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(Sorbonne Université)
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Lefevere et les élèves de MIASHS avec qui j’aurai passé de bons moments d’enseignement.
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à Orsay (et pour nos enseignants, en particulier Elisabeth Gassiat et Frédéric Paulin):
Jeanne, Dimitri, Eugène, Younès, Florent, David et Caroline, à qui s’ajoutent aussi
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Abstract

Title : Convergence of Spike and Slab Bayesian posterior distributions in
some high dimensional models.

The first main focus is the sparse Gaussian sequence model. An Empirical Bayes
approach is used on the Spike and Slab prior to derive minimax convergence of the
posterior second moment for Cauchy Slabs and a suboptimality result for the Laplace
Slab is proved. Next, with a special choice of Slab convergence with the sharp minimax
constant is derived. The second main focus is the density estimation model using a special
Pólya tree prior where the variables in the tree construction follow a Spike and Slab
type distribution. Adaptive minimax convergence in the supremum norm of the posterior
distribution as well as a nonparametric Bernstein-von Mises theorem are obtained.
Keywords: Bayesian nonparametrics, Spike and Slab prior, thresholding, Pólya tree,
Bernstein-von Mises theorems.

Résumé

Titre : Convergence de lois a posteriori Spike and Slab bayésiennes dans des
modèles de grande dimension.

On s’intéresse d’abord au modèle de suite gaussienne parcimonieuse. Une approche
bayésienne empirique sur l’a priori Spike and Slab permet d’obtenir la convergence à
vitesse minimax du moment d’ordre 2 a posteriori pour des Slabs Cauchy et on prouve
un résultat de sous-optimalité pour un Slab Laplace. Un meilleur choix de Slab permet
d’obtenir la constante exacte. Dans le modèle d’estimation de densité, un a priori arbre
de Pólya tel que les variables de l’arbre ont une distribution de type Spike and Slab
donne la convergence à vitesse minimax et adaptative pour la norme sup de la loi a
posteriori et un théorème Bernstein-von Mises non paramétrique.
Mots-clé: Bayésien non paramétrique, a priori Spike and Slab, seuillage, arbre de Pólya,
théorèmes Bernstein-von Mises.
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4.1.1 Definition of a Pólya tree . . . . . . . . . . . . . . . . . . . . . . . 117
4.1.2 Function spaces and wavelets . . . . . . . . . . . . . . . . . . . . 119
4.1.3 Spike and Slab prior distributions ’truncated’ at a certain level L. 120

4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2.1 An adaptive concentration result . . . . . . . . . . . . . . . . . . 124
4.2.2 A Bernstein Von Mises result . . . . . . . . . . . . . . . . . . . . 124

4.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.1 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . 127
4.3.2 Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3.3 Proof of Theorem 20 . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.4 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 136

References 143





Résumé détaillé

Ce document rassemble les travaux que j’ai effectués sous la direction d’Ismaël Castillo
pendant la durée de ma thèse centrée sur l’utilisation dans un cadre bayésien de l’a
priori Spike and Slab dans des modèles de dimension grande ou infinie, et des propriétés
asymptotiques qui en découlent. Ce travail est divisé en 4 chapitres, un chapitre introductif
et 3 chapitres qui font l’objet d’articles (un paru pour le deuxième chapitre, et deux à
soumettre pour les suivants).

0.0.1 Analyse par bayésien empirique de lois a posteriori Spike
and Slab.

On considère le modèle de suite gaussienne parcimonieuse, où l’on observe X1, . . . , Xn

des variables aléatoires telles que pour tout i ∈ {1, . . . , n}

Xi = θi + εi

avec le bruit ε tel que ses coordonnées εi suivent la loi normale standard (de densité notée
ϕ) et θ ∈ Rn le paramètre à estimer. On suppose que ce paramètre θ est parcimonieux,
c’est-à-dire qu’il appartient à la classe ℓ0[sn] suivante :

ℓ0[sn] = {θ ∈ Rn,#{i; θi ̸= 0} ≤ sn}

avec (sn)n une suite qui tend vers l’infini mais telle que sn/n → 0 quand n → ∞. On
considère la convergence de lois a posteriori bayésiennes de lois a priori Spike and Slab :

Πα =
n∏

i=1
(1 − α)δ0 + αΓ,

où Γ est une loi à densité notée γ sur R. La famille de lois Πα permet de modéliser des
vecteurs parcimonieux grâce au paramètre de parcimonie α ∈]0; 1[. Ce paramètre est
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calibré par une approche bayésienne empirique : on le remplace par un estimateur α̂
construit en maximisant la vraisemblance marginale bayésienne empirique :

n∏
i=1

((1 − α)ϕ(Xi) + αϕ ∗ γ(Xi)).

Johnstone and Silverman (2004) ont montré que la médiane a posteriori avec plug-in
de α̂ converge à vitesse optimale au sens minimax pour la perte quadratique sur la classe
des vecteurs parcimonieux ℓ0[sn], dès que la loi Γ (dite Slab) a des queues de distribution
au moins Laplace.

Dans ce travail, on considère la loi a posteriori plug-in complète Πα̂(·|X). On
s’intéresse principalement au moment d’ordre 2 a posteriori

ˆ
∥θ − θ0∥2dΠα̂(θ|X).

On montre que, sous certaines conditions sur Γ, le moment d’ordre 2 a posteriori converge
lui aussi à vitesse minimax optimale pour la perte quadratique. De façon surprenante, ce
n’est pas le cas pour Γ la loi Laplace : on montre qu’il est en effet nécessaire que Γ ait des
queues polynomiales (plus lourdes que x−3, par exemple Γ Cauchy) pour que le moment
d’ordre 2 a posteriori converge à vitesse optimale. On montre que cette sous-optimalité
pour un Slab Laplace n’est pas dûe au second moment puisqu’elle se traduit également
sur la loi a posteriori entière.

Par ailleurs, on montre que des résultats similaires (à un facteur logarithmique près)
sont vrais pour la classe de lois dite Spike and Slab LASSO récemment introduite par
Ročková and George (2018) et Ročková (2018).

0.0.2 Constante exacte pour l’a posteriori Spike and Slab cal-
ibré par bayésien empirique.

Ce travail se situe dans le même cadre que le chapitre précédent et poursuit l’étude de la
loi a posteriori plug-in complète Πα̂(·|X). Les résultats d’optimalité évoqués ci-dessus
le sont à constante près. Ainsi, pour θ̂med(X) la médiane a posteriori, Johnstone and
Silverman (2004) montrent que pour n assez grand et pour une constante C > 0 assez
grande,

sup
θ0∈ℓ0[sn]

Eθ0

[
∥θ̂med(X) − θ0∥2

]
≤ Csn log( n

sn

)(1 + o(1)).

Il est connu que la vitesse minimax pour ce problème est 2sn log(n/sn))(1+o(1)) quand
n → ∞. Il est possible de montrer que l’a posteriori Spike and Slab dans lequel on fait un
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plug-in d’un paramètre α oracle fait atteindre la vitesse minimax avec constante exacte 2
au moment d’ordre 2, et ce même pour un Slab Laplace. On peut donc naturellement se
demander si le second moment a posteriori avec plug-in du maximum de vraisemblance
peut lui aussi converger à vitesse minimax, cette fois adaptative. On montre qu’en effet,
pour un choix approprié de la loi slab Γ (celui-ci doit avoir des queues très lourdes, de
l’ordre de x−1 log−2(x)), il est possible d’atteindre cette vitesse minimax exacte :

sup
θ0∈ℓ0[sn]

Eθ0

[ˆ
∥θ − θ0∥2dΠα̂(θ|X)

]
≤ 2sn log( n

sn

)(1 + o(1)).

0.0.3 Estimation adaptative de densités par a priori arbres de
Pólya Spike and Slab.

On se place désormais dans le modèle d’estimation de densité sur [0; 1], où l’on observe
X1, . . . , Xn des variables aléatoires indépendantes et identiquement distribuées de densité
inconnue f . Le but de ce travail est d’étudier les propriétés d’une méthode bayésienne
non-paramétrique reposant sur des lois a priori dites d’arbres de Pólya, pour l’estimation
de f ainsi que l’inférence sur certains fonctionnelles de f .

Dans un travail récent, Castillo (2017b) a montré que les arbres de Pólya permettent
notamment d’atteindre la vitesse optimale au sens minimax pour l’estimation de f en
termes de la norme infinie avec la loi a posteriori, si les paramètres de l’arbre sont bien
choisis en termes de la régularité β ∈]0, 1] (au sens Hölder) de la densité f .

L’objet de ce chapitre est d’obtenir des versions adaptatives des résultats précédents.
En effet, lorsque la régularité de f n’est pas connue, on montre qu’il est possible de modifier
la construction d’origine de l’arbre de Pólya de façon à s’adapter automatiquement à
la régularité inconnue. Pour cela, les lois Beta le long de l’arbre de la construction
d’origine sont remplacées par des mélanges d’une Beta et d’une masse de Dirac en 1/2.
Pour ces arbres de Pólya Spike and Slab, on montre que la loi a posteriori converge à
vitesse minimax optimale à constante près pour la norme infinie, ainsi qu’un théorème de
Bernstein–von Mises non paramétrique dans un espace fonctionnel bien choisi. Du point de
vue conceptuel, cette classe de lois a priori peut se voir comme un analogue des méthodes
de seuillage par ondelettes, avec de plus une quantification de l’incertitude propre à
l’utilisation de l’approche bayésienne. Un autre avantage conceptuel de l’approche est que,
contrairement aux estimateurs par ondelettes de densités (qui ne sont pas nécessairement
des densités), la loi a posteriori est ici automatiquement une densité.





Chapter 1

Introduction

1.1 General Frame : the non-parametric, frequen-
tist Bayesian approach

1.1.1 The Bayesian approach

Take (X ,A) a measurable space, where A is a σ-field over X and (Θ, d) a subset of a
separable Banach space.
Consider a statistical experiment where one observes some data X ∈ X , a random object
whose law will be interpreted using a model, defined here as follows

P = {Pθ, θ ∈ Θ}, (1.1.1)

where the Pθ are probability measures on A.
The model depends on an unknown parameter θ, let us consider this parameter θ as

a random variable too. Namely θ will follow the law Π, which is called the a priori law
(or simply prior).

On the other hand, one views Pθ as the law of X|θ. This gives us the following
Bayesian diagram

X|θ ∼ Pθ

θ ∼ Π.
(1.1.2)

This defines the joint distribution of (θ,X), from which one can derive the law of θ|X,
which is called the a posteriori law (or simply posterior)

θ|X ∼ Π(·|X). (1.1.3)



2 Introduction

We will henceforth assume that Pθ and Π are absolutely continuous relatively to fixed
σ-finite measures µ and ν. Denoting by fθ and π their densities, the joint law (θ,X)
has a density h(θ, x) = fθ(x)π(θ) and X has a density h(x) =

ˆ
Θ
fθ(x)π(θ)dν(θ). Under

standard measurability conditions, see pages 6-7 of Ghosal and van der Vaart (2017),
Bayes’ formula gives the following density for θ|X

Π(θ|X) = fθ(X)π(θ)
h(X) 1lh(X)>0 (1.1.4)

In the classical approach, one generally builds a point estimator θ̂(X) ∈ Θ. The
Bayesian approach provides the user with an entire probability distribution which depends
on our observations X and not just a point estimator. It also provides estimators which
are ”aspects” of the a posteriori law: if they exist, the mean of the a posteri lawˆ
θdΠ(θ|X), the posterior median, or the posterior mode(s) for instance. It can be used

to find credible sets (which can turn out to be confidence sets), or to make tests H0

versus H1 using the quantities Π(H0|X) and Π(H1|X).
From now on we will assume that we have n ∈ N observations X = X(n) =

(X1, . . . , Xn).

Score and Fisher Information in i.i.d. parametric models. A model P as above
is said to be differentiable in quadratic mean (abbreviated DQM ) at θ if there exists a
vector lθ (called the score at θ) of k functions such that, when h → 0

ˆ (√
fθ+h −

√
fθ − 1

2h
T lθ
√
fθ

)2
dµ = o(∥h∥2) (1.1.5)

The score is centered and has a variance Iθ which is called the Fisher Information.
It is shown in van der Vaart (1998) that this also implies that the model is locally
asymptotically normal (abbreviated LAN).

1.1.2 Frequentist Bayesian

We will follow the Frequentist approach by assuming that a true parameter θ0 exists and
has to be estimated

∃θ0 ∈ Θ such that X ∼ Pθ0 (1.1.6)

The sequence (Π(·|X))n∈N∗ is said to be Pθ0-consistent with respect to the distance d
if, for every ε > 0 as n → ∞
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Π(d(θ, θ0) ≤ ε|X) → 1 in Pθ0-probability (1.1.7)

This result is equivalent to the sometimes more convenient version, denoting by
Eθ0 = EPθ0

the expectation under Pθ0

Eθ0 [Π(d(θ, θ0) ≤ ε|X)] → 1 (1.1.8)

The sequence (Π(·|X))n∈N∗ will be strongly Pθ0-consistent if the previous convergence
is Pθ0-almost surely.

Point Estimators. Let θ̂ be an estimator derived from the posterior (like the posterior
mean θ̄ =

ˆ
θdΠ(θ|X) for example). One says that is θ̂ is consistent (uniformly in θ0 ∈ Θ)

if, as n → ∞
sup
θ0∈Θ

Eθ0 [d(θ̂, θ0)] → 0 (1.1.9)

Minimax convergence rate. In terms of rate of convergence, one would like to build
estimators converging to the true parameter ’as fast as possible’ . To do so, one defines
the minimax rate r∗

n over the set Θ of parameters with respect to the loss function (here
a distance) d, as

r∗
n = inf

θ̂
sup
θ∈Θ

Eθ[d(θ, θ̂)], (1.1.10)

where the infimum is taken over all estimators of the parameter.
One says that θ̂ converges at minimax rate if there exists N ∈ N such that ∀n ≥ N

sup
θ0∈Θ

Eθ0 [d(θ̂, θ0)] ≤ Cr∗
n (1.1.11)

Actually the entire a posteriori law can converge at minimax rate (uniformly in
θ0 ∈ Θ), namely if, as n → ∞

sup
θ0∈Θ

Eθ0 [Π(d(θ, θ0) ≤ Cr∗
n|X)] → 1 (1.1.12)

Credible sets. A Credible set C = C(X) of level 1 − γ (with γ ∈ (0, 1)) is defined as a
set such that

Π(C|X) = 1 − γ (1.1.13)
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One can define a credible set of level at least 1 − γ by replacing the = by a ≥ in the
definition.

In general, one may want (this may not always be possible for complex models) the
diameter of a credible set to be rate-optimal, in a minimax sense, as n → ∞

sup
θ0∈Θ

Eθ0 [Diam(C)] ≍ r∗
n (1.1.14)

One would naturally ask if credible sets can be used as confidence sets, namely if

lim inf
n→∞

inf
θ0∈Θ

Pθ0(θ0 ∈ C) ≥ 1 − γ (1.1.15)

If Θ ⊂ Rk, it turns out that for quantile-type sets and i.i.d. data, one can positively
answer that question using the following theorem

Theorem 1 (Bernstein-von Mises). Consider a model P = {P⊗n
θ , θ ∈ Θ} such that

X1, . . . , Xn|θ ∼ P⊗n
θ . Assume that the density π of the prior is positive and continuous at

θ0, the model P is DQM (see (1.1.5)) at the point θ0 with an invertible Fisher Information
Iθ0 . Assume also that for every ε > 0 there exists a sequence (ϕn)n of tests such that
lim

n→∞
Eθ0 [ϕn] = 0 and lim

n→∞
sup

∥θ−θ0∥≥ε

Eθ[ϕn] = 0. Then, as n → ∞,

∥L(
√
n(θ − θ0)|X1, . . . , Xn) − N (∆n(θ0), I−1

θ0 )∥T V = oPθ0
(1),

with ∆n(θ0) = I−1
θ0

1√
n

n∑
i=1

lθ0(Xi) and ∥ · ∥T V the total variation distance between two

probability measures.

It can be checked that this theorem implies that, asymptotically, quantile-type credible
sets built from the a posteriori law are confidence sets and have optimal diameter.

1.1.3 High and Infinite Dimension Models

Nonparametric prior distributions are harder to build and choose than in a parametric
setting, as one has to define a distribution on a much larger space. Often the posterior
distribution will still strongly depend on the choice of the prior distribution. One has to
aim at posterior consistency at minimax rate, and it can be significantly harder than
in parametric settings, where good consistency is often obtained as soon as the prior
puts positive mass around the true parameter (in nonparametric setting, the precise
amount of mass in vanishing neighbourhoods of the truth typically matters). The object
one usually estimates in nonparametric Bayesian inference is a function or a density,
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for instance through the analysis of an infinite sequence of its wavelet coefficients, and
building a flexible enough prior (for instance to achieve adaptive results) will require some
care. Tuning the involved parameters may also demand significantly more work than in
parametric settings. Nonparametric and high-dimensional models include the Gaussian
sequence model (which is the main focus of Chapters 2 and 3), the Gaussian White Noise
model and the Density Estimation model (which is the main focus of Chapter 4).

Estimation. In i.i.d. settings, Ghosal, Ghosh and van der Vaart developped a general
framework to derive posterior rates with respect to certain distances on the parameter
space (later generalised in Ghosal and van der Vaart (2007) to non i.i.d. settings)

Theorem 2 (Ghosal et al. (2000)). Let Π = Πn be a sequence of a priori laws and assume
that X are i.i.d. with density fθ0 . Let εn be a sequence of positive reals such that εn → 0
and

√
nεn → ∞ as n → ∞.

Assume the existence of some constants C and L such that

Π
(
θ ∈ Θ; −Eθ0 [log( fθ

fθ0

(X))] ≤ ε2
n, Eθ0 [log( fθ

fθ0

(X))2] ≤ ε2
n

)
≥ e−Cnε2

n

and
Π(Θ \ Θn) ≤ Le−(C+4)nε2

n

for a sequence Θn ⊂ Θ such that there exist tests ψn = ψ(X1, . . . , Xn) such that ∀n ∈ N
and M > 0 large enough

Eθ0 [ψn] → 0 and sup
θ∈Θn;d(fθ,fθ0 )≥Mεn

Eθ[1 − ψn] ≤ Le−(C+4)nε2
n

Then Π(d(fθ, fθ0) > Mεn|X) → 0 as n → ∞ in Pθ0-probability.

This result provides qualitative conditions such as the existence of tests (an entropy
condition via ε-covering numbers of the Θn can also be used) for the minimax convergence
of the a posteriori law. Directly using this theorem may be delicate to get more precise
conditions on some a priori laws (such as the Spike and Slab introduced in the following
section) or for some choices of metric. In the cases where no analog of this result have been
proven one sometimes needs to use more direct reasonings on the posterior distribution.

Nonparametric Bernstein-von Mises and Uncertainty Quantification. A non-
parametric Bernstein-von Mises result would take the following form :

L(
√
n(θ − Tn)|X) → D (1.1.16)
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where one has to ask several questions, whose answers may be unclear at first but certainly
depend on the situation. Firstly, what is the limiting distribution D? Secondly, what is
the sense of the convergence in the result? Finally, which centering estimator Tn do we
choose to get this convergence result?

Let us consider the Gaussian White Noise model as an example. For f ∈ L2([0, 1]),
t ∈ [0, 1] and dW the standard Gaussian White Noise, the model is

dX(n)(t) = f(t)dt+ 1√
n
dW (t). (1.1.17)

If one chooses a wavelet basis ϕ, (ψlk)l∈N,0≤k<2l (say the Haar basis to fix ideas), using the
notation flk = ⟨f, ψlk⟩ =

´ 1
0 f(t)ψlk(t)dt, one can write (setting ψ−1,−1/2 = ϕ and letting

l ≥ −1 in what follows)
ˆ 1

0
ψlk(t)dX(n)(t) =

ˆ 1

0
ψlk(t)f(t)dt+ 1√

n

ˆ 1

0
ψlk(t)dW (t)

that we can rewrite Xlk = flk + 1√
n
εlk.

One now has
X(n) = f + 1√

n
W

so, as
√
n(X(n) − f) = W, one would naturally take the centering Tn = X(n) in (1.1.16)

and the limiting distribution D = L(W) := N the law of white noise. We set τ : f 7→
√
n(f − X(n)) and denote by Πn the shifted posterior distribution Π(·|X(n)) ◦ τ .

Recall also that, by definition of white noise, ∀f, g ∈ L2([0, 1]), one has E[W(f)W(g)] =
⟨f, g⟩.

To establish a nonparametric BVM result, one has to consider larger spaces (here
larger than L2([0, 1])) as one needs a 1/

√
n rate that can only be achieved with weaker

metrics. The impossibility to obtain a BVM result in L2 has been shown by Cox (1993)
and Freedman (1999). Consider, for s > 0 the Sobolev space H−s

2 defined as

H−s
2 = {f ; ∥f∥2

s,2 =
∑
l≥0

2−2ls
2l−1∑
k=0

|⟨ψlk, f⟩|2 < ∞} (1.1.18)

For every s > 0, L2 ⊂ H−s
2 . Now, one builds a ’logarithmic’ Sobolev space to be the

’smallest’ containing W, somewhat taking the limiting case s = 1/2. For that, one usually
uses an ’admissible’ sequence ω = (ωl)l≥0. Here we take, for δ > 1, ωl = l2δ and set

H(ω) = {f ; ∥f∥2
ω =

∑
l≥0

2−l

ωl

2l−1∑
k=0

|⟨ψlk, f⟩|2 < ∞} (1.1.19)
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This set was built to ensure that W belongs to it, as for δ > 1/2,

E[∥W∥2
ω] =

∑
l≥0

2−l

ωl

2l−1∑
k=0

E[ε2
lk]

≤
∑
l≥0

2−l

ωl

2l ≤
∑
l≥0

l−2δ < ∞

We now have to state the convergence in (1.1.16). For that, we use the following metric.

Bounded Lipschitz metric. Let (S, d) be a metric space. The bounded Lipschitz metric
βS on probability measures of S is defined as follows, for any µ, ν probability measures
of S

βS(µ, ν) = sup
F ;∥F ∥BL≤1

∣∣∣∣∣
ˆ

S
F (x)(dµ(x) − dν(x))

∣∣∣∣∣ , (1.1.20)

where F : S → R and

∥F∥BL = sup
x∈S

|F (x)| + sup
x̸=y

|F (x) − F (y)|
d(x, y) . (1.1.21)

This metric metrizes the convergence in distribution: µn → µ in distribution as n → ∞
if and only if βS(µn, µ) → 0 as n → ∞.

Bernstein-von Mises phenomenon. One will say that the model satisfies a Bernstein-von
Mises phenomenon if, as n → ∞

βH(ω)(Πn,N ) → 0 in Pf0-probability. (1.1.22)

Castillo and Nickl (2013) have shown that result for the Gaussian White Noise model
and series priors in their Theorem 8.

In the Density Estimation model where the observations X1, . . . , Xn are i.i.d. random
variables of density f0 assumed to be α-Hölder, one recenters the function with the
help of a smoothed version of the empirical estimator 1

n

n∑
i=1

δXi
to get a convergence

in the Bounded Lipschitz metric of a larger space M0(ω) to the law of the Gaussian
White Bridge, see Section 1.3 for more details about the BVM phenomenon in density
estimation.
Uncertainty Quantification. Bernstein-von Mises results are useful to build Confidence
sets from Credible sets (recall the definitions (1.1.13), (1.1.14) and (1.1.15)), but in
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nonparametric models this will not always work. Theorem 1 of Castillo and Nickl (2013)
states that this works in the Gaussian White Noise model for fixed regularity, namely
the credible set is built using the true regularity of the function which therefore assumed
to be known. To get adaptive results, one often needs more conditions on the parameter
to estimate, such as so-called polished-tails condition or self-similarity conditions. As
seen in Szabó et al. (2015), one will often need to use a blow up factor to ensure that
the credible sets are confidence sets. Ray (2017) derive adaptive confidence sets from
credible sets for the Gaussian White Noise model under a self-similarity condition and
Spike and Slab priors.

One can use the following approach to quantify uncertainty via inflated credible balls.
Choose a consistent estimator θ̂ of the parameter θ0 and let r(X) =

ˆ
∥θ − θ̂∥2dΠ(θ|X),

which is the second posterior moment if one chooses θ̂ = θ̄ the posterior mean. The
credible ball is defined as

CL = {θ, ∥θ − θ̂∥2 ≤ MτLr(X)}

with L ≥ 1 a blow-up factor. By Markov’s inequality, one has Π(CL|X) ≥ 1− τ as long as
Mτ ≥ 1/τ . One needs now to prove that this credible set is a confidence set (1.1.15) and
has an optimal diameter (1.1.14), which is the same as proving that the second posterior
moment is consistent at minimax rate if θ̂ = θ̄. This approach has been used for instance
in Castillo and Szabo (2018).

1.1.4 Tuning the parameters

In the Bayesian approach, it frequently happens that the a priori put on θ also depends
on a parameter. In this section, we will assume that θ ∼ Πα, with α an additionnal
parameter, which is often called a hyperparameter. One problem that arises is how to
choose a decent value for α. Usually, one uses one of the two following methods to handle
this problem.

Hierarchical Bayes. The first natural method is to adopt an even more Bayesian
approach and consider the paramater α random and put a prior π̃ on it. This results in
the following Bayesian diagram

X|θ, α ∼ Pθ

θ|α ∼ Πα

α ∼ π̃

(1.1.23)
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Even though one has to choose another a priori law, which may in turn depend on
other parameters, the randomization it provides on α is often enough to correctly choose
α in order to get optimal (or nearly optimal) rates in a majority of examples.

Empirical Bayes. Another natural idea is to choose α as α̂ the maximiser of the
marginal likelihood of the α in the model, namely the likelihood integrated over the
entire space of parameters Θ. Simply put, this is the marginal distribution of α|X.

α̂ = arg max
α

ˆ
Θ

(
n∏

k=1
fθ(Xi)

)
πα(θ)dθ (1.1.24)

One now uses this quantity α̂ to form a prior by plugging α̂ in Πα, resulting in the
following diagram

X|θ ∼ Pθ

θ ∼ Πα̂

(1.1.25)

These two methods are of prime interest in the following, especially the Empirical
Bayes method.

1.2 Gaussian Sequence Model and Thresholding

1.2.1 Definition of the Model

We can write the Gaussian Sequence Model as follows, with X the observed vector of Rn

Xi = θ0,i + εi, i = 1, . . . n, (1.2.1)

where ε1, . . . , εn are independent and identically distributed (iid) random variables
following the N (0, 1) law (whose density will be denoted ϕ), and the parameter θ0 =
(θ0,1, . . . , θ0,n) belongs to the class ℓ0[sn] defined by

ℓ0[sn] = {θ ∈ Rn, |{i ∈ {1, . . . n}, θi ̸= 0}| ≤ sn},

for 0 ≤ sn ≤ n, where |A| is the number of elements in the set A.
One commonly assumes that sn = o(n) when n → ∞.
We denote by ∥ · ∥ the euclidean norm, ∥v∥2 = ∑n

i=1 v
2
i for v ∈ Rn.
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We are interested in finding estimators of θ0 that converge to θ0 at the minimax rate
of the class ℓ0[sn], which is, as proven in Donoho et al. (1992)

Theorem 3 (Donoho,Hoch,Johnstone,Stern,1992). Let rn be the minimax rate for esti-
mating θ in ℓ0[sn] with respect to ∥.∥. Then,

rn = rn,2(ℓ0[sn]) = inf
θ̂

sup
θ∈ℓ0[sn]

1
n

n∑
i=1

Eθ(θ̂i − θi)2 = 2sn

n
log( n

sn

) (1 + o(1))

when n → ∞

For an estimator θ̂ of θ0, it is then desirable that

sup
θ0∈ℓ0[sn]

1
n
Eθ0∥θ̂ − θ0∥2

2 ≤ C
2sn

n
log( n

sn

) (1 + o(1)) , (1.2.2)

where C is a positive constant, that we ideally would like to be equal to 1 (but this could
represent a lot of additional work on its own).

In fact, we are mostly interested in more general results for the entire a posteriori
law, namely

sup
θ0∈ℓ0[sn]

Eθ0

[
Π(∥θ − θ0∥2 > 2Csn log( n

sn

)|X)
]

→ 0 (1.2.3)

and for the posterior second moment

sup
θ0∈ℓ0[sn]

Eθ0

[ˆ
∥θ − θ0∥2

2dΠ(θ|X)
]

≤ 2Csn log( n
sn

)(1 + o(1)) (1.2.4)

The second moment will be a main focus in the following, as good results of convergence
for the posterior second moment imply good results for the complete a posteriori law
and lead to Uncertainty Quantification via inflated credible balls, as seen in 1.1.3. Also
if ones has (1.2.4), the posterior mean (denoted by θ̄) will satisfy (1.2.2). Indeed, using
the Jensen inequality, one has for every θ0 ∈ ℓ0[sn]

∥θ̄ − θ0∥2
2 = ∥

ˆ
θdΠ(θ|X) − θ0∥2

2

≤
´

∥θ − θ0∥2
2dΠ(θ|X)

which leads to sup
θ0∈ℓ0[sn]

1
n
Eθ0∥θ̄ − θ0∥2

2 ≤ C
2sn

n
log( n

sn

) (1 + o(1)).

The natural way to handle the sparsity of the model and produce consistant estimators
is to use thresholding.
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Thresholding. The first idea is to estimate θ by keeping the observations larger than
some threshold tn, and set the remaining coordinates to zero, this is the hard thresholding
estimator : θ̂i = Xi1l{|Xi|>tn} for i ∈ {1, . . . , n}.

One has then to choose the threshold tn. The oracle choice, namely if the maximum
number of nonzero coordinates of the true signal sn is known, is tn =

√
2 log(n/sn). It

can be checked that θ̂ concentrates around the true signal θ0 at minimax rate. As sn is
unknown, one can not choose this threshold. However, the choice tn =

√
2 log(n) provides

a near-minimax rate, only missing the true minimax rate by a constant or a logarithmic
factor. Such fixed thresholds are actually not flexible enough. Indeed, if one chooses a
rather large tn but the true signal happens to be too dense, too much observations will
be set to 0, and if one chooses a rather small tn but the true signal is too sparse, the
estimator will keep too much observations. A good threshold should therefore adapt to
the effective sparsity of the signal. Furthermore, one may also want the threshold to be
stable to small changes of the data. We will see in what follows that a suitable (possibly
empirical) choice of prior on θ leads to a thresholding estimator (the posterior median)
which has a threshold with all these desirable properties.

Penalization and other frequentist methods. The hard thresholding estimator
can in fact be viewed as an ℓ0-penalized estimator, which was introduced in the context
of model selection (see for instance Birgé and Massart (2001)). Another useful penalty is
the ℓ1-norm of θ, which leads to the LASSO estimator.

The LASSO estimator is defined as follows

θ̂LASSO = argmin
θ∈Rn

{
n∑

i=1
(θi −Xi)2 + λ

n∑
i=1

|θi|}

where λ ≥ 0 is the regularization parameter. The second term is called the ℓ1 penalty
and is what makes the LASSO work, as it allows the estimator to continuously shrink
the coefficients. The larger λ the closer to 0 are the coefficients. The LASSO, which
leads to a good prediction accuracy by providing to the user a bias-variance trade-off,
has been largely studied over the years. Among many others, one can cite Tibshirani
(1996), Bickel et al. (2009), Zhang (2005) and Zou (2006).

Several other frequentist methods have been developed, one can cite, among many
other methods, estimates based on False Discovery Rate thresholds (see Abramovich
et al. (2006)), who used the Benjamini and Hochberg threshold.
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1.2.2 Bayesian approach and the Spike and Slab Prior

We will follow the approach introduced in 1.1, and view the parameter θ as a random
variable following an a priori law that we now have to choose. The first natural law to
think of may just be a product of Gaussian densities, for we know that this is a conjugate
prior and that the a posteriori law will also be Gaussian. Let us try this prior and assume
first that for every i ∈ {1, . . . , n}

θi ∼ N (0, σ2
i ),

After some quick computing, one finds out that the a posteriori law is also a product
of Gaussian densities with updated means and variances so that, for every i ∈ {1, . . . , n}

θi|Xi ∼ N
(

σ2
i

1 + σ2
i

Xi,
σ2

i

1 + σ2
i

)

Therefore the posterior mean estimator is θ̂mean = σ2

1+σ2X.
Now if for example one assumes that, for every i ∈ {1, . . . , n}, 1/2 ≤ σ2

i ≤ 1, let us
consider θ0 = 0 ∈ ℓ0[sn] and look at its quadratic risk

Eθ0 [∥θ̂moy − θ0∥2] =
n∑

i=1

(
σ2

i

1 + σ2
i

)2

Eθ0 [X2
i ] ≥ n

9

which is far from the minimax rate 2sn log( n
sn

). This shows that this choice of prior does
not properly take account of the sparsity of the model.
This choice also faces issues for large signals. Indeed if one assumes that for every
i ∈ {1, . . . , n}, σ2

i = 1, the posterior mean becomes θ̂moy = X
2 , so if the real θ0 has a first

coordinate equal to 1000, the first coordinate of the estimator will be around 500. One
sees that the estimator shrinks the signal too much to be useful, and it suggests that a
density with heavier tails may also be useful.

A second idea is to use another continuous distribution and use a product of Laplace
distributions instead. In this view we will now assume that for every i ∈ {1, . . . , n}

θi ∼ Lap(0, λ).

The posterior density can be written as a constant times e− 1
2
∑n

i=1(θi−Xi)2−
∑n

i=1 λ|θi| so
the posterior mode M̂ is
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M̂ = argmax
θ∈Rn

{e− 1
2
∑n

i=1(θi−Xi)2−
∑n

i=1 λ|θi|}

= argmin
θ∈Rn

{
n∑

i=1
(θi −Xi)2 + 2λ

n∑
i=1

|θi|}

= θ̂LASSO

Therefore the posterior mode will show good consistency properties. But this rep-
resents only one aspect of the full a posteriori law, which has actually been shown in
Theorem 7 in Castillo et al. (2015) to not contract at the same rate as its mode. Namely,
for the standard choice λ = λn =

√
2 log n the posterior distribution will not put any

mass on balls around the true signal of radius
√
n/

√
2 log n. Thus this choice of prior is

not very appropriate especially if one also aims at Uncertainty Quantification through
the full posterior distribution.

Another idea that seems very natural and that will not use a continuous prior is to
reflect the parcimonious nature of the model directly in the a priori law, which is done in
the Spike and Slab prior.

The Spike and Slab Prior. Since the model is sparse, we already know that a certain
number (in fact, most) of coordinates are equal to zero, the natural idea behind the Spike
and Slab prior is to force some coordinates of θ to be equal to 0 and model the rest of
the coordinates as an arbitrary signal (even possibly small).

θ ∼ Πα :=
n⊗

i=1
(1 − α)δ0 + αΓ (1.2.5)

with δ0 the Dirac in 0, Γ a probability law to be chosen which is absolutely continuous
relatively to the Lebesgue measure and whose density will be noted γ, and α ∈ [0; 1] a
parameter to be chosen too.

Both because of their graphical representations, the part with the Dirac mass at 0
is called the Spike and the part with the density which is meant to have heavy tails is
called the Slab. The closer α is to 0 the sparsier the model is, and one usually calls α
the smoothing parameter.

Posterior Distribution. The a posteriori law is also a product. Indeed, writing
g = ϕ ∗ γ

Πα(θ|X) =
n∏

i=1

[(1 − α)δ0(θi) + αγ(θi)]ϕ(Xi − θi)
(1 − α)ϕ(Xi) + αg(Xi)

.
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Thus we obtain

Πα(θ|X) =
n∏

i=1
[(1 − a(Xi))δ0(θi) + a(Xi)ψXi

(θi)] (1.2.6)

with
a(Xi) = aα(Xi) = αg(Xi)

(1 − α)ϕ(Xi) + αg(Xi)
and the density

ψXi
= ϕ(Xi − ·)γ(·)

g(Xi)
Note that, for the moment, each θi|X only depends on the observation Xi and actually

L(θi|X) = L(θi|Xi).
Firstly, one has now to specify the choice of the parameters γ and α. If we first wish

to choose the Slab density γ, one may want to use Gaussian densities.

Case where γ is N (0, σ2). In that case, for every i ∈ {1, . . . , n}, ψXi
also is the

density of a normal law, whose mean is σ2

1+σ2Xi and whose variance is σ2

1+σ2 .

Taking α = 2 in Theorem 2.8 of Castillo and van der Vaart (2012) shows that
if the true signal has coordinates that are too large, the posterior distribution will
asymptotically not put any mass around the true signal. This shows that choosing γ
Gaussian is not suitable. In fact, the hypotheses of the following properties used by
Johnstone and Silverman also exclude the Gaussian case.

Hypotheses on the Slab. Following Johnstone and Silverman (2004), we would like
the density γ to have heavy enough tails, that is why we will choose in the following a
standard Laplace density instead of a standard normal law. Precisely, one assumes that

sup
u>0

| d
du

log γ(u)| = Λ < ∞ (1.2.7)

This gives us that, ∀u > 0, log γ(u) ≥ log γ(0) − Λu and therefore, ∀u > 0, γ(u) ≥
γ(0)e−Λ|u|, which prevents us from choosing a gaussian γ.
One will furthermore assume that u → u2γ(u) is bounded and that there exists κ ∈ [1, 2]
such that, when y → ∞

1
γ(y)

ˆ ∞

y

γ(u)du ≍ yκ−1 (1.2.8)
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Properties of the coordinate-wise posterior median. Under these hypotheses,
the posterior median, denoted by θ̂med, has the following properties

Proposition 1 (Johnstone, Silverman, 2004). The posterior median θ̂med = θ̂med(x, α) is
an increasing function in x, antisymmetric and is a thresholding rule:

∀x ≥ 0 , 0 ≤ θ̂med(x, α) ≤ x.

Moreover it is a thresholding estimator: there exists t = t(α) > 0 (see below for more on
this threshold) such that

θ̂med(x, α) = 0 ⇔ |x| ≤ t(α). (1.2.9)

It also has a bounded shrinkage property : there exists b > 0 such that, for t(α) as above

∀x,∀α, |θ̂med(x, α) − x| ≤ t(α) + b. (1.2.10)

Link between α and the threshold t = t(α). We will see t as a function of α defined as
follows

t :

(0, 1) −→ (0,+∞)
α −→ The threshold of the posterior median obtained with prior Πα

(1.2.11)

Using the following notation ∀x ∈ R, g+(x) =
ˆ +∞

0
ϕ(x − u)γ(u)du and g−(x) =

ˆ 0

−∞
ϕ(x− u)γ(u)du and recalling (1.2.6), we have

P (θ > 0|X = x) = αg+(x)
(1 − α)ϕ(x) + αg(x) ,

so that 2αg+(t) = (1 − α)ϕ(t) + αg(t) and therefore

1
α

= 1 + g+(t) − g−(t)
ϕ(t) = 1 + 2

ˆ +∞

0
sinh(tu)e− u2

2 γ(u)du. (1.2.12)

This gives us a threshold which is a continuous function of α, decreasing from +∞ when
α equals 0 to 0 when α equals 1.
One can further show that t(α) is of order

√
2 log(1/α) independently of the choice of

the density γ (as long as γ satisfies (1.2.7) and (1.2.8)). One can refer back to Lemma
14 of Castillo and Roquain (2018) for an even finer result (as ζ2(α) − C < t2(α) < ζ2(α)
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as shown in (52) and (53) of Johnstone and Silverman (2004)).
As an oracle choice of threshold is

√
2 log(n/sn), one sees that an oracle choice of α would

be α∗ = sn/n. Since sn is still an unknown quantity, one may now ask how to properly
choose α.

Choice of α. First note that if one chooses α constant in (0, 1), the results will not
be more satisfying than the case α = 1 which is a product of continuous densities. The
intuition behind this is if one looks at the a priori law, the expected number of nonzero
coordinates αn will be of order n, which is too high as we want it to be of order sn. One
therefore has to make α depend on n and have it tend to 0 with n to be able to handle
with the sparsity of the model properly.

Taking this into account, one can expect that choosing α of order 1/n will provide
better results. Indeed, for a Spike and Slab prior with α = 1/n, it is shown in Mismer
(2015) (available on author’s webpage) that the posterior law concentrates itself around
the true signal θ0 at a near-minimax rate : sn

n
log n (this is the correct rate (3) only up

to a logarithmic factor).
For better results (both in theory and practice), one may consider an automatic

procedure to select α, namely to use a Hierarchical Bayes or an Empirical Bayes approach.
To be even more Bayesian, one can use the Hierarchical method and consider α itself

as a random variable, and put a prior on it. As α ∈ (0, 1), a natural prior is a Beta
distribution. If α ∼ Beta(a, b), the Beta distribution of parameters a, b ∈ R+∗ which
has as density b(x) = xa−1(1 − x)b−11l[0,1](x)Γ(a+ b)/(Γ(a)Γ(b)), the expected number of
nonzero coordinates for Πα is a

a+b
n. Ideally this number should be sn but as seen before

with the choice α = 1/n reasonable rates can be achieved if this expected number is
smaller than sn, which suggests that the quantity a

a+b
has to belong in (c 1

n
, C sn

n
). This

suggests to take a small and b larger, and in this view one may take α ∼ β(1, n+ 1), as
in Castillo and van der Vaart (2012).
This choice leads to the minimax concentration of the corresponding posterior distribution,
as can be seen in the paper of Castillo and van der Vaart (2012) (They actually derive a
concentration result for a general prior in their Theorem 2.2, the Spike and Slab prior
only being a special case treated in Example 2.2, more details on the general prior can be
found in 1.2.3). Note that the rate of convergence has the right logarithm part log(n/sn)
even though we were not able to choose the first parameter equal to sn as it is unknown
(this would have led to an expected number of nonzero coordinates of order sn). This
shows that the Hierarchical Bayes approach provides more flexibility than, for instance,
just taking α = 1/n.
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Choosing α by Empirical Bayes. We will now introduce the Empirical Bayes
approach for our Spike and Slab prior, which will be the main focus for the results
presented in this document for the Gaussian Sequence model. The idea of Johnstone
and Silverman (2004) is to estimate α by maximising the marginal likelihood in α in the
Bayesian model, which is the density of α |X. The log-marginal likelihood in α can be
written as

ℓ(α) = ℓn(α;X) =
n∑

i=1
log((1 − α)ϕ(Xi) + αg(Xi)). (1.2.13)

Let α̂ be defined as the maximiser of the log-marginal likelihood

α̂ = argmax
α∈An

ℓn(α;X), (1.2.14)

where the maximisation is restricted to An = [αn, 1], with αn defined, with t(α) as in
(1.2.11), by

t(αn) =
√

2 log n.

The reason for this restriction is that one does not need to take α smaller than αn, which
would correspond to a choice of α ‘more conservative’ than hard-thresholding at threshold
level

√
2 log n.

The a priori law that will be therefore considered is the Spike and Slab where we
have ‘plugged’ the value α̂ :

θ ∼ Πα̂ :=
n⊗

i=1
(1 − α̂)δ0 + α̂Γ (1.2.15)

One will also denote the threshold of our new ‘plug-in’ posterior median, recalling (1.2.11),

t̂ = t(α̂) (1.2.16)

The first result obtained with this approach is the following, which shows that some
point estimators derived from the Empirical Bayes a posteriori law converge to the true
signal at minimax rate as appears in Theorem 3

Theorem 1.2.1 (Johnstone, Silverman, 2004). Let µ̂ be a thresholding rule (see (1.2.9))
with threshold t̂ and with the bounded shrinkage property (see (1.2.10)). For n large
enough we have, for C a large enough constant, and provided sn ≥ log2 n

sup
θ∈ℓ0[sn]

1
n
Eθ∥µ̂− θ∥2 ≤ Crn
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With a slab γ verifying (1.2.7) and (1.2.8), the posterior median is a thresholding
rule with the bounded shrinkage property. Johnstone and Silverman (2004) also prove
that the result also holds for the posterior mean even though it only has the bounded
shrinkage property. The parameter α̂ obtained by Empirical Bayes is computationally
very tractable, and the authors developped the package EBayesThresh to compute the
quantities involved in their results.

Looking at this theorem, one can now ask whether the entire a posteriori law will
also concentrate around the true signal at minimax rate. The focus will be put on the
posterior second moment, for which one would like to derive results of the form

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2

2dΠα̂(θ |X) ≤ Crn (1.2.17)

This topic was one of the main interests of this work and is further addressed in 1.2.5.

1.2.3 Other choices of a priori laws

There are of course many other choices of a priori laws in this sparse setting, and this
section aims to introduce a few of them.

Spike and Slab LASSO(SSL). Ročková (2018) and Ročková and George (2018) used
a slightly different prior, which will also be considered further in this document. The
idea is to replace the Dirac mass by a probability distribution to make the whole prior
absolutely continuous relatively to the Lebesgue measure

θ ∼ Πα :=
n⊗

i=1
(1 − α)Γ0 + αΓ1 (1.2.18)

where the densities γ0 and γ1 are Laplace ((λi/2) exp(−λi|x|)) where parameters λ0 and
λ1 serve very different purposes : the first is larger than the second, making the first
density look like a Dirac (in a continuous way) and the second like a classical Slab.

The Spike and Slab LASSO prior can be interpreted as linking the Spike and Slab
prior and the frequentist LASSO, as the Spike and Slab is obtained by letting λ0 → ∞
and the LASSO is obtained by setting λ0 = λ1 and considering the posterior mode. Note
that in the SSL case, the posterior median is not a thresholding estimator anymore.

The modes of the a posteriori law are then well defined, and the mode is even unique
as soon as (λ1 −λ0)2 ≤ 4. Ročková (2018) shows that the posterior global mode converges
to the true signal at minimax rate with the oracle choice α = sn/(sn + n) (so this is
not an adaptive result) as long as λ1 < e−2 and for the choice λ0 = n/sn + 4. However,
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the author shows an adaptive result in a particular regime for the entire posterior law
using a Hierarchical approach, setting α ∼ β(1, 4n) and λ0 = (1 − α)/α. The additional
assumption on the signal is that all the nonzero coordinates have to be greater than
(sn/n) log(n/sn).

Horseshoe. The Horseshoe prior is a scale mixture of Gaussian distributions. It is the
distribution (which has a density π) such that, ∀i ∈ {1, . . . , n}, with each λi following
the standard half-Cauchy on the positive reals law (denoted by C+(0, 1)) and τ a global
hyperparameter,

θi|λi, τ ∼ N (0, λ2
i τ

2)
λi ∼ C+(0, 1)

(1.2.19)

The name Horsehoe, as stated by Carvalho et al. (2010), comes from the fact that,
with κi = 1

1+λi
,

E[θi|X] =
ˆ 1

0
(1 − κi)XiΠ(κi|X)dκi

= (1 − E[κi|X])Xi

The quantity E[κi|X] can be seen as the a posteriori amount of shrinkage towards 0.
Since the λi’s are half-Cauchy, each shrinkage coefficient κi follows the β(1/2, 1/2) law,
which has the shape of a horseshoe.

Its density π satisfies the following inequality, proven by Carvalho et al. (2010)

1
2τ log(1 + 4τ 2

θ2
i

) ≲ π(θi) ≲
1
τ

log(1 + 2τ 2

θ2
i

), θi ̸= 0

The density π therefore has a pole at zero and Cauchy tails, which makes the Horseshoe
and the Spike and Slab (with Cauchy Slab) strikingly similar, and the parameter τ seems
to play the same role as the parameter α of the Spike and Slab.

van der Pas et al. (2017a) show adaptive near-minimax (without the log(n/sn) part)
rates of convergence for the posterior distribution for Empirical Bayes and Hierarchical
Bayes under certain conditions. van der Pas et al. (2017b) give credible sets derived from
the horseshoe posterior that can be used, asymptotically in n, as confidence sets.

A more general Prior. Castillo and van der Vaart (2012) use a more global a priori
form, of which the Spike and Slab is just a particular case. The general prior is obtained
through the following method

• Draw a dimension s using a law π(s) on the set {0, 1, . . . , n}
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• Draw a support S ⊂ {1, . . . , n} uniformly on the sets of cardinal s : Π(S) = π(s)
(n

s)

• This leads to the following prior on θ

θ ∼
∑

S⊂{1,...,n}
Π(S)

⊗
i∈S

Γ ⊗
⊗
i/∈S

δ0

 (1.2.20)

with Γ probability distributions which are absolutely continuous relative to the
Lebesgue measure and with density γ.

Note that in this general setting, the a posteriori does not shape as a product anymore,
which can make the proofs harder.
One says that π has exponential decrease if there exist C > 0 and D < 1 such that

π(s) ≤ Dπ(s− 1) (1.2.21)

for s > Csn. If this is satisfied with C = 0 then π is said to has strict exponential decrease.
One may now ask what to choose for the prior π on the dimension, here are some examples :

Binomial prior. If π is the binomial Bin(n, α), then the prior on θ is the Spike and
Slab. This prior π has exponential decrease for α ≲ sn

n
.

Hierarchical approach using a Beta prior. As before, we want s|α to follow Bin(n, α). In
this aim take α ∼ Beta(κ, λ) and set

π(s) =
(
n

s

)
β(κ+ s, λ+ n− s)

Beta(κ, λ) ∝ Γ(κ+ s)Γ(λ+ n− s)
s!(n− s)!

For κ = 1 and λ = n+1, we have π(s) ∝
(

2n−s
n

)
, which has strict exponential decrease

with D = 1
2 . More generally and as seen before one can set κ = 1 and λ = κ1(n + 1),

which leads to π(s) ∝
(

(κ1+1)n−s
κ1n

)
.

Complexity prior. This prior has the form π(s) ∝ e−as log( bn
s

). It shows to be quite fitting
for the problem. Indeed, as es log( n

s
) ≤

(
n
s

)
≤ es log( en

s
), it is inversely proportional to the

number of models of size s and seems good to lessen the complexity of the problem. It
has exponential decrease as soon as b > 1 + e.

One is not able to use Theorem 2 as our observations Xi are not i.i.d.. To get to their
results, Castillo and van der Vaart (2012) first prove a result on the dimension :
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Theorem 4 (Castillo, van der Vaart, 2012). If π has exponential decrease and γ is centered
with a finite second moment, then there exists M > 0 such that n → ∞ :

sup
θ0∈ℓ0[sn]

Eθ0 [Π(|Sθ| > Msn|X)] → 0

This further leads to their main result

Theorem 5 (Castillo, van der Vaart, 2012). If π has exponential decrease and γ is centered
with a finite second moment which can be written eh with h such that ∀x, y ∈ R,
|h(x) − h(y)| ≲ 1 + |x− y|, then, with r∗

n such that

r∗2
n ≥ (sn log( n

sn

)) ∨ (log( 1
π(sn)))

and M > 0 large enough, for n → ∞

sup
θ0∈ℓ0[sn]

Eθ0 [Π(∥θ − θ0∥2 > Mr∗2
n |X)] → 0

The hypothesis on γ is verified for Laplace, and the 3 priors on dimension seen before
in the examples (so including the Spike and Slab) verify the hypotheses of the theorem.
Moreover, considering the complexity prior, the authors showed that the posterior mean
converge to the true signal at minimax rate and that convergence of the second posterior
moment is obtained.

There are several other Bayesian methods in the Gaussian sequence setting, such as
non-local priors (as in Johnson and Rossell (2010)), Gaussian mixture priors (see George
and Foster (2000)), or adopting a fractional likelihood perspective (see Martin and Walker
(2014)).

1.2.4 Exact constant

In the setting of the sparse sequence model, we say that the posterior distribution
converges at minimax rate with exact constant (or converges at sharp minimax rate)
with respect to the L2-norm loss if

sup
θ0∈ℓ0[sn]

Eθ0

[ˆ
∥θ − θ0∥2

2dΠ(θ|X)
]

≤ 2sn log( n
sn

)(1 + o(1)). (1.2.22)



22 Introduction

This is (1.2.4) with the constant C = 1, implying that this is a finer result. The
definition immediately implies using Jensen’s inequality that the posterior mean (denoted
here by θ̄) converges at minimax rate with exact constant to the true signal

sup
θ0∈ℓ0[sn]

Eθ0

[
∥θ̄ − θ0∥2

2

]
≤ 2sn log( n

sn

)(1 + o(1)). (1.2.23)

Another application is that if one uses a randomised estimator θ̃ = θ̃(X,U) using the
data X and uniform variables U on [0, 1] to simulate from the a posteriori law, namely θ̃
such that L(θ̃(X,U)|X) = Π(·|X); stating (1.2.22) is exactly stating the convergence to
θ0 at sharp minimax rate of θ̃.
In the present setting, in order to effectively sample such a θ̃ and have L(θ̃(X,U)|X) =
Π(·|X), as the Spike and Slab a posteriori law is a product, one can take, denoting by
Fθi|X the cumulative distribution function of each θi|Xi,

θ̃(X,U) = (F−1
θ1|X(U1), . . . ,F−1

θn|X(Un))

The convergence at minimax rate with exact constant for the Spike and Slab will
require a specific choice of Slab, as will be seen in the following section.

1.2.5 Contributions using the Empirical Bayes method for the
Spike and Slab prior

The following work, which is treated in more details in Chapters 2 and 3, was motivated by
pursuing the work seen in 1.2.2 of Johnstone and Silverman (2004). Using the Empirical
Bayes approach (1.2.14), they derived convergences at minimax rate for the posterior
median and the posterior mean, as seen in Theorem 1.2.1, for suiting densities γ. Aiming
at Uncertainty Quantification (which was later treated by Castillo and Szabo (2018)
based on the present work), a natural question was to know if the second moment of the
posterior law (1.2.15) behaved the same way. Namely, the form of the desired results is

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2

2dΠα̂(θ |X) ≤ Crn (1.2.24)

Suboptimality of the Laplace Slab. The first investigations were conducted with
Γ taken as a standard Laplace distribution, and led to a quite surprising result. The
posterior second moment for a Laplace Slab does not converge at minimax rate uniformly
in θ ∈ ℓ0[sn], even though the posterior median and mean do so (as was proved by
Johnstone and Silverman (2004) and noted above)
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Theorem 6. Let Πα be the Spike and Slab prior distribution (1.2.5) with Slab distribution
Γ equal to the Laplace distribution Lap(1). Let Πα̂[· |X] be the corresponding plug-in
posterior distribution given by (1.2.15), with α̂ chosen by the empirical Bayes procedure
(1.2.14). There exist D > 0, N0 > 0, and c0 > 0 such that, for any n ≥ N0 and any sn

with 1 ≤ sn ≤ c0n, there exists θ0 ∈ ℓ0[sn] such that,

Eθ0

ˆ
∥θ − θ0∥2

2dΠα̂[θ |X] ≥ Dsne
√

log (n/sn).

One can now ask whether this suboptimality result only comes from considering an
integrated L2–moment, instead of simply asking for a posterior convergence result in
probability like (1.2.3). It is actually not the case, as the entire a posteriori law is also
suboptimal for the Laplace Slab.
Theorem 7. Under the same notation as in Theorem 6, if Πα is a Spike and Slab distribution
with a slab Γ taken as the standard Laplace distribution, there exists m > 0 such that
for any sn with sn/n → 0 and log2 n = O(sn) as n → ∞, there exists θ0 ∈ ℓ0[sn] such
that, as n → ∞,

Eθ0Πα̂

[
∥θ − θ0∥2

2 ≤ msne
√

2 log (n/sn) |X
]

= o(1).

This is a stronger result than Theorem 6, but with an additional mild condition
sn ≳ log2 n. The fact that this result implies the preceding one follows from bounding
from below the integral in the display of Theorem 6 by the integral restricted to the set
where ∥θ − θ0∥2 is larger than the target lower bound rate.

The intuition behind these two results is that the Empirical Bayes provides (for some
specific signals) a parameter α̂ somewhat larger than the oracle parameter α∗ = sn/n

(here α̂ ≳ sn

n
e
√

log (n/sn)).
One sees through this example that the behaviour of some aspects of an a posteriori

law (such as the median or the mean) does not drive the behaviour of the complete a
posteriori law.

One can also note that this is an example where the Empirical Bayes and the
Hierarchical Bayes methods deliver different results, as the a posteriori law in the
Hierarchical approach with a Laplace Slab does not show any suboptimality and converges
at minimax rate, as seen in Theorem 5.

Optimal concentration for Cauchy Slab. The next direction was to use a standard
Cauchy Slab instead of a standard Laplace, and this led to the following result, showing
optimal concentration uniformly in θ ∈ ℓ0[sn]
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Theorem 8. Let Πα be the Spike and Slab prior distribution (1.2.5) with Slab distribution
Γ equal to the standard Cauchy distribution. Let Πα̂[· |X] be the corresponding plug-in
posterior distribution given by (1.2.15), with α̂ chosen by the empirical Bayes procedure
(1.2.14). There exist C > 0, N0 > 0, and c0, c1 > 0 such that, for any n ≥ N0, for any sn

such that there exist constant c0, c1 such that c1 log2 n ≤ sn ≤ c0n,

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2

2dΠα̂(θ |X) ≤ Crn.

Actually, any Slab density γ with tails of the order x−1−δ with δ ∈ (0, 2) gives the
same result. These densities are particularly suitable if one wants to consider dq-distances
instead of the d2-distance (see Castillo and Szabo (2018)).

This result shows once again that heavy tails are crucial to make the Empirical Bayes
method succeed and get minimax results.

Sharp minimax convergence. To go even further and get the exact constant 2 in
the minimax rate, we use the special Slab density γ on R given by

γ(x) = 1
2∆(1 + |x|), ∆(u) = u−1(1 + log(u))−2 for u > 0, (1.2.25)

(The purpose of this new density is to have sufficiently heavy tails, heavier than Cauchy.)
Apart from this specific tail property, γ still satisfies

sup
u>0

∣∣∣∣∣ ddu log γ(u)
∣∣∣∣∣ =: Λ < ∞.

but not (1.2.8). However, it satisfies a similar property, see Lemma 22 of Chapter 3
This choice leads to the following sharp result

Theorem 9. Let Πα be the Spike and Slab prior distribution (1.2.5) with Slab density γ
given by (1.2.25). Let Πα̂(· |X) be the corresponding plug-in posterior distribution given
by (1.2.15), with α̂ chosen by the empirical Bayes procedure (1.2.14). For any sn such
that there exist constants c0, c1 such that c1 log2 n ≤ sn ≤ c0n, for n → ∞

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2

2dΠα̂(θ |X) ≤ 2sn log( n
sn

)(1 + o(1)).

An intuition for why it works is that one may decompose the L2-norm in two parts,
depending on whether the components of the true signal are different from zero or not.
The nonzero signal part contributes for 2sn log( n

sn
)(1 + o(1)). The other part is more
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dependent on the choice of the Slab. This part indeed depends on α̂, which is too far
from the oracle parameter α∗ = sn/n in the Laplace case, resulting in a zero signal
contribution larger than the minimax rate. In the Cauchy case (actually also with tails
x−1−δ, δ ∈ (0, 2)), the zero signal contribution appears to be exactly of the order of the
minimax rate. With the special Slab (1.2.25), this contribution becomes lower than the
minimax rate, finally resulting in 2sn log( n

sn
)(1 + o(1)).

Results for the Spike and Slab LASSO prior (SSL). Deriving analog results for
the SSL prior, which is the continuous counterpart to the Spike and Slab, was also of
particular interest. The prior on θ is the following

θ ∼ Πα :=
n⊗

i=1
(1 − α)Γ0 + αΓ1, (1.2.26)

with Γ0 a Laplace distribution with parameter λ0, but here we will not restrict the choice
of Γ1 to a Laplace.

As seen in section 1.2.3, it is convenient to let λ0 depend on n, here we set, mostly
for more convenience in the proofs (see Chapter 2)

λ0 = 5n
√

2π (1.2.27)

Let α̂ be defined as the maximiser of the log-marginal likelihood

α̂ = argmax
α∈An

ℓn(α;X), (1.2.28)

where the maximisation is restricted to An = [αn, 1], with αn defined, in view of (1.2.11),
by

t(αn) =
√

2 log n.

The a priori law that will be therefore considered is the Spike and Slab where we
have ‘plugged’ the value α̂ :

θ ∼ Πα̂ :=
n⊗

i=1
(1 − α̂)δ0 + α̂Γ (1.2.29)

Theorem 10. Let Πα be the SSL prior distribution (1.2.26) with Cauchy slab and pa-
rameters λ0 given by (1.2.27) and λ1 = 0.05. Let Πα̂[· |X] be the corresponding plug-in
posterior distribution given by (1.2.29), with α̂ chosen by the Empirical Bayes procedure
(1.2.28). There exist C > 0, N0 > 0, for any n ≥ N0, for any sn such that there exist
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constant c0, c1 such that c1 log2 n ≤ sn ≤ c0n, then

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2dΠα̂(θ |X) ≤ Csn log n.

1.3 Density Estimation and Pólya Trees

1.3.1 Definition of the Model

We can write the Density Estimation Model as follows, with X the observed vector of Rn

X1, . . . , Xn i.i.d. ∼ P (1.3.1)

where P belongs to the model P = {P ; dP = fdµ} with µ the Lebesgue measure on
[0, 1].
The goal here is to estimate the true density function f0. We make the two following
assumptions

f0 is bounded away from 0 and ∞ (1.3.2)

∃α ∈ (0, 1] such that f0 ∈ Cα([0, 1]) (1.3.3)

where Cα([0, 1]) = {f : [0, 1] → R; sup
x ̸=y∈[0,1]

|f(x) − f(y)|
|x− y|α

< ∞} is the set of α-Hölder

functions of [0, 1]. One would like to estimate f0 in an adaptive way, namely a way that
does not depend on the unknown parameter α.

Minimax rate. As proven by Ibragimov and Khas’minskii (1980), the minimax rate
when estimating densities in Cα([0, 1]) using the supremum norm as the loss function is

ε∗
n,α =

(
log n
n

) α
2α+1

. (1.3.4)

Haar Basis. The Haar wavelet basis is {ϕ, ψlk, 0 ≤ k < 2l, l ≥ 0}, where ϕ = 1l[0,1] and,
for ψ = −1l(0,1/2] + 1l(1/2,1],

ψlk(·) = 2l/2ψ(2l · −k), 0 ≤ k < 2l, l ≥ 0 (1.3.5)

As we focus on density functions on [0, 1], which are nonnegative functions g such

that
ˆ 1

0
gϕ =

ˆ 1

0
g = 1, the first Haar-coefficient is always 1. That means that one only
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needs to consider the basis functions ψlk and the Haar basis will simply be denoted as
{ψlk} in the following.

If a function g belongs to Cα([0, 1]), with α ∈ (0, 1], then the sequence of its Haar
wavelet coefficients ⟨g, ψlk⟩ satisfies

sup
0≤k<2l,l≥0

2l(1/2+α)|⟨g, ψlk⟩| < ∞. (1.3.6)

Bayesian approach. To adopt a Bayesian perspective, one has to put a prior on P ,
therefore one has to build a probability distribution on probability distributions. A rather
common choice would be a Dirichlet process, but as its draws are discrete almost surely
it will not be suitable to estimate objects as smooth as a density. A more convenient
distribution on distributions with densities is the Pólya tree, which is introduced in what
follows. (Actually the Dirichlet process is a particular case of Pólya tree, but with the αε

going to 0, see below)

1.3.2 The Pólya Tree Prior

Dyadic partitions. For any fixed indexes l ≥ 0 and 0 ≤ k < 2l, the rational number
r = k2−l can be written in a unique way as ε(r) := ε1(r) . . . εl(r), its finite expression of
length l in base 1/2 (note that it can end with one or more 0). That is, εi ∈ {0, 1} and

k2−l =
l∑

i=1
εi(r)2−i.

Let E := ⋃
l≥0{0, 1}l ∪ {∅} be the set of finite binary sequences. We write |ε| = l if

ε ∈ {0; 1}l and |∅| = 0.
Let us introduce a sequence of partitions I = {(Iε)|ε|=l, l ≥ 0} of the unit interval. Set
I∅ = (0, 1] and, for any ε ∈ E such that ε = ε(l; k) is the expression in base 1/2 of k2−l,
set

Iε :=
(
k

2l
,
k + 1

2l

]
:= I l

k

For any l ≥ 0, the collection of all such dyadic intervals is a partition of (0, 1].

The Pólya Tree Prior. The probability distribution P is said to follow a Pólya tree
distribution on I, denoted PT (A) where A = {αε, ε ∈ E} is the set of parameters, if
∀(ε, ε′) ∈ E2, there exists Yε random variables in [0, 1] verifying the following conditions
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Yε0 ⨿ Yε′0 (1.3.7)
Yε0 ∼ Beta(αε0, αε1) (1.3.8)
Yε1 = 1 − Yε0 (1.3.9)

P (Iε) =
|ε|∏

i=1
Yε1...εi

(1.3.10)

One can then use a tree representation (see Figure 1.1) to visually compute P (Iε).
One follows the path ε1, ε1ε2, . . . , ε1ε2 . . . ε|ε|−1, ε alongside ε, resulting in a product of
Beta variables with parameters depending on whether one goes left on the tree (εj = 0)
or right (εj = 1)

P (Iε) =
|ε|∏

j=1,εj=0
Yε1,...,εj−10 ×

|ε|∏
j=1,εj=1

(1 − Yε1,...,εj−10) (1.3.11)

Fig. 1.1 Indexed binary tree with levels l ≤ 2 represented. The nodes index the intervals
Iε. Edges are labelled with random variables Yε.

This defines a random probability distribution on the distributions of [0, 1], so that
the Pólya tree can be used as an a priori law on P in the Density Estimation Model.
The Pólya tree prior has a conjugacy property, namely if one observes i.i.d. X1, . . . , Xn

following a probability distribution P itself following a PT (A) on I, the a posteriori law

of P |X1, . . . , Xn is also a Pólya tree PT (A∗), where A∗ = {α∗
ε = αε +

n∑
i=1

1l{Xi∈Iε}, ε ∈ E}.

A proof of this result can be found in the book of Ghosal and van der Vaart (2017).
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The set of parameters A offers a large variety of choices, which leads to a large variety
of different Pólya trees. However, the most common choice is to take the same parameters
αε at each level. In the following, for any level l ≥ 1, one takes

∀ε ∈ E such that |ε| = l, αε = al (1.3.12)

In other words, one chooses in the following A = (al)l≥1 a sequence of positive numbers.
Note that if one takes al = 2−l, the corresponding Pólya tree is a Dirichlet process (see
Ferguson (1973)).
As shown by Kraft (1964), if on the contrary one chooses al tending to ∞ as l → ∞,
more precisely if

∞∑
l=1

a−1
l < ∞ (1.3.13)

the corresponding Pólya tree on the canonical dyadic partition on [0, 1] is absolutely
continuous relatively to the Lebesgue measure on [0, 1]. Therefore one will assume (1.3.13)
in what follows.
For more details on Pólya trees, one can refer to Lavine (1992) or Mauldin et al. (1992).

One may note that, unlike other classical estimators such as kernel estimators (in case
the kernel takes negative values) or wavelet density estimators, Pólya tree priors always
sit on densities, so that the posterior is itself automatically a density. Furthermore, as
we will see below, there is a natural way to equip the prior with a natural built-in choice
of the regularity hyperparameter, which will allow for adaptive inference.

1.3.3 Contribution using a Hierarchical approach with the
Spike and Slab prior

An analog of the Spike and Slab prior In the following, one defines the cutoff
Lmax = log2(n) and L the largest integer such that

2LL ≤ n (1.3.14)

Note that L ≤ Lmax for every n.
Let X(n) = (X1, · · · , Xn) be i.i.d. from law P with density f .

Let Π be the prior on densities generated as follows. One keeps the Pólya tree random
measure with respect to the canonical dyadic partition of [0, 1] construction up to level
L, replacing the Beta distributions by
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ε ∈ E , Yε0 ∼ (1 − πε0)δ 1
2

+ πε0Beta(αε0, αε1), (1.3.15)

with parameters αε ∈ N to be chosen and a real parameter πε (later to be taken of the
form 2− l

2 e−Cl, where we wrote l = |ε|).
There are multiple probability distributions on Borelians of [0, 1] that coincide on

dyadic intervals Iε with P (Iε) resulting from the above construction. We consider the
specific one that is absolutely continuous relatively to the Lebesgue measure on [0, 1] with
a constant density on each Iε, |ε| = L+ 1. So, both prior and posterior are histograms
on dyadic intervals at depth L.

Definition. The prior distribution with parameters αε, πε, as above is called Spike
and Slab Pólya tree and denoted Π(αε, πε).

This prior is based on an idea of Ghosal and van der Vaart, which is referred as
Evenly Split Pólya tree in their book Ghosal and van der Vaart (2017). First note that
the Haar coefficients flk of a density f can be expressed as

flk = ⟨f, ψlk⟩ = 2 l
2P (Iε)(1 − 2Yε0) (1.3.16)

The Spike and Slab Pólya tree can therefore be seen as a ’thresholding prior’, as the
thresholding takes place on the sequence of Haar coefficients of the function where
Yε0 = 1

2 .
Using this Spike and Slab prior can be seen as taking a Hierarchical approach. The

usual Pólya tree (PT) prior on densities (under (1.3.13)) leads to the following Bayesian
diagram

X|f ∼ f

f ∼ PT ((Yε0)) with Yε0 ∼ Beta(αε0, αε1),

so the Yε0 have fixed (Beta) distributions, whereas the Spike and Slab Pólya tree (SSPT)
prior leads to the diagram

X|f ∼ f

f ∼ SSPT ((Yε0)) with Yε0 ∼ (1 − πε0)δ 1
2

+ πε0 Beta(αε0, αε1)

which can be seen as the following diagram, using a sequence (γε0)ε of Bernoulli variables.
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X|f ∼ f

f |(γε0) ∼ SSPT ((Yε0)) with Yε0 ∼ (1 − γε0)δ 1
2

+ γε0 Beta(αε0, αε1)
γε0 ∼ Be(πε0)

So in this case the distributions followed by the Yε0 are random, hence this approach
can be viewed as hierarchical.

The a posteriori law. Proposition 6 of Chapter 4 states that the Spike and Slab type
Pólya tree still satisfies conjugacy. Indeed, for every ε ∈ E , the a posteriori law of Yε0

knowing X1, . . . , Xn is

Yε0|X ∼ (1 − π̃ε0)δ 1
2

+ π̃ε0Beta(αε0(X), αε1(X)) (1.3.17)

where the quantities π̃ε, T = T (ε,X) and αε(X) all depend on the observations.
Note that if πε = 1, meaning that the prior is also a product of Beta variables, we get
that the posterior is a product of Beta variables too.

An adaptive concentration result. The following Theorem shows that the a poste-
riori law obtained with a Spike and Slab type Pólya tree prior concentrates around the
true density f0 at minimax rate for the supremum-norm loss.

Theorem 11. Let f0 ∈ Cα[0, 1], for α ∈ (0, 1] and suppose ∥ log f0∥∞ < ∞. Let X1, . . . , Xn

be i.i.d. random variables on [0, 1] following Pf0 . Let Π be the prior on densities induced
by a Spike and Slab Polya Tree prior Π(αε, πε) with the choices

αε = a

πε = 2− l
2 e−κl, l = |ε|

for κ large enough constant and a > 0 constant. Then for any Mn → ∞, in Pf0-probability

Π
∥f − f0∥∞ ≤ Mn

(
log n
n

) α
2α+1

|X

 → 1

This theorem is an adaptive version of Theorem 1 of Castillo (2017b). There are few
results so far in the literature in density estimation for the supremum-norm loss, among
those are the results from Castillo (2014), Hoffmann et al. (2015) and Yoo and Ghosal
(2016) for multivariate regression.
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A Bernstein Von Mises result. To establish a nonparametric Bernstein Von Mises
(BVM) result, one has first to find a space M0 large enough to have convergence at rate
√
n of the posterior density to a Gaussian process. One can then derive results for some

other space F using continuous mapping for continuous functionals ψ : M0 → F . A
space that combines nicely with supremum norm structure was introduced by Castillo
and Nickl (2014) and defined as follows, using an ’admissible’ sequence ω = (ωl)l≥0 such
that ωl/

√
l → ∞ as l → ∞

M0 = M0(ω) =
{
x = (xlk)l,k ; lim

l→∞
max

0≤k<2l

|xlk|
ωl

= 0
}

(1.3.18)

Equipped with the norm ∥x∥M0 = sup
l≥0

max
0≤k<2l

|xlk|
ωl

, this is a separable Banach space. In

a slight abuse of notation, we will write f ∈ M0 if the sequence of its Haar wavelet
coefficients belongs in that space : (⟨f, ψlk⟩)l,k ∈ M0.

P -white bridge process. For P a probability distribution in [0, 1], one defines the
P -white bridge process, denoted by GP . This is the Gaussian process indexed by the

Hilbert space L2(P ) = {f : [0, 1] → R;
ˆ 1

0
f 2dP < ∞} with covariance

E[GP (f)GP (g)] =
ˆ 1

0
(f −

ˆ 1

0
fdP )(g −

ˆ 1

0
gdP )dP (1.3.19)

We will denote by N the law of GP0(with P0 = Pf0).
The main purpose of the admissible sequence ω is to ensure that GP ∈ M0. Intuitively,

if one does not use these weights wl, the maximum over 2l Gaussian variables is of order√
2 log(2l) = C

√
l and does not tend to 0 as l → ∞, see Remark 1 of Castillo and Nickl

(2014) for a precise proof of this result.

Recentering the distribution. To establish our BVM result, one also has to find a
suitable way to center the posterior distribution. In this view, denote by Pn the empirical
measure

Pn = 1
n

n∑
i=1

δXi
. (1.3.20)

Let us also consider Cn, which is a smoothed version of Pn, defined by

⟨Cn, ψlk⟩ =
 ⟨Pn, ψlk⟩ if l ≤ L

0 if l > L,
(1.3.21)

where L is our original cutoff, defined by (4.1.5).
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We finally introduce Tn, which depends on the true parameter α, defined by

⟨Tn, ψlk⟩ =
 ⟨Pn, ψlk⟩ if l ≤ Ln

0 if l > Ln,
(1.3.22)

where we defined Ln to be the integer such that

2Ln = ⌊c0

(
n

log n

) 1
1+2α

⌋ (1.3.23)

for a suitable constant c0 ∈ R+∗, whose precise value is made clear below.

Weak BVM result. We have the following Bernstein-von Mises phenomenon for f0

in Hölder-type balls (standard Hölder balls are subsets of the following ones)

H(α,R) := {f = (flk) : |flk| ≤ R2−(α+1/2),∀l ≥ 0, 0 ≤ k < 2l}

Theorem 12. Let N be the law of GP0 . Let Cn be the centering defined in (4.2.6). Let
l0(n) be an increasing and diverging sequence. We define the prior Π such that

Yε0 ∼ Beta(a, a) for |ε| ≤ l0

Yε0 ∼ (1 − πε0)δ 1
2

+ πε0Beta(a, a) for l0 < |ε| ≤ L

where πε = 2− l
2 e−κ|ε| with κ a large enough constant. The posterior distribution then

satisfies a weak BvM : for every α,R > 0, recalling βS from (1.1.20),

sup
f0∈H(α,R)

Ef0

[
βM0(ω)(Π(·|X) ◦ τ−1

Cn
,N )

]
→ 0

as n → ∞ and for any admissible sequence ω = (ωl) with ωl0(n)/
√

log(n) → ∞.

The choice of recentering of the distribution is quite flexible, as it can be checked
that the result also holds if one replaces Cn by the posterior mean f̄n or by Tn which
depends on α. Actually, the only required condition on where one cuts the empirical
measure is to satisfy Theorem 1 of Castillo and Nickl (2014). One can see that the cutoff
L is exactly the furthest one can go according to that theorem.

Using the methods of Castillo and Nickl (2014), this result leads to several applications,
for instance derivation of BVM theorems for semiparametric functionals via the continuous
mapping theorem and Donsker-type theorems, which do not appear here for the sake of
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brievity. It may also lead to the construction of adaptive credible sets although it may
require substantial additional work.



Chapter 2

Empirical Bayes analysis of spike
and slab posterior distributions

2.1 Introduction

In the sparse normal means model, one observes a sequence X = (X1, . . . , Xn)

Xi = θi + εi, i = 1, . . . , n, (2.1.1)

with θ = (θ1, . . . , θn) ∈ Rn and ε1, . . . , εn i.i.d. N (0, 1). Given θ, the distribution of X is
a product of Gaussians and is denoted by Pθ. Further, one assumes that the ‘true’ vector
θ0 belongs to

ℓ0[sn] = {θ ∈ Rn, #{i : θi ̸= 0} ≤ sn} ,

the set of vectors that have at most sn nonzero coordinates, where 0 ≤ sn ≤ n. A
typical sparsity assumption is that sn is a sequence that may grow with n but is ‘small’
compared to n (e.g. in the asymptotics n → ∞, one typically assumes sn/n = o(1) and
sn → ∞). A natural problem is that of estimating θ with respect to the euclidean loss
∥θ − θ′∥2 = ∑n

i=1(θi − θ′
i)2. A benchmark is given by the minimax rate for this loss over

the class of sparse vectors ℓ0[sn]. Denoting

rn := 2sn log(n/sn),

Donoho et al. (1992) show that the minimax rate equals (1 + o(1))rn as n → ∞.
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Taking a Bayesian approach, one of the simplest and arguably most natural classes
of prior distributions in this setting is given by so-called spike and slab distributions,

θ ∼
n⊗

i=1
(1 − α)δ0 + αG,

where δ0 denotes the Dirac mass at 0, the distribution G has density γ with respect to
Lebesgue measure and α belongs to [0, 1]. These priors were introduced and advocated
in a number of papers, including Mitchell and Beauchamp (1988); George (2000); George
and Foster (2000); Yuan and Lin (2005). One important point is the calibration of the
tuning parameter α, which can be done in a number of ways, including: deterministic
n-dependent choice, data-dependent choice based on a preliminary estimate α̂, fully
Bayesian choice based on a prior distribution on α. Studying the behaviour of the
posterior distributions in sparse settings is currently the object of a lot of activity. A
brief (and by far not exhaustive) overview of recent works is given below. Given a prior
distribution Π on θ, and interpreting Pθ as the law of X given θ, one forms the posterior
distribution Π[· |X] which is the law of θ given X. The frequentist analysis of the
posterior distribution consists in the study of the convergence of Π[· |X] in probability
under Pθ0 , thus assuming that the data has actually been generated from some ‘true’
parameter θ0.

In the present paper, we follow this path and are more particularly interested in
obtaining a uniform bound on the posterior squared L2-moment of the order of the
optimal minimax rate, that is in proving, with C a large enough constant,

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2dΠ(θ |X) ≤ Crn (2.1.2)

for Π a prior distribution constructed using a spike and slab approach, whose prior
parameters may be calibrated using the data, that is following an empirical Bayes
method. This is of interest for at least three reasons

• this provides adaptive convergence rates for the entire posterior distribution, using
a fully data-driven procedure. This is more than obtaining convergence of aspects
of the posterior such that posterior mean or mode, and in fact may require different
conditions on the prior, as we shall see below.

• the inequality (2.1.2) automatically implies convergence of several commonly used
point estimators derived from the posterior Π[· |X]: it implies convergence at rate
Crn of the posterior mean

´
θdΠ(θ |X) (using Jensen’s inequality, see e.g. Castillo
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and van der Vaart (2012)), but also of the coordinatewise posterior median (see the
supplement of Castillo and van der Vaart (2012) for details) and in fact of any fixed
posterior coordinatewise quantile, for instance the quantile 1/4 of Π[· |X]. It also
implies, using Tchebychev’s inequality, convergence of the posterior distribution at
rate Mnrn for ∥ · ∥2 as in (2.1.3) below with M = Mn, for any Mn → ∞.

• knowing (2.1.2) is a first step towards results for uncertainty quantification, in
particular for the study of certain credible sets. Indeed, (2.1.2) suggests a natural
way to build such a set, that is C ⊂ Rn with Π[C |X] ≥ 1 − α for a given α ∈ (0, 1).
Namely, define C = {θ : ∥θ − θ̄∥2 ≤ rX}, with θ̄ the posterior mean (or another
suitable point estimate of θ) and rX a large enough multiple of the (1 −α)–quantile
of
´

∥θ − θ̄∥2dΠ(θ |X).

The present work is the first of a series of papers where we study aspects of inference
using spike and slab prior distributions. In particular, based on the present results, the
behaviour of the previously mentioned credible sets is studied in the forthcoming paper
Castillo and Szabo (2018).

Previous results on frequentist analysis of spike and slab type priors. In a seminal
paper, Johnstone and Silverman Johnstone and Silverman (2004) considered estimation
of θ using spike and slab priors combined with an empirical Bayes method for choosing
α. They chose α = α̂ based on a marginal maximum likelihood approach to be described
in more details below. Denoting θ̂ the associated posterior median (or posterior mean),
Johnstone and Silverman (2004) established that

sup
θ0∈ℓ0[sn]

Eθ0∥θ̂ − θ0∥2 ≤ Crn,

thereby proving minimaxity up to a constant of this estimator over ℓ0[sn]. The estimator
is adaptive, as the knowledge of sn is not required in its construction.

In Castillo and van der Vaart (2012), convergence of the posterior distribution is
studied in the case α is given a prior distribution. If α ∼ Beta(1, n + 1), Π is the
corresponding hierarchical prior, and Π[· |X] the associated posterior distribution, it is
established in Castillo and van der Vaart (2012) that for large enough M , as n → ∞,

sup
θ0∈ℓ0[sn]

Eθ0Π[∥θ − θ0∥2 ≤ Mrn |X] → 1. (2.1.3)

In Martin and Walker (2014), Martin and Walker use a fractional likelihood approach to
construct a certain empirical Bayes spike and slab prior, where the idea is to reweight
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the standard spike and slab prior by a power of the likelihood. They derive rate-optimal
concentration results for the corresponding posterior distribution and posterior mean.

A related class of prior distributions recently put forward by Ročková Ročková (2018)
and Ročková and George Ročková and George (2018), is given by

θ ∼
n⊗

i=1
(1 − α)G0 + αG1,

where both distributions G0, G1 have densities with respect to Lebesgue measure. The
authors in particular consider the choices G0 = Lap(λ0) and G1 = Lap(λ1), where Lap(λ)
denotes the Laplace (double-exponential) distribution. Taking λ0 large enough enables
one to mimic the spike of the standard spike and slab prior, and the fact that both
G0, G1 are continuous distributions offers some computational advantages, especially
when working with the posterior mode. One can also note that the posterior mode when
α = 1 leads to the standard LASSO estimator. For this reason, the authors in Ročková
(2018); Ročková and George (2018) call this prior the spike and slab LASSO prior. It
is shown in Ročková (2018), Theorem 5.2 and corollaries, that a certain deterministic
n-dependent choice of α, λ0, λ1 (but independent on the unknown sn) leads to posterior
convergence at near-optimal rate sn log n, while putting a prior on α can yield (Ročková
(2018), Theorem 5.4) the minimax rate for the posterior, if a certain condition on the
strength of the true non-zero coefficiencents of θ0 is verified.

Other priors and related work. We briefly review other options to induce sparsity
using a Bayesian approach. One option considered in Castillo and van der Vaart (2012)
is first to draw a subset S ⊂ {1, . . . , n} at random and then to draw nonzero coordinates
on this subset only. That is, sample first a dimension k ∈ {0, . . . , n} at random according
to some prior π. Given k, sample S uniformly at random over subsets of size k and
finally set

θi ∼ G i ∈ S

θi = 0 i /∈ S.

Under the assumption that the prior π on k is of the form, referred to as the complexity
prior,

π(k) = ce−ak log(nb/k), (2.1.4)

Castillo and van der Vaart (2012) show that under this prior, both (2.1.3) and (2.1.2)
are satisfied. However, such a ‘strong’ prior on the dimension is not necessary at least
for (2.1.3) to hold: it can be checked for instance, for π the prior on dimension induced
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by the spike and slab prior on θ with α ∼ Beta(1, n + 1), that π(sn) ≍ exp(−csn) ≫
exp(−csn log(n/sn)). So in a sense the complexity prior ‘penalises slightly more than
necessary’.

Another popular way to induce sparsity is via the so-called horseshoe prior, which
draws a θ from a continous distribution which is itself a mixture. As established in van der
Pas et al. (2017a)–van der Pas et al. (2017b) the horseshoe yields the nearly-optimal
rate sn log n uniformly over the whole space ℓ0[sn], up again to the correct form of the
logarithmic factor. In a different spirit but still without using Dirac masses at 0, the
paper Jiang and Zhang (2009) shows that, remarkably, it is also possible to adopt an
empirical Bayes approach on the entire unknown distribution function F of the vector θ,
interpreting θ as sampled from a certain distribution, and the authors derive oracle results
over ℓp, p > 0, balls for the plug-in posterior mean (not including the case p = 0 though).
We also note the interesting work van der Pas et al. (2016) that investigates necessary
and sufficient conditions for sparse continuous priors to be rate-optimal. However the
latter is for a fixed regularity parameter sn, while the results decribed in Section 2.2 (in
particularity the suboptimality phenomenon, but also upper-bounds using the empirical
Bayes approach) are related to adaptation.

Using complexity–type priors on the number of non-zero coordinates, Belitser and
co-authors Babenko and Belitser (2010)–Belitser and Nurushev (2015) consider Gaussian
priors on non-zero coefficients, with a recentering of the posterior mean at the observation
Xi– for those coordinates i that are selected– to adjust for overshrinkage. In Belitser
and Nurushev (2015), oracle results for the corresponding posterior are derived, that
in particular imply convergence at the minimax rate up to constant over ℓ0[sn], and
the authors also derive results on uncertainty quantification by studying the frequentist
coverage of credible sets using their procedure.

For further references on the topic, in particular about relationships between spike
and slab priors and absolutely continuous counterparts such as the horseshoe or the spike
and slab LASSO, we refer to the paper van der Pas et al. (2017b) and its discussion by
several authors of the previously mentioned works.

Overview of results and outline. This paper obtains the following results.

1. For the spike and slab prior, in Section 2.2.2 we establish lower bound results that
show that the popular Laplace slab yields suboptimal rates when the complete
empirical Bayes posterior is considered.

2. In Sections 2.2.3 and 2.2.6, we establish rate-optimal results for the posterior
squared L2–moment for the usual spike and slab with a Cauchy slab, when the
prior hyperparameter is chosen via a marginal maximum likelihood method.
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3. In Section 2.2.4, the spike and slab LASSO prior is considered and we provide a
near-optimal adaptive rate for the corresponding complete empirical Bayes posterior
distribution.

Section 2.2 introduces the framework, notation, and the main results, ending with a
brief simulation study in Section 2.2.5 and discussion. Section 2.3 gathers the proofs of
the lower-bound results as well as upper-bounds on the spike and slab prior. Technical
lemmas for the spike and slab prior can be found in Section 2.4, while Sections 2.5–2.6
contain the proof of the result for the spike and slab LASSO prior.

For real-valued functions f, g, we write f ≲ g if there exists a universal constant C
such that f(x) ≤ Cg(x), and f ≳ g is defined similarly. When x is a positive real number
or an integer, we write f(x) ≍ g(x) if there exists positive constants c, C,D such that for
x ≥ D, we have cf(x) ≤ g(x) ≤ Cf(x). For reals a, b, one denotes a ∧ b = min(a, b) and
a ∨ b = max(a, b).

2.2 Framework and main results

2.2.1 Empirical Bayes estimation with spike and slab prior

In the setting of model (2.1.1), the spike and slab prior on θ with fixed parameter
α ∈ [0, 1] is

Πα ∼ ⊗n
i=1(1 − α)δ0 + αG(·), (2.2.1)

where G is a given probability measure on R. We consider the following choices

G =


Lap(1)

or

Cauchy(1)

where Lap(λ) denotes the Laplace (double exponential) distribution with parameter λ
and Cauchy(1) the standard Cauchy distribution. Different choices of parameters and
prior distributions are possible (a brief discussion is included below) but for clarity of
exposition we stick to these common distributions. In the sequel γ denotes the density of
G with respect to Lebesgue measure.

By Bayes’ formula the posterior distribution under (2.1.1) and (2.2.1) with fixed
α ∈ [0, 1] is

Πα[· |X] ∼ ⊗n
i=1(1 − a(Xi))δ0 + a(Xi)GXi

(·), (2.2.2)
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where, denoting by ϕ the standard normal density and g(x) = ϕ∗G(x) =
´
ϕ(x−u)dG(u)

the convolution of ϕ and G at point x ∈ R, the posterior weight a(Xi) is given by, for
any i,

a(Xi) = aα(Xi) = αg(Xi)
(1 − α)ϕ(Xi) + αg(Xi)

. (2.2.3)

The distribution GXi
has density

γXi
(·) := ϕ(Xi − ·)γ(·)

g(Xi)
(2.2.4)

with respect to Lebesgue measure on R. The behaviour of the posterior distribution
Πα[· |X] heavily depends on the choices of the smoothing parameters α and γ. It turns
out that some aspects of this distribution are thresholding-type estimators, as established
in Johnstone and Silverman (2004).

Posterior median and threshold t(α). The posterior median θ̂med
α (Xi) of the ith

coordinate has a thresholding property: there exists t(α) > 0 such that θ̂med
α (Xi) = 0 if

and only if |Xi| ≤ t(α). A default choice can be α = 1/n; one can check that this leads
to a posterior median behaving similarly as a hard thresholding estimator with threshold
√

2 log n. One can significantly improve on this default choice by taking a well-chosen
data-dependent α.

In order to choose α, in this paper we follow the empirical Bayes method proposed in
Johnstone and Silverman (2004). The idea is to estimate α by maximising the marginal
likelihood in α in the Bayesian model, which is the density of α |X. The log-marginal
likelihood in α can be written as

ℓ(α) = ℓn(α;X) =
n∑

i=1
log((1 − α)ϕ(Xi) + αg(Xi)). (2.2.5)

Let α̂ be defined as the maximiser of the log-marginal likelihood

α̂ = argmax
α∈An

ℓn(α;X), (2.2.6)

where the maximisation is restricted to An = [αn, 1], with αn defined by

t(αn) =
√

2 log n.

The reason for this restriction is that one does not need to take α smaller than αn, which
would correspond to a choice of α ‘more conservative’ than hard-thresholding at threshold
level

√
2 log n.
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In Johnstone and Silverman (2004), Johnstone and Silverman prove that the posterior
median α̂med(Xi) has remarkable optimality properties, for many choices of the slab
density γ. For γ with tails ‘at least as heavy as’ the Laplace distribution, then this
point estimator converges at the minimax rate over ℓ0[sn]. More precisely, it follows from
Theorem 1 in Johnstone and Silverman (2004) that there exists constants C, c0, c1 such
that if

c1 log2 n ≤ sn ≤ c0n, (2.2.7)

then the posterior median θ̂med
α̂ = (θ̂med

α̂ (Xi))1≤i≤n is rate optimal

sup
θ∈ℓ0[sn]

Eθ∥θ̂med
α̂ − θ∥2 ≤ Csn log(n/sn). (2.2.8)

One can actually remove the lower bound in condition (2.2.7) – see Theorem 2 in
Johnstone and Silverman (2004) – by a more complicated choice of α̂, for which α̂ in
(2.2.6) is replaced by a smaller value if the empirical Bayes estimate is close to αn given
by t(αn) =

√
2 log n. In the present paper for simplicity of exposition we first work

under the condition (2.2.7). In Section 2.2.6, we show that the lower bound part of the
condition can be removed when working with the modified estimator as in Johnstone
and Silverman (2004).

Plug-in posterior distribution. The posterior we consider in this paper is Πα̂[· |X], that
is the distribution given by (2.2.2), where α has been replaced by its empirical Bayes (EB)
estimate α̂ given by (2.2.6). This posterior is called complete EB posterior in the sequel.
The value α̂ is easily found numerically, as implemented in the R package EbayesThresh,
see Johnstone and Silverman (2005). As noted in Johnstone and Silverman (2004), the
posterior median α̂med(Xi) displays excellent behaviour in simulations. However, the
entire posterior distribution Πα̂[· |X] has not been studied so far. It turns out that the
behaviour of the posterior median does not always reflect the behaviour of the complete
posterior, as is seen in the next subsection.

2.2.2 Suboptimality of the Laplace slab for the complete EB
posterior distribution

Theorem 13. Let Πα be the spike and slab prior distribution (2.2.1) with slab distribution
G equal to the Laplace distribution Lap(1). Let Πα̂[· |X] be the corresponding plug-in
posterior distribution given by (2.2.2), with α̂ chosen by the empirical Bayes procedure
(2.2.6). There exist D > 0, N0 > 0, and c0 > 0 such that, for any n ≥ N0 and any sn
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with 1 ≤ sn ≤ c0n , there exists θ0 ∈ ℓ0[sn] such that,

Eθ0

ˆ
∥θ − θ0∥2dΠα̂[θ |X] ≥ Dsne

√
log (n/sn).

Theorem 13 implies that taking a Laplace slab leads to a suboptimal convergence
rate in terms of the posterior squared L2–moment. This result is surprising at first, as we
know by (2.2.8) that the posterior median converges at optimal rate rn. The posterior
mean also converges at rate rn uniformly over ℓ0[sn], by Theorem 1 of Johnstone and
Silverman (2004). So at first sight it would be quite natural to expect that so does the
posterior second moment.

One can naturally ask whether the suboptimality result from Theorem 13 could come
from considering an integrated L2–moment, instead of simply asking for a posterior
convergence result in probability, as is standard in the posterior rates literature following
Ghosal et al. (2000). We now derive a stronger result than Theorem 13 under the mild
condition sn ≳ log2 n. The fact that the result is stronger follows from bounding from
below the integral in the display of Theorem 13 by the integral restricted to the set where
∥θ − θ0∥2 is larger than the target lower bound rate.

Theorem 14. Under the same notation as in Theorem 13, if Πα is a spike and slab
distribution with as slab G the Laplace distribution, there exists m > 0 such that for
any sn with sn/n → 0 and log2 n = O(sn) as n → ∞, there exists θ0 ∈ ℓ0[sn] such that,
as n → ∞,

Eθ0Πα̂

[
∥θ − θ0∥2 ≤ msne

√
2 log (n/sn) |X

]
= o(1).

Theorem 14, by providing a lower bound in the spirit of Castillo (2008), shows that
the answer to the above question is negative, and for a Laplace slab, the plug-in posterior
Πα̂[· |X] does not converge at minimax rate uniformly over ℓ0[sn].

Note that the suboptimality occuring here does not result from an artificially con-
structed example (we work under exactly the same framework as Johnstone and Silverman
(2004)) and that this has important (negative) consequences for construction of credible
sets. Due to the rate-suboptimality of the EB Laplace-posterior, typical credible sets
derived from it (such as, e.g., taking quantiles of a recentered posterior second moment)
will inherit the suboptimality in terms of their diameter, and therefore will not be of
optimal size. Fortunately, it is still possible to achieve optimal rates for certain spike
and slab EB posteriors: the previous phenomenon indeed disappears if the tails of the
slab in the prior distribution are heavy enough, as seen in the next subsection.
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2.2.3 Optimal posterior convergence rate for the EB spike and
Cauchy slab

The next result considers Cauchy tails, although other examples can be covered, as
discussed below. In the sequel, we abbreviate by SAS prior a spike and slab prior with
Cauchy slab.

Theorem 15. Let Πα be the SAS prior distribution (2.2.1) with slab distribution G equal
to the standard Cauchy distribution. Let Πα̂[· |X] be the corresponding plug-in posterior
distribution given by (2.2.2), with α̂ chosen by the empirical Bayes procedure (2.2.6).
There exist C > 0, N0 > 0, and c0, c1 > 0 such that, for any n ≥ N0, for any sn such
that (2.2.7) is satisfied for such c0, c1,

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2dΠα̂(θ |X) ≤ Crn.

If one only assumes sn ≤ c0n in (2.2.7), then the last statement holds with the bound
Crn replaced by Crn + C log3 n.

Theorem 15 confirms that the empirical Bayes plug-in posterior, with α̂ chosen by
marginal maximum likelihood, converges at optimal rate with precise logarithmic factor,
at least under the mild condition (2.2.7), if tails of the slab distribution are heavy enough.
Inspection of the proof of Theorem 15 reveals that any slab density γ with tails of the
order x−1−δ with δ ∈ (0, 2) gives the same result. Sensibility to the tails, in particular
in view of posterior convergence in terms of dq-distances, will be further investigated in
Castillo and Szabo (2018).

We note that the horseshoe prior on θ considered in van der Pas et al. (2017a)–
van der Pas et al. (2017b) also has Cauchy-like tails, which seems to confirm that for
empirical Bayes–calibrated (product–type) sparse priors, heavy tails are important to
ensure optimal or near-optimal behaviour, see also the discussion Castillo (2017a).

The lower bound in condition (2.2.7) is specific to the estimate α̂. Note that in
the very sparse regime where sn ≤ c1 log2 n, the rate is no more than C log3 n, thus
missing the minimax rate by at most a logarithmic factor. This lower bound on sn can
be removed and the minimax rate obtained over the whole range of sparsities sn if one
modifies slightly α̂, where the estimator is changed if α̂ is too close to the lower boundary
of the maximisation interval, see Section 2.2.6.
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2.2.4 Posterior convergence for the EB spike and slab LASSO

Now consider the following prior on θ with fixed parameter α ∈ [0, 1]

Πα ∼ ⊗n
i=1(1 − α)G0(·) + αG1(·), (2.2.9)

where for k = 0, 1, Gk is given by

G0 = Lap(λ0), G1 =


Lap(λ1)

or
Cauchy(1/λ1),

which leads to the spike and slab LASSO prior of Ročková and George (2018) in the
case of a Laplace G1, and to a heavy-tailed variant of the spike and slab LASSO if G1 is
Cauchy(1/λ1), that is if its density is γ1(x) = (λ1/π)(1 + λ2

1x
2)−1. In this setting γ0, γ1

denote the densities of G0, G1 with respect to Lebesgue measure. We call SSL prior a
spike and slab LASSO prior with Cauchy slab.

By Bayes’ formula the posterior distribution under (2.1.1) and (2.2.9) with fixed
α ∈ [0, 1] is

Πα[· |X] ∼ ⊗n
i=1(1 − a(Xi))G0,Xi

(·) + a(Xi)G1,Xi
(·), (2.2.10)

where gk(x) = ϕ ∗ Gk(x) =
´
ϕ(x − u)dGk(u) is the convolution of ϕ and Gk at point

x ∈ R for k = 0, 1, the posterior weight a(Xi) is defined through the function a(·) given
by

a(x) = aα(x) = αg1(x)
(1 − α)g0(x) + αg1(x) ,

and if Gk has density γk with respect to Lebesgue measure, the distribution Gk,Xi
has

density

γk,Xi
(·) := ϕ(Xi − ·)γk(·)

gk(Xi)
.

In slight abuse of notation, we keep the same notation in the case of the SSL prior for
quantities such as a(x) or α̂ below, as it will always be clear from the context which prior
we work with.

We consider the following specific choices for the constants λ0, λ1 λ0 = L0n, L0 = 5
√

2π,
λ1 = L1, L1 = 0.05.

(2.2.11)
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The choice of the constants L0, L1 is mostly for technical convenience, and is similar to
that of, e.g. Corollary 5.2 in Ročková (2018). Any other constant L0 (resp. L1) larger
(resp. smaller) than the above value also works for the following result. The above
numerical values may not be optimal.

Let α̂ be defined as the maximiser of the log-marginal likelihood,

α̂ = argmax
α∈[C log n/n,1]

ℓn(α;X), (2.2.12)

for C = C0(γ0, γ1) a large enough constant to be chosen below (this ensures that α̂ belongs
to an interval on which we can verify that β is increasing, see (2.5.2)). This time we do
not have access to the threshold t, since for the SSL prior the posterior median is not a
threshold estimator, so here C log n/n plays the role of an approximated version of αn in
(2.2.6).
Theorem 16. Let Πα be the SSL prior distribution (2.2.9) with Cauchy slab and parameters
(λ0, λ1) given by (2.2.11). Let Πα̂[· |X] be the corresponding plug-in posterior distribution
given by (2.2.10), with α̂ chosen by the empirical Bayes procedure (2.2.12). There exist
C > 0, N0 > 0, and c0, c1 > 0 such that, for any n ≥ N0, for any sn such that (2.2.7) is
satisfied for such c0, c1, then

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2dΠα̂(θ |X) ≤ Csn log n.

If one only assumes sn ≤ c0n in (2.2.7), then the last bound holds with Csn log n replaced
by C(sn log n+ log3 n).

This result is an SSL version of Theorem 15. It shows that a spike and slab LASSO
prior with heavy-tailed slab distribution and empirical Bayes choice of the weight pa-
rameter leads to a nearly optimal contraction rate for the entire posterior distribution.
Hence it provides a theoretical guarantee of a fully data-driven procedure of calibration
of the smoothing parameter in SSL priors.

2.2.5 A brief numerical study

Theorems 13–14 imply that the posterior distribution for the spike and slab prior and
Laplace(1) slab does not converge at optimal rate and the discrepancy between the actual
rate and the minimax rate for some ‘bad’ θ0s is at least of order

Rn =
exp

(√
2 log(n/sn)

)
log(n/sn) ,
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up to a multiplicative constant factor, as both lower and upper bounds are up to a
constant. Note that Rn grows more slowly than a polynomial in n/sn, so the sub-
optimality effect will typically be only visible for quite large values of n/sn. For instance,
if n = 104 and sn = 10, one has Rn ≈ 6, which is quite small given that an extra
multiplicative constant is also involved.

For the present simulation study we took n = 107, sn = 10, for which Rn ≈ 13.9,
and the non-zero values of θ0 equal to {2 log(n/sn)}1/2, as the lower bound proof of
Theorems 13–14 suggests. We computed α̂ using the package EBayesThresh of Johnstone
and Silverman Johnstone and Silverman (2005) and computed

´
∥θ − θ0∥2

2dΠα̂(X) using
its explicit expression, which can be obtained in closed form for a Laplace slab, with
similar computations as in Johnstone and Silverman (2005), Section 6.3. We then
took the empirical average over 100 repetitions to estimate the target expectation
R2 := Eθ0

´
∥θ − θ0∥2

2dΠα̂(X). We first took γ = Lap(1) a standard Laplace slab and
obtained R̂2 ≈ 1110. For comparison, we computed the empirical quadratic risk R̂mean for
the posterior mean (approximating Eθ0∥θ̂mean − θ0∥2) and R̂median the posterior median
of the same posterior, obtaining R̂mean ≈ 158 and R̂median ≈ 167. So, in this case R̂2 is
already 6 to 7 times larger than the risk of either mean or median.

To further illustrate the ‘blow-up’ in the rate for the posterior second moment R2, we
took a Laplace slab Lap(a) with inverse-scale parameter a, for which the numerator in
the definition of Rn becomes exp{a

√
2 log(n/sn)} (let us also note that the multiplicative

constant we refer to above also depends on a). The same simulation experiment as above
was conducted, with the standard Laplace slab replaced by a Lap(a) slab, for different
values of a. The numerical results are presented in Table 2.1, which feature a noticeable
increase in the second moment R̂2, while the risks of posterior mean and median stay
around the same value, as expected.

a 0.5 1 1.5 2 2.5 3 3.5
Second moment 394 1110 2847 5716 8093 16530 34791
Median 173 167 169 174 185 209 219
Mean 157 158 166 172 182 224 336

Table 2.1 Empirical risks R̂2, R̂med, R̂mean for Laplace slabs Lap(a) and a ∈ [0.5, 3.5]

We also performed the same experiments for the quasi-Cauchy slab prior introduced
in Johnstone and Silverman (2004)-Johnstone and Silverman (2005) (it is very close
to the standard Cauchy slab – in particular it has the same Cauchy tails – but more
convenient from the numerical perspective, see Johnstone and Silverman (2005), Section
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6.4). We found R̂median ≈ 192, R̂mean ≈ 191 for the posterior mean and R̂2 ≈ 287 for the
posterior second moment. This time, as expected, the posterior second moment is not
far from the two other risks.

2.2.6 Modified empirical Bayes estimator

For n ≥ 3 and A ≥ 0, let us set t2n = 2 log n− 5 log log n and tA =
√

2(1 + A) log n. For
Πα the SAS prior with a Cauchy slab, let as before t(α) be the posterior median threshold
for fixed α. It is not hard to check that t(·) is continuous and strictly decreasing so has
an inverse (see Johnstone and Silverman (2004), Section 5.3). In a similar fashion as in
Johnstone and Silverman (2004), Section 4, let us introduce a modified empirical Bayes
estimator as, for A ≥ 0 and t̂ := t(α̂), αA := t−1(tA),

α̂A =

α̂, if t̂ ≤ tn,

αA, if t̂ > tn.
(2.2.13)

Theorem 17. Let Πα be the SAS prior distribution with slab distribution G equal to the
standard Cauchy distribution. For a fixed A > 0, let Πα̂A

[· |X] be the corresponding
plug-in posterior distribution, with α̂A the modified estimator (2.2.13). There exist
C, c0 > 0, N0 > 0, such that, for any n ≥ N0, for any sn such that sn ≤ c0n,

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2dΠα̂(θ |X) ≤ Crn.

Theorem 17 shows that the plug-in SAS posterior distribution using the modified
estimator (2.2.13), A > 0, and a Cauchy slab attains the minimax rate of convergence rn

even in the very sparse regime sn ≲ log2 n, for which the unmodified estimate of Theorem
15 may lose a logarithmic factor.

2.2.7 Discussion

In this paper, we have developped a theory of empirical Bayes choice of the hyperparameter
of spike and slab prior distributions. It extends the work of Johnstone and Silverman
Johnstone and Silverman (2004) in that here the complete EB posterior distribution
is considered. One important message is that such a generalisation preserves optimal
convergence rates at the condition of taking slab distributions with heavy enough tails. If
the tails of the slab are only moderate (e.g. Laplace), then the complete EB posterior rate
may be suboptimal. This is in contrast with the hierarchical case considered in Castillo
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and van der Vaart (2012), where a Laplace slab combined with a Beta distributed prior
on α was shown to lead to an optimal posterior rate. On the one hand, the empirical
Bayes method often leads to simpler or/and more easily tractable practical algorithms;
on the other hand, we have illustrated here that the complete EB posterior may in
some cases need slightly stronger conditions to conserve optimal theoretical guarantees.
This phenomenon had not been pointed out so far in the literature, to the best of our
knowledge.

We also note that Theorem 15 (or Theorem 17 if one allows for very sparse signals)
enables one to recover the optimal form of the logarithmic factor log(n/sn) in the minimax
rate. This entails significant work, as one needs to control the empirical Bayes weight
estimate α̂ both from above and below. This could work too in the SSL setting of Theorem
16, although this seems to need substantial extra technical work.

Looking at Theorems 13 and 14, it is natural to wonder why the Empirical Bayes
approach fails for the Laplace slab where the full Bayes approach succeeds as seen
in Castillo and van der Vaart (2012) Theorem 2.2. The reason why the hierarchical
Bayes version works also for γ Laplace is the extra penalty in model size induced by
the hierarchical prior on dimension. Indeed, in the full Bayes approach, the posterior
distribution of α given X has density

fα | X(α) ∝ p(X |α)π(α),

where p(X |α) is the marginal density one maximises when considering the MMLE
α̂. Hence adding a term log π(α) for well-chosen π – for instance that arising from a
Beta(1, n + 1) prior on α as considered in Castillo and van der Vaart (2012) – to the
log-marginal likelihood one maximises forces α̂ to concentrate on smaller values. For
instance, in the present setting, one could consider a penalised log-marginal maximum
likelihood, which would force the estimate α̂ to concentrate on slightly smaller values,
which would allow one to avoid the extra e

√
log n/sn term arising in Theorems 13–14.

The present work can also serve as a basis for constructing confidence regions using
spike-and-slab posterior distributions. This question is considered in the forthcoming
paper Castillo and Szabo (2018).

2.3 Proofs for the spike and slab prior

Let us briefly outline the ingredients of the proofs to follow. For Theorems 13 and 15, our
goal is to bound the expected posterior risk Rn(θ0) = Eθ0

´
∥θ − θ0∥2dΠα̂(θ |X). There
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are three main tools. First, after introducing notation and basic bounds in Section 2.3.1,
bounds on the posterior risk for fixed α are given in Section 2.3.2, as well as corresponding
bounds for random α. Let us note that the corresponding upper bounds are different
from those obtained on the quadratic risk for the posterior median in Johnstone and
Silverman (2004) (and in fact, must be, in view of the negative result in Theorem 13).
Second, inequalities on moments of the score function are stated in Section 2.3.3. As a
third tool, we obtain deviation inequalities on the location of α̂ in Section 2.3.4. One of
the bounds sharpens the corresponding bound from Johnstone and Silverman (2004) in
case the signal belongs to the nearly-black class ℓ0[sn] which we assume here.

Proofs of Theorems 13 and 15 are given in Sections 2.3.5 and 2.3.6. For Theorem
15, we also needed to slightly complete the proof of one of the inequalities on thresholds
stated in Johnstone and Silverman (2004), see Lemma 11. The proof of Theorem 14,
which uses ideas from both previous proofs, is given in Section 2.3.7. Proofs of technical
lemmas for the SAS prior are given in Section 2.4.

2.3.1 Notation and tools for the SAS prior

Expected posterior L2–squared risk. For a fixed weight α, the posterior distribution of
θ is given by (2.2.2). On each coordinate, the mixing weight a(Xi) is given by (2.2.3)
and the density of the non-zero component γXi

by (2.2.4). In the sequel we will obtain
bounds on the following quantity, already for a given α ∈ [0, 1],

ˆ
∥θ − θ0∥2dΠα(θ |X) =

n∑
i=1

ˆ
(θi − θ0,i)2dΠα(θi |Xi).

To do so, we study r2(α, µ, x) :=
´

(u − µ)2dπα(u |x), where πα(· |x) ∼ (1 − a(x))δ0 +
a(x)γx(·). By definition

r2(α, µ, x) = (1 − a(x))µ2 + a(x)
ˆ

(u− µ)2γx(u)du.

This quantity is controlled by a(x) and the term involving γx. From the definition of
a(x), bounding the denominator from below by one of its two components, and using
a(x) ≤ 1 yields, for any real x and α ∈ [0, 1],

α
g

g ∨ ϕ
(x) ≤ a(x) ≤ 1 ∧ α

1 − α

g

ϕ
(x). (2.3.1)

The marginal likelihood in α. By definition, the empirical Bayes estimate α̂ in (2.2.6)
maximises the logarithm of the marginal likelihood in α in (2.2.5). In case the maximum
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is not taken at the boundary, α̂ is a zero of the derivative (score) of the previous likelihood.
Its expression is S(α) = ∑n

i=1 β(Xi, α), where following Johnstone and Silverman (2004)
we set, for 0 ≤ α ≤ 1 and any real x,

β(x, α) = β(x)
1 + αβ(x) , β(x) = g

ϕ
(x) − 1.

The study of α̂ below uses in a crucial way the first two moments of β(Xi, α), so we
introduce the corresponding notation next. Let Eτ , for τ ∈ Rn, denote the expectation
under θ0 = τ . Define

m̃(α) = −E0β(X,α) (2.3.2)

and further denote

m1(τ, α) = Eτ [β(X,α)] =
ˆ ∞

−∞
β(t, α)ϕ(t− τ)dt.

m2(τ, α) = Eτ [β(X,α)2].

The thresholds ζ(α), τ̃(α) and t(α). Following Johnstone and Silverman (2004), we
introduce several useful thresholds. From Lemma 1 in Johnstone and Silverman (2004),
we know that g/ϕ, and therefore β = g/ϕ− 1, is a strictly increasing function on R+. It
is also continuous, so given α, a pseudo-threshold ζ = ζ(α) can be defined by

β(ζ) = 1
α
. (2.3.3)

Further one can also define τ(α) as the solution in x of

Ω(x, α) := a(x)
1 − a(x) = α

1 − α

g

ϕ
(x) = 1.

Equivalently, a(τ(α)) = 1/2. Also, β(τ(α)) = α−1 − 2 so τ(α) ≤ ζ(α). Define α0 as
τ(α0) = 1 and set

τ̃(α) = τ(α ∧ α0). (2.3.4)

Recall from Section 2.2 that t(α) is the threshold associated to the posterior median for
given α. It is shown in Johnstone and Silverman (2004), Lemma 3, that t(α) ≤ ζ(α).
Finally, the following bound in terms of τ(α), see Johnstone and Silverman (2004) p.
1623, is also useful for large x,

1 − a(x) ≤ 11l|x|≤τ̃(α) + e− 1
2 (|x|−τ̃(α))21l|x|>τ̃(α). (2.3.5)
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2.3.2 Posterior risk bounds

Recall the notation r2(α, µ, x) =
´

(u− µ)2dΠα(u).

Lemma 1. Let γ be the Cauchy or Laplace density. For any x and α ∈ [0, 1/2],

r2(α, 0, x) ≤ C
[
1 ∧ α

1 − α

g

ϕ
(x)
]
(1 + x2)

r2(α, µ, x) ≤ (1 − a(x))µ2 + Ca(x)((x− µ)2 + 1).

Let γ be the Cauchy density. For any real x and α ∈ [0, 1/2],

E0r2(α, 0, x) ≤ Cτ(α)α
Eµr2(α, µ, x) ≤ C(1 + τ̃(α)2).

The following lower bound is used in the proof of Theorem 13.

Lemma 2. Let γ be the Laplace density. There exists C0 > 0 such that, for x ∈ R and
α ∈ [0, 1]

r2(α, 0, x) ≥ C0α.

We now turn to bounding r2(α̂, µ, x). This is the quantity r2(α, µ, x), where α (which
comes in via a(x) = aα(x)) is replaced by α̂. This is done with the help of the threshold
τ̃(α).

Lemma 3 (no signal or small signal). Let γ be the Cauchy density. Let α be a fixed
non-random element of (0, 1). Let α̂ be a random element of [0, 1] that may depend on
x ∼ N (0, 1) and on other data. Then there exists C1 > 0 such that

Er2(α̂, 0, x) ≤ C1
[
ατ̃(α) + P (α̂ > α)1/2

]
.

There exists C2 > 0 such that for any real µ, if x ∼ N (µ, 1),

Er2(α̂, µ, x) ≤ µ2 + C2.

Lemma 4 (signal). Let γ be the Cauchy density. Let α be a fixed non-random element
of (0, 1). Let α̂ be a random element of [0, 1] that may depend on x ∼ N (µ, 1) and on
other data and such that τ̃(α̂)2 ≤ d log(n) with probability 1 for some d > 0. Then there
exists C2 > 0 such that for all real µ,

Er2(α̂, µ, x) ≤ C2
[
1 + τ̃(α)2 + (1 + d log n)P (α̂ < α)1/2

]
.
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2.3.3 Moments of the score function

The next three lemmas are borrowed from Johnstone and Silverman (2004) and apply to
any density γ such that log γ is Lipschitz on R and satisfies

γ(y)−1
ˆ ∞

y

γ(u)du ≈ yκ−1, as y → ∞. (2.3.6)

Both Cauchy and Laplace densities satisfy (2.3.6), with κ = 2 and κ = 1 respectively,
and their logarithm is Lipschitz.

Lemma 5. For κ ∈ [1, 2] as in (2.3.6), as α → 0,

m̃(α) ≍ ζκ−1g(ζ).

Also, the function α → m̃(α) is nonnegative and increasing in α.

Lemma 6. The function α → m1(µ, α) is decreasing in α. Also, m1(ζ, α) ∼ 1/(2α) as
α → 0. For small enough α,

m2(µ, α) ≤ Cα−1m1(µ, α), µ ≥ 1.

Lemma 7. There exist a constant c1 such that for any x and α,

|β(x, α)| ≤ 1
α ∧ c1

,

and constants c2, c3, c4 such that for any α, and κ as in (2.3.6),

m1(µ, α) ≤ −m̃(α) + c2ζ(α)µ2, |µ| ≤ 1/ζ(α)
m1(µ, α) ≤ (α ∧ c3)−1 for all µ

and

m2(µ, α) ≤ c4
m̃(α)
ζ(α)κα

|µ| ≤ 1/ζ = 1/ζ(α)

m2(µ, α) ≤ (α ∧ c3)−2 for all µ.

2.3.4 In-probability bounds for α̂

Lemma 9 below implies that, for any possible θ0, the estimate α̂ is smaller than a certain
α1 with high probability. One can interpret this as saying that α̂ does not lead to too
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much undersmoothing (i.e. too many nonzero coefficients). On the other hand, if there
is enough signal in a certain sense, α̂ does not lead to too much oversmoothing (i.e. too
many zero coefficients), see Lemma 10.

Although we generally follow the approach of Johnstone and Silverman (2004), there
is one significant difference. One needs a fairly sharp bound on α1 below. Using
the definition from Johnstone and Silverman (2004) would lead to a loss in terms of
logarithmic factors for the posterior L2–squared moment. So we work with a somewhat
different α1, and shall thus provide a detailed proof of the corresponding Lemma 9. For
the oversmoothing case, one can borrow the corresponding Lemma of Johnstone and
Silverman (2004) as is.

Let α1 = α1(d) be defined as the solution of the equation, with ηn = sn/n,

dα1m̃(α1) = ηn, (2.3.7)

where d is a constant to be chosen (small enough for Lemma 9 to hold). A solution of
(2.3.7) exists, as using Lemma 5, α → αm̃(α) is increasing in α, and equals 0 at 0. Also,
provided ηn is small enough, α1 can be made smaller than any given arbitrary constant.
The corresponding threshold ζ1 is defined by β(ζ1) = α−1

1 . From Lemma 5, we have
m̃(α1) ≍ ζg(ζ1) if γ is Cauchy and m̃(α1) ≍ g(ζ1) if γ is Laplace.

Lemma 8. Let κ be the constant in (2.3.6). Let α1 be defined by (2.3.7) for d a given
constant and let ζ1 be given by β(ζ1) = α−1

1 . Then there exist real constants c1, c2 such
that for large enough n,

log(n/sn) + c1 ≤ ζ2
1
2 ≤ log(n/sn) + κ− 1

2 log log n+ c2,

with κ as in (2.3.6). Also, ζ2
1 ∼ 2 log(n/sn) as n/sn goes to ∞.

Lemma 9. Let α1 be defined by (2.3.7) for d a given small enough constant and let ζ1 be
given by β(ζ1) = α−1

1 . Suppose (2.2.7) holds. Then for some constant C > 0,

sup
θ∈ℓ0[sn]

Pθ[ζ̂ < ζ1] ≤ exp(−Csn).

For the oversmoothing case, one denotes the proportion of signals above a level τ by

π̃(τ ;µ) = 1
n

#{i : |µi| ≥ τ}. (2.3.8)
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We also set, recalling that α0 is defined via τ(α0) = 1,

α(τ, π) = sup{α ≤ α0 : πm1(τ, α) ≥ 2m̃(α)}. (2.3.9)

One defines ζτ,π as the corresponding pseudo-threshold β−1(α(τ, π)−1).
Lemma 10 (Johnstone and Silverman (2004), Lemma 11). There exists C and π0 such
that if π < π0, then for all τ ≥ 1,

sup
θ: π̃(τ ;θ)≥π

Pθ[ζ̂ > ζτ,π] ≤ exp{−Cnϕ(ζτ,π)}.

2.3.5 Proof of Theorem 13

Proof. Let α∗ be defined as the solution in α of the equation,

αm̃(α) = ηn/4, (2.3.10)

where ηn = sn/n (that is α∗ = α1(d) with d = 4 in (2.3.7)). Let ζ∗ be defined via
β(ζ∗) = α∗.

Let θ0 be the specific signal defined by, for α∗, ζ∗ as in (2.3.10),

θ0,i =

 ζ∗, 1 ≤ i ≤ sn

0, sn < i ≤ n
.

Using Lemma 5, one gets m̃(α∗) ≍ g(ζ∗) ≍ γ(ζ∗) as ζ∗ → ∞. Lemma 8 implies
ζ∗2 ≥ 2 log(1/ηn) + C, for C a possibly negative constant. Combining this with the
definition γ(ζ∗) = e−ζ∗

/2 leads to

α∗ ≳ ηne
√

log(1/ηn), (2.3.11)

for c0 in (2.2.7) small enough to have 2 log(1/ηn) + C ≥ log(1/ηn). We next prove that,
for α̂ given by (2.2.6), for small enough c > 0,

Pθ0 [α̂ < α∗] ≤ e−csn . (2.3.12)

If α∗ ≤ αn the probability at stake is 0, as α̂ belongs to [αn, 1] by definition. For α∗ > αn,
we have {α̂ < α∗} = {S(α∗) < 0}. With A = ∑n

i=1 m1(µi, α
∗),

Pθ0 [α̂ < α∗] = Pθ0 [S(α∗) < 0] = Pθ0

[
n∑

i=1
β(θ0,i + Zi, α

∗) −m1(θ0,i, α
∗) < −A

]
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Setting Wi = m1(θ0,i, α
∗) − β(θ0,i + Zi, α

∗), we have |Wi| ≤ 2C/α∗ =: M and Wi are
independent. So by Bernstein’s inequality,

Pθ0

[
n∑

i=1
Wi > A

]
≤ exp

[
−1

2
A2

V + 1
3MA

]
,

where V is an upper-bound for ∑n
i=1 Var(Wi). The term A equals

A = (n− sn)(−m̃(α∗)) + snm1(ζ∗, α∗).

The function α → αm̃(α) is increasing, as m̃(·) is (Lemma 5), so by its definition (2.3.10),
α∗ can be made smaller than any given positive constant, provided c0 in (2.2.7) is small
enough, ensuring ηn = sn/n is small enough. Using Lemma 6, m1(ζ, α) ∼ 1/(2α) as
α → 0. So, using (2.3.10), one obtains, for small enough c0,

A ≥ sn

3α∗ − sn

4α∗ = sn

12α∗ .

On the other hand, the last part of Lemma 7 implies

V ≤
∑
i/∈S0

m2(0, α∗) +
∑
i∈S0

m2(ζ∗, α∗)

≤ C(n− sn)m̃(α∗)
ζ∗α∗ + C

sn

α∗2 .

Using the definition of α∗, one deduces V ≲ sn/α
∗2 and from this

V

A2 + MA

3A2 ≲
1
sn

,

which in turn implies (2.3.12), as then Pθ0 [∑n
i=1 Wi > A] ≤ exp[−csn]. Next one writes

ˆ
∥θ − θ0∥2dΠα̂[θ |X] ≥

ˆ
∥θ − θ0∥2dΠα̂[θ |X]1lα̂≥α∗

≥
∑
i/∈S0

ˆ
θ2

i dΠα̂(θ |X)1lα̂≥α∗

Lemma 2 implies, for any possibly data-dependent weight α, that
´
θ2

i dΠα(θ |X) ≳ α, so
ˆ

∥θ − θ0∥2dΠα̂[θ |X] ≥ (n− sn)α̂1lα̂≥α∗ ≥ (n− sn)α∗1lα̂≥α∗ .
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As (n − sn)α∗Pθ0 [α̂ ≥ α∗] ≳ Cnα∗(1 − e−csn), an application of (2.3.11) concludes the
proof.

2.3.6 Proof of Theorem 15

Let us decompose the risk Rn(θ0) = Eθ0

´
∥θ − θ0∥2dΠα̂(θ |X) according to whether

coordinates of θ correspond to a ‘small’ or ‘large’ signal, the threshold being ζ1 = β−1(α−1
1 ),

with α1 defined in (2.3.7). One can write

Rn(θ0) =
[ ∑

i: θ0,i=0
+

∑
i: 0<|θ0,i|≤ζ1

+
∑

i: |θ0,i|>ζ1

]
Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X).

We next use the first part of Lemma 3 with α = α1 and the second part of the Lemma
to obtain, for any θ0 in ℓ0[sn],

[ ∑
i: θ0,i=0

+
∑

i: 0<|θ0,i|≤ζ1

]
Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X)

≤ C1
∑

i: θ0,i=0
[α1τ(α1) + Pθ0(α̂ > α1)] +

∑
i: 0<|θ0,i|≤ζ1

(θ2
0,i + C)

≤ C1
[
(n− sn)α1τ(α1) + (n− sn)e−c1 log2 n

]
+ (ζ2

1 + C)sn,

where for the last inequality we use Lemma 9 and (2.2.7). From (2.3.7) one gets, with
ηn = sn/n,

nα1 ≲ nηnζ
−1
1 g(ζ1)−1 ≲ snζ1.

Now using Lemma 8 and the fact that τ(α1) ≤ ζ1, one obtains that the contribution to
the risk of the indices i with |θ0,i| ≤ ζ1 is bounded by a constant times sn log(n/sn).

It remains to bound the part of the risk for indexes i with |θ0,i| > ζ1. To do so, one
uses Lemma 4 with α chosen as α = α2 := α(ζ1, π1) and π1 = π̃(ζ1; θ0), following the
definitions (2.3.8)–(2.3.9). One denotes by ζ2 the pseudo-threshold associated to α2. The
following estimates are useful below

ζ2
1 < ζ2

2 (2.3.13)
π1ζ

2
2 ≤ Cηn log(1/ηn). (2.3.14)

These are established in a similar way as in Johnstone and Silverman (2004), but with the
updated definition of α1, ζ1 from (2.3.7), so we include the proof below for completeness.
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One can now apply Lemma 4 with α = α2,

∑
i: |θ0,i|>ζ1

Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X)

≤ C2nπ1
[
1 + ζ2

2 + (1 + d log n)Pθ0(α̂ < α2)1/2
]

≤ C2nπ1
[
1 + ζ2

2 + (1 + d log n)Pθ0(ζ̂ > ζ2)1/2
]
.

Let us verify that the term in brackets in the last display is bounded above by C(1 + ζ2
2 ).

If ζ2 > log n, this is immediate by bounding Pθ0(ζ̂ > ζ2) by 1. If ζ2 ≤ log n, Lemma 10
implies Pθ0(ζ̂ > ζ2) ≤ exp(−Cnϕ(ζ2)) ≤ exp(−C

√
n), so this is also the case. Conclude

that the last display is bounded above by Cnπ1(1 + ζ2
2 ) ≤ C ′nπ1ζ

2
2 . Using (2.3.14), this

term is itself bounded by Csn log(n/sn), which concludes the proof of the Theorem, given
(2.3.13)–(2.3.14).

We now check that (2.3.13)–(2.3.14) hold. We first compare α1 and α2. For small
enough α, the bound on m1 from Lemma 7 becomes 1/α, so that, using the definition
(2.3.7) of α1,

m1(ζ1, α1)
m̃(α1)

≤ 1
α1

(
ηn

dα1

)−1
≤ d

ηn

≤ d

π1
,

using the rough bound π1 ≤ ηn. Note that both functions m̃(·)−1 and m1(ζ1, ·) are
decreasing via Lemmas 5–6, and so is their product on the interval where both functions
are positive. As d < 2, by definition of α2 this means α2 < α1 that is ζ1 < ζ2.

To prove (2.3.14), one compares ζ2 first to a certain ζ3 = ζ(α3) defined by α3 (largest)
solution of

Φ̄(ζ(α3) − ζ1) = 8
π1
α3m̃(α3),

with Φ̄(x) = P [N (0, 1) > x]. Using Lemma 11, which also gives the existence of ζ3, one
gets

m1(ζ1, α3)
m̃(α3)

≥
1
4β(ζ3)Φ̄(ζ3 − ζ1)

m̃(α3)
= 1

4α3

8α3m̃(α3)
π1m̃(α3)

= 2
π1
.

This shows, reasoning as above, that α3 ≤ α2, that is ζ2 ≤ ζ3. Following Johnstone and
Silverman (2004), one distinguishes two cases to further bound ζ3.
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If ζ3 > ζ1 + 1, using ζ2
2 ≤ ζ2

3 and m̃(α3) ≲ ζ3g(ζ3),

π1ζ
2
2 ≤ ζ2

3
8α3m̃(α3)
Φ̄(ζ3 − ζ1)

≲ ζ3
3
g(ζ3)
β(ζ3)

ζ3 − ζ1

ϕ(ζ3 − ζ1)

≤ Cζ4
3

ϕ(ζ3)
ϕ(ζ3 − ζ1)

= Cζ4
3ϕ(ζ1)e−(ζ3−ζ1)ζ1

≤ C(ζ1 + 1)4e−ζ1ϕ(ζ1),

where for the last inequality we have used that x → x4e−(x−ζ1)ζ1 is decreasing for x ≥ ζ1+1.
Lemma 8 now implies that ϕ(ζ1) ≲ ηn. As ζ1 goes to ∞ with n/sn, one gets π1ζ

2
2 ≲ ηn.

If ζ1 ≤ ζ3 ≤ ζ1 + 1, let ζ4 = ζ(α4) with α4 solution in α of

Φ̄(1) = 8αm̃(α)π−1
1 .

By the definition of ζ3, since Φ̄(1) ≤ Φ̄(ζ3 − ζ1), we have 8α4m̃(α4) ≤ 8α3m̃(α3) so that
α4 ≤ α3. Using Lemma 5 as before,

Φ̄(1) ≲ g(ζ4)
β(ζ4)

π−1
1 ≲ ϕ(ζ4)π−1

1 .

Taking logarithms this leads to

ζ2
4 ≤ C + 2 log(π−1

1 ).

In particular, ζ2
2 ≤ 2 log(π−1

1 ) + C. As x → x log(1/x) is increasing, one gets, using
π1 ≤ ηn,

π1ζ
2
2 ≤ 2ηn log(1/ηn) + Cηn,

which concludes the verification of (2.3.13)–(2.3.14) and the proof of Theorem 15.
In checking (2.3.14), one needs a lower bound on m1. In Johnstone and Silverman

(2004), the authors mention that it follows from their lower bound (82), Lemma 8. But
this bound cannot hold uniformly for any smoothing parameter α (denoted by w in
Johnstone and Silverman (2004)), as m1(0, w) = −m̃(w) < 0 if w ≠ 0. So, although
the claimed inequality is correct, it does not seem to follow from (82). We state the
inequality we use now, and prove it in Section 2.4.3.

Lemma 11. Let Φ̄(t) =
´∞

t
ϕ(u)du. For π1, ζ1 as above, a solution 0 < α ≤ α1 to the

equation
Φ̄(ζ(α) − ζ1) = 8π−1

1 αm̃(α). (2.3.15)
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exists. Let α3 be the largest such solution. Then for c0 in (2.2.7) small enough,

m1(ζ1, α3) ≥ 1
4β(ζ3)Φ̄(α3 − ζ1). (2.3.16)

2.3.7 Proof of Theorem 14

Let θ0, α
∗, ζ∗ be defined as in the proof of Theorem 13. Below we show that the event

A = {α̂ ∈ [α∗, cα∗]}, for c a large enough constant, has probability going to 1, faster
than a polynomial in 1/n. Recall from the proof of Theorem 13 that, if α̂ ≥ α∗, so in
particular on A, we have VX ≥ (n− sn)α∗ ≥ nα∗/2 ≥ C1sng(ζ∗)−1. Denote

vn = msng(ζ∗)−1

VX =
ˆ

∥θ − θ0∥2dΠα̂(θ |X),

where m is chosen small enough so that vn ≤ VX/2 on A. Then,

Πα̂

[
∥θ − θ0∥2 < vn |X

]
1lA = Πα̂

[
∥θ − θ0∥2 − VX < vn − VX |X

]
1lA

≤ Πα̂

[
∥θ − θ0∥2 − VX < −VX/2 |X

]
≤ 4V −2

X

ˆ
{∥θ − θ0∥2 − VX}2dΠα̂(θ |X),

where the second line follows from Markov’s inequality. One now writes the L2–norm in
the previous display as sum over coordinates and one expands the square, while noting
that given X the posterior Πα̂[· |X] makes the coordinates of θ independent

ˆ
{∥θ − θ0∥2 − VX}2dΠα̂(θ |X)

=
ˆ ∑

i,j

[
(θi − θ0,i)2 −

ˆ
(θi − θ0,i)2dΠα̂(θ |X)

]

×
[
(θj − θ0,j)2 −

ˆ
(θj − θ0,j)2dΠα̂(θ |X)

]
dΠα̂(θ |X)

=
n∑

i=1

ˆ [
(θi − θ0,i)2 −

ˆ
(θi − θ0,i)2dΠα̂(θ |X)

]2

dΠα̂(θ |X)

≤
n∑

i=1

ˆ
(θi − θ0,i)4dΠα̂(θ |X).

The last bound is the same as in the proof of the upper bound Theorem 15, except the
fourth moment replaces the second moment. Denote r4(α, µ, x) =

´
(u− µ)4dπα(u |x),
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then

r4(α, µ, x) = (1 − a(x))µ4 + a(x)
ˆ

(u− µ)4γx(u)du.

In a similar way as in the proof of Lemma 1, one obtains
´

(u−µ)4γx(u)du ≤ C(1+(x−µ)4).
Next, noting that since now γ is Laplace so g has Laplace tails, x → (1 + x4)g(x) is
integrable, proceeding as in the proof of Lemma 1, one gets E0r4(α, 0, x) ≲ α as well as
Eµr4(α, µ, x) ≲ 1 + τ̃(α)4, for any fixed α. Similarly as in Lemmas 3–4, one then derives
the following random α bounds

Er4(α̂, 0, x) ≲ cα∗ + P (α̂ > cα∗)1/2

and, for any µ,

Er4(α̂, µ, x) ≲ 1 + τ(α∗)4 + (1 + log2 n)P (α̂ < α∗)1/2.

By using that the probabilities in the last displays go to 0 faster than 1/n, which we
show below, and gathering the bounds for all i,

Eθ0

n∑
i=1

ˆ
(θi − θ0,i)4dΠα̂(θ |X) ≲ sn(1 + τ(α∗)4) + nα∗.

From this deduce that

Eθ0Πα̂

[
∥θ − θ0∥2 < vn |X

]
≲ P [Ac] + [sn(1 + τ(α∗)4) + nα∗]/(sng(ζ∗)−1)2

≲ P [Ac] + s−1
n (1 + τ(α∗)4)g(ζ∗) + s−1

n g(ζ∗).

The last bound goes to 0, as τ(α∗) ≤ ζα∗ = ζ∗ and g has Laplace tails. To conclude
the proof, we show that Pθ0(α̂ ∈ [α∗, cα∗]) is small. From the proof of Theorem 13, one
already has Pθ0 [α̂ < α∗] ≤ exp(−csn), which is a o(1/n) using sn ≳ log2 n. To obtain a
bound on Pθ0 [α̂ > cα∗], one can now revert the inequalities in the reasoning leading to
the Bernstein bound in the proof of Theorem 13. With A = ∑n

i=1 m1(µi, α), we have

Pθ0 [α̂ > cα∗] = Pθ0 [S(cα∗) > 0]

= Pθ0

[
n∑

i=1
β(θ0,i + Zi, cα

∗) −m1(θ0,i, cα
∗) > −A

]
.



62 Empirical Bayes analysis of spike and slab posterior distributions

But here, −A = (n− sn)m̃(cα∗) − snm1(ζ∗, cα∗). As α → m̃(α) is increasing, m̃(cα∗) ≥
m̃(α∗). Now by Lemma 7,

m1(ζ∗, cα∗) ≤ (cα∗ ∧ c3)−1 ≤ 1
cα∗ ,

provided α∗ ≤ c3/c = c3/16, which is the case for ηn small enough. Since by definition
nm̃(α∗) = sn/(4α∗), we have −A ≥ sn/(8α∗). From there one can carry over the same
scheme of proof as for the previous Bernstein inequality, with now Ã = −A and Ṽ the
variance proxy which is bounded by

Ṽ ≤ (n− sn)m2(0, cα∗) + snm2(ζ∗, cα∗) ≲ n
m̃(cα∗)
ζcα∗cα∗ + sn

(cα∗)2 .

Now m̃(cα∗) ≲ Cg(ζcα∗). Using bounds similar to those of Lemma 8, one can check that
C1 + ζ2

α∗ ≤ ζ2
cα∗ ≤ C2 + ζ2

α∗ , which implies that m̃(cα∗)/ζcα∗ ≲ m̃(α∗)/ζ∗ ≲ m̃(α∗). From
this one deduces, with M̃ ≤ C/sn,

Ṽ

Ã2
+ M̃Ã

3Ã2
≲
C ′

sn

,

which by Bernstein’s inequality implies Pθ0 [α̂ > cα∗] ≤ exp[−Csn], which completes the
proof of Theorem 14.

2.4 Technical lemmas for the SAS prior

2.4.1 Proofs of posterior risk bounds: fixed α

Proof of Lemma 1. First one proves the first two bounds. To do so, we derive moment
bounds on γx. Since γx(·) is a density function, we have for any x,

´
γx(u)du = 1. This

implies (log g)′(x) =
´

(u − x)γx(u)du =
´
uγx(u)du − x. In Johnstone and Silverman

(2004), the authors check, see p. 1623, that
´
uγx(u)du =: m̃1(x) is a shrinkage rule, that

is 0 ≤ m̃1(x) ≤ x for x ≥ 0, so by symmetry, for any real x,

|
ˆ
uγx(u)du| ≤ |x|.



2.4 Technical lemmas for the SAS prior 63

Decomposing u2 = (u − x)2 + 2x(u − x) + x2 and noting that
´

(u − x)2γx(u)du =
g′′(x)/g(x) + 1,

ˆ
u2γx(u)du = g′′

g
(x) + 1 + 2xg

′

g
(x) + x2.

Note that for γ Laplace or Cauchy, we have |γ′| ≤ c1γ and |γ′′| ≤ c2γ. This leads to

|g′(x)| = |
ˆ
γ′(x− u)ϕ(u)du| ≤ c1

ˆ
γ(x− u)ϕ(u)du = c1g(x)

and similarly |g′′| ≤ c2g, so that
´
u2γx(u)du ≤ C(1 + x2) which gives the first bound

using (2.3.1). We note, en passant, that the one but last display also implies for any real
x that ˆ

u2γx(u)du ≥ 1 − c2 − 2c1|x| + x2, (2.4.1)

which implies that
´
u2γx(u)du goes to ∞ with x. Also, for any real µ,

ˆ
(u− µ)2γx(u)du = (x− µ)2 + g′′

g
(x) + 1 + 2(x− µ)g

′

g
(x).

Now using again g′/g ≤ c1 and g′′/g ≤ c2 leads to
ˆ

(u− µ)2γx(u)du ≤ C(1 + (x− µ)2).

By using the expression of r2(α, µ, x), this yields the second bound of the lemma.
We now turn to the bounds in expectation. For a zero signal µ = 0, one notes that

x = τ(α) is the value at which both terms in the minimum in the first inequality of the
lemma are equal. So

E0r2(α, 0, x) ≲
ˆ

1l|x|≤τ(α)
α

1 − α

g

ϕ
(x)ϕ(x)(1 + x2)dx+

ˆ
1l|x|>τ(α)(1 + x2)ϕ(x)dx.

For γ Cauchy, g has Cauchy tails and x → (1 + x2)g(x) is bounded, so one gets, with
α ≤ 1/2,

E0r2(α, 0, x) ≲ α

ˆ
1l|x|≤τ(α)dx+ τ(α)ϕ(τ(α)) + ϕ(τ(α))/τ(α)

≲ τ(α)α + τ(α)ϕ(τ(α)) ≲ τ(α)α + τ(α)αg(τ(α)) ≲ τ(α)α.
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Turning to the last bound of the lemma, we distinguish two cases. Set for the remaining
of the proof T := τ̃(α) for simplicity of notation. The first case is |µ| ≤ 4T , for which

Eµr2(α, µ, x) ≤ µ2 + C ≤ C1(1 + T 2).

The second case is |µ| > 4T . We bound the expectation of each term in the second
bound of the lemma (that for r2(α, µ, x)) separately. First, E[a(x)(1 + (x− µ)2)] ≤ C.
It thus suffices to bound µ2Eµ[1 − a(x)]. To do so, one uses the bound (2.3.5) and starts
by noting that, if Z ∼ N (0, 1),

E[1l|Z+µ|≤T ] ≤ P [|Z| ≥ |µ| − T ] ≤ P [|Z| ≥ |µ|/2].

This implies, with Φ̄(u) =
´∞

u
ϕ(t)dt ≤ ϕ(u)/u for u > 0,

Eµ[µ21l|x|≤T ] ≤ C2|µ|ϕ(|µ|) ≤ C3.

If A = {x, |x− µ| ≤ |µ|/2} and Ac denotes its complement,

√
2πEµ[e− 1

2 (|x|−T )2 ] ≤
ˆ

Ac

e− 1
2 (x−µ)2

dx+
ˆ

A

e− 1
2 (|x|−T )2

dx.

The first term in the last sum is bounded above by 2Φ̄(|µ|/2). The second term, as
A ⊂ {x, |x| ≥ |µ|/2}, is bounded above by 2Φ̄(|µ|/4). This implies, in the case |µ| > 4T ,
that

Eµr2(α, µ, x) ≤ C4 + 4µ2Φ̄(|µ|/4) + 5 ≤ C.

The last bound of the lemma follows by combining the previous bounds in the two
cases.

Proof of Lemma 2. From the expression of r2(α, 0, x) it follows

r2(α, 0, x) ≥ a(x) inf
x∈R

ˆ
u2γx(u)du ≥ α

g

ϕ ∨ g
(x) inf

x∈R

ˆ
u2γx(u)du

≥ α inf
x∈R

g

ϕ ∨ g
(x) inf

x∈R

ˆ
u2γx(u)du ≥ C0α,

where c0 > 0. Indeed, both functions whose infimum is taken in the last display are
continuous in x, are strictly positive for any real x, and have respective limits 1 and
+∞ as |x| → ∞, using (2.4.1), so these functions are bounded below on R by positive
constants.
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2.4.2 Proofs of posterior risk bounds: random α

Proof of Lemma 3. Using the bound on r2(α, 0, x) from Lemma 1,

r2(α̂, 0, x) = r2(α̂, 0, x)1lα̂≤α + r2(α̂, 0, x)1lα̂>α

≤
[

α̂

1 − α̂

g

ϕ
(x) ∧ 1

]
(1 + x2)1lα̂≤α + C(1 + x2)1lα̂>α

≤
[

α

1 − α

g

ϕ
(x) ∧ 1

]
(1 + x2)1lα̂≤α + C(1 + x2)1lα̂>α.

For the first term in the last display, one bounds the indicator from above by 1 and
proceeds as in the proof of Lemma 1 to bound its expectation by Cατ̃(α). The first
part of the lemma follows by noting that E[(1 + x2)1lα̂>α] is bounded from above by
(2 + 2E0[x4])1/2P (α̂ > α)1/2 ≤ C1P (α̂ > α)1/2 by Cauchy-Schwarz inequality. The
second part of the lemma follows from the fact that using Lemma 1, r2(α, µ, x) ≤
(1 − a(x))µ2 + Ca(x)((x− µ)2 + 1) ≤ µ2 + C(x− µ)2 + C for any α.

Proof of Lemma 4. Combining (2.3.5) and the third bound of Lemma 1,

r2(α̂, µ, x) ≤ µ2
[
1l|x|≤τ̃(α̂) + e− 1

2 (|x|−τ̃(α̂))21l|x|>τ̃(α̂)
]

+ C((x− µ)2 + 1).

Note that it is enough to bound the first term on the right hand side in the last display,
as the last one is bounded by a constant under Eµ. Let us distinguish the two cases
α̂ ≥ α and α̂ < α.

In the case α̂ ≥ α, as τ̃(α) is a decreasing function of α,
[
1l|x|≤τ̃(α̂) + e− 1

2 (|x|−τ̃(α̂))21l|x|>τ̃(α̂)
]

1lα̂≥α

≤
[
1l|x|≤τ̃(α̂) + 1lτ̃(α̂)<|x|≤τ̃(α) + e− 1

2 (|x|−τ̃(α̂))21l|x|>τ̃(α)
]

1lα̂≥α

≤ 1l|x|≤τ̃(α) + e− 1
2 (|x|−τ̃(α))21l|x|>τ̃(α),

where we have used e− 1
2 v2 ≤ 1 for any v and that e− 1

2 (u−c)2 ≤ e− 1
2 (u−d)2 if u > d ≥ c. As

a consequence, one can borrow the fixed α bound obtained previously so that

E [r2(α̂, µ, x)1α̂≥α] ≤ 2Eµr2(α, µ, x) ≤ C
[
1 + τ̃(α)2

]
.
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In the case α̂ < α, setting bn =
√
d log n and noting that τ̃(α̂) ≤ bn with probability

1 by assumption, proceeding as above, with bn now replacing τ̃(α), one can bound

1l|x|≤τ̃(α̂) + e− 1
2 (|x|−τ̃(α̂))21l|x|>τ̃(α̂)

≤ 1l|x|≤bn + e− 1
2 (|x|−bn)21l|x|>bn .

From this one deduces that

E
(
µ2
[
1l|x|≤τ̃(α̂) + e− 1

2 (|x|−τ̃(α̂))21l|x|>τ̃(α̂)
]

1lα̂<α

)
≤ C

(
Eµ

[
µ41l|x|≤bn + µ4e−(|x|−bn)2])1/2

P (α̂ < α)1/2.

Using similar bounds as in the fixed α case, one obtains

Eµ

[
µ41l|x|≤bn + µ4e−(|x|−bn)2] ≤ C(1 + b4

n).

Taking the square root and gathering the different bounds obtained concludes the
proof.

2.4.3 Proofs on pseudo-thresholds

Proof of Lemma 8. For small α, or equivalently large ζ, we have (g/ϕ)(ζ) = β(ζ) + 1 ≍
β(ζ). Deduce that for large n, using ηn = dα1m̃(α1) and Lemma 5 on m̃,

ηn ≍ α1ζ
κ−1
1

g(ζ1)
β(ζ1)

β(ζ1) ≍ ζκ−1
1 ϕ(ζ1) ≍ ζκ−1

1 e−ζ2
1 /2.

From this deduce that

| log c+ (κ− 1) log ζ1 − ζ2
1
2 + log(1/ηn)| ≤ C.

In particular, using log ζ ≤ a + ζ2/4 for some constant a > 0 large enough, one gets
ζ2

1 ≤ 4(C + log(1/ηn)) ≤ 4(C + log n). Inserting this back into the previous inequality
leads to

ζ2
1/2 ≤ log(1/ηn) + C + (1/2)(κ− 1) log log n.

The lower bound is obtained by bounding (κ− 1) log(ζ1) ≥ 0, for small enough α1.

Proof of Lemma 9. Using (2.2.7), log(1/ηn) ≤ log(n) − 2 log log n, and the bound on ζ

from Lemma 8 gives ζ2
1 ≤ 2 log n− 3

2 log log n, so that t(α1) ≤ ζ(α1) = ζ1 ≤
√

2 log n =
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t(αn). It follows that α1 belongs to the interval [αn, 1] over which the likelihood is
maximised.

Then one notices that {ζ̂ < ζ1} = {α̂ > α1} = {S(α1) > 0}, regardless of the fact
that the maximiser α̂ is attained in the interior or at the boundary of [αn, 1]. So

Pθ[ζ̂ < ζ1] = Pθ[S(α1) > 0].

The score function equals S(α) = ∑n
i=1 β(Xi, α), a sum of independent variables.

By Bernstein’s inequality, if Wi are centered independent variables with |Wi| ≤ M and∑n
i=1 Var(Wi) ≤ V , then for any A > 0,

P

[
n∑

i=1
Wi > A

]
≤ exp{−1

2A
2/(V + 1

3MA)}.

Set Wi = β(Xi, α1) − m1(θ0,i, α1) and A = −∑n
i=1 m1(θ0,i, α1). Then one can take

M = c3/α1, using Lemma 7. One can bound −A from above as follows, using the
definition of α1,

−A ≤ −
∑
i/∈S0

m̃(α1) +
∑
i∈S0

c

α1
≤ −(n− sn)m̃(α1) + csn/α1

≤ −nm̃(α1)/2 + cdnm̃(α1) ≤ −nm̃(α1)/4,

provided d is chosen small enough and, using again the definition of α1,

V ≤
∑
i/∈S0

m2(0, α1) +
∑
i∈S0

m2(θ0,i, α1) ≤ C

α1

[
(n− sn)m̃(α1)ζ−κ

1 + csn/α1
]

≤ Cα−1
1

[
nm̃(α1)ζ−κ

1 /2 + cdnm̃(α1)
]

≤ C ′dnm̃(α1)/α1,

where one uses that ζ−1
1 is bounded. This leads to

V + 1
3MA

A2 ≤ C ′d

nα1m̃(α1)
+ 4c3

3nα1m̃(α1)
≤ c−1

5
nα1m̃(α1)

.

One concludes that P [α̂ > α1] ≤ exp{−c5nα1m̃(α1)} = exp{−Csn} using (2.3.7).

Proof of Lemma 10. It is the same proof as Lemma 11 of Johnstone and Silverman
(2004), but one has actually to be careful as one needs a positive lower bound on m1(1, α)
(which cannot be true for every µ) to prove that m2(µ, α) ≤ Cm1(µ, α)/α. For more
details, we refer to (Castillo and Szabo, 2018)’s proof of Lemma 18 or Lemma 24 and
Lemma 25 of Chapter 3.
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Proof of Lemma 11. First we check the existence of a solution. Set ζα = ζ(α) and
Rα := Φ̄(ζα − ζ1)/(αm̃(α)). For α → 0 we have ζα − ζ1 → ∞ so by using Φ̄(u) ≍ ϕ(u)/u
as u → ∞ one gets, treating terms depending on ζ1 as constants and using ϕ(ζα) ≍ αg(ζα),

Φ̄(ζα − ζ1) ≍ ϕ(ζα − ζ1)
ζα − ζ1

≍ αg(ζα)eζαζ1 .

As m̃(α) ≍ ζαg(ζα), one gets Rα ≍ eζαζ1/ζα → ∞ as α → 0. On the other hand, with
π1 ≤ sn/n and α1m̃(α1) = dsn/n,

Rα1 = 1
2α1m̃(α1)

= dn

2sn

≤ 8
π1

d

16 ,

so that Rα1 < 8/π1 as d < 2. This shows that the equation at stake has at least one
solution for α in the interval (0, α1).

By definition of m1(µ, α), for any µ and α, and ζ = ζ(α),

m1(µ, α) =
ˆ ζ

−ζ

β(x)
1 + αβ(x)ϕ(x− µ)dx +

ˆ
|x|>ζ

β(x)
1 + αβ(x)ϕ(x− µ)dx

= (A) + (B).

By definition of ζ, the denominator in (B) is bounded from above by 2αβ(x) so

(B) ≥ 1
2α

ˆ
|x|>ζ

ϕ(x− µ)dx ≥ 1
2β(ζ)Φ̄(ζ − µ).

One splits the integral (A) in two parts corresponding to β(x) ≥ 0 and β(x) < 0. Let c
be the real number such that g/ϕ(c) = 1. By construction the part of the integral (A)
with c ≤ |x| ≤ ζ is nonnegative, so, for α ≤ |β(0)|−1/2,

(A) ≥
ˆ c

−c

β(x)
1 + αβ(x)ϕ(x− µ)dx

≥ −
ˆ c

−c

|β(0)|
1 − α|β(0)|ϕ(x− µ)dx

≥ −2|β(0)|
ˆ c

−c

ϕ(x− µ)dx,

where one uses the monotonicity of y → y/(1+αy). For µ ≥ c, the integral
´ c

−c
ϕ(x−µ)dx

is bounded above by 2
´ c

0 ϕ(x− µ)dx ≤ 2cϕ(µ− c). To establish (2.3.16), it thus suffices
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to show that
(i) := 4|β(0)|cϕ(ζ1 − c) ≤ 1

4β(ζ3)Φ̄(ζ3 − ζ1) =: (ii).

The right hand-side equals 2m̃(α3)/π1 by definition of ζ3. Since γ is Cauchy, Lemma 5
gives m̃(α3) ≍ ζ3g(ζ3) ≍ ζ−1

3 . It is enough to show that (π1ζ3)−1 is larger than Cϕ(ζ1 −c),
for suitably large C > 0.

Let us distinguish two cases. In the case ζ3 ≤ 2ζ1, the previous claim is obtained,
since ζ1 goes to infinity with n/sn by Lemma 8 and ϕ(ζ1 − c) = o(ζ−1

1 ). In the case
ζ3 > 2ζ1, we obtain an upper bound on ζ3 by rewriting the equation defining it. For
t ≥ 1, one has Φ̄(t) ≥ Cϕ(t)/t. Since ζ3 − ζ1 > ζ1 in the present case, it follows from the
equation defining ζ3 that

C
ϕ(ζ3 − ζ1)
ζ3 − ζ1

≤ 8α3m̃(α3)/π1.

This can be rewritten using ϕ(ζ3 − ζ1) =
√

2πϕ(ζ3)ϕ(ζ1)eζ1ζ3 , as well as ϕ(ζ3) =
g(ζ3)α3/(1 + α3) ≳ α3g(ζ3) and m̃(α3) ≍ ζ3g(ζ3). This leads to

eζ1ζ3

ζ2
3

≤ C

π1
eζ2

1 /2.

By using ex/x2 ≥ Cex/2 for x ≥ 1 one obtains ζ2
1e

ζ1ζ3/2 ≤ eζ2
1 /2C/π1, that is, using ζ2

1 ≥ 1,

π1ζ3 ≤ π1ζ1 + π1 log(C/π1)
ζ1

≤ π1ζ1 + C ≤ C ′ζ1,

using that u → u log(1/u) is bounded on (0, 1). So the previous claim is also obtained in
this case, as ϕ(ζ1 − c) is small compared to (C ′ζ1)−1 for large ζ1.

2.4.4 Proof of the convergence rate for the modified estimator

Proof of Theorem 17. The proof is overall in the same spirit as that of Theorem 2 in
Johnstone and Silverman (2004) and goes by distinguishing the two cases sn ≥ log2 n and
sn < log2 n. The main difference is that here we work with the full posterior distribution,
and the risk bounds require Lemmas 1–4, that bound the posterior risk in various settings,
as well as a result, Lemma 13 below, in the same vein.

Also, we need to work with a modified version of ζ1, to make sure that the probability
in Lemma 9 goes to 0 fast enough. We note that this version of ζ1 is the one used in
Johnstone and Silverman (2004) for both their Theorems 1 and 2 (in our Theorem 15,
such a modification is not needed and we worked with the simpler version there). To do
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so, one replaces ηn = sn/n in the definition (2.3.7) of α1 by

η̃n = max
(
ηn,

log2 n

n

)
.

To keep notation simple, we still denote the corresponding threshold by ζ1. In the first
part of the proof below, ηn ≥ log2(n)/n, so this is the same version as in definition (2.3.7).
In the second part of the proof, we have η̃n = log2 n/n and we now indicate the relevant
properties of the corresponding modified threshold ζ1. First, the statement of Lemma 8
becomes, with κ = 2 (as γ is Cauchy),

log(1/η̃n) + c1 ≤ ζ2
1
2 ≤ log(1/η̃n) + 1

2 log log n+ c2. (2.4.2)

Second, we need below a bound on P [ζ̂ < ζ1] with the modified version of ζ1 as above. It
is not hard to check from the proof of Lemma 9 that this proof goes through with the
new version of ζ1 and ηn replaced by η̃n. The only difference is with the term csn/α1

which is bounded by cnη̃n/α1 = nm̃(α1), so that Bernstein’s inequality gives

P [ζ̂ < ζ1] ≤ exp{−C ′nα1m̃(α1)} ≤ exp{−Cnη̃n} ≤ e−C log2 n. (2.4.3)

We are now ready for the proof of Theorem 17. First consider the case sn ≥ log2 n

and let us show that the risk of the empirical Bayes posterior Πα̂A
[· |X] is not larger

than that of the non-modified one. One decomposes

Eθ0

ˆ
∥θ − θ0∥2dΠα̂A

(θ |X)

= Eθ0

ˆ
∥θ − θ0∥2dΠα̂(θ |X)1t̂≤tn

+ Eθ0

ˆ
∥θ − θ0∥2dΠα̂A

(θ |X)1t̂>tn

≤ Eθ0

ˆ
∥θ − θ0∥2dΠα̂(θ |X) + Eθ0

ˆ
∥θ − θ0∥2dΠαA

(θ |X)1t̂>tn
= (I) + (II).

The term (I) corresponds to the risk of the unmodified estimator, so is bounded as in
Theorem 15. For (II), one splits it according to small and large signals θ0,i: (II) = S + S̃,
with

S =
∑

i: |θ0,i|≤ζ1

Eθ0

ˆ
(θi − θ0,i)2dΠαA

(θi |X)1t̂>tn
,
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and S̃ = (II) − S. From Lemma 1, one knows that r2(αA, µ, x) ≤ µ2 + C(1 + (x− µ)2),
while for µ = 0, one can use the bound in expectation E0r2(α, 0, x) ≤ Cατ(α), so that

S ≤ {
∑

i: |θ0,i|=0
+

∑
i: 0<|θ0,i|≤ζ1

}Eθ0

ˆ
(θi − θ0,i)2dΠαA

(θi |X) ≤ CnαAτ(αA) + Csnζ
2
1 .

We now use the definition of αA to bound αA and τ(αA). To bound τ(αA), note that
for any α ∈ (0, 1), by definition a(τ(α)) = 1/2, so for a signal of amplitude τ(α), the
posterior puts 1/2 of its mass at zero, which means the posterior median is 0, implying
τ(α) ≤ t(α), so that τ(αA) ≤ tA. Combining with the bound for αA of Lemma 12,

nαAτ(αA) ≤ Cn−At3A.

For any fixed A > 0, this goes to 0 with n so it is a o(snζ
2
1 ), while snζ

2
1 is bounded by

Csn log(n/sn) as follows from Lemma 8. Now to bound S̃, one adapts the last bound
of Lemma 1 to accommodate for the indicator 1t̂>tn

. This is done in Lemma 13 whose
bound (2.4.5) implies S̃ ≤ Csnt

2
AP (t̂ > tn)1/2. This bound coincides up to a universal

constant with the corresponding bound (128) in Johnstone and Silverman (2004) (taken
for p = 0, p̃ = 1 and q = 2, which corresponds to our setting, i.e. working with ℓ0 classes
and quadratic risk). So the remaining bounds of Johnstone and Silverman (2004) for the
case sn > c log2 n can be used directly (the distinction of the three cases as in Johnstone
and Silverman (2004) p. 1646-1647 can be reproduced word by word, and is omitted for
brevity), leading to S̃ ≤ Csn log(n/sn).

Second, consider the case where sn ≤ log2 n. We note that for this regime of sn, the
inequalities (2.4.2) become, using that by definition η̃n = log2 n/n,

log n− 2 log log n+ c1 ≤ ζ2
1
2 ≤ log n− 3

2 log log n+ c2. (2.4.4)

Let us show that the risk of the plug-in posterior using the modified estimator is at most
of the order of the minimax risk. For ζ1 as above,

Eθ0

ˆ
∥θ − θ0∥2dΠα̂A

(θ |X)

=
[ ∑

i: θ0,i=0
+

∑
i: 0<|θ0,i|≤ζ1

+
∑

i: |θ0,i|>ζ1

]
Eθ0

ˆ
(θi − θ0,i)2dΠα̂A

(θi |X)

=: (i) + (ii) + (iii).
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For the terms (i) and (ii), apply respectively each bound of Lemma 3 with α = αA to
get (ii) ≤ Csn [ζ2

1 + 1] ≤ C ′snζ
2
1 ≲ sn log n using (2.4.2), which is bounded from above

by Csn log(n/sn) in the regime sn ≤ log2 n. Also,

(i) ≤ Cn
[
αAτ̃(αA) + P [α̂A > αA]1/2

]
.

For large enough n, we have τ̃(αA) = τ(αA) which is less than t(αA) = tA as noted above.
Now αA is bounded using Lemma 12, so that nαAτ̃(αA) ≲ tA(1 + A)(log n)n−A = o(1)
for A > 0.

We now bound the probability P [α̂A > αA]1/2. Recall the inequality t(α)2 ≥ ζ(α)2 −C
(see e.g. (53) in Johnstone and Silverman (2004)). Using (2.4.4), we have ζ2

1 ≥ 2 log n−
4 log log n + 2c1 so, writing in slight abuse of notation t(ζ1) = t(α1) seeing t(·) as a
function of ζ1 instead of α1,

t(ζ1)2 ≥ t2n + log log n− C + 2c1

so that t(ζ1) ≥ tn for n large enough. Deduce {α̂A > αA} = {t̂ < tn} ⊂ {t̂ < t(ζ1)} =
{ζ̂ < ζ1}. Using (2.4.3), we have P [ζ̂ < ζ1] ≤ e−C log2 n, so that (i) goes to 0, and so is a
o(sn log(n/sn)).

Finally, for the term (iii) one uses Lemma 4 with α = αA. Note {α̂A < αA} =
{t(α̂A) > tA}. But by definition note that t(α̂A) equals either tA if t̂ > tn or t(α̂) if
t̂ = t(α̂) ≤ tn, so that t(α̂) ≤ tn. As t2n < 2 log n < t2A for A > 0, conclude that in all
cases t(α̂A) ≤ tA with probability one, so that P [α̂A < αA] = 0. Thus

(iii) ≤
∑

i: |θ0,i|>ζ1

Eθ0,i
r2(α̂A, θ0,i, Xi) ≤ C

∑
i: |θ0,i|>ζ1

(1 + τ̃(αA)2 + 0) ≤ Csnτ̃(αA)2,

which is no more than 2Csn(1 + A) log n ≤ C ′sn log n. As sn ≤ c log2 n, we have
log n ≲ log(n/sn) so (iii) ≤ Csn log(n/sn). Putting the previous bounds together, one
gets (i) + (ii) + (iii) ≤ Csn log(n/sn), which concludes the proof.

Lemma 12. For A ≥ 0, with t2A = 2(1 + A) log n and αA = t−1(tA), there exist N0 > 0
and C > 0 both independent of A such that for n ≥ N0,

αA ≤ C(1 + A)(log n)n−1−A.

Proof. First recall the bound t(α) < ζ(α). Setting α = t−1(u) in this inequality leads,
using ζ(u) = β−1(1/u), to u < β−1(1/t−1(u)). As β is increasing on R+, one has
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t−1(u) < 1/β(u), so

αA <
1

β(tA) = g

ϕ− g
(tA)ϕ

g
(tA) ≤ 2ϕ

g
(tA) ≤ Ct2Ae

−t2
A ,

where we use that g has Cauchy tails. The result follows by using the expression of
tA.

Lemma 13. For any real µ, for B := {t̂ > tn}, and αA, tA as above,

Eµ[r2(αA, µ, x)1lB] ≤ C(t2A + 1)P (B)1/2. (2.4.5)

Proof. Similar to the proof of Lemma 1, one sets T := τ(αA) and distinguishes two cases:
if |µ| ≤ 4T , Lemma 1 implies r2(αA, µ, x) ≤ µ2 + (1 + (x−µ)2), so using Cauchy-Schwarz
inequality,

Eµ[r2(αA, µ, x)1lB] ≤ CT 2P (B) + P (B) + Eµ[(x− µ)4]1/2P (B)1/2 ≤ C(1 + T 2)P (B)1/2.

If |µ| > 4T , one uses the bound on r2 from Lemma 1 again keeping the dependence in
a(x). First,

E[a(x){1 + (x− µ)2}1lB] ≤ E[{1 + (x− µ)2}2]1/2P (B)1/2 ≤ CP (B)1/2.

Let us now focus on Eµ[(1 − a(x))µ21lB] ≤ Eµ[{1|x|≤T + e−(|x|−T )2/21|x|>T }1lB]. The first
term, using Pµ[|x| < T ] ≤ Φ̄(|µ|/2), is bounded by µ2Φ(|µ|/2)1/2P (B)1/2 ≤ CP (B)1/2.
The second term is bounded by µ2{Eµ[e(−|x|−T )2 ]}1/2P (B)1/2. In the proof of Lemma
1, we showed that Eµ[e(−|x|−T )2/2]1/2 is bounded by a universal constant times Φ̄(|µ|/4).
As e−y2 ≤ e−y2/2, the term at stake is bounded from above by µ2Φ̄(|µ|/4)P (B)1/2 ≤
CP (B)1/2, which implies (2.4.5).

2.5 Proof of Theorem 16: the SSL prior

Recall that we use the notation of the SAS case, keeping in mind that every instance
of g is replaced by g1 and (some of the) ϕs by g0. Similarly, β(x, α), m̃, m1 and m2 are
defined as in Section 2.3.1, but with β(x) = g1/g0 − 1.

The main steps of the proof generally follow those of Theorem 15, although technically
there are quite a few differences. In the SSL case, we do not know whether the function
β = g1/g0 − 1 is nondecreasing over the whole R+. Yet, we managed to show that β,
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which is an even function, is nondecreasing on the interval

Jn = [2λ1,
√

2 log n],

see Proposition 2 below. This allows us to define its inverse β−1 = β|Jn
−1 on this interval.

Further, we prove in Lemma 20 that β crosses the horizontal axis on the previous interval,
is strictly negative on [0, 2λ1] and tends to ∞ when x → ∞. As β is continuous, the
graph of the function crosses any given horizontal line y = c, for any c > 0.

The threshold ζ in the SSL case. For every α ∈ (0, 1), one sets

ζ = ζ(α) = min{s > 0, β(s) = 1/α}. (2.5.1)

This is well defined by the property noted in the previous paragraph. Now one notes
that g0 ≤ 2ϕ for x ≤ λ0/2, see Lemma 19, and that the function g1/ϕ takes a value at
√

2 log n not smaller than Cn/ log n, since g1 ≲ γ1 has Cauchy tails. This implies the
existence of a constant C > 1 such that

β(
√

2 log n) ≥ n/(C log n). (2.5.2)

Now we claim that for any α ∈ (C log n/n, 1], we have the identity ζ(α) = β−1(α−1). To
see this, first note that for any α ∈ (C log n/n, 1], by (2.5.2) and β(2λ1) < 0, we have
α−1 ∈ β(Jn). This shows that t = β−1(α−1) solves β(t) = α−1. Also, it is the smallest
possible solution t > 0, as β takes negative values on [0, 2λ1], which establishes the
identity.

The threshold ζ1 in the SSL case. In the SSL case, the function α → m̃(α) =
−E0[β(X,α)] is still nondecreasing, since for any real z, the map Mz : α → z/(1 +αz) is
nonincreasing and β(X,α) = Mβ(X)(α). By Proposition 3, we also have that m̃ is positive
for α ≥ C log n/n and is of the order of a constant for α = 1. So, the map α → αm̃(α)
is nondecreasing on [C log n/n, 1], its value at C log n/n is less than C ′ log n/n, and its
value at one is of the order of a constant. This shows, using sn ≥ c1 log2 n by (2.2.7),
that the following equation has a unique solution α1 ∈ (C log n/n, 1)

α1m̃(α1) = dsn/n, (2.5.3)

with d a small enough constant to be chosen later (see the proof of Lemma 21). Thus we
can set

ζ1 = β−1(α−1
1 ),
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and by the above arguments we have ζ1 ∈ Jn. So Proposition 3 gives α−1
1 ≍ n

sn
ζ1g1(ζ1) ≍

n
snζ1

. Now we can follow the same proof as in Lemma 8, replacing up to constants
instances of g0(ζ1) by ϕ(ζ1) thanks to Lemma 17 and (2.6.5) (as ζ1 ≤

√
2 log n < λ0/2),

to obtain
ζ2

1 ≲ C log(n/sn).

Defining τ(α) and τ̃(α). In the SSL case, we set

Ω(x, α) = α

1 − α

2g1

ϕ
(x).

This definition is as in the SAS case except that g is replaced by 2g1. We still use the
same notation for simplicity. As g1 satisfies the same properties as g, one defines τ(α)
and τ̃(α) similarly to the SAS case. More precisely, τ(α) is the unique solution to the
equation Ω(τ(α), α) = 1, whenever α ≤ α∗, where Ω(0, α∗) = 1. One sets τ(α) = 0 for
α ≥ α∗ and τ̃(α) = τ(α ∧ α0) with τ(α0) = λ1 (this slightly differs from the SAS case).

As in the proof of Theorem 15, one can now decompose the risk Rn(θ0) = Eθ0

´
∥θ −

θ0∥2dΠα̂(θ |X) according to whether coordinates of θ correspond to a ‘small’ or ‘large’
signal, the threshold being ζ1 that we define next. One can write

Rn(θ0) =
[ ∑

i: θ0,i=0
+

∑
i: 0<|θ0,i|≤ζ1

+
∑

i: |θ0,i|>ζ1

]
Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X).

We next use the first part of Lemma 16 with α = α1 and the second part of the Lemma
to obtain, for any θ0 in ℓ0[sn],

[ ∑
i: θ0,i=0

+
∑

i: 0<|θ0,i|≤ζ1

]
Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X)

≤ C
∑

i: θ0,i=0

[
α1τ̃(α1) + Pθ0(α̂ > α1) + λ−2

0

]
+

∑
i: 0<|θ0,i|≤ζ1

(θ2
0,i + C)

≤ C(n− sn)
[
α1τ̃(α1) + e−C log2 n + λ−2

0

]
+ (ζ2

1 + C)sn,

where for the last inequality we use Lemma 21. From (2.5.3) one gets

nα1 ≲ snζ
−1
1 g(ζ1)−1 ≲ snζ1.

Let us now check that τ̃(α1) ≤ ζ1. First, β(ζ1) = α−1
1 > α−1

1 − 1. By definition of τ(α1),
using ϕ ≤ 2g0 by Lemma 17,

α−1
1 − 1 = 2(g1/ϕ)(τ(α1)) ≥ β(τ(α1)) + 1.
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This gives us that β(ζ1) ≥ β(τ(α1)) + 1 which implies the result as β is increasing here.
Now with the previous bound on ζ1 one obtains that the contribution to the risk of the
indices i with |θ0,i| ≤ ζ1 is bounded by a constant times sn log(n/sn).

It remains to bound the part of the risk for indexes i with |θ0,i| > ζ1. To do so,
one uses the second part of Lemma 16 with α chosen as α′

2 = C(log n/n), with C as in
(2.5.2). By definition of α̂ in (2.2.12), the probability that α̂ is smaller than α′

2 equals
zero. Also, one has τ̃(α′

2)2 ≤ C log n. Indeed, setting ζ ′
2 = β−1(α′

2
−1), we have as before

τ(α′
2) ≤ ζ ′

2 ≤
√

2 log n. This implies

∑
i: |θ0,i|>ζ1

Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X) ≤ Csn log n,

which concludes the proof of Theorem 16.

2.6 Technical lemmas for the SSL prior

2.6.1 Fixed α bounds

As in the SAS case, we use the notation r2(α, µ, x) =
ˆ

(u − µ)2dπα(u |x), where now
πα(· |x) is the posterior on one coordinate (X1, say) for fixed α in the SSL case, given
X1 = x.

Lemma 14. For a zero signal µ = 0, we have for any x and α ∈ [0, 1/2],

r2(α, 0, x) ≤ C
[
1 ∧ α

1 − α

g1

ϕ
(x)
]
(1 + x2) +

ˆ
u2γ0,x(u)du

E0r2(α, 0, x) ≤ Cτ(α)α + 4/λ2
0.

For an arbitrary signal µ ∈ R, we have that for any real x and α ∈ [0, 1/2],

r2(α, µ, x) ≤ (1 − a(x))
ˆ

(u− µ)2γ0,x(u)du+ Ca(x)((x− µ)2 + 1)

Eµr2(α, µ, x) ≤ C(1 + τ̃(α)2).

Proof. By definition, in the SSL case, r2(α, 0, x) = (1−a(x))
ˆ
u2γ0,x(u)du+a(x)

ˆ
u2γ1,x(u)du.

Similar to Lemma 1, we have a(x)
ˆ
u2γ1,x(u)du ≤ C

[
1 ∧ α

1 − α

g1

g0
(x)
]
(1 + x2). The first

bound now follows from the inequality g0 ≥ ϕ/2 obtained in Lemma 17. For the bound
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in expectation,

E0

[ˆ
u2γ0,x(u)du

]
=
ˆ (ˆ

u2ϕ(x− u)γ0(u)
g0(x) du

)
ϕ(x)dx

≤ 2
ˆ
u2
ˆ
ϕ(x− u)dxγ0(u)du = 2

ˆ
u2γ0(u)du = 4/λ2

0,

and one then proceeds as in Lemma 1 to obtain the bound for zero signal.

Now for a general signal µ, the bound for r2(α, µ, x) follows from the definition and the
previous bound. For the bound in expectation, by symmetry one can assume µ ≥ 0.
Also note that the term with the a(x) factor is bounded in expectation by a constant, by
using a(x) ≤ 1. To handle the term with 1 − a(x), we distinguish two cases. First, one
assumes that µ ≤ λ0/2. We have, using (a+ b)2 ≤ 2a2 + 2b2,

(1 − a(x))
ˆ

(u− µ)2γ0,x(u)du ≲ (1 − a(x))µ2 + (1 − a(x))
ˆ
u2ϕ(x− u)γ0(u)

g0(x)du.

For the first term we proceed as in Lemma 1, for the second using g0 ≥ ϕ/2 from Lemma
17,

Eµ

[
(1 − a(x))

ˆ
u2ϕ(x− u)γ0(u)

g0(x)du
]

≤ 2
ˆ
u2γ0(u)

ˆ
ϕ(x− u)ϕ(x− µ)

ϕ(x) dxdu

≲
ˆ
u2γ0(u)

ˆ
e−(x−(u+µ))2/2+uµdxdu ≲ λ0

ˆ
u2e−λ0|u|+uµdu.

As µ ≤ λ0/2, this is in turn bounded by a constant times (λ0)−2. Now in the case that
µ > λ0/2, recall from the proof of Lemma 1 that for any real x,

ˆ
(u− µ)2γ0,x(u)du = (x− µ)2 + 1 + g′′

0
g0

(x) + 2(x− µ)g
′
0
g0

(x). (2.6.1)

The first two terms are, in expectation, bounded by a constant. Next one writes

Eµ

[
(1 − a(x))g

′′
0
g0

(x)
]

=
ˆ

(1 − a(x))g
′′
0
g0

(x)ϕ(x− µ)dx

By Lemma 17, we have |g′′
0 | = λ2

0|g0 −ϕ| ≤ 1. One splits the integral on the last display in
two parts. For |x| ≤ µ/4, one uses that g′′

0 is bounded together with the bound g0 ≥ ϕ/2.
For |x| > µ/4, one uses g′′

0/g0 = λ2
0(g0 −ϕ)/g0 ≤ λ2

0 together with 1−a(x) ≤ (g0/g1)(x)/α,
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which follows from the expression of a(x). This leads to

Eµ

[
(1 − a(x))g

′′
0
g0

(x)
]

≤
ˆ

|x|≤µ/4
exµ− µ2

2 dx+ λ2
0
α

ˆ
|x|>µ/4

g0

g1
(x)ϕ(x− µ)dx.

The first term in the last expression is bounded. The second one is bounded by a constant
given our choice of λ0 by combining the following: α−1 ≤ n from (2.2.12), g0 ≲ γ0 for
µ > λ0/8 from (2.6.6) and g1 ≳ γ1.

To conclude the proof, for the last term in (2.6.1), using (2.6.4), the bound on 1−a(x) from
Lemma 15 below, and the fact that x 7→ xϕ(x) is bounded, Eµ

[
2(1 − a(x))(x− µ)g′

0
g0

(x)
]

is bounded by

2
ˆ

(1 − a(x))|g
′
0
g0

(x)||(x− µ)ϕ(x− µ)|dx ≲
ˆ

(1 − a(x))|x|dx

≲
ˆ

|x|≤τ̃(α)
|x|dx+

ˆ
τ̃(α)≤|x|≤ λ0

2

|x|e− (|x|−τ̃(α))2
2 dx+

ˆ
|x|≥ λ0

2

|x|(1 − a(x))dx

≲ τ̃(α)2 + 2(1 − e−
( λ0

2 −τ̃(α))2

2 ) + τ̃(α) +
ˆ

|x|≥ λ0
2

n3|x|γ0

γ1
(x)dx ≲ 1 + τ̃(α)2.

Lemma 15. For any x ∈ [0, λ0/2] and α ∈ [0, 1],

1 − a(x) ≤ 1l|x|≤τ̃(α) + 4e− 1
2 (|x|−τ̃(α))21l|x|>τ̃(α).

Proof. One first notes that 1 − a(x) ≤ 4Ω(x, α)−1 for x ≤ λ0/2, using the fact that
for such x, g0(x) ≤ 2ϕ(x) as found in Lemma 19. The following inequalities hold for
τ̃(α) ≤ x ≤ λ0/2, using τ̃(α) ≥ λ1 by definition and that |(log g1)′| ≤ λ1 as seen in
(2.6.3),

Ω(x, α) = Ω(τ̃(α), α) exp
(ˆ x

τ̃(α)
((log g1)′(u) − (log ϕ)′(u))du

)

≥ exp
(ˆ x

τ̃(α)
(u− λ1)du

)
≥ exp

(ˆ x

τ̃(α)
(u− τ̃(α))du

)
= e

(x−τ̃(α))2
2 .

2.6.2 Random α bounds

Lemma 16. Let α be a fixed non-random element of (0, 1). Let α̂ be a random element
of [0, 1] that may depend on x ∼ N (0, 1) and on other data. Then there exists C1 > 0
such that

Er2(α̂, 0, x) ≤ C1
[
ατ̃(α) + P (α̂ > α)1/2

]
+ 4
λ2

0
.
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There exists C2 > 0 such that for any real µ, if x ∼ N (µ, 1),

Er2(α̂, µ, x) ≤ µ2 + C2.

Suppose now that τ̃(α̂)2 ≤ d log(n) with probability 1 for some d > 0, and that x ∼
N (µ, 1). Then there exists C2 > 0 such that for all real µ,

Er2(α̂, µ, x) ≤ C2
[
1 + τ̃(α)2 + (1 + d log n)P (α̂ < α)1/2

]
.

Proof of Lemma 16. For the first two inequalities, the proof is the same as in the SAS
case in Lemma 3, the only difference being the presence of the term 4/λ2

0 coming from
Lemma 14 for the first inequality. For the third inequality , it follows from Lemma 14
that

r2(α̂, µ, x) ≤ (1 − aα̂(x))
ˆ

(u− µ)2γ0,x(u)du+ C[(x− µ)2 + 1].

In expectation the last term is constant. For the first term, with Lemma 15,

1 − aα̂(x) ≤ 1l|x|≤τ̃(α̂) + 4e− 1
2 (|x|−τ̃(α̂))21lλ0

2 ≥|x|>τ̃(α̂) + 1l|x|≥ λ0
2
n
g0

g1
(x),

where the last estimate uses the bound α ≥ 1/n. As in Lemma 4, let us distinguish the
two cases α̂ ≥ α and α̂ < α. In the case α̂ ≥ α, as τ̃(α) is a decreasing function of α,

[
1l|x|≤τ̃(α̂) + 4e− 1

2 (|x|−τ̃(α̂))21lλ0
2 ≥|x|>τ̃(α̂)

]
1lα̂≥α

≲
[
1l|x|≤τ̃(α̂) + 1lτ̃(α̂)<|x|≤τ̃(α) + e− 1

2 (|x|−τ̃(α̂))21lλ0
2 ≥|x|>τ̃(α)

]
1lα̂≥α

≲ 1l|x|≤τ̃(α) + e− 1
2 (|x|−τ̃(α))21lλ0

2 ≥|x|>τ̃(α),

where we have used e− 1
2 v2 ≤ 1 for any v and that e− 1

2 (u−c)2 ≤ e− 1
2 (u−d)2 if u > d ≥ c.

For the third term, we have to control Eµ

[
1l|x|≥ λ0

2
n
g0

g1
(x)
ˆ

(u− µ)2γ0,x(u)du
]
. To

do so, one uses (2.6.1). In expectation, the term in factor of (x − µ)2 + 1 is bounded
by a constant. Using (2.6.6) and the fact that g′′

0/g0 ≤ λ2
0, the term in factor g′′

0/g0 is
bounded by

λ2
0n

ˆ
|x|≥ λ0

2

g0

g1
(x)ϕ(x− µ)dx ≲ n3

ˆ
|x|≥ λ0

2

γ0

γ1
(x)dx

≲ n4
ˆ

|x|≥ λ0
2

x2e−λ0|x|dx ≲ n4e−Cn2
.
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Finally, using (2.6.4) and the fact that x 7→ xϕ(x) is bounded, one obtains

Eµ

[
1l|x|≥ λ0

2
n
g0

g1
(x)(x− µ)g

′
0
g0

(x)
]

≤
ˆ

|x|≥ λ0
2

n
g0

g1
(x)|x||(x− µ)ϕ(x− µ)|dx

≲
ˆ

|x|≥ λ0
2

n
g0

g1
(x)|x|dx.

As a consequence, one can borrow the fixed α bound obtained previously so that

E [r2(α̂, µ, x)1α̂≥α] ≲ Eµr2(α, µ, x) ≲
[
1 + τ̃(α)2

]
.

In the case α̂ < α, setting bn =
√
d log n and noting that τ̃(α̂) ≤ bn with probability 1 by

assumption, proceeding as above, with bn now replacing τ̃(α), one can bound

1l|x|≤τ̃(α̂) + 4e− 1
2 (|x|−τ̃(α̂))21lλ0

2 ≥|x|>τ̃(α̂) + 1l|x|≥ λ0
2
n
g0

g1
(x)

≲ 1l|x|≤bn + e− 1
2 (|x|−bn)21lλ0

2 ≥|x|>bn
+ 1l|x|≥ λ0

2
n
g0

g1
(x).

From this one deduces that E
[
(1 − aα̂(x))

ˆ
(u− µ)2γ0,x(u)du

]
is bounded from above

by a constant times
Eµ

(ˆ (u− µ)2γ0,x(u)du
)2

[1l|x|≤bn + e−(|x|−bn)2 ]
1/2

P (α̂ < α)1/2.

Using the same bounds but squared as in the fixed α case, one obtains that the expectation
in the last display is bounded from above by C(1 + b4

n). Taking the square root and
gathering the different obtained bounds concludes the proof.

2.6.3 Properties of the functions g0 and β for the SSL prior

Recall the notation ϕ, γ0, g0 from Section 2.2. For any real x, we also write ψ(x) =´∞
x
e−u2/2du. Our key result on β is the following.

Proposition 2. β = g1
g0

− 1 is strictly increasing on [2λ1;
√

2 log n].

We next state and prove some Lemmas used in the proof of Proposition 2 below.

Lemma 17. The convolution g0 = ϕ ∗ γ0 satisfies g′′
0 = λ2

0(g0 − ϕ) as well as

1
g0

≤ 2
ϕ

and |g0 − ϕ| ≤ 1
λ2

0
.



2.6 Technical lemmas for the SSL prior 81

Proof. The first identity follows by differentiation. One computes g0(x) by separating
the integral in a positive and negative part to get, for any real x,

g0(x) = λ0e
λ2

0
2

2
√

2π
[
eλ0xψ(λ0 + x) + e−λ0xψ(λ0 − x)

]
. (2.6.2)

Now combining the standard inequality (1 − x−2)e−x2/2 ≤ xψ(x) ≤ e−x2/2, for x > 0,
with the expression of g0(0) obtained from (2.6.2), we get 1

2 ≤ g0
ϕ

(0) ≤ 1 for large enough
n. By Johnstone and Silverman (2004), Lemma 1, the function g0/ϕ is increasing, which
implies the first inequality of the lemma.

The approximation property of ϕ by g0 is obtained by a Taylor expansion. For any
x, u ∈ R, there exists c between x and x − u such that ϕ(x − u) − ϕ(x) = uxϕ(x) +
u2(c2 − 1)ϕ(c)/2, so that

2(g0(x) − ϕ(x)) =
ˆ

(2uxϕ(x) + u2(c2 − 1)ϕ(c))γ0(u)du =
ˆ
u2(c2 − 1)ϕ(c)γ0(u)du,

whose absolute value is bounded by
´
u2|c2−1|ϕ(c)γ0(u)du. This is less than

´
u2γ0(u)du =

λ−2
0 .

Lemma 18. Let L0 = 5
√

2π. Then for all x ∈ [0;
√

2 log(λ0/L0)],

(log g0)′(x) ≤ −x/2.

Proof. Let go+(x) =
ˆ ∞

0
ϕ(v + x)γ0(v)dv and go−(x) =

ˆ 0

−∞
ϕ(v + x)γ0(v)dv. First we

check that for any x in the prescribed interval, we have

λ0(go+ − go−)(x) ≤ −x(ϕ(x) − 2/λ0) ≤ 0.

For any real x, using the inequality ev ≥ 1 + v,

go−(x) =
ˆ ∞

0
ϕ(x− u)γ0(u)du =

ˆ ∞

0
ϕ(x+ u)e2xuγ0(u)du

≥
ˆ ∞

0
ϕ(x+ u)(1 + 2xu)γ0(u)du

≥ go+(x) + λ0x

ˆ ∞

0
uϕ(x+ u)e−λ0udu.
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Setting ∆(x) =
ˆ ∞

0
uϕ(x+ u)e−λ0udu, one can write

∆(x) =
ˆ ∞

0
u(ϕ(x+ u) − ϕ(x))e−λ0udu+ ϕ(x)

ˆ ∞

0
ue−λ0udu

=
ˆ ∞

0
u(ϕ(x+ u) − ϕ(x))e−λ0udu+ ϕ(x)/λ2

0.

As ϕ is 1–Lipshitz, one can bound from below ϕ(x+ u) − ϕ(x) ≥ −u, which leads to, for
any x ≥ 0,

∆(x) ≥ −
ˆ ∞

0
u2e−λ0udu+ ϕ(x)/λ2

0 ≥ −2/λ3
0 + ϕ(x)/λ2

0.

This leads to inequality on go+ − go− above, using that x belongs to the prescribed
interval to get the nonpositivity. From this one deduces

g′
0(x) = λ0(go+ − go−)(x) ≤ −x(ϕ(x) − 2/λ0).

This now implies
g′

0
g0

(x) ≤ −xϕ(x) − 2λ−1
0

ϕ(x)+λ−2
0

On the prescribed interval ϕ(x) ≥ 5/λ0, so using that t → (t− a)/(t+ b) is increasing,

g′
0
g0

(x) ≤ −x5λ−1
0 − 2λ−1

0

5λ−1
0 + λ−2

0
= − 3x

5 + λ−1
0

≤ −x

2 ,

for large enough n, which concludes the proof.

Proof of Proposition 2. We will firstly note that if G1 has a Cauchy(1/λ1) law,

|(log g1)′(x)| ≤ λ1. (2.6.3)

Indeed, for any real x, recalling that γ1(x) = (λ1/π)(1 + λ2
1x

2)−1, one sees that
γ′

1(x)/γ1(x) = (−2λ2
1x)/(1 + 2λ2

1x
2) and |γ′

1(x)/γ1(x)| ≤ 2
√

2λ1/3. This implies (2.6.3),
as

|(log g1)′(x)| = |
ˆ
ϕ(x− u)γ′

1(u)du|/g1(x)

≤ 2
√

2
3 λ1

ˆ
ϕ(x− u)γ1(u)du/g1(x) ≤ 2

√
2

3 λ1 ≤ λ1.

Let (x, y) ∈ [2λ1;λ0/4]2 with x ≤ y. Using Lemma 18 one can find c ∈ [x; y] with
log(g0(x)/g0(y)) = (x − y)(log g0)′(c) ≥ (x − y)(−c/2) ≥ (y − x)x/2. On the other
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hand, by (2.6.3) one deduces that for some c ∈ [x; y], we have log(g1(x)/g1(y)) =
(x− y)(log g1)′(c) ≤ (y − x)λ1. Thus for any x, y as before,

g1(x)
g1(y) ≤ e(y−x)λ1 and e(y−x) x

2 ≤ g0(x)
g0(y) .

As x ≥ 2λ1 by assumption, this leads to the announced inequality.

Lemma 19. For n large enough, recalling that λ0 depends on n, we have

(log g0)′(x) ≥ −x for any x > 0, (2.6.4)
g0(x) ≤ 2ϕ(x) for any 0 ≤ x ≤ λ0/2, (2.6.5)
g0(x) ≲ γ0(x) for any x ≥ λ0/8. (2.6.6)

Proof. For any real x, we set µ0,1(x) =
ˆ
u
ϕ(x− u)γ0(u)

g0(x) du, the expectation of γ0,x. A

direct computation shows, for x > 0 that (log g0)′(x) = −x+ µ0,1(x). But

µ0,1(x) =
ˆ ∞

0
u
λ0ϕ(x− u)e−λ0u

2g0(x) du+
ˆ 0

−∞
u
λ0ϕ(x− u)eλ0u

2g0(x) du

=
ˆ ∞

0
u
λ0e

−λ0u

2g0(x) (ϕ(x− u) − ϕ(x+ u))du

=
ˆ ∞

0
u
λ0e

−λ0u

2g0(x) ϕ(x+ u)(e2xu − 1)du ≥ 0,

which leads to (2.6.4). For the second point, we first prove the identity, for x > 0,

g0(x) = eλ2
0/2

√
2π
ψ(λ0)γ0(x)+ϕ(x)λ0

2

(
e(λ0−x)2/2(ψ(λ0 − x) − ψ(λ0))

+ e(λ0+x)2/2ψ(λ0 + x)
)
.
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Indeed, g0(x) =
ˆ ∞

0
ϕ(u)(γ0(x+u)+γ0(x−u))du = γ0(x)

ˆ ∞

0
ϕ(u)e−λ0udu+

ˆ ∞

0
ϕ(u)γ0(x−

u)du, for x > 0. The first term equals eλ2
0/2ψ(λ0)γ0(x)/

√
2π. The second one equals

ˆ ∞

−x

ϕ(x+ v)γ0(v)dv = ϕ(x)
ˆ ∞

−x

e− v2
2 −vxγ0(v)dv

= ϕ(x)λ0

2

(ˆ 0

−x

e− v2
2 −vx+λ0vdv +

ˆ ∞

0
e− v2

2 −vx−λ0vdv

)

= ϕ(x)λ0

2

(ˆ x

0
e− v2

2 +vx−λ0vdv + e
(x+λ0)2

2

ˆ ∞

0
e− (v+x+λ0)2

2 dv

)

= ϕ(x)λ0

2

(
e

(λ0−x)2
2

ˆ λ0

λ0−x

e− u2
2 du+ e

(x+λ0)2
2 ψ(x+ λ0)

)

which gives the announced identity. If x ≤ λ0/2, using the inequality yψ(y) ≤ e−y2/2 for
y > 0, we have

g0(x) ≤ λ−1
0 γ0(x)/

√
2π + ϕ(x)(λ0/2)

[
(λ0 − x)−1 + (λ0 + x)−1

]
.

This leads, using γ0(x)/λ0 ≤ e−λ2
0/2 for x ≤ λ0/2, to g0(x) ≤ ϕ(x)(1/2 + 1 + 1/2) = 2ϕ(x).

For the third point, if x ≥ λ0/8, the first term is bounded as follows:

λ0e
λ2

0/2eλ0xψ(λ0 + x) ≤ λ0e
λ2

0/2eλ0xe−λ2
0/2−x2/2−λ0x(λ0 + x)−1

≤ λ0(λ0 + x)−1e−x2/2 ≤ λ0(9λ0/8)−1e−x2/2.

Now ψ(λ0 − x) ≤ e−λ2
0/2−x2/2+λ0x(λ0 − x)−1 ≤ 4e−λ2

0/2−x2/2+λ0xλ−1
0 if λ0/8 ≤ x ≤

3λ0/4, which leads to g0(x) ≲ ϕ(x). If x ≥ 3λ0/4 one bounds the second term by
λ0e

λ2
0/2−λ0x ≤ λ0e

2λ0x/3−λ0x ≤ λ0e
−λ0x/3, so that, for x ≥ λ0/8,

g0(x) ≲ γ0(x).

The next lemma is useful to control β outside [2λ1,
√

2 log n].

Lemma 20. Set λ1 = 0.05. For n large enough, for some C > 0, we have

(g1/g0)(2λ1) < 0.25,
β(x) < 0 for all x ∈ [0, 2λ1],

β(x) ≳ n/log n, for all
√

2 log n ≤ x ≤ λ0/2,
β(x) ≳ eCn2

γ1(n)/n for all x ≥ λ0/8.
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Proof. 1) We have g1

g0
(2λ1) ≤ λ1

√
2π

λ0
´
e−(u−2λ1)2/2e−λ0|u|du

. For the denominator, we have

ˆ
e−(u−2λ1)2/2e−λ0|u|du ≥

ˆ ∞

0
e−(u−2λ1)2/2−λ0udu

≥ eλ2
0/2−2λ1λ0

ˆ ∞

0
e−(u−(2λ1−λ0))2/2du

≥ e−2λ2
1ψ(λ0 − 2λ1)/(λ0 − 2λ1)

≥ e−2λ2
1(λ0 − 2λ1)−1(1 − (λ0 − 2λ1)−2)

≥ 0.99e−2λ2
1(λ0 − 2λ1)−1for n large enough

.

This implies (g1/g0)(2λ1) < 0.25 for λ1 = 0.05.
2) Let x ∈ [0, 2λ1], using Lemma 17, we have β ≤ 2g1/ϕ− 1. As the last function is

increasing as we know from the SAS case, we have β(x) ≤ 2(g1/ϕ)(2λ1) − 1. With (2.6.5)
we end up with β(x) ≤ 4(g1/ϕ)(2λ1) − 1, which is strictly negative by the first point.

3) Let x ∈ [
√

2 log n, λ0/2]. With (2.6.5), we have β(x) ≥ (g1/2ϕ)(x) − 1 ≥
(g1/2ϕ)(

√
2 log n) − 1, and as g1 ≳ γ1, we end up with β(x) ≳ n/ log n.

4) For x ≥ λ0/8, via (2.6.6) we have β(x) + 1 ≥ (γ1/γ0)(x) ≥ (γ1/γ0)(λ0/8) which
gives the result.

2.6.4 Bounds on moments of the score function

Recall that, for all k ≥ 1, µ ∈ R and α ∈ [0, 1], mk(µ, α) = E[β(Z + µ)k] where
Z ∼ N (0, 1), and m̃(α) = −m1(0, α) = −2

´∞
0 β(z, α)ϕ(z)dz.

Proposition 3. With κ as in (2.3.6), there exist constants D1 and D2 such that for
α ∈ (C log n/n, 1], D1ζ

κ−1g1(ζ) ≤ m̃(α) ≤ D2ζ
κ−1g1(ζ). Also, c ≤ m̃(1) ≤ C with c, C

independent of n.

Proof. Recall that for α ∈ (C log n/n, 1], we have ζ = β−1(α−1) and ζ ≤
√

2 log n.

m̃(α) = −2
ˆ ∞

0

β(z)
1 + αβ(z)ϕ(z)dz

= −2
ˆ ∞

0
β(z)ϕ(z)dz + 2

ˆ ∞

0

αβ2(z)
1 + αβ(z)ϕ(z)dz

= −2
ˆ ∞

0
β(z)ϕ(z)dz + 2

ˆ ζ

0

αβ2(z)
1 + αβ(z)ϕ(z)dz

+2
ˆ ∞

ζ

αβ2(z)
1 + αβ(z)ϕ(z)dz

:= A+B + C
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• For the first term, with K a positive constant one can write

A = 2
ˆ ∞

0
(ϕ− g1

g0
ϕ) = 2

ˆ ∞

0
(ϕ− g1

g0
(ϕ− g0 + g0))

= 2
ˆ ∞

0
(ϕ− g1) + 2

ˆ ∞

0

g1(g0 − ϕ)
g0

= 0 + 2
ˆ Kζ

0

g1(g0 − ϕ)
g0

+ 2
ˆ ∞

Kζ

g1(g0 − ϕ)
g0

:= (i) + (ii).

Using the fact that g1/ϕ is increasing, we have

|(i)| ≤ 2λ−2
0

ˆ Kζ

0
g1/g0 ≤ 4λ−2

0

ˆ Kζ

0
g1/ϕ

≤ 4Kζg1(Kζ)λ−2
0 /ϕ(Kζ) ≲ KnK2−2ζg1(Kζ)

Taking K = 6/5, we end up with |(i)| ≲ ζn−2/5g1(6ζ/5) and this term is strictly
dominated by ζκ−1g1(ζ). By Lemma 17, and the fact that g1 ≍ γ1, we have :

|(ii)| ≤ 2
ˆ ∞

Kζ

g1(1 + ϕ/g0) ≤ 6
ˆ ∞

Kζ

g1

≲ (6ζ/5)κ−1g1(6ζ/5) using (2.3.6)

This term too is dominated by ζκ−1g1(ζ).

• For the second term, we use the fact that on (0, ζ), α|β| < 1, so 1+b0 ≤ 1+αβ ≤ 2,
where b0 = g1(2λ1)/2ϕ(0) − 1 does not depend on n, so that

B ≍
ˆ ζ

0
αβ2(z)ϕ(z)dz

We will now use the fact that, with h := g2
1/ϕ,

´ ζ

0 h(z)dz ≤ 16h(ζ)/ζ. This is a
direct corollary of lemma 4 in (Johnstone and Silverman, 2004). We have, also
using (2.6.5):

ˆ ζ

0
β2(z)ϕ(z)dz ≲

ˆ ζ

0
(g2

1/g
2
0)ϕ ≲

ˆ ζ

0
g2

1/ϕ

≲ g2
1(ζ)/(ζϕ(ζ)) ≲ β(ζ)g1(ζ)/ζ ≲ g1(ζ)(αζ)−1
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hence B ≲ g1(ζ)ζ−1, dominated by ζκ−1g1(ζ).

• For the last term, we first use the fact that αβ(z) < 1 + αβ(z) , so that C ≲ˆ ∞

ζ

β(z)ϕ(z)dz.

C ≲
ˆ ∞

ζ

g1ϕ/g0 ≲
ˆ ∞

ζ

g1(z)dz using Lemma 17

≍ ζκ−1g1(ζ) using (2.3.6)

For an upper bound we write

C = 2
ˆ λ0/2

ζ

αβ2(z)
1 + αβ(z)ϕ(z)dz + 2

ˆ ∞

λ0/2

αβ2(z)
1 + αβ(z)ϕ(z)dz =: (i) + (ii).

For the first term, using (2.6.5), we have for every z ∈ [ζ, λ0/2], β(z) ≥ g1
2ϕ

(z) − 1 ≥
g1
4ϕ

(z) and α g1
4ϕ

(z) ≳ α n
log n

≳ 1, so that

(i) ≥ 2
ˆ λ0/2

ζ

α(g2
1/16ϕ2)(z)

1 + α(g1/4ϕ)(z)ϕ(z)dz

≳
ˆ λ0/2

ζ

g1(z)dz ≳ ζκ−1g1(ζ)

For the second term, we have

(ii) ≲
ˆ ∞

λ0/2
β(z)ϕ(z)dz

≲
ˆ ∞

λ0/2
g1(z)dz ≲ λκ−1

0 g1(λ0) ≲ λ−1
0 .

Putting the bounds together finally leads to m̃(α) ≍ g1(ζ)ζκ−1.

To prove m̃(1) ≤ ϕ(0)/g1(2λ1), write m̃(1) = −2
ˆ ∞

0
ϕ+ 2

ˆ ∞

0
ϕ/(1 + β).

Now
ˆ ∞

0
ϕ/(1 + β) =

ˆ 2λ1

0
ϕ/(1 + β) +

ˆ λ0/2

2λ1

ϕ/(1 + β) +
ˆ +∞

λ0/2
ϕ/(1 + β).
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Using that on [0, 2λ1], 1 + β ≥ 1 + b0 = g1(2λ1)/2ϕ(0) and (2.6.5) and (2.6.6), we
have

ˆ ∞

0
ϕ/(1 + β) ≤

ˆ 2λ1

0
ϕ/(1 + b0) +

ˆ λ0/2

2λ1

ϕ2/g1 +
ˆ ∞

λ0/2
γ0ϕ/g1

≤
ˆ 2λ1

0
ϕ/(1 + b0) +

ˆ ∞

2λ1

ϕ2/g1 +
ˆ ∞

0
ϕ/g1 ≤ C.

For the lower bound, recall that m̃(1) = −2
ˆ ∞

0
ϕ+2

ˆ ∞

0
ϕ/(1+β) and use Lemma

17 to write 2
ˆ ∞

0
ϕ/(1 + β) ≥

ˆ ∞

0
ϕ2/g1 which does not depend on n.

Proposition 4. Let α ∈ [C log n/n, 1].
1) For small enough α, we have m2(0, α) ≲ m̃(α)(αζκ)−1

2) For k = 1 or 2, for all µ and all α small enough, mk(µ, α) ≤ (α ∧ |B0|/(1 +B0))−k

with B0 = g1(0)/2ϕ(0) − 1.

Proof. 1) Let α ∈ [0; 1], we have

m2(0, α) = 2
ˆ ∞

0

β2(z)
(1 + αβ(z))2ϕ(z)dz

= 2
ˆ ζ

0

β2(z)
(1 + αβ(z))2ϕ(z)dz + 2

ˆ ∞

ζ

β2(z)
(1 + αβ(z))2ϕ(z)dz

For the first term, as in Proposition 3, and using Proposition 17, we have
ˆ ζ

0

β2(z)
(1 + αβ(z))2ϕ(z)dz ≲

ˆ ζ

0
β2(z)ϕ(z)dz ≲ g1(ζ)(αζ)−1

For the last term, by the fact that β is increasing on [ζ,
√

2 log n], (2.6.5) and (2.6.6)
we have that β > 0 on [ζ,∞] so that

ˆ ∞

ζ

β2(z)
(1 + αβ(z))2ϕ(z)dz ≲ 1/α2

ˆ ∞

ζ

ϕ(z)dz ≲ β2(ζ)ϕ(ζ)/ζ ≲ β(ζ)g1(ζ)/ζ

hence m2(0, α) ≲ g1(ζ)
αζ

. Yet m̃(α) ≍ ζκ−1g1(ζ) when α → 0, which yields the first
point.

2) Recall the definition mk(µ, α) =
´ (

β(t)
1+αβ(t)

)k
ϕ(t − µ)dt. If β(t) ≥ 0,

∣∣∣ β(t)
1+αβ(t)

∣∣∣ ≤
1/α. Otherwise we have |t| < λ0/2 so using (2.6.5) for the numerator leads to β(t) ≥
g1(0)/2ϕ(0) − 1 = B0 and for the denominator |1 + αβ(t)| = 1 + αβ(t) ≥ 1 + β(t) ≥
1 +B0.
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2.6.5 In-probability bounds

Lemma 21. We take α = α1 and ζ = ζ1 as defined by (2.5.3). There exists C > 0 such
that

sup
θ∈ℓ0(sn)

Pθ(ζ̂ < ζ) ≤ exp(−C(log n)2).

Proof. First note that, almost surely, α̂−1 ≥ 1 > β(2λ1) with the help of the first point
of Lemma 20, so ζ̂ = β−1(α̂−1) > 2λ1. Since β is increasing on (2λ1,

√
2 log n) and

ζ ≤
√

2 log n, we have {ζ̂ < ζ} = {α̂ > α}, so P (ζ̂ < ζ) = P (α̂ > α) = P (α̂ >

α ∩ S(α) > 0) + P (α̂ > α ∩ S(α) ≤ 0).
Let us now focus on the event {α̂ > α}∩{S(α) ≤ 0}. If S(α) ≤ 0, since S is decreasing,

S < 0 on ]α, α̂]. So the likelihood l is decreasing on ]α, α̂[. It implies that there exists
α′ ∈]α, α̂[ such that l(α′) > l(α̂). But this contradicts the maximality of α̂. Therefore
{α̂ > α} ∩ {S(α) ≤ 0} = ∅. Hence P (ζ̂ < ζ) = P (α̂ > α ∩ S(α) > 0) ≤ P (S(α) > 0).

The score function S(α) = ∑n
i=1 β(θi + Zi, α) is a sum of independent random

variables, each bounded by α−1. We have P (S(α) > 0) = P (∑n
i=1 Wi > A), with

A = −∑n
i=1 m1(θi, α) and Wi = β(θi + Zi, α) − m1(θi, α) centered variables, bounded

by M = (1 + c)/α using the second point of Proposition 4. Setting V = ∑n
i=1 var(Wi),

Bernstein’s inequality gives

P (S(α) > 0) ≤ exp( −A2

2(V + MA
3 )

).

Moreover, proceeding as in Lemma 9 in the SAS case, we have −A ≲ −nm̃(α) and
V ≲ n m̃(α)

α
, so

(
A2

2(V + MA
3 )

)−1
= V

A2 + M
3A

≤ C
αnm̃(α) + C′

αnm̃(α) ≲ (αnm̃(α))−1 therefore
A2

2(V + MA
3 ) ≳ αnm̃(α) ≳ sn ≳ (log n)2 and finally

P (S(α) > 0) ≤ exp(−C(log n)2).





Chapter 3

Sharp asymptotic minimaxity of
spike and slab empirical Bayes
procedures

3.1 Introduction

3.1.1 Model

Consider the sequence model (1.2)

Xi = θi + εi, i = 1, . . . , n,

with θ = (θ1, . . . , θn) ∈ Rn and ε1, . . . , εn i.i.d. N (0, 1).

Suppose as before that the ‘true’ vector θ0 belongs to

ℓ0[sn] = {θ ∈ Rn, #{i : θi ̸= 0} ≤ sn}. (3.1.1)

Recall that the minimax rate over ℓ0[sn] for the Euclidean norm (not renormalized by n)
is 2sn log( n

sn
)(1 + o(1)).
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3.1.2 Posterior convergence at sharp minimax rate

One defines a notion of posterior convergence at the sharp minimax rate, or convergence
at the minimax rate with exact constant, with respect to the L2-norm loss, as follows

sup
θ0∈ℓ0[sn]

Eθ0

[ˆ
∥θ − θ0∥2

2dΠ(θ|X)
]

≤ 2sn log( n
sn

)(1 + o(1)) (3.1.2)

If (3.1.2) holds, then at least two estimators (one of these randomised) converge
at the minimax rate with exact constant in the usual sense. First, using the Jensen
inequality, it implies that the posterior mean (denoted here by θ̄) converges at minimax
rate with exact constant to the true signal

sup
θ0∈ℓ0[sn]

Eθ0

[
∥θ̄ − θ0∥2

2

]
≤ 2sn log( n

sn

)(1 + o(1)) (3.1.3)

Second, let us consider a draw from the posterior distribution. More formally,
it is a θ̃ = θ̃(X,U), using the data X and uniform variables U on [0, 1], such that
L(θ̃(X,U)|X) = Π(·|X), stating (3.1.2) is exactly stating the convergence to θ0 at
minimax rate with exact constant of θ̃.
To construct such a θ̃ in practice in the setting of the sequence model with a Spike and
Slab prior, as the a posteriori law is a product, one can take, denoting by Fθi|X the
cumulative distribution function of each θi|Xi,

θ̃(X,U) = (F−1
θ1|X(U1), . . . ,F−1

θn|X(Un))

3.1.3 Spike and Slab prior

3.1.3.1 Prior

The spike and slab prior with smoothing parameter α is given by

Πα ∼
n⊗

i=1
(1 − α)δ0 + αG(·), (3.1.4)

where δ0 denotes the Dirac mass at 0 and G is a given probability measure of density γ,
often taken to be the Laplace distribution or some heavy tailed distribution.
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3.1.3.2 Posterior

The posterior distribution under (3.1.1)-(3.1.4) is

Πα[· |X] ∼
n⊗

i=1
(1 − aα(Xi))δ0 + aα(Xi)γXi

(·), (3.1.5)

where we have set, denoting ϕ the standard normal density and ϕ∗G(x) =
´
ϕ(x−u)dG(u)

the convolution of ϕ and G,

g(Xi) = (ϕ ∗G)(Xi),

γXi
(·) = ϕ(Xi − ·)γ(·)

g(Xi)
,

aα(Xi) = αg(Xi)
(1 − α)ϕ(Xi) + αg(Xi)

3.1.3.3 A special Slab density γ

Consider the unimodal symmetric density γ on R given by

γ(x) = 1
2∆(1 + |x|), ∆(u) = u−1(1 + log(u))−2, (3.1.6)

The purpose of this new density is to have sufficiently heavy tails, heavier than Cauchy.
Apart from this specific tail property, γ still satisfies

sup
u>0

∣∣∣∣∣ ddu log γ(u)
∣∣∣∣∣ =: Λ < ∞. (3.1.7)

Let us denote by g = ϕ ∗ γ the convolution of the heavy-tailed γ given by (3.1.6) and
the noise density ϕ. Basic properties of g are gathered in Lemma 22, while Lemma 23
provides bounds on corresponding moments of the score function.

3.1.4 Useful Thresholds

Let us recall the following useful threshold properties already used in Chapter 2. As noted
in Castillo and Szabo (2018), the properties established by Johnstone and Silverman
(2004) are extended without difficulties to slabs with heavier tails than Cauchy.

Posterior median and threshold t(α). The a posteriori median θ̂med
α (X) =

(
θ̂med

i (Xi)
)

i∈{1,...,n}
has the following thresholding property: there exists t(α) > 0, depending on the smooth-
ing parameter α of (3.1.4) such that θ̂med

i (Xi) = 0 if and only if |Xi| ≤ t(α). A default
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choice can be α = 1/n, which leads to a posterior median behaving similarly as a hard
thresholding estimator with threshold

√
2 log n. One can significantly improve on this

choice by taking a well-chosen data-dependent α, as will be seen in 3.1.5.

The thresholds ζ(α), τ(α) and τ̃(α). Following Johnstone and Silverman (2004), we
introduce several useful thresholds. From Lemma 1 in Johnstone and Silverman (2004),
we know that g/ϕ, and therefore B = g/ϕ− 1, is a strictly increasing function on R+. It
is also continuous, so given α, a pseudo-threshold ζ = ζ(α) can be defined by

B(ζ) = 1
α
. (3.1.8)

It is shown in Johnstone and Silverman (2004), Lemma 3, that

t(α) ≤ ζ(α). (3.1.9)

Further one can also define τ(α) as the solution in x of

Ω(x, α) := a(x)
1 − a(x) = α

1 − α

g

ϕ
(x) = 1.

Equivalently, a(τ(α)) = 1/2. Also, B(τ(α)) = α−1 − 2 so τ(α) ≤ ζ(α). Define α0 as
τ(α0) = 1 and set

τ̃(α) = τ(α ∧ α0). (3.1.10)

In the sequel, one can always take α small enough, so it will be silently understood that
α ≤ α0 so that τ̃(α) = τ(α).

These thresholds are useful to understand the behaviour of the a posteriori law, in
particular to have bounds on the updated smoothing parameter aα(X).

3.1.5 Empirical Bayes choice of α

The log-marginal likelihood in α can be written as

ℓ(α) = ℓn(α;X) =
n∑

i=1
log((1 − α)ϕ(Xi) + αg(Xi)). (3.1.11)

Let α̂ be defined as the maximiser of the log-marginal likelihood

α̂ = argmax
α∈An

ℓn(α;X), (3.1.12)
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where the maximisation is restricted to An = [αn, 1], with αn defined, in view of (1.2.11),
by

t(αn) =
√

2 log n.

The reason for this restriction is that one does not need to take α smaller than αn, which
would correspond to a choice of α ‘more conservative’ than hard-thresholding at threshold
level

√
2 log n.

The a priori law that will be therefore considered is the Spike and Slab where we
have ‘plugged’ the value α̂ :

θ ∼ Πα̂ :=
n⊗

i=1
(1 − α̂)δ0 + α̂Γ (3.1.13)

One will also denote the threshold of our new ‘plug-in’ posterior median, in view of 3.1.4,

t̂ = t(α̂) (3.1.14)

the threshold of the posterior median corresponding to the Spike and Slab prior with
plugged-in parameter α̂.

3.2 Main result

Our specific choice of Slab density leads the following result, assuming that sn satisfies
the mild condition that there exist constants c0, c1 such that

c1 log2 n ≤ sn ≤ c0n. (3.2.1)

As in Chapter 2, we note that it is under this condition that the rate in Theorem 1
of Johnstone and Silverman (2004) is optimal.

Theorem 18. Let Πα be the Spike and Slab prior distribution (3.1.4) with Slab density
γ given by (3.1.6). Let Πα̂[· |X] be the corresponding plug-in posterior distribution
given by (3.1.13), with α̂ chosen by the empirical Bayes procedure (3.1.12). For any sn

verifying (3.2.1) , for n → ∞

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2

2dΠα̂(θ |X) ≤ 2sn log( n
sn

)(1 + o(1)).

Theorem 18 states that the second moment of the a posteriori law whose smoothing
parameter has been chosen with Empirical Bayes and whose Slab is the specific density
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(3.1.6) converges to 0 at sharp minimax rate, i.e. where one obtains the exact constant 2.
We note that similarly to Chapter 2 or to Theorem 2 of Johnstone and Silverman (2004),
one could also consider a modified estimator for α̂. As in Chapter 2, we believe that
working with this modified estimator α̂ should enable one to remove condition (3.2.1)
and get the sharp minimax rate also in the regime sn ≲ log2 n.

3.2.1 Why it works

Let us first consider the case where α is a fixed constant in (0, 1) to get an intuition
on why it is possible at all to obtain this sharp minimax rate result already in case the
regularity parameter sn is given to us. In the quantity

ˆ
∥θ − θ0∥2dΠα(θ |X) =

n∑
i=1

ˆ
(θi − θ0,i)2dΠα(θi |Xi),

let us distinguish two parts: the coordinates of θ0 that are just equal to zero on one hand,
and the nonzero coordinates on the other hand.
For α ∈ (0, 1), µ ∈ R and x ∈ R, we use the following notation

r2(α, µ, x) = (1 − a(x))µ2 + a(x)
ˆ

(u− µ)2γx(u)du.

so that
ˆ

∥θ − θ0∥2dΠα(θ |X) =
n∑

i=1
r2(α, θ0,i, Xi).

For the part where the signal is zero, we have the following result, for α small enough

E0r2(α, 0, x) ≲ ατ(α)2{1 + log(1 + τ(α))}−2 (3.2.2)

This result immediately follows from Lemma 27, as τ(α) goes to infinity as α → 0.
For the nonzero coordinates, the following bound directly follows from Lemma 28

Eµ[r2(α, µ, x)] ≤ τ̃(α)2(1 + o(1)) (3.2.3)
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Expected posterior squared norm at fixed α. Putting together the previous bounds
leads to, with S0 the support of θ0,

Eθ0

ˆ
∥θ − θ0∥2dΠα(θ |X) =

n∑
i=1

Eθ0

ˆ
(θi − θ0,i)2dΠα(θi |Xi)

≤
∑
i/∈S0

Cατ(α)2/ log2(τ(α)) +
∑
i∈S0

τ̃(α)2(1 + o(1))

≤ Cnατ(α)2/ log2(τ(α)) + snτ̃(α)2(1 + o(1))

which leads to the following result for fixed α

Proposition 5. For a fixed α ∈ [sn/n; log(log n/sn)sn/n], the Spike and Slab prior with
parameter α and γ as in (3.1.6) yields the exact constant for the posterior squared norm,
that is, for n → ∞

sup
θ0∈ℓ0[sn]

Eθ0

ˆ
∥θ − θ0∥2dΠα(θ |X) ≤ 2sn log(n/sn)(1 + o(1))

Note that for α as in Proposition 5 (and as soon as α ≥ (sn/n)η for η > 0 for instance)
the nonzero part of the signal always contribute for 2sn log(n/sn). The part of zero
signal is more dependent on the choice of the Slab. When α is data-driven, this part
may interfere with the nonzero part. In the Laplace case, one can check that α̂ is too
far from the oracle parameter α∗ = sn/n, resulting in a zero signal contribution larger
than the minimax rate. In the Cauchy case, the zero signal contribution becomes exactly
of the order of the minimax rate. With the special Slab (3.1.6), we shall prove that for
data-driven α this contribution becomes lower than the minimax rate, finally resulting in
2sn log( n

sn
)(1 + o(1)).

3.3 Proofs

3.3.1 Thresholds and Useful Bounds

The following bounds are borrowed from Johnstone and Silverman (2004) (again, they
extend without difficulty to the heavy-tailed γ)

Bounds on aα(x). For any real x and α ∈ [0, 1],

α
g

g ∨ ϕ
(x) ≤ aα(x) ≤ 1 ∧ α

1 − α

g

ϕ
(x). (3.3.1)
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The following bound in terms of τ(α), see Johnstone and Silverman (2004) p. 1623 (one
has τ̃(α) = τ(α) for any α ≤ α0), is useful for large x,

1 − aα(x) ≤ 1l|x|≤τ(α) + e− 1
2 (|x|−τ(α))21l|x|>τ(α). (3.3.2)

3.3.2 Properties of g and moments of the score function

While qualitative properties of g and of the score function (such as g/ϕ or m̃ are increasing
functions) do not change with the present heavy-tailed choice of γ, some of the equivalents
of g and moments of the score function change, in a way that we describe now.

Lemma 22. For γ defined by (3.1.6) and g = ϕ ∗ γ, as x → ∞,

g(x) ≍ γ(x)

g(x)−1
ˆ ∞

x

g(u)du ≍ x log x.

Also, g/ϕ is strictly increasing from (g/ϕ)(0) < 1 to +∞ as x → ∞.

The monotonicity property in Lemma 22 enables one to define a pseudo-threshold,
still denoted ζ, from the function B = (g/ϕ) − 1 as ζ(α) = B−1(α−1).

The posterior median, by the same proof as Lemma 2 in Johnstone and Silverman
(2004), is a threshold rule: there exists t(α) > 0 such that the posterior median on
coordinate i is 0 if and only if |Xi| ≤ t(α). Also, by the same proof as in Johnstone and
Silverman (2004), one has t(α)2 < ζ(α)2 and ϕ(t) < Cϕ(ζ).

Now turning to the moments of the score function, let us denote

B(x, α) = B(x)
1 + αB(x) ,

and similarly as for m̃,m1,m2, let us set

m̃(α) = −E0B(X,α), m1(µ, α) = EµB(X,α), m2(µ, α) = EµB(X,α)2.

Lemma 23. The function α → m̃(α) is nonnegative and increasing in α. As α → 0,

m̃(α) ≍ (log ζ)−1. (3.3.3)
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m1(µ, α) ≤



−m̃(α) + C
(

ζ(α)
log ζ(α)

)2
µ2, for |µ| < 1/ζ(α),

C ϕ(ζ/2)
α

, for |µ| < ζ(α)/2

(α ∧ c)−1, for all µ.

m2(µ, α) ≤



C
log ζ(α)

1
ζ(α)2

m̃(α)
α
, for |µ| < 1/ζ(α),

C
ζ

ϕ(ζ/2)
α2 , for |µ| < ζ(α)/2

(α ∧ c)−1, for all µ.

Proof of Lemma 22. The derivative (log γ)′(u) is bounded in absolute value for |u| ≥ 1
by a universal constant, and γ is unimodal and symmetric, so g ≍ γ and the monotonicity
of g/ϕ follow from the proof of Lemma 1 in Johnstone and Silverman (2004). The
second estimate is immediate using the first one and the fact that

´∞
y

(u log2 u)−1du =
(log y)−1.

Proof of Lemma 23. Using that
´
Bϕ = 0, one can rewrite, as in Johnstone and Silver-

man (2004), m̃ as

m̃(α) = 2
ˆ ∞

0

αB(z)2

1 + αB(z)ϕ(z)dz

from which it follows that, separating into z ≤ ζ anf z > ζ,

m̃(α) ≍
ˆ ζ

0
αB(z)2ϕ(z)dz +

ˆ ∞

ζ

B(z)ϕ(z)dz.

The first term is dealt with using the estimate of Corollary 1 of Johnstone and Silverman
(2004), valid for any γ log-Lipshitz on R which is the case here, which leads to, for ζ
large enough, or equivalently α small enough,

α

ˆ ζ

0
B(z)2ϕ(z)dz ≤ α

C

ζ

g(ζ)2

ϕ(ζ) ≲ C
g(ζ)
ζ
.

For the second term, noting that Bϕ ∼ g and using Lemma 22 for the tail bound on
(minus) the primitive of g, one gets that this term is asymptotic to g(ζ)ζ log ζ ≍ log−1 ζ

and always dominates the first term. This proves the claim on m̃.
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Now turning to m1 and m2, note that the global bounds directly follow from the fact
that |B(x, α)| ≤ C ∨ α−1. The intermediate bounds are derived as in Johnstone and
Silverman (2004), since the proofs involve only the log-Lipschitz property of γ.

For small signals |µ| ≤ 1/ζ and the first moment, one proceeds as in Johnstone
and Silverman (2004) by (Taylor-) expanding the function µ → m1(µ, α) at the order
2 around µ = 0. The first derivative in µ is 0, since the function is symmetric. The
following bound on the second derivative is as in Johnstone and Silverman (2004): on
[−ζ, ζ] one bounds ϕ′′(u) by C(1 + u2)ϕ(u) and uses ϕ(z−µ) ≤ Cϕ(z) thanks to the fact
that |µ| ≤ ζ−1,∣∣∣∣∣ ∂2

∂µ2m1(µ, α)
∣∣∣∣∣ ≤
ˆ ∞

−∞
|B(z, α)ϕ′′(z − µ)|dz

≤
ˆ ζ

−ζ

|B(z)|(1 + z2)ϕ(z)dz + 2
α

ˆ
|z|>ζ

ϕ′′(z − µ)dz

≤
ˆ ζ

−ζ

g(z)(1 + z2)dz + CB(ζ)ϕ(ζ) = (i) + (ii).

The term (ii) is bounded by a constant times ζg(ζ) ≤ C(log ζ)−2. The integral defining
(i) can be separated in |z| ≤ 2, for which it is bounded by a constant, and |z| > 2, part
on which one integrates by part to obtain

ˆ ζ

2
g(z)z2dz ≤ C

ˆ ζ

2

z

log2 z
dz = ζ2

2 log2 ζ
− 4

2 log2 2
−
ˆ ζ

2

z

2 log3 z
dz ≤ ζ2

2 log2 ζ
.

One concludes that the term (i) dominates in the expression of the second derivative,
and the bound for m1 follows by a Taylor expansion.

The bound for the second moment is obtained by separating again |z| ≤ ζ and |z| > ζ

to obtain

m2(µ, α) ≤ C

ˆ ζ

−ζ

B(z)2ϕ(z − µ)dz + 1
α2

ˆ
|z|>ζ

ϕ(z − µ)dz

≤ C

ˆ ζ

0
B(z)2ϕ(z)dz + 2

α2
ϕ(z − µ)
z − µ

≤ C
g(ζ)
ζ

1
α

+ C
g(ζ)
ζ

1
α
.

By using the estimate g(ζ) ≍ m̃(α)/(ζ log ζ) which follows from the estimate on m̃, the
bound on m2 for small µ follows.
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Let us now state a simplified version of Lemma 26 of Castillo and Roquain (2018).
Note that the authors introduce a quantity Tµ(α) not appearing here since Tµ(α) ≥ 1
which will be sufficient in what follows. Another proof of Lemma 24 can be obtained
using a slightly different approach, see Lemma 18 of Castillo and Szabo (2018).

Lemma 24. Let Φ̄(t) =
´∞

t
ϕ(u)du. There exist M0 > 0 and a0 ∈ (0, 1) such that

∀µ ≥ M0 and ∀α ≤ a0

m1(µ, α) ≥ 1
4B(ζ)Φ̄(ζ − µ)

.

Proof. We follow the proof of Lemma 26 in Castillo and Roquain (2018) that stays valid
for our special Slab (3.1.6) as it only needs g to be decreasing and (log g)′ to be bounded
which is stated in (3.1.7). In the page 59 of their paper, one has the following inequalities

∀α ≤ a0,∀M0 ≤ µ ≤ ζ − 1, m1(µ, α) ≥ 1
2B(ζ)Φ̄(ζ − µ) + CB(ζ)ϕ(ζ − µ)

µ

and
∀α ≤ a0,∀µ ≥ ζ − 1, m1(µ, α) ≥ 1

4B(ζ)Φ̄(ζ − µ)

which leads to the result.

We will also need the following result

Lemma 25. Let M0 and a0 be the constants appearing in Lemma 24. For every µ ≥ M0

and α ≤ a0,
m2(µ, α) ≲ m1(µ, α)

α
.

Proof. We have E[|B(µ + Z, α)|] = m1(µ, α) + E[|B(µ + Z, α)| − B(µ + Z, α)] with
Z ∼ N (0, 1).
We first use Lemma 24 to show that, for µ ≥ M0 and α ≤ a0, m1(µ, α) ≳ 1.

For M0 ≤ µ < ζ, we have, for small enough α

m1(µ, α) ≳ B(ζ)Φ̄(ζ − µ) ≳ g(ζ)
ϕ(ζ)

(
1
ζ

− 1
ζ3

)
ϕ(ζ − µ)

≳ g(ζ)ζ
2 − 1
ζ3 e− µ2

2 +µζ ≳
g(ζ)
ζ3 e− µζ

2 +µζ

≳
1

ζ4 log2(ζ)
e

µζ
2 ≳ 1
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For µ > ζ, we have, for small enough α

m1(µ, α) ≳ B(ζ)Φ̄(ζ − µ)

≳
g(ζ)
ϕ(ζ)

(
1
2 +
ˆ µ−ζ

0
ϕ(t)dt

)

≳
1
2
g(ζ)
ϕ(ζ) ≳ 1

Using the fact that, as noted in (88) of Johnstone and Silverman (2004), |B(x, α)| ≤
c = B(0)/(1 + B(0)) if B(x) < 0 and |B(x, α)| ≤ 1/α if B(x) ≥ 0, we have, for µ ≥ M0

and α ≤ a0, as m1(µ, α) ≳ 1,

E[|B(µ+ Z, α)|] ≤ m1(µ, α) + 2c ≲ m1(µ, α).

We also have, for α small enough, |B(µ+ Z, α)| ≤ 1
α
.

Hence m2(θ, α) ≤ E[|B(µ+Z, α)|2] ≤ 1
α
E[|B(µ+Z, α)|] ≲ m1(µ,α)

α
for α small enough.

3.3.3 Bounds for posterior moments and fixed α

Here we study r2(α, µ, x) :=
´

(u − µ)2dπα(u |x), where for x real we denote in slight
abuse of notation

πα(· |x) ∼ (1 − aα(x))δ0 + aα(x)γx(·).

For any real µ and α ∈ [0, 1], by definition

r2(α, µ, x) = (1 − aα(x))µ2 + aα(x)
ˆ

(u− µ)2γx(u)du. (3.3.4)

We first need to study the integral
´

(u − µ)2γx(u)du. The following Lemma is a
general result on densities that one could check for our special Slab γ but also for Laplace,
Cauchy or other classical choices of Slab densities.

Lemma 26. Let γ be any density on R such that there exist positive constants c1 and c2

such that |(log γ)′| ≤ c1 and |(log γ)′′| ≤ c2

ˆ
(u− µ)2γx(u)du = (x− µ)2 + g′′

g
(x) + 1 + 2(x− µ)g

′

g
(x). (3.3.5)
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which leads to the following upper bound
ˆ

(u− µ)2γx(u)du ≤ (x− µ)2 + c2 + 2c1|x− µ| ≤ 2(x− µ)2 + c3. (3.3.6)

Proof. Since γx(·) is a density function, for any x,
ˆ
γx(u)du = 1.

Noting that for any x,
´
uγx(u)du = x+ (log g)′(x) and that this quantity is in absolute

value less than |x| (check, cf before), one obtains

|
ˆ
uγx(u)du| ≤ |x|.

Decomposing u2 = (u − x)2 + 2x(u − x) + x2 and noting that
´

(u − x)2γx(u)du =
g′′(x)/g(x) + 1,

ˆ
u2γx(u)du = g′′

g
(x) + 1 + 2xg

′

g
(x) + x2.

Using that |γ′| ≤ c1γ and |γ′′| ≤ c2γ, this leads to

|g′(x)| ≤
ˆ

|γ′(x− u)|ϕ(u)du ≤ c1

ˆ
γ(x− u)ϕ(u)du = c1g(x)

and similarly |g′′| ≤ c2g, so that
´
u2γx(u)du ≤ C(1 + x2).

Similarly, for any real µ,
ˆ

(u− µ)2γx(u)du = (x− µ)2 + g′′

g
(x) + 1 + 2(x− µ)g

′

g
(x). (3.3.7)

Bounds for zero signal.

Lemma 27. Let γ be as in (3.1.6) and let r2(α, µ, x) be as in (3.3.4).

E0r2(α, 0, x) ≲ ατ(α)2{1 + log(1 + τ(α))}−2
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Proof. Suppose for now that x ∼ N (0, 1). One has

r2(α, 0, x) = aα(x)
ˆ
u2γx(u)du.

Using the simple bound (3.3.1) for aα(x), this implies for all x

r2(α, 0, x) ≲
[
1 ∧ α

1 − α

g

ϕ
(x)
]

(1 + x2). (3.3.8)

By taking the expectation and noticing that τ(α) is the number that makes both sides
of the infimum of the last display equal, one obtains

E0r2(α, 0, x) ≲
ˆ

1l|x|>τ(α)(1 + x2)ϕ(x)dx+
ˆ

1l|x|≤τ(α)
α

1 − α

g

ϕ
(x)ϕ(x)(1 + x2)dx.

As
ˆ ∞

M

x2ϕ(x)dx ≤ CMϕ(M), the first term of the last display is bounded by

ϕ(τ(α))/τ(α) + τ(α)ϕ(τ(α)).

For γ as in (3.1.6), as g ≍ γ by Lemma 22, the second term of the last display is bounded
by a constant times

α

ˆ τ(α)

−τ(α)
γ(x)(1 + x2)dx = α

ˆ τ(α)

0

1 + x2

(1 + x)(1 + log(1 + x))2dx

≤ α

ˆ 1+τ(α)

1

y2

y(1 + log y)2dy,

setting y = 1 + x and using that 1 + x2 ≤ y2 for y ≥ 1. An integration by parts gives

ˆ 1+τ(α)

1

y

(1 + log y)2dy =
[

y2

2(1 + log y)2

]1+τ(α)

1
+
ˆ 1+τ(α)

1

y

(1 + log y)3dy.

The map y → y/(1 + log y)3 is increasing for y ≥ e2. This implies, for C > 0 a universal
constant, ˆ 1+τ(α)

1

y

(1 + log y)3dy ≤ C + τ(α) 1 + τ(α)
{1 + log(1 + τ(α))}3 .
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Bounds for nonzero signal. The definition of r2(α, µ, x) and the moment bound (3.3.6)
lead to

r2(α, µ, x) ≤ (1 − aα(x))µ2 + aα(x)(2(x− µ)2 + C). (3.3.9)

The weight 1 − aα(x) is bounded using (3.3.2), so that

r2(α, µ, x) ≤ µ2
[
1l|x|≤τ(α) + e− 1

2 (|x|−τ(α))21l|x|>τ(α)
]

+ 2(x− µ)2 + C. (3.3.10)

Let us prove the following lemma

Lemma 28. Let a0 be the solution of the equation τ(α) = 20. There exist C1, C2 > 0
such that for any 0 < α ≤ a0 (and alpha small enough for τ̃ = τ) and any real µ,

Eµr2(α, µ, x) ≤ (µ2 + C1)1l|µ|≤τ(α)+
√

τ(α) + C21l|µ|>τ(α)+
√

τ(α).

In particular, there exists C3 > 0 such that for any 0 < α ≤ a0 and any real µ,

Eµr2(α, µ, x) ≤ τ(α)2
[
1 + τ(α)−1/2

]
1l|µ|≤τ(α)+

√
τ(α) + C3.

Proof. Let us set as shorthand notation for the proof

T := τ(α), ϵ = T−1/2, δ = ϵ

2(1 + ϵ) .

The condition on α implies ϵ < 1/4. Let us distinguish two cases. First, if |µ| ≤ (1 + ϵ)T ,
one simply bounds the first term on the right hand side of (3.3.9) by µ2 and the
expectation of the second one by a constant, which leads to the first term displayed in
the upper-bound of the lemma.

In the case that |µ| > (1 + ϵ)T , one uses (3.3.10) to get

Eµr2(α, µ, x) ≤ µ2
(
Pµ[|x| ≤ T ] + Eµ[e− 1

2 (|x|−T )2 ]
)

+ C.

Under the present assumption on µ, note that |µ| − T = 2δ|µ| + (1 − 2δ)|µ| − T > 2δ|µ|.
The triangle inequality implies

Pµ[|x| ≤ T ] ≤ Pµ[|ε| ≥ |µ| − T ] = 2Φ̄ (2δ|µ|) .
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Let us consider the interval A = [µ− δ|µ|, µ+ δ|µ|]. One can split

Eµ[e− (|x|−T )2
2 ] =

ˆ
e− (|x|−T )2

2 e− (x−µ)2
2

dx√
2π

≤
ˆ

Ac

e− (x−µ)2
2

dx√
2π

+
ˆ

A

e− (|x|−T )2
2

dx√
2π
.

By definition of A, the first term of the last bound is 2Φ̄ (δ|µ|). Moreover, on A, we have
|x| ≥ (1 − δ)|µ|, so |x| − T ≥ (1 − δ − 1

1+ϵ
)|µ| = δ|µ|. This leads to

ˆ
A

e− (|x|−T )2
2

dx√
2π

≤ 2δ|µ|e−δ2µ2/2 ≤ Ce−δ2µ2/4,

where one uses xe−x2/2 ≤ Ce−x2/4 for x ≥ 0. Putting the previous bounds together
implies

Eµr2(α, µ, x) ≤ Cµ2
[
Φ̄ (δ|µ|) + ϕ(δµ/2)

]
+ C ≤ Cµ2ϕ(δµ/2) + C

≤ Cδ−2ϕ(δµ/4) + C ≤ CTe−dT 1/2 + C,

where we have used that ve−v ≤ 2e−v/2 for v ≥ 0 and where d = 1/256. The last bound
in the previous display is bounded by a universal constant, which leads to the second
term displayed in the upper-bound of the lemma.

This finally leads to the bound, for α = o(1) and any µ

Eµ[r2(α, µ, x)] ≤ τ(α)2(1 + o(1)) (3.3.11)

3.3.4 Risk bound for fixed α: proof of Proposition 5

Proof of Proposition 5. Using the facts that τ 2(α) ≤ ζ2(α) ≤ 2 log(1/α) + o(log(1/α))
(use for example Lemma 14 of Castillo and Roquain (2018)) and that, for α small enough,
there exist c1 > 1 and c2 > c1 two constants such that 2c1 log(1/α) ≤ τ(α) ≤ 2c2 log(1/α),
we have, for α small enough

Eθ0

´
∥θ − θ0∥2dΠα(θ |X) ≤ Cnατ(α)2/ log2(τ(α)) + snτ(α)2(1 + o(1))

≤ 2c1Cnα log(1/α)/ log2(2c2 log(1/α)) + 2sn log(1/α)(1 + o(1))
≤ 2c1Cnα log(1/α)/ log2(2c2 log(1/α)) + 2sn log(n/sn)(1 + o(1))
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The first term, as it involves an increasing function of α (as here α is small enough), is
bounded by 2c1Csn log ((n/sn) log(log n/sn)) / log2(2c2 log(n/sn log(log n/sn)))), which
is bounded by

2c1Csn log ((n/sn) log(log n/sn)) / log2(log(nc2))) = o(sn log(n/sn))

which completes the proof.

3.3.5 Random α bounds

For convenience we work with the ‘threshold’ τ(α) (as we take α ≤ α0 such that
τ̃(α) = τ(α)), although other choices t(α), ζ(α) should be essentially equivalent.

Lemma 29 (no signal or small signal). Let α be a fixed non-random element of (0, 1).
Let α̂ be a random element of [0, 1] (chosen small enough so that τ̃(α) = τ(α)) that may
depend on x ∼ N (0, 1) and on other data. Then there exists C1 > 0 such that

Er2(α̂, 0, x) ≤ C1
[
ατ(α)2(1 + log(1 + τ(α))−2 + P (α̂ > α)1/2

]
.

There exists C2 > 0 such that for any real µ, if x ∼ N (µ, 1),

Er2(α̂, µ, x) ≤ µ2 + C2.

Proof. Using the bound (3.3.8) on r2(α, 0, x),

r2(α̂, 0, x) = r2(α̂, 0, x)1lα̂≤α + r2(α̂, 0, x)1lα̂>α

≲

[
α̂

1 − α̂

g

ϕ
(x) ∧ 1

]
(1 + x2)1lα̂≤α + (1 + x2)1lα̂>α

≲

[
α

1 − α

g

ϕ
(x) ∧ 1

]
(1 + x2)1lα̂≤α + (1 + x2)1lα̂>α.

For the first term in the last display, one bounds the indicator from above by 1 and
proceeds as in the proof of (3.2.2) to bound its expectation by Cτ(α)2(1+log(1+τ(α))−2.
The first part of the lemma follows by noting that E[(1 + x2)1lα̂>α] is bounded from
above by (2 + 2E0[x4])1/2P (α̂ > α)1/2 ≤ C1P (α̂ > α)1/2 by Cauchy-Schwarz inequality.
The second part of the lemma follows from the fact that using (3.3.9), r2(α, µ, x) ≤
(1 − aα(x))µ2 + Caα(x)((x− µ)2 + 1) ≤ µ2 + C(x− µ)2 + C for any α.
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Lemma 30 (signal). Let α be a fixed non-random element of (0, 1) (chosen small enough so
that τ̃(α) = τ(α)). Let α̂ be a random element of [0, 1] that may depend on x ∼ N (µ, 1)
and on other data and such that τ(α̂)2 ≤ d log(n) with probability 1 for some d > 0.
Then there exists C2 > 0 such that for all real µ,

Er2(α̂, µ, x) ≤ τ(α)2(1 + o(1)) + C2(1 + d log n)P (α̂ < α)1/2.

Proof. Combining (3.3.2) and (3.3.9),

r2(α̂, µ, x) ≤ µ2
[
1l|x|≤τ(α̂) + e− 1

2 (|x|−τ(α̂))21l|x|>τ(α̂)
]

+ C((x− µ)2 + 1).

Note that it is enough to bound the first term on the right hand side in the last display,
as the last one is bounded by a constant under Eµ. Let us distinguish the two cases
α̂ ≥ α and α̂ < α.

In the case α̂ ≥ α, as τ(α) is a decreasing function of α,
[
1l|x|≤τ(α̂) + e− 1

2 (|x|−τ(α̂))21l|x|>τ(α̂)
]

1lα̂≥α

≤
[
1l|x|≤τ(α̂) + 1lτ(α̂)<|x|≤τ(α) + e− 1

2 (|x|−τ(α̂))21l|x|>τ(α)
]

1lα̂≥α

≤ 1l|x|≤τ(α) + e− 1
2 (|x|−τ(α))21l|x|>τ(α),

where we have used e− 1
2 v2 ≤ 1 for any v and that e− 1

2 (u−c)2 ≤ e− 1
2 (u−d)2 if u > d ≥ c. As

a consequence, one can borrow the fixed α bound (3.3.11) obtained previously so that

E [r2(α̂, µ, x)1α̂≥α] ≤ Eµ

[
µ2(1l|x|≤τ(α) + e− 1

2 (|x|−τ(α))21l|x|>τ(α)) + C((x− µ)2 + 1)
]

≤ τ(α)2(1+o(1)).

In the case α̂ < α, setting bn =
√
d log n and noting that τ(α̂) ≤ bn with probability

1 by assumption, proceeding as above, with bn now replacing τ̃(α), one can bound

1l|x|≤τ(α̂) + e− 1
2 (|x|−τ(α̂))21l|x|>τ(α̂)

≤ 1l|x|≤bn + e− 1
2 (|x|−bn)21l|x|>bn .

From this one deduces that

E
(
µ2
[
1l|x|≤τ(α̂) + e− 1

2 (|x|−τ(α̂))21l|x|>τ(α̂)
]

1lα̂<α

)
≤ C

(
Eµ

[
µ41l|x|≤bn + µ4e−(|x|−bn)2])1/2

P (α̂ < α)1/2.
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Using similar bounds as in the fixed α case, one obtains

Eµ

[
µ41l|x|≤bn + µ4e−(|x|−bn)2] ≤ C(1 + b4

n).

Taking the square root and gathering the different bounds obtained concludes the
proof.

3.3.6 Undersmoothing

Let α1 be defined as the solution in α of the equation,

dαm̃(α) = η̃n, (3.3.12)

where d is a constant to be chosen small enough, see below, and

η̃n = (sn ∨ log2 n)/n.

Note that under (3.2.1), we have η̃ = sn/n. As in Johnstone and Silverman (2004)
we note that α → αm̃(α) is increasing in α for α small enough, and equals 0 at 0. So
a solution of (3.3.12) exists. Also, provided ηn is small enough, it can be made smaller
than any given arbitrary constant.
Let ζ1 be defined via B(ζ1) = 1/α1 for α1 as in (3.3.12). As stated in (3.3.3), m̃(α) ≍
(log ζ)−1, as α = o(1).
Note that in Johnstone and Silverman (2004), ζ1 is defined as the solution in ζ of
αm̃(α) = η̃nζ

κ. The following result is an adaptation of Lemma 10 in Johnstone and
Silverman (2004) to accommodate this different choice. As already noted in Chapter 2, it
seems choosing α = α1 as in (3.3.12) is necessary to obtain a sharp posterior integrated
squared rate.

Lemma 31. There exist universal constants C and η0 such that if η ≤ η0 and n/ log2(n) ≥
η−1

0 , then
sup

θ∈ℓ0[η]
Pθ[ζ̂ < ζ1] ≤ exp(−Cnη̃n).

Proof. Using log(1/η̃n) ≤ log(n) − 2 log log n, the bound on ζ from Lemma 32 gives that
ζ2

1 ≤ 2 log n − 3
2 log log n, so that t(α1) ≤ ζ(α1) = ζ1 ≤

√
2 log n = t(αn), so α1 belongs

to the interval [αn, 1] over which the likelihood is maximised. For the rest of the proof
let us denote α = α1.

Then one notices that {ζ̂ < ζ1} = {α̂ > α1} = {S(α1) > 0} as well as {ζ̂ > ζ1} =
{S(α1) < 0}: the sign of S at any particular w determines on which side of α̂ the given
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α lies. So,
Pθ[ζ̂ < ζ1] = Pθ[S(α1) > 0].

The score function equals S(α) = ∑n
i=1 β(Xi, α), a sum of independent variables.

By Bernstein’s inequality, if Wi are centered independent variables with |Wi| ≤ M and∑n
i=1 Var(Wi) ≤ V , then for any A > 0,

P

[
n∑

i=1
Wi > A

]
≤ exp{−1

2A
2/(V + 1

3MA)}.

Set Wi = B(Xi, α)−m1(θ0,i, α) and A = −∑n
i=1 m1(θ0,i, α). Then one can take M = c3/α,

using Lemma 7. One can bound −A from above as follows

−A ≤ −
∑
i/∈S0

m̃(α) +
∑
i∈S0

c

α

≤ −(n− sn)m̃(α) + csn/α

≤ −nm̃(α)/2 + cdnm̃(α)
≤ −nm̃(α)/4,

and

V (α) ≤
∑
i/∈S0

m2(0, α) +
∑
i∈S0

m2(θ0,i, α)

≤ c4(n− sn)m̃(α)
ζκα

+ csn/α
2

≤ C

α

[
(n− sn)m̃(α)ζ−κ + csn/α

]
≤ Cα−1

[
nm̃(α)ζ−κ/2 + cdnm̃(α)

]
≤ C ′dnm̃(α)/α, (3.3.13)

where one uses that ζ−1 is bounded [in fact, goes to 0 if η0 = o(1)]. This leads to

V + 1
3MA

A2 ≤ C ′d

nαm̃(α) + 4c3

3nαm̃(α) ≤ c−1
5

nαm̃(α) .

Deduce that
P [S(α) > 0] ≤ exp{−c5nαm̃(α)}.
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Lemma 32 (Basic bounds on ζ(α), τ(α) and t(α)). Let α = α1 be defined by (3.3.12) for
d a given constant and η̃n small enough, and let ζ(α) be given by B(ζ(α)) = α−1. Then
for some constants c1, c2,

log(1/η̃n) + c1 ≤ ζ(α)2

2 ≤ log(1/η̃n) + 1
2 log(1 + log(1/η̃n)) + c2.

The same upper and lower bound hold (with possible different constants c1 and c2) for
τ(α)2 and t(α). In particular, ζ(α)2 ∼ τ(α)2 ∼ t(α)2 ∼ 2 log(1/η̃n) as η̃n → 0.

Proof. But for small η̃n, we have α small, or equivalently ζ large, so that (g/B)(ζ) ∼ ϕ(ζ).
Now from the definition (3.3.12) of α combined with (3.3.3), one has

η̃n ≍ dαζ log(ζ) g(ζ)
B(ζ)B(ζ) ≍ ζ log(ζ)ϕ(ζ) ≍ ζ log(ζ)e−ζ2/2.

From this deduce that

| log c+ log ζ + log (log(ζ)) − ζ2

2 + log(1/η̃n)| ≤ C.

| log c+ C ′ log ζ − ζ2

2 + log(1/η̃n)| ≤ C.

In particular, using log ζ ≤ a + ζ2/4 for some constant a > 0 large enough, one gets
ζ2 ≤ 4(C + log(1/η̃n)). Inserting this back into the previous inequality leads to

ζ2/2 ≤ log(1/η̃n) + C + 1
2 log(1 + log(1/η̃n)).

To prove that the same statement holds for τ(α) and t(α) note that following from
the definition of τ(α) and ζ(α) we have ζ(α/2) ≤ τ(α) ≤ ζ(α) and from page 1622 of
Johnstone and Silverman (2004) we have that ζ(α)2 − c ≤ t(α)2 ≤ ζ(α)2.

3.3.7 Oversmoothing

Following Johnstone and Silverman (2004), Section 8.3, let us define

π̃(τ ;µ) = 1
n

#{i : |µi| ≥ τ}. (3.3.14)

We also set, recalling that α0 is defined via τ(α0) = 1,
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α(τ, π) = sup{α ≤ α0 : πm1(τ, α) ≥ 2m̃(α)}. (3.3.15)

One also defines ζτ,π as the corresponding pseudo-threshold B−1(α(τ, π)−1).

Lemma 33. There exists C and π0 such that if π < π0, then for all τ ≥ 1,

sup
θ: π̃(τ ;θ)≥π

Pθ[ζ̂ > ζτ,π] ≤ exp{−Cnϕ(ζτ,π)}.

Proof. This is the same proof as in Johnstone and Silverman (2004), Lemma 11, where
we use Lemma 23 to bound m2(0, α) and Lemma 25 for m2(τ, α).

3.3.8 Proof of Theorem 18

Let us decompose the risk Rn(θ0) = Eθ0

´
∥θ − θ0∥2dΠα̂(θ |X) according to whether

coordinates of θ correspond to a ‘small’ or ‘large’ signal, the threshold being ζ1 = β−1(α−1
1 ),

with α1 defined in (3.3.12). One can write

Rn(θ0) =
[ ∑

i: θ0,i=0
+

∑
i: 0<|θ0,i|≤ζ1

+
∑

i: |θ0,i|>ζ1

]
Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X).

We next use the first part of Lemma 29 with α = α1 to obtain, for any θ0 in ℓ0[sn],

(I) :=
∑

i: θ0,i=0
Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X)

≤ C1
∑

i: θ0,i=0

[
α1τ(α1)2(1 + log(1 + τ(α1))−2 + Pθ0(α̂ > α1)

]
≤ C1

[
(n− sn)α1τ(α1)2(1 + log(1 + τ(α1))−2 + (n− sn)e−c1 log2 n

]
,

where for the last inequality we use Lemma 31 and (3.2.1). From (3.3.12) one gets, with
ηn = sn/n,

nα1 ≲ nηnζ
−1
1 g(ζ1)−1 ≲ sn log(ζ1).

Therefore, as in Proposition 5, the term (I) is a o(sn log(n/sn))



3.3 Proofs 113

For the ‘intermediate’ signal part, using the second part of the Lemma 29, we have

∑
i: 0<|θ0,i|≤ζ1

Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X)

≤
∑

i: 0<|θ0,i|≤ζ1

(θ2
0,i + C)

≤ (ζ2
1 + C)#{i : 0 < |θ0,i| ≤ ζ1},

Now using Lemma 32 and the fact that τ(α1) ≤ ζ1, one obtains that the contribution
to the risk of the indices i with 0 < |θ0,i| ≤ ζ1 is bounded by

2 log(n/sn)(1 + o(1))#{i : 0 < |θ0,i| ≤ ζ1} (3.3.16)

It remains to bound the part of the risk for indexes i with |θ0,i| > ζ1. To do so, one
uses Lemma 30 with α chosen as α = α2 := α(ζ1, π1) and π1 = π̃(ζ1; θ0) the proportion of
components of the true signal above ζ1, following the definitions (3.3.14)–(3.3.15). Also,
τ̃(α2) = τ(α2). One denotes by ζ2 the pseudo-threshold associated to α2.

Let us first compare α1 and α2. For small enough α, the bound on m1 from Lemma
23 becomes 1/α, so that, using the definition (3.3.12) of α1,

m1(ζ1, α1)
m̃(α1)

≤ 1
α1

(
ηn

dα1

)−1
≤ d

ηn

≤ d

π1
,

using the rough bound π1 ≤ ηn. Note that both functions m̃(·)−1 and m1(ζ1, ·) are
decreasing via Lemma 23, and so is their product on the interval where both functions
are positive. As d < 2, by definition of α2 this means α2 < α1 that is ζ1 < ζ2.

One can now apply Lemma 30 with α = α2 and use the fact that τ(α2) ≤ ζ2

∑
i: |θ0,i|>ζ1

Eθ0

ˆ
(θi − θ0,i)2dΠα̂(θi |X)

≤ nπ1
[
τ(α2)2(1 + o(1)) + C2(1 + d log n)Pθ0(α̂ < α2)1/2

]
≤ nπ1

[
ζ2

2 (1 + o(1)) + C2(1 + d log n)Pθ0(ζ̂ > ζ2)1/2
]
.

Let us verify that this term in the last display is bounded above by nπ1ζ
2
2 (1 + o(1)). If

ζ2 > log n, this is immediate by bounding Pθ0(ζ̂ > ζ2) by 1. If ζ2 ≤ log n, Lemma 33
implies Pθ0(ζ̂ > ζ2) ≤ exp(−Cnϕ(ζ2)) ≤ exp(−C

√
n), so this is also the case.
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One now compares ζ2 first to a certain ζ3 = ζ(α3) defined by α3 (largest) solution of

Φ̄(ζ(α3) − ζ1) = 8
π1
α3m̃(α3),

with Φ̄(x) = P [N (0, 1) > x]. Using Lemma 34, which also gives the existence of ζ3, one
gets

m1(ζ1, α3)
m̃(α3)

≥
1
4B(ζ3)Φ̄(ζ3 − ζ1)

m̃(α3)
= 1

4α3

8α3m̃(α3)
π1m̃(α3)

= 2
π1
.

This shows, reasoning as above, that α3 ≤ α2, that is ζ2 ≤ ζ3. Following Johnstone and
Silverman (2004), one distinguishes two cases to further bound ζ3.

If ζ3 > ζ1 + 1, using ζ2
2 ≤ ζ2

3 and m̃(α3) ≲ ζ3g(ζ3),

π1ζ
2
2 ≤ ζ2

3
8α3m̃(α3)
Φ̄(ζ3 − ζ1)

≲ ζ3
3
g(ζ3)
B(ζ3)

ζ3 − ζ1

ϕ(ζ3 − ζ1)

≤ Cζ4
3

ϕ(ζ3)
ϕ(ζ3 − ζ1)

= Cζ4
3ϕ(ζ1)e−(ζ3−ζ1)ζ1

≤ C(ζ1 + 1)4e−ζ1ϕ(ζ1),

where for the last inequality we have used that x → x4e−(x−ζ1)ζ1 is decreasing for x ≥ ζ1+1.
Lemma 32 now implies that ϕ(ζ1) ≲ ηn. As ζ1 goes to ∞ with n/sn, one gets π1ζ

2
2 ≲ ηn.

In this case, gathering the three different bounds leads us to

Rn(θ0) ≤ o(sn log(n/sn)) + 2 log(n/sn)(1 + o(1))#{i : 0 < |θ0,i| ≤ ζ1} + sn

≤ o(sn log(n/sn)) + 2sn log(n/sn)(1 + o(1)) + sn

≤ 2sn log(n/sn)(1 + o(1))

If ζ1 ≤ ζ3 ≤ ζ1 + 1, let ζ4 = ζ(α4) with α4 solution in α of

Φ̄(1) = 8αm̃(α)π−1
1 .

By the definition of ζ3, since Φ̄(1) ≤ Φ̄(ζ3 − ζ1), we have 8α4m̃(α4) ≤ 8α3m̃(α3) so that
α4 ≤ α3, that is also ζ3 ≤ ζ4. Using (3.3.3) as before,

Φ̄(1) ≲ g(ζ4)
B(ζ4)

π−1
1 ≲ ϕ(ζ4)π−1

1 .

Taking logarithms this leads to

ζ2
4 ≤ C + 2 log(π−1

1 ).
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In particular, ζ2
2 ≤ 2 log(π−1

1 ) + C. It follows that

nπ1ζ
2
2 ≤ 2nπ1 log(π−1

1 ) + Cnπ1 = 2nπ1 log(n/sn) + 2nπ1 log(sn/(nπ1)) + Cnπ1

≤ 2nπ1 log(n/sn) + 2sn log(n/sn)
[

nπ1
sn

log(sn/(nπ1))(log(n/sn))−1 + C nπ1
sn

(log(n/sn))−1
]

≤ 2nπ1 log(n/sn) + 2sn log(n/sn) [C ′(log(n/sn))−1] ,

Where the last line uses that nπ1 ≤ sn and that u ∈ [1; +∞] 7→ log(u)/u is bounded.
Now gathering the three different bounds and using the fact that #{i : 0 < |θ0,i| ≤

ζ1} + nπ1 = #{i : 0 < |θ0,i| ≤ ζ1} + #{i : |θ0,i| ≥ ζ1} ≤ sn leads us to

Rn(θ0) ≤ o(sn log(n/sn)) + 2 log(n/sn)#{i : 0 < |θ0,i| ≤ ζ1} + 2nπ1 log(n/sn)
≤ 2sn log(n/sn)(1 + o(1))

which concludes the proof of Theorem 18.

Lemma 34. Let Φ̄(t) =
´∞

t
ϕ(u)du. For π1, ζ1 as above, a solution 0 < α ≤ α1 to the

equation
Φ̄(ζ(α) − ζ1) = 8π−1

1 αm̃(α). (3.3.17)

exists. Let α3 be the largest such solution. Then for c0 in (3.2.1) small enough,

m1(ζ1, α3) ≥ 1
4B(ζ3)Φ̄(α3 − ζ1). (3.3.18)

Proof. First we check the existence of a solution. Set ζα = ζ(α) and Rα := Φ̄(ζα −
ζ1)/(αm̃(α)). For α → 0 we have ζα − ζ1 → ∞ so by using Φ̄(u) ≍ ϕ(u)/u as u → ∞
one gets, treating terms depending on ζ1 as constants and using ϕ(ζα) ≍ αg(ζα),

Φ̄(ζα − ζ1) ≍ ϕ(ζα − ζ1)
ζα − ζ1

≍ αg(ζα)eζαζ1 .

As m̃(α) ≍ ζαg(ζα), one gets Rα ≍ eζαζ1/ζα → ∞ as α → 0. On the other hand, with
π1 ≤ sn/n and α1m̃(α1) = dsn/n,

Rα1 = 1
2α1m̃(α1)

= dn

2sn

≤ 8
π1

d

16 ,

so that Rα1 < 8/π1 as d < 2. This shows that the equation at stake has at least one
solution for α in the interval (0, α1).

Finally (3.3.18) is a direct consequence of Lemma 24.





Chapter 4

Adaptive Pólya trees on densities
using a Spike and Slab type prior

4.1 Introduction

The paper Castillo (2017b) showed that, for well chosen parameters, Pólya trees
are able to model smooth functions and to induce posterior distributions with optimal
convergence rates in the minimax sense for a range of Hölder regularities and also
derived a Bernstein-von Mises theorem as well as a Donsker-type theorem, but the chosen
parameters depend on the Hölder regularity of the true density. Here, as in Castillo
(2017b), we will follow a multiscale approach to obtaining adaptive rates and limiting
shape results, introduced in Castillo and Nickl (2013), Castillo and Nickl (2014), Castillo
(2014) with connections to semiparametric functionals Castillo and Rousseau (2015).

4.1.1 Definition of a Pólya tree

Here we recall the construction of a standard Pólya tree.
First let us introduce some notation relative to dyadic partitions. For any fixed

indexes l ≥ 0 and 0 ≤ k < 2l, the rational number r = k2−l can be written in a unique
way as ε(r) := ε1(r) . . . εl(r), its finite expression of length l in base 1/2 (note that it can
end with one or more 0). That is, εi ∈ {0, 1} and

k2−l =
l∑

i=1
εi(r)2−i.
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Let E := ⋃
l≥0{0, 1}l ∪ {∅} be the set of finite binary sequences. We write |ε| = l if

ε ∈ {0; 1}l and |∅| = 0. We also use the notation ε′ = ε1ε2 . . . εl−1(1 − εl).
Let us introduce a sequence of partitions I = {(Iε)|ε|=l, l ≥ 0} of the unit interval. Here
we will consider regular partitions, as defined below. This is mostly for simplicity of
presentation, and other partitions, based for instance on quantiles of a given distribution,
could be considered as well. Set I∅ = (0, 1] and, for any ε ∈ E such that ε = ε(l; k) is the
expression in base 1/2 of k2−l, set

Iε :=
(
k

2l
,
k + 1

2l

]
:= I l

k

For any l ≥ 0, the collection of all such dyadic intervals is a partition of (0, 1]. A
random probability measure P follows a Pólya tree distribution PT (A) with parameters
A = {αε; ε ∈ E} on the sequence of partitions I if there exist random variables 0 ≤ Yε ≤ 1
such that,
1. the variables Yε0 for ε ∈ E are mutually independent and Yε0 follows a Beta(αε0, αε1)
distribution.
2. for any ε ∈ E , we have Yε1 = 1 − Yε0

3. for any l ≥ 0 and ε = ε1 . . . εl ∈ {0; 1}l, we have

P (Iε) =
l∏

j=1
Yε1...εj

(4.1.1)

.

This construction can be visualised using a tree representation, see Figure 4.1 : to
compute the random mass that P assigns to the subset Iε of [0, 1], one follows a dyadic
tree along the expression of ε : ε1; ε1ε2, . . . , ε1ε2 . . . εl = ε. The mass P (Iε) is a product
of Beta variables whose parameters depend on whether one goes ‘left’ (εj = 0) or ‘right’
(εj = 1) along the tree :

P (Iε) =
l∏

j=1,εj=0
Yε1,...,εj−10 ×

l∏
j=1,εj=1

(1 − Yε1,...,εj−10) (4.1.2)

This construction uniquely defines a random probability distribution on distributions on
[0, 1]. For more details we refer to Ferguson (1974) and Lavine (1992).
The corresponding object, the class of Pólya tree distributions, is quite flexible : different
behaviours of the sequence of parameters (αε)ε∈E give a Pólya tree with different properties.
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Fig. 4.1 Indexed binary tree with levels l ≤ 2 represented. The nodes index the intervals
Iε. Edges are labelled with random variables Yε.

A standard assumption is that the parameters αε only depend on the depth |ε|, so that

∀ε ∈ E , αε = al

for any l ≥ 1 and a sequence (al)l≥1 of positive numbers, which will be assumed henceforth.

Paths along the tree. A given ε = ε1, . . . , εl ∈ E gives rise to a path ε1 → ε1ε2 → ε1ε2 . . . εl.
We denote I [i]

ε := Iε1...εi
, for any i in {1, . . . , l}. Similarly, denote

Y [i]
ε = Yε1...εi

Conversely, any pair (l, k) with l ≥ 0 and k ∈ {0, . . . 2l − 1} is associated with a unique
ε = ε(l, k), the expression of length l in base 1/2 of k2l.

4.1.2 Function spaces and wavelets

We briefly introduce some standard notation appearing in the statements below.
Haar basis. The Haar wavelet basis is {ϕ, ψlk, 0 ≤ k < 2l, l ≥ 0}, where ϕ = 1l[0,1] and,
for ψ = −1l(0,1/2] + 1l(1/2,1],

ψlk(·) = 2l/2ψ(2l · −k), 0 ≤ k < 2l, l ≥ 0.
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In this paper our interest is in density functions, that is nonnegative functions g withˆ 1

0
gϕ =

ˆ 1

0
g = 1, so that their first Haar-coefficient is always 1. So, we will only need

to consider the basis functions ψlk and simply write informally (ψlk) for the Haar basis.

Function classes. Let L2 = L2[0, 1] denote the space of square-integrable functions on
[0, 1] relative to Lebesgue measure equipped with the ∥ · ∥2-norm. For f, g ∈ L2, denote

⟨f, g⟩ := ⟨f, g⟩2 =
ˆ 1

0
fg.

Let L∞ = L∞[0, 1] denote the space of all measurable functions on [0, 1] that are bounded
up to a set of Lebesgue measure 0, equipped with the (essential) supremum norm ∥ · ∥∞.
The class Cα[0, 1], α ∈ (0, 1], of Hölder functions on the interval [0, 1] is the set of functions
g on [0, 1] such that supx ̸=y∈[0,1] |g(x) − g(y)|/|x − y|α is finite. Let us recall that if a
function g belongs to Cα, α ∈ (0, 1], then the sequence of its Haar-wavelet coefficients
⟨g, ψlk⟩ satisfies

sup
0≤k<2l,l≥0

2l(1/2+α)|⟨g, ψlk⟩| < ∞. (4.1.3)

For a given α > 0, and n ≥ 1, define

ε∗
n,α =

(
log n
n

) α
2α+1

. (4.1.4)

This is the minimax rate for estimating a density function in a ball of α-Hölder functions,
when the supremum norm is considered as a loss, see Ibragimov and Khas’minskii (1980)
and Khas’minskii (1979).

4.1.3 Spike and Slab prior distributions ’truncated’ at a cer-
tain level L.

In the following, one defines the cutoff Lmax = log2(n) and L the largest integer such
that

2LL ≤ n (4.1.5)

Note that L ≤ Lmax for every n.
Let X(n) = (X1, · · · , Xn) be i.i.d. from law P with density f .

Let Π be the prior on densities generated as follows. One keeps the Pólya tree random
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measure with respect to the canonical dyadic partition of [0, 1] construction up to level
L, replacing the Beta distributions by

ε ∈ E , Yε0 ∼ (1 − πε0)δ 1
2

+ πε0Beta(αε0, αε1), (4.1.6)

with parameters αε ∈ N to be chosen and a real parameter πε (later to be taken of the
form 2− l

2 e−Cl, where we wrote l = |ε|).
There are multiple probability distributions on Borelians of [0, 1] that coincide on

dyadic intervals Iε with P (Iε) resulting from the above construction. We consider the
specific one that is absolutely continuous relatively to the Lebesgue measure on [0, 1] with
a constant density on each Iε, |ε| = L+ 1. So, both prior and posterior are histograms
on dyadic intervals at depth L.

Definition. The prior distribution with parameters αε, πε, as above is called Spike
and Slab Pólya tree and denoted Π(αε, πε).

This prior is based on an idea of Ghosal and van der Vaart, which is referred as
Evenly Split Pólya tree in their book Ghosal and van der Vaart (2017). First note that
the Haar coefficients flk of a density f can be expressed as

flk = ⟨f, ψlk⟩ = 2 l
2P (Iε)(1 − 2Yε0) (4.1.7)

The Spike and Slab Pólya tree can therefore be seen as a ’thresholding prior’, as the
thresholding takes place on the sequence of Haar coefficients of the function where
Yε0 = 1

2 .
Using this Spike and Slab prior can be seen as taking a Hierarchical approach. The

usual Pólya tree (PT) prior on densities (under (1.3.13)) leads to the following Bayesian
diagram

X|f ∼ f

f ∼ PT ((Yε0)) with Yε0 ∼ Beta(αε0, αε1),

so the Yε0 have fixed (Beta) distributions, whereas the Spike and Slab Pólya tree (SSPT)
prior leads to the diagram

X|f ∼ f

f ∼ SSPT ((Yε0)) with Yε0 ∼ (1 − πε0)δ 1
2

+ πε0 Beta(αε0, αε1)

which can be seen as the following diagram, using a sequence (γε0)ε of Bernoulli variables.
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X|f ∼ f

f |(γε0) ∼ SSPT ((Yε0)) with Yε0 ∼ (1 − γε0)δ 1
2

+ γε0 Beta(αε0, αε1)
γε0 ∼ Be(πε0)

So in this case the distributions followed by the Yε0 are random, hence this approach
can be viewed as hierarchical.
The a posteriori law. In the following, we will write

NX(Iε) =
n∑

i=1
1lXi∈Iε , pαε0 = (αε0 + αε1 − 1)!

(αε0 − 1)!(αε1 − 1)! (4.1.8)

and
pX = (NX(Iε) + αε0 + αε1 − 1)!

(NX(Iε0) + αε0 − 1)!(NX(Iε1) + αε1 − 1)! (4.1.9)

The following proposition shows that the Spike and Slab Pólya tree prior, as does the
classical Pólya tree prior, is conjugate in the Density Estimation model.

Proposition 6. For every ε ∈ E with |ε| ≤ L, the a posteriori law of Yε0 knowing
X1, . . . , Xn is

Yε0|X ∼ (1 − π̃ε0)δ 1
2

+ π̃ε0Beta(αε0(X), αε1(X))

where π̃ε0 is defined via a quantity T as follows

π̃ε0 = πε0T

(1 − πε0) + πε0T
,

T =T (ε,X) = 2NX(Iε)pαε0

pX

and where
αε(X) = NX(Iε) + αε.

Proof. We have

Π(Y |X) ∝ f(X1, . . . , Xn)
L−1∏
|ε|=0

(
(1 − πε0)δ 1

2
(Yε0) + πε0pαε0Y

αε0−1
ε0 (1 − Yε0)αε1−1

)

with f(X1, . . . , Xn) =
n∏

i=1

∏
|ε|=L

(2LP (Iε))1lXi∈Iε = (2L)n
∏

|ε|=L

P (Iε)NX(Iε).
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Noticing that
L−1∏
|ε|=0

2NX(Iε) = 2nL, we have

f(X1, . . . , Xn) = (2L)n
L−1∏
|ε|=0

Y
NX(Iε0)

ε0 (1 − Yε0)NX(Iε1)

=
L−1∏
|ε|=0

2NX(Iε)Y
NX(Iε0)

ε0 (1 − Yε0)NX(Iε1).

This gives us that

Π(Y |X) = 1
A

L−1∏
|ε|=0

(
(1 − πε0)2NX(Iε)Y

NX(Iε0)
ε0 (1 − Yε0)NX(Iε1)δ 1

2
(Yε0)+

2NX(Iε)πε0pαε0Y
NX(Iε0)+αε0−1

ε0 (1 − Yε0)NX(Iε1)+αε1−1
)

= 1
A

L−1∏
|ε|=0

(
(1 − πε0)δ 1

2
(Yε0) + 2NX(Iε)πε0pαε0Y

NX(Iε0)+αε0−1
ε0 (1 − Yε0)NX(Iε1)+αε1−1

)

with A =
L−1∏
|ε|=0

(
(1 − πε0) + 2NX(Iε)πε0

pαε0

pX

)
, which concludes the proof.

Note that if πε = 1, meaning that the prior is also a product of Beta variables, one
recovers the standard conjugacy for the (truncated at L) usual Pólya tree.

We will henceforth use the following notations
1. Tilded notation, posterior distribution. We denote by P̃ a distribution sampled from
the posterior distribution and by Ỹ the corresponding variables Y in (4.1.1). In particular,
the variable Ỹε0 is distributed following the marginal a posteriori law

Ỹε0 ∼ (1 − π̃ε0)δ 1
2

+ π̃ε0Beta(αε0(X), αε1(X)).

2. Bar notation, posterior mean. Let f̄ =
ˆ
fdΠ(f |X) denote the posterior mean density

and P̄ the corresponding probability measure. We use the notation Ȳ for the variables
defining P̄ via (4.1.1).
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4.2 Main results

By definition, we take as prior as above the realisation of the Spike and Slab Pólya tree
P that is absolutely continuous with respect to Lebesgue’s measure with density equal
to a histogram and histogram heights equal to P (Iε). The posterior is, by Proposition 6,
again a Spike and Slab Pólya tree with density w.r.t. Lebesgue equal to a histogram and
histogram heights equal to P̃ (Iε). In particular, it induces a posterior on densities that
we consider in the main results below.

4.2.1 An adaptive concentration result

The following Theorem shows that the a posteriori law obtained with a Spike and Slab
type Pólya tree prior concentrates around the true density f0 at minimax rate for the
supremum-norm loss.

Theorem 19. Let f0 ∈ Cα[0, 1], for α ∈ (0, 1] and suppose ∥ log f0∥∞ < ∞. Let X1, . . . , Xn

be i.i.d. random variables on [0, 1] following Pf0 . Let Π be the prior on densities induced
by a Spike and Slab Polya Tree prior Π(αε, πε) with the choices

αε = a

πε = 2− l
2 e−κl, l = |ε|

for κ large enough constant and a > 0 constant. Then for any Mn → ∞, in Pf0-probability

Π
∥f − f0∥∞ ≤ Mn

(
log n
n

) α
2α+1

|X

 → 1

This theorem is an adaptive version of Theorem 1 of Castillo (2017b). There are few
results so far in the literature in density estimation for the supremum-norm loss, among
those are the results from Castillo (2014), Hoffmann et al. (2015) and Yoo and Ghosal
(2016) for multivariate regression.

4.2.2 A Bernstein Von Mises result

To establish a nonparametric Bernstein Von Mises (BVM) result, one has first to find
a space M0 large enough to have convergence at rate

√
n of the posterior density to a

Gaussian process. One can then derive results for some other space F using continuous
mapping for continuous functionals ψ : M0 → F . A space that combines nicely with



4.2 Main results 125

supremum norm structure was introduced by Castillo and Nickl (2014) and defined as
follows, using an ’admissible’ sequence ω = (ωl)l≥0 such that ωl/

√
l → ∞ as l → ∞

M0 = M0(ω) =
{
x = (xlk)l,k ; lim

l→∞
max

0≤k<2l

|xlk|
ωl

= 0
}

(4.2.1)

Equipped with the norm ∥x∥M0 = sup
l≥0

max
0≤k<2l

|xlk|
ωl

, this is a separable Banach space. In

a slight abuse of notation, we will write f ∈ M0 if the sequence of its Haar wavelet
coefficients belongs in that space : (⟨f, ψlk⟩)l,k ∈ M0.

P -white bridge process. For P a probability distribution in [0, 1], one defines the
P -white bridge process, denoted by GP . This is the Gaussian process indexed by the

Hilbert space L2(P ) = {f : [0, 1] → R;
ˆ 1

0
f 2dP < ∞} with covariance

E[GP (f)GP (g)] =
ˆ 1

0
(f −

ˆ 1

0
fdP )(g −

ˆ 1

0
gdP )dP (4.2.2)

We will denote by N the law of GP0(with P0 = Pf0).
The main purpose of the admissible sequence ω is to ensure that GP ∈ M0. Intuitively,

if one does not use these weights wl, the maximum over 2l Gaussian variables is of order√
2 log(2l) = C

√
l and does not tend to 0 as l → ∞, see Remark 1 of Castillo and Nickl

(2014) for a precise proof of this result.

Bounded Lipschitz metric. Let (S, d) be a metric space. The bounded Lipschitz
metric βS on probability measures of S is defined as, for any µ, ν probability measures of
S,

βS(µ, ν) = sup
F ;∥F ∥BL≤1

∣∣∣∣∣
ˆ

S
F (x)(dµ(x) − dν(x))

∣∣∣∣∣ , (4.2.3)

where F : S → R and

∥F∥BL = sup
x∈S

|F (x)| + sup
x̸=y

|F (x) − F (y)|
d(x, y) . (4.2.4)

This metric metrizes the convergence in distribution: µn → µ in distribution as n → ∞
if and only if βS(µn, µ) → 0 as n → ∞.

Recentering the distribution. To establish our BVM result, one also has to find a
suitable way to center the posterior distribution. In this view, denote by Pn the empirical
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measure
Pn = 1

n

n∑
i=1

δXi
. (4.2.5)

Let us also consider Cn, which is a smoothed version of Pn, defined by

⟨Cn, ψlk⟩ =
 ⟨Pn, ψlk⟩ if l ≤ L

0 if l > L,
(4.2.6)

where L is our original cutoff, defined by (4.1.5).
We finally introduce Tn, which depends on the true parameter α, defined by

⟨Tn, ψlk⟩ =
 ⟨Pn, ψlk⟩ if l ≤ Ln

0 if l > Ln,
(4.2.7)

where we defined Ln to be the integer such that

2Ln = ⌊c0

(
n

log n

) 1
1+2α

⌋ (4.2.8)

for a suitable constant c0 ∈ R+∗, whose precise value is made clear below.

Weak BVM result. We have the following Bernstein-von Mises phenomenon for f0

in Hölder balls (standard Hölder balls are subsets of the following ones)

H(α,R) := {f = (flk) : |flk| ≤ R2−(α+1/2),∀l ≥ 0, 0 ≤ k < 2l}

Theorem 20. Let N be the law of GP0 . Let Cn be the centering defined in (4.2.6). Let
l0(n) be an increasing and diverging sequence. We define the prior Π such that

Yε0 ∼ Beta(a, a) for |ε| ≤ l0

Yε0 ∼ (1 − πε0)δ 1
2

+ πε0Beta(a, a) for l0 < |ε| ≤ L

where πε = 2− l
2 e−κ|ε| with κ a large enough constant. The posterior distribution then

satisfies a weak BvM : for every α,R > 0

sup
f0∈H(α,R)

Ef0

[
βM0(ω)(Π(·|X) ◦ τ−1

Cn
,N )

]
→ 0

as n → ∞ and for any admissible sequence ω = (ωl) with ωl0(n)/
√

log(n) → ∞.
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The choice of recentering of the distribution is quite flexible, as it can be checked
that the result also holds if one replaces Cn by the posterior mean f̄n or by Tn which
depends on α. Actually, the only required condition on where one cuts the empirical
measure is to satisfy Theorem 1 of Castillo and Nickl (2014). One can see that the cutoff
L is exactly the furthest one can go according to that theorem.

Using the methods of Castillo and Nickl (2014), this result leads to several applications,
for instance derivation of BVM theorems for semiparametric functionals via the continuous
mapping theorem and Donsker-type theorems, which do not appear here for the sake of
brievity. It may also lead to the construction of adaptive credible sets although it may
require substantial additional work.

4.3 Proofs

4.3.1 Preliminaries and notation

The following notations will be used throughout the proofs.
For a given distribution P with distribution function F and density f on [0, 1], denote

P (B) = F (B) =
ˆ

B

f , for any measurable subset B of [0, 1]. In particular under the

“true” distribution, we denote P0(B) = F0(B) =
ˆ

B

f0. We will also denote by pε the
quantity P (Iε).

In the sequel C denotes a universal constant whose value only depends on other fixed
quantities of the problem.

For a function f in L2, and Ln an integer, denote by fLn the L2-projection of f onto
the linear span of all elements of the basis {ψlk} up to level l = Ln. Also, denote fLc

n the
projection of f onto the orthocomplement V ect{ψlk, l > Ln}. In the proofs, we shall use
the decomposition f = fLn + fLc

n , which holds in L2 and L∞ under prior and posterior
as f is truncated at level L so has a finite Haar expansion under prior and posterior.

Recall the definition of Ln from (4.2.8).
We will write, for i ∈ {1, . . . , l},

yi = F0(I [i]
ε )

F0(I [i−1]
ε )

and ∆i =
√
C0
Ln2i

n
(4.3.1)

.
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For any integer l, set
Λn(l)2 := (l + Ln) n2l

(4.3.2)

Define B an event on the dataspace on which, simultaneously for the countable family of
indexes l ≥ 1, 0 ≤ k < 2l, for M large enough to be chosen,

M−1|NX(I l
k) − nF0(I l

k)| ≤ Λn(l) ∨ (l + Ln) (4.3.3)

We recall Lemma 4 in Castillo (2017b) which ensures that one can restrict to the
event B in the following. We note that, as here the levels l > L are truncated in the
prior and posterior, one actually only needs the control (4.3.2) for l ≤ L.

Lemma 35. Let X1, . . . , Xn be i.i.d. of density f0 on [0, 1], with f0 bounded away from
0 and infinity. Then for M large enough there exists B > log(2) such that for every
positive integer n

P n
f0(Bc) ≲ e−BLn

4.3.2 Proof of Theorem 19

Let us recall the definition of Ln in (4.2.8).
Since we have f − f0 = (fLn − f̄Ln) + (f̄Ln − fLn

0 ) + (fLc
n) − (fLc

n
0 ), the proof will be

split in four parts, where we study each of these terms separately.

4.3.2.1 Term f
Lc

n
0

∥fLc
n

0 ∥∞ ≤
∞∑

l=Ln+1

{ max
0≤k<2l

|f0,lk|}

∥∥∥∥∥∥
2l−1∑
k=0

|ψlk|

∥∥∥∥∥∥
∞

 ≲
∑

l>Ln

2−lα ≲ ε∗
n,α.

4.3.2.2 Term f̄Ln − fLn
0

One uses the key identities

f̄lk = 2 l
2 p̄ε(1 − 2Ȳε0) and f0,lk = 2 l

2p0,ε(1 − 2yε0)

By Lemma 37 and Lemma 38 below, we have on the event B

|f̄lk−f0,lk| =
∣∣∣∣∣f0,lk( p̄ε

p0,ε

− 1) + 21+ l
2 p̄ε(yε0 − Ȳε0)

∣∣∣∣∣ ≲ |f0,lk|

2l

n
+
√
Ln2l

n

+
√
Ln

n
(4.3.4)
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This gives us that, for ε∗
n,α as in (4.1.4),

∥f̄Ln − fLn
0 ∥∞ ≲

Ln∑
l=0

2 l
2 max

0≤k<2l
|f̄lk − f0,lk|

≲
1
n

Ln∑
l=0

2l( 1
2 −α) +

√
Ln

n

Ln∑
l=0

2−lα +
√
Ln

n
2Ln

≲ ε∗
n,α,

where we have used |f0,lk| ≲ 2−l( 1
2 +α).

4.3.2.3 Term fLn − f̄Ln

Consider the event

A = {∀i ≤ Ln, |ε| = l ≤ Ln, |Ȳ [i]
ε − Ỹ [i]

ε | ≤ r[i]
ε } with r[i]

ε = M

√√√√ Ln

nF0(I [i]
ε )
. (4.3.5)

Note that, by Lemma 39,

Π(Ac|X) ≲ e−CLn

Ln∑
l=0

2l ≲ 2Lne−CLn ,

which tends to 0 when n → ∞.
Now using similar arguments as in the proof of Theorem 1 of Castillo (2017b) where

the bound for the Pólya tree given in Lemma 2 is replaced by the bound for the Spike
and Slab Pólya tree given in Lemma 38, we have, on A and B,

| p̃ε

p̄ε

− 1| ≲
l−1∑
i=0

r[i]
ε ≲

√
Ln2l

n
(4.3.6)

Using the fact that Ỹε0 is a Beta variable and is therefore bounded by 1, we have

|flk − f̄lk| = 2 l
2 |(p̃ε − p̄ε) + 2p̄ε(Ȳε0 − Ỹε0) + 2Ỹε0(p̄ε − p̃ε)|

≤ 2 l
2
(
|p̃ε − p̄ε| + 2|p̄ε(Ȳε0 − Ỹε0)| + 2|p̃ε − p̄ε|

)
≤ 2 l

2 p̄ε

(
3| p̃ε

p̄ε
− 1| + |Ȳε0 − Ỹε0|

)
Using the fact that p̄ε ≲ 2−l, |Ȳε0 − Ỹε0| ≲

√
Ln2l

n
on A and (4.3.6), we obtain that,

on A and B,
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|flk − f̄lk| ≲
√
Ln

n
. (4.3.7)

Which leads, on A and B, to ∥fLn − f̄Ln∥∞ ≲
√

Ln2Ln

n
≲ ε∗

n,α.

4.3.2.4 Term fLc
n

We have, denoting by EX the expectation under the posterior distribution,

EX [∥fLc
n∥∞] ≤

log2(n)∑
l=Ln+1

2 l
2EX [ max

0≤k<2l
|flk|] ≤

log2(n)∑
l=Ln+1

2 l
2

2l−1∑
k=0

EX [|flk|]


We have EX [|flk|] = 2 l
2EX [p̃ε]EX [|1 − 2Ỹε0|].

On one hand, we have

EX [|1 − 2Ỹε0|] = (1 − π̃ε)
ˆ

(1 − 2u)δ 1
2
(u) + π̃εE[|1 − 2Z|] = π̃εE[|1 − 2Z|],

with Z drawn from a Beta(αε0, αε1). This gives us that, using Lemma 40

EX [|1 − 2Ỹε0|] ≤ π̃ε ≲
e−C2l

√
n
.

On the other hand, we have EX [p̃ε] =
l−1∏
i=0

QX,ε(i, 0) with

QX,ε(i, 0) = (1 − π̃[i+1]
ε )1

2 + π̃[i+1]
ε

l +NX(I [i+1]
ε )

2l +NX(I [i]
ε )

using the notations I [i]
ε = Iε1ε2...εi

and π̃[i]
ε = π̃ε1ε2...εi

.
Let us distinguish two regimes, when i ≤ Ln and when i > Ln. For the former, we

have that, writing as before for i ∈ {1, . . . , l},

yi = F0(I [i]
ε )

F0(I [i−1]
ε )

and ∆i =
√
C0
Ln2i

n
.

(1 − π̃[i+1]
ε )1

2 ≤ (1 − π̃[i+1]
ε )(yi+1 + |1

2 − yi+1|)

≤ (1 − π̃[i+1]
ε )yi+1 + 1

n
+ ∆i.
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This gives us that there exists C1, C
′
1 > 0 such that :

QX,ε(i, 0) ≤ yi+1

(
1
n

+∆i

yi+1
+ (1 − π̃[i+1]

ε ) + π̃[i+1]
ε

(
1 + C1

(l+1)2i+
√

in2
i
2

n

))
≤ F0(I[i+1]

ε )
F0(I[i]

ε )

(
1 + C ′

1
(l+1)2i+

√
in2

i
2

n

)

This implies that

Ln∏
i=0

QX,ε(i, 0) ≲ F0(I [Ln+1]
ε )

Ln∏
i=0

1 + C2
l2i +

√
in2 i

2

n


≲

1
2Ln

exp
C4

Ln∑
i=0

l2i +
√
in2 i

2

n


≲

1
2Ln

exp
C5

Ln2Ln +
√
Lnn2Ln

2

n


≲

1
2Ln

.

When i > Ln, we have, QX,ε(i, 0) ≤ 1
2(1 + 2√

n
), therefore :

l∏
i=Ln+1

QX,ε(i, 0) ≲
2Ln

2l

l∏
i=Ln+1

(1 + 2√
n

)

≲
2Ln

2l
(1 + 2√

n
)l−Ln

We finally have EX [p̃ε] ≤ 1
2l

(1 + 2√
n

)l−Ln

This leads to EX [∥fLc
n∥∞] ≤ 1√

n

log2(n)∑
l=Ln+1

2le−C2l(1 + 2√
n

)l−Ln ,

therefore

EX [∥fLc
n∥∞] ≤ e(Ln+1)(log 2−C2)

√
n

(1 + 2√
n
)

1−
[

(1+ 2√
n

)elog 2−C2
]log2(n)−Ln

1−(1+ 2√
n

)elog 2−C2

≲ e(Ln+1)(log 2−C2)
√

n

which tends to 0 faster than any power of n provided C2 is chosen large enough.
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4.3.2.5 Conclusion

Gathering the different bounds, one obtains that Ef0

[
Π
(

∥f − f0∥∞ ≥ Mn

(
log n

n

) α
2α+1 |X

)]
is bounded by

Ef0 [EX (∥f − f0∥∞)]
Mnε∗

n,α

≲
1
Mn

+ 2Lne−CLn

Mnε∗
n,α

+ e(Ln+1)(log 2−C2)

Mnε∗
n,α

√
n

This tends to 0 when n → ∞, which concludes the proof oh Theorem 19.

4.3.3 Proof of Theorem 20

In what follows, one will denote, for l ≥ 0, by πl the projection onto the finite-dimensional
subspace Vl of L2 defined by

Vl = span{ψl′k : 0 ≤ l′ ≤ l, 0 ≤ k < 2l′}.

One will also similarly denote by π>l the projection onto span{ψl′k : l′ > l, 0 ≤ k < 2l′}.
The proof uses a similar approach as Ray (2017), but the argument has to be adapted

to the density estimation model and to the specific Spike and Slab procedure considered
here.
Let us introduce the sets

Jn(γ) =
{

(l, k); |f0,lk| > γ
√

log n/n
}

(4.3.8)

for every γ ∈ R+∗. Note that, recalling (4.2.8) and for f0 ∈ Cα([0, 1]), (l, k) ∈ Jn(γ)
implies l ≤ Ln. We will also denote by S the support of f :

S = {(l, k); flk ̸= 0} (4.3.9)

One will firstly need the following tightness result.

A tightness result

Theorem 21. Under the assumptions of Theorem 20, for every η > 0, R > 0 and α ∈ (0, 1),
there exist M > 0 and n0 ∈ N such that for every n ≥ n0

sup
f0∈H(α,R)

Ef0

[
Π(∥f − f0∥M0 ≥ M/

√
n|X)

]
< η
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Proof. Fix η > 0. Consider the event

An = {Sc ∩ Jn(γ̄) = ∅} ∩ {S ∩ {l > Ln} ≠ ∅} ∩ { max
(l,k):l≤Ln

|f0,lk − flk| ≤ γ̄
√

log(n)/n}

By Lemma 41, there exist γ̄ > 0 such that for every α ∈ (0, 1) there exists B > 0
such that, for every f0 ∈ H(α,R) , Ef0 [Π(Ac

n|X)] ≲ n−B.
Now with D > 0 to be chosen, Ef0 [Π(∥f − f0∥M0 ≥ M/

√
n|X)] is bounded above by

T1 + T2 + T3, where

T1 = Ef0 [Π({∥f − f0∥M0 ≥ M/
√
n} ∩ {∥πl0(f − f0)∥M0 ≤ D/

√
n} ∩ An|X)]

T2 = Ef0 [Π({∥f − f0∥M0 ≥ M/
√
n} ∩ {∥πl0(f − f0)∥M0 > D/

√
n} ∩ An|X)]

T3 = Ef0 [Π(Ac
n|X)

The last term is a o(1). The first term is bounded by

Ef0

[
Π({∥π>l0(f − f0)∥M0 ≥ (M −D)/

√
n} ∩ An|X)

]
.

We now proceed as in Hoffmann et al. (2015). As f0 ∈ H(α,R), there exists Jn(α) with
2Jn(α) ≲ (n/ log n)1/(2α+1) such that Jn(γ) ⊂ {(l, k) : l ≤ Jn(α), 0 ≤ k < 2l} and

sup
f0∈H(α,R)

sup
l>Jn(α)

ω−1
l max

k
|f0,lk| ≤ R2−Jn(α)(α+1/2)√

Jn(α)
≤ C(α,R)/

√
n

It now remains to bound the part with the frequencies l0 < l ≤ Jn(α). On An, we have

sup
l0<l≤Jn(α)

ω−1
l max

k
|f0,lk − flk| ≤ γ̄

ωl0

√
log n
n

≤ γ̄/(c
√
n)

since by hypothesis ωl0 ≥ c
√

log n. This gives us that, on An, ∥π>l0(f−f0)∥M0 = O(n−1/2)
for every f0 ∈ H(α,R). We therefore choose M = M(η) to make the term T1 smaller
than η/2.

The term T2 is bounded by Ef0 [Π(
√
n∥πl0(f − f0)∥M0 > D|X)], which is bounded, by

Markov’s inequality, by
√
n

D
Ef0

[
EΠ(∥πl0(f − f0)∥M0 |X)

]
. We have
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√
n

D
Ef0

[
EΠ(∥πl0(f − f0)∥M0|X)

]
=

√
n

D
Ef0

[
EΠ(sup

l≤l0

1
ωl

max
k

|fl,k − f0,l,k| |X)
]

≤
√
n

D

(
Ef0

[
EΠ(sup

l≤l0

1
ωl

max
k

|⟨f − Tn, ψl,k⟩| |X)
]

+ Ef0

[
EΠ(sup

l≤l0

1
ωl

max
k

|⟨f0 − Tn, ψl,k⟩| |)
])

The first expectation is bounded by C/
√
n as in Castillo (2017b) (see Lemma 8 and

the proof of tightness starting page 2091). Indeed, when l ≤ l0 our prior is only a Beta,
just as in Castillo (2017b), except that the parameters al ≡ a of the Beta are constant in
our case and do not decay to 0, but this decline to 0 is irrelevant to frequencies l ≤ l0.
The second term can be bounded, following the approach of Castillo and Nickl (2014) in
their first theorem, using that (ωl)l is admissible and with κ > 0 large enough, by

1
D

[
sup
l≤l0

√
l

ωl

]
Ef0

[
sup
l≤l0

1√
l

max
k

|
√
n⟨f0 − Tn, ψlk⟩|

]

≲
κ

D
+ 1
D

ˆ ∞

κ

Pf0

(
sup
l≤l0

1√
l

max
k

|
√
n⟨f0 − Tn, ψlk⟩| > u

)
du

≲
κ

D
+ 1
D

∑
l≤l0,k

ˆ ∞

κ

Pf0

(
|
√
n⟨f0 − Tn, ψlk⟩| >

√
lu
)
du

≲
κ

D
+ 1
D

∑
l≤l0

2l

ˆ ∞

κ

e−Cludu ≲
κ

D
+ 1
D

∑
l≤l0

e−C′κl ≲
1
D

where the third inequality follows from an application of Bernstein’s inequality.
This finally gives us that by taking D = D(η) large enough the second term can be

made smaller than η/2, which concludes the proof of Theorem 21.

Proof of Theorem 20

Fix η > 0 and denote Π̃n = Π(·|X) ◦ τ−1
Cn

. By the triangle inequality, uniformly over the
relevant class of functions, for fixed l > 0, we have

βM0(Π̃n,N ) ≤ βM0(Π̃n, Π̃n ◦π−1
l )+βM0(Π̃n ◦π−1

l ,N ◦π−1
l )+βM0(N ◦π−1

l ,N ) (4.3.10)

Let us now look more precisely at the first term of (4.3.10). Take a function F : M0 →
R such that ∥F∥BL ≤ 1, Fn a random variable following Π̃n and (ω̄l′) an admissible
sequence such that ω̄l′/ωl′ → 0 as l′ → ∞. Let us also consider the events

D = {∥f∥M0 ≤ M} and Dn = {∥f − Cn∥M0 ≤ M/
√
n}
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where M is large enough to have Ef0 [Π(∥f − f0∥M0 ≥ M/
√
n|X)] < η/9 as in Theorem

21. One has

∣∣∣∣∣
ˆ

M0

FdΠ̃n −
ˆ

M0

FdΠ̃n ◦ π−1
l

∣∣∣∣∣ ≤EΠ̃n [|F (Fn) − F (πl(Fn))||X]

≤EΠ̃n [|F (Fn) − F (πl(Fn))|(1lD + 1lDc)|X]
≤EΠ̃n [∥Fn − πl(Fn)∥M0∥F∥BL1lD|X] + 2Π̃n(Dc|X)

≤E
[
sup
l′>l

1
ωl′

max
0≤k<2l′

|
√
n⟨f − Cn, ψl′k⟩|1lDn|X

]
+ 2Π(∥f − Cn∥M0 ≥ M/

√
n|X)

≤
(

sup
l′>l

ω̄l′

ωl′

)
E

[
sup
l′>l

1
ω̄l′

max
0≤k<2l′

|
√
n⟨f − Cn, ψl′k⟩|1lDn|X

]
+ 2Π(∥(f − f0) + (f0 − Cn)∥M0 ≥ M/

√
n|X)

≤
(

sup
l′>l

ω̄l′

ωl′

)
M + 2Π(∥f − f0∥M0 ≥ M/(2

√
n)|X)

+ 2Π(∥f0 − Cn∥M0 ≥ M/(2
√
n)|X)

The first term can be made smaller than η/9 by taking l large enough. Using Theorem
21, the expectation of the second term can be made smaller than η/9 by taking n large
enough. The last term can be handled as in Theorem 1 of Castillo and Nickl (2014) (as
here jn in that statement corresponds to our cutoff L) and be made smaller than η/9 by
taking n large enough. Besides, one can note that the result holds when replacing Cn by
Tn as in that case jn would correspond to Ln which satisfies the required condition of
Theorem 1 of Castillo and Nickl (2014).

This gives us that the first term of (4.3.10) is smaller than η/3. A similar result
holds for the last term (see the proof of Theorem 1 of Castillo and Nickl (2014)). For the
middle term, note that l0(n) ≥ l for n large enough. For such n, the projected prior onto
the first l coordinates is a product of Beta variables and we are exactly in the setting
of Castillo (2017b), except that the parameters al ≡ a of the Beta are constant in our
case and do not decay to 0. Since l is fixed, the fact that the parameters of our Beta
do not depend on l does not change the outcome. Therefore, following the proof of the
convergence of the finite-dimensional projections from page 2089 to page 2091 of Castillo
(2017b), the middle term can be made smaller than η/3, which concludes the proof.
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4.3.4 Technical Lemmas

Recall the notation, for i ∈ {1, . . . , l},

yi = F0(I [i]
ε )

F0(I [i−1]
ε )

and ∆i =
√
C0
Ln2i

n
. (4.3.11)

Lemma 36. For l ≤ Ln, on the event B, for ε ∈ E with |ε| = l, there exist some
nonnegative real constants C and C ′ such that :

1 − π̃[i]
ε ≤ (1 − π̃[i]

ε )1l|yi− 1
2 |≤∆i

+ C
2− i

2
√
n

π
[i]
ε

e−C′nF0(I[i−1]
ε )∆2

i 1l|yi− 1
2 |>∆i

.

In particular
1 − π̃[i]

ε ≲ 1l|yi− 1
2 |≤∆i

+ 1
n

1l|yi− 1
2 |>∆i

.

Proof. Let us write

s = sX = NX(I [i−1]
ε ) + 2a− 2 and q = qX = NX(I [i]

ε ) + a− 1 (4.3.12)

so that we can rewrite NX(I[i−1]
ε )+2a−1

pX
= q!(s−q)!

s! . Using the fact that
√

2πnn+ 1
2 e−n ≤ n! ≤√

2πnn+ 1
2 e−n+ 1

12n for any integer n, this gives us that

NX(I [i−1]
ε ) + 2a− 1
pX

≥
√

2πq(s− q)
s

( q
e
)q( s−q

e
)s−q

( s
e
)s

e− 1
12s .

We have, denoting by B(a) the Bernoulli distribution of parameter a and KL(P,Q) the
Kullback-Leibler divergence between distributions P and Q, that

2s ( q
e
)q( s−q

e
)s−q

( s
e
)s

= es( q
s

log( 2q
s

)+(1− q
s

) log(2(1− q
s

))) = esKL(B( q
s

)||B( 1
2 )).

We also know that KL(B( q
s
)||B(1

2)) ≥ 1
4∥B( q

s
) −B(1

2)∥2
L1 = 1

4(2| q
s

− 1
2 |)2.

Recalling T from Proposition 6, this leads to

T ≳
1√
s+ 1

√√√√q(s− q)
s(s+ 1)e

s| q
s

− 1
2 |2− 1

12s
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On B, we can write NX(I [i]
ε ) = nF0(I [i]

ε ) + δi,ε with |δi,ε| ≲
√

nLn

2i .

We have | q
s

− 1
2 | =

∣∣∣∣∣∣yi − 1
2 + yi

δi,ε

nF0(I
[i]
ε )

−
δi−1,ε

nF0(I
[i−1]
ε )

1+
δi−1,ε

nF0(I
[i−1]
ε )

∣∣∣∣∣∣ ≥ |yi − 1
2 | − yi

|
δi,ε

nF0(I
[i]
ε )

−
δi−1,ε

nF0(I
[i−1]
ε )

|

1+
δi−1,ε

nF0(I
[i−1]
ε )

.

Since δi,ε

nF0(I[i]
ε )

tends to 0 when n → ∞, we have | q
s

− 1
2 | ≳ |yi − 1

2 |.

We now have T ≳ eCnF0(I
[i−1]
ε )|yi− 1

2 |2

2− i
2

√
n

, which concludes the proof, since 1− π̃[i]
ε = 1−π

[i]
ε

(1−π
[i]
ε )+π

[i]
ε T

.

Lemma 37. For l ≤ Ln, ε ∈ E such that |ε| = l, on the event B, we have

∣∣∣∣∣ p̄ε

p0,ε

− 1
∣∣∣∣∣ ≤ C

 l∑
i=1

2i

n
+
√
Ln2l

n

 .

Proof. We have p0,ε =
l∏

i=1
yi and p̄ε =

l∏
i=1

wi with wi = 1
2(1 − π̃[i]

ε ) + π̃[i]
ε

NX(I[i]
ε )+l

NX(I[i−1]
ε )+2l

.

We can write ∣∣∣∣∣wi

yi

− 1
∣∣∣∣∣ = (1 − π̃[i]

ε )
∣∣∣∣∣ 1
2yi

− 1
∣∣∣∣∣+ π̃ε

∣∣∣∣∣ NX(I [i]
ε ) + a

yi(NX(I [i−1]
ε ) + 2a)

− 1
∣∣∣∣∣ .

Using Lemma 42, the second term is bounded by a constant times (2i

n
+
√

Ln2i

n
). The

first term is bounded, by Lemma 36, by ∆i + 2− i
2

√
n

πε
e−CnF0(I[i−1]

ε )∆2
n ≲

√
Ln2i

n
+ 1

n
. One

uses Lemma 43 to conclude the proof.

Lemma 38. For l ≤ Ln,on the event B, ε ∈ E with |ε| = l,
∣∣∣∣∣Ȳε0 − F0(Iε0)

F0(Iε)

∣∣∣∣∣ ≲ 2 l
2

n
(2l|f0,lk| +

√
nLn)

Proof. We have, with yε0 = F0(Iε0)
F0(Iε) ,

∣∣∣∣∣ Ȳε0

yε0
− 1

∣∣∣∣∣ ≤ (1 − π̃ε0)
∣∣∣∣∣ 1
2yε0

− 1
∣∣∣∣∣+ π̃ε0

∣∣∣∣∣ NX(Iε0) + a

yε0(NX(Iε) + 2a) − 1
∣∣∣∣∣

The second term is bounded using Lemma 44 by a constant times (22l+ l
2

n
+
√

Ln2l

n
).

The first term is bounded by
√

Ln2l

n
+ 1

n
, which concludes the proof.
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Lemma 39. For ε ∈ E with |ε| = i ≤ Ln, let us write

B = M
√
Ln√

nF0(I i
ε)

+ 4
nF0(I i

ε)
.

Then, for M > 0 large enough, on the event B, there exists C > 2 log(2) such that

Π(|Yε − Ȳε| > B|X) ≲ e−CLn .

Proof. We will write Z a random variable drawn from a Beta(aε(X), aε′(X)), whose
density will be noted as b.

Note first that the set {|u− Ȳε| > B} can be written as {|(1− π̃ε)(u− 1
2)+ π̃ε(u−E[Z])| >

B}, so that

Π(|Yε − Ȳε| > B|X) = (1 − π̃ε)
ˆ

|u−Ȳε|>B

δ 1
2
(u) + π̃ε

ˆ
|u−Ȳε|>B

b(u)du

= (1 − π̃ε)1l{π̃ε| 1
2 −E[Z]|>B} + π̃ε

ˆ
|u−Ȳε|>B

b(u)du

= (I) + (II)

For the first term, due to Lemma 36 we have

(I) ≤ (1 − π̃ε)1l{π̃ε| 1
2 −E[Z]|>B,|yi− 1

2 |≤∆i} + C
2− i

2
√
n

πε

e−C′nF0(I[i−1]
ε )∆2

i 1l|yi− 1
2 |>∆i

The first term is 0 so (I) ≲ 2− i
2

√
n

πε
e−C′nF0(I[i−1]

ε )∆2
i ≲ e−CLn given our choice of ∆i.

For the second term, we first write that, for Z as above,

(II)1l{|yi− 1
2 |>∆i} ≤ π̃ε1l{|yi− 1

2 |>∆i}

(
P
(

(1 − π̃ε)|Z − 1
2 | > B

2

)
+ P

(
π̃ε|Z − E[Z]| > B

2

))
.

The first probability is 0 and the second one is bounded by e− M2Ln
16 using Lemma 45.
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We also have, using Lemma 45

(II)1l{|yi− 1
2 |≤∆i} ≤ 1l{|yi− 1

2 |≤∆i}P

|Z − E[Z]| ≥ C ′

√
Ln2i

n

 ≲ e− M2Ln
16 .

Lemma 40. There exists C2 > 0 such that for any l > Ln, ε ∈ E with |ε| = l, on B,

π̃ε ≲
e−C2l

√
n
.

Proof. As in Lemma 36, we will write s = NX(I [i−1]
ε ) + 2a− 2 and q = NX(I [i]

ε ) + a− 1,
and δ = NX(I [i]

ε ) −NX(I [i]
ε′ ). We can note first that q = s+δ

2 . Let Ml = M
(√

nl
2l ∨ l

)
be

the constant appearing in (4.3.3) when l > Ln.

We have |δ| ≤ n|F0(Iε) − F0(Iε′)| +Ml ≲ n2−l(α+1) +Ml ≲Ml because f0 is α-Hölder.

As in Lemma 36,

T ≲
1√
s+ 1

√√√√q(s− q)
s(s+ 1)e

s( q
s

log( 2q
s

)+(1− q
s

) log(2(1− q
s

)))

≲
1√
s+ 1

es( 1
2 (1+ δ

s
) log(1+ δ

s
)+ 1

2 (1− δ
s

) log(1− δ
s

)) ≲
1√
s+ 1

e
δ2
2s

As l ≤ L with L defined as in (4.1.5), we have

s ≳
n

2l
+
√ l + Ln

2l
n ∨ (l + Ln)

 .
which leads, as l ≤ L, to

δ2

2s ≲
2l

n

(
nl

2l
∨ l2

)

This gives us that T ≲ 2
l
2√
n
eC1l. Choosing κ = C1 + C2 in the definition of πl leads us to

π̃ε ≲ πlT ≲ e−C2l
√

n
.
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Lemma 41. Let Jn(γ) be defined in (4.3.8). There exist γ̄ > 0 such that for every
α ∈ (0, 1), there exists B > 0 such that, for every f0 ∈ H(α,R),

1)Ef0 [Π(Sc ∩ Jn(γ̄) ̸= ∅|X)] ≲ n−2α/(1+2α)

(log n)1/(2α+1)

2)Ef0 [Π(S ∩ {l > Ln} ≠ ∅|X)] ≲ 1/
√
n

3)Ef0

[
Π( max

(l,k):l≤Ln

|f0,lk − flk| > γ̄
√

log(n)/n|X)
]
≲ 1/nB

Proof. 1) We have, on B, using Lemma 36

Π(Sc ∩ Jn(γ̄) ̸= ∅|X) ≤
∑

(l,k)∈Jn(γ̄)
Π(flk = 0|X)

≤
∑

(l,k)∈Jn(γ̄)
(1 − π̃lk)

≤
∑

(l,k)∈Jn(γ̄)

(
1l|yl− 1

2 |≤∆l
+ 1
n

1l|yl− 1
2 |>∆l

)

The first term is in fact 0, as |yl − 1
2 | = |f0,l,k| 2−l/2

2F0(Il
k

) ≳ 2l/2
√

log(n)/n > ∆l for (l, k) ∈
Jn(γ̄) with γ̄ large enough. This finally gives us that

Π(Sc ∩ Jn(γ̄) ̸= ∅|X) ≲
∑

l≤Ln

2l/n

2) We have, on B, using Lemma 40

Π(S ∩ {l > Ln} ≠ ∅|X) ≤
∑

(l,k):l>Ln

Π(flk ̸= 0|X)

≤
∑

(l,k):l>Ln

π̃lk

≲
∑

(l,k):l>Ln

e−C2l

√
n

≲ (2e−C2)Ln/
√
n

Choosing C2 > log(2) then leads to the result.
3) A union bound gives us
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Π( max
(l,k):l≤Ln

|f0,lk − flk| > γ̄

√
log(n)
n

|X)

≤
∑

(l,k):l≤Ln

Π(|f0,lk − flk| > γ̄

√
log(n)
n

|X)

Looking at the expectation under f0 of each term, and in view of recentering by the
posterior mean f̄ , one writes

Ef0

Π(|f0,lk − flk| > γ̄

√
log(n)
n

|X)
 ≤ P n

f0

|f0,lk − f̄lk| > γ̄

2

√
log(n)
n



+ Ef0

Π(|f0,lk − flk| > γ̄

√
log(n)
n

|X)1l
{|f0,lk−f̄lk|≤ γ̄

2

√
log(n)

n
}

 (4.3.13)

On the event B, using (4.3.4), we have that

|f0,lk−f̄lk| ≲ 2−l(α+1/2)

2l

n
+
√
Ln2l

n

+
√
Ln

n
≲

1
n

6α+1
4α+2 log(n)

1−2α
4α+2

+
√

log((n/ log n)1/(2α+1))
n

if α < 1/2. If α ≥ 1/2, we have

|f0,lk − f̄lk| ≲ 2−l(α+1/2)

2l

n
+
√
Ln2l

n

+
√
Ln

n
≲

1
n

+
√

log((n/ log n)1/(2α+1))
n

.

This means that, for n large enough, the event in the probability in (4.3.13) is a subset
of the event Bc. Using Lemma 35, the probability in the last display is therefore bounded
by a constant times e−BLn .
The second term of (4.3.13) is bounded by

Ef0

Π(|f̄lk − flk| > γ̄

2

√
log(n)
n

|X)
 .

As in (4.3.7), |flk − f̄lk| ≲
√

Ln

n
on A and B, so the second term is bounded by P n

f0(Bc) +
Π(Ac|X) ≲ e−CLn . This finally leads to

Ef0

Π( max
(l,k)∈Jn(γ)

|f0,lk − flk| > γ̄

√
log(n)
n

|X)
 ≲

∑
(l,k):l≤Ln

e−CLn ≲ 2−Ln
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provided C is chosen greater than 2 log(2), which concludes the proof.

The following Lemmas are borrowed from Castillo (2017b).

Lemma 42. On the event B,
∣∣∣∣∣ NX(I [i]

ε ) + a

yi(NX(I [i−1]
ε ) + 2a)

− 1
∣∣∣∣∣ ≲ 2i

n
+
√
Ln2i

n

Proof. This is the quantity
∣∣∣wi

yi
− 1

∣∣∣ in Lemma 1 of Castillo (2017b).

Lemma 43 (Lemma 3 of Castillo (2017b)). Let {yi}1≤i≤L, {wi}1≤i≤L be two sequences of
positive real numbers such that there are constants c1, c2 with

max
1≤i≤L

|wi

yi

− 1| ≤ c1 < 1,
L∑

i=1
|wi

yi

− 1| ≤ c2 < ∞

Then there exists c3 depending on c1, c2 only such that

L∏
i=1

|wi

yi

− 1| ≤ c3

L∑
i=1

|wi

yi

− 1|.

Lemma 44. On the event B∣∣∣∣∣ NX(Iε0) + a

yε0(NX(Iε) + 2a) − 1
∣∣∣∣∣ ≲ (22l+ l

2

n
+
√
Ln2l

n
)

Proof. This is the quantity
∣∣∣ Ȳε0

yε0
− 1

∣∣∣ in Lemma 2 of (Castillo, 2017b).

Lemma 45 (Lemma 6 of Castillo (2017b)). Let ϕ, ψ belong to (0,∞). Let Z follow a
Beta(ϕ, ψ) distribution. Suppose, for some reals c0, c1,

0 < c0 ≤ ϕ/(ϕ+ ψ) ≤ c1 < 1 and ϕ ∧ ψ > 8

Then there exists D > 0 depending on c0, c1 only such that for any x > 0,

P

[
|Z − E[Z]| > x√

ϕ+ ψ
+ 2
ϕ+ ψ

]
≤ De− x2

4 .
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van der Pas, S., Szabó, B., and van der Vaart, A. (2017b). Uncertainty quantification for
the horseshoe (with discussion). Bayesian Anal., 12(4):1221–1274. With a rejoinder by
the authors.



146 References

van der Pas, S. L., Salomond, J.-B., and Schmidt-Hieber, J. (2016). Conditions for
posterior contraction in the sparse normal means problem. Electron. J. Stat., 10(1):976–
1000.

van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.

Yoo, W. W. and Ghosal, S. (2016). Supremum norm posterior contraction and credible
sets for nonparametric multivariate regression. Ann. Statist., 44(3):1069–1102.

Yuan, M. and Lin, Y. (2005). Efficient empirical Bayes variable selection and estimation
in linear models. J. Amer. Statist. Assoc., 100(472):1215–1225.

Zhang, C.-H. (2005). General empirical bayes wavelet methods and exactly adaptive
minimax estimation. Ann. Statist., 33(1):54–100.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association, 101(476):1418–1429.


	Contents
	Résumé détaillé
	0.0.1 Analyse par bayésien empirique de lois a posteriori Spike and Slab.
	0.0.2 Constante exacte pour l'a posteriori Spike and Slab calibré par bayésien empirique.
	0.0.3 Estimation adaptative de densités par a priori arbres de Pólya Spike and Slab.


	1 Introduction
	1.1 General Frame : the non-parametric, frequentist Bayesian approach
	1.1.1 The Bayesian approach
	1.1.2 Frequentist Bayesian
	1.1.3 High and Infinite Dimension Models
	1.1.4 Tuning the parameters

	1.2 Gaussian Sequence Model and Thresholding
	1.2.1 Definition of the Model
	1.2.2 Bayesian approach and the Spike and Slab Prior
	1.2.3 Other choices of a priori laws
	1.2.4 Exact constant
	1.2.5 Contributions using the Empirical Bayes method for the Spike and Slab prior

	1.3 Density Estimation and Pólya Trees
	1.3.1 Definition of the Model
	1.3.2 The Pólya Tree Prior
	1.3.3 Contribution using a Hierarchical approach with the Spike and Slab prior


	2 Empirical Bayes analysis of spike and slab posterior distributions
	2.1 Introduction
	2.2 Framework and main results
	2.2.1 Empirical Bayes estimation with spike and slab prior
	2.2.2 Suboptimality of the Laplace slab for the complete EB posterior distribution
	2.2.3 Optimal posterior convergence rate for the EB spike and Cauchy slab
	2.2.4 Posterior convergence for the EB spike and slab LASSO
	2.2.5 A brief numerical study
	2.2.6 Modified empirical Bayes estimator
	2.2.7 Discussion

	2.3 Proofs for the spike and slab prior 
	2.3.1 Notation and tools for the SAS prior
	2.3.2 Posterior risk bounds
	2.3.3 Moments of the score function
	2.3.4 In-probability bounds for 
	2.3.5 Proof of Theorem 13 
	2.3.6 Proof of Theorem 15 
	2.3.7 Proof of Theorem 14

	2.4 Technical lemmas for the SAS prior
	2.4.1 Proofs of posterior risk bounds: fixed 
	2.4.2 Proofs of posterior risk bounds: random 
	2.4.3 Proofs on pseudo-thresholds
	2.4.4 Proof of the convergence rate for the modified estimator

	2.5 Proof of Theorem 16: the SSL prior
	2.6 Technical lemmas for the SSL prior
	2.6.1 Fixed  bounds
	2.6.2 Random  bounds
	2.6.3 Properties of the functions g0 and  for the SSL prior
	2.6.4 Bounds on moments of the score function
	2.6.5 In-probability bounds


	3 Sharp asymptotic minimaxity of spike and slab empirical Bayes procedures
	3.1 Introduction
	3.1.1 Model
	3.1.2 Posterior convergence at sharp minimax rate
	3.1.3 Spike and Slab prior
	3.1.4 Useful Thresholds
	3.1.5 Empirical Bayes choice of 

	3.2 Main result
	3.2.1 Why it works

	3.3 Proofs
	3.3.1 Thresholds and Useful Bounds
	3.3.2 Properties of g and moments of the score function
	3.3.3 Bounds for posterior moments and fixed 
	3.3.4 Risk bound for fixed : proof of Proposition 5
	3.3.5 Random  bounds
	3.3.6 Undersmoothing
	3.3.7 Oversmoothing
	3.3.8 Proof of Theorem 18 


	4 Adaptive Pólya trees on densities using a Spike and Slab type prior
	4.1 Introduction
	4.1.1 Definition of a Pólya tree
	4.1.2 Function spaces and wavelets
	4.1.3 Spike and Slab prior distributions 'truncated' at a certain level L.

	4.2 Main results
	4.2.1 An adaptive concentration result
	4.2.2 A Bernstein Von Mises result

	4.3 Proofs
	4.3.1 Preliminaries and notation
	4.3.2 Proof of Theorem 19
	4.3.3 Proof of Theorem 20
	4.3.4 Technical Lemmas


	References

