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Abstract

Roll vortices are quasi-two-dimensional organized air flow eddies in the turbulent atmospheric

boundary layer (ABL). They are usually formed and embedded within the whole ABL, and

contribute significantly to the vertical exchanges of momentum, heat and moisture due to

the additional non-local/non-gradient transport. Investigation of this typical boundary layer

process has been conducted for decades, but mostly in the case studies. While the results

have demonstrated a promising overview of the atmospheric conditions of roll occurrence (in

near-neutral to slightly unstable stratification), and roll characteristics (2 to 5 km wavelengths

and ±25◦ orientations relative to the mean flow direction), these roll features are not verified

over the global oceans. For a higher level perspective, there are also needs for global and

long-term climatology of roll-shaped ABL dynamics as well as annual and seasonal variability.

Such climatology will no doubt advance the parameterization of roll dominated ABL, and

hence improve the accuracy of numerical weather and climate model projections.

The thesis aims to exploit the global Sentinel-1 (S-1) wave mode (WV) synthetic aperture

radar (SAR) data for Maine ABL roll investigations. Among the well-known practical means,

spaceborne SAR holds the largest potential to achieve systematic observations of ABL rolls

over the world’s ocean. It is because SAR backscattering of ocean surface is independent

of sunlight and most weather conditions, and is fundamentally sensitive to the roll-induced

sea surface roughness changes. To automatically identify roll events from the S-1 WV SAR

images, we train a deep-learning-based classification model based on the hand-curated dataset

of TenGeoP-SARwv, namely CMwv. The independent and geophysical assessments show

satisfactory and robust model performance. Global evaluation of the CMwv-identified roll

WV images illustrates the sensitivity of SAR sensors in mapping ocean surface roll imprints.

Much more and better roll events are visible at the 36◦ (WV2) than the 23.5◦ (WV1) incidence

angle. SAR observations of roll imprints are found severely limited in low wind conditions (<

3m/s) and when wind direction is perpendicular to the SAR antenna looking. Beyond this,

the larger dataset also leads to a new result that, on average and across all wind speeds, ABL
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rolls drive surface wind variations about the mean flow of roughly 8% (±3.5%), and seldom

exceeding 20%.

The global statistics of roll features have thus focused on the identified roll events from S-1

WV2 SAR data. Roll wavelength and orientation are extracted from each WV scene through

the 2-D spectral analyses at ABL scales of 0.6-5 km. To quantify the atmospheric condition of

roll occurrence, each WV SAR image is also collocated with the ERA5 surface variables. The

major outcomes are: (1) up to 90% of roll events are occurred in the near-neutral to slightly

unstable conditions, distinct from the overall average condition; (2) observed tiny seasonality

in identified roll events and their atmospheric conditions; (3) roll dynamic seems stronger in

the morning than evening due to more convection; (4) roll occurrence atmospheric condition

is more unstable at low latitudes than mid-latitudes; (5) roll aspect ratios (roll wavelength

divided by ABL height) are in lognormal distribution centered at 2.87; (6) roll orientations are

in normal distribution, mostly within ±35◦; (7) roll wavelength and orientation are weakly

and strongly dependent on latitudes; (8) the dependence of roll orientation on Earth wind

directions indicates the horizontal Coriolis force effects ABL roll dynamics.

Despite the fact that these highlighted results complement the understanding of ABL rolls

with significant implications for both atmosphere and ocean studies, it is highly expected to

extend the application of S-1 WV SAR data for other key ABL processes. One of the top

interests is to understand the natural transition between ABL rolls, rain cells and convective

cells. Moreover, there is a high possibility to project these ocean surface roughness images into

air-sea interface stability, and then into surface fluxes, independently of individual sea surface

temperature and near-surface air temperature measurements. This would aid the evaluation

and improvement of ABL parameterization schemes (Eddy-diffusion mass-flux or similar)

in different types of ABL. If these WV SAR data can be well processed to define the bottom

properties of ABL. A full view of the ABL mean state would be obtained by including the

low cloud measurements to define the top properties of ABL. It is the joint effort required to

enhance the process-level knowledge of the Earth weather and climate system.
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Chapter 1 Introduction

1.1 Marine atmospheric boundary layer rolls

Marine atmospheric boundary layer (MABL) can be loosely defined as the lowest kilometer

of Earth’s atmosphere that has direct contacts with the wide-ranging ocean and responds to

the surface forcings including frictional drag, evaporation and transpiration, heat transfer, and

ocean waves et al (Stull, 1988; Garratt, 1994). It is a layer characterized by its air flow state,

where the velocity, temperature, density and pressure fluctuate over scales ranging from less

than one millimetre to several kilometres. The turbulent nature of MABL has been recognized

with the great variability due to the thermodynamic and kinematic processes inside. These

physical processes not only control the transport of heat, energy and momentum, the dispersion

of pollutants and carbon dioxide, and but play important roles in the formation and interaction

with low-level clouds in cloud-topped boundary layers (LeMone et al., 2018).

There has been increasing evidence that advanced understanding of the key MABL pro-

cesses is far more fundamental for climate studies (Sherwood et al., 2014; Bony et al., 2015;

Randall et al., 2018). Yet the physical processes related with the mean boundary layer state

are not fully resolved in the present numerical models of either climate or weather (Bauer

et al., 2015). Effort has been devoted to filling the knowledge gap of the MABL state. A

workshop recently organized by the U.S. National Academy of Sciences Boards of ‘Atmo-

spheric Sciences and Climate’, ‘Ocean Surface Studies’ and ‘Life Sciences’ recognized the

implications of boundary layer processes in these fields (National Academies of Sciences,

Engineering, and Medicine, 2018a). The most recent NASA Decadal Survey also identified

boundary layer processes as one of the key missing observations in its earth satellite program

(National Academies of Sciences, Engineering, and Medicine, 2018b).

Under near-neutral to slightly unstable conditions, air flows in the MABL are often

organized into linear roll-shaped vortices (Brown, 1970, 1980; Brown & Liu, 1982). These

vortices are in fact quasi two-dimensional organized eddies with its horizontal axis being
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approximately aligned with the mean flow (Etling & Brown, 1993; Young et al., 2002). The

American Meteorological Society (AMS) Glossary defines this phenomenon as "counter-

rotating horizontal vortices that commonly occur within the convective boundary layer"

(http://glossary.ametsoc.org/wiki/Horizontal_convective_rolls). A schematic

representation of the organized roll vortices embedded in the modified Ekman layer is given in

Figure 1.1. It uses a two-layer similarity model to depict the dynamics of roll-shaped boundary

layer. Other schematic plots of this secondary flow patterns are also available, e.g., Figure 5 of

Brown (1980), Figure 1 of Alpers and Brümmer (1994), Figure 14.4 of Sikora and Ufermann

(2004) and Figure 8 of Morrison, Businger, Marks, Dodge, and Businger (2005).

Figure 1.1: A schematic plot of typical roll vortices based on the two-layer similarity MABL model.
τ0, U10, hp, Uhp , Ug, α , K, H and U∗ are surface stress, 10-m wind, surface patch height, wind at the
path height, geostrophic wind, angle of turning, eddy viscosity, height of the geostrophic layer and
surface friction velocity, respectively. Black arrows and large red vectors indicate the roll circulation
and direction of fluxes exchanges (After Brown (2000)).

There has been generally two types of theories for the generation of roll vortices. One

relates to the thermal instability when the layer is heated from below or cooled from above and

the other to the dynamic instability when the wind velocity changes with the height (Brown,

1980; Young et al., 2002). Roll vortices usually span the whole depth of boundary layer and

http://glossary.ametsoc.org/wiki/Horizontal_convective_rolls
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form bands of overturning circulations with alternating linear regions of enhanced upward

and downward perturbations between the counter-rotating roll circulations. The upward

perturbation flow tends to be stronger and narrower than the downward one, leading to the

enhanced and reduced surface wind convergence near the base of the updrafts and downdrafts,

respectively. This net effect is an enhancement of the fluxes across the boundary layer that

does not depend on the vertical gradients of the mean flow. It is therefore comprehensible

how important it is to better understand the roll-shaped boundary layer, particularly its role to

strengthen the air-sea interaction via its impact on the turbulent fluxes (e.g., Lemone, 1976;

Atkinson & Wu Zhang, 1996; Weckwerth et al., 1997; Chen et al., 2001; Morrison et al., 2005;

Brilouet et al., 2017).

MABL rolls are genuinely the same with rolls generated over land (Brown, 1980; Young

et al., 2002). The differences only consists in the formation process of boundary layer over

ocean vs. land. In specifics, the MABL develops via stability and sinking air (top-down

process) whereas the land ABL develops in an opposite way, matured by destabilization and

convection (bottom-up process). Over land, the surface ground warms and cools in response

to the sunlight radiation in daytime and nighttime, which in turn destabilizes and stabilizes

the above ABL. The land ABL thus forms largely depends on the diurnal cycle (Stull, 1988;

LeMone et al., 2018). Switching gears, the MABL remains relatively stable regarding to the

diurnal cycle, but allowing for a large amount of heat and moisture exchanges. Given the

widespread coverage of the ocean (more than 70%) on Earth’s surface, it is essential to devote

more joint efforts for investigation of the MABL rolls and the associated physical processes.

In physics, roll vortices are manifestation of Ekman layer instabilities that can be described

by the nonlinear Navier-Stokes equations when considering thermal and dynamic factors in a

rotating system (Brown, 1980, 2002; Foster, 1996). The earlier theory of roll dynamics has

focused on the linearization schemes and produced the representative solution of inflection-

point (IP) instability (Asai, 1970; Brown, 1970, 1972). This theory predicts consistent roll

characteristics with observations in terms of both aspect ratio and horizontal orientation. It is

therefore widely adopted and extended by taking into account other effects, such as thermal

wind (Brown, 1980; Foster, 1996), stratification (Asai & Nakasuji, 1973; Kaylor & Faller,
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1972), baroclinicity (Foster, 1996; Foster & Levy, 1998), and nonlinear processes (Mourad &

Brown, 1990). While in most of the IP-based studies, only the vertical component of Earth’s

rotation is considered. The horizontal one, however, is often neglected, though its importance

in geophysical fluid dynamics has been clearly shown by several theoretical investigations.

This is partially because of the lack of long-term and systematic observational dataset, which

limits our understanding of roll features at the global scale.

Figure 1.2: Moderate Resolution Imaging Spectroradiometer (MODIS) photograph of cloud streets
and cells off the coast of southwestern Alaska on January 11, 2012. Wind is blowing from land to
ocean, leading to the formation of linear clouds near the coast and cell-shaped clouds off the coastline.

On the top of roll-shaped boundary layer, condensation usually forms in the updraft parts
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of the roll circulations. This is associated with the rising warm air mass that gradually cools

and condenses. Meanwhile, the sinking cool air in the downdrafts evaporates and creates

cloud-free areas. These alternating rising and sinking air masses produce long rows of cumulus

clouds that are oriented parallel with wind direction (Etling & Brown, 1993). These aligned

lines of organized clouds are thus normally identified as "cloud streets" by human eyes (e.g.,

Hergesell, 1928; Walker, 1934; Kuettner, 1959) or on the satellite visible imageries (e.g.,

Streten, 1975; Weston, 1980; Mourad, 1996). In particular, the cloud streets are mostly visible

over oceans in the winter when cold air over land moves towards the warmer ocean with rising

thermals being organized by the prevailing offshore winds (Atlas et al., 1983, 1986). As the

distance from the shoreline increases, roll-shaped clouds often transition into cell-shaped

convection (Atkinson & Wu Zhang, 1996; Kristovich et al., 1999; Pithan et al., 2018). An

example of roll-cell transition observed by the optical satellite image is given in Figure 1.2.

Strong winds polished the snow of southwestern Alaska and stretched marine stratocumulus

clouds into long, parallel streets near the coastline, and then into convective cells as air-sea

temperature difference increases.

On the other hand, roll-generated overturning circulations dominate the pattern of wind

perturbations near the surface. These band-shaped upward and downward perturbations are

usually strong enough to modulate the cm-scale sea roughness, central to synthetic aperture

radar (SAR) imaging of ocean surface (Alpers & Brümmer, 1994; Young, 2000; Vandemark et

al., 2001). MABL rolls are thus also frequently captured and visible on the normalized radar

cross-section (NRCS) images as alternative bright and dark linear features (Gerling, 1986;

Alpers & Brümmer, 1994; Li et al., 2013). Figure 1.3 shows a ERS-1 SAR image example of

roll imprints obtained in January 07, 1995 in the East of China Sea. The image is divided by a

front line into two sections with quite different textures. On the right-hand, we can clearly see

the transition of roll-shaped sea surface imprints at top to the cell-shaped textures at bottom of

this image.
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Figure 1.3: A SAR image example of roll transisition to cell-shaped convection. The image is acquired
by ERS-1 on January 07, 1995 in the East Sea of China ( center geographic coordinate is 28◦N, 122◦E).

1.2 Literature review of roll studies

1.2.1 Early observational

The earliest notice of roll vortices in the turbulent atmospheric boundary layer came from

glider pilots in the mid-twentieth century. Hergesell (1928) first discussed in his report the

parallel and scale characteristics of the organized clouds, and their importance to aviation.

Further efforts in understanding the relationship between the cloud rows and air currents have

been made by the enthusiastic and idealistic individuals in long-distance soaring and flights

(Walker, 1934; Brunt, 1938). The English gliders named the organized clouds as "wind (or

cloud) streets" after realizing that these cloud rows are roughly parallel to the mean wind.

Some practical experiments were led by Brunt (1938) attempting to illustrate the nature of
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atmospheric convection. Based on the result, he came up with the theory that the combined

dynamic and thermal instabilities are the formation forces of cloud streets.

Though the roll vortices are mostly related to the visible cloud streets, later flights confirm

their occurrence in cloud-free conditions. A more general description of this roll phenomenon

and thorough understanding of its occurrence atmospheric condition is given by Kuettner

(1959). The synoptic cloud analysis indicated that the roll-shaped structure of the atmosphere

is more common than has been reported by the pilots. Some interesting highlights were

noticed in a pilot’s flight log: the downdraft between cloud rows were highly turbulent,

strong downdrafts disappeared above ∼1 km and roll clouds cover more than hundred of km

(Kuettner, 1959).

These observations encouraged the incredible gull field experiment by Woodcock (1940a,

1940b, 1942) over the Atlantic Ocean. The flight patterns of soaring birds were observed

during two years on the sail-powered vessel from 16◦ to 42◦ N and within 600 miles off the

US coast. It is noticed that soaring only occurred when the temperature of air was lower than

the sea surface, and the soaring pattern also depends on the wind speed. The gull birds would

rise in a corkscrew pattern whenever the surface wind speed was low but soar straightly along

the upwind at high wind speeds (Woodcock, 1940b). Identification of the bird flight patterns

immediately reminded Woodcock of their association with the newly reported helical vortices

in the atmospheric boundary layer. It is speculated that the gulls are able and tend to exploit

the updraft regions for extended soaring flights.

The synchronous measurements of wind speed and temperatures of air and sea surface

made it possible to quantify the atmospheric condition under which various gull soaring

patterns were observed (Woodcock, 1940a). Preference conditions of gull soaring (roll

vortices probably occur) were at wind speed between 7 and 13 m/s with the air-sea temperature

difference less than -4 ◦C. This led to the first indication that roll vortices are closely involved

with the air-sea momentum fluxes. Woodcock and Wyman (1947) further pursued the idea

during a series of US Navy tests on smoke screens in the Gulf of Panama in 1945. While

the smoke releases well visualized the air flows nearby airplane flights, the oblique photo

views of sea surface captured clear alternating light and dark bands. These "seems to be
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due to systematic variation in the pattern of small waves on the surface, associated with a

corresponding variation in wind speed" (Woodcock & Wyman, 1947). This interpretation is

somewhat similar to SAR imaging of roll imprints on ocean surface, which will be described

in section 1.3.1. As a matter of fact, the smoke visualization showed consistent results that

the dark and light regions correspond to the downdrafts and updrafts of roll circulations,

respectively.

1.2.2 Modern observational

Much more observations of roll vortices came after 1950s with new means of measurements

such as radar, lidar and optical sensors. These instruments are equipped either on tower, ship

or aircraft for field measurements or on space satellite for worldwide coverage. Investigations

of rolls using these data were well summarised in the review articles of Etling and Brown

(1993); Atkinson and Wu Zhang (1996); Weckwerth et al. (1997); Young et al. (2002). In

the following, a brief introduction will be given in terms of roll occurrence, atmospheric

conditions, roll structures (wavelength & orientation) and roll dynamic effect on fluxes. The

goal is to focus on, but not limited to, the roll vortices over the wide-ranging ocean. In addition,

the results covered in the introduction are inevitably subjective and eclectic given the massive

amount of materials in this field.

Roll occurrence

A general difficulty in addressing the figure of roll occurrence is the lack of systematic

means to observe and objectively identify roll events (Weckwerth et al., 1997). Nearly all

the previous attempts have been restricted in fixed spots or areas. A first ground-based

observational study on the occurrence of cloud streets was performed over Boston during 12

months between 1953-1954 (Kuettner, 1959). As the roll detection relied on the presence

of clouds and observation for complete coverage was not ensured, it ended up with only 35

days when the roll occurrence is definite. Most of these days were in spring and fall, which

indicated that the formation of cloud streets might be associated with the cold air advection.

This very crude estimate led Kuettner to believe that "at least 30% of the cloud coverage
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existing over the world has a structure suitable for this kind of synoptic analysis" (Kuettner,

1959).

Consistent results were shown in a similar survey over British Isles. Yearlong satellite

photographs were examined by Weston (1980) and the highest occurrence frequency of cloud

streets is found in March and April of 1977. In another study based on the meteorological

measurements taken at the Nlsudden wind turbine site, under slightly unstable conditions,

horizontal roll vortices are observed over 55% of the study time (Smedman, 1991). All these

investigations on cloud streets conveyed a strong message that roll vortices may occur most of

the time and nearly everywhere.

To overcome the limitation of roll identification based on clouds, Levy (2001) attempted

to ingest quantifies of roll vortices from the microwave SAR images over the Gulf of Alaska

and Bering Sea. A total of 7150 SAR images with coverage of 100 Km by 100 km were

analyzed in multiple ways to determine the occurrence of roll events at spatial scale. This

dataset covered a three-year period between 1997 and 1999, but with missing data from June

to October. The overall roll occurrence is about 33% with relatively higher number in winter

months than in spring. Spatial map displays that roll occurrence can exceeds 60% in some

areas. Recently, a close roll occurrence of 48% is reported based on analysis of 227 SAR

images acquired by TerraSAR-X and TanDEM-X at three FiNO platforms in the North Sea

and Baltic Sea (Zhao et al., 2016). Despite the spatial and temporal gaps, these SAR images

provide great potential for systematic investigation of roll vortices over the global ocean.

In addition to regular conditions, SAR images have been demonstrated to well capture

the roll structure in Tropical Cyclone (TC) conditions in recent years (Morrison et al., 2005;

J. A. Zhang et al., 2008; Huang et al., 2018). The TC boundary layer was found favorable

for roll formation (Foster, 2005). Despite specific statistics is not yet available, roll vortices

are likely always present under TC condition based on the visual inspection of SAR images.

Huang et al. (2018) analyzed the roll features using 16 SAR images acquired during three

major hurricanes (Irma, Jose and Maria) during the 2017 Atlantic hurricane season. Other

illustration can be referred to the SAR images in relevant hurricane studies (e.g. Xiaofeng Li

et al., 2002; B. Zhang et al., 2014; A. Mouche et al., 2019).
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Since the roll vortices are largely formed in marine cold air outbreaks, the climatology

analysis of this weather event (Fletcher et al., 2016) gives an indirect demonstration of rolls

occurrence at higher latitudes. The quantification, however, was dependent on the definition

of cold air outbreaks, and may also be limited by the accuracy of used products. A more

comprehensive climatology of the occurrence of rolls and convective cells has been given

based on the 10-year warm-season observations in central Oklahoma (Banghoff et al., 2020).

Roll events (including pure rolls, roll-to-cells, cell-to-rolls) were found to occur on 55% of

all days. Together with the convective cells, organized features of the boundary layer appear

over 92% of the days without precipitation during the observed warm season. Results also

show that roll or cells normally form in mid-morning and may persist throughout the day or

transition between each other before dissipating around sunset (Banghoff et al., 2020). This

detailed documentation greatly advances out understanding of the occurrence of rolls and cells

as well as their characteristics during the natural transitions over the central Oklahoma.

Environmental conditions of roll occurrence

The formation of roll vortices is in general thought to be dominated by wind shear and

thermal convection of all situations (Brown, 1980; Etling & Brown, 1993). The Wind speed

(or/and profile) and air-sea temperature difference are two useful parameters to characterize

the environmental conditions for roll occurrence. In the earlier experiment of seagull soaring

pattern (Woodcock, 1940b, 1942), these two parameters were also documented. Though the

values are crude due to technical limitation back then, this trial yet served as a lighthouse for

later investigations.

Aircraft photos and satellite pictures of cloud streets promoted roll related studies, par-

ticularly for the typical weather event of marine cold air outbreaks (e.g. Kuettner, 1959;

Weston, 1980; Hein & Brown, 1988). The strong cold-air flows (usually in wintertime) from

the polar regions towards the open ocean favors formation of the organized convective patterns

in the atmosphere. Cloud streets associated with roll patterns are frequently observed over the

first several hundred kilometres downwind of the sea-ice edge or coastline (Figure 1.2). At

further downstream, cellular cloud structures gradually form with the decreased wind shear

and increased convection. Numerous studies have been reported with focus on the roll- and



Chapter 1. Introduction 11

cell-shaped cloud structures during cold-air outbreaks at different places over the world, such

as in the Bering Sea (Weston, 1980), the East China Sea (Agee & Lomax, 1978; Miura, 1986),

the American east coast (Atlas et al., 1986; Chou & Ferguson, 1991), the Great Lakes (Kelly,

1984; Agee & Gilbert, 1989), the Greenland and Barents Sea (Brümmer, 1996, 1999).

The balance between shear and thermal instabilities is fundamental for the formation of

rolls (Brown, 1980; Etling & Brown, 1993; Brown, 2002). As such, analyses of atmospheric

stability has to take both wind shear and thermal effects into consideration. Based on the

observations of aircraft and tower data, LeMone (1973); Lemone (1976) found that roll

occurrence is mostly at moderate winds (greater than 5 m/s) and slightly unstable stratification.

The rolls have also been reported under near-neutral conditions over the ice-covered Bering

sea during February (Walter & Overland, 1984). The stratification parameter of zi/L (where zi

is the inversion height and L is the Monin-Obukhov length) is commonly used to represent the

atmospheric condition. Various values of this parameter have been observed for roll formation.

For example, it is about -1.2 in Walter and Overland (1984), −zi/L < 21.4 in Grossman

(1982) and 3 <−zi/L < 10 in LeMone (1973). It should also be noted that very high values

of −zi/L < (as large as 250) have been recorded (Christian & Wakimoto, 1989; Ferrare et

al., 1991; Kristovich, 1993), which indirectly evidences the possible formation of rolls in

extremely weather systems (Morrison et al., 2005; Huang et al., 2018). A statistical study of

roll occurrence has been carried out that 67.3%, 20.0%, and 12.7% of observed rolls occurred

under unstable, neutral, and stable atmospheric conditions, respectively (Zhao et al., 2016).

Svensson et al. (2017) presented roll cases during a strongly stratified boundary layer using

both SAR and aircraft observations.

Requirements of shear force for roll formation have also been documented that Christian

and Wakimoto (1989) observed a minimum roll wind speed of 5 m/s. Slightly lower wind

conditions (2-3.5 m/s) have been reported based on measurements from lidar, tower and

aircraft radar (Ferrare et al., 1991; Wilczak & Businger, 1983). The statistical results further

evidence the credibility of this low wind condition (<3 m/s) (Zhao et al., 2016). Most of the

roll occurrence has been observed at medium winds with 5-11 m/s in (Hein & Brown, 1988),

which is in agreement with the early study of 7-13 m/s (Woodcock, 1942). SAR imaging of
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roll imprints offers a new means for estimating the the wind speed fluctuations caused by roll

vortices (Vandemark et al., 2001). It is promising that SAR-retrieved wind fluctuations of

7-10% are consistent with the aircraft measurements of the near-surface wind speed variations.

This agreement shall facilitate statistical studies of roll-induced wind variation by taking

advantage of the numerous SAR measurements at global scale.

In addition to the shear and thermal instabilities, there is a wide range of factors including

the boundary layer height, baroclinicity, entrainment and the tangential component of the

Coriolis force, can potentially affect the roll dynamics and organizations (Foster, 1996; Young

et al., 2002; Salesky et al., 2017). The examination of roll (cloud streets) conditions over

northern Germany confirmed the significance of the baroclinicity and convective effects

(Müller et al., 1985). Foster (1996) theoretically exploited the sensitivity of roll dynamics to

the atmospheric stratification and baroclinicity. As a matter of fact, investigations of these

factor effects on roll circulations mostly remain in theoretical and numerical stage with a short

review given in section 1.2.3.

Roll characteristics

The very two basic parameters to characterize the roll structures are the horizontal wave-

length and orientation. Earlier visual inspections by the glider pilots remarks that roll wave-

length normally ranges from hundreds to thousands meters, and the orientations are approx-

imately aligned with the mean flow directions (Brunt, 1938; Kuettner, 1959). While in the

modern observational era, roll wavelength is often scaled by the boundary layer depth, termed

as aspect ratio (AR). Since no direct measurements of the boundary layer depth were available,

it was often inferred from the height of capping inversion (Weckwerth et al., 1997; Young et

al., 2002; LeMone et al., 2018). The roll orientation is usually presented with reference to the

directions of surface wind, mean flow wind or/and the geostrophic wind (wind at the top of

boundary layer).

Over the last decades, the investigations of roll structures have evolved from case study to

statistical study. During the BOMEX project, Kuettner (1959, 1971) reported that the spacing

between two cloud bands varies from 2 to 8 km. His measure of the aspect ratio was between 2

and 4, and the angle of cloud street orientation relative to the surface wind was nearly 0◦. The
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Figure 1.4: (a) Relationship between the spacing of cloud streets (roll wavelength) and the height of
the boundary layer. The solid line indicates the average of aspect ration. (b) Angle deviation of cloud
street orientation and the mean wind direction. Positive represents a clockwise rotation sense from the
wind direction. (Reproduced from Weston (1980).)

later findings of LeMone (1973); Lemone (1976) were in broad agreement with Kuettner’s

results. The rolls were observed orientating to the left of the geostrophic wind by from 10 to

20◦. The wavelengths is found to vary in the range of 1-7 km with aspect ratios of 2-6. The

earliest statistics, to my knowledge, was provided by Weston (1980). He analysed 21 cases of

cloud streets observed by optical images over British Isles land stations. It is documented that

the typical roll wavelength is about 3-6 km and the boundary layer depth is around 1.5-2.5

km. The streets orientation was found within ±25◦ of the mean wind, most often around

10◦. These observational cases were summarized in a diagram, reproduced here as Figure 1.4.

Based on the 35-hours measurements by aircraft and radar over the Lake Michigan, Kelly

(1984) recorded the roll wavelengths changed from 1.5 to 13.7 km and the boundary layer

depth from 0.9 to 2.1 km. These resulted in the wider aspect ratio range of 1-9, and the roll

orientation was ±10◦ within the geostrophic wind. Most of these studies have reported similar
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roll orientations and slightly different results for roll wavelengths.

In the situation of cold air outbreaks, rolls with relatively larger wavelength or aspect

ratio have been observed. For example, Walter (1980); Walter and Overland (1984) reported

the occurrence of cloud streets with large aspect ratio over the Bering Sea. Hein and Brown

(1988) identified rolls with wavelengths of 2.3 and 5-6 km and proposed that the roll structure

is largely determined by the dynamic instabilities which was modified and re-enforced by

the thermal effects. Miura (1986) also observed rolls over the ocean with aspect ratios from

5 to 18 and the increasing trend of aspect ratio with further fetch towards the open ocean.

Other notable observations of rolls include Asai (1966, 1970) who recorded rolls over the Sea

of Japan with aspect ratios from 7 to 10, Kelly (1984); Kristovich (1993) who revealed the

lake-effect boundary layer rolls with aspect rations of 9.1 and 6.7 and Brümmer (1999) who

observed rolls with aspect ratios up to 6.7 based on satellite imagery of cloud patterns. Further

reports of rolls with the aspect ratio larger than 5 are found in (Atlas et al., 1983; Holroyd,

1971; Kropfli & Kohn, 1978; Mourad, 1996).

All these observational results have been well summarized in (Atkinson & Wu Zhang,

1996; Weckwerth et al., 1997; Young et al., 2002). Two categories of narrow and wide rolls

are reported. The narrow rolls with typical aspect ratio of 1-4 normally occur under the

near-neutral to slightly unstable atmospheric conditions. Whereas the wider rolls that have

aspect ratio larger than 10 are mostly associated with the strong weather events. Despite

the fact that these two types of rolls are not yet well understood from theoretical point of

view, a fundamental difference appears to be their interaction with the convective thermals

(Atkinson & Wu Zhang, 1996; Young et al., 2002). In specifics, a single thermal band is

usually associated with the updraft regions of the narrow rolls. By contrast, multiple bands are

often observed within the wide roll updraft regions (Young et al., 2002).

As a matter of fact, existence of multi-scale rolls has been revealed in a number of roll

observations. Holroyd (1971) suggested the presence of enhanced rolls on top of the smaller-

scale roll vortices. Over the ice-covered Bering Sea, roll circulations on multiple scales of 1 to

2, 5 to 6, 12 to 15 and 25 to 30 km are simultaneously observed (Walter & Overland, 1984).

Atlas et al. (1986) investigated the interactions between small-scale organized motions and
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the roll circulations with typical aspect ratios of 2–3. On the largest scale, Hein and Brown

(1988) found the twofold hierarchy of circulations in well-developed cloud streets in the north

of the Atlantic Ocean. The streets with wavelengths of 5-16 km superimposed upon a series of

rolls with typical wavelengths of 2-3 km and aspect ratios of 3.3. Using satellite and aircraft

observations, Mourad and Walter (1996); Mourad (1996) reported results that evidenced the

superimposition of linear convective features with aspect ratios in the range of 3–8.

Though roll wavelengths in the hurricane system have been found to vary between 0.6 and

2 km with a typical aspect ratio of about 2.4 (Morrison et al., 2005; Huang et al., 2018), visual

inspection of SAR images allows to identify larger-scale rolls. The missing identification

is probably due to the inherent limitation of Fourier analyses. Nevertheless, the lognormal

distributions of roll wavelength, boundary layer depth, aspect ratio, and roll orientation angle

relative to the mean wind direction imply that the variable is exponentially dependent on

another variable (Morrison et al., 2005). Huang et al. (2018) also illustrated that the spatial

distribution of roll wavelengths around the eyes of tropical cyclones is asymmetrical, shortest

roll wavelength was found around the storm center. These findings shall benefit the hurricane

boundary layer model development given the outstanding roll effects on the air-sea energy and

momentum exchanges.

The 10-year climatology analysis of warm-season roll features over the Oklahoma confirms

that the narrow type of roll is more recurrent (Banghoff et al., 2020). Their radar observations

disclose that the roll vortices can generally persist for 1-6 hours with wavelengths of 2-10

km and aspect ratios between 1 and 7. Most of the roll orientations are within ±10◦ of the

mean wind direction, and only few up to 30◦ off the wind blowing. Of particular interests are

the time-dependent aspect ratios within the day. It was found that the aspect ratio decreases

early in the morning, remains constant during the afternoon and increases later in the evening.

Although different from many previous field observations (Atkinson & Wu Zhang, 1996;

Etling & Brown, 1993; Young et al., 2002), this varying aspect ratio manifests the natural

evolution of roll circulations. The day-night contrast of aspect ratio implies the different

boundary layer dynamics that might be associated with the diurnal fluctuations of multiple

environmental variables.
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Roll impact on fluxes

It has been generally known that roll vortices produce extra-contribution (non-local or non-

gradient) to the vertical transport of momentum, heat, moisture and chemical trace substances

in the atmospheric boundary layer (Brown, 1980; Etling & Brown, 1993; Weckwerth et al.,

1997). Size of the roll circulations lies in the range of spectral scales associated with the mass

and energy turbulent exchanges (Lemone, 1976). The correlation analysis between the higher

magnitudes of small-scale turbulent fluxes with the roll updrafts suggested minor exchanges

(Lemone, 1976). While counter-gradient fluxes caused by roll vortices have been reported

by (Rabin et al., 1982) based on the radar measurements. He concluded that the boundary

layer parameterization of large-scale models was inadequate without accounting for the roll

effect. This perspective was supported by the later aircraft flux measurements (Chou et al.,

1986; Chou & Ferguson, 1991), showing that rolls are able to draw the smaller-scale eddies

into the updraft regions. The transportation of turbulent kinetic energy is then enhanced across

the boundary layer. Investigations into the roll-induced fluxes in the hurricane boundary layer

provided further evidence. Morrison et al. (2005) utilized the covariance function between

the horizontal and vertical components of wind fluctuations associated with rolls to calculate

the momentum fluxes. It is found that the obtained fluxes are 2-3 times greater than that

predicted by the parameterizations in the numerical weather models. Analysis of the airborne

data suggested an increase of fluxed by about 50% due to the presence of rolls (J. A. Zhang

et al., 2008). The affected flux exchanges of the boundary layer may provide a pathway to

characterize the roll impact on the structure and intensification of hurricanes (Gao et al., 2017;

Huang et al., 2018).

Roll circulation is also significant is to the horizontal air-mass transformation, especially

between the Arctic and mid-latitudes due to the frequently occurred cold air outbreak weather

events (Pithan et al., 2018). The extent of cold air outbreaks can reach up to 500-1000 km,

with intensified fluxes exchanges and fast air-mass transformation from continents towards the

ocean (Fletcher et al., 2016; Pithan et al., 2018). Further from the coast, the transition from

a roll to a cell is accompanied by the shift of boundary layer state towards high convection.

This is usually represented by the development from thin, elongated stratocumulus to deeper,
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dispersed cumulus clouds. The state variation often produced an increasing latent heat release

in clouds relative to the surface heating (Brümmer, 1999; Atkinson & Wu Zhang, 1996).

While the significance of roll effects on surface heat and latent fluxes had been recognized,

it is yet difficult to directly measure and quantify this non-local contributions. There has been

dedicated efforts to introduce an diffusion parameterization related to this non-local effect in

the flux modeling (Troen & Mahrt, 1986). Model simulations predicted an averaged increase

of surface fluxes by 6% and surface stress by 15% due to the roll effects (Foster, 1996). Other

effects on the flow in the boundary layer could be equally important and additional studies

are supposed to advance our understanding (Foster, 1996; Foster & Levy, 1998). By that,

new techniques and/or methods for the surface fluxes estimation are necessary to refine the

future modeling. An interesting perspective is the use of ship-launched and ship-recovered

Boeing–Insitu ScanEagle unmanned aerial vehicles (UAVs) for ocean surface processes study

(Reineman et al., 2016). The UAVs measurements include atmospheric momentum and

radiative, sensible, and latent heat fluxes, which can be complemented by measurements

from ship-based instrumentation such as a foremast MABL eddy-covariance system, lidar

altimeters, and a digitized X-band radar system (Reineman et al., 2016). These instruments

shall provide sufficient observations for both atmospheric and oceanographic research, in spite

of its weak competition of spatial coverage. For the airborne measurement, on the other hand,

Brilouet et al. (2017) demonstrated that a correction of eddy covariance turbulent fluxes is

necessary by taking into account the systematic and random errors due to sampling and data

processing.

1.2.3 Theoretical and numerical

There has been a fairly long history of theoretical and numerical studies of roll vortices

(Brown, 2002). According to the state of the art, several mechanisms have been proposed to

interpret the generation of these quasi two-dimensional structures in the atmospheric boundary

layer (Etling & Brown, 1993; Young et al., 2002). The mostly accepted theory is that rolls

are driven by the shear instability, convective instability or the combinations of dynamics
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and stratification effects (Brown, 1980; Etling & Brown, 1993). Despite that the buoyancy

contributions are able to modify roll structure, the shear dynamics is still the most basic factor

for roll formation (Foster, 1996).

It has been assumed that the dynamic instabilities and thermal instabilities play their

roles under certain situations (Etling & Brown, 1993). As summarized by Foster (1996),

"A moderate amount of stable stratification will shut off the roll mechanism while slight

to moderate unstable stratification will re-enforce it. For large enough thermal forcing, the

dynamic instability is overwhelmed and the roll mechanism is inoperative. In this case there is

a transition to a cellular convection pattern or to more unorganized convective turbulence."

This remark is consistent with the simulation results of transitions between unorganized

turbulence, organized rolls and cells (Salesky et al., 2017). The characteristic length scale and

roll orientation are expected to vary with the dominant environmental forces.

All in all, the governing equations of this typical process are the Navier-Stokes equations

including the thermal and dynamics effects in a rotating coordinate system (Brown, 1980).

Instability analysis is expected to provide a solution or a representation for the mean flow

subject to a normal mode perturbation. This method was initiated by Rayleigh (1916) to

establish the criteria for the onset of convective and dynamic (inflection point) instabilities.

Significance of the velocity profile was noticed in the atmospheric and oceanic boundary layer

where horizontal layers can be readily distinguished by the differing speed and/or direction

(Rayleigh, 1916). This again evidences the importance of the Coriolis force in rotating the air

flow under balance with a horizontal density gradient (thermal wind) or with the viscous force

in the Ekman layer (Brown, 1980).

Gregory, Stuart, Walker, and Bullard (1955) carried out the earlier theoretical analysis

of the inflection point instability, producing rolls with wavelength six times of the boundary

layer depth and orientation of 14◦ angle relative to the mean flow. While the basic mode was

tested by Gregory, the inviscid instability equations still generated inaccurate prediction of

roll wavelengths (Brown, 1972). Later, Lilly (1966) identified two instability modes from a

neutrally stratified Ekman layer mean flow. One of the mode was referred to as the parallel

instability because it extracts energy from the mean flow through shear production parallel to
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the roll axis. This energy transfer is dependent on the Coriolis term in the instability equations

and is expected to not be able to persist towards the very high Re (Reynolds number) regime.

The other mode is the so-called inflection point instability with its energy generation being

associated with shear production near the inflection point in the mean velocity profile.

Since the solutions of inflection point instability predicted consistent values of roll forma-

tion, wavelength and orientation, it has been examined extensively in the earlier theoretical

studies. Major progresses include the initial value calculation (Faller & Kaylor, 1966; Faller,

1967), stratification effects on the instability (Brown, 1972; Kaylor & Faller, 1972; Asai &

Nakasuji, 1973), surface roughness (Etling & Wippermann, 1975) and variable eddy viscosity

(Criminale & Spooner, 1981). In particular, the nonlinear analyses were also conducted to

study the spectral property of roll development in neutral and unstably stratified conditions

(Brown, 1970, 1972; Mourad & Brown, 1990; Haack & Shirer, 1992)

The influence of the horizontal component of the Coriolis force on the normal mode

instability has been exploited by Etling (1971); Mason and Thomson (1987) and detained by

Leibovich and Lele (1985). Results show that this horizontal component acts as a destabilizing

agent that supports the northerly flows and reduces the growth rates of the southerly flows.

The most unstable roll events is expected to be westerly. However, the horizontal Coriolis

effects remains doubtful because direct observations evidence of this mechanism is not yet

available. Both observational and theoretical efforts are required to better understand the role

of the horizontal Coriolis force in the geophysical and astrophysical fluid dynamics (Gerkema

et al., 2008; Glazunov, 2010; Liu et al., 2018).

The brief review above mostly concentrated on the theoretical analyses of roll vortices

conducted in the late twentieth century. For more details, one can refer to the literature or

review articles (Brown, 1980; Etling & Brown, 1993; Atkinson & Wu Zhang, 1996; Young et

al., 2002). As a matter of fact, less progress in theory or model development of the boundary

layer roll during the last two decades. This might be due to the lack of advanced observational

means and new dataset. One exception is the increased attention towards the organized roll

vortices in the hurricane boundary layer. Foster (2005) developed both the linear and nonlinear

roll instability solutions to explain the rolls prevalence in hurricane weather systems. His
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predictions of roll orientation, wavelength and aspect ratio agree well with observations. The

implications of roll effects on the boundary layer fluxes in terms of non-local and non-gradient

contributions are also demonstrated. This shall provide guidance for parameterizing the roll

effects on the hurricane boundary layer mean flow and fluxes.

1.3 SAR observation of MABL rolls

Since the launch of SEASAT in 1978, synthetic aperture radar (SAR) has become unique and

irreplaceable tool for monitoring the global ocean surface (Lee-Lueng Fu & Holt, 1982). It is

not only because of its weather and sunlight independence characteristics, but also due to its

capability of resolving detailed features of various oceanic and atmospheric phenomena. The

fundamental principles of a SAR system as well as the SAR imaging mechanism of ocean

surface can be found in multiple textbooks (e.g. Lee-Lueng Fu & Holt, 1982; Jackson et al.,

2004; Cumming & Wong, 2005) or literature (e.g. Hasselmann et al., 1985; Kudryavtsev,

2003a, 2003b; A. A. Mouche, Chapron, & Reul, 2007; Gens, 2008). Yet, it seems necessary

to brief the state of the art of roll investigation using SAR observations.

1.3.1 SAR imaging of roll-impacted ocean surface

SAR is a side-looking imaging radar that transmits coherent pulses to illuminate the Earth

surface (Stull, 1988; Jackson et al., 2004). These microwave pulses reflected to the radar are

recorded in two dimensions with one along the radar looking direction (called range) and the

other along the flight direction (called azimuth). SAR is competitive because of its high spatial

resolution in comparison to other microwave systems, such as altimeters and scatterometers.

Its range resolution is determined by reciprocal of the radar pulse bandwidth. In the azimuth

direction, the antenna size is synthetically increased and resulting in high spatial resolution

being half of the actual antenna length. Raw signal recorded by a SAR is processed and

formed into an image, which can cover hundred kilometers of the Earth surface.

The SAR backscattering is commonly quantified by normalized radar cross-section
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(NRCS). Its magnitude relies on radar configurations ( wavelength, polarization, geome-

try) and environmental conditions as well as the dielectric properties of sea surface. At

moderate incidence angles, SAR signal can well be explained by the Bragg scattering theory.

It tells that the incident radar pulses interact with the ocean surface roughness composed of

short waves at comparable wavelengths. Of the multiple radar wavelengths, C-band SAR

(radar wavelength around 5 cm) has been mostly exploited owing to its higher sensitivity

to surface roughness. The roughness is usually wind-generated short waves ranging from

capillary to gravity waves. While on the natural ocean surface, the longer waves/swell can

modulate the short waves and therefore influence the ambient NRCS (Hasselmann et al., 1985;

Kudryavtsev, 2003a, 2003b; Jackson et al., 2004; A. A. Mouche, Chapron, & Reul, 2007;

A. A. Mouche, Chapron, Reul, Hauser, & Quilfen, 2007).

As SAR data are increasingly available, our understanding of SAR backscattering has

been greatly advanced. It has been documented that the NRCS is composed of contribution

not only from regular sea surface roughness, but also the breaking waves events (Kudryavtsev,

2003a; A. A. Mouche et al., 2006). These short waves are generated by the surface winds

and mostly align with the local winds. By contrast, the scattering facets associated with the

breaking waves are mostly isotropic. In the case of up-/downwind where wind blows against

or into the SAR looking direction, the cm-scale waves are the prominent scatters. However, as

wind direction changes towards the crosswind, the isotropic scatterers caused by intermediate

breaking waves will instead take hold and reach the dominant. The backscattering contribution

from cm-scale waves is therefore larger at up-/downwind than crosswind and stronger in VV

polarization than HH, and in general increases with incidence angle.

The visibility of roll imprints on SAR images primarily depends on the modulation of

roll-induced surface wind perturbation on sea surface roughness (Alpers & Brümmer, 1994;

Young, 2000; Vandemark et al., 2001). To first-order, these wind perturbations are able to

increase or decrease rapidly the population of cm-scale short waves, making roll imprints

visible as alternative bright and dark wind streaks on SAR images (Jackson et al., 2004).

This is particularly true at larger incidence angle and in the case of up-/downwind, where the

directional cm-scale waves are the prominent scatters. By contrast at smaller incidence angle
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and crosswind, the SAR visible waves breakers can gradually grow only when the roll-induced

wind perturbations are sufficiently stationary for a certain duration. As such, the stationarity

of rolls and contribution of short wave scattering to the total NRCS are determinative for roll

visibility on SAR images. Remarks on the later factor have been given by Alpers and Brümmer

(1994), which is larger at up-/downwind than crosswind and stronger in VV polarization than

HH, and in general increases with incidence angle. A following-on statistical assessment of

SAR sensitivity to roll imprints is conducted in this thesis as one of the main results.

1.3.2 Roll investigations using SAR data

The first reported SAR observation of MABL rolls appeared during the Marineland Experiment

in 1975 Thompson, Liu, and Weissman (1983). L-band SAR images were acquired over the

Atlantic Ocean off the coast of Florida from a National Aeronautics and Space Administration

(NASA) airplane with clear signatures of wind streaks at wavelength of 2-4 km. Flight

observation also noticed that stronger roll features were present on SAR images when the

radar was looking upwind with less prominent patterns at downwind. The roll signatures

becomes almost invisible on SAR images when the radar was looking crosswind. These initial

findings lay groundwork for later applications of SAR images for roll investigations, such as

those from the SEASAT satellite (Lee-Lueng Fu & Holt, 1982; Gerling, 1986), and the space

shuttle Columbia during the Shuttle Imaging Radar-A (SIR-A) experiment (Ford et al., 1983).

The method to extract the direction of roll-associated wind streaks as well as its variability

was proposed through the SAR image spectrum, which is still typical for roll investigation.

Yet it should be pointed out that the failure of radar backscattering calibration prevented the

retrieval of absolute wind speed from SAR images.

Since the 1990s, large volume of decent SAR images have been collected from multiple

satellites such as ERS-1&2, RADARSAT-1&2, Envisat/ASAR and now Sentinel-1 A&B.

Alpers and Brümmer (1994) investigated two MABL roll events observed by ERS-1 SAR over

German Bight of the North Sea. The variations of SAR NRCS and SAR-retrieved surface

wind speed associated with roll imprints were reported to be on the order of about 10%. The
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roll visibility on C-band SAR images were also noted back then including sensitivity changes

versus radar antenna incidence angle, transmit frequency, and mean wind and direction. But

such aspects have been seldom taken into account in the subsequent studies for SAR imaging

of rolls, nor for wind direction retrieval (e.g. Chapron et al., 2001; Koch, 2004; Horstmann &

Koch, 2005).

SAR-based investigation of MABL rolls almost remains in the phase of case studies.

Mourad and Walter (1996) found comparable linear streaks in terms of the scale and orientation

between Advanced Very High Resolution Radar (AVHRR) and SAR images simultaneously

acquired over a region north of Alaska during a cold air outbreak. He also noted the multi-scale

structure visible on SAR images, which might be associated with the fine-scale atmospheric

microfronts and kilometer-scale roll vortices (Mourad, 1996). The wind streaks on SAR

images were later evidenced as manifestation of MABL roll vortices by the consistent features

obtained from the large-scale eddy simulations (G. Muller et al., 1999). Further supporting

studies include roll feature observations by combining the aircraft data and RADARSAT-1

SAR images (Vandemark et al., 2001), roll coexistence with atmospheric gravity waves on

SAR images (Li et al., 2013), and quantification of roll effects on the hydrodynamics (S. Muller

et al., 2013).

Given the great potential of SAR providing high-resolution (1̃0 m) sea surface wind field,

SAR measurements offer a new opportunity to diagnose the detailed structure of MABL rolls

(Young, 2000). The spectra of SAR NRCS or derived winds are particularly effective for

determining the basic characteristics of these organized flow patterns in the MABL (Young,

2000; Koch, 2004; Li et al., 2013; Zhao et al., 2016; Huang et al., 2018). It is also important to

remind that long time series of SAR data will be accumulated to cover the temporal requirement

for climate studies (Brown, 2000). This is guaranteed by the routine acquisition of wave

mode (WV) SAR data during the European Remote Sensing (ERS-1/2) missions (1991–2003),

Envisat/ASAR mission (2002–2012) and the current Sentinel-1A&B. Application of these

WV SAR images and wide swath SAR images are expected to advance our understanding of

the roll vortices.

Few attempts have been conducted to obtain statistical description of MABL rolls from
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SAR observations. The first one is based on the RADARSAT-1 ScanSAR images over the Gulf

of Alaska and the Bering sea in 1997-1999 (Levy, 2001). In total, 7150 100 km by 100 km

images were categorized in different ways for occurrence statistics in both temporal and

spatial scales. Significant variability was found on the spatial map of roll occurrence at grid

of 2.5◦ by 2.5◦ boxes. Another statistical study focuses on the atmospheric conditions of roll

occurrence (Zhao et al., 2016). In detail, 227 X-band SAR images acquired by TerraSAR-X

and TanDEM-X over the North Sea and Baltic Sea are included. These SAR data are jointly

analysed with the environmental variables measured from three FINO platforms. Results

reports that 48% of these 227 SAR images have clear signatures of wind streaks, among which

67.3%, 20.0%, and 12.7% occurred under unstable, neutral, and stable atmospheric conditions,

respectively. Although these two studies are still limited in either space coverage or time scale,

they opened a new path for the SAR roll investigations at broader scope. It is worth noticing

that both attempts rely on visual inspection to distinguish the presence of roll imprints on SAR

images. Such manual classification approach is obviously impractical for the huge volume of

WV SAR data obtained by ERS-1/2, Envisat ASAR and Sentinel-1. Thus, new methods to

automatically identify roll events from SAR images are essential.

In addition to the statistical investigation of MABL rolls, efforts have been recently made

to describe the roll structures observed by SAR images in hurricane weather system (Morrison

et al., 2005; J. A. Zhang et al., 2008; Huang et al., 2018). The existence of intense, sub-

kilometer-scale, boundary layer rolls that strongly modulated the near-surface wind speed was

earlier revealed by the DopplerOnWheels(DOW) mobile weather radar (Wurman & Winslow,

1998). It was found that these roll structures are one cause of geographically varying surface

damage patterns and much of the observed gustiness that can bring high-velocity air from

aloft to the surface levels. While the length scale of roll observed in hurricane boundary layer

is similar to the commonly visible rolls, the modulation of hurricane roll structures on air-sea

momentum exchanges are more significant (Morrison et al., 2005; J. A. Zhang et al., 2008).

Using 16 wide swath SAR images, Huang et al. (2018) illustrated the spatial distribution of

roll length scale around the hurricane centers. He noticed the asymmetrical characteristic of

roll wavelength and found it is overall shortest around the storm center, increase first and then
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decrease with the distance from storm center. The largest rolls were observed in the range of

d∗−2d∗, where d∗ is the distance to hurricane center normalized by the radius of maximum

wind.
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Chapter 2 Scope of this thesis

2.1 Motivation and challenge

As briefly reviewed in Chapter 1, investigation of roll-shaped MABL has been conducted for

decades, but mostly limited to case analyses (Brown, 1980; Etling & Brown, 1993; Atkinson &

Wu Zhang, 1996; Young et al., 2002). These observational studies provide an overall panorama

that rolls normally occur in near-neutral to moderately unstable atmospheric stratification.

The typical characteristics of rolls include wavelengths of 1-5 km, aspect ratios (i.e., roll

wavelength divided by boundary layer height, AR) between 1 and 7, and roll orientations of

±30◦ relative to the surface wind directions.

Although the dynamics of roll vortices are increasingly understood through extensive

observations combined with theoretical studies and numerical modeling, systematic analyses

of rolls over the global ocean have not yet been feasible. The primary difficulty is the lack

of sufficient and comprehensive observations of roll events. As a result, the basic knowledge

about MABL rolls such as characteristics, frequency of occurrence, and forcing mechanisms

are not yet fully acknowledged. This further hinders the long-term and businesslike climatology

establishment of roll-shaped ABL dynamics as well as its annual and seasonal variability.

Such climatology will no doubt advance the parameterization of roll dominated ABL, and

hence improve the accuracy of numerical weather and climate model projections.

In terms of the theory explorations, roll vortices are recognized as manifestation of the

Ekman layer instability. Their formation can be described by the nonlinear Navier-Stokes

equations when considering thermal and dynamic factors in a rotating system (Brown, 1980;

Brown & Liu, 1982). The early theoretical investigations on roll dynamics have focused on

the linearization schemes and produced the popular solution of inflection-point (IP) instability

(e.g. Asai, 1970; Brown, 1970, 1972). This theory predicts consistent roll characteristics with

observations in both aspect ratio and horizontal orientation. It is therefore widely adopted and

extended by taking into account other effects such as thermal wind, stratification, baroclinicity,
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and nonlinear processes (Foster, 1996; Young et al., 2002). While in most of the IP-based

studies, only the vertical component of Earth’s rotation is considered. The horizontal one,

however, is often neglected, though its significant impact on geophysical fluid dynamics has

been clearly shown by multiple theoretical researches. Lack of observational evidence for

influence of this factor is also one reason.

Over much of the world’s oceans, the primary observational data used to study the mean

state, characteristic and dynamic of the MABL is satellite visible imagery of the low clouds.

This visualization is only possible when the MABL conditions are favorable for cloud for-

mation and there are no intervening cloud layers. Another limitation of using visual satellite

imagery to analyze the MABL is that the layer below the clouds is frequently decoupled from

or only partially coupled with the cloudy layer. It seems that future improvements of MABL

understanding will require new detailed global observations that are not subject to the presence

or absence of clouds. They shall complement the MABL cloud measurements by providing

information about the MABL processes that are tightly connected with the ocean surface. To

this end, this thesis exploits the brand-new, ultra-high resolution SAR remote sensing data,

which have the all-weather capability to characterize the MABL roll imprints on the ocean

surface at climate time and space scales.

Ocean SAR imagery has been well-known to provide special insight into the MABL

structures because of its high sensitivity to the wind-induced sea surface roughness change

(e.g., Gerling, 1986; Alpers & Brümmer, 1994; Young, 2000; Li et al., 2013; Alpers et al.,

2016). While until very recently it has been of limited use for meteorological and climate

studies. The primary issues are that pervious SAR imagery was usually highly expensive

(thousands of dollars per image) and did not provide coverage of the global oceans. These

two issues have finally been resolved starting with the Sentinel-1 (S-1) A&B SAR missions

launched by the European Space Agency (ESA) in 2014 and 2016, respectively (Salvi et al.,

2012). It is important to note that ESA has planned SAR missions to keep the continuation into

the foreseeable future. Secondly, technological advances also allowed the routine collection of

sea surface roughness images by an improved Wave Mode (WV) with larger image size (20

km), finer spatial resolution (5 m), higher signal-to-noise (which reduces speckle noise), and
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increased global sampling.

These sea surface roughness SAR images capture a wide range of oceanic and atmospheric

processes, making them a valuable asset for many geophysical applications. In the case of

MABL rolls at scales of 1-5 km, the S-1 WV SAR data allow to decompose the quasi-periodic

linear patterns for extraction of roll orientation and wavelength. It represents the first chance

to exploit the surface manifestations of organized secondary wind fields introduced by MABL

rolls over longer duration and larger spatial coverage. It is also feasible to move ocean SAR

remote sensing forward by applying it for the air-sea interface, fluxes and MABL processes

studies.

2.2 Objectives of the work

The novelty of this study is to take advantage of the newly global S-1 WV ocean SAR data set

for MABL roll feature investigations. These small-sized SAR images are originally dedicated

for directional ocean wave/swell spectra retrieval as part of ESA’s operational Level-2 ocean

product. While recent exploration of these WV SAR data have revealed the fact that a wide

range of oceanic and atmospheric phenomena including MABL roll are also well captured.

This poses a new and unique opportunity for extensive study of various significant ocean

surface processes. While this thesis focuses on extending the ocean SAR data analysis

strategies for deep investigation of the km-scale MABL rolls, which are significant to the

air-sea interaction process.

Benefiting from the huge volume of SAR images acquired by S-1 WV, such data analyses

in terms of roll features are allowed to move forward to nearly global, systematic and multi-

annual investigations. To this end, the following questions have been formulated to be

addressed during this thesis.

Question 1: How to efficiently categorize the huge S-1 WV SAR data (∼120,000 per month)

in terms of MABL rolls and/or other ocean surface phenomena?

Question 2: Is the SAR capability of resolving the km-scale MABL roll features well under-

stood? towards identification methods and SAR sensitivity in mapping ocean
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surface roll imprints for different wind conditions?

Question 3: How is the the roll characteristics (orientation, length scale and structural content)

derived from WV SAR images related to the spatial and temporal variation of

MABL bulk properties, such as stability, wind shear, heat and momentum fluxes?

The proposed data exploitation assumes that significant average results will gain from the

statistics of these huge roll WV images. While appropriate average and curve fit would reduce

data noise, robust correlations and uncertainties with relevant controlling factors should be

discussed. As a first step, we envision machine-based classification methods to automatically

identify roll events from the massive S-1 WV SAR data. Then, substantial effort will be

given to the signal processing of scene contrasts within the WV radar backscatter imagery

to extract the desired roll information. These information shall serve the joint-analysis with

ERA5 surface environmental variables for demonstration of global roll features. Thus, the

specific objectives of this thesis are:

1) Collocate each WV SAR image with the ERA5 reanalysis product for potential required

environmental variables.

2) To develop automatic methods for roll identification from S-1 WV SAR data. (Question

1)

3) To extract roll-relevant information from each identified WV SAR images, including

orientation, wavelength, and roll-induced sea surface roughness modulation and wind

perturbation.

4) To obtain statistical assessment of classified roll events, and roll-induced roughness modu-

lation and wind perturbation at global scale. (Question 2)

5) To quantify the extracted roll characteristics and atmospheric conditions of roll occurrence

at global scale. (Question 3)

6) To depict the relation between roll characteristics and environmental variables. (Question

3)

7) To validate the global findings and associate with the theoretical evidence. (Question 3)
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2.4 Summary of main results

This dissertation is dedicated to a observational investigation of MABL rolls using the new

global S-1 WV SAR data. It is structured in the frame work of published articles and prepared

manuscripts. While the papers are appended in Chapter 3, a summary of the main results are

given in the following.

2.4.1 A labelled ocean SAR imagery dataset

As a first attempt to extend the global SAR application beyond ocean waves, much time at the

beginning of this PhD project were devoted to the visual interpretation of the ocean surface

processes observed by S-1 WV SAR images. I learnt myself during this activity that, except

ocean waves/swell, the massive WV SAR images also capture a wide range of geophysical

phenomena that are of significant interest in ocean-atmosphere interactions. And for most of

the situation, there is only one individual phenomenon dominates across the 20 km by 20 km

scenes. These suggest a new and unique opportunity for routine identification and study of a

wide range of oceanic and atmospheric phenomena at global scale. The first challenge is to

develop an efficient and accurate method to detect and classify key geophysical phenomena

among the whole WV dataset.

To this end, a labelled dataset of ten geophysical phenomena from S-1A WV SAR images

in VV polarization is established, namely TenGeoP-SARwv. This dataset consists of more

than 37,000 SAR vignettes divided into ten pre-defined geophysical categories, including pure

ocean waves (POW), wind streaks (WS), micro convective cells (MCC), rain cells (RC), bi-

ological slicks (BS), sea ice (SI), icebergs (IB), low wind areas (LWA), atmospheric fronts

(AF) and oceanic fronts (OF). These images cover the entire open ocean and are manually

selected from Sentinel-1A WV acquisitions throughout the year of 2016. For each image, only

one prevalent geophysical phenomenon with its prescribed signature and texture is considered

for labelling. All images are processed into a quick-look image provided in the formats

of PNG and GeoTIFF as well as the associated labels. They are convenient for both visual

inspection and can be used for training and validation of any candidate image analysis methods.
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The proposed dataset is the first SAR image collection composed of multiple oceanic and

atmospheric phenomena over the global open ocean. It seeks to foster the development of

strategies or approaches for massive ocean SAR image analyses. A key objective is to allow

exploiting the full potential of S-1 WV SAR acquisitions, which are about 60,000 images per

satellite per month and freely available. Such a dataset shall be of great value to a wide range

of users and communities in deep learning, remote sensing, oceanography and meteorology.

2.4.2 Automated classification of Sentinel-1 SAR images

Based on the labelled ocean SAR image dataset, we successfully applied the emerging deep

learning approach to these WV SAR image classification tasks. In detail, a classification

tool, called CMwv, is developed by fine-tuning the Inception v3 deep convolutional neural

network (CNN). As SAR imaging sensitivity to ocean surface processes differs from low to

a higher radar incidence angle, two CMwv models were built for VV-pol WV1 and WV2

data respectively. Both models are applicable for both S-1A and S-1B WV SAR data. This

classification tool is able to distinguish the ten pre-defined geophysical phenomena, with

assigning each WV image a probability score for the ten pre-defined classes. One image is

sorted to be the class of the largest classification probability.

Performance of the developed classification tool is evaluated by using an independent

labeled dataset. Results show satisfactory and robust classification results.The tool works

properly, especially for six (WS, MCC, RC, BS, SI and LWA) of the ten classes. To further

verify the classification results, we compare the classified rain cells and sea ice with rain

precipitation from Global Precipitation Measurement (GPM) and sea ice concentration from

Special Sensor Microwave Imager (SSMI). The geophysical patterns on global maps are

qualitatively analyzed and found to be very consistent with independent remote sensing

dataset. In addition, these high-resolution WV SAR data can resolve fine, sub-km scale,

spatial structure of rain events and sea ice that complement other satellite measurements. This

suggests that the S-1 WV data is an independent data source of small-scale phenomena at

a global scale. Overall, such an automated ocean SAR image classification tool open paths
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for a broader geophysical application of maritime S-1 WV acquisitions. Although there is

inevitable limitation for the CMwv tool, the amount of classified SAR images is sufficiently

big to investigate global features of one phenomena, such as atmospheric conditions and

characteristics of MABL rolls focused in this thesis.

2.4.3 Assessment of roll detection using Sentinel-1 SAR

Taking advantage of the new and large classified S-1 WV SAR dataset, we firstly examine the

population of roll events. This is a complement to the classification model performance on

identifying roll events from the global massive S-1 WV SAR images. In addition to that, SAR

capability for mapping and characterizing roll imprints on SAR backscatter across the S-1 WV

configurations is also examined for the first time at global scale. Data used in this separate

study are the wave mode (WV) images collected by S-1 satellites in 2016-2017. These 20

km by 20 km SAR images are acquired at two incidence angles of 23 ◦ (WV1) and 36.5◦

(WV2) in VV or HH. In specific, sim1.37 million of automatically-classified WV scenes are

examined. For each scene, we extract the roll-induced backscatter modulation and directional

information for joint analysis with the collocated ERA5 winds.

The classification model is found has limitation in identifying weak roll imprints with a

4% baskscattering threshold for both WV1 and WV2 in VV and HH. This recalls the future

model improvement by reinforcing the representative of the hand-selected training dataset.

Statistics of the identified roll events show a low wind speed cut off near 2 m/s and the

higher roll rates from WV2 SAR data and for up-/down wind situation. This is due to the

fact that roll imprints are visible much clearer on images of WV2 and at up-/down winds

based on the analysis of roll-induced NRCS variations. SAR retrieval of the wind speed

variation caused by rolls confirms its higher values at crosswind and illustrates the first global

estimation of about 8% (±3.5%) for average and across all wind speeds. These more stationary

rolls observed in WV1 crosswind are mostly occur in more unstable atmospheric conditions,

distinct from other relative wind directions. It implies that the SAR-imaged roll imprints are

largely associated with roll vortex in various time and/or length scales. The 8% mean wind
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perturbation value was then used in the idealised GMF simulations to further assess the wind

speed and direction dependence of S-1 SAR WV responses to roll modulation effects. All the

highlights advance our understanding of SAR imaging sensitivity to the km-scale MABL rolls

that has implications for SAR applications seeking wind direction estimates from roll imprints

and, more broadly, boundary layer studies over the ocean.

2.4.4 Insights into the global feature of MABL rolls

The new classified S-1 WV SAR data provide quite valuable and detailed structure information

of the atmospheric boundary layer at the bottom. As a preliminary step, we focus on the global

feature of MABL rolls in terms of the synoptic conditions and their structural characteristics.

More than 125, 000 roll events observed by S-1A WV2 in 2016-2018 are involved in the

statistical analysis. Each image has been collocated in time and space with the ERA5 surface

variables, and analysed in frequency domain for roll orientation and wavelength extractions.

As expected, up to 90% of roll events occur in slightly unstable to near-neutral atmospheric

conditions, distinct from the total average. Quantitative examinations also unveiled the

latitudinal dependence of atmospheric stratification using the bulk Richardson number, which

is unstable in the tropics while near-neutral at mid-latitudes. Roll orientation is found to

systematically swing between two angles with respect to the surface wind. One angle is

presented towards and one away from the geostrophic winds with latitudes beyond and within

±30◦, respectively. The low- and mid-latitude angle contrast seems linked to the westerlies

and trade wind belts, suggesting the significance of air flow directions in roll dynamics. This is

expected to be explained by the horizontal Coriolis force effects on geophysical fluid dynamics

as addressed in several theoretical investigations, but neglected in most. In terms of the

multi-scale nature of roll vortices, our analysis shows nearly equal number of single-, double-

and triple-length scales. Aspect ratio of these narrow rolls ranges from 0.5 to 8 with mean of

2.9, consistent with previous observations. Although gaps still exist in temporal and spatial

coverage, it is the first time to condense MABL rolls at global scale. The statistical behavior

of rolls summarized from the WV SAR measurements cannot be resolved by any other means.
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2.5 Conclusions and perspectives

The present work in this thesis provides a basis to move application of ocean SAR remote

sensing beyond ocean waves/swell and the case study stage. While only concentrated on the

MABL rolls, these global WV SAR data has shown great potential for broader geophysical

application, augmenting its operational role that supports ocean wave prediction systems.

The proposed SAR imagery dataset with individual annotations of oceanic or atmospheric

phenomena allows new efforts to test, validate and benchmark different methods for the

identification of key geophysical processes. It also supports limited statistical investigation

of the geophysical properties for these ten pre-defined phenomena. Thus, such a dataset of

labelled ocean SAR imagery is put forward for both scientific and engineering applications for

different communities such as deep learning, remote sensing, oceanography and meteorology.

Future work on the dataset are suggested to include more geophysical categories and introduce

multi-labelling if multiple phenomena exist within one SAR image. The refinement of such a

ocean SAR image dataset may need numerous researchers to work together for years from the

experience of other image dataset collections.

The deep-learning technique provides a promising solution that advances the traditional

way for automated classification of these massive S-1 WV SAR images. Our study demon-

strates a typical procedure for training and validating a deep CNN model towards ocean

SAR scene classification. While it muse be noted that the trained CNN model is somewhat

dependent on the quality of the training dataset. This is because the ability of this deep CNN

model to differentiate between phenomena in each SAR image relies on the efficient extraction

of optimal features into convolutional layers, and then to amplify feature differences through

pooled layers. That is, distinct image features cannot be extracted if the phenomena are

insufficiently clear on SAR images. Therefore, one of important outlooks in improving the

classification model performance is to refine the training dataset as mentioned above. Another

perspective is to include the geographic information of SAR data in deep learning approaches.

Latitude is just one of many possible important and obvious data inputs, helping for example,

to limit sea ice and iceberg detection windows to cold waters. In addition, other deep learning
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techniques such as pixel-level based classification, object detection and image segmentation

are expected to efficiently target the localized phenomena within each SAR scene.

Assessment of the classified roll events from S-1 WV SAR data confirmed the model

limitation in identifying the weak roll imprints, and also advanced our understanding of C-band

SAR sensitivity in mapping roll modulations on ocean surface. It also open avenues for further

studies. On one hand, the revealed differences in SAR sensitivity to waves generated by roll

impacts, particularly for crosswind views, should be further investigated. This may lead to new

approaches for identifying unstable conditions, and Richardson number RiB retrieval methods.

On the other hand, though the weak roll imprint cases are excluded in the present classified

dataset, this S-1 SAR database is still state-of-the-art in terms of providing an overall global

view of roll field characteristics (wavelength & orientation) as well as the ability to relate

these data to near-surface forcing from the tropics to high latitudes. This massive classified

WV SAR images can thus be used to support boundary layer studies over the world’s ocean

to advance our understanding of the km-scale MABL coherent roll structures on turbulent

momentum fluxes.

Preliminary investigation focused on the global feature of MABL rolls. Statistics of the

aspect ratio and the roll angle with respect to surface wind direction are in good alignment

with reports from roll theoretical predictions and numerous field studies. More importantly,

the latitudinal variations of roll occurrence atmospheric conditions and basic characteristics

were evidenced, important findings to both roll-shaped boundary layer and related air-sea

interaction studies. These suggest in-depth theoretical investigations of roll dynamics varying

with latitudes. One starting point is to examine the horizontal Coriolis force effects on roll

formation, which is often neglected in geophysical fluid problems. As such, roll-shaped

boundary layer shall benefit and be extended to a broader range of applications across the

global ocean.

Future work will also focus on the mapping of each classification category in time and

space help to gain better understandings regarding air-sea interactions at scales of 5 m-10 km.

Joint-analysis of MABL rolls with convective cells is interested to be performed. These two

processes that are recognized as organized large eddies in the boundary layer can transition



Chapter 2. Scope of this thesis 37

from one to another. Our experimental exploitation shows that the seasonal alternation between

rolls and cells seems closely associated with the South Asia monsoon and Somalia ocean

currents. The statistics of MABL rolls and cells should advance our knowledge of ABL

dynamics, as well as the impacts of their presence on local and global climates. More broadly,

the global C-band S-1 WV SAR data holds great potential to define the bottom properties of

MABL without weather and sun light limitations. If linkages between SAR observed MABL

imprints and atmospheric stratification can be quantified, it would be possible to retrieve

the near-surface stratification parameter independently of individual sea surface temperature

and near-surface air temperature measurements. The SAR-derived stratification should help

constrain satellite-based surface flux estimates directly.
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3.1 A labelled ocean SAR imagery dataset of ten geophysi-

cal phenomena from Sentinel-1 wave mode
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Abstract
The Sentinel‐1 mission is part of the European Copernicus program aiming at pro-
viding observations for Land, Marine and Atmosphere Monitoring, Emergency 
Management, Security and Climate Change. It is a constellation of two (Sentinel‐1 
A and B) Synthetic Aperture Radar (SAR) satellites. The SAR wave mode (WV) 
routinely collects high‐resolution SAR images of the ocean surface during day and 
night and through clouds. In this study, a subset of more than 37,000 SAR images 
is labelled corresponding to ten geophysical phenomena, including both oceanic and 
meteorologic features. These images cover the entire open ocean and are manually 
selected from Sentinel‐1A WV acquisitions in 2016. For each image, only one preva-
lent geophysical phenomenon with its prescribed signature and texture is selected 
for labelling. The SAR images are processed into a quick‐look image provided in 
the formats of PNG and GeoTIFF as well as the associated labels. They are con-
venient for both visual inspection and machine learning‐based methods exploita-
tion. The proposed dataset is the first one involving different oceanic or atmospheric 
phenomena over the open ocean. It seeks to foster the development of strategies or 
approaches for massive ocean SAR image analysis. A key objective was to allow 
exploiting the full potential of Sentinel‐1 WV SAR acquisitions, which are about 
60,000 images per satellite per month and freely available. Such a dataset may be 
of value to a wide range of users and communities in deep learning, remote sensing, 
oceanography and meteorology.
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1  |   INTRODUCTION

The world's ocean covers more than 70% of the Earth's sur-
face, playing a crucial role in influencing the climate sys-
tem. Comprehensive measurements and observations of 
ocean surface are essential to better understand air–sea in-
teractions as well as to develop high‐resolution climate mod-
els (Topouzelis and Kitsiou, 2015; Schneider et al., 2017). 
Among the various space‐borne sensors, Synthetic Aperture 
Radars (SAR) met both high‐resolution and all weather 
day‐and‐night imaging criteria. SAR backscattering is very 
sensitive to the sea surface roughness composed of centime-
tre‐scale waves. When air–sea interactions are strong enough 
to modulate these short waves, SAR can capture signatures of 
geophysical processes such as ocean waves (Ardhuin et al., 
2009; Collard et al., 2009), atmospheric processes (Atkinson 
and Wu Zhang, 1996; Young et al., 2005; Alpers et al., 2016) 
and oceanic processes (Espedal et al., 1996; Jia et al., 2018). 
Therefore, SAR is a unique tool for extensive observation 
of ocean–atmosphere interactions at sub‐km scales (Brown, 
2000; Jackson and Apel, 2004).

SAR sensors have a variety of acquisition modes. A 
common one is wide‐swath which provides data over sev-
eral hundred kilometres. More specifically for Sentinel‐1, 
wide‐swath acquisitions in TOPS mode (De Zan and 
Monti Guarnieri, 2006) (Extended wide swath EW and 
Interferometric wide swath IW) are mainly used for moni-
toring of sea ice areas and coastal regions over the ocean. 
Due to power and data constraints of contemporary systems, 
the wide‐swath mode with high‐resolution capability is not 
able to collect data continuously and globally. The 'WaVe 
mode' (WV or WM), by contrast, is dedicated to measur-
ing ocean waves from the global open ocean. This mode 
was firstly introduced on Earth observation mission by the 
European Space Agency (ESA) for the European Remote 
Sensing (ERS‐1/2) missions (1991–2003) (Kerbaol et al., 
1998). Since then, acquisitions in WV have been pursued 
on Envisat advanced SAR (ASAR) mission (2002–2012) 
(Stopa et al., 2016) and now Sentinel‐1 (Torres et al., 2012), 
providing more than 25  years of high‐resolution observa-
tions of the world's ocean. The recent launches of Sentinel‐1 
(S‐1) A and B in April 2014 and 2016 for the European 
Copernicus Program enable routine SAR WV acquisitions 
to be available. These two sensors collect nearly 120,000 
WV vignettes with ocean surface imprints of 20 × 20 km in 
each month. Their spatial resolution is about 5 m. The pri-
mary intent of the small‐sized vignettes is to provide ocean 
swell directional spectra as an ESA Level‐2 ocean product 

(Torres et al., 2012). However, they also capture a much 
wider range of geophysical processes that are of significant 
interest in ocean–atmosphere interactions. Global coverage 
is combined with high resolution and routine acquisitions in 
all weather conditions during day and night; and at such high 
resolution (5 m) make S‐1 WV a presence and unique data 
source for new geophysical applications.

In this study, we define ten categories of different oce-
anic or atmospheric phenomena. These are the most com-
mon phenomena that can be observed in S‐1 WV vignettes. 
The categories are pure ocean waves (POW), wind streaks 
(WS), micro convective cells (MCC), rain cells (RC), bi-
ological slicks (BS), sea ice (SI), icebergs (IB), low wind 
areas (LWA), atmospheric fronts (AF) and oceanic fronts 
(OF). Details on these definitions are introduced in Section 
2. A labelled SAR WV dataset containing 37,553 images 
is then established. Within each image, only the preva-
lent geophysical phenomenon with clear signature and/
or pattern is presented. The images are derived from the 
Single Look Complex (SLC) product of S‐1 WV (Torres 
et al., 2012), and provided in formats of Portable Network 
Graphics (PNG) and Georeferenced Tagged Image File 
Format (GeoTIFF). The proposed dataset, called TenGeoP‐
SARwv for ‘Ten Geophysical Phenomena from SAR wave 
mode’, is provided by IFREMER and publicly available 
at sea scientific open data publication (SEANOE): http://
www.seanoe.org/data/00456/​56796/​. The methodology 
used to create the dataset is described in section 3. Such 
a labelled dataset could benefit the strategic development 
of massive ocean SAR data analysis. Deep learning signal 
processing algorithms that are now a common form of su-
pervised learning may be exploited (LeCun et al., 2015; 
Cheng et al., 2017). In addition, this unique dataset is also 
significant to the communities of remote sensing, ocean-
ography and meteorology. Discussion and perspectives re-
garding to potential applications and dataset refinement are 
given in section 4.

2  |   GEOPHYSICAL PHENOMENA 
BY SENTINEL‐1 WAVE MODE

The ESA S‐1 mission is a constellation of two polar orbit-
ing, sun‐synchronous satellites (S‐1 A and S‐1 B) launched 
in April 2014 and 2016 respectively (Torres et al., 2012). 
These two satellites both have a 12‐day repeat cycle at 
the equator, and are phased at 180° to provide an effec-
tive 6‐day repeat cycle. For each satellite, the expected 

K E Y W O R D S
manual labelling, ocean surface phenomena, Sentinel-1 wave mode, Synthetic aperture radar
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life time is 7 years. Both carry a C‐band SAR instrument 
with centre frequency of 5.405 GHz (5.5 cm wavelength). 
There are four exclusive imaging modes (Interferometric 
Wide swath, Extra Wide swath mode, Strip Map and Wave 
Mode1) for the S‐1 SAR sensors. WV is the default op-
erational mode over open ocean unless wide‐swath SAR 
images are requested for particular applications. Note that, 
at present, there is no WV acquisition in the Arctic Ocean 
and closed seas such as Red, Black, Mediterranean and 
Caribbean seas. And in this study, we only use WV data 
acquired by Sentinel‐1A in 2016. However, extensive vali-
dations have confirmed that SAR images acquired by S‐1B 
are characteristic essentially equivalent to that from S‐1A.

2.1  |  Acquisitions

The vignettes of S‐1 WV are collected in 20 × 20 km scenes 
at two alternate incidence angles of 23.8° (WV1) and 36.8° 
(WV2). They are acquired over the global open ocean with 
an along‐track sampling separation of 100 km and an across‐
track distribution of roughly 200 km. Pixels within each vi-
gnette have 5  m ground resolution and can be obtained in 
VV (default) or HH polarization. For the polarization con-
figurations, the first letter stands for the polarization of the 
emitting transmitter (as SAR is an active radar), whereas the 
second one is for the receiver polarization configuration. This 
study only relies on vignettes acquired in VV polarization as 
they account for more than 99% of all S‐1 WV acquisitions. 
The S‐1 WV backscatter consists of intensity and phase his-
tory and can be potentially processed into the SLC products 
for wave applications (Torres et al., 2012). Using the digital 
number (DN) of these complex products and Look‐Up‐Table 
(sigmaNaught) annotated in the product, we compute the 
normalized radar cross section σ0. This is the common radar 
parameter used to describe radar return backscattered by the 
ocean surface to the SAR sensors.

2.2  |  Ten geophysical phenomena

In this subsection, the ten defined oceanic or atmospheric 
phenomena are presented. Due to the 20‐km WV image 
size, scales of observed geophysical phenomena are limited 
to about between 0.1 and 5 km. We focus on the prescribed 
ten geophysical phenomena because they are commonly 
observed by the S‐1 WV SAR vignettes. It is worth noting 
that the WV can also capture signatures of other geophysi-
cal phenomena like internal waves (Jia et al., 2018) and 
atmospheric gravity waves (Li et al., 2013), and signatures 
of ships or platforms. While such phenomenaS are seldom 
seen in the open ocean, we may include those categories in 
this dataset in the near future.

2.2.1  |  Pure ocean waves (POW)

Ocean waves including ocean swell and wind waves are 
the most prevalent feature in all SAR images (Fu and Holt, 
1982; Jackson and Apel, 2004). Signatures of ocean waves 
often coexist with other oceanic and/or atmospheric phe-
nomena. The short wind waves (centimetre to metre scale) 
are produced by local surface winds while ocean swell are 
longer (hundreds of metres) surface waves that are gener-
ated by distant weather systems such as storms or cyclones. 
These mechanical waves are propagating without any wind 
forcing after the wind blows for a period of time over a 
fetch of water (Ardhuin et al., 2009). Ocean waves can be 
observed in all ocean basins, and their measurement with 
SAR relies on the theories of microwave scattering from 
rough sea surface (Hasselmann et al., 1985; Collard et al., 
2009; Stopa et al., 2016). SAR imaging of swell waves is 
typically influenced and distorted by different geophysical 
phenomena. This makes wave interpretation of SAR im-
agery difficult. Our definition of pure ocean waves (POW) 
is a SAR vignette that contains boundless ripples through-
out the image, as displayed in Figure 1a. The following 
criteria are adopted for this category:

1.	 Periodic signatures of ocean waves dominate the whole 
image

2.	 Wavelengths are between 0.1 and 0.8 km
3.	 Intensity modulation within the scene is homogeneous
4.	 There is no other competing geophysical feature or pattern

2.2.2  |  Wind streaks (WS)

Wind streaks are known to be the sea surface imprint of at-
mospheric boundary layer (ABL) rolls (Vandemark et al., 
2001). They usually occur in near‐neutral to moderately un-
stable stratification conditions and span the whole depth of 
ABL. The approximately wind aligned wind streaks are the 
result of an embedded overturning coherent secondary cir-
culation in the boundary layer that is induced by the vertical 
shear of the mean horizontal wind that can be further modi-
fied by the mean vertical stratification profile (Brown, 1980; 
Etling and Brown, 1993; Young et al., 2002). The enhanced 
upward and downward wind perturbations near the surface 
between roll circulations are usually strong enough to modu-
late centimetre‐scale waves and therefore induce organized 
imprints on the sea surface roughness. Consequently, wind 
streaks are frequently observed by SAR images as periodic, 
quasi two‐dimensional and roll‐shaped patterns (Alpers and 
Brümmer, 1994; Young et al., 2002), as displayed in Figure 
1b. It shows that the periodic pattern of wind streaks is super-
imposed at top signatures of ocean waves. In addition, some 
vignettes of wind streaks contain cell‐shaped patterns (Micro 

(1)�0 =
|DN|2

sigmaNaught2 .
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convective cells). This indicates the transition between two 
different regimes in the marine ABL (Atkinson and Wu 
Zhang, 1996; Jackson et al., 2004). This transient stage can 
sometimes be tricky to decipher between the two classes. The 
criteria of wind streaks (WS) are:

1.	 Periodic linear features dominate the whole image
2.	 Wavelengths are between 0.8 and 5 km
3.	 Intensity modulation within the scene is homogeneous
4.	 Periodic signatures of ocean waves can coexist

2.2.3  |  Micro convective cells (MCC)

Atmospheric convective cells are coherent structures of up-
drafts and downdrafts in the ABL (Khalsa and Greenhut, 
1985; Atkinson and Wu Zhang, 1996). The local tempera-
ture difference between air and sea produces strong vertical 
exchange of heat. It creates cell‐shaped rising/descending 
air, which leads to horizontal variability of sea surface wind 
speed. This wind variability modulates the centimetre‐scale 
waves and thus the sea surface roughness. Therefore, coher-
ent, periodic and cell‐shaped patterns are normally visible 
on SAR images (Babin et al., 2003). Note that the scale (ra-
dius) of atmospheric convective cells captured within these 
20‐by‐20 km WV vignettes is about 1 km. It indicates that 
the cells here are mainly associated with shallow dry con-
vection, where latent heat from condensation plays no role 
in the dynamics (Atkinson and Wu Zhang, 1996). This re-
sults in a category that we define as micro convective cells 
(MCC). However, roll‐shaped pattern caused by wind streaks 
are also often visible in such vignettes. The key to distinguish 

between WS and MCC categories is based on which pattern 
dominates the image. An example of MCC vignette is dis-
played in Figure 1c. The criteria of this category are:

1.	 Coherent, periodic and cell‐shaped features dominate the 
whole image

2.	 Scales are about 1 km
3.	 Intensity modulation within the scene is homogeneous
4.	 Periodic signatures of ocean waves can coexist, but they 

can be strongly distorted

2.2.4  |  Rain cells (RC)

Rain can occur in many forms, such as downdraft, stratified 
rain, rain bands, squall lines and so on. Although the scat-
tering mechanisms of C‐band SAR for rain signatures are 
not fully understood, they can be generally characterized by 
high and low contrasts in backscatter (Alpers et al., 2016). 
Here we only focus on the rain cells that are typically associ-
ated with downdraft patterns. Their signatures can be clearly 
captured by WV SAR vignettes. Our definition of rain cells 
(RC) largely concentrate on the vignettes containing circu-
lar‐ or semi‐circular–shaped areas. This is typical signatures 
of wind gust fronts caused by the downdraft. Besides, bright 
and/or dark patches usually appear inside the circular areas. 
Dark patches are usually explained by signal attenuation due 
to rain droplets in the atmosphere. Bright areas are generally 
associated with splash due to the heavy rain impacts sea sur-
face roughness. An example is given in Figure 1d. Note that 
the circular shape of RC is expected to be larger than that of 
MCC and may be sometimes larger than the vignette size. 
Our criteria for this category are:

F I G U R E  1   From (a) to (g) are image examples of pure ocean waves, wind streaks, micro convective cells, rain cells, biological slicks, sea 
ice, icebergs, low wind area, atmospheric front and oceanic front

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Chapter 3. Publications 42



      |  109WANG et al.

1.	 Circular‐ or semi‐circular–shaped areas are visible on 
SAR image

2.	 There are bright and/or dark patches inside the circular areas
3.	 Intensity modulation within the scene is heterogeneous
4.	 Periodic signatures of ocean waves can coexist with RC

2.2.5  |  Biological slicks (BS)

Biological slicks (BS) in the ocean are natural films that accu-
mulate at the water–air boundary (Jackson et al., 2004). These 
surface slicks are typically only one molecular layer thick 
(approximately 3 nm) and consist of sufficiently hydrophobic 
substances. This thin film influences air–sea fluxes of mo-
mentum, heat and gas (Espedal et al., 1996). Under low wind 
speeds, sea surface capillary and short gravity waves can be 
damped by the natural films. Thus, their signatures are usually 
visible as dark filaments on SAR images. The slicks captured 
by S‐1 WV are generally randomly distributed over sea sur-
face, see Figure 1e. Due to the coverage limitation of WV vi-
gnettes, the scale of slicks is hard to be quantified. However in 
some cases, they can be tracers of the ocean circulation such as 
surface currents, ocean fronts and eddies (Johannessen et al., 
1996). The following criteria are used to define this category:

1.	 Dark filaments are visible on SAR image
2.	 Intensity modulation within the scene is heterogeneous
3.	 Periodic signatures of ocean waves can coexist with BS, 

but they can be distorted

2.2.6  |  Sea ice (SI)

Sea ice is defined as frozen ocean water which could be 
growing or melting. It is typically sorted according to 
whether or not it is attached to the shoreline, or described 
based on its development stages, such as new ice, nilas, 
young ice, first‐year and old (Jackson et al., 2004). SAR 
backscattering of sea ice essentially depends on the ice type, 
and therefore can be quite diverse due to the wide range of 
ice types. The textures of sea ice on SAR images are fairly 
complex. They can be roughly characterized by web shapes, 
three‐dimensional structure, wiggly fractures, and high con-
trast (dark and bright patches) (Soh and Tsatsoulis, 1999). 
Our aim here was not to identify different sea ice types, but 
rather distinguish sea ice from open ocean water. Therefore, 
this category contains SAR vignettes of all ice types in the 
Southern Ocean near Antarctica. One sea ice example is 
shown in Figure 1f. The criteria of this category are:

1.	 Textural contexts are complex, which can be web‐shaped, 
wiggly fractures, pebble‐like, fractal and so on

2.	 Patches with sharp boundaries are usually visible on SAR 
image

3.	 There are strong intensity contrasts between different 
patches

4.	 Periodic signatures of ocean waves can coexist, but they 
can be severely distorted

5.	 Vignettes are mainly collected from the Southern Ocean 
near Antarctica

2.2.7  |  Iceberg (IB)

Icebergs are large pieces of frozen freshwater that have bro-
ken off a glacier or an ice shelf and are floating freely in open 
water or sea ice area. They are categorized according to the 
size including growler (0–5  m), bergy bit (5–15  m), small 
berg (15–60 m), medium berg (60–120 m), large berg (120–
220 m) and very large berg (>220 m), and/or with respect to 
their shape such as tabular, non‐tabular, blocky, wedge, dry 
dock and pinnacle (Jackson et al., 2004). In SAR images, 
icebergs appear as a cluster of pixels that have the uniformly 
high/low backscatter signals compared to the surroundings 
(sea water and sea ice). In our definition, the iceberg vignette 
contains one or several icebergs that are visible as bright tar-
gets. Possibly, there is a relatively dark shadow associated 
with the small bright cluster. This category focuses on the 
icebergs in the open sea water, as displayed in Figure 1g. 
Thus, the criteria of this category are:

1.	 Bright or Dark targets associated with dark shadows 
are visible on SAR image

2.	 Intensity modulation of the surroundings is homogeneous
3.	 Periodic signatures of ocean waves can coexist with IB
4.	 They are mainly distributed in the Southern Ocean near 

Antarctica

2.2.8  |  Low wind areas (LWA)

When the local surface winds are too weak, sea state normally 
remains stationary for hours. Generally, there is no signature 
of ocean swell propagation and the small cm‐scale rough-
ness is absent too. Consequently, SAR backscatter from such 
sea surface is weak, resulting in dark areas on SAR images 
(Topouzelis and Kitsiou, 2015). Note that low wind condition 
is also necessary for the presence of biological slicks on SAR 
image. Thus, signatures of BS may exist at the boundaries of 
dark areas. In addition, LWA can also occur in areas where 
wind speed and/or direction suddenly change. Appearance of 
such LWA typically has a very large dark area accompanying 
by an atmospheric front. To distinguish from the definition 
of atmospheric front, the LWA category focuses on the vi-
gnettes that are dominated by a unique dark patch. An exam-
ple is shown in Figure 1h. The criteria of LWA are:
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1.	 A unique dark patch dominates the SAR image
2.	 Intensity modulation within the scene is heterogeneous
3.	 Periodic signatures of ocean waves are absent

2.2.9  |  Atmospheric front (AF)

sAtmospheric fronts are associated with air mass boundaries 
and thus strong near‐surface horizontal gradients of wind, 
temperature and/or humidity (Johannessen et al., 1996). 
Unstable atmosphere conditions generally lead to occur-
rence of rain and low and high wind areas along the fronts. 
Therefore, signatures of atmospheric fronts observed by SAR 
are largely complex and have been called different names, 
including lobe, cleft, vortex, front and secluded front, based 
on their pattern (Young et al., 2005). Figure 1i presents a 
vignette example of a typical atmospheric front observed by 
S‐1 WV. This category is defined by the following criteria:

1.	 The edge of the front is typically not sharp, but rather 
a bit mottled or occluded

2.	 Besides the front, there are obvious intensity gradients
3.	 Intensity modulation of the surroundings is homogeneous
4.	 Periodic signatures of ocean waves can coexist with AF

2.2.10  |  Oceanic front (OF)

Oceanic fronts are the boundaries between two distinct water 
masses that can be caused by a difference in oceanic tem-
perature, salinity and/or density. The water masses near an 
oceanic front usually move in different directions, leading 
to downwelling or upwelling along the front and hence cre-
ate a sea surface roughness anomaly (Rascle et al., 2017). 
Enhanced or reduced sea surface roughness anomalies are 
visible as the bright or dark lines in SAR vignettes, as dis-
played in Figure 1g. Beside such lines, there are no obvious 
intensity gradients on the SAR image. This is the main dis-
tinction between OF and AF. The criteria of this category are:

1.	 A thin bright or dark mono‐filament like linear feature 
is visible on SAR image

2.	 There is no obvious intensity gradient across the linear 
feature

3.	 Intensity modulation of the surroundings is homogeneous
4.	 Periodic signatures of ocean waves can coexist with OF

3  |   DATASET CREATION
3.1  |  SAR image processing

The 20 × 20 km image with 5 m resolution provides an image 
with more than 4,000 pixels in range and azimuth directions. 
This full‐scale WV intensity image is not necessary for visual 

interpretation of oceanic or atmospheric phenomena. For in-
stance, an example of a full resolution σ0 image with features 
of wind streaks is shown in Figure 2a. It is clear that the wind 
streaks are concealed due to the low intensity contrast. In ad-
dition, the subplot of σ0 mean values along range is displayed 
in Figure 2a*. It indicates that values of σ0 slightly vary with 
different incidence angles within images. Therefore, three 
processing steps are applied to σ0 images to enhance broad‐
scale features of oceanic and atmospheric phenomena.

3.1.1  |  Re‐calibration of σ0

The σ0 as measured by SAR over the ocean is highly depend-
ent on the local ocean surface wind and viewing angles of 
the radar (incidence and azimuth angles). For a given wind 
speed, the overall σ0 decreases along the range direction, 
as displayed in the inset plot of Figure 2a*. This decreas-
ing trend in range is mainly associated with the increasing 
incidence angle, which is common to all C‐band VV SAR 
imagery. The empirical geophysical model function, such as 
CMOD5.N for VV C‐band SAR (Hersbach, 2010), models 
the σ0 dependence on wind vector and radar incidence angle. 
To reduce the incidence angle effect, we use CMOD5.N to 
construct a reference factor by assuming a constant wind of 
10 m/s at 45° relative to the antenna look angle. The σ0 of 
each vignette can then be re‐calibrated by dividing the refer-
ence factor. Note that the σ0 values are in linear scale. Such 
re‐calibrated σ0 is referred as sea surface roughness (ssr) and 
is shown in Figure 2b. Specifically the ssr can be written:

where inc is the radar incidence angle for each pixel. The differ-
ence of intensity in ssr image between near (left) and far (right) 
field is significantly reduced (Figure 2b*.

3.1.2  |  Downsampling

The fine‐resolution SAR vignettes are not favourable for 
visual interpretation of larger scale geophysical features, 
especially since our category definitions focus on phenom-
ena with scale of tens to thousands of metres. The expected 
length scales of larger phenomena corresponding to the 
category definition are from 100 m to 5 km. Therefore to 
better highlight the larger features, a moving averaging win-
dow of 10‐by‐10 pixels is applied to the ssr images. This 
averaging also reduces the speckle noise of SAR vignettes 
(Lee et al., 1994). The ssr intensity images (Figure 2b) are 
then downsampled by 1/10 yielding a resolution of 50 m, as 
shown in Figure 2c. As shown, the pattern of wind streaks 
overlapping on ocean swell is appreciably highlighted. It is 
worth noticing that the spatial filtering applied in this study 

(2)ssr= σ0
CMOD5.N(10,45,inc)
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achieves similar results as for the classical SAR multi‐look 
technique. But the later performs the filtering in the image 
spectral domain, which is relatively time‐consuming.

3.1.3  |  Normalization

1.	 For human visual inspection To enhance intensity con-
trast of the downsampled images, a statistical method 
of percentile is used to normalize each vignette. By 
sorting intensity values of an image, the proportion of 
principal data that falls between two given percentiles 
can be estimated (Natrella, 2013). For each image, this 
method split the ordered intensity values into hundredths, 
and pixel values between the 1st (minimum) and 99th 
(maximum) are normalized into a 8 bits grey scale ([0, 
255]). With this processing, potential remaining anomaly 

(speckle noise) in the ssr values are effectively filtered. 
In Figure 2d, the image of wind streaks in grey scale 
after normalization is presented. It shows that the nor-
malized image with enhanced contrast is better suited 
for visual interpretation of our identified oceanic and 
atmospheric phenomena.

2.	 For machine learning‐based exploitation For the sake 
of machine learning approaches, another normalization 
process is also implemented. As opposed to the dataset 
used for human visualization where the retained minimum 
and maximum values are specific for each image, fixed 
values of 0 and 3 common to the entire database are ap-
plied to all downsampled ssr images. In between these two 
values, the quantization process is instead performed on 
16 bits ([0, 65,535]) ensuring all texture and radiometric 
information are numerically maintained.

F I G U R E  2   SAR image processing of the case with wind streaks. (a) σ0 image (b) image of sea surface roughness derived from σ0 (c) 
intensity image down sampled from roughness (d) intensity image with enhanced contrast. Subplots of * in (a) and (b) are profiles of σ0 and 
roughness images along the range direction

(a) (b)

(c) (d)
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3.2  |  TenGeoP‐SARwv dataset

The TenGeoP‐SARwv dataset is established based on the 
acquisitions of S‐1A WV in VV polarization. This dataset 
consists of 37,553 SAR vignettes divided into our ten geo-
physical categories. For each category, the selection of SAR 
images covers the full year of 2016, and is manually labelled 
through visual inspection following the criteria documented 
in Section 2.2. Two screening standards are adopted. One 
is that only one individual geophysical phenomenon domi-
nates across the whole vignette. The other one is that pattern 
structure of this phenomenon is clearly visible by human eye. 
Table 1 presents the counts of each category for each month. 
We attended to have 400 images labelled for each class in 
each month. However, we could not reach this number for the 
OF category. Moreover, only a few IB images were found in 
May to October due to the iceberg seasonality.

3.3  |  Data format

The image patches are provided in formats of Portable 
Network Graphics (PNG) and Georeferenced Tagged Image 
File Format (GeoTIFF). PNG files are processed with floating 
normalization for better visualization of human eyes. While 
in GeoTIFF files, high precision values (16 bits) as well as 
the geographical information are kept for exploitation of ma-
chine learning‐based approaches and geophysical application. 
In addition, text files containing description of categories and 
information for the file name, labelling, swath, capture time, 
and centre latitude and longitude of each image are also pro-
vided. These SLC products of S‐1 WV are freely available 
at 'Sentinel open access hub' of ESA https​://senti​nel.esa.int/
web/senti​nel/senti​nel-data-access. Notice that the GeoTIFF of 
TenGeoP‐SARwv dataset is completely different from that of 
ESA SLC product. The latter contains original data and much 
more image processing information than this labelled dataset.

4  |   DISCUSSION AND 
PERSPECTIVES

SAR images capture signatures of various geophysical 
phenomena that are associated with air–sea interactions. 
Most of them have been previously discussed to provide 
a comprehensive understanding of their imprints on SAR 
imagery (Alpers and Brümmer, 1994; Young et al., 2005; 
Li et al., 2013; Alpers et al., 2016). Several of these phe-
nomena factor significantly in the vertical transport of 
heat, moisture and momentum, and play key roles in the 
climate system (Khalsa and Greenhut, 1985; Ufermann 
and Romeiser, 1999; Vandemark et al., 2001; Schneider 
et al., 2017). Although understood, these manifestations 
of key geophysical phenomena are not systematically an-
alysed or ingested in numerical models. In particular, au-
tomated detection and classification of these phenomena 
from the numerous SAR images is still challenging. The 
proposed SAR imagery dataset with individual annota-
tions of oceanic or atmospheric phenomena should allow 
new efforts to test, validate and benchmark different 
methods for the identification of key geophysical pro-
cesses. The annotations will allow massive classification 
of the data and open new perspectives for global or sea-
sonal analysis of these phenomena. This work is a step 
towards broadening the scientific value of 25 years WV 
data acquired by ERS‐1/2, Envisat ASAR and Sentinel‐1 
(Kerbaol et al., 1998; Torres et al., 2012; Stopa et al., 
2016). In addition, this labelled dataset can be directly 
used to statistically investigate the geophysical proper-
ties of the ten defined phenomena and characteristics of 
the imaged features. Therefore, such a dataset of labelled 
ocean SAR imagery is put forward for both scientific 
and engineering applications for different communities 
such as deep learning, remote sensing, oceanography and 
meteorology.

T A B L E  1   SAR image numbers of the labelled dataset for each class in every month of 2016

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

POW 406 407 408 409 406 408 410 409 409 409 408 411 4,900

WS 406 409 403 407 404 391 396 398 397 398 384 404 4,797

MCC 396 384 370 384 385 365 386 388 380 391 384 385 4,598

RC 398 399 398 395 398 391 395 393 393 396 394 390 4,740

BS 398 394 395 398 397 339 397 398 397 400 398 398 4,709

SI 387 150 282 396 396 392 393 393 396 396 396 393 4,370

IB 399 417 308 146 58 29 10 14 12 29 159 399 1,980

LWA 137 137 138 220 201 95 214 144 207 207 241 219 2,160

AF 360 282 301 348 363 234 361 377 378 367 364 365 4,100

OF 61 85 64 102 131 60 116 135 96 108 132 109 1,199

Total 3,348 3,064 3,067 3,205 3,139 2,704 3,078 3,049 3,065 3,101 3,260 3,473 37,553
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4.1  |  SAR image classification with 
deep learning

In recent years, state‐of‐the‐art deep learning based tech-
niques, for example Convolutional Neural Network 
(CNN), have been developed rapidly for image processing 
applications (LeCun et al., 2015). CNN model is a deep 
multilayer architecture that can be trained to automatically 
extract the optimal image feature representations and am-
plify the discrimination between different classes (LeCun 
et al., 2015). This new approach has been widely intro-
duced to remote sensing (Zhang et al., 2016; Chen et al., 
2016; Cheng et al., 2017). However, a lack of high‐quality 
labelled datasets limits further application and develop-
ment of CNN models for ocean SAR images. The pro-
posed TenGeoP‐SARwv dataset could be used as a training 
dataset for the identification and classification of different 
key geophysical phenomena occurring over open ocean. It 
can be used to directly fine‐tune existing CNN models for 
straightforward geophysical applications, or explore new 
CNN architectures to improve feature representations. In 
fact, one relevant work has been conducted and the prelim-
inary result was presented at the International Geoscience 
and Remote Sensing Symposium (IGARSS) in 2018. We 
believe that the large number of images in each of these ten 
classes satisfy the requirement to train a deep CNN model. 
Moreover, unsupervised learning algorithms by combining 
deep learning and reinforcement learning will become far 
more important (LeCun et al., 2015) and can also benefit 
from this dataset. However, there is still room in the pro-
posed dataset for improvement. In the near future, more 
geophysical categories corresponding to other oceanic or 
atmospheric phenomena should be included. In addition, 
some of the vignettes contain multiple geophysical phe-
nomena within the same scene even they are small‐sized 
SAR images. Multi‐labelling of those images is more of 
interest and important to the deep learning community for 
methodologies exploitation.

4.2  |  Ocean SAR remote sensing

Space‐borne SAR provides a unique means to observe the 
ocean surface. Despite the multi‐scale nature of ocean sur-
face waves, C‐band SAR mainly responds to cm‐scale sea 
surface roughness through Bragg resonant scattering (Alpers 
and Brümmer, 1994; Jackson et al., 2004; Li et al., 2013). 
While radar signal depends on radar properties (wavelength, 
polarization, and incidence and azimuth angles), ocean SAR 
imagery can be generally interpreted as variability in sea sur-
face roughness. Different oceanic or atmospheric phenom-
ena are frequently captured by SAR images owing to their 
modulations on near‐surface wind stress as well as on cm‐
scale ocean waves (Vandemark et al., 2001; Alpers et al., 

2016). How strong the modulations should be to make these 
phenomena visible on SAR images is still an open question 
from a statistical point of view. With the TenGeoP‐SARwv 
dataset, one can potentially investigate the environmental 
conditions under which these phenomena occur. This would 
help to better understand their impact on sea surface rough-
ness and therefore how they are imaged by SAR. In addition 
to that, ocean swell is of first interest as they are a funda-
mental phenomenon over the open ocean. The swell spec-
tra inversion from SAR measurements are still distorted by 
the presence of various oceanic or atmospheric phenomena. 
The dataset of TenGeoP‐SARwv can help us quantify the 
impact of these phenomena on SAR forward mapping from 
ocean wave spectrum to SAR image spectra. Therefore, it 
may be possible to recover more ocean swell estimation by 
taking their impact into account. This will benefit the study 
of global and local wave climate. Given the relatively small 
size of the WV vignette (20  km), the imaged area can be 
roughly assumed as homogeneous and often‐time, only one 
phenomenon dominates. However, it should also be men-
tioned that the small and sparse vignette coverage restricts 
imaging of large‐scale phenomena, such as upwelling, inter-
nal waves, hurricanes, among others.

4.3  |  Geophysical investigation

SAR imagery yields high‐resolution imprints of ocean 
surface and provides significant geophysical parameters 
for global weather and climate analysis, demonstrating its 
indispensable contributions to the Earth monitoring sys-
tem (Brown, 2000). Investigation of key geophysical phe-
nomena by utilizing SAR data, for example wind streaks 
and micro convective cells, has been performed for many 
years, mostly in the stage of case and field studies (Alpers 
and Brümmer, 1994; Vandemark et al., 2001; Levy, 2001; 
Babin et al., 2003; Li et al., 2013). Statistical analysis 
of key geophysical phenomenon based on SAR data are 
barely attempted due to lack of reliable dataset. This pro-
posed TenGeoP‐SARwv dataset opens perspective to use 
S‐1 WV acquisitions for global geophysical phenomena 
analysis. Combined with other environmental parameters, 
these labelled SAR vignettes can be used directly to ad-
dress geophysical characteristics of the ten defined specific 
phenomena. The occurrence and atmospheric conditions 
of one specific phenomenon can be of particular interest 
(Levy, 2001). Furthermore, classification of the whole 
acquisitions of S‐1 WV vignette based on the automated 
methodologies inspires us to map the monthly variations 
and seasonal changes of these geophysical phenomena in 
the context of climate modelling. However, the small foot-
print of S‐1 WV limits the observation of larger scale geo-
physical phenomena. Some of the vignettes only capture 
part of the phenomena signatures, for instance, a corner of 
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large‐sized rain cell and a portion of atmospheric front or 
oceanic front.
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A B S T R A C T

Spaceborne synthetic aperture radar (SAR) can provide finely-resolved (meters-scale) images of ocean surface
roughness day-or-night in nearly all weather conditions. This makes it a unique asset for many geophysical
applications. Initially designed for the measurement of directional ocean wave spectra, Sentinel-1 SAR wave
mode (WV) vignettes are small 20 km scenes that have been collected globally since 2014. Recent WV data
exploration reveals that many important oceanic and atmospheric phenomena are also well captured, but not yet
employed by the scientific community. However, expanding applications of this whole massive dataset beyond
ocean waves requires a strategy to automatically identify these geophysical phenomena. In this study, we
propose to apply the emerging deep learning approach in ocean SAR scenes classification. The training is per-
formed using a hand-curated dataset that describes ten commonly-occurring atmospheric or oceanic processes.
Our model evaluation relies on an independent assessment dataset and shows satisfactory and robust classifi-
cation results. To further illustrate the model performance, regional patterns of rain and sea ice are qualitatively
analyzed and found to be very consistent with independent remote sensing datasets. In addition, these high-
resolution WV SAR data can resolve fine, sub-km scale, spatial structure of rain events and sea ice that com-
plement other satellite measurements. Overall, such automated SAR vignettes classification may open paths for
broader geophysical application of maritime Sentinel-1 acquisitions.

1. Introduction

The spaceborne synthetic aperture radar (SAR) is a well-established
technique to collect high-resolution sea surface backscatter data during
day and night in most weather conditions. Over the ocean, SAR images
provide an estimate of the sea surface roughness primarily through
backscattering of short waves (Alpers et al., 1981; Hasselmann et al.,
1985; Hasselmann and Hasselmann, 1991), where this small-scale (cm)
roughness responds to the near-surface ocean winds (Lehner et al.,
2000; Winstead et al., 2006; Mouche et al., 2012). In addition, these
short waves are also modulated by ocean swell (Heimbach et al., 1998;
Lehner et al., 2000; Collard et al., 2009), upper ocean processes
(Johannessen et al., 1996; Rascle et al., 2017; Jia et al., 2018), and
atmospheric phenomena (Alpers and Brümmer, 1994; Young et al.,

2005; Winstead et al., 2006; Li et al., 2007, 2013; Alpers et al., 2016).
Beginning with SEASAT in 1978, ocean SAR imagery has been widely
used to examine numerous air-sea interaction processes (Meadows
et al., 1983; Gerling, 1986; Carsey and Holt, 1987; Fu and Holt, 1982;
Katsaros and Brown, 1991). Since then, ever-improving SAR data have
been obtained by satellite missions that include ERS-1/2, Envisat/
ASAR, RADARSAT-1/2, TerraSAR-X, TanDEM-X and Sentinel-1 con-
stellation.

However, global-scale applications of ocean SAR data remain quite
limited. This is largely because the wide swath SAR images are not
routinely collected over the open ocean. These acquisitions mainly
focus on land, Arctic regions, and near the coasts. Thus, most previous
ocean SAR data investigations only involve limited regional or single
SAR scene case study (Alpers and Brümmer, 1994; Babin et al., 2003;
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Sikora et al., 2011; Li et al., 2013; Alpers et al., 2016). One exception is
the wave mode (WV) dedicated to retrieving ocean wave proprieties at
global scale (Kerbaol et al., 1998; Stopa et al., 2016). The WV has been
developed for ERS-1/2 (1991–2003) and Envisat/ASAR (2002–2012),
and now introduced to Sentinel-1 (2014-present) and Gaofen-3 (2016-
present). It normally collects relative small SAR images (typically
5–10 km square) along the orbit with a distance of about 100 km in
between. This is sufficient for ocean wave spectrum retrieval and em-
pirically estimation of the total significant wave height (Heimbach
et al., 1998; Collard et al., 2009; Stopa and Mouche, 2017), which can
be used in wave forecasting. At present, the routine WV measurements
are only available from the Sentinel-1 (S-1) A&B (Torres et al., 2012). It
was improved upon Envisat and ERS by having finer spatial resolution
(4m), higher signal-to-noise (which reduces speckle noise), larger scene
footprint (20 by 20 km), and increased global sampling.

Wang et al. (2019) demonstrated that the S-1 WV dataset has the
potential for new studies on air-sea interactions at scales of 0.5–10 km.
The primary advantage of the S-1 WV dataset is its ability of measuring
high resolution sea surface roughness globally (~120k images per
month). However, without an automated means to identify the geo-
physical features captured by each image, the potential would remain
untapped. For example, previous studies have relied solely on visual
inspection to identify SAR images with wind streaks before performing
statistical analysis or surface wind direction derivation (Lehner et al.,
2000; Levy, 2001; Mouche et al., 2012; Zhao et al., 2016). Such manual
classification approach is impractical for the huge volume of S-1 WV
data. Similarly, dedicated classic machine learning algorithms have
mostly been developed for specific applications such as detection of oil
spills and ships. These methods depend on the empirically hand-crafted
features, which are usually insufficient to generalize the local varia-
tions, shapes and structural patterns of different geophysical phe-
nomena (Topouzelis and Kitsiou, 2015; Zhang et al., 2016).

This study attempts to train a deep convolutional neural network
(CNN) to classify the ten prescribed geophysical phenomena seen in WV
vignettes. Deep CNN models have been applied with great success in
detection, segmentation, and recognition of objects, features, and tex-
tures within digital images (LeCun et al., 2015). They have also been
applied to hyperspectral and optical remote sensing imagery (Zhao and
Du, 2016; Li et al., 2017; Hu et al., 2015; Cheng and Han, 2016; Zhou
et al., 2017). However, the primary use of CNN in ocean SAR applica-
tion has mostly been for target recognition (Zhang et al., 2016; Zhu
et al., 2017). In general, CNN is a multilayer architecture that can be

trained to automatically extract the optimal image features and to
amplify distinctions between images (LeCun et al., 2015; Zhang et al.,
2016). A practical and effective way to develop a robust CNN for a
specific application is to re-train an existing image recognition model.
This so-called transfer-learning or fine-tuning strategy has been proven
to be more efficient and practical than creating and training a new CNN
architecture from scratch in the case of limited database (Yosinski et al.,
2014; Zhu et al., 2017; Cheng et al., 2017; Too et al., 2018; Wang et al.,
2018a).

In this paper, we adapt the Inception-v3 CNN (Szegedy et al., 2015)
to train a model dedicated to the classification of S-1 WV vignettes,
called CMwv. The involved datasets are described in section 2. Section
3 demonstrates the training process of CMwv and illustrates the model
performance based on an independent assessment dataset. In section 4,
we compare our classification results qualitatively with rain precipita-
tion from Global Precipitation Measurement (GPM) and sea-ice con-
centration from Special Sensor Microwave Imager (SSM/I). Conclusions
follow in section 5.

2. Datasets

This study uses ocean SAR vignettes from S-1 WV, precipitation data
from GPM and sea ice concentration data from SSM/I. To train the CNN
architecture, we create training datasets drawn from the labelled
TenGeoP-SARwv database (Wang et al., 2018b). In addition, to assess
and quantify the performance of CMwv, we build an assessment dataset
of 10,000 visually verified images. All datasets are described in the
following.

2.1. S-1 WV

The S-1 mission is a constellation of two (A&B) polar-orbiting, sun-
synchronous SAR satellites (Torres et al., 2012). They were launched by
European Space Agency (ESA) in April of 2014 and 2016, respectively.
The two satellites share the same orbital plane, which crosses the
equator at approximately 0600 or 1800 local time, with a 180∘ phase
difference to provide an effective 6-day repeat cycle. The S-1 micro-
wave SAR instruments have a 5.5 cm wavelength (C-band). WV is the
default mode over the open ocean unless other imaging mode collec-
tions are requested. According to the defined Mission Operation Sce-
nario, there is no WV acquisition in the Arctic Ocean, closed seas (Red,
Black, Mediterranean and Caribbean seas) and coastal areas. Fig. 1

Fig. 1. Global distribution of the WV SAR data obtained by S-1A in July of 2016. Color is indicative of the SAR image density in 2∘ by 2∘ spatial grid. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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displays the spatial coverage of S-1A WV data acquired in July of 2016.
Although only S-1A WV data is used in this study, S-1B images have
essentially equivalent characteristics with S-1A. Thus, the combination
of S-1A and S-1B will expand sampling in time and space for different
geophysical phenomena applications. Moreover, the developed classi-
fication model and results presented hereafter are also applicable to S-
1B.

S-1 WV vignettes are acquired in a ‘leapfrog’ pattern at two alter-
nating center incidence angles of 23∘ (WV1) and 36.5∘ (WV2) every
100 km along the flight track. Each vignette has a 20 by 20 km footprint
with 5m spatial resolution. The default radar polarization is VV, though
some HH images have been acquired. Combining both satellites and WV
incidence angles, approximately 120,000 vignettes per month are ac-
quired. This study focuses on the VV polarized SAR vignettes as they
comprise more than 99% of acquisitions to date. Also, data quality
control is carried out by removing data files with the following criteria:

• HH polarization: HH-polarized images are excluded.

• Land contamination: The distance of one vignette center (long-
itude and latitude) to the nearest coastline is calculated based on the
dataset of Distance from Nearest Coastline (DNC). We filter out the
vignettes if their center is over the land.

• Low mean signal intensity: We filter out the low-quality vignettes
by limiting the mean Normalized Radar Cross Section (NRCS) to be
larger than -22 dB, which is the Noise Equivalent Sigma Zero (Torres
et al., 2012).

2.2. TenGeoP-SARwv dataset

TenGeoP-SARwv is a labelled dataset of more than 37k ocean SAR
images corresponding to ten commonly-observed and expertly-defined
geophysical phenomena (Wang et al., 2019). These ten choices, though
somewhat subjective, were selected and defined after an extensive re-
view of the S-1 WV data and with reference to past ocean SAR studies.
This study denotes the classes as pure ocean waves (PureWave), wind
streaks (WindStreak), micro-convective cells (WindCell), rain cells
(RainCell), biological slicks (BioSlick), sea ice (SeaIce), icebergs (Ice-
Berg), low wind areas (LowWind), atmospheric fronts (AtmFront), and
oceanic fronts (OcnFront). Thousands of VV-polarized vignettes for
each case were manually selected from the S-1A WV acquisitions in
2016. These vignettes are chosen with the criteria that within one
scene, one geophysical phenomenon dominates with its specific sig-
nature or pattern. It is worth noticing that PureWave signatures nor-
mally exist in SAR images as background for other classes. Example

vignettes of the ten defined classes are displayed in Fig. 2. These vi-
sually-identified and tagged SAR scenes, 37560 in total, are provided in
formats of Portable Network Graphics (PNG) and Georeferenced Tagged
Image File Format (GeoTIFF). Despite the fact that the GeoTIFF product
maintains high precision of the original data, PNG files are more sui-
table for visual interpretation and satisfy the training input requirement
for CNN models. Thus, PNG product is the dataset of interest in this
study. It is important to note that the detectability of SAR on these
phenomena, especially these modulations induced by the surface wind,
can differ for WV1 versus WV2. Because the complex response of C-
band radar scatter of the sea surface depends primarily on the incidence
angle and the relative angle between the radar and the surface wind
direction. Under some atmospheric conditions such as strong winds
(>15m/s), the backscatter is dominated by sea states (winds and
waves). Consequently, other phenomena except ocean waves can not be
well captured.

2.3. Assessment dataset

S-1 WV SAR vignettes are able to capture a wide range of ocean
surface geophysical processes and the most common ten categories
have been included in the TenGeoP-SARwv. To assess and quantify
performance of the developed classification model on the whole WV
database, an independent assessment dataset is thus created. 5000 WV1
and WV2 vignettes respectively were randomly selected from 2016 S-
1A acquisitions and classified by visual inspection. A less strict criteria
of PureWave was adopted to make this validation dataset re-
presentative of the actual WV measurements. We then apply the clas-
sification model to each of these scenes. The resulting class identifica-
tions were compared to visual results, which is a skill test commonly
used in image classification modeling (Zhang et al., 2016; Cheng et al.,
2017). For the vignettes that do not belong to any of the ten defined
classes, we sort them into a special ‘The Other’ category (TheOther).
These more infrequent phenomena include, but are not limited to,
oceanic internal waves (Alpers and Huang, 2011; Jia et al., 2018), at-
mospheric gravity waves (Chunchuzov et al., 2000; Li et al., 2013),
upwelling regions (Jackson and Apel, 2004), and irregular atmospheric
patterns.

2.4. Rain precipitation from GPM and IMERG

The GPM mission is an international satellite network that provides
global estimates of rainfall and snowfall from space (Hou et al., 2014).
A primary instrument is the GPM Core Observatory that was launched

Fig. 2. Ten vignette examples of expertly-defined geophysical phenomena. From (a) to (j) are pure ocean waves (PureWave), wind streaks (WindStreak), micro
convective cells (WindCell), rain cells (RainCell), biological slicks (BioSlick), sea ice (SeaIce), icebergs (IceBerg), low wind area (LowWind), atmospheric front
(AtmFront) and oceanic front (OcnFront).
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in February 2014 by the National Aeronautics and Space Administra-
tion (NASA) and the Japan Aerospace and Exploration Agency (JAXA).
This Core Observatory carries the first dual-frequency (Ku-/Ka-band)
precipitation radar (DPR) and a multichannel microwave imager (GMI).
The Ku-band radar accurately measures moderate to heavy rain rates
and the Ka-band radar can measure light rain and snowfall. They pro-
vide cross-track swaths of 245 km (Ku) and 120 km (Ka) with 5 km
resolution. Retrieved precipitation estimates from the swath measure-
ments are available at the NASA data center (https://pmm.nasa.gov/
data-access/downloads/gpm). In addition, the Integrated Multi-sa-
tellitE Retrievals for GPM (IMERG) is a gridded precipitation product
that combines all satellite precipitation measurements. In this study, we
collocate GPM level-2 (swath) DPR Ku-only surface rain precipitation
data with S-1A WV vignettes acquired from March 2016 to February
2017. Spatial and temporal collocation criteria of 35 km and less than
10min are used and result in 2588 matched data pairs. The mean
precipitation value for DPR measurements averaged across the 35 km
square is used. We also use the IMERG 0.1∘-monthly product to quali-
tatively validate the global and seasonal features of CMwv-classified
rain events. Results and discussions are given in section 4.1.

2.5. Ice concentration from SSM/I

Sea ice concentration maps are produced by applying the Artist Sea
Ice (ASI) algorithm to the brightness temperatures from Special Sensor
Microwave Imager (SSM/I) radiometer (Ezraty et al., 2007). The con-
centration product has been operational since 1992 with 12.5 km spa-
tial resolution. It is publicly available at ftp://ftp.ifremer.fr/ifremer/
cersat/products/gridded/psi-concentration/. The seasonal sea ice con-
centration is computed based on the daily data, and compared with the
CMwv-classified sea ice event occurrences (see section 4.2).

3. Automated ocean SAR scene classification

This section describes how the automated classifier for S-1 WV
ocean SAR vignettes was developed by re-training the Inception-v3
CNN. The performance of this tool is evaluated and quantified using the
independent assessment dataset described in section 2.3.

3.1. Inception-v3 and training strategies

Many successful CNN architectures have shown solid performance
in the ImageNet large-Scale Visual Recognition Challenge (ILSVRC)
(Russakovsky et al., 2015). In this study, we use the Inception-v3 ar-
chitecture proposed by Google in 2015 (Szegedy et al., 2015, 2016) to
demonstrate the potential of deep CNN in identifying and classifying
geophysical phenomena from ocean SAR scenes. The Inception model
was firstly introduced as GoogLeNet or Inception-v1 (Szegedy et al.,
2015), a classic deep CNN architecture. The initial Inception archi-
tecture was refined in many ways. A first improvement was introduced
in the Inception-v2 of batch normalization to accelerate the training
process (Szegedy et al., 2016). While later, the Inception-v3 used ad-
ditional factorization ideas to augment the number of convolutions
without increasing the computational cost. It achieves remarkable
performance with 94.4% top-5 accuracy on the ILSVRC 2012 classifi-
cation dataset. We choose Inception-v3 in this study because of its
promising performance and easy implementation with the python deep
learning library of Keras (https://keras.io/). Also, at the time of starting
this work, this model represented the good tradeoff between classifi-
cation performance and huge parameters (Bianco et al., 2018).

The Inception-v3 architecture has 48 network layers with more than
23 million trainable weights. These layers are generally divided into
feature extraction and classification parts. Weights of the feature ex-
traction part are trained to describe common image characteristics such
as curves, edges, gradients and particular patterns. These features are
expected to be adopted to the task of ocean SAR vignette classification

(Yosinski et al., 2014; Too et al., 2018; Wang et al., 2018a). The last
layer of this CNN architecture represents the classification part, which
is replaced with a new classification layer in our applications. Note that
capability comparison of different CNN architectures may also be of
interest, but it is beyond the scope of this work.

We examined two training strategies: transfer-learning and fine-
tuning. The transfer-learning only trains the final classifier layer, while
the fine-tuning adjusts all the layers in the CNN architecture. For each
input image, Inception-v3 requires the image size to be 299 pixels for
both height and width. Then, 2048 optimal features per image are ex-
tracted to construct the final classifier. As noted above, the sensitivity of
SAR to different oceanic or atmospheric phenomena can be different for
the two WV incidence angles. We therefore create separate training
datasets for WV1 and WV2 (hereafter TDwv1 and TDwv2). To equalize
the size of TDwv1 and TDwv2, 320 images per class are randomly se-
lected from the labelled dataset of TenGeoP-SARwv (Wang et al.,
2018b). For training Inception-v3, the input dataset is randomly split
into training and validation subsets with proportions of 70% and 30%.
Training subset is fed into the CNN to learn and extract image features.
The validation subset, by contrast, is used to gauge the CNN model
performance at each epoch (iteration of CNN optimization).

3.2. CMwv model

First, we compare results found for the transfer-learning versus fine-
tuning training approaches. Based on TDwv1, the Overall Accuracy
(OA, Stehman (1997)) is calculated within 500 epochs and is displayed
in Fig. 3 (a). As shown, the OA of both transfer-learning (red lines) and
fine-tuning (black lines) increases rapidly within the first 100 epochs,
and then remains stable at around 89% and 97%, respectively. Fine-
tuning is more accurate than transfer-learning and is therefore chosen
in this study. Fig. 3 (b) displays the sensitivity assessment of the fine-
tuning process to random training inputs. Random shuffling is repeated
three times to generate different training and validation subsets drawn
from TDwv1. Result shows no significant effect on OA due to different
data draws. The impact of dataset size is also tested using image input
datasets of 80, 160, 240 and 320 samples, respectively. All four models
achieve comparable OA, as displayed in Fig. 3 (c). The largest training
dataset converges most quickly and with the highest and most constant
OA. In this paper, we use 320 images per class to train the final model.
Fig. 3 (d) shows that OA improves rapidly with training epochs. The
trained CNN weights at epochs 399 and 329 where OA reaches the
maximum (blue and red vertical lines) are adopted in the final CMwv.
This model has a OA of 98.5% and 98.3% for WV1 and WV2, respec-
tively.

Misclassifications still occur even though the model OA is very high.
With visual inspection of the misclassified images in the validation part,
four representative examples with their classification probabilities are
shown in Fig. 4. The red stars indicate the actual class. Ambiguous
image features are one of the reasons leading to misclassification. For
example in Fig. 4 (a), the linear feature of an oceanic front (OcnFront)
looks more like the softer mottled linear features that we ascribed to the
atmospheric front (AtmFront) class (Wang et al., 2019). Both cell-
shaped features (WindCell) and the linear-shaped features (WindStreak)
are visible in Fig. 4 (b), also resulting in an ambiguity within this
vignette. Superimposition of these two phenomena is captured by the
CMwv model with high classification probabilities in both classes. In-
deed, the atmospheric coherent structures that generate the WindStreak
signature often undergo a transition to the convective structures that
generate the WindCell signature when the surface buoyancy increases
(Atkinson and Wu Zhang, 1996). Another reason responsible for mis-
classifications is that multiple geophysical phenomena can coexist
within the same vignette. Low wind area (LowWind) is often associated
with wind gust fronts (AtmFront), as shown in Fig. 4 (c). Biological
slicks (BioSlick) usually accompany the LowWind (Fig. 4 (d)) because
they both occur in low wind conditions. Signatures of ocean waves are

C. Wang, et al. Remote Sensing of Environment 234 (2019) 111457

4

Chapter 3. Publications 54



also clearly seen in the four examples. The PureWave classification
probability for these scenes is nearly zero due to our imposed lowest
ranking of ocean waves within these prelabelled events. In other words,
the priority of other phenomena in the developed classification model is
much higher. This corresponds to the fact that our definition of Pure-
Wave is a SAR image that only contains signature of ocean waves
without any other geophysical phenomena. It is thus expected that
adjustment of our model to address multi-labelling with equal weights
for these multiple feature SAR images might improve future classifi-
cation. To this end, the current classification probabilities can be fur-
ther exploited to get more fuzzy probabilities or refine the training
dataset. A thorough labeling strategy allowing the existence of multiple
features is also demanded. In particular, wave detection shall facilitate
the labeling of its coexistence with other phenomena.

3.3. CMwv model assessment

To further assess the CMwv performance on the whole WV database,
a quantitative figure was obtained through comparison against the in-
dependent assessment dataset introduced in Section 2.3. Fig. 5 provides
the normalized confusion matrix. The rows and columns in the matrix
indicate the truth (manually-labelled) and CMwv prediction, respec-
tively. One image is assigned to be the class of the largest classification
probability. As shown, most of the class identification skill results for
both WV1 and WV2 cases show accuracy that exceeds 0.8. One ex-
ception is PureWave, this class being strongly influenced by IceBerg,
AtmFront and OcnFront events. This leads to much lower PureWave
classification accuracy of 47% and 39% for WV1 and WV2, respec-
tively. It is likely because signatures of ocean waves are prevalent in

Fig. 3. Overall accuracy (OA) in each 5 epochs during the training of inception-v3. The first 500 epochs are shown for (a) comparison of transfer-learning and fine-
tuning, (b) experiment of random splitting process, (c) experiment of the training dataset size and (d) the development of CMwv.

Fig. 4. Examples of misclassified WV images from CMwv along with the classification probability of each class. Red stars indicate the class determined visually
(manually-labelled). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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most images and we choose a loose criteria for PureWave class in the
assessment dataset. In addition, about 15% of WindStreak and WindCell
images are misclassified as AtmFront and OcnFront, resulting in the
relatively lower classification accuracy. Nearly 90% of the TheOther
images are classified into categories of AtmFront and OcnFront.
Overall, images of PureWave, IceBerg, AtmFront and OcnFront are
often misclassified. To further quantify CMwv performance, recall,
precision and F-score parameters (Sokolova and Lapalme, 2009) are
calculated based on the confusion matrix:=Recall number of correctly classified

number of truth (1)

=Precision number of correctly classified
number of classified (2)

− = × ×+F score precision recall
precision recall

2
(3)

For given class, recall (also called sensitivity) is equivalent to the
classification accuracy discussed above. Precision (also called positive
predictability) indicates the model's internal accuracy or skill. The F-
score takes both recall and precision into account as one comprehensive
index for model performance. Values of these three parameters are all
expected to be near one.

CMwv recall, precision and F-score results against the assessment
dataset are given in Table 1. Results indicate a hierarchy in skill across
classes where RainCell, BioSlick, SeaIce and LowWind classes show
similarly highest levels of recall, precision and F-scores that exceed 85%
in any measure, and for both WV1 and WV2 vignettes. A second tier
with slightly lower skill is seen for WindStreak and WindCell with WV2
F-scores of nearly 0.9 and 0.8 for WV2 and WV1 respectively. The drop
in WV1 F-score is due to nearly 20% lower precision in WV1 scene
detection. This is due to the fact that ocean wave signatures are

suppressed at higher incidence and other atmospheric phenomena are
more pronounced. Overall, the results indicate robust CMwv model
performance for these six phenomena. A next drop in skill is seen for the
PureWave class. PureWave detection shows much lower recall levels of
47% and 39% for WV1 and WV2, respectively. Inspection found that
this is because a large number of PureWave dominated SAR scenes are
misclassified as IceBerg (12% and 16%), AtmFront (6% and 11%), and
OcnFront (31% and 30%), as shown in Fig. 5. Yet, high PureWave
precision suggests strong confidence when a PureWave detection oc-
curs. The lowest performance tier is seen when CMwv is applied to
detect icebergs, atmospheric, and ocean fronts (IceBerg, AtmFront and
OcnFront). In these three classes, the model shows poor precision (i.e.
an excess of false positives) caused by the misclassification of scenes
that should have been ocean waves (PureWave) or more ambiguous
events (TheOther).

Although time consuming, the visual classification provided by
Wang et al. (2019) demonstrated the capabilities of S-1 WV to capture
signatures of air-sea interactions. Above results suggest that an adapted
deep CNN image recognition model can be trained for automated
classification of the S-1 WV VV-polarized SAR vignettes. A brief sum-
mation of CMwv skill taken from these results suggests reasonable
confidence levels for investigations that focus on six of the prescribed
classes (WindStreak, WindCell, RainCell, BioSlick, SeaIce and Low-
Wind), while CMwv refinements would be needed for OcnFront, Atm-
Front, IceBerg, and PureWave applications. Other deep learning tech-
niques such as pixel-level based classification, object detection and
image segmentation (Zhang et al., 2016; Cheng et al., 2017) are ex-
pected to efficiently target the localized phenomena (RainCell, IceBerg,
AtmFront and OcnFront) within each scene. In addition, it will be
beneficial to include the geographic and time information of SAR data
in deep learning approaches. Latitude is just one of many possible im-
portant and obvious data inputs, helping for example, to limit sea ice
and iceberg detection windows to cold waters.

Fig. 5. CMwv normalized confusion matrix when the model is applied to the WV1 (left) and WV2 (right) independent verification data subsets.

Table 1
CMwv recall, precision and F-score metrics for each of the 10 geophysical categories when applied to WV1 (upper) and WV2 (lower) vignette detection.

PureWave WindStreak WindCell RainCell BioSlick SeaIce IceBerg LowWind AtmFront OcnFront

Recall 0.47 0.83 0.80 0.93 0.95 0.90 0.97 1.00 0.95 1.00
0.39 0.83 0.85 0.93 0.89 0.96 0.92 1.00 0.94 1.00

Precision 1.00 0.77 0.76 0.88 0.88 0.96 0.16 0.87 0.39 0.02
0.98 0.96 0.94 0.80 0.91 0.96 0.18 0.79 0.38 0.02

F-score 0.64 0.80 0.78 0.90 0.91 0.93 0.27 0.93 0.56 0.04
0.56 0.89 0.89 0.86 0.90 0.96 0.30 0.88 0.54 0.04
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4. Geophysical applications

As a first demonstration, the CMwv model was applied to all S-1A
WV VV-polarized acquisitions from March 2016 to February 2017. We
examine the images classified as rain cells (RainCell) and sea ice
(SeaIce) as well as their occurrence in space and time. GPM and IMERG
rain precipitation and SSM/I sea ice concentration data are used for
comparison. Specifically, seasonal variations of these two phenomena
are presented and discussed in the four seasons: March-April-May
(MAM), June-July-August (JJA), September-October-November (SON)
and December-January-February (DJF) from March 2016 to February
2017. There are more than 160k vignettes acquired globally by S-1A in
each of these seasons.

4.1. Rain cells

A detected RainCell in the S-1 vignettes has been defined as one or
several km-scale circular- or semi-circular-shaped patches that may be
either relatively bright or dark (Wang et al., 2019). These patches are
typical signature of rain downdraft (Atlas, 1994; Alpers et al., 2016) in
the convective rain cells (Houze, 1997). From March 2016 to February
2017, nearly 10% of S-1A images are classified as RainCell. The sea-
sonal mapping of SAR-detected RainCell occurrence (fraction within 2∘

lat/lon bins) in the left panel of Fig. 6 indicates distinct spatial and

temporal patterns. We also plot the seasonal maps of monthly averaged
IMERG rain rate in the right panel of Fig. 6 for comparison. However, it
must be noted here that the IMERG product aims at intercalibrating,
merging, and interpolating satellite microwave precipitation estimates,
together with microwave-calibrated infrared (IR) satellite estimates.
This leads to different temporal and coverage resolution between SAR-
detected RainCell occurrence and IMERG precipitation.

Across the whole tropical ocean (3 basins), SAR-detected rain events
are found to be infrequent right along the equator with a band of strong
occurrence north of the Equator. This band is clearly observed
throughout the year and with the Inter-Tropical Convergence Zone
(ITCZ). In the particular case of the Pacific ocean, strong occurrence of
rain cells are also found in the South Pacific Convergence Zone. It is in
good agreement with IMERG precipitation seasonal patterns.
Significant differences are found in the subtropics between 10∘ and 30∘.
In the north hemisphere (Atlantic and Pacific), SAR-detected RainCell
occurrence is high (>10%) whereas the rain precipitation from IMERG
is low (<0.1mm/h). In the south hemisphere, this is also observed in
the east of the south Pacific, in the Atlantic and in the Indian ocean. In
the extratropical areas (poleward of 30∘N or 30∘S), we observe the
opposite trend. SAR results present lower occurrence of RainCell while
IMERG measures comparatively higher precipitation rates.

Overall, most areas of higher SAR-detected RainCell occurrence are
associated with high IMERG precipitation areas and consistent with the

Fig. 6. Seasonal comparison of CMwv-detected S-1A rain cells (left) alongside GPM precipitation measurements (right). Rain occurrence percentages are calculated
on a 2∘ by 2∘ spatial grid based on S-1A WV data from March 2016 to February 2017. The average monthly rain rate in MAM, JJA, SON and DJF are obtained from the
IMERG 0.1∘-monthly product.
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rainfall climatology of previous studies (Kidd, 2001; Adler et al., 2003).
However, disagreements are found as well. One of the reasons for this is
due to the fact that IMEG products measure all types of rainfall and is
not limited to rain cells. This certainly explains the agreement observed
in the tropical area where the convective cells dominate (Houze, 1997).
To further address the difference, a point-by-point collocation between
S-1 WV SAR images and GPM level-2 DPR Ku-only surface rain pre-
cipitation is conducted. The collocation criteria is within 35 km in space
and 10min in time.

In total, there are 2588 matched data pairs with 286 SAR vignettes
being classified as RainCell. For 63.4% of the RainCell-classified
images, collocated GPM also reports precipitation. In the remaining
cases, however, no precipitation is reported by GPM. Fig. 7 (a1) and
(a2) display two examples of this situation that SAR detects rain events
while GPM does not. The upper panel shows the SAR images and the
bottom gives the precipitation. The red dashed box, white box and
white arrow indicate the collocated area, image box and surface wind
vector, respectively. As shown, these two SAR images exhibit clear
RainCell signatures, confirming the credibility of RainCell classification
results. The precipitation is not resolved by GPM, possibly because they
are short-lived and/or weak rain events. For the images that are not
classified as RainCell, 23.2% of the collocated GPM reports precipita-
tion. With the visual inspection, we confirmed that most of these images
do not have clear RainCell signature as defined in Wang et al. (2019).
Two such examples are shown in Fig. 7 (b1) and (b2). RainCell sig-
natures in SAR images are primarily caused by modulations of the
surface waves due to rainfall, downdraft and also a direct attenuation of
the signal by rain drops in the atmosphere (Alpers et al., 2016). How-
ever, we recall here that the first order impact on the sea surface
roughness as detected by C-band active radar is the local wind. As a
result, there is a competition between the ambient wind and possible
rain impacts on the small-scale waves. Thus, we suspect that in situa-
tion where the wind speed is sufficiently high, the wind impact dom-
inates the backscattering over the rain, yielding SAR scenes with hardly
detectable rain signature. Fig. 8 further evidences this interpretation. It
is the distribution of surface wind speed for the four possible situations
(SAR-detected RainCell or not, GPM DPR-measured precipitation or

not). As shown, SAR-detected RainCell (blue and orange lines) occurs
mostly at intermediate wind speed of 3–10m/s. By contrast, the wind
distribution of the images with non-detected RainCell but precipitation
as given by GPM (red line) centers at 12m/s. This implies that when the
backscattering is mainly impacted by the high wind speed, the detect-
ability of rain cell signatures weakens.

From these comparisons, we conclude that Deep Learning methods
can be used to automatically identify SAR images impacted by rain
cells. As a matter of fact, the high resolution of SAR may complement
the existing rainfall measurements available from space by detecting
very short scale events. For now this potential seems limited to con-
vective rain and is less relevant for high latitudes where sea state
dominates the signature in SAR image, preventing for a reliable rain
detection.

Fig. 7. Four cases of point-by-point comparison between classified rain cells and the collocated GPM level-2 DPR Ku-only surface rain precipitation. (a1) and (a2) are
cases in which WV detects RainCell and GPM indicates no precipitation. (b1) and (b2) are cases in which WV did not detect RainCell and GPM measured pre-
cipitation. Upper panels are WV images, lower panels show the GPM rain rate swath data. In the lower panels, the WV outline is the white box and the collocation
region is the red box. The vector indicates the sea surface wind. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 8. Normalized probability density function of surface wind speed for the
point-by-point comparisons with condition of rain cells are detected or not and
precipitation is measurable or not.
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4.2. Sea ice near Antarctica

Interactions between sea ice, ocean, and the atmosphere in polar
regions significantly impact global weather and climate systems (Fyke
et al., 2018). Changing boundaries between the ocean and sea ice have
dominant effects on marine ecosystem structure around the Antarctic
(Tynan, 1998; Nicol et al., 2000). Monitoring of Southern Ocean sea ice
has thus been of high interest among remote sensing and geoscience
communities for many years. In this subsection, we assess sea ice
(SeaIce) detected by CMwv near the Antarctica using S-1A WV SAR
vignettes from March 2016 to February 2017. Note that our classifi-
cation model distinguishes all type of SeaIce images from open ocean
water.

In total, there are nearly 25k vignettes classified as SeaIce. As shown
in Fig. 9 (a), most S-1A vignettes indicating SeaIce are distributed
across the polar Southern Ocean. While the SeaIce subset mapping

clearly shows a few misclassified cases of small islands, heavy rain and
strong convection phenomena, the otherwise realistic geographic
SeaIce distribution appears to confirm the high classification precision
of 0.96 (see Table 1). Although the reason for misclassifications need
further investigation, these misclassified SeaIce images can be easily
filtered out according to the latitudes or SeaIce events occurrence map
(see Fig. 9 (c)). Fig. 9 (b) provides the number of classified SeaIce SAR
vignettes per month. As expected, the number of detected SeaIce
vignettes has a clear seasonal variability, increasing from March to a
maximum in October and subsequently decreasing. This variation is
highly consistent with the seasonal cycle of Antarctic SeaIce extent
(Doddridge and Marshall, 2017).

S-1A detected SeaIce occurrence is calculated on a 2° by 2° grid and
shown in Fig. 9 (c). It illustrates the seasonal variation view of SeaIce
coverage around the Antarctica. The SeaIce extent is also denoted by
the contour lines where occurrence percentage is equal to 10%. In the

Fig. 9. Ocean sea ice around the Antarctica from March 2016 to February 2017. (a) displays the locations of classified sea ice vignettes with blue and red colors
indicating WV1 and WV2, respectively. (b) presents the total number of S-1A and sea ice detected vignettes for each month. Sea ice coverage in four seasons derived
from the classified SAR vignettes are shown in (c) with color representing the occurrence percentage in 2∘ boxes. (d) shows the mean sea ice concentration from the
SSM/I daily product. Contour lines in (c) and (d) are calculated from the occurrence percentage (black, 10%) and sea ice concentration (red, 10%), denoting the ice-
water boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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austral summer (DJF and MAM), most of the classified SeaIce lies close
to the Antarctica and is poleward of 60∘S. It is also clear that the SeaIce
extent is non-uniformly distributed along the Antarctic coasts, with
more SeaIce from 0∘-60∘W, and from 120∘W-150∘E. Varied SeaIce cov-
erage also exists in the Antarctic winter from JJA to SON. As shown in
Fig. 9 (c), winter period SeaIce significantly expands in comparison to
the austral summer. It even spreads north of 60∘S between 10∘E and
70∘W during the summer. It is important to note that there is no WV
SAR data acquired very close to the coast of or over Antarctica (Torres
et al., 2012). This is the reason for the null/white space around the
coastline in these maps. For comparison, seasonal maps of mean SeaIce
concentration from the SSM/I daily product are provided in Fig. 9 (d).
Contour lines of SeaIce edge calculated from both the occurrence per-
centage (black) and SeaIce concentration (red) are superimposed on
these maps. As shown, the patterns seen on the SAR-detected SeaIce
largely mirrors these SeaIce concentration maps where both systems
collect data. Boundaries between ocean water and SeaIce from SAR and
SSM/I data are highly consistent with each other. This agreement is
another measure of CMwv credibility as an WV data classification tool.

As demonstrated, these high-resolution WV acquisitions of SeaIce
are another data catalogue to monitor SeaIce edge boundaries around
the Antarctica. In particular, they can benefit the survey of wave-ice
interactions. Indeed, a new method has been recently developed to
derive the directional wave spectrum in the sea-ice, from which wave
heights, periods and directions can be derived (Ardhuin et al., 2015).
Stopa et al. (2018) used these extensive information to address the
wave forces on sea ice through break-up and rafting, advancing the
knowledge of wave-ice dynamics. With respect of the waves and sea ice
interactions, the use of sea-ice classification in combination with waves-
in-ice algorithm is certainly a perspective.

5. Conclusions

The S-1 WV SAR vignette classification model (CMwv) has been
successfully developed by a SAR-adaptation of the Inception-v3 CNN
image recognition architecture. Experimental testing of the training
process indicates that fine-tuning is a more effective approach than
transfer-learning. The CMwv mode is able to identify and assign de-
tection probabilities to ten geophysical phenomena that are pre-defined
in a hand-labelled dataset (TenGeoP-SARwv, Wang et al. (2018b)). To
evaluate and quantify the performance of CMwv, recall, precision and
F-scores are calculated against an independent assessment dataset.
Results show that this classification tool works well for classes of
WindStreak (wind streaks), WindCell (micro-convective cells), RainCell
(rain cells), BioSlick (biological slicks), SeaIce (sea ice) and LowWind
(low wind area). However, classification of PureWave (pure ocean
waves) is limited with very high precision, but low recall. Class de-
tections for IceBerg (icebergs), AtmFront (atmospheric fronts) and
OcnFront (oceanic fronts) are severely influenced by PureWave and the
special category of TheOther. The developed classification model can
directly be applied to S-1A&B WV datasets. In the near future, efforts to
improve the classification of PureWave, IceBerg, AtmFront and Ocn-
Front are necessary. In addition, the inclusion of new classes corre-
sponding to other geophysical phenomena and the definition of a multi-
labelled dataset would likely yield further improvements.

Two geophysical applications are demonstrated based on the clas-
sification results of S-1A WV vignettes from March 2016 to February
2017. Geophysical maps of classified rain cells and sea ice are quali-
tatively comparable to precipitation data from GPM and sea ice con-
centration from SSM/I. Results further verify the credibility of this
classification tool. Moreover, once classified, access to the large cata-
logue of class-specific high-resolution WV vignettes may provide new
and more detailed geophysical information to complement existing
global ocean satellite measurements. The various geophysical phe-
nomena captured within the massive S-1 A&B WV data suggest promise
to further advance our understanding of air-sea interactions,

particularly at sub-kilometer scales. Application of this CMwv tool to
the growing three plus year of S-1 global ocean SAR data archive should
allow, for the first time, access to the spatial (global and regional) and
temporal (seasonal and inter-annual) statistics of numerous geophysical
phenomena. This may, in turn, help to advance certain aspects of at-
mospheric and climate theory and numerical ocean and weather
models.

This present work provides a basis to move application of ocean SAR
remote sensing beyond the case study stage. It also demonstrates the
potential of these global SAR WV mode vignettes for broader geophy-
sical application, augmenting its operational role supporting ocean
wave prediction systems. While this study is limited to the S-1 WV SAR
acquisitions, the methodology could be applied to any other sub-scene
(10–20 km) SAR data products from platforms such as ERS-1/2,
Envisat/ASAR, TerraSAR-X, Gaofen-3 and CFOSAT. Similar exploitation
of the full WV mode SAR data archive could provide a long-term (nearly
30 years) climatology including data on interannual and seasonal
variability at global scale.
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A B S T R A C T   

The ability of high-resolution synthetic aperture radar (SAR) to detect marine atmospheric boundary layer 
(MABL) roll-induced roughness modulation of the sea surface wave field is well known. This study presents SAR 
measurements of MABL rolls using global coverage data collected by the European Space Agency's C-band 
Sentinel-1A satellite in 2016–2017. An automated classifier is used to identify likely roll events from more than 
1.3 million images that were acquired at two incidence angles of 23° and 36.5° in either VV or HH polarization. 
Characteristics of the detected rolls are examined for different wind speeds, polarizations, incidence and relative 
azimuth angles. Roll detection counts are much higher at the higher incidence angle and nearly equivalent for 
VV and HH polarizations. Detection depends strongly on the relative azimuth with roll detection rates at 
crosswind being 3–10 times lower than for up- or downwind. All data show a low wind speed threshold near 
2 m s−1 and that rolls are most commonly observed at wind speeds near 9 m s−1. For all viewing configurations, 
we find that rolls induce a wide range of mean surface wind speed modulation with the most frequent value 
being 8% ( ± 3.5%). Roll detection at crosswind is associated with stronger roll-induced surface wind en
hancement. Dependencies of roll detection on the incidence and relative azimuth angles are consistent with 
rapid short-scale wind-wave adjustments to the roll-induced surface wind gusts. These cm-scale waves are highly 
directional and provide limited crosswind backscatter at shallower incidence angles. The same roll-induced 
surface forcing is thus not equally detectable at all viewing geometries or polarizaions. Stronger and possibly 
longer-duration wind forcing is likely needed to produce detectable roll-induced modulations at crosswind.   

1. Introduction 

The mean flow in the marine atmospheric boundary layer (MABL) 
frequently includes an organized secondary circulation in the form of 
long helical rolls that are approximately aligned along the mean wind 
direction. They are sometimes made visible by the low-level cloud 
streets that form in the organized updrafts between rolls (Weston, 1980;  
Hein and Brown, 1988; Rowe and Houze, 2015). However, rolls are a 
common feature of the MABL when shear production of turbulence 
plays an important role and are thus frequently present in the absence 
of clouds. Investigation of the phenomenon extends back decades, in
cluding field, theoretical, numerical, and experimental efforts 
(Kuettner, 1959; LeMone, 1973; Brown, 1980; Etling and Brown, 1993;  

Atkinson and Wu Zhang, 1996; Young et al., 2002), and there is evi
dence that these coherent structures have a measurable impact on 
turbulent fluxes of heat and momentum across the MABL (Glendening, 
1996; Zhang et al., 2008; Zhu, 2008; Brilouet et al., 2017). This in
homogeneous contribution is seldom included in the standard boundary 
layer parameterizations used in weather forecast and climate models. 
This is largely because the process occurs at small horizontal length 
scales that are within the so-called numerical modeling grey zone of 
1–10 km (Shin and Hong, 2013; Bauer et al., 2015). Moreover, because 
they are often invisible to standard remote or in situ sensors, even basic 
measures of roll characteristics over the oceans have not been estab
lished. The fundamental particulars are the frequency of occurrence, 
strength, wave length, alignment direction, and formation conditions 
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(Levy, 2001; Weckwerth et al., 1997; Zhao et al., 2016; Atkinson and 
Wu Zhang, 1996; Young et al., 2002). 

Synthetic aperture radar (SAR) ocean imagery is able to resolve the 
parallel backscatter streaks that are associated with the roll-induced surface 
wind stress changes in day-and-night and most weather conditions (Gerling, 
1986; Alpers and Brümmer, 1994; Young, 2000; Vandemark et al., 2001). 
Case studies using ocean SAR measurements have been conducted to ex
amine MABL rolls in numerous air-sea investigations (Alpers and Brümmer, 
1994; Li et al., 2013; Zhao et al., 2016; Babin et al., 2003; Sikora et al., 
2011; Alpers et al., 2016). These applications have been limited in scope 
and mostly dedicated to coastal regions because wide-swath ocean SAR 
imagery is not acquired routinely nor globally. But a narrow swath option 
with nearly global coverage, sufficient resolution and scene size has been 
available from the Sentinel-1 SAR satellites since 2014 (Torres et al., 2012). 
The SAR Wave Mode (WV) extends a legacy of global ocean surface wave 
monitoring from previous satellite SAR missions. For the purposes of MABL 
studies, the two most important differences of S-1 WV compared to the 
legacy data is the increase in image size to 20 by 20 km, while retaining a 
high spatial resolution of 5 m pixels, and the addition of a higher incidence 
angle sample. The European Space Agency (ESA) currently operates two 
identical Sentinel-1 (S-1) satellites (A&B) for Copernicus that routinely 
collect ~130,000 images each month over most of the ocean surface. At the 
time of this writing, more than six million images have been acquired. 

A required first step for MABL roll studies using SAR data is event 
detection (Weckwerth et al., 1997; Young et al., 2008). To date, visual 
inspection has been used to determine the presence of roll imprints in 
SAR images (e.g. Levy, 2001; Zhao et al., 2016). Given the large number 
of S-1 WV scenes, as automated method is required. A machine learning 
tool for S-1 WV image classification was developed from the Inception- 
v3 convolutional neural network (CNN) to classify each WV image into 
one of the ten different geophysical categories (Wang et al., 2019b). 
Note that this classifier very rarely tags non-roll events as rolls but can 
miss-categorize roll events into other classes. The present study uses 
only the images that are classified as roll events. More than 1.3 million 
WV SAR scenes collected in 2016–2017 were analyzed for the presence 
of MABL rolls, resulting in ~155,000 roll cases in total. This far sur
passes the largest previous SAR MABL roll study of Levy (2001), for 
which, 7150 SAR images were examined. 

The S-1 WV SAR images are acquired at two fixed incidence angles of 
23° (WV1) and 36.5° (WV2), and with two transmit and receive linear po
larization configurations, VV (default) and HH (experimental). This pro
vides an opportunity for rigorous evaluation of C-band SAR detection and 
imaging of MABL rolls for varied wind speeds and radar viewing geome
tries. These characteristics have received limited attention in most previous 
SAR-based MABL roll investigations (Alpers and Brümmer, 1994; Young, 
2000; Sikora and Ufermann, 2004; Li et al., 2013; Zhao et al., 2016), and in 
ocean SAR studies where the surface wind direction is inferred from roll 
imprint analyses (Gerling, 1986; Koch, 2004; Christiansen et al., 2006; Lin 
et al., 2008; Li and Lehner, 2014; Zecchetto, 2018). Alpers and Brümmer 
(1994) proposed that SAR backscatter due to the roll-induced wave- 
roughening can be interpreted using the empirical geophysical model 
functions (GMFs) that relate 20–40 km scale radar scatterometer measure
ments to surface wind speed and radar viewing geometry. However, field 
measurements have shown that surface wind-wave and radar backscatter 
changes during roll impacts are associated with short-duration and short 
length-scale wind forcing (Vandemark et al., 2001). These roll-induced 
forces primarily affect the shortest and highly directional wind waves, and 
not the whole spectrum of surface waves (LeMone, 1973; Lemone, 1976;  
Young, 2000; Mourad et al., 2000; Vandemark et al., 2001). This inter
pretation is used to explain the results regarding MABL roll detection and 
sea surface modulation using the global S-1 WV SAR data that are presented 
in this paper, and to explain the differences between WV observations and a 
GMF applied to these observations. 

The paper is organized as follows. Data and methods are described 
in Section 2, including the S-1 WV SAR data, supporting surface en
vironmental variables, and a description of the methods used to classify 

WV images and to estimate the radar backscatter modulation related to 
roll-induced wind perturbations. Statistics of the identified MABL roll 
events are given in Section 3. Section 4 provides analyses of the ex
tracted roll modulation parameters, and compared them to a GMF si
mulation. Discussions and conclusions follow in Section 5. 

2. Data and methods 

2.1. Sentinel-1 WV 

Sentinel-1 is a polar-orbiting, sun-synchronous SAR satellite constella
tion mission designed for long-term operation extending into the next 
decades. Currently, two satellites (A&B), which share the same orbital plane 
offset by a 180° phase difference, were launched in April of 2014 and 2016, 
respectively (Torres et al., 2012). The satellites are equipped with identical 
C-band SAR instruments that operate in four pre-programmed imaging 
modes: Interferometric Wide swath, Extra Wide swath, Strip Map and WaVe 
mode (WV). WV is the default mode over the world's ocean except in the 
Arctic, closed seas and coastal areas, or when S-1 has not been programmed 
to one of the other imaging modes. There is no WV data acquisition over 
land except the Amazon rainforest for calibration purposes. WV acquires 
small SAR image scenes (termed imagettes) at alternating incidence angles 
of 23° (WV1) and 36.5° (WV2). Both usually operate in linear vertical (VV) 
transmit and receive polarization and, during special phases, in horizontal 
(HH) polarization. Each WV image size is 20 km by 20 km, with 5 m pixel 
resolution. Neighboring images are spaced by 100–120 km. The orbital 
repeat cycle is 12 days. Approximately 65,000 imagettes per month are 
collected by each satellite. The S-1 WV SAR data used in this paper are the 
Level-1 Single Look Complex (SLC) repository, which are managed at 
IFREMER (http://www.ifremer.fr/datavore/exp/dvor/#/s1quicklook), and 
are also freely available at ESA's Sentinel Open Access Hub (https://sentinel. 
esa.int/web/sentinel/sentinel-data-access). 

This study uses S-1A WV SAR data in VV polarization spanning 
2016–2017, and S-1B WV data in HH polarization from 15 March to 01 
July 2017. Inland, near-coastal and poleward of 55° to avoid possible 
sea ice images are removed. Fig. 1 illustrates the sample population for 
the VV and HH datasets on a 5° by 5° global spatial grid. The typical S-1 
WV coverage is nearly complete over the Pacific, Indian and south 
Atlantic oceans. There is partial coverage for the eastern north Atlantic 
because, by default, other standard imaging modes are in operation. 
The total numbers of image evaluated from these S-1A and S-1B data
sets are 1,182,540 and 197,442, respectively. 

Each image is co-located in time and space with surface variables 
from the ERA5 hindcast model, including 10 m wind components, sea 
surface temperature, 2 m air temperature, 2 m dew-point temperature 
and surface pressure. ERA5 is the latest generation ECMWF reanalysis 
product and provides these environmental variables hourly on a global 
spatial grid of 0.25° by 0.25°. The data are publicly available at: https:// 
cds.climate.copernicus.eu. From these variables, we estimate the bulk 
Richardson number RiB at 10 m height, using the COARE 3.0 air-sea 
flux algorithm (Fairall et al., 2003). 

2.2. Automated WV image classification 

Oceanic SAR images have been used to identify numerous oceanic, at
mospheric, and sea ice features (e.g. Jackson and Apel, 2004; Wang et al., 
2019a, 2019b). The automated image classifier method applied to this WV 
data catalogue is briefly detailed here, with an emphasis on MABL roll 
identification (Wang et al., 2019a,). We first defined the ten most com
monly observed geophysical phenomena in the WV image data (Wang et al., 
2019a). These phenomena were ocean swell, wind streaks (induced by 
MABL rolls), micro-convective cells, rain cells, biological slicks, sea ice, 
icebergs, low wind areas, atmospheric fronts, and oceanic fronts. Visual 
selection was used to build a large representative collection for each class, 
leading to an open-access labelled database called TenGeoP-SARwv (Wang 
et al., 2018). We then developed an automated classification tool based on a 
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deep learning pattern recognition approach. The tool, namely CMwv, was 
created by fine-tuning the Inception-v3 deep convolutional neural network 
(CNN) to discriminate between the ten input training sets (Szegedy et al., 
2016; Wang et al., 2019b). Separate CMwv models were built for VV-pol 
WV1 and WV2 data, which are applicable for both S-1A and S-1B WV SAR 
data. Although the model skill has only been formally evaluated for the VV- 
polarized SAR images, results suggested that it performs similarly for the 
HH SAR data, at least for the task of MABL roll identification and analyses 
presented in this study. 

CMwv assigns each WV image probability scores for the ten pre-defined 
classes. These probabilities add up to 1, and a WV image is considered to 
represent a case of visually-distinct MABL roll impacts (i.e. wind streaks) if 
the roll class score is the largest among the ten. The quantified skill for this 
approach has a Recall (sensitivity) of 83% for both modes (WV1 and WV2), 
and Precision (positive detection rate) of 77% and 96% for WV1 and WV2, 
respectively (Wang et al., 2019b). The precision difference between WV1 
and WV2 is likely due to a weaker MABL roll imprint in WV1 images, which 
is one focus of this study. Wang et al. (2019a, 2019b) documented that 
image contrasts due to roll imprints for WV2 were qualitatively stronger 
than for WV1 during the visual labelling procedure. Specific to the CMwv 
machine learning approach, the ability of this deep CNN model to differ
entiate between phenomena in each SAR image relies on the efficient ex
traction of optimal features into convolutional layers, and then to amplify 
feature differences through pooled layers (LeCun et al., 2015; Zhang et al., 
2016). That is, distinct image features cannot be extracted if roll imprints 
are insufficiently clear. Even with these caveats, the overall CMwv precision 
scores are high. Potential study limitations due to the classification model 
are discussed in Section 5. 

2.3. Extraction of roll-induced backscatter modulation amplitude and 
direction 

Prior to estimation of roll-induced SAR backscatter modulation for 
varying wind conditions, an objective SAR backscatter recalibration 
method is used to correct S-1 SAR normalized radar cross-section 

(NRCS, σ0) as described in Li et al. (2019b). Specific details are pro
vided in Appendix A. 

Fig. 2 illustrates the process used to extract the roll-induced NRCS 
modulation from each WV roll imagette. The full resolution σ0 image is 
box averaged to 200 m as shown in Fig. 2 (a), in order to filter out most 
of the ocean swell features. The chosen 200 m scale follows re
commendations from previous studies (Koch, 2004; Horstmann and 
Koch, 2005; Christiansen et al., 2006). White and blue arrows in Fig. 2 
(a) indicate North and the ERA5 10-m wind direction, respectively. 

An image modulation spectrum S(kx,ky) is calculated using a 2-D 
FFT over the full resolution σ0 image. The spectrum S(kx,ky) is con
verted from Cartesian to Polar coordinates, S(k,ϕ). Fig. 2 (b) displays 
the partial spectrum in the 0.8–4.0 km wavelengths band. The angle ϕ 
is in SAR image coordinates. ϕ = 0° is in the increasing SAR azimuth 
direction along the satellite heading. ϕ = 90° is in the increasing SAR 
range direction (S-1 looks to the right). Since there is a 180° direction 
ambiguity in wind streak orientation, the spectral energy peak max
imises near ϕ = 140° and 320°. Note that multiple peaks are visible, 
principally associated with irregularities in the main linear features 
throughout the image scene. Still a dominant azimuthal peak direction 
is apparent and similar FFT methodologies have been used to extract 
the dominant orientation of MABL rolls (Gerling, 1986; Mourad and 
Walter, 1996; Li et al., 2013; Huang et al., 2018). For the example case 
of Fig. 2, panel (c) shows the corresponding profile of S(ϕ) = ∫ k=2π/ 

4000
k=2π/800S(k,ϕ)dkdϕ with the maximum shown as a red dot. The red 

arrow in Fig. 2 (a) defines this dominant roll direction ϕWS (with 180° 
ambiguity). 

For each image, an estimate of the roll-induced σ0 modulation along 
a 15 km transect is extracted. This σ0 transect is located at the center of 
SAR scene and normal to the dominant wind streak direction, as shown 
in Fig. 2 (a). Five parallel lines (1 km width) of the backscatter are 
averaged and then smoothed using a Hanning window. As depicted in  
Fig. 2 (e), quasi-periodic σ0 variations along the cross-roll transect are 
shown. The local maxima (red dots) and minima (blue dots) correspond 
to the alternating bright and dark bands on the backscatter image. The 

Fig. 1. Ocean SAR data coverage for S-1 study datasets, (a) S-1A in VV polarization in 2016–2017 and (b) S-1B in HH polarization, from 15 Mar to 01 Jul in 2017. 
Colour denotes the number of WV images within each 5° by 5° spatial bin. The total number of imagettes in these datasets is 1,182,540 and 197,442, respectively. 
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distance between adjacent bright or dark (roll wavelength) varies from 
1 to 3 km. It reveals local irregular roughness modulations with local 
changes of the surface wind intensity and/or direction, consistent with 
the multiple peaks present in the 2-D image spectrum. The modulation 
depth is defined as the difference between the mean bright (σ0

B) and 
dark (σ0

D) NRCS. The relative modulation depth, or contrast, is obtained 
after normalization by their average (σ0

B + σ0
D)/2. 

As shown in Fig. 2 (d), fine-scale (~200 m) surface wind speed is 
also retrieved from each down-sampled WV σ0 imagette using the C- 
SARMOD GMF (Mouche and Chapron, 2015). Here we used the co-lo
cated ERA5 wind direction instead of the extracted roll direction as 
input to the GMF. Similar to above, a SAR-retrieved wind speed (U) 
cross-roll modulation transect is extracted and smoothed in Fig. 2 (f). 
The obtained wind variations range from 0.5–1.5 m s−1. 

In summary, the following parameters relevant to roll-induced im
pacts on sea surface roughness are extracted from each CMwv-identi
fied MABL roll WV SAR scene:  

1) ϕWS [°]: Roll orientation with 180° ambiguity in image coordinates: 
clockwise rotating from azimuth to range.  

2) σ0
B [linear]: Mean NRCS for brightest roll modulation peaks.  

3) σ0
D [linear]: Mean NRCS for the darkest roll modulation troughs.  

4) dσ0 = σ0
B − σ0

D [linear]: Modulation depth. 
5) dσ0/σ0 = dσ0/[(σ0

B + σ0
D)/2] [linear]: Roll-induced NRCS pertur

bation.  

6) UB [ms−1]: Mean of the wind speed peaks.  
7) UD [ms−1]: Mean of the wind speed troughs. 
8) dU/U = (UB − UD)/[(UB + UD)/2]: SAR-derived wind speed per

turbation due to rolls. 

3. MABL roll occurrence rates 

3.1. Occurrence statistics 

The automated classification considers a SAR imagette as a MABL 
roll event if clear evidence of organized quasi-linear wind streaks can be 
distinguished, and they dominate scene compared to other possible 
geophysical phenomena. Fig. 3 shows the percentage of MABL roll 
events relative to the total number of WV scenes acquired in each 
month. The image count per month of approximately 20 k is about the 
same for WV1 and WV2. The overall fraction of identified roll events in 
WV2 is ~15%, while that for WV1 is ~9% with no apparent monthly 
variability in roll frequency observed for either WV1 or WV2. The 
higher identification rate for WV2 compared to WV1 is likely related to 
higher visibility of the roll-induced wind speed changes at the larger 
incidence angle. The percentages of CMwv-classified roll events using 
the much smaller S-1B HH SAR dataset are approximately 11% and 6% 
for WV2 and WV1, respectively (not shown). Note, these detection rates 
are significantly lower than the reported average of 40–50% using vi
sually-selected images in coastal studies (Levy, 2001; Zhao et al., 2016). 

Fig. 2. Analysis of roll modulations in S-1 WV sea surface roughness images. Panel (a) is a typical roll image after smoothing to a 200-m pixel resolution σ0 image. 
White, blue and red arrows indicate North, the ERA5 wind direction and extracted wind streak orientation, respectively. (b) 2-D FFT spectrum, S(k,ϕ), of the full 
resolution image within the expected wavenumber range of MABL patterns (λ = 0.8 and 4 km). Angle ϕ is in SAR image coordinates, i.e. clockwise rotating from the 
azimuth to range direction. (c) Integral of S at each ϕ, maximum marked as a red dot. (d) SAR-estimated wind speeds derived using the C-SARMOD GMF. (e) σ0 

transect profile along the black scan line in (a): from A to B. The profile (dashed line) has been smoothed with a 1 km length Hanning window. Red and blue dots 
indicate the detected local maximum and minimum. (f) similar to (e) but for SAR-retrieved local wind speed U. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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The probability density functions (PDFs) of the ERA5 surface wind 
speed when rolls were identified in the VV SAR data are shown in  
Fig. 4, along with the distribution for the entire S-1A WV dataset. The 
distributions for WV1 and WV2 roll events are similar. The most likely 
wind speed when rolls are identified is 9–10 m s−1, which is higher 
than the 7 m s−1 mode for the entire dataset. The low wind speed 
threshold for roll detection is near 2 to 3 m s−1 for both WV1 and WV2. 
This is consistent with a postulated threshold of 3 m s−1 (Weckwerth 
et al., 1997; Young et al., 2002; Zhao et al., 2016). The probability for 
roll detection rises rapidly with wind speed above this threshold. This is 
consistent with theoretical models that rolls usually form when shear 
production is an important aspect of the MABL dynamics (Brown, 1980;  
Etling and Brown, 1993). 

MABL roll identification versus wind speed and relative azimuth, 
which is the angle between the radar beam and surface wind direction, 
is shown in Fig. 5. Data are averaged in 20° relative azimuth angle bins. 
Angles 0°, 90°/270° and 180° are indicative of upwind, crosswind and 
downwind radar viewing directions. The bottom panel of Fig. 5 shows 
the S-1A WV sampling as a function of relative azimuth. Because S-1 

SAR is right-side-looking and in a polar orbit, more data are acquired in 
upwind and downwind looks compared to crosswind due to the pre
vailing low-latitude easterlies and mid-latitude westerlies. However, 
thousands of roll images are collected at crosswind, which are mostly 
associated with the meridional flow around low and high pressure 
centers in the mid-latitudes. 

Fig. 5 (a, b) show that, for wind speeds above 6 m s−1, roll event 
detection rates are dramatically lower at crosswind for both incidence 
angles. Note that the roll detection rates for either WV1 or WV2 can 
reach 25–35%, which are above the average 9% and 15% rates shown 
in Fig. 3 and are closer to the preciously reported detection rates (Levy, 
2001; Zhao et al., 2016). While not shown, the detection rates of rolls 
from the smaller S-1B HH SAR dataset show similar behavior as S-1A 
VV for various wind speeds and relative azimuth. It is thus clear that the 
identification of roll events in S-1 SAR WV data depends strongly on all 
of incidence angle, wind speed and relative azimuth. 

3.2. Case study investigation 

To examine the MABL roll detection differences between WV1 and 
WV2, a section of Pacific Ocean (15°S-30°N, 170°E-180°E) data is ex
tracted from a descending S-1A pass on Feb 2, 2017 (Fig. 6). The SAR 
look direction is 287° clockwise from North. Wind information from 
ERA5 shows that the wind field is fairly homogeneous at 9.5 m s−1 and 
about 80° direction in meteorological convention, so the relative azi
muth is 333°. The central locations of the WV1 and WV2 imagettes 
reflect the standard leap-frog acquisition pattern. Concentrating on the 
5°N to 18°N region, seven consecutive WV2 imagettes are classified as 
rolls. The atmospheric stability parameter RiB is slightly unstable at 
about −0.006, which indicates that conditions are favorable for MABL 
roll development (Brown, 1980; Etling and Brown, 1993; Young et al., 
2002). Thus, one would expect S-1 to observe clear roll imprints in both 
WV1 and WV2. However, only one WV1 case is classified as a roll event. 

Fig. 6 shows the three pairs of WV1 and WV2 images that were 
acquired within a 2 min span. WV2 images are displayed on the left 
column, and all these show clear periodic linear imprints of rolls. They 
have the same orientation, which is close to the ERA5 surface wind 
direction (blue arrows on images). In contrast, roll imprints are almost 
invisible on the three neighboring WV1 images shown in right column. 
Although one roll event was identified, the linear features on that image 

Fig. 3. Monthly statistics of detected roll events from all S-1A WV VV SAR imagettes. The top and bottom panels provide the percent-detected and the total number of 
imagettes examined in each month. 

Fig. 4. Wind speed distributions of all S-1A WV VV SAR data and the CMwv- 
identified roll WV1 and WV2 data. 
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are weaker than those in the nearby WV2 images. 
The computed image modulation parameters for these six cases are 

given in Table 1. The SAR-estimated wind speeds UB and UD, corre
sponding to σ0

B and σ0
D, are close to the mean ERA5 wind speed and 

approximately the same dU levels are found in all six WV imagettes. 
However, the modulation depths, dσ0, extracted from WV1 images are 
larger than that from WV2 data. When the modulation depth is nor
malized to contrast, dσ0/σ0, the three WV2 images have larger values 
than the three neighboring WV1 cases. This indicates that even though 
a smaller NRCS modulation is induced in WV2, it has a better roll de
tection capability than WV1 for the same wind conditions. Visually, roll 
imprints are more easily visible in WV2 than WV1 images as shown in  
Fig. 6. Roll detection is apparently sensitivity to the modulation con
trast, which depends on the relative change in NRCS induced by small 
wind perturbation and the mean NRCS. These two variables both vary 
as a function of wind speed, incidence and relative azimuth angles. 
Note, however, that the sole WV1 image classified as rolls has the least 
dσ0/σ0 among the six cases. It implies that the explanation for different 
roll detection rates between WV1 and WV2 is not simple. A statistical 
analysis of roll-related modulation parameters is thus necessary and 
given in Section 4. 

4. S-1 WV NRCS response to roll imprints 

In this section, we take advantage of the large dataset to address the 
question of roll detection systematically. The parameters dσ0, dσ0/σ0 

and dU/U are extracted from all the WV images that were identified as 
rolls by CMwv. The distributions of these quantities are binned as 
functions of ERA5 surface wind speed and relative azimuth for the 
different incidence angles and polarizations. 

4.1. Wind speed dependence 

The roll-induced modulation depth dσ0 as a function of ERA5 wind 
speed for WV1 and WV2 in VV and HH polarization states are shown in  
Fig. 7 (a1,2). Box-plots are used to show the dσ0 distribution in 2 m s−1 

bins from 3 to 19 m s−1. Beyond this wind speed range, data are sparse 
particularly for HH. For both incidence angles and polarizations, dσ0 

increases with wind speed. WV1 dσ0 values are clearly larger than for 
WV2 for both VV and HH measurements. For winds larger than 
13 m s−1, VV dσ0 values exceed HH dσ0. These observations con
sistently follow the fact that the implied slope, ∂σ0/∂U, is on average 
larger at the lower incidence angle for both VV and HH. 

The SAR backscatter modulation contrast dσ0/σ0 is shown in Fig. 7 
(b1,2). This roll-induced NRCS contrast is much less sensitive to surface 
wind speed than the modulation depth. One exception is the slightly larger 
values at low winds (3–7 m s−1), particularly for HH data. This is likely 
because σ0 can be very low in light winds even dσ0 remains unchanged. A 
second observation is a likely roll identification threshold. For both WV1 
and WV2 in either VV and HH polarization, the 10th percentile of dσ0/σ0 is 
almost constant near 0.04. We hypothesize that this value corresponds to 
the effective roll detection floor for the end-to-end S-1 SAR WV and auto
mated CMwv model system. Roll cases with image contrasts below this 4% 
level might be discernible by trained eyes, but by design, the non-supervised 
CMwv model was trained to only identify clearly visible and delineated roll 
cases (Wang et al., 2019b). 

Referring again to Fig. 7 (b1,2), it is clear that WV2 dσ0/σ0 levels are 
generally higher than these for WV1 in both VV and HH measurements. 
This difference is consistent with the detection rate differences shown 
in Fig. 3 and Fig. 5. This indicates that roll-induced SAR backscatter 
contrast is greater at the higher incidence angle, which improves the 
chances of CMwv to identify roll events. Regarding polarization 

Fig. 5. Statistics of identified roll events from S-1A VV WV SAR images for different relative azimuth angles. (a) and (b) show the WV1 and WV2 percentages of 
identified rolls for selected wind speed ranges, and (c) gives the total of all images collected in each mode, respectively. 
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dependencies in the S-1 data, there is little dσ0/σ0 difference between 
VV and HH measurements. 

As noted earlier, ocean radar backscatter can be converted to wind 
speed using a GMF, which provides a means to normalize the results across 
the four WV mode incidence angle and polarization combinations. It also 
provides a geophysical quantification of MABL impact in terms of the sur
face wind speed perturbation. Global statistics of SAR-derived wind mod
ulations (dU/U) versus mean wind speed are shown in Fig. 7 (c1) and (c2). 
Similar to the dσ0/σ0 measurements, dU/U mean values for WV1 and WV2 
in VV and HH are relatively constant with wind speed. The average level of 
wind perturbation is 8% (standard deviation of 3.5%). This value is con
sistent with previous field measurements of 7–10% obtained using low-level 

aircraft observations (Vandemark et al., 2001). The global ocean estimates 
show a slightly wider range of roll-induced wind perturbations, and the 
maximum wind perturbation seldom exceeds 15%. For both VV and HH, 
the dU/U levels are slightly larger at low winds (3–7 m s−1), which is si
milar to the dσ0/σ0 behavior. For wind speeds above 13 m s−1, the detected 
rolls in WV1 (WV2) tend to be those with stronger (weaker) roll-induced 
wind perturbations. 

4.2. Dependence of roll detection on relative azimuth 

For a given wind speed, MABL roll event data show that the ob
served SAR backscatter and wind speed perturbation estimates depend 

Fig. 6. Center panel shows center points of WV1 and WV2 acquisitions along an S-1A descending pass on 2017-02-02. Images identified by CMwv as roll events are 
shown with red circles. Three neighboring pairs WV2 and WV1 images (green box in the middle panel) are shown in the left and right panels. The blue and red arrows 
on the images indicate the ECMWF ERA5 surface wind and SAR backscatter-estimated roll directions, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Environmental variables and extracted roll modulation parameters for the six S-1A WV1 (23°) and WV2 (36.5°) image cases in Fig. 6. U10 and ϕU10 are the ERA5 10 m 
wind speed and direction in meteorological convention. RiB is the atmospheric stability parameter estimated from the ERA5 variables. ϕWS′ is the extracted roll 
orientation in the same coordinate as ϕU10. σ0

B and σ0
D are the mean NRCS over roll-induced bright and dark on SAR images. dσ0, dσ0/σ0 and dU/U represent the roll- 

induced NRCS variation, relative NRCS variation (image contrast) and surface wind perturbation.               

Case ID Swath U10 [m·s−1] ϕU10 [°] RiB [×10−3] ϕWS′ [°] σ0
B [linear] σ0

D[linear] dσ0 [linear] d 0
0

UB [m·s−1] UD [m·s−1] dU
U

Fig. 6 (1) WV1 10.0 84 −6.98 96 0.346 0.326 0.021 0.06 10.35 9.82 0.05 
Fig. 6 (3) WV1 9.6 75 −5.56 93 0.339 0.307 0.032 0.10 10.44 9.61 0.08 
Fig. 6 (5) WV1 9.5 70 −6.99 55 0.302 0.278 0.024 0.08 9.54 8.99 0.06 
Fig. 6 (2) WV2 9.0 84 −7.38 67 0.051 0.046 0.005 0.10 9.58 9.05 0.06 
Fig. 6 (4) WV2 10.2 77 −6.29 70 0.053 0.047 0.006 0.12 10.09 9.39 0.07 
Fig. 6 (6) WV2 9.9 77 −6.36 62 0.056 0.049 0.007 0.12 10.34 9.68 0.07 
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on the relative azimuth. Image contrast and wind perturbations 
within ± 15° of the up-, cross- and downwind sectors for different wind 
speeds are shown in Fig. 8. Up- and downwind dσ0/σ0 and dU/U are 
comparable for all wind speeds. When the SAR view is crosswind, both 
parameters markedly increase, particularly for WV1 measurements. For 
winds below 10 m s−1, the identified crosswind roll events are asso
ciated with perturbation levels twice these for up- and downwind. 
These differences are largest at lower wind speeds. In terms of wind 
perturbation, detected crosswind roll events suggest a level twice that 
for up/down looks at speeds of 6–8 m s−1. It is worth noticing that the 
limited S-1B HH SAR data show similar results with S-1A VV and thus 
not shown in the paper. The explanation for this is mostly a combina
tion of roll dynamics, SAR sampling and image processing. Most of the 
crosswind WV images come from the flow around mid-latitude highs 
and lows and hence are in different thermal advection regimes, which 
are known to affect the rolls differently (Foster and Levy, 1998). 
However, about 25% of crosswind roll detection with the strongest 
relative perturbation strength occur at very low latitudes. 

It is likely that this strong difference in directional radar sensitivity 
is related to short wind-wave variability and Bragg-scattering from 
these waves, which is polarization dependent. Fig. 9 shows dσ0 dis
tributions in VV and HH for both WV1 and WV2 at 9  ±  1 m·s−1. As 
expected, the difference between polarizations is much more distinct at 
36° (WV2) than at 23° (WV1), and with larger NRCS variability at VV 
than at HH. The mean polarization difference (PD = σ0

VV − σ0
HH) is 

greater for WV2 observations (Quilfen et al., 1999; Kudryavtsev et al., 
2013). This is consistent with the increasing impact of resonant small 

scatters that have short space-time relaxation scales, with increasing 
incidence angle (e.g. Mouche et al., 2007; Kudryavtsev et al., 2014). 
The differences between dσ0 distributions at VV and HH are much less 
pronounced for crosswind configurations in the WV2 results. 

Quantitatively, Fig. 9 shows that VV downwind dσ0 levels are 3 
times those of HH dσ0 at 36° (WV2). This is consistent with the pure- 
Bragg wave scattering theory prediction of a four times VV-HH σ0 dif
ference according to typical scattering coefficient formulations (e.g. 
Eqs. 3 and 4 in Kudryavtsev (2003)). For WV1, pure-Bragg wave growth 
predicts a factor of 1.75 between VV and HH σ0, which is consistent 
with the global downwind WV1 observations in Fig. 9. But at cross
wind, the statistical distributions of HH and VV dσ0 are similar, and the 
mean levels are much lower than the along-wind data. So for crosswind, 
the dominant radar scattering mechanism must be almost scalar. That is 
because non-polarized scatters control the C-band radar-detected con
trasts at crosswind. These waves are likely to be steeper intermediate 
scale (10–50 cm) gravity waves that require much stronger and longer 
duration wind forcing than for cm-scale Bragg waves (Kudryavtsev, 
2003; Kudryavtsev et al., 2014). The data then suggest that the roll- 
induced wind perturbations must be significantly enhanced when the S- 
1 SAR detects roll events in crosswind. This implication is that the 
crosswind roll detections are biased toward the strongest events. 

4.3. Comparison with C-band GMF simulations 

To further examine the C-band SAR NRCS response to rolls with 
respect to wind speed and relative azimuth, we interpret the S-1 WV dσ0 

Fig. 7. Box plots of dσ0, dσ0/σ0 and dU/U for identified roll events from WV1 and WV2 in VV polarization (left panel) and HH (right panel). Statistics were conducted 
within each 2 m s−1 bin from 3 to 19 m s−1. Boxes indicate the 25th to 75th percentiles in each bin. Data mean and median are denoted using the point and line. The 
10th and 90th percentiles are given by whiskers. The red line and shaded red in bottom panels represents the overall average and standard deviation of dU/U. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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measurements with a simple GMF simulation in the right column of  
Fig. 10. C-SARMOD calculations were performed assuming an 8% roll- 
induced wind speed change (dU/U) at each wind speed and direction 

for incidence angles of 23° and 36.5° over a wind speed range of 4.5 to 
13.5 m s−1 across the full range of relative azimuth angle. 

Corresponding SAR measurement statistics are collected in 20° 

Fig. 8. Average dσ0/σ0 and dU/U data from MABL roll events at up-, cross- and downwind SAR viewing angles as a function of wind speed. Data are from the 
2016–2017 period with VV polarization. Statistics were computed for a  ±  15° bin about the three relative azimuth angles, and within each 2 m s−1 wind speed bin 
from 3 to 19 m s−1. The line and shaded areas indicate the mean and one standard deviation. 

Fig. 9. dσ0 distributions at up-, cross- and downwind ( ± 15° bin) for WV1 (left panel) and WV2 (right panel) in VV and HH with wind speed of 9  ±  1 m s−1. 
Azimuth averaging is the same as for Fig. 8. 
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relative azimuth and 3 m s−1 wind speed bins (left column of Fig. 10). 
The modulation depth dσ0 is largest at upwind and downwind. In light 
winds (3–6 m s−1), WV1 and WV2 dσ0 are nearly constant for both VV 
and HH with WV1 around 0.02 and WV2 about 0.002. With increasing 
wind speed, both VV and HH dσ0 increase, with largest variations at up- 
and downwind. 

The observed dσ0 variations are generally similar, but there are 
some significant differences. In light winds (3–6 m s−1), C-SARMOD dσ0 

is also nearly direction independent, but at a lower magnitude than the 
SAR measurements. For moderate wind speeds, C-SARMOD predicts a 
stronger dσ0 dependence on the relative azimuth than we observe. For 
instance, within the 9–12 m s−1 wind speed range, WV1 VV dσ0 varies 
from 0.036 at upwind to about 0.026 at crosswind, and 0.037 at 
downwind. The corresponding C-SARMOD VV dσ0 are 0.042, 0.013 and 
0.046, respectively. Similar discrepancies are found for other wind 
speed ranges. These differences between S-1 WV and C-SARMOD si
mulations are larger for WV1 than for WV2 in both VV and HH, and 
increase with increasing wind speed. 

As might be expected from the results discussed in Section 4.2, 

crosswind data show the largest differences with C-SARMOD. For WV1, 
the SAR dσ0 is larger than 0.02, and increases with wind speed. In 
contrast, the C-SARMOD dσ0 is less than 0.02, with no obvious wind 
speed trend. For WV2 at crosswind, both C-SARMOD and WV dσ0 in
crease with wind speed, although C-SARMOD increases less rapidly. It 
should be noted that the constant 8% wind modulation due to rolls will 
not be valid across the full scope of the model-data comparison. 

5. Discussions and conclusions 

The combination of S-1 SAR WV data with automated image clas
sification provides thousands of new MABL roll observations across 
most of the global ocean. Assessment results show that the 36° in
cidence angle measurements have a clear benefit for MABL roll in
vestigations and improve on wave mode data from the earlier ERS and 
Envisat SAR ocean missions. In particular, there is a nearly 50% in
crease in event detection for WV2 compared to WV1. While more roll 
events are detected at the larger incidence angle, the two incidence 
angles show several important similarities for MABL roll remote 

Fig. 10. Observed vs. predicted dσ0 for roll events as function of wind speed and relative azimuth for WV1 and WV2 in VV and HH. Left panel are S-1 SAR WV results. 
Mean values are calculated for each 20° relative azimuth angle. For clarity, estimates of the standard deviation (shaded) are only shown for one wind speed in each 
panel. The right panel provides the C-SARMOD simulations under an assumed 8% wind speed change due to roll impacts. 
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sensing. First, they share a lower detection threshold near 4% in NRCS 
contrast at wind speeds from 3 to 19 m s−1. Estimates of the roll-in
duced surface wind speed perturbations at both incidence angles fall in 
the range of 5–10%. Finally, WV1 and WV2 SAR roll event detection 
rates are 3–10 times greater for up- and down-wind compared to 
crosswind (Fig. 5). These results generally hold for both VV and HH, 
although WV2 VV is slightly more sensitive than HH to wind streak 
signatures as seen in Figs. 7 and 9. It is thus apparent that the best 
option for S-1 SAR measurements of this process is the WV2 VV-pol 
configuration. These findings suggest that any ocean SAR investigations 
of MABL rolls should carefully consider the relative azimuth and SAR 
incidence angles. 

The central geophysical explanation for the observed radar de
pendencies under MABL roll forcing appears to be the combination of 
surface wind stress impacts and adjustment to this forcing by highly 
directional short wind waves. As discussed in Section 4.2, roll imprints 
are best captured by WV2 VV in the up and downwind configurations. It 
demonstrates that the local dσ0 changes due to the roll field are sig
nificantly polarized. Short-scale polarizing surface structures corre
spond to the cm-scale Bragg waves. These waves have short relaxation 
times, and they quasi-instantaneously adjust to wind changes. Thus in 
the majority of cases, SAR-imaged rolls are likely to reflect this rapid 
adjustment in cm-scale waves for km-scale regions under the helical roll 
vortex field (Alpers and Brümmer, 1994; Young, 2000; Vandemark 
et al., 2001). Using a C-band radar GMF as a first-order model for this 
wind-wave adjustment, Fig. 7 (c1) and (c2) show that the global- 
averaged 8% ( ± 3.5) level for wind speed fluctuations does a reason
able job of explaining the roll-induced NRCS modulation depth. This 
appears to be a robust observation, valid across most wind speeds, and 
consistent with previous aircraft wind measurements showing a range 
of 7–10% (Vandemark et al., 2001). Results also indicate that the 
strength of the coherent secondary circulation scales with the intensity 
of the mean flow. These satellite-derived estimates of surface pertur
bation magnitude may help guide analytical and numerical models of 
eddy-impacted boundary layers. 

An explanation for the largest difference of MABL roll detection 
between up and crosswind SAR viewing angles (see Figs. 5 and 8) is 
more nuanced. It is asserted that the dominant crosswind NRCS mod
ulation mechanism under roll forcing must come from changes in 
steeper intermediate scale breaking or nearly breaking surface scat
tering facets (Kudryavtsev, 2003; Kudryavtsev et al., 2013). This con
clusion is consistent with VV and HH pol differences observed in Fig. 9. 
Accordingly, and particularly at lower incidence angles, roll-induced 
surface wind variations must be increasingly vigorous in magnitude and 
duration for wind streak detection under crosswind conditions, as seen 
in Fig. 8. 

Looking forward, this discrepancy in roll-field detection may be 
related to other environmental conditions that accompany events 
classified as MABL rolls using CMwv. Because S-1 is polar-orbiting and 
right-looking, roll observations at crosswind will be primarily asso
ciated with flows around mid-latitudinal lows and highs. These condi
tions are associated with particular thermal advection regimes that 
induce first-order modulations of the rolls. So, crosswind rolls present 
complication in both remote sensing and in geophysical interpretation. 
More generally, this reinforces the hypothesis that the forcing condi
tions needed to generate sufficient surface waves for wind streak de
tection may change, and be convolved with the SAR look direction and 
incidence angle. Further work is required to clarify this issue as it 
pertains to MABL roll process studies using S-1 data. Future investiga
tions may also take advantage of these findings to focus on radar 

measurements under highly unstable atmospheric conditions, possibly 
using dual- and quad-polarized SAR measurements (Kudryavtsev et al., 
2014, 2019; Fan et al., 2019). 

It is certain that observed detection rates and thresholds depend to 
some extent on the performance of the CMwv automated image re
cognition algorithm. In the case of MABL rolls, the model was in
tentionally trained to find scenes that were clearly visible by eye. Given 
the consistent roll detection statistics and results in Fig. 7, this visibly- 
evident criterion corresponds to a 4% threshold in backscatter mod
ulation. This implies that conditions with weaker, less visible, roll im
prints are not captured in the present analysis and datasets. This lim
itation suggests that the overall percentage of occurrence rates for 
MABL rolls over the ocean seen in Figs. 3 and 5 represent conservative 
or lower-end estimates. In principle this may also affect the SAR-de
rived estimate of the low wind threshold for observed rolls (~2 m s−1) 
shown in Fig. 4, but this value is consistent with previous estimates 
from theory and observations (Etling and Brown, 1993; Weckwerth 
et al., 1997). CMwv model limitations are not expected to impact the 
study conclusions drawn above pertaining to radar sensitivity to MABL 
roll impacts with changing incidence angle, relative azimuth, or po
larization. 

These new S-1 WV observations open avenues for further studies. 
On one hand, the revealed differences in SAR sensitivity to waves 
generated by roll impacts, particularly for crosswind views, should be 
further investigated. This may lead to new approaches for identifying 
unstable conditions, and RiB retrieval methods. In that context, dual- 
and quad-polarized SAR observations (Fan et al., 2019), might be fa
vored. In particular, short-scale polarized scatter contributions can be 
isolated to more precisely analyze local roll signatures. The growing 
number of quad-polarization observations, from Radarsat-2, Gaofen-3 
and the new Radarsat Constellation Mission (RCM), are expected to 
serve this purpose. On the other hand, though the weak roll imprint 
cases are excluded in the present classified dataset, this S-1 SAR data
base is still state-of-the-art in terms of providing an overall global view 
of roll field characteristics (wavelength & orientation) as well as the 
ability to relate these data to near-surface forcing from the tropics to 
high latitudes. This massive classified WV SAR images can thus be used 
to support boundary layer studies over the world's ocean to advance 
understandings of km-scale MABL coherent roll structures on turbulent 
momentum fluxes. 
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Appendix A. S-1 WV NRCS recalibration 

For each WV SAR image, ESA's Level-1 SLC product provides the digital number = +DN I Q2 2 per pixel (I and Q indicate the real and 
imaginary parts of SAR measurements). It can be used to compute the NRCS through radiometric calibration and noise correction: 
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= DN A NESZ Linear/ [ ]ESA i i
0 2 2

where Ai is the calibration lookup table (LUT) provided in the annotation files for each image pixel. NESZ is the noise equivalent σ0 estimated from 
the mode of DNi

2/Ai
2 histogram for wind speeds less than 1 m s−1 (Li et al., 2019a, 2019b). The NESZ is 0.0014 and 0.0062 for S-1A WV1 and WV2 

in VV, and 0.0012 and 0.0040 for S-1B WV1 and WV2 in HH. 

Fig. A1. NRCS residual of pre- and post-recalibration (top and bottom) as function of wind speed for WV1 and WV2 in VV and HH. VV data are for S-1A in 2016–2017 
and HH data are for S-1B from 15 Mar to 01 Jul in 2017. Colour denotes the normalized data density. The red dashed line indicates the 0 dB baseline. Black dots are 
the mean residual within 1 m s−1 bin and the error bars represent one standard deviation. The σ0 reference comes from the C-SARMOD model noted in the text. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  

The chosen NRCS reference, or benchmark, is the C-band SAR GMF of C-SARMOD (Mouche et al., 2006). It is selected because of its applicable 
skill in both VV and HH polarizations. NRCS comparisons between standard ESA WV data (σ0

ESA) and C-SARMOD predictions for WV1 and WV2 in VV 
and HH are given in the top panel of Fig. A1. We then computed the mean σ0

ESA per image for WV data and fed the collocated ERA5 wind speed and 
direction as well as image center incidence angle into C-SARMOD to derive the expected σ0

C−SARMOD. Note that SAR data with mean DNi
2/Ai

2 less 
than the NESZ are excluded. The error bar plots show the mean and 1st standard deviation within each 1 m s−1 bin and the colour denotes the 
normalized data density. It is clear that the NRCS residual (σ0

ESA-σ0
C−SARMOD) for WV1 data in both VV and HH is nearly 0 dB for all wind speeds. 

However, the WV2 NRCS residual has a nearly constant negative bias at all wind speeds of about −1.6 dB for VV and − 2 dB for HH. This is 
consistent with the NRCS assessment that discrepancies exist between S-1 WV data (after built-in calibration processing) and CMOD5.N predictions, 
particularly for measurements at the WV2 incidence angle of 36° (Li et al., 2019b, 2019a). 

A recalibration constant COC is calculated for each 12 day repeat cycle using C-SARMOD and ERA5 wind direction. This factor is then used to 
correct the WV NRCS as σ0 = σ0

ESA/COC in linear space. This procedure is applied for both WV1 and WV2 in VV and HH. The bottom panel of Fig. A1 
displays the NRCS residuals after recalibration. As expected, the WV2 mean NRCS values now lie within 0.1–0.2 dB of the C-SARMOD prediction for 
most wind speeds.  
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Abstract15

This study demonstrates a pioneer global view of atmospheric boundary layer rolls over16

the world’s ocean using the new classified Sentinel-1 wave mode SAR images. As ex-17

pected, up to 90% of roll events occur in slightly unstable to near-neutral atmospheric18

conditions, distinct from the total average. Roll orientation is found to systematically swing19

between two angles with respect to the surface wind. One angle is presented towards and20

one away from the geostrophic winds with latitudes beyond and within ±30◦, respectively.21

The low- and mid-latitude angle contrast seems linked to the westerlies and trade wind22

belts, suggesting the significance of air flow directions in roll dynamics. In terms of the23

multi-scale nature of roll vortices, analysis shows nearly equal number of single-, double-24

and triple-length scales. Aspect ratio of these narrow rolls ranges from 0.5 to 8 with mean25

of 2.9, consistent with previous observations.26

1 Introduction27

Roll vortices are an oft-observed feature of the turbulent marine atmospheric bound-28

ary layer (MABL) in near-neutral to moderately unstable conditions [Brown, 1980; Etling29

and Brown, 1993; Atkinson and Wu Zhang, 1996; Young et al., 2002]. They are frequently30

visible as cloud streets when condensation occurs in the updraft bands [e.g. Kuettner,31

1971; Weston, 1980; Müller et al., 1985; Wurman and Winslow, 1998], and wind streaks32

over water due to the enhanced and reduced surface wind convergence [e.g. Gerling, 1986;33

Alpers and Brümmer, 1994; Young, 2000; Li et al., 2013]. The horizontal extent of MABL34

rolls can be hundreds of kilometers, where the air-mass transformation along stream is35

significantly promoted [Pithan et al., 2018]. Vertically, these organized secondary circula-36

tions usually span the whole depth of the MABL and form alternating bands of updrafts37

and downdrafts. The upward and downward flows are able to introduce a non-local net38

effect that is independent of the vertical gradient [e.g. Lemone, 1976; Brooks and Rogers,39

1997; Morrison et al., 2005]. This roll-associated extra-contribution to air-sea exchanges40

of momentum, heat, and water vapor is important but not fully resolved in current numer-41

ical models [Bauer et al., 2015; Bony et al., 2015], bringing about uncertainties in climate42

forcing, projection and sensitivity [Sherwood et al., 2014].43

Investigation of this fundamental physical process has been conducted for many44

decades through extensive observations [e.g. Brunt, 1938; Kuettner, 1959, 1971; Weck-45

werth et al., 1997; Levy, 2001; Zhao et al., 2016; Huang et al., 2018], field experiments46

[e.g. Walter and Overland, 1984; Chou and Ferguson, 1991; Vandemark et al., 2001], and47

numerical and theoretical analyses [e.g. Brown, 1970; Lemone, 1976; Leibovich and Lele,48

1985; Foster and Levy, 1998; Foster, 2005; Salesky et al., 2017]. Roll vortices are found49

to have typical length scale and orientation of 1-5 km and ±30◦ relative to the mean wind50

direction [Etling and Brown, 1993; Atkinson and Wu Zhang, 1996]. Although significant51

gain of roll physics has been obtained, little is known about their global features as well52

as annual and seasonal variations. The lack of efficient means to observe and objectively53

classify rolls is a main restriction for most of the relevant observational studies [Weckw-54

erth et al., 1997; Levy, 2001; Zhao et al., 2016; Banghoff et al., 2020]. To seek a longer-55

term climatology of roll vortices over the world’s ocean, new detailed observations of the56

MABL structure are required. These data should be unaffected by the presence or absence57

of clouds and are able to achieve roll characterization at climate time and space scales.58

Among the many techniques, spaceborne synthetic aperture radar (SAR) holds the59

largest potential to provide systematic measurements of roll imprints on the global ocean60

surface [Brown, 2000; Young, 2000; Levy, 2001]. While SAR backscattering is largely61

associated with the cm-scale ocean waves, the roll-induced wind modulations on these62

short waves are usually strong enough to produce linear dark and bright patterns on SAR63

images [Alpers and Brümmer, 1994; Vandemark et al., 2001]. One example of such roll64

scene, chosen randomly from the Sentinel-1A (S-1A) SAR WaVe mode (WV) acquisi-65
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tions, is given in Figure 1a. It clearly illustrates the km-scale roll imprints that have the66

orientation approximately aligning with the surface wind direction. This S-1 WV, inher-67

ited from ERS and Envisat SAR missions, collects 20×20 km SAR scenes routinely at two68

alternating incidence angles of 23◦ (WV1) and 36.5◦ (WV2) over the entire open ocean69

(see Supplementary Text S1). Except ocean waves, this global catalog of WV SAR data70

has been found to capture a wide range of ocean surface processes at scales of 0.5-10 km71

[Wang et al., 2019a], providing an unprecedented opportunity for roll studies beyond case72

and region stages.73

To automatically identify roll events from these massive WV SAR images, a classi-74

fication tool based on deep learning techniques was developed [Wang et al., 2019b]. As-75

sessment of the classified roll events manifests that, compared to WV1, WV2 is more sen-76

sitive to roll-induced wind modulations on ocean surface and thus maps more and much77

clearer roll events [Wang et al., 2020]. Here, we focus on the global feature of MABL78

rolls in terms of the synoptic conditions and their structural characteristics, using more79

than 125, 000 roll events observed by S-1A WV2 in 2016-2018. To this end, each im-80

age has been collocated in time and space with the ERA5 surface variables, and spec-81

trally analysed for roll orientation and wavelength extractions (Supplementary Text S3).82

Although gaps still exist in temporal and spatial coverage, it is the first time to condense83

MABL rolls at global scale. The statistical behavior of rolls summarized from the WV84

SAR measurements cannot be resolved by any other means.85

2 Atmospheric conditions of roll occurrence93

One-day acquisition by S-1A SAR WV2 is given in Figure 1b. The images are94

acquired globally in ascending or descending passes that cross the equator at roughly95

0600 or 1800 local time. Distances between two adjacent WV2 images along the orbit96

are roughly 100 km. In total, there are about 25k WV2 data per month obtained (Figure97

1b), 15% of which are identified as roll events through our deep-learning classification98

tool. Despite the fact that weak roll imprints are not well detected due to the tool limita-99

tion (Wang et al., 2020), as expected, roll events are found across the whole ocean basin100

with the highest concentration in tropics alongside the rainfall belts (Supplementary Figure101

S1b). Given the short duration of the dataset under investigation, we observed relatively102

little seasonality in the number of detected rolls as well as their atmospheric conditions103

(Figure 1b and Supplementary Figure S4). Hence in the following analysis, we concentrate104

on and present only the mean statistical results of all identified roll events.105

Both observational and numerical studies have demonstrated that MABL rolls are106

present under specific environmental conditions [Etling and Brown, 1993; Atkinson and107

Wu Zhang, 1996]. It has been continuously reported that the wind and convection are the108

prevalent driving force for roll formation. The two variables are usually incorporated by109

the bulk Richardson number. In this study, we define the neutral bulk Richardson num-110

ber (RiBN ) with the neutral wind speed (U10N ) and virtual air-sea temperature difference111

(∆TV ) at 10-m height. The distributions of these three measures for detected rolls and all112

WV2 SAR data are given in Figure 1c. Indeed, the atmospheric conditions of MABL rolls113

are distinct from the overall average. In specific, the detected roll events are subject to114

higher wind speed in the range of 5-17 m·s−1 and centered at around 9 m·s−1. The air-115

sea temperature difference spans from −4.5 ◦C to 0.5 ◦C and centers at −2 ◦C. Extents of116

U10N and ∆TV presented here cover almost all the previous roll observations, providing a117

first global view of atmospheric conditions for the majority of MABL roll events.118

According to the bulk Richardson number, roll events identified from the SAR data119

are through slightly unstable to stable conditions with RiBN ranging from -0.02 to 0.005120

and centering at -0.075. But the range of roll RiBN distribution is clearly narrower than121

that of the overall SAR acquisitions. This yet evidences the specific environmental condi-122

tions required for roll generation and also agrees well with the theoretical and experimen-123
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Figure 1. Overall detection and atmospheric condition of MABL rolls from the global Sentinel-1 wave
mode SAR data. a, an example of sea surface roughness SAR image with the clear quasi-periodic linear roll
imprints. The horizontal orientation is approximately aligned with the 10-m wind direction (red arrow). b,
the map shows one-day (2016-12-29) sampling of Sentinel-1A WV2 acquisition and the identified roll events
in red circles. Monthly numbers of total and roll data in 2016-2018 are given in the bar plot. c, the environ-
mental conditions of the overall ocean surface and when rolls are formed, demonstrated by the normalized
probability functions of U10N , ∆TV , and RiBN .
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tal results [Atkinson and Wu Zhang, 1996; Weckwerth et al., 1997; Young et al., 2002]. In124

detail, 94% of the detected rolls take place in slightly unstable to near-neutral conditions,125

where either the wind or convection, or the combination of both are in effect. The other126

6% of rolls that occur under stable conditions mostly position at high latitudes. These sta-127

ble stratification are found to be closely associated with the poleward air flows. Warm air128

is brought in from the equator, leading to a positive ∆TV . This is manifested by the diag-129

nosis of surface wind components at 50◦S from unstable to stable conditions (Supplemen-130

tary Figure S5). While the zonal wind conforms, the meridional wind exhibits an evident131

shift from 4.5 m·s−1 (unstable) to -1.5 m·s−1 (stable). The v-wind direction reversal causes132

the appearance of the warm advection from the equator to poles. In addition to the local133
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stratification, the warm advection shall also modulate the thermal winds that is usually134

a constant shear added linearly into the mean wind profile. While the stratification and135

thermal winds are both significant to the roll dynamics at mid-latitudes, their modulation136

mechanisms on roll characteristics are not yet resolved. The huge SAR data seem able to137

provide an avenue to isolate thermal wind effects on roll dynamics. It is beyond the scope138

of this paper and will be thoroughly addressed in a parallel study.139

As a matter of fact, the atmospheric condition of detected roll events is not uni-140

formly distributed across the globe and found to be latitudinal dependent. As shown in141

Figure 2, RiBN decreases from nearly 0 at high latitude to -0.02 near the equator, corre-142

sponding to the stratification change from near-neutral to slightly unstable. At low latitude143

(30◦S-30◦N), the majority of detected rolls occur under unstable conditions. It implies that144

roll vortices are predominantly driven by the thermal convection. This is additionally fea-145

tured by the stronger air-sea temperature difference as well as the weaker wind speed as146

given in Figure 2. Towards the higher latitudes, wind force gradually takes over and domi-147

nates the dynamic of roll-shaped boundary layer. This actually echoes the prevalent role of148

the thermal wind near the polar region as discussed above. In addition to that, the change149

in the driving force is also reflected by the varying skewness in RiBN from near zero at150

high latitude to obvious negative values at the equator.151

Figure 2. Latitudinal statistics of RiBN , ∆TV and U10N of identified MABL rolls from the Sentinel-1
WV2 SAR data in 2016-2018. Box plots are made in each 10◦ latitude bin from 70◦S to 60◦N.

152

153

3 Roll characteristics154

While environmental conditions of roll occurrence are certainly important, detailed155

investigation of roll characteristics is essential towards a better understanding of roll dy-156

namics. One typical roll feature is the horizontal orientation relative to the directions of157

surface wind or the aloft geostrophic wind. The other key feature is the horizontal roll158

wavelength (λ) scaled by the boundary layer height (h). In this study, we extract the dom-159

inant roll orientation through spectral method from each identified WV roll image. The160

horizontal wavelength of roll vortices is collected by searching the local peaks within the161

spectral band determined by the roll orientation angle. Roll wavelengths corresponding162

to the most three energetic peaks are recorded for the following analysis. The extraction163

procedure is detailed in Supplementary Text S3.164
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3.1 Horizontal orientation165

Figure 3. Global view of roll orientation relative to the surface U10 wind direction. a. demonstration
of roll orientation relation with the surface wind and geostrophic wind directions. b. distribution of the angle
deviation (∆φ) between surface wind direction and roll orientation, sign flips in the southern hemisphere. c.
global map of the mean ∆φ in 5◦ by 5◦ grid boxes.

166

167

168

169

Figure 3a gives an illustration of the horizontal roll orientation with respect to the170

surface wind and the aloft geostrophic wind. Although roll orientation is roughly in align-171

ment with the mean flow direction, both theoretical and observational investigations have172

evidenced significance of the angle between roll orientation and the reference wind. The173

fact that a roll forms within the Ekman spiral determines roll is supposed to orient on174

the left/right of the geostrophic wind in the northern/southern hemisphere. The angle be-175

tween roll orientation and the geostrophic wind has been found to vary in a wide range176

[Etling and Brown, 1993; Atkinson and Wu Zhang, 1996; Weckwerth et al., 1997]. In the177

case of small angle deviation, the roll axes fall between the geostrophic wind and sur-178

face wind (blue curve in Figure 3a). While roll orientation can be up to 30◦ relative to179

the geostrophic wind [e.g. Brown, 1970], ending up on the left/right of the surface wind180

in the northern/southern hemisphere (red curve in Figure 3a). Despite this behavior of roll181

orientation has been reported in numerous case studies, its statistics is yet to be further182

explored at both local and global scale.183

Here, we choose the 10-m winds from ERA5 as reference to calculate the angle de-184

viation between roll orientation and surface wind direction ∆φ = (φu10 − φroll) × sign(lat).185
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The results obtained from the new global WV SAR data is presented in Figure 3b. As186

shown, PDF of the angle deviation roughly follows a normal distribution with the mean of187

-2.49◦ and standard deviation of 18.72◦. The tiny shift from 0◦ to negative value is due to188

the unbalanced data quantity between two hemispheres. It is also worth noting that PDFs189

of the angle deviation in the northern and southern hemisphere resemble the total with the190

mean of 0.38◦ and -4.06◦, respectively (Supplementary Figure S6). Overall, 90% of the191

data lies within the range of [-30◦, 30◦] that is generally consistent with previous results192

[Morrison et al., 2005]. The other 9.6% data beyond ±30◦ may encompass higher uncer-193

tainty due to inaccurate model winds and/or the direction errors in the spectral analysis.194

Benefiting from the huge dataset, the global signature of roll orientation is readily195

manifested in Figure 3c. For demonstration, the ∆φ is averaged over 5◦ by 5◦ latitude and196

longitude grids. Red color represents that roll orientation is left/right of the surface wind197

in the northern/southern hemisphere. While the blue color indicates the opposite trend198

for roll orientation relative to the surface winds. It is surprising to notice that the global199

map of ∆φ can be categorized into two sectors. The anticyclonic roll roll orientation in200

blue color dominates at high latitudes beyond ±30◦. This has been well predicted by the201

popular roll theories regarding inflection-point and thermal instabilities [Brown, 1980;202

Etling and Brown, 1993; Young et al., 2002]. The cyclonic roll orientation in red color,203

however, prevails at low latitude within 30◦S and 30◦N, implying that another mechanism204

for roll dynamic might be in effect. It appears that roll orientation might be related with205

the absolute wind directions at the global scale. We speculate that the opposite angle devi-206

ation from trade winds to the westerlies might be due to impacts of the horizontal Coriolis207

force on roll dynamics, which is neglected in most of the current theoretical investigations208

[Gerkema et al., 2008]. In addition, the peculiar strip of negative ∆φ near the equator re-209

sults from the inaccurate surface wind direction of ERA5. Moreover, the leftward roll ori-210

entation extends up to the polar region near 60◦S, while there is no evident signature in211

the Arctic due to lack of data acquisition.212

3.2 Roll length scale213

While well organized, roll imprints seen on the SAR images are in fact irregular221

linear features and exhibit multi-length scales [Mourad and Walter, 1996; Young, 2000;222

Mourad et al., 2000]. To extract the dominant wavelengths of roll vortices from each WV223

imageete, we adopt the 2-D spectral method as detailed in the Supplementary Text S3.224

The local spectral peaks are extracted and retained according to their energetic signif-225

icance. 33.9%, 31.7% and 34.4% of the roll events are labeled as single-, double- and226

triple-scales, respectively (Figure 4a). Note that the proportion of these three types of rolls227

changes with the energetic threshold chosen to characterize the peak significance (Supple-228

mentary Table S1). In the following, the threshold of 50% is applied as we found there is229

little difference in the aspect ratio statistics for different thresholds. Despite the mutli-scale230

nature of roll vortices, our results shown here represent a first statistical view of the roll231

horizontal lengths over the global ocean. But it has to be remarked that large-wavelength232

rolls, usually occurring in the cold-air-outbreaks [e.g. Miura, 1986; Brümmer, 1999], can233

not be addressed by these small WV images. As such, the nonlinear interactions between234

resonant triads of instabilities proposed in Mourad and Brown [1990] are not further re-235

solved in the present work.236

As a measure of the vertical shape of roll vortices, the aspect ratio (AR) is in par-237

allel examined. It is defined as the roll wavelength scaled by the atmospheric boundary238

layer height [e.g. Young et al., 2002]. Distribution of AR calculated using the extracted239

wavelength from the most energetic spectral peak is given in Figure 4a. As shown, the240

PDF that in black color roughly follows a lognormal curve with a 0.47 geometric standard241

deviation, s, ranges from 0.2 to 1 for the lognormal distribution [Morrison et al., 2005].242

The mean and median are correspondingly 2.91 and 2.64, in good alignment with theoret-243

ical predictions [e.g. Kuettner, 1971; Brown, 1980] and previous observations [Atkinson244
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Figure 4. Global view of roll aspect ratio (AR=λ/h, roll wavelength divided by the boundary layer
height). a. Normalized probability density functions of AR for the extracted roll wavelengths from SAR
images. Spectral analysis (method supporting information) show that 33.9%, 31.7% and 34.4% of the clas-
sified rolls are single-, double- and triple-scales based on the significance of the detected spectrum peaks. λ
represents the wavelength of the most energetic peak for all the data. For multi-scales cases, λ is sorted with
decreasing wavelength with λ1

D>λ2
D , λ1

T>λ
2
T>λ

3
T
. b. global map of the mean AR for the most energetic peak

in 5◦ by 5◦ grid boxes.

214

215

216

217

218

219

220

and Wu Zhang, 1996, e.g., 2-5 in]. We also examined the AR PDFs of roll events with245

single-, double- and triple-length scales. For multi-scale cases, the wavelengths are ar-246

ranged in decreasing order, that is λ1
D>λ

2
D and λ1

T>λ
2
T>λ

3
T . All corresponding PDFs are in247

lognormal distributions. In detail, the AR PDFs of λS , λ1
D and λ1

T are quite similar with248

the AR PDF using the most energetic peak, but a bit shifted on the right. The AR PDFs249

of λ2
D and λ2

T are obviously narrower than the black AR PDF curve and are also located250

slightly left of the curve. The PDF of λ3
T is the narrowest and on the leftmost of all PDF251

curves. By comparison, the AR PDF using the most energetic peak covers nearly all AR252

values from the shortest to largest wavelengths for single-, double- and triple-scale roll253

cases. In other words, the most energetic peak can either be the peaks of short, median or254

large wavelengths for multi-scale roll events. As the most energetic peak also corresponds255
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to the dominant length scale of roll structures, its AR PDF holds the largest representative256

for all the identified roll cased from the global WV SAR data.257

The global map of roll AR associated with the most energetic peak is then presented258

in Figure 4b. It illustrates that rolls in the tropics have a larger AR than those in the ex-259

tratropics. This implies that rolls at low latitude hold a different vertical shape with rolls260

formed at high latitudes. According to the AR PDFs of multi-scale rolls in Figure 4a, it261

can be deduced that most of the single-scale cases are located in the tropics. However,262

the global distribution of the most energetic peak roll wavelength is unlike that of the AR263

or roll orientation, showing irregular signatures from the tropics to the high latitudes in264

both hemispheres (Supplementary Figure S7). This low-to-high latitude contrast of AR is265

closely associated with the global pattern of atmospheric boundary layer height. In addi-266

tion, we also found that the rolls occurring in the coastal region tend to show higher AR,267

which is due to the decreasing boundary layer height as well.268

4 Discussion and conclusion269

Benefiting from the newly built dataset of Sentinel-1A WV SAR images with roll270

imprints, both the atmospheric conditions and roll characteristics are examined on a statis-271

tical basis in this paper. Our results across the major ocean basins confirmed the statement272

that roll vortices are indeed mostly generated at slightly unstable to near-neutral conditions273

[Etling and Brown, 1993; Atkinson and Wu Zhang, 1996; Weckwerth et al., 1997; Young274

et al., 2002]. Also as foreseeable, quantitative examinations unveiled the latitudinal depen-275

dence of atmospheric stratification using the bulk Richardson number, which is unstable276

in the tropics while near-neutral at mid-latitudes. It must be noted that the SAR images277

of MABL rolls are classified by the pre-developed deep-learning-based classification tool278

[Wang et al., 2019b]. The tool was created with a limitation of identifying weak roll im-279

prints, and thus may result in bias in the atmospheric condition analysis, particularly for280

light winds [Wang et al., 2020]. Rejection of the weak roll cases also constrains the ex-281

amination of roll occurrence at global scale, which is roughly 10%-30% (Supplementary282

Figure S1b), lower than the two relevant coastal results of 40%-50% in Levy [2001]; Zhao283

et al. [2016].284

It is certain that the angle accuracy of roll orientation relative to the surface winds285

to some extent depends on the spectral analysis and the quality of ERA5 variables. Our286

inspection finds that the spectral method fails to extract the right roll orientation when roll287

imprints are less visible or there are other phenomena on the WV SAR images. Combin-288

ing with the possible errors in ERA5 model winds, it is reasonable to observe a small pro-289

portion (3.4%) of angle deviation that is beyond ±40◦. It is important to emphasize that290

the majority of the angle of roll orientations relative to the surface wind are trustworthy291

within ±30◦, constituting the new finding that roll orientation systematically differs from292

low- to mid-latitudes (Figure 3c). This directional contrast must somewhat be linked to the293

global stratification behavior that changes from unstable near equator to near-neutral at the294

higher latitudes (Figure 2). Despite that, other factors such as the air flow directions that295

are overall eastern in tropics while western in extratropics, should also play non-negligible296

roles in generating the orientation contrast.297

In addition to the orientation, the multi-scale roll vortices visible on the high-resolution298

WV SAR images are examined in terms of their wavelengths. Our extraction of roll wave-299

length is directly from the local peaks detected within the predominant spectral band as300

detailed in Supplementary Text S3. It is no doubt that the extraction algorithm can be fur-301

ther refined, we maintain high confidence in the obtained roll wavelengths from a statis-302

tical point of view. In determining if one roll event is a single-, double- or triple-scale303

case, an objective threshold of the relative peak energy is used. Albeit the proportion of304

these three types varies with choice of the threshold, we found that PDF of their aspect305

ratio barely changes. Regarding the global feature, roll wavelength of the most energetic306
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peak that corresponds to the strongest component of roll imprints displays a dissimilar307

spatial pattern as roll orientation. The aspect ratio is, however, found larger at low- than308

mid-latitudes, similar to the low-high latitude contrast of roll orientation. All these imply309

that roll dynamics differ from the tropics to extratropics, one aspect that has so far been310

untapped in the state-of-the-art roll theory.311

The latitudinal variations of roll atmospheric condition and basic characteristics ev-312

idenced here are both important to studies of roll-shaped boundary layer and related air-313

sea interactions. Statistics of the aspect ratio and the roll angle with respect to surface314

wind direction are in good alignment with reports from roll theoretical predictions and315

numerous field studies. Yet challenges remain. The deep learning tool used to identify316

rolls from SAR data shall be refined to address the occurrence of MABL rolls by possibly317

combining the acquisitions from multiple in-orbit SAR satellites. More importantly, in-318

depth theoretical investigations are essential to advance our understanding of the latitudi-319

nal dependence of roll dynamics. One starting point is to examine the horizontal Coriolis320

force effects on roll formation, which is often neglected in geophysical fluid problems. As321

such, roll theory studies shall benefit and be extended to a broader range of applications322

across the global ocean.323
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Text S1. Sentinel-1 wave mode SAR data13

Sentinel-1 (S-1) is a polar-orbiting, sun-synchronous C-band SAR satellite constel-14

lation mission [Torres et al., 2012]. It is designed for long-term operation extending into15

the next decades. Two satellites (A&B), sharing the same orbital plane offset by a 180◦16

phase difference, have been launched in April of 2014 and 2016, respectively. Both satel-17

lites are equipped with identical SAR instruments operating in pre-programmed modes18

of Interferometric Wide swath (IW), Extra Wide swath mode (EW), Strip Map (SM) and19

WaVe mode (WV). Among which, WV is the default mode over global oceans except the20

Arctic, closed seas and coastal areas. WV mode is specialized to acquire small SAR im-21

age scenes (termed images) at two alternating incidence angles of 23◦ (WV1) and 36.5◦22

(WV2), both operated in linear vertical (VV) transmit and receive (default) polarization,23

and during special phases in horizontal (HH) polarization. Each WV image size is 20 km24

by 20 km, with 5 m pixel resolution. The acquisition is step-wise, with spacing between25

two neighboring images being between 100-120 km, and with nearly exact repeat sam-26

pling of each 12 days. On average, more than 30,000 images per month are collected by27

each satellite at each incidence angle. The WV SAR data repository of the Level-1 Sin-28

Corresponding author: Chen Wang, cwang@ifremer.fr
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gle Look Complex (SLC) product is managed at IFREMER (http://www.ifremer.fr/29

datavore/exp/dvor/#/s1quicklook), and also at ESA’s Sentinel Open Access Hub30

(https://sentinel.esa.int/web/sentinel/sentinel-data-access).31

In this study, we use S-1A WV2 SAR data spanning 2016-2018, all acquired in VV32

polarization. All inland and coastal images are filtered out for this analysis and ocean data33

are limited to have the surface temperature larger than 0 ◦C to avoid possible sea ice im-34

pact. Figure S1a illustrates the sample population of these images on a 5◦ by 5◦ global35

spatial grid. Data coverage is nearly complete over the Pacific, Indian and south Atlantic36

oceans while partial for the eastern north Atlantic ocean because, by default, other stan-37

dard imaging modes are in operation. The total number of images evaluated within these38

S-1A WV2 dataset is 868,878 in total.39

Each image is colocated in time and space with the surface variables from the ERA5,40

including 10 meter wind components (u10, v10), sea surface temperature (SST), 2 me-41

ter air temperature (T2m), 2 meter dew-point temperature (d2m) and surface pressure42

(sp). ERA5 is the latest generation of the European Centre for Medium-Range Weather43

Forecasts (ECMWF) reanalysis products that provide the environmental variables hourly44

and on a global spatial grid of 0.25◦ by 0.25◦. The data are publicly available at https:45

//cds.climate.copernicus.eu. Based on these variables, the atmospheric parameters46

of the neutral bulk Richardson number (RiBN ), the neutral wind speed (U10N ) and virtual47

air-sea temperature difference (∆TV ) at 10 meter height are derived, using the COARE 3.048

air-sea turbulent flux algorithm [Fairall et al., 2003].49

Text S2. Automated identification of roll events50

To extend application of these global S-1 WV SAR data beyond ocean waves, an51

automated image classification tool has been recently created [Wang et al., 2019a,b]. We52

briefly describe this work here with an emphasis on the MABL roll identification. The top53

ten common geophysical phenomena seen in the WV image data was firstly defined [Wang54

et al., 2019a]. They were ocean swell, wind streaks, micro-convective cells, rain cells, bi-55

ological slicks, sea ice, icebergs, low wind areas, atmospheric fronts, and oceanic fronts.56

Visual selection was then used to build a large representative collection for each class,57

leading to an open-access labelled database called TenGeoP-SARwv [Wang et al., 2018].58

It has supported our training and validating of the automated classification tool, which is59
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developed from the deep Inception-v3 convolutional neural network (CNN) [Szegedy et al.,60

2015; Wang et al., 2019b]. This tool, namely CMwv, is able to discriminate the input WV61

scene for the ten defined geophysical classes. In detail, CMwv assigns each WV image62

a probability score for each class. These probabilities add up to 1, and a WV image is63

considered to represent a case of visually-distinct MABL roll impacts (i.e. wind streaks)64

if the roll class score is the largest among the ten. The quantified skill of this tool has a65

Recall (sensitivity) of 83% and Precision (positive detection rate) of 96% for WV2 data66

[Wang et al., 2019b]. More details and discussion about CMwv and its performance on67

classification of MABL rolls are documented in Wang et al. [2019b, 2020].68

Text S2. Extraction of roll orientation and wavelength from SAR images69

While might be irregular, roll imprints visible on SAR images are usually organized70

linear features. This coherent and periodic structure can be well analyzed by the spectral71

method, i.e. two-dimensional Fourier transform (2-D FFT). In many relevant studies, the72

approach has been proven to be effective in extracting the roll orientation and/or wave-73

lengths from ocean SAR images [Gerling, 1986; Mourad and Walter, 1996; Lehner et al.,74

1998; Li et al., 2013]. Here, we describe the specific procedures of this spectral method75

dedicated for S-1 WV SAR image. Two examples are demonstrated in detail with one be-76

ing recognized as a single-scale roll event and another as a multi-scale roll case.77

Figure S2a illustrates the normalized radar cross-section (σ0) image that is already78

shown in Figure 1a. For better visualization, resolution of this image was down-sampled79

to be 1/10 of the original using a box average. This process filters out small ocean wave/swell80

features, outstanding the roll signatures. The white and red arrows on the image indicate81

North and ERA5 10-m wind direction. One can clearly notice that the roll linear features82

are approximately aligned with the surface winds.83

The image spectrum S(kx, ky) is calculated using the 2-D FFT algorithm over the84

whole σ0 image, and then converted from Cartesian to Polar coordinates, S(k, φ). Figure85

S2b displays the spectral part for wavelength (λ=2π/k) between 0.8 and 6 km. Angle φ86

is in SAR image coordinate with 0◦ being the positive azimuth and rotating to the range87

direction. As there is a 180◦ direction ambiguity, the spectral energy is concentrated in88

two clusters located near φ=117◦ and 297◦ in the case of Figure S2a. These spectral clus-89

ters correspond to the periodic roll signatures in spatial domain. To objectively extract the90
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dominant roll orientation, we draw the integrated spectral profile of s(φ) =
∫ k=2π/800
k=2π/4000 s(k, φ)dkdφ91

in Figure S2c, with the maximum marked as a red dot at φ0=117◦. A narrower spectral92

section is adopted here to avoid any impacts of spectral energy generated by the non-roll93

features. From φ0, we can calculate the roll orientation φroll= φ0+φh+π/2, in geographic94

coordinate (clockwise relative to the North). Where φh represents the angle of SAR im-95

age heading. Noticing that the 180◦ ambiguity of φroll can be removed by referring to the96

collocated ERA5 10-m height surface wind direction.97

Once the dominant roll orientation is locked, one can define the specific spectrum98

band for MABL roll structures. The band width is determined by the relative spectral99

energy as shown in Figure S2c, 50% of the maximum. We then extract the local peaks100

within the limited spectrum band (dashed red box in Figure S2b), and record the top three101

most energetic ones. Energy level of these peaks decides a roll case is single-scale or102

multi-scale. In detail in this work, the peaks are sorted in decreasing spectral energy with103

E1>E2>E3. A roll case is recognized as single-, double- or triple-scales only when E2<f*E1,104

E2>f*E1 & E3<f*E2 or E3>f*E2, respectively. The f indicates a percentage threshold, and105

we see that the cases in Figure S2 and Figure S3 are recognized as single- and triple-scale106

roll events with f=50%. A detailed proposition change of single-, double- and triple-scale107

rolls with different thresholds is given in Table S1. Roll wavelengths thus can easily be108

read from these extracted peaks. Wavelength of the most energetic peak is donated as λ.109

Wavelengths of the multi-scale rolls are donated by λS , λiD and λiT (i=1,2,3), all sorted in110

decreasing order, i.e. λ1
D>λ

2
D and λ1

T>λ
2
T>λ

3
T .111
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Figure S1. Spatial gridded statistics of, a, Sentinel-1A WV2 SAR images in 2016-2018 and, b, the percent-

age of identified roll events in 5◦ by 5◦ grid boxes.
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Figure S2. Demonstration roll orientation and wavelength extraction from the Sentinel-1 WV SAR im-

age in terms of a single-scale roll case. a. A typical WV SAR image with km-scale linear rol features being

clearly visible. The white and red arrows indicate North and the ERA5 wind direction. b. The 2-D FFT image

spectrum, S(k, φ), within the expected wavelength (λ=2π/k) range of 0.8-6 km for MABL roll structures. The

Angle φ is in SAR image coordinates, i.e. relative to the azimuth rotating from 0◦ to range. The colored star

indicates the detected local spectrum peaks within the dashed red spectrum band. c. Integral of the spectrum

S(k, φ) at each φ and wavenumber between 2π/4000 and 2π/800, maximum marked as a red dot and noted as

φ0. Vertical line indicates the width of the spectral band (φBW ) associated with the roll structures.
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Figure S3. Similar to Figure S2 but for a multi-scale roll case.161
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Figure S4. Latitudinal statistics of RiBN , ∆TV and U10N of all Sentinel-1 WV2 acquisitions in 2016-

2018. Box plots are made in each 10◦ latitude bin from 70◦ S to 60◦ N.
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163

Figure S5. Comparisons of v- and u-component for stable (RiBN>0) and near-neutral to unstable

(RiBN<0) rolls at 50◦ southern ocean.
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Figure S6. Distribution of the angle deviation (∆φ) from roll orientation to ERA5 surface wind direction

for total, northern hemisphere (N.H) and southern hemisphere (S.H), respectively.

166

167

Figure S7. Global distribution of the extracted roll wavelength from the most energetic peak of the identi-

fied WV SAR images. Color donates the average in 5◦ by 5◦ grid boxes.
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Table S1. Proportion changes of single-, double- and triple-scale roll events with increasing threshold.170

Threshold single-scale double-scale triple-scale

10% 1.41% 5.08% 93.50%

20% 6.63% 14.69% 78.68%

30% 14.31% 23.18% 62.51%

40% 23.54% 28.82% 47.64%

50% 33.90% 31.73% 34.37%

60% 44.92% 31.95% 23.13%

70% 56.89% 29.41% 13.70%

80% 69.89% 23.68% 6.43%

90% 83.83% 14.35% 1.82%
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Résumé:  

La couche limite atmosphérique marine (MABL) est le kilomètre le plus bas de l’atmosphère              

terrestre qui est en contact direct avec le vaste océan et réagit aux forçages de surface,                

notamment la traînée de frottement, l’évaporation et la transpiration, le transfert de chaleur et les               

vagues océaniques. C'est une couche caractérisée par son état d'écoulement d'air, où la vitesse, la               

température, la densité et la pression fluctuent sur des échelles allant de moins d'un millimètre à                

plusieurs kilomètres. La nature turbulente du MABL a été reconnue avec une grande variabilité              

en raison des processus thermodynamiques et cinétiques à l'intérieur. Ces processus physiques            

contrôlent non seulement le transport de la chaleur, de l'énergie et de l'élan, la dispersion des                

polluants et du dioxyde de carbone, mais jouent un rôle important dans la formation et               

l'interaction avec les nuages ​​de bas niveau dans les couches limites surmontées de nuages. Il y a                 

de plus en plus de preuves qu'une compréhension avancée des processus clés du MABL est               

beaucoup plus fondamentale pour les études climatiques. Pourtant, les processus physiques liés à             

l'état moyen de la couche limite ne sont pas entièrement résolus dans les modèles numériques               

actuels du climat ou du temps. 

 

Dans des conditions quasi-neutres à légèrement instables, les flux d'air dans le MABL sont              

souvent organisés en tourbillons linéaires en forme de rouleau. Ces tourbillons sont en fait des               
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tourbillons organisés quasi bidimensionnels dont l'axe horizontal est approximativement aligné          

avec l'écoulement moyen. Ils sont généralement formés et intégrés dans l'ensemble de l'ABL, et              

généralement interprétés par deux types de théories. L'un concerne l'instabilité thermique lorsque            

la couche est chauffée par le bas ou refroidie par le haut et l'autre l'instabilité dynamique lorsque                 

la vitesse du vent change avec la hauteur. Les tourbillons de rouleaux couvrent généralement              

toute la profondeur de la couche limite et forment des bandes de circulations de retournement               

avec des régions linéaires alternées de perturbations ascendantes et descendantes améliorées           

entre les circulations de rouleaux contrarotatives. L'écoulement de perturbation vers le haut a             

tendance à être plus fort et plus étroit que celui vers le bas, conduisant à une convergence accrue                  

et réduite du vent de surface près de la base des courants ascendants et descendants,               

respectivement. Cet effet net est une amélioration des flux à travers la couche limite qui ne                

dépend pas des gradients verticaux de l'écoulement moyen. On comprend donc à quel point il est                

important de mieux comprendre la couche limite en forme de rouleau, en particulier son rôle               

pour renforcer l'interaction air-mer via son impact sur les flux turbulents. 

 

Les rouleaux MABL sont vraiment les mêmes avec les rouleaux générés sur terre. Les              

différences résident uniquement dans le processus de formation de la couche limite entre l'océan              

et la terre. Dans les détails, le MABL se développe via la stabilité et l'air descendant (processus                 

top-down) alors que le terrain ABL se développe de manière opposée, mûri par déstabilisation et               

convection (processus bottom-up). Au-dessus de la terre, la surface du sol se réchauffe et se               

refroidit en réponse au rayonnement solaire de jour et de nuit, ce qui à son tour déstabilise et                  

stabilise l'ABL ci-dessus. Le terrain que forme ABL dépend donc en grande partie du cycle               

diurne. En cas de changement de vitesse, le MABL reste relativement stable par rapport au cycle                

diurne, mais permettant une grande quantité d'échanges de chaleur et d'humidité. Compte tenu de              

la couverture étendue de l'océan (plus de 70%) à la surface de la Terre, il est essentiel de                  

consacrer davantage d'efforts conjoints à l'étude des rouleaux MABL et des processus physiques             

associés. 
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En physique, les tourbillons de roulis sont la manifestation des instabilités de couche d'Ekman              

qui peuvent être décrites par les équations non linéaires de Navier-Stokes lorsqu'on considère les              

facteurs thermiques et dynamiques dans un système rotatif. La théorie antérieure de la             

dynamique du roulis s'est concentrée sur les schémas de linéarisation et a produit la solution               

représentative de l'instabilité du point d'inflexion (IP). Cette théorie prédit des caractéristiques de             

roulis cohérentes avec des observations en termes de rapport hauteur / largeur et d'orientation              

horizontale. Elle est donc largement adoptée et étendue en prenant en compte d'autres effets, tels               

que le vent thermique, la stratification, la baroclinicité et les processus non linéaires. Alors que               

dans la plupart des études basées sur la propriété intellectuelle, seule la composante verticale de               

la rotation de la Terre est prise en compte. L'horizontale, cependant, est souvent négligée, bien               

que son importance dans la dynamique des fluides géophysiques ait été clairement démontrée par              

plusieurs recherches théoriques. Cela est en partie dû au manque d'ensembles de données             

d'observation systématiques et à long terme, ce qui limite notre compréhension des            

caractéristiques des rouleaux à l'échelle mondiale. 

 

Sur le dessus de la couche limite en forme de rouleau, de la condensation se forme généralement                 

dans les parties de courant ascendant des circulations de rouleaux. Ceci est associé à              

l'augmentation de la masse d'air chaud qui se refroidit et se condense progressivement. Pendant              

ce temps, l'air frais qui descend dans les courants descendants s'évapore et crée des zones sans                

nuages. Ces masses d'air ascendantes et descendantes alternées produisent de longues rangées de             

cumulus orientés parallèlement à la direction du vent. Ces lignes alignées de nuages ​​organisés              

sont donc normalement identifiées comme des «rues de nuages» par les yeux humains ou sur les                

images visibles du satellite. En particulier, les rues nuageuses sont surtout visibles au-dessus des              

océans en hiver lorsque l'air froid au-dessus de la terre se déplace vers l'océan plus chaud, la                 

hausse des températures étant organisée par les vents dominants au large. À mesure que la               

distance du rivage augmente, les nuages ​​en forme de rouleau se transforment souvent en              

convection en forme de cellule. Un exemple de transition roll-cell observée par l'image satellite              

optique est donné dans la figure ci-dessous. Des vents violents ont poli la neige du sud-ouest de                 

3 



l'Alaska et étiré les nuages ​​stratocumulus marins en longues rues parallèles près de la côte, puis                

en cellules convectives à mesure que la différence de température air-mer augmente. 

 

 

Figure​. Spectroradiomètre imageur à résolution modérée (MODIS) photographie de rues et de            
cellules de nuages au large de la côte sud-ouest de l'Alaska le 11 janvier 2012. Le vent souffle de                   
terre en océan, conduisant à la formation de nuages linéaires près de la côte et de nuages en                  
forme de cellules au large. le littoral. 
 

L'étude de ce processus typique de couche limite a été menée pendant des décennies, mais               

principalement dans les études de cas. Alors que les résultats ont démontré une vue d'ensemble               

prometteuse des conditions atmosphériques d'occurrence du roulis (dans une stratification quasi           

4 



neutre à légèrement instable) et des caractéristiques du roulis (longueurs d'onde de 2 à 5 km et                 

orientations de ± 25 ° par rapport à la direction moyenne de l'écoulement), ces les               

caractéristiques ne sont pas vérifiées sur les océans mondiaux. Pour une perspective de plus haut               

niveau, il existe également des besoins en climatologie globale et à long terme de la dynamique                

ABL en forme de rouleau ainsi que de la variabilité annuelle et saisonnière. Une telle               

climatologie fera sans aucun doute progresser la paramétrisation de la LBA dominée par le              

roulis, et améliorera donc la précision des projections numériques des modèles météorologiques            

et climatiques. La thèse vise à exploiter les données globales de radar à ouverture synthétique               

(SAR) en mode d'onde Sentinel-1 (S-1) (WV) pour les enquêtes de roulis ABL dans le Maine.                

Parmi les moyens pratiques bien connus, la SAR spatiale recèle le plus grand potentiel pour               

réaliser des observations systématiques des rouleaux ABL au-dessus de l’océan mondial. C'est            

parce que la rétrodiffusion SAR de la surface de l'océan est indépendante de la lumière du soleil                 

et de la plupart des conditions météorologiques, et est fondamentalement sensible aux            

changements de rugosité de la surface de la mer induits par le roulis. 

 

Cependant, l'expansion des applications de cet ensemble massif de données au-delà des vagues             

océaniques nécessite une stratégie pour identifier ces phénomènes géophysiques. Pour identifier           

automatiquement les événements de roulis à partir des images SAR S-1 WV, nous proposons              

d'appliquer l'approche émergente d'apprentissage en profondeur dans la classification des scènes           

SAR océaniques. La formation est effectuée à l'aide d'un ensemble de données triées sur le volet                

défini pour décrire dix processus atmosphériques ou océaniques courants. L'évaluation de notre            

modèle repose sur un ensemble de données d'évaluation indépendant et montre des résultats de              

classification satisfaisants et robustes. Pour illustrer davantage les performances du modèle, les            

modèles régionaux de pluie et de glace de mer sont analysés qualitativement et se révèlent très                

cohérents avec les ensembles de données de télédétection auxiliaires et indépendants. En outre,             

ces données WV SAR haute résolution peuvent résoudre à une échelle fine, inférieure au km, la                

structure spatiale des événements de pluie et la glace de mer qui complète d'autres mesures par                

satellite. Une telle classification automatisée de vignettes SAR ouvre la voie à une application              

géophysique plus large des acquisitions maritimes Sentinel-1. 
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L'empreinte des rouleaux de la couche limite atmosphérique marine organisée (MABL) à la             

surface de l'océan peut être détectée par un radar à synthèse d'ouverture (SAR). Cette capacité               

SAR de cartographie des signatures de rouleau est examinée pour la première fois à l’échelle               

mondiale à l’aide des observations en mode vague (WV) recueillies par les deux satellites              

Sentinel-1 (S-1) de l’ESA en 2016-2017. Le S-1 WV acquiert des images SAR de 20 km sur 20 à                   

deux angles d'incidence de 23 ° (WV1) et 36,5 ° (WV2) en VV ou HH. Plus précisément, 1,37                  

million de ∼ de scènes WV classées automatiquement sont examinées. Pour chaque scène, nous              

extrayons la modulation de rétrodiffusion induite par le roulis et les informations directionnelles             

pour une analyse conjointe avec les vents de surface ERA5 colocalisés. Les résultats montrent              

une sensibilité WV2 plus forte à la modulation du roulis et une coupure de vitesse du vent faible                  

pour l'observation du roulis près de 2 ms-1 aux deux angles d'incidence. La modulation NRCS               

induite par le roulis diminue fortement lorsque le SAR regarde l'océan par vent de travers, ce qui                 

réduit la détection SAR des événements de roulis. En moyenne et à toutes les vitesses de vent,                 

les rouleaux MABL produisent des variations de vent de surface autour du débit moyen              

d'environ 8% (± 3,5%) et dépassent rarement 20%. La vitesse du vent et la dépendance relative                

de la direction du vent des réponses du NRCS WV1 et WV2 aux empreintes de roulis sont en                  

outre évaluées avec une fonction de modèle géophysique de vent océanique SAR.            

L'interprétation globale de ces résultats implique à la fois la sensibilité SAR au changement de               

rugosité de la surface de la mer induit par le roulis et la limitation du modèle de classification                  

dans l'identification des empreintes de roulis faibles. Il suggère que les réponses SAR aux              

perturbations des ondes de vent induites par le roulis sont largement associées au vortex de roulis                

à diverses échelles de temps et de longueur. Ces résultats ont des implications pour les               

applications SAR recherchant des estimations de la direction du vent à partir des empreintes de               

roulis et, plus largement, des études de couche limite au-dessus de l'océan. 

 

Les statistiques globales des caractéristiques de roulis se sont donc concentrées sur les             

événements de roulis identifiés à partir des données SAR S-1WV2. La longueur d'onde et              

l'orientation du rouleau sont extraites de chaque scène WV par le biais des analyses spectrales               
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2D à des échelles ABL de 0,6 à 5 km. Pour quantifier les conditions atmosphériques               

d'occurrence de roulis, chaque image WV SAR est également co-localisée avec les variables de              

surface ERA5. Les principaux résultats sont: (1) jusqu'à 90% des événements de roulis se              

produisent dans des conditions quasi-neutres à légèrement instables, distinctes de la condition            

moyenne globale; (2) une minuscule saisonnalité observée dans les événements de roulis            

identifiés et leurs conditions atmosphériques; (3) la dynamique de roulis semble plus forte le              

matin que le soir en raison d'une convection plus importante; (4) les conditions atmosphériques              

d'occurrence de roulis sont plus instables aux basses latitudes qu'aux latitudes moyennes; (5) les              

rapports d'aspect de roulis (longueur d'onde de roulis divisée par la hauteur ABL) sont dans une                

distribution log-normale centrée à 2,87; (6) les orientations de roulis sont dans une distribution              

normale, principalement à ± 35 °; (7) la longueur d'onde et l'orientation du roulis dépendent               

faiblement et fortement des latitudes; (8) la dépendance de l'orientation du roulis aux directions              

du vent terrestre indique les effets de la force de Coriolis horizontale sur la dynamique du roulis                 

ABL. 

 

Malgré le fait que ces résultats mis en évidence complètent la compréhension des rouleaux ABL               

avec des implications significatives pour les études sur l'atmosphère et l'océan, il est fortement              

attendu d'étendre l'application des données SAR S-1 WV à d'autres processus ABL clés. L'un des               

principaux intérêts est de comprendre la transition naturelle entre les rouleaux ABL, les cellules              

de pluie et les cellules de convection. De plus, il existe une forte possibilité de projeter ces                 

images de rugosité de surface de l'océan dans la stabilité de l'interface air-mer, puis dans les flux                 

de surface, indépendamment de la température de surface de la mer individuelle et des mesures               

de température de l'air près de la surface. Cela faciliterait l'évaluation et l'amélioration des              

schémas de paramétrage ABL (Eddy-diffusion mass-flux ou similaire) dans différents types           

d'ABL. Si ces données WV SAR peuvent être bien traitées pour définir les propriétés inférieures               

d'ABL. Une vue complète de l'état moyen ABL serait obtenue en incluant les mesures des               

nuages ​​bas pour définir les propriétés supérieures d'ABL. Il s'agit de l'effort conjoint requis pour               

améliorer la connaissance au niveau des processus du système météorologique et climatique de             

la Terre. 
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Titre : Analyse globale des rouleaux de la couche limite atmosphérique marine à l'aide de données
SAR Sentinel-1

Mots clés : Radar à ouverture synthétique, Couche limite atmosphérique marine, Tourbillons de roulis,
Classification, Apprentissage profond

Résumé : Cette thèse exploite les données globales du radar à
ouverture synthétique (SAR) Sentinel-1 (S-1) pour l'étude des
rouleaux de la couche limite atmosphérique marine (MABL). Un
modèle basé sur l'apprentissage en profondeur a été développé
pour identifier automatiquement les rouleaux à partir des images
massives S-1 WV. L'évaluation prouve que des rouleaux plus
nombreux et plus clairs sont visibles à un angle d'incidence plus
grand avec une limitation à des vitesses de vent très basses et
lorsque la direction du vent est perpendiculaire à l'antenne SAR.
Au-delà de cela, les énormes données conduisent à un nouveau
résultat qui, en moyenne et à toutes les vitesses de vent, les
rouleaux MABL induisent des variations de vent de surface de ~
8% (± 3,5%) le débit moyen, dépassant rarement 20%.

Les statistiques mondiales ont confirmé dans des études
antérieures que jusqu'à 90% des rouleaux identifiés se
produisent dans des conditions quasi neutres à légèrement
instables. La longueur d'onde et l'orientation du roulis sont
extraites avec des résultats d'organisation multi-échelles et
de contraste directionnel entre les latitudes basses et
moyennes. La distribution systématique de l'orientation
des rouleaux par rapport au vent de surface des tropiques
aux extra-tropiques rappelle l'importance de la force de
Coriolis horizontale sur les rouleaux. Malgré l'importance
de ces faits saillants pour les études sur l'atmosphère et
l'océan, il est très probable que les données SAR S-1 WV
presque globales soient étendues aux rouleaux, aux
cellules convectives et à d'autres processus air-mer clés.
Les résultats devraient être comparés, expliqués et
complétés dans un proche avenir par des études théoriques
et numériques approfondies.

Title : Global Investigation of Marine Atmospheric Boundary Layer Rolls Using Sentinel-1 SAR data

Keywords : Synthetic aperture radar (SAR), Marine atmospheric boundary layer (MABL), Roll vortices,
Classification, Deep learning

Abstract : This thesis exploits the global Sentinel-1 (S-
1) wave mode (WV) synthetic aperture radar (SAR) data
for marine atmospheric boundary layer (MABL) roll
studies. A deep-learning-based model was developed to
automatically identify rolls from the massive S-1 WV
images. Valuation evidences that more and clearer rolls are
visible at the larger incidence angle with limitation in very
low wind speeds and when wind direction being
perpendicular to the SAR antenna looking. Beyond this, the
huge data leads to a new result that, on average and across
all wind speeds, MABL rolls induce surface wind
variations of ~8% (±3.5%) the mean flow, seldom
exceeding 20%.

Global statistics confirmed with previous studies that up
to 90% of the identified rolls occur in near-neutral to
slightly unstable conditions. Roll wavelength and
orientation are extracted with findings of multi-scale
organization and directional contrast between low- and
mid-latitudes. The systematical distribution of roll
orientation with respect to the surface wind from tropics to
extra-tropics recalls the importance of horizontal Coriolis
force on rolls. Despite the significance of these highlights
for both atmosphere and ocean studies, it is highly
expected to extend the nearly global S-1 WV SAR data
for rolls, convective cells and other key air-sea processes.
Results should be compared, explained, and
complemented in the near future with in-depth theoretical
and numerical studies.
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