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Résumé. Le travaux récent de Calegari et Geraghty[CG12] ont enlevé les re-
strictions de la méthode originale de Taylor-Wiles, cela nous permet d’attacquer les
conjectures de modularité plus générales. Leur méthode se fonde sur deux autres
conjectures, l’une est reliée au problème d’attacher les représentations galoisiennes
aux classes de torsion dans le groupe de cohomologie de la varieté de Shimura sous
entendue et l’autre à la dégrée de concentration de ces groupes de cohomologie lo-
calisés. La premiere conjecture a été adressée dans une grande généralité par Peter
Scholze [Sch13] mais la seconde reste évasive. Récemment, pour la cohomologie co-
hérente, Vincent Pilloni a dévelopé une version de la théorie de Hida pour les groupes
de cohomologie supérieurs qui construit une interpolation p-adique du complex de
cohomologie en question. Comme une application importante, nous pouvons con-
tourner la second conjecture au dessus et en effet dans un travail commun récent
[BCGP18], ils ont montré que toutes les variétés abéliennes sur un corps totalement
réel est potentiellement modulaire. Dans cette thèse, nous adaptons l’argument de
Vincent Pilloni pour contruire un complex qui interpole les classes de cohomologie
supérieurs de la varieté de Picard. Ces résultats servent comme le premier pas vers
la modularité potentielle des variétés abéliennes de dimension 3 qui proviennent des
Jacobiens de la courbe de Picard.
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Abstract. In their breakthrough work [CG12], Calegari and Geraghty have
shown how to bypass some serious restrictions of the original method by Taylor-
Wiles, thus allowing us to attack more general modularity conjectures and related
questions. Their method hinges on two conjectures, one is related to the problem
of attaching Galois representations to torsion classes in the cohomology of Shimura
varieties and the other to the requirement that these cohomology groups, localised
at an appropriate ideal are non zero only in a certain range. The first conjecture
is addressed in a great generality by Peter Scholze [Sch13], but the second remains
elusive. Recently, for coherent cohomology, inspired by the classical Hida theory,
Vincent Pilloni has proposed a method consisting of p-adically interpolating the
entire complex of coherent sheaves of automorphic forms on the Siegel threefold.
This serves as a way to get around the second conjecture above and plays a cru-
cial role in a recent work [BCGP18], where they show that abelian surfaces over
a totally real field are potentially modular. In this thesis, we adapt the argument
in [Pil18] to construct a Hida complex interpolating classes in higher cohomology
groups of the Picard modular surface. In a future work, we hope to use this to
obtain some similar modularity results for abelian three-folds arising as Jacobians
of some Picard curves in the spirit of [BCGP18].
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Part 1. General introduction

1. Notations

For any field K, let Ks denote its separable closure. When it makes sense, we
denote by OK the ring of integers of K and by mK the maximal ideal OK . Recall that
we have the absolute Galois group GK of K, i.e the group of all automorphisms of Ks

that fix K. This group comes equipped with the profinite toplolgy, i.e the weakest
topology making the projections GK → Gal(K ′/K) continuous, whereK ⊂ K ′ ⊂ Ks

runs through finite extensions of K. In particular, GK is compact, Hausdorff, totally
disconnected with a basis of open subsets given by subgroups of form Gal(Ks/K ′)
with K ′ being some finite separable extension of K. Throughout, we will be only
interested in the case when K is a number field or an extension of Qp for some prime
number p.

As it happens in practice, the most fruitful way to study these groups is to examine
their representations.

Let R be any separated, commutative topological ring, then a Galois represen-
tation of K with coefficient in R of dimension n is a continuous group morphism:
ρ : GK → GLn(R) (the topology of GLn(R) is induced by the product topology on
Mn2(R)×R via the embedding GLn(R)→Mn2(R)×R (M 7→M × det(M))). We
often consider the cases where:

(1) R = C with its usual topology. Galois representations with complex coeffi-
cient are often called Artin representations, they have finite images. More
over these are conjugated to representations with coefficients in Q̄.

(2) R is an extension of Qp for some prime number p with p-adic topology, in
this case we say p-adic Galois representation.

(3) R is a finite field of characteristic p.
That being said, we need to find a source of Galois representations.

1.1. Geometry and Galois representation. There is a natural source of Galois
representation from geometry. For example:

(1) Let Gm be the multiplicative group over Z (i.e Gm := Spec(Z[T, T−1])),
then we can define its l-adic Tate module to be Tl(Gm) := lim←−µln(K

s) where
µln(K

s) is the group of ln−th roots of unity inKs. This is a free Zl-module of
rank 1. The group GK acts on each µln(Ks), thus on Tl(Gm). As a result we
obtain a one dimensional representation ρ : GK → GL1(Zl) or equivalently
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a character χK : GK → Z×
l . We call this the cyclotomic character. For any

l-adic Galois representation ρ, we often denote by ρ(n) the tensor product of
ρ and χn for n ∈ Z.

(2) Let A be an abelian variety of dimension g over K. Then we can also take
its l-adic Tate module Tl(A) := lim←−A[l

n](Ks) where A[ln](Ks) is the group
of points of order ln in Ks. It is well known that A[ln](Ks) ∼= (Z/lnZ)2g.
Similarly, the absolute Galois group GK acts on A[ln](Ks), and thus on Tl(A)
and we obtain a Galois representation of dimension 2.

ρA,l : GK → GL2g(Zl)

(3) More generally, if X is any proper smooth algebraic variety over K, then we
can consider its étale cohomology groups H i(XKs ,Ql). By constructions they
carry an action of GK and this forms a rich source of Galois representations.

Let K be a number field. Given a representation ρ : GK → GLn(Q̄p). For a finite
place v, the local Galois group GKv can be identified as a subgroup of GK and we
obtain a representation:

ρv : GKv → GK → GLn(Q̄p)

We then say that ρ : GK → GLn(R) is unramified at v if the image of the inertia
group Iv ⊂ GKv is trivial. In other words, the representation ρv factors through
GKv/Iv

∼= GFq where Fq is the residue field at v. As a result, the unramified local
Galois representation ρv is completely determined by the image ρv(Frobv) where
Frobv is a preimage of the generator of GFq .

Generally speaking, Galois representations coming from geometry enjoy the fol-
lowing property/definition below.

Definition 1.1.1. Let L be a finite extension of Qp and ρ : GK → GLn(L) be a
Galois representation. We say that:

(1) ρ is geometric if there exists a proper smooth variety X over K such that ρ
is a subquotient to H i

et(XKs ,Qp)⊗ L (up to a cyclotomic twist).
(2) ρ is weakly geometric if ρ is unramified at places outside a finite set of places

and ρv := ρ|GFv
is de Rham at all places v over p.

Remark 1.1.1. By Cebotarev density theorem, such a geometric Galois representa-
tion is then determined (up to semi-simplification) by the images ρ(Frobv) where v
runs through the set of all unramified places of ρ.

In fact, it is well known that a geometric representation is unramified outside a
finitely many places. This is a theorem due to Grothendieck [MJ73][L.I77]. More over
geometric representation is de Rahm at all places over p (Fontaine, Messing,Faltings,
Kato, Tsuji, de Jong, see e.g. [P.B] [L.I90]). Thus being geometric implies indeed
being weakly geometric. The famous Fontaine-Mazur conjecture predicts that they
are actually equivalent. This conjecture is recently confirmed in many cases for
n = 2 and K = Q by Emerton and Kisin independently using p-adic local Langlands
correspondence for GL2(Qp).

Example 1.1.1. In the case of a rational elliptic curve E, the associated Galois
representation ρE,p : GQ → GL2(Zp) is unramified at all primes l 6= p where E
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has good reduction. Further more the characteristic polynomial of ρ̄E,p(Frobl) reads
det(xI − ρE,p(Frobl)) = x2 − (l + 1 −Nl)x + l where Nl is the number of points of
E with coordinates in Fl.

We will not forget here another very important invariant : the L-function attached
to an elliptic curve or an algebraic variety. It contains slightly less information about
the elliptic curve than the Galois representation. Indeed, to an elliptic curve E over
Q we associate the L-function L(E, s) =

∏
p Lp(E, s) where p runs through all primes

and for almost all prime p the local L-factor Lp(E, s) = (1−(p+1−Np)p
−s+p1−2s)−1.

1.2. Automorphic forms and Galois representations. Another source of Ga-
lois representation comes from the so-called automorphic forms or automorphic rep-
resentations. We can define autormorphic form for any reductive groups but for
introductory purpose, we can content ourselves with modular forms, the simplest
example of automorphic form.

Let Γ0(N) := {
(
a b
c d

)
∈ SL2(Z)|c ≡ 0(modN)} and Γ1(N) := {

(
a b
c d

)
∈

Γ0(N)|a, d ≡ 1(modN}. These two subgroups of SL2(Z) are of finite index and
Γ0(N)/Γ1(N) ∼= (Z/NZ)×.

Definition 1.2.1. A modular form of level N , weight k is a holomorphic function:
f : H = {z ∈ C|im(z) > 0} → C such that:

(1) f |kγ(z) := (cz + d)−kf(γz) = f(z) for all matrix γ ∈ Γ1(N).
(2) f is holomorphic at the cusps.

We also say that f is of character ǫ : (Z/NZ)× → C× if f |kγ = ǫ(γ)f for all
γ ∈ Γ0(N).

Let us explain the second condition. First of all, because of condition (1), all
modular forms are periodic, meaning that f(z + L) = f(z) for some L ∈ Z. As
a result a modular form admits a Fourier transform f(z) =

∑
n∈Z an(f)q

n where
q = e2iπz/L. This is often refereed to as the q-expansion of f . The condition that f
is holomorphic at the cusps then translates to the fact that the q-expansion of f |kγ
has only non zero coefficients in non negative degrees in q for all γ ∈ SL2(Z). If
furthermore, these q-expansion have only non zero coefficient in positive degree we
say that f is a cusp form. When the leading coefficient of the q-expansion of a cusp
form is 1, we say that it is normalized.

The set of all modular forms of level N , weight k forms a complex vector space
and is denoted by M(k,N,C) whereas its sub space of cusp forms is denoted by
S(k,N,C). For any l ∈ N prime to N we can define a Hecke operator Tl ∈
End(M(k,N,C)) preserving the subspace of cusp forms S(k,N,C). These oper-
ators commute and are simultaneously diagonalizable, meaning that M(k,N,C) can
be written as a direct sum of eigenspaces of {Tl}l∧N=1. We also denote the Z-algebra
generated by all Tl for l prime to N by T, this algebra plays a central role in the
theory of modular forms.

There is also an alternative algebraic approach to modular forms. We first point

out that if N ≥ 3, the group Γ1(N) acts on H by
(
a b
c d

)
z = az+b

cz+d . This action is
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properly discontinuous and the quotient YN (C) := Γ1(N)\H admits a structure of
a non compact Riemanien surface. We can then add a finitely many points, called
the cusps to YN (C) to obtain the so called compactified modular curve XN (C).
Moreover, YN (C) and XN (C) are also the set of complex points of algebraic varieties
YN and XN respectively defined over Z[ 1N ] with the latter being proper.

We can even give YN (resp. XN ) a modular interpretation, i.e it parametrizes
elliptic curve (resp. generalized elliptic curves) with additional level structure. In
particular, there is a universal generalized elliptic curve E over XN . We denote by
ω the pull back of the differential sheaf of E along the identity section e : XN → E.
This is an invertible sheaf on XN and the Kodaira-Spencer isomorphism tells us
that ω ⊗ ω(−D) ∼= Ω1

XN
where Ω1

XN
is the sheaf of differential forms of XN and

D = XN − YN is the divisor corresponding to the cusps.
Using this interpretation, the entire theory of modular forms can be recast alge-

braically (see e.g [Kat73]). More specifically, for all Z[ 1N ]-algebra R we can define an
R-valued modular form of levelN , weight k as a section of the line bundle ω⊗k onXN .
The result is that we obtain a finite R-module M(k,N,R) := H0(XN ×Z[ 1

N
]R,ω

⊗k)

of R-valued modular form of level N , weight k which satisfies very nice functorial
properties in R. Additionally its R-sub module S(k,N,R) of cusp forms is identified
with H0(XN ×Z[ 1

N
] R,ω

⊗k(−D)), where D is the complementary of YN in XN . In
particular, when R = C, we recover the classical spaces M(k,N,C) and S(k,N,C).

This approach also shows the existence of a Z[1/N ]-basis for M(k,N,C) and
S(k,N,C). Under this angle, it is immediate that T is a finite Z[ 1N ]-algebra. As
a result if f is an eigenform, then all of its eigenvalues lie in a finite extension of
Q, we call it the coefficient field of f . By the same token, each normalized cuspidal
eigenform f corresponds to a prime ideal of T. Indeed, there is a character ηf : T→ C
given by Tl 7→ λl where Tl(f) = λlf . The image of ηf is clearly the coefficient field
of f and the kernel of ηf is a prime ideal of T.

The existence of Hecke operators {Tl}l∈N on the space M(k,N,C) make these
seemingly analytic objects more relevant to the number theory. Indeed we have the
following theorem due to Taniyama-Shimura in the case k = 2 [G.S71], Deligne in
the case k ≥ 2 [Del71] and later Deligne-Serre in the case k = 1 [DS74].

Theorem 1.2.1. Let f be an cuspidal eigenform of level Γ1(N) of weight k and
character χ with q-expansion f(q) =

∑
n≥1 anq

n. Let F denote the coefficient field
of f .

(1) If k ≥ 2 then for any place λ above p of F , we have a representation:

ρf,λ : GQ → GL2(OF,λ)

This representation is unramified outside the primes dividing Np and for all
prime l ∤ pN , we have

trace(ρf,λ(Frobl)) = al and det(ρf,λ(Frobl)) = χ(l)lk−1

(2) If k = 1 then there exists an odd irreducible Galois representation:

ρf : GQ → GL2(C)

such that ρf is unramified at l ∤ N and det(XI−ρf (Frobl)) = X2−alX+χ(l).
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Proof. [Sketch]
(1) We only outline the proof when k = 2 and we also suppose furthermore that

f is a new form. Recall that each modular form of weight 2 and level Γ1(N) can be
identified with a section f ∈ H0(XN ,Ω

1
XN

). Now by Hodge decomposition theorem,
the Betti cohomology with complex coefficient can be written as : H1(XN ,C) =

H0(XN ,Ω
1
XN

) ⊕ H1(XN ,OXN
) with H1(XN ,OXN

) = H0(XN ,Ω1
XN

). The Hecke
algebra T acts on these vector spaces and we can see them as T-modules. Finally,
by choosing an isomorphism ι : Q̄p

∼= C, we have the comparison theorem

(1.1) H1
et((XN )Q̄,Qp)⊗ C ∼= H1(XN ,C) = H1(XN ,Z)⊗Z C

There is also natural action of T on H1
et((XN )Q̄,Qp) and the above isomorphism

is in fact an isomorphism of T-modules.
Now giving an eigenform f we can compose ρ : GQ → Aut(H1

et((XN )Q̄,Qp)) with
the projection to the f -eigenspace ηf : T→ OF where F is the coefficient field of f
to obtain ρf,λ : GQ → GL2(OF,λ). It can be checked that ρf,λ satisfies all the listed
properties above (see appendix of [RS11]).

(2) For modular forms of weight 1, we proceed quite differently. Let f =
∑

n≥0 anq
n

be a such eigenform and let K be its coefficient field. For any even k we have a nor-
malized Eisenstein series Ek =

∑
n≥0 bnq

n of weight k. It is easy to see that if p−1|k
then bn ≡ 0 mod (p) for all n ≥ 1 so that fEk ≡ f mod mKλ

where λ is a place
above p.

Now fEk might not be an eigenform but following Deligne-Serre’s lifting theorem,
there exists an eigenform g =

∑
n≥0 cnq

n of weight k + 1 with coefficient field K ′

such that fEk mod mKλ
= g mod mK′

λ′
where λ′ is a place above p. We can consider

the representation ρg,λ : GQ → GL2(OK′
λ′
). We let ρ̄f,p = GQ → GL2(k) be the

reduction ρg,λ′ mod mK′
λ′

, where k is some finite extension of Fp. This representation
(up to semi simplification) depends only on f .

More importantly, outside a finite set of prime, we can prove that the image
of ρ̄f,p is bounded uniformly. Therefore if p is big enough ρ̄f,p can be lifted to a
representation ρf,p : GQ → GL2(F ) where F is the coefficient field of f

�

Remark 1.2.1. The L-function as an invariant is not exclusive to algebraic vari-
eties, we can attach an L-function to a modular form or more generally an automor-
phic representations. Take a cusp form f of weight k ≥ 2 with Fourier expansion
f(z) =

∑
n anq

n we can put L(f, s) :=
∑

n ann
−s. This carries all the numerical

datum that we can read off from the Galois representation attached to f . More-
over, L(f, s) converges uniformly to a holomorphic functions for s ∈ C such that
re(s) > 1 + k/2 and admits an entire continuation.

One might observe that ρf,λ is weakly geometric and by construction, it comes
from the étale cohomology of a modular curve, as predicted by the Fontaine-Mazur
conjecture.

Definition 1.2.2. We say that a two dimensional p-adic Galois representation of
GQ is modular if it is isomorphic to a representation of the form ρf,λ.
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This is just an instance of the much deeper phenomenon captured and studied
by the Langlands programs. In fact there is a central object in the Langlands pro-
gram called automorphic forms or automorphic representations that vastly generalize
modular forms. We also expect to be able to attach to any such automorphic form
a Galois representation. More precisely, we have the following conjecture/guiding
philosophy:

Conjecture (Langlands-Clozel-Fontaine-Mazur): Let K be a number field, and
a prime p, let us also fix an isomorphism Q̄p

∼= C. Then there is a unique bijection
between the following sets:

(1) the set of L-algebraic cuspidal automorphic representations of GLn(AK)
(2) the set of irreducible weakly geometric Galois representationsGK → GLn(Q̄p).

This bijection is supposed to satisfy a number of compatibility that we will not spell
all out but notably, their L-functions are supposed to match.

The direction (1) → (2) consists of attaching Galois representations to automor-
phic forms, this is still wide open in general. When K is a totally real field or a CM
field, we know how to do this in the case where automorphic forms show up in the
Betti cohomology group of locally symmetric space (similar to how modular form ap-
pears in the cohomology of modular curve) (see [Sch15]). The requirement is that this
automorphic representation be regular, a typical example would be modular forms
of weight k ≥ 2. The other case of non regular representations are often hopeless
except for the so-called limit of discrete series representations, a simplest example
of this would be modular form of weight 1. These automorphic representations still
contribute to coherent cohomology of relevant shimura variety and following Scholze,
Pilloni-Stroh [Sch13] [PS16b] we know how to treat these cases as well.

The direction (2)→ (1) is known as the modularity conjecture and the only known
method is due to Wiles, and Taylor-Wiles. They first introduced the method to prove
that all semi stable elliptic curves over the rational are modular. Their method rests
on a crucial "numerical coincidence" that makes it functional only in certain cases.
Recently a breakthrough of Calegari-Geraghty gave a very satisfying explanation of
this then mysterious coincidence and better, they showed how to fix it. However still,
the new method requires us to show two additional conjectures that we are going to
explain using the case of group GL2 in the next section.

2. Modularity

As mentioned in the previous section, the modularity direction aims to prove
that certain Galois representation comes from automorphic forms. (The case of 1-
dimensional representations is handled by the class field theory). The case of two
dimensional representation is already quite difficult.

In this section we review some of the main ingredients of Taylor-Wiles method
by focusing on the case of elliptic curve over the rational, which is the simplest
example, and in the next section we will study Artin representations, which requires
a considerable modification of Taylor-Wiles method.

Definition 2.0.1. We say that an Elliptic curve E over Q is modular if for a prime
p, the representation ρE,p is modular, i.e there exist a modular form f with rational
coefficient field such that ρf,p ∼= ρE,p.
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This definition does not depend on the chosen prime p. Indeed, suppose that E
is modular, and let f =

∑
n αnq

n be the associated form. Since the Galois represen-
tation ρE,p and ρf,p give the same representation, we have (see example 1.1.1 and
theorem 1.2.1):

αl = l + 1−Nl

for unramified l 6= p, p′. As a result, if p′ is another prime, the representation
ρE,p′ is also modular, because up to semi-simplification a geometric Galois represen-
tation is determined by the traces of the Frobenii at l for almost all l, and we have
Trace(ρE,p(Frobl)) = Trace(ρE,p′(Frobl)) = αl which depends only on f for almost
all l. Thus ρE,p′ is isomorphic to ρf,p′ .

The starting point is the observation due to Mazur (Conjecture (*) [MT90]) that
in certain situations, modularity can be checked residually, in other words if there is
a modular form f such that ρf,p = ρ (mod p), then ρ is very likely to be modular.
An instance of this observation was first proved by Wiles for the semi-stable rational
elliptic curves which produce semi-stable representations.

Let us briefly explain the terminology before stating the theorem. An elliptic curve
over Q is semi-stable if its reductions at bad primes are of multiplicative type and
a Galois representation ρ is semi-simple if its reduction ρ̄ is. Now a representation
ρ̄ : GQ → F̄p is semi-stable if

(1) for all l 6= p the restriction ρ̄|Il is nilpotent.

(2) at p the restriction ρ̄|Ip is either of form
(
χp|Ip ∗
0 1

)
or det(ρ̄) = χp and ρ̄

can be obtained via base change from a finite flat group over Zp.

Theorem 2.0.1 (Modular lifting). [Wil95, TW95] Let ρ : GQ → GL2(OK) be a
Galois representation where K is a finite extension of Qp (p > 2). If ρ is semi stable
and has cyclotomic determinant and the reduction ρ̄ : GQ → GL2(Fq) is irreducible
and modular, then ρ itself is modular.

Given this theorem, we can check the modularity by working with any primes and
check the residual modularity instead. With this in mind, the attention is shifted to
the Serre’s conjecture.

Conjecture 1 (Serre’s conjecture ). Let k be a finite field and ρ̄ : GQ → GL2(k) be
an odd, absolutely irreducible Galois representation, then ρ̄ is modular.

This conjecture is now a theorem due to Khare-Wintenberger [KW09a] [KW09b],
but back then we had to resort to a special case of this conjecture.

Theorem 2.0.2 (Langlands-Tunell). [Lan80, Tun81] All odd irreducible representa-
tion ρ̄ : GQ → GL2(F3) is (residually) modular meaning that there exists a modular
form f such that the reduction of ρf,3 is ρ̄.

Now, given a semi-stable rational elliptic curve E, the associated representation
ρE,3 can be checked to satisfy the condition of theorem (2.0.1) and thus by theorem
2.0.2, if ρ̄E,3 is irreducible then E is modular. Unfortunately, ρ̄E,3 can be very well
reducible, such is the case when E has a rational subgroup of order 3. To fix this
problem, there is a clever lemma known as the 3− 5 trick.
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Lemma 2.0.1 (3 − 5 trick). [Wil95] Let E be a semi-stable rational elliptic curve,
then if ρ̄E,3 is reducible, then ρ̄E,5 is irreducible and there exists another rational
elliptic curve E′ such that ρ̄E,5

∼= ρ̄E′,5 and ρ̄E′,3 is irreducible.

The proof is based on our concrete understanding of the modular curve Y (5) and
Y (15). In fact, if ρ̄E,3 is reducible, then ρ̄E,5 must be irreducible because otherwise,
E has a rational subgroup of order 15 and it defines a rational point of the modular
curve Y (15). We happen to know all of the rational points of Y (15), there are 4
of them, and each corresponds to an elliptic curve of conductor 50, therefore non of
them are semi-stable (conductor of a semi-stable elliptic curve must be square-free).

In short, let E be a semi-stable rational elliptic curve, we can consider ρE,3. If
ρ̄E,3 is irreducible, we are done by theorems 2.0.1 and 2.0.2. If ρ̄E,3 is not irreducible,
we apply the 3 − 5 trick and find another curve E′. Since ρ̄E′,3 is irreducible, it is
modular. As a result E is modular too because ρ̄E,5

∼= ρ̄E′,5.

3. Taylor-Wiles method

In this section, we review the proof of the theorem 2.0.1. We start with an odd,
absolutely irreducible representation ρ̄ : GQ → GL2(Fp). Suppose that ρ̄ satisfies:

(1) det(ρ̄) is the inverse of the cyclotomic character.
(2) the restriction ρ̄|GQp

is finite flat (i.e the restriction can be obtained via a
group scheme).

The modularity lifting theorem proposes to show that if ρ : GQ → GL2(Zp) is a
semi-stable Galois representation and the reduction mod p of ρ is ρ̄. Then if ρ̄ is
modular, so is ρ.

First of all, when ρ̄ is modular, and f is a modular form of weight 2 such that
ρf,p ≡ ρ̄ (mod p), we can consider the Hecke algebra Tm localized at the maximal
ideal m corresponding to f . This algebra actually parametrizes all modular forms
whose associated Galois representations reduce mod p to ρ̄.

The idea is to compare the Tm with the deformation ring Rρ̄ where :
Rρ̄ is the universal deformation ring of all representations ρ : GQ → GL2(A) (up

to strict equivalence) where A is any object in the category ArtFp of Artinien local
Zp-algebras of residue field k and

(1) the determinant det(ρ) = ǫ−1.
(2) the representation ρ is semi-stable.
(3) the reduction of ρ is ρ̄.

One remarks in particular that our target representation ρ can be identified with
a point in Spec(Rρ̄) and if we are to show that Rρ̄

∼= Tm then the theorem 2.0.1
obviously follows.

The link between Rρ̄ and Tm is subtle and it goes back to the proof of theorem
1.2.1. Recall that there is a representation ρ : GQ → GL2(Tm) satisfying the con-
dition (1), (2) above. Consequently, we have a surjection ι : Rρ̄ → Tm so as to
M := H0(XN ,Ω

1
XN

)m becomes a Rρ̄-module. To prove that ι is an isomorphism we
can show a stronger result that M is actually a free Rρ̄-module.



14 NGUYEN MANH TU

We take a look at some properties of Rρ̄. By a result of Mazur [Maz89], Rρ̄ is
a complete noetherian local Zp-algebra, with residue field Fp. There are two im-
portant invariants attached to ρ̄ depending on Rρ̄, an Fp-linear subspace Sel of
H1(GQ, ad

0ρ̄) called the Selmer group, and its dual Sel⊥ which is an Fp-linear sub-
space of H1(GQ, ad

0ρ̄(1)). These two groups control the dimension of various defor-
mation rings that we care about. Concretely let g = dimFpSel and r = dimFpSel

⊥

(in fact in our situation, g = r but we pretend for the moment that they have noth-
ing to do with each other). We know the dimension of the Zariski tangent space
of Rρ̄ is g, i.e there is a surjection Zp[[X1, ..., Xg]] → Rρ̄. This surjection is very
hard to understand, but through an ingenious machinery of Taylor-Wiles method,
we can cook up a pair (M∞,R∞) where R∞ is a Zp[[S1, ..., Sr]]-algebra isomorphic
to Zp[[X1, ..., Xg]] and M∞ is a free Zp[[S1, ..., Sr]]-module. The difference is that
we have a very simple relationship of (M∞,R∞) and (M,Rρ̄). In fact by construc-
tion R∞ ⊗Zp[[S1,...,Sr]] Zp

∼= Rρ̄ and M∞ ⊗Zp[[S1,...,Sr]] Zp
∼= M . In our case, it turns

out that M∞ is free as a R∞-module, this implies immediately that M is free as
Rρ̄-module. We now go about the detailed construction of such a mysterious pair
(M∞, R∞).

Definition 3.0.1. Given our residual representation ρ̄ : GQ → GLn(Fp), a prime l
is called a Taylor-Wiles prime if:

(1) l ≡ 1(mod p).
(2) ρ̄|GQl

is unramified and the eigenvalues of ρ̄(Frobl) are distinct.

A set Q of Taylor-Wiles prime is called a Taylor-Wiles set if #Q = r and furthermore
the localization map Sel⊥ → ⊕p∈QH

1(GQp , ad
0ρ̄(1)) is injective.

If Q is a Taylor-Wiles set, let NQ :=
∏

p∈Q p and ΛQ := Zp[∆Q] where ∆Q is
the p-sylow of the finite group

∏
l∈Q F×

l (notice the condition (1) above). Now for
each Taylor-Wiles set Q we can define Rρ̄,Q as the deformation ring parametrizing
all representations ρ : GQ → GL2(A) for A ∈ ArtFp that satisfy:

(1) detρ = ǫ−1

(2) ρ is semi-stable.
(3) ρ is allowed to ramify at primes dividing Q.

In other words, we now allow ramification at places in Q. Because of the condition (2)
of definition 3.0.1 above, Rρ̄,Q has a natural ΛQ-algebra structure. More over we have
a surjectionRρ̄,Q → Rρ̄. We can show that (since #Q = r) this surjection induces an
insomorphism on tangent spaces, that means we have a surjection Zp[[X1, ..., Xg]]→
Rρ̄,Q.

Now, for each n we can choose a of Taylor Wiles set Qn (following Wiles [Wil95],
this is possible). Let Λn := Zp[∆Qn ]

∼= Zp[(Z/pnZ)r]. Regarding Rn, it is nothing
but the deformation ring Rρ̄,Qn introduced above. For Mn we can take the space
of modular forms Mn := H0(X(NQn), ω

k)m and let Tn be the Hecke algebra acting
on Mn. We can also show that there is a surjection Rn → Tn which again comes
from the existence of Galois representation attached to modular forms. All of these
fit together and produce the following compatible system:

Theorem 3.0.1. [Dia97]
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For each n ∈ N there is a triple (Λn,Rn,Mn) where
(1) Λn isomorphic to Zp[(Z/pnZ)r].
(2) Mn is a free Λn-module such that Mn ⊗Λn Zp

∼=M .
(3) Rn is a Λn-algebra and there is a surjection Rn → Rρ̄. Moreover Rn acts

on Mn such that we have the following commutative diagram:
Rn EndΛn(Mn)

Rρ̄ EndΛ(M)

⊗ΛnZp

By construction, we have surjections Zp[[X1, ..., Xg]] → Rn for all n and one can
imagine that as n varies, the triple (Λn,Rn,Mn)n form a compatible system and we
can produce a triple (Λ∞,R∞,M∞) where

(1) Λ∞
∼= Zp[[S1, ..., Sr]].

(2) M∞ is a free Λ∞-module such that M∞ ⊗Λ∞ Zp
∼=M .

(3) R∞ is a Λ∞-algebra and there is a surjection Rn → Rρ̄. Moreover R∞ acts
on M∞ such that we have the following commutative diagram:

R∞ EndΛ∞(M∞)

Rρ̄ EndΛ(M)

⊗Λ∞Zp

With these datum we can easily see that M is a free Rρ̄-module. Indeed, recall
the following Auslander-Buchsbaum formula:

depthRM + projdimRM = dimR

for any finitely generated module M over a regular ring R. This yields us the
inequality:

dimΛ∞ = depthΛ∞M∞ ≤ depthR ¯ρ,∞M∞ ≤ dimRρ̄,∞ ≤ g
In our case, the famous "numerical incidence" g = r happens so that dimΛ∞ =
dimRρ̄,∞ and M∞ is a free Rρ̄,∞-module. From the diagram above we conclude that
M is a free Rρ̄-module.

4. Beyond Taylor-Wiles

As we start to examine more general modularity statements, we will notice that
the crucial equality g = r need not hold at all, and the classical Taylor-Wiles method
falls apart in such situations.

Luckily, Calegari-Geraghty showed how to fix this problems. To illustrate their
work, we can put ourselves in the case of g = r+1. We choose to review the case of
modular form of weight 1 which is a typical example of the so-called limit of discrete
series- a type of irregular automorphic forms.

Recall that to a cuspidal eigenform f =
∑

n anq
n of levelN , weight 1 we can attach

an irreducible odd Galois representation ρf : GQ → GL2(C) which has finite image
and is unramified outside N . In fact by construction, if we pick a random prime p
big enough, there exists a representation ρ̄f,p : GQ → GL2(k), where k is some finite
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extension of Fp, this can be lifted to a representation ρf,p : GQ → GL2(OK) where
K is some finite extension of Qp and λ is a place diving p. For different p′ we obtain
another ρf,p′ . Moreover ρf,p and ρf,p′ are isomorphic as complex representation. As
a result we can choose a big prime p and work with ρf,p : GQ → GL2(OK).

Inspired by what happens to modular form of weight 2 one would like to in this
case prove the following

Theorem 4.0.1. Let ρ : GQ → GL2(OK) be an odd representation such that:
(1) ρ is unramified outside a finite set of primes.
(2) the reduction ρ̄ mod mK of ρ|GQ(ζp)

is absolutely irreducible.
(3) ρ is unramified at p and the eigenvalues of ρ(Frobp) are distinct mod mK .

Then ρ comes from modular form of weight 1.

Like before, we would like to point out the appropriate candidate for the pair of
deformation rings (Rρ̄,Tm) as in the previous case.

Now we can look at the deformation ring Rρ̄ parametrizing all representations
ρ : GQ → GL2(R) with R ∈ Artk satisfying:

(1) the determinant det(ρ) = ǫ−1.
(2) ρ is unramified at p.

Again, there is a selmer group Sel ⊂ H1(GQ, ad
0ρ) and its dual Sel⊥ ⊂ H1(GQ, ad

0ρ(1)
and if we let g = dimFpSel and r = dimFpSel

⊥ then this time g = r + 1 and the
dimension of the Zariski tangent space of Rρ̄ is r which means there is a surjection
O[[X1, ..., Xr]] ։ Rρ̄.

Now if we try to mimic the Taylor-Wiles method to proceed, i.e by putting M =
H0(X(N), ω)m we will not be able to conclude since g 6= r. The problem is that our
deformation ring Rρ̄ is of dimension "1-less", so there must be something going on
on the automorphic side. In fact the peculiar thing that happens to modular forms
of weight 1 is that they appear not only in H0(X(N), ω) but also in H1(X(N), ω).
Let us be more clear on what this means. Consider the exact sequence:

0→ ω
×p−−→ ω → ω/(p)→ 0

and an induced long exact sequence :

H0(X(N), ω)
red−−→ H0(X(N), ω/(p))→ H1(X(N), ω)

The fact that H1(X(N), ω) does not vanish (unlike the case of modular forms of
weight at least 2) implies there are modular form of weight 1 mod p that do not come
from modular forms of characteristic 0. More surprisingly, these modular forms in
positive characteristic do produce Galois representations, and they account for the
"missing" representations here. Now according to Calegari-Geraghty method, we
should instead look at the complex RΓ(X(N), ω). Let T be the Hecke algebra acting
on this complex, and let Tcoh the Hecke algebra acting on H∗(X(N), ω). We have
a surjection T → Tcoh with nilpotent kernel. Again, T is a semi local ring, and
for any maximal idea m of T, the image of m in Tcoh is included in the support of
H∗(XN , ω). In other words, T does parametrize all the modular forms of weight 1,
be it in H0(X(N), ω) or H1(X(N), ω). The generalized Taylor-Wiles method will
have as an input the complex C := RΓ(X(N), ω)m instead of H0(X(N), ω)m.
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Now, the slogan is that if we replace modules of modular forms by complexes of
modular forms everywhere we can proceed as usual. Indeed, for each n, and a chosen
Taylor-Wiles set Qn (with #Qn = r) we can build the following datum([CG12]):

(1) A perfect complex C•
n of Λn := O[∆Qn ]-module concentrated in degrees [0, 1].

(2) A deformation ring Rn which has a structure of Λn-algebra and there is a
surjection O[[S1, ..., Sr]] ։ Rn.

(3) A morphism of Λn-algebra Rn → EndΛn(C
•
n).

(4) An isomorphism C•
n ⊗L

Λn
O ∼= C• such that the following diagram is commu-

tative:
Rn End(C•

n)

Rρ̄ End(C•)

⊗ΛnO

Remark 4.0.1. What is essential for the construction of these datum is the existence
of Galois representation ρm : GQ → GL2(Tm) attached to each maximal ideal m of T
that satisfies required conditions, and this is highly non trivial.

A similar patching process yields us a system of :

(1) A perfect complex of Λ∞-modules C•
∞ concentrated in degrees [0, 1] where

Λ∞
∼= O[[X1, ..., Xg]].

(2) A complete local Λ∞-algebra R∞ with a surjection W [[S1, ..., Sr]] → Rρ̄,∞

and a map of Λ∞-algebras: R∞ → EndΛ∞(C•
∞).

(3) An isomorphism C•
∞ ⊗L

Λ∞
O ∼= C• such that the following diagram is com-

mutative:
R∞ End(C•

∞)

Rρ̄ End(C•)

⊗L
Λ∞

O

To conclude, we need the following lemma

Lemma 4.0.1 (Lemma 6.2[CG12]). Let S be a regular local ring of dimension d and
C• be a perfect complex over S concentrated in degree [0, l] with 0 ≤ l ≤ d. Then
depthSH

∗(C•) ≥ d− l where H∗(C•) := ⊕iH
i(C•) and if equality holds then :

(1) C• is a projective resolution of H l(C•).
(2) H l(C•) as depth d− l and has projective dimension l.

We can now show that Rρ̄ → Tm is an isomorphism. Indeed we have the following
equality:

depthΛ∞H
∗(C•

∞) ≤ depthR∞H
∗(C•

∞) ≤ dimR∞ ≤ r = g − 1

then from the lemma above, we further have dimΛ∞H
∗(C•

∞) ≥ g − 1.

As a result, depthR∞H
∗(C•

∞) = g − 1 and the lemma above also tells us that
depthΛ∞H

1(C•
∞) = g−1. Once again, we can use the Auslander-Buchsbaum formula
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to get

g − 1 = depthΛ∞H
1(C•

∞) ≤ depthR∞H
1(C•

∞) ≤ dimR∞ = g − 1

This of course means that H1(C•
∞) is free asR∞-module. In other words, Rρ̄ → Tcoh

is an isomorphism. Finally since we have a surjection Tm → Tcoh with nilpotent
kernel, the surjection Rρ̄ → Tm is an isomorphism.

5. Hida theory and Taylor-Wiles method

P -adic modular forms has been a central topic in number theory. The idea is to
put a p-adic topology on the space of modular forms (regardless of their weights)
in a way that if two p-adic modular forms are close then their associated Galois
representations look very similar too. One such theory was proposed by Hida. Con-
cretely, let Λ := Zp[[Z×

p ]]. This is the Hida’s weight space. For each k there is a
projector ep ∈ End(M(k, pN,Zp)) commuting with the action of Up such that on
epM(k, pN,Zp) (resp. (1 − ep)M(k, pN,Zp)) the operator Up becomes an isomor-
phism (resp. nilpotent). Hida further proved that there is a projective Λ-module
M such that for any k ≥ 2, we have the identification M ⊗Λ,k Zp

∼= epM(k,N,Zp).
An element of M is called an ordinary p-adic modular form. There is also a natural
Hecke algebra T acting on M and to each maximal idea m of T we can construct a
Galois representation ρ : GQ → GL2(Tm) satisfying expected properties.

This theory of Hida has proved to be very fruitful in various situations. One of
such illuminating example is the use of Hida theory in modularity. For this we can
look at the pioneering work of Buzzard and Taylor. Well before Calegari-Geraghty’s
breakthrough, they could show that all odd irreducible Artin representations ρ (un-
ramified at p such that the two eigenvalues of ρ(Frobp), say α and β, are distinct
mod p) come from modular forms of weight 1[BT99].

Recall that the problem with modular forms of weight 1 is that they contribute
to two consecutive cohomology degrees, and thus there are some modular forms of
weight 1 in H0(X(N)Fp , ω) that do not lift to the characteristic zero, and the Galois
representations attached to these forms account for the missing representations not
observed by the deformation ring Rρ̄. The idea of Buzzard and Taylor was to work
with p-adic modular forms instead because unlike classical modular forms, Hida’s
p-adic forms are sections of certain line bundle over Xord(N) where Xord(N) is an
affine open subscheme of X̂(N), the formal completion of XN along its special fiber.
The difference it makes is that the higher cohomology groups H i(Xord(N), ω) vanish
for all i ≥ 1. In other words, congruence is not obstructed, or a modular form mod
p now will always lift to a p-adic modular forms in characteristic 0. As a result
classical Taylor-Wiles method carries over perfectly to the p-adic forms. The main
drawback is that we can only show a kind of p-adic modularity. Indeed, they showed
that there are two p-adic modular forms fα and fβ of weight 1 attached to ρ with
property that Upfα = αfα and Upfβ = βfβ . Finally using the assumption α 6= β
mod p, they could show that both fα and fβ are classical.

Remark 5.0.1. We can remove the assumption α 6= β mod p following an idea
of Taylor [PS16a], or we can use the modified Taylor-Wiles method of Calegari-
Geraghty, though we are limited to the minimal case [CG12] .
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This method of Buzzard and Taylor inspired many generalizations. Notably, and
maybe more relevant to us, in [Pil12a], Vincent Pilloni, using a version of Hida theory
for GSp4 [Pil12b], showed that Tate modules of a big class of abelian surfaces over Q
come from p-adic Siegel forms. Unfortunately, he could only show that these p-adic
forms are classical when certain assumptions on the weight are satisfied [Pil11]. We
will come back to this in the next section.

6. Higher Hida theory and beyond Taylor-Wiles

The modified Taylor-Wiles method supposedly allows us to tackle much more
general modularity statements. It comes however with a catch, we have to verify two
highly nontrivial conjectures, especially the one predicting the expected degrees of
concentration of complexes we use in the construction of Taylor-Wiles systems. This
is very difficult and we do not know the answer most of the time. In this section,
we illustrate how a generalized version of Hida theory can help us circumvent this
difficulty.

As an example, let us look at the case of abelian surface A over the rational. The
Tate module of A at p gives a Galois representation ρA,p : GQ → GL4(Q̄p) which
factors through GSp4(Q̄p) ⊂ GL4(Q̄p).

On the automorphic side, to each pair of integer κ := (k1, k2) we can define Siegel
modular forms of weight κ, a direct generalization of modular forms, which are
sections of a certain vector bundle Ωκ over Siegel modular variety X/Zp. This variety
parametrizes abelian surfaces with additional structures. Let us denote the space of
Siegel modular forms of weight κ by M(κ). We have a natural action of a Hecke
algebra T on M(κ) and to each eigenforms f (which is the same as giving a maximal
ideal mf of T) we can construct a Galois representations ρf,p : GQ → GSp4(Q̄p)
which satisfies very similar properties to those arising from abelian surfaces. In fact,
it is conjectured that all rational abelian surfaces are modular in the sense that
their Galois representations match with those coming from Hilbert modular forms
of weight (2, 2). This conjecture looks a lot like the Taniyama-Shimura conjecture,
but it is actually more similar to the Artin conjecture. From a technical standpoint,
Siegel modular forms of weight (2, 2) also contribute to multiple cohomology degrees,
hence the picture resembles the case of modular forms of weight 1. As a result, we
should direct our attention to Calegari-Geraghty method, which can in theory be
applied to all obstructed situation. This method requires us to among other things
establish that the complex RΓ(X,ωκ)mf

is concentrated in 2 degrees which we are
clueless about.

Nonetheless, inspired by how p-adic modular forms helped us get around the prob-
lems in the case of modular forms of weight 1, Vincent Pilloni has proposed a gen-
eralization of Hida theory in which we p-adically interpolate the complex RΓ(X,ωκ)
instead of only H0(X,ωκ) like in classical Hida theory. More concretely, he con-
structed a perfect complex M• of Λ := Zp[[Z×

p ]]-module concentrated in degrees
[0, 1] and for each κ a projector ep ∈ End(RΓ(X,ωκ)) such that under some mild
condition on κ, we have

M• ⊗L
Λ,κ Zp

∼= epRΓ(X,ω
κ)
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More over there is a Hecke algebra T′ acting on M• and to any maximal ideal m
of T′ we can construct a Galois representation GQ → GSp4(Tm) which satisfy some
desired conditions. Above all, the fact that this complex is concentrated in degrees
[0, 1] makes it an immediate input for the Calegari-Geraghty method. This is indeed
used in [BCGP18] and they obtain the following spectacular result:

Theorem 6.0.1 ([BCGP18]). Let X be an abelian surface or a curve of genus 2
over a totally real field. Then X is potentially modular.

Remark 6.0.1. (1) In the theorem above, we can only prove that X is potentially
modular since right from the beginning, we only strive for a more general form
of the modularity lifting theorem 2.0.1, this theorem assumes that the residual
representation is modular. In the case of representations of dimension 2, we
had the help from Langland-Tunell theorem, or Serre’s conjecture, but in
higher dimension, an analogue of any of these two is completely out of reach.

(2) Other thing we have not talked about is the problem of local-global compatibil-
ity which is another input of Calegari-Geraghty method as well as a crucial
ingredient in the construction of Taylor-Wiles systems. Nevertheless, it seems
easier to handle in general, despite being also quite delicate to establish.

7. A case of abelian threefold

It is true that this new powerful Calegari-Geraghty method can in theory handle
all obstructed situations, but on the flipped side, it also requires some highly non
trivial inputs, and to get around one we could resort to higher Hida theory, but in
any cases, we have taken for granted the fact that our targeted automorphic forms
contribute to cohomology groups, be it coherent, or étale of some relevant Shimura
varieties. Moreover, in order to develop higher Hida theory, we necessarily need
these automorphic forms to sit inside the coherent cohomolgy groups, and this is flat
out wrong in general, in particular for the case of abelian variety of dimension at
least 3. There is a rather simple way to see this. In fact for an abelian variety A of
dimension n over, say Q, the Galois representation ρA,p is conjectured to come from
an automorphic form π for the split orthogonal group SO2n+1. In particular, the
Hodge-Tate weight of ρA,p must coincide with the infinitesimal character of π. Up to
some normalization, this means the infinitesimal character of π reads (0, ..., 0, 1, .., 1)
where the weight 0, 1 appear n times. However an automorphic form that appears
in Betty or coherent cohomology must be regular or weakly regular, which means
the Hodge-Tate weight can be allowed to repeat at most twice (see e.g section 9
[FP19] or introduction of [BCGP18]). In other words, for a generic abelian variety of
dimension at least 3, the expected automorphic forms do not even contribute to any
known cohomology theories. As a result, a modularity conjecture for such variety is
still completely out of reach. However, there is a case of abelian threefold which is
still amenable to the current method.

More concretely, it arises as the Jacobian of a Picard curve which is a non-singular
projective curve (P ) of genus 3 defined by (affine)equation:

(P ) y3 = f(x) = x4 + ax3 + bx2 + cx+ d



HIGHER HIDA THEORY FOR UNITARY GROUP U(2, 1) 21

with coefficients a, b, c, d ∈ Q. Let Vl(P ) := H1
et(PQ̄,Ql) ∼= H1(Jac(P )). Remark

that K := Q[ζ3] acts on PK , and we have an induced action of K on Vl(P ). As a
result, over Q̄ we have the following decomposition:

Vl(P )⊗ Q̄ = V1,l ⊕ V2,l
where x ∈ K acts by x on V1,l an by x̄ on V2,l.

Since the complex conjugate P σ of P is isomorphic to P , we conclude that as
l-adic Galois representation V ∨

1,l = V σ
1,l(1) where V ∨

1,l is the dual of V1,l. We have the
following conjecture.

Conjecture[Appendix [Til06]]: Given an l-adic irreducible geometric Galois repre-
sentation ρ : GK → V of dimension 3 satisfying V ∨ ∼= V σ(n) then there exists a set
Π(called an L-packet) of cuspidal automorphic representations π of G(AQ) where G
is the unitary group over Q of signature (2, 1) such that for almost all places v of K
we have Lv(π, s) = Lv(ρ, s).

Remark 7.0.1. (1) Such packet is in fact unique if it exists.
(2) Using base change from G to GL3×GL1 we can state the precise compatibility

of their L-functions at remaining places.

Under this correspondence the representations (ρ, V ) with regular Hodge-Tate
weights are sent to discrete series and those with "weakly" regular Hodge-Tate
weights (repeated weights of multiplicity at most 2) are sent to limit of discrete
series.

Now in our case the l-adic Galois representation V1,l satisfies the condition of the
conjecture and since Jac(P ) is an abelian of dimension 3, the Hodge-Tate weights
of V1,l is (0, 0, 1) and we expect a packet Π of automorphic representations π such
that the infinity components π∞ are holomorphic limit of discrete series. In fact the
expected automorphic forms are the Picard modular forms (see definition below) of
weight (1, 1, 1) and we will see that these forms contribute to multiple cohomological
degrees of certain Shimura variety.

Following the this discussion, we are in the framework of the Calegari-Geraghty
method. In this situation, the main object will be the (compactified) Picard modular
surface S which parametrizes abelian threefolds with action of a quadratic imaginary
field and some additional structures. For each triple κ := (k1, k2, k3) ∈ Z3 with
k1 ≥ k2, there is a coherent sheaf Ωκ over S so that Picard modular forms can be
identified with H0(S,Ωκ). We would be interested in the complex RΓ(S,Ωκ). More
precisely, there is a Hecke algebra T acting on this complex and to each maximal ideal
m of T we can construct a Galois representation ρm : GK → GL3(Q̄p). According
to the numerical inputs of this new method, when m corresponds to an absolutely
irreducible ρm, we would like to prove that the localized complex RΓ(S,Ωκ)m is
concentrated only in two degrees. This task is however not possible to establish with
current techniques, but similarly to the case of abelian surfaces, we will use higher
Hida theory to get around this. Indeed, in this thesis we construct a perfect p-adic
complex over the Iwasawa algebra Λ := Zp[[Z×

p ]], concentrated in degrees [0, 1] and
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interpolate the ordinary part of RΓ(S,Ωκ). This will be the first step to prove the
conjecture above and we hope to be able to establish a suitable modularity lifting
theorem in the future work.

8. Hasse-Weil conjecture

Another central topic in number theory is the L-function. Similar to Galois repre-
sentation, L-function can be attached to an algebraic variety or an automorphic form
and it carries a lot of arithmetic information about these objects. We have previously
seen examples of L-function attached to elliptic curves and mordular forms (more
generally to algebraic variety and automorphic forms). Since L-functions coming
from automorphic forms enjoy a lot of properties that we wish to establish for L-
functions coming from algebraic variety, it is thus natural to use the correspondence
between these two classes of objects to answer questions about the latter.

Let X be a smooth proper algebraic variety over a number filed K and let S be
the finite set of places of K outside of which X has a good reduction . This means
X admits an integral model X over OK,S where OK,S is the localization of OK at
places in S. The Hasse-Weil zeta function of X is defined as:

ζX(s) =
∏

x

1

1−N(x)−s

where x runs through the set of closed points of X and N(x) is the degree of extension
of residue field at x. This definition does not depend on the choice of integral model
X up to a finite number of Euler factors. Notice that when K = Q and we take X to
be just the point Spec(Q) over Q, then we can choose X = Spec(Z) and recover the
well known Riemann zeta function. In general it is known that ζX(s) is absolutely
convergent for s ∈ C such that re(s) ≥ 1 + d where d = dim(X). However just as
the Riemann zeta function, many of its properties remain wide open, the following
conjecture, known as the Hasse-Weil conjecture, (proposed by [Ser70]) is one of them:

Conjecture: The Hasse-Weil zeta function ζX(s) admits a meromorphic contin-
uation to the whole complex plane and satisfy the functional equation similar to the
one in the case of Riemann zeta function.

It is also well known that this conjecture would be a direct consequence of a
suitable modularity theorem (or potential modularity theorem).

So far, very few case of Hasse-Weil conjecture is known. The most recent and
strongest result so far is the verification of this conjecture for the curve of genus 2
or equivalently of abelian surface of dimension 2 over a totally real field. This is
a consequence of the modularity of ablien surfaces of dimension 2 over totally real
fields. The case of curve of genus 3 seems hopeless. However, as mentioned above
there is a special case of Picard curve which is still amenable to the method used
in [BCGP18] and we also wish to establish the first case Hasse-Weil conjecture for a
curve of genus 3 as an application of our work.

Part 2. Higher Hida theory

As mentioned earlier in the general introduction, the case of interest for us will
be abelian variety that comes as the jacobian of the Picard curve of genus 3, let’s
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call it A. This abelian variety is defined over Q and has dimension 3 as well as
an action of an imaginary quadratic field. Following conjecture 7 there should be
a Picard modular form associated to A in the sense that their L-functions agree.
Now, the Galois representation attached to A has Hodge-Tate weights (1, 1, 1, 0, 0, 0)
and we expect that the Picard modular form (see definition below) showing up has
weight (1, 1, 1). In order to carry out the method of Calegari and Geraghty, we
would like to know the range of concentration of higher cohomology groups to which
our targeted Picard modular forms contribute. Somewhat more concretely, in this
situation, the main object is the (compactified) Picard modular surface S. For each
triple κ := (k1, k2, k3) ∈ Z3 with k1 ≥ k2, we have a coherent sheaf Ωκ over S. As an
input, the Calegari-Geraghty method requires us to prove that the localized complex
RΓ(S,Ωκ)m (where m is the maximal ideal associated to the Picard modular form
above) is concentrated only in two degrees, which we do not know how to prove
directly. For this reason, we follow the idea of [Pil18] to construct p-adic Picard
modular forms whose cohomology groups are non zero only in degree 0 and 1.

8.1. Overview of main results and methods. Now let us jump into the precise
settings and the main results of this thesis. Let K be an imaginary quadratic field
over Q with ring of integer OK and p be a rational prime that splits in K. Let us also
denote by π and π̄ two primes of OK above p. We consider the Picard variety MU

which is a Shimura variety of PEL type associated to unitary group GU(2, 1) over
Spec(Zp) (see below for a detailed definition). This variety classifies (up to isogenies)
abelian varieties of dimension 3 with an action of OK of signature (2, 1), a prime to
p polarization and a level structure U that is hyperspecial at p. Let S be the toroidal
compactification of MU with the boundary D := S −MU (we should have denoted
it by SU but we drop the subscript U to simplify notations). Let A be the universal
semi-abelian scheme over S, and ωA the relative differential sheaf of A. The action
of OK induces a splitting ωA = ωA,π ⊕ ωA,π̄. For any triple κ = (k1, k2, k3) ∈ Z3

such that k1 ≥ k2 we define the automorphic sheaf Ωκ of weight κ overMU by:

Ωκ = Symk1−k2ωA,π ⊗ detk2ωA,π ⊗ ωk3
A,π̄

This coherent sheaf extends canonically to S and we still denote it by Ωκ, as well
as its cuspidal subsheaf by Ωκ

D := Ωκ(−D). In this paper we develop a version of
Hida theory that, for each fixed k2, k3, interpolates the complex RΓ(S,Ωκ

D) letting
k1 vary. More precisely there is a projector tp ∈ End(RΓ(S,Ωκ

D)) cutting out an
ordinary part tpRΓ(S,Ωκ

D) that will be interpolated.
We have our first theorem:
Theorem A: For any weight κ such that k1−k2 ≥ 1 and k1+k3 > 3 the complex

tpRΓ(S,Ωκ
D) is perfect and concentrated in degree [0, 1].

For each fixed weight κ− := (k2, k3) we also show the existence of a perfect complex
V•(κ−) of Λ-module concentrated in degree [0, 1] , where Λ := Zp[[Z×

p ]] is the Iwasawa
algebra of dimension 1. We have our second main theorem:

Theorem B[Control theorem]: For any weight κ such that k1 − k2 ≥ 1 and
k1 + k3 > 3 we have a quasi-isomorphism:

V•(κ−)⊗L
Λ,k1 Zp

∼= tpRΓ(S,Ωκ
D)
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Remark 8.1.1. Readers can observe that in the theorem (B), we have an (integral)
control theorem for weight κ such that k1 − k2 ≥ 1 and k1 + k3 > 3. This condition
fails for the weight κ = (1, 1, 1) which is our target. However, if we work rationally
by inverting p, we can obtain the control theorem for such weight. This is achieved
by working with overconvergent forms in the third part of this thesis.

Now let us explain the strategy of the proofs.
For the first theorem, let S1 is the special fiber S ×Zp Spec(Fp), it is enough to

prove that the complex tpRΓ(S1,Ωκ
D), i.e the reduction mod p of tpRΓ(S,Ωκ

D) is per-
fect and concentrated in degree [0, 1]. Now, on this special fiber, there is a convenient
stratification by p-rank of the universal semi-group A. In our situation the p-torsion
A[p] is the product of A[π] and A[π̄] and the Cartier dual A[π]D of A[π] is A[π̄]. The
factor A[π] is a truncated Barsotti-Tate group of level 1 of height 3, dimension 2, thus
its multiplicative rank can only be 0, 1 or 2. We can then define two Hasse invariants.
The first one is the classical Hasse invariant Ha ∈ H0(S1, detp−1ωA[π]) that vanishes
on the locus where the multiplicative rank of A[π] is less than 2. Let us denote this
vanishing locus by S≤1

1 and its complementary S=2
1 := S1\S≤1

1 . We can also con-
struct (see section 10.1.2) a second Hasse invariant Ha′ ∈ H0(S≤1, detp

2−1ωA,π).
The section Ha′ vanishes on the locus where the multiplicative rank of A[π] is
0, we denote this locus by S=0

1 and its complementary S≥1 := S1\S=0
1 . The

reason for the introduction of this stratification is twofold. First of all, the pro-
jector tp is obtained by iterating a Hecke operator Tp ∈ End(RΓ(S1,Ωκ

D)) and
under some assumptions on the weight κ, the Hecke projector Tp interacts well
with this stratification. By that we mean Tp commutes with two Hasse invari-
ants and thus induces two operators T≤1

p ∈ End(RΓ(S≤1
1 ,Ωk1+p−1,k2+p−1,k3

D )) and

T=0
p ∈ End(RΓ(S=0

1 ,Ωk1+p+p2−2,k2+p+p2−2,k3
D ). Second of all, under the assumption

on the weight of the theorem, T=0
p = 0, which implies tpRΓ(S=0

1 ,Ωκ
D) = 0. As a

result, we can write down an explicit resolution for the sheaf Ωκ
D, which has two

terms that are supported on the loci S=2
1 and S=1

1 . Finally the fact that these two
loci are both affine in the minimal compactification helps us conclude.

For the next theorem, we need to understand the construction of the complex
V•(κ). Recall that in the classical Hida theory, we construct the family of p-adic
forms on the formal completion of the ordinary locus. The idea of higher Hida
theory is similar, but we work with strictly bigger locus S≥1

1 instead. More precisely,
let S the completion of S along its special fiber, and let S≥1 to be open formal
subscheme of S where the multiplicative rank of A[π] is at least 1, this locus strictly
contains the ordinary locus S=2 where Ha is invertible. Analogous to the classical
case, we will build a pro-covering of S≥1, called the Igusa tower with an action of Z×

p .
Explicitly, we have an affine étale map S≥1(pn)→ S≥1 for each n, where S≥1(pn) is
the moduli space over S≥1 parametrizing multiplicative subgroup Hn ∈ A[pn] that
is étale locally isomorphic to µpn . We define S≥1(p∞) = lim←−n

S≥1(pn). Over each
S≥1(pn), we can define a (Z/pnZ)×-torsor by putting Ign := IsomS≥1(pn)(µpn , Hn).
By passing to the limit we obtain the Igusa tower π : Ig∞ → S≥1(p∞) → S≥1(p)
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which carries a natural action of Z×
p . We define

P := (π∗OIg∞⊗̂ZpΛ)
Z×
p

where Z×
p acts on Λ by the universal character. This is the sheaf of p-adic modular

forms and it lives over S≥1(p). Let us sketch its relationship with the classical sheaf
Ωκ. For any continuous character w : Λ → Z×

p , we denote Pw := P⊗̂Λ,wZp. In
particular when w is induced from an algebraic character k1 − k2 : Z×

p → Z×
p (t 7→

tk1−k2) we can use Hodge-Tate map HT : HD
∞ ⊗OS≥1(p∞) → ωH∞ for the universal

multiplicative group H∞ ⊂ A[π∞] ⊂ A[p∞] to construct a surjection over S≥1(p∞):

(8.1) Ωk1,k2,k3
D →P

k1−k2 ⊗ Ωk2,k2,k3
D

and thus relating classical forms and p-adic forms. Now, of course this is not sat-
isfying because this surjection has nontrivial kernel, we get around this by defining
a Hecke operator Up acting on the cohomology groups of Pk1−k2 ⊗ Ωk2,k2,k3

D . One
important feature of this operator is that it acts equivariantly with respect to the
action of operator Up on RΓ(S≥1(p),Ωκ

D) via the surjection (8.1) and furthermore its
action on the kernel of (8.1) is topologically nilpotent (i.e divisible by p). As a result,
after iterating Up to obtain a projector up ∈ End(RΓ(S≥1(p),Pk1−k2 ⊗ Ωk2,k2,k3

D )),
one can expect a good control theorem (see theorem 13.0.2):

(8.2) upRΓ(S
≥1(p),Ωκ

D)
∼= upRΓ(S

≥1(p),Pk1−k2 ⊗ Ωk2,k2,k3
D )

Finally, a detailed study of the relationship between the operator Up and Tp shows
that when the weight κ is regular enough, we have a quasi-isomorphism (see section
(12.5)):

(8.3) upRΓ(S
≥1(p),Ωκ

D)
∼= tpRΓ(S

≥1,Ωκ
D)

This allows us to conclude the proof of the theorem B.

9. Picard variety

For any number field E, its ring of integer is denoted by OE and we will denote
by AE = AE,f × AE,∞ the ring of adeles of E, with ring of finite adeles AE,f and
ring of infinite adeles AE,∞. For any set S of places of E, we denote by AS

E the ring
of adeles away from S. Lastly, when E = Q we drop the subscript E (i.e we only
denote the ring of adeles of Q by A = Af × A∞).

Let K be a quadratic imaginary extension of Q, i.e there exists a square free
Z ∋ δ < 0 such that K = Q[

√
δ]. We fix a rational prime p that is prime to δ and

throughout the rest, we suppose that p splits in K and let us denote by π and π̄ two
primes of OK above p. Let (̄.) be the unique nontrivial element in Gal(K/Q) (i.e
the complex conjugation). Let (M,<,>, h) be a triple where:

(1) M is a OK-lattice of rank 3, i.e a finitely generated, free Z-module of rank 6
equipped with an OK-action.

(2) <,>: M ×M → Z is a non degenerate OK-linear Hermitian form on M ,
i.e, we have < ax, y >=< x, āy > ∀a ∈ OK and x, y ∈ M . This pairing
induces an involution ∗ on EndOK

(M) by sending f ∈ EndOK
(M) to its

<,>-adjoint.
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(3) h : C → EndOK⊗ZR(M ⊗Z R) is a morphism of R-algebras with involutions
(involution of C is given by the usual conjugation), such that (x, y) 7→<
x, h(i)y > is symmetric and positive definite. Furthermore we require <
h(a)x, y >=< x, h(ā)y >.

Now the involution h(i) ∈ EndOK⊗ZR(M ⊗Z R) gives us a decomposition of V :=
M⊗ZC into V = V1⊕V2 where h(z)⊗1 acts by z on V1 and by z̄ on V2. Both V1 and
V2 can be also seen as OK ⊗Z C-modules and as a result we have a decomposition
Vi = Vi,π⊕Vi,π̄ for i ∈ {1, 2} compatible with the decomposition of K⊗ZC = Cπ⊕Cπ̄

(induced by two embedding of K to C) in the sense that only the copy Cπ
∼= C (resp.

Cπ̄) acts non trivially on V1,π⊕V2,π (resp.V1,π̄⊕V2,π̄ ). We also make two additional
assumptions:

(1) The signature of (M,<,>, h) is (2, 1), meaning that 2 = dim(V1,π) = dim(V2,π̄)
and 1 = dim(V2,π) = dim(V1,π̄).

(2) The paring induced by <,> on M ⊗ Zp is perfect (this condition is required
for the group G defined right below to be reductive over Zp).

Associated with this triple (M,<,>, h), we can define the following algebraic groups:
(1) The unitary similitude groupG := GU(2, 1) whoseR-point for each Z-algebra

R can be described as:

G(R) := {(g, ηg) ∈ EndOK⊗ZR(M ⊗Z R)×R×| < g(x), g(y) >= ηg < x, y >}
where η(g) : g 7→ ηg is called the similitude character .

(2) The unitary group G′ := U(2, 1) which sends each Z-algebra R to the set

G′(R) := {(g, η) ∈ G(R)|η(g) = 1 ∈ R×}
Remind ourself that the morphism h in the definition of the triple (M,<,>, h) is an
R-algebra morphism, thus we have hC : C×C→ EndOK⊗ZC(M ⊗ZC) and from this
we can define a map µ : C→ M ⊗Z C by µ(z) = hC(z, 1). The field of definition of
a GU(C)-conjugacy class of µ is a finite extension of Q and we call it the reflex field
associated triple (M,<,>, h) above. In this case the reflex field is K itself because
of the signature of <,> is (2, 1).

As p splits in K we have G(Zp) ∼= Z×
p × GL3(Zp). A level subgroup is an open

compact subgroup U ⊂ G(Af ) that we suppose of the form U = UpUp with Up ⊂
G(Ap,∞) and Up ⊂ G(Zp). Throughout this paper, we will only be interested in
the case where the level Up is hyperspecial, i.e Up = G(Zp) or parahoric. More
precisely, if we take the canonical basis {e1, e2, e3} for F3

p, there are two parabolic
subgroups P1 and P2 of GL3(Zp) which are the preimages via the reduction map
GL3(Zp)→ GL3(Fp) of the subgroups of GL3(Fp) that stabilize the line < e1 > and
the plane < e1, e2 > respectively. Via the isomorphism G(Zp) ∼= Gm(Zp)×GL3(Zp),
the parahoric level structure that we consider corresponds to the case where Up =
Gm(Zp)× P2 (see also the remark 10.6.2 for an explanation of this choice).

Fix a prime ideal, say π over p. For each level subgroup U = UpUp ⊂ G(Af ),
we define the following moduli problem that sends each connected scheme S over
Spec(OK,π) to the set of tuples (A, λ, ηU , i) up to equivalence by isogenies, where

(1) A→ S is an abelian scheme of relative dimension 3.
(2) i : OK → End(A)⊗Z Z(p) is an injective morphism of Z(p)-algebra.
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(3) A prime-to-p polarization λ : A → A∨ inducing a Rossati involution which
sends i(k) to i(k̄) for all k ∈ K.

(4) ηU is a U -level structure.
We explain what the level structure ηU means. For any abelian variety A of

dimension g over S satisfying the conditions (1), (2), (3) above and a geometric point
x →֒ S, we can look at the trivialization of the Tate module:

(9.1) H1(Ax,A
p
f )
∼=M ⊗ Ap

f

This is an isomorphism of symplectic modules with the symplectic structure on
H1(Ax,A

p
f ) given by the Weil paring and on M ⊗ Ap

f by the standard symplectic
structure. The group G(Ap

f ) acts on M ⊗ Ap
f and so does Up ⊂ G(Ap

f ). We are
interested in two cases:

(1) If Up = G(Zp) then ηU means a choice of an Up-orbit of the above isomor-
phism (9.1).

(2) If Up = Z×
p × P2 then ηU means a choice of an Up-orbit of the isomorphism

(9.1) plus a choice of a subgroup H of A[π] of order p2.
The following is well known and can be found in [Lan12].

Theorem 9.0.1. If the level Up is neat, the above moduli problem is represented by
a smooth, quasi-projective scheme MU over Spec(OK,π).

Above MU , there is a universal abelian scheme A of dimension 3 with an OK

action. We also have the relative differential sheaf ωA := e∗Ω1
A/MU

where e :MU →
A is the identity section. This is a locally free sheaf of rank 3 which inherits the OK-
action of A. Since K is also the reflex field, we have a decomposition ωA = ωπ ⊕ωπ̄.
In addition, by our assumption on the signature of the triple (M,<,>, h), the type of
ωA as an OMU

-module is also (2, 1). Thus rankOMU
(ωπ) = 2 and rankOMU

(ωπ̄) = 1
on all connected components of MU .

For each triple κ = (k1, k2, k3) ∈ Z3, with k1 ≥ k2 we define the following coherent
sheaf on MU :

Ωκ := Sym(ωπ)
k1−k2 ⊗ det(ωπ)

k2 ⊗ ωk3
π̄

This sheaf extends to the toroidal and minimal compactification whose construction
we recall in the next subsection.

9.1. Compactification. Fix a level structure U = UpUp, where the level Up is neat
and Up ⊂ G(Zp). We assume that Up is either hyperspecial, i.e Up = G(Zp) or
parahoric, i.e Up ∼= Z×

p × P2.
Let C be the set of all totally isotropic factor W ⊂ V = O3

K with respect to
the hermitian form <,> given by the matrix diag(1, 1,−1). For each W ∈ C we
denote by C(V/W⊥) the cone of symmetric hermitian semi-definite positive forms
on (V/W⊥)R with rational radical. In particular if W 6= 0, it can only be of rank
1 and so we can see that C(V/W⊥) = R>0. For any W ′ ⊂ W we have an obvious
inclusion C(V/W⊥) ⊂ C(V/W ′⊥), this generates an equivalence relation ∼ in the
set

∐
W∈C

C(V/W⊥). Let C :=
∐

W∈C

C(V/W⊥)/ ∼. As there are only two classes of

equivalence, 0 and < e1 + e3 >, we can see that C = R>0
∐
{0} = R≥0. Usually, in

order to define a toroidal compactification, we need to make a choice of a rational
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polyhedral cone decomposition, but here there is only a unique rational polyhedral
cone for each C(V/W⊥) which is C(V/W⊥) itself. Now for each W ∈ C we have a
following tower :

MW → BW → YW

Where YW is the moduli of elliptic curves over Z(p) with complex multiplication
by OK , it also comes equipped with a (neat)level structure outside p, and a level
at p (depending on the relative positions of the W and the lattice pZ ⊕ pZ ⊕ Z).
Let us denote by EW the universal elliptic curve over YW . Above YW there is
BW := Ext1OK

(E ,Gm × OK) which is also isogenous to the dual E∨W of EW . Lastly
MW is a Gm-torsor, relatively affine over BW parametrizing 1-motives which carry
the level structure Up at p (recall that we allow hyperspecial or parahoric level struc-
ture). With the interpretation of 1-motifs as in proposition (10.2.14)[Del74], there
is a coherent OBW

-algebra L with an action of Gm such that MW = SpecBW
(L).

Additionally, there is toroidal embedding of MW associated with an affine toroidal
embedding of Gm:

MW →Mtor
W

The action of Gm on L induces a decomposition L = ⊕kL(k) via the action of Gm

on it. With these notations we have the description Mtor
W = SpecBW

(⊕k≥0L(k)).
Inside Mtor

W there is a closed strata, which is the zero section of Mtor
W and can be

identified with BW . Let M̂tor
W be the completion ofMtor

W along its closed strata. We
have the following theorem:

Theorem 9.1.1. When the level Up is neat, and Up is either hyperspecial or para-
horic, there exists a normal proper scheme, of complete intersection SU such that:

(1) MU can be identified as its open subscheme, with the complementary D =
SU −MU is a normal crossing divisor( it is just a finite disjoint union of
curves in our case).

(2) There is a stratification of D indexed by the set C/U , with each W ∈ C we
have a strata ZW ⊂ D.

(3) The completion of SU along one strata ZW is isomorphic to M̂tor
W .

We will often drop the subscript U if the context is clear. The minimal compact-
ification S∗U of MU is obtained by adding a finite number points corresponding to
elliptic curves with CM structure by OK , one for each component of the boundary
D. Let x be such a geometric point of S∗U −MU , it can be identified with a point
x ∈ YW , and if we denote B̂W , x the completion of BW along its fibers over x via
BW → YW , then we have the following.

Theorem 9.1.2. The completed local ring ÔS∗
U ,x is isomorphic to

∏
k≥0H

0(B̂W,x,L(k)).

Now the coherent sheaf Ωκ overMU that we have introduced in the previous sec-
tion extends canonically to SU , and we call H0(SU ,Ωκ) the space of Picard modular
forms of weight κ and level U . We also have cuspidal subspace H0(SU ,Ωκ

D) (recall
that for any coherent sheaf F on SU we denote by FD := F(−D)).
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9.2. Complex Picard variety. In this section, we briefly go over another descrip-
tion of the complex points MU (C) as a finite disjoint union of locally symmetric
spaces associated to G(R).

Recall that we have an OK-lattice M . If we denote MR := M ⊗Z R, then MR is
equipped with an action of OK and a complex structure by h : C→ EndOK⊗ZRMR

and a Hermitian form of signature (2, 1). In other word MR
∼= C3 is a 3-dimensional

Hermitian C-vector space of signature (2, 1). Up to ismorphism, there is only one such
Hermitian space, and thus without loss of generality, we suppose that the Hermitian
form is given by the matrix

J =




0 0 1
0 1 0
−1 0 0




The group G(R) now is just the group of linear automorphism of MR preserving
the form J . Let X be the set of negative definite lines in the projective space
P(MR) = P2(C) with respect to J , concretely it can be identified with:

X = {(z1, z2) ∈ C2| − 2Im(z1) + |z2|2 < 0}
with this description the action of G(R) on X is given by:

(
A b
c d

)
z =

1

cz + d
(Az + b)

where A ∈ Mat2×2(C). It is straightforward to show that G(R) acts transitively
on X with stabilizer K∞ := Stab(i, 0) = {A, z ∈ G(2)(R) × C×|η(A) = |z|} where
η(A) is the similitude factor of A, as a result X = G(R)/K∞. In fact the following
theorem is well known :

Theorem 9.2.1. Suppose that Up is neat. Then the complex point MU (C) can be
identified with the set G(Q)\(X × G(A)/U) = G(Q)\G(Af )/K∞U . In other words,
it is a disjoint union of finitely many quotients of X.

Proof. See section 2.3.2 [CEF+14]. �

Next, we recall the definition of (analytic)Picard modular form and compare it
with the algebraic definition we have given earlier.

Let P be the parabolic GL2(C) × GL1(C) and let ρ : P → GL(W ) be a finite
dimensional complex representation of P . Now for any map f : X → W and any

g = (

(
A b
c d

)
, η) ∈ G+(R) we define f |ρg : X→W to be the map given by

f |ρg(x) := ρ(η
−1
2 (b̄tx+ Ā), η

−1
2 (cz + d))−1f(gx)

Definition 9.2.1. For a congruence subgroup Γ of G(Q) and a finite dimensional
representation ρ : P → GL(W ). A holomorphic automorphic form of weight ρ and
level Γ is a holomorphic function f : X→ W that satisfies: f |ργ = f for any γ ∈ Γ.
We denote the set of automorphic form of weight ρ level U by S(ρ,U).

Consider the universal abelian variety A overMU . OverMU there is aGL2×GL1-
torsor T := Isom(O2

MU
, ωπ)× Isom(OMU

, ωπ̄). For each scheme S = Spec(R) over
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Zp a S-point of T corresponds to a pair of trivializations R2 ∼= ωA,π and R ∼= ωA,π̄.
The group GL2(R)×GL1(R) acts naturally on R2 ×R and thus on T (R).

Let R be a Zp-algebra and by abuse of notation, we will still denote by MU the
base change of MU over Zp to R

Definition 9.2.2. Let ρ : GL2 × GL1 → GLn be an algebraic representation (for
some n). An algebraic automorphic form f defined over R for G of weight ρ, and
level U is a law that for each R-algebra R′ sends each pair (A,ψ) ∈MU (R

′)×T (R′)
to f(A,ψ) ∈ R′n such that:

(1) f(A, gψ) = ρ(tg−1)f(A,ψ)
(2) For any morphism of R-algebra R′ → R′′ and any (A,ψ) ∈MU (R

′)×T (R′)
we have f(A′′

R, ψR′′) = f(A,ψ)⊗R′ 1R′′ ∈ R′′n.

We denote by Salg(ρ,U , R) the set of all algebraic automorphic forms defined over
R of weight ρ, level U . In particular when R = C we wish to compare S(ρ,U) and
Salg(ρ,U ,C).
Proposition 9.2.1. We have a bijection between Salg(ρ,U ,C) and S(ρ,U).
Proof. See proposition 3.17[CEF+14]. �

There is yet another way to see Salg(ρ,U , R) as a global section of some coherent
sheaf Vρ on MU × R ( Vρ can be defined as T ×ρ Rn, where Rn is the underlying
module of the representation ρ). In particular if we consider ρ(κ) to be the highest
weight (algebraic )representation of GL2 × GL1 of weight κ over some Zp-algebra,
using Frobenius reciprocity, we can see that the Vρ is isomorphic to Ωκ, and thus
Salg(ρ(κ),U , R) is in bijection with H0(MU ×R,Ωκ).

9.3. Structure of the p-torsion. In this section we recall some facts regarding the
p-torsion A[p] of the universal abelian schemes which plays a crucial role in later
studies of local properties of Picard variety. Fortunately, in the case that we have
specialized in, it is not difficult to give an explicit description of A[p].

Let A be any abelian variety of dimension 3 over Zp with OK-action of type (2, 1).
For each n ∈ N the action by OK induces an action by OK/p

n on A[pn], the pn-
torsion of A. Notice that OK/p

n ∼= Z/pnZ×Z/pnZ, as a result we have an action of
OK,p = Zp×Zp on A[p∞] by passing to the limit. Let e1 and e2 be the projectors on
the first and second factor of OK,p, then A[π∞] = e1A[p

∞] and A[π̄∞] = e2A[p
∞].

Both of these factors are p-divisible group of height 3. By our assumption on the
signature of the action of OK , we see that the dimension of A[π∞] is 2 and A[π̄∞] is
1.

Let k be a perfect field of characteristic p and W :=W (k) its ring of Witt vector as
well as K :=W [1p ]. Let σ :W →W be Frobenius lift of k. Recall that a Dieudonné
module over W is a free W -module equipped with a σ-linear endomorphism F and
a σ−1-linear endomorphism V . There is a contravariant functor from the category
of p-divisible groups over k to the category of Dieudonné modules over W .

{p-divisible groups/k} −→ {Dieudonné modules}
G 7→ D(G) = lim−→

n

Homk−group(G[p
n],Wn(k))(9.2)
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This induces an (anti-)equivalence between the category of p-divisible group over k
and the sub-category of Dieudonné modules of slopes in [0, 1]. If G and G′ are two
isogenous p-divisible group over k then D(G)⊗W K ∼= D(G′)⊗W K. Furthermore, if
we fix G then isomorphism classes of p-divisible groups isogenous to G are in bijection
with (F, V )-stable W -lattices inside D(G)⊗W K.

When k is furthermore assumed to be algebraically closed, the category of Dieudonné
modules up to isogeny is semisimple with simple objects completely determined by
their slopes. For example, if λ = s

r ∈ [0, 1] ∩ Q with s, r coprime. The simple
Dieudonné module over K of slope s

r is given by Eλ with a K-basis e, Fv, ..., F r−1v

and F rv = psv whereas V = pF−1.
As a consequence, any given p-divisible group G over k = k̄ is isogenous to a

direct sum D(G) ⊗W K = ⊕n
i=1E

mi

λi
with λ1 < λ2 < ... < λn and mi ∈ N. We say

that G is of slope (λ1, ..., λ1, λ2, ..., λ2, ..., λn, ..., λn) with λi is repeated mi times.
In particular for a p-divisible group of height 3, dimension 2 there are only 3 cases
and more specially, isogeny classes become in fact isomorphism classes (see p92,93
[Dem72]) :

(1) If A[π∞] is of slope (0, 1, 1), its Cartier dual A[π̄∞] is of slope (0, 0, 1) and
their respective Dieudonné modules are given by (D(A[π∞]), F1, V1) and
(D(A[π̄∞]), F2, V2) where D(A[π∞]) = D(A[π̄∞]) =W (k)3 with

F1 = V2 =



p 0 0
0 p 0
0 0 1




and

V1 = F2 =



1 0 0
0 1 0
0 0 p




(2) If A[π∞] is of slope (12 ,
1
2 , 1), its Cartier dual A[π̄∞] is of slope (0, 12 ,

1
2)

and their respective Dieudonné modules are given by (D(A[π∞]), F1, V1) and
(D(A[π̄∞]), F2, V2) where D(A[π∞]) = D(A[π̄∞]) =W (k)3 with

F1 = V2 =



p 0 0
0 0 1
0 p 0




and

V1 = F2 =



1 0 0
0 0 1
0 p 0




(3) If A[π∞] is of slope (23 ,
2
3 ,

2
3), its Cartier dual A[π̄∞] is of slope (13 ,

1
3 ,

1
3)

and their respective Dieudonné modules are given by (D(A[π∞]), F1, V1) and
(D(A[π̄∞]), F2, V2) where D(A[π∞]) = D(A[π̄∞]) =W (k)3 with

F1 = V2 =



0 p 0
0 0 p
1 0 0



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and

V1 = F2 =



0 0 p
1 0 0
0 1 0




10. Higher Hida theory for U(2, 1)

The goal of this section is to construct the generalized Hasse invariant, together
with the classical Hasse invariant, they are used in the study of the stratification
of the special fiber S1 = S × Spec(Fp). Later in (10.2) we will construct a Hecke
operator Tp that acts locally finitely on the complex RΓ(S,Ωκ

D) and show various
compatibilities of this operator with respect to the Hasse invariants. In the last
subsection (11.2) we use the strategy outlined in the introduction to deduce the basic
theorems regarding some preliminary properties of the ordinary part tpRΓ(S,Ωκ

D).

10.1. Generalized Hasse invariant. In this section S is always a reduced Fp-
scheme, we denote by BTn(S) the category of truncated Barsotti-Tate group of level
n. For any G ∈ BTn(S), let Ω1

G/S be its differential sheaf and ωG := e∗Ω1
G/S with e

the identity section of G→ S and detG := det(ωG) the determinant of ωG.
We have a contravarient functor D from BT1(S) to the category of locally free

OS-modules of finite rank (see [Ber79]). This functor sends each G ∈ BT1(S) to its
Dieudonné crystal:

D(G) := Ext1cris(G,OS/Fp)S

It is a locally freeOS-module and we haveD(G(p)) = D(G)(p). By functoriality, these
modules come equipped with actions of Frobenius F : D(G)(p) → D(G) and of Ver-
schibung V : D(G)→ D(G)(p). Furthermore, there exists an exact sequence(Hodge
filtration) :

0→ ωG → D(G)→ ω−1
GD → 0

10.1.1. Classical Hasse invariant. Let G be a finite locally free group over some
Fp-scheme S. The Verschibung V : G(p) → G induces a map det(V ∗) : detG →
detG(p) = detpG, and gives us the so-called Hasse invariant which is a section Ha(G) ∈
H0(S, detp−1

G ). The following example says why this invariant is useful.

Example 10.1.1. let A be an abelian scheme of dimension g over S and A[p] its
p-torsion. The p-rank of A at each geometric point x ∈ S is defined as the dimension
of F̄p-vector space Ax[p](F̄p) and we say Ax is ordinary if its p-rank is g. It is well
known that the Hasse invariant Ha(Ax[p]) is invertible if and only if Ax is ordinary
(cf.[Far11] 2.3). As a result, when viewed as a section Ha(A[p]) ∈ H0(S, detp−1

A ) of
the line bundle detp−1

A , the non-zero locus of Ha(A[p]) is exactly the ordinary locus
of S.

10.1.2. Generalized Hasse invariant. We now begin the construction of the general-
ized Hasse invariant. Let S be a reduced Fp-scheme and G ∈ BT1(S) of height 3 and
dimension 2 such that the multiplicative rank of G over S is less than 2. The goal is
to construct a section of H0(S, detp

2−1
G ) that vanishes exactly at points where G is

of multiplicative rank 0.
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We first construct such Hasse invariant when G is of multiplicative rank 1, étale
rank 0. This means that G is connected and there is a sub group Gm ⊂ G that is
étale locally isomorphic to µp. In this case, the quotient H := G/Gm is in BT1(S)

and it is of height 2 with dimension 1. The Hodge filtration for D(H) and D(H)(p)

gives us:

0 ωH D(H) ω∨
HD 0

0 ω
(p)
H D(H)(p) (ω∨

HD)
(p) 0

D(V )|ωH

i1 q1

D(V ) D(V )

i2 q2

As H is not ordinary, the restriction of D(V ) to ωH is zero pointwise, hence zero
as S is reduced, this means that the map D(V ) : D(H)→ D(H)(p) factors through
D(V ) : ω∨

HD → D(H)(p). The map D(V ) : ω∨
HD → (ω∨

HD)
(p) is always zero by

construction, so that in the end we have an isomorphism D(V ) : ω∨
HD → ω

(p)
H .

Raise both sides of this isomorphism to the p−1 power, we obtain (we just choose
to write detH instead of ωH here):

det(D(V ))p−1 : det1−p
HD → det

p(p−1)
H

In other words we obtain a section that we denote byHa1 ∈ H0(S, det
p(p−1)
H ⊗ detp−1

HD ).
Finally we define:

(10.1) Ha′(G) := Ha(Gm)p+1 ⊗Ha1(H) ∈ H0(S, det
p(p−1)
G ⊗ detp−1

Gm
⊗ detp−1

HD )

In order to get a section in H0(S, detp
2−1

G ) we use the following lemma.

Lemma 10.1.1. Let G ∈ BTn(S). There is a canonical isomorphism:

θ : detp−1
G
∼= detp−1

GD

Proof. Proposition 2 [Far11]. �

In particular this lemma gives: detp−1
HD
∼= detp−1

H and thus an isomorphism:

det
p(p−1)
G ⊗ detp−1

Gm
⊗ detp−1

HD
∼= detp

2−1
G

As a result, we get a section that we still denote by Ha′(G) ∈ H0(S, detp
2−1

G ).
Now, we explain how to extend this construction of generalized Hasse invariant to

the situation where:
(1) G ∈ BT1(S) is of height 3, dimension 2, and multiplicative rank less than 2

whereas S is a normal reduced scheme.
(2) There is a dense subscheme S′ →֒ S such that G|S′ is of multiplicative rank 1,

étale rank 0. Furthermore, we suppose that S′ is maximal with this property.

Lemma 10.1.2. The hypothesis (1) and (2) above imply that the map V ∗ : ωG → ω
(p)
G

has constant rank 1 over S and the map V ∗ : ωGD → ω
(p)

GD is zero.

Proof. Since S is reduced, it is enough to check the rank of the maps point by
point. Over any geometric point, using the fact that ωG

∼= V (D(GD))/pD(GD) and
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ωGD
∼= V (D(G))/pD(G) we can use the explicit description of D(G) and D(GD)

given in section (9.3) to verify the claims. �

Under these assumptions, we will define a section Ha′(G) ∈ H0(S, detp
2−1

G ) such
that the restriction of Ha′(G) to S′ is the Hasse invariant we have previously defined,
i.e Ha′(G)|S′ = Ha′(G|S′). Furthermore, this section vanishes on the complement
of S′ in S at order 1.

We first observe that, since G|S′ is of multiplicative rank 1, étale rank 0, we have
a multiplicative subgroup H ⊂ G of rank 1, but this group can be seen as the image
of the map V : G[F ](p) → G[F ] as well. Indeed, let K := ker(V : G[F ](p) → G[F ]).
We show that K is locally isomorphic to αp, the additive group of order p. As S
is reduced, we can verify this at each geometric points. Over each geometric point

of S′, the crystal of G is given by D(G) = W (F̄p)
3 with F =



p 0 0
0 0 1
0 p 0


 and

V =



1 0 0
0 0 1
0 p 0


 with respect to the canonical basis {e1, e2, e3} and so D(G[F ]) is

given by F̄pē1 ⊕ F̄pē3 with F = 0 and V =

(
1 0
0 0

)
. As a result D(K) ∼= F̄pē3 with

V = F = 0, and we can conclude that K is locally isomorphic to αp. Finally, since
G|S′ is of slope (12 ,

1
2 , 1) the quotient G[F ](p)/K, now seen as a subgroup of G[F ] via

V : G[F ](p) → G[F ], is multiplicative over S′. We have the following lemma:

Lemma 10.1.3. There exists a finite flat subgroup H ⊂ G[F ] such that H|S′ is
locally isomorphic to µp.

Proof. Let K := ker(V : G[F ](p) → G[F ]) and put H := G[F ](p)/K. If we can show
that H is finite flat, then by the previous discussion, the restriction of H to S′ is
locally isomorphic to µp.

We first show that K is finite flat. It is obviously finite, and for the flatness, we
can examine the rank function which to each point s ∈ S associates ranks(K) which
is simply the rank of the kernel of V at this point. If this function is locally constant
then K is finite flat.

For the points of slope (12 ,
1
2 , 1) we have seen just above that K is of rank p. For

the point of slope (23 ,
2
3 ,

2
3), we proceed similar. The crystal of G at this point is

given by D(G) =W (F̄)3p with F =



0 p 0
0 0 p
1 0 0


 and V =



0 0 p
1 0 0
0 1 0


 with respect to

the canonical basis {e1, e2, e3} and so D(G[F ]) is given by F̄pē1 ⊕ F̄pē2 with F = 0

and V =

(
0 0
1 0

)
. Thus K is indeed of constant rank p.

Finally since K is flat, the quotient map H = G[F ](p)/K is also flat, even faithfully
flat because we clearly have these Cartesian squares and flatness is a property local
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on the target in the fppf topology:

(10.2)

K ×S G[F ]
(p) G[F ](p) ×H G[F ](p) G[F ](p)

G[F ](p) G[F ](p) H

∼

pr2

pr2

pr2 pr

pr

This shows that H is finite flat as we have a flat composition G[F ](p) → H → S
with the first map being faithfully flat.

�

Now, the exact sequence H → G[F ]→ G[F ]/H induces the following diagram:

(10.3)

0 ωG[F ]/H ωG[F ] ωH 0

0 ω
(p)
G[F ]/H ω

(p)
G[F ] ω

(p)
H 0

0 V ∗ V ∗
H

The left vertical map is 0 by the definition of H, so this gives us a map: V ∗
H :

ωH → ω
(p)
H and W : ω

(p)
G[F ]/H → ω

(p)
G /V ∗ωG. The most important thing here is that

these two map vanish on S\S′ and have the same order of vanishing. Indeed, we
can check this point by point as S is reduced. Let x ∈ S\S′ be a generic point, the
localizations ωG,x and ω(p)

G,x are free OS,x-modules of rank 2, so we can choose a basis

(e1, e2) for ωG,x and (f1, f2) for ω(p)
G,x so that ωG[F ]/H,x

∼= OSe1 and ω(p)
G[F ]/H,x

∼= OSf1.

By lemma (10.1.2) V : ωG,x → ω
(p)
G,x is of rank 1. So the matrix for V ∗ with respect

to previously chosen basis is
(
0 a
0 b

)
. Plus V ∗ vanishes over x and has rank 1, so

a ∈ O∗
S,x and b ∈ mx, the maximal ideal of OS,x. As a result, both V ∗

H and W vanish
at x with the same vanishing order.

We have the following diagram:

(10.4)

ωG D(G) ω∨
GD

ω
(p)
G D(G)(p) ω∨

GD

(p)

V ∗ 0

Since the rows are exact and the right vertical arrow is 0, we have a map Z : ω∨
GD →

ω
(p)
G /V ∗ωG by the snake lemma. This map is in fact an isomorphism. Indeed, this

can be checked on points as S is reduced. By definition of S, the multiplicative rank
of G at any geometric points is less than 2, and so the rank of V ∗ : D(G)→ D(G)(p)

is 2 (see (9.3)). Further more, by lemma (10.1.2), the rank of V ∗ : ωG → ω
(p)
G is 1.

As a result, the map Z : ω∨
GD → ω

(p)
G /V ∗ωG is not zero and thus an isomorphism

since both sheaves are of rank 1.
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Now, let v = det(V ∗
H); w = det(W ); z = det(Z) and setHa′(G) := vp⊗(w−1◦z)p−1

which is a section in:

H0(S, det
p(p−1)
H )⊗ detp(p−1)

G[F ]/H ⊗ det
p−1
GD ) = H0(S, det

p(p−1)
G ⊗ detp−1

GD )

Using the isomorphism θ : detp−1
G
∼= detp−1

GD we can think of Ha′(G) as a section of

H0(S, det
p(p−1)
G ). This is the generalized Hasse invariant that we want to construct.

Lemma 10.1.4. The section Ha′(G) vanishes at order 1 along the complementary
S\S′ of S′ and it extends the section Ha′(G|S′) constructed over S′ earlier.

Proof. Indeed, the map V ∗
H and W vanish over S\S′ at the same order and the map

Z is an isomorphism. By definition Ha′(G) = vp⊗(w−1◦z)p−1 has vanishing order 1
over S\S′. Plus, since the restriction of H to S′ is the multiplicative group Gm = µp,
the restriction of Ha′(G) to S′ agrees with Ha′(G|S′). �

10.1.3. Compatibility with base change. Let S be a scheme of characteristic p. Sup-
pose that we have an isogeny λ : G → G′ where G,G′ ∈ BT1(S), both of height 3,
dimension 2. This map induces a map : λ∗ : detG → detG′ and we would like to ask if
λ∗p−1 : detp−1

G′ → detp−1
G sends Ha(G′) ∈ H0(S, detp−1

G′ ) to Ha(G) ∈ H0(S, detp−1
G ).

Similarly suppose that the second Hasse invariant exists in this case, does λ∗p
2−1 :

detp
2−1

G′ → detp
2−1

G sends Ha′(G′) to Ha′(G)? The answer to both questions is the
obvious yes if the isogeny is étale but in general, they are false. However we have
the following propositions.

Proposition 10.1.1. Suppose that G and G′ are of multiplicative type, and λ : G→
G′ is an isogeny. Then we can define an isomorphism (depending on λ):

λ∗norm : detG′ → detG

such that λ∗,p−1
norm sends Ha(G′) to Ha(G).

Proof. This is lemma 6.2.4.1 in [Pil18]. �

Proposition 10.1.2. Suppose that G and G′ are of constant multiplicative rank
over S and λ : G → G′ is an isogeny with kernel L such that geometrically, L is a
direct factor of G[p] (i.e for every geometric point x → S , there exists a subgroup
Hx ∈ Gx[p] such that Lx ⊕Hx = Gx[p]). Then there exist an isomorphisms λ∗norm :

detG′ → detG such that λ∗,p−1
norm (Ha(G′)) = Ha(G) and λ∗,p

2−1
norm (Ha′(G′)) = Ha′(G).

Proof. This is lemma 6.2.4.2 in [Pil18]
�

Remark 10.1.1. The isomorphism λ∗norm is a normalization of det(λ∗) : detG′ →
detG where λ∗ is the differential λ∗ : ωG′ → ωG and this is the morphism that will be
used to define the Hecke operator later.

10.2. Hecke operator Tp. An important ingredient of the classical Hida theory is
a Hecke operator Tp which we use to construct the so called ordinary automorphic
forms. In this section we explain the construction of such operator.

So far, we have introduced the Picard varieties with hyperspecial and parahoric
level structures that we will denote by M and Mpar respectively. Recall that we
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have a universal abelian variety A overM and that A[p] = A[π]×A[π̄]. The scheme
Mpar is simply the solution to the following moduli problem:

Mpar : {Zp − algebra} → {Sets}
R 7→ (A,H, i, ηU , λ)/∼

with (A, i, ηU , λ)/R)/∼ ∈ M(R) and H ⊂ A[π] is a totally isotropic subgroup of
order p2.

We have seen thatMpar is quasi-projective schemes of local complete intersection
but it might help us understand the geometry of Mpar better by spelling out the
structure of its local rings.

Proposition 10.2.1. The completed local rings of Mpar is either isomorphic to
Zp[[a, b]] or Zp[[a, b, c]]/(ac− p).
Proof. To handle this kind of question, we use the theory of local model (see [Bel02]
section 4, 6). Let M = M ′ = Z6

p, both equipped with the standard symplectic
structure. The action of OK on these modules factors through the Zp-linear action
of OK ⊗ Zp

∼= Zp × Zp. Via this isomorphism, the action of (1, 0) is given by the
matrix diag(1, 1, 1, 0, 0, 0) while the action of (0, 1) is given by diag(0, 0, 0, 1, 1, 1).
There is a map(isogegy): φ :M ′ →M given by the matrix diag(p, p, 1, 1, 1, 1).

The local model for Mpar will be given as the moduli space of totally isotropic
direct factors ω ⊂M and ω′ ⊂M ′ such that both have signature (2, 1) with respect
to the action of O and φ(ω′) ⊂ ω. With the basis of M and M ′ we have chosen,
the universal deformation can be written down according to which point x ∈ M we
start with, and up to choosing a suitable basis, there are two types of points :

(1) If x corresponds to the pair ω =< e2, e3, e6 >;ω
′ =< e′2, e

′
3, e

′
6 > then the

universal pair are:

ω =< e2 + ae1, e3 + be1, e6 + ae5 + be4 >

ω′ =< e′2 + ae′1, e
′
3 + be′1, e

′
6 + ae′5 + be′4 >

With the condition φ(ω′) ⊂ ω, we see that the deformation ring is isomorphic
to Zp[[a, b]].

(2) If x corresponds to the pair ω =< e2, e3, e6 >;ω
′ =< e′1, e

′
3, e

′
6 > then the

universal pair are:

ω =< e2 + ae1, e3 − abe1, e6 − ae5 + abe4 >

ω′ =< e′1 + ce′2, e
′
3 + be′2, e

′
6 − ae′5 + abe′4 >

That means the deformation ring is isomorphic to Zp[[a, b, c]]/(ac− p).
�

We have two natural maps from Mpar toM :

Mpar

M M

p1p2
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The first map p1 just forgets the subgroupH, sending (A,H, i, ηU , λ) to (A, i, ηU , λ).
The second map p2 sends (A,H, i, ηU , λ) to (A′ := A

H+H⊥ , ĩ, η̃U , λ̃), where :

(1) ĩ is the induced OK action on A, this is well defined because the action of
OK on A[π] factorizes through the action of Zp on A[π] and this obviously
stabilizes H ⊂ A[π], similarly for H⊥ ∈ A[π̄]. As a result, H +H⊥ is stable
by the action of OK , and thus we have an action of OK on the quotient A′.

(2) η̃U is the induced level structure, via the isomorphismH1(Ax,A
p
f )
∼= H1(A

′
x,A

p
f )

for any geometric point x →֒ S.
(3) λ̃ : A′ → (A′)t is the descended polarization from pλ : A→ At which is still

principle because H+H⊥ is maximal isotropic. In other words, the following
diagram is commutative:

A A′

At A′t

f

pλ λ̃

f t

where f : A→ A′ is the isogeny with kernel H +H⊥.

Now we also have a unique toroidal compactification Spar of Mpar, and the pre-
vious correspondence extends to:

Spar

S S

p2p1

Lemma 10.2.1. The morphisms p1 and p2 are finite flat.

Proof. The scheme S is smooth and by proposition (10.2.1), the scheme Mpar is
of local complete intersection, in particular, it is Cohen-Macaulay. By the general
theory of toroidal compactification, Spar is Cohen-Macaulay too (in general we can
choose a toroidal compactification to be Cohen Macaulay if the interior is (see 14.2
[LAN16]), but in our case the compactification is unique, so this is harmless). The
theorem of miracle flatness then tells us that it is enough to check that the projections
p1 and p2 have finite fibers at each points. This is indeed true and can be checked
as follow. For each geometric point x →֒ S outside the boundary with residue field
k̄x and represented by an abelian variety Ax, the fibers p−1

1 (Ax) simply counts all
subgroups H ⊂ Ax[π] of order p2, and the fibers p−1

2 (Ax) counts the number of
isogenies A′

x[π
∞] → Ax[π

∞] with kernel H ⊂ A′
x[π] of order p2. Now, we can use

the classification of Dieudonné modules given in (9.3) to count such set. For example
for the map p1, let (Dx, F, V ) be the underlying Dieudonné module of Ax[π], the set
of subgroup H ⊂ Ax[π] of order p2 is then in bijection with the set of sub modules
of Dx of rank 1 (i.e sub k̄x-vector space of dimension 1 of Dx stable by the action of
F, V ). We can work type by type, for instance if the point Ax[π] is of multiplicative
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rank 0, its Dieudonné module is given by D(x) = k̄3x with:

F =



0 0 0
0 0 0
1 0 0




and

V =



0 0 0
1 0 0
0 1 0




This means that the only rank one stable module of Dx is k̄xe3 (where {e1, e2, e3}
is the canonical basis of k̄3x). Hence p−1

1 (Ax) has only one point. We can similarly
check that p−1

1 (Ax) and p−1
2 (Ax) are finite for x of any types.

On the boundary, we remark that in our case the rational polyhedral cone decom-
position is unique and for a geometric point x →֒ D, the underlying semi-abelian
scheme is ordinary, so there is always finite number of subgroups of fixed order. Thus
the maps p1 and p2 are quasi-finite over the boundary too. �

This finite flatness makes it easier for us to study the Hecke operator associated
with the correspondence S p2←− Spar

p1−→ S or other similar correspondences later on.

10.3. Correspondence. Let X be a scheme. We denote by D(OX) the derived cat-
egory of coherent sheaf on X. There are full subcategory D+(OX) (resp. D−(OX),
resp. Db(OX)) of objects isomorphic to complexes that are bounded above (resp.
below; resp. above and below). Let f : X → Y be a morphism of S-schemes. We
suppose that f is finite flat. In this setting one can define the exceptional inverse
image functor f ! : Coh(Y )→ Coh(X) between the categories of coherent sheaves on
Y and X. Explicitly to each F ∈ Coh(Y ) we can define 1 f !F = Hom(f∗OX ,F).
This functor satisfies two following crucial properties:

Proposition 10.3.1. (1) We have a natural transformation Tr : f∗f
! → Id.

(2) For a flat coherent sheaf F ∈ Coh(Y ) we have f !F = f∗F ⊗OX
f !OY

Proof. Since the map f is finite flat, we can suppose that X = Spec(B) and Y =
Spec(A) are affine, with finite flat map f# : A → B. The verification is now very
direct:

(1) We want to prove that f ! is the right adjoint of f∗ as then the counit of this
adjunction will give us the map Tr : f∗f ! → Id. Indeed, this is equivalent to
the fact that the co-restriction functor ModA →ModB(N 7→ HomA(B,N))
is the right adjoint of the scalar restriction from from B to A. Since f# is
finite flat, this is true by Shapiro’s lemma.

(2) Suppose that F(Y ) = M with M a flat A-module. We have a canonical

map HomA(B,A)⊗A M
hM−−→ HomA(B,M). We want to prove that h is an

isomorphism. Observe that since we work over a noetherien base we can find

1There is a bijection between the set of coherent sheaves over X and the set of coherent sheaves
over Y with an action of f∗OX . As a result Hom(f∗OX ,F) with the obvious action of f∗OX defines
indeed a sheaf over Y .
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a presentation Al → Am → B → 0. This gives us the following diagram (the
rows are exact sequence as M is flat):

0 HomA(B,A)⊗A M HomA(A
m, A)⊗A M HomA(A

l, A)⊗A M

0 HomA(B,M) HomA(A
m,M) HomA(A

l,M)

hM hAm h
Al

Since hAm and hAl are isomorphisms, hM is an isomorphism too.
�

Remark 10.3.1. In general the existence of a functor f ! : D+(OY ) → D+(OX) is
not at all obvious and has only been constructed in some special cases, but when it
does exist, it satisfies similar properties like above, i.e (cf. thm (10.5) and prop(8.8)
[Har66]):

(1) There is a natural transformation Tr : Rf∗f
! → Id of endofunctors of

D+(OX) and it induces via the adjoint formula:

HomD(OX)(F , f !G)
Ad∼= HomD(OY )(Rf∗F ,G)

for any G ∈ D+(OY ) and F ∈ D−(OX)
(2) For any G ∈ Db(OY ) is isomorphic to a bounded complex of flat OY -sheaves

then we have the following formula :

f !F ⊗L Rf∗G = f !(F ⊗L G)
We explain how to apply these in our situation to a flat coherent sheaf F on S.

Recall that we have seen: S p2←− Spar
p1−→ S. Here, the map p1 is finite flat, so that

the functor p!1 is available. We have natural maps (the third equality results from
the fact that p1 is affine).

RΓ(S,F)→ RΓ(Spar, p∗2F) = RΓ(S, p1∗p∗2F)
Now, in our case of interests, we will be able to define a map λ : p∗2F → p∗1F
and a map θ : p∗1F → p!1F which we call the fundamental class. Remark that
by proposition(10.3.1), p!1F = p∗1F ⊗ p!1OS , so to define the fundamental class, it
is enough to exhibit a map p∗1OS → p!1OS . Since p1 is finite flat, there is the
trace map Tr : p1∗OSpar → OS , and this induces a map p1∗OSpar → p1∗p

!
1OS =

Hom(p1∗OSpar ,OS).
Combining everything we obtain a map:

T : RΓ(S,F) −→ RΓ(S, p1∗p∗2F)
λ−→ RΓ(S, p1∗p∗1F)

θ−→ RΓ(S, p1∗p!1F)
Tr−→ RΓ(S,F)

It should be noted that as it happens in practice, the map λ above is often suitably
normalized to improve the integrality of T depending on specific situations.

This construction applies most frequently to the automorphic sheaf Ωκ (or its
cuspidal counterpart Ωκ

D := Ωκ ⊗ ID) of weight κ. In this occasion, the universal
isogeny λ : A → A′ over Spar induces a map λ∗π : ωA′,π → ωA,π and λ∗π̄ : ωA′,π̄ → ωA,π̄

and hence we obtain a (rational)map, still denoted by λ : p∗2Ω
κ λ−→ p∗1Ω

κ which is
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nothing but symk1−k2λ∗π ⊗ detk2(λ∗π)⊗ detk3(λ∗π̄)). Furthermore the maps p1, p2 are
finite flat and p!1OS is just the sheaf Hom(p1∗OSpar ,OS), as a result the fundamental
class θ : p∗1Ω

κ → p!1Ω
κ is induced by the trace map Tr : p1∗Opar → OS .

We thus get the operator Tp ∈ End(RΓ(S,Ωκ)) and call it the Hecke operator at
p. Sometimes, we will write Tp as Tp : p∗2Ω

κ → p∗1Ω
κ → p!1Ω

κ to stress which maps
are involved in the construction of Tp.

10.4. Hecke correspondences on special fiber. It is important for us that our
Hecke correspondence gives rise to a correspondence mod p. The following proposi-
tion tells us that the first step is to normalize Tp : p∗2Ωκ → p∗1Ω

κ → p!1Ω
κ.

Proposition 10.4.1. Write κ = (k1, k2; k3) . If k1 + k3 ≥ 1 the map Tp factorizes
through pk2+1p!1Ω

κ.

Proof. We can check this property over the ordinary locus outside the cusps as it is
dense. Now over each point x of this locus corresponding to a pair (Hx,Ax) we have
an isogeny λ : Ax → A′

x = Ax/(Hx + H⊥
x ), this induces an isogeny of p-divisible

groups :

Ax[p
∞] A′

x[p
∞]

Ax[π
∞]×Ax[π̄

∞] A′
x[π

∞]×A′
x[π̄

∞]

λ

λπ×λπ̄

Where the isogeny λπ : Ax[π
∞]→ A′

x[π
∞] (resp.λπ̄) is the quotient by Hx ⊂ Ax[π

∞]
(resp. H⊥

x ⊂ Ax[π̄
∞]). These isogenies induce : λ∗π : ωA′

x,π → ωAx,π and λ∗π̄ :
ωA′

x,π̄ → ωAx,π̄. Now over ordinary locus outside the boundary, there are two possi-
bility for Hx:

(1) If Hx is of multiplicative rank 1 and étale rank 1 then H⊥
x is of étale rank 1

( indeed, we have HD
x = A[π̄]/H⊥

x ), so the map λ∗π factors through pωAx,π

and λ∗π̄ is an isomorphism. As a consequence the map p∗2Ω
κ → p∗1Ω

κ factors
through pk2p∗1Ω

κ.
(2) If Hx is of multiplicative rank 2, then H⊥

x is of multiplicative rank 1, so that
λ∗π factors through p2ωAx,π and λ∗π̄ through pωAx,π̄, and the map p∗2Ω

κ →
p∗1Ω

κ factors through pk1+k2+k3p∗1Ω
κ.

For the trace map p∗1Ω
κ → p!1Ω

κ, we need an explicit description of this map locally
at each point. We will use Serre-Tate theory which firstly says that deforming our
polarized abelian variety Ax at point x is equivalent to deforming its p-divisible
group Ax[p

∞] = Ax[π
∞] × A[π̄∞]. But since Ax[π

∞] ∼= Ax[π̄
∞]D, we just need to

look at the deformation space for Ax[π
∞]. Secondly, this theory tells us that each

such deformation corresponds to a map q : Tπ(Ax) × Tπ̄(Ax) → Ĝm, called Serre-
Tate coordinate. We have a similar Serre-Tate coordinate for each deformation of
A′

x[p
∞], or equivalently of A′

x[π
∞]. These two deformation spaces are linked by the

isogeny λπ : TπAx → TπA′
x. Now, given that :

(10.5) Tπ(Ax) ∼= Tπ(A′
x)
∼= Zp Tπ̄(Ax) ∼= Tπ̄(A′

x)
∼= Z2

p

we have the following diagrams:
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Zp × Z2
p Ĝm

Zp × Z2
p Ĝm

q

Mx(λπ)

q

Here Mx(λπ) is the matrix given by the isogeny λπ. The trivializations of Tate mod-
ules (10.5) give an isomorphism between the deformation space of Ax and Zp[[X,Y ]]
via Serre-Tate coordinates. We again have two cases:

(1) If Hx is of multiplicative rank 1, étale rank 1, then H⊥
x is of étale rank 1

and the matrix Mx = diag(p, p, 1). Then the deformation space of A′
x is

isomorphic to Zp[[X,Y,X
′, Y ′]]/((1+X ′)p−X−1, Y ′−Y )) and this implies

that the trace map p∗1OSpar → p!1OSpar factorizes through p.p!1OSpar .
(2) If Hx is of multiplicative rank 2 , we can repeat the whole thing and see that

p∗1OSpar → p!1OSpar is actually an isomorphism.

So we conclude that if Hx is of multiplicative rank 1, then Tp is divisible by pk2+1, and
if Hx is of multiplicative rank 2, then Tp is divisible by pk1+k2+k3 . So if k1+k2+k3 ≥
k2 + 1, then Tp factors through pk2+1p!1Ω

κ. �

This proposition leads us to set Tp := 1
pk2+1Tp. This normalized correspon-

dence induces a non trivial one on the special fiber S1 := S ×Zp Fp, ie we have
Tp|Spar,1 : p∗2Ω

κ|Spar,1 → p!1Ω
κ|Spar,1 which induces an endomorphism of complex

Tp ∈ End(RΓ(S1,Ωκ)). As in the introduction of this section, we will study the in-
teraction of this correspondence with various Hasse invariants that we have defined.

10.5. Stratification of special fiber. In this section we study the stratification by
multiplicative rank of the special fiber S1 and its interaction with the Hecke operator
Tp. Let us denote by S≥i

1 (resp.S≤i
1 , resp.S=i

1 ) the locus where the multiplicative rank
of universal p-torsion group A[π] is no less than (resp.no bigger than, resp. equal to)
i. Recall that we have the decomposition A[p] = A[π] × A[π̄] and since A[π] is the
Cartier dual of A[π̄], the multiplicative rank of A[p] is dictated by that of A[π].

Now, the classical Hasse invariants Ha := Ha(A[π]) ∈ H0(S1, det(ωA,π)
p−1) van-

ishes exactly over S≤1
1 . We want to construct a second Hasse invariant of A[π] that

vanishes exactly on the locus S=0
1 . After what we have explained in section 10.1.2,

it is enough to show that S≤1
1 is smooth.

Before we do so, we would like to simplify notations by denoting detA,π :=

det(ωA,π)/S?), where (?) can be (≤ i;≥ i; = i), hopefully this will not cause confu-
sions. Finally, for any scheme X over Spec(Zp) we denote by Xn the base change
Xn := X ×Zp Z/p

nZ.

Theorem 10.5.1. The non-ordinary locus S≤1
1 is smooth.

Proof. As S≤1
1 is cut out by the Hasse invariant Ha, we need to show that Ha

defines a local regular parameter at each points. More precisely, let x ∈ S≤1
1 be any

geometric point with residue field kx, then if Ha induces a non trivial morphism on
the tangent space of S≤1

1 at x, then the point x is smooth by the Jacobian criterion.
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We treat this case by case.
If x corresponds to a point whose underlying p-divisible group A[π∞] is of slope
(12 ,

1
2 , 1), we have seen that the crystal corresponding Ax[π] is given by Dx =W (kx)

3

with Frobenius given by the matrix :

F =



p 0 0
0 0 1
0 p 0




By the standard theory, the crystal Dx is also equipped with a Hodge filtration
ωAx = ker(F : Dx/pDx → Dx/pDx), so if we fix a basis (e1, e2, e3) for Dx and
(e1, e2, e3) for Dx/pDx this filtration is given by ωAx =< e1, e2 >. The first order
deformation ring at x is isomorphic to R = k[X,Y ]/(X,Y )2, this is obtained by
formally deforming the filtration ωAx ⊂ Dx. this means that a deformation of a
point x of slope (1, 0) correspond to a lift of ωA inside M = Dx ⊗W (kx) R which is
of the following form:

Fil1 =




1 0
0 1
X Y




We then easily see the induced Verschibung V : M/Fil1 → M/Fil1 is given by
the multiplication by −Y , and so the Hasse invariant, which is the determinant of
V is non zero on the tangent space at x.

For the point x of slope (23 ,
2
3 ,

2
3) (i.e corresponding to a supersingular point),

we can do a completely analogous calculation, based on the explicit formula for the
associated crystal given in [9.3], and see that the Hasse invariant also defines a regular
local parameter at this point, and we conclude that S≤1

1 is smooth. �

As S≤1
1 is smooth and the locus S=0

1 has only finitely many closed points while
S=1
1 has dimension 1 and thus is dense, we can apply the earlier result (10.1.2) to

get the second Hasse invariant Ha′ := Ha′(A[π]) ∈ H0(S≤1
1 , detp

2−1(ωA,π)), whose
zero locus is S=0

1 .

10.6. Restrictions of Hecke operator and finiteness of coherent cohomol-

ogy. In this section, if κ = (k1, k2; k3) is a weight, and n ∈ Z we will denote by:

(1) κ(n) for the weight (k1 + n(p− 1), k2 + n(p− 1); k3).
(2) κ′(n) for the weight (k1 + n(p2 − 1), k2 + n(p2 − 1); k3)
(3) κ(n,m) for the weight (k1+n(p−1)+m(p2−1), k2+n(p−1)+m(p2−1); k3)

We have defined above a map Tp : p∗2Ω
κ → p!1Ω

κ over Spar,1 which induces an
operator Tp : RΓ(S1,Ω

κ) → RΓ(S1,Ω
κ) when k1 + k3 ≥ 1. A natural question to

ask is how this operator interacts with the stratification by p-rank introduced above
of Spar,1. We have our first proposition.
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Proposition 10.6.1. For all weight κ satisfying k1+k3 > 1. The following diagram
over Spar,1 commutes:

(10.6)

p∗2Ω
κ p!1Ω

κ

p∗2Ω
κ(1) p!1Ω

κ(1)

Tp

×p∗2Ha ×p!1Ha

Tp

where in the diagram above, we are using Ha := Ha(A[π]).

Proof. It is enough to check this point by point on ordinary locus because it is dense
and our schemes are Cohen-Macaulay. Over the ordinary locus of Spar,1 we have
the universal isogeny λ : A[π∞] → A′[π∞] with kernel H ∈ A[π] of order p2. As
a consequence, we can decompose Spar,1 into a disjoint union of two components
depending on the type of λ (i.e depending on whether H is multiplicative rank 1 or
2).

Over a point x in the component where H is of multiplicative rank 2, the map
p∗2Ω

κ → p∗1Ω
κ over a lift of x to Spar factors through pk1+k2+k3 and thus if k1+k3 > 1,

our Hecke operator over this point vanishes due to the normalization (cf.prop(10.4)).
As the result the commutativity is obvious.

Over the component where H is of multiplicative rank 1, we see that the funda-
mental class p∗1Ω

κ → p!1Ω
κ is actually obtained by simply tensoring the fundamental

class p∗1OS1 → p!1OS1 with p∗1Ω
κ (Since p!1Ω

κ = p∗1Ω
κ ⊗ p!1OS1) and by p!1Ha we

just mean the image of p∗1Ha ∈ H0(Spar,1, p∗1det
p−1
A,π ) under p∗1det

p−1
A,π → p!1det

p−1
A,π =

p∗1det
p−1
A,π ⊗ p!1OS1 . As a result, the above diagram (10.6) can be rewritten as :

(10.7)

p∗2Ω
κ p∗1Ω

κ p∗1Ω
κ ⊗ p!1OS1

p∗2Ω
κ(1) p∗1Ω

κ(1) p∗1Ω
κ(1) ⊗ p!1OS1

λ∗
norm

×p∗2Ha ×p∗1Ha p∗1Ha⊗1

λ∗
norm

with λ∗norm is the normalized map induced by the isogeny λ.
The commutativity of the right square is tautological, so what is left is that on

the left square. This amounts to checking if the map λ∗norm sends p∗2Ha(A′[π]) to
p∗1Ha(A[π]). Let x̄ ∈ Spar,1 be a point with residue field k. Let W (k) be the ring of
Witt vector with residue field k and x ∈ Spar be a W (k)-point whose reduction mod
p is x̄ (this is possible since the ordinary locus is smooth). We have the universal
isogeny λx : Ax[π

∞] → A′
x[π

∞] with kernel Hx multiplicative of rank 1, and this
isogeny induces a map λ∗x : detA′

x,π
→ detAx,π . We have normalized this map to

obtain λ∗x,norm := λ∗
x

p . Now as Hx is of multiplicative rank 1, this is exactly the
way we normalized to obtain the map λ∗norm in proposition 10.1.1 from λ∗. By that
proposition, λ∗norm sends Ha(A′

x[π]) to Ha(Ax[π]) and we are done.
�

Because S≤1
1 is the vanishing locus of the classical Hasse invariant p∗2Ha(A′) (or

p∗1Ha(A)), an immediate consequence of this proposition is that we have a restricted
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operator:
Tp : RΓ(S≤1

1 ,Ωκ(1))→ RΓ(S≤1
1 ,Ωκ(1))

Inside the locus S≤1
1 the interaction is more involved, we will need to take a detour.

Let us begin with the following lemma :

Lemma 10.6.1. Let G be a truncated Barsotti-Tate of level 1 over an Fp-scheme S.
If the multiplicative rank and étale rank of G are constant over S and if H ⊂ G is a
subgroup of order p, then S can be decomposed into a disjoint union of sub-schemes
S = Set

∐
Soo

∐
Sm, where Set(resp. Sm, resp. Soo) is open and closed subscheme

over which H is étale (resp. multiplicative, resp. biconnected).

Proof. This is lemma 7.4.2.1 in [Pil18]. �

We use this to decompose our correspondence Tp into two parts as follows: over
Spar,1 we have the universal isogenies : H → A[π∞]→ A′[π∞] and H⊥ → A[π̄∞]→
A′[π̄∞] (the group H⊥ is of order p). Because the multiplicative ranks of A and A′

are equal, it makes sense to define S=1
par,1 ⊂ Spar,1 as the locus where multiplicative

rank of A (hence of A′) is 1. Further more, over this locus the p-ranks of A[π̄]
and A′[π̄] are constant, we can thus apply the lemma to get the decomposition
S=1
par,1 = Setpar,1

∐
Soopar,1 where the Setpar,1(resp.Soopar,1) is the subscheme of S=1

par,1 where
H⊥ ⊂ A[π̄] is étale (resp.biconnected). Overall we obtain two correspondences over
S=1
par,1:

T et
p : p∗2Ω

κ|Set
par,1
→ p!1Ω

κ|Set
par,1

and T oo
p : p∗2Ω

κ|Soo
par,1
→ p!1Ω

κ|Soo
par,1

Remark 10.6.1. The formation of fundamental class is the only thing we need
to pay attention in this decomposition of correspondence. Indeed, the formation of
fundamental class is stable by restriction to open or closed subscheme, so at the start
we obtain a correspondence over S≤1

par,1 and then over S=1
par,1 →֒ S≤1

par,1 by restriction
and finally over open and closed subschemes Setpar,1 as well as Soopar,1.

We are now ready to prove that the Hecke correspondence commutes with the
second Hasse invariant.

Proposition 10.6.2. For any weight κ such that k1 + k3 > p + 1, the following
diagram (defined over S≤1

par,1) commutes:

p∗2Ω
κ p!1Ω

κ

p∗2Ω
κ′(1) p!1Ω

κ′(1)

Tp

×p∗2Ha′ ×p∗1Ha′

Tp

where in the diagram above, we are using Ha′ := Ha′(A[π]).

Proof. Similarly to the proof of the proposition (10.6.1), we check this point by
point over dense locus S=1

par,1 of S≤1
par,1. Now over this locus, we have a decomposition

Tp = T et
p +T oo

p . We will actually prove that T et
p commutes withHa′ and T oo

p vanishes.
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(1) For the commutativity of T et
p with Ha′ , the argument of proposition (10.6.1)

carries over, and so it amounts in the end to proving that for any point
x̄ ∈ S=1

par,1 with a lift x ∈ S=1
par corresponding to a universal isogeny λx :

Ax[π
∞] → A′

x[π
∞] with kernel Hx such that H⊥

x is étale, the induced
normalized morphism : 1

pp2−1
λ∗ : detp

2−1
A′,π → detp

2−1
A,π sends Ha′(A′

x[π]) to

Ha′(Ax[π]). Now by our definition of T et
p , the group H⊥

x is étale, implying
that Hx is biconnected, so geometrically, Hx is a direct factor of Ax[π]. This
setting fits perfectly for the conditions of proposition (10.1.2), because the
morphism 1

pp
2−1

λ∗x is exactly the morphism λ∗x,norm there, thus we are done.

(2) Regarding the part T oo
p (κ), it actually vanishes over S=1

par,1. It is enough to
prove this point by point . Let x̄ : Spec(k) → S=1

1 be a geometric point
with residue field k. By deformation theory, we can lift x̄ to a point x :
Spec(OCp)→ S=1. Let ȳ ∈ S=1

par,1 mapping to x̄ via p2 and y : Spec(OCp)→
S=1
par a lift of ȳ mapping to x. Now over y we have the isogeny λy : Ay[p

∞]→
A′

y[p
∞] with kernelHy+H

⊥
y which can be seen as the product of two isogenies

λy,π : Ay[π
∞]→ A′[π∞] and λy,π̄ : Ay[π̄∞]→ A′

y[π̄
∞].

We have Hy = kerλy,π ∼= µp × µoo and H⊥
u
∼= µoo over OCp , where µoo

is the biconnected group of order p. Since the degree of µoo is 1
p+1 in the

sense of [Far11] (See also A.2.2 [Pil11] ). It then follows that the differential
λ∗y,π of λy,π factors through an ideal generated by (p,̟) with ̟ an element

of valuation 1
p+1 and the differential λ∗y,π̄ is divisible by p

1
p+1 . The result

is that the non normalized map T oo
p : p∗2Ω

κ
y → p!1Ω

κ which is nothing but

symk1−k2λ∗y,π⊗detk2λ∗y,π⊗detk3λ∗y,π̄ factors through pk2+
k1+k3
p+1 p!1Ω

κ
y (the map

p∗1Ω
κ
y → p!1Ω

κ
y is an isomorphism in this case). Finally, we conclude that if

k1 + k3 > p+ 1, the normalized map T oo
p vanishes.

�

By this preposition, we have a well defined operator Tp ∈ End(RΓ(S=0
1 ,Ωκ′(1))

as Ha′ vanishes exactly over S=0
1 . We would like to show that when the weight is

regular enough, this operator vanishes on this locus which is crucial for the higher
Hida theory as we will see later on.

Proposition 10.6.3. For all weight κ = (k1, k2, k3) such that k1 − k2 ≥ 1 and k1 +
k3 > 3, the Hecke operator Tp ∈ End(RΓ(S1,Ωκ) acts trivially on RΓ(S=0

1 ,Ωκ(1,1)).

Proof. First of all, under the condition of the weight, Tp ∈ End(RΓ(S1,Ωκ) gives
rise to Tp ∈ End(RΓ(S≤1

1 ,Ωκ(1)). Let I be the sheaf of ideal defining the closed
subscheme S=0

1 inside S≤1
1 (i.e it is generated by Ha′). The proposition can then be

rephrased as under the condition on the weight, the correspondence Tp : p∗2Ω
κ(1,1) →

p!1Ω
κ(1,1) over S≤1

par,1 factors through:

Tp : p
∗
2Ω

κ(1,1) → p∗1Ip!1Ωκ(1,1)
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We can write S≤1
par,1 = S≤1,et

par,1

⋃
S≤1,oo
par,1 where S≤1,et

par,1 (resp. S≤1,oo
par,1 ) is the closure of

the subscheme S=1,et
par,1 ⊂ S

≤1
par,1 (resp.S=1,oo

par,1 ⊂ S
≤1
par,1)where the π̄-isogeny A[π̄∞] →

A′[π̄∞] has étale (resp. biconnected) kernel H⊥. Due to the normalization, the
restriction of Tp to S≤1,oo

par,1 is zero, we are finally left to prove that the restriction of

Tp to S≤1,et
par,1 vanishes on S≤1,et

par,1

⋂
V (p∗1I).

Right off the bat, we have to comment on the scheme structure of S≤1,et
par,1

⋂
V (p∗1I)

since a priori S≤1
par,1 and its decomposition above are merely topological. There is

no canonical underlying subscheme structure of S≤1
par,1 inside Spar,1, since two Hasse

invariants Ha(A[π]) and Ha(A′[π]) would define two different scheme structures of
S≤1
par,1. Fortunately, we have already ignore the locus S≤1,oo

par,1 and the scheme structure

S≤1,et
par,1 can be naturally defined as :

S≤1,et
par,1 = V (Ha(A[π]) ∩ S≤1,et

par,1 = V (Ha(A′[π]) ∩ S≤1,et
par,1

It comes from the fact that we can define a canonical isomorphism λnorm :
det(ωA′[π∞]) → det(ωA[π∞]) such that λp−1

normHa(A′[π]) → Ha(A[π]) (we can use
the deformation theory and prove this similarly as in the lemma 6.3.4.2 [Pil18]).

Once the scheme structure on S≤1,et
par,1 has been determined, we can proceed as

follows . First, observe that the maps p1, p2 : S≤1,et
par,1 → S1 land in S≤1

1 and as S≤,et
par,1

parameterizes étale subgroups H⊥ ⊂ A[π̄] of order p, we can see that p2 : S≤1,et
par,1

∼=
S≤1
1 is actually an isomorphism and p1 : S≤1,et

par,1 → S
≤1
1 is nothing but Frob2, the

square of the Frobenius. In particular V (p∗1(I)) = p2V (p∗2(I)) as divisors of S≤1
par,1,

which implies that it suffices to prove that Tp vanishes at order p2 along V (p∗2(I)).
Let us denote by κ− the weight (k1 − 1, k2, k3) so that Tp is the tensor product of

two maps : Tp(κ−) : p∗2Ω
κ−(1,1) → p!1Ω

κ−(1,1)(the correspondence of weight κ−) and
λ∗π : ωA′[π∞] → ωA[π∞](the differential of the isogeny λπ : A[π∞] → A′[π∞]). We
claim that λ∗π vanishes at S=0

1 and Tp(κ−) vanishes at order p2 − 1 along S=0
1 , seen

as the subscheme of S≤1,et
par,1 via the isomorphism p2 : S≤1,et

par,1
∼= S≤1

1 .

Indeed, over S≤1,et
par,1 , the kernel H of λπ : A[π∞] → A′[π∞] is biconnected, thus

V ∗2
H = 0, which implies that the morphismD(A[π∞]) →֒ D(A[π∞)]

V ∗2

−−→ D(A[π∞])(p
2)

factors through D(A[π∞]/H)(p
2) and induces an isomorphism ωA[π∞]

∼= ω
(p2)
A[π∞]/H

and as a result we have the following diagram:

(10.8)

ωA[π∞]/H ωA[π∞]

ωA[π∞]/H ω
(p2)
A[π∞]/H

λ∗
π

∼

V 2

In other words, we can identify λ∗π with V 2, but as over S=0
1 we have V 2 = F and

as the Frobenius is infinitesimal, we conclude that λ∗π is identically zero along S=0
1 .
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We will show that Tp(κ−) vanishes at order p2 − 1 along S=0
1 . This is a simple

consequence of the fact that, under our assumption on the weight, we still have:

p∗2Ω
κ−(1) p!1Ω

κ−(1)

p∗2Ω
κ−(1,1) p!1Ω

κ−(1,1)

Tp

×p∗2Ha′ ×p∗1Ha′

T
κ−
p

Since the section p∗2Ha
′ and p∗1 vanishes along S=0

1 at order 1 and p2 respectively,
this means that Tp(κ−) : p∗2Ω

κ(1,1) → p!1Ω
κ(1,1) vanishes at order p2 − 1 along S=0

1 .
�

Remark 10.6.2. (1) The fact that this proposition holds is very important in
establishing the finiteness of various complexes we will construct in later sec-
tions. This is the very reason that we have chosen to define the Hecke oper-
ator that way. In fact, there are two parahorique subgroups of A[p] of order
p and p2 respectively and we chose the one of order p2. Another choice of
parahorique subgroup H ∈ A[π] ⊂ A[p] of order p would gives us another
correspondence S ← Spar′ → S. We could still prove that the normalized
operator associated to this correspondence commutes with both Hasse invari-
ants but we would not have the important property that Tp acts trivially on
multiplicative rank 0 locus.

11. Ordinary projector and perfect complexes

In this section we show how one can define an ordinary projector tp as in the clas-
sical Hida theory, but in this context, it will cut out a perfect complex tpRΓ(S1,Ωκ

D)
inside RΓ(S1,Ωκ

D).

11.1. Locally finite operator. We borrow the presentation from section 2 [Pil18]
to recall some basic facts about locally finite operators. Let R be a complete local
noetherian ring with maximal ideal m and residue field k := R/m. Let Modm(R)
be the category of m-complete, m-separated R-module. For any M ∈ Modm(R) we
write Mn for M ⊗R R/m

n.

Definition 11.1.1. Let M ∈ Modm(R). We say that an operator T ∈ EndR(M)
is locally finite if for all n and any x ∈ Mn the sub Rn-module of Mn generated by
{T i(x)}i∈N is finite.

Lemma 11.1.1. Let M ∈ Modm(R) and T ∈ EndR(M) a locally finite operator,
then there exists a projector eT ∈ EndR(M) such that T is invertible on eTM and
topologically nilpotent on (1− eT )M .

Proof. First of all, if such decomposition exists, it is necessarily unique, so it suffices
to exhibit one such decomposition. Now, as M is m-adically separated, it is enough
to prove the lemma for Mn. Furthermore, by our hypothesis T is locally finite so we
can assume that Mn is a finite Rn-module.

Let us first suppose that Mn is a free Rn-module. Then, it makes sense to take
the characteristic polynomial P ∈ Rn[X] of T ∈ EndRn(Mn). Let and P̄ the image
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of P in k[X]. We can decompose P̄ into P̄ = P̄1P̄2 where P̄2 is of form Xm for some
m ∈ N and P̄1 has nonzero constant term. Since P̄1 is prime to P̄2, by Hensel lemma
there is a decomposition of P = P1P2 that lifts the decomposition P̄ = P̄1P̄2, where
P1, P2 monic and deg(Pi) = deg(P̄i) with i ∈ {1, 2}. We define Mo

n := P2(T )Mn

and Mno
n := P1(T )Mn. Now, we observe that as P2(T )M

no
n = 0, and P2 is of form

Xm + a with a ∈ mRn[X], the action of T on Mno
n is nilpotent. In addition, by

Bézout’s identity (P1 is prime to P2), it is clear that Mn =Mo
n ⊕Mno

n .
We just denote by eT the projector Mn → Mo

n so that the decomposition above
can be rewritten as Mn = eTMn ⊕ (1− eT )Mn.

If Mn is not free, there exists a surjective map of Rn-module p : Rl
n ։ Mn for

some l ∈ N∗. We can then lift the action of T on Mn to Rl
n so that p becomes

T -equivariant. Now by earlier construction, there is a projector eT such that Rl
n =

eTR
l
n ⊕ (1 − eT )R

l
n. We define Mo

n := p(eTR
l
n) and Mno

n = p(1 − eT )R
l
n. It is

immediate that Mn = Mo
n +Mno

n and T is nilpotent on Mno
n and is invertible on

Mo
n. If x ∈Mo

n

⋂
Mno

n then T k(x) = 0 for some k ∈ N∗ but as T is invertible on Mo
n,

we deduce that x = 0 and then Mn =Mo
n ⊕Mno

n .
�

We recall some useful lemmas used in the next sections.

Lemma 11.1.2. Let 0→M1 →M2 →M3 → 0 be an exact sequence of modules in
Modm(R), and T be an R-linear operator that acts equivariantly on M1,M2,M3.

(1) If T acts locally finitely on M3 and M1, its action on M2 is also locally finite.
(2) If the action of T on M2 is locally finite, then it acts locally finitely on M3.
(3) If mnM2 = 0 for some n ∈ N and T acts locally finitely on M2, then it acts

locally finitely on M1

Proof. See lemma 2.1.1 [Pil18]. �

An immediate and useful corollary of this lemma is that we can check the local
finiteness of an operator T ∈ EndR(M) by looking at its action on the reduction
M/m by using the exact sequence mn−1/mn ⊗R M → M/mn → M/mn−1 → 0 and
induction on n.

Move on to the situation where we have complexes of R-modules instead. Let
D(R) be the derived category of R-modules. Let Ccomp(R) the category of bounded
complexes of m-adically complete, separated R-modules and Cflat(R) its subcategory
of complexes of m-adically complete, separated, flat R-modules. Let Dcomp(R) (resp.
Dflat(R)) be the full sub-category of D(R) generated by objects in Ccomp(R) (resp.
Cflat(R)). We recall that a complex M• ∈ Dflat(R) is called perfect if it is quasi-
isomorphic to a bounded complex of finite projective modules . We have the following
useful criteria:

Proposition 11.1.1. Let M• ∈ D
flat(R), concentrated in degree [a, b]. If M• ⊗R

R/m has finite cohomology groups, then M• is perfect and concentrated in degree
[a, b]

Proof. See proposition 2.2.1[Pil18]. �
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In our paper, we study complex of coherent sheaf over S or Spar and this propo-
sition says in particular that we can study the restriction of these complexes on the
special fibers to show that they are perfect and concentrated in certain degrees.

Definition 11.1.2. (1) Given a complex M• ∈ Cflat(R) and an endomorphism
T ∈ End

C
flat(R)(M

•). We say that T acts locally finitely on M• if its action
is locally finite on each M i.

(2) Given a complex M• ∈ Dflat(R) and T ∈ End
D

flat(R)(M
•). We say that

the action of T is locally finite if there exists a representative M•
0 ∈ Cflat(R)

and a locally finite representative T0 ∈ End
C

flat(R)(M
•
0 ) of T , i.e we have

the following diagram:

(11.1)
M•

0 M•
0

M• M•

T ′

T0

T ′

T

We have another useful criteria for detecting locally finite operator:

Proposition 11.1.2. Let M• ∈ D
flat(R). Let T ∈ End

D
flat(R)(M

•), then T acts
locally finitely on M• if and only if there is a representative representative M•

0 ∈
C

flat(R) along with a locally finite representative T0 ∈ End
C

flat(R)(M
•
0 ) of T and

the induced action of T on H i(M• ⊗L
R R/m) is locally finite.

Proof. See proposition 2.3.1 [Pil18]. �

We have seen that if T acts locally finitely on a module M ∈ Modm(R) then
there is a projector eT ∈ EndR(M) associated to T . Now if M• ∈ Cflat(R) and T
acts locally finitely on M• then we can apply the projector eT to each terms to give
a new complex eTM

•. For an object M• ∈ Dflat(R) and a locally finite operator
T on M•, it is more subtle to define a projector eT ∈ End

D
flat(R)(M

•) as two
representatives (M•

0 , T0) and (M•
1 , T1) might give rise to two different projectors of

M• (the images of eT0 and eT1 in End
D

flat(R)(M
•) are not homotopic). Nevertheless,

the subcomplexes eT0M
•
0 and eT1M

•
1 are quasi-isomorphic (cf. lemma 2.3.2 [Pil18]),

thus the factor eTM• is well defined and can be represented by eT0M
•
0 for any

representative (M•
0 , T0). Finally we have the following lemma:

Lemma 11.1.3. If the action of T on M• ∈ D
flat(R) is locally finite. We have :

H i(eTM
•) = eTH

i(M•)

Proof. Let (M•
0 , T0) to be a representative of (M,T ) with M•

0 ∈ Cflat(R). As we
have seen, the direct factor eTM• does not depend on a representative and is quasi
isomorphic to eT0M

•
0 . Thus we need to show that H i(eT0M

•) = eT0H
i(M•

0 ). A
standard induction procedure reduces us to the case where we have an exact sequence
0→M0 →M1 →M2 → 0 of modules in Cflat(R) and we need to prove that :

eT0M0 → eT0M1 → eT0M2

(1− eT0)M0 → (1− eT0)M1 → (1− eT0)M2
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are both exact. We will show this for the first complex, the treatment for the second
complex is similar. On the first complex, the exactness rests on the fact that T0 acts
invertibly on eT0Mi. Indeed, for the exactness on the left, if u0 ∈ eT0M0 is mapped
to 0 then let u′0 ∈ eT0M0 such that T0u′0 = u0, then u′0 ∈ eT0M0 ⊂M0 is sent to zero
in M1, so u′0 = 0 and u0 = 0.

For the right exactness, let u2 ∈ eT0M2 and write u2 = Tu′2 with u′2 ∈ eT0M2.
Let u1 ∈ M1 be some lift of u′2. Now it is clear that T0eT0u1 is sent to u2, and as
eT0u1 ∈ eT0M1, we are done.

Finally for the exactness in the middle, let u ∈ eT0M1 that is sent to 0 in eT0M2.
Again as T0 acts invertibly on eT0M1, we can write T0u′ = u for some u′ ∈ eT0M1.
Since u1 ∈ eT0M1 ⊂ M1 is also sent to zero in M2, it must be the image of some
u0 ∈M0, and now, obviously TeT0u1 is sent to u. �

Remark 11.1.1. All the complexes we consider in this paper satisfy the assumptions
of the lemmas and propositions above, i.e they can be represented by flat objects
in relevant category, as can be checked using Cěch complex for some finite affine
covering.

11.2. Perfect complex of classical forms. Now we are ready to prove our main
theorem for the complex of classical forms. Let us start with following easy lemma
that is used repeatedly through out this paper:

Lemma 11.2.1. Let X be a scheme, L a line bundle and F a coherent sheaf on X.
Let f ∈ H0(X,L) be any section and j : Z →֒ X be open subscheme of X which is
the nonzero locus of f . We have :

j∗j
∗F ∼= lim−→

×f

F ⊗ Ln

In particular H0(Z,F) = lim−→n
H0(X,F ⊗ Ln).

Proof. There is an isomorphism j∗ lim−→×f
F ⊗Ln → j∗F . Indeed, on each affine open

subset U = Spec(R) small enough of X we can write L|U = R.eL where eL ∈ L(U).
Let also M := F(U).

If we write f |U = seL with s ∈ R then the isomorphism j∗ lim−→×f
F ⊗ Ln → j∗F

over U is nothing but the canonical isomorphism lim−→×s
M ∼=M ⊗Rs.

Finally by adjunction, we obtain the isomorphism

lim−→
×f

F ⊗ Ln ∼= j∗j
∗F

and this finishes the lemma. �

In order to show that the action of Tp on RΓ(S≥1
1 ) is locally finite we begin with:

Proposition 11.2.1. For any weight κ = (k1, k2, k3) such that k1 + k3 > p+ 1, the
action of Tp on H0(S=1

1 ,Ωκ
D) is locally finite.

Proof. We use lemma (11.2.1) for the line bundle detp
2−1

A[π] and the section Ha′ ∈
H0(S≤1

1 , detp
2−1

A[π] ) to see that :

H0(S=1
1 ,Ωκ

D) = lim−→
×Ha′

H0(S≤1
1 ,Ω

κ′(n)
D )
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The locus S≤1
1 is closed in S1, hence proper, so that each H0(S≤1

1 ,Ω
κ′(n)
D ) is a finite

dimensional Fp-vector space. Further more, following the proposition (10.6.2), when
k1 + k3 > p + 1, we have Tp.Ha′ = Ha′.Tp and each H0(S≤1

1 ,Ωκ′(n)) is thus stable
under Tp. This means that H0(S=1

1 ,Ωκ
D) can be written as a direct limit of Tp-stable

finite dimensional spaces, as a result Tp is locally finite. �

Now over S≥1
1 , we can cook up a resolution for Ωκ

D in the following way. First,
take a look at the exact sequence (for each n):

(11.2) Ωκ
D

×Han−−−−→ Ω
κ(n)
D → Ω

κ(n)
D /(Han)→ 0

This induces :

(11.3) Ωκ
D → lim−→

n

Ω
κ(n)
D → lim−→

n

Ω
κ(n)
D /(Han)→ 0

We observe that the support of the sheaf lim−→n
Ω
κ(n)
D is the ordinary locus S=2

1 (See

lemma 11.2.1), and the (reduced) support of the sheaf lim−→n
Ω
κ(n)
D /(Han) is clearly the

locus S=1
1 . Both these loci S=2

1 ,S=1
1 are affine in the minimal compactification. As a

result the sheaves lim−→n
Ω
κ(n)
D and lim−→n

Ω
κ(n)
D /(Han) are acyclic and the above exact

sequence is a resolution of Ωκ
D over S≥1

1 . In other words the complex RΓ(S≥1
1 ,Ωκ

D)
is represented by :

(11.4) H0(S=2
1 ,Ωκ

D)→ lim−→
n

H0(S≥1
1 ,Ω

κ(n)
D /(Han))

Proposition 11.2.2. For all weight κ such that k1 + k3 > 2, the action of Tp on
RΓ(S≥1

1 ,Ωκ
D) is locally finite.

Proof. For such a weight, we have seen that the Hecke operator Tp commutes with
the classical Hasse invariant so that the above resolution (11.4) of Ωκ

D over S≥1
1 is

Tp-equivariant. By lemma (11.1.2), it is enough to show the local finiteness of Tp on
both terms H0(S=2

1 ,Ωκ
D) and lim−→×Ha

H0(S≥1
1 ,Ω

κ(n)
D /(Han).

(1) For the first terms, we can write H0(S=2
1 ,Ωκ

D) as lim−→
×Ha

H0(S1,Ωκ(n)
D ) and the

condition on the weight κ guarantees that Tp.Ha = Ha.Tp (see 10.6.1)). As a
consequence Tp on ordinary locus is locally finite since it acts finitely locally
on each H0(S1,Ωκ(n)

D ).
(2) For the second term, we proceed by induction. If n = 1, notice that κ(1) is

the weight (k1 + p− 1, k2 + p− 1, k3) so the proposition(11.2.1) applies. For
general n we use the exact sequence:

(11.5)
0→ H0(S≥1

1 ,Ω
κ(n)
D /(Han)→ H0(S≥1

1 ,Ω
κ(n+1)
D )/(Ha)n+1)

→ H0(S≥1
1 ,Ω

κ(n)
D /(Ha))→ 0

Because Tp acts locally finitely on the third term by lemma (11.2.1), and
on the first term by induction hypothesis, it acts locally finitely on the second
term.
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�

From now on, whenever we have a complex M• on which Tp acts locally finitely,
we will denote by tp the projector associated to Tp (see section (11.1)). The following
result is important:

Proposition 11.2.3. For all weight κ such that k1 − k2 ≥ 1 and k1 + k3 > 3, the
complexes tpRΓ(S1,Ωκ

D) and tpRΓ(S≥1
1 ,Ωκ

D) are quasi-isomorphic.

Proof. We reconsider the short exact sequence (11.4) over S1 and S≥1
1 , this gives us

two long exact sequences:

0 H0(S1,Ωκ
D) lim−→

×Ha

H0(S1,Ωκ(n)
D ) lim−→

×Ha

H0(S1,Ωκ(n)
D /(Han))

0 H0(S≥1
1 ,Ωκ

D) lim−→
×Ha

H0(S≥1
1 ,Ω

κ(n)
D ) lim−→

×Ha

H1(S1,Ωκ(n)/(Han))

H1(S1,Ωκ
D) 0 lim−→

×Ha

H0(S1,Ωκ(n)
D /(Han)) H2(S1,Ωκ

D)

H1(S≥1
1 ,Ωκ

D) 0 0 0

The goal is to show that each vertical arrows is an isomorphism after applying
the projector tp. The first one is an isomorphism because S1 is Cohen-Macaulay
and S1\S≥1

1 has codimension 2. The second vertical arrow is also an isomorphism
since both are isomorphic to H0(S=2

1 ,Ωκ). Proving the third one is an isomorphism is
harder. Firstly, it is enough to prove that for each n, we have: tpH0(S1,Ωκ(n)

D /(Han)) ∼=
tpH

0(S≥1
1 ,Ω

κ(n)
D /(Han)). We proceed by induction.

(1) For n = 1, then we need to prove that

tpH
0(S1,Ωκ(1)

D /(Ha)) = tpH
0(S≤1

1 ,Ω
κ(1)
D ) = tpH

0(S=1
1 ,Ω

κ(1)
D ) = tpH

0(S≥1
1 ,Ω

κ(1)
D /(Ha))

This is handled by lemma (11.2.2) down below which establishes the middle
equality.

(2) For general n, we consider the exact sequence over S1 and S≥1:

(11.6) 0→ Ω
κ(n)
D /(Han)→ Ω

κ(n+1)
D /(Han+1)→ Ω

κ(n+1)
D /(Ha)→ 0

which induces two long exact sequences:

0 H0(S1,Ωκ(n)
D /(Han)) H0(S1,Ωκ(n+1)

D /(Han+1)) ...

0 H0(S≥1
1 ,Ω

κ(n)
D /(Han)) H0(S≥1

1 ,Ω
κ(n+1)
D /(Han+1)) ...
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H0(S1,Ωκ(n+1)
D /(Ha)) H1(S1,Ωκ(n)

D /(Han)) ...

H0(S≥1
1 ,Ω

κ(n+1)
D /(Ha)) H1(S≥1

1 ,Ω
κ(n)
D /(Han)) ...

Again, lemma (11.2.2), point (2) says that under our initial condition on the weight
κ we have:

tpH
1(S1,Ωκ(n)

D /(Han)) = tpH
1(S≥1

1 ,Ω
κ(n)
D /(Han)) = 0

Applying the projector tp on the last diagram, and use the induction hypothesis, we
obtain the result.

Finally, tpH1(S1,Ωκ(n)/(Han)) = 0 is handled by point (3) of lemma (11.2.2)
below.

�

We have an immediate corollary of this proposition.

Corollary 11.2.1. For all weight κ with k1−k2 ≥ 1, and k1+k3 > 3. The complexes
of Fp-vector space tpRΓ(S1,Ωκ

D) and tpRΓ(S≥1,Ωκ
D) are perfect of amplitude [0, 1].

Proof. A perfect complex over a field is just a complex of finite dimensional vector
spaces. By proposition (11.2.3), we need to prove that tpRΓ(S1,Ωκ

D) is perfect.
For this we need to check its cohomology groups are finite dimensional which is an
immediate consequence of the fact that S1 is proper. �

We recollect some technical lemmas that we need for the proofs of propositions
above.

Lemma 11.2.2. (1) If k1−k2 ≥ 1 and k1+k3 ≥ p+2, we have tpH0(S≤1
1 ,Ωκ

D) =
tpH

0(S=1
1 ,Ωκ

D).
(2) If k1−k2 ≥ 1 and k1+k3 ≥ p+2, we have tpH i(S≤1

1 ,Ωκ
D) = tpH

i(S=1
1 ,Ωκ

D) =
0 for i ≥ 1.

(3) If k1 − k2 ≥ 1 and k1 + k3 ≥ 3, we have tpH i(S1,Ωκ(n−1)
D /(Han)) = 0 for

i = 1, 2.

Proof. (1) The short exact sequence:

0→ Ωκ
D → Ω

κ′(1)
D → Ω

κ′(1)
D /(Ha′)→ 0

gives a long exact sequence:

→ H i(S≤1
1 ,Ωκ

D)→ H i(S≤1
1 ,Ω

κ′(1)
D )→ H i(S=0

1 ,Ω
κ′(1)
D )→ H i+1(S≤1

1 ,Ωκ
D)→

With the condition on the weight κ, this long exact sequence is Tp-equivariant by
proposition (10.6.2). Further more when k1− k2 ≥ 1 and k1 + k3 ≥ p+2, the action
of Tp on H i(S=0,Ω

κ′(1)
D ) is trivial. We deduce that for any f ∈ tpH i(S≤1

1 ,Ω
κ(1)
D ), we

can find g ∈ H i(S≤1
1 ,Ω

κ(1)
D ) such that tp(g) = f . In particular, for i = 0, combining

with the fact that there is a restriction H0(S≤1
1 ,Ω

κ(1)
D ) →֒ H0(S=1

1 ,Ω
κ(1)
D ) we have:

tpH
0(S≤1

1 ,Ωκ
D) = tpH

0(S≤1
1 ,Ω

κ′(1)
D )
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Passing to the limit and using the lemma (11.2.1) for the line bundle detp
2−1

A,π and
the second Hasse invariant Ha′, we obtain:

tpH
0(S≤1

1 ,Ωκ) = tpH
0(S=1

1 ,Ωκ
D)

(2) By argument in (1), for all i we have tpH i(S≤1
1 ,Ωκ) = tpH

i(S=1
1 ,Ωκ

D), but
as S=1

1 has affine image in the minimal compactification, the cohomology group
H i(S=1

1 ,Ωκ
D) is zero if i ≥ 1.

(3) we prove this by induction: For n = 1, this follows from the point (2) as
tpH

i(S1,Ωκ(1)
D /Ha) = tpH

i(S≤1
1 ,Ω

κ(n)
D ).

For general n, take the long exact sequence associated with the short exact se-
quence (11.6) and the induction hypothesis gives the answer:

H0(S1,Ωκ(n)
D /(Han)) H0(S1,Ωκ(n+1)

D /(Han+1)) H0(S1,Ωκ(n+1)
D /(Ha)) ...

H1(S1,Ωκ+n(p−1)/(Han)) H1(S1,Ωκ(n+1)
D /(Han)) H1(S1,Ωκ(n+1)

D /(Ha)) ...

�

12. p-adic modular forms

In this section, we define the Hida complex of p-adic modular forms for each pair
of integer (k1, k2), denoted by V•(k1, k2). This will be the "ordinary" part of a
huge complex over the weight space Spec(Λ) where Λ := Zp[[Z×

p ]]. To cut out this
ordinary part, we will define a Hecke operator Up on this complex, similar to the op-
erator Tp in the previous sections. Finally, for each weight κ = (k1, k2, k3) satisfying
certain regularity condition, there will be a map tpRΓ(S,Ωκ

D)→ V•(k2, k3)⊗L
Λ,k1

Zp

which induces injections on each cohomology groups, thus V•(k2, k3) interpolates the
complex of classical forms.

12.1. Igusa tower and p-adic modular forms. Let S be the completion along the
special fiber S1 of S, and S≥1 be the open subscheme of S where the multiplicative
rank of abelian scheme is greater than or equal to 1. We define the formal moduli
scheme S≥1(pm) parametrizing the subgroup Hm ⊂ A[π∞] locally isomorphic in the
étale topology to µpm . For any m ≥ n we have a natural map S≥1(pm)→ S≥1(pn)
sending each point (Hm, A) to (Hm[pn], A).

Remark 12.1.1. If we let Spar be the completion of Spar along its special fiber then
by definition the forgetful map S≥1(pm) → S≥1 factors through S≥1

par
p1−→ S≥1. So

we should denote S≥1(pm) by S≥1
par(p

m) instead, but we drop the subscript ”par”.

Lemma 12.1.1. The natural map S≥1(pm) → S≥1(pn) is affine, étale for any
m ≥ n.

Proof. The proof uses the deformation theory and can be done exactly as in lemma
(9.1.1.1) [Pil18]. �
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We can define a partial Igusa tower Igm := IsomS≥1(pm)(µpm , Hm) with a nat-
ural action of (Zp/p

mZp)
×. More precisely, each point x ∈ Ign corresponds to a

trivialization ψx : µpm ∼= Hm and an element λ ∈ (Zp/p
mZp)

× = End(µpm) sends
x to λ(x) corresponding to the trivialization ψx ◦ λ : µpm ∼= Hm. Let S≥1(p∞) be
the inverse limit of S≥1(pm) and we call Ig∞ := IsomS≥1(p∞)(µp∞ , H∞) the Igusa
tower, this has an action of Z×

p . Before really defining the sheaf of p-adic forms, we
take a brief moment to recall some facts about the p-adic weight space in our case.

Let Λ := Zp[[Z×
p ]] be the completed group algebra. Recall that we have an isomor-

phism Zp[[1+pZp]] ∼= Zp[[T ]], sending [1+p] to (1+T ). As a result, Λ ∼= Zp[[T ]][F×
p ]

since Z×
p
∼= F×

p × (1 + pZp). We denote by χ : Z×
p → Λ× the canonical character

sending x to [x]. This character is universal in the sense that, for any Zp-complete
algebra R, any continuous character w : Z×

p → R× factors through χ. In particular,
any character w : Z×

p → Z×
p gives rise to a continuous function, still denoted by

w : Λ→ Zp.
We now return to the problem of defining the p-adic forms. Let

P := (π∗OIg∞⊗̂ZpΛ)
Z×
p

where π : S≥1(p∞) → S≥1(p) and Z×
p acts on π∗OIg∞ as described above, and it

acts on Λ via the universal character χ. Lastly, for any complete Zp-algebra R and
a continuous character w : Z×

p → R, let :

P
w := P⊗̂Λ,wR

12.2. Truncated Igusa tower and Comparison morphism. Recall that we have
denoted by M the interior of the scheme S, where the semi-abelian scheme is an
abelian scheme. For each n, we introduce the following schemes :

(1) Sn := S ×Spec(Z/pnZ) andMn the interior of Sn away from the boundary.
(2) S≥1

n is a subscheme of Sn where the multiplicative rank of the universal semi-
abelian scheme is at least 1 and M≥1

n the interior away from the boundary.
(3) S≥1

n (pm) be the moduli problem parametrizing subgroups Hm ⊂ A[πm] ⊂
A[pm] étale locally isomorphic to µpm and again M≥1

n (pm) is its interior.
We can define a truncated weight space Λn := Z/pnZ[[(Z/pnZ)×]] and a truncated
version of Igusa tower over S≥1

n (pm). Indeed when m ≥ n (so that ωµpm
is lo-

cally free), we can consider Ign,m := Isom
S≥1
n (pm)

(µpm , Hm) which carries an action

of (Z/pmZ)×, and let Pn,m := (π∗OIgn,m⊗̂Z/pnZΛn)
(Z/pmZ)× with π : S≥1

n (pm) →
S≥1
n (p). Here, (Z/pmZ)× acts on Λn via the obvious map (Z/pmZ)× → (Z/pnZ)× →

Λn. It is clear that we have P = lim←−
n

lim−→
m

Pn,m.

Over S≥1
n (p) we have the automorphic sheaf Ωκ and one can ask how Pn,m and Ωκ

are related. To see this, we remark that over S≥1
n (pm), the universal multiplicative

group Hm ⊂ A[pm] induces a surjection ωA[pm] → ωHm . We can think about Pn,m

as a sheaf on S≥n (p) whose sections are "functions" of the trivialization Hm
∼= µmp .

We also have the Hodge Tate map: HT : HD
m ⊗ OS≥1

n (pm)
→ ωHm . Given the

definition of the Hodge Tate map, this is just a short way of saying that there is a
map c : π∗OIgn,m → ωHm . It is also immediate that this comparison map induces



HIGHER HIDA THEORY FOR UNITARY GROUP U(2, 1) 57

an isomorphism c : Pk1
n,m → ωk1

Hm
over S≥1

n (pm) for any k1 ∈ Z (we see k1 as a
character Z×

p → Z×
p sending t to tk1). Combined with the surjections, ωA[pm] → ωHm

we deduce a surjection:

Ωk1,0,0 := symk1ωπ →P
k1
n,m

As a consequence for any weight κ (k1 ≥ k2),we obtain a surjection c(κ) : Ωκ →
Pk1−k2

n,m ⊗ Ωk2,k2,k3 . Let us denote the kernel of this map by KΩκ.

12.3. Operator Up. The sheaf P we have just defined over S≥1(p) is too big for
any practical purpose, we now show how to construct a projector that cuts out a
direct factor which interpolates classical forms similar to how one would do in the
classical Hida theory.

OverM≥1
n (pm) we can define the correspondence:

(12.1)

Un(pm)

M≥1
n (pm) M≥1

n (pm)

p1p2

Where Un(pm) parametrizes the triple (L,Hm,A) with L ⊂ A[π] of order p2 and
L ∩ Hm = {0}. The map p1 then sends each triple (L,Hm,A) to (Hm,A) and p2
sends each triple (L,Hm,A) to (Hm+L+L⊥

L+L⊥ , A
L+L⊥ ).

We can also construct a toroidal compactifications of U(pm) andM≥1
n (pm) which

we denote by Un(p
m) and S≥1

n (pm) respectively. The correspondence above extends
to a correspondence:

(12.2)

Un(p
m)

S≥1
n (pm) S≥1

n (pm)

p1p2

Lemma 12.3.1. The morphism p1 over M≥1
n (pm) is finite, flat.

Proof. Since the base M≥1
n (pm) is smooth and Un(p

m) is Cohen-Macaulay , we can
use the miracle flatness theorem. It then remains to check that p1 is quasi-finite
which we can check using Dieudonné modules like in lemma (10.2.1).

�

For each sheaf F over M≥1(pm) we can form the correspondence : p∗2F → p!1F
with the fundamental class given by the trace map and define a non normalized
operator Up ∈ End(RΓ(M≥1

1 (pm),F)) as before. We extend this correspondence to
the compactifications as in previous section for the operator Tp. The result is that
for F = Ωκ, we obtain a normalized correspondence Up ∈ End(RΓ(S≥1

1 (pm),Ωκ))
with Up =

1
pk2+1Up.

Finally, we show how to construct a correspondence for formal schemes S≥1(pm)
by some limit procedure. The construction of p∗2F → p∗1F is obvious, the only
subtle issue is the fundamental class p∗1F → p!1F . The point is that we can build
such fundamental class over S≥1

n (pm), but we need to verify that the formation of
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fundamental class is compatible with the embeddings S≥1
n (pm)→ S≥1

l (pm) for n ≤ l.
To see this, we remark that the sheaf of ideal that defines S≥1

n (pm) inside S≥1
l (pm)

is of finite Tor-dimension. As the result the base change theorem(10.3.1) works,
and it means that we get the fundamental class p∗1F → p!1F over S≥1

n (pm) from
the one on S≥1

l (pm) by tensoring with p∗1OS≥1
n (pm)

.This shows the compatibility with
respect to restriction and allows us to pass to the limit and obtain the fundamental
class: p∗1F → p!1F over S≥1(pm). As a consequence we can produce an (normalized)
operator Up ∈ End(RΓ(S≥1(pm),Ωκ)

12.4. Compatibility with Hasse invariants. As we have done with the complex
of classical modular forms, we want to establish that under some conditions on the
weight κ, the operator Up acts locally finitely on RΓ(S≥1(pm),Ωκ) and then the
ordinary part epRΓ(S≥1(pm),Ωκ) (where ep is the projector associated to Up) is
a perfect complex. We can deduce this from working on the special fiber. For this
reason we will study the correspondence (12.2) on the special fiber and its interaction
with Hasse invariants.

Proposition 12.4.1. For all weight κ the operator Up commutes with the classical
Hasse invariant, i.e the following diagram commutes:

(12.3)

p∗2Ω
κ p!1Ω

κ

p∗2Ω
κ(1) p!1Ω

κ(1)

Up

×p∗2Ha(A′) ×p!1Ha(A)

Up

Proof. Our schemes are still Cohen-Macaulay, and so, we can check the commuta-
tivity points by points on a locus whose complementary is of codimension at least
2, which in our case is the ordinary locus away from the boundary. After this, the
proof can be repeated verbatim as in (10.6.1). �

Similarly for the generalized Hasse invariant, we also have:

Proposition 12.4.2. For all weight κ, the following diagram defined over S≤1
1 (p)

commutes :

p∗2Ω
κ p!1Ω

κ

p∗2Ω
κ′(1) p!1Ω

κ′(1)

Up

×p∗2Ha′ ×p!1Ha′

Up

Proof. Exactly as in proposition(10.6.2) �

Remark 12.4.1. Reader can observe that there is no restriction on the weight κ
compared to the case of the operator Tp in propositions (10.6.1,10.6.2)earlier.

12.5. Operator Up and Tp. We have just defined an action Up on RΓ(S≥1
1 (p),Ωκ

D),
this operator commutes with Hasse invariants and induces operators Up ∈ End(RΓ(S=2

1 (p),Ωκ
D))

and Up ∈ End(RΓ(S=1
1 (p),Ωκ

D). Recall that we also have similar operators Tp ∈
End(RΓ(S=2

1 ,Ωκ
D)) and Tp ∈ End(RΓ(S=1

1 ,Ωκ
D)). We wish to study the relation-

ship between the operators Tp and Up on each stratum.
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12.5.1. Ordinary locus. In this subsection, we show that with some hypothesis on κ,
the action of Up on H0(S=2

1 (p),Ωκ
D) is locally finite. For this, we will show that Tp

also acts on H0(S=2
1 (p),Ωκ

D) and deduce the local finiteness of Up based on that of
Tp.

Away from the boundary, we have a very clear description of Hecke operator Tp as
follows, let f ∈ H0(M=2

1 ,Ωκ) regarded as a "function" onM=2
1 . Inside the ordinary

locus, the correspondence is finite flat and the fundamental class is given by the trace
map as usual, so that if for any x ∈ M=2

1 , we denote by Ax the underlying abelian
scheme, the action of Tp on f is given by the formula:

Tp(f)(Ax) =
1

pk2+1
Σ
L
f(

Ax

L+ L⊥
)

Where L runs through the set of all subgroups of Ax[π] of order p2. Since we have
the restriction H0(S=2

1 (p),Ωκ
D) →֒ H0(M=2

1 ,Ω), we can pretend that Tp is given by
the formula above when analyzing action of Tp on H0(S=2

1 (p),Ωκ
D).

With this description, it is immediate to see that Tp can be written as a sum of
two operators T 1,1

p and T 2,0
p where T 1,1

p accounts for all the isogenies by subgroup L
of multiplicative rank 1, étale rank 1, and T 2,0

p for all isogenies by L of multiplicative
rank 2, étale rank 0. Now for k1+ k3 > 1, due to the normalization (see the proof of
prop(10.4.1)) tells us that T 2,0

p acts trivially on H0(S=2
1 ,Ωκ

D). What is left is then
the part T 1,1

p and it factors through H0(S=2
1 (p),Ωκ

D), we have the following diagram:

(12.4)

H0(S=2
1 ,Ωκ

D) H0(S=2
1 ,Ωκ

D)

H0(S=2
1 (p),Ωκ

D) H0(S=2
1 (p),Ωκ

D)

res

T 1,1
p

resT ′
p

Tp

Indeed, as Ax is ordinary, and L is of multiplicative rank 1, étale rank 1, the point
Ax

L+L⊥ actually lifts to a point of S=2
1 (p) corresponding to a pair ( Ax

L+L⊥ , H1 =
Ax[π]
L ).

By composing with the restriction H0(S=2
1 (p),Ωκ

D) → H0(S=2
1 ,Ωκ

D) we have an
operator, still denoted by Tp := res ◦ T ′

p ∈ End(H0(S=2
1 (p),Ωκ

D)).

Proposition 12.5.1. For all weight κ such that k1 > k2, we have Up ◦ Tp = Up ◦Up

as endomorphism of H0(S=2
1 (p),Ωκ

D).

Proof. Remark that Tp = Up + Ip where Ip accounts for all igosenies with kernel L
such that L∩H1 6= {0}, so that we only need to prove that Up ◦ Ip = 0. Over S=2(p)

we can analyze Ũp and Ĩp, the non normalized versions of Up and Ip. For each point
x ∈ S=2(p) , we denote by (Ax, Hx) the corresponding universal pair of groups at x.
For any f ∈ H0(S=2,Ωκ

D), we have:

Ũp(f)(x) = Σ
L such that L∩Hx={0}

f
( Ax

L+ L⊥
,
Hx + L+ L⊥

L+ L⊥

)
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and

Ĩp(f)(x) = Σ
L such that L∩Hx 6={0}

f
( Ax

L+ L⊥
,
Hx + L+ L⊥

L+ L⊥

)

So we can write:

Ũp ◦ Ĩp(f)(x) =
∑

L∩Hx={0}
L′∩Hx 6={0}

f
( Ax

L+ L⊥ + L′ + L′⊥
,
Hx + L+ L⊥ + L′ + L′⊥

L+ L⊥ + L′ + L′⊥

)

Now, as Ax[π] ⊂ L+ L′ (since L ∩Hx = {0} whereas L′ ∩Hx 6= {0}) and L⊥ + L′⊥

is étale, we can do exactly as in proposition 10.4 to see that the correspondence
Ũp ◦ Ĩp is divisible by pk1+k2+2, with the factor pk1+k2 coming from the differential
of Ax → Ax

L+L⊥+L′+L′⊥ and the factor p2 coming from the fundamental classes of Ĩp
and Ũp.

As a consequence Up ◦ Ip = Ũp ◦ Ĩp/p2k2+2 = 0(mod pk1−k2), so as long as k1 > k2
we have the claimed result.

�

Corollary 12.5.1. For weight κ satisfying k1 > k2, the action of Up on H0(S=2
1 (p),Ωκ

D)
is locally finite.

Proof. We need to prove that for each vector v ∈ H0(S=2
1 (p),Ωκ

D), there exists a
subvector space V ⊂ H0(S=2

1 (p),Ωκ
D) of finite dimension and stable under the action

of Up.
Indeed, the action of Tp is locally finite on H0(S=2

1 ,Ωκ
D), hence via diagram (12.4)

it also acts locally finitely on H0(S=2
1 (p),Ωκ

D), this means that we can choose a fi-
nite dimensional subspace W ∈ H0(S=2

1 (p),Ωκ
D) containing vector Tp(v) and stable

by Tp. Now let V =< Up(W ), v, Tp(v),W >, the sub vector space generated by
Up(W ), v, Tp(v),W . This is a subspace of finite dimension, and by previous proposi-
tion 12.5.1 it is also stable by Up.

�

Let up be the projector associated to Up, we have:

Theorem 12.5.1. Assume that k1 > k2 and k1 + k3 > 1, the following composition
is a bijection:

θ : tpH
0(S=2

1 ,Ωκ
D)

res−−→ tpH
0(S=2

1 (p),Ωκ
D)

up−→ upH
0(S=2

1 (p),Ωκ
D)

Proof. We take a look at the composition :

Θ : t1,1p H0(S=2,Ωκ
D)

res−−→ t1,1p H0(S=2(p),Ωκ
D)

up−→ upH
0(S=2(p),Ωκ

D)

where t1,1p is the projector associated to T 1,1
p . Recall that Tp = T 1,1

p + T 2,0
p and T 2,0

p

acts trivially on the ordinary locus of the special fiber (when k1+ k3 > 1, due to our
normalization). Thus the reduction mod p of Θ is the map θ of the theorem. As a
result, if we can show that Θ is in fact an isomorphism, we are finished.

First of all, to show that Θ is surjective, it is enough by Nakayama’s lemma to
show that θ is surjective. Indeed, let g ∈ upH0(S=2

1 (p),Ωκ
D). By definition of up we
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have upg = g. Let g1 ∈ H0(S=2
1 (p),Ωκ

D) such that Upg1 = g. From the proposition
(12.5.1) we can write:

upg = upUpg1 = upTpg1 = uptpTpg1

we can see that Tpg1 ∈ H0(S=2
1 ,Ωκ

D) and so tpTpg1 ∈ tpH0(S=2
1 ,Ωκ

D).
For the injectivity of Θ, we claim that there is a section :

upH
0(S=2(p),Ωκ

D)→ tpH
0(S=2,Ωκ

D)

This section is indeed given by the trace map Tr : H0(S=2(p),Ωκ
D)→ H0(S=2,Ωκ

D)
since the projection π : S=2(p)→ S=2 is finite étale. We need an extra lemma:

Lemma 12.5.1. We have Tr ◦ Un
p ◦ res = (T 1,1

p )n for all n ≥ 1.

Proof. We can check this point by point away from the boundary. Let f ∈ H0(S=2,Ωκ
D)

and let x ∈ S=2 be a geometric point with underlying abelian variety (Ax), we have:

Tr ◦ Un
p ◦ res(f)(x) =

1

pk2+1
Σ
Hx

Σ
Ln

f
( Ax

Ln + L⊥
n

,
Hx + Ln + L⊥

n

Ln + L⊥
n

)

Where Hx runs through the set of all multiplicative subgroups of Ax[π] locally iso-
morphic to µp and Ln runs through the set of all subgroup of Ax[π

n] of order p2n

and Ln ∩Hx = 0. Now by definition, we also have :

(T 1,1
p )n(f)(x) =

1

pk2+1
Σ
Ln

f
( Ax

Ln + L⊥
n

,
Hx + Ln + L⊥

n

Ln + L⊥
n

)

where Ln runs through the set of all all subgroup of Ax[π
n] of order p2n which is

locally isomorphic to µpn ⋊ Z/pnZ. Now given such subgroup Ln there are exactly
p multiplicative subgroups of Ax[π] which intersect Ln trivially, this allows us to
conclude. �

Go back to our problem, let f ∈ tpH
0(S=2,Ωκ

D) such that Θ(f) = 0. Now,
because Θ(f) = up ◦ res(f) = 0 and Up is nilpotent on (1 − up)H0(S=2(p),Ωκ

D),
there exists n ∈ N∗ such that Un

p ◦ res(f) = 0, implying Tr ◦ Un
p ◦ res(f) = 0. By

invoking the lemma above, we have p(T 1,1
p )n(f) = 0.

Now since T 1,1
p is invertible on t1,1p H0(S=2,Ωκ

D) we deduce that f ∈ pt1,1p H0(S=2,Ωκ
D).

By the obvious induction, f ∈ pmt1,1p H0(S=2,Ωκ
D) for allm too. Since t1,1p H0(S=2,Ωκ

D)
is a finite Zp-module, hence p-adically separated, we can finally conclude that f ∈
∩mpmt1,1p H0(S=2,Ωκ

D) = 0.
�

12.5.2. Rank 1 locus. By definition, S=1
1 is isomorphic to S=1

1 (p) as for a point x ∈
S=1
1 corresponding to Ax of multiplicative rank 1 then we have a canonical multiplica-

tive subgroup H ⊂ Ax[π]
o, defined as the the image of Ax[π][F ]

(p)/ker(V ) →֒ Ax[F ]
(See arguments right before lemma 10.1.3 ). On this locus we have Up = Tp. Indeed,
just as before we can decompose Tp into Tp = T 1,0

p + T 0,0
p where T 1,0

p (resp. T 0,0
p )

accounts for all isogenies A → A′ of kernel L+L⊥ with L⊥ of multiplicative rank 1
and étale rank 0 (resp. biconnected).

When k1 + k3 > p + 1, essentially by the renormalization of the Hecke corre-
spondence, T 1,0

p vanishes on S=1
1 (see the end of the proof the proposition (10.6.2),
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T 1,0
p is what we call T oo

p there ). As a result, only T 0,0
p remains, but this operator

accounts for all the isogenies A → A′ of kernel L+ L⊥ with L⊥ biconnected, hence
L intersects trivially with the multiplicative subgroup H1 ⊂ A[π]. This means over
S=1
1
∼= S=1

1 (p) we have Tp = T 0,0
p = Up.

13. Hida complex

The comparison between Tp and Up on various strata of the special fiber allows us
to easily carry over most of the properties of Tp to Up. We begin by:

Proposition 13.0.1. (1) For any κ such that k1 > k2 and k1 + k3 > 2, the
action of Up on RΓ(S≥1

1 (p),Ωκ
D) is locally finite.

(2) For k1 > k2 and k1+k3 > 2, the natural map tpRΓ(S≥1
1 (p),Ωκ

D)→ upRΓ(S≥1
1 (p),Ωκ

D)
is a quasi-isomorphism.

(3) For all κ with k1 > k2 and k1+k3 > 3, then tpRΓ(S1,Ωκ
D)→ upRΓ(S≥1

1 (p),Ωκ
D)

is a quasi-isomorphism.
(4) For all κ with k1 > k2 and k1 + k3 > 2, the Fp-complex upRΓ(S≥1

1 (p),Ωκ
D) is

perfect of amplitude [0, 1].

Proof. (1) It suffices to show that the complex RΓ(S≥1
1 (p),Ωκ

D) admits a pre-
sentations by a complex of modules on each term of which p acts locally
finitely. Now as in previous section, we can write down a resolution of Ωκ

D

over S≥1
1 (p):

(13.1) 0 Ωκ
D lim−→n

Ω
κ(n)
D lim−→n

Ω
κ(n)
D /(Ha)n → 0

Just as before, lim−→n
Ω
κ(n)
D is supported on the ordinary locus S=2

1 (p) and
lim−→n

Ωκ(n)/(Ha)n is supported on the multiplicative rank 1 locus S=1
1 (p),

both of these loci are affine in the minimal compactification, implying that
both sheaves are acyclic and RΓ(S≥1

1 (p),Ωκ
D) is represented by:

(13.2) H0(S=2
1 (p),Ωκ

D)→ lim−→
n

H0(S≥1
1 (p),Ω

κ(n)
D /(Ha)n)

By corollary 12.5.1, the action of Up is finite on the first term. We can
also show by induction that the action of Up on H0(S≥1

1 (p),Ω
κ(n)
D /(Ha)n)

is locally finite, exactly as in proposition(11.2.2), using the result of section
12.5.2 which states that Tp = Up over S=1

1 = S=1
1 (p) to establish the base

case n = 1 (it is here that we need the condition k1 + k3 > 2). We conclude
that Up acts locally finitely on H0(S≥1

1 (p),Ωκ
D).

(2) As we have seen, the complex RΓ(S≥1
1 (p),Ωκ

D) is represented by the complex
(17.2), so it is enough to establish that epH0(S=2

1 (p),Ωκ
D) = upH

0(S=2
1 (p),Ωκ

D)

and epH
0(S≥1

1 (p), lim−→n
ΩκD(n)/(Ha)n) = upH

0(S≥1
1 (p), lim−→n

Ωκ(n)/(Ha)n).
But these are settled by theorem 12.5.1.

(3) When κ satisfies such hypothesis, we know that Tp acts trivially on S=0
1 ,

and we have a quasi isomorphism: tpRΓ(S1,Ωκ
D)
∼= tpRΓ(S≥1

1 ,Ωκ
D). As a

consequence, (3) is then a direct corollary of (2).
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(4) This is an immediate consequence of the above.
�

Before we state similar statements but for formal schemes S≥1(p);S≥1;S, we
recall the following lemmas about perfect complex of Λ-modules.

Lemma 13.0.1. Let M• ∈ D(Λ) be a complex representable by a bounded complex
of flat, complete Λ-module. Assume that for some weight k1, the cohomology groups
H i(M• ⊗L

Λ,k1
Zp) are finite as Zp-modules, then M• is perfect.

Proof. See Prop 2.2.1 [Pil18]. �

Lemma 13.0.2. Let M• ∈ D(Λ) be a complex representable by a bounded complex
of flat, complete Λ-module and T ∈ End

D
flat(Λ)(M

•). If for some weight k1, the
action of T on M• ⊗L

Λ,k1
Zp is locally finite, then T is locally finite.

Proof. See Prop 2.3.1 [Pil18]. �

Theorem 13.0.1. (1) If k1 > k2 and k1+ k3 > 2, the action of Up (resp. Tp)on
RΓ(S≥1(p),Ωκ

D) (resp. RΓ(S≥1,Ωκ
D)) is locally finite. We will denote by tp

and up the ordinary projector associated to Tp and Up respectively.
(2) If k1 > k2 and k1 + k3 > 2, then we have a natural quasi-isomorphism :

tpRΓ(S
≥1,Ωκ

D)→ upRΓ(S
≥1(p),Ωκ

D)

(3) For all κ with k1 > k2 and k1 + k3 > 3, we have a quasi-isomorphism:

tpRΓ(S,Ω
κ
D)→ tpRΓ(S

≥1,Ωκ
D)

(4) For all κ with k1 > k2 and k1 + k3 > 3,the natural map tpH
i(S,Ωκ

D) →
upH

i(S≥1(p),Ωκ
D) is an isomorphism for i = 0, 1.

(5) For k1 > k2, and k1 + k3 > 2, the Zp-complex upRΓ(S≥1(p),Ωκ
D) is perfect

of amplitude [0, 1].

Proof. All of these statements have been proved for the special fiber. We just need to
perform some limit procedure, except for the point (5) where we use the last lemma
(13.0.1). We prove the point (1) as an example of how one can deduce the claims
from the results we have shown earlier, the other points are completely analogous.

For this, we would like to write down a resolution of Ωκ
D over S≥1 using Hasse

invariant. Recall that over S≥1
n , the sheaf detA is ample in the minimal com-

pactifications so let N be an integer(depending on n) such that the pull back of

det
N
2
(p−1)

A in the minimal compactification is ample, with this assumption, HaN ∈
H0(S1, detN(p−1)

A,π̄ ) lifts to a section H̃a ∈ H0(S, detN(p−1)
A,π̄ ). Now consider the follow-

ing exact sequence:

0→ Ωκ → lim−→
r

Ωκ(rN) → lim−→
n

Ωκ(rN)/(H̃a)r → 0

The middle term is supported on ordinary locus S=2, and the third term is supported
on multiplicative rank 1 locus S=1. We need to show that the sheaves lim−→r

Ωκ
D|S=2
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and lim−→n
Ωκ(rN)|S=1 are really acyclic. But the formal scheme S=2 and S=1 are

completions of S=2 and S=1 along their respective special fibers, hence we have :

H i(S=2, lim−→
r

Ω
κ(rN)
D ) = limnH

i(S=2
n ,Ω

κ(rN)
D ) = 0

and similarly H i(S=1, lim−→r
Ω
κ(rN)
D ) = 0 for i ≥ 1.

This implies that the exact sequence above is a resolution by acyclic sheaves of Ωκ

over S≥1. Now we proceed completely similarly as in proposition (11.2.2), i.e we can
prove by induction on r that Tp acts locally finitely on Ω

κ(rN)
D ) and on Ωκ(rN)/(H̃a)r.

Passing to limit we see that the action of Tp on RΓ(S≥1
n (p),Ωκ) is locally finite. We

can repeat the proof for the action on Up on RΓ(S≥1
n (p),Ωκ).

�

Recall that we have constructed a complex of p-adic forms RΓ(S≥1(p),P ⊗
Ωk2,k2,k3
D ). In what follows, we will show the main theorem stated in the introduction.
To lighten some notations, with any weight κ = (k1, k2, k3), we denote κ+ for the

weight (k1 − k2, 0, 0) and κ− for (k2, k2, k3).

Lemma 13.0.3. For any weight κ such that k1 + k3 > 2, the action of Up on
RΓ(S≥1(p),P ⊗ Ωκ−

D ) is locally finite.

Proof. Recall that we have an Igusa tower Ig and a projection π : Ig → S≥1(p∞)→
S≥1(p), and we have defined P := (π∗OIg∞⊗̂ZpΛ)

Z×
p . We also have a truncated

version (when m ≥ n) Pm,n of P over S≥1
n (p). It is enough to show the lemma for

the truncated version, and then by the remark (13.0.2) above, it is enough to show
that for any k1 − k2 ∈ Z+, the action of Up on RΓ(S≥1(p),Pk1−k2

m,n ⊗Ωκ−

D ) is locally
finite.

For any n, and any coherent sheaf G of flat Z/pnZ-module over S≥1
n (p), we have

an exact sequence:

(13.3) 0→ G ⊗ Ωκ−

D → lim−→
r

G ⊗ Ω
k−(rN)
D → lim−→

r

G ⊗ Ω
κ−(rN)
D /(H̃a

r
)→ 0

For any weight κ, we have introduced an exact sequence : 0 → KΩκ+

D → Ωκ+

D →
Pκ+

m,n := Pk1−k2
m,n → 0 Taking the resolution (13.3) above for each terms of this exact
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sequence gives us a diagram:
(13.4)

0 0

H0(S=2
n (p),KΩκ+ ⊗ Ωκ−

D ) lim−→r
H0(S≥1

n (p),KΩκ+ ⊗ Ω
κ−(rN)
D /(H̃a

r
))

H0(S=2
n (p),Ωκ

D) lim−→r
H0(S≥1

n (p),Ω
κ(rN)
D /(H̃a

r
))

H0(S=2
n (p),Pκ+

m,n ⊗ Ωκ−

D ) lim−→r
H0(S≥1

n (p),Pκ+

m,n ⊗ Ω
κ−(rN)
D /(H̃a

r
))

0 0

By lemma(11.1.2) if we have an exact sequence 0 → M1 → M2 → M3 → 0 over
a local ring (R,mR), where all arrows commutes with action of Up then if the
action of Up is locally finite on M2, it is so on M3, and when M1 is killed by
some power of mR, then Up also acts locally finitely on M1 too. As a result, we
see that Up acts locally finitely on all of the terms of the commutative diagram
above. In particular, passing to the limit, one deduce that Up acts locally finitely
on lim−→m

RΓ(S≥1
1 (p),Pκ+

m,1 ⊗ Ωκ−

D ) = RΓ(S≥1
1 (p),Pκ+

∞,1 ⊗ Ωκ−

D ), and similarly, Up is

locally finite on lim−→r
H0(S≥1

n (p),Pκ+

∞,n ⊗ Ω
κ−(rN)
D /(H̃a

r
). Finally we use the propo-

sition (11.1.2) above to conclude.
�

Let up be the ordinary projector associated with Up ∈ End(RΓ(S≥1(p),P⊗Ωκ−

D ).

Definition 13.0.1. For each weight κ := (k1, k2, k3) such that k1 + k3 > 2, we call

V•(κ−) := upRΓ(S
≥1(p),P ⊗ Ωκ−

D )

the Hida complex of p-adic Picard modular form of base weight κ− := (k2, k2, k3).
We denote also by V•(κ) the specialization upRΓ(S≥1(p),Pκ+ ⊗ Ωκ−

D ) of V•(κ−).

Remark 13.0.1. The complex V•(κ−) will interpolates only the part Ωκ+
of the

classical sheaf Ωκ = Ωκ+ ⊗ Ωκ−
.

Theorem 13.0.2. The Λ-complex V•(κ−) is perfect and concentrated in two degrees
0 and 1.

Proof. By lemma(13.0.1), it suffices to prove that V•(κ) := upRΓ(S
≥1(p),Pκ+⊗Ωκ−

D
is perfect in D(Zp). Then, the previous theorem 13.0.1, point (5) says that it suffices
to show the quasi-isomorphism:

(13.5) upRΓ(S
≥1(p),Ωκ

D)
∼= upRΓ(S

≥1(p),Pκ+ ⊗ Ωκ−

D )
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By proposition 2.2.2 [Pil18], we can prove this by checking that the morphism on
special fibers :

(13.6) upRΓ(S≥1
1 (p),Ωκ

D)
∼= upRΓ(S≥1

1 (p),Pκ+

∞,1 ⊗ Ωκ−

D )

is a quasi-isomorphism. To do so, we reconsider the diagram (13.4) but specialize
in the case of n = 1. Following the lemma (13.0.4) below, we deduce that Up

acts trivially on RΓ(S≥1
1 ,KΩκ+ ⊗ Ωκ−

D ). As a consequence the action of Up on

H0(S=2
1 ,KΩκ+ ⊗ Ωκ−

D ) and lim−→r
H0(S≥1

1 ,KΩκ+ ⊗ Ω
κ−(rN)
D /(H̃a

r
)) is topologically

nilpotent, and so when we apply the projector up on the diagram (13.4), we obtain
two isomorphisms:

(13.7) upH
0(S=2

1 (p),Pκ+

m,1 ⊗ Ωκ−

D ) ∼= upH
0(S=2

1 (p),Ωκ
D)

(13.8)
up lim−→

r

H0(S=2
1 (p),Pκ+

m,1 ⊗ Ω
κ−(rN)
D /(H̃a)r) ∼= up lim−→

r

H0(S=2
1 (p),Ω

κ(rN)
D /(H̃a)r)

The two Zp-modules on the right of the above isomorphisms are both finite by point
(5), theorem 13.0.1. We need to check now that it is safe to pass to the limit (with re-
spect to m) the left hand side of the above isomorphisms. In other words, we should
verify that the iterated Um

p acting on RΓ(S≥1
1 (p),Pκ+

1,1 ⊗ Ωκ−
) is compatible with

restrictions RΓ(S≥1
1 (p),Pκ+

1,1⊗Ωκ−
)

res−−→ RΓ(S≥1
1 (p),Pκ+

m,1⊗Ωκ−
). Indeed the corre-

spondence underlying the iterated Um
p can be defined as follows. Let Cm be a scheme

over S≥1
1 (p) parametrizing the triple (A,H,Lm) with Lm ∈ A[πm] of multiplicative

rank 1, étale rank 0 and order p2m (i.e Lm is locally isomorphic to µpm × Z/pmZ)
such that Lm ∩H = {0}. We have two maps p1 : Cm → S≥1

1 (p) that simply forgets

the group Lm and p2 : Cm → S≥1
1 (p) that sends (A,H,Lm) to

(
A

Lm+L⊥
m
, H+Lm+L⊥

m

Lm+L⊥
m

)
.

Obviously, the correspondence (Cm, p1, p2) gives rise to the operator Um
p , and more

over the map p2 actually factors through S≥1
1 (pm)→ S≥1

1 (p), by sending (A,H,Lm)

to
(

A
Lm+L⊥

m
, Hm

)
∈ S≥1

1 (pm), where Hm = Im
(
A[pm]→ A

Lm+L⊥
m

)
. The upshot is

that we get the compatibility we want.
Finally we can pass to the limit with respect tom the right hand sides of (13.7)(13.8),

and "patch" two isomorphisms into the desired quasi-isomorphism (13.6).
�

Lemma 13.0.4. The action of Up on RΓ(S≥1
n ,KΩκ+ ⊗ Ωκ−

D ) is divisible by p.

Proof. It is enough to show this property when k+ = (1, 0, 0). Recall that by defi-
nition, we have an exact sequence : KΩκ+ → Ωκ+ → Pk1−k2

n,m , and an isomorphism
Pk1−k2

n,m
∼= ωk1−k2

Hm
for all κ.

Now we prove that Up acts naturally on the surjection: ωA[πm] → ωHm and its
action is divisible by p on the kernel K of this surjection. Indeed, we have the
universal isogeny λ(π) : A[πm] → A′[πm] with kernel L ⊂ A[πm] of multiplica-
tive rank 1, étale rank 0 which intersects trivially with Hm. On each affine open
Spec(R) ⊂ S≥1

n (pm) such that we have a trivialization R2 ∼= ωA[πm]
∼= ωA′[πm], and

R ∼= ωHm
∼= ωH′

m
, whereH ′

m is the image ofHm in A′[πm] via the isogeny λ(π) above.
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We can identify ωHm and ωH′
m

along with choosing a basis of R2 in a way that the
map ωA′[πm] = p∗2ωA[πm] → p∗1ωA[πm] = ωA[πm] appearing in the definition of Up can

be written locally over Spec(R) as: R2 → R2 with matrix
(
p 0
0 1

)
and the projec-

tions ωA[πm] → ωHm as well as ωA′[πm] → ωH′
m

are given by R2 ∋ (x, y) 7→ y ∈ R.
The result is that the map p∗2K → p∗1K over Spec(R) factors through pR. As a
consequence the action of Up on K is also divisible by p. �

Part 3. Higher Coleman theory

14. Introduction

In the first part, we have defined a complex of Λ-modules that interpolates the
ordinary complex computing the ordinary cohomology of Picard modular forms, all
integrally. In this part we formulate a version of Coleman theory for the complex
of overconvergent Picard modular forms. First, let us recall the classical Coleman
theory for p-adic overconvergent modular forms. LetX0(p) be the adic modular curve
of level Γ1(N)∩Γ0(p) over Spa(Qp,Zp). In particular, there is a universal subgroup
H of order p inside the universal elliptic curve E. Let X0(p)

m be the open subspace
of X0(p) where H has multiplicative reduction, and let X0(p)

m,† be the inductive
limit of all strict neighborhoods of X0(p)

m. We call the section of H0(X0(p)
m,†, ωk)

the overconvergent modular forms of weight k. There exists a Hecke operator Up

that acts on H0(X0(p)
m,†, ωk) and we have the famous classicity theorem due to

Coleman[Col97]:

Theorem 14.0.1. There is an isomorphism:

H0(X0(p), ω
k)<k−1 ∼= H0(X0(p)

m,†, ωk)<k−1

where the superscript ” < k−1” means the subspace of slope < k−1 with respect
to Up.

What is amazing is that such a classicity theorem should exist for higher cohomol-
ogy too. In the case of Siegel modular form of genus 2, see [Pil18]. In this section,
we will develop a similar theory for higher cohomology of Picard modular forms.

Somewhat more concretely we will study the strict neighborhood system {Spar(pn, ǫ)}ǫ
of S≥1

par(p
n) and establish some precise classicity theorem for overconvergent classes

in higher cohomology, in other words, when the restriction

RΓ(Spar(pn),Ωκ)→ RΓ(Spar(pn, ǫ),Ωκ)

becomes a quasi-isomorphism.
As an application of this theory, we prove that rationally we can obtain a good

control theorem. In other words, we have the following theorem:

Theorem 14.0.2. For all algebraic weight κ = (k1, k2, k3) (with k1 ≥ k2, k1 + k3 >
1), we have the quasi-isomorphism:

upRΓ(Spar(p),Ω
κ
D)⊗L Qp

∼= upRΓ(S
≥1
par(p),Ω

κ
D)⊗L Qp.
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This is very technical, but roughly the idea is to remark that it is enough to
establish this quasi-isomorphism over Cp and once over Cp, we will be able prove
that both complexes are quasi-isomorphic to a third complex whose terms compute
the cohomology of certain overconvergent automorphic sheaves.

15. Analytic geometry

Let Cp be the p-adic completion of algebraic closure of Qp and O its ring of
integers. We choose a valuation vp on Cp such that vp(p) = 1. Let AdmO be the
category of admissible O-algebra (i.e flat O-algebra that is isomorphic to a quotient
of covergent series O < x1, ..., xn > /I for some n by some finitely generated ideal
I) and NadmO the category of normal admissible O-algebras. For us, a formal
scheme is a locally topologically ringed space with a structure sheaf that is locally
isomorphic to formal scheme Spf(A) where A is some adic O-algebra with an ideal
of definition containing p. To each affine formal scheme Spf(A) we can associate
an adic space Spa(A,A) over Spa(O,O), this construction can be easily extended
to general formal schemes. Let us denote by FormO the category of formal schemes
over Spf(O). For any X ∈ FormO we can define its generic fiber by taking an affine
covering U of X and then for each affine formal subschemes Spf(R) ∈ U we define
its generic fiber to be Spa(R,R) ×Spa(O,O) Spa(Cp,O), this construction glues and
gives us the generic fiber, denoted by Xη of X.

Now let Spar ∈ FormO be the p-adic formal completion of Spar and let Spar be its
generic fiber, let S ≥1

par be the subspace of points whose associated universal subgroup
is multiplicative. We will study an appropriate system {Spar(ǫ)}ǫ of open subspaces
of Spar parametrized by ǫ ∈ R≥0, each Spar(ǫ) strictly contains S ≥1

par. There exists
also a systems of sheaves of overconvergent forms F (κ, ǫ) of some analytic weight
κ on each Spar(ǫ), and we are interested in the complex RΓ(Spar(ǫ),F (κ, ǫ)). The
goal of the first section is to prove that this complex is concentrated in degree 0 and
1 for any ǫ, κ.

15.1. Hodge-Tate map. We need to study the locus S ≥1
par and a compatible system

of its strict neighborhoods. It is possible to use Hasse invariant and its generalization
to define such system of neighborhoods like in the case of modular curves, but it is
more convenient and conceptual to use Hodge-Tate maps as we are going to explain
now.

Recall that we have defined the Picard schemeM and its toroidal compactification
S over Zp but from now on we (by abuse of notation) denote S the base change
S ×SpecZp Spec(O). We now define some objects needed for the construction of
overconvergent sheaves.

(1) Let S be the p-adic completion of S and M be the interior of S away from
the boundary (i.e p-adic completion of M). They are all formal schemes
topologically of finite type over Spf(O).

(2) S be the adic generic fiber of S, it is an adic space over Spa(Cp,O). Similarly
we denote by M the generic fiber of M. By abuse of notation, we still denote
by A the universal semi-abelian scheme over S or the universal abelian
scheme over M .
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(3) M (pn) be the analytic space over M parametrizing isomorphisms

(Z/pnZ)6 → A[pn]
commuting with action of OK . As p splits this is also just the space over M

parametrizing isomorphisms (Z/pn)3 ∼= A[πn] or (Z/pn)3 ∼= A[π̄n]. The pro-
jection ln : M (pn)→M is finite flat. Furthermore, as M (pn) is smooth over
spa(Cp,O), we can define its toroidal compactification denoted by S (pn)
and minimal compactification, denoted by S ∗(pn) (In our case, the toroidal
compactification is unique).

(4) By proposition (1.2) in [PS16b] we can normalize S inside S (pn) to obtain
a formal scheme topologically of finite type over Spf(O) and we denote it by
S(pn), similarly we have the normalization S∗(pn) of S∗ inside S ∗(pn). We
can define also S∗(pn) as the Stein factorization of S(pn) → S∗, that is to
say the unique formal scheme affine over S∗ that fits into the chain of maps
S(pn)

pr−→ S∗(pn) → S∗ such that pr∗OS(pn) = OS∗(pn). Let M(pn) be the
interior of S(pn).

Recall that for any O scheme S and finite locally free group scheme G over S we
have the Hodge-Tate map HT : G → ωGD where G and ωGD are identified with
their canonically associated fppf -sheaves over S. Concretely it is defined by sending
x ∈ G ∼= Hom(GD,Gm) to x∗ dTT .

Now, over M(pn) we have the universal abelian scheme A and the Hodge Tate
map HT : A[pn]→ ωA/p

nωA. As p splits , this map is the product of two maps:

HTπ : A[πn]→ ωπ̄/p
nωπ̄ and HTπ̄ : A[π̄]→ ωπ/p

nωπ

Theorem 15.1.1. The map HTπ̄ and HTπ extend to the toroidal compactification
S(pn).

Proof. Identical to the proof of proposition 1.5 [PS16b]
�

Furthermore, following prop 1.2 (loc. cit.) the map HTπ and the exterior product

∧2HTπ̄ : ∧2(Z/pnZ)3 → ∧2ωπ =: det(ωπ)

defined over S(pn) descends to the minimal compactification S∗(pn).
We have a rather useful characterization of the images of these Hodge-Tate maps.

Theorem 15.1.2 ([Far10],thm.7). For p ≥ 3, and S = Spec(R) be an affine scheme
where R is a normal admissible O-algebra. Let G be a Barsotti-Tate group over
S, truncated of level n, and of height h. Suppose furthermore over S we have the
trivialization G(S) ∼= (Z/pnZ)h, then the cokernel of Hodge-Tate map:

HT : G(S)×Z S → ωGD

is killed by the ideal generated by all elements of valuation greater than or equal to
1

p−1 .

Remark 15.1.1. This theorem also holds for p = 2 but with 1
p−1 replaced by 2. As a

result it is possible to extend all the theorems below to the case p = 2 up to changing
the numerical inputs. For this reason, from now on we will suppose that p ≥ 3.
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In particular, the maps HTπ and HTπ̄, as well as ∧2HTπ̄ are not surjective and
not suitable for our purposes. However, if we let ωmod

π ⊂ ωπ be the subsheaf of
ωπ generated by the inverse images of the Hodge-Tate map HTπ̄ via the projection
ωπ → ωπ/(p

n), then ωmod
π does not depend on n ≥ 1. Indeed, according to theorem

15.1.2, the cokernel of HTπ̄ is killed by p
1

p−1 , so a fortiori by p, the sheaves ωmod
π

(resp. ωπ̄) then sits in the sequence pωπ ⊂ ωmod
π ⊂ ωπ. In other words, ωmod

π is
the unique subsheaf of ωπ containing pωπ and whose reduction mod p is the image
of HTπ̄. The same goes for the sheaves ωπ̄ and det(ωπ) and we have the following
corollary

Corollary 15.1.1. There exist unique subsheaves ωmod
π and ωmod

π̄ (resp. det(ωπ)
mod)

be of ωπ and ωπ̄(resp. det(ωπ)) generated by the inverse images of the HTπ̄ and HTπ
(resp. ∧2HTπ̄) in ωπ and ωπ̄ (resp. det(ωπ)). These modified sheaves do not depend
on n ≥ 1.

Notice however that ωmod
π and ωmod

π̄ are only locally free over the generic fiber
of S(pn) but not over the special fiber. We can remedy this by blowing up S(pn)
successively along the sheaves of ideals I1, I2 followed by normalizations inside its
generic fiber, where I1(resp. I2) is generated the lifts of coefficients(resp. determi-
nants of minors) of the matrices of HTπ and HTπ̄. The result is a formal scheme
Smod(pn) with a projective map Bl : Smod(pn) → S(pn) such that Bl∗ωmod

π and
Bl∗ωmod

π̄ are locally free over Smod. To simplify notations, we still denote Bl∗ωmod
π

or Bl∗ωmod
π̄ by ωmod

π and ωmod
π̄ . A crucial thing to keep in mind is that since the

divisors cut out by I1, I2 lie inside the special fiber, we are modifying S(pn) without
messing up its generic fiber S (pn).

By a similar process, we can obtain a formal scheme S(pn)∗−mod with a projective
map Bl′ : S(pn)∗ such that the pull back Bl′∗(det(ωπ)) is locally free.

Now let {ei}1≤i≤3 and {ei}4≤i≤6 be a basis of (Z/pnZ)3 ∼= A[πn] and (Z/pnZ)3 ∼=
A[π̄n] respectively such that e1 is sent to e6 via the Cartier duality and the or-
thogonal of e1 is generated by e4, e5. Following the theorem(15.1.2) and the "mod"
construction above, we have the surjections:

HTπ̄ : (Z/pnZ)3 ⊗Z OSmod(pn) → ωmod
π /p

n− 1
p−1ωmod

π

HTπ : (Z/pnZ)3 ⊗Z OSmod(pn) → ωmod
π̄ /p

n− 1
p−1ωmod

π̄

15.2. Overconvergent neighborhood and flag variety. For each ǫ ∈ [0, n− 1
p−1 [

we define S(pn, ǫ) ⊂ Smod(pn) to be the formal scheme where vp(HT (e1)) ≥ ǫ. In
particular if n− 1

p−1 ≥ ǫ′ ≥ ǫ ≥ 0 we have S(pn, ǫ′) ⊂ S(pn, ǫ).
Over S(pn, ǫ), we still have a surjections:

HTπ : (Z/pnZ)6 ⊗Z OS(pn,ǫ) → ωmod
π̄ /pǫωmod

π̄

HTπ̄ : (Z/pnZ)6 ⊗Z OS(pn,ǫ) → ωmod
π /pǫωmod

π

Suppose that over some affine open SpfR ⊂ Smod(pn, ǫ) with R ∈ AdmO the sheaf
ωmod becomes trivial, then we can write the matrices of HTπ̄ and HTπ respectively
as:
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Mat(HTπ̄) =

(
a b c
d e f

)
Mat(HTπ) =

(
0 g h

)

Let Filcan be the sub module of ωmod
π generated by HTπ̄(e4), HTπ̄(e5). Since the

map HTπ is surjective, the coefficients g and h are co-linear (i.e there is some λ ∈ R×

such that g = λh. By duality, e2, e3 are sent to e4, e5 respectively and thus HTπ̄(e4)
and HTπ̄(e5) are also co-linear. Furthermore < e1 >

⊥=< e4, e5 > and the dual of
e1 is e6, as a result ωπ/F il

can is generated by the image of HTπ̄(e6). Finally since
HTπ̄ is surjective, HTπ̄(e6) must be non zero and independent of HTπ̄(e4), HTπ̄(e5),
we conclude that Filcan is locally direct factor of rank 1 of ωmod

π with quotient
ωmod
π /F ilcan generated by HTπ̄(e6).
Let us denote by S(pn, ǫ, e4) (resp. S(pn, ǫ, e5)) the open subscheme of S(pn, ǫ)

where Filcan is generated by HTπ̄(e4) (resp. HTπ̄(e5)).
We denote by FLn the flag variety over Smod(pn) parametrizing direct factors of

rank 1 of ωmod
π , this means over FLn there is a universal filtration Filn ⊂ ωmod

π . Let
also FLn(ǫ) be the pullback of FLn to Smod(pn, ǫ). For each w ∈ [0, ǫ], we consider
the subspace FLn(ǫ, w) of FLn(ǫ) where Filn = Filcanǫ (mod pw).

More precisely, on each open subscheme Spf(R) ⊂ Smod(pn) with R ∈ AdmO,
such that ωmod

π
∼= Rẽ45 ⊕ Rẽ6, where ẽ6 lifts HT (e6) ∈ ωmod

π /pǫωmod
π and ẽ45 lifts a

basis for Filcanǫ ⊂ ωmod
π /pǫωmod

π . Now it is immediate that

(15.1) FLn(ǫ, w)Spf(R)
∼= Spf(R〈T 〉)

with the universal locally free direct factor of rank 1 of ωmod
π given by (ẽ45 +

pwT ẽ6)R ⊂ Rẽ45 ⊕Rẽ6.
Over FLn(ǫ, w), for each 0 ≤ w′ ≤ w we can define yet another scheme FLn(ǫ, w,w

′)
parametrizing all trivializations φ : OFLn(ǫ,w,w′)

∼= ωmod
π /F iln such that φ(1) =

HTπ̄(e6) (mod pw
′
). Locally over each open affine Spf(R) as above, we have:

(15.2) FLn(ǫ, w,w
′)|SpfR ∼= Spf(R〈T, T ′〉)

with the projection p1 : FLn(ǫ, w,w
′)→ FLn(ǫ, w) over Spf(R) given by R〈T 〉 →

R〈T, T ′〉 sending T to T . The universal trivialization over Spf(R) is given by φ :

R < T, T ′ >→ R2/(ẽ45 + pwT ẽ6) such that φ(1) = (1 + pw
′
T ′)ẽ6. Thus, we obtain :

FLn(ǫ, w,w
′)

p1−→ FLn(ǫ, w)
p2−→ S(pn, ǫ)

We define P(ǫ, w) := p1∗OFLn(ǫ,w,w′) and P(ǫ) := p2∗P(ǫ, ω). We denote by P(pn, ǫ)
and P(ǫ) the generic fiber of S(pn, ǫ) and P(ǫ).

15.2.1. Analytic weight. Let Λ := Zp[[Z×
p ]] be the Iwasawa algebra of dimension 1

and W := Spf(Λ) be the associated formal weight space with its rigid analytic
fiber W := W ×Spa(Zp,Zp) Spa(Qp,Zp). To each affine adic space T := Spa(R,R+)

the points W(T ) of the weight space W is identified with Homcont(Z×
p , R

×). Thus,
in particular W(Spa(Qp,Zp)) = Homcont(Z×

p ,Q
×
p ) contains all algebraic weights.

For each w ∈ [0, n − 1
p−1 ] we have a formal subgroup Ww defined by Ww(R) =
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Z×
p (1 + pwR) for any R ∈ AdmO. Let also Wo

w be the connected component of Ww

(i.e the sub formal torus that sends any R ∈ AdmO to (1 + pw)R.
For each Huber pair (A,A+) and a character κA : Λ× → A× we say that A is

w′-analytic if κA extends to a pairing Ww′ × Spf(A)→ Gm.
Recall that we have a series of affine maps:

FLn(ǫ, w,w
′)

p1−→ FLn(ǫ, w)
p2−→ S(pn, ǫ)

There is a natural action of the formal group W◦
w′ on p1∗FLn(ǫ, w,w

′). More con-
cretely, let U := {Ui}i∈I be a cover by affine formal subschemes of S(pn, ǫ) such
that over each Ui = Spf(Ri) we have a description of FLn(ǫ, w,w

′)Ui
and FLn(w)Ui

as in (15.1, 15.2). An element g ∈ Wo
w′(Ri) acts on FLn(ǫ, w,w

′)Ui
by sending

the trivialization φ : Ri
∼= R2

i /(ẽ + pwẽ6) to g(φ) : Ri
∼= R2

i /(ẽ + pwẽ6) such that
g(φ)(1) = g(1 + pw

′
T ′).

Given a w′-analytic character kA we can consider the sheaf:

DkA(w) := (p1∗FLn(ǫ, w,w
′)⊗̂A)Ww′

as well as the sheaf CkA(w) := p2∗D
kA(w) over S(pn, ǫ). We denote by DκA(w) and

C κA(w) their generic fibers.

Remark 15.2.1. Notice that the sheaf DkA(w) does not depend on w′.

15.2.2. Formal Picard scheme with parahoric level structure. Let G be the p-adic
completion ofGL3×GL3 overO and Par be the parahoric subgroup of G consisting of
upper triangular matrix with blocks of size 1×1, 2×2 , 2×2 and 1×1 on the diagonal
in that order. Over S (pn) we have a trivialization ρ : (Z/pnZ)6 ∼= A[πn] × A[π̄n].
As a consequence, Par(Z/pnZ) acts on S (pn) by acting on ρ. This action is trivial
on S , thus Par(Z/pnZ) also acts on S(pn) since it is the normalization of S inside
S (pn). Furthermore Smod(pn) is obtained by blowing up along the divisors cut by
ideals I1, I2 followed by normalization, both of these divisors are stable under the
action of Par(Z/pnZ). As a result Par(Z/pnZ) acts on Smod(pn), and we denote by
Smod

par (p
n) as the quotient of Par(Z/pnZ) by Smod(pn).

Now as Par(Z/pnZ) acts on Smod(pn) by acting on the trivialization ρ, it clearly
fixes the vector e1, hence there is an induced action of Par(Z/pnZ) on Smod(pn, ǫ).
We denote by Smod

par (p
n, ǫ) its quotient and then by Spar(p

n, ǫ) the generic fiber (recall
that the "modification" does not change the generic fiber, so we do not have super-
script "mod" when taking the generic fiber). Denote by q : S (pn, ǫ) → Spar(p

n, ǫ)
the natural projection.

15.3. Analytic setting. Over S (pn) as well as S (pn, ǫ) we still have Hodge Tate
map :

HT : (Z/pnZ)6 ⊗Z OSpar(pn) → ωA

We also care about the integral structure as well, i.e we have a subsheaf O+
Spar(pn)

⊂
OSpar(pn) and a sheaf of integral differential forms ω+

A but the "integral" Hodge-Tate
map :

HT : (Z/pnZ)6 ⊗Z O+
Spar(pn)

→ ω+
A/(p

n− 1
p−1 )
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is not surjective, just like the case of formal scheme earlier. We thus define ω+,mod
π

and ω+,mod
π̄ as the sub sheaves of ω+

π and ω+
π̄ generated by the images of Hodge-Tate

maps above. Be careful that these modified sheaves are really defined on the étale
site since we use the Hodge-Tate maps to define them.

Now we explain why we call Spar(p
n, ǫ) an overconvergent neighborhood of S ≥1

par(p
n).

Firstly, the space Spar(p
n) parametrizes the pair (Hn,A) with Hn ⊂ A[πn] a sub-

group étale locally isomorphic to Z/pnZ, and so we have a diagram:

Hn A[πn]

ωHD
n

ωA[π̄]

we can fix an isomorphism A[πn] ∼= (Z/pnZ)3 and a choice of basis {ei}1≤i≤3 for
(Z/pnZ)3 such that A[πn] ⊃ Hn

∼= (Z/pnZ)e1. Then if the group Hn is multiplica-

tive then HT (e1) = 0 mod p
n− 1

p−1 . This means that S ≥1
par(p

n) corresponds to a
subspace of Spar(p

n, n − 1
p−1) and as ǫ varies the schemes {Spar(p

n, ǫ)}ǫ are strict
neighborhoods of S ≥1

par(p
n).

Now, over Spar(p
n, ǫ) we have a trivialization A[π̄n] ∼= (Z/pnZ)3 and we choose a

basis {ei}4≤i≤6 for Z/pnZ such that e1 is sent to e6 by Cartier duality (recall that
A[πn]D = A[π̄n]. Moreover, the orthogonal H⊥

n is isomorphic to A[π̄n]/HD
n , this

means that in the trivialization above, H⊥
n corresponds to sub module of (Z/pnZ)3 ∼=

A[π̄n] generated by e4, e5. Similarly to earlier section, we can define (recall that for
any O+-module M , and ǫ ∈ Q>0 we set Mǫ :=M/pǫM) :

(1) a filtration Filcanǫ ⊂ ω+,mod
π over Spar(p

n, ǫ) defined as the images of e4, e5
via the integral Hodge-Tate map HTπ̄ : (Z/pnZ)3 ⊗O+

Spar(pn,ǫ)
→ ω+,mod

π,ǫ .

(2) Grcanǫ as the quotient (ω+,mod
π,ǫ )/F ilcanǫ

(3) FL is the flag variety over Spar(p
n) parametrizing locally direct factor (in

zariski topology) of rank one Fil1 ⊂ ωπ. Let also FL par(ǫ) := FL ×
Spar(p

n, ǫ).
(4) FL par(ǫ, w) is an open subspace of FL (ǫ) such that étale locally we have

Fil1
⋂
ω+,mod
π = Filcanǫ (mod pw).

(5) FL par(ǫ, w,w
′) is a torsor over FL par(ǫ, w) that parametrizes the trivial-

izations φ : O+
FL par(ǫ,w)

∼= ω+,mod
π /(Fil1

⋂
ω+,mod
π ) such that φ = HT (1)(mod pw

′
).

We have the following very important fact:

Lemma 15.3.1. (1) The generic fiber FL n(ǫ, w) of FLn(ǫ, w) over S (pn, ǫ) is
the pull back of FL par(ǫ, w) via the projection: S (pn, ǫ)→ Spar(p

n, ǫ).
(2) Similarly,the generic fiber FL n(ǫ, w,w

′) of FLnn(ǫ, w,w
′) over S (pn, ǫ) is

the pull back of FL par(ǫ, w,w
′) via the projection: S (pn, ǫ)→ Spar(p

n, ǫ).

Proof. The proof is an application of the following descent lemma (see lemma 4.2.4([Con06]))
Lemma: Let f : X → X ′ be a faithfully flat map of rigid analytic spaces. Let

W ⊂ X be an admissible open subspace. Suppose that:
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(1) f admits a fpqc quasi-section (i.e there is a faithfully flat quasi-compact map
U → Y and a Y -map U → X).

(2) if x ∈ X and f(x) ∈ im(W ) then x ∈W .
then the image of W is an admissible open subspace of X ′.

Indeed we can consider the flag variety FL over Spar(n, ǫ, w) parametrizing
locally free sheaf of rank 1 of ωπ. The map X := FL ×Spar(n,ǫ,w,w′) S (pn, ǫ, w)→
FL is faithfully flat map (since the quotient S (pn, ǫ, w) → Spar(n, ǫ, w,w

′) is).
Now the space FL n(ǫ, w) can be identified as a subspace of X . The fpqc quasi-
section is given by the subgroup Hn ⊂ A[π] using the modular interpretation of
Spar(n, ǫ, w). The second condition of the descent lemma above can also be readily
verified on points. Thus FL n(ǫ, w) arises as a pull back of an open admissible
subspace of FL . This space is exactly FL par(ǫ, w).

The point (2) is proved similarly.
�

To sum it up, we have a sequence of maps:

FL par,n(ǫ, w,w
′)

p1−→ FL par,n(ǫ, w)
p2−→ Spar(p

n, ǫ)

For each w-analytic weight kA, we define a sheaf :

P
kA
n,ǫ(w) := (p1∗OFL par,n(ǫ,w,w′)⊗̂A)Ww′,n

Recall that for each triple κ := (k1, k2, k3) ∈ Z3 with k1 ≥ k2 we denote by κ+ :=

k1 − k2 and κ− := (k2, k3). By ωκ−
we mean the sheaf det(ωπ)

k2 ⊗ ωk2
π̄ and by Pκ

n,ǫ

the sheaf Pκ+

n,ǫ ⊗ ωκ−
(an algebraic weight is always analytic). Lastly, if kA is an A-

valued w-analytic weight, by abuse of notation, let κA be the triple (kA, k2, k3) with
κ+A := kA − k2 and κ−A := (k2, k3) and we simply refer to κA as A-valued w-analytic
weight. This time PκA

n,ǫ (w) denotes PkA−k2
n,ǫ (w)⊗ ωκ−

A .

Definition 15.3.1. For each A-valued w-analytic weight κA we call

Vn,ǫ(κA, w) := RΓ(Spar(p
n, ǫ),PkA

n,ǫ(w)⊗ ωκ−
)

the (n, ǫ)-overconvergent w-analytic complex of weight κA. We can also defined the
cuspidal version:

V
cusp
n,ǫ (κA, w) := RΓ(Spar(p

n, ǫ),PkA
n,ǫ(w)⊗ ωκ−

(−D))

Another thing worth pointing out is that we can use a different equivalent descrip-
tion of Vn,ǫ(κA, w). This description uses the fact that FL n(ǫ, w) is locally affine
over S (pn, ǫ) so that we can find a cover U = {Ui}i∈I by affinoids Ui = Spa(R,R+)
such that p−1

2 Ui are also affinoids. We can always refine this covering so that each
affinoids Ui is stable under the action of Par(Z/pnZ), then using Čech complex we
see that :

(15.3) Vn,ǫ(κA, w) = H0(Par(Z/pnZ),RΓ(FL n(ǫ, w),D
kA(w)⊗ ωκ−)

and we also have Rip1∗ vanishes for i ≥ 1 (indeed, the map p1 is also locally affine),
this implies :

(15.4) RΓ(FL n(ǫ, w),D
kA(w)⊗ ωκ−) ∼= RΓ(S (pn, ǫ, w),C kA(w)⊗ ωκ−)
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15.3.1. V
cusp
n,ǫ (κA, w) is concentrated in two degrees. In this section, we prove that

V
cusp
n,ǫ (κA, w) is concentrated in two degrees when n is big enough.
Recall that we have the minimal compactification S∗(pn) and over it there are

Hodge-Tate maps:

∧2HTπ : ∧2(Z/pnZ)3 ⊗OS∗(pn) → det(ωπ)/(p
n− 1

p−1 )

and HTπ̄ ⊗ 1 : (Z/pnZ)3 ⊗OS∗(pn) → ωπ̄/(p
n− 1

p−1 )

Let us denote by eij the exterior product ei ∧ ej for all 0 ≤ i, j ≤ 6. We have also
shown the existence of a modified sheaf det(ωπ)

mod over S∗(pn) and a formal scheme
S(pn)∗−mod with a map S(pn)∗−mod → S∗(pn) such that the pull back of det(ωπ)

mod

along this map is locally free.
Now, above S(pn)∗−mod we can define the scheme S∗(pn, ǫ) such that ∧2HTπ(e45) =

0 mod pǫ and ∧2HTπ(e46) and ∧2HTπ(e56) are not simultaneously 0 mod pǫ.

Lemma 15.3.2. We have the following commutative diagram:

S∗(pn, ǫ) S(pn)mod

S∗(pn, ǫ) S(pn)∗−mod

Proof. Since over S(pn, ǫ) we have HTπ̄(e1) = 0 mod pǫ, in particular this would
imply that e6 is non zero mod pǫ. Moreover as e2 and e3 are dual to e4 and e5
respectively, ∧2HTπ(e45) = 0 mod pǫ implies that HTπ̄(e2) and HTπ̄(e3) = 0 simul-
taneously mod pǫ and this forces HTπ̄(e1) to be non zero. �

Let L := det(ωπ)
mod ⊗ ωmod

π̄ . For 1 ≤ i ≤ 3 and 4 ≤ j, k ≤ 6 we let sijk the
section of L locally defined by the Hodge-Tate map ∧2HTπ̄ ⊗ HTπ(ej ∧ ek ⊗ ei).
We would like to use these section to cook up some affine covering of S∗(pn, ǫ) but
unfortunately L is not ample. However we have the following theorem

Theorem 15.3.1. There exists N ∈ N such that for any n ≥ N , there exists a
formal model S(pn)∗−HT (actually a Stein factorization ) with a projective map

S(pn)∗−mod ht−→ S(pn)∗−HT inducing an isomorphism on generic fiber with following
properties :

(1) The line bundle L descends to an ample line bundle, denoted by LHT over
S(pn)∗−HT

(2) For each ǫ there is an integer n(ǫ) such that for all n ≥ n(ǫ) there exist
sections sHT

ijk ∈ H0(S(pn)∗−HT ,L) such that their pull backs to S(pn)∗−mod

agree with sijk (mod pǫ).

Now we can define the scheme S(pn, ǫ)HT → S(pn)HT by the condition sHT
1jk = 0

mod (pǫ) for all j, k. We also denote by S(pn, ǫ, ek)
HT two open formal subschemes

of S(pn, ǫ)HT where sHT
1k6

is non zero mod (pǫ) for k ∈ {4, 5}. Since LHT is ample,
the formal schemes S(pn, ǫ, ek)

HT are affine. Furthermore we can easily verify that
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the following diagram is commutative for k ∈ {4, 5}.

(15.5)

S(pn, ǫ, ek)
∗−mod S(pn, ǫ, ek)

HT

S(pn, ǫ)∗−mod S(pn, ǫ)HTht

This diagram implies that the top horizontal map is projective. This suggests
us to use S(pn, ǫ)HT to compute coherent cohomology H i(S(pn, ǫ)∗−mod,F) via
H i(S(pn, ǫ)HT , ht∗F) . Fortunately when the coherent sheaf F is nice enough we
can indeed compare the two.

Definition 15.3.2. Let X be an admissible formal scheme, a formal Banach sheaf
F over X is a family {Fi}i of quasi-coherent sheaves such that :

(1) Each Fi is a sheaf of OX/p
i-module.

(2) Each Fi is flat over O/pi
(3) For all 0 ≤ m ≤ n we have the isomorphism Fn ⊗O O/pm ∼= Fm.

We say furthermore that

(1) F is flat if each Fi is a sheaf of flat OX/p
i-module.

(2) F = lim←−i
Fi is small if the sheaf F1 can be written as lim−→j

F1,j of coherent
sheaves F1,j and there exists a coherent sheaf G over S such that successive
quotients F1,j/F1,j+1 are direct sums of G.

Lemma 15.3.3. The coherent sheaf f∗CκA(w)⊗ωκ−

D is a small formal Banach sheaf
over S(pn, ǫ)∗−mod.

Proof. See proposition A.1.3.1 [AIP12]. �

We invoke the following theorem (see thm A.1.2.2 [AIP12])

Theorem 15.3.2. Let X be an admissible formal scheme. If X→ Y is a projective
map with Y an admissible affine formal scheme which induces an isomorphism on
their generic fiber. Let F be a small Banach sheaf over X and U be an affine cover
of X. Then the Čhech complex ˇCech(U,F)[1/p] is acyclic in positive degree.

Corollary 15.3.1. Suppose that we have a coherent sheaf G over S mod(pn, ǫ) and
that G descends to a small formal sheaf G over Smod(pn, ǫ). Then the complex
RΓ(S mod(pn, ǫ),G) is concentrated in degrees 0 and 1.

Proof. The space Smod(pn, ǫ) is covered by two open subspaces U4 := Smod(pn, ǫ, e4)
and U5 := Smod(pn, ǫ, e5). Let U = {Ui}(i=4,5). We have a spectral sequence :

Ep,q
2 = Ȟp(U,Hq)⇒ Hp+q(Smod(pn, ǫ),G)

Where Hq is the sheaf associated to the presheaf over Smod(pn, ǫ) sending each open
subset U to Hq(U,G).

Now, we have projective maps Ui → S(pn, ǫ, s̃i)
∗−HT for i = 4, 5. By theo-

rem(15.3.2) above, we conclude that the sheaf Hq restricted to Ui doesn’t have non
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trivial torsion-free global sections for q ≥ 1. As a result we see that when p is inverted
we have:

Ȟ i(U,G)[
1

p
]⇒ H i(Smod(pn, ǫ),G)[

1

p
] = H i(S mod(pn, ǫ),G)

As Ȟ i(U,G)[1p ] is clearly non zero in degree 0 and 1, we’re done. �

We cite another vanishing theorem before concluding:

Theorem 15.3.3. Let π : S(pn, ǫ) → S(pn, ǫ)∗−mod , then Rπ∗OS(pn,ǫ)(−D) =
π∗OS(pn,ǫ)(−D).

Proof. See proposition 12.9.2.1[Pil18] �

Theorem 15.3.4. For any ǫ ∈]0, n − 1
p−1 [, then there exists n(ǫ) such that for all

n ≥ n(ǫ), the overconvergent complex Vn,ǫ(κA, w) is concentrated in degree 0 and 1.

Proof. We have seen that (15.3):

Vn,ǫ(κA, w) = H0(Par(Z/pnZ),RΓ(FL n(ǫ, w),D
kA(w)⊗ ωκ−))

So we can show that the complex RΓ(FL n(ǫ, w),D
kA(w)⊗ωκ−) is concentrated in

degree 0, 1 instead. But recall that the projection FL n(ǫ, w)→ S (pn, ǫ) is locally
affine, so we have a quasi-isomorphism:

RΓ(S (pn, ǫ),C κA(w) ∼= RΓ(FL n(ǫ, w),D
kA(w)⊗ ωκ−)

Finally, we apply the corollary (15.3.1) for the sheaf C κA(w) which is the generic
fiber of the small sheaf CκA(w). �

16. Comparison theorem

16.1. Comparison map. For each A-valued w-analytic triple κA = (k+A , k
−
A) we

have defined the (n, ǫ)-overconvergent w-analytic complex Vn,ǫ(κ,w). When κ :=
(k1, k2, k3) ∈ Z3 with k1 ≥ k2 we also have the (n, ǫ)-overconvergent complex of
classical sheaf RΓ(Spar(p

n, ǫ),Ωκ
D). In fact, there is a natural map:

(16.1) RΓ(Spar(p
n, ǫ),Ωκ)→ Vn,ǫ(κ,w) := RΓ(Spar(p

n, ǫ),Pκ+

n,ǫ ⊗ ωκ−
)

Indeed, it is enough to exhibit a map Ωκ+,0,0 →Pκ+

n,ǫ . Let FL be the flag variety
over Spar(p

n, ǫ) parametrizing the filtration Fil1 ⊂ ωπ, and p : FL
+ → Spar(p

n, ǫ)
parametrizing the trivialization of Gr1 := ωπ/F il

1. Since ωπ is of rank 2 and Fil1

is of rank 1, the flag FL
+ is a Gm-torsor over Spar(p

n, ǫ) and the symmetric
power Ωκ+,0,0 = Symκ+

ωπ is nothing but p∗OFL
+ [−κ+] where p∗OFL

+ [−κ+] is
the part on which Gm acts by the character t → t−κ+

. Now the open immersion
FL par(ǫ, w,w

′) →֒ FL
+ is equivariant with respect to the action of Ww′ on the

left and Gm on the right (under the natural map Ww′ → Gm). As a result, by
taking −κ+ invariant part, we obtain a map Ωκ+,0,0 → Pκ+

n,ǫ defined on each affine
U = Spa(A,A+) ⊂ Spar(p

n, ǫ) by

Ωκ+,0,0|U ∼= p∗OFL
+ [−κ+]→ (p∗FL par(ǫ, w,w

′)⊗̂κ+A+)Ww′ = P
κ+

n,ǫ |U
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Moreover, the map (16.1) respects the actions of a Hecke operator U †
p constructed

in the next section. Above all, this operator is compact and spectral theory allows
us to make sense of cohomology classes of prescribed slopes with respect to U †

p . We
will actually prove that (16.1) become a quasi-isomorphism when restricted to the
finite slope part.

16.2. Operator U †
p . In this subsection, we define the Hecke operator U †

p acting on
overconvergent complexes.

Let C◦
n be the correspondence defined over Mpar(p

n) which parametrizes the triple
(A,Hn, L) where (A,Hn) is a point of Mpar(p

n) and L is a totally isotropic subgroup
of A[π] of order p2 and L ∩ Hn = {0}. We have two maps p1 : C◦

n → M (pn)
sending (A,Hn, L) to (A,Hn) and p2 : C◦

n → Mpar(p
n+1) sending (A,Hn, L) to

( A
L+L⊥ ,

p−1Hn+L+L⊥

L+L⊥ ). As before, this correspondence extends to Cn over the toroidal
compactification Spar(p

n).

Cn

Spar(p
n) Spar(p

n+1)

p2p1

Lemma 16.2.1. The pull back of Cn to Spar(p
n, ǫ) gives us the correspondence:

Cn,ǫ := Cn ×Spar(pn),p1 Spar(p
n, ǫ)

Spar(p
n, ǫ) Spar(p

n+1, ǫ+ 1)

p2p1

Proof. Indeed, we have to check that the map Cn,ǫ
p2−→ Spar(p

n+1, ǫ) factors through
Spar(p

n+1, ǫ+ 1) and it is enough to show this on rank 1 points.
Over Cn,ǫ we have the universal isogeny λ : A → A′ with kernel Ker(λ) = L×L⊥

where L ⊂ A[π] is totally isotropic of order p2 and L⊥ ⊂ A[π̄] is the orthogonal of
L. In other words we have two commutative diagrams:

(16.2)

A[π̄n] A′[π̄n] A[πn] A′[πn]

ω+,mod
A,π ω+,mod

A′,π ω+,mod
A,π̄ ω+,mod

A′,π̄

λπ̄

HT HT ′

λπ

HT HT ′

λ∗
π λ∗

π̄

Let x : Spa(K,OK) → Cǫ be a geometric point of rank 1. Then using the
trivialization

Ax[π
∞]×Ax[π̄

∞] ∼= Z3
p × Z3

p
∼= A′

x[π
∞]×A′

x[π̄
∞]

and ω+,mod
A,π (x) ∼= O2

K
∼= ω+,mod

A′,π (x) as well as ω+,mod
A,π (x) ∼= OK

∼= ωmod
A′,π̄(x). Further

more as the map λ∗π is the differential of the isogeny λπ : A[π∞]→ A′[π∞] and λ∗π̄ is
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the differential of λπ̄ : A[π̄∞]→ A′[π̄∞] of kernel L⊥, we obtain two diagrams:

(16.3)

Z3
p Z3

p Z3
p Z3

p

O2
K O2

K OK OK

(p,1,1)

HT HT ′

(1,p,p)

HT HT ′

(p,p) (p)

Now, by definition vp(HT (e1)) ≥ ǫ since x ∈ Cn,ǫ, and the diagram 16.3 on the
right says that λπ sends e1 to e1 so we must have vp(HT ′(e1)) = vp(pHT (e1)) ≥ ǫ+1.
This means that the projection p2 lands in Spar(p

n+1, ǫ+ 1).
�

Proposition 16.2.1. Over Cn,ǫ we have a natural map :

p∗2P
κA
n+1,ǫ+1(w + 1)→ p∗1P

κA
n,ǫ (w)

Proof. We just need to unwind the definition of overconvergent sheaves PκA
n,ǫ (w).

Firstly, observe that over Cn,ǫ we have a map λ∗π : p∗1FL → p∗2FL where FL is
the flag variety parametrizing locally free factors of rank 1 of ωA,π. Now, for any
such factor, say Fil1 ⊂ ωA,π, we get a locally free factor λ∗πFil

1 of rank 1 of ωA′,π

by pull-back via the isogeny λπ : A[π∞]→ A′[π∞].
we claim that λ∗π induces a map

(16.4) p∗1FL par(n, ǫ, w)→ p2 ∗FL par(n+ 1, ǫ+ 1, w + 1)

By definition FL par(n, ǫ, w) ⊂ FL is the open subspace where

Fil1
⋂
ω+,mod
A,π = Filcan(mod pw)

More concretely, for each point x ∈ Spar(p
n, ǫ) of rank 1, we can find an affine

neighborhood of x such that the filtration is given explicitly by Fil1x = HT (e4) +
α(x)pwHT (e6) or Fil1x = HT (e5)+α(x)p

wHT (e6), depending where the point p1(x)
lies in Spar(p

n, ǫ = Spar(p
n, ǫ, e4)∪Spar(p

n, ǫ, e5). We reuse the left diagram (16.3)
above to see that Fil1x is sent via λ∗π to pHT (e4) + α(x)pw+1HT (e6). This means
that λ∗πFil

1
x lands in FL

κ+
(w + 1).

Similarly, we can show that

(16.5) λ∗π : p∗1FL par(n, ǫ, w,w
′)→ p∗1FL par(n+ 1, ǫ+ 1, w + 1, w′ + 1)

Indeed, given a filtration Fil1A′,x ⊂ ωA′
x,π and a trivialization

φ : OK
∼= ω+,mod

A′
x,π

/F il1A′,x

⋂
ω+,mod
A′

x,π

By pull-back via λ∗π we obtain a filtration Fil1A′,x := λ∗πFil
1
A,x ⊂ ωAx,π and obviously

a trivialization φ : OK
∼= ω+,mod

A′
x,π

/F il1A′,x

⋂
ω+,mod
A′

x,π
∼= ω+,mod

Ax,π
/F il1A,x

⋂
ω+,mod
Ax,π

.
Finally, the map p∗2P

κA
n+1,ǫ+1(w + 1) → p∗1P

κA
n,ǫ (w) is defined as follows, for any

affine open subset U ⊂ Cn,ǫ , and a section s ∈ H0(U, p∗2P
κA
n+1,ǫ+1(w + 1)) we can

associate a section s′ of H0(U, p∗1P
κA
n,ǫ (w)) by putting s′(x) = s(λ∗π(x)). �
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As a consequence can define a series of map:

Vn+1,ǫ+1(κA, w + 1)→ RΓ(Cn,ǫ, p
∗
2P

κ+
A

n+1,ǫ+1(w + 1)⊗ ωκ−
A)

1/pk2λ∗
π−−−−−→ RΓ(Cn,ǫ, p

∗
1P

κ+
A

n,ǫ (w)⊗ ωκ−
A)

→RΓ(Cn,ǫ, p1∗p
∗
1P

κ+
A

n,ǫ (w)⊗ ωκ−
A)

1
p
Tr
−−→ Vn,ǫ(κA, w)

(16.6)

where the map 1
pk2
λ∗π is normalized map of λ∗π, and 1

pTr is the normalized trace
map with the normalization calculated as in proposition (10.4). We also have a
natural restriction map

Vn,ǫ(κ,w)
res−−→ Vn,ǫ+1(κ,w + 1)

combined with the above map we obtain the operator for overconvergent complex :

U †
p : Vn+1,ǫ+1(κ,w + 1)→ Vn+1,ǫ+1(κ,w + 1)

16.2.1. U †
p and integral structure of overconvergent sheaves. Recall that if F is a

sheaf on an adic space X , we are often interested in the subsheaf F+ and F++ of
power bounded elements and topologically nilpotent elements respectively. In this
section we analyze the effect of U †

p on the subcomplexes

Vn,ǫ(κ
+, w)+ := RΓ(S (pn, ǫ),Pκ

n,ǫ(w)
+)

Vn,ǫ(κ
+, w)++ := RΓ(S (pn, ǫ),Pκ

n,ǫ(w)
++)

Where Pκ
n,ǫ(w)

+ := Pκ+

n,ǫ (w)
+ ⊗ ωκ−,+ and Pκ

n,ǫ(w)
++ := Pκ+

n,ǫ (w)
++ ⊗ ωκ−,++

For example, a non normalized version of the chain of maps (16.6) would give us an
operator that stabilizes the integral structure, but since we have normalized it by a
factor 1/pk2+1, our operator U †

p does not stabilize these subcomplexes anymore.
To see exactly what U †

p does with the integral structure of Vn,ǫ(κA, w), we need
to unwind yet one more time the definition of U †

p . Above Spar(p
n, ǫ) we have the

universal isogeny λ : A[p∞] → A′[p∞], which can be written as a product of λπ :
A[π∞] → A′[π∞] with kernel L and λπ̄ : A[π̄∞] → A′[π̄∞] with kernel L⊥. These
induce maps:

λ∗π : ωA′,π → ωA,π and λ∗π̄ : ωA′,π̄ → ωA,π̄

Now the map λ∗π induces a map λ∗π : ω++
A′,π → ω++

A,π and then det(λ∗π) : det(ωA′,π)→
det(ω++

A,π) which factors through p.det(ω++
A′,π) due to the fact that deg(L) ≥ 1. By

definition :
F

++ := Symκ+
(ω++

A,π)⊗ detk2(ω++
A,π)⊗ detk3(ω++

A,π̄)

We deduce that (λ∗)κ : p∗2P
κA,++
n,ǫ → p∗1P

κA,++
n,ǫ factors through pk2p∗1P

κA,++
n,ǫ . This

implies that after normalization 1
pk2
det(λ∗)

κ still preserves the integral structure.
For the Trace map Tr : p1∗OCn,ǫ → OSpar(pn,ǫ), we observe that as p1 is finite, we
have the restricted trace map Tr : p1∗O++

Cn,ǫ
→ OSpar(pn,ǫ)++ . But at the end we have

also normalized the trace map by dividing p which is the very reason why Up does
not stabilize F++. As a consequence, we conclude that pU †

p preserves the integral
structure.
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Proposition 16.2.2. The operator U †
p ∈ End(RΓ(Spar(n, ǫ),P

κA
n,ǫ (w))) is compact,

and we let u†p be the associated projector.

Proof. A composition of a compact map and continuous map is still compact, so it
suffices to prove that the restriction map:

Vn,ǫ(κA, w)→ Vn+1,ǫ+1(κ,w + 1)

is compact. Intuitively, using Čhech complex to represent these overconvergent
complex, we can see that locally this restriction map looks like an honest restriction
of sections of sheaves, hence compact. More rigorously , using the local description of
Vn,ǫ(κA, w) as in (15.3), there exists a cover U = {U}i by affinoids of S (pn+1, ǫ+1)
such that we have :

Vn+1,ǫ+1(κA, w+1) = H0(Par(Z/pn+1Z),RΓ(FL n+1(ǫ+1, w+1),DkA(w+1)⊗ωκ−)

and

RΓ(FL n+1(ǫ, w),D
kA(w+1)⊗ωκ−) ∼= RΓ(S (pn+1, ǫ+1, w+1),C kA(w+1)⊗ωκ−)

we observe as well that the closure of FL n+1(ǫ+ 1, w + 1) is contained in

S (pn+1, ǫ+ 1)×S (pn,ǫ) FL n(ǫ, w)

Moreover, we can choose a cover by affinoids U = {Ui}i s of FL n+1(ǫ + 1, w + 1)
stable by the action of Par(Z/pn+1Z) and such that there is also a cover by affinoids
V = {Vi}i of S (pn+1, ǫ + 1)×S (pn,ǫ)FL n(ǫ, w) such that Ūi ⊂ Vi. Now, we can
always refine these covers so that:

Vn,ǫ(κA, w) = H0(Par(Z/pn+1Z), Cech(V,C κA(w)⊗ ωκ−))

Vn+1,ǫ+1(κ,w + 1) = H0(Par(Z/pn+1Z), Cech(U ,C κA(w + 1)⊗ ωκ−))

But then the restriction map

Cech(V,C κA(w)⊗ ωκ−)
res−−→ Cech(V,C κA(w + 1)⊗ ωκ−)

is compact because each C κA(w)⊗ ωκ−(Vi)
res−−→ C κA(w + 1)⊗ ωκ−(Ui) is. �

We denote by u†p the projector associated to U †
p , then we have a map between the

ordinary parts:

upRΓ(Spar(p
n, ǫ),Ω(k1,k2,k3))→ u†pRΓ(Spar(p

n, ǫ),Pk1−k2
n,ǫ (w)⊗ ω(k2,k3))

It is reasonable now to ask if we can characterizes the image of this map. This is
achieved via a formulation of slope decomposition theory for overconvergent complex
in the spirit of [Pil18], which is a generalization of the original theory due to Coleman
[Col97]. Before giving a precise statement, we review some vocabulary of spectral
theory.
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17. Spectral theory

Let L be a complete extension of Qp with valuation vp on L is normalized as usual
(i.e vp(p) = 1). Let (A,A+) be a Tate algebra over L, we can view A as a Banach
L-algebra in the sense of Coleman [Col97]. A Banach module over A is an A-module
equipped with a norm compatible with that on A. The set of all Banach modules
over A forms a category that we denote by Ban(A).

Definition 17.0.1. A Banach module M ∈ Ban(A) is orthonormizable if there
exists a subset of {ei}i∈N of elements of M with the following properties:

(1) {ei}i∈N is a basis of M , in the sense that |ei| = 1 and every element m ∈M
can be written as a sum m = Σi∈Nλiei with lim

i→∞
λi = 0.

(2) If we write m = Σi∈Nλiei then |m| = maxi∈N|λi|.
We also say that a Banach module over A is projective if it is a direct factor of an
orthornomizable Banach A-module.

Let M ∈ Ban(A) and U ∈ EndA(M) be a compact operator. By some basic
properties of compact operator, we can represent U in terms of an infinite matrix
{λi,j} such that lim

j→∞
supi|λi,j | = 0. This means that we can actually define a char-

acteristic series of U as P (U)M := det(1 − XU) ∈ A〈X〉 by formally adopting the
usual formula for characteristic polynomial of operators of finite dimensional vector
spaces. Another advantages of working with compact operator is that we have a very
nice spectral theory with many properties analogous to the classical spectral theory,
some of which we are going to recall.

Definition 17.0.2. Let K be a complete extension of Qp, seen as a Banach Qp-
algebra and M ∈ Ban(K) and U ∈ EndK(M). For each h ∈ Q, an h-slope decom-
position of U on M is a decomposition M =M≤h ⊕M>h with :

(1) M≤h and M>h are sub vector spaces stable by U .
(2) M≤h is of finite dimension over K and all eigenvalues of U on M≤h are of

valuation ≤ h
(3) Let P ∈ K[X] a polynomial such that the valuations of its roots are strictly

less than h, then P−1(U) (where P−1 is the reciprocal of P ) exists as an
operator of End(M>h) and it is invertible.

It is not hard to prove that if M admits h-decomposition then this decomposition
is unique, and we say that M has slope decomposition if it has h-decomposition for
any h ∈ Q.

Now let M• a perfect complex in the derived category DBan(A) of Banach A-
modules, that is to say, M• is quasi-isomorphic to a bounded complex of projec-
tive Banach A-modules. Let U be compact operator of M• (i.e there is a rep-
resentative of M̃• such that U acts compactly on each M̃i). For each point x :
Spa(K,OK) → Spa(A,A+) of rank 1 coming from the rigid space Sp(A), we see
that Ux ∈ EndDBan(A)

(M•
x) is still compact, thus by the proposition A4.2 [Col97],

each cohomology group H i(M•
x) has slope decomposition with respect to Ux. This,

together with the uniqueness of the slope decomposition also implies that for each
h ∈ Q , we can define H i(M•

x)
=h as a subspace of H i(M•

x)
≤h of eigenvectors with
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valuation h. We put

χx(M
•) := ⊕i(−1)idim(H i(M•

x)
=h)

then χ(.)(M
•) is seen as a function χ(.)M

• : Spa(A,A+)→ Z, this function is locally
constant by [Col97].

Suppose furthermore that M• ∈ DBan(A) is perfect and admits an h-slope decom-
position with respect to U (i.e there is a representative of M• such that each terms
admits an h-slope decomposition). Since the full subcategory of perfect complex of
DBan(A) is idempotent complete we can form its perfect subcomplex M•,=h of slopes
h.

17.0.1. Slope decomposition of U †
p . Let K = Cp and M• ∈ DBan(Cp) and U ∈

EndDBan(Cp)
(M•) be a compact operator. Now let M+,• be a sub complex of M•

whose ith-terms M+
i := {v ∈ M ||v| ≤ 1} and M++,• a subcomplex of M i whose

ith-term is M++
i := {v ∈M ||v| < 1}. We have the following easy but useful lemma:

Lemma 17.0.1. Let M• ∈ DBan(Cp) and U ∈ End(M•) is a compact operator
such that U stabilizes the subcomplex M++,•, then for all i the cohomology group
H i(M•)=h is zero if h < 0.

Proof. Let pr :M• → (M•)=h be the projection to the h-slope part of M• inducing
a continuous map H i(M•)→ H i(M•)=h. Under the projection pr the image of the
subcomplex M++,• in (M•)=h is open and bounded O-module by definition, and
hence so is the image H i(M++,•)=h of H i(M++,•) inside H i(M•)=h. Now, by our
hypothesis, M++,• is stable under the action of U and as a result, so is H i(M++,•)=h.
Since U stabilizes the open bounded submodule H i(M++,•)=h the slope h must be
positive. �

Go back to our situation, we have define the complex Vn,ǫ(κ,w). The index triple
(n, ǫ, w) is obviously filtered and we can define

H i(†, κ, w) := lim−→
n,ǫ,w

H i(Spar(p
n, ǫ),Pκ+

n,ǫ (w)⊗ ωκ−)

Similarly for the cuspidal overconvergent forms:

H i(†, κ, w)cusp := lim−→
n,ǫ,w

H i(Spar(p
n, ǫ),Pκ+

n,ǫ (w)⊗ ωκ−
D )

These groups inherits an action of U †
p and we have following important theorem

Theorem 17.0.1. The slope of U †
p on H i(†, κ, w) is greater than or equal to −1

(resp. 0) for all i > 0(resp. i = 0)

Proof. Intuitively, if there exists a complex M• that computes the cohomology
groupes H i(†, κ, ǫ) and the compact operator p.U †

p preserves the integral subcom-
plex M++,•, hence by lemma (17.0.1), we can conclude. So, we will point out how to
get the complex M• with such property. Recall that we can find a cover U = {Ui}i∈I
such that FL par,n(ǫ, w,w

′) becomes an affinoid when restricted to Ui (see 15.3 ),
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then let M• be the complex that computes the Cech cohomology of PκA
n,ǫ ⊗ωκ−

with
respect to U . We have a map

H i(M•)→ H i(Spar(p
n, ǫ),PκA

n,ǫ ⊗ ωκ−
)

Inside H i(M•)

Vn,ǫ(κA, w) = H0(Par(Z/pnZ),RΓ(FL n(ǫ, w),D
kA(w)⊗ ωκ−)

Now we need to show that the complex M• := RΓ(FL n(ǫ, w),D
kA(w)⊗ ωκ−) has

an integral structure stable by pU †
p . For this it is enough to take the subcomplex:

M++,• := RΓ(FL n(ǫ, w),D
kA(w)++ ⊗ ω++,κ−

)

For i = 0 one can embed H0(†, κ, w) into the space of p-adic modular forms of
weight κ, this embedding is compatible with the action of U †

p on H0(†, κ, w) and Up

on the latter. Moreover, Up stablizes the integral structure of p-adic forms, hence
the possible slope is positive on H0(†, κ, w) (compared with 13.3.3.1 [Pil18] or see
[PS16a]). �

Recall that we have a map Ωκ → P
κ+,w
n,ǫ ⊗ Ωκ−

. For all k ∈ Z, we put Pk
n,ǫ :=

colimP
k,w
n,ǫ . There is an exact sequence (relative BGG resolution)

(17.1) 0→ Ωκ →P
κ+

n,ǫ ⊗ Ωκ− ∂−→P
r(κ)+

n,ǫ ⊗ Ωr(κ)− → 0

where r : Z3
dom → Z3

dom is a certain reflection of weight (see 2.4[AIP12]) and Zdom :=
{k1, k2, k3|k1 ≥ k2}. The precise construction of this relative BGG resolution might
not be important here, but the fact to bear in mind is that the differential ∂ does
not commute with U †

p but instead it induces the following commutative diagram (see
section 6[AIP12]):
(17.2)

RΓ(Spar(p
n, ǫ),Pκ+

n,ǫ ⊗ Ωκ−
) RΓ(Spar(p

n, ǫ),Pκ+

n,ǫ ⊗ Ωκ−
)

RΓ(Spar(p
n, ǫ),P

r(κ)+

n,ǫ ⊗ Ωr(κ)−) RΓ(Spar(p
n, ǫ),P

r(κ)+

n,ǫ ⊗ Ωr(κ)−)

U†
p

∂ ∂

p1−κ+U†
p

However, recall that pU †
p stabilizes the integral structure of RΓ(Spar(p

n, ǫ),Pκ+

n,ǫ⊗
Ωκ−

), as a result, p2−κ+
U †
p stabilizes the integral structure of RΓ(Spar(p

n, ǫ),P
r(κ)+

n,ǫ ⊗
Ωr(κ−)). We deduce that (following lemma 17.0.1, and theorem 17.0.1) the complex
RΓ(Spar(p

n, ǫ),P
r(κ)+

n,ǫ ⊗ Ωr(κ−))<κ+−2 is zero. We deduce the following classicity
criteria.

Remark 17.0.1. To see why the factor p1−κ+
appears in the diagram 17.2, it is

enough to see this locally on Spar(p
n, ǫ) and locally Pκ+

n,ǫ ⊗Ωκ−
is isomorphic to the

space of analytic representations of GL2 (see section 2 [AIP12] for definition). Using
this interpretation, one can deduce the factor p1−κ+

. For more details and general
computation, see section 6.2, 2.5 and proposition 7.2.3 of [AIP12].



HIGHER HIDA THEORY FOR UNITARY GROUP U(2, 1) 85

Theorem 17.0.2. For all weight κ = (k1, k2, k3) with k1 ≥ k2 we have:

(1) H i(Spar(p
n, ǫ),Ωκ)<(κ+−2) ∼= H i(Spar(p

n, ǫ),Pκ+

n,ǫ (w)⊗ ωκ−
)<(κ+−2)

(2) H0(Spar(p
n, ǫ),Ωκ)<(κ+−1) ∼= H0(Spar(p

n, ǫ),Pκ+

n,ǫ (w)⊗ ωκ−
)<(κ+−1)

(3) H1(Spar(p
n, ǫ),Ωκ)<(κ+−1) → H1(Spar(p

n, ǫ),Pκ+

n,ǫ (w)⊗ ωκ−
)<(κ+−1) is an

injection.

Proof. The short exact sequence 17.1 induces the long exact sequence:

RΓ(Spar(p
n, ǫ),Ωκ)→ RΓ(Spar(p

n, ǫ),Pκ+

n,ǫ⊗Ωκ−
)→ RΓ(Spar(p

n, ǫ),Pr(κ)+

n,ǫ ⊗Ωr(κ)−)
+1−−→

from what we have discussed above, the cohomology group

H i(Spar(p
n, ǫ),Pr(κ)+

n,ǫ ⊗ Ωr(κ)−)<κ+−2 = 0

for all i and for i = 0, we have

H0(Spar(p
n, ǫ),Pr(κ)+

n,ǫ ⊗ Ωr(κ)−)<κ+−1 = 0

The claims follows immediately. �

18. Classicity of small slope class

In the previous section we have studied the relationship of w-analytic (n, ǫ)-
overconverent classes and the overconvergent cohomology of classical sheaf. In this
section, we determine which overconvergent cohomology classes of classical is clas-
sical, i.e when does the restriction RΓ(Spar(p

n),Ωκ) → RΓ(Spar(p
n, ǫ),Ωκ) be-

comes a quasi-isomorphism. To do this we will use a system of strict neighborhood
{Spar(p)ǫ}ǫ of S ≥1

par(p
n).This parametrization uses the function deg as introduced

in [Far10]. The goal is to determine a precise bound h such that the restriction
RΓ(Spar(p),Ω

κ)≤h → RΓ(Spar(p)ǫ,Ω
κ)≤h becomes a quasi-isomorphism, and the

bound h does not depend on ǫ.

18.1. Dynamic of operator U †
p . In this subsection, we define the new strict neigh-

borhood system {Spar(p)ǫ}ǫ of Spar(p)
≥1, and study the dynamical properties of U †

p

with respect to this system. In order to do so, we first recall all the properties of
this function that we need here for reader’s convenience.

Let K be an extension of Qp and OK its ring of integer. We fix a normalized
valuation vp on K, so that vp(p) = 1. Let G be a finite flat group over OK , and
ωG its sheaf of relative differential form. As G is finite flat , we can write ωG =
⊕iOK/aiOK with ai ∈ OK . Now can its degree deg(G) :=

∑
i vp(ai). We recap

some the properties of this function that we need :

Proposition 18.1.1. Keeping the notation as above.
(1) If G is a Barsotti-Tate group truncated of level n and dimension d then

deg(G) = n.d
(2) we have deg(G) + deg(GD) = height(G).
(3) If 0 → G1 → G → G2 → 0 is an exact sequence of finite flat groups. Then

we have deg(G) = deg(G1) + deg(G2).
(4) If φ : G1 → G2 is a morphism inducing an isomorphism on generic fiber ,

we have deg(G2) ≥ deg(G1). Furthermore φ is an isomorphism if and only
if deg(G1) = deg(G2).
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(5) If L/K is an extension such that L admits a valuation extending that of K
then we have deg(G⊗OK

OL) = deg(G).
(6) If H and L are two finite flat subgroup of G, and generically we have G =

H ⊕ L then deg(G) ≤ deg(H) + deg(L)

Proof. For the point (1) to (5), see [Far10], the point (6) is an easy application of
point (4), (5). �

For any ǫ ∈ R+ we can define Spar(p)ǫ as the open subspace of Spar(p) where
deg(H) ≥ ǫ.
Lemma 18.1.1. For all ǫ ∈ [0, n− 1

p−1 ], the map Spar(p
n, ǫ) → Spar(p) factorizes

through Spar(p)1− 2
n
(ǫ+ 1

p−1
).

Proof. We check this point by point and It is enough to check on rank 1 points. Let
x : Spa(K,OK) → Spar(p

n, ǫ) be a rank 1 point corresponding to a pair (A,Hn).
We choose a trivialization φ : (Z/pnZ)3 → A[πn] and a basis {ei}1≤i≤3 such that via
φ, the subgroup Hn ⊂ A[πn] is generated by e1. If we look at the Hodge-Tate map
Z/pnZ → ωHD

n
→ ωAD[πn]. By theorem 15.1.2, and the fact that x ∈ Spar(p

n, ǫ),

we see that ωHD
n

is killed by p
1

p−1
+ǫ. As ωHD

n
is generated by 2 elements, i.e ωHD

n
=

OK/(a)⊕OK/(b)), we deduce that deg(HD
n ) ≤ 2(ǫ+ 1/(p− 1)). Also by point 2 of

property (18.1.1) above, one sees that deg(Hn) ≥ n−2(ǫ+1/(p−1). Now the natural
map Spar(p

n, ǫ) → Spar(p) sends (A,Hn) to (A,H1) with H1 = Hn[p
n−1]. Plus,

remark also that we have a map Hn[p
k]/Hn[p

k−1] → H1, which is an isomorphism
on generic fiber (by comparing ranks). Varying k and using the points (2),(3) prop.
(18.1.1)) we easily check that deg(H1)+deg(Hn[p

k−1] ≥ deg(Hn[p
k]). Add everything

up, we see that n.deg(H1) ≥ deg(Hn[p
n]) = deg(Hn) ≥ n− 2(ǫ+ 1/(p− 1)). �

On the other hand, we have Spar(p)ǫ ⊂ Spar(p) factors through Spar(p, 1− 1
p−1)→

Spar(p) (see lemma 14.1.2 [Pil18]). In other words, we can switch back and forth
between the two neighborhood systems.

We introduce some extra correspondences over Spar(p), these correspondences
correspond to the iteration U †,n

p . Over Mpar(p) we define a correspondence :

Co
n

Mpar(p) Mpar(p)

p2,np1,n

where as usual Mpar(p) parametrizes all pair (A,H1) with H1 ∈ A[π] étale lo-
cally isomorphic to µp and Co

n is the space above Mpar parametrizing all triples
(A,H1, Ln) with (A,H1) ∈ Mpar(p) and Ln ⊂ A[πn] étale locally isomorphic to
(Z/pnZ)2 such that H1 ∩ Ln = {0}. The map p1,n sends each triple (A,H1, Ln) to
(A,H1) and the map p2,n sends (A,H1, Ln) to ( A

Ln+L⊥
n
, H1+Ln

Ln
). We can compactify

it to a correspondence Spar(p)
p2,n←−− Cn

p1,n−−→ Spar(p).
We have the first general theorem that summarizes the dynamic of operators

corresponding to the correspondences Cn
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Theorem 18.1.1. Let [a, b] ⊂]0, 1[, then there is contraction radius ra,b such that
for all ǫ ∈ [a, b], we have p2,1(p−1

1,1Spar(p)ǫ) ⊂ Spar(p)ǫ+ra,b .

Proof. This is based on two facts
(1) let x ∈ Spar(p)ǫ and y ∈ p2,1p−1

1,1(x) then if Hx is not a Barsotti-Tate, then
deg(Hy) > deg(Hx) (see corrolary 2.2 [Pil11]).

(2) Consider the isogeny A → A/H, this induces a morphism det(ωA/H) →
det(ωA) and hence a section δH ∈ H0(Spar(p)ǫ,L), where L := det(ω−1

A/H)⊗
det(ωA) we have deg(Hx) = val(δx) for any x ∈ Spar(p)ǫ. Now if we consider
the section p∗2,1δH(pδH1,1)

−1 ∈ H0(Spar(p)ǫ, p
∗
2,1L ⊗ p∗1,1L−1). This section

attains its minimum valuation ra,b over the quasi-compact Ua,b×p1,1C1 where
Ua,b = deg−1[a, b]. Combined with the first point, we get the theorem.

�

Over Cn we have the universal isogeny λ : A[π∞] → An[π
∞] with kernel Ln ⊂

A[πn], this induces a morphism λ∗ : ω+
An,π

→ ω+
A,π. Taking the determinant we

obtain a section sλ ∈ H0(Spar(p), det(ω
+
An,π

)−1 ⊗ det(ω+
A.π)), and we can define

deg(Ln) = vp(sλ).

Proposition 18.1.2. Let x : Spa(K,K+) → C1 be a rank 1 point and (A,H1, L1)
be the underlying triple, we have the following:

(1) deg(L1)− deg(L⊥
1 ) = 1.

(2) deg(A[π]/L1) ≥ deg(H1) and we have equality if and only if H1 is of étale or
multiplicative type.

Proof. As the complementary of the boundary is dense and deg is a continuous
function, it is enough to prove this for all point of rank 1 where A is an honest
abelian variety.

(1) As L1 ⊂ A[π] and A[π̄]D = A[π̄], we have LD
1 = A[π̄]/L⊥

1 , the properties
of the function deg recalled in (18.1.1) tells us that deg(L⊥

1 ) + deg(LD
1 ) =

deg(A[π̄]) = 1 and that deg(L1) + deg(LD
1 ) = ht(L1) = 2. As a consequence

deg(L1)− deg(L⊥
1 ) = 1.

(2) The morphism H1 → A[π]/L1 is an isomorphism on generic fiber (by com-
paring ranks), so we have by the proposition (18.1.1) that deg(A[π]/L1) ≥
deg(H1). If more over we have an equality, then this means H1 → A[π]/L1 is
an isomorphism and deg(H1)+deg(L1) = deg(A[π]) = 2. We can conclude by
the classification of Dieudonné module attached to A[π] that there are only
two possibilities for this. The first case is when deg(H1) = 0 and deg(L1) = 2
corresponding to the case where A[π] is ordinary with H1 is its étale quotient.
The second case is when deg(H1) = 1, deg(L1) = 1 corresponding to the case
where H1 is multiplicative.

�

18.2. Analytic continuation. Previously, we defined {Spar(p)ǫ}ǫ and correspon-
dences Cn and see how they contract the overconvergent neighborhoods. Now we
apply this to show that ǫ′-overconvergent class in H i(Spar(p)

′
ǫ),Ω

κ) extends to the
ǫ-overconvergent class in H i(Spar(p)ǫ,Ω

κ) (when ǫ′ > ǫ).
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Let F be either Ωκ of Ωκ
D over Spar(p), and we denote by Fǫ the restriction of

F to Spar(p)ǫ. Recall that over Spar(p) we have the correspondence Spar(p)
p2,n←−−

Cn
p1,n−−→ Spar(p). We define the operator U †,n

p ∈ RΓ(Spar(p)ǫ,F ) starting with the
map p∗2,nF → p∗1,nF as usual, we set:

U †,n
p :RΓ(Spar(p),F )→ RΓ(Spar(p), p

∗
2,nF )→ RΓ(Spar(p), p

∗
1,nF )

→ RΓ(Spar(p), p1,n∗p
∗
1,nF )

1

pn(k2+1)
Tr

−−−−−−−→ RΓ(Spar(p),F )

(18.1)

We can actually construct this correspondence over Spar(p) and then take formal
completion and pass to the generic fibers to get the correspondence over adic spaces.
The upshot is that we can obtain a natural map p∗2,nF++ → p∗1,nF++.

Remark 18.2.1. The reason we define a new correspondence Cn is to make sense of
the nth-iteration of U †

p . Indeed, we can check for example that the following diagram
commutes:

H i(Spar(p)ǫ,F ) H i(Spar(p)ǫ′ ,F ) H i(Spar(p)ǫ′ ,F )

H i(Spar(p)ǫ,F ) H i(Spar(p)ǫ,F ) H i(Spar(p)ǫ′ ,F )

U†,n
p U†

p

U†
p U†,n

p

It is easier to have a modular interpretation of U †,n
p this way.

For each ǫ′ ≥ ǫ, there is the natural restriction map res : RΓ(Spar(p)ǫ,F ) →
RΓ(Spar(p)ǫ′ ,F ). In what follows we will study when a class of cohomology of
RΓ(Spar(p)ǫ′ ,F ) extends to that of RΓ(Spar(p)ǫ,F )

Theorem 18.2.1. Let ǫ < 1 and f ∈ H i(Spar(p)ǫ,F ). Suppose that there exists a
monic polynomial P ∈ O[X] with nonzero constant term, such that P (U †

p)(f) = 0,
then for all 1 > ǫ′ ≥ ǫ we can find g ∈ H i(Spar(p)

′
ǫ,F ) satisfying:

(1) P (U †
p)(g) = 0

(2) under the natural restriction: res : RΓ(Spar(p)ǫ,F )→ RΓ(Spar(p)ǫ,F ) we
have res(f) = g

Proof. We first show this for P = X − λ ∈ O[X]. Choose an interval [a, b] ⊂]0, 1[
such that ǫ, ǫ′ ∈ [a, b] , and let ra,b the contraction radius as in the theorem ??. Let
n be an integer such that nra,b + ǫ′ ≥ ǫ. We set g = λ−nUn

p f . It is immediate
to see that g is also of slope h (because we can pretend that Un

p = (U †
p)n). This

element g is also unique because the oprator Un
p ∈ End(RΓ(Spar(p)ǫ,F )) is actually

a composition :

Un
p : H i(Spar(p)ǫ,F )→ H i(Spar(p)ǫ′ ,F )

Un
p−−→ H i(Spar(p)ǫ,F )

For general polynomial P = Xn + an−1X
n−1 + ...+ a0, we can set Q = −a−1

0 (Xn +
...+ a1X), we have obviously Q(f) = f . We can now repeat the argument above for
the polynomial X − 1.

�
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18.3. Analytic continuation for torsion classes. Under some conditions, torsion
classes also extends to bigger overconvergent neighborhood. Before going into precise
statement, let us start with a lemma:

Lemma 18.3.1. Let x : Spa(K,OK)→ Cn be a point of rank 1 with the underlying
universal isogeny A → An of kernel Ln +L⊥

n with deg(L⊥) ≥ 2n− ǫ). Let us denote
α = κ+(n− ǫ)+2k2(n− ǫ)+k3(n− ǫ)−n, then the operator U †,n

p : (p1)∗p
∗
2F → F+

factors through pαF+.

Proof. As usual, we write the universal isogny of p-divisible groupes λ : A[p∞] →
An[p

∞] as the product of λπ : A[π∞] → An[π
∞] with kernel Ln and λπ̄ : A[π̄∞] →

An[π̄
∞] with kernel L⊥

n . As a result we have induced morphisms:

λ∗π : ωAn,π → ωA,π and λ∗π̄ : ω+
An,π̄

→ ω+
A,π̄

Now, we can choose isomorphisms ωAn,π
∼= O2

k
∼= ωA,π and ω+

An,π̄
∼= OK

∼= ω+
A,π̄

such that the matrix for λ∗π is diag(a1, a2) and λ∗π̄ is a multiplication by a3 ∈ OK .
According to our hypothesis, |a1(x)a2(x)| ≤ |p2n−ǫ(x)] but as Ln ∈ A[πn], it is killed
by pn and therefore |ai(x)| ≥ |pn(x)| for both i, so |ai(x)| ≤ |pn−ǫ(x)| for i ∈ {1, 2}.
Plus, we have that deg(Ln) = n+ deg(L⊥

n ). As a consequence the map

λ∗(κ) := symκ+
(λ∗π)⊗ detk2(λ∗π)⊗ detk3(λ∗π̄) : F

+ → F
+

factorizes through pκ
+(n−ǫ)+k2(2n−ǫ)+k3(n−ǫ)F+. Finally, taking into account the

trace map (see remark (16.2.1)), we have the claim of the lemma. �

Lemma 18.3.2. Let aǫ = κ+(1− ǫ) + 2k2(1− ǫ) + k3(1− ǫ)− 1. The map

U †,n
p : RΓ(Spar(p),F

++)→ RΓ(Spar(p),F/pnaǫF++)

factors through

RΓ(Spar(p),F
++)

res−−→ RΓ(Spar(p),F
++)

Up−→ RΓ(Spar(p),F/pnaǫF++)

Proof. We want to define a map :

p1,n∗p
∗
2,nF

++ → F/pnaǫF++

It is enough to define this map over a dense open subspace of Spar(p). Now let
x : Spa(K,OK)→ Spar(p) be a rank 1 point away from the boundary. As the map
p1,n is finite away from the boundary, the cardinal of p−1

1,n(x) is finite and so we can
choose ǫ” ≤ ǫ such that deg(Ln)y 6= 2n − ǫ”, ∀y ∈ p−1

1,n(x), this means that there
exist an open neighborhood U of x in Spar(p), such that deg(Ln) 6= 2n − ǫ for all
x ∈ U . Let V = p−1

1,n(U) and let V > and V < be two disjoint open subsets of V where
deg(Ln) < 2n− ǫ and deg(Ln) > 2n− ǫ respectively. We have an obvious map:

p∗2,nF
++(V >

∐
V <) = p∗2,nF

++(V >)⊕ p∗2,nF
++(V <)→ F (U)→ F/pαF

++(U)

Now for y ∈ V >, the lemma above tells us that p∗2,nF++(V >) maps to zero in
F/pαF++ and for y ∈ V < , by definition we have deg(Ln) ≤ 2n− ǫ which implies
that deg(H) > ǫ and so p1,n(y) ∈ Spar(p)ǫ. To recap , we obtain a map :

p1,n∗p
∗
2,nF

++(U)→ p∗2,nF
++(V <)→ F/pnaǫF++(U)

�
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Theorem 18.3.1. Let f ∈ H i(Spar(p)ǫ,F ) be an eigenclass with U †
pf = λf . If

vp(λ) < κ+ + 2k2 + k3 − 1 = k1 + k2 + k3 − 1 then there is a projective system

{fn}n ∈ lim←−
n

H i(Spar(p),F/pnF
++)

such that U †
pfn = λfn for all n and the restriction of fn ∈ H i(Spar(p),F/pnF++)

to H i(Spar(p)ǫ,F/pnF++) is also the image of f in H i(Spar(p)ǫ,F/pnF++).

Proof. Firstly, as κ+ + 2k2 + k3 − 1 − vp(λ) > 0 by hypothesis, there exists ǫ′ such
that κ+(1− ǫ′)+2k2(1− ǫ′)+k3(1− ǫ′)−1−vp(λ) > 0. If ǫ′ > ǫ we can consider the
restriction of f to H i(Spar(p)ǫ′ ,F ) , and if ǫ′ ≤ ǫ , by theorem 18.2.1 we can find
f ′ ∈ H i(Spar(p)ǫ′ ,F ) extending f and such that U †

pf ′ = λf ′. Thus, we can always
suppose that :

κ+(1− ǫ) + 2k2(1− ǫ) + k3(1− ǫ)− 1− vp(λ) > 0

Now, observe that as the map Spar(p)ǫ → Spar(p) is locally affine, we have
H i(Spar(p)ǫ,F ) = H i(Spar(p),Fǫ). Plus, up to scaling, we can always assume
that f ∈ H i(Spar(p)),F

++
ǫ ) and f has maximal possible norm (i.e we have U †

pf ∈
H i(Spar(p), p

−1F++
ǫ )). For each n the lemma (18.3.2) gives us a map

Un : RΓ(Spar(p),F
++
ǫ )→ RΓ(Spar(p),F/pnαF

++)

Let fn = λ−nUnf . We can easily see that image of fn in H i(Spar(p),F/pmαF++)
for any n ≥ m is indeed fm. As a result, we have a projective systems {fn}n. We
verify immediately all other properties. �

18.4. Classicity of overconvergent cohomology. For any smooth and separated
adic space X and a locally free sheaf of O+

X
-module F+ with F = F+⊗OX . We

have a natural surjection (which is an isomorphism if X is proper) (see lemma 3.3.2
[Pil18]).

H i(X ,F ) ։ lim−→
n

H i(X ,F/pnF
+)

We want to apply this fact to prove the following lemma

Lemma 18.4.1. The natural map

H i(Spar(p)ǫ,F )≤a → lim←−
n

H i(Spar(p)ǫ,F/pnF
+)

is injective for any rational finite slope a.

Proof. Let V be the image of H i(Spar(p)ǫ,F
+) in H i(Spar(p)ǫ,F ). It is enough to

show that H i(Spar(p)ǫ,F )≤a ∩ V is bounded.
Let U = {Ui}i∈I and U = {U ′

i}i∈I be two finite affinoid coverings of Spar(p). We
assume that the closure of each U ′

i is contained in Ui for all i ∈ I. Let Uǫ = {Ui,ǫ}i
be the finite affinoid covering U ∩Spar(p)ǫ. Let ǫ < ǫ′ be such that U †

p(Spar(p)ǫ′) ⊂
Spar(p)ǫ. Let Uǫ′ = {Ui,ǫ′} be the covering U ′ ∩ Spar(p)ǫ′ . For all i ∈ I, we have
Ui,ǫ′ ⊂ Ui,ǫ. The operator U †

p is defined as the composite

RΓ(Spar(p)ǫ,F )
res−−→ RΓ(Spar(p)ǫ′ ,F )→ RΓ(Spar(p)ǫ,F )
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If we represent RΓ(Spar(p)ǫ,F ) by the Cech complex M• = Cech(Uǫ,F ) and
RΓ(Spar(p)ǫ′ ,F ) by N• = Cech(Uǫ′ ,F ). The operator U †

p can then be represented

by M• res−−→ N•
Uǫ,ǫ′−−−→ M•. The subcomplex of finite dimensional vector spaces

M•,≤a of M• is its direct summand and H i(Spar(p)ǫ,F )≤a = H i((M•,≤a)). Now,
since the natural map H i

cech(Uǫ,F
+)→ H i(Spar(p)ǫ,F

+) has cokernel of bounded
torsion, we can replace V by the image V ′ of H i

cech(Uǫ,F ) in H i(Spar(p)ǫ,F ). Let
Zi((M

•,≤a) ⊂ M i be the cocycles of slope less than h. This is a finite dimensional
vector space. We denote by M•,+ the Cech complex Cech(Uǫ,F

+). Then M i,+ is
bounded in M i. It follows that M i,+∩Zi((M

•,≤a) is bounded and thus a lattice. As
a result, its image in H i(Spar(p)ǫ,F )≤a (which is H i(Spar(p)ǫ, )

≤a∩V ′) is bounded
and the lemma is proved. �

The following theorem says that small slope overconvergent class is classical.

Theorem 18.4.1. We still denote h = κ+ + 2k2 + k3 − 1 = k1 + k2 + k3 − 1. The
restriction map :

RΓ(Spar(p),F )<h res−−→ RΓ(Spar(p)ǫ,F )<h

is a quasi isomorphism.

Proof. We need to show that for each i, we have an isomorphism:

H i(Spar(p),F )<h res−−→ H i(Spar(p)ǫ,F )<h

For any f ∈ H i(Spar(p)ǫ,F )<h, we obtain a projective system

{fn}n ∈ lim←−H
i(Spar(p),F/pnF

++)

by theorem 18.3.1. Now as Spar(p) is proper, we can apply proposition (3.2.1) in
[Pil18] which says that we have an isomorphism:

lim←−H
i(Spar(p),F/pnF

++) ∼= H i(Spar(p),F )

�

As an application, we are now able to prove the rational control theorem :

Theorem 18.4.2. For all κ = (k1, k2, k3) ∈ Z3 such that k1 ≥ k2, k1 + k3 > 1, we
have a quasi-isomorphism:

upRΓ(Spar(p),Ωκ
D)⊗L Qp

∼= upRΓ(S
≥1
par(p),Ω

κ
D)⊗L Qp

Proof. As already mentioned earlier, it is enough to show:

upRΓ(Spar(p),Ωκ
D)⊗L Cp

∼= upRΓ(S
≥1
par(p),Ω

κ
D)⊗L Cp

Over Cp we can see that :

(1) upRΓ(Spar(p),Ωκ
D)⊗L Cp

∼= upRΓ(Spar(p),Ω
κ
D)

(2) upRΓ(S≥1
par(p),Ω

κ
D)⊗L Cp

∼= upRΓ(S
≥1
par(p),Ω

κ
D)

Since the ordinary part corresponds to 0-slope part, by classicity criteria (thm(18.4.1)
above), there is a quasi-isomorphism.

upRΓ(Spar(p),Ω
κ
D)
∼= upRΓ(Spar(p)ǫ,Ω

κ
D)
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As a consequence it suffices to show that the restriction :

(18.2) upRΓ(Spar(p)ǫ,Ω
κ
D)→ upRΓ(Spar(p)

≥1,Ωκ
D)

is a quasi-isomorphism. Let us denote by di(κ) and d†i (κ) for the Cp-dimension of
upH

i(S ≥1
par,Ω

κ
D) and colimǫupH

i(Spar(p)ǫ,Ω
κ
D)) with (i = 0, 1). We claim d0(κ) ≥

d†0(κ) and d1(κ) ≤ d†1(κ) for all κ such that k1 ≥ k2, k1+k3 > 1 and these inequalities
become equality when k1 ≥ k2+1, k1+k3 > 1. For this we need the following lemma.

Lemma 18.4.2. The induced morphism upH
i(Spar(p)ǫ,Ω

κ
D)→ upH

i(S ≥1
par(p),Ω

κ
D)

is injective for i = 0 and surjective for i = 1.

Proof. First we notice that both complexes are perfect and concentrated in degrees
[0, 1]. There is an injection upH

0(Spar(p)ǫ,Ω
κ
D) → upH

0(S ≥1
par(p)ǫ,Ω

κ
D) because

upH
0(Spar(p)ǫ,Ω

κ
D) = H0(Spar(p)ǫ,Ω

κ
D)

=0 = colimn,ǫupH
0(Spar)

Recall that we have the minimal compactification S∗
par(p) of and there is a pro-

jection π : Spar(p) → S∗
par(p) such that Rπ∗Ωκ

D = π∗Ω
κ
D. The image of S≥1

par(p) in
S∗

par(p) is covered by two affines, indeed this image is nothing but S∗
par(p)×S∗ S∗,≥1

but since the map S∗
par(p) → S is proper and quasi affine, hence affine, and S∗,≥1

can be covered by two affines U1,U2(corresponding to the invertible loci of some
lifts of Hasse invariants Ha and Ha′) with generic fibers U1,U2. As a result,
RΓ(S ≥1

par(p),Ω
κ
D) is represented by

H0(U1,Ω
κ
D)⊕H0(U2,Ω

κ
D)→ H0(U1 ∩U2,Ω

κ
D)

and colimǫ,wRΓ(Spar(p)ǫ,Ω
κ
D) is represented by

H0(U1,Ω
κ
D, †)⊕H0(U2,Ω

κ
D, †)→ H0(U1 ∩U2,Ω

κ
D, †)

Where the ” † ” means we are taking the overconvergent sections.
From this representation, we see that colimǫH

1(Spar(p)ǫ,Ω
κ
D) has a dense im-

age in H1(S ≥1
par,Ω

κ
D). It follows immediately that colimǫupH

1(Spar(p)ǫ,Ω
κ
D) →

upH
1(S ≥1

par,Ω
κ
D) is surjective as ordinary parts are finite dimensional.

Lastly H1(Spar(p)ǫ,Ω
κ
D) does not depend on ǫ ∈ [0, 1] based on what we estab-

lished above. We deduce that upH1(Spar(p)ǫ,Ω
κ
D) → upH

1(S ≥1
par,Ω

κ
D) is surjective

or put differently d1(κ) ≥ d†1(κ). �

From the above, d0(κ) ≥ d†0(κ) and d†1(κ) ≥ d1(κ). More over for k1 − k2 ≥
1, k1 + k3 > 1 we have an isomorphism tpH

0(S ,Ωκ) → upH
0(S ≥1

par,Ω
κ
D) and an

injection tpH1(S ,Ωκ
D)→ upH

1(S ≥1
par(p),Ω

κ
D). In addition

tpH
i(S ,Ωκ

D)
∼= upH

i(Spar(p),Ω
κ
D)

This means that for such κ we have upH i(Spar(p),Ω
κ
D)
∼= upH

i(S ≥1
par,Ω

κ
D) (i = 0, 1).

The result is that d1(κ)−d0(κ) = d†1(κ)−d
†
0(κ) for all κ such that k1 ≥ k2+1, k1+k3 >

1.
Finally, since the Euler characteristic d1(κ) − d0(κ) and d†1(κ) − d

†
0(κ) is locally

constant, we conclude that d1(κ)− d0(κ) = d†1(κ) = d†0(κ) and consequently di(κ) =
d†i (κ) for all κ such that k1 ≥ k2, k1 + k3 > 1. This finishes the proof of the
theorem. �
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