END_REF] or photon correlations are detected using conditional measurement [START_REF] Crespi | Anderson localization of entangled photons in an integrated quantum walk[END_REF][START_REF] Peruzzo | Quantum Walks of Correlated Photons[END_REF][START_REF] Rohde | Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation[END_REF][START_REF] Sansoni | Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics[END_REF].

Topology as a tool for physicists

Here I give a heuristic introduction to topological tools required to capture the topological properties in the gapless regime.

Top ology is a branch of mathematics that is concerned with the prop erties of ob jects which are invariant under continuous deformations, such as stretching or bending. As an example, a hollow cylinder, a smooth solid sphere, or a rough surface potato are the same. That means topology is insensitive to the local details, and a potato can be continuously deformed into a solid smooth sphere, while it can not be deformed into a hollow cylinder, which has a hole at the center. All the objects which can be continuously deformed into each other are characterized by the same invariant that smoothens out the local details. This invariant, or topological invariant, for instance, can be the number of holes in an object, which is zero for the potato and 1 for the hollow cylinder. There is a well known formula from differential geometry, where this invariant can be defined mathematically for Let us put this in a more elegant way. Let us consider a continuous map :[ 0 , 1 ]! X is defined as a path if the initial point (0) = x 0 and final point (1) = x 1 ,w h e r ex j 2 X. Similarly, if (0) = (1) = x 0 then it defines a loop at x 0 .

If there are two loops 1 , 2 :[ 0 , 1 ]! X at say x 0 . They are said to be homotopic, if there exists a continuous map H : 8s 2 [0,1] (1.34)

[0, 1] ⇥ [0, 1] ! X such that H(s, 0) = 1 (s),H (s, 1) = 2 (s)
H(0,t)=H(1,t)=x 0 8t 2 [0, 1] (1.35)
The interpolating map H is called homotopy between 1 and 2 ,a ss h o w np i c t o r i a l l yi n Fig. 1.20.

The idea of homotopy of loops can be extended to arbitrary maps. Let f, g: X ! Y be ac o n t i n u o u sm a p . I ft h e r ea l s oe x i s t sac o n t i n u o u sm a pH :

[0, 1] ⇥ X ! Y such that H(x, 0) = f (x),H (x, 1) = g(x) 8x 2 X (1.36)
then f is said to be homotopic to g the map H is called a homotopy between f and g.

In addition to continuous deformation of loops or maps, but underlying spaces X,andY can also be continuously expanded. If we consider X to be a disc with a hole, on expanding its boundaries gives X ⌘ R {0} this is a circle ⇠ S 1 .C o r r e s p o n d i n g l y ,d i ff e r e n tw i n d i n g so nS 1 fall in different homotopy classes. It turns out, the set of homotopy classes is endowed with a group structure. Here the set of homotopy classes of loops in X is known as fundamental group or Poincaré group, denoted by ⇡ 1 (X) ⌘ ⇡ 1 (S 1 )=Z. Just to show how calculating the higher homotopy group becomes very complicated as the dimensions of the underlying space increase S n is shown in Fig. 1.21.

Winding number

There is a more intuitive way to calculate the winding of loops on a circle S 1 .T h a tc a nb e seen by parametrizing the circle by an angle ', as sketched in Fig. 1.22.L e tu sc o n s i d e r ac o n t i n u o u sm a pg('):S 1 ! U (1), where g(')=e i↵ (') .T h i sm e a n s ,w ec a na s s o c i a t ea complex phase to every point on the circle with above defined relation. The map does not need to be one-to-one; in fact, it can be two-to-one or many-to-one, as we see. Let us consider the case ↵(')=2', as shown in Fig. 1.23.T h e n ,' =0impliesg(' =0)=12 U (1) (shown with green arrow) ' = ⇡/2i m p l i e sg(')= 1( s h o w nw i t hr e da r r o w ) , ' = ⇡ implies g(' =0)=1(sho wnwithgreenarro w)' =3⇡/2i m p l i e sg(')= 1( s h o w n with red arrow) . This tells us how much time U (1) wraps around S 1 (as '), this is known as winding number. However, there is a clever way and an elegant way to extract the winding number of an arbitrary map with g(')=e i↵(') ,w h e r e↵(')=n':

⌫ = 1 2⇡i Z 2⇡ 0 d'g 1 (')@ ' g('), (1.37) = 1 2⇡i Z 2⇡ 0 d'e i↵(') i@ ' ↵(')e i↵(') , (1.38) = n.
(1.39) Then all homotopic classes for different n are characterized by a homotopic invariant ⌫ (or winding number). This invariant does not change under smoothly deforming g(').

Degree of a map

The winding number can be generalized to higher dimensions. There is an equivalent but more handy way to define winding for the same continuous map g : X ! S 1 .T h i sc a n be done by considering the same disc X with a hole at the centre, however extending the boundaries to infinity (' R 2 {0}'S 1 ) (see Fig. 1.19a). A semi-infinite line originating from the hole (or singularity) is drawn going towards infinity, as sketched with a dotted line in Fig. 1.24.T h e nt h en u m b e ro fi n t e r s e c t i o n so fal o o pw i t ht h i sl i n et a k i n gi n t oa c c o u n ta l s o extracted by parametrizing the loop with a vector r (t) whose origin is the same singularity.

Then it is sign of the vector product of r (t)w i t ht h et a n g e n tv e c t o r ˙r (t)a n dt h en o r m a l vector nz at the dotted line (inclined at an angle ' 0 ). In addition, the intersection with a given loop g takes place for some images g(t (0) j )=' 0 .T h i si nr e t u r ng i v e su st h ep r e -i m a g e s t (0) j ⇡ g 1 ( 0 ). This gives winding (or degree) of g as

⌫(g)=d e g ( g)= X t (0) j ⇡g 1 ( 0 ) sgn h r (t) ⇥ ˙r (t)| ' 0 •n z i , = X t (0) j ⇡g 1 (' 0 ) sgn  d dt | ' 0 .
(1.40)

There are two reasons to formulate the winding number in this way. First, there no integral evaluation, and secondly, the generalization to higher dimensions is quite simple. It can be seen for a general case, the degree (or winding number) of a map g : X ! Y between two orientable surfaces with same dimensions is

⌫(g)= X x (0) j ⇡g 1 (y 0 ) sgn  det ✓ @y ↵ @x ◆ y 0 . (1.41)
where x 2 X and y 2 Y , and the factor inside the determinant is the Jacobian matrix corresponding to the transfer of coordinates from x to y.T h i sd e fi n i t i o ni nt e r m so fd e g r e e does not depend on the choice of image y 0 . It is a homotopy invariant generalizing the winding number to higher dimensional manifolds from a map g: S 1 ! S 1 .

Berry curvature and Chern number

The topological invariant has also pervaded in the physical systems, e.g., the quantum Hall effect (QHE) in 1980 by the von Klitzing group [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF]. This effect arises when a strong magnetic field is applied to a 2D electron gas, which leads to the vanishing longitudinal conductivity, whereas the transverse conductivity is still non-zero. That can be explained from a semiclassical picture of electrons experiencing the Lorentz force due to the magnetic field B.T h e nt h i sf o r c em a k e st h ee l e c t r o n st oe x h i b i tc l o s ec y c l o t r o no r b i t sw i t h cyclotron frequency ! c = eB/m e ,w h e r ee is the electronic charge and m e is the mass of electron. As can be seen from a sketch in Fig. 1.25,t h e s eo r b i t se x p e r i e n c ea no b s t r u c t i o n in making close circles at the boundaries, where they instead propagate. It becomes the source of conductivity in this 2D sample, where the bulk of the sample is insulating, which means there is no net motion of electrons. Remarkably, this (transverse) conductivity is very precisely quantized, given by

H = n e 2 h . (1.42)
where h is the Planck's constant and n is an integer, H is also known as quantum Hall conductivity. Not long after the QHE discovery, Thouless, Kohmoto, Nightingale, and Nijs 

Topology of eigenstates

Let us consider a Hamiltonian H that is parametrized by a set of parameters, denoted by G =( G 1 ,G 2 ,...), we are concerned with the adiabatic evolution of the system as G moves slow enough along a closed path C in parameter space such that we can define an eigenvalue equation

H(G)| j i = E j (G)| j i (1.45)
If the system is prepared in one of the eigenstates and the system adiabatically evolves by changing G, then due to the adiabatic theorem, the system remains in the same eigenspace. However, after one full evolution when the parameter G returns to its initial value, the eigenstate acquires a phase with respect to the initial value [START_REF] Xiao | Berry phase effects on electronic properties[END_REF]. This phase contains the dynamical phase and geometric phase. This geometric phase j can be expressed as

j = Z C dG •A j (G), (1.46)
where A j is

A j (G)=ih j (G)| @ @G | j (G)i (1.47)
This vector A(G)i sk n o w na st h eBerry connection and the geometric phase is known as the Berry phase [START_REF] Berry | Quantal Phase Factors Accompanying Adiabatic Changes[END_REF]. Now, we can define the Berry curvature as,

Ω j (G)=r^A (1.48)
where ^becomes a vector product if the parameter space is 3D. Unlike Berry connection, which is gauge dependent quantity (i.e., under j ! e i↵(G) , A has gauge dependent term, see eq.(1.47)), Berry curvature is a gauge invariant and a physical observable. Furthermore, it can be used to calculate the Chern number defined in the quantum Hall effect in eq.(3.15).

The Chern number may appear in topological band theory in mainly two contexts, one in the gapped band structure, which is the case of QHE and other in gapless one. This topological invariant also appear in the gapless systems like Weyl semimetals, where it has different interpretation than the number of edge states in QHE.

In order to capture the topology in gapless systems the above defined Berry curvature Ω j (G) besides in differential form can also be expressed in terms of eigenstates, which can be derived by taking the derivative with respect to G of the eigenvalue equation(1.45)a n d using completeness of eigenstates13 gives,

Ω j (G)=i X m6 =n X j,k h j |@ Gm H| k ih k |@ Gn H| j i (E j E k ) 2 dG m ^dG n (1.49)
where @ Gn = @ @G n .E x p r e s s i n gB e r r yc u r v a t u r ei nt h ea b o v ef o r mt e l l su st h a t P j Ω j (G)=0, using the anti-symmetry property of wedge product. Another important observation comes from the denominator, which vanishes at degeneracy points i.e., when E j (G 0 )=E k (G 0 ). Thus, these degeneracies are either source or sink of Berry curvature, and it is singular at these points, which are called Berry monopoles.I ft h e s em o n o p o l e sa r ee n c l o s e db yas u r f a c e (in parameter space or BZ), then the surface is pierced by a flux. The origin of the flux is connected to the fact that these monopoles carry charges, as sketched in Fig. 1.27.I tt u r n s out; this charge is an integer-valued topological number that can be quantified in terms of first Chern number C

C j = 1 2⇡ Z S 2 Ω j .
(1.50)

The sign of C j decides in turn the sign of the topological charge, in this regard Ω j is also called Berry flux that pierce the surface enclosing the degeneracy (see Fig. 1.27). This is the same charge that also appears in the topological classification of Weyl nodes, where G = G i=1..3 is replaced by the Bloch vectors k = {k x ,k y ,k z }.I tt u r n so u tt h a tt h i sC h e r n number C is related to the degree of Hamiltonian, where degree is defined in eq.(1.41). The degree of Hamiltonian can be defined by considering a 2 Hamiltonian, which can always be decomposed in terms of Pauli matrix σ as

H(G)=h(G) • σ (1.51)
where we have neglected any global shift i.e. h 0 (G) = 0, which can be removed by redefining the origin for the energy. Then eigenenergies is expressed as

E ± = ±||h(G)||. (1.52) At a degeneracy point, we have G 0 , E ± (G 0 )=0=||h(G 0 )||.
T h i sc r e a t e sa no b s t r u c t i o ni n defining the normalized eigenvectors ĥ ⌘ h(G)/||h(G)|| at these points. However, they are well defined, if we remove this degeneracy(s) point. These normalized eigenvectors defines a

Chapter 2

Floquet formalism: implementation in waveguide arrays

Introduction

In the current chapter, I discuss how periodic driving a system can induce novel topological phenomena, without any counterpart in the static regime. This driving translates to say that Hamiltonian has a time translational symmetry, H(t + T )=H(t), where T is the period of a drive. This time dependence forbids to define a precise ground state of the system unlike in static or equilibrium 1 .D e s p i t et h i s ,s u c ht i m e -d e p e n d e n ts y s t e m sp h e n o m e n ac a ng i v er i s e to many novel phenomena. For example, the presence of non-trivial edge states even though the band topological invariants vanish (M. S. [START_REF] Rudner | Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems[END_REF]).

Periodically driven systems

To look for a general solution for a particular class of ordinary differential equations was one of the significantly focused domains of interest during the 16 th -17 th century or even till now.

As the description of a natural phenomenon, like the beating of a drum or the oscillation of a pendulum, involves such equations. A particular class of such equations was when the coefficients are periodic under either space, time, or both. Then Floquet theorem given by Gaston Floquet in 1883 [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF], later by George Hill [START_REF] Hill | On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon[END_REF], gives the canonical form of the solutions. Again discovered by Lyapunov (Lyapunov 1896)a n db yF e l i xB l o c h in 1928 [START_REF] Bloch | Über die Quantenmechanik der Elektronen in Kristallgittern[END_REF], in the context of periodic quantum Hamiltonian in space, giving rise to band theory.

In physics, we stick to the terminology "Floquet theory" when the system has time periodicity and "Bloch theory" for space periodicity. I keep this convention.

The case of time-periodic Hamiltonians, which I am mostly interested in, was first studied 1 As the (quasi) energy spectrum lies on a circle, so it is ambiguous to define low energy states or bands by Shirley [START_REF] Shirley | Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time[END_REF], Keldysh [START_REF] Keldysh | Ionization in the field of a strong electromagnetic wave[END_REF][START_REF] Zel'dovich | The Quasienergy of a Quantum-mechanical System Subjected to a Periodic Action[END_REF]a n d later a full framework was developed by Sambe [START_REF] Sambe | Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field[END_REF]. Then it was extended from one mode to the case of multiple modes (T.-S. [START_REF] Ho | Semiclassical many-mode floquet theory[END_REF], and a detailed review can be found in Ref [START_REF] Chu | Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields[END_REF]. A comprehensive survey of a periodically driven two-level system can be found in Ref [START_REF] Dion | Time-Dependent Perturbation of a Two-State Quantum System by a Sinusoidal Field[END_REF]). For more pedagogical view one can refer to notes by P. Hänggi [START_REF] Hänggi | Driven quantum systems[END_REF])o rt ot h et h e s i so fM i c h a e lF r u c h a r t( F r u c h a r t2016)o r Álvaro Gómez León (León 2014).

Floquet formalism

Let us consider a closed quantum system, described by a Hamiltonian H,w h i c hi sn o ninteracting and periodically driven with period T ,s u c ht h a tH(t + T )=H(t). This driving can be achieved, for example, by emitting an electromagnetic wave on a quantum system (Netanel H [START_REF] Lindner | Floquet topological insulator in semiconductor quantum wells[END_REF][START_REF] Wang | Observation of Floquet-Bloch States on the Surface of a Top ological Insulator[END_REF])orbyperiodicallyshakingtheoptical lattices [START_REF] Jotzu | Experimental realization of the topological Haldane model with ultracold fermions[END_REF];L i g n i e re ta l .2007;P a r k e re ta l .2013; [START_REF] Struck | Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical Lattices[END_REF];S t r u c k ,W e i n b e r g ,e ta l .2013) or by employing the periodicity along the propagation axis in optically coupled waveguides network [START_REF] Ozawa | Topological photonics[END_REF][START_REF] Szameit | Discrete optics in femtosecond-laserwritten photonic structures[END_REF].

The system is initially prepared in a state |Ψ(r , t 0 )i evolves according to the evolution operator U (t, t 0 )t oas t a t e|Ψ(r , t

)i = U (r ; t, t 0 )|Ψ(r , t 0 )i,a tl a t e rt i m et. |Ψ(r , t 0 )i satisfies Schrödinger equation, i @|Ψ(r , t )i @t = H(r , t )|Ψ(r , t )i, (2.1)
where the Hamiltonian generates the evolution (h =1),

U (r ; t, t 0 )=T exp h i Z t t 0 dt 0 H(r , t 0 ) i (2.2) U (r ; t, t 0 )= l i m ∆t!0 exp h i(N +1)∆tH(t) i •••exp h i2∆tH(t 0 +∆t) i exp h i∆tH(t 0 ) i .
(2.3)

where N =(t t 0 )/∆t. A stationary Hamiltonian is also periodically driven with T =0 ,h o w e v e r ,c o r r e s p o n d i n g evolution operator is "trivial"2 . However, a non-trivial and interesting physics emerges when Hamiltonian is driven periodically with period T (or with single driving frequency ! =2 ⇡/T , where T 6 =0 )i . e . H(t + T )=H(t). Likewise, the evolution of the states is still described by equation (2.2).

Here, the evolution operator satisfies a multiplication rule,

U (t f ,t i )=U (t f ,t intermediate )U (t intermediate ,t i )( 2 . 4 )
which means that the time evolution from the initial time t i to the final one t f can written as a product from initial to some arbitrary intermediate time t and then from there to the final time. As shown pictorially in Fig. 2.1.

t i t intermediate t f U(t intermediate , t i ) U(t f , t intermediate ) U(t f , t i ) Figure 2

.1: Multiplication rule for time evolution operator

We follow the decomposition of eq(2.1), with H(t)=H 0 +V (t), V (t+T )=V (t)(position dependence is dropped, for the sake of clarity) , where we assume that H 0 has a complete set of eigenstates n with eigenvalues E n . According to Floquet theory there exists a solution to eq(2.1),

|Ψ j (t)i =e i" j t |Φ j (t)i, (2.5) |Ψ j (t + T )i =e i" j T |Ψ j (t)i (2.6)
where |Φ j (t + T )i = |Φ j (t)i,a tt = T , |Φ j (T )i is referred to as a Floquet state,a n d" j is a real valued number known as the quasienergy, which is only define uniquely up to multiples of ! =2 ⇡/T . It is the total phase acquired by the state when the system has evolved by one period, it can be seen from equation (2.6). The Floquet theorem can be seen as a time analog of Bloch theorem, where quasimomentum is analogous to quasienergy. However, both do not play the same roles.

By substituting eq(2.5)i ne q ( 2.1), it gives

h " j + i @ @t i |Φ j (t)i = H(t)|Φ j (t)i (2.7) H(t)|Φ j (t)i = " j |Φ j (t)i (2.8)
where H(t) ⌘ H(t) i @ @t is a Hermitian operator satisfying above eigenvalue equation. Problem boils down to solve equation (2.8).

In terms of numerical computation, we can separate Floquet formalism into two cases. In the first case, if Hamiltonian has continuous-time dependence, where we use the Sambe Hamiltonian approach. In another case, Hamiltonians have a discrete-time dependence. For example, in quantum walks, we make use of the scattering network framework to describe the dynamics of the system.

Continuous-time dependence

When the Hamiltonian depends on time in a continous fashion, e.g. H(t)=H 0 cos !t.T h e n it gives rise to an integral equation (2.8). This can be seen by a Fourier decomposition of

|Φ(t + T )i,s i n c e|Φ(t + T )i = |Φ(t)i, |Φ(t)i = Z 1 1 d! e i!t |Φ(!)i (2.9)
for the case of monochromatic frequency ! =2⇡/T ,inwhic honeismostlyin terestedin,the above expression can further be rewritten in some time independent basis |↵i3 ,

|Φ(t)i = X ↵ Φ ↵ (t)|↵i, Φ ↵ (t)= 1 X m= 1 (m) ↵ e im!t
(2.10)

Substituting above equation in eq(2.7), we get a stationary Schrödinger like equation for Fourier amplitudes as

H(m n) ↵ (m) =( " n!) (n) ↵ , (2.11) 
where H(m n)

↵ = P ,m 1 T R T dte i(m n)!t h↵|H(t)| i is the Fourier transform of H(t)a n di s
known as Floquet Hamiltonian.

In above equation, h↵| lives in some Hilbert space R,s a t i s f y i n g

h↵| i = ↵ , (2.12)
similarly, the temporal part e in!t lives in Hilbert space T ,

1 T Z T dt e i(p m)!t = m,p , (2.13) 
They form a complete set of basis,

X ↵ Φ ⇤ ↵ (t)Φ ↵ (t 0 )= (t t 0 )( 2 . 1 4 )
Essentially, the Hermitian operator H in eq(2.8) lives in a Hilbert space composed of R⌦T .T h i ss p a c ei ss o m e t i m e sr e f e r r e dt oa sSambe space [START_REF] Sambe | Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field[END_REF], in literature. The states form a complete set in the R⌦T.

In the R.H.S of the eq(2.11), the first term can be interpreted as an onsite energy term and the second term as the number of photons absorbed or emitted by the system. This term (n! in eq(2.8)) can be interpreted as an effective electric field in an analogy with the Wannier-Stark ladder on a Floquet lattice generated by commensurate or incommensurate frequency drives [START_REF] Chu | Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields[END_REF];M a r t i ne ta l .2017). For example, if we subject a physical system to two incommensurate drives ! 1 ,a n d! 2 ,t h e ni t sd y n a m i c sc a nb er e p r e s e n t e do n a two-dimensional Floquet lattice, where the hopping energies along one axis j of the lattice corresponds to either absorb (along +j)o re m i t( a l o n g j)ap h o t o no ff r e q u e n c y! j .

Now, what remains to be solved is the L.H.S of the eq(2.11), which is an infinitedimensional matrix. We consider some particular cases to calculate the quasienergy spectrum and Floquet states.

Considering a harmonic drive of period T =2 ⇡/!,t h e nH(t)=H 0 + e i!t + † e i!t , where the Floquet Hamiltonian has a tridiagonal form,

n ••• +1 0 1 ••• H = 0 B B B B B @
. . .

H 0 + ! † H 0 † H 0 ! . . . 1 C C C C C A m . . . +1 0 1 . . . (2.15)
The diagonal term in the above Floquet Hamiltonian is frequency-dependent, in the sense that they are copies of H 0 just shifted by the multiples of the driving frequency, where the dimension of H 0 encodes the degree of freedom in the system, like the number of orbitals in a unitcell. This redundancy of multiple copies of H 0 reflects from the wavefunction(2.5)b y substituting(2.10)a n dc o n s i d e r i n gi ti nt h ep r e s e n tc a s eb yas h i f to fk! of the quasienergy, it gives

|Ψ j (t)i =e i(" j +k!)t 1 X m= 1 (m) ↵ e ik!t e i m!t (2.16)
where shifting the Fourier mode cancels the shift contribution in quasienergy. Moreover, off-diagonal terms connects (or hybridize) the different "copies": as mentioned before, either the system gains one photon (e i!t ) from the drive or loses on photon (e i!t )t ot h ed r i v e . For arbitrary drive, i.e., H(t)=H 0 + e ip!t + † e ip!t where p 2 Z,t h e r ei sah y b r i d i z a t i o n of bands separated by an energy gap p! (Rudner n.d.). Interestingly, in this situation, the Floquet matrix eq(2.15)c a nbet h o u g h to fa sat i g h tbinding Hamiltonian on some lattice. The hoppings are being mediated by 's with the Wannier-Stark like onsite p otential (Gl ück et al. 2002;A. Gómez-León et al. 

Stepwise Hamiltonian: discrete time dynamics

Now we digress our discussion from the continuous case to the stepwise Hamiltonians or stepwise evolutions, where the stepwise sequence is periodic in time. From equation(2.2), for t = T and t 0 =0,w eget

U (T,0) = T exp h i Z T 0 dt 0 H(t 0 ) i ⌘ e iH ef f T (2.17)
where full time evolution operator or U (T,0) is known as Floquet evolution operator or Floquet operator, U (T,0)|Ψ j (T )i =e i" j T |Ψ j (T )i.

(2.18)

Similarly, we can define the effective Hamiltonian H ef f as, .20) this can be seen as a restatement of the previous definition of quasienergy, where they are the eigenstates of the effective Hamiltonian. Unlike the Floquet Hamiltonian eq(2.8), the effective Hamiltonian is time-independent [START_REF] Kitagawa | Topological characterization of periodically driven quantum systems[END_REF];M .S .R u d n e re ta l .

H ef f = i T log U (T,0), (2.19) H ef f = i T X j log ⇥ e i" j T ⇤ |Ψ j (T )ihΨ j (T )|. ( 2 

2013).

There are two-time scales in Floquet theory with respect to the driving period T ,n a m e l y long and short. The Floquet theory allows us to separate these two-time scales. The long time dynamics come from the effective Hamiltonian, where it generates the bulk time evolution when examined stroboscopically at integer multiples of the driving period T ,w h i c h is identical to the Floquet operator U (T ). This can be seen from the multiplication rule eq(2.4)

U (nT )=U n (T ). (2.21)
This can written in more generally as 

U (t + nT )=U (t)U n (T ). ( 2 

Topological properties arising in Floquet systems

In the current subsection, I present a very brief description of the topology in the Floquet domain and the symmetries that are responsible for non-trivial topology. The topology in this domain differs from the static regime. In the static case, we look for the maps from the Brillouin Zone (BZ) to the Hamiltonian matrices (of dimension m,f o rm bands), which defines a closed loop in the space of m ⇥ m Hamiltonian matrices. This loop can be characterized in terms of homotopy, where all such loops that can be smoothly deformed into each other define an equivalence or homotopy class, which can thus be characterized by an invariant. However, in a periodically driven case, we look for maps from the Brillouin Zone times T (time) to space of Unitary matrices (of dimension m,f o rm bands), BZ ⇥ T ! U (m). In the Floquet case, the number of bands is the same as the number of gaps, unlike static case. It gives rise to a regime not to be reproducible in the static case.

The topology in the Floquet regime can be divided into two classes [START_REF] Nakagawa | Wannier representation of Floquet topological states[END_REF]. In one of the class, the topology is characterized by the effective Hamiltonian or equivalently by the Floquet operator, involving the topology of gapped quasienergy spectra, e.g., Floquet Chern insulators [START_REF] Budich | Helical Floquet Channels in 1D Lattices[END_REF]A. Gómez-León et al. 2013;[START_REF] Jiang | Majorana Fermions in Equilibrium and in Driven Cold-Atom Quantum Wires[END_REF];K i t a g a w a ,B e r g ,e ta l .2010; Kitagawa, Matthew [START_REF] Kitagawa | Observation of topologically protected bound states in photonic quantum walks[END_REF];K i t a g a w a , [START_REF] Kitagawa | Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels[END_REF]K u n d ue ta l .2014;[START_REF] Lindner | Floquet topological insulator in semiconductor quantum wells[END_REF];O k ae ta l .2009; X.-Q. [START_REF] Sun | Three-Dimensional Chiral Lattice Fermion in Floquet Systems[END_REF]. Another class is where the full dynamics of evolution operator characterize the topology during one period. This could give rise to the anomalous Floquet topological insulators [START_REF] Delplace | Phase rotation symmetry and the topology of oriented scattering networks[END_REF] ). This later one has no static part; even if the effective Hamiltonian is topologically trivial, the topology of the time evolution operator during one period can still be nontrivial.

Topology and symmetries

We assume that the Floquet operator U (T )h a st r a n s l a t i o n a ls y m m e t r y ,h o w e v e r ,t h i sc o nstraint can also be relaxed for calculating topological invariants [START_REF] Fulga | Scattering matrix invariants of Floquet topological insulators[END_REF]T i t u m , Berg, et al. 2016). Recently, a formal bulk edge correspondence has been made in the absence of translational symmetry [START_REF] Graf | Bulk-Edge Correspondence for Two-Dimensional Floquet Topological Insulators[END_REF].

In eq(2.23), we can rewrite effective Hamiltonian with a branch cut as,

V " (t)=U (t)e iH ef f ε t (2.24)
where the branch cut dependence comes from

H ef f " = i T log " U (T ).
Top ology in static or p erio dically driven systems dep ends on the dimension of the system and on the symmetries that constrain the quasienergy spectrum and states. Here, the symmetries are particle-hole or charge conjugation C,t i m e -r e v e r s a lΘa n dc h i r a ls y m m e t r y Γ. The particle-hole symmetry acts on the evolution operator, the effective Hamiltonian and the periodized evolution operator, respectively, here C is anti-unitary

CU (k, t)C 1 = U ( k, t),
(2.25)

CH ef f " (k)C 1 = H ef f " (k)+ 2⇡ T 1 (2.26) CV ef f " (k, t)C 1 = V ef f " ( k, t)e i2⇡t/T . (2.27)
Similarly, for the anti-unitary time-reversal operator Θ, it follows

ΘU (k, t)Θ 1 = U ( k, t), (2.28) ΘH ef f " (k)Θ 1 = H ef f " ( k) (2.29) ΘV ef f " (k, t)Θ 1 = V ef f " ( k, t).
(2.30)

Lastly, the unitary operator of chiral symmetry satisfies

ΓU (k, t)Γ 1 = U (k, t), (2.31) ΓH ef f " (k)Γ 1 = H ef f " (k)+ 2⇡ T 1 (2.32) ΓV ef f " (k, t)Γ 1 = V ef f " (k, t)e i2⇡t/T (2.33)
My main interest lies in photonics, which serves as an underlying platform to engineer these symmetries. I'll show you my result of how different symmetries can be engineered in an evanescently coupled waveguide network in 1D, and that can be generalized to higher dimensions.

Engineering symmetries in evanescently coupled optical waveguide array

Photonics provides a versatile platform to experimentally realize phenomena of quantum (solid-state) systems, where the photons (quantum) or electromagnetic waves (classical) mimics the analogous properties of electrons, like the robust unidirectional motion of light and non-diffracting light propagation, which has promising applications [START_REF] Bellec | Non-diffracting states in one-dimensional Floquet photonic topological insulators[END_REF];Z h e n gW a n ge ta l .2009).

In this section, we are interested in engineering topology in 1D waveguide arrays by exploiting the connection between lattice (crystalline) symmetry of waveguides, e.g., inversion symmetry, with the symmetries responsible for non-trivial topology e.g., particle-hole.

Crystalline symmetries play a vital role in constraining the energy spectrum and also on the topology. This symmetry is shared by Hamiltonian along with its spectrum. For example, graphene has rotational symmetry C 3 that it is shared by the position of Dirac points in BZ. If this symmetry is broken, for instance, by allowing anisotropic hoppings, then it is also broken in the BZ. Moreover, the Dirac points for some choice of anisotropic hoppings can even fuse together, and annihilate [START_REF] Goerbig | Tilted anisotropic Dirac cones in quinoid-type graphene and ↵ (BEDT-TTF) 2 I 3[END_REF][START_REF] Hasegawa | Zero modes of tight-binding electrons on the honeycomb lattice[END_REF]Montambaux et al. 2009a;P e r e i r ae ta l .2009;W u n s c he ta l .2008;S . -L .Z h ue ta l .2007).

Here, I shall show how some of these crystalline symmetries in photonics waveguide arrays are connected to fundamental symmetries like chiral symmetry, time-reversal symmetry, and particle-hole symmetry in 1D. To these crystalline symmetries another essential ingredient can be added it is the underlying bipartite structure of the lattice. These two together play a vital role in determining the significance of these fundamental symmetries. For example, what does it mean to have a particle-hole symmetry in a photonic waveguide array? As there are no particles or holes, but only electromagnetic waves propagating in a waveguide array lattice. Besides these three fundamental symmetries, there exists another symmetry responsible for giving rise to the non-trivial topology in 1D since non-trivial topology can not appear in the absence of any symmetry, in 1D.

In the present section, I shall show this connection for 1D waveguide arrays. Engineering, some of these symmetries like particle-hole and chiral, can give rise to a non-trivial topology in 1D. Moreover, to make things concrete, I shall also show how relaxing the constraints put forth by these symmetries can also lift them.

Symmetries in photonic waveguide array

In our case, we consider evanescently coupled optical waveguide arrays in 1D, where the refractive index is periodically modulated only along one of the direction, let us say xaxis. As we have seen at the end of chapter(1) that if the Hamiltonian is stationary, the coupling  between the waveguides do not change along the propagation axis (z -axis), as shown in Fig. 2.3a. Likewise, in the case of driven Hamiltonian, couplings do change along the propagation axis. But we are interested in periodically driven systems, i.e., when the couplings are also periodic along the propagation axis, as shown in Fig. 2.3b. Here, the couplings  j=1,2 repeat after a period Z of the lattice. In photonics, the relevant symmetries that may give rise to non-trivial topology are the time-reversal symmetry (TRS), which here referred to as z -reversal symmetry (z -RS)4 ,chiral symmetry(CS) and particle-hole symmetry (PHS), where recall these symmetries at the level of time-dependent Bloch Hamiltonian H(k, z),

Γ z H(z)Γ 1 z = H( z) (2.34) ✓ z H(k, z)✓ 1 z = H ⇤ ( k, z) (2.35) CH(k, z)C 1 = H ⇤ ( k, z). (2.36) (2.37)
Besides, we discuss two other symmetries of crystalline nature, which are not precisely additional symmetries but are of equal importance in waveguide array, namely bipartite symmetry (BPS) and z -reflection symmetry (z -Ref).

Lattice symmetries

Bipartite symmetry

Al a t t i c ei ss a i dt ob eB P Sw h e nt h ed e g r e e so ff r e e d o m( s p i n ,o r b i t a l s ,s u b l a t t i c e s ,o ra n y combination of them) can be grouped into two uncoupled families. Let us say that these two families are A,a n dB then BPS can pictorially be shown as in Fig.

(2.4) [START_REF] Asbóth | A short course on topological insulators[END_REF]. The well-known examples are that of the two sublattices in SSH model (Su et al. 1980b)o rt w of a m i l i e si nt h eL i e bl a t t i c e( W e e k se ta l .2010a),

If P A and P B are orthogonal projectors corresponding to the two families, then BPS means that we can write H as,

H = P A HP B + P B HP A , P A HP A = P B HP B =0.
(2.38)

This guarantees the non-zero elements to be present only in the off-diagonal sector in the Hamiltonian if written in a A and B basis. It can be seen more clearly in writing the 

A 1 A 2 A 3 A 4 B 1 B 2 B 3 B 4 A B
H = ✓ 0 A n⇥n B m⇥m 0 ◆ , (2.39) B p HB 1 p = H (2.40)
where B p is BPS operator can be written as

B p = ✓ 1 n⇥n 0 0 1 m⇥m ◆ . (2.41) z -Reflection symmetry
The z -Ref is unitary symmetry denoted by R z , it holds as long as there exists a symmetry axis z 0 : z ! z of the lattice. This can be seen for the waveguide Fig. 2.3b by considering its unitcell, which fulfils above condition at z = z 0 = Z/2, as shown in Fig. 2.5.

R z H(z)R 1 z = H( z) (2.42)
If there exists a symmetric axis z 0 which is not origin, then this can be rewritten as, where the precise form for the Γ comes from eq.(2.41). This is an equivalent and sufficient definition of CS [START_REF] Asbóth | A short course on topological insulators[END_REF]. Let us take an example of Lieb lattice (Weeks et al. 2010a), as shown in Fig. 2.6.T h e r ei s only hopping between the nearest neighbours, shown with thick black arrow. It has BPS, where two families are A = {a, c} and B = {b} (see Fig. 2.4). Then the Hamiltonian written in the proper basis {a, c, b} comes out to be

R z H(z)R 1 z = H(z 0 z) (2.43) x z z = z 0 1 1 Z Figure 2.5: z -Ref
H = 0 @ 00↵ 00 ↵ 0 1 A . (2.46)
Then the CS or BPS operator satisfying eq.(2.44),(2.40)i nt h es a m eb a s i si s Recently, in the same static regime, it was shown that to explain the full topology of chiral symmetric systems, e.g., the unitcell choice dependent topological zero modes in the SSH model [START_REF] Asbóth | A short course on topological insulators[END_REF] requires not only the description of bulk Hamiltonian but also the underlying real-space lattice [START_REF] Guzmán | Geometry and Topology Tango in Chiral Materials[END_REF]. Since the 1D topological invariant Zak phase is a unitcell dependent quantity in SSH ( i.e., not a gauge-invariant) and it is only meaningful to take its difference between the two phases, namely topological and trivial (or between the two unitcell choices).

Γ=B p = ✓ 1 2⇥2 0 0 1 1⇥1 ◆ . ( 2 
The definition of CS changes in time-dependent case to

Γ z H(z)Γ 1 z = H( z) (2.48)
where Γ z is a chiral symmetry operator in time-dependent case. Unlike in static cases, CS is non-local in time now. If we have translational symmetry in the system along with the periodic driven Hamiltonian then,

Γ z H(k, z)Γ 1 z = H(k, Z z), (2.49) 
which can be rewritten in terms of evolution operator as,

Γ z U (k, z)Γ 1 z = U (k, z).
(2.50)

From eq(2.49), we see that there are unique points for which CS is local in time, for instance, when z 0 =0orZ/2.

At these points, CS can be defined locally, and these point(s) serves as a chiral symmetric point6 . About these points, evolution is time-symmetric, e.g., Γ z U (k, 0)Γ 1 z = U (k, 0).

CS for the Floquet systems requires two essential ingredients. One is reminiscent of the static case, i.e., BPS, another one is z -Ref in the lattice. We can then decompose CS as the product of BPS and z -Ref. 

B p R z H(k, z)R 1 z B 1 p = H(k, z 0 Z). ( 2 
H(z)= ✓ V sin(z) J 1 cos(z)+J 2 e ik J 1 cos(z)+J 2 e ik V sin(z) ◆ .
(2.52) H(z) breaks both BPS by the onsite potential and z -Ref (eq(2.42)) for the above choice of couplings, and the onsite potential, while still preserving the CS (where x is the CS operator).

We can ask a general question, what are the constraints do es CS put on H (we omit k label in H,sinceCSdoesnotdependonit). Theseconstrain tsarepresen tirrespectiv eofthe case if both z -Ref and BPS are present, or both are absent together. To determine that, let us assume a periodically time-dependent Hamiltonian H(z)withaperiodZ (H(z +Z)=H(z)) and with N (sublattice) degrees of freedom. This H(z)h a saC So p e r a t o rΓ z ,t h e nt a k i n g determinant on the eq.(2.49)g i v e s ,

det(Γ z )det(H(z)) = ( 1) N det(H(Z z)) det(Γ z ), det(H(z)) = ( 1) N det(H(Z z)).
This equation simplifies for two chiral symmetric point, namely

z 0 =0,Z/2a s det(H(Z/2)) = ( 1) N det(H(Z/2)) , (2.53) det(H(0)) = ( 1) N det(H(0)).
(2.54)

It shows that determinant puts a constraint on Hamiltonian for odd values of N ,w h e r ei t should vanish at z =0andz = Z/2. Similarly, if we take the trace of eq(2.49), it yields

tr(H(z)) = tr(H(Z z)), (2.55)
where,

tr

H(z)= ( 0,z = z 0 6 =0,z 6 = z 0
For z 0 =0 ,Z/2, irrespective of the value of N ,t h et rH(z) vanishes identically. This can mean, for instance, for the two atoms in a unitcell that either the onsite potential is zero identically for each of them, or it is opposite. These two situations are actually our two cases where either both z -Ref and BPS are present or absent.

The above chiral constraints on Hamiltonian can be thought more general than to check if the two respective symmetries are present or not since they do not depend on those symmetries. It contradicts the point mentioned in the ref [START_REF] Bellec | Non-diffracting states in one-dimensional Floquet photonic topological insulators[END_REF], where the authors said, as long as there exists a symmetry axis z ! z of the lattice with respect to some origin, the Floquet operator holds a chiral symmetry. Here, we have shown that reflection symmetry alone is not sufficient to induce CS, while z -Ref and BPS are. It can be summarised as,

• z -Ref and BPS ) CS

• CS ; z -Ref and BPS z -Reversal symmetry
The z -RS is an anti-unitary operator denoted by Θ z , which commutes with the (timedependent) Bloch Hamiltonian H(k, z). Here, we have Θ 2 z =+ 1 . T ol o o kf o ras y s t e m with Θ 2 z = 1 would be interesting, as, for 2D, it gives rise to a remarkable quantum spin hall effect. However in photonics to achieve fermionic TRS is not apparent due to the underlying bosonic nature of photons, while using photon's polarization as a pseudospin can be achieved, and it was shown experimentally in stationary [START_REF] Albert | Topological Properties of Linear Circuit Lattices[END_REF][START_REF] Hafezi | Robust optical delay lines with topological protection[END_REF] and also in Floquet case using waveguide array [START_REF] Maczewsky | Fermionic time-reversal symmetry in a photonic topological insulator[END_REF]). If Θ z = ✓ z K,w h e r eK is conjugation, then in unitary form

✓ z H(k, z)✓ † z = H ⇤ ( k, z) (2.56)
It is important to note that for photonics waveguide array, all the couplings are real, and only the complex dependence is in the 

✓ z H p (k, z)✓ † z = H p (k, Z z) (2.58) ✓ z U p (k, z)✓ † z = U ⇤ p ( k, z).
(2.59)

We can infer from CS case that here also exists a z 0 point, about which evolution is symmetric. eq.(2.58)i sp r e c i s e l yt h ez -Ref equation(2.42). In the photonic version of Hamiltonian, the z -RS acts as unitary instead of anti-unitary, due to the underlying real nature of real space Hamiltonian (i.e. H(x)), this shows the close connection of z -RS in photonics with z-Ref symmetry, which we exploit in next section.

Particle-hole symmetry

Particle-Hole Symmetry, C = CK, refers to an anti-unitary operator which anti-commutes with Hamiltonian, we have C 2 =+ 1 . A tt h el e v e lo fz -dependent and Bloch Hamiltonian and photonic Bloch Hamiltonian, it satisfies

CH(k, z)C 1 = H ⇤ ( k, z), CH p (k, z)C 1 = H p (k, z) (2.60)
In general, C can depend on the origin, say k 0 , let us represent the Hamiltonian with this dependence as H s p . For instance, 1D SSH model with three atoms in a unitcell with non-zero couplings between each of the atoms,

CH(k + k 0 ,z)C 1 = H ⇤ ( k + k 0 ,z), CH s p (k + k 0 ,z)C 1 = H s⇤ p ( k + k 0 ,z) (2.61)
Let us call the origin dependent PHS to be the shifted -PHS (or s-PHS).

Similarly, here, PHS acts as a unitary symmetry on photonic Hamiltonian (H p ). Importantly eq(2.60)i si d e n t i c a lt ot h ee q ( 2.44), meaning that if there is a BPS, then we can define the PHS operator from eq.(2.41). Surprisingly, this does not hold for s-PHS, which only exists when there is no bipartite symmetry. In other words, PHS and s-PHS are mutually exclusive and s-PHS is always non-bipartite but not vice-versa.

Constraints on PHS from eq(2.60) for photonic Hamiltonians at any value of z are

det(C)det(H p )=( 1) N det(H p )det(C), det(H p )=( 1) N det(H p ) (2.62)
It shows that determinant puts a constraint on Hamiltonian for odd values of N similar to Γ z , however, irrespective of the value of z since time is irrelevant for BPS to hold. However, the trace is identically zero.

tr(CH p C 1 )= tr(H p ), tr(H p )=0

(2.63)

Trace can only b e zero if there is no onsite term in the H p .Y e t ,f o ra n yv a l u eo fN , it is possible to choose onsite terms such that there sum vanishes. Nevertheless, this condition alone is not sufficient; one needs to take into account the determinant condition as well. We have not considered the case for H s p since the form of the Hamiltonian is not the same on either side of the eq.(2.61). All the different symmetries acting on time-dependent Hamiltonians, evolution operators, and photonic Hamiltonians, along with the constraint they put on the spectrum, are tabulated in Tab(2.1). We can ask if there is more than one symmetry in the system then what kind of symmetries are compatible with each other. For instance, s-PHS and PHS can not be present together. Fig. 2.7 shows the compatibility between different types of symmetries. To engineer a waveguide array with CS, either we can implement b oth the lattice symmetries, namely BPS and z -Ref, or, the product of symmetries PHS and z -RS (i.e., PHS and TRS), as shown for 2WGs network with a period Z in Fig. 2.8a. For this case photonic Hamiltonian for two steps (0), looks like 

Symmetries

H(k,z) U(k,z) H p (k,z) Constraint on eigenvalues BPS H(k, z) U 1 (k, z) H p (k, z) {E(k), -E(k)} z -Ref H(k, z) U 1 (k, z) H p (k, z) No constraints CS H(k, z) U (k, z) H p (k, z) {E(k), -E(k)} z -RS H ⇤ ( k, z) U ⇤ ( k, z) H p (k, z) {E(k), E( k)} PHS H ⇤ ( k, z) U ⇤ ( k, z) H p (k, z) {E(k), -E( k)} s-PHS H ⇤ ( k + k 0 ,z) U ⇤ ( k + k 0 ,Z) H p (k k 0 ,z) {E(k + k 0 ), -E( k + k 0 )}
z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref z -RS ⇔ z -Ref s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS s-PHS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS PHS ⇔ BPS
κ 2 κ 1 Z/2 Z/2 z x (a) κ 2 κ 1 (b)
H (1) p (k)= ✓ 0  1  1 0 ◆ 0  z<Z / 2 (2.64) H (2) p (k)= ✓ 0  2 e ik  2 e ik 0 ◆ Z/2  z<Z (2.65)
Differently, breaking both BPS and z -Ref also achieves this condition, while respecting the constraints on the Hamiltonian eq(2.54),(2.55). BPS breaks in the presence of an onsite potential term V(z) since it allows coupling within the same family, which otherwise is forbidden. Besides, modifying this onsite potential V(z) in such a way that it breaks reflection condition V (z +z 0 )=V ( z +z 0 ), this also breaks the z -Ref symmetry, as shown in Fig. 2.8b.

In waveguide arrays this potential can be attained by periodically modulating the refractive index along z -axis, e.g. n 0 sin(z)( K ee ta l .2016). Likewise, the photonic Hamiltonian

H(z)= ✓ V sin(z)  1 h[Z/2 z]+ 2 h[z Z/2]e ik  1 h[Z/2 z]+ 2 h[z Z/2]e ik V sin(z) ◆ (2.66)
where h[Z/2 z] is a Heaviside step function, h[x]=0,x < 0o r=1 ,x 0. In 1D Floquet system with CS, we can expect non-trivial topology, which manifest with the presence of boundary modes in a finite system [START_REF] Asbóth | Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems[END_REF];B e l l e c ,M i c h e l ,e ta l . 2017;F r u c h a r t2016; Roy and Harper 2017), for the Hamiltonian in eq(2.64). We consider afi n i t eg e o m e t r yw i t h2 0u n i t c e l l sa l o n gt h ex-axis in Fig. 2.8a.F o r t h e n u m e r i c a l c o nvenience this geometry is coupled at both the boundaries with another finite network but with a different choice of couplings parameters  j=1,2 ,f o r m i n gac y l i n d r i c a lg e o m e t r y8 ,a s Similarly, in 1D with particle-hole symmetry, we can expect non-trivial topology. It is confirmed by considering the same geometry, where non-trivial states appear at the interface, as shown in Fig. 2.10b. Moreover, the number of bands being odd, the only place where non-trivial states appear are necessarily at quasienergy ⇡ since there is a band at quasienergy 0, thus forbidding any gap. Consequently, PHS does not protect other edge states at any quasienergy. This comes from the fact that other quasienergies are not respected under PHS, "(k) ! "(k), only 0 and ⇡ are invariant under this.

Breaking PHS would require to break the constraints derived in eq(2.62)-(2.63). One way to do so is to repeat what we did for CS, i.e., to introduce some constant onsite potential. This indeed destroys the edge states at " = ⇡, as confirmed in Fig. 2.10c,wherew ein troduce the constant onsite potential on each of the WGs at only initial time 0  z<Z / 3. Moreover, there is another way to break PHS would be to break BPS by introducing specific couplings in the model, e.g., restoring the coupling between the 3 rd and 1 st waveguide.

shifted Particle-hole symmetry This symmetry is only present when PHS is absent. To do so, we introduce a coupling between the 3 rd and the 1 st waveguide, which respects the constraint and, at the same time, beaks BPS or PHS. This can be achieved as shown in Fig. 2.11,w i t ht h ec o u p l i n g sbe t w e e n the waveguides

H(z)= 8 > < > :
1 st (in black) and 2 nd (in blue) ! ✓ 12 0  z<Z / 3 2 nd and 3 rd (in green ) ! ✓ 23 Z/3  z<2Z/3 3 rd and 1 st ! ✓ 31 2Z/3  z<Z

This choice breaks all the symmetries CS, PHS and z -RS, as per our interpretation from last section with the lattice symmetries. However, in 1D without such symmetries, we do not expect any non-trivial topology to appear [START_REF] Roy | Periodic table for Floquet topological insulators[END_REF]. Surprisingly, the robust edge states are present (2.10b)a t quasienergy ⇡,l i k ebe f o r e . T h ee x i s t e n c eo ft h e s et o po l o g i c a le d g es t a t e si n1 Dt e l l su st h a t there is indeed some symmetry responsible for their protection. This symmetry is what we call shifted particle-hole symmetry. There are two reasons to use this terminology. First, when the spectrum is shifted by k ! k + k 0 ,i th a st h ep a r t i c l e -h o l es y m m e t r i cs p e c t r u m {"(k), "( k)}.S e c o n d ,t h e r ee x i s t sa na n t i u n i t a r yo p e r a t o rt h a ta n t i -c o m m u t e sw i t ht h e Hamiltonian.

Likewise, using these two reasons of its connection with PHS, we can follow the same strategy to introduce a constant onsite potential on each of the waveguides at initial time 0  z<Z / 3b r e a k ss-PHS, and this leads to the disappearance of ⇡ state, as expected in 1D in the absence of any of these symmetries.

z -reversal symmetry

If the waveguide array respects z -Ref symmetry, then it also respects z -reversal symmetry. To consider a network with only this symmetry would b e to go again b eyond 2WGs, as it already has CS and PHS. So, the next possibility is to look for three waveguides in a unitcell, as shown in Fig. 2

.12a,w h e r et h e r ei sac o u p l i n gbe t w e e nt h ew a v e g u i d e s H(z)=

( 1 st (red) and 2 nd (green) ! ✓ 12 also 2 nd and 3 rd (blue) ! ✓ 23 0  z<Z / 2 3 rd and 1 st ! ✓ 31 Z/2  z<Z the last coupling is outside the unitcell. Far from surprising, there is no nontrivial topology solely coming from z -RS in 1D. Considering a finite geometry confirms this assertion, where we consider a network with 40 unitcells but sharing the boundaries with vacuum, unlike previously9 .I nt h i sc a s e ,w efi x the values of coupling parameter ✓ 12 and ✓ 23 and varying the ✓ 31 parameter. We see that for any choice of coupling parameters, the system only posses trivial edge states that only depends on how the network terminates, as shown in the fig 2.12a.

Inversion symmetry

For the sake of completion, we discuss inversion symmetry,w h i c hi sn o tr e s p o n s i b l ef o r any non-trivial topology. However, it is unusual in the presence of another symmetry, e.g. time-reversal symmetry, which can give rise to the non-trivial topology in 2D, as it simplifies the calculation of topological invariant [START_REF] Fu | Topological insulators with inversion symmetry[END_REF]). However, we consider it in its parent form that is without any other symmetry. Then at the level of Hamiltonian H(x, z)orBloc h Hamiltonian, H(k, z), it follows The choice of two successive different intra couplings breaks z -RS. However, the network is still bipartite, so to break PHS, we added constant but same onsite potential on both the waveguides. On considering a similar finite geometry of 40 unitcells with boundaries with the vacuum. As expected by fixing the values of coupling parameter ✓ 12 and ✓ 121 and varying the ✓ 21 parameter, the edge state spectrum only has trivial edge states.

PH(x, z)P 1 = H( x, z), or PH(k, z)P 1 = H( k, z) (2.

Summary of chapter 3

We saw a connection b etween the symmetries resp onsible for non-trivial top ology and the lattice symmetries. Moreover, we also saw how engineering particular symmetries induces topology to the 1D photonic waveguide array, e.g., CS, PHS, s-PHS, but z -RS alone can not. We discussed how PHS is responsible for bipartiteness or BPS in the photonic system. How CS can be viewed in two ways, the first composition of BS and z -symmetric lattice, second, without BS and z -symmetric, which is achieved by an odd function of z at onsite term. z -RS can be thought as a consequence of the presence of a symmetry axis z ! z of the lattice with respect to some origin, i.e., z -Ref. Only non-trivial topology comes when there are two other symmetries along with z-RS, colored region Fig.

(2.7). At last, we saw the consequences of inversion symmetry in 1D to be trivial on topology, similar to z -RS. In future, we can think of how complex couplings can be introduced, where our some of the interpretations will break. Moreover, how symmetries fermionic symmetries can be implemented C 2 = 1 or Θ 2 = 1. The later symmetry has recently been implemented in the waveguide setup in the Szamiet's group [START_REF] Maczewsky | Fermionic time-reversal symmetry in a photonic topological insulator[END_REF]. To the best of my knowledge, C 2 = 1i sst i l l missing.

Chapter 3

Beyond Floquet insulators 1: Winding regime

Introduction

After the discovery of the quantum Hall effect in 1980, the most perplexing question was how can electrons delocalize at the phase transition between quantum Hall plateaus in 2D in the presence of a disordered potential since this was not in compliance with the Anderson theory of localization [START_REF] Anderson | Absence of Diffusion in Certain Random Lattices[END_REF]. Later, this mystery was resolved in the semi-classical picture where electrons of some fixed energy or at an equipotential can percolate through the disorder. The external strong magnetic field directs the direction of the electron wavepackets inside each equipotential-thus allowing electrons to delocalize instead of undergoing strong localization. Chalker, Coddington, and Ho [START_REF] Chalker | Percolation, quantum tunnelling and the integer Hall effect[END_REF][START_REF] Ho | Models for the integer quantum Hall effect: The network model, the Dirac equation, and a tight-binding Hamiltonian[END_REF] proposed the first solution in this direction, where they proposed an oriented scattering network model for electron wave propagation on a random network, as sketched in Fig. 3.1. In this scattering matrix network, the orientation refers to a specific direction of flow. For instance, here, this preferential direction is a consequence of breaking time-reversal symmetry due to the external magnetic field. Also, it can be a directed flow of electrons in a lattice in the presence of an electric field, where electrons only follow the direction of electric field. proposed a similar scattering model to study the propagation of light inside the coupledresonator optical waveguides (CROW) model. In this model, the unitary scattering matrix represents the coupling between resonators, which stores the local information of transmission and reflection between the resonators, thus allowing this formalism to address problems beyond the Hamiltonian formalism or tight-binding models. A similar framework was also used in the array of acoustic networks [START_REF] Khanikaev | Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice[END_REF], showing the versatility of the network and experimental feasibility. The system considered in this framework thought of as an oriented scattering network. The arrows or links connecting the scattering matrices have specific orientation for the flows that are from incoming states to outgoing ones.

S S S

Interestingly, every continuously time-dependent Hamiltonian can be decomposed into discrete-time Hamiltonians eq(2.3). These, in turn, can be replaced by successive timeordered scattering matrices-thus allowing to formulate this problem in terms of similar formalism where this order is maintained. However, we restrict ourselves to the periodically driven system, where such scattering matrices ordering repeats after one period. For instance, this appears in the quantum domain, where photons perform periodic discrete-time quantum walks [START_REF] Kitagawa | Observation of topologically protected bound states in photonic quantum walks[END_REF]). The Floquet operator here after one period T can be decomposed for N total walks into time-ordered stepwise scattering events (U F (T )=S N •••S 1 , S j =e iH j T/N ). This situation can also appear in the classical domain, where light propagates inside the waveguides networks, the amplitudes of scattering matrices encode the couplings between the waveguides. Even though in these cases there is no explicit time, but can still host topological edge modes [START_REF] Delplace | Topological chiral modes in random scattering networks[END_REF]Delplace,F ruchart,etal.2017;[START_REF] Kitagawa | Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels[END_REF];Kitagawa,M.S. Rudner,etal.2010;ClémentT auberetal.2015).

Beyond theory, discrete-time dynamics have been implemented in different experimental platforms, ranging from the quantum regime in photonic quantum walks [START_REF] Kitagawa | Observation of topologically protected bound states in photonic quantum walks[END_REF])totheclassicalregimeinthecircularfibers [START_REF] Regensburger | Photon Propagation in a Discrete Fiber Network: An Interplay of Coherence and Losses[END_REF], waveguide arrays [START_REF] Rechtsman | Photonic Floquet topological insulators[END_REF])andelectromagnetic metamaterials [START_REF] Khanikaev | Photonic topological insulators[END_REF]andinmicrowavesincoaxialcables (Hu et al. 2015a), to cite a few. This chapter is organized as follows. After giving a brief introduction to the oriented scattering network model, I shall propose four different models in 2D, namely I, II, III, and IV that differ by their symmetries. These symmetries dictate the topological properties in each model, where all of these models are only realizable in the Floquet regime.

Scattering network models

As we saw in chapter (1.7)t h a td i ff e r e n tp h o t o n i cs e t u p sc a ns e r v ea sp l a t f o r m st oo b s e r v e phenomena predicted in solid-state systems. On the contrary, there are specific topological properties that are not realizable in the solid-state systems, like topological properties of non-Hermitian physics, but these scattering network models allow us to explore them. Interestingly, all different photonic platforms in of sec(1.3)c a nb ef o r m u l a t e di no n ec o mmon framework, of the scattering network model, where scattering amplitudes encode the information of coupling among the elements of the network, e.g., among the waveguides in waveguide arrays. The scattering network model, where scattering amplitudes encode the information of coupling among the elements of the network, e.g., among the waveguides in waveguide arrays. To introduce our scattering network model, let us consider a one-dimensional spatial lattice of periodic discrete-time evolutions represented by oriented scattering networks, as sketched in Fig. 3.2.I nt h i sn e t w o r k ,a ni n i t i a ls t a t eo fas y s t e m is described by the superposition over amplitudes of incoming arrows (or oriented links). The number of these incoming arrows encodes the degrees of freedom in the system, e.g., the different polarization states (horizontal or vertical) of the photon in photonic quantum walk [START_REF] Kitagawa | Observation of topologically protected bound states in photonic quantum walks[END_REF])o rt h en u m b e ro fw a v e g u i d e si nau n i t c e l l in a lattice. two oriented links, one going to the right (shown in red) with amplitude position time and another to the left (shown in blue) ↵ position time .T h e nt h es t a t ee v o l v e si nd i s c r e t et i m e from top to bottom followed by a unitary scattering process at each time step j denoted by scattering matrix S j .F r o mh e r e ,t h er e s p e c t i v ea m p l i t u d e sa r es c a t t e r e dt o w a r d st h en e x t links depending on their orientation of left (blue arrow) or right (red arrow).

φ 1 S 1 N S N φ 1 S 1 φ N S N φ 3 S 3 2 S 2 φ 1 S 1 φ N S N φ 3 S 3 φ 2 S 2 φ 1 S 1 φ N S N φ 3 S 3 φ 2 S 2 φ 1 S 1 φ 2 S 2 φ 1 S 1 j j+1 j+2 . . . j+N-1 j+N l-2 l-1 l l+1 l+2 β j l - 1 α j l - 1 β j + 1 l α j + 1 l - 2 t x Figure 3
.2: Two-dimensional oriented scattering lattice where the y axis plays the role of time and x axis of position. A time period consists of N successive steps represented by N 2 ⇥ 2s c a t t e r i n gm a t r i c e sS j .Ap h a s e j is added for the states scattered out of the node j and propagating leftwards (shown with blue arrows). A dashed black rectangle emphasizes the unit cell of this lattice.

In addition to these scattering processes, we introduce a phase shift j carried by the states along each link [START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF][START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF][START_REF] Wimmer | Optical diametric drive acceleration through action-reaction symmetry breaking[END_REF]), see Fig. 3.2.W eo n l yc o n s i d e ra non-zero phase shift j for the leftward going states (as depicted in Fig. 3.2). The critical point is that we allow the value of this phase to vary with time j.

Then, the evolution of incoming amplitudes from time step j to j +1 connected through the scattering matrix S j can be projected into a pair of equations of the form

↵ j+1 l =(cos✓ j ↵ j l+1 + i sin ✓ j j l+1
)e i j j+1 l =(i sin ✓ j ↵ j l 1 +cos✓ j j l 1 ) .

(3.1)

Assuming the particular form for the scattering nodes (or matrix) as

S j = ✓ cos ✓ j i sin ✓ j i sin ✓ j cos ✓ j ◆ . (3.2)
In general case, we can associate a phase to each of the oriented links as left j and right j . Then employing a gauge transformation of

↵j l ! e i n 2 2 e i j 2 ↵ j l , (3.3) 
we can transfer the phase from both the links to only one of the links, e.g. to the left link (shown in blue in Fig. 3.2). Similarly, the phase could also vary along position l (Regensburger, Bersch, Mohammad-Ali [START_REF] Miri | Optical mesh lattices with PT symmetry[END_REF]), which again using proper gauge transformation,

↵j l ! e i jn 2 e i j 2 4 e i j 4 ↵ j l , (3.4) 
can lead to only time dependence [START_REF] Regensburger | Parity-time synthetic photonic lattices[END_REF].

One period of evolution corresponds to the time-ordered product of N such scattering events (S N •••S 1 )a c t i n go nt h ei n i t i a ls t a t e ,a se m p h a s i z e db yau n i t c e l lw i t hd a s h e db l a c k in Fig. 3.2. Here, this time ordered product of the scattering matrices after one period is the Floquet operator.T h e s c a t t e r i n g m a t r i c e s r e t a i n t h e t i m e p e r i o d i c i t y a s S j+N = S j . This network can thus model a 1D Floquet quantum walk. The topological properties concerning such Floquet operators of these scattering networks have been studied recently in 2D [START_REF] Delplace | Topological chiral modes in random scattering networks[END_REF]Hu et al. 2015b;L i a n ge ta l .2013;P a s e ke ta l .2014)a n da l s oi n3 D (H. [START_REF] Wang | Floquet Weyl phases in a three-dimensional network model[END_REF].

Assuming the discrete translational invariance along x axis, a Bloch-Floquet operator U F reads as

U F (k x , { j })=B mod(N,2) (k x )S N D( N )....B 1 (k x )S 1 D( 1 ), (3.5) B 1 (k x )= ✓ 10 0e ikx ◆ ,B 0 (k x )= ✓ e ikx 0 01 ◆ ,D ( j )= ✓ e i j 0 01 ◆ (3.6)
Here, we assume a pattern for the phase shifts of the form j = Q j that preserves the periodicity of the network, where Q j is some rational number that will be specified later. This gives us a second-time scale with respect to one drive period N in the network. Hence, it may look like that the network is not any more periodic in time. However, we consider the case where variation in is so small in comparison to the Floquet period N , that, the long time stroboscopic dynamics can be described by the adiabatically modulated Floquet operator when continuously varying the phase parameter 2 [0, 2⇡]. Then, the Floquet operator U F (k x , ,{✓ j })d e p e n d so nt h eq u a s i m o m e n t u ma l o n gt h ex direction, k x , the "synthetic quasimomentum" and the set of parameters {✓ j },wherej runs from 1 to N .

The former k x and lie at the same footings, thus they constitute a 2D synthetic Brillouin Zone (BZ), whereas ✓ j (i.e., coupling parameters) predicts the topological regime. Note that the Floquet operator depends periodically on its parameters. Moreover, by considering some of the coupling parameters as other synthetic dimensions could provide an interesting framework to investigate topology in higher dimensions (e.g., >2).

The synthetic dimension in the context of photonics comes from two reasons. First, either by the phase shift of the light beam due to some extra path length that is being our case, implemented in circular fibers [START_REF] Regensburger | Photon Propagation in a Discrete Fiber Network: An Interplay of Coherence and Losses[END_REF][START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF][START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF][START_REF] Wimmer | Optical diametric drive acceleration through action-reaction symmetry breaking[END_REF], and resonator network model [START_REF] Hafezi | Robust optical delay lines with topological protection[END_REF]. Secondly, by considering different modes of the resonator [START_REF] Ozawa | Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics[END_REF]or, the waveguide [START_REF] Lustig | Photonic topological insulator in synthetic dimensions[END_REF])a sas y n t h e t i cd i m e n s i o n . F u r t h e r m o r e ,i tc a n also come through quasiperiodicity, where 1D quasicrystal can possess properties of 2D periodic crystal [START_REF] Kraus | Topological States and Adiabatic Pumping in Quasicrystals[END_REF][START_REF] Kraus | Four-Dimensional Quantum Hall Effect in a Two-Dimensional Quasicrystal[END_REF];K r a u sa n dZ i l b e r b e r g 2012;V e r b i n ,Z i l b e r b e r g ,K r a u s ,e ta l .2013;V e r b i n ,Z i l b e r b e r g ,L a h i n i ,e ta l .2015). This case will be similar to our, where mapping to a 2D crystal involves one of the dimension to behave as an adiabatic parameter. Thus, tuning this parameter in the topological regime can make the system behave like a topological pump [START_REF] Thouless | Quantization of particle transport[END_REF], which has been observed in the photonics domain [START_REF] Kraus | Topological States and Adiabatic Pumping in Quasicrystals[END_REF] Let us consider the above scattering network (Fig. 3.2)i nt h es i m p l ec a s ew h e r eN =2 steps with 1 =+ , 2 = . In addition to that, it gives two parameters to tune with, namely {✓ 1 ,✓ 2 }. Note that the net phase inside the unitcell is zero. Now, by diagonalizing the Floquet operator eq(3.5), we get two quasienergy bands " ± (k x , ). As shown in Fig. 3.3a, the quasienergy spectrum " is fully gapless for the critical value of parameters ✓ j=1,2 = ⇡/4. This network generalizes previous models whose topological properties have been investigated experimentally in photonics setups. For instance, when N =2andintheabsenceofa phase shift ( =0),themodeldescribes1Dphotonicquan tumw alk(Kitaga w a,MatthewA [START_REF] Kitagawa | Observation of topologically protected bound states in photonic quantum walks[END_REF]and1Dlaser-writtenphotonicwaveguidearraysinsilica [START_REF] Bellec | Non-diffracting states in one-dimensional Floquet photonic topological insulators[END_REF], in which boundary modes have been observed. For non-vanishing but still N =2 ,w i t h 1 =+ , 2 = together with the fixed coupling parameters ✓ j=1,2 = ⇡/4, it describes pair of coupled optical fiber loops in which the Berry curvature was measured using wavepacket dynamics [START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF]. We take a step ahead of [START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF], where we allow the couplings to change from (a critical) value ✓ j=1,2 = ⇡/4t oa r b i t r a r yv a l u e s ,t h i sg a p st h es pe c t r u ma t" =0,⇡,a ss h o w n in Fig. 3.3b.

In this model, the symmetry(s) prevailing can be determined by the Floquet operator [eq(3.5)]. symmetry, namely phase rotation [START_REF] Delplace | Phase rotation symmetry and the topology of oriented scattering networks[END_REF]

, LU F L 1 =e i⇡ U F with L = ✓ 10 0e i⇡ ◆ . (3.14)
It follows from this symmetry that the Chern number C j

C j = 1 2⇡ Z BZ dk x d ✓ @ @ h j |i@ kx | j i @ @k x h j |i@ | j ◆ (3.15)
for each band necessarily vanishes [START_REF] Delplace | Phase rotation symmetry and the topology of oriented scattering networks[END_REF], where j are quasi eigenstates, and therefore, the only two distinct topological regimes one can generate with N = 2 are either trivial or anomalous. This is confirmed in topological phase diagram for the above model, as a function of ✓ j=1,2 in Fig. 3.4. In 2D with particle-hole symmetry, one expects to have a non-trivial topology. To investigate it, we determine the edge states spectrum, by considering a similar finite geometry along the x-direction, as discussed previously. It leads to two boundaries (one at the left and another at the right), to which we numerically couple another topological regime, making it periodic along x together with ,t h e r e f o r ef o r m i n gat o r u sl i k eg e o m e t r y ,a ss k e t c h e di n Fig. 3.5a.I fx runs from 0 to L,t h e n0 x  L/2i sc h o s e ni no n er e g i m e( i . e . ,o n ec h o i c e of coupling parameters) and another in L/2  x  L,w i t hL =1 0 0o r5 0u n i t c e l l si ne a c h region. Then the edge states appear at these two interfaces at x =0andL/2, respectively. In general, the coupling parameters differ in each region, denoted by ✓ 0 j=1,2 in blue region, and ✓ j=1,2 in red region (see Fig. 3.5a). However, if both regions are chosen to be the same 
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Beyond Floquet Topological insulators

One way to go beyond the usual topological insulators is to continuously deform the bands in such a way that it would tilt them, and the gap becomes incomplete while the bands still do not touch. It was proposed in the Lieb lattice model [START_REF] Palumbo | Two-dimensional Chern semimetals on the Lieb lattice[END_REF], in the superconductors [START_REF] Ying | Symmetry-Protected Topological Metals[END_REF](Ying et al. , 2019) ) and Floquet system(L. [START_REF] Zhou | Floquet semimetal with Floquet-band holonomy[END_REF]. In that case, gaps can still host chiral edge states that, in this case, would coexist with bulk states at the same energy but with different quasimomenta. This gives rise to a topological metal.

More recently, it was proposed that threading a net flux Φ through a superconductor in ac y l i n d r i c a lg e o m e t r yc a nb r e a ki n v e r s i o ns y m m e t r ya n dl e a dt os u c ha" m e t a l l i cr e g i m e " [START_REF] Ying | Symmetry-Protected Topological Metals[END_REF], as sketched in Fig 3 .7b. A similar idea was proposed in periodically driven cold atoms by breaking inversion symmetry with onsite potential, which leads to topological phase transition taking place between gapless regimes (L. [START_REF] Zhou | Floquet semimetal with Floquet-band holonomy[END_REF]). Besides, it was seen that even in the quantum spin Hall effect, there is a contribution of bulk conductance to the helical edge states, hence prohibiting exact quantized edge conductance [START_REF] Knez | Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells[END_REF]. It was shown to be connected to the metallic behavior of bulk states along with the edge states (C.-Z. Chen et al. 2019). Now, we extend the above idea to the scattering matrix network. Previously, we considered the case of net phase in the unitcell to be zero, 1 + 2 =0 . T h i sc o n d i t i o nh e l p s us to keep intact the inversion symmetry in the model I (see eq(3.10)). We distinguish two ways to break inversion symmetry in this scattering framework. In one case, we break it by keeping a net non zero phase inside the unitcell, namely model II. In other words, we break inversion symmetry along the synthetic dimension by allowing higher asymmetric hoppings in this dimension in time. In another case, we break inversion symmetry along the real or [START_REF] Ying | Symmetry-Protected Topological Metals[END_REF] spatial dimension (i.e., x), namely model III. These two different ways of breaking inversion symmetry give rise to two different types of topological metallic regimes with specific physical manifestations. In one case, it gives rise to Bloch oscillations of wavepackets, and in the other case, it gives rise to a transverse quantized drift of wavepacket motion. This clearly distinguishes inversion symmetry breaking in synthetic and real dimensions. At the end we club these two aspects in a single model, namely model IV, to explore complex wavepackets motion.
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Model II: Inversion symmetry breaking in synthetic dimension and Bloch oscillations

Let us introduce our first model of breaking inversion symmetry in the synthetic dimension by allowing a net phase in the unitcell. We consider only two steps N =2b u tw i t h 1 =+ and 2 = 2 ,a ss k e t c h e di n Fig 3 .8. This existence of a net phase in the unit cell, (i.e. 1 + 2 6 =0 ,w i t h 1 and 2 proportional to )b r e a k st h i ss y m m e t r y . T h i sc a nbes h o w nf r o me q ( 3.8), where now

U F (k x , )=e i( 1 + 2 )/2 B(k x /2) S 2 D( 2 /2) B(k x /2) S 1 D( 1 /2) (3.16)
Next we notice that x B(k x /2) x = B( k x /2) and x D( j /2) x = D( j /2) where we recall that j is proportional to .T h e r e f o r e , t h e n e t p h a s e , i n t h e p h a s e f a c t o r i n E q .

(3.16)p r e v e n t sU F to be inversion symmetric that is

x U F (k x , ) x 6 = U F ( k x ,
) .

(3.17)

Remarkably, the consequence of this symmetry breaking can be seen on the quasienergy spectrum ",w h e r eb a n d sw i n di n axis, as illustrated in Fig. 3.3a.T h i sn e tfl u xo f is

S 1 +φ S 1 -2φ S 2 S 1 +φ S 1 -2φ S 2 +φ S 1 -2φ S 2 S 1 -2 +φ S 1 -2φ S 2 +φ S 1 -2 +φ S 1 j-2 j-1 j j+1 j+2 l-2 l-1 l l+1 l+2 t x Figure 3
.8: Two-dimensional oriented scattering lattice for N =2successiv esteps. Aphase 1 =+ and 2 = 2 is added for the states scattered out the nodes S 1 and S 2 .T h eu n i t cell of this lattice is emphasized by a dashed black rectangle. reflected in the negative sign of the "group velocity" @ " of either band for any values of (see Fig 3 .9a).

Aw i n d i n gn u m b e r ,⌫ can capture the winding of the bands along axis. For two steps periodic dynamics, so that the two distinct phase shifts are 1 =( m 1 /n 1 ) and 2 = (m 2 /n 2 ) ,w h e r em i ,n i 2 Z. As already discussed by Kitagawa, Berg, et al. 2010,t 

h e winding of the quasienergy bands along with condition |m

1 /n 1 |6 = |m 2 /n 2 |,d e fi n e da s ⌫ ⌘ 1 2⇡i Z 2⇡ ( 1 , 2 ) 0 d tr h U 1 F @ U F i = X p 1 2⇡ Z 2⇡ ( 1 , 2 ) 0 d @" p @ , (3.18)
wherein the last equation(3.18), the sum runs over all the bands since the number of bands p is even, or more precisely, the number of links entering a scattering node, then the winding number is also an even integer. The ( 1 , 2 )a sT ⌘ 2⇡ ( 1 , 2 )s e t st h epe r i odi nt h e direction. It is equal to twice the least common multiple of [(

m 1 /n 1 m 2 /n 2 ) 1 , (m 1 /n 1 + m 2 /n 2 ) 1 ] (see Appendix(5.2)). a a a a x x + 1 x + 2 x + 3 J 1 e ie ∫ x+1
x dxA(t) The Hamiltonian H takes the form

H = N X x J 1 e ie R x+1 x dx 0 A(x 0 ,t) |xihx +1|+h.c. (3.20)
Using the translational symmetry in the system, assuming lattice constant to be unity, and A x (t)= E x t.T h ee n e r g ye i g e n v a l u e sa r e

E(k x )= 2J 1 cos ( eE x t + k x ) . (3.21)
If we consider eE x t as a parameter, varying very slowly (via slow tuning of t), then eigenvalues in eq(3.21)a r ew e l ld e fi n e d . T h ec o r r e s po n d i n gg r o u pv e l oc i t yv g

v g (k x )= @E(k x ) @k x , =2 J 1 sin (eE x t + k x ) (3.22)
By integrating the above equation(3.22)i nt i m e ,w eg e tt h ec e n t r eo fm a s sm o t i o nt r ajectory

X(k x ; t 0 )= Z t 0 0 dt @E(k x ) @k x , = 2J 1 eE x {cos (eE x t 0 + k x ) cos (k x )} (3.23)
Defining (t)=eE x t and for some fix value of k x = k x0 ,o nt u n i n g (t), the wavepacket undergoes oscillations eq(3.23)c o n s e r v i n gt h ei n i t i a lm o m e n t u mk x0 [START_REF] Krieger | Time evolution of Bloch electrons in a homogeneous electric field[END_REF] The gauge transformation in eq(3.4)showstheequivalencebetweentheposition-dependent phase and time-dependent phase, see eq(3.4). In other words, it a gauge transformation from the scalar potential (Φ) to the vector potential (A), this interpretation was missing in the Ref [START_REF] Regensburger | Parity-time synthetic photonic lattices[END_REF].

understanding of the mechanism behind the oscillations: as is adiabatically increased, the band dispersions are displaced in a diagonal direction in quasienergy-k space [green arrows in Fig. 3.11(c)-(f)], a direct consequence of the winding of the bands. Therefore, a wavepacket with a given k is subject to group velocities that change sign when (m)increases,resulting in periodic oscillations in the spatial coordinate. Even though the simulations are done for k =0 ,h o w e v e r ,d i ff e r e n tc h o i c e so fk x will only result in a phase (or vertical) shift of the oscillations. A simple example demonstrates this after the end of this subsection.

An analytical calculation of the center of mass motion of the wavepacket centered at a given k x can be deduced from the group velocity in parameter space (see Appendix(5.2)) (3.25) where (⌧ )= 0 ⌧ varies linearly, and the continuous time variable t extrapolates the discretetime m, this semi-classical trajectory, shown in dashed black lines in Fig. 3.11(b), fits the simulation plot perfectly. Moreover, the period of Bloch oscillations T B comes from the period of X,w h i c hi nt u r nc o m e sf r o mq u a s i e n e r g ype r i od i c i t yi n ,t h u sT B = T / 0 .T h i s directly relates the Bloch oscillations period to the quasienergy winding number via eq(3.19) as

X(k x ; t)= Z t 0 dt @"(k x , (⌧ )) @k x t, (3.24) X(k x ; t)= Z (t) 0 d @"(k x , (⌧ )) @k x ˙ (⌧ ) 1 ,
T B = 2⇡ 0 ⌫ ⇣ m 1 n 1 + m 2 n 2 ⌘ .
(3.26)

The physical origin of these oscillation comes from the fact that the modulation of the phase shifts along the propagation is analogous to a time-varying vector potential acting on a charged particle of unit charge in a lattice that induces a (fictitious) electric field E on it. One thus expects that a wavepacket corresponding to this charged particle is subjected to the resulting electric force to be displaced accordingly in the lattice, finally leading to Bloch oscillations with period T B =2⇡/E.W er e c o g n i z ei ne q ( 3.26)t h e( fi c t i t i o u s )a v e r a g e electric field as E =(E 1 +E 2 )/2, where E j = m j n j 0 2 for time step j.I n t e r e s t i n g l y ,t h ew i n d i n g number ⌫ modifies this expression. Thus, higher winding numbers will not only change the oscillation period but will also yield more stationary points within the period. Remarkably, these number of stationary points N S in a Bloch period is precisely

N S = |⌫ | (3.27)
which bestows a topological property of Bloch oscillations. 

⌫ can always be connected to Bloch oscillations

We can demonstrate the presence of winding and Blo ch oscillations in a very intuitive mo del. Let us consider a 1D non-interacting and periodically driven lattice with period T ,composed of two atoms in a unitcell, denoted by a and b, as shown in Fig 3 .14. Here, one driving period T constitutes three steps. At first step, time t =0 ,t h e r ea r en oh o p p i n g sb u tan o n -z e r o potential V a for atom a.As e c o n ds t e p ,t = T/3, there is only hopping J 1 within the unitcell. At the final step, t =2T/3, there is only hopping J 2 between the unitcells, all hoppings are assumed to be real for simplicity. The stepwise Hamiltonian along with respective evolution operator under translational symmetry comes out to be

x x + 1 x + 2 x + 3 J 2 T/3 < t 2T/3 2T/3 < t T a a a a b b b b 0 < t T/3 V 1a V 1a V 1a V 1a
H 1 = ✓ V a 0 00 ◆ ,U 1 =e iH 1 T/3 = ✓ e i a 0 01 ◆ (3.28) H 2 = ✓ 0 J 1 J 1 0 ◆ ,U 2 =e iH 2 T/3 = ✓ cos ✓ 1 i sin ✓ 1 i sin ✓ 1 cos ✓ 1 ◆ (3.29) H 3 = ✓ 0 J 2 e ikx J 2 e ikx 0 ◆ ,U 3 =e iH 3 T/3 = ✓ cos ✓ 2 ie ikx sin ✓ 2 ie ikx sin ✓ 2 cos ✓ 2 ◆ .
(3.30)

where ✓ i = J i T/3and a = V a T/3. Note, that we have evaluated the evolution operator only at their respective or fix times, instead of evaluating them at stepwise time interval. For example, U 2 should have been written for time interval T/3  t<2T/3ase iH 2 (t T/3) e iH 1 T/3 . We are interested in the Floquet operator, so we do not specify evolution operator in this stepwise evolution form.

Then the Floquet operator is U F = U 3 U 2 U 1 . This asymmetric net potential V a in the unitcell breaks the inversion symmetry of the evolution operator. It is reflected in the winding of the Breaking along synthetic axis with net potential in the unitcell.

Preserving along synthetic axis with net potential in the unitcell.

Consequences

Bloch oscillations for fixed quasimomentum.

Absence of oscillations.

Physical origin

Presence of a fictitious electric field E,g e n e r a t e db yat i m e varying vector potential A.

Absence of fictitious electric field E or vector potential A.

Implementation (at the level of Hamiltonian)

At first time step, introducing asymmetric potential V a 6 = V b (see the model and eq(3.10))

At first time step, introducing symmetric potential V a = V b (see the model and eq(3.10)).

Eigenspace anholonomy

Interestingly, if we look at closely the Floquet operator in eq(3.5), it is always periodic under

i +2p⇡,w h e r ep 2 Z U F (k x , i +2p⇡)=B(k x /2)S 2 D( 2 +2p⇡)B(k x /2)S 1 D( 1 +2p⇡), = U F (k x , i ). (3.33)
However, this is not the case for the quasienergies when they wind. For instance, when 1 =+ and 2 = 2 ,theyareperiodicafter4⇡, "( +4p⇡) (see Fig 3 .9a and a derivation in Appendix(5.2)). On the other hand, let us consider the quasienergy spectrum over a period of U F , as shown in Fig 3 .16.T ob e g i nw i t h ,i fi n i t i a l l yt h es y s t e mi si ne i g e n s t a t e |Ψ red (k x0 , )i at some fix k x = k x0 ,t h e nb yc h a n g i n g ,w ef o l l o wt h eb l u ea r r o wg o i n g towards the blue-colored band, and it appears at the other (blue colored) band. In other words, we have parallel transported an eigenstate |Ψ red (k x0 , +2⇡)i = |Ψ blue (k x0 , )i to its orthogonal state. This has been referred to as eigenspace anholonomy or eigenspace holonomy [START_REF] Cheon | Double spiral energy surface in one-dimensional quantum mechanics of generalized pointlike potentials[END_REF];M i y a m o t oe ta l .2007;T a n a k ae ta l .2007;L .Z h o ue ta l .2016). It is completely different from the Wilczek-Zee's phase holonomy [START_REF] Wilczek | Appearance of Gauge Structure in Simple Dynamical Systems[END_REF], which is concerned with the change of an eigenvector in a degenerate and single eigenspace in which the eigenvector can rotate due to degeneracy. Moreover, holonomies also appear when a system is prepared in its eigenstate, assumed to be non-degenerate and discrete. Tuning a parameter of the Hamiltonian adiabatically, the system remains in the eigenstate due to the adiabatic theorem [START_REF] Born | Beweis des Adiabatensatzes[END_REF]. However, when the parameter returns to its initial value, after traversing a cyclic path adiabatically, the final and initial states differ by a phase. This phase difference contains two pieces of information: one about the dynamical phase and the other one of the geometric phase. This later phase is also referred to as phase holonomy or, more commonly, the Berry phase [START_REF] Berry | Quantal Phase Factors Accompanying Adiabatic Changes[END_REF], while in this case, the eigenstate remains the same (up to a phase) after one adiabatic period, but it the eigenstates changes in eigenspace holonomy. The Floquet winding regime combines two distinct topological properties the winding of bulk bands, as we saw, and the existence of chiral edge states that we discuss now. Accordingly, a topological transition can be induced in this regime on top of these robust winding of bulk bands. This, in principle, could already be inferred from the discussion of the model I with inversion symmetry in the section(3.2), exhibiting the chiral edge states shown in Fig. 3.5.T h eo n l yt h i n gw eh a v ed o n es of a ri sb r e a k i n gi n v e r s i o ns y m m e t r yi nt h e synthetic dimension, which does not affect the topology [START_REF] Fu | Topological insulators with inversion symmetry[END_REF])whilestillpreserving particle-hole symmetry. Thus model II shares the same topological phase diagram as that of model I (see Fig. 3.4).

To investigate the second top ological prop erty, we consider the edge states sp ectrum, in a similar finite cylindrical geometry, finite along x-direction while periodic .I f b o t h regions in this geometry are chosen in the same topological regimes by proper choice of coupling parameters (from the phase diagram in Fig. 3.4), then there are no edge states. It corresponds to the trivial regime shown in Fig. 3.5b. The Floquet anomalous topological regime, in contrast, exhibits chiral edge states in each indirect quasienergy gap. Indeed, even though the spectrum in this regime is fully gapless, in the sense that for any values of the quasienergy, there exists an allowed bulk state, the bulk quasienergy bands "(k x , )i n the synthetic Brillouin zone are separated and do not touch. The chiral edge states remain topologically robust under the perturbation in the interface coupling parameters. Moreover, the winding regime still keeps the phase rotation symmetry [START_REF] Delplace | Phase rotation symmetry and the topology of oriented scattering networks[END_REF] of the insulating regime, implying that the Chern number vanishes identically for each band. It gives rise to only the two distinct insulating regimes aforementioned (see Fig. 3.17).

The presence of chiral edge states in the winding regime manifests one remarkable feature. In this regime, all the states have a "synthetic group velocity" with the same sign except for the chiral edge states localized on one of the two edges, shown in red and marked by a black arrow in Fig. 3.17b.T h i sp e c u l i a rp r o p e r t yr e s u l t sf r o mt h ei n t e r p l a yo ft w od i s t i n c t topological properties, namely the winding of the bulk bands and the chirality of the edge states that have to be reversed for the two edges.

Model III: Inversion symmetry breaking in spatial dimension and Thouless pumping

Awindingofthequasienergybandsalongk x can similarly be obtained by breaking inversion symmetry in the real spatial dimension. In a simple model with two time-steps, this can be achieved by connecting to the next nearest nodes of the network, as sketched in Fig. 3.18.

The first time step matches with previous models, where scattering nodes S 1 at time j are connected to their nearest neighbor nodes S 2 at time j + 1. However, it differs at the second (or final) time step, where right going arrows (in red) link to the next-nearest neighbor nodes but keeping the nearest-neighbors along left. This changes the evolution equations of motions for the scattering amplitudes at two steps, thus allowing us to write a more general equation for the two steps as

↵ j+1 l+l 1 =( c o s ✓ j ↵ j l+l 2 + i sin ✓ j j l+l 2 )e i j j+1 l+l 1 =( i sin ✓ j ↵ j l+l 0 +cos✓ j j l+l 0 ) , (3.35) 
↵ j+2 l+l 3 =( c o s ✓ j+1 ↵ j+1 l+l 1 + i sin ✓ j+1 j+1 l+l 1 )e i j+1 j+2 l+l 3 =( i sin ✓ j+1 ↵ j+1 l+l 4 +cos✓ j+1 j+1 l+l 4 ) . (3.36)
Here l j are the links connecting the scattering nodes at time step j + p 1toj + p,f ors ome integer p.W ec a na g a i nd e fi n el j in terms of r j /s j as,

r 1 s 1 = l 2 l 3 2 , r 2 s 2 = (l 2 l 3 )+(l 0 l 1 ) 2 , (3.37) 
Previously, there was only one compact evolution equation for the amplitudes for two-time steps (see eq.(3.1)). Due to the asymmetric nature of couplings at the two-time steps in model III, the evolution equations split at these time steps. The above relations in eq.(3.37) quantify these anisotropic couplings at the those time steps. For our present case, the link parameters are respectively as l 0 = 2,l 1 = 1,l 2 =0 ,l 3 = 2,l 4 = 5. This gives r 1 /s 1 =1a n dr 2 /s 2 = 2. These following parameters r j /s j characterize the anisotropy in the coupling that connects the nodes at time j.T h e s ea r ee q u i v a l e n tt om j /n j parameters in the former case of a winding in .T h u s ,t h i sa n i s o t r o p yi nt h ec o u p l i n g sb r e a k si n v e r s i o n symmetry in the spatial dimension, as can be seen from eq(3.10). This breaking reflects in the winding of the quasienergy bulk bands along k x , as shown in Fig. 3.19.
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where we used the Heisenberg picture, ẋ = @H/@k = i[H, x], to get this final elegant answer. This expression connects the mean particle position in the n th band to the winding number of n th band, i.e.,⌫

(n) k times the stroboscopic time m. Such a drift was introduced initially by Thouless but in a completely different context, where the pumped current quantization roots in the first Chern number of the instantaneous states of the adiabatically driven periodic Hamiltonian parametrized over the synthetic Brillouin zone span by (t, k x ). The big difference between the Thouless pump and our model III comes by considering the semi-classical motion equation of wavepackets (see eq.(3.23)). In the semi-classical equation of motion, the evolution equation of a wavepacket has two main contributions: first, the group velocity part, and second, the Berry curvature part, which is coming from adiabatic correction (from perturbation theory) [START_REF] Xiao | Berry phase effects on electronic properties[END_REF]. This gives for our model v

(n) group velocity = @"(k, ) @k + @ @t Ω (n) (k, ).
(3.45)

In our case, the first term characterizes the winding number ⌫ k (or ⌫ )ineq.(3.39), while the second term characterizes the Chern number for Thouless pump. Besides, our case is not adiabatic for the transverse drift case as it takes the Floquet time (mT )a sa ni n p u t ,w h i l e the Thouless case is an adiabatic pump. Moreover, for the Thoules case, if we consider an example of two bands, then the value of the total Chern number should vanish. Hence, each band will have an opposite Chern number (or Berry curvature in above expression eq.(3.45)), which means both bands experience opposite transverse force. On the contrary, in our case, there is no such restriction since both bands share the same topological invariant. Importantly, the winding in (by breaking inversion symmetry in synthetic dimension) can also be engineered at the level of a stepwise time-dependent Hamiltonian (Gong2016) (see Fig 3.14). In contrast, a quasienergy winding in k x (by breaking spatial inversion symmetry) requires the presence of a momentum dependent potential (as can be seen from eq(3.28)), which is far from being trivial to engineer. [START_REF] Kitagawa | Topological characterization of periodically driven quantum systems[END_REF])p r o po s e da1 Dn o n -i n t e r a c t i n gs p i n -1 / 2c h a i nm od e lo nal a t t i c e . I nt h i sm od e l ,t h e r e is a time-dependent lattice potential which only affects the spin of one kind, say spin up, and moves slowly to the right, such that after one full modulation, it shifts by exactly l times the lattice constant, where l is an integer. Then by adiabatically modulating this potential, it moves the spin-up particles from a unit cell at position x to another unit cell at x + l to the right, whereas spin down remains unaffected. This reflects on the quasienergy band spectrum as the spin-up band winds l times while the spin-down band remains flat. However, this model is experimentally non-trivial to realize. Interestingly, as we saw this similar winding can be engineered in scattering network. Consequently, it is fully implementable experimentally. We consider the quasienergy edge state spectrum for model III in a similar cylindrical geometry along the x axis. Likewise, phase rotation symmetry precludes only two regimes, depending on the choice of coupling parameters from the same phase diagram in Fig. 3.5b, namely the trivial and Floquet anomalous regimes, as shown in Fig. 3.21. Interestingly, in this case, the bands wind along the k x direction, while they are fully gapless in the direction, as reflected in the spectrum in Fig. 3.21.M o r e o v e r ,u n l i k em o d e l II, the edge states are embedded within the bulk. So, any perturbation in the coupling parameters at the interface can result in the coupling of the edge states with the bulk bands. In the next chapter(4), we shall see another situation where similar properties of edge states being embedded in bulk arise but for entirely different reasons.

Edge states in Model III

Model IV: inversion symmetry breaking along both synthetic and real dimension

In the general case, breaking inversion symmetry be achieved in either dimension, namely k x and . This can be realized in the scattering network (see Fig. 3.18)y i e l d i n gw i n d i n ga l o n g k x by adding 1 + 2 6 =0. Thecom binationoftheset w owindingsgiv esrisetoanin tricate quasienergy spectrum, showing such combined windings in Fig. 3.22. Fig. 3.23. In this figure, the number of turning points gives the value of ⌫ ,t h e ya r em a r k e d with small circles for the last curve that has ⌫ k = 8, the number tallies with their ⌫ k . Likewise, the slope of each curve is the manifestation of ⌫ k . All plots are for an initial value of k x = k x0 (see eq.(3.23)). However, changing the value of k x0 only shifts the wavepackets oscillations vertically, as shown with an inset at the left bottom in Fig. 3.23,andlea vingthe number of sub-oscillations unchanged.

Edge states in Model IV

We consider the quasienergy edge state spectrum for model IV. Similarly, considering the finite geometry leads to only two regimes depending on the choice of coupling parameters from the same phase diagram in Fig. 3.5b, the trivial and the Floquet anomalous regimes, as shown in Fig. 3.24. In this case, the bands wind along k x and .T h u st h e ya r ef u l l yg a p l e s si nt h e direction, as reflected in the spectrum in Fig. 3.24.S t i l lt h i sd o e sn o tp r e v e n tt h ee x i s t e n c eo fe d g e states, since the bulk bands do not touch, thus allowing the standard definitions of bulk topological invariants.

k x k = + 1 = -1 Figure 3
.25: A general winding is made up of {⌫ , ⌫ k } and they can be represented on a torus using the underlying manifold of BZ. Then the number of windings along the bigger circle represents ⌫ and smaller one ⌫ k ,w h e r et h ec o u n t e r -c l oc k w i s ed i r e c t i o nc a nbec h o s e n as a convention for positive values.

Summary of chapter 4: Main results

• In the oriented scattering network with two time-steps, lifting the condition of the same coupling parameters, i.e., ✓ 1 6 = ✓ 2 ,t h et w og a p se m e r g e da t0a n dp i ,h o s t i n g chiral edge states in the topological regime. There are only two topological regimes in this model, namely the trivial and the anomalous Floquet regime due to phase rotation symmetry.

• Adding a net phase in the unitcell yields inversion symmetry breaking along the synthetic dimension, and this manifests as the winding of the quasienergy bulk bands. This net phase is connected to a non-zero time-dependent vector potential, which gives rise to a fictitious electric field. In turn, this electric field can lead to Bloch oscillations, where the number turning (or stationary) points are given by the winding number ⌫ of the bands. This topological property can thus be probed directly in a photonic experimental setup by the state-of-art technology.

• The winding of the bands in along with the chiral edge states brings a situation where one of the chiral edge states propagates opposite to the net synthetic group velocity of the bands and these two topological properties, winding, and the chiral edge states, only combines for the Floquet system.

• When inversion symmetry is broken along the spatial dimension, instead of net direction to the synthetic group velocity, there is a net direction to the actual group velocity.

It manifests as a transverse drift of the wavepacket, where the amount of drift is connected to another winding number ⌫ k . As a remarkable consequence, if we consider the finite geometry, then the edge states are embedded in the bulk quasienergy spectrum.

• Finally, these two results can be put in the same bowl, namely winding in both ,a n d k,w h e r ee a c hp r e s e r v e si t sp h y s i c a lm a n i f e s t a t i o n ,t r a n s v e r s ed r i f t ,a n do s c i l l a t i o n s .

Here, the BZ is a torus with two periodic axes k x and ,t h e nt h e s et w ow i n d i n g numbers correspond to two different loops on the torus, as sketched in Fig. 3.25, where these two loops can not be continuously deformed into each other.

Chapter 4

Beyond Floquet insulators 2: Semi-metallic regime

Introduction

In this chapter, we present another gapless scenario in the 2D Floquet scattering network model. The most characteristic feature shown by this gapless model is the number of degeneracies can be selectively manipulated at the Fermi level (in our case, " =0orat" = ⇡). It can be seen as a phase transition from D number of degeneracies to the D d degeneracies.

Roughly speaking, this model mixes the Weyl and the usual topological insulator properties classification. At the same quasienergy ",t h e r ea r ep r o t e c t e dd e g e n e r a c i e s( W e y lt y pe )a n d also chiral edge states but at a different points in the BZ.

Semimetal Model 1: Gapless states in four-steps networks

To go beyond a model that only possesses two regimes, namely trivially gapped or Floquet anomalous insulators (chapter(3)) while keeping the inversion symmetry, one way would be to increase the number of steps along the transverse axis, and another way is by increasing the time steps in the Floquet period, as shown in Fig. 4.1. As a result, this leads to the first increment in the number of tuning (or coupling) parameters, thus ensuring that the phase rotation symmetry breaks [START_REF] Delplace | Phase rotation symmetry and the topology of oriented scattering networks[END_REF]). Hence more regimes can be expected, for example, the Floquet Chern insulator (see Fig. 3.6). Lastly, the number of bands touchings at the same quasienergy in the BZ also increases. Their stability depends on different (combination of) parameters than the pre-existing ones.1 

We cho ose the second option of increasing the size of the unitcell along the time axis. Let us consider a period of N = 4 steps in one Floquet period, and fixing the distinct phase shifts inside a unit cell as 1 =+ , 2 = , 3 =+ ,a n d 4 = . Note that the net l+2,j+N-1 "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""

""

"" phase inside the unit cell is zero, which conserves inversion symmetry along the synthetic dimension ,t h u sa v o i d i n ga n yw i n d i n go ft h eq u a s i e n e r g yb a n d s( c h a p t e r ( 3)). This model can be seen as just two copies of model I (see(3.2)) in one period. Thus conserving the inversion and particle-hole symmetry, like before.

j j+1 j+2 . . . j+N-1 j+N l-2 l-1 l l+1 l+2 t l-3,j l-3,j+2 l-1,j l+1,j l-1,j+2 l+1,j+2 l-2,j+1 l,j+1 l+2,j+1 l-2,j+N-1 l,j+N-1 S l-2, S l,j S l-3, j S l-2, j+2 S l, S l+2, j+2 j+2 j+N-1 S l-1, j+N-1 S l+1, j+N-1 S l+3, j+N-1 S l-2, S l, S l+2 
Using the spatial periodicity along x,i . e . ✓ l,j = ✓ j the Floquet-Bloch evolution operator can be written as the succession of translation-like T ± operations and local scattering processes S j as

U F ( , k x ; {✓ j })=T S 4 T + S 3 T S 2 T + S 1 (4.1)

Selective manipulation of degeneracy in semimetal model 1

Once deviating from the critical point, it is then possible to lift some of these degeneracies, while leaving untouched the other ones. The conditions required to lift a specific nodal point or a nodal line are then inferred by expanding the Floquet operator U F in coupling parameters around these degeneracies away from ✓ j = ⇡/4. At the two Dirac points sitting at " =0,namelyA 0 and B 0 , the Floquet operator must satisfy U F = 1 2 ,w h e r e1 2 is the identity matrix of size 2 ⇥ 2. Substituting their coordinates ( , k x ) (see Fig. 4.2)r e s p e c t i v e l y( 0 ,⇡)a n d( ⇡, 0) in equation(3.5) and then expanding in scattering parameters around the critical point {✓ j = ⇡/4 ! ⇡/4+ ✓ j },yieldstheconstrain

S( ✓ 1 + ✓ 2 ✓ 3 + ✓ 4 )=1 2 at A 0 and B 0 (4.4)
(where S(✓ j ) ⌘ S j ), which is only satisfied when ✓ 1 + ✓ 2 ✓ 3 + ✓ 4 =0holds. Con v ersely , ag a po p e n sa tA 0 and B 0 when this condition is not fulfilled. An interesting twist comes at " = ⇡, where now the Floquet operator must satisfy U F = 1 2 . Expanding the Floquet operator in scattering parameters for the four degeneracy lines k x ± =0andk x ± =2⇡, yields the condition

S( ✓ 1 + ✓ 2 + ✓ 3 + ✓ 4 )=1 2 (4.5)
that clearly differs from the condition (4.4). Furthermore, there are two special points, namely To summarize, the different gap op ening terms ✓ j follow from

A ⇡ at ( = ⇡/2,k x = ⇡/2) and B ⇡ at ( =3 ⇡/2,k x = ⇡/2),
⌫ 1 ✓ 1 + ⌫ 2 ✓ 2 + ⌫ 3 ✓ 3 + ⌫ 4 ✓ 4 6 =0 (4.7)
with combinations of ⌫ j = ±1, as summarized in Table 4.1. Thus, doubling the "time period" of the network indeed brings new degeneracies, namely, A 0,⇡ and B 0,⇡ . However, degeneracies at a fixed quasienergy, 0 or ⇡, are (un)stable under the same perturbations ✓ j .T h eo n l ye x c e p t i o nb e i n ga t" = ⇡ where the degeneracy lines (in eq(4.5)) and degeneracy points (in eq(4.6)) do not share the same stability, and hence can be gapped separately.

Semimetal Model 2: Selective manipulation of degeneracies instabilities

In semimetal(SM) model 1, we have a symmetry of Floquet operator which is responsible for the appearance of the nodal line at the quasienergy " = ⇡ at critical point ✓ j=1..4 = ⇡/4.

Quasienergy Degeneracy points

⌫ 1 ⌫ 2 ⌫ 3 ⌫ 4 " =0 B 0 + + A 0 + + " = ⇡ k x ± =0, 2⇡ (excluding A ⇡ ,B ⇡ ) + + + + A ⇡ + + B ⇡ + + Table 4
.1: Stability of the different band touchings (p oints or lines) under a p erturbation ⌫ j ✓ j .N o d a lp o i n t sa t" =0o r⇡ have the same stability: they are gapped together, even though a point at a given " can be gapped while the other pair remains stable.

That is an exchange symmetry of k $ . Thus quasienergy spectrum is unaffected by this symmetry. It can be demonstrated by taking a cyclic permutation of Eq(4.1),

U F ( , k x ; ✓ j = ⇡/4) = T S 4 T + S 3 T S 2 T + S 1 , = T + S 1 T S 4 T + S 3 T S 2 , = T + S 4 T S 3 T + S 2 T S 1 (4.8)
where we used the fact that at critical value ✓ j=1..4 = ⇡/4allscatteringmatricesareidentical (see eq.( 4.3)) i.e.,

S j=1..4 = 1 p 2 ✓ 1 i i 1 ◆ .
This property yields an exchange k $ . However, this exchange symmetry of quasimomenta can be broken by employing the different phase pattern than that of SM model 1.

We now prop ose the following phase shift pattern that decorates the four-step p erio d :

1 =+2 , 2 = , 3 =0,and 4 = .T h i sc h o i c ec l e a r l yb r e a k st h ep r e v i o u sp r e v a i l i n g exchange symmetry, as can be seen from Eq(4.9). Also, this choice still preservers P j =0 and thus prevents windings of the quasienergy bands (see chapter(3)). The new Floquet operator reads

U F ( , k x ; ✓ j )=B(k x )S 4 D( )B(k x )S 3 B(k x )S 2 D( )B(k x )S 1 D(+2 ) = T (k x +2 )S 4 T (k x )S 3 T (k x )S 2 T (k x )S 1 (4.9)
where the previously defined T in Eq.( 4.2)h a sb e e nu s e di nt h ef o r mo fT ± = T (k x ± ), and D( )a n dB(k x )a r et h es a m ea si nE q . ( 3.9). Similarly, the consequence of this breaking of exchange symmetry can be seen on the quasienergy spectrum calculated from the Bloch-Floquet operator (4.9), and depicted in Fig. 4.3 at the critical point {✓ j = ⇡/4}. This spectrum is still fully gapless, but now the two bands touch at " =0and" = ⇡ only at points, either linearly in both directions (Dirac points A 0 ,C 0 ,A ⇡ and C ⇡ )o rl i n e a r l yi no n ed i r e c t i o na n dq u a d r a t i c a l l yi nt h eo t h e ro n e (known as semi-Dirac points, namely at B 0 and B ⇡ )( S .B a n e r j e ee ta l .2009;S w a p n o n i l Banerjee 2015; [START_REF] Huang | Emergence of a Chern-insulating state from a semi-Dirac dispersion[END_REF][START_REF] Mawrie | Quantum thermoelectrics based on two-dimensional semi-Dirac materials[END_REF] 

Topological charge of degeneracy points

In the vicinity of each band touching point X,o n ec a ne x p a n dt h e( d i m e n s i o n l e s s )e ff e c t i v e Hamiltonian defined via the Floquet operator as

U F =e iH X eff (4.11)
at the lowest order terms in mass term m,p h a s es h i f t and quasimomentum k x .S u c h Hamiltonians have the generic form

H X eff ( , k x ,m)=h X • σ (4.12)
where σ is the vector of Pauli matrices and h X defines a family of continuous maps from R 3 to R 3 .T h e r e f o r e ,h X /|h X | defines continuous maps from parameter space R 3 \{X} to target space S 2 that are classified by the homotopy group ⇡ 2 (S 2 )=Z.T h ee l e m e n t so ft h i sg r o u p are integer numbers that tell how many times h X /|h X | warps the sphere. They are given by the degree of h X defined as

deg(h X )= X p (0) i sgn " det @h X j @ i ! | h (0) # (4.13)
where the pre-images p

(0) i =( (0) 
i , k

xi ,m

i )s a t i s f yh(p

i )=h (0) ,w i t hh (0) an arbitrary vector in R 3 ,a n dw h e r e{ i } stands for { , k x ,m ± }.

For a two band Hamiltonian, this degree is directly related to the Chern number C ± of the continuous family of normalized eigenstates ± ( , k x ,m)o fH X eff as C ± = ⌥ deg h X .

(4.14)

Importantly, a nonvanishing value of C n is known to guarantee the existence of a spectral flow towards bands n when the mass term (m ± here) is varied in space and changes sign [START_REF] Delplace | Topological origin of equatorial waves[END_REF];F a u r e2019;M a r c i a n ie ta l .2019; Nakahara 2003;P e r r o te ta l .2019; G. E. [START_REF] Volovik | The Universe in a Helium Droplet[END_REF]. As we saw in the introduction, this Chern number is different from the band Chern number C j that is usually computed for the isolates bands of a gapped spectrum of the entire BZ. This Chern number C j characterizes Chern insulators, and is ill-defined if the bands touch, like in our semmetallic phase. In contrast, C (eq(4.14)) characterizes nodal points in 3 paramter space, and thus suitable for our gapless model. This spectral flow usually consists in a unidirectional mode, localized where the mass term vanishes, and whose (quasi-)energy bridges a spectral gap when a parameter (here )i s tuned.

In the following, we compute this topological index (via the degree formula (4.13)) for different band touching points (Dirac and semi-Dirac) and check numerically that their value correctly predicts a spectral flow of localized modes, even in the absence of a gap. bridge a spectral gap. Note that the situation is, however, different from what is currently encountered in topological insulating phases, since the two bands actually touch at " = ⇡ at two other points of the Brillouin zone, A ⇡ and C ⇡ , that are stable against the perturbation in m + .T h e r e f o r e ,t h e s ec h i r a ls t a t e sc a n n o tb ei n t e r p r e t e da st h ei n t e r f a c em o d e sb e t w e e n two distinct topological (e.g., Chern) insulators, as they appear at the interface between two gapless semimetals. The situation is maybe even more unusual with A 0 ,s i n c ei t s coordinate matches that of semi-Dirac degeneracy B 0 (see Fig. 

Spectral flow induced by a spatial variation of m

Similarly, a spatial variation of the mass term m leads to a topological spectral flow for B 0 , C 0 , A ⇡ and C ⇡ when is varied, provided m changes sign. Let us focus on B 0 ,w h i c h is a semi-Dirac point since their topological charge and their associated spectral flow is overlooked in the literature in comparison to Dirac points. An expansion of the effective Hamiltonian H B 0 eff = h B 0 • σ in coupling parameters and quasimomenta gives

h B 0 ( , k x ,m )= 0 @ 2m kx 2 ( + k x ) 2 m k x 1 A (4.17)
The eigenvalues " ± = ±|h B 0 | yields a semi-Dirac behavior when m =0,asannounced(see Fig. 4.8). The introduction of m opens a gap, and allows us to define the topological charge One can evaluate the pre-images by fixing a direction for h B 0 ,s a ya l o n gz.T h i si m p o s e s the three following conditions

4m = k x ( + k x )( 4 . 1 9 a ) m =0 (4.19b) > k x (4.19c)
Three pre-images ( i ,k x,i ,m i )a r ef o u n dt os a t i s f yt h e s ec o n d i t i o n s: p Accordingly, a numerical calculation is performed in a periodic geometry where m (l) changes sign twice when varying with the discrete position index l on the network (see Fig. 4.6). Spectral flows are found in agreement with the value of the topological charge.

(0) 1 =( k 1 ,k 1 , 0) with k 1 > 0, p (0) 2 =(0,k 2 , k 2 2 /4) with k 2 < 0andp ( 
The existence of a spectral flow when a mass term is continuously varied and changes sign is traditionally understood as a mode emerging at the interface between two topologically nonequivalent systems. This description is, of course, meaningful provided that each system's topology is well defined in itself, when the mass term is fixed, like in topological insulators. However, it is not always the case. In particular, in continuous media, the Chern numbers C of the bands are only well defined when the projectors are regularized at infinity [START_REF] Silveirinha | Chern invariants for continuous media[END_REF];S o u s l o v ,D a s b i s w a s ,e ta l .2019;C .T a u b e re ta l .2019, 2020;G .V o l o v i k1988). Here, we have provided another model in which the topological properties of the bulk bands are illdefined but where chiral edge states with a well defined topological origin can however exist. In all these situation, the topological charge approach used here remains thus a powerful valid strategy [START_REF] Delplace | Topological origin of equatorial waves[END_REF];M a r c i a n ie ta l .2019;P e r r o te ta l .2019). Since the topological spectral flow consists in confined modes at the frontier between two domains of m ± with opposite signs, a natural question to ask is thus whether chiral states may exist at the boundary of a finite network with a fixed mass term m ± ,thatisspecificallywhen the Chern number C of the bands (to be distinguished from the Chern numbers assigned to the degeneracy C (4.14)) cannot be defined. Quasienergy spectra computed in that geometry are shown in figure 4.10 for different values of uniform m ± ,anddifferen tobserv ationscanbe drawn. We find chiral edge states (with respect to )a tA ⇡ , C ⇡ and C 0 when m > 0, and at B ⇡ when m + < 0. Edge states are also found around A 0 for m + < 0a n dB 0 for m < 0, where the gap remains close.

Chiral edge states in gapless systems

A 0 B 0 C 0 A π C π B π ( 
The first remark is that the sign of m ± that gives rise to edge states does not seem obviously related to the topological charge computed above. Moreover, while these edge states look very similar to what can be found in gapped systems for A ⇡ , C ⇡ , C 0 and B ⇡ ,a s they bridge a local gap, the situation is different for A 0 and B 0 that are affected by the bulk modes. The inset figures show that these edge states actually do not connect the two bands, but eventually couple to the bulk modes and disappear (figures 4.10 (a1) and ( e1)). This is in sharp contrast with the continuous interfaces in m ± that revealed a continuous spectral flow through the bulk modes (figures 4.7b and 4.9b).

Summary of Chapter 5 and perspectives

• In a 2D Floquet system, there exists a regime with a gapless spectrum that prohibits the definition of a Chern number for the bands and also the Floquet gap index. We saw that in this gapless spectrum, each nodal point (or line) had associated mass term.

If at given quasienergy, there is more than one different mass term, then the mass term shared by the same nodal points (or line) can be lifted all together without affecting the other ones. For this, we provided a general recipe to calculate this mass term. Likewise, by considering a mass term as a continuous function of the position that changes sign, the system then host topological chiral spectral flows of interface states, which can be captured by topological charge. The sign of this charge predicts the direction of the spectral flow. These spectral flows can be interpreted as robust chiral states at the interface between gapless semimetallic phases.

• In the last part, we saw that by considering a finite geometry with open boundary conditions, all the nodal points which are not affected by the bulk modes in the sense of stability under different mass terms, show similar spectral flow to the continuous case, whereas the nodal points that are affected by the bulk modes are in sharp contrast to the continuous case. However, the direction of the spectral flow cannot be a priori known from the edge state spectrum, while in the continuous case, it was one to one with the sign of the topological charge.

• In our semimetal model 1 and 2 there is a priori no need for the system to be Floquet. So, it would be tempting to look for their counterparts in static regime.

• It would be interesting to extend the above model to 3D by introducing another synthetic dimension. It will allow us to look for Weyl semimetal like a phase in this simple If we perturb the waveguide,where the perturbation can come from waveguide imperfections, bending, or surface corrugations. This perturbation perturbs the modes and couples the energy between them (this is very much analogous to the presence of potential term in Schrödinger's equation(1.12), which connects the different states). This boils down to say, when a pure mode is excited in the in the waveguide, then some of its power can get transferred to other modes.

The perturbation to the modes will be described in terms of distributed polarization source, P pert ,w h i c ha c c o u n t sf o rt h ed e v i a t i o no ft h ed i e l e c t r i cpo l a r i z a t i o nf r o mt h eo n ei n unperturbed mode. Confined mode can be excited and propagate along the axis of the waveguide structure independently provided the dielectric constant ε(x, y)=" 0 n 2 (x, y), remains independent of z. However, if there is a dielectric perturbation ∆"(x, y, z) due to waveguide imperfections, bending, or the surface corrugations, result in to the coupling of propagating modes. Which means, if we have excited a pure mode at the beginning of the waveguide, then some of its power may be transferred to other modes. The details of the coupling depends on the dielectric perturbation, i.e. ∆"(x, y, z).

D = "E = " 0 E + P (5.1) (5.2)
Now, any perturbation can be written as, which D = "E + P pert (5.3)

Then we can write the wave equation,

r 2 E = µ" 0 @ 2 E @t 2 + µ @ 2 P @t 2 (5.4)
So the total medium polarization, P(r,t)= P 0 (r,t)+ P pert (r,t), (5.5) where,

(5.6) P 0 (r,t)=( "(r) " 0 )E(r,t)

(5.7)

is the polarization induced by the E(r,t)i nt h eu n pe r t u r be dw a v e g u i d e( o n ew i t hd i e l e c t r i c constant "(r))

r2 E y µ"(r) @ 2 E y @t 2 = µ @ 2 P pert @t 2 (5.8) and similar expression for E x and E z ,i ng e n e r a l . We will only consider the coupling between the guided modes not with the unguided (radiation) modes. The field in the perturbed waveguide can be written in terms of the eigenmodes expansion

E y (x, z, t)= 1 2 X m A m (z)E (m) y (x)e i(!t mz) + c.c (5.9)
To say some words ab out the ab ove equation, what precisely we have done is that we used unperturbed eigenmode expansion for solving the perturbation. This is very much similar to or analogous to time dependent perturbation theory in quantum mechanics1 Each m th eigenmode satisfies

2 ✓ @ 2 @x 2 2 m ◆ E (m) y (r)+! 2 µ"(r)E (m) y (r)=0
(5.10)

Our goal is to develop an expansion for the coupling between amplitudes of the individual modes of the waveguide.

• If there is no coupling(i.e. no perturbation) : we will get the independent some of the eigenmodes in (5.9).

• If there is a coupling: then modes will vary with position.

Let us derive equation for amplitude by substituting (5.9)i n( 5.8)

e i!t 1 2 X m h ✓ d 2 A m (z) dz 2 2i m dA m (z) dz +(! 2 µ"(r) 2 m )A m ◆ E (m) y (x)e i mz + @ 2 E (m) y @x 2 A m e i mz i + c.c = µ @ 2 P pert @t 2 (5.11)
For further simplification we will make use of the paraxial approximation discussed in section(1.5). We assume slow variation along the axis of propagation z,

d 2 A m (z) dz 2 ⌧ m dA m (z) dz (5.12)
Then the above equation is simplified to, also making use of (5.10)

X m i m dA m (z) dz E (m) y (x)e i(!t mz) + c.c = µ @ 2 P pert @t 2 (5.13)
To simplify this further we make use of orthogonality relation of the mo des, dA ( )

s (z) dz e i(!t+ mz) dA (+) s (z) dz e i(!t mz) c.c = i 2! @ 2 @t 2 Z 1 1 dxP pert E (s) y (x), (5.14)
it is important to recall that the m summation in (5.13), contains two terms ±|m| for each |m| involving E (m) y (x). Where (+) designates the propagation along +z axis and ( )d e s i gnates the propagation along z axis.

We can see from (5.14), that amount of variation of s th amplitude with respect to propagation axis is proportional to the degree of overlap of perturbed polarization(P pert )w i t h modal distribution field E (s) y (x). Equation (5.14)w i l lb et h ep l a t f o r mo rp r i m a r ye q u a t i o nf o rd i ff e r e n tm o d ei n t e r a c t i o n s . Different situation will correspond to different driving term i.e. RHS of (5.14).

We consider the 2D oriented scattering network defined in the main text, and repro duced in figure 5.1 for the time period of N =2s t e p s . W ed e t a i li nt h i ss e c t i o nt h ed e r i v a t i o no f the evolution operator, its quasienergies and the center of mass trajectories showing Bloch oscillations.

Derivation of the Floquet evolution operator

The oriented network shown in figure 5.1 is constituted of two distinct successive scattering nodes S 1 and S 2 .T h ei n c o m i n ga r r o wf r o ml e f t( r i g h t )t o w a r dt h eS 1 node is denoted by a 1 (b 1 ). It denotes a time evolution from the time step j 1t ot i m es t e pj.S i m i l a r l y ,t h e outgoing arrows are denoted by a 2 ,b 2 . These four oriented paths and the two scattering nodes constitute the unit cell of the network, that is emphasized with a dashed square in figure 5.1.T h ed y n a m i c si st h e ng i v e nb yt h er e l a t i o n s .16) which can be grouped together as The current scattering matrix notations correspond to that of the main text (Eq.( 2)), as follows a 1 (j 1,l)=↵ j 1 l , b 1 (j 1,l)= j 1 l ,similarly ,a 2 (j, l +1) = ↵ j l+1 , b 2 (j, l 1) = j l 1 .

✓ a 2 (j, l +1) b 2 (j, l 1) ◆ = S 1 ✓ a 1 (j 1,l) b 1 (j 1,l) ◆ (5.15) and ✓ a 1 (j 1,l) b 1 (j 1,l) ◆ = S 2 ✓ a 2 (j 2,l+1) b 2 (j 2,l 1) ◆ , ( 5 
0 B B @ a 1 (j 1,l) b 1 (j 1,l) a 2 (j, l +1) b 2 (j, l 1) 1 C C A = ✓ 0 S 2 S 1 0 ◆ 0 B B @ a 1 (j 1,l) b 1 (j 1,l) a 2 (j 2,l+1) b 2 (j 2,l 1) 1 C C A . (5.17) S 2 φ 2 S 2 φ 1 S 1 S 2 φ 2 S 2 φ 1 S 1 φ 2 S 2 φ 1 S 1 S 2 φ 2 S 2 φ 1 S 1 φ 2 S 2 φ 1 S 1 φ 2 S 2 φ 1 S 1 S 2 φ 2 S 2 φ 1 S 1 φ 2 S 2 φ 1 S 1 φ 2 S 2 φ 2 S 2 φ 1 S 1 φ 2 S 2 φ 2 S 2 a ( m -1 , l ) 1 b ( m -1 , l ) 1 a ( m , l + 1 ) 2 b ( m , l -1 ) 2 . . . m-1 m m+1 . . . ••• l-1 l l+1 ••• e y e x
Using translation symmetry of the scattering network, we can Fourier decompose as

✓ a m (j, l) b m (j, l) ◆ = X kx,ky e i k.(lêx+jêy)/2 ✓ a m (k x ,k y ) b m (k x ,k y ) ◆ ,m =1, 2 . (5.18) This gives, 0 B B @ a 1 (k x ,k y ) b 1 (k x ,k y ) a 2 (k x ,k y ) b 2 (k x ,k y ) 1 C C A = 0 B B @ 00 
s 11 2 e ikx/2 e iky/2 s 12 2 e ikx/2 e iky/2 00 s 21 2 e ikx/2 e iky/2 s 22 2 e ikx/2 e iky/2 s 11 1 e ikx/2 e iky/2 s 12 1 e ikx/2 e iky/2 00 s 21 1 e ikx/2 e iky/2 s 22 1 e ikx/2 e iky/2 00

1 C C A 0 B B @ a 1 (k x ,k y ) b 1 (k x ,k y ) a 2 (k x ,k y ) b 2 (k x ,k y ) 1 C C A (5.19) ~a 1 ( k) ~a 2 ( k) ! = 0 S 2 ( k) S 1 ( k)0 ! ~a 1 ( k) ~a 2 ( k) ! (5.20)
where ~a 1 ( k)={a 1 ( k),b 1 ( k)} and s m 1 m 2 j (m 1 ,m 2 =1, 2), are the scattering coefficients of the scattering matrix S j . In the main text, we choose the specific form

S j = ✓ cos ✓ j i sin ✓ j i sin ✓ j cos ✓ j ◆ .
(5.21) although, the calculations are independent of this specific form. Squaring Eq.(5.20)a l l o w s one to define the Floquet operators starting for different time origins as

S 2 ( k)S 1 ( k)0 0 S 1 ( k)S 2 ( k) ! = U 21 F ( k)0 0 U 12 F ( k) ! (5.22)
Substituting Eq.( 5.21) gives more specifically

U 21 F ( k)= ✓ e iky (e ikx cos ✓ 1 cos ✓ 2 sin ✓ 1 sin ✓ 2 ) ie iky (cos ✓ 2 sin ✓ 1 +e ikx cos ✓ 1 sin ✓ 2 ) ie iky (cos ✓ 2 sin ✓ 1 +e ikx cos ✓ 1 sin ✓ 2 )e iky (e ikx cos ✓ 1 cos ✓ 2 sin ✓ 1 sin ✓ 2 ) ◆ (5.23) U 12 F ( k)= ✓ e iky (e ikx cos ✓ 1 cos ✓ 2 sin ✓ 1 sin ✓ 2 ) ie iky (e ikx cos ✓ 2 sin ✓ 1 +cos✓ 1 sin ✓ 2 ) ie iky (e ikx cos ✓ 2 sin ✓ 1 +cos✓ 1 sin ✓ 2 )e iky (e ikx cos ✓ 1 cos ✓ 2 sin ✓ 1 sin ✓ 2 ) ◆ (5.24)
Then, we add a phase to the b j amplitudes, that is to the blue arrows in ( 5.19), s 12 2 and s 22 2 will be multiplied by e i 1 , likewise, s 12 1 and s 22 1 are multiplied by e i 2 .T h a tg i v e s

U 21 F ( k, )=e iky ✓ e ikx cos ✓ 1 cos ✓ 2 e i 1 sin ✓ 1 sin ✓ 2 i(e i 2 cos ✓ 2 sin ✓ 1 +e ikx cos ✓ 1 sin ✓ 2 ) i(e i 1 cos ✓ 2 sin ✓ 1 +e ikx cos ✓ 1 sin ✓ 2 )e ikx cos ✓ 1 cos ✓ 2 e i 2 sin ✓ 1 sin ✓ 2 ◆ (5.25) U 12 F ( k, )=e iky ✓ e ikx cos ✓ 1 cos ✓ 2 e i 2 sin ✓ 1 sin ✓ 2 i(e ikx cos ✓ 2 sin ✓ 1 +e i 1 cos ✓ 1 sin ✓ 2 ) i(e ikx cos ✓ 2 sin ✓ 1 +e i 2 cos ✓ 1 sin ✓ 2 )e ikx cos ✓ 1 cos ✓ 2 e i 1 sin ✓ 1 sin ✓ 2 ◆ .
(5.26)

These two evolution operators describe the same physical system, and either of them can be used to compute the quasienergy spectrum and the winding numbers. The common phase factor exp{ ik y } in Eqs.(5.25)-(5.26) is reminiscent of the preferential orientation of the network from top to bottom. This is the only k y dependence of the evolution operator on the network. In the main text, the Floquet operator refers to U 21 F where this phase factor is factorized out, that is

U F (k x , ) ⌘ U 21 F (k, )e iky (5.27)
and we set k x = k through out the paper. The eigenvalues of U F are defined as e i✏T ⌘ e i" , where the dimensionless quasienergy " is the quantity considered in the main text. Then the Floquet operator can usefully be factorized as

U F = B 0 (k)S 2 D( 2 )B 1 (k)S 1 D( 1 ), (5.28) 
where

B 1 (k)= ✓ 10 0e ik ◆ ,B 0 = ✓ e ik 0 01 ◆ ,D j = D( j )= ✓ 10 0e i j ◆ .
(5.29)

Derivation of the quasienergy bands

Let us derive now the quasienergy bands of the scattering model, that is, diagonalizing the Floquet operator. This can be carried out analytically either by a direct diagonalization of U F or equivalently by decomposing the evolution as in Ref [START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF]. Let us detail the second strategy. Using the same terminology as in the main text, where right going arrows are denoted with ↵ and left going with ,t h e nt h et i m ee v o l u t i o n is described by

↵ m+1 l =( c o s ✓ 1 ↵ m l+1 + i sin ✓ 1 m l+1 )e i 1 , m+1 l =c o s ✓ 1 m l 1 + i sin ✓ 1 ↵ m l 1
(5.30)

for the first step and

↵ m+2 l 1 = cos ✓ 2 ↵ m+1 l + i sin ✓ 2 m l e i 2 , m+2 l 1 =c o s ✓ 2 m l 2 + i sin ✓ 2 ↵ m l 2
(5.31)

for the second (final) step. Using Floquet-Bloch ansatz,

✓ ↵ m l m l ◆ = ✓ A B ◆ e i"m/2 e ikl/2
(5.32) and substituting Eq.(5.30)i n( 5.31)u s i n gE q . ( 5.32)g i v e st h ed e t e r m i n a n tp r o b l e m e 2i" ⇥ cos ✓ 1 cos ✓ 2 e ik e i( 1 + 2 ) +e ik sin ✓ 1 sin ✓ 2 e i 1 +e i 2 ⇤ e i" +e i( 1 + 2 ) =0.(5.33)

By rewriting the Eq.(5.33), we get the relation cos

✓ " 1 + 2 2 ◆ =c o s ✓ 1 cos ✓ 2 cos ✓ k + 1 + 2 2 ◆ sin ✓ 1 sin ✓ 2 cos ✓ 1 2 2 ◆ , that leads to "(k, )=± cos 1  cos ✓ 1 cos ✓ 2 cos ✓ k + 1 + 2 2 ◆ sin ✓ 1 sin ✓ 2 cos ✓ 1 2 2 ◆ + ✓ 1 + 2 2 ◆ . (5.34)
We can finally substitute the general form for the 's to j =(m j /n j ) ,togettheexpression

"(k, )=± cos 1  cos ✓ 1 cos ✓ 2 cos ✓ k +  m 1 n 1 + m 2 n 2 2 ◆ sin ✓ 1 sin ✓ 2 cos ✓ m 1 n 1 m 2 n 2 2 ◆ +  m 1 n 1 + m 2 n 2 2 (5.35)
for the quasienergy bands.

Derivation of the group velocities

Let us introduce

∆ ⌘ m 1 n 1 m 2 n 2 and ∆ + ⌘ m 1 n 1 + m 2 n 2 .
Then the "synthetic group velocity" is defined as v (k, ) ⌘ @"(k, ) @ (5.36)

where we substitute the Eq. (5.35) of the quasienergy bands to get

v (k, )= 1 2 ∆ + ⌥ 1 2 ∆ sin ✓ 1 sin ✓ 2 sin 1 2 ∆ ∆ + cos ✓ 1 cos ✓ 2 sin k + 1 2 ∆ + q 1 cos ✓ 1 cos ✓ 2 cos k + 1 2 ∆ + sin ✓ 1 sin ✓ 2 cos 1 2 ∆ 2 .
(5.37)

Similarly, the transverse group velocity is

v k (k, )= @"(k, ) @k (5.38) v k (k, )=± cos ✓ 1 cos ✓ 2 sin k + 1 2 ∆ + q 1 cos ✓ 1 cos ✓ 2 cos k + 1 2 ∆ + sin ✓ 1 sin ✓ 2 cos 1 2 ∆ 2 .
(5.39)

For our case (m 1 =1,n 1 =1,m 2 = 2,n 2 = 1), energy dispersion relation simplifies to

"(k, )=± cos 1  cos ✓ 1 cos ✓ 2 cos ✓ k 2 ◆ sin ✓ 1 sin ✓ 2 cos ✓ 3 2 ◆ + 2 .
(5.40)

Similarly, the expression for both the group and the synthetic group velocity is

v gk (k, )=± cos ✓ 1 cos ✓ 2 sin ⇣ k 2 ⌘ r 1 ⇣ cos ✓ 1 cos ✓ 2 cos ⇣ k 2 ⌘ sin ✓ 1 sin ✓ 2 cos ⇣ 3 2 ⌘⌘ 2 , (5.41) v g (k, )= 1 2 ⌥ 3 2 sin ✓ 1 sin ✓ 2 sin ⇣ 3 2 ⌘ + 1 2 cos ✓ 1 cos ✓ 2 sin ⇣ k 2 ⌘ r 1 ⇣ cos ✓ 1 cos ✓ 2 cos ⇣ k 2 ⌘ sin ✓ 1 sin ✓ 2 cos ⇣ 3 2 ⌘⌘ 2 .
(5.42)

Mathematically, the numerator in the Eq.(5.38) for group velocity contains the term sin k + 1 2 ∆ + , which can essentially change the sign on changing , for some fixed value of k = k 0 . It only happens because ∆ + is non-zero in case of winding in that gives rise to the wave-packet oscillations.

Along the same lines, we can calculate the motion of centre of mass from Eq. (5.41), for arbitrary k as,

X(t 0 ,k)= Z t 0 0 d v gk ( (t),k) ✓ @ @t ◆ 1 , = Z t 0 0 d v gk ( (t),k) (5.43)
where in the last equation, we used the case where varies linearly with the time with unit slope, and t 0 is the y axis in Fig. 3.11.

Calculation of the winding number ⌫

Let us compute the winding number ⌫ defined in the main text, for N =2time-steps,wherethe Floquet operator U F (k, ) given in Eq. (5.28)w i t h 1 =( m 1 /n 1 ) and 2 =( m 2 /n 2 ) .W h e n

|m 1 /n 1 |6 = |m 2 /n 2 |,t h e n ⌫ = 1 2⇡i Z T φ 0 d Tr ⇥ U 1 F @ U F ⇤ (5.44) = 1 2⇡i Z T φ 0 d Tr h D † 1 S † 1 B † 1 (k)D † 2 S † 2 B † 0 (k)@ {D 1 S 1 B 1 (k)D 2 S 2 B 0 (k)} i (5.45) = 1 2⇡i Z T φ 0 d Tr h D † 2 @ D 2 + D † 1 @ D 1 i (5.46)
where the period of T of the quasienergy in is inferred from the analytical expression (5.35). More precisely, it reads

T =2⇡ LCM " 2 m 1 n 1 m 2 n 2 , 2 m 1 n 1 + m 2 n 2 # (5.47)
where LCM stands for least common multiple. Replacing the D j 's matrices by their expression, one gets

⌫ = 1 2⇡i Z 2⇡ LCM " 2 m 1 n 1 m 2 n 2 , 2 m 1 n 1 + m 2 n 2 # 0 d Tr  i m 1 n 1 + i m 2 n 2 , = 2 LCM " 1 m 1 n 1 m 2 n 2 , 1 m 1 n 1 + m 2 n 2 # ✓ m 1 n 1 + m 2 n 2 ◆ , = 2 LCM  2n 1 n 2 m 1 n 2 m 2 n 1 , 2n 1 n 2 m 1 n 2 + m 2 n 1 ✓ m 1 n 1 + m 2 n 2 ◆ , ⌫ = T 2⇡ ✓ m 1 n 1 + m 2 n 2 ◆ .
(5.48)

Relation between winding number and the stationary points

Consider a situation where the quasienergy bands wind along , and let us count the number of stationary points dXc dt in Eq.( 5.43) over one Bloch period of oscillation. These points are determined by the vanishing of the group velocity v k . Therefore, it suffices to find the number of roots in of Eq.(5.38), which are given by cos ✓ 1 cos ✓ 2 sin (5.53)

✓ 1 2 ∆ + ◆ =0 (5.
This set of equations corresponds to a scattering network subject to a homogeneous spatial phase gradient V = E • l,w h e r eE = 0 /2 can be interpreted as a homogeneous electric field along the l direction. When considering an initial wavepacket, the time evolution results in standard Bloch oscillations with period T =2⇡/E =4⇡/ 0 .

The same gauge transformation can be applied to each of the two-steps of the model with n =2 discussed in the main text subject to an adiabatic increase of (j)=+ 0 j (Fig. 3 of the main text).

Recall that in the first step 1 (j)=( m 1 /n 1 ) 0 j and in the second step 2 (j)=( m 2 /n 2 ) 0 j. The transformation (5.52) results in a set of the for each of the two Floquet steps, each set characterized by a constant electric field in space. In the first step, the electric field is E 1 =( m 1 /n 1 ) 0 /2, and in the second step is E 2 =( m 2 /n 2 ) 0 /2. Therefore, we get back the Bloch oscillation picture in this case with an electric field that alternates between E 1 and E 2 at each subsequent step. The period T B of the oscillations can be computed from the average electric field (E 1 + E 2 )/2o v e raf u l lF l o q u e tc y c l e .

The above discussion can also be simply understood from basic classical electrodynamics arguments [START_REF] Krieger | Time evolution of Bloch electrons in a homogeneous electric field[END_REF][START_REF] Zak | Comment on "Time evolution of Bloch electrons in a homogeneous electric field[END_REF]. Indeed, in its most general form, an electric field can be expressed as E = rV + @A/@t.T h eE q . ( 5.52) is the gauge transformation that transforms a gradient of spatial potential V , to a time-varying vector potential A.

Fictitious uniform electric field from a fictitious vector potential

The above discussion can also seen from the Floquet operator Eq.(5.28) (also defined in eq.( 3) in the main text) using the simplification as in Eq.(3.16), U F (k, )=e i( 1 + 2 )/2 B(k) S 2 D( 2 ) B(k) S 1 D( 1 ) , (5.54)

where B and D are defined in Eq.(??) and Eq.(??). Then U F can be further simplified by combining two diagonal matrices D and B together, to give C as U F (k, )=e i( 1 + 2 )/2 C1 ( k1 ) S 2 C2 ( k2 ) S 1 , (5.55)

where Cj ( kj )= e i kj /2 0 0e i kj /2

!

(5.56)

where kj = k j . This form of the Floquet operator can be thought as describing a 1D lattice that is periodically driven in the presence of a time-varying vector potential A(t)=Et.T h ep e r i o dT of this driving consists of two-steps where the vector potential redefines the Bloch momentum via Peierls' substitution. In the first step, for some fictitious charge q, 1 = qA 1 = qE 1 t that generates a fictitious electric field of magnitude E 1 . Similarly, during the second step, 2 = qA 2 = qE 2 t. This electric field translates in our case as 1 = 2 = 2qE and 2 =+ =+qE. Thus, it gives rise to a net electric field E 1 + E 2 6 = 0, which is responsible for the Bloch oscillations. 

◆

. This gives the quasienergies " ± (k, )

" ± (k, )=± cos 1  cos ✓ 1 cos ✓ 2 cos ✓ k 2 +∆ + 2 ◆ sin ✓ 1 sin ✓ 2 cos ✓ + k 2 ∆ 2 ◆ + + k 2 +∆ + 2 (5.58)
where, + ⌘ r 1 s 1 + r 2 s 2 and ⌘ r 1 s 1 r 2 s 2 . In the absence of a quasienergy winding along (or k), the corresponding + (∆ + ) terms vanish. The group velocity can then be derived exactly as

v g± ( , k)= 1 2 + ± 1 2 + sin ✓ 1 sin ✓ 2 sin ⇣ + k 2 ∆ 2 ⌘ cos ✓ 1 cos ✓ 2 sin ⇣ k 2 +∆ + 2 ⌘ r 1 ⇣ cos ✓ 1 cos ✓ 2 cos ⇣ k 2 +∆ + 2 ⌘ sin ✓ 1 sin ✓ 2 cos ⇣ + k 2 ∆ 2 ⌘⌘ 2
(5.59)

Next, the winding number in k can be computed similarly to ⌫ as (5.63) where | (k, t)i is an arbitrary evolving Bloch state, i.e. | (k, t)i = U (k; t, 0)| (k, 0)i with U (k; t, 0) the Block evolution operator from time t = 0 to arbitrary time t<T .R e w r i t i n g U (k; t, 0) = U (k; t, T )U (k; T,t), and using the relation i @U F @k = R T 0 dtU(k; T,t) @H(k,t) @k U (k; t, 0), where H(k, t + T )=H(k, t) is the periodically driven Bloch Hamiltonian, the mean current can be written in terms of the Floquet operator only

⌫ k ⌘ 1 2⇡i Z T k 0 dk Tr ⇥ U 1 F @ k U F ⇤ (5.60) = 1 2⇡i Z T k 0 dk Tr  i r 1 s 1 + i r 2 s 2 , = 2 LCM " 1 r 1 s 1 r 2 s 2 , 1 r 1 s 1 + r 2 s 2 # ✓ r 1 s 1 + r 2 s 2 ◆ , = 2 LCM  2s 1 s 2 r 1 s 2 r 2 s 1 , 2s 1 s 2 r 1 s 2 + r 2 s 1 ✓ r 1 s 1 + r 2 s 2 ◆ , ⌫ k = T k 2⇡ ✓ r 1 s 1 +
J = 2⇡/T k T Z T k 0 dk 2⇡i h (k, 0)| U 1 F @U F @k | (k, 0)i (5.64)
Equivalently, one assigns a mean displacement ∆x = TJ to this current.

Adiabatic regime

Consider an instantaneous eigenstate ' (n) (k, t) of H(k, t), such that (k, 0) = ' (n) (k, t = 0). In the adiabatic limit, ' (n) (k, t) remains an eigenstate of H(k, t) at each time. After a cycle t :0! T , ' (n) (k, 0) can only acquire a phase, which is by definition the quasienergy ✏ n T .I t is thus an eigenstate of the Floquet operator, which therefore allows the spectral decomposition U F = P N n exp( i✏ n T )|' (n) (k, 0)ih' (n) (k, 0)|, so that the mean current (5.64) simply becomes

J (n) ad = 2⇡/T k T Z T k 0 dk 2⇡
@" n @k (5.65)

where the dimensionless quasienergy " n = ✏ n T corresponds to that of the main text. The adiabatic pumped current is quantized in terms of the quasienergy winding numbers along the k direction, as found in Ref [START_REF] Kitagawa | Topological characterization of periodically driven quantum systems[END_REF]. As pioneered by Thouless [START_REF] Thouless | Quantization of particle transport[END_REF], this quantization can be consistently rephrased in terms of the Chern numbers C n of the adiabatically driven eigenstates ' (n) (k, t) that defined a U (1) fiber bundle over the two-dimensional torus span by (k, t), assuming the instantaneous energy band E n (k, t) (the eigenvalue of H(k, t)) remains well separated from the other bands. One way to see the connection between the two topological points of view consists in identifying the quasienergy in terms of the dynamical phase and the geometrical Berry phase

✏ n T = E n T + i Z T 0 dth' (n) (k, t)|@ t |' (n) (k, t)i .
(5.66)

Taking, the "winding" of this expression, that is applying R dk@ k yields

Z dk 2⇡ @ k " n = i Z dk 2⇡ Z T 0 @ k dth' (n) (k, t)|@ t |' (n) (k, t)i (5.67)
since the instantaneous energy band E n (k, t) cannot wind along k. Inserting the relation @ k h'|@ t 'i = h@ k '|@ t 'i h@ t '|@ k 'i+@ t h'|@ k 'i, into the right-hand side of (5.67), the quasienergy winding reads

Z dk 2⇡ @ k " n = 1 2⇡ Z T 0 Z dkF (n) k,t + Z T 0 @ t Z (n) (t) (5.68)
where F

(n) k,t is the Berry curvature and Z (n) (t) is the time-dependent Zak phase of the instantaneous state ' (n) ,i . e . Z (n) (t) ⌘ i R dkh' (n) (k, t)|@ k ' (n) (k, t)i. After an adiabatic cycle, one has Z (n) (T )= Z (n) (0), which leads to the relation between the winding number ⌫ 

Non-adiabatic regime

We now consider the case where the instantaneous eigenstates ' (n) (k, t) do not remain eigenstates during the evolution, so that the total mean current JN reads

JN = N X n=1 Z T 0 dt T Z T k 0 dk T k h' (n) (k, t)| dx(t) dt |' (n) (k, t)i (5.71) = 2⇡/T k T Z T k 0 dk 2⇡i tr  U 1 F @U F @k (5.72) = 2⇡/T k T ⌫ k (5.73)
with ⌫ k 2 Z is the winding number of the map k 2 S 1 ! U F 2 U (N ), and whose another expression is given by Eq.( 9) of the main text. Moreover, since tr U 1 F @U F @k = @ @k ln det U F ,thiswindingn um ber reads

⌫ k = N X n=1 Z T k 0 dk 2⇡ @( ✏ n T ) @k = N X n=1 Z T k 0 dk 2⇡
@" n @k (5.74) so that the mean displacement ∆x = T JN , after P periods T , can be expressed in terms of the sum of the winding of the quasienergies of all the bands

∆x = P 2⇡ T k N X n=1 Z T k 0 dk 2⇡
@" n @k (5.75)

Chapter 6

Conclusion and perspectives

This thesis has presented a theoretical exploration of topological properties of 2D periodically driven systems in the context of photonics. In the first part, topological regimes beyond that of band insulators are investigated. We have shown the existence of two new topological regimes: the first one is analogous to a semimetallic phase, while the other one exploits the winding of the spectrum thus having no static counterpart. Despite the existence of gapless edge states along with the gapless bulk states, in both the cases, their topological description strongly differs. In the winding regime, one can define a meaningful topological invariant by continuously deforming the bands to end up with a direct bandgap. In this regime, there exists an interplay of two topological properties: one is the winding of the quasienergy bands, and the other is the presence of chiral edge states in finite geometry. The former property manifests as Bloch oscillations of wavepackets, where stationary points in the oscillations are related to the winding number of the bands. This topological property can thus be probed directly in an experiment by the state-of-art technology. For instance, in waveguide arrays [START_REF] Bellec | Non-diffracting states in one-dimensional Floquet photonic topological insulators[END_REF][START_REF] Rechtsman | Photonic Floquet topological insulators[END_REF], circular fibers [START_REF] Regensburger | Photon Propagation in a Discrete Fiber Network: An Interplay of Coherence and Losses[END_REF][START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF];W i m m e r , [START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF][START_REF] Wimmer | Optical diametric drive acceleration through action-reaction symmetry breaking[END_REF] or even quantum walks (L. [START_REF] Zhou | Floquet semimetal with Floquet-band holonomy[END_REF]. Moreover, the experiments are currently going in the group of Alberto Amo, PhLAM Lille.

In the second regime (semimetallic), we see how degeneracies can be specifically manipulated at the quasienergy 0 or ⇡. Unlike the previous regime, as a consequence of the absence of any kind of gap (direct or indirect) the topology can be captured by enclosing the degeneracies in parameter space and calculating the Berry flux piercing through the enclosed surface.

In the second part of this thesis, we explored how topological properties can be engineered in 1D arrays of evanescently coupled optical waveguides. This is made possible by the interplay between crystalline symmetries of the network and the fundamental symmetries responsible for topology like chiral symmetry. However, due to the generalities of the argument, these concepts can easily be extended to higher dimensions, as well. In these same 1D waveguide networks, we identify the link between breaking bipartiteness of the structure and existence of a symmetry that has been overlooked before, namely the shifted-particle hole symmetry. We clearly point out in the same waveguide arrays its dissimilarity with respect to usual particle-hole symmetry. Similar to particle-hole symmetry, it is also responsible for giving rise to non-trivial topological properties.. Future directions of this study could include how non-Hermiticity can affect the Bloch oscillations and the definition of winding number. In other works, Bloch oscillations have been observed in non-Hermitian systems that give rise to interesting phenomena, like unidirectional (or non-reciprocal) Bloch oscillations [START_REF] Longhi | Quantum-optical analogies using photonic structures[END_REF]Y.-l. Xu et al. 2016), super-Bloch oscillations [START_REF] Turker | Sup er Blo ch oscillation in a [Formula presented] symmetric system[END_REF], secondary emissions and resonant restoration of PT symmetry [START_REF] Wimmer | Observation of Bloch oscillations in complex PT-symmetric photonic lattices[END_REF], there has been a proposal to probe the non-Hermitian skin effect (i.e. squeezing of bulk states to the edges)1 by means of frequency Bloch oscillations (instead of usual lattice Bloch oscillations) [START_REF] Qin | Discrete diffraction and Bloch oscillations in non-Hermitian frequency lattices induced by complex photonic gauge fields[END_REF].

Likewise, we can ask the non-Hermitian effects to quantized drift. In the recent works, it was seen that topological pumping in non-Hermitian systems can be realized without any dynamical control of (any) parameters of the Hamiltonian. This pumping can occur spontaneously, without having any analog in Hermitian systems [START_REF] Yuce | Spontaneous topological pumping in non-Hermitian systems[END_REF]. Quite recently, the spectral topology of non-Hermitian pumping has been classified using graph-theory, which is distinct from conventional topological classifications of the eigenstate (Lee, L. Li, et al. 2019).
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 18 Figure 1.8: Directional coupling of two waveguides
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 19 Figure 1.9: Butt coupling coefficient

  dA

  When light undergoes diffraction in air (continuous medium) it has normal behaviour of spreading as shown in Fig 1.10(a), while in the discrete case of i.e., evanescently coupled waveguide arrays in Fig 1.10(c) light undergoes discrete diffraction as shown in Fig 1.10(b) (Eisenberg et al. 2000;T .P e r t s c h ,Z e n t g r a f ,e ta l .2002; Szameit, Dreisow, and Stefan Nolte 2012;S z a m e i t and Stefan Nolte 2010).

  a n do b s e r v e di n1 De r b i u m -d o pe dc u r v e dw a v e g u i d ea r r a y s( C h i od oe ta l .2006). The relation between curving and the transverse potential becomes evident by going into the frame of reference of curved coordinates of the waveguide, where there is an extra term in equation(1.11), acting as a transverse force responsible for optical Bloch oscillations.

Figure 1

 1 Figure 1.14: A pair of circular fibers (or waveguides) coupled through a coupler shown in black. The dimensions are L ⇠ 5km and ∆L =8m.

Figure 1

 1 Figure 1.15: Recording of time multiplexing of pulses in one of the loops. The pulses color represent the respective loop they come from, where red correspond to loop v and blue to loop u.

Figure 1

 1 Figure 1.16: Optical mesh lattice generated by two time scales, where the shorter time scale is encoded along the transverse axis (x)andthelongertimescalealongthepropagationaxis (y).

Figure 1 .

 1 Figure 1.17: Experimental setup of a photonic quantum walk. Here, the degrees of freedom are the two polarization states of photons, namely horizontal |Hi and vertical |V i. This polarization in a single photon is encoded through SPDC. The photon undergoes a polarization-dependent rotations R(✓ j=1,2 ), and translations T j=1,2 .I m a g e i s t a k e n f r o m Kitagawa, Matthew A Broome, et al. 2012.

Figure 1 .

 1 Figure 1.21: The higher homotopy groups ⇡ n for n dimensional spheres denoted as S n .T h e 0 entries show trivial group, where the loops or higher dimensional enclosing surfaces can be shrunk to a point. The non-zero entries show the non-trivial part either infinite cyclic Z or finitely cyclic Z m ,f o rm 6 = {0, 1}.T a k e nf r o mR e f ( P r o g r a m2013).

Figure 1 .

 1 Figure 1.22: The interpolating map H from loop 1 to 2

Figure 1 . 26 :

 126 Figure 1.26: The edge state bridges the bulk gap. It leaves the lower band and merges to the upper band when varying k y .T h i si sr e f e r r e dt oa sas p e c t r a lfl o w .T h i sl o w e rb a n da s lost one state, where this is captured by C = 1, while the upper band has C =+1sinceit has gained one state.

  Figure 2.2: Tight binding model with Floquet Hamiltonian

  ;F r u c h a r t2016;M o r i m o t oe ta l .2017; Nathan et al. 2015; Roy and Harper 2017;M .S .R u d n e re ta l .2013;Y a o ,Y a n ,e ta l .2017

Figure 2

 2 Figure 2.3: 1D waveguide array when the couplings are (a) constant along z,a na n a l o g u eo f static Hamiltonian, (b) periodic along z,aa n a l o g u eo fpe r i od i c a l l yd r i v e ns y s t e m s

Figure 2

 2 Figure 2.4: Bipartite structure of a lattice, where there is no coupling within the family only between the families

Figure 2

 2 Figure 2.6: (a) Lieb lattice containing three types of atoms denoted by a, b and c,w h e r e hoppings are only among nearest neighbours, namely ↵, ,u n i t c e l li se m p h a s i z e db yd o t t e d square in (b)

Figure 2 . 7 :

 27 Figure 2.7: Symmetries compatibility relation in Photonic lattices

Figure 2

 2 Figure 2.8: 1D waveguide arrays with 2 WG in a unitcell with a period Z (a) with zero-onsite potential is BPS and z -Ref (b) with non-zero time varying potential shown as a varying color along z axis breaks BPS and z -Ref

Figure 2

 2 Figure 2.10: (a) 3 WGs PHS network with bipartite structure, considering its finite version (a) edge states are robust at " = ⇡ under a change in interface coupling parameter, whereas (b) breaking of bipartiteness destroys the topological states.

Figure 2

 2 Figure 2.11: (a) 3 WGs s-PHS network, with edge state spectrum (b) appearance of edge states in presence of s-PHS (b) breaking of s-PHS

Figure 2

 2 Figure 2.12: (a) 3 WGs with z -RS network, with edge state spectrum (b) absence of edge states

Figure 2

 2 Figure 2.13: (a) 2Wg with Inversion Symmetry network, with edge state spectrum (b) absence of edge states

Figure 3 . 1 :

 31 Figure 3.1: Sketch of a scattering network, where at each scattering node S the number of incoming arrows are the same as the number of outgoing ones. Thus, preserving unitarity of S.

  ;K r a u s ,R i n g e l ,e ta l .2013;K r a u sa n d Zilberberg 2012;T a n g p a n i t a n o ne ta l .2016;Z i l b e r b e r ge ta l .2018)a n di nc o l da t o m s( M . Lohse et al. 2016;M i c h a e lL o h s ee ta l .2018; Nakajima et al. 2016). Model I: Wimmer, Hannah M Price, et al. 2017.

  Figure 3.4: Topological phase diagram showing the presence of anomalous topological regime (color orange) and trivial regime (color white) as a function of coupling parameters. The boundaries between the two colors corresponds to the closing of the spectral gap of quasienergy at " =0,⇡.

Figure 3

 3 Figure 3.6: Floquet Chern insulator for N =4t i m es t e p s ,f o r 1 =+ 2 , 2 = , 1 =0 , and 1 =+ .

  Figure 3.7: Topological transition on changing the flux Φ through the unitcell (a) trivial metal and (b) topological metal, from Ref[START_REF] Ying | Symmetry-Protected Topological Metals[END_REF] 

Figure 3 .

 3 Figure 3.10: Lattice model realization of Bloch oscillation due to time dependent vector potential A.

Fig. 3 .

 3 11 shows the standard Bloch oscillation with N S = |⌫ |=2 ,a n dt h em o r ee x o t i co s c i l l a t i o n sw i t hN S = |⌫ |=6 , 8 are shown in Fig.3.12.T h eo p p o s i t es i g nf o r⌫ will give rise to the trajectory in out of phase to their counterpart. The Fig.3.13 shows an interplay of winding number, Bloch period, and the net phase in the unitcell ∆m/∆n = 12: Bloch oscillation with sub-oscillations for (a) ⌫ =6respectiv ely(4,-1,1,1),⇡/4, ⇡/4 0.2, and (b) ⌫ =8f o r( 9 , -1 , 2 , 2 ) ,⇡/4,⇡/4 0.2. The dashed black lines represents the data from analytical calculation that fits perfectly with simulation. r T and the net non-zero phase shift in the unit cell ∆m/∆n.B yfi x i n gt h ev a l u eo f n also decreases the value of ⌫ . By fixing the value of (c)-(d) ⌫ =4,onincreasingthe ixing (e)-(f) ∆m/∆n = 1/2, increasing |⌫ | (or decreasing ⌫ )a l s oi n c r e a s e st h ev a l u e

Figure 3 .

 3 Figure 3.14: Lattice model realization of Floquet winding bands.

Figure 3

 3 Figure 3.17: Quasienergy in cylindrical geometry bands (a) when both the regimes are ✓ 1 = ⇡/4 0.6,✓ 2 = ⇡/4, which gives trivial insulating regime and (b) anomalous Floquet topological insulating regime when one is ✓ 1 = ⇡/4,✓ 2 = ⇡/4 0.6a n da n o t h e r✓ 1 = ⇡/4 0.6,✓ 2 = ⇡/4.

Figure 3

 3 Figure 3.18: Two-steps scattering network implements the next nearest coupling in the second step. A dashed black rectangle emphasizes the unit cell of this lattice.

Figure 3

 3 Figure 3.21: Quasienergy spectra in cylindrical geometry for ⌫ k = 2, (a) when both the regimes are ✓ 1 = ⇡/4 0.6,✓ 2 = ⇡/4, which gives trivial insulating regime and (b) anomalous Floquet topological insulating regime when one is ✓ 1 = ⇡/4,✓ 2 = ⇡/4 0.6a n da n o t h e r ✓ 1 = ⇡/4 0.6,✓ 2 = ⇡/4.

Figure 3

 3 Figure 3.24: Quasienergy spectra in cylindrical geometry bands (a) when both the regimes are ✓ 1 = ⇡/4 0.6,✓ 2 = ⇡/4, which gives trivial insulating regime and (b) anomalous Floquet topological insulating regime when one is ✓ 1 = ⇡/4,✓ 2 = ⇡/4 0.6a n da n o t h e r ✓ 1 = ⇡/4 0.6,✓ 2 = ⇡/4.

Figure 4

 4 Figure 4.1: A general version of previously oriented scattering lattice. A time period consists of N successive steps. The scattering matrix, along with the phase l,j ,noton lyd e pe n d son time j now but also on the position l.Ab l a c kd a s h e dr e c t a n g l ee m p h a s i z e st h eu n i tc e l lo f this lattice.

  2019;M o n t a m b a u xe ta l .2009b;Z h o n g et al. 2017).
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 46 Figure 4.6: Spectral flow is observed when mass term changes sign, where it cuts twice the x axis.

  4.3)whichremainsstableunderthe perturbation in m + ,a c c o r d i n gt oT a b l e4.2.I tf o l l o w st h a tt h es p e c t r a lfl o wc o e x i s t sw i t h bulk modes and does not bridge a gap, as shown in Fig. 4.7b. Notice that the direction of the spectral flow is the same for B ⇡ and A 0 ,i na g r e e m e n tw i t ht h ec o m m o nv a l u eo ft h e i r topological charge.

  (a) Spectral flow associated to B π (b) Spectral flow associated to A 0 , with stable B 0 .

Figure 4

 4 Figure 4.7: Existence of chiral edge modes where the mass term m + changes sign twice with x (periodic geometry). For degeneracy point (a) A 0 at quasienergy 0, which exists along with the gapless B 0 and another for (b) B ⇡ at quasienergy ⇡.

  deg h B 0 = 1. A similar calculation leads to deg h Cπ =+ 1 ,d e gh Aπ =+ 1 and deg h C 0 =+1.

(Figure 4

 4 Figure 4.10: Quasienergy spectra of the four-step Floquet operator for 1 = 2 = 3 = 4 = in finite geometry as a function of either m + or m .I m p o s i n gav a n i s h i n go fe i t h e r m + or m prevents a gap opening at 0 and ⇡ so that all the spectra are gapless. The two insets (a1) and (e1) show edge states at " =0thatmergetothebulkbandsanddisappear, unlike other chiral edge states for m ± < 0t h a tl i v ei nl oc a lg a p s .

  of coupled mode theory: due to waveguide imperfections

Figure 5 . 1 :

 51 Figure 5.1: 2D oriented two-steps scattering network model with a preferential direction from top to bottom.

  Fig. (5.1), such that b 1 ! b 1 e i 2 and b 2 ! b 2 e i 1 .T h e ni nE q .

  can be expressed in terms of the winding number given by Eq.(5.48) as = p T ⌫ .(5.51)Hence, over one oscillation period, p takes values from the set {1,...,|⌫ |}, and thus the group velocity vanishes ⌫ times. Then, following the same lines, one can easily check that the second derivative also vanishes at these same points. There are therefore ⌫ turning points per period of Bloch oscillation.5.4 Fictitious electric field in the network model 5.4.1 Gauge transformation from a uniform electric field to winding bands with an adiabatic increase ofAs pointed out by M.Wimmer et al. in Ref. (Wimmer, Mohammed-Ali Miri, et al. 2015)i nt h e case of a single step model (N = 1) with an adiabatic increase of the phase factor (j)= 0 j,t h e gauge transformation: set of equations in which the phase factor does not depend anymore on the time step, but presents a uniform gradient of phase :

5. 5

 5 Extended network model for quasienergy winding in k 5.5.1 Derivation of the winding number ⌫ k For an arbitrary winding number in k and , the Floquet operator readsU F (k, )=B 0 (k 2 ) S 2 D( 2 ) B 1 (k 1 ) S 1 D(

k

  of the quasienergy band n in the k direction and the Chern number C n of the adiabatically periodically driven Bloch eigenstate' (n) (k, t) Z dk 2⇡ @ k " n = C n .(5.69)When the ↵ lowest bands are filled, the adiabatic pumped current reads J↵ = the famous Thouless result on adiabatic pumping. Clearly, if all the bands are filled, then JN = ⌫ k = 0 owing to the vanishing sum of the Chern numbers over all the bands.

  

  

Table 1

 1 

		.1: Comparison b etween the platforms
		Waveguides	array	or	Photonic quantum walk
		Optical mesh lattice	
	Ingredients	Classical electromagnetic wave	Photons
	Entanglement	Amplifiers do not preserve quan-
		tum coherence		

  .22)The short time scale is generated by evolution operator itself at intermediate times between initial t i one full period t i + T (2.2). Floquet theory allows us to write the evolution operator with the two contributions as,

	U (t)=V (t)e iH ef f t	(2.23)

where, V (t + T )=V (t)i sk n o w na sp e r i o d i z e de v o l u t i o no p e r a t o rt h a tc o n t a i n st h es h o r t time scales. The above equation is very analogous to equation(2.5), however, in the operator form. In the next chapter, I shall show how the stepwise Hamiltonian (or discrete evolution) can easily be formulated in the scattering matrix framework.

  .51) where z 0 = Z for Chiral operator Γ z . Interestingly, CS can still hold if both of these symmetries are simultaneously broken. This shall motivate us to look for precise condition for CS to hold, e.g. on the structure of Hamiltonian. Since, in stationary case, the CS or BPS Hamiltonian is off-diagonal (see eq.(2.39)). Let us consider a Hamiltonian H(z), which breaks both of the symmetries, namely z -Ref and BPS,

Table 2 .

 2 1: Different symmetries are acting on time-dependent Hamiltonian, evolution operator, and photonic Hamiltonian with their constraints on eigenvalues.

	CS CS CS CS CS CS CS CS CS CS CS CS CS CS CS CS CS

  Thus, in the general situation, we can have two types of winding regime, as summarized in this table:

	Properties	Winding regime of type 1	Winding regime of type 2
	1. Inversion symmetry		
	(responsible symmetry)		

  Relation between the winding number ⌫ k and the quantized drift ∆xLet us introduce the mean current over a Floquet period T as

								r 2 s 2	◆	(5.61)
							
	where T k =2⇡ LCM	r 1 s 1	2	r 2 s 2	, 2 r 1 s 1 +	s 2 r 2	.
	5.6 J ⌘	Z T 0	dt T	j(t)	(5.62)
	that we express in terms of the instantaneous current j(t)
					j(t)=	Z T k 0	dk T k	h (k, t)|	dx(t) dt	| (k, t)i,

As one can generate different lattice geometries by changing the angles, wavelengths and polarizations of laser beams

Since, by restoring inversion symmetry one can define a meaningful topological invariant-in other words, continuously deforming the bands without crossing the transition point.

The full Hamiltonian refers that it is not approximated like in Weyl semimetal, where it is linearized around the band touching.

where we are using the identity r⇥(AE)=rA ⇥ E + Ar⇥E = dA dz (ẑ ⇥ E 1 )+Ar⇥E

This causes the anisotropy in the medium and giving rise to anomalous refraction

This means the identical modes are allowed in both the waveguides. In other words, two copies of same waveguide. By choosing a different geometry for waveguide I with respect to II can give I 6 = II , we are not interested in those cases for the time being. Besides, the amplitudes can still be chosen different by initial condition.

i.e. P j | j ih j |=I d e n t i t y .

In the sense that the system has well defined eigenstates. So, if the system is prepared in one of the eigenstates, it will remain in it forever. The time evolution will only give a definite dynamical phase to the eigenstates depending on the initial and final times.

For a N level system, |↵i will correspond to |↵i =1, 2, •••,N

as Maxwell's equations are already TRS

In general, any gauge dependence can be removed by redefinition. If Γ 2 =e iφ ,t h e nt h eΓ! e -iφ/2 Γ

Not necessarily these points, but also by redefining origin in some cases, e.g., H = H 0 + V sin(!z), then z 0 ! z 0 + ⇡/2

In general, complex couplings can appear in an effective Hamiltonian form. Besides, at most, there can be extra phases, coming from synthetic gauge fields[START_REF] Wimmer | Experimental measurement of the Berry curvature from anomalous transport[END_REF], they can be considered at the same level as Bloch quasimomentum k.T h u s ,t h i sk can be though of as a generalized quasimomenta.

This choice of geometry allows us to get rid of additional edge states.

Due to absence of two different topological regime, namely trivial and topological, we cannot use previous geometry.

For example, in two steps models, the stability of Dirac points requires ✓ 1 ✓

= 0. Hence, for more parameters (say N ) ensure more such different combinations of these parameters, like P N j ⇢ j ✓ j = 0, where ⇢ j =+/ , to satisfy and thus ensuring their stabilities.

There we have ' n , as the solution for steady state Hamiltonian (H 0 ) and we write time dependent perturbation, H 1 (t), in terms ofΨ(t)= P n c n (t)' n •••.Where our A m (z) are analogous to c n (t).

similar to the one in QM, H 0 ' n = E n ' n ,w h e nH 1 ! 0, and here when P pert ! 0

In a finite system, all the eigenmodes are localized at the boundaries. Thus, system is devoid of any extended states, even in the absence of any disorder. This has been connected to the non-Bloch behaviour of the eigenstates(Xiong 

2018;[START_REF] Yao | Non-Hermitian Chern Bands[END_REF]).
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