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[...] un labyrinthe caché dans un
rébus, avec une énigme pour
solution ? Oui, cela peut être
intéressant, s’il y a le trésor
habituel à la clé...
... et même s’il n’y a rien... il y a
les arcanes, le mystère, l’ambiguïté,
le sphinx, l’allégorie, la charade...
...ce qui compte... c’est le symbole,
le jeu, l’aventure, Corto.

(Hugo Pratt, Mū, la cité perdue)
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1.1. Problèmes de bandits

1.1.1. Généralités sur les bandits à K bras

Protocole d’observation, problème, stratégie. Soit K un entier naturel. Un problème de
bandits stochastiques à K bras est une famille de K distributions de probabilités sur R, notée
ν = (ν1, . . . , νK). On note [K] = {1, . . . ,K} l’ensemble des entiers entre 1 et K. Pour a ∈ [K], la
distribution νa modélise la loi des paiements associés à l’action a, aussi appelée le bras.
Le protocole qui régit les observations est le suivant. A chaque temps t ∈ {1, 2, . . . , T, . . . , },

le statisticien, parfois appelé le joueur, choisit une action At ∈ [K]. Il reçoit alors un paiement
Yt, de loi νAt conditionnellement à At, et tiré indépendamment des choix et des observations
précédentes, conditionnellement à At.

Un algorithme (ou une stratégie) déterministe est une suite de fonctions ψ = (ψ1, . . . , ψt, . . . ),
où ψt associe le choix At aux observations disponibles au temps t, c’est-à-dire à la famille
(A1, Y1, . . . , At−1, Yt−1). Pour prendre en compte les stratégies aléatoires, on autorise ψt à être
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Chapitre 1. Vue d’ensemble des résultats

aussi fonction d’une variable aléatoire Ut, indépendante des observations précédentes et, par
exemple, de loi uniforme sur [0, 1]. “

Exemples d’application. On imagine la situation suivante. Dans un casino, un joueur fait face
à des machines à sous, et peut sélectionner, tour à tour, la machine de son choix. On dit que
l’ensemble des machines forme un bandit à plusieurs bras, et que le joueur choisit à chaque tour
t un bras At, dont le paiement est modélisé par Yt de loi νAt . C’est de cet exemple fantaisiste
qu’est tiré le nom de “bandits” ; le bandit à plusieurs bras s’opposant au bandit manchot, capable
de dévaliser le pauvre joueur avec un seul bras.

Historiquement, la théorie des bandits s’est inspirée d’applications plus sérieuses, et en particulier
des essais cliniques. Dans l’article où apparaît la première formulation d’un problème de bandits,
Thompson [1933], l’auteur pose le problème suivant. Des médecins souhaitent traiter une maladie,
et disposent pour cela de K médicaments candidats, dont ils ne connaissent pas les efficacités
respectives. Des participants à un essai clinique arrivent un par un. A chaque patient, ils proposent
un des K médicaments, après quoi ils observent (avant de traiter les patients suivants) l’effet du
médicament, c’est-à-dire s’il y a eu ou non guérison.

Si l’on suppose que chaque patient a une probabilité de guérir ne dépendant que du médicament
administré, alors ce problème s’ancre bien dans le protocole décrit au paragraphe précédent.

Notations. On supposera toujours a minima que les lois des paiements possèdent un premier
moment. Introduisons alors quelques notations standards. On note µa = E(νa) le paiement moyen
du bras a, et µ? = max{µa : a ∈ [K]} le meilleur paiement moyen. Lorsque cela peut se faire
sans ambiguïté, on note a? un bras ayant un paiement moyen maximal (on parle de bras optimal).
Pour a ∈ [K], on note ∆a = µ? − µa l’écart de sous-optimalité du bras a.

Regret. Dans le problème de bandits standard, l’objectif du statisticien sera alors de maximiser
son paiement cumulé. De manière équivalente, celui-ci souhaite minimiser son regret, qui est
défini comme la différence entre le paiement moyen obtenu s’il avait joué la meilleure action tout
du long, soit Tµ?, et l’espérance du vrai paiement cumulé obtenu :

RT (ν, ψ) = Tµ? − E
[ T∑

t=1

Yt

]
.

On omettra souvent la dépendence en ν ou ψ du regret. Par définition du protocole, le paiement
reçu au temps t vérifie E[Yt | At] = µAt . Cette identité permet une réécriture éclairante du regret.
Notons

Na(T ) =
T∑

t=1

1{At=a}

le nombre de fois où l’action a ∈ [K] a été sélectionnée au temps T . Alors, en conditionnant par
At, et puisqu’Yt est de loi νAt , on a E[Yt|At] = µAt . Par conséquent, le regret admet la réécriture
suivante :

RT (ν, ψ) = Tµ? − E
[ T∑

t=1

Yt

]
= Tµ? − E

[ T∑

t=1

E
[
Yt
∣∣At
]]

= Tµ? − E
[ T∑

t=1

µAt

]
=

T∑

t=1

E
[
µ? − µAt

]
=

K∑

a=1

∆aE[Na(t)] . (1.1)

S’intéresser au regret est donc équivalent à étudier le nombre de tirages des bras sous-optimaux.
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1.1. Problèmes de bandits

Comme souvent en statistiques, les résultats théoriques en bandits peuvent être séparés en
deux familles. D’un côté, les algorithmes et leurs analyses donnent des bornes supérieures sur
le regret face à un problème ; ce sont des résultats de la forme RT 6 (. . . ). De l’autre côté, les
bornes inférieures mettent en évidence les limites fondamentales de la minimisation du regret et
permettent de s’intéresser aux propriétés d’optimalité des algorithmes.

Information préalable et environnement. Avant d’aborder des exemples concrets de stratégies,
il nous faut spécifier l’information préalable dont dispose le statisticien sur le problème auquel il
fait face. Ainsi, on supposera que le joueur sait que le problème ν contre lequel il joue appartient
à un ensemble de problèmes donné, qu’on appellera une classe d’environnements, et qu’on notera
E . La classe E est donc un sous-ensemble de l’ensemble des K–familles de probabilités sur R
possédant un premier moment.

Exemple 1.1 (Bandits gaussiens de variance 1). Si l’on suppose que les paiements associés à chaque
bras sont gaussiens de variance 1, alors la classe d’environnements en question est

E =
{

(ν1, . . . , νK) : pour tout a ∈ [K] , νa est une distribution gaussienne N (µa, 1)
}

Le cas où les paiements sont bornés est un cadre très souvent étudié, notamment dans l’article
fondateur d’Auer et al. [2002a].

Exemple 1.2 (Paiements bornés dans [0, 1]). Lorsque l’on suppose que le paiement de chaque bras
peut suivre n’importe quelle loi, mais qu’il est borné dans [0, 1], la classe d’environnements est

E[0,1] =
{

(ν1, . . . , νK) : ∀a ∈ [K] , νa
(
[0, 1]

)
= 1
}
.

Les exemples précédents sont des cas particuliers de classes non-structurées : la donnée du
paiement d’un bras n’informe en rien sur les paiements des autres bras, et tous les bras jouent un
rôle équivalent. Dans le cas non-structuré, la classe s’écrit comme une puissance K–ième (pour
le produit cartésien) d’un ensemble D de mesures de probabilité sur R — dans notre second
exemple, il s’agit de l’ensemble des mesures de probabilité à support dans [0, 1]. On dira alors
que D est un modèle. Le cas non-structuré est le cadre standard pour les problèmes de bandits.
La donnée de la classe d’environnement E joue un rôle crucial dans l’étude théorique des

problèmes de bandits. Cette donnée intervient bien sûr dans les hypothèses que l’on fait sur le
problème auquel le joueur fait face. Elle est surtout particulièrement importante lorsque l’on
s’intéresse aux bornes inférieures.

L’objectif de cette thèse est d’appréhender, à travers l’étude d’exemples, le vaste problème de
la connaissance imparfaite de l’environnement au joueur. Autrement dit, on souhaite répondre
à la question, “Que faire lorsque les informations dont dispose le joueur sont incertaines ?” On
reformulera cette question de façon de plus en plus précise au cours de cette introduction.
Avant de commencer à y répondre, présentons les types de garanties auxquelles on peut

s’attendre, en nous appuyant sur l’exemple de l’algorithme UCB.

1.1.2. Algorithmes et garanties : l’exemple d’UCB

Upper Confidence Bounds (UCB)

L’algorithme UCB est, depuis son analyse moderne dans Auer et al. [2002a], l’algorithme par
excellence dans les problèmes de bandits. La simplicité de sa formulation et de son analyse en
font une brique fondamentale pour de nombreuses approches. La stratégie est la suivante : au
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Chapitre 1. Vue d’ensemble des résultats

cours des K premiers tours, chaque bras est tiré une fois, après quoi on associe à chaque bras
a ∈ [K] un indice,

Ua(t) = µ̂a(t) +

√
2 lnT

Na(t)
, où µ̂a(t) =

1

Na(t)

t∑

s=1

Ys1{As=a} .

La quantité µ̂a(t) est la moyenne empirique des paiements associés au bras a. Le joueur tire alors
à chaque tour un bras ayant le plus grand indice

At+1 ∈ argmax
a∈[K]

Ua(t) ,

et un choix arbitraire est fait en cas d’égalité. Par cohérence avec la présentation des résultats ulté-
rieurs, on a décrit ici une version dite “non-anytime” d’UCB, c’est-à-dire qui utilise la connaissance
de l’horizon de temps T , temps auquel on évaluera l’algorithme.
UCB appartient à la famille des stratégies à indice : l’indice d’un bras est une quantité calculée

exclusivement en fonction des paiements associés à ce bras, et la stratégie sélectionne à chaque
tour un bras d’indice maximal. Pour UCB, l’indice correspond formellement à une borne supérieure
de confiance sur la vraie moyenne µa de niveau de confiance 1/T 4, par l’inégalité de Hoeffding.
D’où le nom de l’algorithme.
Concrètement, UCB suit à-peu-près les bras ayant la meilleure moyenne empirique µ̂a(t), mais

en accordant le bénéfice du doute aux bras qui ont été tirés peu de fois : ceux pour lesquels Na(t)
est faible. On dit qu’UCB est un algorithme optimiste façe à l’incertitude, un principe puissant qui
a inspiré de nombreux autres algorithmes de bandits.

Le principe de l’optimisme face à l’incertitude est formulé dans Lai and Robbins [1985], et des
versions moins abouties de stratégies à indices sont proposées dès Agrawal [1995b] et Burnetas
and Katehakis [1996]. Tous ces articles offrent des analyses exclusivement asymptotiques des
stratégies proposées. C’est dans Auer et al. [2002a], qu’apparaît l’analyse moderne, c’est-à-dire
non-asymptotique, de l’algorithme.
Présentons rapidement les garanties que l’on obtient avec cette stratégie. Ces garanties se

séparent en deux types : les bornes qu’on qualifie de “distribution-dependent”, et celles dites
“distribution-free”. Ces deux familles de bornes donnent naturellement lieu à deux notions d’opti-
malité.

Borne distribution-dependent

La première borne sur le regret d’UCB que l’on évoque généralement est une borne distribution-
dependent, appelée ainsi parce qu’elle s’exprime en fonction du problème de bandit auquel le
joueur fait face.

Théorème 1.1 (Auer et al. [2002a]). Pour tout horizon de temps T > 1, pour n’importe quel
problème de bandit ν à paiements bornés dans [0, 1], si le joueur suit la stratégie UCB, alors pour
tout bras a sous-optimal,

E
[
Na(T )

]
6 8

lnT

∆2
a

+ 2 . (1.2)

On déduit de ce résultat une borne sur le regret en appliquant la décomposition (1.1) :

RT (ν) =

K∑

a=1

∆aE
[
Na(t)

]
6

K∑

a=1

8
lnT

∆a
+ 2

K∑

a=1

∆a . (1.3)

La dépendance de la borne en l’horizon de temps T est logarithmique, et on dit parfois que le
regret d’UCB croît lentement avec le temps. Néanmoins, il faut tempérer ce propos et examiner la
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dépendance en le problème. Précisément, si certains bras a ∈ [K] sont tels que ∆a � (lnT )/T ,
alors la majoration est plus grande que la borne triviale RT 6 T , et elle ne nous renseigne
alors pas sur le regret. Ainsi, bien qu’elle soit valable en tout temps, cette garantie est surtout
intéressante pour des valeurs suffisamment grandes de T .

Borne distribution-free

La deuxième famille de bornes traditionnellement proposées en bandits et celle des bornes dites
“distribution-free”, ou minimax. Ce sont des majorations uniformes du regret sur toute la classe
étudiée.

Théorème 1.2 (Audibert and Bubeck [2009]). Pour tout horizon de temps T > 1, le regret d’UCB
sur les problèmes de bandits bornés est majoré par

sup
ν∈E[0,1]

RT (ν) 6 4
√

2
√
KT lnT + 2K . (1.4)

La dépendance en T est beaucoup moins bonne que celle de la borne distribution-dependent,
puisqu’elle est essentiellement de l’ordre de

√
T plutôt qu’en lnT . La différence importante est

que la borne ne dépend pas du problème en question, et en particulier, pas des écarts.
La première preuve de la borne distribution-free pour UCB, et pour les bandits stochastiques

en général, apparaît (à ma connaissance) dans Audibert and Bubeck [2009]. La preuve illustre
bien un aspect important de la théorie des bandits : la difficulté d’un problème se caractérise au
niveau des bras ayant un écart faible, et l’écart critique est d’ordre

√
K/T .

Preuve. Le résultat découle de la borne distribution-dependent (1.2). Pour le prouver, on sépare
les bras en deux groupes, selon que leur écart au meilleur bras soit grand ou non. Donnons-nous
donc un seuil δ > 0, dont on spécifiera la valeur plus tard. Alors,

RT (ν) =
K∑

a=1

∆aE
[
Na(t)

]
=

K∑

a=1
∆a6δ

∆aE
[
Na(t)

]
+

K∑

a=1
∆a>δ

∆aE
[
Na(t)

]
. (1.5)

On borne différemment chacune de ces deux sommes. Pour la première, qui correspond aux bras
ayant un petit ∆a, on utilise simplement la borne ∆a 6 δ, puis le fait que la somme des Na(T )
vaut T .

K∑

a=1
∆a6δ

∆aE
[
Na(t)

]
6

K∑

a=1
∆a6δ

δ E
[
Na(t)

]
6 Tδ (1.6)

Pour la seconde somme, on applique d’abord la garantie distribution-dependent, ce qui fait
apparaître un facteur 1/δ, en utilisant le fait que 1/∆a 6 1/δ. On majore chaque terme de la
somme ainsi, d’où le facteur K supplémentaire.

K∑

a=1
∆a>δ

∆aE
[
Na(t)

]
6

K∑

a=1
∆a>δ

∆a

(
8

lnT

∆2
a

+ 2

)
6

K∑

a=1
∆a>δ

8

(
lnT

∆a
+ 2

)
6 8

K lnT

δ
+ 2K (1.7)

On a donc montré
RT (ν) 6 Tδ + 8K

lnT

δ
+ 2K . (1.8)

Le seuil δ étant un paramètre de l’analyse, on peut l’optimiser pour obtenir une borne la plus
petite possible. Le choix δ =

√
8K lnT/T donne le résultat annoncé.
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1.1.3. Bornes inférieures et optimalité

Une fois ces bornes supérieures obtenues, le statisticien se demande naturellement s’il est
possible de les améliorer : c’est la question des bornes inférieures. Nous présentons ici les
bornes inférieures analogues aux garanties présentées ci-dessus, en commençant par les bornes
distribution-dependent.

Borne inférieure distribution-dependent

Algorithmes uniformément convergents. Pour obtenir une borne inférieure sur le regret
distribution-dependent, il faut faire une hypothèse d’uniformité sur l’algorithme que l’on considère.
En effet, la stratégie absurde qui consiste à tirer uniquement le premier bras obtiendra un regret
nul, et donc non-améliorable, sur tout problème pour lequel le premier bras est optimal. Pourtant,
on ne saurait recommander cette stratégie, qui subit un regret catastrophique dès que le premier
bras est sous-optimal. Une solution consiste à ne considérer que des stratégies dites uniformément
convergentes sur une classe d’environnements E . Ce sont les stratégies ψ telles que

pour tout ν ∈ E , pour tout α > 0 , lim inf
T→∞

RT (ψ, ν)

Tα
= 0 . (1.9)

On sait par exemple que l’algorithme UCB est uniformément convergent sur l’environnement
des bandits bornés E[0,1], d’après le Théorème 1.1.

En restreignant notre attention aux algorithmes uniformément convergents, il devient possible
de quantifier la difficulté d’un problème ν à l’intérieur de la classe E , grâce à des outils de théorie
de l’information. Grossièrement, le raisonnnement est le suivant.

Fixons un problème de bandit ν, dans une classe d’environnement E connue du joueur ; fixons
aussi une stratégie uniformément convergente. Puisque l’algorithme est uniformément convergent,
il doit être capable de distinguer le problème ν de tous les problèmes ν ′ ∈ E n’ayant pas les mêmes
actions optimales. Il doit donc accumuler de l’information utile à la différentiation entre ν et ν ′.
Une grandeur qui mesure cette information est la divergence de Kullback-Leibler. On rappelle la
définition de la divergence de Kullback-Leibler entre deux mesures de probabilité P et Q :

KL(P,Q) =





∫
ln

(
dP
dQ

)
dP si P� Q ,

+∞ sinon.
(1.10)

Une quantité cruciale dans les bornes inférieures est la divergence de Kullack-Leibler entre les lois
des choix et des observations (A1, Y1, . . . , AT , YT ) lorsque le problème est ν ou ν ′, que l’on note

KL
(
PTν , PTν′

)
. (1.11)

Une stratégie uniformément convergente doit garantir que cette quantité d’information soit
suffisamment grande pour tout ν ′ n’ayant pas les mêmes bras optimaux que ν. Pour accumuler
cette information, le joueur est amené à tirer des bras sous-optimaux. Précisément, une condition
nécessaire pour qu’un algorithme soit uniformément convergent est que pour tout ν ′ ∈ E n’ayant
pas les mêmes bras optimaux que ν (voir par exemple le lemme 5.2 au Chapitre 5)

lim inf
T→+∞

KL
(
PTν , PTν′

)

lnT
> 1 . (1.12)

D’où la borne inférieure suivante sur le regret.
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Une façon commode d’énoncer la borne dans le cadre d’un environnement non-structuré est
d’introduire une quantité appelée la Kinf . Soit D un ensemble de mesures de probabilité sur R
admettant toutes un premier moment, soient ν ∈ D et µ ∈ R tel que E(ν) 6 µ,

Kinf(ν, µ;D)
def
= inf

ν′∈D
E(ν)>µ

KL(ν, ν ′) , (1.13)

On a la borne inférieure suivante sur le regret des algorithmes uniformément convergents pour les
bandits bornés.

Théorème 1.3 (Lai and Robbins [1985], Burnetas and Katehakis [1996]). Soit ψ une stratégie
uniformément convergente sur la classe DK . Alors pour tout problème ν ∈ DK ,

lim inf
T→+∞

RT (ν, ψ)

lnT
>

K∑

a=1
∆a>0

∆a

Kinf(νa, µ?; D)
. (1.14)

Dans le cas des bandits bornés dans [0, 1], comparons cette borne inférieure à (1.3), en faisant
appel à l’inégalité de Pinsker. Celle-ci garantit que si ν et ν ′ sont deux mesures de probabilité sur
[0, 1], alors la divergence de Kullback-Leibler entre ces deux mesures est minorée par

KL(ν, ν ′) > 2
(
E(ν)− E(ν ′)

)2
. (1.15)

En particulier, pour une action a sous-optimale dans un problème ν, si ν ′ est telle que E(ν ′) > µ?,
alors d’après l’inégalité de Pinsker,

KL(νa, ν
′) > 2(µa − µ?)2 = ∆2

a , d’où Kinf

(
νa, µ

?;D[0,1]

)
> 2∆2

a ,

en prenant l’infimum sur ν ′.
Ainsi, en comparant les facteurs devant le logarithme dans la borne supérieure (1.3) et la borne

inférieure, on a deux termes

8

K∑

a=1
∆a>0

1

∆a
vs.

K∑

a=1
∆a>0

∆a

Kinf(νa, µ?,D[0,1])
, (1.16)

et l’on sait que le terme de gauche est plus grand que celui de droite. L’inégalité est d’ailleurs
stricte, notamment à cause du facteur 16 qui les sépare dans la majoration par l’inégalité de
Pinsker. Le statisticien souhaitera donc améliorer l’une ou l’autre de ces bornes, soit en proposant
un meilleur algorithme qu’UCB, soit en trouvant des bornes inférieures plus fines.
C’est du côté des algorithmes que l’écart a été comblé. L’optimalité asymptotique des bornes

inférieures distribution-dependent dans des modèles paramétriques était connue dès Lai and
Robbins [1985], mais c’est dans Honda and Takemura [2011] qu’apparaît la première stratégie qui
égale la borne inférieure pour la classe E[0,1]. Le Chapitre 2 de cette thèse est d’ailleurs consacré à
une variante d’un algorithme, KL-UCB, qui comble aussi cet écart.
On parlera ainsi d’algorithme asymptotiquement optimal, ou distribution-dependent optimal

pour une certaine classe non-structurée DK , lorsqu’un algorithme atteint la borne inférieure du
Théorème 1.3.
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Chapitre 1. Vue d’ensemble des résultats

Borne inférieure distribution-free

Parallèlement aux garanties distribution-dependent, discutons de l’optimalité des bornes
distribution-free, ou minimax. A cette fin, énonçons la borne inférieure correspondante.

Théorème 1.4 (Auer et al. [2002b]). Pour tout horizon de temps T > 1, pour tout algorithme de
bandits, il existe un problème dans E[0,1] sur lequel l’algorithme subit un regret minoré par

inf
ψ algorithmes

sup
ν∈E[0,1]

RT (ψ, ν) >
1

20

√
KT . (1.17)

La preuve de ce théorème repose sur un raisonnement légèrement différent de celle des bornes
inférieures distribution-dependent. Pour les bornes distribution-dependent, on fixait un algorithme
et un problème de bandit, et on étudiait les conséquences de l’hypothèse de convergence sur le
regret pour ce problème fixé. Dans le cas présent, l’argument consiste à identifier une famille de
problèmes difficiles à l’intérieur de la classe étudiée, ici E[0,1], et à montrer qu’aucun algorithme
ne peut faire mieux que la borne énoncée sur tous ces problèmes.

Les problèmes de bandits les plus difficiles au sens minimax pour E[0,1] sont des problèmes où
il faut trouver un unique bras légèrement meilleur que les autres. Précisément, on définit une
famille de K problèmes de bandits à K bras, de la façon suivante. Toutes les distributions de
tous les bras seront Bernoulli (on définit donc bien des problèmes bornés), et le paiement moyen
du bras a dans le i-ème problème sera :

µ(i)
a =

1

2
+

√
K

T
1{a=i} . (1.18)

Intuitivement, n’importe quel algorithme faisant face à de tels problèmes ne pourra pas accumuler
suffisamment d’information pour distinguer le meilleur bras des autres, et sera donc obligé
d’explorer (plus ou moins) uniformément. Ainsi, il subira presque à chaque tour un regret de
l’ordre de

√
K/T , soit un regret cumulé sur les T tours de T

√
K/T =

√
KT .

Ce résultat se montre rigoureusement en manipulant les divergences de Kullback-Leibler entre
les distributions des lois des observations.

� =

�
K

T

0

1

1/2

Arm 1 Arm K

Figure 1.1. : Les paiements moyens des problèmes de bandits difficiles au sens minimax, cf. (1.18)
.

On dit parfois que les bornes minimax sont pessimistes, parce qu’elles ne se comparent qu’aux
problèmes les plus difficiles. Ainsi, un algorithme qui obtiendrait un regret qui vaut exactement
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√
KT sur tous les problèmes de bandit, serait optimal au sens minimax, mais certainement pas

intéressant en pratique, puisque l’on peut obtenir un regret de l’ordre de lnT lorsque tous les
écarts sont grands, par exemple avec UCB.
Une fois encore, il y a un écart entre la borne supérieure distribution-free d’UCB et la borne

inférieure. La première était d’ordre
√
KT lnT , tandis que la dernière était d’ordre

√
KT . On

pourrait donc chercher soit à trouver une plus grande borne inférieure, soit à construire un
algorithme bénéficiant de meilleures bornes supérieures. L’algorithme MOSS, de Audibert and
Bubeck [2009] garantit un regret qui colle à cette borne inférieure, à un facteur numérique
multiplicatif près : c’est un algorithme minimax optimal. On discute d’autres algorithmes minimax
optimaux dans le Chapitre 2.

Importance du modèle

Les bornes inférieures et les notions d’optimalité dépendent fortement du modèle dans lequel
on se place, c’est-à-dire de l’information que l’on suppose préalablement disponible. En général,
le joueur voudra faire le moins d’hypothèses possibles. Dans la suite, on proposera plusieurs
manières de mettre en œuvre ce principe. Une première manière naturelle est de s’intéresser à des
environnements les plus grands possibles, puis de chercher les vitesses optimales du regret sur ces
environnements.

En ce sens, l’environnement E[0,1] est particulièrement pertinent. Au lieu de faire des hypothèses
paramétriques, par exemple, supposer que les paiements suivent une loi de Bernoulli ou gaussienne,
on considère le modèle non-paramétrique de toutes les distributions bornées dans [0, 1].

Aussi, le Chapitre 2 de cette thèse est consacré à l’étude fine du regret optimal pour ce modèle.
Dans ces conditions, coller aux bornes inférieures donne lieu à certaines difficultés techniques,
dont nous discutons dans la section suivante et dans le chapitre en question.

1.1.4. Un algorithme doublement optimal pour les bandits bornés

Dans cette section, nous décrivons le regret optimal pour l’environnement des bandits à paie-
ments bornés dans [0, 1]. Nous proposons en particulier un algorithme à la fois asymptotiquement
optimal et minimax optimal pour ce modèle.

On se concentrera dans cette section sur l’environnement E[0,1] des problèmes bornés dans [0, 1],
et Kinf désignera toujours la Kinf associée au modèle D[0,1].

Affiner les bornes de confiance grâce à la Kinf

En un sens, les bornes supérieures de confiance utilisées dans l’algorithme UCB correspondent à
des queues de distributions gaussiennes. Or, l’hypothèse de bornitude des paiements est beaucoup
plus forte qu’une hypothèse de (sous-)gaussianité. Pour des distributions de paiements bornées, on
s’attend donc à pouvoir affiner ces bornes de confiance, et à transformer ces bornes de confiances
en un meilleur algorithme. Ce programme a été esquissé et partiellement mené à bien par Cappé
et al. [2013], qui introduisent l’algorithme KL-UCB, défini par l’indice

UKL
a (t) = sup

{
u ∈ [0, 1] : Kinf(ν̂a(t), u) 6

lnT

Na(t)

}
où ν̂a(t) =

1

Na(t)

t∑

s=1

δYs1{As=a} .

La mesure ν̂a(t) est la mesure empiririque des observations associées au bras a. Cette formule
pour les indices correspond à une borne supérieure de confiance sur la vraie moyenne µa. Pour le
voir, commençons par la réécriture suivante, qui découle de la définition de l’indice,

P
[
UKL
a (t) > µa

]
6 P

[
Kinf

(
ν̂a(t), µa

)
>

lnT

Na(t)

]
. (1.19)
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Or, si X1, . . . , Xn sont n variables i.i.d. de loi ν à support dans [0, 1], alors en notant ν̂n leur
distribution empirique, on a l’inégalité de déviation suivante

P
[
Kinf

(
ν̂n,E(ν)

)
> u)

]
6 e(2n+ 1)e−nu . (1.20)

Ainsi, l’indice est, au moins formellement, une borne supérieure de confiance sur la vraie moyenne
E(νa). L’algorithme KL-UCB tire à chaque tour un bras maximisant cet indice.

Agrawal [1995b] introduit une première version de cet algorithme, et s’intéresse exclusivement
aux garanties asymptotiques. C’est dans Cappé et al. [2013] qu’apparaît la formulation actuelle de
la stratégie ; des bornes distribution-dependent optimales y sont prouvées pour certains problèmes
particuliers. Dans le Chapitre 2, nous montrons que KL-UCB est bien asymptotiquement optimal
pour le modèle entier des bandits à supports dans [0, 1]. Nous y proposons par ailleurs une
amélioration de la stratégie, qui permet d’atteindre en plus l’optimalité minimax.

Optimalité minimax et KL-UCB-switch

Pour améliorer les garanties distribution-free d’UCB, Audibert and Bubeck [2009] introduisent
l’algorithme MOSS, qui repose sur une autre modification de l’indice UCB :

Um
a (t) = µ̂a(t) +

√
2

Na(t)
ln

(
max

( T

KNa(t)
, 1
))

. (1.21)

Du fait de la modification du niveau de confiance (qui se lit à l’intérieur du logarithme), MOSS
explore légèrement moins que UCB, et atteint une meilleure borne minimax.

Théorème 1.5 (Audibert and Bubeck [2009]). MOSS bénéficie de la garantie distribution-free
suivante :

sup
ν∈E[0,1]

RT 6 18
√
KT . (1.22)

La valeur de la constante devant le
√
KT est améliorée par rapport à la référence originale.

Nous présentons une preuve simplifiée donnant cette constante dans le Chapitre 2, Proposition 2.2.
La modification du niveau de confiance dans UCB permet donc une amélioration directe de la

borne distribution-free. Il est alors naturel de modifier le niveau de confiance dans l’indice KL-UCB
pour chercher à en faire un algorithme minimax optimal : c’est l’algorithme KL-UCB++ de Ménard
and Garivier [2017],

UKL ++
a (t) = sup

{
u ∈ [0, 1] : Kinf(ν̂a(t), u) 6

1

Na(t)
ln
( T

KNa(t)

)}
. (1.23)

Hélas l’inégalité de déviation (1.20) pour la KL n’est pas suffisamment forte pour obtenir les
garanties espérées sur le regret de KL-UCB++. Nous proposons donc l’algorithme KL-UCB-switch,
qui mélange les deux types d’indices.

U switch
a (t) =

{
UKL ++
a (t) si Na(t) 6 f(T,K)

Um
a (t) si Na(t) > f(T,K) ,

où f(t,K) = (t/K)1/5. L’algorithme joue donc selon KL-UCB++, jusqu’à ce que certains bras soient
tirés suffisament de fois. Lorsqu’un bras a été tiré plus de f(T,K) fois, l’algorithme attribue alors
à ce bras l’indice MOSS. On peut justifier cette approche intuitivement en disant que l’indice MOSS
est un indice adapté au modèle gaussien, et que les fluctuations de la distribution empirique des
paiements d’un bras autour de sa moyenne se rappochent de fluctuations gaussiennes dès lors que
ce bras sera suffisamment tiré.
KL-UCB-switch bénéficie des garanties suivantes :
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Théorème 1.6 (Théorèmes 2.1 et 2.2, Chapitre 2). Pour tout T , l’algorithme KL-UCB-switch
vérifie à la fois :

sup
ν∈E[0,1]

RT (ν) 6 23
√
KT + (K − 1) , (1.24)

et pour tout ν ∈ E[0,1], pour tout bras sous-optimal a ∈ [K],

E
[
Na(T )

]
6

lnT

Kinf(νa, µ?)
+ o(lnT ) . (1.25)

Cet algorithme est donc optimal pour les deux types de garanties considérées. Ceci montre en
particulier qu’il est bien possible d’être optimal des deux points de vue, pour l’environnement
E[0,1], ce qui n’avait rien d’évident a priori.
Une question alors naturelle est de savoir si l’on pourrait se passer du changement d’indice

dans KL-UCB-switch, et ne garder que l’indice de KL-UCB++.

Perspectives 1.1. On est naturellement amenés à conjecturer que l’algorithme KL-UCB++ est
minimax optimal, sans la modification de l’indice avec l’indice MOSS. Pour montrer ce résultat,
l’obstacle technique à surmonter dans notre approche est la suppression du facteur 2n+ 1 dans
l’inégalité de déviation (1.20).

1.1.5. Un autre cadre de bandits préservant la diversité

Dans le Chapitre 5, un peu à part, nous étudions une modification du cadre standard des
problèmes de bandits, qui permet d’incorporer des contraintes de diversité dans les choix du
joueur.
Le constat initial, dressé dans Celis et al. [2019], est que les (bons) algorithmes de bandits

ont tendance à se polariser, c’est-à-dire à proposer quasi-exclusivement la meilleure action. Ce
comportement, souhaitable dans le cadre classique, peut être dommageable lorsque l’on a certaines
applications en vue.
Par exemple, un restaurateur, suivant à la lettre un algorithme de bandits pour émettre des

recommandations à chaque client, risquerait de ne proposer plus que du poisson à tous ses clients.
Ceci serait désagréable pour un cuisinier aimant aussi préparer sa ratatouille ; il faudrait donc
imposer au restaurateur une certaine diversité dans ses recommendations. Voir le chapitre en
question pour des exemples moins farfelus, et une discussion de la littérature sur ces sujets liés à
la question de la “fairness”, ou “équité” des algorithmes.

Diversity-preserving bandits : cadre formel

Comme dans les bandits standards, K actions sont disponibles, l’action a générant un paiement
de loi νa lorsque a est sélectionnée. La différence tient dans le fait que le joueur doit choisir une
loi de probabilité p

t
sur l’ensemble des actions [K], parmi un ensemble de probabilités P donné,

et tirer At selon P.
Par exemple, on peut fixer un seuil ` ∈]0, 1/K[ et un ensemble de probabilités

P =
{

(p1, . . . , pK) ∈ SK : pour tout a ∈ [K], pa > `
}
. (1.26)

Dans cet exemple, à chaque tour, le joueur sélectionnera toujours n’importe quelle action a avec
probabilité au moins `. La notion de regret adéquate dans ce cadre devient

Rdiv
T (ν) = T max

p∈P

K∑

a=1

paµa − E

[
T∑

t=1

Yt

]
, (1.27)
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c’est-à-dire la différence entre le paiement moyen obtenu, et celui que le joueur aurait gagné s’il
n’avait joué que la meilleure probabilité.
Ce cadre, un peu différent du cadre standard, donne lieu à des phénomènes inhabituels.

On a vu par exemple que dans les problèmes classiques de bandits, le regret croît toujours
logarithmiquement lorsque T →∞, cf. la borne inférieure du Théorème 1.3. Dans ce nouveau
cadre, nous montrons que cette vitesse logarithmique est toujours nécessaire sur certains couples
ν,P, mais que pour d’autres, il est possible d’atteindre un regret constant.

Perspectives 1.2. Ce chapitre étant un travail en cours, il reste des questions auxquelles nous
souhaiterions répondre. Le géométrie de l’ensemble de probabilités P a une influence forte sur les
performances possibles des algorithmes ; l’exemple le plus frappant étant la possibilité du regret
constant lorsque P est inclus dans l’intérieur du simplexe des probabilités sur [K]. Ainsi, nous
aimerions étudier plus finement la dépendance en P, et déceler les caractéristiques de P qui
détermine le regret optimal. Précisément, on pourrait par exemple chercher à calculer le regret
minimax en fonction de P. Plusieurs conjectures précises qui portent sur ce regret optimal sont
formulées au Chapitre 5.

1.2. Introduction aux problématiques d’adaptation par un
exemple

Dans cette section, on présente un exemple de problème de bandits à ensemble d’actions continu.
Cet exemple nous servira de fil conducteur pour introduire nos résultats des Chapitres 3 et 4.

1.2.1. Chercher de l’or dans une rivière : un problème de bandits continus

Les exemples de problèmes de bandits décrits précédemment sont des cas particuliers de
problèmes dit discrets (ou à ensemble de bras finis). L’image typiquement utilisée est que le
statisticien est un joueur de casino, et que chaque bras est une machine à sous. Imaginons cette
fois que le joueur, écrasé par ses dettes dues au casino, décide de se reprendre en main et de
partir chercher de l’or dans une rivière de l’Oklahoma.

A = [0, 1]

0

1

Figure 1.2. : Une rivière aurifère et un chercheur (d’or).

Le statisticien-orpailleur procède de la manière suivante. Il fixe un grand tronçon de rivière et
indexe chaque point de la rivière par sa coordonnée naturelle a ∈ [0, 1]. Chaque jour, il choisit
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un site At ∈ [0, 1], sur lequel il passera sa journée à chercher de l’or. Il récolte alors une certaine
quantité d’or Yt, qui sera un réel positif Yt ∈ R+ (mesurée par exemple en milligrammes d’or).

Si l’on fait l’hypothèse de modélisation que le paiement Yt, conditionnellement au lieu At suit
une loi de probabilité fixée νAt , et est indépendant des paiements passés (hypothèse bien entendu
discutable, mais que nous ferons pour l’exemple), alors le statisticien joue à un jeu de bandits
continus. Le nom bandits continus fait référence au fait que l’espace des actions, ici la rivière, ou
l’intervalle [0, 1] est un ensemble infini indénombrable. Pour éviter la confusion avec l’ensemble
de valeurs des paiements, on note l’ensemble des actions A = [0, 1].

On suppose donc qu’il existe une famille de mesures de probabilité ν = (νa)a∈A, qui modélise la
distribution de l’or récolté par le statisticien au cours de ses recherches. Notons aussi la fonction
de paiements-moyens associée au problème ν,

fν : a 7→ E(νa)

(on supposera toujours que toutes les distributions de paiements ont un premier moment fini).
Le statisticien cherche une stratégie lui permettait de récolter le plus d’or possible. On définit

le regret d’une stratégie ψ sur le problème ν de la façon suivante

RT (ψ, ν) = T max
a∈A

fν(a)− E

[
T∑

t=1

Yt

]
.

Quelle stratégie le statisticien doit-il adopter pour récolter le plus d’or possible ? La réponse
dépendra des hypothèses que l’on fait sur le problème ν, c’est-à-dire des connaissances préalables
dont dispose le joueur sur la répartition de l’or dans la rivière. Présentons dans un premier temps
un certain jeu d’hypothèses, que nous relacherons par la suite.

1.2.2. Un jeu d’hypothèses : support des paiements et régularité des paiements
moyens fixés

Le joueur commence par faire des hypothèses sur le problème ν. D’une part, il sait grâce à
l’expérience de collègues orpailleurs qu’il n’obtiendra jamais plus d’un milligramme d’or en une
journée sur cete rivière. Formellement, on impose donc que toutes les distributions des paiements
soient à support dans [0, 1].
D’autres collègues lui ont aussi fait part de l’observation suivante : la différence de paiement

moyen (en mg) entre deux points n’excède jamais la distance (rapportée à [0, 1]) entre ces points.
Autrement dit, la fonction de paiements-moyens est (1–)Lipschitzienne :

pour tous x, y ∈ A ,
∣∣fν(x)− fν(y)

∣∣ 6 |x− y| .

Il s’agit d’une hypothèse de régularité sur la fonction de paiements-moyens. Une autre manière
d’interpréter cette hypothèse est que le joueur, en sélectionnant l’action a, récupère aussi de
l’information sur les paiements des actions proches de a.
On résume ces hypothèses en disant que le joueur fait face à un problème de bandits qui

appartient à la classe

ELip =
{

(νa)a∈A : pour tout a ∈ A , νa
(
[0, 1]

)
= 1, et fν est Lipschitzienne

}
.

Décrivons maintenant une stratégie simple mais efficace pour ce problème continu : la discrétisation.
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Discrétisations

Les vitesses minimax sont atteintes en découpant l’ensemble des actions A en K morceaux
de même taille, et en choisissant correctement K. L’idée, proposée dans Kleinberg [2004] avec
l’algorithme CAB1 (pour Continuum-Armed Bandits), consiste donc à discrétiser l’ensemble des
actions, et à jouer dans les morceaux discrétisés selon les recommendations d’un algorithme
discret. Présentons plus précisément l’approche.
Fixons un problème de bandits ν ∈ ELip, et notons f sa fonction de paiements-moyens. Soit

K > 2 un entier, qui désignera le nombre de cellules de discrétisations, et soit ψdisc un algorithme
de bandits à K bras, qu’on appellera l’algorithme discret.

Divisons l’ensemble des actions A = [0, 1] en K morceaux de même taille, [(i− 1)/K, i/K[ (il
n’est pas nécessaire que les intervalles forment une partition de A). A chaque tour, l’algorithme
discret ψdisc recommande une action It ∈ [K], et le joueur tire un bras uniformément au hasard
dans le It-ème intervalle de la discrétisation. Il observe alors un paiement Yt, qu’il transmet à
l’algorithme discret.

Si le joueur choisit It ∈ [K] et tire un bras At distribué uniformément dans
[
(It− 1)/K, It/K

]
,

le paiement moyen reçu vérifie alors

E
[
Yt | It

]
= E

[
f(At) | It

]
=

∫ It/K

(It−1)/K
f(x) dx def

= mIt(f) .

Ainsi, du point de vue de l’algorithme discret, le paiement moyen associé au i-ème intervalle est
la valeur moyenne de f sur cet intervalle, que l’on note mi(f).

Faisons une analyse rapide de cette stratégie. Soit x? un point où f atteint son maximum. Le
regret se décompose de la façon suivante :

RT = Tf(x?)− E
[
f(Xt)

]
= T

(
f(x?)− max

i∈[K]
mi(f)

)
+ T max

i∈[K]
mi(f)− E

[
T∑

t=1

mIt(f)

]
.

Le deuxième terme est exactement le regret subit par l’algorithme ψdisc face à un problème de
bandits bornés à K bras, de moyennes

(
m1(f), . . . ,mK(f)

)
. En prenant par exemple l’algorithme

MOSS comme algorithme discret, grâce au Théorème 1.5, on obtient la garantie

RT 6 T

(
f(x?)− max

i∈[K]
mi(f)

)
+ 18
√
KT .

Le regret est ainsi décomposé en deux termes : le premier est un terme d’approximation du
maximum de f par la famille

(
mi(f)

)
i∈[K]

, tandis que le second vient du coût de l’apprentissage
du problème approximé.
En faisant un tel choix, et en considérant l’intervalle i? contenant x?, on obtient la borne sur

l’erreur d’approximation :

f(x?)− max
i∈[K]

mi(f) 6 f(x?)−mi?(f) 6
1

K
, d’où RT 6

T

K
+ 18
√
KT .

On peut alors choisir K de manière à minimiser cette borne supérieure : prenons par exemple
K = bT 1/3c pour obtenir

RT 6 2T 2/3 + 18T 2/3 = 20T 2/3 .

Cette vitesse de croissance du regret, en T 2/3, est la vitesse minimax (optimale) sur la classe ELip
(cf. le Théorème 1.9 discuté ci-dessous). On obtient donc les meilleures vitesses minimax possible
en discrétisant l’ensemble des actions.
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Figure 1.3. : Discrétisation d’un problème de bandits continus. La figure de gauche représente
la fonction de paiements-moyens. En appliquant la stratégie de discrétisation, le
joueur se retrouve face au problème discret représenté par les barres horizontales
dans la figure de droite.

Rappelons cependant que nous avions fait deux hypothèses fortes sur les paiements : le fait que
les paiements soient bornés dans l’intervalle [0, 1] et la connaissance précise de la régularité de la
fonction de paiements-moyens. Dans la suite de cette introduction, nous discuterons de façons de
nous passer de ces hypothèses.

Ces questions sont cruciales pour relier la théorie à la pratique. Très souvent, des algorithmes
sont construits en supposant connus certains paramètres du problème ν. Le practicien devra alors
deviner la valeur du paramètre, souvent à l’instinct : les garanties théoriques ne sont alors pas
forcément valables. Les algorithmes bénéficiant de garanties adaptativess sont en ce sens plus
robustes aux éventuelles incertitudes sur les hypothèses.
Commençons par nous attaquer à la première condition : la bornitude des paiements.

1.3. Adaptation minimax au support des bandits bornés

Dans ce qui précède, nous avions toujours supposé que les paiements étaient bornés dans [0, 1],
et que le joueur disposait de cette information à l’avance. Cette hypothèse peut être irréaliste en
pratique. En fait, la question se pose déjà dans les problèmes de bandits discrets ; discutons donc
du problème de l’adaptation au support des paiements dans les bandits à K bras.

1.3.1. Bandits bornés à support quelconque connu

Plaçons-nous dans le cadre des bandits standards à K bras. Au lieu d’imposer que les paiements
soient tous dans [0, 1], considérons qu’ils appartiennent tous à un intervalle [m,M ], où m et M
sont deux réels quelconques tels que m < M . Supposons dans un premier temps que m et M
sont connus du joueur. La classe d’environnements que l’on étudie est alors

E[m,M ] =
{

(ν1, . . . , νK) : ∀a ∈ [K] , νa
(
[m,M ]

)
= 1
}
.

Puisque le joueur connaît m et M , il lui suffit bien sûr de normaliser les paiements pour se
ramener au cas où ils appartiennent à [0, 1], via la transformation

Yt ←
Yt −m
M −m +m.

Le jeu sur les paiements transformés est complètement équivalent au jeu standard ; seul le regret est
modifié, par un facteur multiplicatif (M −m). En combinant les résultats discutés précédemment
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pour [0, 1] (les Théorèmes 1.4 et 1.5), on obtient alors

1

20
(M −m)

√
KT 6 inf

ψ
sup

ν∈E[m,M ]

RT (ν, ψ) 6 18(M −m)
√
KT . (1.28)

On dira que (M −m)
√
KT est la vitesse minimax optimale pour la classe E[m,M ].

Par contre, lorsque les bornes des supports des paiements sont inconnues, il n’y a plus d’opération
standard permettant de se ramener à un cas connu. On pourrait d’ailleurs, au premier abord,
penser que l’adaptation au support est une tâche impossible. Réfléchissons-y mieux.

1.3.2. Bandits bornés à support inconnu : adaptation (quasi-)parfaite...

Cette fois-ci, on ne suppose plus que les bornes des supports sont connues. Cela revient donc à
considérer un problème qui appartient à n’importe quelle classe E[m,M ], i.e.,

ν ∈
⋃

m,M∈R
m<M

E[m,M ]

Notons d’ailleurs la subtile différence avec le cas où l’on ne suppose pas les bandits bornés, qui
correspondrait à prendre la classe de toutes les distributions sans exception ; ce second cas est
trop général pour qu’on puisse en dire des choses intéressantes.
La question que l’on se pose alors est : peut-on s’adapter aux supports des paiements ? En

d’autres termes, peut-on construire un algorithme ψ garantissant pour tous m,M ∈ R tels que
m < M ,

sup
ν∈E[m,M ]

RT (ν, ψ) 6 c(M −m)
√
KT ?

Reformulons encore une fois la question : on se demande si l’on pourra obtenir un algorithme
garantissant pour une certaine constante numérique c > 0

sup
m,M∈R
m<M

sup
ν∈E[m,M ]

RT (ν, ψ)

(M −m)
√
KT

6 c ?

Et on dira qu’un tel algorithme atteint la vitesse adaptative (M −m)
√
KT .

L’une des contributions de cette thèse, détaillée dans le Chapitre 4, est l’apport d’une réponse
(positive) à cette question, par la construction d’algorithmes permettant effectivement d’atteindre
l’adaptation aux vitesses (quasi-)minimax.

Théorème 1.7 (Théorème 4.3, Chapitre 4 ). Il existe un algorithme garantissant pour tout T , pour
tous m,M ,

sup
ν∈E[m,M ]

RT (ν, ψ) 6 7(M −m)
√
KT lnK + 10(M −m)K lnK . (1.29)

L’algorithme en question repose sur des techniques utilisées dans les bandits adversariaux, un
cadre cousin des bandits stochastiques dans lequel les paiements ne sont plus nécessairement
identiquement distribués. On atteint ainsi les vitesses minimax classiques à un facteur multiplicatif√

lnK près, sans la connaissance préalable du support.
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1.3.3. ... mais un coût à l’adaptation dans les vitesses asymptotiques

Vu les résultats discutés dans la section précédente, on pourrait croire que l’on peut s’adapter
au support des paiements sans frais. Ce n’est pas du tout le cas. Pour le voir, il faut regarder du
côté des garanties distribution-dependent.

Lorsque le support est donné au joueur, on sait que celui-ci peut bénéficier d’un regret logarith-
mique lorsque T → +∞. Il lui suffit par exemple de jouer selon UCB pour les paiements normalisés.
Nous avons même montré qu’il était possible d’avoir un algorithme simultanément optimal des
points de vue distribution-dependent et minimax, en utilisant l’algorithme KL-UCB-switch.

On pourrait donc espérer obtenir aussi des bornes logarithmiques lorsque le support est inconnu.
Cette poursuite est vaine : aucun algorithme n’admet de telles garanties. Nous montrons dans le
Chapitre 4 une borne inférieure prouvant cette affirmation. On dit qu’un algorithme ψ atteint
la vitesse adaptative B(m,M, T ) s’il existe une constante numérique c > 0 telle que pour tout
horizon de temps T ,

sup
m,M∈R
m<M

sup
ν∈E[m,M ]

RT (ν, ψ)

B(m,M, T )
6 c . (1.30)

On dira aussi que la vitesse est homogène si la dépendance en le support est la dépendance
naturelle, i.e., s’il existe une fonction B̃(T ) telle que B(m,M, T ) = (M −m)B̃(T ). La borne
inférieure est la suivante.

Théorème 1.8 (Théorème 4.2, Chapitre 4). Si un algorithme ψ atteint la vitesse adaptative
homogène (M −m)B̃(T ) alors pour tous m < M et pour tout problème ν ∈ E[m,M ], on a

lim inf
T→+∞

RT (ν, ψ)

(M −m)T/B̃(T )
>

1

4

K∑

a=1

∆a . (1.31)

Bien que l’adaptation au sens minimax soit possible, elle restreint les vitesses distribution-
dependent accessibles ! A l’extrême, un algorithme s’adaptant au support avec un regret de l’ordre
de (M −m)

√
KT subira un regret sur un problème précis ν d’au moins κ(ν)

√
T , ce qui est bien

loin d’un lnT rêvé.

1.4. Adaptation minimax à la régularité de la fonction de
paiements-moyens

Revenons au problème initial de notre chercheur d’or, et essayons maintenant de nous passer
de l’hypothèse de régularité de la fonction de paiements-moyens, ou plutôt de la réduire. Il est
raisonnable de penser que la quantité d’or dans la rivière admet une certaine forme de régularité,
et que s’il y a beaucoup d’or à un point donné, il y en aura beaucoup dans les points proches. Par
contre, nous avions fixé de façon complètement arbitraire une évaluation quantitative de cette
régularité, en supposant que la fonction de paiements-moyens était 1−Lipschitzienne ; c’est ce
choix arbitraire que nous remettrons en cause ici.
Notons qu’il est indispensable de faire une sorte d’hypothèse de régularité sur le problème.

Autrement, face à une fonction trop irrégulière, on ne pourrait rien dire ; aucun algorithme ne
parviendrait à déceler un pic de paiement trop pointu.

Définissons ici une classe de régularité dérivée de la régularité Hölder. On note H(α) l’ensemble
des fonctions f : [0, 1]→ R qui atteignent leur maximum en un point x? ∈ A et telles que

∀x ∈ A , |f(x?)− f(x)| 6 |x? − x|α .
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Notre hypothèse de régularité est moins forte que la vraie régularité Hölder, puisqu’on ne compare
les valeurs de f qu’autour de x?. Ceci nous permet d’ailleurs de considérer des valeurs α > 1 sans
nous restreindre aux fonctions constantes. On commettra parfois un léger abus de langage en
parlant de régularité Hölder pour notre hypothèse. On s’intéresse alors aux problèmes de bandits
à paiements bornés tels que la fonction de paiements-moyens appartient à H(α) :

EH(α) =
{

(νa)a∈A : pour tout a ∈ A , νa
(
[0, 1]

)
= 1 , et fν ∈ H(α)

}
.

1.4.1. La discrétisation atteint les vitesses minimax à régularité connue

Si le joueur sait à l’avance que le problème ν contre lequel il joue appartient à EH(α), avec α
connu, alors il pourra appliquer la méthode de discrétisation discutée dans la section précédente,
et ainsi obtenir des bornes supérieures sur le regret de l’ordre de T (α+1)/(2α+1). Il lui suffit de
choisir correctement le nombre de cellules de discrétisations en fonction de α. Ces vitesses sont
par ailleurs les vitesses minimax optimales sur les classes de régularité EH(α).

Théorème 1.9 (Kleinberg [2004]). Il existe des constantes numériques c et c′ telles que

c T (α+1)/(2α+1) 6 inf
ψ

sup
ν∈EH(α)

RT (ν, ψ) 6 c′ T (α+1)/(2α+1) . (1.32)

La borne supérieure est atteinte grâce à l’algorithme de discrétisation, avec un nombre de
cellules de discrétisations bien choisi en fonction de α. Ce résultat est donné dans Kleinberg
[2004], et rappelé en détail dans le Chapitre 3 (Proposition 3.2).

Que faire si l’on n’a pas d’information préalable sur α ? Encore une fois, on aimerait concevoir
un algorithme obtenant les mêmes garanties minimax, mais sans la connaissance de α. La question
est donc : peut-on obtenir un algorithme tel que, pour une constante numérique c > 0,

sup
α>0

sup
ν∈EH(α)

RT (ν, ψ)

T (α+1)/(2α+1)
6 c ? (1.33)

(Voir l’introduction du Chapitre 3 pour une revue de littérature sur les questions d’adaptation en
bandits continues.)

1.4.2. Impossibilité de l’adaptation à la régularité Hölder

Locatelli and Carpentier [2018] montrent que l’adaptation minimax aux vitesses usuelles est
impossible, grâce à la borne inférieure suivante.

Théorème 1.10 (Locatelli and Carpentier [2018]). Soit T un entier positif. Soit BT > 0 un réel
positif. Soient α, γ > 0 deux exposants de Hölder tels que α < γ.
Supposons que 2−3 12αB−1 6 Tα/2 2(1+α)(8−2γ). Si un algorithme ψ bénéficie de la garantie

suivante sur la classe de régularité γ-Hölder,

sup
ν∈EH(γ)

RT (ψ, ν) 6 BT , (1.34)

alors le regret minimax sur la classe α-Hölder de cet algorithme est minoré par

sup
ν∈EH(α)

RT (ψ, ν) > 2−10 TB
−α/(α+1)
T . (1.35)
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Par conséquent, si un algorithme est minimax optimal sur EH(α), on peut appliquer le théorème
avec BT = c T (α+1)/(2α+1), et obtenir la borne inférieure sur pour la classe de régularité γ†

sup
ν∈EH(γ)

RT (ν) > c′ T 1−(α+1)/(2α+1)α/(α+1) = c′ T 1−α/(2α+1) � T (γ+1)/(2γ+1) , (1.36)

d’où l’impossibilité de garantir un regret d’ordre T (γ+1)/(2γ+1) sur la classe EH(γ).
Ceci étant établi, le joueur peut tout de même se demander quelles vitesses il est possible

d’atteindre sans la connaissance du paramètre α. Afin de mener cette discussion, concentrons-nous
sur l’exposant sur T dans les vitesses minimax.
Supposons que l’on dispose d’un algorithme garantissant (sans la connaissance de α) pour

tout α
sup

ν∈EH(α)

RT (ν) 6 c T θ(α) , (1.37)

où θ est une fonction (décroissante) de α, et c une constante numérique. On dira alors que
l’algorithme atteint la vitesse θ. Moralement, la borne inférieure du Théorème 1.10, stipule que θ
doit vérifier l’inéquation

pour tous α, γ tels que α 6 γ , θ(γ) > 1− α

α+ 1
θ(α) . (1.38)

Tout algorithme se passant de la connnaissance du paramètre α atteindra donc une vitesse θ
vérifiant l’inéquation précédente. Pour minorer cette vitesse, on peut donc chercher les solutions
minimales, au sens de l’ordre ponctuel, à cette inéquation. C’est le contenu du théorème suivant.

Théorème 1.11 (Théorème 3.2, Chapitre 3). Si un algorithme atteint la vitesse θ, alors il existe
une vitesse θm parmi les vitesses

θm : α 7→ max

(
m, 1−m α

α+ 1

)
, m ∈ [1/2, 1] . (1.39)

telle que pour tout α, on ait θ(α) > θm(α).

Empruntons ici une terminologie statistique standard et disons que θm est une famille de
vitesses admissibles, c’est-à-dire des vitesses qu’il est impossible d’améliorer uniformément pour
tout α. Il s’agit donc d’une famille de vitesses toutes optimales et incomparables entre elles. Ces
vitesses sont représentées dans la figure 1.4.

Un algorithme admissible

Pour justifier complètement la dénomination des vitesses admissibles, encore faut-il prouver
qu’elles sont bien atteintes par un algorithme. Une des contributions principales de cette thèse
est justement la construction d’un algorithme capable d’atteindre n’importe laquelle des vitesses
admissibles θm (à un facteur logarithmique près).

Théorème 1.12 (Théorème 3.2, Chapitre 3). Pour n’importe quel m ∈ [1/2, 1], et pour tout T ,
l’algorithme MeDZO, proposé au Chapitre 3, réglé avec le m choisi, atteint la vitesse admissible θm.
Précisément, pour tout α > 0,

sup
ν∈EH(α)

RT (ν) 6 412 (ln2 T
m)3/2T θm(α) . (1.40)
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Figure 1.4. : La famille (θm)m∈[1/2,1] des vitesses admissibles.

L’algorithme MeDZO (pour “Memorize, Discretize and Zoom Out”) repose sur une idée naturelle :
combiner différents niveaux de discrétisation. En revanche, l’approche concrète se distingue
fortement des techniques antérieures en bandits continus. En effet, les principaux algorithmes du
domaine (cf. HOO de Bubeck et al. [2011b] et Zooming de Kleinberg et al. [2019]) discrétisent à des
niveaux de plus en plus fins, en affinant la discrétisation grâce à la connaissance d’un paramètre
de régularité. Au contraire, MeDZO commence par une discrétisation fine de l’espace des bras, et
dézoome au fur et à mesure que le temps passe !

Perspectives 1.3. L’absence de bornes distribution-dependent pour les bandits continus constitue
un trou dans la littérature. En général, pour des classes de problèmes suffisamment grandes, on ne
peut plus espérer de bornes en lnT , mais plutôt de l’ordre de

√
T même en distribution-dependent,

ce qui contraste avec le cas discret. Si certaines bornes de ce type sont discutées dans Kleinberg
et al. [2019] dans des cas particuliers, les résultats sont loin d’égaler en finesse leur analogue du
cas discret.

Les techniques standards, qui donnent les bornes distribution-dependent dans le cas discret (cf.
Théorème 1.3) ne fonctionnent plus quand l’espace des actions est trop grand.

Une étape pour obtenir des résultats plus proches du distribution-dependent serait de continuer
à faire de l’adaptation minimax, mais sur des classes plus petites, en considérant d’autres notions
de régularité. Par exemple, Auer et al. [2007] introduisent la régularité de marge d’un problème
ν, et Locatelli and Carpentier [2018] proposent un algorithme s’adaptant à cette régularité de
marge, à condition que l’on connaisse par ailleurs la régularité Hölder. On pourrait donc chercher
à s’adapter aux deux notions de régularité simultanément.

Perspectives 1.4. Nous avons donc étudié séparément deux problèmes : d’un côté l’adaptation
aux supports des paiements pour des bandits discrets, et de l’autre l’adaptation à la régularité pour
les bandits continus. Quid de l’adaptation simultanée aux supports et à la régularité dans notre
problème initial ?
Obtenir des bornes supérieures ne devrait pas être trop difficile, en combinant les stratégies

proposées dans cette thèse. Il serait aussi intéressant de considérer des bornes inférieures, et de
déterminer si les résultats qui découlent naturellement de notre approche suffisent à garantir des
bornes optimales.
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1.5. Perspectives : généralités sur l’adaptation minimax dans les
problèmes de bandits

Les similarités formelles entre les questions étudiées dans les Sections 1.3 et 1.4 suggèrent une
formulation générale de la problématique de l’adaptation minimax, que nous détaillons ici. En
prenant un point de vue plus abstrait par rapport à la section précédente, nous énoncerons de
potentiels futurs axes de recherche.

1.5.1. Adaptation minimax : formulation générale

Problèmes de bandits généraux, classes d’environnements inconnues. Généralisons d’abord
la définition d’un problème de bandits, pour prendre en compte un ensemble d’actions quelconque.
Soit A un tel ensemble. Un problème de bandit à actions dans A est une famille indexée par A
de distributions de probabilité, ν = (νa)a∈A telles que chaque νa possède un premier moment fini.
Une classe de problèmes E est tout simplement un ensemble de problèmes de bandits.
Soit (E(κ)

)
κ∈Θ

une famille d’environnements, indexée par un paramètre κ vivant dans un
ensemble de paramètres Θ. Le paramètre κ désignera typiquement une quantité inconnue du
joueur. La classe d’environnement global auquel le joueur fait face est alors l’union des classes
E(κ). Nous présenterons des exemples dans la suite.

Vitesses minimax adaptatives. On supposera typiquement que l’on connaît les vitesses minimax
du regret à κ connu, c’est-à-dire pour un environnement E(κ) fixé. Ainsi, on dit que B?(κ, T ) est
une vitesse minimax optimale sur E(κ) s’il existe des constantes numériques c1 et c2 telles que
0 < c1 6 c2 et pour tout T ,

c1 6 inf
ψ

sup
ν∈E(κ)

RT (ν, ψ)

B?(κ, T )
6 c2 . (1.41)

L’inégalité de droite suppose donc qu’il existe un algorithme dont le regret est essentiellement
borné par B?(κ, T ), tandis que celle de gauche nous dit qu’il n’existe pas d’algorithme faisant
mieux. (Notons que la vitesse optimale est définie à une constante multiplicative près.)
Lorsque l’on souhaite faire de l’adaptation, on suppose que κ est inconnu, et on s’intéresse

alors aux vitesses atteintes par un algorithme fixé, sur toutes les classes E(κ) simultanément. Un
algorithme ψ atteint la vitesse adaptative Bada(κ, T ) s’il existe une constante numérique c > 0
telle que

sup
κ∈Θ

sup
ν∈E(κ)

RT (ν, ψ)

Bada(κ, T )
6 c . (1.42)

Evidemment, il est plus difficile de travailler à κ inconnu qu’à κ connu ; ainsi, si un algorithme
atteint la vitesse adaptative Bada(κ, T ), alors il existe une vitesse minimax B?(κ, T ) telle que
pour tous T et κ,

B?(κ, T ) 6 Bada(κ, T ) . (1.43)

L’objectif du statisticien est d’obtenir des vitesses adaptatives les plus petites possibles. Idéalement,
on espère s’adapter à la vitesse minimax B?(κ, T ), c’est-à-dire trouver un algorithme qui garantirait
la même vitesse du regret que s’il connaissait le paramètre κ à l’avance.

En statistique classique, on peut souvent s’adapter aux vitesses minimax standards, par exemple
grâce à des méthodes de sélection de modèles, cf. Massart [2007]. L’adaptation se fait parfois à
des facteurs logarithmiques près, et les cas où l’adaptation est impossible sont plus exotiques, cf.
Cai [2012]. En bandits stochastiques, la pénalisation de l’exploration fait émerger des phénomènes
tout à fait différents dans les problèmes d’adaptation, comme nous avons pu le voir dans cette
introduction.
Resituons les exemples précédemment discutés avec ces nouvelles notations.
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Exemple 1.3 (Adaptation au support). Pour l’adaptation au support, on prend A = [K] et les
paramètres sont les bornes des supports des paiements : Θ =

{
(m,M) ∈ R2 : m < M

}
; les

classes d’environnements considérées sont E(κ) = E[m,M ].
La vitesse

B?(m,M, T ) = (M −m)
√
KT pour E[m,M ]

est une vitesse minimax optimale à support connu d’après (1.28). Et en utilisant la procéeure
décrite au Chapitre 4, Section 4.5, on montre qu’on peut s’adapter aux vitesses minimax classiques,
et donc qu’on peut atteindre la vitesse adaptative

Bada(m,M, T ) = B?(m,M, T ) = (M −m)
√
KT (

(√
lnK

)
) .

Exemple 1.4 (Adaptation à la régularité). Dans le cas de l’adaptation à la régularité, on prend
A = [0, 1], et le paramètre est l’exposant de Hölder α, qui parcourt l’ensemble Θ = {α > 0}. Les
environnements sont donc les E(κ) = EH(α) définis dans la Section 1.4.

La vitesse
B?(α, T ) = T (α+1)/(2α+1) pour EH(α)

est une vitesse minimax dans le cas de bandits continus (à paiements dans [0, 1]). Cette vitesse
B?(α, T ) est inatteignable si l’on ne connait pas α. En revanche, l’algorithme MeDZO nous permet
d’obtenir, entre autres, la vitesse adaptative

Bada(α, T ) = (lnT )3/2 T (α+2)/(2α+2) ,

et cette vitesse n’est (aux facteurs logarithmiques près) pas améliorable.

1.5.2. Adaptation et bandits linéaires ?

En fait, n’importe quel problème de bandits où une hypothèse est faite sur la classe d’environ-
nements donne potentiellement naissance à des questions d’adaptation, dès que l’on souhaite se
passer de l’hypothèse. Parmi ces problèmes, les bandits linéaires apparaissent comme une riche
source d’inspiration.

Bandits linéaires. Les bandits linéaires forment une classe importante de problèmes de bandits
(consulter [Lattimore and Szepesvári, 2020, Partie V] pour une description exhaustive) ; nous
présentons rapidement le cadre, et soutenons qu’il s’agit d’un lieu naturel pour les problématiques
d’adaptation. Soit d un entier naturel. On considère un ensemble d’actions

A ⊂ Rd ,

où chaque action ~a ∈ A est donc un vecteur. Dans les problèmes de bandits linéaires, le paiement
moyen dépend linéairement de l’action choisie ; on suppose ainsi qu’il existe un vecteur ~µ ∈ Rd
tel que

E(ν~a) =
〈
~a, ~µ

〉
.

L’ensemble dans lequel on restreint le vecteur de paiements-moyens est déterminant dans la
définition de la classe d’environnements en question. Prenons pour l’exemple B(R) la boule `2 de
rayon R centrée en (0, . . . , 0) ; fixons aussi pour l’exemple un bruit gaussien de variance 1. La
classe d’environnements est alors

E lin
(
B(R)

)
=
{

(ν~a) : il existe ~µ ∈ B(R) pour tout ~a ∈ A ν~a = N
(〈
~a, ~µ

〉
, 1
)}
.

On peut alors, comme dans les exemples discutés précédemment, dresser les vitesses minimax
à R fixé (celles-ci dépendront aussi de l’ensemble d’actions A). L’étape suivante consistera à
poursuivre l’étude sans la connaissance du rayon R.
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Chapter 2.

KL-UCB-switch:
optimal regret bounds for stochastic bandits
from both a distribution-dependent and a
distribution-free viewpoints

Abstract

In the context of K–armed stochastic bandits with distribution only assumed to
be supported by [0, 1], we introduce the first algorithm, called KL-UCB-switch, that
enjoys simultaneously a distribution-free regret bound of optimal order

√
KT and a

distribution-dependent regret bound of optimal order as well, that is, matching the
κ lnT lower bound by Lai and Robbins [1985] and Burnetas and Katehakis [1996].
This self-contained contribution simultaneously presents state-of-the-art techniques
for regret minimization in bandit models, and an elementary construction of non-
asymptotic confidence bounds based on the empirical likelihood method for bounded
distributions.

This work was led in collaboration with Aurélien Garivier, Pierre Ménard and Gilles
Stoltz. The preprint, Garivier et al. [2018] is currently under review.
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2.1. Introduction and brief literature review

Great progress has been made, over the last decades, in the understanding of the stochastic
K–armed bandit problem. In this simplistic and yet paradigmatic sequential decision model,
an agent can at each step t ∈ N∗ sample one out of K independent sources of randomness and
receive the corresponding outcome as a reward. The most investigated challenge is to minimize
the regret, which is defined as the difference between the cumulated rewards obtained by the
agent and by an oracle knowing in hindsight the distribution with largest expectation.
After Thompson’s seminal paper (Thompson, 1933) and Gittins’ Bayesian approach in the

1960s, Lai and his co-authors wrote in the 1980s a series of articles laying the foundations of
a frequentist analysis of bandit strategies based on confidence regions. Lai and Robbins [1985]
provided a general asymptotic lower bound, for parametric bandit models: for any reasonable
strategy, the regret after T steps grows at least as κ ln(T ), where κ is an informational complexity
measure of the problem. In the 1990s, Agrawal [1995b] and Burnetas and Katehakis [1996]
analyzed the UCB algorithm (see also the later analysis by Auer et al., 2002a), a simple procedure
where at step t the arm with highest upper confidence bound is chosen. The same authors also
extended the lower bound by Lai and Robbins to non-parametric models.

In the early 2000s, the much noticed contributions of Auer et al. [2002a] and Auer et al. [2002b]
promoted three important ideas.

1. First, a bandit strategy should not address only specific statistical models, but general and
non-parametric families of probability distributions, e.g., bounded distributions.

2. Second, the regret analysis should not only be asymptotic, but should provide finite-time
bounds.

3. Third, a good bandit strategy should be competitive with respect to two concurrent notions
of optimality: distribution-dependent optimality (it should reach the asymptotic lower
bound of Lai and Robbins and have a regret not much larger than κ ln(T )) and distribution-
free optimality (the maximal regret over all considered probability distributions should be
of the optimal order

√
KT ).

These efforts were pursued by further works in those three directions. Maillard et al. [2011] and
Garivier and Cappé [2011] simultaneously proved that the distribution-dependent lower bound
could be reached with exactly the right multiplicative constant in simple settings (for example, for
binary rewards) and provided finite-time bounds to do so. They were followed by similar results
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for other index policies like BayesUCB (Kaufmann et al., 2012) or Thompson sampling (Korda
et al., 2013).
Initiated by Honda and Takemura for the IMED algorithm (see Honda and Takemura, 2015

and references to earlier works of the authors therein) and followed by Cappé et al. [2013] for
the KL-UCB algorithm, the use of the empirical likelihood method for the construction of the
upper confidence bounds was proved to be optimal as far as distribution-dependent bounds
are concerned. The analysis for IMED was led for all (semi-)bounded distributions, while the
analysis for KL-UCB was only successfully achieved in some classes of distributions (e.g., bounded
distributions with finite supports). A contribution in passing of the present chapter is to also
provide optimal distribution-dependent bounds for KL-UCB for families of bounded distributions.

On the other hand, classical UCB strategies were proved not to enjoy distribution-free optimal
regret bounds. A modified strategy named MOSS was proposed by Audibert and Bubeck [2009] to
address this issue: minimax (distribution-free) optimality was proved, but distribution-dependent
optimality was then not considered. It took a few more years before Ménard and Garivier [2017]
and Lattimore [2016] proved that, in simple parametric settings, a strategy can enjoy, at the same
time, regret bounds that are optimal both from a distribution-dependent and a distribution-free
viewpoints.

Main contributions. In this work, we generalize the latter bi-optimality result to the non-para-
metric class of distributions with bounded support, say, [0, 1]. Namely, we propose the KL-UCB-
switch algorithm, a bandit strategy belonging to the family of upper-confidence-bounds strategies.
We prove that it is simultaneously optimal from a distribution-free viewpoint (Theorem 2.1) and
from a distribution-dependent viewpoint in the considered class of distributions (Theorem 2.2).
We go one step further by providing, as Honda and Takemura [2015] already achieved for

IMED, a second-order term of the optimal order − ln(ln(T )) in the distribution-dependent bound
(Theorem 2.3). This explains from a theoretical viewpoint why simulations consistently show
strategies having a regret smaller than the main term of the lower bound of Lai and Robbins [1985].
Note that, to the best of our knowledge, IMED is not proved to enjoy an optimal distribution-free
regret bound; only a distribution-dependent regret analysis was provided for it. And according to
the numerical experiments (see Section 2.3) IMED indeed does not seem to be optimal from a
distribution-free viewpoint.
Beyond these results, we took special care of the clarity and simplicity of all the proofs, and

all our bounds are finite time, with closed-form expressions. In particular, we provide for the
first time an elementary analysis of performance of the KL-UCB algorithm on the class of all
distributions over a bounded interval. The study of KL-UCB in Cappé et al. [2013] indeed
remained somewhat intricate and limited to finitely supported distributions. Furthermore, our
simplified analysis allowed us to derive similar optimality results for the anytime version of this
new algorithm, with little if no additional effort (see Theorems 2.4 and 2.5).

Organization of the chapter. Section 2.2 presents the main contributions of this chapter:
a description of the KL-UCB-switch algorithm, the precise statement of the aforementioned
theorems, and corresponding results for an anytime version of the KL-UCB-switch algorithm.
Section 2.3 discusses some numerical experiments comparing the performance of an empirically
tuned version of the KL-UCB-switch algorithm to competitors like IMED or KL-UCB. The focus
is not only set on the growth of the regret with time, but also on its dependency with respect to
the number K of arms. Section 2.4 contains the statements and the proofs of several results that
were already known before, but for which we sometimes propose a simpler derivation. All technical
results needed in this chapter are stated and proved from scratch (e.g., on the Kinf quantity
that is central to the analysis of IMED and KL-UCB, and on the analysis of the performance of
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MOSS), though sometimes in appendix, which makes this chapter fully self-contained. These
known results are used as building blocks in Section 2.5 and 2.6, where the main results of this
chapter are proved: Section 2.5 is devoted to distribution-free bounds, while Section 2.6 focuses
on distribution-dependent bounds. An appendix provides the proofs of the classical material
presented in Section 2.4, whenever these proofs did not fit in a few lines: anytime analysis of
the MOSS strategy (Appendix 2.A) and proofs of the regularity and deviation results on the
Kinf quantity mentioned above (Appendix 2.B), which might be of independent interest. It also
features the proof of a sophisticated distribution-dependent regret bound in the case of a known
T : a regret bound with an optimal second order term (Appendix 2.C).

2.2. Setting and statement of the main results

We consider the simplest case of a bounded stochastic bandit problem, with finitely many arms
indexed by a ∈ {1, . . . ,K} and with rewards in [0, 1]. We denote by P [0, 1] the set of probability
distributions over [0, 1]: each arm a is associated with an unknown probability distribution
νa ∈ P[0, 1]. We call ν = (ν1, . . . , νK) a bandit problem over [0, 1]. At each round t > 1, the
player pulls the arm At and gets a real-valued reward Yt drawn independently at random according
to the distribution νAt . This reward is the only piece of information available to the player.

A typical measure of the performance of a strategy is given by its regret. To recall its definition,
we denote by E(νa) = µa the expected reward of arm a and by ∆a its gap to an optimal arm:

µ? = max
a=1,...,K

µa and ∆a = µ? − µa .

Arms a such that ∆a > 0 are called sub-optimal arms. The expected regret of a strategy equals

RT = Tµ? − E

[
T∑

t=1

Yt

]
= Tµ? − E

[
T∑

t=1

µAt

]
=

K∑

a=1

∆a E
[
Na(T )

]
where Na(T ) =

T∑

t=1

1{At=a} .

The first equality above follows from the tower rule. To control the expected regret, it is thus
sufficient to control the E

[
Na(T )

]
quantities for sub-optimal arms a.

Reminder of the existing lower bounds. The distribution-free lower bound of Auer et al.
[2002b] states that for all strategies, for all T > 1 and all K > 2,

sup
ν
RT >

1

20
min

{√
KT, T

}
, (2.1)

where the supremum is taken over all bandit problems ν over [0, 1]. Hence, a strategy is called
optimal from a distribution-free viewpoint if there exists a numerical constant C such that fall
K > 2, for all bandit problems ν over [0, 1], for all T > 1, the regret is bounded by RT 6 C

√
KT .

We denote by P[0, 1] the set of all distributions over [0, 1]. The key quantity in stating
distribution-dependent lower bounds is based on KL, the Kullback-Leibler divergence between
two probability distributions. We recall its definition: consider two probability distributions ν, ν ′

over [0, 1]. We write ν � ν ′ when ν is absolutely continuous with respect to ν ′, and denote by
dν/dν ′ the density (the Radon-Nikodym derivative) of ν with respect to ν ′. Then,

KL(ν, ν ′) =





∫

[0,1]

ln

(
dν

dν ′

)
dν if ν � ν ′;

+∞ otherwise.
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Now, the key information-theoretic quantity for stochastic bandit problems is given by an infimum
of Kullback-Leibler divergences: for νa ∈ P[0, 1] and x ∈ [0, 1],

Kinf(νa, x) = inf
{

KL(νa, ν
′
a) : ν ′a ∈ P[0, 1] and E(ν ′a) > x

}

where E(ν ′a) denotes the expectation of the distribution ν ′a and where by convention, the infimum
of the empty set equals +∞. Because of this convention, we may equivalently define Kinf as

Kinf(νa, x) = inf
{

KL(νa, ν
′
a) : ν ′a ∈ P[0, 1] with νa � ν ′a and E(ν ′a) > x

}
. (2.2)

As essentially proved by Lai and Robbins [1985] and Burnetas and Katehakis [1996]—see also Gariv-
ier et al., 2019—, for any “reasonable” strategy, for any bandit problem ν over [0, 1], for any
sub-optimal arm a,

lim inf
T→∞

E
[
Na(T )

]

lnT
>

1

Kinf(νa, µ?)
. (2.3)

A strategy is called optimal from a distribution-dependent viewpoint if the reverse inequality holds
with a lim sup instead of a lim inf, for any bandit problem ν over [0, 1] and for any sub-optimal
arm a.
By a “reasonable” strategy above, we mean a strategy that is uniformly fast convergent on
P[0, 1], that is, such that for all bandit problems ν over [0, 1], for all sub-optimal arms a,

∀α > 0, E
[
Na(T )

]
= o(Tα) ;

there exist such strategies, for instance, the UCB strategy already mentioned above. For uniformly
super-fast convergent strategies, that is, strategies for which there actually exists a constant C
such for all bandit problems ν over [0, 1], for all sub-optimal arms a,

E
[
Na(T )

]

lnT
6

C

∆2
a

(again, UCB is such a strategy), the lower bound above can be strengthened into: for any bandit
problem ν over [0, 1], for any sub-optimal arm a,

E
[
Na(T )

]
>

lnT

Kinf(νa, µ?)
− Ω

(
ln(lnT )

)
, (2.4)

see Garivier et al. [2019, Section 4]. This order of magnitude − ln(lnT ) for the second-order
term in the regret bound is optimal, as follows from the upper bound exhibited by Honda and
Takemura [2015, Theorem 5].

2.2.1. The KL-UCB-switch algorithm

Algorithm 2.1 Generic index policy
Inputs: index functions Ua
Initialization: Play each arm a = 1, . . . ,K once and compute the Ua(K)
for t = K, . . . , T − 1 do
Pull an arm At+1 ∈ argmax

a=1,...,K
Ua(t)

Get a reward Yt+1 drawn independently at random according to νAt+1

end for
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For any index policy as described above, we have Na(t) > 1 for all arms a and t > K and may
thus define, respectively, the empirical distribution of the rewards associated with arm a up to
round t included and their empirical mean:

ν̂a(t) =
1

Na(t)

t∑

s=1

δYs 1{As=a} and µ̂a(t) = E
[
ν̂a(t)

]
=

1

Na(t)

t∑

s=1

Ys 1{As=a} ,

where δy denotes the Dirac point-mass distribution at y ∈ [0, 1].
The MOSS algorithm (see Audibert and Bubeck 2009) uses the index functions

Um
a (t)

def
= µ̂a(t) +

√
1

2Na(t)
ln+

(
T

KNa(t)

)
, (2.5)

where ln+ denotes the non-negative part of the natural logarithm, ln+ = max{ln, 0}.
We also consider a slight variation of the KL-UCB algorithm (see Cappé et al. 2013), which we

call KL-UCB+ and which relies on the index functions

Ukl
a (t)

def
= sup

{
µ ∈ [0, 1]

∣∣∣∣ Kinf

(
ν̂a(t), µ

)
6

1

Na(t)
ln+

(
T

KNa(t)

)}
. (2.6)

We introduce a new algorithm KL-UCB-switch. The novelty here is that this algorithm switches
from the KL-UCB-type index to the MOSS index once it has pulled an arm more than f(T,K)
times. The purpose is to capture the good properties of both algorithms. In the sequel we will
take f(T,K) = b(T/K)1/5c. More precisely, we define the index functions

Ua(t) =

{
Ukl
a (t) if Na(t) 6 f(T,K),

Um
a (t) if Na(t) > f(T,K).

The reasons for the choice of a threshold f(T,K) = b(T/K)1/5c will become clear in the
proof of Theorem 2.1. Note that asymptotically KL-UCB-switch should behave like KL-UCB–
type algorithm, as for large T we expect the number of pulls of a sub-optimal arm to be of
order Na(t) ∼ ln(T ) and optimal arms to have been played linearly many times, entailing
Um
a (t) ≈ Ukl

a (t) ≈ µ̂a(t).
Since we are considering distributions over [0, 1], the data-processing inequality for Kullback-

Leibler divergences ensures (see, e.g., Garivier et al., 2019, Lemma 1) that for all ν ∈ P [0, 1] and
all µ ∈

(
E(ν), 1

)
,

Kinf(ν, µ) > inf
ν′:E(ν′)>µ

KL
(

Ber
(
E(ν)

)
, Ber

(
E(ν ′)

))
= KL

(
Ber
(
E(ν)

)
, Ber(µ)

)
,

where Ber(p) denotes the Bernoulli distribution with parameter p. Therefore, by Pinsker’s
inequality for Bernoulli distributions,

Kinf(ν, µ) > 2
(
E(ν)− µ

)2
, thus Ukl

a (t) 6 Um
a (t) (2.7)

for all arms a and all rounds t > K. In particular, this actually shows that KL-UCB-switch
interpolates between KL-UCB and MOSS,

Ukl
a (t) 6 Ua(t) 6 Um

a (t) . (2.8)
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2.2.2. Optimal distribution-dependent and distribution-free regret bounds
(known horizon T )

We first consider a fixed and beforehand-known value of T . The proofs of the two theorems
below are provided in Sections 2.5 and 2.6, respectively.

Theorem 2.1 (Distribution-free bound). Given T > 1, the regret of the KL-UCB-switch algorithm,
tuned with the knowledge of T and the switch function f(T,K) = b(T/K)1/5c, is uniformly
bounded over all bandit problems ν over [0, 1] by

RT 6 (K − 1) + 23
√
KT .

KL-UCB-switch thus enjoys a distribution-free regret bound of optimal order
√
KT , see (2.1).

The MOSS strategy by Audibert and Bubeck [2009] already enjoyed this optimal distribution-free
regret bound but its construction (relying on a sub-Gaussian assumption) prevents it from being
optimal from a distribution-dependent viewpoint.

Theorem 2.2 (Distribution-dependent bound). Given T > 1, the KL-UCB-switch algorithm, tuned
with the knowledge of T and the switch function f(T,K) = b(T/K)1/5c, ensures that for all bandit
problems ν over [0, 1], for all sub-optimal arms a,

E[Na(T )] 6
lnT

Kinf(νa, µ?)
+OT

(
(lnT )2/3

)
,

where a finite-time, closed-form expression of the OT
(
(lnT )2/3

)
term is given by (2.39) for the

choice δ = (lnT )−1/3.

By considering the exact same algorithm but by following a more sophisticated proof we may
in fact get a stronger result, whose (extremely technical) proof is deferred to Appendix 2.C.

Theorem 2.3 (Distribution-dependent bound with a second-order term). We actually have, when
µ? ∈ (0, 1) and T > K/(1− µ?),

E[Na(T )] 6
lnT − ln lnT

Kinf(νa, µ?)
+OT (1) ,

where a finite-time, closed-form expression of the OT (1) term is provided in (2.57).

KL-UCB-switch thus enjoys a distribution-dependent regret bounds of optimal orders, see (2.3)
and (2.4). This optimal order was already reached by the IMED strategy by Honda and Takemura
[2015] on the model P[0, 1]. The KL-UCB algorithm studied, e.g., by Cappé et al. [2013], only
enjoyed optimal regret bounds for more limited models; for instance, for distributions over [0, 1]
with finite support. In the analysis of KL-UCB-switch we actually provide in passing an analysis
of KL-UCB for the model P[0, 1] of all distributions over [0, 1].

2.2.3. Adaptation to the horizon T (an anytime version of KL-UCB-switch)

A standard doubling trick fails to provide a meta-strategy that would not require the knowledge
of T and have optimal O

(√
KT

)
and

(
1 + o(1)

)
(lnT )/Kinf(νa, µ

?) bounds. Indeed, there are
first, two different rates,

√
T and lnT , to accommodate simultaneously and each would require

different regime lengths, e.g., 2r and 22r , respectively, and second, any doubling trick on the
distribution-dependent bound would result in an additional multiplicative constant in front of
the 1/Kinf(νa, µ

?) factor. This is why a dedicated anytime version of our algorithm is needed.
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Chapter 2. KL-UCB-switch

For technical reasons, it was useful in our proof to perform some additional exploration, which
deteriorates the second-order terms in the regret bound. Indeed, we define the augmented
exploration function (which is non-decreasing) by

ϕ(x) = ln+

(
x(1 + ln2

+ x)
)

(2.9)

and the associated index functions by

Ukl-a
a (t)

def
= sup

{
µ ∈ [0, 1]

∣∣∣∣ Kinf

(
ν̂a(t), µ

)
6

1

Na(t)
ϕ

(
t

KNa(t)

)}
(2.10)

Um-a
a (t)

def
= µ̂a(t) +

√
1

2Na(t)
ϕ

(
t

KNa(t)

)
. (2.11)

A careful comparison of (2.10) and (2.11) to (2.5) and (2.6) shows that Ukl-a
a (t) 6 Ukl

a (t) and

Um-a
a (t) 6 Um,ϕ

a (t)
def
= µ̂a(t) +

√
1

2Na(t)
ϕ

(
T

KNa(t)

)
(2.12)

when all these quantities are based on the same past (i.e., when they are defined for the same
algorithm).

The -a in the superscripts stands for “augmented” or for “anytime” as this augmented exploration
gives rise to the anytime version of KL-UCB-switch, which simply relies on the index

Ua
a (t) =

{
Ukl-a
a (t) if Na(t) 6 f(t,K)

Um-a
a (t) if Na(t) > f(t,K)

(2.13)

where f(T,K) = b(t/K)1/5c. Note that the thresholds f(t,K) when the switches occur from the
sub-index Ukl-a

a (t) to the other sub-index Um-a
a (t) now vary with t (and we cannot exclude that

a switch back may occur).
For this anytime version of KL-UCB-switch, the same ranking of (sub-)indexes holds as the

one (2.8) for our first version of KL-UCB-switch relying on the horizon T :

Ukl-a
a (t) 6 Ua

a (t) 6 Um-a
a (t) . (2.14)

The performance guarantees are indicated in the next two theorems, whose proofs may be found
in Sections 2.5 and 2.6, respectively. The distribution-free analysis is essentially the same as in the
case of a known horizon, although the additional exploration required an adaptation of most of
the calculations. Note also that the simulations detailed below suggest that all anytime variants
of the KL-UCB algorithms (KL-UCB-switch included) behave better without the additional
exploration required, i.e., with ln+ as the exploration function.

Theorem 2.4 (Anytime distribution-free bound). The regret of the anytime version of KL-UCB-
switch algorithm above, tuned with the switch function f(t,K) = b(t/K)1/5c, is uniformly bounded
over all bandit problems ν over [0, 1] as follows: for all T > 1,

RT 6 (K − 1) + 44
√
KT .

Theorem 2.5 (Anytime distribution-dependent bound). The anytime version of KL-UCB-switch
algorithm above, tuned with the switch function f(t,K) = b(t/K)1/5c, ensures that for all bandit
problems ν over [0, 1], for all sub-optimal arms a, for all T > 1,

E[Na(T )] 6
lnT

Kinf(νa, µ?)
+OT

(
(lnT )6/7

)

where a finite-time, closed-form expression of the OT
(
(lnT )6/7

)
term is given by Equation (2.32)

for the choice δ = (lnT )−1/7.
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2.3. Numerical experiments

2.3. Numerical experiments

We provide here some numerical experiments comparing the different algorithms we refer to
in this work. The KL-UCB-switch, KL-UCB, and MOSS algorithms are used in their anytime
versions as described in Section 2.2.1 and Section 2.2.3. However, we stick to the natural
exploration function ln+

(
t/(KNa(t))

)
, i.e., without extra-exploration. For KL-UCB-switch we

actually consider a slightly delayed switch function, different from the one in our theoretical
analysis: f(t,K) = bt/Kc8/9, which generally exhibits a good empirical performance. While our
choice f(t,K) = bt/Kc1/5 appeared to be a good choice for minimizing the theoretical upper
bounds, many other choices (such as the one considered in the experiments below) would also
have been possible, at the cost of larger constants in one of the two regret bounds.

Distribution-dependent bounds. We compare in Figure 2.1 the distribution-dependent behav-
iors of the algorithms. For the two scenarios with truncated exponential or Gaussian rewards
we also consider the appropriate version of the kl-UCB algorithm for one-parameter exponential
family (see Cappé et al., 2013), with the same exploration function as for the other algorithms; we
call these algorithms kl-UCB-exp or kl-UCB-Gauss, respectively. The parameters of the middle
and right scenarios were chosen in a way that, even with the truncation, the kl-UCB algorithms
have a significantly better performance than the other algorithms. This is the case because
they are able to exploit the shape of the underlying distributions. Note that the kl-UCB-Gauss
algorithm reduces to the MOSS algorithm with the constant 2σ2 instead of 1/2. As expected,
the regret of KL-UCB-switch lies between the one of MOSS and the one of KL-UCB.
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Figure 2.1.: Regrets approximated over 10, 000 runs, shown on a logarithmic scale; distributions
of the arms consist of:
Left : Bernoulli distributions with parameters (0.9, 0.8)
Middle: Exponential distributions with expectations (0.15, 0.12, 0.10, 0.05), trun-
cated on [0, 1],
Right : Gaussian distributions with means (0.7, 0.5, 0.3, 0.2) and same standard
deviation σ = 0.1, truncated on [0, 1]
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Chapter 2. KL-UCB-switch

Distribution-free bounds. Here we also consider the UCB algorithm of Auer et al. [2002a] with
the exploration function ln(t). We plot the behavior of the normalized regret, RT /

√
KT , either

as a function of T (Figure 2.2 left) or of K (Figure 2.2 right). This quantity should remain
bounded as T or K increases. KL-UCB-switch and KL-UCB have a normalized regret that does
not depend too much on T and K (KL-UCB may perhaps satisfy a distribution-free bound of the
optimal order, but we were unable to prove this fact). The regrets of UCB and IMED seem to
suffer from a sub-optimal dependence in K.
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Figure 2.2.: Expected regret RT /
√
KT , approximated over 5, 000 runs

Left : as a function of x, for a Bernoulli bandit problem with parameters
(
0.8, 0.8−

x
√
K/T

)
and for time horizons T ∈ {100, 1000, 10000}

Right : as a function of x, for a Bernoulli bandit problem with parameters (0.8, 0.8−
x
√
K/T , . . . , 0.8− x

√
K/T ) and K arms, where K ∈ {2, 10, 50}
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2.4. Results (more or less) extracted from the literature

We gather in this section results that are all known and published elsewhere (or almost). For
the sake of self-completeness we provide a proof of each of them (sometimes this proof is shorter
or simpler than the known proofs, and we then comment on this fact). Readers familiar with the
material described here are urged to move to the next section.

2.4.1. Optional skipping—how to go from global times t to local times n

The trick detailed here is standard in the bandit literature, see, e.g., its application in Auer
et al. [2002a]. It is sometimes called optional skipping, and sometimes, optional sampling; we
pick the first terminology, following what seems to be the preferred terminology in probability
theory1. In any case, the original reference is Theorem 5.2 of Doob [1953, Chapter III, p. 145];
one can also check Chow and Teicher [1988, Section 5.3] for a more recent reference.

Doob’s optional skipping enables the rewriting of various quantities like Ua(t), µ̂a(t), etc., that
are indexed by the global time t, into versions indexed by the local number of times Na(t) = n
that the specific arm considered has been pulled so far. The corresponding quantities will be
denoted by Ua,n, µ̂a,n, etc.

The reindexation is possible as soon as the considered algorithm pulls each arm infinitely often;
it is the case for all algorithms considered in this chapter (exploration never stops even if it
becomes rare after a certain time).
We denote by F0 = {∅,Ω} the trivial σ–algebra and by Ft the σ–algebra generated by

A1, Y1, . . . , At, Yt, when t > 1. We fix an arm a. For each n > 1, we denote by

τa,n = min
{
t > 1 : Na(t) = n

}

the round at which arm a was pulled for the n–th time. Now, Doob’s optional skipping ensures
that the random variables Xa,n = Yτa,n are independent and identically distributed according to
νa.
We can then define, for instance, for n > 1,

µ̂a,n =
1

n

n∑

k=1

Xa,k

and have the equality µ̂a(t) = µ̂a,Na(t) for t > K. Here is an example of how to use this rewriting.

Example 1 (Controlling an empirical average). Recall that Na(t) > 1 for t > K and Na(t) 6 t−K+1
as each arm was pulled once in the first rounds. Given a subset E ⊆ [0, 1], we get the inclusion

{
µ̂a(t) ∈ E

}
=

t−K+1⋃

n=1

{
µ̂a(t) ∈ E and Na(t) = n

}
=

t−K+1⋃

n=1

{
µ̂a,n ∈ E and Na(t) = n

}

so that, by a union bound,

P
[
µ̂a(t) ∈ E

]
6

t−K+1∑

n=1

P
[
µ̂a,n ∈ E and Na(t) = n

]
6

t−K+1∑

n=1

P
[
µ̂a,n ∈ E

]
.

1The abstract of a recent article by Simons et al. [2002] reads: “A general set of distribution-free conditions is
described under which an i.i.d. sequence of random variables is preserved under optional skipping. This work is
motivated by theorems of J.L. Doob (1936) and Z. Ignatov (1977), unifying and extending aspects of both.”
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The last sum above only deals with independent and identically distributed random variables;
we took care of all dependency issues that are so present in bandit problems. The price to pay,
however, is that we bounded one probability by a sum of probabilities.

Actually, a more careful use of optional skipping would be

P
[
µ̂a(t) ∈ E

]
6 P

[
t−K+1⋃

n=1

{
µ̂a,n ∈ E

}
]

= P
[
∃n ∈ {1, . . . , t−K + 1} : µ̂a,n ∈ E

]
.

2.4.2. Maximal version of Hoeffding’s inequality

The maximal version of Hoeffding’s inequality (Proposition 2.1) is a standard result from
Hoeffding [1963]. It was already used in the original analysis of MOSS (Audibert and Bubeck,
2009). For our slightly simplified analysis of MOSS (see Section 2.4.3), we will rather rely on
Corollary 2.1, a consequence of Proposition 2.1 obtained by integrating it.

Proposition 2.1. Let X1, . . . , Xn be a sequence of i.i.d. random variables bounded in [0, 1] and
let µ̂n denote their empirical mean. Then for all u > 0 and for all N > 1:

P
[
max
n>N

(
µ̂n − µ

)
> u

]
6 e−2Nu2 . (2.15)

Corollary 2.1. Under the same assumptions, for all ε > 0,

E

[(
max
n>N

(
µ− µ̂n − ε

))+
]
6

√
π

8

√
1

N
e−2Nε2 . (2.16)

Of course, Proposition 2.1 and Corollary 2.1 hold by symmetry with µ− µ̂n instead of µ̂n − µ.

Proof. By the Fubini-Tonelli theorem, an integration of the maximal deviation inequality (2.15)
yields

E
[(

max
n>N

(
µ− µ̂n − ε

))+
]

=

∫ +∞

0
P
[

max
n>N

(
µ̂n − µ− ε

)
> u

]
du

6
∫ +∞

0
e−2N(u+ε)2du 6 e−2Nε2

∫ +∞

0
e−2Nu2du =

√
π

8

√
1

N
e−2Nε2 .

2.4.3. Distribution-free bound for the MOSS algorithm

Such a distribution-free bound was already provided in the literature, both for a known horizon
T (see Audibert and Bubeck, 2009) and for an anytime version (see Degenne and Perchet, 2016).
We only provide a slightly shorter and more focused proof of these results based on Corollary 2.1
and indicate an intermediate result—see (2.17)—that will be useful for us in the analysis of our
new KL-UCB-switch algorithm. We do not claim any improvement on the results themselves,
just a clarification of the existing proofs.
Our proof is slightly shorter and more focused for two reasons. First, in the two references

mentioned, the peeling trick was used on the probabilities of deviations (see Proposition 2.1) and
had to be performed separately and differently for each deviation u; then, these probabilities were
integrated to obtain a control on the needed expectations. In contrast, we perform the peeling trick
directly on the expectations at hand, and we do so by applying it only once, based on Corollary 2.1
and at fixed times depending solely on T . Second, unlike the two mentioned references, we do
not attempt to simultaneously build a distribution-free and some type of distribution-dependent
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bound. This raised technical difficulties because of the correlations between the choices of the
arms and the observed rewards. The idea of our approach is to focus solely on the distribution-free
regime, for which we notice that some crude bounding neglecting the correlations suffice (i.e., our
analysis deals with all sub-optimal arms in the same way, independently of how often they are
played).

For a known horizon T , we denote by Am
t+1 the arm played by the index strategy maximizing,

at each step t+ 1 with t > K, the quantities (2.5):

Um
a (t)

def
= µ̂a(t) +

√
1

2Na(t)
ln+

(
T

KNa(t)

)
.

The superscripts M in Am
t+1 and Um

a (t) stand for MOSS. We do so not to mix it with the arm
At+1 played by the KL-UCB-switch strategy (no superscript), but of course, once an arm a was
sufficiently pulled, we have At+1 = Am

t+1 by definition of the KL-UCB-switch strategy.
Appendix 2.A provides the proof of the following regret bound. We denote by a? an optimal

arm, i.e., an arm such that µa = µ?.

Proposition 2.2. For a known horizon T > 1, for all bandit problems ν over [0, 1], MOSS achieves
a regret bound smaller than RT 6 (K−1)+17

√
KT . More precisely, with the notation of optional

skipping (Section 2.4.1), we have the inequalities

RT = Tµ? − E

[
T∑

t=1

µAm
t

]

6 (K − 1) +
T∑

t=K+1

E
[(
µ? − Um

a?(t− 1)
)+]

︸ ︷︷ ︸
613
√
KT

+
√
KT +

K∑

a=1

T∑

n=1

E

[(
µ̂a,n +

√
ln+

(
T/(Kn)

)

2n
− µa −

√
K

T

)+
]

︸ ︷︷ ︸
64
√
KT

(2.17)

Remark 1. The proof (see Remark 4) actually reveals that for a known horizon T > 1, for all
bandit problems ν over [0, 1], and for all strategies (not only MOSS), the following bound holds:

T∑

t=K+1

E
[(
µ? − Um

a?(t− 1)
)+]

6 13
√
KT .

We will re-use this fact to state a similar remark below (Remark 2), which will be useful for Part 2
of the proof lying in Section 2.5.

Our proof in Appendix 2.A reveals that designing an adaptive version of MOSS comes at no
effort. For this adaptive version we will also want to possibly explore more. We will do so by
considering an augmented exploration function ϕ, that is, a function ϕ > ln+ as in (2.9). We
therefore define MOSS-anytime (M-A) as relying on the indexes defined in (2.11), which we copy
here:

Um-a
a (t)

def
= µ̂a(t) +

√
1

2Na(t)
ϕ

(
t

KNa(t)

)
.

We denote by Am-a
t+1 the arm picked as argmax

a=1,...,K
Um-a
a (t).
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Proposition 2.3. For all horizons T > 1, for all bandit problems ν over [0, 1], MOSS-anytime
achieves a regret bound smaller than RT 6 (K− 1) + c

√
KT where c = 30 for ϕ = ln+ and c = 33

for the augmented exploration function ϕ(x) = ln+

(
x(1 + ln2

+ x)
)
defined in (2.9). More precisely,

with the notation of optional skipping (Section 2.4.1), we have the inequalities

RT = Tµ? − E

[
T∑

t=1

µAm-a
t

]

6 (K − 1) +

T∑

t=K+1

E
[(
µ? − Um-a

a? (t− 1)
)+]

︸ ︷︷ ︸
626
√
KT

(2.18)

+
√
KT +

K∑

a=1

T∑

n=1

E



(
µ̂a,n +

√
ϕ
(
T/(Kn)

)

2n
− µa −

√
K

T

)+



︸ ︷︷ ︸
64
√
KT for ϕ=ln+ and 7

√
KT for ϕ(x)=ln+((x(1+ln2

+ x))

Remark 2. Similarly to above, the proof (see Remark 4) actually reveals that for a known horizon
T > 1, for all bandit problems ν over [0, 1], and for all strategies (not only MOSS-anytime), the
following bound holds:

T∑

t=K+1

E
[(
µ? − Um-a

a? (t− 1)
)+]

6 26
√
KT .

This remark will be useful for Part 2 of the proof lying in Section 2.5.

2.4.4. Regularity and deviation/concentration results on Kinf

We start with a quantification of the (left-)regularity of Kinf and then provide a deviation and
a concentration result on Kinf .

Regularity of Kinf

The lower left-semi-continuity (2.19) first appeared as Lemma 7 in Honda and Takemura [2015],
see also Garivier et al. [2019, Lemma 3] for a later but simpler proof. The upper left-semi-
continuity (2.20) relies on the same arguments as (2.7), namely, the data-processing inequality
for Kullback-Leibler divergences and Pinsker’s inequality. These two inequalities are proved in
detail in Appendix 2.B; the proposed proofs are slightly simpler or lead to sharper bounds than
in the mentioned references.

Lemma 2.1 (regularity of Kinf). For all ν ∈ P[0, 1] and all µ ∈ (0, 1),

∀ε ∈ [0, µ] , Kinf(ν, µ) 6 Kinf(ν, µ− ε) +
ε

1− µ , (2.19)

and
∀ε ∈

[
0, µ− E(ν)

]
, Kinf(ν, µ) > Kinf(ν, µ− ε) + 2ε2 . (2.20)

We draw two consequences from Lemma 2.1: the left-continuity of Kinf and a useful inclusion
in terms of level sets.
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Corollary 2.2. For all ν ∈ P[0, 1], the function Kinf(ν, · ) : µ ∈ (0, 1) 7→ Kinf(ν, µ) is left-
continuous. In particular, on the one hand, Kinf

(
ν,E(ν)

)
= 0 whenever E(ν) ∈ (0, 1), and on the

other hand, for all ν ∈ P[0, 1] and µ ∈ (0, 1),

Kinf(ν, µ) = inf
{

KL(ν, ν ′) : ν ′ ∈ P[0, 1] and E(ν ′) > µ
}
.

Proof. The left-continuity follows from a sandwich argument via the upper bound (2.19) and
the lower bound Kinf(ν, µ− ε) 6 Kinf(ν, µ) that holds for all ε ∈ [0, µ] by the very definition of
Kinf . The fact that Kinf

(
ν,E(ν) − ε

)
= 0 for all ε ∈

(
0,E(ν)

]
thus entails, in particular, that

Kinf

(
ν,E(ν)

)
= 0.

Corollary 2.3. For all ν ∈ P[0, 1], all µ ∈ (0, 1), all u > 0, and all ε > 0,
{
Kinf(ν, µ− ε) > u

}
⊆
{
Kinf(ν, µ) > u+ 2ε2

}
.

Proof. We apply (2.20) and merely need to explain why the condition ε ∈
[
0, µ− E(ν)

]
therein

is satisfied. Indeed, Kinf(ν, µ − ε) > u > 0 indicates in particular that µ − ε > E(ν), or put
differently, ε < µ− E(ν).

Deviation results on Kinf

We provide two deviation results on Kinf : first, in terms of probabilities of deviations and next,
in terms of expected deviations.
The first deviation inequality was essentially provided by Cappé et al. [2013, Lemma 6]. For

the sake of completeness, we recall its proof in Section 2.B.

Proposition 2.4 (deviation result on Kinf). Let ν̂n denote the empirical distribution associated
with a sequence of n > 1 i.i.d. random variables with distribution ν over [0, 1] with E(ν) ∈ (0, 1).
Then, for all u > 0,

P
[
Kinf

(
ν̂n,E(ν)

)
> u

]
6 e(2n+ 1) e−nu .

A useful corollary in terms of expected deviations can now be stated.

Corollary 2.4 (integrated deviations for Kinf). Under the same assumptions, for all ε > 0, the
index

Uε,n = sup

{
µ ∈ [0, 1]

∣∣∣ Kinf

(
ν̂n, µ

)
6 ε

}

satisfies

E
[(

E(ν)− Uε,n
)+]

6 (2n+ 1) e−nε
√
π

n

Proof. By the Fubini-Tonelli theorem, just as in the proof of Corollary 2.1 (for the first two
equalities), and subsequently using the definition of Uε,n as a supremum (for the third equality,
together with the left-continuity of Kinf deriving from Lemma 2.1), we have

E
[(

E(ν)− Uε,n
)+]

=

∫ +∞

0
P
[

E(ν)− Uε,n > u
]
du =

∫ +∞

0
P
[
Uε,n < E(ν)− u

]
du

=

∫ +∞

0
P
[
Kinf

(
ν̂n,E(ν)− u

)
> ε
]
du .

Now, Corollary 2.3 (for the first inequality) and the deviation inequality of Proposition 2.4 (for
the second inequality) indicate that for all u > 0,

P
[
Kinf

(
ν̂n,E(ν)− u

)
> ε
]
6 P

[
Kinf

(
ν̂n,E(ν)

)
> ε+ 2u2

]
6 e(2n+ 1) e−n(ε+2u2) .
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Combining all elements, we get

E
[(

E(ν)− Uε,n
)+]

6 e(2n+ 1) e−nε
∫ +∞

0
e−2nu2du = e(2n+ 1) e−nε

1

2

√
π

2n
.

from which the stated bound follows, as e/
(
2
√

2
)
6 1.

Concentration result on Kinf

The next proposition is similar in spirit to Honda and Takemura [2015, Proposition 11] but is
better suited to our needs. We prove it in Appendix 2.B.

Proposition 2.5 (concentration result on Kinf). With the same notation and assumptions as in
the previous proposition, consider a real number µ ∈

(
E(ν), 1

)
and define

γ =
1√

1− µ

(
16e−2 + ln2

(
1

1− µ

))
. (2.21)

Then for all x < Kinf(ν, µ),

P
[
Kinf(ν̂n, µ) 6 x

]
6





exp(−nγ/8) 6 exp(−n/4) if x 6 Kinf(ν, µ)− γ/2
exp
(
−n
(
Kinf(ν, µ)− x

)2
/(2γ)

)
if x > Kinf(ν, µ)− γ/2

.
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2.5. Proofs of the distribution-free bounds: Theorems 2.1 and 2.4

The two proofs are extremely similar; we show, for instance, Theorem 2.4 and explain how to
adapt the proof for Theorem 2.1. The first steps of the proof(s) use the exact same arguments as
in the proofs of the performance bounds of MOSS (Propositions 2.2 and 2.3, see Appendix 2.A)
in the exact same order. We explain below why we had to copy them and had to resort to the
intermediary bounds for MOSS stated in the indicated propositions.

We recall that we denote by a? an optimal arm, i.e., an arm such that µa = µ?. We first apply
a trick introduced by Bubeck and Liu [2013]: by definition of the index policy, for t > K,

Ua
a?(t) 6 max

a=1,...,K
Ua
a (t) = Ua

At+1
(t)

so that the regret of KL-UCB-switch is bounded by

RT =
T∑

t=1

E
[
µ?−µAt

]
6 (K−1)+

T∑

t=K+1

E
[
µ?−Ua

a?(t−1)
]
+

T∑

t=K+1

E
[
Ua
At(t−1)−µAt

]
. (2.22)

Part 1: We first deal with the second sum in (2.22) and successively use x 6 δ + (x− δ)+ for all
x and δ for the first inequality; the fact that Ua

a (t) 6 Um-a
a (t) 6 Um,ϕ

a (t) by (2.12) and (2.14),
for the second inequality; and optional skipping (Section 2.4.1) for the third inequality, keeping
in mind that pairs (a, n) such At = a and Na(t − 1) = n correspond to at most one round
t ∈ {K + 1, . . . , T}:

T∑

t=K+1

E
[
Ua
At(t− 1)− µAt

]
6
√
KT +

T∑

t=K+1

E

[(
Ua
At(t− 1)− µAt −

√
K

T

)+
]

6
√
KT +

T∑

t=K+1

E

[(
Um,ϕ
At

(t− 1)− µAt −
√
K

T

)+
]

(2.23)

6
√
KT +

K∑

a=1

T∑

n=1

E

[(
Um,ϕ
a,n − µa −

√
K

T

)+
]

(2.24)

where we recall that

Um,ϕ
a,n = µ̂a,n +

√
1

2n
ϕ

(
T

Kn

)
.

We now apply one of the bounds of Proposition 2.3 to further bound the sum at hand by

T∑

t=K+1

E
[
Ua
At(t− 1)− µAt

]
6
√
KT +

K∑

a=1

T∑

n=1

E

[(
Um,ϕ
a,n − µa −

√
K

T

)+
]
6 7
√
KT .

Remark 3. We may now explain why we copied the beginning of the proof of Proposition 2.3 and
why we cannot just say that the ranking Ua

a (t) 6 Um-a
a (t) entails that the regret of the anytime

version of KL-UCB-switch is bounded by the regret of the anytime version of MOSS. Indeed, it is
difficult to relate

T∑

t=K+1

E
[
Um-a
At (t− 1)− µAt

]
and

T∑

t=K+1

E
[
Um-a
Am-a
t

(t− 1)− µAm-a
t

]

as the two series of arms At (picked by KL-UCB-switch) and Am-a
t (picked by the adaptive version

of MOSS) cannot be related. Hence, it is difficult to directly bound quantities like (2.23). However,
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the proof of the performance bound of MOSS relies on optional skipping and considers, in some
sense, all possible values a for the arms picked: it controls the quantity (2.24), which appears
as a regret bound that is achieved by all index policies with indexes smaller than the ones of the
anytime version of MOSS.

Part 2: We now deal with the first sum in (2.22). We take positive parts, get back to the
definition (2.13) of Ua

a?(t− 1), and add some extra non-negative terms:

T∑

t=K+1

E
[
µ? − Ua

a?(t− 1)
]
6

T∑

t=K+1

E
[(
µ? − Ua

a?(t− 1)
)+]

6
T∑

t=K+1

E
[(
µ? − Ukl-a

a? (t− 1)
)+
1{Na? (t−1)6f(t−1,K)}

]
+

T∑

t=K+1

E
[(
µ? − Um-a

a? (t− 1)
)+

1{Na? (t−1)>f(t−1,K)}︸ ︷︷ ︸
61

]

6
T∑

t=K+1

E
[(
µ? − Ukl-a

a? (t− 1)
)+
1{Na? (t−1)6f(t−1,K)}

]
+

T∑

t=K+1

E
[(
µ? − Um-a

a? (t− 1)
)+]

.

Now, the bound (2.18) of Proposition 2.3, together with the Remark 2, indicates that

T∑

t=K+1

E
[(
µ? − Um-a

a? (t− 1)
)+]

6 26
√
KT .

Note that Remark 2 exactly explains that for the sum above we do not bump into the issues
raised in Remark 3 for the other sum in (2.22).

Part 3: Integrated deviations in terms of Kinf divergence. We showed so far that the distribution-
free regret bound of the anytime version of KL-UCB-switch was given by the (intermediary)
regret bound (2.18) of Proposition 2.3, which is smaller than (K − 1) + 33

√
KT , plus

T∑

t=K+1

E
[(
µ? − Ukl-a

a? (t− 1)
)+
1{Na? (t−1)6f(t−1,K)}

]
=

T−1∑

t=K

E
[(
µ? − Ukl-a

a? (t)
)+
1{Na? (t)6f(t,K)}

]

6
T−1∑

t=K

f(t,K)∑

n=1

E
[(
µ? − Ukl-a

a?,t,n

)+] (2.25)

where we applied optional skipping (Section 2.4.1) and where we denoted

Ukl-a
a?,t,n = sup

{
µ ∈ [0, 1]

∣∣∣∣ Kinf

(
ν̂a?,n, µ

)
6

1

n
ϕ

(
t

Kn

)}
(2.26)

the counterpart of the quantity Ukl-a
a? (t) defined in (2.10). Here, the additional subscript t in

Ukl-a
a?,t,n refers to the denominator of t/(Kn) in the ϕ(t/(Kn)) term.
Now, Corollary 2.4 exactly indicates that for each given t and all n > 1,

E
[(
µ? − Ukl-a

a?,t,n

)+]
6 (2n+ 1)

√
π

n
exp

(
−ϕ
(

t

Kn

))
.

The t considered are such that t > K and thus, f(t,K) 6 (t/K)1/5 6 t/K. Therefore, the
considered n are such that 1 6 n 6 f(t,K) and thus, t/(Kn) > 1. Given that ϕ > ln+, we proved

E
[(
µ? − Ukl-a

a?,t,n

)+]
6 (2n+ 1)

√
π

n

Kn

t
=
K
√
π

t
(2n+ 1)

√
n .
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We sum this bound over n ∈
{

1, . . . , f(t/K)
}
, using again that f(t,K) 6 (t/K)1/5:

f(t,K)∑

n=1

E
[(
µ? − Ukl-a

a?,t,n

)+]
6
K
√
π

t

f(t,K)∑

n=1

(2n+ 1)
√
n︸ ︷︷ ︸

63f(t,K)3/2

6
3K
√
π

t
f(t,K)5/2

︸ ︷︷ ︸
6(t/K)1/2

6 3
√
π

√
K

t
.

We substitute this inequality into (2.25):

T∑

t=K+1

E
[(
µ? − Ukl-a

a? (t− 1)
)+
1{Na? (t−1)6f(t−1,K)}

]

6
T−1∑

t=K

f(t,K)∑

n=1

E
[(
µ? − Ukl-a

a?,t,n

)+]
6 3
√
π

T−1∑

t=K

√
K

t
︸ ︷︷ ︸

62
√
KT, see (2.40)

6 6
√
π
√
KT 6 11

√
KT .

The final regret bound is obtained as the sum of this 11
√
KT bound plus the (K − 1) + 33

√
KT

bound obtained above. This concludes the proof of Theorem 2.4.

Part 4: Adaptations needed for Theorem 2.1, i.e., to analyze the version of KL-UCB-switch relying
on the knowledge of the horizon T . Parts 1 and 2 of the proof remain essentially unchanged, up
to the (intermediary) regret bound to be applied now: (2.17) of Proposition 2.2, which is smaller
than (K − 1) + 17

√
KT . The additional regret bound, accounting, as we did in Part 3, for the

use of KL-UCB-indexes for small T , is no larger than

T−1∑

t=K

f(T,K)∑

n=1

(2n+ 1)

√
π

n
exp

(
− ln+

(
T

Kn

))
=

T−1∑

t=K

f(T,K)∑

n=1

(2n+ 1)

√
π

n

Kn

T

= K
√
π

f(T,K)∑

n=1

(2n+ 1)
√
n︸ ︷︷ ︸

63f(T,K)3/2

6 3
√
πK f(T,K)5/2 6 3

√
πK

√
T

K
6 6
√
KT .

This yields the claimed (K − 1) + 23
√
KT bound.
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2.6. Proofs of the distribution-dependent bounds: Theorems 2.2
and 2.5

The proofs below can be adapted (simplified) to provide an elementary analysis of performance
of the KL-UCB algorithm on the class of all distributions over a bounded interval, by keeping
only Parts 1 and 2 of the proofs below. The study of KL-UCB in Cappé et al. [2013] remained
somewhat intricate and limited to finitely supported distributions.

We provide first an anytime analysis, i.e., the proof of Theorem 2.5, and then explain the
simplifications in the analysis (and improvements in the second-order terms in the regret bound)
arising when the horizon T is known, i.e., as far as the proof of Theorem 2.2 is concerned.

2.6.1. Proof of Theorem 2.5

The proof starts as in Cappé et al. [2013]. We fix a sub-optimal arm a. Given δ ∈ (0, µ?)
sufficiently small (to be determined by the analysis), we first decompose E

[
Na(T )

]
as

E
[
Na(T )

]
= 1 +

T−1∑

t=K

P
[
At+1 = a

]

= 1 +
T−1∑

t=K

P
[
Ua
a (t) < µ? − δ and At+1 = a

]
+

T−1∑

t=K

P
[
Ua
a (t) > µ? − δ and At+1 = a

]
.

We then use that by definition of the index policy, At+1 = a only if Ua
a (t) > Ua

a?(t), where we recall
that a? denotes an optimal arm (i.e., an arm such that µa = µ?). We also use Ua

a?(t) > Ukl-a
a? (t),

which was stated in (2.14). We get

E
[
Na(T )

]
6 1 +

T−1∑

t=K

P
[
Ua
a?(t) < µ? − δ and At+1 = a

]
+

T−1∑

t=K

P
[
Ua
a (t) > µ? − δ and At+1 = a

]

6 1 +
T−1∑

t=K

P
[
Ukl-a
a? (t) < µ? − δ

]
+

T−1∑

t=K

P
[
Ua
a (t) > µ? − δ and At+1 = a

]
.

Finally, by the definition (2.13) of Ua
a (t), we proved so far

E
[
Na(T )

]
6 1 +

T−1∑

t=K

P
[
Ukl-a
a? (t) < µ? − δ

]

+

T−1∑

t=K

P
[
Ukl-a
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(t,K)

]

+

T−1∑

t=K

P
[
Um-a
a (t) > µ? − δ and At+1 = a and Na(t) > f(t,K)

]
. (2.27)

We now deal with each of the three sums above.

Part 1: We first deal with the first sum in (2.27) and to that end, fix some t ∈ {K, . . . , T − 1}.
By the definition (2.10) of Ukl-a

a? (t) as a supremum,

P
[
Ukl-a
a? (t) < µ? − δ

]
6 P

[
Kinf

(
ν̂a?(t), µ

? − δ
)
>

1

Na?(t)
ϕ

(
t

KNa?(t)

)]
.
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By optional skipping (see Section 2.4.1), applied with some care,

P

[
Kinf

(
ν̂a?(t), µ

? − δ
)
>

1

Na?(t)
ϕ

(
t

KNa?(t)

)]

6 P

[
∃n ∈ {1, . . . , t−K + 1} : Kinf

(
ν̂a?,n, µ

? − δ
)
>

1

n
ϕ

(
t

Kn

)]
.

Now, for n > bt/Kc+1 and given the definition (2.9) of ϕ, we have ϕ
(
t/(Kn)

)
= 0. By definition,

Kinf(ν̂a?,n, µ
? − δ) > 0 requires in particular that the expectation µ̂a?,n of ν̂a?,n be smaller than

µ? − δ. This fact, together with a union bound, implies

P

[
∃n ∈ {1, . . . , t−K + 1} : Kinf

(
ν̂a?,n, µ

? − δ
)
>

1

n
ϕ

(
t

Kn

)]

6 P
[
∃n > bt/Kc+ 1 : µ̂a?,n 6 µ? − δ

]
+

bt/Kc∑

n=1

P

[
Kinf

(
ν̂a?,n, µ

? − δ
)
>

1

n
ϕ

(
t

Kn

)]
.

Hoeffding’s maximal inequality (Proposition 2.1) upper bounds the first term by exp(−2δ2t/K),
while Corollary 2.3 and Proposition 2.4 provide the upper bound

P

[
Kinf

(
ν̂a?,n, µ

? − δ
)
>

1

n
ϕ

(
t

Kn

)]
6 e(2n+ 1) exp

(
−n
(

2δ2 + ϕ
(
t/(Kn)

)
/n
))

.

Collecting all inequalities, we showed so far that

P
[
Ukl-a
a? (t) < µ? − δ

]
6 exp(−2δ2t/K) +

bt/Kc∑

n=1

e(2n+ 1) exp
(
−2nδ2 − ϕ

(
t/(Kn)

))
.

Summing over t ∈ {K, . . . , T − 1}, using the formula for geometric series, on the one hand, and
performing some straightforward (and uninteresting) calculation detailed below in Lemma 2.2 on
the other hand, we finally bound the first sum in (2.27) by

T−1∑

t=K

P
[
Ukl-a
a? (t) < µ? − δ

]
6

T−1∑

t=K

exp(−2δ2t/K) +

T−1∑

t=K

bt/Kc∑

n=1

e(2n+ 1) exp
(
−2nδ2 − ϕ

(
t/(Kn)

))

6
1

1− e−2δ2/K
+

e(3 + 8K)

(1− e−2δ2)3
.

This concludes the first part of this proof.

Part 2: We then deal with the second sum in (2.27). We introduce

Ũkl-a
a (t)

def
= sup

{
µ ∈ [0, 1]

∣∣∣∣ Kinf

(
ν̂a(t), µ

)
6

1

Na(t)
ϕ

(
T

KNa(t)

)}

that only differs from the original index Ukl-a
a (t) defined in (2.10) by the replacement of t/(Kn)

by T/(Kn) as the argument of ϕ. Therefore, we have Ũkl-a
a (t) > Ukl-a

a (t). Replacing also f(t,K)
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by the larger quantity f(T,K), the second sum in (2.27) is therefore bounded by

T−1∑

t=K

P
[
Ukl-a
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(t,K)

]

6
T−1∑

t=K

P
[
Ũkl-a
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(T,K)

]
(2.28)

6
f(T,K)∑

n=1

T−1∑

t=K

P
[
Ũkl-a
a (t) > µ? − δ and At+1 = a and Na(t) = n

]
.

Optional skipping (see Section 2.4.1) indicates that for each value of n,

T−1∑

t=K

P
[
Ũkl-a
a (t) > µ? − δ and At+1 = a and Na(t) = n

]

=
T−1∑

t=K

P
[
Ukl-a
a?,T,n > µ? − δ and At+1 = a and Na(t) = n

]

where Ukl-a
a?,T,n was defined in (2.26). We now observe that the events

{
At+1 = a and Na(t) = n

}

are disjoint as t varies in {K, . . . , T − 1}. Therefore,
T−1∑

t=K

P
[
Ukl-a
a?,T,n > µ? − δ and At+1 = a and Na(t) = n

]
6 P

[
Ukl-a
a?,T,n > µ? − δ

]
.

All in all, we proved so far that

T−1∑

t=K

P
[
Ukl-a
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(t,K)

]
6

f(T,K)∑

n=1

P
[
Ukl-a
a?,T,n > µ? − δ

]
.

(2.29)
Now, note that the supremum in (2.26) is taken over a closed interval, as Kinf is non-decreasing in

its second argument (by its definition as an infimum) and as Kinf is left-continuous (Corollary 2.2).
This supremum is therefore a maximum. Hence, by distinguishing the cases where Ukl-a

a?,T,n = µ?−δ
and Ukl-a

a?,T,n > µ? − δ, we have the equality of events

{
Ukl-a
a?,T,n > µ? − δ

}
=

{
Kinf

(
ν̂a,n, µ

? − δ
)
6

1

n
ϕ

(
T

Kn

)}
.

We assume that δ ∈ (0, µ?) is sufficiently small for

δ <
1− µ?

2
Kinf(νa, µ

?)

to hold and introduce
n1 =

⌈
ϕ(T/K)

Kinf(νa, µ?)− 2δ/(1− µ?)

⌉
> 1 .

For n > n1, by definition of n1,

1

n
ϕ

(
T

Kn

)
6
ϕ
(
T/(Kn)

)

ϕ(T/K)︸ ︷︷ ︸
61

(
Kinf(νa, µ

?)− 2δ

1− µ?
)

6 Kinf(νa, µ
?)− 2δ

1− µ?
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while by the regularity property (2.19), we have Kinf

(
ν̂a,n, µ

? − δ
)
> Kinf

(
ν̂a,n, µ

?
)
− δ

1−µ? . We
therefore proved that for n > n1,

P
[
Ukl-a
a?,T,n > µ? − δ

]
= P

[
Kinf

(
ν̂a,n, µ

? − δ
)
6

1

n
ϕ

(
T

Kn

)]

6 P
[
Kinf

(
ν̂a,n, µ

?
)
6 Kinf(νa, µ

?)− δ

1− µ?
]
.

Therefore we may resort to the concentration inequality on Kinf stated as Proposition 2.5. We set
x = Kinf(νa, µ

?)− δ/(1− µ?) and simply sum the bounds obtained in the two regimes considered
therein:

P
[
Kinf

(
ν̂a,n, µ

? − δ
)
6 Kinf(νa, µ

?)− δ

1− µ?
]
6 e−n/4 + exp

(
− nδ2

2γ?(1− µ?)2

)

where γ? was defined in (2.21). For n 6 n1−1, we bound the probability at hand by 1. Combining
all these arguments together yields

f(T,K)∑

n=1

P
[
Ukl-a
a?,T,n > µ? − δ

]
6 n1 − 1 +

f(T,K)∑

n=n1

e−n/4 +

f(T,K)∑

n=n1

exp

(
− nδ2

2γ?(1− µ?)2

)

6
ϕ(T/K)

Kinf(νa, µ?)− 2δ/(1− µ?) +
1

1− e−1/4︸ ︷︷ ︸
65

+
1

1− e−δ2/(2γ?(1−µ?)2)︸ ︷︷ ︸
=O(1/δ2)

where the second inequality follows from the formula for geometric series and from the definition
of n1.

Part 3: We then deal with the third sum in (2.27). This sum involves the indexes Um-a
a (t) only

when Na(t) > f(t,K), that is, when Na(t) > f(t,K) + 1, where f(t,K) = b(t/K)1/5c. Under the
latter condition, the indexes are actually bounded by

Um-a
a (t)

def
= µ̂a(t) +

√
1

2Na(t)
ϕ

(
t

KNa(t)

)
6 µ̂a(t) +

√
1

2(t/K)1/5
ϕ
(
(t/K)4/5

)

︸ ︷︷ ︸
→0 as t→∞

.

We denote by T0(∆a,K) the smallest time T0 such that for all t > T0,
√

1

2(t/K)1/5
ϕ
(
(t/K)4/5

)
6

∆a

4
. (2.30)

This time T0 only depends on K and ∆a; a closed-form upper bound on its value could be easily
provided. With this definition, we already have that the sum of interest may be bounded by

T−1∑

t=K

P
[
Um-a
a (t) > µ? − δ and At+1 = a and Na(t) > f(t,K)

]

6 T0(∆a,K) +
T−1∑

t=T0(∆a,K)

P
[
µ̂a(t) + ∆a/4 > µ? − δ and At+1 = a and Na(t) > f(t,K)

]

6 T0(∆a,K) +
T−1∑

t=T0(∆a,K)

P
[
µ̂a(t) > µa + ∆a/2 and At+1 = a and Na(t) > f(t,K)

]
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where for the second inequality, we assumed that δ ∈ (0, µ?) is sufficiently small for

δ <
∆a

4

to hold. Optional skipping (see Section 2.4.1), using that the events
{
At+1 = a and Na(t) = n

}

are disjoint as t varies, as already done between (2.28) and (2.29), provides the upper bound

T−1∑

t=T0(∆a,K)

P
[
µ̂a(t) > µa + ∆a/2 and At+1 = a and Na(t) > f(t,K)

]

6
∑

n>1

P
[
µ̂a,n > µa + ∆a/2

]
6
∑

n>1

e−n∆2
a/2 =

1

1− e−∆2
a/2

where the second inequality is due to Hoeffding’s inequality (in its non-maximal version, see
Proposition 2.1). A summary of the bound thus provided in this part is:

T−1∑

t=K

P
[
Um-a
a (t) > µ?− δ and At+1 = a and Na(t) > f(t,K)

]
6 T0(∆a,K) +

1

1− e−∆2
a/2

= O(1)

where T0(∆a,K) was defined in (2.30).

Part 4: Conclusion of the proof of Theorem 2.5. Collecting all previous bounds and conditions,
we proved that when δ ∈ (0, µ?) is sufficiently small for

δ < min

{
1− µ?

2
Kinf(νa, µ

?),
∆a

4

}
(2.31)

to hold, then

E
[
Na(T )

]
6

ϕ(T/K)

Kinf(νa, µ?)− 2δ/(1− µ?)

+
e(3 + 8K)

(1− e−2δ2)3

︸ ︷︷ ︸
=O(1/δ6)

+
1

1− e−2δ2/K
+

1

1− e−δ2/(2γ?(1−µ?)2)︸ ︷︷ ︸
=O(1/δ2)

+T0(∆a,K) +
1

1− e−∆2
a/2

+ 6
︸ ︷︷ ︸

=O(1)

(2.32)

where

ϕ(T/K)

Kinf(νa, µ?)− 2δ/(1− µ?) =
lnT + ln lnT +O(1)

Kinf(νa, µ?)− 2δ/(1− µ?) =
lnT + ln lnT

Kinf(νa, µ?)
+O(δ lnT ) .

The leading term in this regret bound is lnT/Kinf(νa, µ
?), while the order of magnitude of the

smaller-order terms is given by

δ lnT +
1

δ6
= O

(
(lnT )6/7

)

for δ of the order of (lnT )−1/7. When T is sufficiently large, this value of δ is smaller than the
required threshold (2.31).
It only remains to state and prove Lemma 2.2 (used at the very end of the first part of the

proof above).
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Lemma 2.2. We have the bound

T−1∑

t=K

bt/Kc∑

n=1

e(2n+ 1) exp
(
−2nδ2 − ϕ

(
t/(Kn)

))
6

e(3 + 8K)

(1− e−2δ2)3
.

Proof. The double sum can be rewritten, by permuting the order of summations, as

T−1∑

t=K

bt/Kc∑

n=1

e(2n+ 1) exp
(
−2nδ2 − ϕ

(
t/(Kn)

))
=

bT/Kc∑

n=1

T−1∑

t=Kn

e(2n+ 1) exp
(
−2nδ2 − ϕ

(
t/(Kn)

))

=

bT/Kc∑

n=1

e(2n+ 1) exp
(
−2nδ2

) T−1∑

t=Kn

exp
(
−ϕ
(
t/(Kn)

))
.

We first fix n > 1 and use that t 7→ exp
(
−ϕ(t/(Kn)

)
is non-increasing to get

T−1∑

t=Kn

exp
(
−ϕ
(
t/(Kn)

))
6 1+

∫ T−1

Kn
exp
(
−ϕ
(
t/(Kn)

))
dt = 1+Kn

∫ (T−1)/(Kn)

1
exp
(
−ϕ(u)

)
du

where we operated the change of variable u = t/(Kn). Now, by the change of variable v = ln(u),

∫ (T−1)/(Kn)

1
exp
(
−ϕ(u)

)
du 6

∫ +∞

1
exp
(
−ϕ(u)

)
du =

∫ +∞

1

1

u
(
1 + ln2(u)

)du

=

∫ +∞

0

1

1 + v2
dv =

[
arctan

]+∞
0

=
π

2
.

All in all, we proved so far that

T−1∑

t=K

bt/Kc∑

n=1

e(2n+ 1) exp
(
−2nδ2 − ϕ

(
t/(Kn)

))
6
bT/Kc∑

n=1

e(2n+ 1)
(
1 +Knπ/2

)
exp
(
−2nδ2

)

6
+∞∑

n=1

e
(
1 + (2 +Kπ/2)n+Kπn2

)
exp
(
−2nδ2

)
.

To conclude our calculation, we use that by differentiation of series, for all θ > 0,

+∞∑

m=0

e−mθ =
1

1− e−θ

−
+∞∑

m=1

m e−mθ =
−e−θ

(1− e−θ)2
thus

+∞∑

m=1

m e−mθ 6
1

(1− e−θ)2
(2.33)

+∞∑

m=1

m2 e−mθ =
e−θ(1 + e−θ)

(1− e−θ)3
6

2

(1− e−θ)3
. (2.34)

Hence, taking θ = 2δ2,

+∞∑

n=1

e
(
1+(2+Kπ/2)n+Kπn2

)
exp
(
−2nδ2

)
6

e

1− e−2δ2
+

e(2 +Kπ/2)

(1− e−2δ2)2
+

2eKπ

(1− e−2δ2)3
6

e(3 + 8K)

(1− e−2δ2)3

which concludes the proof of this lemma.
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2.6.2. Proof of Theorem 2.2

We adapt (simplify) the proof of Theorem 2.5, by replacing the thresholds f(t,K) by f(T,K),
by taking ϕ = ln+, etc. To that end, we start with a similar decomposition,

E
[
Na(T )

]
6 1 +

T−1∑

t=K

P
[
Ukl
a? (t) < µ? − δ

]

+
T−1∑

t=K

P
[
Ukl
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(T,K)

]

+
T−1∑

t=K

P
[
Um
a (t) > µ? − δ and At+1 = a and Na(t) > f(T,K)

]
. (2.35)

The first sum is bounded using exactly the same arguments as in the proof of Theorem 2.5
(optional skipping, Hoeffding’s maximal inequality, Corollary 2.3 and Proposition 2.4): for all
t ∈ {K, . . . , T − 1},

P
[
Ukl
a? (t) < µ? − δ

]

6 P
[
∃n > bT/Kc+ 1 : µ̂a?,n 6 µ? − δ

]
+

bT/Kc∑

n=1

P

[
Kinf

(
ν̂a?,n, µ

? − δ
)
>

1

n
ln

(
T

Kn

)]

6 exp(−2δ2T/K) + e(2n+ 1) exp

(
−n
(

2δ2 + ln
(
T/(Kn)

)
/n
))

= exp(−2δ2T/K) +
eK

T
(2n2 + n) exp(−2nδ2) .

Summing over t and substituting the bounds (2.33)–(2.34), we proved

T−1∑

t=K

P
[
Ukl
a? (t) < µ? − δ

]
6 T exp(−2δ2T/K) +

eK

T

(
4

(1− e−2δ2)3
+

1

(1− e−2δ2)2

)

6 T exp(−2δ2T/K) +
5eK

T (1− e−2δ2)3

For the second sum in (2.35), we note that the initial manipulations in Part 2 of the proof of
Theorem 2.5 are unnecessary in the case of Theorem 2.2; we may directly start at (2.28) and the
rest of the arguments used and calculation performed then hold word for word, under the same
condition that δ < (1− µ?)Kinf(νa, µ

?)/2. We get, with the same notation,

T−1∑

t=K

P
[
Ukl
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(T,K)

]

6
ln(T/K)

Kinf(νa, µ?)− 2δ/(1− µ?) + 5 +
1

1− e−δ2/(2γ?(1−µ?)2)
. (2.36)

The third sum in (2.35) involves the indexes Um
a (t) only under the condition Na(t) > f(T,K), in

which case Na(t) > (T/K)1/5 and

Um
a (t)

def
= µ̂a(t) +

√
1

2Na(t)
ln+

(
T

KNa(t)

)
6 µ̂a(t) +

√
1

2 (T/K)1/5
ln+

(
(T/K)4/5

)
.
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We mimic the proof scheme of Part 3 of the proof of Theorem 2.5 and start by assuming that T
is sufficiently large for √

1

2 (T/K)1/5
ln+

(
(T/K)4/5

)
6

∆a

4
(2.37)

to hold. Under the same condition δ < ∆a/4, we get, by a careful application of optional skipping
using that the events

{
At+1 = a and Na(t) = n

}
are disjoint as t varies and by Hoeffding’s

inequality,

T−1∑

t=K

P
[
Um
a (t) > µ? − δ and At+1 = a and Na(t) > f(T,K)

]

6
T−1∑

n=f(T,K)+1

P
[
µ̂a,n > µa + ∆a/2

]
6

∑

n>f(T,K)+1

e−n∆2
a/2 6

1

1− e−∆2
a/2

. (2.38)

Collecting all bounds, we proved that whenever T is sufficiently large for (2.37) to hold and
whenever δ is sufficiently small for (2.31) to hold,

E
[
Na(T )

]
6

ln(T/K)

Kinf(νa, µ?)− 2δ/(1− µ?)

+
1

1− e−δ2/(2γ?(1−µ?)2)︸ ︷︷ ︸
=O(1/δ2)

+
1

1− e−∆2
a/2

+ 6
︸ ︷︷ ︸

=O(1)

+T exp(−2δ2T/K) +
5eK

T (1− e−2δ2)3

︸ ︷︷ ︸
=O(1/(Tδ6))

.

(2.39)

The leading term in this regret bound is lnT/Kinf(νa, µ
?), while the order of magnitude of the

smaller-order terms is given by

δ lnT +
1

δ2
+ T exp(−2δ2T/K) +

1

Tδ6
= O

(
(lnT )2/3

)

for δ of the order of (lnT )−1/3. When T is sufficiently large, this value of δ is smaller than the
required threshold (2.31).
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Appendix for Chapter 2

Content and structure

2.A. A simplified proof of the regret bounds for MOSS(-anytime)

2.B. Proofs of the regularity and deviation/concentration results on Kinf

1. Proof of the regularity lemma (Lemma 2.1)

2. A useful tool: a variational formula for Kinf (statement)

3. Proof of the deviation result (Proposition 2.4)

4. Proof of the concentration result (Proposition 2.5)

2.C. Proof of Theorem 2.3 (with the − ln lnT term in the regret bound)

2.D. Proof of the variational formula (Lemma 2.3)
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2.A. A simplified proof of the regret bounds for MOSS(-anytime)

2.A. A simplified proof of the regret bounds for MOSS(-anytime)

This section provides the proofs of Propositions 2.2 and 2.3. To emphasize the similarity of
the analyses in the anytime and non-anytime cases, we present both of them in a unified fashion.
The indexes used only differ by the replacement of T by t in the logarithmic exploration term in
case T is unknown, see (2.5) and (2.11), which we both state with a generic exploration function
ϕ. Indeed, compare

Um
a (t) = µ̂a(t) +

√
1

2Na(t)
ϕ

(
T

KNa(t)

)
and Um-a

a (t) = µ̂a(t) +

√
1

2Na(t)
ϕ

(
t

KNa(t)

)
.

We will denote by

Ugm
a,τ (t) = µ̂a(t) +

√
1

2Na(t)
ϕ

(
τ

KNa(t)

)

the index of the generic MOSS (GM) strategy, so that Um
a (t) = Ugm

a,T (t) and Um-a
a (t) = Ugm

a,t (t).
This GM strategy considers a sequence (τK , . . . , τT−1) of integers, either τt ≡ T for MOSS or
τt = t for MOSS-anytime, and picks at each step t+ 1 with t > K, an arm Agm

t+1 with maximal
index Ugm

a,τt(t). For a given t, we denote by Ugm
a,τt,n the quantities corresponding to Ugm

a,τt(t) by
optional skipping (see Section 2.4.1).

We provide below an analysis for increasing exploration functions ϕ : (0,+∞)→ [0,+∞) such
that ϕ vanishes on (0, 1] and ϕ > ln+, properties that are all satisfied for the two exploration
functions stated in Proposition 2.3. The general result is stated as the next proposition.

Proposition 2.6. For all bandit problems ν over [0, 1], for all T > 1 and all sequences (τK , . . . , τT−1)
bounded by T , the regret of the generic MOSS strategy described above, with an increasing explo-
ration function ϕ > ln+ vanishing on (0, 1], is smaller than

RT 6 (K − 1) +

T∑

t=K+1

E
[(
µ?−Ugm

a?,τt−1
(t− 1)

)+]
+
√
KT +

K∑

a=1

T∑

n=1

E
[(
Ugm
a,T,n− µa−

√
K/T

)+]

where

Ugm
a,T,n = µ̂a,n +

√
1

2n
ϕ

(
T

Kn

)
.

In addition,
T∑

t=K+1

E
[(
µ? − Ugm

a?,τt−1
(t− 1)

)+]
6 20

√
π

8︸ ︷︷ ︸
612.6

T−1∑

t=K

√
K

τt

and

√
KT +

K∑

a=1

T∑

n=1

E
[(
Ugm
a,T,n − µa −

√
K/T

)+]
6
√
KT

(
1 +

π

4
+

1√
2

∫ +∞

1
u−3/2

√
ϕ(u)du

)
.

The bounds of Propositions 2.2 and 2.3, including the intermediary bounds (2.17) and (2.18),
follow from this general result, up to the following straightforward calculation. On the one hand,
in the known horizon case

∑
1/
√
τt 6 T/

√
T =

√
T , whereas in the anytime case,

T−1∑

t=K

1/
√
τt =

T−1∑

t=K

1/
√
t 6

∫ T

0

1√
u

du = 2
√
T . (2.40)
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On the other hand, by the change of variable u = ev
2 ,

∫ +∞

1
u−3/2

√
ln(u)du = 2

∫ +∞

0
v2 e−v

2/2dv =
√

2π

and, using well-known inequalities like
√
x+ x′ 6

√
x+
√
x′ and ln(1 + x) 6 x for x, x′ > 0,

∫ +∞

1

√
u−3 ln

(
u(1 + ln2(u)

)
du 6

∫ +∞

1

√
u−3 ln(u) du+

∫ +∞

1

√
u−3 ln

(
1 + ln2(u)

)
du

6
∫ +∞

1

√
u−3 ln(u) du+

∫ +∞

1

√
u−3 ln2(u) du

= 2

∫ +∞

0
v2 e−v

2/2dv + 2

∫ +∞

0
v3 e−v

2/2dv =
√

2π + 4 .

The constant 17 of Proposition 2.2 is obtained as an upper bound on the sum of 12.6 6 13 and
1 + π/4 +

√
π 6 3.6 6 4. The constants 30 and 33 of Proposition 2.3 are respectively obtained

as upper bounds on on the sum of 2 × 12.6 6 26 and 1 + π/4 +
√
π 6 4, and on the sum of

2× 12.6 6 26 and 1 + π/4 +
√
π + 4/

√
2 6 6.4 6 7.

Proof. The beginning of this proof is completely similar to the beginning of the proof provided in
Section 2.5.
The first step is standard, see Bubeck and Liu [2013]. By definition of the index policy, for

t > K,
Ugm
a?,τt(t) 6 max

a=1,...,K
Ugm
a,τt(t) = Ugm

Agm
t+1,τt

(t)

so that the regret of the strategy is smaller than

RT =
T∑

t=1

E
[
µ?−µAgm

t

]
6 (K−1)+

T∑

t=K+1

E
[
µ?−Ugm

a?,τt−1
(t−1)

]
+

T∑

t=K+1

E
[
Ugm
Agm
t ,τt−1

(t−1)−µAgm
t

]
.

(2.41)
The term K − 1 above accounts for the initial K rounds, when each arm is played once.

A preliminary transformation of the right-hand side of (2.41). We successively use the fact
that the index Ugm

a,τ (t− 1) increases with τ since ϕ is increasing (for the first inequality below),
x 6 δ + (x− δ)+ for all x and δ (for the second inequality), and optional skipping (Section 2.4.1,
for the third inequality), keeping in mind that pairs (a, n) such Agm

t = a and Na(t − 1) = n
correspond to at most one round t ∈ {K + 1, . . . , T}:

T∑

t=K+1

E
[
Ugm
Agm
t ,τt−1

(t− 1)− µAgm
t

]
6

T∑

t=K+1

E
[
Ugm
Agm
t ,T (t− 1)− µAgm

t

]

6
√
KT +

T∑

t=K+1

E

[(
Ugm
Agm
t ,T (t− 1)− µAgm

t
−
√
K

T

)+
]

6
√
KT +

K∑

a=1

T∑

n=1

E

[(
Ugm
a,T,n − µa −

√
K

T

)+
]
.

While the last two inequalities may seem very crude, it turns out they are sharp enough to obtain
the claimed distribution-free bounds. Moreover, they get rid of the bothersome dependencies
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2.A. A simplified proof of the regret bounds for MOSS(-anytime)

among the arms that are contained in the choice of the arms Agm
t . Therefore, we have shown

that the right-hand side of (2.41) is bounded by

(K − 1) +

T∑

t=K+1

E
[
µ? − Ugm

a?,τt−1
(t− 1)

]
+

T∑

t=K+1

E
[
Ugm
Agm
t ,τt−1

(t− 1)− µAgm
t

]

6(K − 1) +
T∑

t=K+1

E
[(
µ? − Ugm

a?,τt−1
(t− 1)

)+]
+
√
KT +

K∑

a=1

T∑

n=1

E
[(
Ugm
a,T,n − µa −

√
K/T

)+]
.

(2.42)

This inequality actually holds for all choices of sequences (τt)K6t6T−1 with τt 6 T . The first sum
in the right-hand side of (2.42) depends on the specific value of (τt)K6t6T−1, and thus, on the
specific MOSS algorithm considered, but the second sum only depends on T .

Control of the left deviations of the best arm, that is, of the first sum in (2.41) and (2.42). For
each given round t ∈ {K, . . . , T − 1}, we decompose

E
[(
µ? −Ugm

a?,τt(t)
)+]

= E
[(
µ? −Ugm

a?,τt(t)
)+
1{Na? (t)<τt/K}

]
+E

[(
µ? −Ugm

a?,τt(t)
)+
1{Na? (t)>τt/K}

]
.

The two pieces are handled differently. The second one is dealt with first by using Ugm
a?,τt(t) > µ̂a?(t),

which actually holds with equality given Na?(t) > τt/K, and second, by optional skipping
(Section 2.4.1) and by the integrated version of Hoeffding’s inequality (Corollary 2.1):

E
[(
µ? − Ugm

a?,τt(t)
)+
1{Na? (t)>τt/K}

]
6 E

[(
µ? − µ̂a?(t)

)+
1{Na? (t)>τt/K}

]

6 E
[

max
n>τt/K

(
µ? − µ̂a?,n

)+]
6

√
π

8

√
K

τt
. (2.43)

When the arm has not been pulled often enough, we resort to a “peeling trick”. We consider a
real number β > 1 and further decompose the event

{
Na?(t) < τt/K

}
along the geometric grid

x` = β−` τt/K, where ` = 0, 1, 2, . . . (the endpoints x` are not necessarily integers, and some
intervals [x`+1, x`) may contain no integer, but none of these facts is an issue):

E
[(
µ? − Ugm

a?,τt(t)
)+
1{Na? (t)<τt/K}

]
=

+∞∑

`=0

E
[(
µ? − Ugm

a?,τt(t)
)+
1{x`+16Na? (t)<x`}

]

6
+∞∑

`=0

E
[

max
x`+16n<x`

(
µ? − Ugm

a?,τt,n

)+]

where in the second inequality, we applied optional skipping (Section 2.4.1) once again. Now for
any `, the summand can be controlled as follows, first, by ϕ > ln+ = ln on [1,+∞), second, by
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using n < x` and third, by Corollary 2.1:

E
[

max
x`+16n<x`

(
µ? − Ugm

a?,τt,n

)+]
= E

[
max

x`+16n<x`

(
µ? − µ̂a?,n −

√
1

2n
ϕ
( τt
Kn

))+
]

6 E

[
max

x`+16n<x`

(
µ? − µ̂a?,n −

√
1

2n
ln
( τt
Kn

))+
]

6 E

[
max

x`+16n<x`

(
µ? − µ̂a?,n −

√
1

2x`
ln
( τt
Kx`

))+]

6

√
π

8

√
1

x`+1
exp

(
− x`+1

x`
ln

(
τt
Kx`

))

=

√
π

8

√
1

x`+1

(
β−`

)1/β
=

√
π

8

√
K

τt
β1/2+`(1/2−1/β) .

The above series is summable whenever β ∈ (1, 2). For instance we may choose β = 3/2, for
which

+∞∑

`=0

(
3

2

)1/2+`(1/2−2/3)

=

√
3

2

+∞∑

`=0

α` =
1

1− α

√
3

2
6 19 where α =

(
3

2

)(1/2−2/3)

∈ (0, 1)

Therefore we have shown that

E
[(
µ? − Ugm

a?,τt(t)
)+
1{Na? (t)<τt/K}

]
6 19

√
π

8

√
K

τt
. (2.44)

Combining this bound with (2.43) and summing over t, we proved that the first sum in (2.42) is
bounded as

T∑

t=K+1

E
[(
µ? − Ugm

a?,τt−1
(t− 1)

)+]
6 20

√
π

8

T−1∑

t=K

√
K

τt
(2.45)

Remark 4. The proof technique reveals that the bound (2.45) obtained in this step of the proof
actually holds even if the arms are pulled according to a strategy that is not a generic MOSS
strategy. This is because we never used which specific arms Agm

t were pulled: we only distinguished
according to how many times a? was pulled and resorted to optional skipping.

Control of the right deviations of all arms, that is, of the second sum in (2.42). As (x+y)+ 6 x++y+

for all real numbers x, y, and as ϕ vanishes on (0, 1], we have, for all a and n > 1,

(
Ugm
a,T,n − µa −

√
K/T

)+
6
(
µ̂a,n − µa −

√
K/T

)+
+

√
1

2n
ϕ

(
T

Kn

)

=
(
µ̂a,n − µa −

√
K/T

)+
+





0 if n > T/K
√

1

2n
ϕ

(
T

Kn

)
if n < T/K .

Therefore, for each arm a,

T∑

n=1

E
[(
Ugm
a,T,n−µa−

√
K/T

)+]
6

T∑

n=1

E
[(
µ̂a,n−µa−

√
K/T

)+]
+

bT/Kc∑

n=1

√
1

2n
ϕ

(
T

Kn

)
. (2.46)
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2.A. A simplified proof of the regret bounds for MOSS(-anytime)

We are left with two pieces to deal with separately. For the first sum in (2.46), we exploit the
integrated version of Hoeffding’s inequality (Corollary 2.1),

T∑

n=1

E
[(
µ̂a,n − µa −

√
K/T

)+]
6

√
π

8

T∑

n=1

√
1

n
e−2n

(√
K/T

)2
6

√
π

8

∫
T

0

√
1

x
e−2xK/Tdx

=

√
π

8

√
T

2K

∫ +∞

0

e−u√
u

du =
π

4

√
T

K
, (2.47)

where we used the equalities
∫ +∞

0

(
e−u/

√
u
)
du = 2

∫ +∞

0
e−v

2
dv =

√
π.

For the second sum in (2.46), we also resort to a sum–integral comparison (which exploits the
fact that ϕ is increasing) and perform the change of variable u = T/(Kx):

bT/Kc∑

n=1

√
1

2n
ϕ

(
T

Kn

)
6

∫
T/K

0

√
1

2x
ϕ

(
T

Kx

)
dx =

√
T

2K

∫ +∞

1
u−3/2

√
ϕ(u)du .

Conclusion. Getting back to (2.41) and (2.42) and collecting all the bounds above, we showed
the desired bounds,

RT 6 (K − 1) +

T∑

t=K+1

E
[(
µ? − Ugm

a?,τt−1
(t− 1)

)+]

︸ ︷︷ ︸
6

+

T∑

t=K+1

E
[
Ugm
Agm
t ,τt−1

(t− 1)− µAgm
t

]

︸ ︷︷ ︸
6

6 (K − 1) + 20

√
π

8

T−1∑

t=K

√
K

τt
+
√
KT +

K∑

a=1

T∑

n=1

E
[(
Ugm
a,T,n − µa −

√
K/T

)+]

︸ ︷︷ ︸

6 (K − 1) + 20

√
π

8︸ ︷︷ ︸
612.6

T−1∑

t=K

√
K

τt
+
√
KT

(
1 +

π

4
+

1√
2

∫ +∞

1
u−3/2

√
ϕ(u)du

)
.
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2.B. Proofs of the regularity and deviation/concentration
results on Kinf

We provide here the proofs of all claims made in Section 2.4.4 about the Kinf function. These
proofs are all standard but we occasionally provide simpler or more direct arguments (or slightly
refined bounds).

2.B.1. Proof of the regularity lemma (Lemma 2.1)

The proof below is a variation on the proofs that can be found in Honda and Takemura [2015]
or earlier references of the same authors.

Proof. To prove (2.19) we lower bound Kinf(ν, µ− ε). To that end, given the definition (2.2), we
lower bound KL(ν, ν ′) for any fixed probability distribution ν ′ ∈ P[0, 1] such that

E(ν ′) > µ− ε and ν ′ � ν .

Since ν ′ has a countable number of atoms, one can pick a real number x > µ, arbitrary close to 1,
such that δx ⊥ ν ′ (such that the two probability measures δx and ν ′ are singular), where δx is the
Dirac distribution at x. We define

ν ′α = (1− α)ν ′ + αδx where α =
ε

ε+ (x− µ)
∈ (0, 1) .

The expectation of ν ′α satisfies

E(ν ′α) = (1− α) E(ν ′) + αx > (1− α)(µ− ε) + αx =
(x− µ)(µ− ε)
ε+ (x− µ)

+
εx

ε+ (x− µ)
= µ .

Since α ∈ (0, 1), we have ν ′α � ν ′; therefore, ν ′α � ν ′ � ν and δx ⊥ ν ′, which imply the following
equalities involving densities (Radon-Nikodym derivatives):

dν ′

dν ′α
=

1

1− α thus
dν

dν ′α
=

dν ′

dν ′α

dν

dν ′
=

1

1− α
dν

dν ′
. (2.48)

This allows to compute explicitly the following Kullback-Leibler divergence:

KL(ν, ν ′α) =

∫

[0,1]

ln

(
dν

dν ′α

)
dν = KL(ν, ν ′) + ln

1

1− α .

Since E(ν ′α) > µ and by the definition of Kinf as an infimum,

Kinf(ν, µ) 6 KL(ν, ν ′α) = KL(ν, ν ′) + ln
1

1− α .

Letting x go to 1, which implies that α goes to ε/(1− µ+ ε), yields

Kinf(ν, µ) 6 KL(ν, ν ′) + ln
1− µ+ ε

1− µ = KL(ν, ν ′) + ln

(
1 +

ε

1− µ

)
6 KL(ν, ν ′) +

ε

1− µ

where we also used ln(1 + u) 6 u for all u > −1. Finally, by taking the infimum in the right-most
equation above over all probability distributions ν ′ such that E(ν ′) > µ− ε and ν ′ � ν, we obtain
the desired inequality

Kinf(ν, µ) 6 Kinf(ν, µ− ε) +
ε

1− µ .
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2.B. Proofs of the regularity and deviation/concentration results on Kinf

To prove the second part (2.20) of Lemma 2.1, we follow a similar path as above. We lower
bound KL(ν, ν ′) for any fixed probability distribution ν ′ ∈ P[0, 1] such that

E(ν ′) > µ and ν ′ � ν .

To that end, we introduce

ν ′α = (1− α)ν ′ + αν for α =
ε(

E(ν ′)− E(ν)
) ∈ (0, 1)

where α ∈ (0, 1) since E(ν) 6 µ− ε by assumption and E(ν ′) > µ. These two inequalities also
indicate that

E(ν ′)− E(ν) > ε thus E(ν ′α) = E(ν ′)− α
(

E(ν ′)− E(ν)
)
> µ− ε (2.49)

so that KL(ν, ν ′α) > Kinf(ν, µ − ε). Now, thanks to the absolute continuities ν ′ � ν ′α � ν, we
have

dν

dν ′
=

dν

dν ′α

dν ′α
dν ′

=
dν

dν ′α

(
(1− α) + α

dν

dν ′

)
.

Therefore, by Fubini’s theorem, the Kullback-Leibler divergence between ν and ν ′ equals

KL(ν, ν ′) =

∫

[0,1]

ln

(
dν

dν ′

)
dν =

∫

[0,1]

ln

(
dν

dν ′α

)
dν +

∫

[0,1]

ln

(
(1− α) + α

dν

dν ′

)
dν

>

∫

[0,1]

ln

(
dν

dν ′α

)
dν + α

∫

[0,1]

ln

(
dν

dν ′

)
dν

= KL(ν, ν ′α) + α KL(ν, ν ′)

where we use the concavity of logarithm for the inequality. By Pinsker’s inequality together with
the data-processing inequality for Kullback-Leibler divergences (see, e.g., Garivier et al., 2019,
Lemma 1),

KL(ν, ν ′) > KL
(

Ber
(
E(ν)

)
, Ber

(
E(ν ′)

))
> 2
(

E(ν)− E(ν ′)
)2
.

Substituting this inequality above, we proved so far

KL(ν, ν ′) > KL(ν, ν ′α)+α KL(ν, ν ′) > KL(ν, ν ′α)+2α
(

E(ν)−E(ν ′)
)2

= KL(ν, ν ′α)+2ε
(

E(ν)−E(ν ′)
)

where we used the definition of α for the last inequality. By applying the bound (2.49) and its
consequence KL(ν, ν ′α) > Kinf(ν, µ− ε), we finally get

KL(ν, ν ′) > Kinf(ν, µ− ε) + 2ε2 .

The proof of (2.20) is concluded by taking the infimum in the left-hand side over the probability
distributions ν ′ such that E(ν ′) > µ (and ν ′ � ν).

2.B.2. A useful tool: a variational formula for Kinf (statement)

The variational formula below appears in Honda and Takemura [2015] as Theorem 2 (and
Lemma 6) and is an essential tool for deriving the deviation and concentration results for the Kinf .
We state it here (and re-derive it in a direct way in Appendix 2.D) for the sake of completeness.
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Lemma 2.3 (variational formula for Kinf). For all ν ∈ P[0, 1] and all 0 < µ < 1,

Kinf(ν, µ) = max
06λ61

E

[
ln

(
1− λX − µ

1− µ

)]
where X ∼ ν . (2.50)

Moreover, if we denote by λ? the value at which the above maximum is reached, then

E
[

1

1− λ?(X − µ)/(1− µ)

]
6 1 . (2.51)

2.B.3. Proof of the deviation result (Proposition 2.4)

The following proof is almost exactly the same as that of Cappé et al. [2013, Lemma 6], except
that we correct a small mistake in the constant.

Proof. We first upper bound Kinf

(
ν̂n,E(ν)

)
: as indicated by the variational formula of Lemma 2.3,

it is a maximum of random variables indexed by [0, 1]. We provide an upper bound that is a
finite maximum. To that end, we fix a real number γ ∈ (0, 1), to be determined by the analysis,
and let Sγ be the set

Sγ =

{
1

2
−
⌊

1

2γ

⌋
γ, . . . ,

1

2
− γ, 1

2
,

1

2
+ γ, . . . ,

1

2
+

⌊
1

2γ

⌋
γ

}
.

The cardinality of this set Sγ is bounded by 1 + 1/γ. Lemma 2.4 below (together with the
consequence mentioned after its statement) indicates that for all λ ∈ [0, 1], there exists a λ′ ∈ Sγ
such that for all x ∈ [0, 1],

ln

(
1− λ x− E(ν)

1− E(ν)

)
6 2γ + ln

(
1− λ′x− E(ν)

1− E(ν)

)
. (2.52)

(The small correction with respect to the original proof is the 2γ factor in the inequality above,
instead of the claimed γ term therein; this is due to the constraint λ 6 λ′ 6 1/2 or 1/2 6 λ′ 6 λ
in the statement of Lemma 2.4.) Now, a combination of the variational formula of Lemma 2.3
and of the inequality (2.52) yields a finite maximum as an upper bound on Kinf

(
ν̂n,E(ν)

)
:

Kinf

(
ν̂n,E(ν)

)
= max

06λ61

1

n

n∑

k=1

ln

(
1− λXk − E(ν)

1− E(ν)

)

6 2γ + max
λ′∈Sγ

1

n

n∑

k=1

ln

(
1− λ′Xk − E(µ)

1− E(µ)

)
.

In the second part of the proof, we control the deviations of the upper bound obtained. A
union bound yields

P
[
Kinf

(
ν̂n,E(ν)

)
> u

]
6 P

[
max
λ′∈Sγ

1

n

n∑

k=1

ln

(
1− λ′Xk − E(µ)

1− E(µ)

)
> u− 2γ

]

6
∑

λ′∈Sγ

P

[
1

n

n∑

k=1

ln

(
1− λ′Xk − E(ν)

1− E(ν)

)
> u− 2γ

]
. (2.53)
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By the Markov–Chernov inequality, for all λ′ ∈ [0, 1], we have

P

[
1

n

n∑

k=1

ln

(
1− λ′Xk − E(ν)

1− E(ν)

)
> u− 2γ

]
6 e−n(u−2γ) E

[
n∏

k=1

(
1− λ′Xk − E(ν)

1− E(ν)

)]

= e−n(u−2γ)
n∏

k=1

E

[
1− λ′Xk − E(ν)

1− E(ν)

]

︸ ︷︷ ︸
=1

= e−n(u−2γ)

where we used the independence of the Xk. Substituting in (2.53) and using the bound 1 + 1/γ
on the cardinality of Sγ , we get

P
[
Kinf

(
ν̂n,E(ν)

)
> u

]
6
∑

λ′∈Sγ

e−n(u−2γ) 6 (1 + 1/γ) e−n(u−2γ) .

Taking γ = 1/(2n) concludes the proof.

The proof above relies on the following lemma, which is extracted from Cappé et al. [2013,
Lemma 7]. Its elementary proof (not copied here) consists in bounding of derivative of λ 7→
ln(1− λc) and using a convexity argument.

Lemma 2.4. For all λ, λ′ ∈ [0, 1) such that either λ 6 λ′ 6 1/2 or 1/2 6 λ′ 6 λ, for all real
numbers c 6 1,

ln(1− λc)− ln(1− λ′c) 6 2|λ− λ′| .

A consequence not drawn by Cappé et al. [2013] is that the lemma above actually also holds
for λ = 1 and λ′ ∈ [0, 1). Indeed, by continuity and by letting λ→ 1, we get from this lemma
that for all λ′ ∈ [1/2, 1) and for all real numbers c < 1,

ln(1− c)− ln(1− λ′c) 6 2(1− λ′) .

The above inequality is also valid for c = 1 as the left-hand side equals −∞.

2.B.4. Proof of the concentration result (Proposition 2.5)

We recall that Proposition 2.5—and actually most of its proof below—are similar in spirit to
Honda and Takemura [2015, Proposition 11]. However, they are tailored to our needs. The key
ingredients in the proof will be the variational formula (2.50)—again—and Lemma 2.5 below.
This lemma is a concentration result for random variables that are essentially bounded from
one side only; it holds for possibly negative u (there is no lower bound on the u that can be
considered).

Lemma 2.5. Let Z1, . . . , Zn be i.i.d. random variables such that there exist a, b > 0 with

Z1 6 a a.s. and E
[
e−Z1

]
6 b .

Denote γ =
√

ea
(
16 e−2b+ a2

)
. Then Z1 in integrable and for all real numbers u ∈

(
−∞, E[Z1]

)
,

P

[
n∑

i=1

Zi 6 nu

]
6





exp(−nγ/8) if u 6 E[Z1]− γ/2
exp
(
−n
(
E[Z1]− u

)2
/(2γ)

)
if u > E[Z1]− γ/2

.
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Proof of Proposition 2.5 based on Lemma 2.5

We apply Lemma 2.3. We denote by λ? ∈ [0, 1] a real number achieving the maximum in the
variational formula (2.50) for Kinf(ν, µ). We then introduce the random variable

Z = ln

(
1− λ?X − µ

1− µ

)
where X ∼ ν

and i.i.d. copies Z1, . . . , Zn of Z. Then, Kinf(ν, µ) = E
[
Z
]
and by the variational formula (2.50)

again,

Kinf

(
ν̂n, µ

)
>

1

n

n∑

i=1

Zi , therefore, P
[
Kinf(ν̂n, µ) 6 x

]
6 P

[
n∑

i=1

Zi 6 nx

]

for all real numbers x. Now, X > 0 and λ? 6 1, thus

Z 6 ln

(
1 + λ?

µ

1− µ

)
6 ln

(
1

1− µ

)
def
= a .

On the other hand,

E
[
e−Z

]
= E

[
1

1− λ?(X − µ)/(1− µ)

]
def
= b

where b 6 1 follows from (2.51). This proves Proposition 2.5 via Lemma 2.5, except for the
inequality e−nγ/8 6 e−n/4 claimed therein. The latter is a consequence of γ > 2, as γ is an
increasing function of µ > 0,

γ =
1√

1− µ

(
16e−2 + ln2

(
1

1− µ

))
> 16e−2 > 2

Remark 5. In the proof of Theorem 2.3 provided in Section 2.C we will not use Proposition 2.5
as stated but a stronger result, namely that the bound of Proposition 2.5 actually holds for the
larger quantity

P

[
n∑

i=1

Zi 6 nx

]

as is clear from the proof above.

Proof of Lemma 2.5

This lemma is a direct application of the Crámer–Chernov method. We introduce the log-
moment generating function Λ of Z1:

Λ : x 7−→ lnE
[
exZ1

]
.

Lemma 2.6. The log-moment generating function Λ is well-defined at least on the interval [−1, 1]
and twice differentiable at least on (−1, 1), with Λ′(0) = E[Z1] and Λ′′(x) 6 γ for x ∈ [−1/2, 0],
where γ =

√
ea
(
16 e−2b+ a2

)
denotes the same constant as in Lemma 2.5.

Based on this lemma (proved below), we may resort to a Taylor expansion with a Lagrange
remainder and get the bound:

∀x ∈ [−1/2, 0], Λ(x) 6 Λ(0) + xΛ′(0) +
x2

2
sup

y∈[−1/2, 0]
Λ′′(y) 6 xE[Z1] +

γ

2
x2 .
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Therefore, by the Crámer–Chernov method, for all x ∈ [−1/2, 0], the probability of interest is
bounded by

P

[
n∑

i=1

Zi 6 nu

]
= P

[
n∏

i=1

exZi > enux

]
6 e−nux

(
E
[
exZ1

])n
= exp

(
−n
(
ux− Λ(x)

))

6 exp

(
n
(
x2 γ/2− x

(
u− E[Z1]

)))
. (2.54)

That is,

P

[
n∑

i=1

Zi 6 nu

]
6 exp

(
n min
x∈[1/2, 0]

P (x)
)

where we introduced the second-order polynomial function

P (x) = x2 γ/2− x
(
u− E[Z1]

)
=
γx

2

(
x− 2

u− E[Z1]

γ

)
.

The claimed bound is obtained by minimizing P over [−1/2, 0] depending on whether u >
E[Z1]− γ/2 or u 6 E[Z1]− γ/2, which we do now.

We recall that by assumption, u < E[Z1]. We note that P is a second-order polynomial function
with positive leading coefficient and roots 0 and 2

(
u−E[Z1]

)
/γ < 0. Its minimum over the entire

real line (−∞,+∞) is thus achieved at the midpoint x? =
(
u−E[Z1]

)
/γ < 0 between these roots.

But P is to be minimized over [−1/2, 0] only. In the case where u > E[Z1]− γ/2, the midpoint
x? belongs to the interval of interest and

min
[−1/2,0]

P =
γx?

2

(
x? − 2

u− E[Z1]

γ

)
= −

(
u− E[Z1]

)2

2γ
.

Otherwise, u−E[Z1] 6 −γ/2 and the midpoint x? is to the left of −1/2. Therefore, P is increasing
on [−1/2, 0], so that its minimum on this interval is achieved at −1/2, that is,

min
[−1/2,0]

P = P (−1/2) =
γ

8
+

1

2

(
u− E[Z1]

)
6
γ

8
− γ

4
= −γ

8
.

This concludes the proof of Lemma 2.5. We end this section by proving Lemma 2.6, which stated
some properties of the Λ function.

Proof of Lemma 2.6. We will make repeated uses of the fact that e−Z1 is integrable (by the
assumption on b), and that so is eZ1 , as eZ1 takes bounded values in (0, ea]. In particular, Z1 is
integrable, as by Jensen’s inequality,

E
[
|Z1|

]
6 lnE

[
e|Z1|

]
6 ln

(
E
[
e−Z1

]
+ E

[
eZ1
])
< +∞ .

First, that Λ is well-defined over [−1, 1] follows from the inequality exZ1 6 eZ1 + e−Z1 , which is
valid for all x ∈ [−1, 1] and whose right-hand side is integrable as already noted above.

Second, that ψ : x 7→ E
[
exZ1

]
is differentiable at least on (−1, 1) follows from the fact that

x ∈ (−1, 1) 7→ Z1 exZ1 is locally dominated by an integrable random variable; indeed, for
x ∈ (−1, 1),

∣∣Z1 exZ1
∣∣ = Z1 exZ1 1{Z1>0} + Z1 exZ1 1{Z1<0} 6 a ea +

1

x
sup

(−∞,0)
f = a ea +

1

ex
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where f(t) = −t et.
Similarly, x ∈ (−1, 1) 7→ Z2

1 exZ1 is also locally dominated by an integrable random variable.
Thus, ψ is twice differentiable at least on (−1, 1), with first and second derivatives

ψ′(x) = E
[
Z1 exZ1

]
and ψ′′(x) = E

[
Z2

1 exZ1
]
.

Therefore, so is Λ = lnψ, with derivatives

Λ′(x) =
ψ′(x)

ψ(x)
=

E
[
Z1 exZ1

]

E
[
exZ1

] and Λ′′(x) =
ψ′′(x)ψ(x)−

(
ψ′(x)

)2

ψ(x)2
6
ψ′′(x)

ψ(x)
=

E
[
Z2

1 exZ1
]

E
[
exZ1

] .

In particular, Λ′(0) = E[Z1].
Finally, for the bound on Λ′′(x), we note first that Z1 6 a (with a > 0) and x ∈ [−1/2, 0]

entail that exZ1 > exa > 1/
√

ea. Second, E
[
Z2

1 exZ1
]
6 16 e−2b+ a2 follows from replacing z by

Z1 and taking expectations in the inequality (proved below)

∀x ∈ [−1/2, 0], z ∈ (−∞, a], z2 exz 6 16 e−2e−z + a2 . (2.55)

Collecting all elements together, we proved

Λ′′(x) 6
E
[
Z2

1 exZ1
]

E
[
exZ1

] 6
√

ea
(
16 e−2b+ a2

)
= γ .

To see why (2.55) holds, note that in the case z > 0, since x 6 0 we have z2 exz 6 z2 6 a2. In
the case z 6 0, we have (by function study) z2 6 16e−2−z/2, so that z2 exz 6 16e−2 e(x−1/2)z 6
16e−2e−z where we used x > −1/2 for the final inequality.
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2.C. Proof of Theorem 2.3 (with the − ln lnT term in the regret
bound)

We incorporate two refinements to the proof of Theorem 2.2 in Section 2.6.2 to obtain
Theorem 2.3 with this improved − ln lnT term. First, the left deviations of the index are
controlled with an additional cut on the value of Ua(t) before using the bound Ua(t) > Ua?(t)
that holds when At+1 = a. This improves the dependency on the parameter δ used in the proof;
as a consequence, δ = T−1/8 will be set instead of δ = (lnT )−1/3, which will improve the order of
magnitude of second-order terms. Second, to sharpen the bound on the quantity (2.60), which
contains the main logarithmic term, we use a trick introduced in the analysis of the IMED policy
by Honda and Takemura [2015, Theorem 5]. Their idea was to deal with the deviations in a more
careful way and relate the sum (2.60) to the behaviour of a biased random walk. Doing so, we
obtain a bound of the form κW (cT ), where W is Lambert’s function, instead of the bound of
the form κ ln(cT ) stated in Theorem 2.2.

We recall that Lambert’s function W is defined, for x > 0, as the unique solution W (x) of the
equation w ew = x, with unknown w > 0. It is an increasing function satisfying (see, e.g., Hoorfar
and Hassani, 2008, Corollary 2.4)

∀x > e, lnx− ln lnx 6W (x) 6 lnx− ln lnx+ ln
(
1 + e−1

)
. (2.56)

In particular, W (x) = lnx− ln lnx+O(1) as x→ +∞.

What we will exactly prove below is the following. We recall that we assume here µ? ∈ (0, 1).
Given T > K/(1− µ?), the KL-UCB-switch algorithm, tuned with the knowledge of T and the
switch function f(T,K) = b(T/K)1/5c, ensures that for all bandit problems ν over [0, 1], for all
sub-optimal arms a, and for all δ > 0 satisfying

δ < min

{
µ?,

∆a

2
,

1− µ?
2
Kinf(νa, µ

?)

}

we have

E[Na(T )] 6 1 (2.57)

+
5eK

(
1− e−∆2

a/2
)3 + T e−∆2

aT/(2K)

+
K/T

1− e−∆2
a/8

+

⌈
8

∆2
a

ln

(
T

K

)⌉(
5eK/T

(1− e−2δ2)3
+ e−2δ2T/K

)

+
1

Kinf(νa, µ?)− δ/(1− µ?)

(
W

(
ln
(
1/(1− µ?)

)

K
T

)
+ ln

(
2/(1− µ?)

)
)

+ 5 +
1

1− e−Kinf(ν,µ?)2/(8γ?)

+
1

1− e−∆2
a/8

.

We write the bound in this way to match the decomposition of E[Na(T )] appearing in the proof
(see page 73). For a choice δ → 0 T → +∞, the previous bound is of the form

E[Na(T )] 6
W
(
cµ?T

)

Kinf(νa, µ?)− δ/(1− µ?)
+OT

(
lnT

δ6T

)
+OT

(
(lnT ) e−2δ2T/K

)
+OT (1)
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where cµ? = ln
(
1/(1− µ?)

)
/K. Based on the first-order approximation 1/(1− ε) = 1 + ε+O(ε)

as ε→ 0 and on the inequalities (2.56), we get

E[Na(T )] 6
lnT − ln lnT

Kinf(νa, µ?)

(
1 +OT (δ)

)
+OT

(
lnT

δ6T

)
+OT

(
(lnT ) e−2δ2T/K

)
+OT (1) .

The choice δ = T−1/8 leads to the bound stated in Theorem 2.3, namely,

E[Na(T )] 6
lnT − ln lnT

Kinf(νa, µ?)
+OT (1) .

We now prove the closed-form bound (2.57).

Proof. As in the proof of Theorem 2.2, given δ > 0 sufficiently small, we decompose E
[
Na(T )

]
.

However, this time we refine the decomposition quite a bit. Instead of simply distinguishing
whether Ua(t) is greater or smaller than µ?−δ, we add a cutting point at (µ?+µa)/2. In addition,
we set a threshold n0 > 1 (to be determined by the analysis) and distinguish whether Na(t) > n0

or Na(t) 6 n0 − 1 when Ua(t) < µ? − δ, while we keep the integer threshold f(T,K) in the case
Ua(t) > µ? − δ. More precisely,

{
Ua(t) < µ? − δ

}
∪
{
Ua(t) > µ? − δ} =

{
Ua(t) < µ? − δ and Na(t) > n0

}

∪
{
Ua(t) < µ? − δ and Na(t) 6 n0 − 1

}

∪
{
Ua(t) > µ? − δ and Na(t) 6 f(T,K)}

∪
{
Ua(t) > µ? − δ and Na(t) > f(T,K) + 1}

⊆
{
Ua(t) < (µ? + µa)/2 and Na(t) > n0

}

∪
{

(µ? + µa)/2 6 Ua(t) < µ? − δ and Na(t) > n0

}

∪
{
Ua(t) < µ? − δ and Na(t) 6 n0 − 1

}

∪
{
Ukl
a (t) > µ? − δ and Na(t) 6 f(T,K)

}

∪
{
Um
a (t) > µ? − δ and Na(t) > f(T,K) + 1

}

where, to get the inclusion, we further cut the first event into two events and we used the definition
of the index Ua(t) to replace it by Ukl

a (t) or Um
a (t) in the last two events.

Hence, by intersecting this partition of the space with the event {At+1 = a} and by slightly
simplifying the first and second events of the partition:

{At+1 = a} ⊆
{
Ua(t) < (µ? + µa)/2 and At+1 = a

}

∪
{
Ua(t) > (µ? + µa)/2 and At+1 = a and Na(t) > n0

}

∪
{
Ua(t) < µ? − δ and At+1 = a and Na(t) 6 n0 − 1

}

∪
{
Ukl
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(T,K)

}

∪
{
Um
a (t) > µ? − δ and At+1 = a and Na(t) > f(T,K) + 1

}

Only now do we inject the bound Ua?(t) 6 Ua(t), valid when At+1 = a, as well as a union
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bound, to obtain our working decomposition of E[Na(t)]:

E
[
Na(T )

]
6 1

+

T−1∑

t=K

P
[
Ua?(t) < (µ? + µa)/2

]
(S1)

+

T−1∑

t=K

P
[
Ua(t) > (µ? + µa)/2 and At+1 = a and Na(t) > n0

]
(S2)

+

T−1∑

t=K

P
[
Ua?(t) < µ? − δ and At+1 = a and Na(t) 6 n0 − 1

]
(S3)

+

T−1∑

t=K

P
[
Ukl
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(T,K)

]
(S4)

+

T−1∑

t=K

P
[
Um
a (t) > µ? − δ and At+1 = a and Na(t) > f(T,K) + 1

]
. (S5)

We call the five sums appearing in the right-hand side S1, S2, S3, S4, S5, respectively and now
bound them separately. Most of the efforts will be dedicated to the sum S4.

Bound on S5

As the algorithm considered is the same as in Theorem 2.2, its analysis is still valid. Fortunately,
the S5 term was already covered in (2.38): provided that δ < ∆a/4,

S5 6
1

1− e−∆2
a/8

.

Bound on S2

Let

n0 =

⌈
8

∆2
a

ln

(
T

K

)⌉
. (2.58)

By Pinsker’s inequality (2.8), by definition of the MOSS index, and by our choice of n0, we have,
when Na(t) > n0,

Ua(t) 6 Um
a (t) = µ̂a(t) +

√
1

2Na(t)
ln+

(
T

KNa(t)

)
6 µ̂a(t) +

√
1

2n0
ln+

(
T

Kn0

)

︸ ︷︷ ︸
6∆a/4

. (2.59)

In particular, we get the inclusion
{
Ua(t) > (µ? + µa)/2 and Na(t) > n0

}
=
{
Ua(t) > µa + ∆a/2 and Na(t) > n0

}

⊆
{
µ̂a(t) > µa + ∆a/4 and Na(t) > n0

}
.

Thus

S2 6
T−1∑

t=K

P
[
µ̂a(t) > µa +

∆a

4
and At+1 = a and Na(t) > n0

]
.
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We now proceed similarly to what we already did on page 54. By a careful application of optional
skipping (see Section 2.4.1), using the fact that all the events {At+1 = a and Na(t) = n} are
disjoint as t varies, the sum above may be bounded by

T−1∑

t=K

P
[
µ̂a(t) > µa +

∆a

4
and At+1 = a and Na(t) > n0

]
6
∑

n>n0

P
[
µ̂a,n > µa +

∆a

4

]

By a final application of Hoeffding’s inequality (Proposition 2.1, actually not using the maximal
form):

S2 6
T∑

n=n0

P
[
µ̂a,n > µa +

∆a

4

]
6

T∑

n=n0

e−n∆2
a/8 =

e−n0∆2
a/8

1− e−∆2
a/8

6
K/T

1− e−∆2
a/8

where we substituted the value (2.58) of n0.

Bounds on S1 and S3

For u ∈ (0, 1), we introduce the event

E?(u) =
{
∃ τ ∈ {K, . . . , T − 1} : Ua?(τ) < u

}

so that

{Ua?(t) < (µ? + µa)/2} ⊆ E?
(
(µ? + µa)/2

)
and {Ua?(t) < µ? − δ} ⊆ E?

(
µ? − δ

)
.

Summing over t, and using the deterministic control

T−1∑

t=K

1{At+1=a and Na(t)6n0−1} 6 n0

for bounding S3, we obtain (and this is where it is handy that the E? do not depend on a particular
t)

S1 6 T P
(
E?
(
(µ? + µa)/2

))
and S3 6 n0 P

(
E?(µ? − δ)

)

We recall that n0 was defined in (2.58). The lemma right below, respectively with x = ∆a/2 and
x = δ, yield the final bounds

S1 6
5eK

(
1− e−∆2

a/2
)3 + T e−∆2

aT/(2K)

and
S3 6

⌈
8

∆2
a

ln

(
T

K

)⌉(
5eK/T

(1− e−2δ2)3
+ e−2δ2T/K

)
.

Lemma 2.7. For all x ∈ (0, µ?),

P
(
E?
(
µ? − x

))
= P

[
∃ τ ∈ {K, . . . , T − 1} : Ua?(τ) < µ? − x

]
6

eK

T

5

(1− e−2x2)3
+ e−2x2T/K .

Proof. We first lower bound Ua?(τ) depending on whether Na?(τ) < T/K or Na?(τ) > T/K.
In the first case, we will simply apply Pinsker’s inequality (2.8) to get Ukl

a? (τ) 6 Ua?(τ). In
the second case, since T > K/(1 − µ?) > K, we have, by definition of f(T,K), that T/K >
(T/K)1/5 > f(T,K) and thus, by definition of the Ua?(τ) index, Ua?(τ) = Um

a?(τ). Now, the ln+
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in the definition of Um
a?(τ) vanishes when Na?(τ) > T/K, so all in all we have Ua?(τ) = µ̂a?(τ)

when Na?(τ) > T/K. Therefore, by optional skipping (see Section 2.4.1),

P
(
E?
(
µ? − x

))
= P

[
∃ τ ∈ {K, . . . , T − 1} : Ua?(τ) < µ? − x

]

= P
[
∃ τ ∈ {K, . . . , T − 1} : Ua?(τ) < µ? − x and Na?(τ) < T/K

]

+ P
[
∃ τ ∈ {K, . . . , T − 1} : Ua?(τ) < µ? − x and Na?(τ) > T/K

]

6 P
[
∃ τ ∈ {K, . . . , T − 1} : Ukl

a? (τ) < µ? − x and Na?(τ) < T/K
]

+ P
[
∃ τ ∈ {K, . . . , T − 1} : µ̂a?(τ) < µ? − x and Na?(τ) > T/K

]

6 P
[
∃m ∈

{
1, . . . , bT/Kc

}
: Ukl

a?,m < µ? − x
]

+ P
[
∃m ∈

{
dT/Ke, . . . , T

}
: µ̂a?,m < µ? − x

]
.

As in the proof of Corollary 2.4, by the definition of the Ukl
a?,m index as some supremum (together

with the left-continuity of Kinf deriving from Lemma 2.1), we finally get

P
(
E?
(
µ? − x

))
6 P

[
∃m ∈

{
1, . . . , bT/Kc

}
: Kinf

(
ν̂a?,m, µ

? − x
)
>

1

m
ln

(
T

Km

)]

+ P
[
∃m ∈

{
dT/Ke, . . . , T

}
: µ̂a?,m < µ? − x

]
.

The proof is concluded by bounding each probability separately. First, again as in the proof of
Corollary 2.4, we apply Corollary 2.3 (for the first inequality below) and the deviation inequality
of Proposition 2.4 (for the second inequality below), to see that for all x ∈ (0, µ?) and ε > 0,

P
[
Kinf

(
ν̂a?,m, µ

? − x
)
> ε
]
6 P

[
Kinf

(
ν̂a?,m, µ

?
)
> ε+ 2x2

]
6 e(2n+ 1) e−n(ε+2x2) .

Therefore, by a union bound, the above equation, and the calculations on geometric sums (2.33)
and (2.34),

P

[
∃m ∈

{
1, . . . ,

⌊
T/K

⌋}
: Kinf

(
ν̂a?,m, µ

? − x
)
>

1

m
ln

(
T

Km

)]

6
bT/Kc∑

m=1

e(2m+ 1)
Km

T
e−2mx2 6

eK

T

+∞∑

m=1

m(2m+ 1) e−2mx2 6
eK

T

5

(1− e−2x2)3
.

Second, by Hoeffding’s maximal inequality (Proposition 2.1),

P
[
∃m ∈

{
dT/Ke, . . . , T

}
: µ̂a?,m < µ? − x

]

= P
[

max
dT/Ke6m6T

((
1− µ̂a?,m

)
− (1− µ?)

)
> x

]
6 e−2 dT/Kex2 6 e−2x2T/K .

The proof is concluded by collecting the last two bounds.

Bound on S4

We begin with a now standard use of optional skipping (see Section 2.4.1), relying on the fact
that the events {At+1 = a and Na(t) = n} are disjoint as t varies:

S4 =

T−1∑

t=K

P
[
Ukl
a (t) > µ? − δ and At+1 = a and Na(t) 6 f(T,K)

]
6

f(T,K)∑

n=1

P
[
Ukl
a,n > µ? − δ

]
.
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We show in this section that

f(T,K)∑

n=1

P
[
Ukl
a,n > µ? − δ

]
6

1

Kinf(νa, µ?)− δ/(1− µ?)

(
W

(
ln
(
1/(1− µ?)

)

K
T

)
+ ln

(
2/(1− µ?)

)
)

+ 5 +
1

1− e−Kinf(ν,µ?)2/(8γ?)
(2.60)

where, as in the statement of Proposition 2.5,

γ? =
1√

1− µ?

(
16e−2 + ln2

(
1

1− µ?
))

.

To do so, we follow exactly the same method as in the analysis of the IMED policy of Honda and
Takemura [2015, Theorem 5]: their idea was to deal with the deviations in a more careful way
and relate the sum (2.60) to the behaviour of a biased random walk.
We start by rewriting the events of interest as

{
Ukl
a,n > µ? − δ

}
=

{
Kinf

(
ν̂a,n, µ

? − δ
)
6

1

n
ln

(
T

Kn

)}

where, as in one step of the proof of Lemma 2.7, we used the definition of Ukl
a,n as well as the

left-continuity of Kinf . We then follow the same steps as in the proof of Proposition 2.5 (see
Section 2.B.4) and link the deviations in Kinf divergence to the ones of a random walk. The
variational formula (Lemma 2.3) for Kinf entails the existence of λa,δ ∈ [0, 1] such that

Kinf(νa, µ
? − δ) = E

[
ln

(
1− λa,δ

Xa − (µ? − δ)
1− (µ? − δ)

)]
where Xa ∼ νa .

Note that Kinf(νa, µ
?− δ) > 0 by (2.7) given that we imposed δ 6 ∆a/2. We consider i.i.d. copies

Xa,1, . . . , Xa,n of X and form the random variables

Za,i = ln

(
1− λa,δ

Xa,i − (µ? − δ)
1− (µ? − δ)

)
.

By the variational formula (Lemma 2.3) again, applied this time to Kinf(ν̂a,n, µ
? − δ), we see

Kinf

(
ν̂a,n, µ

? − δ
)
>

1

n

n∑

i=1

Za,i

which entails, for each n > 1,
{
Kinf

(
ν̂a,n, µ

? − δ
)
6

1

n
ln

(
T

Kn

)}
⊆
{

n∑

i=1

Za,i 6 ln

(
T

Kn

)}
. (2.61)

Collecting all previous bounds and inclusions, we proved that the sum of interest (2.60) is bounded
by

S4 6
f(T,K)∑

n=1

P
[
Ukl
a,n > µ? − δ

]
=

f(T,K)∑

n=1

P

[
Kinf

(
ν̂a,n, µ

? − δ
)
6

1

n
ln

(
T

Kn

)]

6
f(T,K)∑

n=1

P

[
n∑

i=1

Za,i 6 ln

(
T

Kn

)]
= E

[
f(T,K)∑

n=1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]

6 E

[
T∑

n=1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]
.
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The last upper bound may seem crude but will be good enough for our purpose.
We may reinterpret

E

[
T∑

n=1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]

as the expected number of times a random walk with positive drift stays under a decreasing
logarithmic barrier. We exploit this interpretation to our advantage by decomposing this sum
into the expected hitting time of the barrier and a sum of deviation probabilities for the walk. In
what follows, ∧ denotes the minimum of two numbers. We define the first hitting time τa of the
barrier, if it exists, as

τa = inf

{
n > 1 :

n∑

i=1

Za,i > ln

(
T

Kn

)}
∧ T .

The time τa is bounded by T and is a stopping time with respect to the filtration generated
by the family (Za,i)16i6n. By distinguishing according to whether or not the condition in the
defining infimum of τa is met for some 1 6 n 6 T , i.e., whether or not the barrier is hit for
1 6 n 6 T , we get

S4 6 E

[
T∑

n=1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]
6 E[τa] + E

[
T∑

n=τa+1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]

(2.62)

where the sum from τa+1 to T is void thus null when τa = T (this is the case, in particular, when
the barrier is hit for no n 6 T ). We now state a lemma, in the spirit of Honda and Takemura
[2015, Lemma 18], and will prove it later at the end of this section.

Lemma 2.8. Let (Zi)i>1 be a sequence of i.i.d. variables with a positive expectation E[Z1] > 0
and such that Zi 6 α for some α > 0. For an integer T > 1, consider the stopping time

τ
def
= inf

{
n > 1 :

n∑

i=1

Zi > ln

(
T

Kn

)}
∧ T

and denote by W Lambert’s function. Then, for all T > Keα,

E[τ] 6
W (αT/K) + α+ ln 2

E[Z1]
.

The random variables Za,i have positive expectation Kinf(νa, µ
? − δ) > 0 and are bounded by

α = ln
(
1/(1− µ?)

)
; indeed, since Xa,i > 0 and λa,δ ∈ [0, 1], we have

Za,i = ln

(
1− λa,δ

Xa,i − (µ? − δ)
1− (µ? − δ)

)
6 ln

(
1 + λa,δ

µ? − δ
1− (µ? − δ)

)

6 ln

(
1 +

µ? − δ
1− (µ? − δ)

)
= ln

(
1

1− (µ? − δ)

)

6 ln

(
1

1− µ?
)

def
= α .

In addition, we imposed that T > K/(1− µ?) = Keα. Therefore, Lemma 2.8 applies and yields
the bound

E[τa] 6
1

Kinf(νa, µ? − δ)

(
W

(
ln
(
1/(1− µ?)

)

K
T

)
+ ln

(
2/(1− µ?)

)
)

6
1

Kinf(νa, µ?)− δ/(1− µ?)

(
W

(
ln
(
1/(1− µ?)

)

K
T

)
+ ln

(
2/(1− µ?)

)
)
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where the second inequality follows by the regularity inequality (2.19) on Kinf (and the denominator
therein is still positive thanks to our assumption on δ). All in all, we obtained the first part of the
bound (2.60) and conclude the proof of the latter based on the decomposition (2.62) by showing
that

E

[
T∑

n=τa+1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]
6 β

def
= 5 +

1

1− e−Kinf(νa,µ?)2/(8γ?)
. (2.63)

To that end, note that when τa < T , we have by definition of τa,

ln

(
T

Kτa

)
<

τa∑

i=1

Za,i

The following implication thus holds for any n > τa:

n∑

i=1

Za,i 6 ln

(
T

Kn

)
implies

n∑

i=1

Za,i 6 ln

(
T

Kn

)
6 ln

(
T

Kτa

)
6

τa∑

i=1

Za,i . (2.64)

Hence, in this case,

n∑

i=1

Za,i 6 ln

(
T

Kn

)
implies

n∑

i=τa+1

Za,i < 0 .

This, together with a breakdown according to the values of τa (note that the case τa = T does
not contribute to the expectation) and the independence between {τa = k} and Za,k+1, . . . , Za,T ,
yields

E

[
T∑

n=τa+1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]

= E

[
1{τa<T}

T∑

n=τa+1

1{∑n
i=1 Za,i6ln(T/(Kn))

}
]

6 E

[
1{τa<T}

T∑

n=τa+1

1{∑n
i=τa+1 Za,i<0

}
]

=
T−1∑

k=1

E

[
1{τa=k}

T∑

n=k+1

1{∑n
i=k+1 Za,i<0

}
]

=
T−1∑

k=1

T∑

n=k+1

P[τa = k] P

[
n∑

i=k+1

Za,i < 0

]

=

T−1∑

k=1

P[τa = k]




T∑

n=k+1

P

[
n∑

i=k+1

Za,i < 0

]

︸ ︷︷ ︸
we show below 6β, see (2.67)




6 β (2.65)

where β was defined in (2.63).
Indeed, we resort to Remark 5 of Section 2.B.4, for the n− k variables Za,k+1, . . . , Za,n and

x = 0; we legitimately do so as µ? − δ > µa by the imposed condition δ < ∆a/2. Thus, denoting

γ?,δ =
1√

1− (µ? − δ)

(
16e−2 + ln2

(
1

1− (µ? − δ)

))
6 γ?
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we have

P

[
n∑

i=k+1

Za,i 6 0

]
6 max

{
e−(n−k)/4, exp

(
− n− k

2γ?,δ

(
Kinf(νa, µ

? − δ)
)2
)}

6 e−(n−k)/4 + exp

(
− n− k

2γ?

(
Kinf(νa, µ

? − δ)
)2
)

6 e−(n−k)/4 + e−(n−k)Kinf(ν,µ
?)2/(8γ?)

where the third inequality follows from (2.19) and from the imposed condition δ 6 (1 −
µ?)Kinf(νa, µ

?)/2:

Kinf(νa, µ
? − δ) > Kinf(νa, µ

?)− δ

1− µ? >
Kinf(νa, µ

?)

2
. (2.66)

We finally get, after summation over n = k + 1, . . . , T ,

T∑

n=k+1

P

[
n∑

i=k+1

Za,i 6 0

]
6

1

1− e−1/4︸ ︷︷ ︸
65

+
1

1− e−Kinf(νa,µ?)2/(8γ?)
, (2.67)

which is the inequality claimed in (2.65).
It only remains to prove Lemma 2.8.

Proof of Lemma 2.8. This lemma was almost stated in Honda and Takemura [2015, Lemma 18]:
our assumptions and result are slightly different (they are tailored to our needs), which is why we
provide below a complete proof, with no significant additional merit compared to the original
proof.
We consider the martingale (Mn)n>0 defined by

Mn =
n∑

i=1

(
Zi − E[Z1]

)
.

As τ is a finite stopping time, Doob’s optional stopping theorem indicates that E[Mτ] = E[M0] = 0,
that is,

E[τ] E[Z1] = E

[
τ∑

i=1

Zi

]
.

That first step of the proof was exactly similar to the one of Honda and Takemura [2015,
Lemma 18]. The idea is now to upper bound the right-hand side of the above equality, which we
do by resorting to the very definition of τ. An adaptation is needed with respect to the original
argument as the value ln

(
T/(Kn)

)
of the barrier varies with n.

We proceed as follows. Since Z1 6 α and T > Keα by assumption, we necessarily have τ > 2;
using again the boundedness by α, we have, by definition of τ, that

τ−1∑

i=1

Zi 6 ln

(
T

K(τ− 1)

)

and thus
τ−1∑

i=1

Zi + Zτ 6 ln

(
T

K(τ− 1)

)
+ α = ln

(
T

Kτ

)
+ ln

(
τ

τ− 1

)
+ α 6 ln

(
T

Kτ

)
+ ln 2 + α .
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In addition, when τ < T/K, and again by definition of τ,

ln

(
T

Kτ

)
<

τ∑

i=1

Zi 6 τα thus 0 <
T

Kτ
ln

(
T

Kτ

)
6
Tα

K
.

Applying the increasing function W to both sides of the latter inequality, we get, when τ < T/K,

ln

(
T

Kτ

)
6W

(
Tα

K

)
.

This inequality also holds when τ > T/K as the left-hand side then is non-positive, while the
right-hand side is positive. Putting all elements together, we successively proved

E[τ]E[Z1] = E

[
τ∑

i=1

Zi

]
6W

(
Tα

K

)
+ ln 2 + α

which concludes the proof.
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2.D. Proof of the variational formula (Lemma 2.3)

The proof of Honda and Takemura [2015, Theorem 2, Lemma 6] relies on the exhibiting the
formula of interest for finitely supported distributions, via KKT conditions, and then taking
limits to cover the case of all distributions. We propose a more direct approach that does not
rely on discrete approximations of general distributions.

But before we do so, we explain why it is natural to expect to rewrite Kinf , which is an infimum,
as a maximum. Indeed, given that Kullback-Leibler divergences are given by a supremum, Kinf

appears as an inf sup, which under some conditions (this is Sion’s lemma) is equal to a sup inf.
More precisely, a variational formula for the Kullback-Leibler divergence, see Boucheron et al.

[2013, Chapter 4], has it that

KL(ν, ν ′) = sup
{
Eν [Y ]− lnEν′

[
eY
]

: Y s.t. Eν′ [eY ] < +∞
}

(2.68)

where (only in the next few lines) we index the expectation with respect to the assumed distribution
of the random variable Y . In particular, denoting by X the identity over [0, 1] and considering,
for λ ∈ [0, 1], the variables bounded from above

Yλ = ln

(
1− λX − µ

1− µ

)
6 ln

(
1 +

λµ

1− µ

)

we have, for any probability measure ν ′ such that E(ν ′) > µ:

lnEν′
[
eYλ
]

= ln

(
Eν′
[

1− λX − µ
1− µ

])
= ln

(
1− λE(ν ′)− µ

1− µ

)
6 0 .

Hence, for these distributions ν ′,

KL(ν, ν ′) > sup
λ∈[0,1]

{
Eν [Yλ]− lnEν′

[
eYλ
]}

> sup
λ∈[0,1]

Eν

[
ln

(
1− λX − µ

1− µ

)]

and by taking the infimum over all distributions ν ′ with E(ν ′) > µ:

Kinf(ν, µ) > sup
λ∈[0,1]

Eν

[
ln

(
1− λX − µ

1− µ

)]
. (2.69)

Outline. We now only need to prove the converse inequality to get the rewriting (2.50) of
Lemma 2.3, which we will do in Section 2.D.2. Before that, in Section 2.D.1, we prove the second
statement of Lemma 2.3 together with several useful facts for the proof provided in Section 2.D.2,
including the fact that the supremum in the right-hand side of (2.69) is achieved. We conclude in
Section 2.D.3 with an alternative (sketch of) proof of the inequality (2.69), not relying on the
variational formula (2.68) for the Kullback-Leibler divergences.

2.D.1. A function study

Let X denote a random variable with distribution ν ∈ P[0, 1]. We recall that µ ∈ (0, 1). The
following function is well defined:

H : λ ∈ [0, 1] 7−→ E

[
ln

(
1− λX − µ

1− µ

)]
∈ R ∪ {−∞} .
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Indeed, since X ∈ [0, 1], the random variable ln
(
1− λ(X − µ)/(1− µ)

)
is bounded from above by

ln
(
1 + λµ/(1− µ)

)
. Hence, H is well defined. For λ ∈ [0, 1), the considered random variable is

bounded from below by ln(1− λ), hence H takes finite values. For λ = 1, we possibly have that
H(1) equals −∞ (this is the case in particular when ν{1} > 0).
We begin by a study of the function H.

Lemma 2.9. The function H is continuous and strictly concave on [0, 1], differentiable at least
on [0, 1), and its derivative H ′(1) can be defined at 1, with H ′(1) ∈ R ∪ {−∞}. We have the
closed-form expression: for all λ ∈ [0, 1],

H ′(λ) = −E
[(

X − µ
1− µ

)
1

1− λX−µ1−µ

]
=

1

λ

(
1− E

[
1

1− λX−µ1−µ

])
. (2.70)

It reaches a unique maximum over [0, 1], denoted by λ?,

arg max
06λ61

H(λ) = {λ?}

at which H ′(λ?) = 0 if λ? ∈ [0, 1) and H ′(λ?) > 0 if λ? = 1.

Moreover, under the additional condition E(ν) < µ,

E

[
1

1− λ? X−µ1−µ

]
= 1 if λ? ∈ [0, 1) and E

[
1

1− λ? X−µ1−µ

]
= E

[
1− µ
1−X

]
6 1 if λ? = 1

where we have in particular ν{1} = 0 in the latter case λ? = 1.

Note that Kinf(ν, µ) = 0 when µ 6 E(ν). In this case, necessarily λ? = 0 (there is a unique
maximum) and we still have

E

[
1

1− λ? X−µ1−µ

]
= 1 .

This concludes the proof of the statement (2.51) of Lemma 2.3.

Proof. For the continuity of H, we note that the discussion before the statement of the lemma
entails that the random variables ln

(
1− λ(X − µ)/(1− µ)

)
are uniformly bounded on ranges of

the form [0, λ0] for λ0 < 1. By a standard continuity theorem under the integral sign, this proves
that H is continuous on [0, 1). For the continuity at 1, we separate the H(λ) and H(1) into two
pieces, for which monotone convergences take place:

lim
λ→1

E

[
ln

(
1− λX − µ

1− µ

)
1{X∈[0,µ]}

]
= E

[
ln

(
1−X
1− µ

)
1{X∈[0,µ]}

]

lim
λ→1

E

[
ln

(
1− λX − µ

1− µ

)
1{X∈(µ,1]}

]
= E

[
ln

(
1−X
1− µ

)
1{X∈(µ,1]}

]

where the first expectation is finite (but the second may equal −∞).
The strict concavity of H on [0, 1] follows from the one of ln on (0, 1] and from the continuity

of H on [0, 1].
For λ ∈ [0, 1), we get, by legitimately differentiating under the expectation,

H ′(λ) = −E
[(

X − µ
1− µ

)
1

1− λX−µ1−µ

]
=

1

λ

(
1− E

[
1

1− λX−µ1−µ

])
.
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Indeed as long as λ < 1, the random variables in the expectations are uniformly bounded on
ranges of the form [0, λ0] for λ0 < 1, so that we may invoke a standard differentiation theorem
under the integral sign. A similar argument of double monotone convergences as above shows
that H ′(λ) has a limit value as λ→ 1, with

lim
λ→1

H ′(λ) = −E
[
X − µ
1−X

]
.

By a standard limit theorem on derivatives, when the above value is finite, H is differentiable at
1 and H ′(1) equals the limit above; otherwise, H is not differentiable at 1 but we still denote
H ′(1) = −∞.
Since H is strictly concave on [0, 1] and continuous, it reaches its maximum exactly once on

[0, 1]. Now, under the condition µ < E(ν) < 1, we have

H ′(0) = −E(ν)− µ
1− µ > 0 .

As H is concave, H ′ is decreasing: either H ′(1) > 0 and H reaches its maximum at λ? = 1,
or H ′(1) < 0 and H reaches its maximum on the open interval (0, 1). It may be proved (by a
standard continuity theorem under the integral sign) that H ′ is continuous on [0, 1), that is, that
H is continuously differentiable on [0, 1). In the case H ′(1) < 0, the derivative at the maximum
therefore satisfies H ′(λ?) = 0. Substituting the expression for H ′(λ?) concludes the proof.

2.D.2. Proof of 6 in the equality (2.50)

We keep the notation introduced in the previous section. To prove this inequality, by the
rewriting of Kinf(ν, µ) stated in Corollary 2.2, it is enough to show that there exists a probability
measure ν ′ on [0, 1] such that E(ν ′) > µ and ν � ν ′ and

KL(ν, ν ′) 6 E

[
ln

(
1− λ?X − µ

1− µ .

)]
(2.71)

Given the definition of the KL divergence, it suffices to find a probability measure ν ′ on [0, 1]
such that E(ν ′) > µ and ν � ν ′ and

dν

dν ′
(x) = 1− λ?x− µ

1− µ ν–a.s. . (2.72)

It can be shown (proof omitted as this statement is only given to explain the intuition behind
the proof) that

dν

dν ′
> 0 ν–a.s. with

dν ′ac
dν

=

(
dν

dν ′

)−1

ν–a.s. (2.73)

where ν ′ac denotes the absolute part of ν ′ with respect to ν. This is why we introduce the measure
ν ′ on [0, 1] defined by

dν ′(x) =
1

1− λ? x−µ1−µ︸ ︷︷ ︸
>0

dν(x) +

(
1− E

[
1

1− λ? X−µ1−µ

])
dδ1(x)

where δ1 denotes the Dirac point-mass distribution at 1 and where X denotes a random variable
with distribution ν. The measure ν ′ is a probability measure as by Lemma 2.9,

E

[
1

1− λ? X−µ1−µ

]
6 1 .
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Now, we show first that ν � ν ′ with the density (2.72). We do so by distinguishing two cases.
If λ? ∈ [0, 1), then by the last statement of Lemma 2.9, the probability measure ν ′ is actually
defined by

dν ′(x) =
1

1− λ? x−µ1−µ︸ ︷︷ ︸
>0

dν(x)

and the strict positivity underlined in the equality above ensures the desired result by a standard
theorem on Radon-Nikodym derivatives. In that case, ν and ν ′ are actually equivalent measures:
ν � ν ′ and ν ′ � ν. If λ? = 1, then again by Lemma 2.9, we know that ν does not put any
probability mass at 1. The strict positivity of f(x) = 1− (x− µ)/(1− µ) on [0, 1) and the fact
that ν{1} = 0 ensure the first equality below: for all Borel sets A of [0, 1],

ν(A) =

∫
1A f

1

f
dν =

∫
1A f

(
1

f
dν + rdδ1

)
=

∫
1A fdν ′

while the second equality follows from f(1) = 0 and the third equality is by definition of ν ′.
Put differently, ν � ν ′ with the density f claimed in (2.72). In that case, ν � ν ′ but ν ′ is not
necessarily absolutely continuous with respect to ν.
We conclude this proof by showing that E(ν ′) > µ. We recall that Lemma 2.9 indicates that

E

[(
X − µ
1− µ

)
1

1− λ? X−µ1−µ

]
= −H ′(λ?)

E

[
1

1− λ? X−µ1−µ

]
= 1− λ?H ′(λ?)

where X denotes a random variable with distribution ν and where both expectations are well
defined (possibly with values +∞ when λ? = 1). Therefore,

E(ν ′) =

“ν part of ν′”︷ ︸︸ ︷

E

[
X

1− λ? X−µ1−µ

]
+

“δ1 part of ν′”︷ ︸︸ ︷(
1− E

[
1

1− λ? X−µ1−µ

])

= (1− µ) E

[(
X − µ
1− µ

)
1

1− λ? X−µ1−µ

]
+ µ E

[
1

1− λ? X−µ1−µ

]
+

(
1− E

[
1

1− λ? X−µ1−µ

])

= −(1− µ)H ′(λ?) + µ
(
1− λ?H ′(λ?)

)
+ λ?H ′(λ?) = µ−

(
(1− µ) (1− λ?)H ′(λ?)

)

where the first equality is justified in the case λ? = 1 by the same arguments of monotone
convergence as in the proof of Lemma 2.9. All in all, we have E(ν ′) > µ as desired if and only if
(1 − λ?)H ′(λ?) 6 0. This is the case as we actually have (1 − λ?)H ′(λ?) = 0 in all cases, i.e.,
whether λ? = 1 or λ? ∈ [0, 1).

2.D.3. Alternative proof of > in the equality (2.50)

We use the notation of Sections 2.D.1 and 2.D.2 and prove the desired inequality (2.69), that
is, the > part of the equality (2.50), without resorting to the variational formula (2.68) for the
Kullback-Leibler divergences. Actually, we only provide a sketch of proof and omit proofs of some
facts about Radon-Nikodym derivatives.
Let ν ′′ ∈ P[0, 1] be such that E(ν ′′) > µ and ν � ν ′′; with no loss of generality, we assume

that KL(ν, ν ′′) < +∞. By definition of ν ′, the divergence KL(ν, ν ′) equals the maximum of the
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continuous function H over [0, 1] and therefore also satisfies KL(ν, ν ′) < +∞. We denote by
L1(ν) the set of ν–integrable random variables. That these divergences are finite means that

∣∣∣∣ln
dν

dν ′

∣∣∣∣ ∈ L1(ν) and
∣∣∣∣ln

dν

dν ′′

∣∣∣∣ ∈ L1(ν) .

Hence,

KL(ν, ν ′′)−KL(ν, ν ′) = −
∫ (

ln
dν

dν ′
− ln

dν

dν ′′

)
dν .

Now, by (2.72),

ln
dν

dν ′
(x) = ln

(
1− λ?x− µ

1− µ

)
ν–a.s.

and by (2.73),

− ln
dν

dν ′′
= ln

dν ′′ac
dν

(x) ν–a.s.

so that

KL(ν, ν ′′)−KL(ν, ν ′) = −

∫
ln

((
1− λ?x− µ

1− µ

)
dν ′′ac
dν

(x)

)
dν(x)

> − ln




∫ (
1− λ?x− µ

1− µ︸ ︷︷ ︸
>0

)
dν ′′ac
dν

(x) dν(x)
︸ ︷︷ ︸

dν′′ac(x)




> − ln




∫ (
1− λ?x− µ

1− µ

)
dν ′′(x)

︸ ︷︷ ︸
61 as E(ν′′)>µ




> 0

where Jensen’s inequality provided the first inequality, while the second one followed by increasing
the integral in the logarithm. Taking the infimum over distributions ν ′′ ∈ P [0, 1] with E(ν ′′) > µ
and ν � ν ′′ and KL(ν, ν ′′) < +∞, we proved

Kinf(ν, µ)−KL(ν, ν ′) > 0

which was the desired result.
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Chapter 3.

Polynomial cost of adaptation for X -armed
bandits

Abstract

In the context of stochastic continuum-armed bandits, we present an algorithm that
adapts to the unknown smoothness of the objective function. We exhibit and compute
a polynomial cost of adaptation to the Hölder regularity for regret minimization. To
do this, we first reconsider the recent lower bound of Locatelli and Carpentier [2018],
and define and characterize admissible rate functions. Our new algorithm matches
any of these minimal rate functions. We provide a finite-time analysis and a thorough
discussion about asymptotic optimality.

This work led to the publication Hadiji [2019] at the conference Neural Information
Processing Systems (Neurips 2019).
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Chapter 3. Adapting to the smoothness

3.1. Introduction

Multi-armed bandits are a well-known sequential learning problem. When the number of
available decisions is large, some assumptions on the environment have to be made. In a vast line
of work (see the literature discussion in Section 3.1.1), these assumptions show up as nonparametric
regularity conditions on the mean-payoff function. If this function is Hölder continuous with
constant L and exponent α, and if the values of L and α are given to the player, then natural
strategies can ensure that the regret is upper bounded by

L1/(2α+1)T (α+1)/(2α+1) . (3.1)

Of course, assuming that the player knows α and L is often not realistic. Thus the need for
adaptive methods, that are agnostic with respect to the true regularity of the mean-payoff function.
Unfortunately, Locatelli and Carpentier [2018] recently showed that full adaptation is impossible,
and that no algorithm can enjoy the same minimax guarantees as when the regularity is given to
the player. We persevere and address the question:

What can the player achieve when the true regularity is completely unknown?

A polynomial cost of adaptation In statistics, minimax adaptation for nonparametric function
estimation is a deep and active research domain. In many contexts, sharp adaptation is possible;
often, an additional logarithmic factor in the error has to be paid when the regularity is unknown:
this is known as the cost of adaptation. See e.g., Lepskii [1991], Birgé and Massart [1995], Massart
[2007] for adaptive methods, and Cai [2012] for a detailed survey of the topic. Under some more
exotic assumptions —see e.g., Example 3 of Cai and Low [2005] — adapting is significantly harder:
there may be a polynomial cost of adaptation.
In this chapter, we show that in the sequential setting of multi-armed bandits, the necessary

exploration forces a similar phenomenon, and we exhibit this polynomial cost of adaptation. To
do so, we revisit the lower bounds of Locatelli and Carpentier [2018], and design a new algorithm
that matches these lower bounds.

As a representative example of our results, our algorithm can achieve, without the knowledge
of α and L, an unimprovable (up to logarithmic factors) regret bound of order

L1/(1+α)T (α+2)/(2α+2) . (3.2)

3.1.1. Related work

Continuum-armed bandits Continuum-armed bandits, with nonparametric regularity assump-
tions, were introduced by Agrawal [1995a]. Kleinberg [2004] established the minimax rates in the
Hölder setting and introduced the CAB1 algorithm. Auer et al. [2007] studied the problem with
additional regularity assumptions under which the minimax rates are improved. Via different
roads, Bubeck et al. [2011b] and Kleinberg et al. [2019] explored further generalizations of these
types of regularity, namely the zooming dimension and the near-optimality dimension. Bull [2015]
exhibited an algorithm that essentially adapts to some cases when the near-optimality dimension
is zero.
In all these articles, the mean-payoff function needs to satisfy simultaneously two sets of

regularity conditions. The first type is a usual Hölder condition, which ensures that the function
does not vary too much around (one of) its maxima. The second type is a “margin condition”
that lower bounds the number of very suboptimal arms; in the literature these are defined in
many technically different ways. Adapting to the margin conditions is often possible when the
Hölder regularity is known. However, all these algorithms require some prior knowledge about
the Hölder regularity.
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In this chapter, we focus on the problem of adapting to Hölder regularity. Accordingly, we call
adaptive the algorithms that assume no knowledge of the Hölder exponent nor of the Lipschitz
constant.

Adaptation for cumulative regret Bubeck et al. [2011c] introduced the problem of adaptation,
and adapted to the Lipschitz constant under extra requirements. An important step was made
in Locatelli and Carpentier [2018], where it is shown that adaptation at the classical minimax
rates is impossible. In the same article, the authors exhibited some conditions under which
full adaptation is achievable, e.g., with knowledge of the value of the maximum, or when the
near-optimality dimension is zero.

Other settings For simple regret, the objections against adaptation do not hold, as the ob-
jective does not penalize exploration. Adaptation up to polylog factors is done with various
(meta-)algorithms. Locatelli and Carpentier [2018] sketch out an aggregation approach inspired
by Lepski’s method, while Valko et al. [2013], Grill et al. [2015], Shang et al. [2019] describe
cross-validation methods thanks to which they adapt to the near-optimality dimension with
unknown smoothness. As it turns out, this last approach yields clean results with our smoothness
assumptions; we write the details in Appendix 3.C.
There is also an important segment of the literature on nonparametric estimation that is

devoted to the estimation of the maximum of a smooth function. For this problem, the optimal
asymptotic rates of estimation have been derived to remarkable preicison Lepskii [1994].

Recently, Krishnamurthy et al. [2019] studied continuum-armed contextual bandits and used a
sophisticated aggregation scheme to derive an algorithm that adapts to the Lipschitz constant
when L > 1.

3.1.2. Contributions and outline

In this chapter, we fully compute the cost of adaptation for bandits with Hölder regularity. In
Section 3.2 we discuss the adaptive (and nonadaptive) lower bounds. We take an asymptotic
stance in order to precisely define the objective of adaptation. Doing so, we uncover a family of
noncomparable lower bounds for adaptive algorithms (Theorem 3.1), and define the corresponding
notion of optimality: admissibility.
Section 3.3 contains our main contribution: an admissible adaptive algorithm. We first recall

the CAB1 algorithm, which is nonadaptive minimax, and use it as a building block for our new
algorithm (Subsection 3.3.1). This algorithm works in a regime-based fashion. Between successive
regimes of doubling lengths, we reset the algorithm and use a new discretization with fewer arms.
In order to carry information between the different stages, we use CAB1 in a clever way: besides
partitioning the arm space, we add summaries of previous regimes by allowing the algorithm
to play according to the empirical distributions of past plays. This is formally described in
Subsection 3.3.2.

A salient difference with all previous approaches is that we zoom out by using fewer and fewer
arms. To our knowledge, this is unique, as all other algorithms for bandits zoom in in a way that
crucially depends on the regularity parameters. Another important feature of our analysis is that
we adapt both to the Hölder exponent α and to the Lipschitz constant L. On a technical level,
this is thanks to the fact that we do not explicitly choose a grid of regularity parameters, which
means that we implicitly handle all values (L,α) simultaneously.

We first give a regret bound in the known horizon case (Subsection 3.3.2), then we provide an
anytime version and we show that they match the lower bounds of adaptation (Subsection 3.3.4).
Finally Section 3.4 provides the proof of our main regret bound.
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Chapter 3. Adapting to the smoothness

3.2. Setup, preliminary discussion

3.2.1. Notation and known results

Let us reintroduce briefly the standard bandit terminology. We consider the arm space X = [0, 1].
The environment sets a reward function f : X → [0, 1]. At each time step t, the player chooses
an arm Xt ∈ X , and the environment then displays a reward Yt such that E[Yt | Xt] = f(Xt),
independently from the past. We assume that the variables Yt − f(Xt) are (1/4)-subgaussian
conditionnally on Xt; this is satisfied if the payoffs are bounded in [0, 1] by Hoeffding’s lemma.
The objective of the player is to find a strategy that minimizes her expected cumulative

(pseudo-)regret. If M(f) denotes the maximum value of f , the regret at time T is defined as

RT = TM(f)− E

[
T∑

t=1

Yt

]
= TM(f)− E

[
T∑

t=1

f(Xt)

]
. (3.3)

In this chapter, we assume that the function f satisfies a Hölder assumption around one of its
maxima:

Definition 3.1. For α > 0 and L > 0, we denote by H(L,α) the set of functions that satisfy

∃x? ∈ [0, 1] s.t. f(x?) = M(f) and ∀x ∈ [0, 1] |f(x?)− f(x)| 6 L |x? − x|α . (3.4)

Note that this assumption is a lot weaker than the standard Hölder assumption, and that
functions satisfying this condition could be vastly irregular.

We are interested in minimax rates of regret when the mean-payoff function f belongs to these
Hölder-type classes, i.e., the quantity inf

algorithms
sup

f∈H(L,α)
RT .

MOSS Throughout this chapter, we exploit discretization arguments and use a minimax optimal
algorithm for finite-armed bandits: MOSS, from Audibert and Bubeck [2009]. When run for T
rounds on a K-armed bandit problem with (1/4)-subgaussian noise, and when T > K, its regret
is upper-bounded by 18

√
KT (the improved constant is from Garivier et al. [2018]).

Non-adaptive minimax rates When the regularity is given to the player, for any α,L and T :

0.001L1/(2α+1)T (α+1)/(2α+1) 6 inf
algorithms

sup
f∈H(L,α)

RT 6 28L1/(2α+1)T (α+1)/(2α+1) . (3.5)

This is well-known since Kleinberg [2004]. For completeness, we recall how to derive the upper
bound in Section 3.3.1, and the lower bound in Section 3.2.2.

3.2.2. Lower bounds: adaptation at usual rates is not possible

Locatelli and Carpentier [2018] prove a version of the following theorem; see our reshuffled and
slightly improved proof in Appendix 3.D.

Theorem (Variation on Th.3 from Locatelli and Carpentier [2018]). Let B > 0 be a positive number.
Let α, γ > 0 and L, ` > 0 be regularity parameters that satify α 6 γ and L > `.

Assume moreover that 2−3 12αB−1 6 L 6 `1+α Tα/2 2(1+α)(8−2γ). If an algorithm is such that
supf∈H(`,γ)RT 6 B , then the regret of this algorithm is lower bounded on H(L,α):

sup
f∈H(L,α)

RT > 2−10 TL1/(α+1)B−α/(α+1) . (3.6)
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Remark (Bibliographical note). Locatelli and Carpentier [2018] consider a more general setting
where additional margin conditions are exploited. In our setting, we slightly improve their result
by dealing with the dependence on the Lipschitz constant, and by removing a requirement on B.

In a different context, Krishnamurthy et al. [2019] show a variation of this bound where the
Lipschitz constant is considered, but only in the case where α = γ = 1, for ` = 1 and L > 1.

As explained in Locatelli and Carpentier [2018] this forbids adaptation at the usual minimax
rates over two regularity classes; we recall how in the paragraph that follows Theorem 3.1.
However this is not the end of the story, as one naturally wonders what is the best the player can
do.
To further investigate this question, we discuss it asymptotically by considering the rates at

which the minimax regret goes to infinity, therefore focusing on the dependence on T . Our main
results are completely nonasymptotic, yet we feel the asymptotic analysis of optimality is clearer.

Definition 3.2. Let θ : [0, 1] → [0, 1] denote a nonincreasing function. We say an algorithm
achieves adaptive rates θ if

∀ ε > 0 , ∀α, L > 0 , lim sup
T→∞

supf∈H(L,α)RT

T θ(α)+ε
< +∞ .

We include the ε in the definition in order to neglect the potential logarithmic factors.
As rate functions are not always comparable for pointwise order, the good notion of optimality

is the standard statistical notion of admissibility (akin to “Pareto optimality” for game-theorists).

Definition 3.3. A rate function is said to be admissible if it is achieved by some algorithm, and if
no other algorithm achieves stricly smaller rates for pointwise order. An algorithm is admissible
if it achieves an admissible rate function.

We recall that a function θ′ is stricly smaller than θ for pointwise order if θ′(α) 6 θ(α) for all
α and θ′(α0) < θ(α0) for at least one value of α0.
It turns out we can fully characterize the admissible rate functions by inspecting the lower

bounds (3.6).

Theorem 3.1. The admissible rate functions are exactly the family

θm : α 7→ max

(
m, 1−m α

α+ 1

)
, m ∈ [1/2, 1] . (3.7)

This theorem contains two assertions. The lower bound side states that no smaller rate function
may be achieved by any algorithm. This side is derived from an asymptotic rewording of lower
bound (3.6), see Proposition 3.1 stated below. The proof is done through a careful inspection of
the functional inequation defining the lower bound. The second statement is that the θm’s are
indeed achieved by an algorithm, which is the subject of Section 3.3.2.

Proof. First of all, by Corollary 3.2, the appropriately tuned MeDZO may achieve all the θ′ms.
Thus we are left to prove the lower bound side, i.e., that all the admissible rate functions belong
to the family θm.

The best way to see this is to first notice that for θ nonincreasing and positive, the inequation
in Proposition 3.1 is equivalent to

∀α > 0 , θ(α) > 1− θ(∞)
α

α+ 1
. (3.8)
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Notice that taking γ = +∞ is always valid in what follows, as θ is assumed to be nonincreasing
and lower bounded by 1/2. Now if θ satisfies (3.9), then it satisfies (3.8) by taking γ = +∞. For
the converse, consider α 6 γ, then θ(γ) > θ(∞), thus 1− θ(∞)α/(α+ 1) > 1− θ(γ)α/(α+ 1).

Now consider an admissible θ. Since θ is achieved by some algorithm, by Proposition 3.1 and the
remark above, it satisfies Eq. (3.8). As θ is nonincreasing, and by Eq. (3.8), we have θ(α) > θ(∞)
and θ(α) > 1− θ(∞)α/(α+ 1). In other words, θ > θmθ , where mθ = θ(∞) ∈ [1/2, 1]. By the
admissibility of θ, this implies that θ = θmθ .

Figure 3.1 illustrates how these admissible rates compare to each other, and to the usual
minimax rates.

Figure 3.1.: The lower bounds on adaptive rates: plots of the admissible rate functions α 7→ θm(α).
If an algorithm has regret of order O

(
T θ(α)

)
, then θ is everywhere above one of these

curves.

In particular, we see that reaching the nonadaptive minimax rates for multiple values of α
is impossible. Moreover, at m = (γ + 1)/(2γ + 1), we have θm(γ) = (γ + 1)/(2γ + 1), which is
the usual minimax rate (3.1) when γ is known. This yields an alternative parameterization of
the family θm: one may choose to parameterize the functions either by their value at infinity
m ∈ [1/2, 1], or by the only point γ ∈ [0,+∞] at which they coincide with the usual minimax
rates function (3.1).

Proposition 3.1. Assume an algorithm achieves adaptive rates θ : [0,+∞) → [0, 1]. Then θ
satisfies the functional inequation

∀ γ > 0 , ∀α 6 γ , θ(α) > 1− θ(γ)
α

α+ 1
. (3.9)

Proof. Choose α, γ such that α 6 γ, and ε > 0. Set L > 0. There exist constants c1 and c2

(depending on L,α, γ and ε) such that for T large enough,

sup
f∈H(L,α)

RT 6 c1T
θ(α)+ε and sup

f∈H(L,γ)
RT 6 c2T

θ(γ)+ε .

Moreover, for T large enough, the assumptions for lower bound (3.6) hold. Hence applying the
lower bound with B = c2T

θ(γ)+ε, for some constant c3:

c1T
θ(α)+ε > 0.0001T

(
c2T

θ(γ)+ε
)−α/(α+1)

> c3 T
1−θ(γ)α/(α+1)−εα/(α+1)
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Since the above inequality holds for any T sufficiently large, this implies that for all ε > 0

θ(α) + ε > 1− θ(γ)
α

α+ 1
− ε α

α+ 1
,

which yields the desired result as ε→ 0.

3.2.3. Yet can we adapt in some way?

We have described in (3.7) the minimal rate functions that are compatible with the lower
bounds of adaptation: no algorithm can enjoy uniformly better rates. Of course, at this point,
the next natural question is whether any of these adaptive rate functions may indeed be reached
by an algorithm.
All previous algorithms for continuum-armed bandits require the regularity as an input in

some way (see the literature discussion in Section 3.1.1). Such algorithms are flawed: if the true
regularity is underestimated then we only recover the guarantees that correspond to the smaller
regularity, which is often far worse than the lower bounds of Theorem 3.1. More dramatically, if
the true regularity is overestimated, then, a priori, no guarantees hold at all.
We prove that all these rate functions may be achieved by a new algorithm. More precisely,

if the player wishes to reach one of the lower bounds θm, she may select a value of the input
accordingly and match the chosen θm. This is our main contribution and is described in the next
section.

3.3. An admissible adaptive algorithm and its analysis

We discuss in Section 3.3.1 how the well-known CAB1 algorithm can be generalized for our
purpose. In Section 3.3.2 we describe our algorithm and the main upper bound on its regret.
Section 3.3.4 is devoted to the anytime version of the algorithm and to a discussion on optimality.

3.3.1. An abstract version of CAB1 as a building block towards adaptation

We describe a generalization of the CAB1 algorithm from Kleinberg [2004], where we include
arbitrary measures in the discretization. Although this extension is straightforward, we detail it
as we will use this algorithm repeatedly further in this chapter. In the original CAB1, the space
of arms is discretized into a partition of K subsets, and an algorithm for finite-armed bandits
plays on the K midpoints of the sets. Auer et al. [2007] replace the midpoints by a random point
uniformly chosen in the subset.
We introduce a generic version of this algorithm we call AbCAB, for Abstract Continuum-

Armed Bandits). We consider K arbitrary probability distributions over X , which we denote
by (πi)16i6K . Denote also by π(f) the expectation of f(X) when X ∼ π. At each time step,
the decision maker chooses one distribution, πIt , and plays an arm picked according to that
distribution. By the tower rule, she receives a reward such that

E[Yt | It] = E[f(Xt) | It] = πIt(f) .

As the player uses a finite-arm algorithm A to select It, the regret she suffers can be decomposed
as the sum of two terms (denoting by R̃T the expected regret of the finite-armed algorithm):

RT = T
(
M(f)− max

i=1,...,K
πi(f)

)
+ R̃T

((
πi(f)

)
16i6K ;A

)
. (3.10)

This identity is central to the construction of our algorithm. Using terminology from Auer et al.
[2007], the first term measures an approximation error of the maximum of f , and the other the
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actual cost of learning in the approximate problem. Parameters are chosen to balance these two
sources of error.

Algorithm 3.1 AbCAB (Abstract Continuum-Armed Bandit, adapted from Kleinberg [2004])
1: Input: T the time horizon, K probability measures over X denoted by π1, . . . , πK , discrete
K-armed bandit algorithm A

2: for t = 1, 2, . . . , T do
3: Define It the arm in {1, . . . ,K} recommended by A
4: Play Xt ∈ X drawn according to πIt , and receive Yt such that E[Yt|Xt] = f(Xt)
5: Give Yt as input to A corresponding to It
6: end for

The canonical example is that for which the space of arms is cut into a partition. Denote by
Disc(K) the family of the uniform measures over the intervals [(i− 1)/K, i/K] for 1 6 i 6 K.
We state and prove (for completeness) this result to recall the non-adaptive minimax bound (3.1).

Proposition 3.2. Let α > 0 and L > 1/
√
T be regularity parameters, and define the number

of discrete arms K? = min
( ⌈
L2/(2α+1)T 1/(2α+1)

⌉
, T
)
. Algorithm AbCAB run with the uniform

discretization Disc(K?) and A =MOSS enjoys the bound

sup
f∈H(L,α)

RT 6 28L1/(2α+1) T (α+1)/(2α+1) . (3.11)

Proof. Choose f ∈ H(L,α). Let us denote by i? an integer such that there exists an optimal arm
x? in the interval

[
(i? − 1)/K?, i?/K?

]
. By the Hölder assumption

1

K?

∫ i?/K?

(i?−1)/K?

(
f(x?)− f(x)

)
dx 6 L

(
1

K?

)α
,

and this upper bounds the approximation error of the discretization. Moreover, since T > K?,
the cost of learning is smaller than 18

√
K?T . Thus by (3.10)

RT 6 TL

(
1

K?

)α
+ 18
√
K?T .

K? was chosen to minimize this quantity. We distinguish cases depending on the value of K?.
If 1 < K? < T , then L2/(2α+1)T 1/(2α+1) 6 K? 6 2L2/(2α+1)T 1/(2α+1) (the bound dxe 6 2x,

which is valid when x > 1, is more practical to handle the multiplicative constants), we deduce
the upper bound: (

1 + 18
√

2
)
L1/(2α+1)T (α+1)/(2α+1) .

Since we assumed that L > 1/
√
T , we have always K? > 1. Therefore the last case to

consider is if K? = T . Then L2/(2α+1)T 1/(2α+1) > T/2 and thus L > 2−(2α+1)/2 Tα . In this case
L1/(2α+1)T (α+1)/(2α+1) > (

√
2/2)T and the claimed bound is met since in that case, we have by

a trivial bound RT 6 T 6
√

2L1/(2α+1)T (α+1)/(2α+1).

3.3.2. Memorize past plays, Discretize the arm space, and Zoom Out: the
MeDZO algorithm

To achieve adaptation, we combine two tricks: going from fine to coarser discretizations while
keeping a summary of past plays in memory.

Our algorithm works in successive regimes. At each time regime i, we reset the algorithm and
start over a new regime of length double the previous one (∆Ti = 2p+i), and with fewer discrete
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arms (Ki = 2p+2−i). While doing this, we keep in memory the previous plays: in addition to the
uniform distributions over the subsets of partitions, we include the empirical measures ν̂j of the
actions played in the past regimes, for j < i.

Algorithm 3.2 MeDZO (Memorize, Discretize, Zoom Out)
1: Input: parameter B, time horizon T
2: Set: p = dln2Be, Ki = 2p+2−i and ∆Ti = 2p+i

3: for i = 1, . . . , p do
4: For ∆Ti rounds, run algorithm AbCAB with the uniform discretization in Ki pieces and the

empirical measures of the previous plays ν̂j for j < i; use MOSS as the discrete algorithm.a

5: Set: ν̂i the empirical measure of the plays during regime i.
6: end for

aNo ν̂ is used for i = 0

Our construction is based on the following remark. Consider the approximation error suffered
during regime i. Denoting the by Πi the set of measures given to the player during regime i, that
is, the uniform measures over the regular Ki-partition and the empirical measures of arms played
during the regimes j < i, the approximation error is bounded as follows:

∆Ti

(
M(f)− E

[
max
π∈Πi

π(f)
])

6 ∆Ti
(
M(f)− E[ν̂j(f)]

)
=

∆Ti
∆Tj

∑

t∈Regime j

(
M(f)− E[f(Xt)]

)
(3.12)

and this bound is proportional to the regret suffered during regime j. This means that even
though we zoom out by using fewer arms, we can make sure that the average approximation
error in regime i is less than the regret previously suffered. Moreover, the first discretizations are
fine enough to ensure a small regret in the first regimes, thanks to the Hölder property. This
argument is formalized in the proof (Lemma 3.1), and shows that MeDZO maintains a balance
between approximation and cost of learning that yields optimal regret.
A surprising fact here is that we go from finer to coarser discretizations during the different

phases. Thus, paradoxically, the algorithm zooms out as time passes. Note also that although
this regime-based approach is reminiscent of the doubling trick, there is an essential difference in
that information is carried between the regimes via the distribution of the previous plays.
We first state our central result, a generic bound that holds for any input parameter B. We

discuss the optimality of these adaptive bounds in the next subsection.

Theorem 3.2. Algorithm 3.2 run with the knowledge of T and input B >
√
T enjoys the following

guarantee: for all α > 0 and L > 0,

sup
f∈H(L,α)

RT 6 412 (ln2B)3/2 max
(
B, TL1/(α+1)B−α/(α+1)

)
. (3.13)

We provide some illustrative numerical experiments in Appendix 3.B, comparing the results of
MeDZO with other non-adaptive algorithms.

3.3.3. Illustration

We provide a figure to illustrate the behavior of MeDZO in a schematic example, when B =
√
T .

MeDZO starts by playing on a fine discretization with a size of order
√
T , but for a short length

of time, of order
√
T . At the end of the first epoch, it memorizes the empirical distribution of the

arms played; then it runs a new instance of AbCAB with both the coarser discretization, and the
memorized action. This process is repeated until the time horizon is reached.
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The payoffs of the memorized actions increase until the size of the discretization reaches a
critical value; after that they fluctuate. Therefore MeDZO manages to maintain a regret of order
the approximation error at this critical discretization, multiplied by T .

Distribution of plays
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Figure 3.2.: Behavior of MeDZO on a schematic drawing with input B =
√
T . The expected pay-

offs of the memorized actions are displayed in red; those from the usual discretization
are in blue.

3.3.4. Discussion: anytime version and admissibility

Anytime version via the doubling trick The dependence of Algorithm 3.2 on the parameter
B makes it horizon-dependent. We use the doubling trick to build an anytime version of the
algorithm. At each new doubling-trick regime, we input a value of B that depends on the length
of the k-th regime. If it is of length T (k), one typically thinks of Bk = (T (k))m for some exponent
m. In that case, we get the following bound —see the proof and description of the algorithm in
Appendix 3.A.

Corollary 3.1 (Doubling trick version). Choose m ∈ [1/2, 1]. The doubling-trick version of MeDZO,
run with m as sole input (and without the knowledge of T) ensures that for all regularity parameters
α > 0 and L > 0 and for T > 1

sup
f∈H(L,α)

RT 6 4000(ln2 T
m)3/2 max

(
Tm, TL1/(α+1)(Tm)−α/(α+1)

)
= O

(
(lnT )3/2 T θm(α)

)
.
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3.4. Proof of Theorem 3.2

Admissibility of Algorithm 3.2 The next result is a direct consequence of Corollary 3.1. This
echoes the discussion following Theorem 3.1, and shows that for any input parameter m, the
anytime version of MeDZO cannot be improved uniformly for all α.

Corollary 3.2. For any m ∈ [1/2, 1], the doubling trick version of MeDZO (see App. 3.A) with
input m achieves rate function θm, and is therefore admissible.

3.3.5. About the remaining parameter: the B =
√
T case

Tuning the value of B amounts to selecting one of the minimal curves in Figure 3.1. Therefore
this parameter is a feature of the algorithm, as it allows the player to choose between the possible
optimal behaviors. The tuning of this parameter is an unavoidable choice for the player to make.
The next example illustrates well the performance of MeDZO, as it is easily comparable to

the usual minimax bounds. Looking at Figure 3.1, this choice corresponds to m = 1/2, i.e., the
only choice of parameter that reaches the usual minimax rates as α → ∞. In other words, if
the players wishes to ensure that her regret on very regular functions is of order

√
T , then she

has to pay a polynomial cost of adaptation for not knowing α and that price is exactly the ratio
between (3.1) and (3.2).

Corollary 3.3. Set a horizon T and run Algorithm 3.2 with B =
√
T . Then for α > 0 and

L > 1/
√
T ,

sup
f∈H(L,α)

RT 6 146 (ln2 T )3/2 L1/(α+1) T (α+2)/(2α+2) . (3.14)

This is straightforward from Theorem 3.2, since the inequality B =
√
T 6 TL1/(α+1)

√
T
−α/(α+1)

holds whenever L > 1/
√
T . An anytime version of this result can be obtained from Corollary 3.1.

3.4. Proof of Theorem 3.2

Full proof of Theorem 3.2. Let Ft = σ(I1, X1, Y1, . . . , It, Xt, Yt) be the σ-algebra corresponding to
the information available at the end of round t. Define also the transition times Ti =

∑i
j=1 ∆Tj

with the convention T0 = 0. Let us first verify that T is smaller than the total length of the regimes.
By definition of p, we have B 6 2p < 2B. Thus Tp = 2p+1(2p − 1) > 2B(B − 1) > B2 > T , and
the algorithm is indeed well-defined up to time T .

Consider the regret suffered during the i-th regime RTi−1,Ti := ∆TiM(f)−∑Ti
t=Ti−1+1 E

[
f(Xt)

]
.

We bound this quantity thanks to the decomposition (3.10), by first conditioning on the past up
to time Ti−1. Since there are Ki + i discrete actions, the regret bound on MOSS ensures that

E




Ti∑

t=Ti−1+1

(
M(f)− f(Xt)

) ∣∣∣∣ FTi−1


 6 ∆Ti

(
M(f)−M?

i

)
+ 18

√
(Ki + i)∆Ti (3.15)

where M?
i = max{π(i)

j (f) | π(i)
j ∈ Disc(Ki)} ∪

{
ν̂`(f) | ` = 0, . . . , i− 1

}
. Notice that this bound

holds even thoughM?
i is a random variable, as the algorithm is completely reset, and the measures

(ν̂j)j<i are fixed at time Ti−1 + 1 (i.e., they are FTi−1-measurable). Integrating once more, we
obtain

RTi−1,Ti 6 ∆Ti
(
M(f)− E[M?

i ]
)

+ 18
√

(Ki + i)∆Ti . (3.16)

Bounding the cost of learning. By definition of Ki and ∆Ti, we have Ki∆Ti = 22p+2 6 16B2 .
Therefore, since p and Ki are integers greater than 1, using a+ b− 1 6 ab for positive integers,

√
(Ki + i)∆Ti 6

√
(Ki + p− 1)∆Ti 6

√
pKi∆Ti 6 4

√
pB . (3.17)
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Chapter 3. Adapting to the smoothness

Bounding the approximation error. The key ingredient for this part is the following fact, that
synthetizes the benefits of our construction as hinted in (3.12) and the surrounding discussion.

Lemma 3.1. The total approximation error of MeDZO in regime i is controlled by the Hölder
bound on the grid of mesh size 1/Ki, and by the regret suffered during the previous regimes,

∆Ti
(
M(f)− E[M?

i ]
)
6 ∆Ti min

(
L

1

Kα
i

,min
j<i

(
RTj−1,Tj

∆Tj

))
(3.18)

Proof. This derives easily from the construction of the algorithm, i.e., from the definition of M?
i .

Considering an interval in the regular Ki-partition that contains a maximum of f , by the Hölder
property, M(f)−M?

i 6 L/Kα
i . For the second minimum, as described in Eq. (3.12), for j < i,

M(f)−M?
i 6M(f)− ν̂j(f) =

1

∆Tj

Tj∑

t=Tj−1+1

(
M(f)− f(Xt)

)
.

Taking an expectation, RTj−1,Tj appears, and we conclude by taking the minimum over j.

Remember that since Ki∆Ti = 22p+2, we have L∆Ti/K
α
i = L22p+2/K1+α

i . Therefore, the first
bound on the approximation error in (3.18) increases with i, as Ki decreases with i. Denote by
i0 the last time regime i for which

L
∆Ti0
Kα
i0

6 B . (3.19)

If this is never satisfied, i.e., not even for i = 1, then L2p+1/2α(p+1) > B which yields, using
B 6 2p 6 2B, that 4LB > 2α+1BαB and then L > Bα/2. In that case, L1/(α+1)B−α/(α+1) > 1
and the total regret bound (3.13) is true as it is weaker than the trivial bound RT 6 T .
Hence we may assume that i0 > 1 is well defined. By comparing i to i0, we now show the

inequality

p∑

i=1

∆Ti
(
M(f)− E[M?

i ]
)
6

i0∑

i=1

B +

p∑

i=i0+1

2(1 + 72
√
p)∆Ti L

1/(α+1)B−α/(α+1) . (3.20)

For all i 6 i0 the approximation error is smaller than the first argument of the minimum
in (3.18), and this term is smaller than B. Therefore ∆Ti

(
M(f)− E[M?

i ]
)
6 B . In particular,

this together with (3.16) and (3.17) implies that the total regret suffered during regime i0 is
RTi0−1,Ti0

6 (1 + 72
√
p)B.

For the later time regimes i0 < i 6 p, we use the fact that preceding empirical measures were
kept as discrete actions, and in particular the one of the i0-th regime: (3.18) instantiated with
j = i0 yields

∆Ti
(
M(f)− E[M?

i ]
)
6 ∆Ti

RTi0−1,Ti0

∆Ti0
6
(
1 + 72

√
p
)
∆Ti

B

∆Ti0
. (3.21)

Solving equations L∆Ti0/K
α
i0
≈ B ≈ 4

√
∆Ti0Ki0 , we get B/∆Ti0 6 2L1/(α+1)B−α/(α+1) ,

(details are given after the proof). Therefore for i0 < i 6 p, using (3.21),

∆Ti
(
M(f)− E[M?

i ]
)
6 2(1 + 72

√
p) ∆Ti L

1/(α+1)B−α/(α+1) ,

and we obtain (3.20) by summing over i.
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3.5. Further considerations

Conclusion We conclude with some crude boundings. First, as i0 6 p and the sum of the ∆Ti’s is
smaller than T , the total approximation error is less than pB+2(1+72

√
p)TL1/(α+1)B−α/(α+1). Let

us include the cost of learning, which is smaller than 72p
√
pB and conclude, using a+b 6 max(a, b)

RT 6 2(1 + 72
√
p)TL1/(α+1)B−α/(α+1) + pB + 72p3/2B

= 2(1 + 72
√
p)TL1/(α+1)B−α/(α+1) + p(1 + 72

√
p)B

6
(

2(1 + 72
√
p) + p

(
1 + 72

√
p
))

max
(
B, TL1/(α+1)B−α/(α+1)

)
(3.22)

from which the desired bound follows, using 1 6 p, and p 6 2 ln2B and 4(1 + 72
√

2) 6 412.

Details on (3.20), in the proof of Theorem 3.2. By definition of i0, and since we assumed that
i0 < p

B 6 L
∆Ti0+1

Kα
i0+1

,

i.e., using Ki0 ∆Ti0 = 22p+2,

B 6 21+αL
∆Ti0
Kα
i0

= 21+αL (∆Ti0)1+α 2−(2p+2)α .

From this we deduce, using 2p > B for the second inequality,

(
∆Ti0

)(1+α)
> 2−1−αBL−12(2p+2)α > 2−1+αL−1B2α+1 .

Hence, using 2(α−1)/(α+1) > 1/2, we obtain ∆Ti0 > (1/2)L−1/(α+1)B(2α+1)/(α+1), thus B/∆Ti0 6
2L1/(α+1)B−α/(α+1) .

3.5. Further considerations

Local regularity assumption Theorem 3.2 holds under a relaxed smoothness assumption, namely
that the function satisfies the Hölder condition only in a small cell containing the maximum.
By looking carefully at the proof, we observe that the condition is only required up to the
i0-th epoch (defined in (3.19)), at which the size of the cells in the discretization is of order
1/Ki0 ≈ (LB)−1/(1+α). Therefore we only need condition (3.4) to be satisfied for points x in an
interval of size (LB)−1/(1+α) around the maximum.

Higher dimension Our results can be generalized to functions [0, 1]d → [0, 1] that are ‖·‖∞-
Hölder. For MeDZO to be well-defined, take Ki = 2d(p+2−i) and ∆Ti = 2d(p+i), with p ≈ (lnB)/d.
The bounds are similar to their one-dimensional counterparts, up to replacing α by α/d in the
exponents, but the constants are deteriorated by a factor that is exponential in d. The bound in
Theorem 3.2 changes to max

(
B,Ld/(α+d)TB−α/(α+d)).
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Appendix for Chapter 3

3.A. Anytime-MeDZO and its analysis

The doubling trick is the most standard way of converting non-anytime algorithms into anytime
algorithms, when the regret bound is polynomial. It consists in taking fresh starts of the algorithm
over a grid of dyadic times. The implementation of the trick is straightforward in our case.

Algorithm 3.3 Doubling trick MeDZO
1: Input: parameter m ∈ [1/2, 1];
2: for i = 0, . . . do
3: Run MeDZO (Alg. 3.2) with input B = 2im for 2i rounds
4: end for

Corollary (Doubling trick version). Choose m ∈ [1/2, 1]. The doubling-trick version of MeDZO, run
with m as sole input (and without the knowledge of T) ensures that for all regularity parameters
α > 0 and L > 0 and for T > 1

sup
f∈H(L,α)

RT 6 4000(ln2 T
m)3/2 max

(
Tm, TL1/(α+1)(Tm)−α/(α+1)

)
=O

(
(lnT )3/2 T θm(α)

)
.

As the regret bound is not exactly of the form cT θ, we work with the polynomial version of the
bound on the regret of MeDZO, equation (3.22), for the doubling trick to be effective. Obviously
the value of the constant in the bound is not our main focus, but we still write it explicitly as it
shows that there is no hidden dependence on the various parameters.

Proof. By (3.22), with pi =
⌈
ln2 2im

⌉
6 1 + ln2 2im, in the i-th doubling trick regime, the

cumulative regret is bounded by

2(1 + 72
√

1 + ln2 2im)2iL1/(α+1)(2im)−α/(α+1) + (1 + ln2 2im)
(
1 + 72

√
1 + ln2 2im

)
2im

Now since
dln2 T e∑

i=0

2i = 2dln2 T e+1 − 1 > 2T − 1 > T ,

there are always less than dln2 T e full regimes. Therefore, using ln2 2im 6 ln2 T
m, and summing

over the regimes, the first part of this sum is bounded by

2(1 + 72
√

2 ln2 Tm)L1/(α+1)

dln2 T e∑

i=0

2i(1−mα/(α+1))

6 2(1 + 72
√

2 ln2 Tm)L1/(α+1) 2(dln2 T e+1)(1−mα/(α+1))

21−mα/(α+1) − 1

6 2(1 + 72
√

2)
√

ln2 TmL
1/(α+1) 22(1−mα/(α+1))

√
2− 1

T (Tm)−α/(α+1)

6 2(1 + 72
√

2)
√

ln2 TmL
1/(α+1) 4√

2− 1
T (Tm)−α/(α+1)

where we used 2dln2 T e 6 2T ; we also used the fact that since m > 1/2, we always have the
inequality 1−mα/(α+1) > 1/2 to bound the denominator. Similarly, the second part is bounded

100



3.B. Numerical experiments

by

2(1 + 72
√

2)(ln2 T
m)3/2

dln2 T e∑

i=0

2im 6 2(1 + 72
√

2)(ln2 T
m)3/2 4√

2− 1
Tm .

All in all, we obtain the same minimax guarantees as if we had known the time horizon in advance,
but with an extra multiplicative factor of 4/(

√
2− 1) ≈ 9, 66.

3.B. Numerical experiments

This section contains some numerical experiments comparing the regrets of algorithms that
require the knowledge of the smoothness, against MeDZO.
We examine bandit problems defined by their mean-payoff functions and gaussian N (0; 1/4)

noise. The functions considered are f : x 7→ (1/2) sin(13x) sin(27x) + 0.5 taken from Bubeck
et al. [2011b], g : x 7→ max

(
3.6x(1−x), 1−1/0.05 |x− 0.05|

)
adapted from Coquelin and Munos

[2007] and the Garland function x 7→ x(1− x)(4−
√
|sin(60x)|, which we took from Valko et al.

[2013]. The functions are plotted in Figure 3.3.
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(c) The Garland function

Figure 3.3.: Problems considered

The algorithms we compare are SR from Locatelli and Carpentier [2018], and CAB1 from
Kleinberg [2004] with MOSS as the discrete algorithm. SR takes directly the smoothness α as an
input, and assumes L = 1. For CAB1, we compute the optimal discretization size for L = 1 and
varying α.
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Figure 3.4.: Regrets of MeDZO, and of SR and CAB1 run with different values of the smoothness
parameter.

In Figure 3.4 we plot the cumulative regret of the algorithms after a time horizon T = 300000,
for varying values of the assumed smoothness. For each problem, MeDZO was run only once, as
it does not need to know the smoothness. The regret was averaged over N = 75 runs, and the
dotted curves represent +/- one standard deviation.
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We recall that minimax guarantees are worst-case guarantees, therefore comparing algorithms
on a single problem can only serve as an empirical illustration.

As expected, the regrets of both SR and CAB1 depend on some careful tuning of the input
parameter, determined by the smoothness. The optimal tuning is unclear, and seems to vary on
the algorithm. MeDZO, on the other hand, obtains reasonable regret with no tuning. Surprisingly,
CAB1 with overestimated smoothness seems to behave quite well, although the large variance
sometimes makes it difficult to distinguish the results. Recall that MeDZO is the only algorithm
with theoretical guarantees for high values of α.

3.C. About simple regret

In this section, we consider the case of simple regret, which complements the discussion about
adaptation to smoothness in sequential optimization procedures. We write out how to achieve
adaptation at usual rates for simple regret under Hölder smoothness assumptions. We do not
claim novelty here, as adaptive strategies have already been used for simple regret under more
sophisticated regularity conditions (see, e.g., Grill et al. [2015], Shang et al. [2019] and a sketched
out procedure in Locatelli and Carpentier [2018]); however, we feel the details deserve to be
written out in this simpler setting.

Let us recall the definition of simple regret. In some cases, we may only require that the
algorithm outputs a recommendation X̃T at the end of the T rounds, with the aim of minimizing
the simple regret, defined as

rT = M(f)− E
[
f
(
X̃T

) ]
.

This setting is known under various names, e.g., pure exploration, global optimization or black-box
optimization. As noted in Bubeck et al. [2011a], minimizing the simple regret is easier than
minimizing the cumulative regret in the sense that if the decision-maker chooses a recommendation
uniformly among the arms played X1, . . . , XT , then

rT = M(f)− 1

T

T∑

t=1

E
[
f
(
Xt

)]
=
RT
T

. (3.23)

The minimax rates of simple regret over Hölder classes H(L,α) are lower bounded by
Ω(L1/(2α+1)T−α/(2α+1)), which are exactly the rates for cumulative regret divided by T (see
Locatelli and Carpentier [2018] for a proof of the lower bound). Consequently, at known reg-
ularity, any minimax optimal algorithm for cumulative regret automatically yields a minimax
recommendation for simple regret via (3.23).

When the smoothness is unknown, the situation turns out to be quite different. Adapting to
the Hölder parameters can be done at only a (poly-)logarithmic cost for simple regret, contrasting
with the polynomial cost of adaptation of cumulative regret. This can be achieved thanks to a
very general and simple cross-validation scheme defined in Shang et al. [2019], named General
Parallel Optimization.
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Algorithm 3.4 GPO (General Parallel Optimization) for Hölder minimax adaptation
1: Input: time horizon T > 8
2: Set: p = dln2 T e and define Ki = 2i for i = 1, . . . , p
3: for i = 1, . . . , p do // Exploration
4: For bT/(2p)c rounds, run algorithm AbCAB with the discretization in Ki pieces; use MOSS

as the discrete algorithm
5: Define output recommendation X̃(i), uniformly chosen among the bT/(2p)c arms played
6: end for
7: for i = 1, . . . , p do // Cross-validation
8: Play bT/(2p)c times each recommendation X̃(i) and compute the average reward µ̂(i)

9: end for
10: return A recommendation X̃T = X̃ (̂ı) with ı̂ ∈ argmax µ̂(i)

The next result shows that the player obtains the same simple regret bounds as when the
smoothness is known (up to logarithmic factors).

Theorem 3.3. GPO with AbCAB as a sub-algorithm (Alg. 3.4) achieves, given T > 8 and without
the knowledge of α and L, for all α > 0 and L > 2α+1/2

√
dln2 T e /T the bound

sup
f∈H(L,α)

rT 6
(
54 +

√
π

2
ln2 T

)
L1/(2α+1)

(dln2 T e
T

)α/(2α+1)

= Õ
(
L1/(2α+1)T−α/(2α+1)

)
.

The Õ notation hides the lnT factors, and the assumption that T > 8 is needed to ensure that
T/(2p) = T/(2 dln2 T e) > 1: otherwise the algorithm itself is ill-defined.

Proof. Let f ∈ H(L,α) denote a mean-payoff function. Once again we decompose the error of the
algorithm into two sources. The simple regret is the sum of the regret of the best recommendation
among the p received, rmin, and of a cross-validation error, rCV,

M(f)− E[f(X̃T )] = min
i=1,...,p

(
M(f)− E

[
f
(
X̃(i)

)])

︸ ︷︷ ︸
rmin

+ max
i=1,...,p

(
E
[
f
(
X̃(i)

)]
− E

[
f
(
X̃T

)])

︸ ︷︷ ︸
rCV

.

(3.24)
We now show that rCV 6 p3/2

√
π/(4T ) , by detailing an argument that is sketched in the proof of

Thm. 3 in Shang et al. [2019]. Denote by µ̂(i) the empirical reward associated to recommendation
i, and ı̂ = argmax µ̂(i), so that X̃T = X̃ (̂ı). Then for any fixed i, by the tower rule,

E
[
µ̂(i)
]

= E
[
E
[
µ̂(i)

∣∣∣ X̃(i)
]]

= E
[
f
(
X̃(i)

)]
. (3.25)

Therefore, by the above remarks, and since µ̂(i) 6 µ̂(̂ı),

E
[
f
(
X̃(i)

)]
− E

[
f
(
X̃T

)]
= E

[
µ̂(i) − f

(
X̃ (̂ı)

)]
6 E

[
µ̂(̂ı) − f

(
X̃ (̂ı)

)]
.

We have to be careful here, as ı̂ is a random index that depends on the random variables µ̂(i)’s:
we cannot apply directly the tower rule as in (3.25). To deal with this, let us use an integrated
union bound. Denote by ( · )+ the positive part function, then

E
[
µ̂(̂ı) − f

(
X̃ (̂ı)

)]
6 E

[(
µ̂(̂ı) − f

(
X̃ (̂ı)

))+
]
6

p∑

j=1

E
[(
µ̂(j) − f

(
X̃(j)

))+
]
,
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and we are back to handling empirical means of i.i.d. random variables. For each j, the reward
given X̃(j) is (1/4)-subgaussian. Therefore, as µ̂(i) is the empirical mean of n = bT/(2p)c plays
of the same arm X̃(j), this mean µ̂(i) is (1/(4n))-subgaussian conditionally on X̃(j) and thus for
all ε > 0

P
[
µ̂(j) − f

(
X̃(j)

)
> ε
]
6 e−2nε2 .

Hence by integrating over ε ∈ [0,+∞), using Fubini’s theorem, a change of variable x =
√

4nε
(and using the fact that bT/(2p)c > T/(4p) as T/(2p) > 1):

E
[(
µ̂(j) − f

(
X̃(j)

))+
]

=

∫ +∞

0
P
[
µ̂(j) − f

(
X̃(j)

)
> ε
]
dε

6
∫ +∞

0
e−2nε2 dε =

1√
4n

∫ +∞

0
e−x

2/2 dx

=

√
π

8n
=

√
π

8 bT/2pc 6
√
πp

4T

Putting back the pieces together, we have shown that for any i,

E
[
f
(
X̃(i)

)]
− E

[
f
(
X̃T

)]
6

p∑

j=1

√
πp

4T
= p3/2

√
π

4T
.

We deduce the same bound for rCV by taking the maximum over i.
Let us now bound rmin. By Eq. (3.10), using the fact that bT/(2p)c > T/(4p) as T/(2p) > 1,

for all i

M(f)− E
[
f
(
X̃(i)

)]
6

L

Kα
i

+ 18

√
4pKi

T
.

We summarize a few calculations in the next lemma. These calculations come from the mini-
mization over the Ki’s of the previous bound, with a case disjunction arising from the boundary
cases.

Lemma 3.2. At least one of the three following inequalities holds :

L < 2α+1/2

√
p

T
or L > Tα

√
p

or

min
i=1,...,p

(
L

Kα
i

+ 36

√
pKi

T

)
6 53L1/(2α+1)

( p
T

)α/(2α+1)
.

Let us consider these three cases separately. The first one is forbidden by the assumption
that L > 2α+1/2

√
p/T . In the second case, the function is so irregular that the claimed bound

becomes worse than rT 6 56 p1/2+α/(2α+1), which is weaker than the trivial bound rT 6 1.
Finally, in the third case, we may assume that L > 2α+1/2

√
p/T >

√
p/T . Then we have

L1/(2α+1) >
( p
T

)1/(2(2α+1))
=
( p
T

)1/2 ( p
T

)−α/(2α+1)
,

and thus
√
p/T 6 L1/(2α+1)(p/T )α/(2α+1). By injecting the bound of Lemma 3.2 and the bound

on rCV into (3.24):

rT 6 53L1/(2α+1)
( p
T

)α/(2α+1)
+ p

√
π

4

√
p

T
6 (53 + p

√
π/4)L1/(2α+1)

( p
T

)α/(2α+1)

and the stated bound holds, since 53 + p
√
π/4 6 53 + (ln2 T + 1)

√
π/4 6 54 +

√
π/4 ln2 T .
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Proof of Lemma 3.2. We upper bound the minimum by comparing the two quantities

L

Kα
i

v.s.

√
pKi

T
.

As the first term is decreasing with i, and the second term is increasing with i, two extreme cases
have te be dealt with. If the first term is always smaller than the second, i.e., even for i = 1, then:

L

2α
<

√
p 2

T
.

This is the first case in the statement of the lemma. Otherwise, the first term might always be
greater than the second one, i.e., even for i = p and

L

2αp
>

√
p2p

T

which is equivalent to

L2 > p
2p(2α+1)

T
,

hence, since 2p > T ,
L2 > pT 2α

which is exactly the second inequality of our statement.
Otherwise, define i? to be an index such that

L

Kα
i?−1

>

√
pKi?−1

T
and

L

Kα
i?

6

√
pKi?

T
(3.26)

By the preceding discussion, i? is well defined and 1 < i? 6 p. Then by definition of i? (the first
equation in (3.26))

2α+1/2 L

Kα
i?

>

√
pKi?

T
.

Hence, by squaring and regrouping the terms

K2α+1
i? 6 22α+1L2T

p

thus

Ki? 6 2L2/(α+1)

(
T

p

)1/(2α+1)

and √
pKi?

T
6
√

2L1/(2α+1)
( p
T

)α/(2α+1)

and finally, recalling the second equation in (3.26)

L

Kα
i?

+ 36

√
pKi?

T
6 37

√
pKi?

T
6 37

√
2L1/(2α+1)

(
p

T

)α/(2α+1)

.
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3.D. Proof of our version of the lower bound of adaptation

Here we provide the full proof of our version of the lower bound of adaptation stated in
Section 3.2.2.

Our statement differs from that of Locatelli and Carpentier [2018] on some aspects. First, and
most importantly, we include the dependence on the Lipschitz constants, and we do not consider
margin regularity. We also remove a superfluous requirement on B, that B 6 c T (α+1)/(2α+1),
which was just an artifact of the original proof. Furthermore we believe that the additional
condition that L 6 O(Tα/2) in our version was implicitely used in this original proof. Finally,
the value of the constant differs, partly because of the analysis, and partly because we consider
(1/4)-subgaussian noise instead of 1-subgaussian noise.

We managed to obtain these improvements thanks to a different proof technique. In the
original proof, the authors compare the empirical likelihoods of different outcomes and use the
Bretagnolle-Huber inequality. We choose to build the lower bound in a slightly different way (see
Garivier et al. [2019]): we handle the changes of measure implicitly thanks to Pinsker’s inequality
(Lemma 3.3). Following Lattimore and Szepesvári [2020], we also chose to be very precise in the
definition of the bandit model, in order to make rigorous a few arguments that are often used
implicitly in the literature on continuous bandits.

The main argument of the proof, that is, the sets of functions considered, are already present
in Locatelli and Carpentier [2018].

Before we start with the proof, let us state a technical tool. Denote by KL the Kullback-Leibler
divergence. The next lemma is a generalized version of Pinsker’s inequality, tailored to our needs.

Lemma 3.3. Let P and Q be two probability measures. For any random variable Z ∈ [0, 1],

|EP[Z]− EQ[Z]| 6
√

KL(P,Q)

2

Proof. For z ∈ [0, 1], by the classical version of Pinsker’s inequality applied to the event {Z > z}:

|P[Z > z]−Q[Z > z]| 6
√

KL(P,Q)

2
.

Therefore, by Fubini’s theorem and the triangle inequality, and by integrating the preceding
inequality:

|EP[Z]− EQ[Z]|=
∣∣∣∣
∫ 1

0

(
P[Z > z]−Q[Z > z]

)
dz
∣∣∣∣ 6
∫ 1

0
|P[Z > z]−Q[Z > z]|dz 6

√
KL(P,Q)

2

Proof of the lower bound. For the sake of completeness, we recall in detail the construction of
Locatelli and Carpentier [2018], with some minor simplifications that fit our setting. Fix regularity
parameters `, L, α and γ satisfying ` 6 L and γ > α, so that H(`, γ) ⊂ H(L,α) (remember the
functions are defined on X = [0, 1]).

Fix M ∈ [1/2, 1]. Let K ∈ N \ {0} and ∆ ∈ R+ be some parameters of the construction whose
values will be determined by the analysis. We define furthermore a partition of [0, 1] into K + 1
sets, H0 = [1/2, 1] and Hi = [(i− 1)/(2K), i/(2K)] for 1 6 i 6 K, along with their middle points
xi ∈ Hi. Finally, define the set of hypotheses φi for i = 0, . . . ,K as follows

φi(x) =





max
(
M −∆, M −∆/2− ` |x− x0|γ

)
if x ∈ H0 ,

max
(
M −∆, M − L |x− xi|α

)
if x ∈ Hi and i 6= 0 ,

M −∆ otherwise.
(3.27)
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M � L|x� xi|�

Hi

Figure 3.5.: Mean-payoff functions for the lower bound

Figure 3.5 illustrates how the φi’s are defined : for 1 6 i 6 K, the function φi displays a peak
of size ∆ and of low regularity (L,α), localized in Hi, and another peak of size ∆/2, of higher
regularity (`, γ) in H0. The function φ0 only has the peak of size ∆/2 and regularity (`, γ). We
need to add requirements on the values of the parameters, to make sure the indeed functions
belong to the appropriate regularity classes. These requirements are written out in the following
lemma, which we prove later.

Lemma 3.4. If (∆/L)1/α 6 1/(4K) then φ0 ∈ H(`, γ), and if (∆/(2`))1/γ 6 1/4 then φi ∈
H(L,α) for i > 1.

Fix a given algorithm. The idea of the proof of the lower bound is to use the fact that if the
player has low regret, that is, less than B, when the mean-payoff function is φ0 ∈ H(L,α), then
she has to play in H0 often. This in turn constrains the amount of exploration she can afford,
and limits her ability to find the maximum when the mean-payoff functions is φi for i > 0.

Canonical bandit model In this paragraph, we build the necessary setting for a rigorous
development. The continous action space gives rise to measurability issues, and one should be
particularly careful when handling changes of measure as we do here. Following Lattimore and
Szepesvári [2020, Chap. 4.7, 14 (Ex.11) and 15 (Ex.8) ], we build the canonical bandit model in
order to apply the chain rule for Kullback-Leibler divergences rigorously. To our knowledge, this
is seldom done carefully, the two notable exceptions being the above reference and Garivier et al.
[2019]. We also use the notion of probability kernels in this paragraph; see Kallenberg [2006,
Chap. 1 and 5] for a definition and properties.

Define a sequence of measurable spaces Ωt =
∏t
s=1X × R, together with their Borel σ-algebra

(with the usual topology on X = [0, 1] and on R). We call ht = (x1, y1, . . . , xt, yt) ∈ Ωt a history
up to time t. By an abuse of notation, we consider that Ωt ⊂ Ωt′ when t 6 t′.
An algorithm is a sequence (Kt)16t6T of (regular) probability kernels, with Kt from Ωt−1 to
X , modelling the choice of the arm at time t. By an abuse of notation, the first kernel K1 is an
arbitrary measure on X , the law of the first arm picked. Define for each i another probability
kernel modelling the reward obtained: Li,t from Ωt ×X to R. We write it explicitly as :

Li,t
(
(x1, y1, . . . , xt), B

)
=

√
2

π

∫

B
e−2
(
x−φi(xt)

)2
dx
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These kernels define probability laws Pi,t = Li,t(KtPi,t−1) over Ωt. Doing so, we ensured
that under Pi,t the coordinate random variables Xt : Ωt → X and Yt : Ωt → R), defined
as Xt(x1, . . . , xt, yt) = xt and Yt(x1, . . . , xt, yt) = yt are such that given Xt, the reward Yt is
distributed according to N

(
φi(Xt), 1/4

)
. Denote by Ei the expectation taken according to Pi,t.

We also index recall the pseudo-regret: RT,i = TM(φi)− Ei
[∑T

t=1 φi(Xt)
]
.

A rewriting of the chain rule for Kullback-Leibler divergence with our notation would be (see
Lattimore and Szepesvári [2020, Exercise 11 Chap. 14] for a proof)

Proposition (Chain rule). Let Ω and Ω′ be measurable subsets of Rd equipped with their natural
σ-algebra. Let P and Q be probability distributions defined over Ω, and K and L be regular
probability kernels from Ω to Ω′ then

KL
(
KP, LQ

)
= KL(P,Q) +

∫

Ω
KL
(
K(ω, · ), L(ω, · )

)
dP(ω)

The key assumptions are that Ω and Ω′ are subspaces of Rd, and that K and L satisfy
measurability conditions, as they are regular kernels; these assumptions justify the heavy setting
we introduced.

Under this setting, we may call to the chain rule twice to see that for any t:

KL
(
Pt0,Pti

)
= KL

(
L0,t(KtPt−1

0 ), Li,t(KtPt−1
i )

)

= KL
(
KtPt−1

0 ,KtPt−1
i

)
+

∫

Ωt−1×X
KL
(
L0,t(ht−1, xt, · ), Li,t(ht−1, xt, · )

)
dKtPt−1

0 (ht−1, xt)

= KL
(
Pt−1

0 ,Pt−1
i

)
+

∫

Ωt−1×X
KL
(
L0,t(ht−1, xt, · ), Li,t(ht−1, xt, · )

)
dKtPt−1

0 (ht−1, xt)

= KL
(
Pt−1

0 ,Pt−1
i

)
+

∫

X
KL
(
N (φ0(xt), 1/4),N (φi(xt), 1/4)

)
dPt−1

0 (xt)

= KL
(
Pt−1

0 ,Pt−1
i

)
+ E0

[
KL
(
N (φ0(Xt), 1/4),N (φi(Xt), 1/4)

)]

where the penultimate equality comes from the fact that the density of the kernel Li,t−1 depends
only on the last coordinate xt, and is exactly that of a gaussian variable.
We obtain the KL decomposition by iterating T times,

KL
(
PT0 ,PTi

)
= E0

[
T∑

t=1

KL
(
N (φ0(Xt), 1/4),N (φi(Xt), 1/4)

)
]

Continuation of the proof Let us also define NHi(T ) =
∑T

t=1 1{Xt∈Hi} the number of times the
algorithm selects an arm in Hi. The hypotheses φi were defined for the three following inequalities
to hold. For all i > 1:

RT,i >
∆

2

(
T − Ei

[
NHi(T )

])
=
T∆

2

(
1− Ei

[
NHi(T )

]

T

)
, (3.28)

RT,0 >
∆

2

K∑

i=1

E0

[
NHi(T )

]
, (3.29)

and

KL(PT0 ,PTi ) = E0

[
T∑

t=1

KL
(
N (φ0(Xt), 1/4),N (φi(Xt), 1/4)

)
]

= E0

[
T∑

t=1

2
(
φ0(Xt)− φi(Xt)

)2
]
6 2E0

[
NHi(T )

]
∆2 .

(3.30)
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The first two inequalities come from the fact that, under Pi, the player incurs an instantaneous
regret of less than ∆/2 whenever she picks an arm outside the optimal cell Hi. For the third
inequality, first apply the chain rule to compute the Kullback-Leibler divergence, then the
inequality is a consequence of the fact that φi and φ0 differ only in Hi, and their difference is less
than ∆.
We may now proceed with the calculations. By Lemma 3.3 applied to the random variable

NHi(T )/T :

Ei
[
NHi(T )

]

T
6

E0

[
NHi(T )

]

T
+

√
KL(PT0 ,PTi )

2
. (3.31)

We will now show that

1

K

K∑

i=1

RT,i >
T∆

2


1− 1

K
−

√
∆RT,0
K


 . (3.32)

Indeed by (in order) averaging (3.28) over i = 1, . . . ,K, using (3.31), the concavity of
√· and

(3.30)

1

K

K∑

i=1

RT,i >
T∆

2

(
1− 1

K

K∑

i=1

Ei
[
NHi(T )

]

T

)

>
T∆

2


1− 1

K

K∑

i=1

E0

[
NHi(T )

]

T
− 1

K

K∑

i=1

√
KL(PT0 ,PTi )

2




>
T∆

2


1− 1

K
−

√√√√ 1

2K

K∑

i=1

KL(PT0 ,PTi )




>
T∆

2


1− 1

K
−

√√√√∆2

K

K∑

i=1

E0

[
NHi(T )

]

 .

This yields the claimed inequality (3.32) thanks to (3.29).
Let us assume for now that K > 2 and φ0 ∈ H(`, γ). Then by the assumption on the algorithm,

RT,0 6 B, and therefore

1

K

K∑

i=1

RT,i >
T∆

2

(
1

2
−
√

∆B

K

)
. (3.33)

To optimize this bound, we take ∆ as large as possible, while still ensuring that
√

∆B/K is
small enough, e.g., less than 1/4. Furthermore, we impose that the φi’s belong to H(L,α), i.e.,
by Lemma 3.4, that (∆/L)1/α 6 1/(4K). This leads to the choice

∆ = cL1/(α+1)B−α/(α+1) and K =

⌊
1

4

(
∆

L

)−1/α
⌋

=

⌊
c−1/α

4
(LB)1/(α+1)

⌋
,

with c = 1/128.

Conclusion, assuming that K > 2 and φ0 ∈ H(`, γ) With this choice of parameters, we have
by definition of ∆,

∆B = c (LB)1/(α+1) ,
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and by definition of K, since K > (c−1/α/8)(LB)1/(α+1),

∆B

K
6 8c1+1/α

hence, using c1/(2α) 6 1

√
∆B

K
6 2
√

2c1/2+1/(2α) 6 2
√

2 · 2−7/2 =
1

4
.

With this in hand, we may now go back to inequality (3.33) to see that

1

K

K∑

i=1

RT,i >
T∆

2

(
1

2
− 1

4

)
>
T∆

8
=
c

8
TL1/(α+1)B−α/(α+1) .

By the defintion of K, it is always true that (∆/L)1/α 6 1/(4K), and therefore, by Lemma 3.4,
all the φi’s automatically belong to H(L,α). Therefore, for all i, we have supf∈H(L,α)RT > RT,i.
Hence, recalling that c = 1/128,

sup
f∈H(L,α)

RT >
1

K

K∑

i=1

RT,i > 2−10 TL1/(α+1)B−α/(α+1) .

Regularity conditions on the mean-payoff functions φi We now check that K > 2, and
that φ0 ∈ H(`, γ). Let us first focus on φ0. By Lemma 3.4, it is enough to impose that
(∆/(2`))1/γ 6 1/4, i.e., that

cL1/(α+1)B−α/(α+1)/(2`) 6 (1/4)γ

that is,
L1/(α+1)B−α/(α+1) 6 2`(1/4)γ/c = ` 21−2γc−1 ,

i.e., when
LB−α 6 `1+α 2(1−2γ)(1+α)c−(1+α)

hence, replacing c by its value c = 2−7, the next condition is sufficient to ensure the regularity of
the hypothesis:

L 6 `1+αBα c−(1+α) 2(1+α)(1−2γ) = `1+αBα 2(1+α)(8−2γ) ,

which is one of the two conditions in the statement of the theorem. For the bound to be valid, we
must also make sure that K > 2:

⌊(
c−1/α

4
(LB)1/(α+1)

)⌋
> 2 .

This condition is weaker than
c−1/α

4
(LB)1/(α+1) > 3

which is equivalent to

L > c(α+1)/α 12α+1B−1 = 2−7 · 12 · 2−6/α12αB−1 .

To ensure this, we require the stronger (but more readable) condition that L > 2−312αB−1.
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(a) (∆/L)1/α 6 1/(4K) hence φi ∈ H(L,α) (b) (∆/L)1/α > 1/(4K) hence φi /∈ H(L,α)

Figure 3.6.: φi is in H(L,α) if it is everywhere above the green dotted curve x 7→M −L |x− xi|α,
that is, if the cell Hi has enough room to contain the whole peak of size ∆

Proof of Lemma 3.4. A good look at Figure 3.6 should convince the reader of the statement. We
wish to make sure that the functions φi’s satisfy (3.4), a Hölder condition around their maximum
(and only around this maximum). Given the definition of the functions φi, we simply have to
check that there is no discontinuity at the boundary of the cell Hi. We write out the details for
i > 0 to remove any doubt; the same analysis can be carried to check that φ0 ∈ H(`, γ).
For i > 0, the function φi reaches its maximum at xi = (i − 1/2)/2K, and the value of the

maximum is M . Then for x ∈ Hi, by definition of φi:

φi(x) = max
(
M −∆,M − L |xi − x|α

)
>M − L |x− xi|α

thus
φi(xi)− φi(x) = M − φi(x) 6 L |xi − x|α ,

Now consider x /∈ Hi. Assume, as in the statement of the lemma, that 1/(4K) > (∆/L)1/α. If x
is outside of Hi, then since Hi is of half-width 1/4K,

|xi − x| >
1

4K
>

(
∆

L

)1/α

(3.34)

and, by definition of φi, for all x (even for x ∈ H0), φi(x) >M −∆ . Therefore, by (3.34),

φi(xi)− φi(x) 6 ∆ 6 L |xi − x|α .

For all values of x, the Hölder condition is satisfied and φi ∈ H(L,α).
For φ0, the same calculations show that there is no jump at the boundary of [1/2, 1], of

half-width 1/4, when the peak is of height ∆/2 and regularity (`, γ) if
(
(∆/2)/`)

)1/γ
6 1/4.
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Chapter 4.

Adaptation to the range in K–armed bandits

Abstract

We consider stochastic bandit problems with K arms, each associated with a
bounded distribution supported on the range [m,M ]. We do not assume that the
range [m,M ] is known and show that there is a cost for learning this range. Indeed,
a new trade-off between distribution-dependent and distribution-free regret bounds
arises, which, for instance, prevents from simultaneously achieving the typical lnT
and

√
T bounds. For instance, a

√
T distribution-free regret bound may only be

achieved if the distribution-dependent regret bounds are at least of order
√
T . We

exhibit a strategy achieving the rates for regret indicated by the new trade-off.

This work was led in collaboration with Gilles Stoltz. The preprint Hadiji and Stoltz
[2020] is currently under review.

Contents

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.1. Literature review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2. Settings: stochastic bandits and bandits for oblivious individual sequences . . . . . . 115
4.2.1. Stochastic bandits with bounded and possibly signed rewards . . . . . . . . . 115
4.2.2. Oblivious individual sequences (oblivious adversarial bandits) . . . . . . . . . 116
4.2.3. Scale-free regret bounds: rates for adaptation to the unknown range . . . . . 117

4.3. Distribution-dependent lower bounds for adaptation to the range . . . . . . . . . . . 117
4.4. Regret lower bounds for adaptation to the range . . . . . . . . . . . . . . . . . . . . 119

4.4.1. Simultaneous scale-free distribution-free and distribution-dependent lower bounds119
4.4.2. Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5. Quasi-optimal regret bounds for range adaptation based on AdaHedge . . . . . . . . 122
4.5.1. Distribution-free scale-free regret analysis . . . . . . . . . . . . . . . . . . . 123
4.5.2. Distribution-dependent regret analysis, and discussion of the trade-off . . . . 125

4.6. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.7. Extensions present in the appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.A. Complete proofs of the results of Section 4.5 . . . . . . . . . . . . . . . . . . . . . . 131

4.A.1. Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.A.2. Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.B. The case of one known end of the payoff range . . . . . . . . . . . . . . . . . . . . 137
4.B.1. Known lower end m but unknown upper end M on the payoff range . . . . . 137
4.B.2. Known upper end M but unknown lower end m on the payoff range . . . . . 137

4.C. Known results on AdaFTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.C.1. AdaFTRL for full information (reminder of known results) . . . . . . . . . . . 141

113



Chapter 4. Adapting to the range

4.C.2. AdaHedge for full information (reminder of known results) . . . . . . . . . . 144
4.C.3. AdaHedge with known upper bound M on the payoffs (application of Sec-

tion 4.C.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.C.4. AdaFTRL with Tsallis entropy in the case of a known upper bound M on the

payoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.D. Adaptation to the range for linear bandits . . . . . . . . . . . . . . . . . . . . . . . 155

4.1. Introduction

Virtually all articles on stochastic K–armed bandits either assume that distributions of the
arms belong to some parametric family (often, one-dimensional exponential families) or to the
non-parametric family of distributions supported on a known range [m,M ]. Notable exceptions
are discussed below.
We consider the second, non-parametric, framework (see Section 4.2) and show that the

knowledge of the range [m,M ] is a crucial information. We do so by studying what may be
achieved and what cannot be achieved anymore when this range is unknown and the strategies
need to learn it. We call this problem scale-free regret minimization. In Section 4.3, we recall
the standard distribution-dependent lower bound of Burnetas and Katehakis [1996], deriving
its consequences on our problem. Our main result (in Section 4.4) is a trade-off between the
scale-free distribution-dependent and distribution-free regret bounds that may be achieved; it is,
for instance, impossible to simultaneously achieve scale-free distribution-dependent regret bounds
of order lnT and scale-free distribution-free regret bounds of order

√
T , as simple strategies like

UCB strategies (by Auer et al. [2002a]) do in the case of a known range. Our general trade-off
indicates, for instance, that if one wants to keep the same

√
T order of magnitude for the scale-free

distribution-free regret bounds, then the best scale-free distribution-dependent rate that may be
achieved is

√
T . We also provide (in Section 4.5) a strategy, based on exponential weights, that

obtains optimal scale-free distribution-dependent and distribution-free regret bounds as indicated
by the trade-off. We conclude the main body of the chapter with some numerical experiments
illustrating the performance of our algorithms in scale-free regret minimization (in Section 4.6).

4.1.1. Literature review.

Closely related work. Optimal scale-free regret minimization under full monitoring is offered
by the AdaHedge strategy by De Rooij et al. [2014], which we will use as a building block in
in Section 4.5. The main difficulty in adaptation to the range is the adaptation to the upper
end M (see Section 4.7); this is why Honda and Takemura [2015] could provide optimal lnT
distribution-dependent regret bounds for payoffs lying in ranges of the form (−∞,M ], with a
known M . Lattimore [2017] considers models of distributions with a known bound on their
kurtosis (a scale-free measure of the skewness of the distributions) and provides a scale-free
algorithm based on the median-of-means estimators, with lnT distribution-dependent regret
bounds. However, bounded bandits can have an arbitrarily high kurtosis, so our settings are
not directly comparable (and we think that bounded distributions with an unknown range is a
more natural assumption). Cowan and Katehakis [2015] study adaptation to the range but in
the restricted case of uniform distributions; see also similar results by Cowan et al. [2018] for
Gaussian distributions with unknown means and variances.

Adaptation to the effective range in adversarial bandits. Gerchinovitz and Lattimore [2016]
show that it is impossible to adapt to the so-called effective range in adversarial bandits. A
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sequence of rewards has effective range smaller than b if for all rounds t, rewards yt,a at this round
all lie in an interval of the form [mt,Mt] with Mt −mt 6 b. The lower bound they exhibit relies
on a sequence of changing intervals of fixed size. This problem is thus different from our setting.
See also positive results (upper bounds) by Cesa-Bianchi and Shamir [2018] for adaptation to the
effective range.

Adaptation to the variance. Audibert et al. [2009] consider a variant of UCB called UCB-
V, which adapts to the unknown variance. Its analysis assumes that rewards lie in a known
range [0,M ]. The results crucially use Bernstein’s inequality (see, for instance, Reminder 4.3 in
Appendix 4.A.2 for a statement of the latter); as Bernstein’s inequality holds for random variables
with supports in [−∞,M ], the analysis of UCB-V might perhaps be extended to this case as
well. Deviation bounds in Bernstein’s inequality contain two terms, a main term scaling with the
standard deviation, and a remainder term, scaling with M . This remainder term, which seems
harmless, is a true issue when M is not known, as indicated by the results of the present chapter.

Other criteria. Wei and Luo [2018], Zimmert and Seldin [2019], Bubeck et al. [2018], and many
more, provide strategies for adversarial bandits with rewards in a known range, say [0, 1], and
adapting to additional regularity in the data, like small variations or stochasticity of the data.

4.2. Settings: stochastic bandits and bandits for oblivious
individual sequences

We describe the bandit settings considered: stochastic bandits, the setting of main interest,
and bandits for oblivious individual (adversarial) sequences, a setting leading to stronger regret
upper bounds.

4.2.1. Stochastic bandits with bounded and possibly signed rewards

K > 2 arms are available. We denote by [K] the set {1, . . . ,K} of arms. With each of the
arm a is associated a probability distribution νa lying in some known model D; a model is
a set of probability distributions over R with a first moment. The models of interest in this
chapter are discussed below. A bandit problem over D is a K–vector of probability distributions
in D: we denote it by ν = (νa)a∈[K]. The player knows D but not ν. As is standard in this
setting, we denote by µa = E(νa) the mean payoff provided by an arm a. An optimal arm and
the optimal mean payoff are respectively given by a? ∈ argmaxa∈[K] µa and µ? = maxa∈[K] µa.
Finally, ∆a = µ? − µa denotes the gap of an arm a.
The online learning game goes as follows: at round t > 1, the player picks an arm At ∈ [K],

possibly at random according to a probability distribution pt = (pt,a)a∈[K] based on an auxiliary
randomization Ut−1, and then receives and observes a reward Zt drawn independently at random
according to the distribution νAt , given At. More formally, a strategy of the player is a sequence
of mappings from the observations to the action set, (U0, Z1, U1, . . . , Zt−1, Ut−1) 7→ At, where
U0, U1, . . . are i.i.d. random variables independent from all other random variables and distributed
according to a uniform distribution over [0, 1]. At each given time T > 1, we measure the
performance of a strategy through its expected regret:

RT (ν) = Tµ? − E

[
T∑

t=1

Zt

]
= Tµ? − E

[
T∑

t=1

µAt

]
=

K∑

a=1

∆a E
[
Na(T )

]
, (4.1)

where we used the tower rule for the first equality and defined Na(T ) as the number of times arm
a was pulled between time rounds 1 and T .
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Doob’s optional skipping (see Doob [1953, Chapter III, Theorem 5.2, p. 145] for the original
reference, see also Chow and Teicher [1988, Section 5.3] for a more recent reference) indicates that
we may assume that i.i.d. sequences of rewards (Yt,a)t>1 are drawn beforehand, independently at
random, for each arm a and that the obtained payoff at round t > 1 given the choice At equals
Zt = Yt,At . We will use this second formulation in the rest of the chapter as it is the closest to
the one of oblivious individual sequences described in Section 4.2.2.

Models: bounded rewards with unknown range. For a given range [m,M ], where m < M
are two real numbers (not necessarily nonnegative), we denote by Dm,M the set of probability
distributions supported on [m,M ]. Then, the model corresponding to distributions with a
bounded but unknown range is the union of all such Dm,M :

D−,+ =
⋃

m,M∈R
m<M

Dm,M . (4.2)

4.2.2. Oblivious individual sequences (oblivious adversarial bandits)

In the setting of (fully) oblivious individual sequences (see Cesa-Bianchi and Lugosi [2006],
Audibert and Bubeck [2009]), a range [m,M ] is set by the environment, where m,M are
real numbers (not necessarily nonnegative), and the environment picks beforehand a sequence
y1, y2, . . . of reward vectors in [m,M ]K . We denote by yt = (yt,a)a∈[K] the components of these
vectors. The online learning game starts only then: at each round t > 1, the player picks
an arm At ∈ [K], possibly at random according to a probability distribution pt = (pt,a)a∈[K]

based on an auxiliary randomization Ut−1, and then receives and observes yt,At . More formally,
a strategy of the player is a sequence of mappings from the observations to the action set,
(U0, y1,A1 , U1, . . . , yt−1,At−1 , Ut−1) 7→ At, where U0, U1, . . . are i.i.d. random variables independent
from all other random variables and distributed according to a uniform distribution over [0, 1]. At
each given time T > 1, denoting y1:T = (y1, . . . , yT ), we measure the performance of a strategy
through its expected regret:

RT (y1:T ) = max
a∈[K]

T∑

t=1

yt,a − E

[
T∑

t=1

yt,At

]
, (4.3)

where all randomness lies in the choice of the arms At only (as rewards are fixed beforehand).

Conversion of upper/lower bounds from one setting to the other. Note that (by the tower
rule for the right-most equality) for all m < M and for all ν in Dm,M ,

RT (ν) = max
a∈[K]

E

[
T∑

t=1

Yt,a

]
− E

[
T∑

t=1

Yt,At

]
6 E

[
max
a∈[K]

T∑

t=1

Yt,a −
T∑

t=1

Yt,At

]
= E

[
RT (Y1:T )

]

6 sup
y1:T in[m,M ]K

RT (y1:T ) .

In particular, lower bounds on the regret for stochastic bandits are also lower bounds on the
regret for oblivious adversarial bandits, and strategies designed for oblivious adversarial bandits
obtain the same regret bounds for stochastic bandits when the individual payoffs yt,At in their
definition are replaced with the stochastic payoffs Yt,At .
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4.2.3. Scale-free regret bounds: rates for adaptation to the unknown range

Regret scales with the range length M −m, thus regret bounds involve a multiplicative factor
M −m. We therefore consider such bounds divided by the scale factor M −m and call them
scale-free regret bounds. We denote by N the set of natural integers; (rates on) regret bounds
will be given by functions Φ : N→ [0,+∞).

Definition 4.1 (Distribution-free bounds). A strategy for stochastic bandits, respectively, for
oblivious individual sequences, is adaptive to the unknown range of payoffs with a scale-free
distribution-free regret bound Φ : N→ [0,+∞) if for all real numbers m < M , the strategy ensures,
without the knowledge of m and M :

∀ν in Dm,M , ∀T > 1, RT (ν) 6 (M −m) Φ(T ) ,

respectively, ∀y1, y2, . . . in [m,M ]K , ∀T > 1, RT (y1:T ) 6 (M −m) Φ(T ) .

The notion of distribution-dependent regret bounds for adaptation to the range can obviously
only be defined for stochastic bandits. It does not add much to the classical notion of distribution-
dependent rates on regret bounds, as the scale factor M −m does not appear in the definition; it
merely ensures that the strategy is not informed of the range.

Definition 4.2 (Distribution-dependent bounds). A strategy for stochastic bandits is adaptive to
the unknown range of payoffs with a distribution-dependent rate Φ : N→ [0,+∞) if for all real
numbers m < M , the strategy ensures, without the knowledge of m and M :

∀ν in Dm,M , lim sup
T→+∞

RT (ν)

Φ(T )
< +∞ .

Put differently, the strategy ensures that lim supRT (ν)/Φ(T ) < +∞ for all ν ∈ D−,+.

4.3. Distribution-dependent lower bounds for adaptation to the
range

Any scale-free distribution-free regret bound Φfree(T ) is larger than the optimal distribution-free
regret bound on a known range. Auer et al. [2002b] provided a lower bound (1/20) min

{√
KT, T

}

on the regret of any strategy against individual sequences in [0, 1]K , thus for bandit problems
in D0,1. Therefore, we also have Φfree(T ) > (1/20) min

{√
KT, T

}
. We show in Section 4.5 a

scale-free distribution-free regret bound of order
√
KT lnK, which thus matches the lower bound

up to a
√

lnK factor.
The situation is different for distribution-dependent bounds, where the typical lnT order of

magnitude cannot be achieved when the range is unknown: all uniformly fast convergent strategies
on D−,+ (see Definition 4.3 below) are such that, for all bandit problems ν in D−,+ with at least
one suboptimal arm,

lim inf
T→+∞

RT (ν)

lnT
= +∞ . (4.4)

However, any rate ϕ(T ) � lnT may be achieved thanks to a simple upper-confidence bound
[UCB] strategy.

Before we expand on these two statements, we remind the reader of the “classical” results, for
an abstract model D and then, for the model Dm,M corresponding to payoff distributions with a
known range [m,M ].

Definition 4.3. A strategy is uniformly fast convergent on a model D if for all bandit problems ν
in D, it achieves a subpolynomial regret bound, that is, RT (ν)/Tα → 0 for all (α, 1].
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A lower bound on the distribution-dependent rates that such a strategy may achieve is provided
by a general result of Lai and Robbins [1985] and Burnetas and Katehakis [1996] (see also its
rederivation by Garivier et al. [2019]). It involves a quantity defined as an infimum of Kullback-
Leibler divergences: we recall that for two probability distributions ν, ν ′ defined on the same
probability space (Ω,F),

KL(ν, ν ′) =





∫

Ω

ln

(
dν

dν ′

)
dν if ν � ν ′,

+∞ otherwise,

where ν � ν ′ means that ν is absolutely continuous with respect to ν ′ and dν/dν ′ then denotes
the Radon-Nikodym derivative. Now, for any probability distribution ν, any real number x, and
any model D, we define

Kinf(ν, x,D) = inf
{

KL(ν, ν ′) : ν ′ ∈ D and E(ν ′) > x
}
,

where by convention, the infimum of an empty set equals +∞ and where we denoted by E(ν ′)
the expectation of ν ′. The quantity Kinf(ν, x,D) can be null. With the usual measure-theoretic
conventions, in particular, 0/0 = 0, we then have the following lower bound.

Reminder 4.1. For all models D, for all uniformly fast convergent strategies on D, for all bandit
problems ν in D,

lim inf
T→+∞

RT (ν)

lnT
>
∑

a∈[K]

∆a

Kinf(νa, µ?,D)
.

When the range [m,M ] of payoffs is known, i.e., when the model is Dm,M , there exist strategies
achieving the lower bound of Reminder 4.1, like the DMED strategy of Honda and Takemura
[2011, 2015] or the KL–UCB strategy of Cappé et al. [2013] and Garivier et al. [2018]. (This can
even be extended to the case of semi-bounded only rewards with a known upper bound on the
payoffs, as is discussed in details in Appendix 4.B.2.)

No logarithmic regret distribution-dependent regret bound under adaptation to the range.
Now, the lower bound in Reminder 4.1 cannot be achieved any more when the range is not
known, that is, when we consider the model D−,+ of bounded distributions with unknown range.
Actually, the proof reveals that the important fact is that the upper end of the payoff range is
unknown. The impossibility result also holds for models Dm,+ of bounded distributions with
unknown upper end on the range and known lower end m on the range, for some fixed m ∈ R:

Dm,+ =
⋃

M∈R,
m<M

Dm,M . (4.5)

Theorem 4.1. All uniformly fast convergent strategies on D−,+ are such that, for all bandit
problems ν in D−,+ with at least one suboptimal arm,

lim inf
T→+∞

RT (ν)

lnT
= +∞ .

The same result holds for all models Dm,+, where m ∈ R.

Strategies that are adaptive to the range thus cannot get rates Φ for distribution-dependent
regret bounds on the regret of the order of lnT in Definition 4.2. A similar phenomenon was
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discussed by Lattimore [2017] in the case of stochastic bandits with sub-Gaussian distributions.
It turns out that any rate Φ such that Φ(T )� lnT may be achieved, through a simple upper-
confidence bound [UCB] strategy, as also discussed by Lattimore [2017]; see further details after
the proof.

Proof. We fix m ∈ R and provide the proof for Dm,+. Given Reminder 4.1 and since we assumed
that at least one arm a is suboptimal, i.e., is associated with a gap ∆a = µ? − µa > 0, it is
necessary and sufficient to show that Kinf(νa, µ

?,Dm,+) = 0, where νa ∈ Dm,+.
We have in particular µa > m. We use the same construction as in the proof of Theorem 4.2.

Let ν ′ε = (1− ε)νa + εδµa+2∆a/ε for ε ∈ (0, 1): it is a bounded probability distribution, with lower
end of support larger than m, that is, ν ′ε ∈ Dm,+. For ε small enough, µa + 2∆a/ε lies outside of
the bounded support of νa. In that case, the density of νa with respect to ν ′ε is given by 1/(1− ε)
on the support of νa (and 0 elsewhere), so that

KL
(
νa, ν

′
ε

)
= ln

(
1

1− ε

)
.

Moreover, E
(
ν ′ε
)

= (1 − ε)µa + ε
(
µa + 2∆a/ε

)
= µa + 2∆a = µ? + ∆a > µ?. Therefore, by

definition of Kinf as an infimum,

Kinf(νa, µ
?,Dm,+) 6 KL

(
νa, ν

′
ε

)
= ln

(
1

1− ε

)
.

This upper bound holds for all ε > 0 small enough and thus shows that we actually have
Kinf(νa, µ

?,Dm,+) = 0.
The exact same construction and proof can be performed in the case of D−,+, without the need

of indicating that the lower end of the support of ν ′ε is larger than m.

UCB with an increased exploration rate adapts to the range The lower bound of Theorem 4.1
does not prevent distribution-dependent rates for adaptation that are arbitrarily larger than a
logarithm. Consider UCB with indexes of the form

µ̂a(t) +

√
ϕ(t)

Na(t)
where

ϕ(t)

ln t
→ +∞

and where µ̂a(t) denotes the empirical average of payoffs obtained till round t when playing
arm a. Following the analysis of Lattimore [2017] in the case of Gaussian bandits with unknown
variances, it can be shown that such a UCB is adaptive to the unknown range of payoffs with a
distribution-dependent rate ϕ. However the trick used here is purely asymptotic and gives up on
finite-time guarantees.

4.4. Regret lower bounds for adaptation to the range

We now show that under an adaptivity assumption that is stronger than uniform fast conver-
gence and takes finite-time guarantees into account, the distribution-dependent regret becomes
polynomial in T .

4.4.1. Simultaneous scale-free distribution-free and distribution-dependent lower
bounds

When the range [m,M ] of the payoffs is known, it is possible to simultaneously achieve optimal
distribution-free bounds (of order

√
KT ) and optimal distribution-dependent bounds (of order
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lnT with the optimal constant given by infima of Kullback-Leibler divergences); see the KL-
UCB-switch strategy by Garivier et al. [2018]. Put differently, when the range of payoffs is
known, one can achieve optimal (asymptotic) distribution-dependent regret bounds while not
sacrificing finite-time guarantees. Simpler strategies like UCB strategies (see Auer et al. [2002a])
also simultaneously achieve regret bounds of similar lnT and

√
T orders of magnitude but with

suboptimal constants and/or dependencies on K.
This is not possible anymore when the range of payoffs is unknown.
To show this, we consider in this section algorithms enjoying distribution-free scale-free regret

bounds and show that they suffer up to a Ω(
√
T ) distribution-dependent rate for adaptation to

the range. Actually, the theorem below shows that there is a trade-off between the finite-time
guarantees (the distribution-free scale-free regret bounds) and the asymptotic problem-dependent
rates (the distribution-dependent rates for adaptation) that can be achieved. We recall that these
concepts were defined in Section 4.2.3. The proof actually provides a finite-time (but messy)
lower bound on RT (ν)

/(
T/Φfree(T )

)
.

Theorem 4.2. Any strategy with a Φfree distribution-free scale-free regret bound satisfying Φfree � T
may only achieve distribution-dependent rates Φdep for adaptation satisfying Φdep(T ) > T/Φfree(T ).
More precisely, the regret of such a strategy is lower bounded as: for all ν in D−,+,

lim inf
T→∞

RT (ν)

T/Φfree(T )
>

1

4

K∑

a=1

∆a .

The optimal distribution-free scale-free regret bounds Φfree(T ) are of order
√
T (as follows

from the lower bound indicated at the beginning of Section 4.4 and from the upper bound
of Section 4.5). The distribution-dependent rates Φdep(T ) of strategies achieving this optimal
distribution-free scale-free rate are therefore larger than

√
T . More generally, there is a trade-off

between the two rates: to force faster distribution-dependent rates for adaptation, one must suffer
worsened distribution-free scale-free rates for adaptation. (The latter range between the optimal√
KT rate and the trivial T rate.)

4.4.2. Proof of Theorem 4.2

We follow a standard proof technique introduced by Lai and Robbins [1985] and Burnetas and
Katehakis [1996] and recently revisited by Garivier et al. [2019]. We fix some bandit problem ν
in D−,+ and construct an alternative bandit problem ν ′ in D−,+ by modifying the distribution of
a single suboptimal arm a to make it optimal (which is always possible, as there is no bound on
the upper end on the ranges of the payoffs in the model). We apply a fundamental inequality
that links the expectations of the numbers of times Na(T ) that a is pulled under ν and ν ′. We
then substitute inequalities stemming from the definition of distribution-free scale-free regret
bounds Φdep, and the result follows by rearranging all inequalities.

Step 1: Alternative bandit problem. The lower bound is trivial (it equals 0) when all arms of ν are
optimal. We therefore assume that at least one arm is suboptimal and fix such an arm a. For some
ε ∈ [0, 1] to be defined later by the analysis, we introduce the alternative problem ν ′ = (ν ′k)k∈[K]

with ν ′k = νk for j 6= a and ν ′a = (1−ε)νa+εδµa+2∆a/ε. This distribution ν
′
a has a bounded range,

so that ν ′ lies indeed in D−,+. The expectation of ν ′a equals µ′a = µa + 2∆a = µ? + ∆a > µ?.
Thus, a is the only optimal arm in ν ′. Finally, for ε small enough, µa + 2∆a/ε lies outside of the
bounded support of νa. In that case, the density of νa with respect to ν ′ε is given by 1/(1− ε) on
the support of νa (and 0 elsewhere), so that KL(νa, ν

′
a) = ln

(
1/(1− ε)

)
.

Step 2: Application of a fundamental inequality. We denote by kl(p, q) the Kullback-Leibler
divergence between Bernoulli distributions with parameters p and q. We also index expectations
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4.4. Regret lower bounds for adaptation to the range

in the rest of the proof by the bandit problem they are relative to: for instance, Eν denotes the
expectation of a random variable when the ambiant randomness is given by the bandit problem ν.
The fundamental inequality for lower bounds on the regret of stochastic bandits (Garivier et al.
[2019], Section 2, Equation 6), which is based on the chain rule for Kullback-Leibler divergence
and on a data-processing inequality for expectations of [0, 1]–valued random variables, reads:

kl

(
Eν
[
Na(T )

]

T
,
Eν′
[
Na(T )

]

T

)
6 Eν

[
Na(T )

]
KL(νa, ν

′
a) = Eν

[
Na(T )

]
ln
(
1/(1− ε)

)
.

Now, since u ∈ (−∞, 1) 7→ −u−1 ln(1 − u) is increasing, we have ln
(
1/(1 − ε)

)
6 ε(ln 2)/2 for

ε 6 1/2. For all (p, q) ∈ [0, 1]2 and with the usual measure-theoretic conventions,

kl(p, q) = p ln p+ q ln q︸ ︷︷ ︸
>− ln 2

+ p ln
1

q︸ ︷︷ ︸
>0

+(1− p) ln
1

1− q > (1− p) ln
1

1− q − ln 2 ,

so that, putting all inequalities together, we have proved
(

1− Eν
[
Na(T )

]

T

)
ln

(
1

1− Eν′
[
Na(T )

]
/T

)
− ln 2 6

ln 2

2
εEν

[
Na(T )

]
. (4.6)

So far, we only imposed the constraint ε ∈ [0, 1/2].
Step 3: Inequalities stemming from the definition of distribution-free scale-free regret bounds.

We denote by [m,M ] a range containing the supports of all distributions of ν. By definition of
Φfree, given that a is a suboptimal arm (i.e., ∆a > 0):

∆a Eν [Na(T )] 6 RT (ν) 6 (M −m) Φfree(T ) .

Because of ν ′a, the distributions of ν ′ have supports within the range [m,Mε], where we denoted
Mε = max{M, µa + 2∆a/ε}. For ν ′, by definition of Φfree, and given that all gaps ∆′k are larger
than the gap ∆′a = µ′a − µ? = ∆a between the unique optimal a and the second best arms (which
were the optimal arms of ν),

∆a

(
T−Eν′ [Na(T )]

)
= ∆′a

(
T−Eν′ [Na(T )]

)
6
∑

j 6=a
∆′j Eν′ [Nk(T )] = RT (ν ′) 6 (Mε−m) Φfree(T ) .

By rearranging the two inequalities above, we get

1− Eν
[
Na(T )

]

T
> 1− (M −m) Φfree(T )

T∆a
and 1− Eν′

[
Na(T )

]

T
6

(Mε −m) Φfree(T )

T∆a
,

thus, after substitution into (4.6),
(

1− (M −m) Φfree(T )

T∆a

)
ln

(
T∆a

(Mε −m) Φfree(T )

)
− ln 2 6

ln 2

2
εEν

[
Na(T )

]
. (4.7)

Step 4: Final calculations. We take ε = εT = α−1 Φfree(T )/T for some constant α > 0; we will
pick α = 1/8. By the assumption Φfree(T )� T , we have εT 6 1/2 as needed for T large enough,
as well as MεT = µa + 2∆a/εT = µa + 2α∆aT/Φfree(T ). Substituting these values into (4.7), a
finite-time lower bound on the quantity of interest is finally given by

Eν
[
Na(T )

]

T/Φfree(T )
>

2α

ln 2

(
− ln 2 +

(
1− (M −m) Φfree(T )

T∆a︸ ︷︷ ︸
→0

)
ln

(
T∆a

2α∆aT + (µa −m)Φfree(T )︸ ︷︷ ︸
→1/(2α)

))
.
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It entails the asymptotic lower bound

lim inf
T→+∞

Eν
[
Na(T )

]

T/Φfree(T )
>

2α

ln 2

(
ln(1/α)− 2 ln 2

)
=

1

4

for the choice α = 1/8. The claimed result follows by adding these lower bounds for each
suboptimal arm a, with a factor ∆a, following the rewriting (4.1) of the regret.

4.5. Quasi-optimal regret bounds for range adaptation based on
AdaHedge

When the range of payoffs is known, Auer et al. [2002b] use exponential weights (Hedge) on
estimated payoffs and with extra-exploration (mixing with the uniform distribution) to achieve a
regret bound of order

√
KT lnK. Actually, it is folklore knowledge that the extra-exploration is

unnecessary when regret bounds are considered only in expectation, as is the case in the present
chapter.
When the range of payoffs is unknown, we consider a self-tuned version called AdaHedge

(De Rooij et al. [2014], see also earlier work by Cesa-Bianchi et al. [2007]) and do add extra-
exploration. The latter is not detrimental, given the trade-off between the distribution-free and
distribution-dependent bounds discussed in the previous section; we actually achieve that trade-off.
Algorithm 4.1 is stated in the case of adversarial oblivious learning, but to use it with stochastic
payoffs, if suffices to replace yt,At with Yt,At . It relies on a payoff estimation scheme, which we
discuss now.

In Algorithm 4.1, some initial exploration lasting K rounds is used to get a rough idea of the
location of the payoffs and to center the estimates used at an appropriate location. Following
by Auer et al. [2002b]), we consider, for all rounds t > K + 1 and arms a ∈ [K],

ŷt,a =
yt,At − C
pt,a

1{At=a} + C where C
def
=

1

K

K∑

s=1

ys,s . (4.8)

Note that all pt,a > 0 for Algorithm 4.1 due to the use of exponential weights. As proved
by Auer et al. [2002b], these estimates are (conditionally) unbiased. Indeed, the distributions
qt and pt (as well as the constant C) are measurable functions of the information Ht−1 =
(U0, y1,A1 , U1, . . . , yt−1,At−1) available at the beginning of round t > K + 1, and the arm At is
drawn independently at random according to pt based on an auxiliary randomization denoted
by Ut−1. Therefore, given that the payoffs are oblivious, the conditional expectation of ŷt,a with
respect to Ht−1 amounts to integrating over the randomness given by the random draw At ∼ pt:
for t > K + 1,

E
[
ŷt,a

∣∣Ht−1

]
=
yt,a − C
pt,a

P
(
At = a

∣∣Ht−1

)
+ C =

yt,a − C
pt,a

pt,a + C = yt,a . (4.9)

These estimators are bounded: assuming that all yt,a, thus also C, belong to the range [m,M ],
and given that the distributions pt were obtained by a mixing with the uniform distribution, with
weight γt, we have pt,a > γt/K, and therefore,

∀t > K + 1, ∀a ∈ [K],
∣∣ŷt,a − C

∣∣ 6 |yt,a − C|
pt,a

6
M −m
γt/K

. (4.10)

Remark. Algorithm 4.1 is invariant by affine changes (translations and/or multiplications by
positive factors) of the payoffs, as AdaHedge (see De Rooij et al. [2014, Theorem 16]) and the
payoff estimation scheme (4.8) so are. This is key for adaptation to the range.
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Algorithm 4.1 AdaHedge for K–armed bandits, with extra-exploration
1: Input: a sequence (γt)t>1 in [0, 1] of extra-exploration rates; a payoff estimation scheme
2: for rounds t = 1, . . . ,K do
3: Draw arm At = t
4: Get and observe the payoff yt,t
5: end for
6: AdaHedge initialization: ηK+1 = +∞ and qK+1 = (1/K, . . . , 1/K)

def
= 1/K

7: for rounds t = K + 1, . . . do
8: Define pt by mixing qt with the uniform distribution according to pt = (1− γt)qt + γt1/K
9: Draw an arm At ∼ pt (independently at random according to the distribution pt)

10: Get and observe the payoff yt,At
11: Compute estimates ŷt,a of all payoffs with the payoff estimation scheme considered
12: Compute the mixability gap δt > 0 based on the distribution qt and on these estimates:

δt = −
K∑

a=1

qt,a ŷt,a +
1

ηt
ln

(
K∑

a=1

qt,ae
ηtŷt,a

)
, with δt =

K∑

a=1

qt,a ŷt,a + max
a∈[K]

ŷt,a

︸ ︷︷ ︸
when ηt = +∞

13: Compute the learning rate ηt+1 =

(
t∑

s=K+1

δs

)−1

lnK

14: Define qt+1 component-wise as

qt+1,a = exp

(
ηt+1

t∑

s=K+1

ŷa,s

)/
K∑

k=1

exp

(
ηt+1

t∑

s=K+1

ŷk,s

)

15: end for

4.5.1. Distribution-free scale-free regret analysis

Theorem 4.3. AdaHedge for K–armed bandits (Algorithm 4.1) with a non-increasing extra-
exploration (γt) smaller than 1/2 and the estimation scheme given by (4.8) ensures that for all
bounded ranges [m,M ], for all oblivious individual sequences y1, y2, . . . in [m,M ]K , for all T > 1,

RT (y1:T ) 6 3(M −m)
√
KT lnK + 5(M −m)

K lnK

γT
+ (M −m)

T∑

t=K+1

γt .

Proof sketch. We provide only a sketch of proof and refer the reader to 4.A for a complete,
detailed and commented proof. A direct application of the AdaHedge regret bound (Lemma 3 and
Theorem 6 of De Rooij et al. [2014]), bounding the variance terms of the form E

[
(X − E[X])2

]

by E
[
(X − C)2

]
, ensures that

max
k∈[K]

T∑

t=K+1

ŷt,k −
T∑

t>K+1
a∈[K]

qt,a ŷt,a 6 2

√√√√
∑

t>K+1
a∈[K]

qt,a
(
ŷt,a − C

)2
lnK +

M −m
γT /K

(
2 +

4

3
lnK

)
.

We take expectations, use the definition of the pt in terms of the qt in the left-hand side, and
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apply Jensen’s inequality in the right-hand side to get

E

[
max
k∈[K]

T∑

t=K+1

ŷt,k −
T∑

t=K+1

=yt,At︷ ︸︸ ︷
K∑

a=1

pt,a ŷt,a +
T∑

t=K+1

γt

E[...]∈[m−M,M−m]︷ ︸︸ ︷
K∑

a=1

(1/K − qt,a) ŷt,a
]

6 2

√√√√
T∑

t=K+1

K∑

a=1

E
[
qt,a
(
ŷt,a − C

)2]
lnK +

M −m
γT /K

(
2 +

4

3
lnK

)
.

Since pt,a > (1− γt)qt,a with γt 6 1/2 by assumption on the extra-exploration rate, we have the
bound qt,a 6 2pt,a. Together with standard calculations similar to (4.9), we have

E
[
qt,a
(
ŷt,a − C

)2]
6 2E

[
pt,a(ŷt,a − C)2

∣∣∣Ht−1

]
= 2E

[
(yt,At − C)2

pt,a
1{At=a}

]
= 2 (yt,a − C)2

︸ ︷︷ ︸
6(M−m)2

.

The proof is concluded by collecting all bounds and by taking care of the first K rounds.

Straightforward calculations then lead to the following consequence of Theorem 4.3.

Corollary 4.1. Fix a parameter α ∈ (0, 1). AdaHedge for K–armed bandits (Algorithm 4.1) with
the extra-exploration

γt = min
{

1/2,
√

5(1− α)K lnK
/
tα
}

and the estimation scheme given by (4.8) ensures that for all bounded ranges [m,M ], for all
oblivious individual sequences y1, y2, . . . in [m,M ]K , for all T > 1,

RT (y1:T ) 6

(
3 +

5√
1− α

)
(M −m)

√
K lnK Tmax{α,1−α} + 10(M −m)K lnK .

In particular, for α = 1/2, the bound 7(M −m)
√
TK lnK + 10(M −m)K lnK holds.

Proof. We have, first,

T∑

t=K+1

γt 6
√

5(1− α)K lnK
T∑

t=K+1

t−α 6
√

5(1− α)K lnK

∫ T

0

1

tα
dt =

√
5K lnK

1− α T 1−α ,

second, using the definition of γT as a minimum,

K lnK

γT
6
K lnK

1/2
+

TαK lnK√
5(1− α)K lnK

= 2K lnK +

√
K lnK

5(1− α)
Tα ,

and third,
√
T 6 Tmax{α,1−α}, so that the regret bound of Theorem 4.3 may be further bounded

by

RT (y1:T ) 6 (M −m)
√
K lnK

(
3 + 2

√
5

1− α

)
Tmax{α,1−α} + 10(M −m)K lnK .

The claimed bound is obtained by bounding 2
√

5 by 5.

This value α = 1/2 is the best one to consider if one is only interested in a distribution-free
bound (i.e., one is not interested in the distribution-dependent rates for the regret).
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4.5.2. Distribution-dependent regret analysis, and discussion of the trade-off

For α ∈ [1/2, 1), Algorithm 4.1 tuned as in Corollary 4.1 is adaptive to the unknown range of
payoffs with a distribution-free scale-free regret bound

ΦAH
free(T ) =

(
3 +

5√
1− α

)√
K lnK Tα + 10K lnK (4.11)

for oblivious individual sequences thus also for stochastic bandits, with the same regret bound.
(The superscript AH in ΦAH

free stands for AdaHedge.) The trade-off stated in Theorem 4.2 indicates
that the best possible distribution-dependent rate for adaptation to the unknown range is
determined by T/ΦAH

free(T ), which is of order T 1−α. It indicates, more precisely, that for all ν in
D−,+,

lim inf
T→∞

RT (ν)

T/ΦAH
free(T )

>
1

4

K∑

a=1

∆a .

The following theorem shows that this best possible distribution-dependent rate is indeed achieved
and quantifies the gap between the distribution-dependent constants at hand: they differ by two
multiplicative factors, a numerical factor of 4× 12/(1− α) and a lnK factor.

Theorem 4.4. Consider Algorithm 4.1 tuned as in Corollary 4.1, for α ∈ [1/2, 1). For all
distributions ν1, . . . , νK in D−,+,

lim sup
T→∞

RT (ν)

T/ΦAH
free(T )

6
12 lnK

1− α
K∑

a=1

∆a . (4.12)

The proof is provided in 4.A. It follows quite closely that of Theorem 3 in Seldin and Lugosi
[2017], where the authors study a variant of the Exp3 algorithm of Auer et al. [2002b] for stochastic
rewards. It consists, in our setting, in showing that the number of times the algorithm chooses
suboptimal arms is almost only determined by the extra-exploration. Our proof is simpler as we
aim for cruder bounds. The main technical difference and issue to solve lies in controlling the
learning rates ηt, which heavily depend on data in our case.

4.6. Numerical experiments

We describe some numerical experiments on synthetic data to illustrate the performance of the
new algorithms introduced compared to earlier approaches; we focus on how algorithms adapt to
the scale of payoffs.

Five (families of) algorithms are considered. The first algorithm compared is vanilla UCB
(with a 2 lnT exploration factor, as in the original reference by Auer et al. [2002a]) and only
adapt it to take the range [m,M ] of payoffs into account, by adding a M −m factor in front of
the upper confidence bound (see details below). We also compare AdaHedge for bandits and
another strategy, alluded at in Section 4.7 and to be described in details in Appendices 4.B.2
and 4.C.4, called AdaFTRL with 1/2–Tsallis entropy, a generalization of the INF strategy of
Audibert and Bubeck [2009]. As the latter was introduced to handle losses (nonpositive payoffs),
we will consider such nonpositive payoffs in our setting. It turns out that AdaHedge for bandits
can be slightly improved in this case (see Appendices 4.B.2 and 4.C.3), by centering estimates at
C = 0. Finally, we also add a simple follow-the-leader strategy (referred to as FTL; i.e., a strategy
picking at each round the arm with best payoff estimate so far) and the random strategy (i.e.,
picking at each round an arm uniformly at random). FTL and the random strategies will exhibit
undesirable performance similar to the ones of incorrectly tuned instances of UCB (respectively,
with too small and too large a parameter σ).
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Stochastic setting: bandit problems considered. We consider stochastic bandit problems ν(α)

indexed by a scale parameter α ∈ {0.01, 0.1, 10, 100}. More precisely, ν(α) = (ν
(α)
a )a∈[K] with

K = 30 arms, each associated with a uniform distribution defined by

ν(α)
a =

{
Unif

(
[−α, 0]

)
if a = 1,

Unif
(
[−1.2α, −0.2α]

)
if a 6= 1,

so that all distributions are commonly supported on [m,M ] = [−1.2α, 0], with arm 1 being the
unique optimal arm. Given the scale values M −m = 1.2α obtained for the ranges [m,M ] as α
varies, we consider four instances of UCB, with respective upper confidence bounds

µ̂a(t) + 1.2σ

√
2 lnT

Na(t)
, for σ ∈ {0.01, 0.1, 10, 100} ,

where Na(t) is the number of times arm a was pulled up to round t and µ̂a(t) denotes the empirical
average of payoffs obtained for arm a when it was played.

Experimental setting. Each algorithm is run N = 300 times, on a time horizon T = 100 000.
We plot estimates of the rescaled regret RT (ν(α))/α to have a meaningful comparison between
the bandit problems.
These estimates are constructed as follows. We denote by

µ(α)
a =

{
−α/2 if a = 1

−0.7α if a 6= 1

the mean of arm a in ν(α). We index the arms picked in the n–th run by an additional subscript
n, so that AT,n refers to the arm picked by some strategy at time t in the n–th run. The expected
regret of a given strategy can be rewritten as

RT (να) = T max
a∈[K]

µ(α)
a − E

[
T∑

t=1

µ
(α)
At

]
= −Tα/2− E

[
T∑

t=1

µ
(α)
At

]

and is estimated by

R̂T (α) =
1

N

N∑

n=1

R̂T (α, n) where R̂T (α, n) = −Tα/2−
T∑

t=1

µ
(α)
At,n

.

On Figure 4.1 we therefore plot the estimates R̂T (α)/α of the rescaled regret as solid lines.
The shaded areas correspond to ±2 standard errors of the sequences

(
R̂T (α, n)/α

)
n∈[N ]

.

Complexity. The time complexity of FTL and of the instances of UCB lies only in the update of
the payoff estimate of the selected arm and in the choice of the next arm. AdaHedge for bandits
has a higher runtime due to the additional cost of computing the distributions qt and pt over the
arms and the mixability gaps. AdaFTRL for bandits with 1/2–Tsallis entropy is the most time
consuming of our algorithms, as it requires twice solving an optimization problem: once for the
computation of the distributions over the arms and once for the mixability gaps; see Section 4.C.4
for specific details on the said optimization problem and hints on an efficient solution thereof.

The memory complexity of all algorithms considered here is constant and scales linearly with
K. The algorithms only need to keep in memory a vector of (cumulative or average) payoffs
estimates and (for some) the cumulative mixability gaps.
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Table 4.1.: Average runtimes of the (families of) algorithms considered, measured in seconds per
run; as a reminder, we performed N = 300 runs for each algorithm.

Random play FTL UCB family Bandit AdaHedge Tsallis–AdaFTRL

X = 1.51 s /run 1.7X 1.7X 7.9X 32.4X

α = 0.01 α = 0.1 α = 10 α = 100 

α = 0.01 α = 0.1 α = 10 α = 100 

Figure 4.1.: Comparison of the rescaled regrets of various strategies over bandit problems να,
where α ranges in {0.01, 0.1, 10, 100}. Each algorithm was run N = 300 times
on every problem for T = 100 000 time steps. Solid lines report the values of the
estimated rescaled regrets, while shaded areas correspond to ±2 standard errors of
the estimates.
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All experiments were designed in Python, using the NumPy and joblib libraries, and were run
on a standard laptop computer (with an Intel Core i5 processor). The code and setup for these
experiments were only moderately optimized for computational efficiency. We display the average
runtimes of all algorithms in Table 4.1; they are provided only for illustration and could certainly
be significantly improved .

Discussion of the results. A first observation is that, as expected, our algorithms (see the third
lines of Figure 4.1) are unaffected by the scale of the problems (up to a minor numerical stability
issue discussed below). They yield favorable results (note that the range of the y–axis for the third
line is smaller than the ranges in the first two lines), with AdaFTRL with 1/2–Tsallis entropy
exhibiting a better performance than AdaHedge for bandits (our theoretical bounds reflect this,
see Appendices 4.B and 4.C).

UCB tuned with the correct scale obtains the best results overall, which is consistent with the
folklore knowledge that UCB performs well in practice. However, and this is our major second
observation, the performance of UCB worsens dramatically when the scale is misspecified. When
UCB is run with a scale parameter σ that is too small, it behaves similarly to FTL, incurring
linear regret with extreme variance. When the scale parameter σ is too large, UCB is essentially
playing at random and incurs linear regret too.
We conclude this section by discussing a minor issue of numerical stability: the error bars of

for the expected regret of AdaFTRL with 1/2–Tsallis entropy seem to increase slightly with the
scale α (while in theory they are independent of α). This is probably due to larger numerical errors
associated with the approximate solutions of the optimization problems discussed in Section 4.C.4.

A final note: UCB with estimated range. For the sake of completeness, we indicate that a
version of UCB estimating the range, i.e., considering indices of the form

µ̂a(t) + r̂t

√
2 lnT

Na(t)
,

where r̂t estimates the range M −m as

r̂t = max
s6t

YAs,s −min
s6t

YAs,s ,

obtained an excellent performance on our simulations (the same as the optimally tuned version of
UCB). We were however unable to provide theoretical guarantees that match our lower bounds.
This is why we do not discuss this natural algorithm in the present chapter.

4.7. Extensions present in the appendix

One known end on the payoff range. It is folklore knowledge that there is a difference in
nature between dealing with nonnegative payoffs (gains) or dealing with nonpositive payoffs
(losses) for regret minimization under bandit monitoring; see Cesa-Bianchi and Lugosi [2006,
Remark 6.5, page 164] for an early reference and Kwon and Perchet [2016] for a more complete
literature review. Actually, 0 plays no special role, the issue is rather whether one end of the
payoff range is known. What follows is detailed in 4.B.
Known lower end m on the payoff range. In that case we deal (up to a translation) with gains.

This knowledge does not provide any advantage. Indeed, the impossibility results of Section 4.4
still hold, namely, no lnT rate may be achieved for scale-free distribution-dependent regret bounds,
as in (4.4), and a trade-off exists between scale-free distribution-free and distribution-dependent
regret bounds (Theorem 4.2 holds).
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Known upper end M on the payoff range. In that case we deal (up to a translation) with losses,
also known as semi-bounded rewards. The results of Section 4.4 do not hold anymore. The DMED
strategy of Honda and Takemura [2015] achieves the optimal asymptotic distribution-dependent
regret bound, of order lnT . We also recover some classical results: the INF strategy of Audibert
and Bubeck [2009] may be extended to provide a scale-free distribution-free regret bound of order√
KT , and the AdaHedge strategy does not need any mixing with the uniform distribution to

achieve the bound of Theorem 4.3.

Linear bandits. The techniques developed for adaptation to the range in Section 4.5 may be
generalized to deal with (oblivious) adversarial linear bandits, see details in 4.D.
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Appendix for Chapter 4

We provide the following additions and extensions to the core results described in the main
body of the chapter.
Appendix 4.A provides the complete proofs of the results of Section 4.5, namely, the ones of

Theorem 4.3, and Theorem 4.4.
Appendix 4.B studies whether the adaptation results described in the main body of the chapter

in the case of an unknown payoff range [m,M ] still hold when only one end of this range is unknown.
It turns out that when m is known but M is unknown, achieving a distribution-dependent bound
for adaptation to the range of order lnT is still impossible, and the trade-off between scale-free
distribution-free and distribution-dependent regret bounds still holds (Theorem 4.2 holds). The
picture is completely different when M is known but m is unknown, and improved scale-free
distribution-free regret bounds can be provided.
Appendix 4.C provides the statements and proofs of some technical results alluded in earlier

appendices: the full-information regret bound for AdaHedge, needed in the complete proof of
Theorem 4.3 in Appendix 4.A, as well as the improved scale-free distribution-free regret bounds
in the case the upper end M of the payoff range is known. All these results rely on a self-tuned
version of a follow-the-regularized-leader (FTRL) strategy called AdaFTRL.

Appendix 4.D deals with adaptation to the range for (oblivious) adversarial linear bandits.
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4.A. Complete proofs of the results of Section 4.5

We provide here complete proofs for Theorem 4.3 and Theorem 4.4, in this order.

4.A.1. Proof of Theorem 4.3

In Algorithm 4.1, for time steps t > K + 1, the weights qt are obtained by using the AdaHedge
algorithm of De Rooij et al. [2014] on the payoff estimates ŷt,a. AdaHedge is designed for the
case of a full monitoring (not a bandit monitoring), but the use of these estimates emulates a full
monitoring. Section 2.2 of De Rooij et al. [2014] (see also an earlier analysis by Cesa-Bianchi
et al. [2007]) ensures the bound stated next in Reminder 4.2. For the sake of completeness, we
rederive this bound in Appendix 4.C.2. We call pre-regret the quantity at hand in Reminder 4.2:
it corresponds to some regret defined in terms of the payoff estimates.

Reminder 4.2 (Application of Lemma 3 and Theorem 6 of De Rooij et al. [2014]). For all sequences
of payoff estimates ŷt,a lying in some bounded real-valued interval, denoted by [b, B], for all
T > K + 1, the pre-regret of AdaHedge satisfies

max
k∈[K]

T∑

t=K+1

ŷt,k −
T∑

t=K+1

K∑

a=1

qt,a ŷt,a 6 2
T∑

t=K+1

δt

where
T∑

t=K+1

δt 6

√√√√√
T∑

t=K+1

K∑

a=1

qt,a


ŷt,a −

∑

k∈[K]

qt,k ŷt,k




2

lnK

︸ ︷︷ ︸
6

√
T∑

t=K+1

K∑
a=1

qt,a(ŷt,a−c)2 lnK for any c∈R

+(B − b)
(

1 +
2

3
lnK

)

and AdaHedge does not require the knowledge of [b, B] to achieve this bound.

The bound of Reminder 4.2 will prove itself particularly handy for three reasons: first, it is
valid for signed payoffs (payoffs in R); second, it is adaptive to the range of payoffs; third, the
right-hand side looks at first sight not intrinsic enough a bound (as it also depends on the weights
qt) but we will see later that this dependency is particularly useful.
We recall that we start the summation in Reminder 4.2 at t = K + 1 because the AdaHedge

algorithm is only started at this time, after the initial exploration. The bound holding “for any
c ∈ R” is obtained by a classical bound on the variance.

Proof of Theorem 4.3. We deal with the contribution of the initial exploration by using the
inequality max(u + v) 6 maxu + max v, together with the fact that yt,a − yt,AT 6 M −m for
any a ∈ [K]:

RT (y1:T ) 6 max
a∈[K]

K∑

t=1

yt,a − E

[
K∑

t=1

yt,At

]

︸ ︷︷ ︸
6K(M−m)

+ max
a∈[K]

T∑

t=K+1

yt,a − E

[
T∑

t=K+1

yt,At

]
. (4.13)

We now transform the pre-regret bound of Reminder 4.2, which is stated with the distributions qt,
into a pre-regret bound with the distributions pt; we do so while substituting the bounds
B = C +KM/γT and b = C +Km/γT implied by (4.10) and the fact that (γt) is non-increasing,
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and by using the definition qt,a = pt,a − γt(1/K − qt,a) for all a ∈ [K]:

max
k∈[K]

T∑

t=K+1

ŷt,k −
T∑

t=K+1

K∑

a=1

pt,a ŷt,a +

T∑

t=K+1

γt

K∑

a=1

(1/K − qt,a) ŷt,a 6 2

T∑

t=K+1

δt

where
T∑

t=K+1

δt 6

√√√√
T∑

t=K+1

K∑

a=1

qt,a(ŷt,a − C)2 lnK +
(M −m)K

γT

(
1 +

2

3
lnK

)
.

(4.14)

As noted by Auer et al. [2002b], by the very definition (4.8) of the estimates,

K∑

a=1

pt,a ŷt,a = yt,At .

By (4.9), the tower rule and the fact that qt is Ht−1–measurable, on the one hand, and the fact
that the expectation of a maximum is larger than the maximum of expectations, on the other
hand, the left-hand side of the first inequality in (4.14) thus satisfies

E

[
max
k∈[K]

T∑

t=K+1

ŷt,k −
T∑

t=K+1

K∑

a=1

pt,a ŷt,a +
T∑

t=K+1

γt

K∑

a=1

(1/K − qt,a) ŷt,a
]

> max
k∈[K]

T∑

t=K+1

yt,k − E

[
T∑

t=K+1

yt,At

]
+

T∑

t=K+1

γt

(
K∑

a=1

yt,a/K

︸ ︷︷ ︸
∈[m,M ]

−
K∑

a=1

E
[
qt,a
]
yt,a

︸ ︷︷ ︸
∈[m,M ]

)

> max
k∈[K]

T∑

t=K+1

yt,k − E

[
T∑

t=K+1

yt,At

]
− (M −m)

T∑

t=1

γt .

As for the right-hand side of the second inequality in (4.14), we first note that by definition (see
line 4 in Algorithm 4.1), pt,a > (1− γt)qt,a with γt 6 1/2 by assumption on the extra-exploration
rate, so that qt,a 6 2pt,a; therefore, by substituting first this inequality and then by using Jensen’s
inequality,

E



√√√√

T∑

t=K+1

K∑

a=1

qt,a(ŷt,a − C)2 lnK


 6

√
2 E



√√√√

T∑

t=K+1

K∑

a=1

pt,a(ŷt,a − C)2 lnK




6
√

2

√√√√
T∑

t=K+1

K∑

a=1

E
[
pt,a(ŷt,a − C)2

]
lnK .

(4.15)

Standard calculations (see Auer et al. [2002b] again) show, similarly to (4.9), that for all a ∈ [K],

E
[
pt,a(ŷt,a − C)2

∣∣∣Ht−1

]
= E

[
(yt,At − C)2

pt,a
1{At=a}

]
= (yt,a − C)2 6 (M −m)2 ,

where the last inequality comes from (4.10). By the tower rule, the same upper bound holds for
the (unconditional) expectation. Therefore, taking the expectation of both sides of (4.14) and
collecting all bounds together, we proved so far

RT (y1:T ) 6 2
√

2︸︷︷︸
63

(M −m)
√
KT lnK + (M −m)

K lnK

γT

(
2 + γT
lnK

+
4

3

)

︸ ︷︷ ︸
65

+(M −m)

T∑

t=K+1

γt ,

where we used γT 6 1/2 and lnK > ln 2 as K > 2.
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4.A.2. Proof of Theorem 4.4

Proof of Theorem 4.4. Given the decomposition (4.1) of the regret, it is necessary and sufficient
to upper bound the expected number of times E[Na(t)] any suboptimal arm a is drawn, where by
definition of Algorithm 4.1,

E[Na(t)] = 1 + E

[
T∑

t=K+1

(
(1− γt)qt,a +

γt
K

)]
6 1 +

T∑

t=K+1

E[qt,a] +
1

K

T∑

t=K+1

γt .

We show below (and this is the main part of the proof) that

T∑

t=K+1

E[qt,a] = O(lnT ) . (4.16)

The proof of Corollary 4.1] shows in particular that

1

K

T∑

t=K+1

γt 6

√
5 lnK

(1− α)K
T 1−α .

Substituting the value (4.11) of ΦAH
free(T ) and using the decomposition (4.1) ofRT (ν) into

∑
∆a E[Na(t)]

then yield

RT (ν)

T/ΦAH
free(T )

6
∑

a∈[K]

∆a

√
5 lnK

(1− α)K

(
3 +

5√
1− α

)√
K lnK

(
1 + o(1)

)
+O

(
lnT

T 1−α

)
,

from which the stated bound follows, via the crude inequality 3
√

5
√

1− α+ 5 6 12.
Structure of the proof of (4.16). Let a? denote an optimal arm. By definition of qt,a and by

lower bounding a sum of exponential terms by any of the summands, we get

qt,a =

exp

(
ηt

t−1∑

s=K+1

ŷt,a

)

K∑

k=1

exp

(
ηt

t−1∑

s=K+1

ŷt,k

) 6 exp

(
ηt

t−1∑

t=K+1

(ŷt,a − ŷt,a?)
)
.

Then, by separating cases, depending on whether
∑t−1

t=K+1(ŷt,a − ŷt,a?) is smaller or larger than
−(t− 1−K)∆a/2, and by remembering that the probability qt,a is always smaller than 1, we get

T∑

t=K+1

E[qt,a] 6
T∑

t=K+1

E
[
exp

(
− ηt

(t− 1−K)∆a

2

)]
(4.17)

+

T∑

t=K+1

P

[
t−1∑

s=K+1

(ŷs,a − ŷs,a?) > −
(t− 1−K)∆a

2

]
.

We show that the sums in the right-hand side of (4.17) are respectively O(1) and O(lnT ).
First sum in the right-hand side of (4.17). Given the definition of the learning rates (see the

statement of Algorithm 4.1), namely,

ηt = lnK

/
t−1∑

s=K+1

δs , (4.18)
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we are interested in upper bounds on the sum of the δs. Such upper bounds were already derived
in the proof of Theorem 4.3; the second inequality in (4.14) together with the bound qt,a 6 2pt,a
stated in the middle of the proof immediately yield

t−1∑

s=K+1

δs 6

√√√√
t∑

s=K+1

K∑

a=1

qs,a
(
ŷs,a − C

)2
lnK +

(M −m)K

γt

(
1 +

2

3
lnK

)

6
√

2

√√√√
t∑

s=K+1

K∑

a=1

ps,a
(
ŷs,a − C

)2
lnK +

(M −m)K

γt

(
1 +

2

3
lnK

)
.

Unlike what we did to complete the proof of Theorem 4.3, we do not take expectations and
rather proceed with deterministic bounds. By the definition (4.8) of the estimated payoffs for the
equality below, by (4.10) for the first inequality below, and by the fact that the exploration rates
are non-increasing for the second inequality below, we have, for all s > K + 1,

K∑

a=1

ps,a
(
ŷs,a − C

)2
=

(
ys,As − C

)2

ps,As
6

(M −m)2

γs/K
6

(M −m)2

γt/K
. (4.19)

Therefore,

t−1∑

s=K+1

δs 6
√

2(M −m)

√
tK lnK

γt
+

(M −m)K

γt

(
1 +

2

3
lnK

)
def
= Dt = Θ

(√
t/γt + 1/γt

)
.

For the sake of concision, we denoted by Dt the obtained bound. Via the definition (4.18) of ηt,
the sum of interest is in turn bounded by

T∑

t=K+1

exp

(
−ηt

(
t− 1−K

)∆a

2

)
6

T∑

t=K+1

exp

(
−∆a lnK

2

t− 1−K
Dt

)
= O(1) ,

where the equality to O(1), i.e., the fact that the considered series is bounded, follows from the
fact that

−(t− 1−K)/Dt = Θ
(√

tγt + tγt

)
= Θ

(
t(1−α)/2 + t1−α

)
.

Second sum in the right-hand side of (4.17). We will use Bernstein’s inequality for martingales,
and more specifically, the formulation of the inequality by Freedman [1975, Thm. 1.6] (see also
Massart [2007, Section 2.2]), as stated next.

Reminder 4.3. Let (Xn)n>1 be a martingale difference sequence with respect to a filtration (Fn)n>0,
and let N > 1 be a summation horizon. Assume that there exist real numbers b and vN such that,
almost surely,

∀n 6 N, Xn 6 b and
N∑

n=1

E
[
X2
n

∣∣Fn−1

]
6 vN .

Then for all δ ∈ (0, 1),

P

[
N∑

n=1

Xn >

√
2vN ln

1

δ
+
b

3
ln

1

δ

]
6 δ .

For s > K + 1, we consider the increments Xs = ∆a − ŷs,a? + ŷs,a, which are adapted to
the filtration Fs = σ(A1, Z1, . . . , As, Zs), where we recall that Z1, . . . , Zs denote the payoffs
obtained in rounds 1, . . . , s. Also, as ps is measurable with respect to past information Fs−1 and
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since payoffs are drawn independently from everything else (see Section 4.2), we have, by the
definition (4.8) of the estimated payoffs (where we rather denote by Ys,a the payoffs drawn at
random according to νa, to be in line with the notation of Section 4.2 for stochastic bandits): for
all a ∈ [K],

E
[
ŷs,a

∣∣Fs−1

]
=

E[Ys,a | Fs−1]− C
ps,a

1{As=a} + C =
µa − C
ps,a

1{As=a} + C = µa .

As a consequence, E[Xs | Fs−1] = E
[
∆a − ŷs,a? + ŷs,a | Fs−1

]
= 0. Put differently, (Xs)s>K+1 is

indeed a martingale difference sequence with respect to the filtration (Fs)s>K .
We now check that the additional assumptions of Reminder are satisfied. Manipulations and

arguments similar to the ones used in (4.10) and (4.19) show that for all s > K + 1,

∆a − ŷs,a? + ŷs,a 6 ∆a −
Ys,a? − C
ps,a

1{As=a?} +
Ys,a − C
ps,a

1{As=a}

6 (M −m)(1 +K/γs) 6 b
def
= (M −m)(1 +K/γt) .

For the variance bound, we first note that for all s 6 t − 1, we have (ŷs,a − C)(ŷs,a? − C) = 0
because of the indicator functions, and therefore,

E
[(

∆a − ŷs,a? + ŷs,a
)2 ∣∣∣Fs−1

]
6 E

[(
ŷs,a? + ŷs,a

)2 ∣∣∣Fs−1

]

6 E
[(
ŷs,a? − C

)2 ∣∣∣Fs−1

]
+ E

[(
ŷs,a − C

)2 ∣∣∣Fs−1

]
;

in addition, for all a ∈ [K] (including a?),

E
[(
ŷs,a − C

)2 ∣∣∣Fs−1

]
= E

[
(Ys,As − C)2

p2
s,a

1{As=a}

∣∣∣∣Fs−1

]
6

(M −m)2

ps,a
6

(M −m)2K

γt
.

Therefore
t−1∑

s=K+1

E
[(

∆a − ŷs,a? + ŷs,a
)2 ∣∣∣Fs−1

]
6

2K(M −m)2(t− 1−K)

γt
6 vt

def
=

2(M −m)2tK

γt
.

Bernstein’s inequality (Reminder 4.3) may thus be applied; the choice δ = 1/t therein leads to

P

[
t−1∑

s=K+1

(
∆a − (ŷs,a? − ŷs,a)

)
> 2(M −m)

√
tK

γt
ln t+

M −m
3

(
1 +

K

γt

)
ln t

︸ ︷︷ ︸
def
= D′t

]
6

1

t
.

As
√
t/γt = O(t(1+α)/2) and 1/γt = O(tα) as t→∞, where α < 1, and as ∆a > 0 (given that

we are considering a suboptimal arm a), there exists t0 ∈ N such that for all t > t0,

D′t 6
(t− 1−K)∆a

2

thus

P

[
t−1∑

s=K+1

(ŷs,a − ŷs,a?) > −
(t− 1−K)∆a

2

]
= P

[
t−1∑

s=K+1

(
∆a − (ŷs,a? − ŷs,a)

)
>

(t− 1−K)∆a

2

]

6 P

[
t−1∑

s=K+1

(
∆a − (ŷs,a? − ŷs,a)

)
> D′t

]
6

1

t
.
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Therefore, as T →∞
T∑

t=1

P

[
t−1∑

t=K+1

(ŷt,a − ŷt,a?) > −
(t− 1−K)∆a

2

]
= O(lnT ) ,

as claimed. This concludes the proof.
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4.B. The case of one known end of the payoff range
(bandits with gains or with losses)

In this section, we only discuss distribution-free and distribution-dependent upper bounds on
the regret, as well as distribution-dependent lower bounds on the regret. This is because the
(M −m)

√
KT distribution-free regret lower bound of Auer et al. [2002b] holds even in the case

when both ends m and M of the range are known.
We identified two difficulties in this chapter when the range of bounded payoffs is unknown.

First, no lnT rate for distribution-dependent bounds may be achieved, see (4.4) and Theorem 4.1.
Second, there exists a trade-off between distribution-free and distribution-dependent rates for
range adaptation, see Theorem 4.2. It turns out that when the upper end M on the payoff range
is known, these difficulties (should) disappear. On the contrary, they remain when only the
lower end m on the payoff range is known. These statements are detailed and proved below.
We therefore contribute to enlightening the difference in nature between bandits with gains
and bandits with losses, a topic that was already discussed by Cesa-Bianchi and Lugosi [2006,
Remark 6.5, page 164] and Kwon and Perchet [2016].

4.B.1. Known lower end m but unknown upper end M on the payoff range

This case corresponds to considering the model Dm,+ defined in (4.5) as

Dm,+ =
⋃

M∈R,
m<M

Dm,M .

What is discussed below actually also holds for the larger model Dm,+∞ consisting of probability
distributions with a first moment supported [m,+∞). Note that we have the strict inclusion
Dm,+ ⊂ Dm,+∞ as distributions in Dm,+∞ are not bounded in general.

Definitions 4.1 and 4.2 handle the case of D−,+ but can be adapted in an obvious way to Dm,+
by fixing m, by having the strategy know m, and require the bounds to hold for all M ∈ [m,+∞)
and all bandit problems in Dm,M . We then refer to scale-free distribution-free regret bounds and
distribution-dependent rates for adaptation to the upper end of the range.

We already explained that the construction used to prove Theorem 4.1 not only works for D−,+
but also for Dm,+. It turns out that the exact same construction was considered in Theorem 4.2:
defining ν ′a = (1− ε)νa + εδµa+2∆a/ε from a distribution νa. When νa ∈ Dm,+, we also have that
ν ′a is a bounded distribution, with support lower bounded by m, that is ν ′a ∈ Dm,+. The proof
and thus the result of Theorem 4.2 thus also holds for the case of Dm,+.

4.B.2. Known upper end M but unknown lower end m on the payoff range

When the upper end M of the payoff range is known, lnT distribution-dependent regret rates
are possible and there exists an algorithm achieving the optimal problem-dependent constant
(Section 4.B.2). Also,

√
KT scale-free distribution-free regret upper bounds may be achieved

(Section 4.B.2), which exactly match the distribution-free lower bound. We could not exhibit a
strategy that would simultaneously achieve both optimal distribution-dependent and distribution-
free regret bounds, unlike what is known in the case of a known payoff range (the KL-UCB-switch
strategy by Garivier et al. [2018]). We however conjecture that this should be possible and that,
at least, no trade-off exists between the two bounds (unlike the one imposed by Theorem 4.2).

The case considered in this subsection corresponds to the models D−,M , for M ∈ R, defined as

D−,M =
⋃

m∈R,
m<M

Dm,M .
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Some of the results actually also hold more generally for semi-bounded payoffs, which correspond
to the models D−∞,M , for M ∈ R, defined as the sets of probability distributions with a first
moment supported on (−∞,M ]. Note that we have the strict inclusion D−,M ⊂ D−∞,M as
distributions in D−∞,M are not bounded in general.

Known M but unknown m, part 1: distribution-dependent bounds

We may again adapt Definitions 4.1 and 4.2 to define the concepts of distribution-free and
distribution-dependent rates for adaptation to the lower end of the range, by considering the
models D−,M or D−∞,M therein. The DMED strategy of Honda and Takemura [2015] does
achieve a lnT distribution-dependent rate for adaptation to the lower end of the range and is even
competitive against all bandit problems in D−∞,M . The achieved upper bound is asymptotically
optimal as indicated by Reminder 4.1.

Reminder 4.4 (Honda and Takemura [2015], main theorem). The regret of the DMED strategy is
bounded, for all bandit problems ν in D−∞,M , as

lim sup
T→∞

RT (ν)

lnT
6

K∑

a=1

∆a

Kinf(νa, µ?,D−∞,M )
.

The nice and deep result of Reminder 4.4 implies that from the distribution-dependent point of
view, adaptation to the lower end m of the range is automatic (if such a lower end exists: result
holds also when there is no lower bound on the payoffs). Our intuition and understanding for
this situation is the following. When the model is Dm,M for known ends m and M , the optimal
constant for the lnT regret is given (see again Reminder 4.1) for all bandit problems ν in Dm,M
by

C(ν,m,M) =
K∑

a=1

∆a

Kinf(νa, µ?,Dm,M )
.

But it actually turns out, as indicated by Proposition 4.1 below, that C(ν,m,M) is independent
of m and equals C(ν,−∞,M).

Proposition 4.1. Fix M ∈ R. For all m 6M , for all ν ∈ Dm,M and all µ > E(ν),

Kinf

(
ν, µ,Dm,M

)
= Kinf

(
ν, µ,D−∞,M

)
.

Proof. The inequality > is immediate, as the right-hand side of the equality is an infimum over
the larger set D−∞,M . For the inequality 6, we may assume with no loss of generality that µ < M ,
as otherwise, there is no distribution ν ′ neither in Dm,M nor in D−∞,M with E(ν ′) > µ >M , so
that both Kinf quantities equal +∞.
We fix M , m, ν and µ as in the statement of the proposition. It suffices to show that in

the case µ < M , for all ν ′ ∈ D−∞,M with E(ν ′) > µ and ν � ν ′, there exists ν ′′ ∈ Dm,M with
E(ν ′′) > µ and KL(ν, ν ′′) 6 KL(ν, ν ′). (If ν is not absolutely continuous with respect to ν ′, then
KL(ν, ν ′) = +∞ and taking ν ′′ as the Dirac mass δM at M is a suitable choice.) To do so, given
such a distribution ν ′, we first note that ν � ν ′ and ν ∈ Dm,M , i.e., ν([m,M ]) = 1, entail that
ν ′([m,M ]) > 0, so that we may define the restriction ν ′′ = ν ′[m,M ] of ν

′ to [m,M ]; its density
with respect to ν ′ is given by

dν ′′

dν ′
(x) = ν ′

(
[m,M ]

)−1
1{x∈[m,M ]} ν ′–a.s. for all x ∈ R.
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We have the absolute-continuity chain ν � ν ′′ � ν ′, and the Radon-Nykodym derivatives thus
defined satisfy

dν
dν ′

(x) =
dν
dν ′′

(x)
dν ′′

dν ′
(x) = ν ′

(
[m,M ]

)−1 dν
dν ′′

(x)1{x∈[m,M ]} ν ′–a.s. for all x ∈ R. (4.20)

Moreover E(ν ′′) > E(ν ′), and thus E(ν ′′) > µ, as

E(ν ′) =

∫

(−∞,m)
x dν ′(x) +

∫

[m,M ]
x dν ′(x)

6
(

1− ν ′
(
[m,M ]

))
m+ ν ′

(
[m,M ]

)
E(ν ′′) 6 E(ν ′′) .

Finally, by (4.20), which also holds ν–almost surely, and the definition of Kullback-Leibler
divergences,

KL(ν, ν ′) =

∫

(−∞,M ]
ln

(
dν
dν ′

)
dν = − ln ν ′

(
[m,M ]

)
+

∫

[m,M ]
ln

(
dν
dν ′′

)
dν

= − ln ν ′
(
[m,M ]

)
+ KL(ν, ν ′′) > KL(ν, ν ′′) .

This concludes the proof.

Known M but unknown m, part 2: distribution-free bounds

A first observation is that (as in the case of a fully known payoff range) AdaHedge does
not require any extra-exploration (i.e., any mixing with the uniform distribution) to achieve a
scale-free distribution-free regret bound of order (M −m)

√
KT lnK. This is formally detailed in

Appendix 4.C.3. Both this result and the one described next rely on the AdaFTRL methodology
of Orabona and Pál [2018], which we recall in Appendix 4.C.1.
The INF strategy of Audibert and Bubeck [2009] can be seen as an instance of FTRL with

1/2–Tsallis entropy, as essentially noted by Audibert et al. [2014]. The INF strategy provides a
distribution-free regret bound of order

√
KT in case of a known payoff range. Up to some technical

issues, which we could solve, it may be extended to provide a similar scale-free distribution regret
bound, which is optimal as it does not contain any superfluous

√
lnK factor. The exact statement

to be proved in Appendix 4.C.4 is the following: AdaFTRL with 1/2–Tsallis entropy relying
on an upper bound M on the payoffs ensures that for all m ∈ R with m 6M , for all oblivious
individual sequences y1, y2, . . . in [m,M ]K , for all T > 1,

RT (y1:T ) 6 4(M −m)
√
KT + 2(M −m) .

We conclude this section by providing a high-level idea of the technical issues that were solved to
obtain the latter bound. We consider estimates ŷt,a obtained from (4.8) by replacing the constant
C therein by the known upper end M . We however could not simply derive the regret bound from
some generic full-information regret guarantee for AdaFTRL with 1/2–Tsallis entropy, as to the
best of our knowledge, there are no meaningful full-information regret bounds for Tsallis entropy
in the first place, and as these would anyway scale with the effective range of the estimates. We
instead provide a more careful analysis exploiting special properties of the estimates: ŷt,a = M
for all a 6= At and ŷt,At 6M .

Open problem 1. We however were unable so far to provide a non-trivial scale-free distribution-
dependent regret bound for our strategy AdaFTRL with 1/2–Tsallis entropy. Note that there
exist O(lnT ) bounds for FTRL with 1/2–Tsallis entropy, i.e., with a different tuning of the
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learning rates (namely, ηt of order 1/
√
t, but then, the range adaptive distribution-free guarantees

are lost); see Zimmert and Seldin [2019]. We would have liked to prove such a O(lnT ) scale-free
distribution-dependent regret bound for AdaFTRL with 1/2–Tsallis entropy (or even achieve a
more modest aim like a poly-logarithmic bound), as this seems possible and would have shown
with certainty that the trade-off imposed by Theorem 4.2 does not hold anymore when the upper
end M on the payoff range is known. The techniques of Seldin and Lugosi [2017], which consist
in a precise tuning of the extra-exploration in their variant of the Exp3 algorithm of Auer et al.
[2002b] together with a gap estimation scheme, or the ones of Zimmert and Seldin [2019] might
be helpful to that end. We leave this problem for future research.

Open problem 2. For the sake of completeness, we underline here that either getting rid of the√
lnK factor in the scale-free distribution-free regret bound of AdaHedge for K–armed bandits in

the general case of an unknown upper end M on the payoff range, or, alternatively, exhibiting a
larger lower bound of order

√
KT lnK for this scale-free distribution-free regret, is also a problem

that we could not solve yet.
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4.C. Known results on AdaFTRL and AdaHedge in full
information and applications thereof in the bandit setting

The aim of this section is two-fold: first, we provide, for the sake of self-completeness, a proof
of the full-information bound for AdaHedge (Reminder 4.2 in Appendix 4.A); second, we state
and prove the improved bandit regret bounds alluded at in Appendix 4.B.2, in the case of a
known upper end M but unknown lower end m of the payoff range. We do respectively so
in Appendices 4.C.2 (for the full-information bound for AdaHedge) and in Appendices 4.C.3
and 4.C.4 (for the improved bandit regret bounds).

All these bounds can be put under the umbrella of the AdaFTRL methodology of Orabona and
Pál [2018] (AdaFTRL stands for adaptive follow-the-regularized-leader), which we recall, again for
the sake of self-completeness, in Section 4.C.1. This AdaFTRL methodology was partially built
on and inspired the analysis for AdaHedge, which is a special case of AdaFTRL with entropic
regularizer (see De Rooij et al. [2014] for AdaHedge, as well as the earlier analysis by Cesa-Bianchi
et al. [2007]). Koolen [2016] actually proposes an alternative analysis of AdaFTRL, closer to
the AdaHedge formulation, namely, using directly some mixability gaps instead of upper bounds
thereon; this is the analysis we recall below in Section 4.C.1.

4.C.1. AdaFTRL for full information (reminder of known results)

To avoid confusion with the notation used in the main body of the chapter, we first describe
the considered setting of prediction of oblivious individual sequences with full information.

Full-information setting. The game between the player and the environment is actually the
same as the one described in Section 4.2.2, except that the player observes at each step the entire
payoff vector, not just the obtained payoff. More formally (and with a different piece of notation
z instead of y, to better distinguish the two settings), the environment first picks a sequence
of payoff vectors zt ∈ RK , for all t > 1. Then, in a sequential manner, at every time step t,
the player picks an action At, distributed according to a probability pt over the action set [K],
obtains the payoff zt,At , and observes the entire vector zt (i.e., also the payoffs zt,a corresponding
to the actions a 6= At).

In the sequel, we denote by S the simplex of probability distributions over [K] and we use the
short-hand notation, for p ∈ S and z ∈ RK ,

〈p, z〉 =
∑

a∈[K]

paza .

FTRL (follow-the-regularized-leader). The FTRL method consists in choosing pt according to

pt ∈ argmin
p∈S:F (p)<+∞

{
F (p)

ηt
−

t−1∑

s=1

〈p, zs〉
}
,

where F : RK → R ∪ {+∞} is a convex function, called the regularizer, and ηt is a non-negative
learning rate in (0,+∞], which may depend on past observations. The condition F (p) < +∞ will
always be satisfied for some p ∈ S by the considered regularizers (see below) and is only meant
to avoid the undefined +∞/+∞ in the case ηt = +∞. For the sake of concision we will however
omit it in the sequel.

Let us give a succint account of the convex analysis results we use here, following the exposition
of Lattimore and Szepesvári [2020, Chapter 26]. Using their terminology, the domain DomL of a
convex function L : RK → R ∪ {+∞} is the set {x ∈ RK : L(x) < +∞} of those points where it
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takes finite values. A convex function L : RK → R∪{+∞} is said to be Legendre if the interior of
its domain Int(DomL) is non-empty, if L is strictly convex and differentiable on Int(DomL), and
if its gradient ∇L blows up on the boundary of DomL. The minimizers of Legendre functions
may be seen to satisfy the following properties.

Proposition 4.2 (Special case of Lattimore and Szepesvári [2020, Proposition 26.14]). Let L be a Leg-
endre function and A ⊆ Rd be a convex set that intersects Int(DomL). Then L possesses a unique
minimizer x? over A, which belongs to Int(DomL), therefore ensuring that L is differentiable at
x?. Furthermore,

∀x ∈ A ∩DomL, 〈∇L(x?), x− x?〉 > 0 .

Finally, for x, y ∈ Rd, if F : RK → R ∪ {+∞} is differentiable at y, we define the Bregman
divergence between x and y as

BF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉 ; (4.21)

when F is convex, we have BF (x, y) > 0 for all x ∈ Rd.
We are now ready to state our first reminder, which is a classical regret bound for FTRL (see,

e.g., Lattimore and Szepesvári [2020, Chapter 28, Exercise 28.12] for references, and McMahan
[2017] for more general versions). It involves the diameter DF of the action set (the K–dimensional
simplex S in our case):

DF = max
p,q∈S

{
F (p)− F (q)

}
.

Reminder 4.5 (Generic full-information FTRL bound over the simplex). The FTRL method with a
Legendre regularizer F (of finite diameter DF ) and with any rule for picking the learning rates
so that they form a non-increasing sequence satisfies the following guarantee: for all sequences
z1, z2, . . . of vector payoffs in RK , the regret is bounded by

max
a∈[K]

T∑

t=1

zt,a −
T∑

t=1

〈pt, zt〉 6
DF

ηT
+

T−1∑

t=1

(
〈pt − pt+1, −zt〉 −

BF (pt+1, pt)

ηt

)

+

(
〈pT − p?, −zT 〉 −

BF (p?, pT )

ηT

)
, (4.22)

where p? ∈ argmax
p∈S

T∑

t=1

〈p, zt〉

and where the regret bound is well defined, thanks to the following observations and conventions:
for rounds t > 1 where ηt < +∞, the function F is indeed differentiable at pt so that BF (pt+1, pt)
is well defined; for rounds t > 1 where ηt = +∞, we set BF (pt+1, pt)/ηt = 0 irrespectively of the
fact whether F is differentiable at pt.

Proof of Reminder 4.5. Denote by St the cumulative vector payoff up to time t > 1. Fix T > 1.
For the sake of concision of the equations, we define pT+1 = p?, which is a Dirac mass at some
arm (that is, pT+1 is not given by FTRL). The regret can therefore be rewritten as

max
a∈[K]

T∑

t=1

zt,a −
T∑

t=1

〈pt, zt〉 = max
p∈S

T∑

t=1

〈p, zt〉 −
T∑

t=1

〈pt, zt〉

=

T∑

t=1

〈pT+1, zt〉 −
T∑

t=1

〈pt, zt〉 =

T∑

t=1

〈pt − pT+1, −zt〉 .
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By summation by parts,

T∑

t=1

〈pt − pT+1, −zt〉 =
T∑

t=1

T∑

s=t

〈ps − ps+1, −zt〉 =
T∑

s=1

s∑

t=1

〈ps − ps+1, −zt〉 =
T∑

s=1

〈ps − ps+1, −Ss〉

=
T∑

t=1

〈pt − pt+1, −zt〉+
T∑

t=1

〈pt − pt+1, −St−1〉 . (4.23)

If ηt < +∞, then by the optimality condition from Proposition 4.2 applied to the Legendre
function L : x 7→ η−1

t F (x)− 〈St−1, x〉, we know that L thus F are differentiable at pt and that
〈
η−1
t ∇F (pt)− St−1, pt+1 − pt

〉
> 0 ,

that is, 〈pt − pt+1, −St−1〉 6
〈
η−1
t ∇F (pt), pt+1 − pt

〉
.

If ηt = +∞, the previous inequality holds too, as by definition of pt, we have 〈pt − pt+1, −St−1〉 6 0
and as we set by convention η−1

t ∇F (pt) = 0 regardless of whether F is differentiable at pt or not.
Substituting in (4.23), we proved so far

T∑

t=1

〈pt − pT+1, −zt〉 6
T∑

t=1

〈pt − pt+1, −zt〉+
〈
η−1
t ∇F (pt), pt+1 − pt

〉
. (4.24)

This inequality can be rewritten in terms of Bregman divergences:

T∑

t=1

〈pt − p?, −zt〉 6
T∑

t=1

(
〈pt − pt+1, −zt〉 −

BF (pt+1, pt)

ηt

)
+

T∑

t=1

F (pt+1)− F (pt)

ηt

We now upper bound the second sum in the right-hand side: again by summation by parts, with
the convention η0 = +∞ and 1/η0 = 0:

T∑

t=1

F (pt+1)− F (pt)

ηt
=

T∑

t=1

(
F (pt+1)− F (pt)

) t∑

s=1

(
1

ηs
− 1

ηs−1

)

=

T∑

s=1

T∑

t=s

(
F (pt+1)− F (pt)

)( 1

ηs
− 1

ηs−1

)
=

T∑

s=1

(
F (pT+1)− F (ps)︸ ︷︷ ︸

6DF

)( 1

ηs
− 1

ηs−1︸ ︷︷ ︸
>0

)
6
DF

ηT
,

where the final equality is obtained by a telescoping sum, using that the sequence of learning
rates is non-increasing.

AdaFTRL, an adaptive version of FTRL. The AdaFTRL approach consists in tuning the
learning rate in a way that scales with the observed data. More precisely, it relies on a quantity
called the (generalized) mixability gap, which naturally appears as an upper bound on the
summands in the FTRL bound of Reminder 4.5:

δFt
def
= max

p∈S

{
〈pt − p, −zt〉 −

BF (p, pt)

ηt

}
> 0 . (4.25)

That mixability gaps are always nonnegative can be seen by taking p = pt in the definition. We
may further upper bound (4.22) when it holds by using this mixability gap:

max
a∈[K]

T∑

t=1

zt,a −
T∑

t=1

〈pt, zt〉 6
DF

ηT
+

T∑

t=1

δFT . (4.26)
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The AdaFTRL learning rate balances the two terms in the above regret bound by taking

ηt = DF

/
t−1∑

s=1

δFs ∈ (0,+∞] (4.27)

Note that this rule for picking learning rates indeed leads to non-increasing sequences thereof, as
the mixability gaps are non-negative. We summarize the discussion above in the theorem stated
next, from which subsequent (closed-from) regret bounds will be derived by using the specific
properties of the regularizer F at hand to upper bound the mixability gaps.

Theorem 4.5 (AdaFTRL tool box). Under the assumptions of Reminder 4.5 and with its conven-
tions, the regret of the FTRL method based on the learning rates (4.27) satisfies

max
a∈[K]

T∑

t=1

zt,a −
T∑

t=1

〈pt, zt〉 6 2

T∑

t=1

δFt (4.28)

where, moreover, (
T∑

t=1

δFt

)2

= 2DF

T∑

t=1

δFt
ηt

+

T∑

t=1

(
δFt
)2
. (4.29)

Proof. Inequality (4.28) follows from (4.26) and (4.27). The equality (4.29) is obtained by
expanding the squared sum,

(
T∑

t=1

δFt

)2

=
T∑

t=1

(
δFt
)2

+ 2
T∑

t=1

t−1∑

s=1

δFt δ
F
s =

T∑

t=1

(δFt )2 + 2
T∑

t=1

δFt
DF

ηt

where the final equality is obtained by substituting the definition (4.27) of ηt.

4.C.2. AdaHedge for full information (reminder of known results)

The content of this section is extracted from various sources, out of which the most important
is Koolen [2016]. We claim no novelty. This section recalls how the bound for AdaHedge
(Reminder 4.2, for which a direct proof was provided by De Rooij et al. [2014]) can also be seen
as a special case of the results of Section 4.C.1.

It is well-known (see Freund et al. [1997], Kivinen and Warmuth [1999], Audibert [2009]) and
can be found again by a simple optimization under a linear constraint that the Hedge weight
update corresponds to FTRL with the negentropy as a regularizer:

Hneg(p) =
K∑

a=1

pa ln pa ,

with value +∞ whenever pa = 0 for some a ∈ [K]. That is,

argmin
p∈S

{
Hneg(p)

ηt
−

t−1∑

s=1

〈p, zs〉
}

= {pt}

with pt,a = exp

(
ηt

t−1∑

s=1

za,s

)/
K∑

k=1

exp

(
ηt

t−1∑

s=1

zk,s

)
. (4.30)

144



4.C. Known results on AdaFTRL

Straightforward calculation show that the regularizer Hneg is indeed Legendre (see Lattimore and
Szepesvári [2020], Example 26.11) and the Hneg–diameter of the simplex equals DHneg = lnK.
Reminder 4.5 and Theorem 4.5 can therefore be applied.
AdaHedge is exactly AdaFTRL with Hneg as a regularizer. Indeed, the mixability gap (4.25)

can be computed in closed form (as noted by Reid et al. [2015, Lemma 5]) and reads in this case:

δnegt =





− 〈pt, zt〉+ η−1
t ln

(
K∑

a=1

pt,ae
ηtzt,a

)
if ηt < +∞,

− 〈pt, zt〉+ max
a∈[K]

zt,a if ηt = +∞.
(4.31)

Proof of the rewriting (4.31). When ηt = +∞, the mixability gap equals, by definition,

δFt = max
p∈S

{
〈pt − p, −zt〉

}
= −〈pt, zt〉+ max

p∈S
〈p, zt〉 = −〈pt, zt〉+ max

a∈[K]
zt,a .

For the case ηt < +∞, the following formula, which is at the heart of the closed-form formula for
the Hedge updates (4.30), will be useful: for any S ∈ Rd,

min
p∈S

{
Hneg(p)− 〈p, S〉

}
=

K∑

i=1

eSi
∑K

j=1 eSj

(
ln

(
eSi

∑K
j=1 eSj

)
− Si

)
= − ln

(
K∑

i=1

eSi

)
. (4.32)

When ηt < +∞, Equation (4.30) shows that pt lies in the interior Int(S) of S. The Bregman
divergence at hand in the definition (4.25) of the mixability gaps may be simplified into

BF (p, pt) = Hneg(p)−Hneg(pt)− 〈∇Hneg(pt), p− pt〉 = Hneg(p)− 〈∇Hneg(pt), p〉+ 1 ,

where the second inequality holds by taking into account the fact that Hneg is twice differentiable
at any p ∈ Int(S), with

∇Hneg(p) =
(
1 + ln pi

)
i∈[K]

so that 〈∇Hneg(p), p〉 = 1 +
K∑

i=1

pi ln pi = 1 +Hneg(p) .

The mixability gaps can therefore be rewritten

δFt = max
p∈S

{
〈pt − p, −zt〉 −

BF (p, pt)

ηt

}

= −〈pt, zt〉 −
1

ηt
+

1

ηt
max
p∈S

{
ηt 〈p, zt〉 −Hneg(p) + 〈∇Hneg(pt), p〉

}

= −〈pt, zt〉 −
1

ηt
− 1

ηt
min
p∈S

{
Hneg(p)−

〈
p, ηtzt +∇Hneg(pt)

〉}

Now by (4.32), specialized with S = ηtzt +∇Hneg(pt), we can compute the value of the minimum:

min
p∈S

{
Hneg(p)−

〈
p, ηtzt +∇Hneg(pt)

〉}
= − ln

(
K∑

i=1

eηtzi+1+ln pi

)
= −1− ln

(
K∑

i=1

pie
ηtzi

)
.

Collecting all equalities together concludes the proof.

Reminder 4.2 is thus a special case of the following bound.
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Theorem 4.6 (See Lemma 3 and Theorem 6 of De Rooij et al. [2014]). For all sequences of payoffs
zt,a lying in some bounded real-valued interval, denoted by [b, B], for all T > 1, the regret of the
AdaHedge algorithm with full information, as defined by (4.30) and (4.31), satisfies

max
k∈[K]

T∑

t=1

zt,k −
T∑

t=1

K∑

a=1

pt,a zt,a 6 2
T∑

t=1

δneg
t

where
T∑

t=1

δneg
t 6

√√√√√
T∑

t=1

K∑

a=1

pt,a


zt,a −

∑

k∈[K]

qt,k zt,k




2

lnK + (B − b)
(

1 +
2

3
lnK

)
,

and AdaHedge does not require the knowledge of [b, B] to achieve this bound.

The quantities

vt
def
=

K∑

a=1

pt,a


zt,a −

∑

k∈[K]

qt,k zt,k




2

in the bound correspond to the variance of the random variables taking values zt,a with probability
pt,a; the variational formula for variances indicates that

K∑

a=1

pt,a


zt,a −

∑

k∈[K]

qt,k zt,k




2

= min
c∈R

K∑

a=1

pt,a
(
zt,a − c

)2
,

which entails the final bound given as a note in the statement of Reminder 4.2.
The following formulation of Bernstein’s inequality will be useful in the proof of Theorem 4.6.

Lemma 4.1 (Bernstein’s inequality tailored to our needs). Let X be a random variable in [0, 1],
with variance denoting by Var(X). Then for all η > 0,

ln
(
E
[
eη(X−E[X])

])

η2
6

1

2
Var(X) +

1

3

ln
(
E
[
eη(X−E[X])

])

η
.

Proof . Denote by ψX(η) = ln
(
E
[
eη(X−E[X])

]
the log-moment generating function of X. A version

of Bernstein’s inequality with an appropriate control of the moments (as stated by Massart [2007,
Section 2.2.3] and applied to X with c = 1/3) indicates that for all η ∈ (0, 3),

(
1− η

3

)
ψX(η) 6

η2

2
Var(X) .

Actually, this inequality also holds for η > 3 as its left-hand side is non-positive while its right-hand
side is nonnegative. The claimed result is derived by rearraging the terms

ψX(η) 6
η2

2
Var(X) +

η

3
ψX(η)

and by dividing both sides by η2.

Proof of Theorem 4.6. We apply Theorem 4.5. To that end, we first bound the mixability gaps.
The rewriting (4.31) (and Jensen’s inequality) directly shows that 0 6 δnegt 6 B − b. We may also
prove the bound

δnegt
ηt

6
vt
2

+
1

3
(B − b)δnegt . (4.33)
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It suffices to do so for ηt < +∞. Consider the random variable X taking values (zt,a − b)/(B − b)
with probability pt,a, for a ∈ {1, . . . ,K}. The mixability gap can be rewritten as

δnegt =
1

ηt
ψX
(
ηt(B − b)

)

with the notation of the proof of Lemma 4.1. The variance of X equals vt/(B − b)2. Lemma 4.1
with η = ηt(B − b) yields

δnegt
ηt(B − b)2

6
vt

2(B − b)2
+

δnegt
3(B − b) .

from which we obtain (4.33) by rearranging.
From (4.29) and (4.33), we deduce, together with the bound (δnegt )2 6 (B − b)δnegt , that

(
T∑

t=1

δnegt

)2

6 (lnK)
T∑

t=1

vt + (B − b)
(

2

3
lnK + 1

) T∑

t=1

δnegt .

Therefore, using the fact that x2 6 a+ bx implies x 6
√
a+ b for all a, b, x > 0,

T∑

t=1

δnegt 6

√√√√lnK
T∑

t=1

vt + (B − b)
(

2

3
lnK + 1

)
,

which thanks to (4.28) concludes the proof of Theorem 4.6.

4.C.3. AdaHedge with known upper bound M on the payoffs (application of
Section 4.C.2)

We show how to obtain a scale-free distribution-free regret bound of order (M −m)
√
KT lnK

with no extra-exploration (including no initial exploration) when an upper bound M on the
payoffs is given to the player. We consider Algorithm 4.2, where no mixing takes place (unlike in
Algorithm 4.1) and where the probability distributions pt are directly computed via an AdaHedge
update (no need for intermediate probabilities qt). Note also that we use the estimates (4.8) with
the choice Ct = M , that is,

ŷt,a =
yt,a −M
pt,a

1{At=a} +M . (4.34)

The following observation is key in the analysis below: ŷt,a = M for all a 6= At and ŷt,At 6 M .
We will also use, as in the proof of Theorem 4.3,

K∑

a=1

pt,a ŷt,a = yt,At .

The performance bound for this simpler algorithm is stated next.

Theorem 4.7. AdaHedge for K–armed bandits relying on an upper bound M on the payoffs
(Algorithm 4.2) ensures that for all m ∈ R with m 6 M , for all oblivious individual sequences
y1, y2, . . . in [m,M ]K , for all T > 1,

RT (y1:T ) 6 2(M −m)
√
KT lnK + 2(M −m) .
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Algorithm 4.2 AdaHedge for K–armed bandits, when an upper bound on the payoffs is
given
1: Input: an upper bound M on the payoffs
2: AdaHedge initialization: η1 = +∞ and p1 = (1/K, . . . , 1/K)
3: for rounds t = 1, 2, . . . do
4: Draw an arm At ∼ pt (independently at random according to the distribution pt)
5: Get and observe the payoff yt,At
6: Compute the estimates of all payoffs

ŷt,a =
yt,a −M
pt,a

1{At=a} +M

7: Compute the mixability gap δt based on the distribution pt and on these estimates:

δt =





−
K∑

a=1

pt,a ŷt,a +
1

ηt
ln

(
K∑

a=1

pt,ae
ηtŷt,a

)
if ηt < +∞

−
K∑

a=1

pt,a ŷt,a + max
a∈[K]

ŷt,a if ηt = +∞

8: Compute the learning rate ηt+1 =

(
t∑

s=1

δs

)−1

lnK

9: Define pt+1 component-wise as

pt+1,a = exp

(
ηt+1

t∑

s=1

ŷa,s

)/
K∑

k=1

exp

(
ηt+1

t∑

s=1

ŷk,s

)

10: end for

The main technical difference with respect to the analysis of Algorithm 4.1 is that the mixability
gaps are directly bounded by the range M −m. We no longer need to artificially control the size
of the estimates (which we did via extra-exploration) to get, in turn, a control of the mixability
gaps.

Lemma 4.2 (Improved mixability gap bound). The mixability gaps of AdaHedge for K–armed
bandits relying on an upper bound M on the payoffs (Algorithm 4.2) are bounded, for all m ∈ R
with m 6M , for all oblivious individual sequences y1, y2, . . . in [m,M ]K , for all t > 1, by

0 6 δt 6M −m and
δt
ηt

6
1

2
p−1
t,At

(M − yt,At)2.

Proof. The fact that δt > 0 holds by definition of the gaps and Jensen’s inequality. For δt 6M−m,
the observations after (4.34) indicate that when ηt = +∞,

δt = −
K∑

a=1

pt,a ŷt,a + max
a∈[K]

ŷt,a = M − ŷt,At ,

148



4.C. Known results on AdaFTRL

while for ηt < +∞,

δt = −yt,At +
1

ηt
ln
(

(1− pt,At)eηtM + pt,Ate
ηtMeηt(yt,At−M)/pt,At

)

6M − yt,At +
1

ηt
ln
(

(1− pt,At) + pt,At eηt(yt,At−M)/pt,At︸ ︷︷ ︸
61

)
,

which entails δt 6M − yt,At 6M −m.
Furthermore, in the case ηt < +∞, using the inequality e−x 6 1 − x+ x2/2 valid for x > 0,

followed by the inequality ln(1 + u) 6 u, valid for all u > −1, we get

δt 6M−ŷt,At+
1

ηt
ln

(
1− pAt,t, + pAt,t︸ ︷︷ ︸

=1

−ηt(M − yt,At) + η2
t

(M − yt,At)2

2pAt,t︸ ︷︷ ︸
=u

)
6 ηt

(M − yt,At)2

2pt,At
.

The second inequality is trivial in case ηt = +∞, as δt/ηt = 0.

We are now ready to prove Theorem 4.7.

Proof of Theorem 4.7. As indicated in Section 4.C.2, AdaHedge is a special case of AdaFTRL
and the bound of Theorem 4.5 is applicable.
Equation (4.29) and Lemma 4.2, which entails in particular that δ2

t 6 (M −m)δt, yield
( T∑

t=1

δt

)2

= 2(lnK)
T∑

t=1

δt
ηt

+
T∑

t=1

(δt)
2 6 (lnK)

T∑

t=1

p−1
t,At

(M − yt,At)2 + (M −m)
T∑

t=1

δt ,

which, through the fact that x2 6 a+ bx implies x 6
√
a+ b for all a, b, x > 0, leads in turn to

T∑

t=1

δt 6

√√√√
T∑

t=1

p−1
t,At

(M − ŷt,At)2 lnK + (M −m) .

Therefore, Equation (4.28) guarantees that

max
k∈[K]

T∑

t=1

ŷt,k −
T∑

t=1

K∑

a=1

pt,a ŷt,a

︸ ︷︷ ︸
=yt,At

6 2

√√√√
T∑

t=1

p−1
t,At

(M − ŷt,At)2 lnK + 2(M −m) . (4.35)

We conclude the proof by integrating the inequality above and using Jensen’s inequality, exactly
as in the proof of Theorem 4.3. Indeed, Equation (4.13) therein indicates that

RT (y1:T ) = max
k∈[K]

T∑

t=1

yt,k − E

[
T∑

t=1

yt,At

]
6 E

[
max
k∈[K]

T∑

t=1

ŷt,k −
T∑

t=1

yt,At

]

and, by the same manipulations as in (4.15) and in the equation that follows it,

E



√√√√

T∑

t=1

p−1
t,At

(M − ŷt,At)2 lnK


 6

√√√√E

[
T∑

t=1

p−1
t,At

(M − yt,At)2 lnK

]

=

√√√√E

[
T∑

t=1

K∑

a=1

(M − yt,a)2 lnK

]
6 (M −m)

√
KT lnK

The claimed result is obtained by collecting all bounds together.
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4.C.4. AdaFTRL with Tsallis entropy in the case of a known upper bound M on
the payoffs

In this section we describe how the AdaHedge learning rate scheme can be used in the
FTRL framework with a different regularizer, namely Tsallis entropy, to improve the scale-free
distribution-free regret bound into a bound of optimal order (M −m)

√
KT , i.e., without any

superfluous
√

lnK factor.

Tsallis entropy. We focus on the (rescaled) 1/2–Tsallis entropy, which is defined by

H1/2(p) = −
K∑

a=1

2
√
pa .

This regularizer is Legendre over the domain [0,+∞)K (see Lattimore and Szepesvári [2020,
Example 26.10]). Its diameter equals

DH1/2
= max

p∈S
H1/2(p)−min

q∈S
H1/2(q) = −2−

(
−2
√
K
)

= 2
(√
K − 1

)
, (4.36)

as for all p ∈ S, we have (by concavity of the square root for the right-most inequality)

1 6
K∑

a=1

pa 6
K∑

a=1

√
pa 6

√
K ,

where 1 is achieved with p = (1, 0, . . . , 0) and
√
K with the uniform distribution.

The function H1/2 is differentiable at all q ∈ (0,+∞)K , with ∇H1/2(q) =
(
− 1/

√
qa
)
a∈[K]

.
The Bregman divergence associated with H1/2 equals, for p, q ∈ S such that qa > 0 for all a:

BH1/2
(p, q) = −2

K∑

a=1

√
pa + 2

K∑

a=1

√
qa +

K∑

a=1

1√
qa

(pa − qa)

= −2

K∑

a=1

√
pa −√qa
2
√
qa

(
2
√
qa − (

√
pa +

√
qa)
)

=

K∑

a=1

(
√
pa −√qa)2

√
qa

.

AdaFTRL with 1/2–Tsallis entropy. We consider FTRL with the 1/2–Tsallis entropy on the
estimated losses (4.34):

pt ∈ argmin
p∈S

{
H1/2(p)

ηt
−

t−1∑

s=1

〈p, ŷs〉
}

= argmin
p∈S

{
− 1

ηt

K∑

a=1

2
√
pa −

K∑

a=1

pa

t−1∑

s=1

ŷs,a

}
.

FTRL with the 1/2–Tsallis entropy was essentially introduced by Audibert and Bubeck [2009]
to get rid of a

√
lnK factor in the distribution-free regret bound of K–armed adversarial bandits

(with known payoff range). It was later noted by Audibert et al. [2014] that it actually is an
instance of mirror descent with Tsallis entropy as a regularizer. More recently, Zimmert and Seldin
[2019] showed that this regularizer can obtain quasi-optimal regret bounds for both stochastic
and adversarial rewards.
We more precisely consider AdaFTRL with the 1/2–Tsallis, that is, we compute the learning

rates ηt based on the mixability gaps (4.25); see Algorithm 4.3. We denote by δTst the mixability
gaps (4.25).
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On the implementation. For Tsallis entropy, the optimization problems involved in the compu-
tation of the updates pt and of the mixability gaps δTst admit a (semi-)explicit formula. Indeed,
pt can be computed thanks to the formula, for all z ∈ RK ,

argmin
p∈S

{
H1/2(p)− 〈p, z〉

}
= argmax

p∈S

{
〈p, z〉+

K∑

a=1

2
√
pa

}
=

(
1

(
c(z)− za

)2

)

a∈K

, (4.37)

where c(z) is an implicit normalization constant, such that the vector lies in the simplex S and
c(z) > za for all a ∈ [K]. This constant c(z) is in fact the Lagrange multiplier associated with the
constraint p1 + . . .+ pK = 1. See Zimmert and Seldin [2019] for more details on how to compute
c(z) efficiently, see also Audibert et al. [2014]. To compute the mixability gap, rewrite

δTst = max
p∈S

{
〈pt − p, −ŷt〉 −

H1/2(p)−H1/2(pt)−
〈
∇H1/2(pt), p− pt

〉

ηt

}

= 〈pt, −ŷt〉+
H1/2(pt)

ηt
−
〈
∇H1/2(pt), pt

〉

ηt
+

1

ηt
max
p∈S

{〈
p, ∇H1/2(pt) + ηtŷt

〉
−H1/2(p)

}
,

(4.38)

where the maximum in the left-most side of these equalities can be computed efficiently, thanks
to (4.37).

Analysis of the algorithm. We provide the following performance bound.

Theorem 4.8. AdaFTRL with 1/2–Tsallis entropy for K–armed bandits relying on an upper
bound M on the payoffs (Algorithm 4.3) ensures that for all m ∈ R with m 6M , for all oblivious
individual sequences y1, y2, . . . in [m,M ]K , for all T > 1,

RT (y1:T ) 6 4(M −m)
√
KT + 2(M −m) .

As in Section 4.C.3, the proof scheme is a combination of the AdaFTRL bound of Theorem 4.5
(which is indeed applicable), together with an improved bound on the mixability gap that exploits
the specific shape of the estimates. This bound is stated in the next lemma, which is much similar
to Lemma 4.2.

Lemma 4.3. The mixability gaps of AdaFTRL with Tsallis entropy for K–armed bandits relying
on an upper bound M on the payoffs (Algorithm 4.3) are bounded, for all m ∈ R with m 6M ,
for all oblivious individual sequences y1, y2, . . . in [m,M ]K , for all t > 1, by

0 6 δTs
t 6M −m and

δTs
t

ηt
6 p

−1/2
t,At

(M − yt,At)2 .

The proof of Lemma 4.3 is postponed to the end of this section and we now proceed with the
proof of Theorem 4.8.

Proof of Theorem 4.8. The structure of the proof is much similar to the one of Theorem 4.7,
which is why we only sketch our arguments. The bound of Theorem 4.5 is applicable. We use
Lemma 4.3 with (4.29) to see that

( T∑

t=1

δTst

)2

6 2DH1/2

T∑

t=1

p
−1/2
t,At

(M − yt,At)2 + (M −m)

T∑

t=1

δTst . (4.39)
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Algorithm 4.3 AdaFTRL with Tsallis entropy for K–armed bandits, when an upper bound
on the payoffs is given
1: Input: an upper bound M on the payoffs
2: Initialization: η1 = +∞ and p1 = (1/K, . . . , 1/K)
3: for rounds t = 1, 2, . . . do
4: Draw an arm At ∼ pt (independently at random according to the distribution pt)
5: Get and observe the payoff yt,At
6: Compute the estimates of all payoffs

ŷt,a =
yt,a −M
pt,a

1{At=a} +M

7: Compute the mixability gap δTst based on the distribution pt and on these estimates, e.g.,
using the efficient implementation stated around (4.38):

δTst = max
p∈S

{
〈pt − p, −ŷt〉 −

BH1/2
(p, pt)

ηt

}

8: Compute the learning rate ηt+1 = 2

(
t∑

s=1

δTss

)−1(√
K − 1

)

9: Define pt+1 as

pt+1 ∈ argmin
p∈S

{
−

K∑

a=1

pa

t∑

s=1

ŷs,a −
1

ηt+1

K∑

a=1

2
√
pa

}
,

where an efficient implementation is provided by, e.g., (4.37)
10: end for

Again, using the fact that for all a, b, x > 0, the inequality x2 6 a+ bx implies x 6
√
a+ b :

T∑

t=1

δTst 6

√√√√2DH1/2

T∑

t=1

p
−1/2
t,At

(M − yt,At)2 + (M −m) (4.40)

By (4.28), by taking expectations, and by Jensen’s inequality:

RT (y1:T ) 6 2E
[ T∑

t=1

δTst
]
6 2

√√√√2DH1/2

T∑

t=1

E
[
p
−1/2
t,At

(M − yt,At)2
]

+ 2(M −m) . (4.41)

We conclude by observing that for all t, by definition of the payoff estimates,

E
[
p
−1/2
t,At

(
M − yt,At

)2]
= E

[
K∑

a=1

pt,a p
−1/2
t,a

(
M − yt,a

)2
]
6 (M −m)2 E

[
K∑

a=1

√
pa,t

]

6 (M −m)2
√
K ,

where the last inequality follows from the concavity of the square root. The final claim is obtained
by bounding the diameter DH1/2

by 2
√
K.
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We conclude this section by providing a proof of Lemma 4.3.

Proof of Lemma 4.3. The fact that δTst > 0 holds actually for all regularizers and can be seen
from the definition (4.25) with p = pt. For the inequality δTst 6M −m, we start with elementary
manipulations of the definition of the mixability gap (4.25). Denoting by ~M the vector with
coordinates (M, . . . ,M) and noting that

〈
pt − q, ~M

〉
= 0 for all q ∈ S, we have

δTst = max
q∈S

{
〈pt − q, −ŷt〉 −

BH1/2
(q, pt)

ηt

}
= max

q∈S

{〈
pt − q, ~M − ŷt

〉
−
BH1/2

(q, pt)

ηt

}
. (4.42)

Since all the coordinates of ~M − ŷt are non-negative and by non-negativity of the Bregman
divergence, this implies that

δTst 6
〈
pt, ~M − ŷt

〉
= M − yAt,t 6M −m.

We now prove the second inequality; we may assume that ηt < +∞, as the bound holds trivially
otherwise. By Proposition 4.2 (and by calculations similar to the ones performed in the proof
of Reminder 4.5) the maximum in the rewriting (4.42) of δTst is achieved on the interior of the
domain of H1/2, which equals (0,+∞)K , thus in the interior of S. We therefore only need to
prove that

∀q ∈ Int(S),
〈
pt − q, ~M − ŷt

〉
−
BH1/2

(q, pt)

ηt
6 ηt p

−1/2
t,At

(M − yt,At)2 . (4.43)

We fix such a q ∈ Int(S), i.e., such that qa > 0 for all a. We consider two cases. First, if
qAt > pt,At , then, given the observations made after (4.34),

〈
pt − q, ~M − ŷt

〉
−
BH1/2

(q, pt)

ηt
=

(
M − yt,At
pt,At

)

︸ ︷︷ ︸
>0

(
pt,At − qAt

)
︸ ︷︷ ︸

60

−
BH1/2

(q, pt)

ηt
6 0 .

Otherwise, when qAt < pt,At , a standard way of bounding the mixability gap, detailed below,
indicates that

〈pt − q, M − ŷt〉 −
BH1/2

(q, pt)

ηt
6
ηt
2

〈
~M − ŷt, ∇2H1/2(z)−1

(
~M − ŷt

)〉
, (4.44)

where z is some probability distribution of the open segment Seg(q, pt) between q and pt, and
where ∇2H1/2(z)−1 denotes the inverse of the positive definite Hessian of H1/2 at z. Since at
w ∈ (0,+∞)K , the function H1/2 is indeed twice differentiable, with

∇H1/2(w) =
(
−w−1/2

a

)
a∈[K]

and ∇2H1/2(w) = Diag
(
w−3/2
a /2

)
a∈[K]

,

we have ∇2H1/2(z)−1 = Diag
(
2z

3/2
a

)
a∈[K]

. We substitute this value into (4.44) and recall that

the vector ~M − ŷt has null coordinates except for its At–th coordinate:

ηt
2

〈
~M − ŷt, ∇2H1/2(z)−1

(
~M − ŷt

)〉
= ηt z

3/2
At

(
M − ŷt,At

)2
.

Finally, remember that z lies in the open segment Seg(q, pt) and that we assumed qAt < pt,At ; we
thus also have zAt < pt,At . As a consequence, using the very definition of ŷt,At ,

ηt z
3/2
At

(
M − ŷt,At

)2
6 ηt p

3/2
t,At

(
M − ŷt,At

)2
= ηt p

−1/2
t,At

(M − yt,At)2 .
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Therefore, in all cases, that is, whether qAt > pt,At or qAt < pt,At , the bound (4.43) is obtained.
It only remains to prove the standard inequality (4.44).

This inequality is essentially stated as Therorem 26.13 in Lattimore and Szepesvári [2020] but
we provide a proof for the sake of completeness. As we assumed that ηt < +∞, we have (as
above, by Proposition 4.2) that pt lies in the interior of S. In particular, as both pt and q are
in the interior of S, the function H1/2 is C2 over the closed segment Seg(q, pt) between q and pt.
Therefore, by the mean-value theorem, there exists z in the open segment Seg(q, pt) such that

H1/2(q)−H1/2(pt)−
〈
∇H1/2(pt), q − pt

〉
︸ ︷︷ ︸

=BH1/2
(q,pt)

=
1

2

〈
q − pt, ∇2H1/2(z) (q − pt)

〉
.

It is useful to introduce the standard notation from convex analysis for the local norm (which is
indeed a norm because the Hessian is positive definite):

‖q − pt‖2∇2H1/2(z)
def
=
〈
q − pt, ∇2H1/2(z) (q − pt)

〉
.

We therefore have so far the rewriting:

−
BH1/2

(q, pt)

ηt
= − 1

2ηt

〈
q − pt, ∇2H1/2(z) (q − pt)

〉
.

Now, by the Cauchy-Schwarz inequality,
〈
pt − q, ~M − ŷt

〉
=
〈
∇2H1/2(z)1/2 (pt − q), ∇2H1/2(z)−1/2

(
~M − ŷt

)〉

6 ‖pt − q‖∇2H1/2(z) ‖ ~M − ŷt‖∇2H1/2(z)−1 .

Combining the rewriting and the bound above, we get

〈pt − q, M − ŷt〉 −
BH1/2

(q, pt)

ηt

6 ‖pt − q‖∇2H1/2(z)‖ ~M − ŷt‖∇2H1/2(z)−1 − 1

2ηt
‖q − pt‖2∇2H1/2(z)

6
ηt
2
‖ ~M − ŷt‖2∇2H1/2(z)−1 ,

where we used ab− b2/2 6 a2/2 to get the second inequality. This is exactly (4.44).
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4.D. Adaptation to the range for linear bandits

To illustrate the generality of the techniques discussed in this chapter, we quickly describe how
these can be used to obtain range adaptive algorithms for linear bandits. This section is meant for
illustration and not for completeness. In particular, we focus on the case of (oblivious) adversarial
linear bandits, for which we refer the reader to Lattimore and Szepesvári [2020, Chapter 27],
which we follow closely, for a more thorough description of the setting; we do not describe the
application of our techniques to stochastic linear bandits.

Learning protocol. A finite action set A ⊂ Rd, of cardinality K, is given. (The setting of vanilla
K–armed bandits considered in the rest of the chapter corresponds to A formed by the vertices of
the probability simplex of RK .) The environment selects beforehand a sequence (yt)t>1 of vectors
in Rd satisfying a boundedness assumption: there exists an interval [m,M ] such that

∀t > 1, ∀x ∈ A, x>yt ∈ [m,M ] . (4.45)

We assume that the player does not know in advance m nor M . To simplify the exposition, we
also assume that m 6 0 6M .
At every time step, the player chooses an action Xt ∈ A and receives and only observes the

payoff X>t yt. It does not observe yt nor the payoffs x>yt associated with choices x 6= Xt. The
action Xt is chosen independently at random according to a distribution over A denoted by
pt =

(
pt(a)

)
a∈A.

The expected regret is defined as

RT (y1:T ) = max
x∈A

T∑

t=1

x>yt − E

[
T∑

t=1

X>t yt

]
.

Estimating the unobserved payoffs. As in the case of vanilla K–armed bandits, the key is to
estimate unobserved payoffs. We may actually build an estimate ŷt of the vectors yt, from which
we form the estimates x>ŷt. This estimate takes advantage of the linear structure of the problem.

Fix a distribution π such that the non-negative symmetric matrix

M(π)
def
=
∑

x∈A
π(x)xx>

is invertible: such a distribution exists whenever A spans Rd, which we may assume with no
loss of generality; see Lemma 4.4 below. This distribution π will be used to explore the arms;
it is in general not uniform over the arms. For all distributions q over A and all γ ∈ (0, 1], the
distribution p = (1− γ)q + γπ is such that the non-negative symmetric matrix M(p) is invertible
as well (as it is larger than γM(π), in the sense of the partial inequality < over non-negative
symmetric matrices). We then define

ŷt = M(pt)
−1XtX

>
t yt (4.46)

and note that

E
[
ŷt
∣∣ pt
]

= M(pt)
−1

(∑

x∈A
pt(x)xx>

︸ ︷︷ ︸
=M(pt)

yt

)
= yt ; (4.47)

indeed, conditioning to pt amounts to integrating over the random choice of Xt according to pt.
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Algorithm 4.4 AdaHedge for adversarial linear bandits
1: Input: an exploration distribution π over A and exploration rates (γt)t>1 in [0, 1]
2: Initialization: η1 = +∞ and q1 is the uniform distribution over A
3: for rounds t = 1, . . . do
4: Define pt by mixing qt with π according to

pt = (1− γt)qt + γtπ

5: Draw an arm Xt ∼ pt (independently at random according to the distribution pt)
6: Get and observe the payoff X>t yt
7: Compute estimates x>ŷt of all payoffs according to (4.46)
8: Compute the mixability gap δt based on the distribution qt and on these estimates:

δt =





−
∑

x∈A
qt(x)x>ŷt +

1

ηt
ln

(∑

x∈A
qt(x)eηtx

>ŷt

)
if ηt < +∞

−
∑

x∈A
qt(x)x>ŷt + max

x∈A
x>ŷt if ηt = +∞

9: Compute the learning rate ηt+1 =

(
t∑

s=1

δs

)−1

lnK

10: Define qt+1 component-wise as

qt+1(a) = exp

(
ηt+1

t∑

s=1

a>ŷs

)/∑

x∈A
exp

(
ηt+1

t∑

s=1

x>ŷs

)

11: end for

An algorithm adaptive to the unknown range. When the range is given, a well-known strategy
is to use plain exponential weights over actions in A with the estimates x>ŷt to obtain distributions
qt that are then mixed with π to form the final distributions pt. When the range is unknown,
we suggest to simply replace plain exponential weights with AdaHedge (the difference lies in the
tuning of the rates ηt), which leads to Algorithm 4.4. In this algorithm, we refer to rates γt as
exploration rates (and not as extra-exploration rates as in Algorithm 4.1) and similarly, to π
as the exploration distribution. This is because for adversarial linear bandits, exploration was
always required even to get expected results (unlike for K–armed bandits, see the introduction of
Section 4.5).
The analysis of this algorithm relies on the same ingredients as the ones already encountered

in Section 4.5.1, with the addition of the following lemma, that quantifies the quality of the
exploration. This lemma requires that A spans Rd, which we may assume with no loss of generality
(otherwise, we just replace Rd by the vector space generated by A).

Lemma 4.4 (Lattimore and Szepesvári [2020, Theorem 21.1]). There exists a distribution π over A
such that

M(π) =
∑

x∈A
π(x)xx> is invertible and max

x∈A
x>M(π)−1x = d .

We are now ready to state the main result of this section. It is the counterpart of Corollary 4.1;
for the sake of simplicity, we only state it for the value α = 1/2.
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Theorem 4.9. AdaHedge for adversarial linear bandits (Algorithm 4.4) with the extra-exploration

γt = min
{

1/2,
√

2.5 d(lnK)t−1/2
}

ensures that for all bounded ranges [m,M ], for all oblivious individual sequences y1, y2, . . .
satisfying the boundedness condition (4.45),

RT (y1:T ) 6 12(M −m)
√
dT lnK + 18(M −m)d lnK .

The proof starts by following closely the ones of Theorem 4.3 and Corollary 4.1; the differences
are underlined and dealt with in the second part of the proof.

Proof. By Reminder 4.2, since the player plays the AdaHedge strategy over the payoff estimates
x>ŷt, the pre-regret satisfies

max
x∈A

T∑

t=1

x>ŷt −
T∑

t=1

∑

a∈A
qt(a) a>ŷt 6 2

√
VT lnK +MT

(
2 +

4

3
lnK

)

with VT =
T∑

t=1

∑

x∈A
qt(x)

(
x>ŷt

)2 and

MT = max
{
x>ŷt : t 6 T and x ∈ A

}
−min

{
x>ŷt : t 6 T and x ∈ A

}
.

As in Theorem 4.3, since γt 6 1/2, we have qt(x) 6 2 pt(x) for all x ∈ A. We therefore define

V ′T =
T∑

t=1

∑

x∈A
pt(x)

(
x>ŷt

)2

and have Vt 6 2V ′T . By the tower rule, based on the equality (4.47), and given that the expectation
of a maximum is larger than the maximum of the expectations (for the first inequality), and by
the definition of the pt (for the second inequality), we have proved so far that

RT (y1:T ) 6 E

[
max
x∈A

T∑

t=1

x>ŷt −
T∑

t=1

∑

a∈A
pt(a) a>ŷt

]

6 E

[
max
x∈A

T∑

t=1

x>ŷt −
T∑

t=1

∑

a∈A
qt(a) a>ŷt

]
+ E

[
T∑

t=1

γt
∑

a∈A

(
π(a)− qt(a)

)
a>ŷt

]

6 E

[
2
√

2V ′T lnK +MT

(
2 +

4

3
lnK

)]
+

T∑

t=1

γt
∑

a∈A

(
π(a)− qt(a)

)
a>yt

︸ ︷︷ ︸
6(M−m)

.

Hence by Jensen’s inequality and by the bounds E[V ′T ] 6 (M −m)2dT and MT 6 2(M −m)d/γT
proved below, we finally get

RT (y1:t) 6 2
√

2E[V ′T ] lnK + E[MT ]

(
2 +

4

3
lnK

)
+ (M −m)

T∑

t=1

γt

6 2
√

2(M −m)
√
dT lnK +

(
2 +

4

3
lnK

)
2(M −m)d

γT
+ (M −m)

T∑

t=1

γt

6 3(M −m)
√
dT lnK + 9(M −m)

d lnK

γT
+ (M −m)

T∑

t=1

γt .
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Replacing the γt by their values and using the same bounds as in Corollary 4.1 yields the claimed
result; the factor 12 in the bound comes from

3 +
√

10 + 9

√
2

5
6 12 .

We only need to prove the two claimed bounds to complete the proof; they can be extracted from
the proof of Theorem 27.1 by Lattimore and Szepesvári [2020] but we provide derivations for the
sake of completeness.

Proof of MT 6 2(M −m)d/γT . We fix x ∈ A and t 6 T . We recall that M(pt) and thus
M(pt)

−1 are positive definite symmetric matrices. By the Cauchy-Schwarz inequality applied
with the norm induced by the positive M(pt)

−1,

∣∣x>M(pt)
−1Xt

∣∣ 6
√
x>M(pt)−1x

√
X>t M(pt)−1Xt 6 max

x∈A

{
x>M(pt)

−1x
}
.

As indicated right before (4.46), we have M(pt) < γtM(π) and therefore M(pt)
−1 2M(π)−1/γt.

This entails ∣∣x>M(pt)
−1Xt

∣∣ 6 1

γt
max
x∈A

{
x>M(π)−1x

}
=

d

γt
6

d

γT
,

where the equality follows from Lemma 4.4 and where we used γT 6 γt for the second inequality.
Finally, keeping in mind that we assumed m 6 0 6M ,

x>ŷt = x>M(pt)
−1Xt︸ ︷︷ ︸

∈[−d/γt,d/γt]

X>t yt︸ ︷︷ ︸
∈[m,M ]

∈
[
−dmax{−m,M}

γT
,
dmax{−m,M}

γT

]
,

from which the bound
Mt = 2

dmax{−m,M}
γT

6
2d(M −m)

γT

follows, as desired.
Proof of E[V ′T ] 6 (M −m)2dT . Since

∣∣X>t yt
∣∣ 6 max{−m,M} 6M −m, the definition (4.46)

leads to

(
x>ŷt

)2
=
(
x>M(pt)

−1XtX
>
t yt

)2
6 (M −m)2

(
x>M(pt)

−1Xt

)2

= (M −m)2X>t M(pt)
−1xx>M(pt)

−1Xt .

Therefore, summing over x ∈ A and using the very definition of M(pt), we get

∑

x∈A
pt(x)

(
x>ŷt

)2
6 (M −m)2X>t M(pt)

−1

(∑

x∈A
pt(x)xx>

)
M(pt)

−1Xt

= (M −m)2X>t M(pt)
−1Xt = (M −m)2 Tr

(
M(pt)

−1XtX
>
t

)
.

Now, by the linearity of the trace,

E
[
Tr
(
M(pt)

−1XtX
>
t

)]
= E

[∑

x∈A
pt(x) Tr

(
M(pt)

−1xx>
)]

= E
[
Tr(Id)

]
= d ,

where Id is the d–dimensional identity matrix. Collecting all bounds together and summing over
t yields the claimed inequality E[V ′T ] 6 (M −m)2dT .
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Chapter 5.

Diversity-preserving bandits, revisited

Abstract

We consider the bandit-based framework for diversity-preserving recommendations
discussed in Celis et al. [2019]. We design algorithms using the specific structure of
the setting; ; they are variants of UCB and of follow-the-leader approaches. These
algorithms are efficient and enjoy low regret, while naturally satisfying the diversity-
preserving constraints. We carry out a detailed analysis, providing minimax and
distribution-dependent regret bounds; we also uncover the possibility of bounded
regret for some specific action sets. This analysis is also supported with lower bounds
on the regret, proving that our results are unimprovable in general. Experiments on
synthetic data illustrate the performance of our algorithms.

This chapter is based on ongoing work, in collaboration with Sébastien Gerchinovitz,
Jean-Michel Loubes and Gilles Stoltz. The recent preprint Hadiji et al. [2020] (under
review) was built upon this chapter.
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Chapter 5. Diversity-preserving bandits, revisited

5.1. Setting and literature review

We consider stochastic bandit models with finitely many arms. All of them are desirable
actions, though some lead to higher payoffs. Effective (regret-minimizing) algorithms are bound
to play the optimal arm(s) an overwhelming fraction of time. Celis et al. [2019] refer to this effect
as polarization and introduce a model to avoid it. We suggest the alternative terminology of
preserving diversity. A general formulation of the bandit model by Celis et al. [2019] is provided
below and is summarized in Protocol 5.1. Our aim in this chapter is to deepen and improve on
the results obtained by the mentioned reference; see Section 5.1.3 for details.

Diversity-preserving bandits, as introduced by Celis et al. [2019]. As in traditional K–armed
bandits, probability distributions ν1, . . . , νK associated with each arm are considered, with
expectations denoted by µ1, . . . , µK . These distributions are unknown to the learner but belong
to a known set of possible distributions, called a model D.
The learning protocol is the following. An arm At ∈ [K] is picked among K choices at each

round, where we denote by [K] the set {1, . . . ,K}. The learner then obtains a payoff Yt drawn
independently at random according to νAt given that choice. This is the only observation made
(the learner does not know what it would have obtained with a different choice). However, the
distinguishing feature of the bandit model by Celis et al. [2019] is that the choice of At is made in
two steps, as follows. Denote by S the set of distributions over the K arms. First, a distribution
p
t
∈ S is picked, in some known closed set P, which quantifies diversity (specific examples are

given below). Then, the arm At is drawn independently at random according to p
t
. Following

game-theoretic terminology, we will call a ∈ [K] pure actions or ams, and p ∈ P mixed actions or
probabilities.

Protocol 5.1 Diversity-preserving stochastic bandits (Celis et al., 2019)
Known parameters
Number K of arms
Model D of possible distributions
Closed set P of diverse enough probability distributions over the arms

Unknown parameters
Probability distributions ν1, . . . , νK ∈ D for each arm, with expectations µ = (µ1, . . . , µK)

for t = 1, 2, . . . do
Pick a distribution p

t
= (pt,1, . . . , pt,K) ∈ P over the arms

Draw independently at random an arm At ∼ pt
Get and observe a payoff Yt ∼ νAt drawn independently at random according to νAt given At

end for

Aim
Minimize the expected regret RT = T max

p∈P

〈
p, µ

〉
− E

[
T∑

t=1

〈
p
t
, µ
〉
]

We measure performance in terms of expected payoffs. The expected payoff at round t may be
computed by repeated applications of the tower rule:

E[Yt | At] = µAt , thus E
[
Yt | pt

]
=
∑

k∈[K]

pt,k µk
def
=
〈
p
t
, µ
〉
, thus E[Yt] = E

[〈
p
t
, µ
〉]
.

We denoted by
〈
p
t
, µ
〉
the inner product between the vectors p

t
and µ. Maximizing the cumulative
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expected payoff of a policy amounts to minimizing the expected regret defined as

RT = T max
p∈P

〈
p, µ

〉
− E

[
T∑

t=1

〈
p
t
, µ
〉
]
.

In the definition of the regret, the comparison is made with respect to the expected payoff that
would have been obtained by picking at each round a best diversity-preserving distribution over
the arms.

Bandit model. In this chapter we consider mainly the bandit model D[0,1] of probability
measures supported on [0, 1], that is, we assume that rewards can be distributed according to any
distribution bounded in [0, 1]. An exception to this is the lower bound in Section 5.5, which we
formulate on a generic model D.

5.1.1. Examples of diversity-preserving sets P of distributions over the arms

Simplest example. The simplest requirement is that each arm should be played with some
minimal probability ` > 0, which corresponds to

P =
{
p : ∀a ∈ [K], pa > `

}
.

More generally, Celis et al. [2019] indicate that one could group arms intro groups G1, . . . , GN of
similar arms and impose minimal probabilities `1, . . . , `N > 0 as well as maximal probabilities
u1, . . . , uN < 1 for each group defined as:

P =

{
p : ∀g ∈ [N ],

∑

a∈Gg

pa ∈ [`g, ug]

}
.

The sets P considered above are polytopes.

General polytopes. To justify more general types of probability sets P, we could envision a
setting in which each every pure action a has N costs c(1)

a , . . . , c
(N)
a in R. These costs could

represent for example some limited resources, or some environmental cost like the amount of
carbon emissions generated from taking the action. The model can handle negative costs, e.g.,
negative carbon emissions. The name “diversity-preserving” was inspired by the example of the
previous paragraph, and is perhaps less pertinent in the present example.

Then, if the player picks an action at random according to some probability (p1, . . . , pK) over
the set of actions [K], the N expected costs of her choice are

K∑

a=1

pac
(1)
a , . . . ,

K∑

a=1

pac
(N)
a .

In this case a reasonable objective for the player is to maximize her payoff under the constraints
that, for all i ∈ [N ], the i–th expected cost of her actions be kept under a certain level ui, or
above a certain level `i in case of negative costs. This amounts to playing under Protocol 5.1,
with the probability set

P =

{
p : ∀n ∈ [N ],

K∑

a=1

pac
(n)
a ∈ [`n, un]

}
.

These sets are again polytopes, and generalize the previous example.
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Other examples, and the number of vertices of P. We argue in Open question 5.1 that some
naive approaches could yield regret bounds that scale linearly with the number of vertices of the
polytope P , making the number of vertices an important property of P . In general, it is difficult
to compute the number of vertices of a polytope, and there can be arbitrarily many vertices.
However, in some simple cases, the number is manageable, perhaps making the naive approach
relevant again. We discuss a few examples here.

For instance, consider the simplest diversity-preserving example, with ` a diversity-preserving
threshold,

P =
{
p : ∀a ∈ [K], pa > `

}
.

This set has K vertices if ` ∈ [0, 1/K) and is empty if ` > 1/K (and one vertex when ` = 1/K).
Another related example is the following probability set; fix u > 0 a threshold and define

P =
{
p : ∀a ∈ [K], pa 6 u

}
.

In this case u acts as a parameter preventing polarization. This probability set can have up
to K(K − 1) vertices, if u ∈ (1/2, 1]. Indeed, when u ∈ (1/2, 1], the vertices are of the form
(0, . . . , u, . . . , 1− u, . . . , 0), with u and 1− u at any pair of coordinates and 0 elsewhere; there are
K(K − 1) such vertices.

In these two cases, the number of vertices grows, respectively, linearly and quadratically with
the ambient dimension K. Since we typically assume that K is of manageable size, this means
that regret bounds scaling linearly with the number of vertices are not prohibitive.

Let us consider another example. Denote by SK′ the K ′ dimensional simplex. Choose P1 ⊂ SK1

and P2 ⊂ SK2 , and some weights π = (π1, π2) such that π1 > 0 and π2 > 0 and π1 + π2 = 1 (the
case when π1 = 0 or π2 = 0 is not of interest). Then define the π-weighed product of P1 and P2

to be

π(P1,P2) =
{

(p(1), p(2)) ∈ SK1+K2 : ∀j ∈ {1, 2},
Kj∑

i=1

p
(j)
i = πj and

1

πj
p(j) ∈ Pj

}

Then the number of vertices of π(P1,P2) is the product of the number of vertices of P1 and P2.
Generalizing this construction to a larger number of sets, we obtain a natural yet non-trivial
example of a probability set with a number of vertices growing exponentially with the dimension.

Literature review on fairness and diversity in stochastic bandits. In the line of work by Joseph
et al. [2016], Amani et al. [2019], Liu et al. [2017] and Gillen et al. [2018], the learner wishes
that its actions satisfy certain constraints with high probability. These constraints are inspired
by the framework of individual fairness that states that similar individuals should be treated
similarly—there, actions correspond to individuals. In these models, the constraints depend on
the unknown problem, and therefore the usual tradeoff between exploration and exploitation is
modified: the player needs to explore some more in order to learn the constraint while playing
the bandit game. This is mathematically quite different from our setting.

As far as diversity is concerned, Li et al. [2019] consider problem called combinatorial sleeping
bandits, in which the player may pick multiple actions among the K available at every step. The
authors indeed impose that their algorithms satisfy a diversity preserving condition on the choice
of the actions, but this condition is only asymptotical. Patil et al. [2019] propose another bandit
framework in the same vein. They derive bandit algorithms that ensure that the proportion of
times each action is selected is lower bounded, i.e., with our notation that Na(T )/T > α almost
surely. Although the objective is similar in spirit, this constraint leads to design issues for the
algorithm that are quite different from ours, and are arguably less mathematically elegant. For
instance, in their setting, pulling the first arm automatically violates the fairness constraints as
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the proportion Na(T )/T for the arms not pulled is 0, thus the constraint can only be enforced for
T large enough. This also leads to crucial differences between horizon dependent and anytime
algorithms. Our setting enforces similar guarantees while bypassing these isssues.

5.1.2. Comparison to stochastic linear bandits

As noted by Celis et al. [2019], the setting considered is a special case of linear stochastic
bandits (see below for an extensive literature review on this matter). Indeed, the expected payoff
obtained at each round equals E

[〈
p
t
, µ
〉]
, which is a linear function of the probability p

t
picked.

This observation opens the toolbox of algorithms to deal with stochastic linear bandits (with
action set A = P) to solve the considered problem; this is exactly the approach followed by Celis
et al. [2019].

However, doing so, one discards the pure action At picked, which is known, and one relates the
reward Yt ∼ µAt to pt and not to At, which is a loss of information. We show in this chapter that
by taking the intermediate pure action At into account, instead of only considering the mixed
action p

t
, that sharper regret bounds than the ones of Celis et al. [2019] may be achieved; see

below the intuition behind this fact.
The considered setting can thus be described as a stochastic linear bandit setting with augmented

feedback. Other bandit models with additional feedback (and thus, improved bounds) have been
studied, e.g., in Caron et al. [2012] and Degenne et al. [2018]. More recently, Kirschner et al. [2020]
considered the general linear partial monitoring problem, in which the learner observes a linear
functional depending on the chosen action of the parameter ~µ, perturbed by some noise, instead
of the reward. While the problematic is similar to ours, the settings are formally independent.

Intuition behind the possibility of sharper bounds. Let us measure, through Kullback-Leibler
divergences (denoted by KL), the information available when discriminating between two bandit
problems ν = (ν1, . . . , νK) and ν ′ = (ν ′1, . . . , ν

′
K), depending on whether the specific arm At is

observed or not. Under the problem ν and conditionally to the choice of a distribution p
t
over the

arms, the learner sees the payoff Yt as distributed according to some unconditional distribution
when At is not taken into account, and the conditional distribution νAt when At is taken into
account:

Yt ∼
∑

a∈[K]

pt,aνa and Yt |At ∼ νAt ,

respectively. Conditionally to the choice of p
t
, the Kullback-Leibler divergences between the

distributions of Yt under ν and ν ′ are therefore given by

KL


∑

a∈[K]

pt,aνa,
∑

a∈[K]

pt,aν
′
a




︸ ︷︷ ︸
without At

6 E
[
KL(νAt , ν

′
At)
]

︸ ︷︷ ︸
with At

=
∑

a∈[K]

pt,a KL(νa, ν
′
a) ,

where the inequality is by convexity of KL.
As we shall see Section 5.5, this technical observation becomes central when one wishes to

derive lower bounds on the regret.

Regret bounds typically achieved by linear bandit algorithms. Let us recall here the linear
bandit setting (see the monograph by Lattimore and Szepesvári, 2020, Chapter 19, for a longer
description). An action set A ⊂ Rd is given to the learner. Some parameter ~µ ∈ Rd is set but
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remains unknown to the learner. The latter selects at each step an action Xt ∈ A and gets and
observes a random reward Yt such that E[Yt |Xt] = 〈Xt, ~µ〉. The expected regret is defined as

Rlin
T = T max

x∈A
〈x, ~µ〉 − E

[
T∑

t=1

〈Xt, ~µ〉
]
.

We indicate below some typical regret bounds achieved in linear bandits, which will be used as
benchmarks to compare our new bounds to.

A first stream of the literature focuses on generalizations of the UCB algorithm called LinUCB
(linear upper confidence bound) or OFUL (optimism in the face of uncertainty for linear bandits);
they were introduced by Li et al. [2010] and Chu et al. [2011] and studied by Abbasi-Yadkori
et al. [2011]. They consider the set L of bandit models such that the parameter ~µ satisfies
〈x, ~µ〉 ∈ [−1, 1] for all x ∈ A and the noise Yt−E[Yt|Xt] is sub-Gaussian (with constant less than
1/4, say). The first kind of results they obtain is a distribution-free bound: for some numerical
constant c,

sup
L
Rlin
T 6 c d

√
T lnT .

They also obtain finite-time distribution-dependent bounds in the case A is finite or is a polytope;
we denote by Afinite the set of extremal points of A when A is a polytope (they generate A) and
Afinite = A when A is finite. These finite-time distribution-dependent bounds are of the form:
there exists a numerical constant C such that for each bandit model in L,

Rlin
T 6 C

1

∆

(
ln2 T + d lnT + d2 ln lnT

)
,

where the gap ∆(x) of an action x ∈ A and the overall gap ∆ among suboptimal actions are
defined as

∆(x) = max
y∈A
〈y − x, ~µ〉 and ∆ = min

{
∆(x) : x ∈ Afinite s.t. ∆(x) > 0

}
.

A second stream of the literature improves on the treatment of the situation where A is finite
or is a polytope and obtains distribution-dependent bounds that only scale with lnT . Actually,
such bounds could have been obtained by playing a plain UCB on Afinite, but they would not get
the optimal constant in front of the lnT (for more details about this suboptimality phenomenon,
see Lattimore and Szepesvári, 2017). That is, asymptotically optimal distribution-dependent
bounds are achieved: there exist algorithms such that for all bandit models in L,

lim sup
T→∞

Rlin
T

lnT
6 κ(A, ~µ) ,

where no reasonable algorithm can improve on the constant κ(A, ~µ) when the noise is Gaussian;
see Lattimore [2017], Combes et al. [2017], and Hao et al. [2020]. Further details on these results
will be provided in Sections 5.2.5 and 5.5.

5.1.3. Summary of our contributions and outline of the chapter

In this chapter, our objective is to study how difficult it is to control the regret under the
diversity-preserving constraint, i.e., how optimal regret bounds vary depending on P. Towards
this goal, an essential element to understand is the influence of the geometry of the diversity
preserving set P . Our contributions in this respect can be separated into two parts: Sections 5.2
and 5.3 are devoted to upper bounds on the regret, with two new algorithms, while Section 5.4
and 5.5 provide lower bounds.
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The first algorithm, in Section 5.2 is based on the standard UCB strategy, while the second, in
Section 5.3, uses the follow-the-regularized-leader framework. Our two new algorithms for the
diversity-preserving setting take full advantage of the specific observation protocole : they both
behave provably better than linear bandit algorithms that do not exploit the diversity-preserving
structure.

We analyze in depth the first algorithm inspired from UCB, providing various regret bounds: a
general distribution-free regret bound of order O

(√
KT lnT

)
in Section 5.2.2 and, in Section 5.2.3,

a distribution-dependent regret bound when P is a polytope, of order O
(

ln2(T )/∆
)
, where ∆ is

the minimal suboptimality gap among vertices of P. Avenues for improvements are discussed
in Section 5.2.4. We also prove a striking property of our algorithm in Section 5.2.5: it enjoys
bounded regret when the diversity-preserving set P is included in the interior of the simplex.

Section 5.3 is devoted to our second algorithm. We show that it also achieves close to optimal
distribution-free regret, and this, even in an adversarial setting (Section 5.3.4). We also provide
an improved high-probability regret bound when P is included in the interior of the simplex
(Section 5.3.3).

We also discuss the optimality of our approaches (and lack thereof) by providing two lower
bounds on the regret suffered by any algorithm. Section 5.4 contains a distribution-free lower
bound, which can be as large as Ω

(√
KT

)
for some probability sets, proving the quasi-optimality

of our algorithms for these action sets. In Section 5.5, we describe in depth an asymptotic
distribution-dependent lower bound on the regret, when P is a polytope. This lower bound, which
is logarithmic in T , is expressed via an optimization problem.
Finally, we conclude this chapter with some numerical experiments (Section 5.6).

5.2. A UCB-like algorithm and its analysis

In this section we propose a simple variation of the well-known UCB algorithm designed for
our problem in the bounded rewards model. After a presentation of the algorithm, we give three
different regret bounds for this algorithm: a O(

√
KT ) bound valid for any probability set P, a

O(K ln2 T ) bound when P is a polytope, and a O(1) regret bound when P is a polytope contained
in the interior of the simplex.
Denote by Ext(P) the set of extremal points of P; recall that, by definition, a convex P is a

polytope if and only if Ext(P) is a finite set.

5.2.1. Setting and description of the algorithm

Define the empirical mean associated with arm a at time t

µ̂a(t) =
1

Na(t)

t∑

s=1

Ys1{As=a} , with the convention that µ̂a(t) = 1 if Na(t) = 0 ,

and introduce the upper confidence bound

Ua(t) = µ̂a(t) +

√
2 ln t

max
(
Na(t), 1

) ; (5.1)

denote by U(t) the vector with components Ua(t). Note that in the diversity-preserving setting,
we cannot to ensure that arm a be picked even once. Therefore, contrary to the vanilla bandit
setting, it is important to handle the case when Na(t) = 0. We thus set a default value for µ̂a(t)
when Na(t) = 0 to be 1, the highest reward value in the bounded model. This is also the reason
why we put a maximum in the denominator of the upper confidence bound.
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The natural extension of the UCB algorithm is to pick p
t
maximizing the scalar product with

the upper confidence vector, among the extremal points of P:

p
t+1
∈ argmax
p∈Ext(P)

〈
p, U(t)

〉
.

Note that the maximum over P of the linear functional p 7→
〈
p, U(t)

〉
is reached for some p

in Ext(P). The requirement that p
t
be chosen among the extremal points only is made for a

technical reason; see the first paragraph of Section 5.2.3.

Algorithm 5.1 Diversity-preserving UCB
1: for rounds t = 1, . . . , do
2: Select and play

p
t
∈ argmax
p∈Ext(P)

〈
p, U(t− 1)

〉
,

with ties broken arbitrarily
3: Play the pure action At ∼ pt
4: Get and observe the reward Yt ∼ νAt
5: Update the upper confidence bound vector U(t) according to the formula, for all a ∈ [K]

Ua(t) = µ̂a(t) +

√
2 ln(t)

max
(
Na(t), 1

) (5.2)

6: end for

Relationship to vanilla and linear bandits. When P is the whole simplex, then this algorithm
picks the pure action a with maximal index Ua(t − 1); this is exactly the UCB algorithm for
vanilla multi-armed bandits (as soon as all arms are picked once, which is a technical detail.)

Let us discuss the relation of this algorithm to LinUCB for linear bandits Lattimore and
Szepesvári [2020]. In this family of algorithms, the main design principle is to build confidence
sets Ct which contain the true mean-payoff vector with high probability, and to choose an action
xt maximizing the payoffs

〈
x, µ

〉
for µ ∈ Ct. Different types of confidence sets yield different

algorithms, and, generally, tighter confidence sets lead to better performance.
Given observations Y1, . . . , Yt associated with choices p

1
, . . . , p

t
, a typical confidence set for

linear bandits would be an ellipsoid centered around an estimate µ̂lin

t
. To construct this set,

denote by Xt the matrix whose rows are p>
1
, . . . , p>

t
, and Y1:t = (Y1, . . . , Yt)

> and define

V λ
t = λId + X>t Xt and µ̂lin

t
=
(
V λ
t

)−1 X>t Y1:t ,

where λ is a small regularization parameter. The following ellipsoid is the precise choice made,
e.g., in Abbasi-Yadkori et al. [2011]:

C lint =

{
µ ∈ Rd :

〈
µ− µ̂lin

t
, V λ

t

(
µ− µ̂lin

t

)〉
6

1

4

√
d ln

(
t
(
1 + t/λ

))
+ λ1/2

}
. (5.3)

See the previously mentioned reference for a proof the fact that this is indeed a confidence set,
i.e., that it contains the true mean-vector with probability at least 1− 1/t.
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As discussed before, our diversity-preserving setting can be seen as an extension of linear
bandits, with extra information observed. The diversity-preserving UCB algorithm follows the
optimism principle, but builds tighter confidence sets for µ thanks to the extra information At.

Indeed, it uses the simpler rectangular confidence set coming from Hoeffding’s inequality, which
treats each coordinate independently

Ct =

{
(µ1, . . . , µK) ∈ RK : ∀a ∈ [K], |µ̂a(t)− µa| 6

√
2 ln t

max(Na(t), 1)

}
. (5.4)

See Figure 5.1 for a comparison of the resulting confidence sets on some simulated data.

Figure 5.1.: Comparison of confidence sets for Bernoulli observations generated from the three
probability vectors p

1
= (0.1, 0.9), p

2
= (0.2, 0.8), p

3
= (0.4, 0.6) and true mean vector

(µ1, µ2) = (0.2, 0.3). Each p
i
for i ∈ {1, 2, 3} was selected 100 times to generate

A ∈ {1, 2}, after which reward Y ∼ Ber(µA) was drawn, totalling to T = 300
observations. The true mean vector is shown as a blue cross. The red area depicts
the ellipsoid defined in (5.3) from the observations, whereas the green rectangle is
the one from (5.4).

5.2.2. A distribution-free regret bound

We first provide a distribution-free bound on the regret incurred by our algorithm.

Theorem 5.1. The diversity-preserving UCB algorithm (Algorithm 5.1) ensures that for all T ,

sup
ν inD[0,1]

RT 6 2
√

2 lnT
(
K + 2

√
KT

)
+ 2 +K/T 2 .

Note here that a standard linear bandit algorithm would typically have a guarantee of order
K
√
T (up to multiplicative polylogarithmic terms), which would be worse than our result. More

generally, this raises the question of the optimal dependence of the minimax regret on the geometry
of P; see Open question 5.4.

Intuituion behind and overview of the proof of Theorem 5.1 . The proof follows quite closely
that of Abbasi-Yadkori et al. [2011] for linear bandits, with a few modifications specific to our
setting. There are two main steps in the usual proof scheme, which we recall informally. One is
to bound the probability that the true mean-vector does not belong to the confidence set at some
time step; that probability is small, so we can use a pessimistic bound on the regret incurred in
that case.
The other part of the proof consists in handling the regret under the assumption that all the

confidence sets indeed contain the mean-vector. Then the difference 〈p? − p
t
, µ〉 between the
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payoff of the chosen action and that of the best action can be controlled by a quantity that
depends on the size of the confidence set. Thus as the size of the confidence set reduces over time,
cumulative regret bounds can be derived.
While we follow this usual proof scheme in our setting, some differences with the analogue

linear bandit argument should be mentioned. Of course, the first difference comes from the
rectangular shape of the confidence sets, which allows us to treat each coordinate separately, and
to bypass the linear algebraic manipulations.
The second difference, perhaps more subtle, lies in the mismatch between the chosen actions

and the observations, and in the remaining stochasticity between the choice p
t
and the observation

At. This difference manifests itself concretely in the proof at equation (5.6): it is difficult to
handle directly the sum

T−1∑

t=0

K∑

a=1

pt+1,a√
max

(
Na(t), 1

) ,

a quantity which involves both the chosen p
t
’s and the Na(t)’s that come from the observations.

Indeed, the problem comes from the fact that contrary to the usual linear bandit setting, selecting
action p

t
does not mechanically reduce the size of the confidence set in a predictable way, since

various values of At’s may come from the choice p
t
. Of course the easy fix is to look at this in

expectation, as P[At+1 = a | p
t+1

] = pt+1,a; see the proof for details.

Detailed proof of Theorem 5.1. Let p? denote an optimal probability in P , and let rt = 〈p?−p
t
, µ〉

be the instantaneous regret suffered at time t. We begin with an elementary manipulation on rt.
By definition of p

t+1
we have 〈p? − p

t+1
U(t)〉 6 0 so

rt+1 =
〈
p? − p

t+1
, µ
〉

=
〈
p?, µ− U(t)

〉
+
〈
p? − p

t+1
, U(t)

〉

︸ ︷︷ ︸
60

+
〈
p
t+1

, U(t)− µ
〉
.

Let us now define a favorable event E(t) under which the estimates of the means are not too far
from the true means. To reduce clutter, we will write Na(t) = max(Na(t), 1),

E(t) =

{
For all a ∈ [K], |µa − µ̂a(t)| 6

√
2 ln t

Na(t)

}
.

By concentration, we will see that this event holds with probability at least 1− 2Kt−3. Under
E(t), we have for all a ∈ [K],

0 6 Ua(t)− µa 6 2

√
2 ln t

Na(t)

and therefore, under E(t), we can further bound the instantaneous regret,

rt+1 6
〈
p?, µ− U(t)

〉
+
〈
p
t+1

, U(t)− µ
〉
6 0 + 2

K∑

a=1

pt+1,a

√
2 ln t

Na(t)
. (5.5)

Then, by integrating, and using the worst case bound rt+1 6 1 when E(t) does not hold,

E[rt+1] 6
(
1−P

{
E(t)

})
+2E

[
K∑

a=1

pt+1,a

√
2 ln t

Na(t)

]
6
(
1−P

{
E(t)

})
+2
√

2 lnT E




K∑

a=1

pt+1,a√
Na(t)


 .

(5.6)
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We also used the fact that ln t 6 lnT . We will deduce an upper bound on the regret by summing
over t. Let us start with a rewriting of the second term, thanks to which we will work on the
sum. By conditioning on the past observations, i.e., on Ft+1 = σ

(
p

1
, A1, Y1, . . . , pt, At, Yt, pt+1

)
,

for all a ∈ [K]

P
[
At+1 = a

∣∣Ft+1

]
= pt+1,a thus, as Na(t) is Ft+1-measurable,

E

[
pt+1,a√
Na(t)

]
= E

[
P
[
At+1 = a

∣∣Ft+1

]
√
Na(t)

]
= E


E
[
1{At+1=a}√
Na(t)

∣∣∣∣Ft+1

]
 = E

[
1{At+1=a}√
Na(t)

]
.

We handle the sum over t thanks to this rewriting. Indeed, for all a, using the fact that Na(t)
increases by 1 if and only if At+1 = a, and treating

T−1∑

t=0

1{At+1=a}√
Na(t)

= 1 +

Na(T−1)∑

n=1

1√
n
6 1 + 2

√
Na(T − 1) 6 1 + 2

√
Na(T ) .

note that the equality also holds when Na(T − 1) = 0, in which case both sums equal 1. Then, by
summing the previous inequality over K and by concavity of

√· to obtain the second inequality,

t−1∑

t=0

K∑

a=1

pt+1,a√
Na(t)

6 K + 2

K∑

a=1

√
Na(T ) 6 K + 2

√
KT .

Going back to equation (5.6), we have proven that

RT =

T∑

t=1

rt 6
T−1∑

t=0

(1− P
{
E(t)

}
) + 2

√
2 lnT

(
K + 2

√
KT

)
.

We now upper bound
(
1 − P

{
E(t)

})
via a concentration result, stated as Lemma 5.1. As the

lemma is only valid for t > 2, we also bound the terms corresponding to t = 0 and t = 1 by 1.
The claimed result follows after some more elementary calculations:

RT 6 2 +

T−1∑

t=2

2Kt−3 + 2
√

2 lnT
(
K + 2

√
KT

)
6 2 + 2K

1

2T 2
+ 2
√

2 lnT
(
K + 2

√
KT

)

which is the stated bound.

Lemma 5.1. For t > 2, if the rewards Y1, . . . , Yt and actions A1, . . . , At are generated according
to Protocol 5.1, and under the bounded problem (ν1, . . . , νK) ∈ D[0,1] then

P

{
For all a ∈ [K], |µa − µ̂a(t)| 6

√
2 ln t

max
(
Na(t), 1

)
}

> 1− 2Kt−3 .

Proof. By optional skipping (see Section 2.4.1 in Chapter 2), we can replace the random quantities
depending on the observations from a fixed arm by their i.i.d. analogue. More precisely, for arm
a ∈ [K] define µ̂a,n to be the empirical mean of n i.i.d. samples from νa, then

P

{
|µa − µ̂a(t)| >

√
2 ln t

Na(t)

}
6 P

{
∃n ∈ [t] : |µa − µ̂a,n| >

√
2 ln t

max(n, 1)

}

6
t∑

n=1

P

{
|µa − µ̂a,n| >

√
2 ln t

max(n, 1)

}
6

t∑

n=1

2t−4 = 2t−3
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where the second inequality is a union bound over the value of Na(t) ∈ [t], and the third inequality
is Hoeffding’s inequality. Note that if n = 0 and t > 2, since we defined µ̂a,0 to be 1, this event
amounts to |1− µa| >

√
2 ln t >

√
2 ln 2 > 1, which cannot happen; thus the bound remains valid.

The claimed inequality follows from a union bound over a ∈ [K].

5.2.3. A distribution-dependent regret bound when P is a polytope

As in the previous section, we follow and adapt the proof scheme for the linear bandit algorithms
analysis to derive polylogarithmic distribution-dependent regret upper bounds for Algorithm 5.1.
Let us sketch this proof.

If P is finite or is a polytope, then the set of its extremal points Ext(P) is finite. In that case,
the player knows that at least one action in Ext(P) is optimal; therefore it is a reasonable choice
to play only among the extremal points of P , as we have requested in the definition of Algorithm
5.1.
Doing so, the player ensures that the instantaneous regret suffered from playing p among the

actions in Ext(P) is either 0, if p is optimal, or at least

∆
def
= min{∆(p) : p ∈ Ext(P), ∆(p) > 0 } ,

if p is suboptimal. This simple observation leads to the following crude upper bound on the
cumulative regret. Denote by rt = 〈p? − p

t
, µ〉 the instantaneous regret suffered at round t, then

rt 6
r2
t

∆
thus RT = E

[
T∑

t=1

rt

]
6 E

[
T∑

t=1

r2
t

∆

]
=

1

∆
E

[
T∑

t=1

r2
t

]
.

From there on, although we deal with r2
t instead of rt, the analysis is very similar to the

distribution-free one. In particular, we define the same favorable event under which all the
confidence sets contain the true mean µ, and handle the regret under that event.

Theorem 5.2. If P is either finite or a polytope, then Algorithm 5.1 enjoys the following
distribution-dependent regret bound on any bounded bandit problem in D[0,1]:

RT 6
8K(lnT )

(
2 + ln(T/K)

)
+ 2 +K/T 2

∆
,

where ∆ is the minimum gap among suboptimal probabilities in Ext(P).

This bound is of order K
(

ln(T )
)2
/∆; we feel the time-dependence could be improved, see the

following open question.

Open question 5.1. When P is finite or is a polytope, a natural strategy is to select probabilities
p ∈ Ext(P) according to the standard UCB algorithm and neglect all the structure of the problem;
this strategy yields a regret bound of

∑

p∈Ext(P)

8
lnT

∆(p)
+O

(
|Ext(P)|

)
,

While this approach is definitely not reasonable, it has the theoretical advantage of yielding
a problem-dependent regret bound of order lnT , which is better than our guarantee of order
8K(lnT )2/∆

(
1 + o(1)

)
. Of course the dependence on other parameters is considerably worse; in

particular the bound scales badly with the number of vertices. See Section 5.1.1 for a discussion
on the number of vertices.

We feel that it should be possible to derive logarithmic regret bounds with reasonable dependence
on all parameters, either for our diversity-preserving UCB or for another algorithm, but we were
unable to do so for the time being.
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Proof. As explained in the paragraph preceding the statement of the theorem, we start from the
upper bound

RT 6
1

∆
E

[
T∑

t=1

r2
t

]
.

and define the favorable event

E(t) =

{
For all a ∈ [K], |µa − µ̂a(t)| 6

√
2 ln t

Na(t)

}
.

Then, once again, under E(t), we have for all arms a ∈ [K],

0 6 Ua(t)− µa 6 2

√
2 ln t

Na(t)
,

and, under E(t), we can further bound the instantaneous regret,

rt+1 6
〈
p?, µ− U(t)

〉
+
〈
p
t+1

, U(t)− µ
〉
6 0 + 2

K∑

a=1

pt+1,a

√
2 ln t

Na(t)
.

We go one step further by squaring the inequality and applying the Cauchy-Schwarz inequality

r2
t+1 6 4

(
K∑

a=1

pt+1,a

√
2 ln t

Na(t)

)2

6 4

(
K∑

a=1

pt+1,a

Na(t)

)(
K∑

a=1

pt+1,a(2 ln t)

)
= 8

(
K∑

a=1

pt+1,a

Na(t)

)
ln t .

Thus we have reached an inequality very close to (5.6) in the distribution-free bound:

E[r2
t+1] 6 1− P{E(t)}+ 8(ln t)E

[
K∑

a=1

pt+1,a

Na(t)

]
6 1− P{E(t)}+ 8(lnT )E

[
K∑

a=1

pt+1,a

Na(t)

]
. (5.7)

The end follows the exact same steps, except that the new bound involves Na(t) instead of√
Na(t) in (5.6). Thus, after conditioning by observations up to time t

E

[
K∑

a=1

pt+1,a

Na(t)

]
= E

[
K∑

a=1

1{At+1=a}

Na(t)

]
,

and, in this order, by rearranging the terms in the sum, by using the fact that the N -th term in
the harmonic series is upper bounded by 1 + lnN , and by concavity of the logarithm,

K∑

a=1

T∑

t=1

1{At+1=a}

Na(t)
6 2K +

K∑

a=1

Na(T−1)∑

n=1

1

n
6 2K +

K∑

a=1

ln
(
Na(T )

)
6 K +K ln(T/K) .

Moreover, by Lemma 5.1, we can upper bound 1 − P{E(t)} 6 2Kt−3 therefore, going back to
(5.7), we get

E

[
T−1∑

t=0

r2
t+1

]
6

T−1∑

t=0

(
1− P{E(t)}

)
+ 8 lnT

(
K +K ln(T/K)

)

6 2 +
T∑

t=2

2Kt−3 + 8 lnT
(
K +K ln(T/K)

)
6 2 + 2K

1

2T 2
+ 8(lnT )

(
2K +K ln(T/K)

)

which concludes the proof.
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5.2.4. Improving the guarantees

An alternative proof scheme to show that diversity-preserving MOSS has
√
KT regret. In

the vanilla bandit setting, the MOSS algorithm from Audibert and Bubeck [2010] uses a modified
version of the UCB index to improve the distribution-free regret guarantees; the index at hand,
when adapted to our setting reads

Um
a (t) = µ̂a(t) +

√
1

Na(t)
ln+

(
t

KNa(t)

)
,

where ln+(x) = max(0, lnx), and, say, Um
a (t) = 1 if Na(t) = 0.

We give a sketch of how we could use a different proof scheme to obtain a O
(√
KT

)
regret

bound for the MOSS index version of diversity-preserving UCB, shaving off a
√

lnT .
Instead of following the linear bandit algorithms analysis, we propose to follow the analysis

of the MOSS algorithm described in Chapter 2. For the sake of conciseness, we only sketch the
main elements of the analysis as most of the steps are exactly treated as in Chapter 2.

Theorem 5.3. There exists a numerical constant c > 0 for which the diversity-preserving MOSS
algorithm ensures that for all T ,

sup
ν inD[0,1]

RT 6 c
√
KT .

Proof sketch. By definition of the algorithm,
〈
p
t
, Um(t− 1)

〉
>
〈
p?, Um(t− 1)

〉
and we can upper

bound the instantaneous regret as follows:

rt =
〈
p? − p

t
, µ
〉
6
〈
p?, µ− Um(t− 1)

〉
+
〈
p
t
, Um(t− 1)− µ

〉
,

and bound each of these terms separately. Let us inspect this first term:

E
[ 〈
p?, µ− Um(t− 1)

〉 ]
=

K∑

a=1

p?a E
[
µa − Um

a (t− 1)
]
.

It turns out this term is almost exactly treated in the analysis of the MOSS algorithm in Chapter 2,
Proposition 2.6 and it is smaller than c

√
K/t for some constant c; this sums over t ∈ [T ] to a

term of order
√
KT . Note in that in Remark 4 accompanying the proof, we observed that the

inequality holds regardless of how the arms are picked.
For the second term, we use again a conditioning argument: since At ∼ pt given the history up

to time t,

E
[〈
p
t
, Um(t− 1)− µ

〉]
= E

[
K∑

a=1

pt,a
(
Um
a (t− 1)− µa)

]

= E

[
K∑

a=1

1{At=a}
(
Um
a (t− 1)− µa)

]
= E

[
Um
At(t− 1)− µAt

]
.

We end up with a term which also appeared in the MOSS analysis. From the said analysis, we
can extract a bound

T∑

t=1

E
[
Um
At(t− 1)− µAt

]
6 c
√
KT .

Once again we gloss over some details: we should verify that the proof holds even though the
algorithm generating the sequence At is not the same, and that the boundary case when Na(t) = 0
for some a does not lead to problems. The total regret bound is of order

√
KT , as claimed.
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We do not know yet whether the MOSS version of this algorithm could deliver improved
distribution-dependent regret bounds. We expect that it should yield a regret bound of order
RT 6 O

(
(lnT )2/∆

)
instead of the K(lnT )2/∆, getting rid of a superfluous K term. These

would be minor improvements, as we eventually hope to get O
(
(lnT )

)
regret bounds, see Open

question 5.1.

About high-probability (pseudo-)regret bounds In this paragraph, we give a sketch of a
strategy to improve our expected regret bounds into high-probability guarantees. Fix a confidence
level δ > 0. A careful look at the proof of Theorem 5.1, e.g., at equation (5.5), suggests that we
are close to obtaining an upper bound of the form

R̃T
def
=

T∑

t=1

〈
p? − p

t
, µ
〉
6

T−1∑

t=0

K∑

a=1

1{At+1=a}√
Na(t)

, (5.8)

with high probability (note that we have defined a specific notion of regret here). From such a
bound, we could easily deduce a high-probability bound through an application of Berstein’s
inequality for martingales (Reminder 5.2), which would add an O(

√
T ln(1/δ)) additive factor.

However, we have not quite shown (5.8) : the bound (5.5) holds for each t with a probability at
least 1−Kt−3. These probabilities need to be summed over t ∈ [T ] if we want the global bound
on (5.8). Therefore, each of the bounds on rt should rather hold with proba 1− δ/T . This would
require modifying the indices in the diversity-preserving UCB strategy into

U (δ)
a (t) = µ̂a(t) +

√
2

ln
(
1/δ
)

Na(t)
.

There is however an important caveat with this modification, which is common in linear bandits:
it requires fixing a confidence level in advance, forcing the player to give up, e.g., on anytime
strategies.

5.2.5. Bounded regret when P is in the interior of the simplex

A more surprising result on the diversity-preserving problem is that bounded regret is possible
in some circumstances. Indeed, we show in this section that if P is a polytope (or it is finite), and
if P is strictly included in the interior of the simplex, then the regret of the diversity-preserving
UCB algorithm stays finite as T →∞.
Let us define the minimal probability of choosing any action a ∈ [K] over all probabilities

p ∈ P,
pmin(P)

def
= min

p∈P
min
a∈[K]

pa .

To reduce clutter we will omit the dependence on P and write pmin in what follows. The set P is
strictly included in the interior of the simplex if and only if pmin > 0. When this holds, the player
ends up receiving information on any pure action a ∈ [K] at every time step with probability at
least pmin, no matter which exact p

t
she picks.

This phenomenon is reminiscent of what Hao et al. [2020] call natural exploration in linear
contextual bandits. In their setting, the player may observe information about suboptimal actions
even when playing the best action. Therefore, the regime of observations becomes similar to
a full-monitoring one, in which the player would observe the reward of every action at every
time step, making bounded regret possible. See also Degenne et al. [2018], who describe another
similar setting in which extra-observations allow bounded regret.

Recall that when the probability set P is a polytope, we denote by ∆ the minimum gap among
suboptimal probabilities in the extremal points Ext(P).

173



Chapter 5. Diversity-preserving bandits, revisited

Theorem 5.4. If the probability set P is a polytope, or if it finite, and if pmin > 0 the regret of
Algorithm 5.1 on any bandit problem with minimal gap ∆ is bounded by

RT 6
24K

∆

[
ln

(
16

pmin∆2
ln
( 16

pmin∆2

))]2

+
3

∆
+ 4K + 3K

e−8pmin/∆
2

p2
min

.

Our proof follows naturally the intuition given above. Under our assumption, the number
of times every pure action a gets selected, Na(t), grows linearly with t with high probability.
Therefore, the upper confidence terms

√
(ln t)/Na(t) will mechanically reduce over time, even if

the player keeps playing the same probability. Eventually, the algorithm will end up discarding
all suboptimal probabilities, and stop incurring regret.

Proof. Let p? ∈ Ext(P) be an optimal probability and define the favorable events

E(t) =

{
For all a ∈ [K], |µa − µ̂a(t)| 6

√
2 ln t

max
(
Na(t), 1

)
}

and

E ′(t) =

{
For all a ∈ [K],

√
2 ln t

max
(
Na(t), 1

) < ∆

2

}
. (5.9)

As in the previous proofs, E(t) is an event under which the confidence set used by the algorithm
contains the true mean vector µ. In the second event E ′(t), the width of the confidence bands
are small enough to discriminate the suboptimal probabilities. Indeed, when both E(t) and E ′(t)
hold, for any suboptimal p, we have the following chain of inequalities,

〈
U(t), p

〉
=
〈
µ̂(t), p

〉
+

K∑

a=1

pa

√
2 ln t

max(Na(t), 1)
6
〈
µ, p

〉
+ 2

K∑

a=1

pa

√
2 ln t

max(Na(t), 1)

<
〈
µ, p

〉
+ ∆(p) =

〈
µ, p?

〉
6
〈
µ̂(t), p?

〉
+

K∑

a=1

p?a

√
2 ln t

max(Na(t), 1)
=
〈
U(t), p?

〉
.

The first inequality follows from the definitions of E(t) and the second from that of E ′(t). The
third inequality is a second application of the definition of E(t).
We will now show that for times t large enough, E(t) and E ′(t) will both hold with high

probability, ensuring that only optimal probabilities will be picked. As we have seen previously,
Lemma 5.1 ensures that for t > 2,

P[E(t)] > 1− 2Kt−3 .

For E ′(t), let us define a time threshold after which E ′(t) becomes likely to happen

t0
def
= max

{
t ∈ N | 8(ln t)/∆2 > t pmin/2

}
. (5.10)

Then for all t > t0 + 1, we have 8 ln t/∆2 6 tpmin/2, and the event E ′(t) will hold if every pure
action a gets picked a linear amount of times:

P[E ′(t)] = P
{
For all a ∈ [K], Na(t) >

8 ln t

∆2

}
> P

{
For all a ∈ [K], Na(t) >

t pmin

2

}
.

174



5.2. A UCB-like algorithm and its analysis

But of course, every action a is selected at each time step t with probability at least pmin, so
Na(t) is likely to grow at least as fast as tpmin/2. Formally, the process (Na(t) − tpmin) is a
sub-martingale with respect to the filtration Ft = σ(A1, Y1, . . . , At, Yt) as,

E
[
Na(t+1) | Ft

]
= Na(t)+pt+1,a > Na(t)+pmin so E

[
Na(t+1)−(t+1)pmin | Ft

]
> Na(t)−tpmin .

Moreover, the increments of this sub-martingale are bounded by 1. Therefore, by applying the
Azuma-Hoeffding inequality, for any a ∈ [K], we get

P
{
Na(t) 6

t pmin

2

}
= P

{
Na(t)− t pmin 6 − t pmin

2

}
6 exp

(
−2

t

(
tpmin

2

)2
)
.

Thus for t > t0 + 1, with a union bound over a ∈ [K],

P[E ′(t)] > 1−Ke−tp
2
min/2 .

Now, since ∆(p
t
) 6 1 a.s., and since we showed that a suboptimal p

t
can only be played if E(t)

and E ′(t) do not simultanesouly hold, we have

E[∆(p
t
)] 6 P

[
not
(
E(t) and E ′(t)

)]
6 P[not E(t)] + P[not E ′(t)] 6 2Kt−3 +Ke−tp

2
min/2 .

Hence the regret can be bounded as

RT = Rt0+
T∑

t=t0+1

E[∆(p
t
)] 6 Rt0+2K

T∑

t=t0+1

t−3+K
T∑

t=t0+1

e−tp
2
min/2 6 Rt0+4K+K

e−t0p
2
min/2

1− e−p
2
min/2

,

(5.11)
proving the claim that the regret is finite when T →∞.

Let us now make this bound more explicit, by computing t0 and bounding Rt0 . At this point,
the trivial way to proceed would be to bound Rt0 by t0, but we can easily improve on this by
appealling to the earlier analysis of the algorithm. Indeed, by the distribution-dependent bound
of Theorem 5.2, if t0 > K,

Rt0 6 24
K(ln t0)2

∆
+

3

∆
.

Actually, this also holds if t0 6 K, since in that case Rt0 6 t0 6 K and K is smaller than the
mentioned bound.
From the definition (5.10) of t0, we can approximate its value (postponing these calculations

to after the proof),
16

pmin∆2
6 t0 6

32

pmin∆2
ln

(
16

pmin∆2

)
. (5.12)

Next, since the function ϕ : x 7→ x/(1− e−x) is increasing and 0 6 p2
min/2 6 1/2,

1

1− e−p
2
min/2

6 ϕ(1/2)
2

p2
min

6
3

p2
min

,

and using the first inequality in the approximation of t0 in (5.12), we bound e−t0p
2
min/2 6 e−8pmin/∆

2 .
Combining previous results, we have proved the following bound on the regret of diversity-
preserving UCB

RT 6
24K

∆

[
ln

(
32

pmin∆2
ln
( 16

pmin∆2

))]2

+
3

∆
+ 4K + 3K

e−8pmin/∆
2

p2
min

which is the claimed statement.
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Proof of (5.12). Fix a < 1/e, and let us show that the threshold x0 = max
{
x ∈ N | lnx > ax

}

satisfies
1

a
6 x0 6

2

a
ln
(1

a

)
.

The approximation (5.12) of t0 derives from this applied to a = pmin∆2/16, which is indeed less
than 1/e.
The first inequality comes from the fact that the mapping ψ : x 7→ ax− lnx is increasing on

(1/a,+∞) and ψ(1/a) = 1 + ln a < 0 since we assumed that a < 1/e. The second inequality is
verified directly as

ln

(
2

a
ln
(1

a

))
= ln

1

a
+ ln

(
2 ln

(
1

a

))

︸ ︷︷ ︸
6ln(1/a)

< 2 ln
1

a
= a

(
2

a
ln
(1

a

))
,

where we used the fact that 2 ln(x) < x, which holds for all x > 0.

Open question 5.2. Is the upper bound on the constant regret close to optimal? While there is
certainly room for improvement in this bound, one may wonder whether the O(1/∆) dependence
on ∆ is improvable.

Open question 5.3. We conjecture that we would still get bounded regret under the less restrictive
condition that only the optimal actions lie in the interior of the simplex, i.e.,

min
p?∈Opt(ν)

min
a∈[K]

p?a > 0 .

Intuitively, diversity-preserving UCB should start selecting optimal probabilities most of the time,
as we already know that it enjoy sub-linear regret bounds. Thus the same reasoning as above
should apply with this new assumption. This simple-looking conjecture turned out to be harder to
prove than we anticipated.
The main reason for this difficulty is that using some prior regret bounds would only control

in expectation the numbers Na(t) of pulls of suboptimal arms. In order to guarantee that the
confidence bounds decrease, and extend the proof, we would rather need lower bounds on these
variables with high probability.

5.3. A follow-the-regularized-leader approach

In this section, we describe how the diversity-preserving setting can be extended to the
adversarial case. In this modified setting, the rewards associated with an arm a ∈ [K] are chosen
arbitrarily by the environement, and are not necessarily i.i.d. The follow-the-regularized-leader
(FTRL) algorithm can be used here, and easily provides O(

√
KT lnK) regret bound. We also

discuss some improvements when the probability set P is included in the interior of the simplex.
Recall that S denotes the set of all probability distributions over [0, 1].

5.3.1. (Oblivious) adversarial setting

A set P of diversity-preserving distributions is fixed. An adversary chooses beforehand a
sequence of vectors y

1
, . . . , y

t
, . . . with coordinates in [0, 1]. At every time step t, the player

selects a probability vector p
t
∈ P, and samples At ∼ p

t
. She then observes and receives the

reward yt,At . The natural measure of performance in this setting is the regret

max
p∈P

T∑

t=1

〈
p, y

t

〉
−

T∑

t=1

yt,At ,
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and its expectation equals

RT
(
y

1:T

)
= E

[
max
p∈P

T∑

t=1

〈
p, y

t

〉
−

T∑

t=1

yt,At

]
= max

p∈P

T∑

t=1

〈
p, y

t

〉
− E

[
T∑

t=1

yt,At

]
.

Note that the equality holds because we assumed that the reward vectors y
t
are deterministic

and chosen before the game is played (the adversary is said to be oblivious, as opposed to the
general reactive case in which the adversary can adapt the reward vectors to the player’s choices).

5.3.2. Follow-the-regularized-leader algorithms

FTRL is a rich family of online algorithms; see Section 4.C of Chapter 4 a for more thorough
presentation, including a literature review. We present a specific variant involving the negentropy
as the regularizer, which is defined as

H(p) =
K∑

a=1

pa ln pa .

Using this regulariser, the FTRL approach consists, in our setting, in choosing the mixed action

p
t
∈ argmax

p∈P

{ t−1∑

s=1

〈
p, ŷ

s

〉
−
H
(
p
)

η

}
, (5.13)

where ŷ
s
are estimates of the unobserved reward vectors y

s
built with the observations and η is a

fixed learning rate. In the rest of this section, we use the importance weighting estimator ŷ
t
with

coordinates
ŷt,a =

yt,At − 1

pt,a
1{At=a} + 1 .

These estimates are centered around 1 in order to ensure that ŷt,a 6 1, an important property in
the following results. Other useful properties are that for all a ∈ [K], for all t > 1,

E
[
ŷt,a | pt

]
= yt,a and

〈
p
t
, ŷ

t

〉
= yt,At , (5.14)

where the first equality holds since At is sampled according to p
t
and independently from the

past.

Computing the updates. When P = S, it is well-known that FTRL with H as the regularizer
is exactly the Exp3 algorithm (see Chapter 4 Section 4.C.2). In other words, when P = S, the
updates can be explicitly computed and their value is

p̃a,t = exp

(
η

t−1∑

s=1

ŷs,a

)/
K∑

j=1

exp

(
η

t−1∑

s=1

ŷs,j

)
.

This yields an alternative formulation for the updates in the diversity-preserving setting, using
Theorem 26.15 in Lattimore and Szepesvári [2020]. This theorem states that the argmax over P
of the objective function (5.13) (which is Legendre) can be computed in a two-step fashion. First,
compute the argmax of the objective over S; this is p̃

t
. Then, project this probability vector

to the constraint set P according to the Bregman divergence associated with H, which is the
Kullback-Leibler divergence, i.e.,

p
t
∈ argmin

p∈P
KL
(
p, p̃

t

)
.
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5.3.3. General analysis for the expected regret

We recall the standard full-information regret bound for the FTRL algorithm, formulated
directly with the reward estimates ŷ

t
; the next reminder is a concatenation of Reminder 4.5 (the

general FTRL bound) and Lemma 4.2 (a specification of the bound for negentropy) in Chapter 4;
both results are proved therein.

Reminder 5.1. For any p ∈ P and for any reward estimates ŷt such that ŷt,a 6 1, playing
according to the FTRL updates (5.13) ensures that, a.s.,

T∑

t=1

〈
p− p

t
, ŷ

t

〉
6
H
(
p
)
−H

(
p

1

)

η
+

T∑

t=1

1

2

K∑

a=1

pt,a(1− ŷt,a)2 . (5.15)

From this we instantly obtain a regret bound for FTRL in the diversity-preserving setting. We
denote by DH(P) = max{H

(
p
)
− H

(
q
)
| p, q ∈ P} the H diameter of P. Note that we have

DH(P) 6 DH(S) = lnK.

Theorem 5.5. For any reward sequence y
1:T
∈ [0, 1]KT , the FTRL algorithm with negentropy,

tuned with any η > 0, enjoyrs the following bound on the expected regret,

RT
(
y

1:T

)
6
DH(P)

η
+
η

2
KT ; (5.16)

in particular, RT
(
y

1:T

)
6
√

2DH(P)
√
KT with η =

√
2DH(P)/(KT ).

An interesting feature of the theorem above is that it naturally involves the H–diameter of
P, a quantity that depends on the geometry of P; see Open question 5.4 for a discussion on the
optimal minimax regret.

Proof. Let p? ∈ P be an optimal probability, that is, a probabiltity maximizing the scalar
product with y

1
+ · · ·+ y

T
; recall that p? is deterministic since the rewards y

1:T
are themselves

deterministic. Then,

RT
(
y

1:T

)
=

T∑

t=1

〈
p?, y

t

〉
−E
[

T∑

t=1

yt,At

]
=

T∑

t=1

E
[〈
p?, ŷ

t

〉]
−E
[

T∑

t=1

〈
p
t
, ŷ

t

〉
]

= E

[
T∑

t=1

〈
p? − p

t
, ŷ

t

〉
]
,

where the first equality holds thanks to (5.14). Furthermore, Reminder (5.1) yields,

T∑

t=1

〈
p− p

t
, ŷ

t

〉
6
DH(P)

η
+
η

2

T∑

t=1

K∑

a=1

pt,a(1− ŷt,a)2 =
DH(P)

η
+
η

2

T∑

t=1

p−1
t,At

(1− yt,At)2 . (5.17)

where the equality comes from substituting the definition of ŷ
t
. Then, integrating the summand

in the left-most side, and using the fact that yt,a ∈ [0, 1] for all t and a,

1

2
E
[
p−1
t,At

(1− yt,At)2
]

=
1

2

K∑

a=1

(1− yt,a)2 6
1

2
K .

Together with the two previous inequalities, this yields the claimed result.
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5.3.4. A high-probability regret bound when P is in the interior of the simplex

In the stochastic setting, the diversity-preserving problem is easier when P is fully in the
interior of the simplex. We show a similar phenonemon in the adversarial case, although the
sense in which the problem becomes easier is different.

Up to here, all the results presented in this chapter dealt with the expected regret suffered by
the player. It can be argued that in practice, the player would rather want an algorithm ensuring
large rewards with high probability, i.e., enjoying high-probability regret bounds.

In the standard adversarial bandit setting, high-probability regret bounds require making some
heavy adjustments to the usual algorithms. Among other changes, in order to reduce the variance
of the reward estimates, most methods require adding some extra-exploration, either in some
explicit (e.g., in Auer et al. [2002b]) or implicit (e.g., in Kocák et al. [2014]) form.
The next proposition states that the standard FTRL algorithm with negentropy, with no

modifications, enjoys high-probability regret bounds whenever the probability set P is included
in the interior of the simplex. This is because lower bounding the minimal probability naturally
reduces the variance of the reward estimates.
Recall that we denote by pmin the minimum of the coordinates of all probability vectors in
P. The proof is a straighforward application of Bernstein’s inequality for martingales, which we
recall in Reminder 5.2 below.

Proposition 5.1. If pmin > 0 then, for any reward sequence y
1:T

, with probability at least 1− δ,

max
p∈P

T∑

t=1

〈
p, y

t

〉
− yt,At 6

DH(P)

η
+

ηT

2pmin
+

√
2T

pmin
ln

1

δ
+

1

3pmin
ln

1

δ
.

In particular, if η =
√

2DH(P)pmin/T , we get that with probability at least 1− δ,

max
p∈P

T∑

t=1

〈
p, y

t

〉
− yt,At 6

√
2DH(P)T

pmin
+

√
2T

pmin
ln

1

δ
+

1

3pmin
ln

1

δ
.

Note that pmin 6 1/K, so this bound is never smaller than that of Theorem 5.5; the fact that
it holds with high probability is an improvement.

Proof. Remembering that yt,At =
〈
p
t
, ŷ

t

〉
, the regret can be decomposed as

RT =

T∑

t=1

〈
p?, y

t

〉
−
〈
p
t
, ŷ

t

〉
=

T∑

t=1

〈
p?, y

t
− ŷ

t

〉
+

T∑

t=1

〈
p? − p

t
, ŷ

t

〉
.

By previous results (equation (5.17)), denoting by p? an optimal probability,

T∑

t=1

〈
p? − p

t
, ŷ

t

〉
6
DH(P)

η
+
η

2

T∑

t=1

1

pt,At
6
DH(P)

η
+

ηT

2pmin
. (5.18)

Now let us show that the left-hand side of this inequality is not too far from the regret, by
using Bernstein’s inequality for martingales. To do so, consider the filtration (Ft) generated by
(A1, . . . , At), and define the process

( t∑

s=1

〈
p?, y

s
− ŷ

s

〉)

t>1

, which is an (Ft)–martingale as E
[〈
p?, ŷ

t

〉
| Ft−1

]
=
〈
p?, y

t

〉
.
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Indeed the equality holds, since the selected probability p
t
is Ft−1 measurable, and At ∼ p

t
is

drawn independently from the past. The increments are bounded by above since for all a and t,

yt,a − ŷt,a = yt,a −
(

(1− 1− yt,At
pt,a

)
1{At=a} 6

1− yt,At
pmin

6
1

pmin
,

and we bound the conditional variance of the increments as follows,

E
[〈
p?, ŷ

t
− y

t

〉2 | Ft−1

]
6 E

[(〈
p?, ŷ

t

〉
− 1
)2
| Ft−1

]

= E

[
p?At

(
1− yt,At
pt,At

)2 ∣∣∣Ft−1

]
=

K∑

a=1

pt,a p
?
a

(1− yt,a)2

p2
t,a

6
1

pmin
,

where the first inequality holds because the conditional expectation
〈
p?, y

t

〉
minimizes the

functional c 7→ E
[(〈

p?, y
t

〉
− c
)2|Ft−1

]
. Thus the sum of the conditional variances is less than

T/pmin. Therefore, applying Bernstein’s inequality for martingales, with probability at least 1− δ,
T∑

t=1

〈
p?, y

t
− ŷ

t

〉
6

√
2T

pmin
ln

1

δ
+

1

3pmin
ln

1

δ
.

This yields the claimed bound when combined with (5.18).

Reminder 5.2 (Bernstein’s inequality for martingales). Let (Xn)n>1 be a martingale difference
sequence with respect to a filtration (Fn)n>0, and let N > 1 be a summation horizon. Assume
that there exist real numbers b and vN such that, almost surely,

∀n 6 N, Xn 6 b and
N∑

n=1

E
[
X2
n

∣∣Fn−1

]
6 vN .

Then for all δ ∈ (0, 1),

P

[
N∑

n=1

Xn >

√
2vN ln

1

δ
+
b

3
ln

1

δ

]
6 δ .

5.4. A distribution-free lower bound

In this section we prove a distribution-free lower bound on the regret any algorithm has to
incur when playing the diversity-preserving problem. This lower bound is to be compared to the
upper bounds of Theorems 5.1, 5.3 and 5.5; it shows in particular that the

√
KT guarantee is

close to optimal for some probability sets P.
To formulate the lower bound, we introduce the quantity

M(P)
def
=

1

K

K∑

i=1

max
p∈P

pi −
1

K
,

which is a measure of the width of the probability set P. Note that M(P) ranges between
0 and 1 − 1/K. Indeed M(P) > 0 by sub-additivity of the maximum. Moreover, since M
is a non-decreasing quantity for the inclusion order, M(P) is smaller than its value when the
probability set is the whole simplex, which is 1− 1/K.

Proposition 5.2 states that the worst-case regret of any algorithm grows with M(P)2, and can
be as large as

√
KT when M(P)2 is close to 1.
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Proposition 5.2. Let P be any diversity-preserving probability set. For any bandit algorithm, and
for any T > KM(P)2,

sup
ν in D[0,1]

RT (ν) > 0.23M(P)2
√
KT .

The proof is a direct adaptation of the minimax lower bound for standard bandits, see Auer
et al. [2002b] and Garivier et al. [2019] for an in-depth discussion on bandit lower bounds. The
technique involves considering a well-chosen family of bandit problems that are close to each
other in a statistical sense. Then we show that any algorithm must play suboptimal actions
before it gathers enough information to find out which problem it is playing against.

For this specific lower bound, we use the same family of problems as the ones considered in the
lower bound for standard bandits. These are K–action Bernoulli bandit problems with means
1/2, except for one action with a slightly larger mean.

Proof. Consider the family of bandit problems ν(0), . . . , ν(K), defined for i = 0, . . . ,K, to be
Bernoulli distributions with means

µ(i)
a =

1

2
+ ε1{a=i} ,

where ε ∈ [0, 1/4] is a constant whose value we will set later on. Note that this also defines a the
problem µ(0) = (1/2, . . . , 1/2) with equal means. For i ∈ {0, . . . ,K}, denote by Pi the law of all
the observations for problem i at round T , and Ei the expectation taken according to Pi.

Let us now rewrite the expression of the regret for the problems considered. For a fixed i ∈ [K]
and for any p = (p1, . . . , pK) ∈ P,

〈
p, µ(i)

〉
=

1

2
+ εpi ,

and therefore,

RT (ν(i)) = ε

(
T max

p∈P
pi − Ei

[
T∑

t=1

pt,i

])
= εT

(
max
p∈P

pi − Ei

[
1

T

T∑

t=1

pt,i

])
.

Finally, note that by the tower rule,

Ei

[
T∑

t=1

pt,i

]
= Ei

[
Ni(T )

]
, so that RT (ν(i)) = εT

(
max
p∈P

pi − Ei
[
Ni(T )

T

])
.

Thus by averaging over i ∈ [K],

1

K

K∑

i=1

RT (ν(i)) = εT

(
1

K

K∑

i=1

max
p∈P

pi −
1

K

K∑

i=1

Ei
[
Ni(T )

T

])
. (5.19)

From there on the proof follows quite closely the one of the bandits distribution-free lower bound.
By the chain rule for the Kullback-Leibler divergence, see Section 2.1 in Garivier et al. [2019],
and denoting by kl the Bernoulli Kullback-Leibler divergence,

KL
(
P0,Pi

)
= E0[Ni(T )] kl

(
1/2, 1/2 + ε

)
6 E0[Ni(T )] c0 ε

2 ,

where we used the fact that kl(1/2, 1/2 + ε) 6 c0ε
2 with c0 6 2.31, whenever 0 6 ε 6 1/4. Now

by Pinsker’s inequality,

KL
(
P0,Pi

)
> sup

Z∈[0,1]
2
(
E0[Z]− E1[Z]

)2
> 2

(
E0

[
Ni(T )

T

]
− Ei

[
Ni(T )

T

])2

,
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where the supremum is taken over all random variables Z that are bounded in [0, 1] and is
specified to the random variable Ni(T )/T . Next, taking a square root and dividing by 2,

Ei
[
Ni(T )

T

]
6 E0

[
Ni(T )

T

]
+

√
KL
(
P0,Pi

)

2
.

Thus, averaging over i ∈ {1, . . . ,K}, using the concavity of x 7→ √x, and the fact that the
variables Ni(T )/T sum up to 1,

1

K

K∑

i=1

Ei
[
Ni(T )

T

]
6

1

K
+

1

K

K∑

i=1

√
KL(P0,Pi)

2
6

1

K
+

√√√√ 1

2K

K∑

i=1

KL(P0,Pi) 6
1

K
+ ε

√
c0T

2K
.

(5.20)
Substituting this into (5.19) yields

1

K

K∑

i=1

RT (ν(i)) > εT

(
1

K

K∑

i=1

max
p∈P

pi −
1

K
− ε
√
c0T

2K

)
= εT

(
M(P)− ε

√
c0T

2K

)

Now take ε = M(P)
√
K/T/2, which is smaller than 1/4 by the assumption T > KM(P)2 (note

also that M(P) is always non-negative), to get

1

K

K∑

i=1

RT (ν(i)) >
1

2

(
1−

√
c0

8

)
M(P

)2√
KT > 0.23M(P)2

√
KT .

Therefore at least one problem among ν(1), . . . , ν(K) has a regret lower bounded as above, which
proves the claimed statement.

Open question 5.4 (Optimal distribution-free dependence on the geometry P). Combining this
lower bound with the upper bounds of Theorems 5.1 and 5.5, we have obtained the following
inequalities on the minimax regret for a given probability set P:

0.23M(P)
√
KT 6 sup

strat.
inf
ν inD

RT 6 min
(
c
√
KT,

√
2DH(P)

√
KT

)
,

where the infimum is taken over all strategies and the supremum, over all bandit problems in
D, and c is a numerical constant. This shows that

√
KT is the optimal dependence for some

probability sets: those for whichM(P) is close to 1.
However the gap between the left-most and the right-most sides of the inequalities can be

significant for some specific P. We would like to reduce this gap, either by improving the analyses
of our current algorithms, or by considering new algorithms. One promising approach is to find
other regularizing functions in FTRL, chosen depending of the geometry of P.

At the time of writing, we do not have a clear-cut opinion on whether the optimal dependency
on the geometry of P should be expressed in terms ofM(P). It appears naturally in the proof of
the lower bound, but we have no corresponding regret upper bound.

5.5. Distribution-dependent regret lower bound for polytopes

The end goal of this section is to study the case of polytopes P , which are given, by definition, by
convex hulls of their extremal sets Ext(P). We derive an asymptotic lower bound on the regret for
the diversity-preserving bandit problem. This lower bound is analogous to the well-known lower
bound for structured bandits from Graves and Lai [1997]. It is formulated via an optimization
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problem, which we study; we derive in particular a necessary and sufficient condition under which
the lower bound is positive.

To do so, we first consider the simpler case of finite sets P and explain later, in Section 5.5.3,
how to extend with no effort the results for finite sets to polytopes.

Thus we fix a finite probability set P . With no loss of generality, we assume that for all a ∈ [K],
there is at least a mixed action p ∈ P such that pa > 0. Otherwise, we may discard arms not
fulfilling this condition. Throughout this section, we also fix an arbitrary bandit model D, that
is, a set of reward distributions with finite first moment. We will sometimes denote by I ⊆ R the
range of possible means for distributions in D.

5.5.1. An asymptotic lower bound in the diversity-preserving setting / Finite P
For a bandit problem ν ′ in D with means µ′, we denote by Opt(ν ′) the set of its optimal

probabilities:
Opt(ν ′) = argmax

p∈P

〈
p, µ′

〉
. (5.21)

Consider ν = (ν1, . . . , νK) in D a fixed bandit problem. We will assume in this section that
the set of optimal actions for ν is a singleton and denote its unique element Opt(ν) = {p?(ν)}.
This assumption is common in bandit analyses (it is made, e.g., in Lattimore and Szepesvári
[2017], Combes et al. [2017]), and it is arguably harmless as generic problems will typically have
a unique optimal action.
We make a uniformity assumptions on the performance of the strategies considered. An

algorithm is said to be uniformly fast convergent (abbreviated to UFC in what follows) over D if
for any bandit problem ν ′ in D, its regret decays faster than any power of T , i.e., if RT (ν ′) = o(Tα)
for all α > 0. This assumption is satisfied, e.g., by the diversity-preserving UCB algorithm, by
Theorem 5.2.

To formulate the lower bound, let us also introduce the set of confusing alternative problems
associated with the bandit problem ν, denoted by Alt(ν). Problems in Alt(ν) are the ones in
which p?(ν) is suboptimal, but that the player cannot discrimate from ν by only playing p?(ν).
Precisely, for each arm a, either p?a(ν) = 0 and selecting the optimal probability p?(ν) never
results in picking arm a, or νa = ν ′a and observing a reward associated with a does not provide
discriminative information information; formally,

Alt(ν)
def
=
{
ν ′ in D

∣∣∣ p?(ν) /∈ Opt(ν ′) and ∀ 1 6 a 6 K, p?a(ν) = 0 or νa = ν ′a

}
.

Since UCB played over all probabilities in P yields logarithmic regret, we expect the correct
scaling of the suboptimal pulls to be logarithmic. Therefore define the normalized allocations

nt(p) =
Eν
[
N (p)(t)

]

ln t
, so that

Rt
ln t

=
∑

p∈P
∆(p)

Eν
[
N (p)(t)

]

ln t
=
∑

p∈P
∆(p)nt(p) . (5.22)

A UFC algorithm facing the problem ν will eventually focus on the unique optimal mixed
action p?(ν). Doing so, most of its observations will correspond to pure actions a ∈ [K] such
that pa(ν)? > 0, which provide no information that is useful to distinguish ν from problems
ν ′ ∈ Alt(ν). A measure of this useful information is the Kullback-Leibler divergence between the
laws of the rewards after T rounds, Pν,T and Pν′,T when the underlying problems are, respectively,
ν and ν ′. This total Kullback-Leibler divergence is computed thanks to a chain rule, see Garivier
et al. [2019],

KL
(
Pν,T ,Pν′,T

)
=

T∑

t=1

Eν
[
KL(νAt , ν

′
At))

]
=

T∑

t=1

Eν

[
K∑

a=1

pt,a KL(νa, ν
′
a)

]
.
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This quantity can be factored as a sum over the availalble probabilities p ∈ P.

∑

p∈P
Eν
[
N (p)(T )

] ∑

a∈[K]

pa KL(νa, ν
′
a) = lnT

(∑

p∈P
nT (p)

∑

a∈[K]

pa KL(νa, ν
′
a)

)
.

When ν ′ belongs to Alt(ν), only the coordinates such that p?(a)(ν) = 0 contribute to the sum
over a ∈ [K], and this can be further rewritten as

lnT

(∑

p∈P
nT (p)

∑

a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a)

)
.

Asymptotically, the algorithm must maintain this amount of information above lnT in order to
satisfy the UFC assumption, see Lemma 5.2 below. This puts a constraint on the limit of nt(p)
for all p, see (5.23), which translates into a lower bound on the regret thanks to (5.22).

Theorem 5.6. For all algorithms that are UFC over D, and for all problems ν = (ν1, . . . , νK) in
D with a unique optimal action p?(ν),

lim inf
T→∞

RT (ν)

lnT
> c(P, ν) ,

where c(P, ν) ∈ [0,+∞) is defined as the constrained infimum:

inf
n∈RP+

∑

p∈P
∆(p)n(p) under the constraint that

∀ ν ′ ∈ Alt(ν),
∑

p∈P
p 6=p?(ν)

n(p)
∑

a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) > 1 . (5.23)

Proof. Let us denote p? = p?(ν), omitting the dependence on ν. We will lower bound all cluster
points of the sequence (Rt/ ln t). Consider an increasing sequence (tm) such that

(
Rtm/ ln tm

)

converges to a cluster point in R+ ∪ {+∞}. If the only cluster point is +∞, the claim trivially
holds. Otherwise, assume that the limit is finite.
Since for all p 6= p?, the quantities ∆(p) are positive and ntm(p) are non-negative, all the

sequences
(
ntm(p)

)
m∈N for p 6= p? are bounded. Therefore, we may extract a subsequence from

(tm), which we call (Tm), such that the sequences
(
nTm(p)

)
m∈N converge for all p 6= p?, and we

call n(p) their limits. In the rest of the proof, we will carefully avoid refering to the undefined
quantity n(p?).
Let ν ′ in D be an alternative bandit problem, and denote by Pν,t (respectively Pν′,t), the law

of the rewards Y1, . . . , Yt, under problem ν (respectively ν ′). As explained in the paragraph
preceding the proof,

KL
(
Pν,t,Pν′,t

)

ln t
=
∑

p∈P
nt(p)

K∑

a=1

pa KL(νa, ν
′
a) .

Then by Lemma 5.2 below, for any problem ν ′ in which p? is suboptimal,

lim inf
t→∞

∑

p∈P
nt(p)

K∑

a=1

pa KL(νa, ν
′
a) > 1 . (5.24)
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Moreover, if ν ′ ∈ Alt(ν), we have either p?a = 0 or νa = ν ′a, therefore

K∑

a=1

p?a KL(νa, ν
′
a) = 0 ,

and we may remove the term corresponding to p = p? from the sum (5.24). Thus, considering the
convergent sequences

(
nTm(p)

)
, and by identity of the lim inf, we deduce that for all ν ′ ∈ Alt(ν),

∑

p∈P
p 6=p?

n(p)
K∑

a=1

pa KL(νa, ν
′
a) =

∑

p∈P
p6=p?

n(p)
∑

a∈[K]
p?a=0

pa KL(νa, ν
′
a) > 1 ,

where the equality holds since we know that KL(νa, ν
′
a) = 0 whenever p?a > 0. Therefore n

satisfies the constraint (5.23). In conclusion, we have shown that all cluster points of (Rt/ ln t)
are lower bounded by

∑

p∈P
∆(p)n(p) for some n : P → R+ satifsfying the constraint (5.23).

Note that the quantity n(p?) does not influence the value of the lower bound as ∆(p?) = 0. This
concludes the proof.

The following lemma summarizes the information-theoretic computations underlying this lower
bound.

Lemma 5.2 (Asymptotic divergence). Let ν be a bandit problem in a model D with a unique
optimal action p?(ν). Let ν ′ be a bandit problem in D for which p?(ν) is suboptimal. Then, if the
algorithm used to select the actions is UFC over D,

lim inf
T→∞

KL
(
Pν,T ,Pν′,T

)

lnT
> 1 ,

where Pν,T and Pν′,T denote the law of the rewards Y1, . . . , YT when the underlying problems are,
respectively, ν and ν ′.

Proof. Denote p? = p?(ν), omitting the dependence on ν; denote also by kl(·, ·) the Bernoulli
Kullback-Leibler divergence. By the data-processing inequality for [0,1]–valued random variables
(see Section 2.1 in [Garivier et al., 2019]), and using the standard inequality kl(p, q) > p ln(1/q)−
ln 2,

KL
(
Pν,T ,Pν′,T

)
> kl

(
Eν

[
N (p?)(T )

T

]
, Eν′

[
N (p?)(T )

T

])
> Eν

[
N (p?)(T )

T

]
ln


 T

Eν′
[
N (p?)(T )

]


−ln 2 .

Since the strategy is UFC, and since p? is the only optimal action for ν,

RT (ν)

T
−−−−→
T→∞

0, thus Eν

[
N (p?)(T )

T

]
−−−−→
T→∞

1.

Next, for all α > 0, there exists a constant C > 0, possibly depending on α, ν and ν ′ such that
for all times T , we have RT (ν ′) 6 CTα . Therefore, as p? is suboptimal in ν ′,

RT (ν ′) > ∆ν′(p
?)Eν′

[
N (p?)(T )

]
, so that Eν′

[
N (p?)(T )

T

]
6

C

∆ν′(p?)
Tα−1 def

= C ′Tα−1,
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where we denoted by ∆ν′(p
?) the gap of p? in ν ′ and where we defined a modified constant C ′.

Combining the previous inequalities, we obtain

KL
(
Pν,T ,Pν′,T

)

lnT
> Eν

[
N (p?)(T )

T

]

︸ ︷︷ ︸
−→1

ln
(
T 1−α/C ′

)

lnT︸ ︷︷ ︸
−→1−α

− ln 2

lnT︸︷︷︸
−→0

.

Therefore, as T →∞, we have

lim inf
T→∞

KL
(
Pν,T ,Pν′,T

)

lnT
> 1− α .

The claimed result follows by taking α→ 0.

5.5.2. Discussion of the lower bound / Finite P
This lower bounds shows in particular that the regret of a UFC algorithm on any bandit

problem ν such that c(P, ν) > 0 grows at least logarithmically as T →∞. On the other hand,
when c(P, ν) = 0, this lower bound does not say anything. However, the optimality of this type
of lower bound in other problems, e.g., in Combes et al. [2017], suggests that it should be possible
to have sub-logarithmic regret in that case, i.e., to have the true limit

RT (ν)

lnT
−−−−→
T→∞

0 whenever c(P, ν) = 0 .

In fact we already knew from Theorem 5.4 that bounded regret, a guarantee stronger that
sub-logarithmic regret, is sometimes possible, e.g., when P is included in the interior of the
simplex.
To develop this comparison, let us now state simple conditions to check whether c(P, ν) is

positive.

Proposition 5.3. In the setting and under the conditions of Theorem 5.6, we have the equivalence

c(P, ν) = 0 if and only if Alt(ν) is empty .

Note that if p?a > 0 for all a ∈ [K], then Alt(ν) is empty.

Proof. If Alt(µ) is empty then the linear program is unconstrained and c(P, ν) is 0. For the
converse statement, assume by contradiction that Alt(ν) is non-empty and that the infimum is
0. For ε > 0, there exists nε ∈ RP+, satisfying the constraint and such that

∑

p∈P
∆(p)nε(p) 6 ε .

Then for any ν ′ ∈ Alt(ν), since nε satisfies the constraint (5.23),
∑

p∈P
p 6=p?(ν)

nε(p)
∑

a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a) > 1 .

And therefore,

1 6
∑

p∈P
p6=p?(ν)

nε(p)
∑

a∈[K]
p?a=0

pa KL(νa, ν
′
a) 6 max

p∈P, p 6=p?(ν)

{
1

∆(p)

∑

a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a)

} ∑

p∈P
p 6=p?(ν)

∆(p)nε(p)

6 ε max
p∈P, p 6=p?(ν)

{
1

∆(p)

∑

a∈[K]
p?a(ν)=0

pa KL(νa, ν
′
a)

}
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This leads to a contradiction for ε small enough.

Recall that we denote by I the range of means for distributions in the model. When I is not
bounded from above we get a simpler characterization that depends only on the optimal action:
the lower bound is null if and only p?(ν) lies in the interior of the simplex.

Proposition 5.4. In the setting and under the assumptions of Theorem 5.6, and under the
additional assumption that the range of possible means I is not bounded from above, the following
equivalences hold:

c(P, ν) = 0 ⇔ Alt(ν) is empty ⇔ p?a(ν) > 0 for all a ∈ [K] .

Proof. The only implication left to prove is that if p?a(ν) = 0 for some a ∈ [K], then Alt(ν) is
non-empty. We assumed with no loss of generality (see page 182) that for each arm k, there
exists p ∈ P with pk > 0. There exists in particular p ∈ P with pa > 0. Since p?(ν) is the unique
optimal arm of ν, the gap ∆(p) is positive. Let ν ′ be a bandit problem in D, and α > ∆(p)/pa
be a parameter such that

E(ν ′i) =

{
E(νi) if i 6= a

E(νi) + α if i = a
.

The existence of such a problem is guaranteed for some α large enough by the assumption that
the means of D are not bounded by above.
It only remains to show that p?(ν) is suboptimal for ν ′, which is true as

〈
p, µ′

〉
=
〈
p, µ

〉
+ αpa >

〈
p, µ

〉
+

∆(p)

pa
pa =

〈
p?(ν), µ

〉
=
〈
p?(ν), µ′

〉
,

proving the claim.

A natural example of a (tractable) model with unbounded means is the Gaussian noise case.
More generally, one can consider reward distributions lying in a one-dimensional exponential
family, which can sometimes have unbounded means; see, e.g., Cappé et al. [2013].

This last characterization is another argument in favor of our conjecture in Open question 5.3:
modulo some small technical conditions, bounded regret should be possible whenever the optimal
action lies in the interior of the simplex. More generally, it would be nice to have an algorithm
matching the asymptotic lower bound presented here, with the ultimate goal of designing an
algorithm enjoying both asymptotically optimal and reasonable finite-time time guarantees. To
this end, approaches developed in Lattimore and Szepesvári [2017], Combes et al. [2017], Hao
et al. [2020] seem promising; there are however significant technical obstacles to overcome in
order to adapt these approaches.

5.5.3. Extension to polytopes P (by a reduction argument)

We now show how to extend the lower bound from the case of a finite P to the case of a (closed)
polytope P , i.e., by the Krein-Milman theorem, the convex hull of a finite set of extremal points
Ext(P). To do so, we show that any strategy playing in P can be transformed into a strategy
suffering the same regret, but playing exclusively in Ext(P).
We know, via Krein-Milman’s theorem, that P is the convex hull of Ext(P) (remember we

assumed that P is closed). Therefore, by Carathéodory’s theorem, any point in P can be written
as a finite convex combination of points in Ext(P). We can thus build a mapping Φ from P to
the set of probability measures on Ext(P) such that the expected value of Φ(p) is p. Note that
the proof of Carathéodory’s theorem provides a concrete way to build this mapping.
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More precisely, from the mentioned convex-hull property, any point in P can be written as a
finite convex combination of points in Ext(P). We consider a convex decomposition with elements
in Ext(P) as a probability measure on Ext(P). The proof of Caratheodory’s theorem provides a
concrete way of constructing the needed convex decompositions / probability distributions. This
leads to a mapping Φ from P to the set of probability measures on Ext(P) such that the expected
value of Φ(p) is p.

For a given strategy ψ, let Φ · ψ be the strategy defined as follows: at time t, given a history
of plays and observations p

1
, A1, Y1 . . . , pt−1

, At−1, Yt−1, if ψ picks p
t
∈ P at time t, then Φ · ψ

samples q
t
∈ Ext(P) with law q

t
∼ Φ(p

t
). This mapping preserves the laws of the chosen pure

actions, and thus of the rewards. Hence the expected regret is preserved:

RT (ψ, ν) = RT
(
Φ · ψ, ν

)
.

In particular, if ψ is UFC over a bandit model D, then Φ · ψ is also UFC over D. Since Φ · ψ
plays only in the finite set Ext(P), we can apply Theorem 5.6 and deduce that

lim inf
T→∞

RT (ψ, ν) > c
(
Ext(P), ν

)
,

where c is the value of the optimization problem defined in Theorem 5.6.

5.6. Some numerical experiments on synthetic data

Setup, probability set and problems considered. In this section, we perform some numerical
experiments that support our conjecture that UCB enjoys bounded regret whenever the optimal
probability lies in the interior of the simplex (Open question 5.3). To this end, we consider a
simple probability set in dimension K = 3 that is not completely included in the interior of the
simplex, namely, the set, for ` ∈ (0, 1/2),

P =
{

(p1, p2, p3) ∈ S : p1 > ` and p2 > `
}
.

This action set has 3 corners

p
1

=
(
1− `, `, 0

)
, p

2
=
(
`, 1− `, 0

)
, and p

3
=
(
`, `, 1− 2`

)
,

and out of these three corners, only p
3
lies in the interior of the simplex. We consider a family of

bandit problems να, with α ∈ (−1/6, 1/6), and Bernoulli distributions, defined by their means:

µ
α

= (1/2 + α, 1/3, 1/2− α) .

These problems are defined so that if α < 0, then p
3
is the only optimal action, whereas if α > 0,

then p
1
is the only optimal action. Indeed, we have

〈
p

3
− p

1
, µ

α

〉
=
(
2`− 1

)(1

2
+ α

)
+ 0 +

(
1− 2`

)(1

2
− α

)
= −2α(1− 2`)

〈
p

1
− p

2
, µ

α

〉
= (1− 2`)

(1

2
+ α

)
+ (2`− 1)

1

3
+ 0 = (1− 2`)

(1

6
+ α

)
> 0

〈
p

3
− p

2
, µ

α

〉
= 0 + (2`− 1)

1

3
+ (1− 2`)

(1

2
− α

)
= (1− 2`)

(1

6
− α

)
> 0.

By Theorem 5.6, Proposition 5.4 and the reduction argument of Section 5.5.3, any UFC algorithm,
and in particular UCB, must suffer logarithmic regret on the problems να when α > 0. On the
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other hand, the lower bound is void for να when α < 0. In that case, we conjectured that UCB
should obtain bounded regret. To sum up (see also Figure 5.2)

α < 0 ⇒ p
3
, in the interior of the simplex, is the only optimal action

⇒ no lower bound, and bounded regret seems possible ,

whereas
α > 0 ⇒ p

1
, on the border of the simplex, is the only optimal action

⇒ logarithmic lower bound on the regret .

In our experiments, we set ` = 0.1 and let α vary in {−0.1, −0.05, 0.05, 0.1}. We run the
diversity-preserving UCB algorithm on all problems να, over T = 20,000 time steps for N = 75
runs. The regret suffered by the algorithm is estimated with

R̂T (να) =
1

N

N∑

i=1

R̂T (να, i) , where R̂T (να, i) =
T∑

t=1

〈
p?(να)− p

t
(α, i), µ

α

〉

and where we denoted by p
t
(α, i) the mixed action at round t on problem να on the i–th run.

p
2

p
3

p
1

p
3

p
1

(a) p? = p
3
is in the in-

terior

p
2

p
3

p
1

(b) p? = p
1
is on the

border

Figure 5.2.: The probability set P and two different bandit problems. On the left, the optimal
action is p

3
, which is in the interior of the simplex. On the right, the optimal action

(in red) is p
1
, which is on the border on the simplex. We also plot in red the projection

of the mean-payoff vector (anchored at the origin) on the simplex.
Figure 5.3 reports the results of our experiments. As expected, the algorithm yields logarithmic

regret for να if and only if α < 0, i.e., whenever the optimal probability is on the border simplex.
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Figure 5.3.: Performance of diversity-preserving UCB on different problems να, with the parameter
α ∈ {−0.1, −0.05, 0.05, 0.1}. Each algorithm was run N = 75 times, each run lasting
T = 20,000 time steps. Solid lines report the values of the estimated regrets, while
shaded areas correspond to ±2 standard errors of the estimates.
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Titre: Sur quelques questions d’adaptation dans des problèmes de bandits stochastiques

Mots clés: Bandits stochastiques à plusieurs bras, algorithme Upper Confidence Bound (UCB), optimalité
minimax, optimalité asymptotique, bandits à continuum de bras, statistiques adaptatives

Résumé: Cette thèse s’inscrit dans le domaine
des statistiques séquentielles. Le cadre principal
étudié est celui des bandits stochastiques à plusieurs
bras, cadre idéal qui modélise le dilemne exploration-
exploitation face à des choix répétés. La thèse est
composée de quatre chapitres, précédés d’une intro-
duction. Dans la première partie du corps de la thèse,
on présente un nouvel algorithme capable d’atteindre
des garanties optimales à la fois d’un point de vue
distribution-dependent et distribution-free. Les deux
chapitres suivants sont consacrés à des questions dites
d’adaptation. D’abord, on propose un algorithme ca-
pable de s’adapter à la régularité inconnue dans des

problèmes de bandits continus, mettant en évidence
le coût polynomial de l’adaptation en bandits conti-
nus. Ensuite, on considère un problème d’adaptation
au supports pour des problèmes de bandits à K bras,
à distributions de paiements bornés dans des inter-
valles inconnus. Enfin, dans un dernier chapitre un
peu à part, on étudie un cadre légèrement différent
de bandits préservant la diversité. On montre que
le regret optimal dans ce cadre croît à des vitesses
différentes des vitesses classiques, avec notamment
la possibilité d’atteindre un regret constant sous cer-
taines hypothèses.
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ting. In particular, we observe that bounded regret
is possible under some specific hypotheses.
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