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Abstract: 

Cells respond to environment-induced mechanical perturbations by many different means. 

Clathrin-coated structures (CCSs) are sensitive to such perturbations in a way that often results 

in a mechanical impairment of their capacity to bud, thus preventing endocytosis. Compressive 

stresses can be exerted in different physiological and physio-pathological contexts and elicit 

specific responses that help the cell to cope with the stress. Here, we show that compression 

leads to CCSs frustration that is required for pressure induced-epidermal growth factor receptor 

(EGFR) signaling. We confirmed that pressure stalls CCSs dynamics and showed that it also 

slows down the dynamic exchange of CCSs building blocks. EGFR specifically accumulated 

at frustrated CCSs under pressure, while other receptors did not, in the absence of any added 

specific ligands. Surprisingly, compression-induced EGFR recruitment at CCSs was 

independent of EGFR kinase activity, but CCSs were required for full EGFR activation and 

signaling. Finally, we observed that compression-induced CCSs frustration can also potentiate 

signaling through other receptors, provided their ligands are present in the environment. We 

propose that pressure modulates intracellular signaling events partly through generating 

frustrated CCSs.  

 

  



Main Text: 

INTRODUCTION 

Clathrin-mediated endocytosis (CME) relies on the assembly of clathrin-coated structures 

(CCSs) at the internal leaflet of the plasma membrane. CCSs are endowed with the capacity to 

recruit specific receptors and to bend the membrane in order to generate receptor-containing 

endocytic vesicles1. Membrane bending is however sensitive to mechanical perturbations that 

oppose the invagination force generated by CCSs. For instance, high membrane tension was 

reported to stall CCSs invagination and thus, to prevent CME2. Other types of mechanical 

perturbations can also prevent normal CCSs budding. For example, a subset of CCSs termed 

tubular clathrin/AP-2 lattices (TCALs) that specifically nucleate at cell/collagen fibers contact 

sites show a reduced dynamics because they try and fail to internalize fibers that are longer than 

the cell itself3. Substrate rigidity can also impair CCSs budding through favoring the v 5 

integrin-dependent formation of flat and long-lived clathrin-coated plaques4. Thus, CCSs 

frustration is a common response to a wide array of mechanical perturbations. CCSs frustration 

may not simply be a passive consequence of environmental perturbations but may actually 

participate in building an adapted response to these modifications. Indeed, we showed that 

TCALs help the cell to migrate in 3D environments and that clathrin-coated plaques that 

assemble on stiff substrates serve as signaling platforms for different receptors, thus leading to 

sustained cell proliferation3,4. 

Cell compression was recently shown to induce CCSs frustration as well, most likely because 

of an increased membrane tension that is believed to result from the compressive stress5. 

Compressive forces are frequently encountered in the organism, whether in a physiological or 

pathological context6–8. These forces deeply impact the cell physiology and modulate signaling 

pathways as well as gene expression profile9. Compression was shown to lead to the activation 



of the epidermal growth factor receptor (EGFR) through a force-induced shedding of HB-EGF 

precursor10. Because we previously observed that the EGFR uses frustrated clathrin-coated 

plaques as signaling platforms, we wondered whether pressure-induced CCSs frustration could 

participate in EGFR signaling in these conditions. 

 

  



RESULTS 

Compression reduces CCS and CCS component dynamics 

To investigate the consequences of compressive forces on CCSs dynamics, we used HeLa cells 

that were genome-edited to express a GFP-tagged version of 2-adaptin, a subunit of the 

clathrin adaptor AP-2. These cells were grown on glass coverslips and confined under an 

agarose plug. We noticed that confinement induced an enlargement of the cell area and blebs 

were often observed at the cell edges (Supplementary Fig. 1a), suggesting that membrane 

tension is most likely dramatically increased in these conditions11. In addition, nuclei were 

enlarged as well under compression and nuclear blebs were also visible at their rim 

(Supplementary Fig. 1b). These observations indicate that cells are indeed experiencing 

compression in our assays. In classical culture conditions, HeLa cells display a mixture of 

canonical, dynamic CCSs and static clathrin-coated plaques. We observed that compression 

globally increased the lifetime of CCSs as well as the occurrence of static (lifetime >300s) 

CCSs (Fig. 1a and b), thus confirming previous report5. Because integrin v 5, which is 

necessary for clathrin-coated plaque assembly, could possibly play a role in pressure-induced 

global loss of CCSs dynamics, we treated cells with Cilengitide, a potent v 5 inhibitor. While 

CCSs were mostly dynamic in Cilengitide-treated cells before pressure, confinement under the 

agarose gel dramatically increased the lifetime of CCSs as well as the occurrence of stalled 

CCSs (Fig. 1a and c). These results indicate that CCSs increased lifetime/stabilization under 

compression is independent of v 5 integrin and is most likely the consequence of increased 

membrane tension. Membrane tension was recently shown to regulate the dynamics of CCSs 

components in yeast2,12,13. To investigate whether pressure also impacts the dynamics of major 

CCSs building blocks in our system, we performed fluorescence recovery after photobleaching 

(FRAP) experiments in cells expressing GFP-tagged 2-adaptin. We chose to FRAP individual 



CCSs corresponding to clathrin-coated plaques because the long-lived nature of these structures 

allows to monitor fluorescence recovery over minutes. In control conditions, fluorescence 

recovery was fast (half-time recovery, t1/2  8s) with a plateau reaching approximately 80%, 

thus showing that only ~20% of AP-2 complexes were immobile at CCSs (Fig. 1d and e). 

However, the immobile fraction only reached approximately 60% and half-time recovery was 

delayed when pressure was applied on cells (t1/2  15s; Fig. 1d and e). These results show that 

cell compression slows down AP-2 turnover in a similar manner as increased membrane 

tension14. 

 

Compression leads to CCSs-dependent EGFR signaling 

Compressive forces have been reported to activate EGFR and downstream Erk signaling15. 

Indeed, we observed that compression triggered transient Erk activation (Fig. 2a and b). We 

also observed that GFP-tagged Erk transiently translocated from the cytoplasm to the nucleus 

when HeLa cells were confined under the agarose plug thus confirming the activation status of 

Erk in these conditions (Supplementary Fig. 2a and b). However, the mechanoresponsive 

transcription regulator Yes-associated protein (YAP) was excluded from the nucleus under 

pressure suggesting that this pathway is not activated in these conditions (Supplementary Fig. 

2c). Pressure-induced Erk activation was dependent on EGFR expression (Fig. 2c and d) as well 

as on EGFR kinase domain activity as Gefetinib treatment inhibited Erk phosphorylation under 

compression (Fig. 2e and f). CCSs have been shown to act as platforms that potentiate receptor-

mediated signaling, particularly in the case of the EGFR10,11. CCSs lifetime is an important 

regulator of receptor signaling output and for instance, long-lived clathrin-coated plaques are 

more potent than dynamic clathrin-coated pits in supporting signaling pathway activation. 

Because compression stalls CCSs dynamics, it is possible that they participate in the strong 



EGFR-dependent signaling in the Erk pathway. Indeed, we observed that AP-2 subunits or 

clathrin heavy chain (CHC) knockdown reduced Erk activation under compression (Fig. 2g and 

h). Thus, CCSs are required for full EGFR signaling in compressed cells.  

 

Mechanisms of EGFR recruitment at frustrated CCSs under pressure 

We next analyze if and how EGFR is recruited at CCSs. Genome edited HeLa cells expressing 

mCherry-tagged, endogenous 2-adaptin and overexpressing GFP-tagged EGFR were 

compressed under an agarose plug and monitored using total internal reflection fluorescence 

(TIRF) microscopy. EGFR quickly accumulated at CCSs upon compression (Fig. 3a and b). 

EGFR activation and recruitment at CCSs are both believed to depend on ligand-induced 

dimerization of the receptor16. Yet, pressure led to EGFR activation while no specific ligand 

was added in the culture medium and we observed that compressing cells in the absence of 

serum did not prevent EGFR accumulation at CCSs nor Erk activation (Supplementary Fig. 3a 

and b). It has been reported that compression induces ectodomain shedding of the EGF-family 

ligand heparin-binding EGF (HB-EGF), thus leading to autocrine EGFR stimulation10. HB-

EGF shedding is regulated by matrix metalloproteases whose inhibition was reported to prevent 

EGFR activation following compressive stresses10. Indeed, we observed that Batimastat, a 

potent and large spectrum inhibitor of matrix metalloproteases, strongly reduced EGFR 

recruitment at CCSs under pressure (Fig. 3b and c) as well as Erk activation (Fig. 3e and f). 

However, Gefitinib did not prevent the pressure-induced EGFR accumulation at CCSs (Fig. 3g 

and h). These results suggest that ligand binding, but not activation, is required for EGFR 

recruitment at CCSs. These observations are thus in favor of a model whereby ligand-induced 

EGFR dimerization is required to interact with the CCSs machinery, in a kinase domain 

activity-independent manner17. 



 

Compression-induced CCSs frustration modulates receptor sorting and signaling 

We next aimed at determining whether other receptors could also be recruited at CCSs upon 

cell compression. We first looked at different receptors whose endocytosis is normally triggered 

by their ligands. 1-adrenergic G-protein coupled receptor (GPCR), GPCR clathrin adaptor -

arrestin 2 , as well as hepatocyte growth factor receptor (HGFR) which are all known to be 

recruited at CCSs upon stimulation18,19 did not accumulate at CCSs under pressure (Fig. 4a-c). 

These results indicate that compression does not result in the activation of these receptors in the 

absence of their specific ligand. We next analyzed the dynamics of the transferrin receptor 

(TfR) that is usually constitutively recruited at CCSs in order to be internalized. While GFP-

tagged TfR strongly accumulated at CCSs in control cells, it was excluded from CCSs in 

compressed cells (Supplementary Fig. 4a and b). These surprising results suggest that 

compression modulates receptor sorting at CCSs. Along this line, we observed in FRAP 

experiments that fluorescence recovery of EGFR-GFP at CCSs was reduced in cells 

experiencing compression as compared to uncompressed cells stimulated with 10 ng/ml EGF 

(Supplementary Fig. 4c). Thus, compression impacts on both CCS component dynamics (Fig. 

1d) and CCS cargo dynamics. 

We next reasoned that compression-induced CCSs frustration could impact receptor signaling 

besides the specific case of EGFR. Indeed, CCSs lifetime has been reported to positively 

correlate with strong signaling output20. Using HGF-supplemented medium, we observed that 

GFP-tagged HGFR did not obviously accumulate at CCSs in these non-acute stimulation 

conditions (Fig. 4d and e). However, GFP-HGFR was efficiently recruited at CCSs upon 

compression (Fig. 4d and e). This most likely results from low level HGFR activation in these 

non-acute stimulation conditions, leading to its progressive accumulation in frustrated CCSs 



that cannot support anymore its endocytosis. We noticed that Erk was activated in these 

conditions, even if the classical compression-induced EGFR activation was prevented by 

Gefetinib treatment (Fig. 4f and g). This demonstrates that, besides EGFR, other receptors can 

be trapped in compression-induced frustrated CCSs, thus leading to sustained signaling in the 

Erk pathway.  

 

 

 

  



DISCUSSION 

Here, we confirmed previous findings showing that cell compression leads to frustrated 

endocytosis, with an accumulation of long-lived CCSs5. Several pieces of evidence point to a 

predominant role of integrins in CCSs frustration, through local anchoring of the CCSs 

machinery to the substrate21. HeLa cells display numerous frustrated CCSs, also termed 

clathrin-coated plaques, whose formation depends on local enrichment of the v 5 integrin4. 

Yet, inhibiting this integrin did not prevent the accumulation of long-lived CCSs in cells 

experiencing compression. Cell compression most likely results in a dramatic increase in 

membrane tension that is known to impede CCSs budding13,14. Thus, our data strongly suggest 

that CCSs frustration, as detected in compressed cells, results from increased membrane 

tension. We also reported that AP-2 dynamics is perturbed at frustrated CCSs under 

compression. This may also results from increased membrane tension as this feature is known 

to modulate CCS components interaction with the plasma membrane14. An altered dynamics of 

CCS components is likely to perturb cargo recruitment at CCSs and, indeed, we observed that 

the TfR is excluded from CCSs under compression. It is not clear why some receptors like the 

EGFR and the HGFR can still be recruited at compression-induced frustrated CCSs upon 

stimulation, while the TfR, which is normally constitutively addressed to these structures 

becomes excluded. This may depends on the different types of endocytic motifs present on 

receptor cytosolic tails that engage different recognition sites on the AP-2 complex and/or on 

other CCSs components22. In addition, it is not clear why the dynamics of EGFR is reduced at 

compression-induced frustrated CCSs. It is possible that the reduced AP-2 dynamics we 

observed at frustrated CCSs might impact cargo dynamics. In any case, further studies will be 

required to elucidate if and how altered CCSs components dynamics modulates receptor sorting 

at CCSs.  



We also confirmed previous finding reporting that EGFR becomes activated under pressure, 

leading to strong Erk activation10. As reported, this activation seems to depend on 

metalloprotease-induced HB-EGF shedding leading to paracrine activation of the receptor. 

However, we observed that EGFR recruitment at CCSs does not depend on the activity of the 

kinase domain of the receptor. It has long been believed that EGFR autophosphorylation is 

required for both signaling output and endocytosis of the receptor16. Yet, some recent studies 

have suggested that ligand-induced EGFR dimerization is sufficient to induce the accumulation 

of the receptor at CCSs, without the need for autophosphorylation of the cytosolic tail17,23. Our 

data clearly support this model. 

Finally, we showed that CCSs are required for full Erk activation downstream of the EGFR.  

These observations are in good agreement with previous reports demonstrating that CCSs can 

serve as signaling platform for the EGFR5,13. Yet, we previously demonstrated that clathrin-

coated plaques can also serve as signaling platform for other receptors4. Here, we report that 

compression-induced CCSs can potentiate HGFR signaling in non-acute stimulation 

conditions, leading to strong Erk activation even when EGFR kinase activity is inhibited. In 

these conditions, HGFR also strongly accumulated in CCSs under pressure. It is likely that 

frustrated CCSs trap the few activated HGFRs and, instead of being internalized, progressively 

accumulate in these stalled structures. Thus, we propose that cell compression leads to the 

activation of the Erk signaling pathway not only because of HB-EGF shedding and paracrine 

activation of the EGFR, but also because compression-induced CCSs can trap and potentiate 

signaling by many other receptors. 

  



METHODS 

Cell lines and constructs  

HeLa cells (a gift from P. Chavrier, Institut Curie, Paris, France; ATCC CCL-2), genome-edited 

HeLa cells engineered to expressed an endogenous GFP-tagged or mCherry-tagged 2 subunit, 

were grown in DMEM Glutamax supplemented with 10% foetal calf serum at 37 C in 5% CO2. 

For microscopy, cells were serum-starved for at least 2h before the experiment. All cell lines 

have been tested for mycoplasma contaminations. mCherry-TfR was a gift from Michael 

Davidson (Addgene plasmid #55144). GFP-Erk2 was a gift from Dr.Hesso Farhan. EGFR-GFP 

was a gift from Alexander Sorkin (Addgene plasmid # 32751). pLenti-MetGFP was a gift from 

David Rimm (Addgene plasmid # 37560).  

Plasmids were transfected 24 h after cell plating using either Lipofectamine 3000 according to 

the manufacturer s instructions or electroporating cells in suspension using AMAXA 

nucleofector Kit V according to the manufacturer s instructions. Alternatively, linear PEI (MW 

25.000  Polysciences Cat. Nr. 23966) at 1 mg/ml was used to transfect 50 % confluent cells in 

a 6 well plate according to the following protocol: 2 g of DNA were added to 100 l of 

OptiMEM, followed by addition of 4 l of PEI, vortex and incubation for 10 minutes at RT 

prior to add the mix to the cells. 

 

Antibodies and drugs 

Rabbit polyclonal antibodies anti tot-ERK1/2 (Cat. Nr. 9102) and P-ERK1/2 (Cat. Nr. 9101) 

were purchased from Cell Signalling. Mouse monoclonal anti tot-ERK1/2 (Cat. Nr. 13-6200) 

was purchased from Thermo Fisher. Gefitinib (Cat. Nr. CDS022106) was purchased from 

Sigma and used at a final concentration of 10 M. Cilengitide was purchased from Selleckchem 



(Cat. Nr. S7077) and used at a final concentration of 10 M. Human recombinant HGF (Cat. 

Nr. 1404) was purchased from Sigma and used at a final concentration of 100 ng/ml. For HGF 

experiments, cells were previously serum-starved for at least 2 h and HGF was added to the 

serum-free medium for 1 h before experiment. 

 

In vitro compression experiments 

To investigate the effect of compressive stress on cell behavior, an under-agarose assay was 

used24. Cells were plated either in 6-well cell culture plates or in glass-bottom dishes ( -Dish 

Cat Nr 190301, Ibidi). 24 h hours later, cells were subjected to mechanical stress by using an 

agarose plug overlaid with the weight necessary to reach a pressure of approximately 1000 Pa. 

To prepare agarose gels, agar was weighted and dissolved in DMEM Glutamax to a final 

concentration of 2.4%. The mixture was then casted in an empty dish or well and cooled at 

room temperature. Agar disks were sterilized under UV light and equilibrated at 37 C before 

use. For western blots, cells were subjected to compression for 30 minutes prior to cell lysis. 

For video microscopy, videos were started 30 sec before applying the compressive stress. 

Compressed cells were then imaged for 30 min. Alternatively, for CCSs dynamics and for 

FRAP experiments, videos were acquired before and under compression and the videos before 

compression were compared to the videos under compression. 

 

Western Blots 

For Western Blot experiments, cells were lysed in ice cold MAPK buffer (100mM NaCl, 10 

nM EDTA, 1% IGEPAL  CA-630, 0.1% SDS, 50mM TRIS-HCl pH 7.4) supplemented with 

protease and phosphatase inhibitors. Protein concentration was measured with Pierce  



Coomassie Plus (Bradford) Assay Kit (Cat Nr 1856210) according to the manufacturer s 

instructions in order to load equal amount of proteins. Antibodies were diluted at 1:1000 in PBS 

- 0.1% Tween - 5% BSA or 5% non-fat dried milk. For stripping, membranes were incubated 

in a commercial stripping buffer (Cat. Nr ST010; Gene Bio-Application) according to the 

manufacturer s instructions. Western-blot quantifications were done in FIJI. 

 

RNA interference 

For siRNA depletion, 200 000 cells were plated in 6 well plates. After 24 h, cells were treated 

with the indicated siRNA (30 nM) using RNAimax (Invitrogen, Carlsbad, CA) according to the 

manufacturer's instruction. Protein depletion was maximal after 72 h of siRNA treatment as 

shown by immunoblotting analysis with specific antibodies. To deplete CHC, -adaptin or 2-

adaptin, cells were transfected once as described above and then a second time, 48 hours later, 

with the same siRNAs. In this case, cells were analyzed 96 hours after the first transfection. 

The following siRNAs were used: 2-adaptin, 5 -AAGUGGAUGCCUUUCGGGUCA-3 ; 

Clathrin  heavy chain (CHC), 5 GCUGGGAAAACUCUUCAGATT-3 ; -adaptin, 5 - 

AUGGCGGUGGUGUCGGCUCTT-3 ; Epidermal growth factor receptor (EGFR) 5 - 

GAGGAAAUAUGUACUACGA-3' (EGFR-1) and 5 - 

GCAAAGUGUGUAACGGAAUAGGUAU-3' (EGFR-2); non-targeting siRNAs (siControl), 

ON-TARGETplus Non-Targeting SMARTpool siRNAs (Dharmacon D-001810-01). 

 

Spinning disk microscopy of live cells 

For CCSs dynamics, cells were imaged at 5 s intervals for the indicated time using a spinning 

disk microscope (Andor) based on a CSU-W1 Yokogawa head mounted on the lateral port of 



an inverted IX-83 Olympus microscope equipped with a 60x 1.35NA UPLSAPO objective lens 

and a laser combiner system, which included 491 and 561 nm 30 mW DPSS lasers (Andor). 

Images were acquired with a Zyla sCMOS camera (Andor). The system was steered by IQ3 

software (Andor). Alternatively, cells were imaged on a Nikon Ti2 Eclipse (Nikon France SAS, 

Champigny sur Marne, France) inverted microscope equipped with a 60x NA 1.40 Oil objective 

WD 0.130 and with two cameras: a sCMOS PRIME 95B camera (Photometrics, AZ, USA) and 

a sCMOS Orca Flash 4.0 (Hamamatsu Photonics France, Massy, France, a dual output laser 

launch, which included 405, 488, 561 and 642 nm 30 mW lasers, and driven by Metamorph 7 

software (MDS Analytical Technologies, Sunnyvale, CA, USA).  

For CCS dynamics quantification, the lifetime of CCSs was measured using the TrackMate 

plugin of ImageJ (Tinevez, 201725). Tracks below 5 seconds of duration (detected on only 1 

frame) were discarded. Measured individual lifetimes were pooled into two groups: the 

dynamic  group corresponding to structures with a lifetime below the duration of the movie (5 

min) and the static  group with a lifetime of 5 min. Of note, the relative percentage of dynamic 

versus static structures depends on the duration of the movie because static structures are only 

counted once while dynamic structures continuously nucleate and disappear during the movie. 

For this reason, all quantifications of CCS dynamics represent the relative number of static or 

dynamic events detectable at the plasma membrane at a given time point. At least 1000 CCSs 

from at least 5 cells per conditions and per experiments were tracked in 3-5 independent 

experiments. Data are expressed as mean  SD.  

 

 

 



Total internal reflection fluorescence microscopy (TIRF) and Fluorescence Recovery After 

Photobleaching (FRAP) 

For total internal reflection fluorescence microscopy (TIRF), HeLa cells transfected with the 

indicated plasmids were imaged through a 100x 1.49 NA APO TIRF WD 0.13-0.20 oil 

objective lens on a Nikon Ti2 Eclipse (Nikon France SAS, Champigny sur Marne, France) 

inverted microscope equipped with two cameras: a sCMOS PRIME 95B camera (Photometrics, 

AZ, USA) and a sCMOS Orca Flash 4.0 (Hamamatsu Photonics France, Massy, France, a dual 

output laser launch, which included 405, 488, 561 and 642 nm 30 mW lasers, and driven by 

Metamorph 7 software (MDS Analytical Technologies, Sunnyvale, CA, USA). A motorized 

device driven by Metamorph allowed the accurate positioning of the illumination light for 

evanescent wave excitation.  

For TIRF-FRAP experiments, one CCS was manually selected  was selected and subjected to 

100% laser power (30 mW laser) scan in order to have a bleaching of at least 80% of the 

fluorescence. One frame was collected before photo-bleaching, and 60 frames were collected 

after bleaching to analyze fluorescent recovery at the frequency of 1 frame/2 sec. The data were 

analyzed using the ImageJ FRAP Profiler plugin (McMaster University, Canada) to extract 

recovery curves and calculate the half-time recovery. 

 

Statistical analyses 

Statistical analyses in Fig.1 (panels b, c), Fig.2 (panels b, d, f, h), Fig.3 (panel e), Fig.4 (panel 

g), Supplementary Fig.3 (panel c) have been performed using One Way Analysis of Variance 

(ANOVA). Statistical analyses in Fig.3 (panel b), Fig.4 (panel e), Supplementary Fig.4 (panel 

b),  have been performed using two tailed Student s T-test. All data are presented as mean of at 



least four independent experiments  SD. All statistical analyses were performed using 

SigmaPlot software. 

 

Data availability 

The authors declare that all data supporting the findings of this study are available within the 

article and its supplementary information files or from the corresponding author upon 

reasonable request. 
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Figure legends: 

Figure 1. Cell compression reduces CCSs dynamics. a, Kymographs showing CCS dynamics 

in genome-edited HeLa cells expressing endogenous GFP-tagged 2-adaptin compressed or not 

under an agarose plug and treated or not with Cilengitide, as indicated, and imaged by spinning 

disk microscopy every 5s for 5 min. b, c, Quantification of the dynamics of CCSs observed as 

in a (* P<0.001, as compared to 0.1 kPa condition, One Way Analysis of Variance  ANOVA. 

N=3). d, Gallery depicting fluorescence recovery of a single CCS (arrows) after photobleaching 

in control (upper panels) or compressed (lower panels) cells. Time before or after 

photobleaching is indicated in seconds. Scale bar: 1 m. e, Quantification of fluorescence 

recovery as in d in control or compressed cells as indicated. All results are expressed as mean 

 SD. 

 

Figure 2. CCSs are required for EGFR-dependent signaling. a, Western-blot analysis of 

phospho-Erk (P-Erk) levels in HeLa cells uncompressed (control) or compressed for different 

time period as indicated (representative image of four independent experiments). Total-Erk and 

tubulin were used as loading controls. b, Densitometry analysis of bands obtained in Western-

blots as in a. Results are expressed as mean ratio of P-Erk/total Erk  SD from four independent 

experiments (* P<0.05, One Way Analysis of Variance  ANOVA). c, Western-blot analysis 

of phospho-Erk (P-Erk) levels in HeLa cells compressed or not for 30 min and treated or not 

with EGFR specific siRNAs as indicated (representative image of four independent 

experiments). Total-Erk and tubulin were used as loading controls. d, Densitometry analysis of 

bands obtained in Western-blots as in c. Results are expressed as mean ratio of P-Erk/total Erk 

 SD from four independent experiments (* P<0.05, One Way Analysis of Variance  



ANOVA). e, Western-blot analysis of phospho-Erk (P-Erk) levels in HeLa cells compressed or 

not for 30 min and treated or not with Gefitinib as indicated (representative image of four 

independent experiments). Total-Erk and tubulin were used as loading controls. f, Densitometry 

analysis of bands obtained in Western-blots as in e. Results are expressed as mean ratio of P-

Erk/total Erk  SD from four independent experiments (* P<0.05, One Way Analysis of 

Variance  ANOVA). g, Western-blot analysis of phospho-Erk (P-Erk) levels in HeLa cells 

compressed or not for 30 min and treated or not with AP-2 subunits- or CHC-specific siRNAs 

as indicated (representative image of four independent experiments). Total-Erk and tubulin 

were used as loading controls. h, Densitometry analysis of bands obtained in Western-blots as 

in g. Results are expressed as mean ratio of P-Erk/total Erk  SD from four independent 

experiments (* P<0.05, One Way Analysis of Variance  ANOVA). 

 

Figure 3. EGFR is recruited at CCSs under compression. a, Genome-edited HeLa cells 

expressing endogenous mCherry-tagged 2-adaptin were transfected with a plasmid encoding 

EGFP-tagged EGFR, seeded on glass, compressed under an agarose plug and imaged by TIRF 

microscopy every 5s for 30 min. Time after compression is indicated. Higher magnifications of 

boxed regions are shown. Arrows point to EGFR positive CCSs. Scale bar: 8 m. b, 

Quantification of EGFP-EGFR enrichment at CCSs at the indicated time points after 

compression in control cells or in cells treated with Batimastat or with Gefitinib, as indicated 

(* P<0.005, two tailed Student s T-test. N=3; 80 to 100 structures per experiment were 

analysed.). c, Genome-edited HeLa cells expressing endogenous mCherry-tagged 2-adaptin 

were transfected with a plasmid encoding EGFP-tagged EGFR, seeded on glass, treated with 

Batimastat, compressed under an agarose plug and imaged by TIRF microscopy every 5s for 

30 min. Time after compression is indicated. Scale bar: 1 m. d, Western-blot analysis of 



phospho-Erk (P-Erk) levels in HeLa cells compressed or not and treated or not with Batimastat, 

as indicated (representative image of four independent experiments). Tubulin was used as a 

loading control. e, Densitometry analysis of bands obtained in Western-blots as in d. Results 

are expressed as mean ratio of P-Erk/total Erk  SD from four independent experiments (* 

P<0.05, One Way Analysis of Variance  ANOVA). f, Genome-edited HeLa cells expressing 

endogenous mCherry-tagged 2-adaptin were transfected with a plasmid encoding EGFP-

tagged EGFR, seeded on glass, treated with Gefitinib, compressed under an agarose plug and 

imaged by TIRF microscopy every 5s for 30 min. Time after compression is indicated. Scale 

bar: 1 m. 

 

Figure 4. CCSs under compression can serve as signaling platform for different receptors. 

a-c, Genome-edited HeLa cells expressing endogenous mCherry-tagged 2-adaptin were 

transfected with plasmids encoding EGFP-tagged 1AR, -arrestin-2 or HGFR, as indicated, 

seeded on glass, compressed under an agarose plug for 5 min and imaged by TIRF microscopy. 

Scale bar: 1.5 m. d, Genome-edited HeLa cells expressing endogenous mCherry-tagged 2-

adaptin were transfected with a plasmid encoding EGFP-tagged EGFR. Cells were seeded on 

glass and HGF was added in the culture medium 1h before cells were compressed under an 

agarose plug and imaged by TIRF microscopy every 5s for 30 min. Time after compression is 

indicated. Arrows point to HGFR positive CCSs. Scale bar: 1.5 m. e, Quantification of EGFP-

HGFR enrichment at CCSs before or 5 min after compression in control cells treated as in d (* 

P<0.005, two tailed Student s T-test. N=3; 80 to 100 structures per experiment were analysed.). 

f, Western-blot analysis of phospho-Erk (P-Erk) levels in HeLa cells that were incubated in the 

presence of HGF for 1h before to be compressed or not and treated or not with Gefitinib, as 

indicated (representative image of three independent experiments). Total Erk was used as a 



loading control. g, Densitometry analysis of bands obtained in Western-blots as in f. Results 

are expressed as mean ratio of P-Erk/total Erk  SD from three independent experiments (* 

P<0.05, One Way Analysis of Variance  ANOVA). 

  



Supplementary figure legends: 

Figure S1. Analysis of cell compression efficiency. a, Wide-field image of one HeLa cell 

compressed under and agarose plug. Arrows points to blebs at the plasma membrane. Scale bar: 

5 m. b, HeLa cells treated with Sir-DNA were imaged by spinning disk microscopy before or 

after compression under an agarose plug, as indicated. Arrows point to nuclear blebs. Scale bar: 

10 m.   

 

Figure S2. Analysis of Erk and Yap behavior under pressure. a, HeLa cells transfected with 

a plasmid encoding EGFP-tagged Erk were imaged by spinning disk microscopy before (upper 

panel) or after (lower panel) being compressed under an agarose plug. Scale bar: 10 m. b, 

Quantification of EGFP-Erk enrichment in the nucleus at the indicated time points after 

compression. c, HeLa cells transfected with a plasmid encoding EGFP-tagged Yap were imaged 

by spinning disk microscopy before (upper panel) or after (lower panel) being compressed 

under an agarose plug. Scale bar: 10 m. All results are expressed as mean  SD. 

 

Figure S3. EGFR activation under compression is serum-independent. a, Genome-edited 

HeLa cells expressing endogenous mCherry-tagged 2-adaptin were transfected with a plasmid 

encoding EGFP-tagged EGFR, seeded on glass, starved for 2h, compressed under an agarose 

plug in FCS-free medium and imaged by TIRF microscopy every 5s for 30 min. Time after 

compression is indicated. Scale bar: 1.5 m. b, Western-blot analysis of phospho-Erk (P-Erk) 

levels in starved HeLa cells compressed or not in FCS-free medium, as indicated (representative 

image of four independent experiments). Total Erk was used as a loading control. c, 

Densitometry analysis of bands obtained in Western-blots as in b. Results are expressed as mean 



ratio of P-Erk/total Erk  SD from four independent experiments (* P<0.05, One Way Analysis 

of Variance  ANOVA). All results are expressed as mean  SD. 

 

Figure S4. Alteration of receptor sorting and dynamics under compression. a, Genome-

edited HeLa cells expressing endogenous mCherry-tagged 2-adaptin were transfected with a 

plasmid encoding EGFP-tagged TfR, seeded on glass and imaged by TIRF microscopy before 

(upper panel) or 5 min after (lower panel) compression. Arrows point to TfR positive CCSs. 

Arrowheads point to TfR-positive, AP-2-negative structures most likely corresponding to 

endosomes. Scale bar: 2 m. b, Quantification of EGFP-TfR enrichment at CCSs before or 5 

min after compression in cells treated as in a (* P<0.005, two tailed Student s T-test. N=3; 80 

to 100 structures per experiment were analysed.). c, Quantification of fluorescence recovery 

after photobleaching of the EGFP-EGFR fluorescence in individual CCSs in cells stimulated 

with EGF or compressed under an agarose plug, as indicated. All results are expressed as mean 

 SD. 
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Résumé : L’endocytose dépendante de la clathrine 

(EDC) est la principale voie d’internalisation des 

récepteurs de surface et leurs ligands. La membrane 

plasmique s’invagine et forme des puits recouverts de 

clathrine (PRCs) qui bourgeonnent ensuite en 

vésicules recouvertes de clathrine dans le cytosol, le 

tout en 30 sec-1mn. Lors de la progression tumorale, 

le microenvironnement est remodelé et la rigidité 

autour de la tumeur augmente, formant ainsi la « niche 

tumorale ». La rigidité est détectée principalement par 

les intégrines en surface qui envoient alors des 

signaux déclencheurs de prolifération et de migration. 

Ces intégrines peuvent se regrouper dans les 

structures recouvertes de clathrine (SRCs). La rigidité 

du substrat augmente sa force d’interaction avec les 

intégrines et empêche ainsi l’internalisation des 

SRCs, on parle alors d’« endocytose frustrée ». Cette 

rétention des SRCs contenant de multiples récepteurs 

provoque une signalisation soutenue en surface, 

notamment de la voie de la MAP Kinase Erk, au lieu 

de l’arrêter 

par dégradation ultérieure dans les lysosomes. Mon 

projet de thèse repose sur ces observations et plus 

particulièrement sur le rôle d’une autre 

modification induite par la croissance tumorale, le 

confinement. En effet, en se multipliant 

excessivement dans un environnement 

spatialement restreint, les cellules tumorales se 

retrouvent soumises à des forces de compression. 

Mes résultats ont montré que le confinement 

provoque, comme la rigidité, la frustration des 

structures de clathrine, dès lors incapables 

d’internaliser des récepteurs, menant à une 

signalisation accrue à la membrane. De plus, le 

confinement induit le clivage d’un pro-ligand de 

l’EGFR, le HB-EGF, conduisant à l’activation 

paracrine de l’EGFR et à l’activation de la voie Erk. 

En effet, l’absence de facteurs de croissance dans 

le milieu ainsi que l’inhibition de ce clivage 

démontrent la nécessité de la mise en place de ce 

mécanisme. Ces deux évènements coopèrent pour 

mener à une forte activation de la voie Erk. 
 

 

Title : Role of confinement on clathrin-mediated endocytosis 
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Abstract : Clathrin-mediated endocytosis (CME) is 

the major endocytic route in eukaryotic cells. The 

plasma membrane progressively invaginates from 

clathrin-coated pits (CCPs) to the formation of a 

clathrin-coated vesicle budding off into the cytosol in 

around 30 seconds. CME enables cells to sample the 

cell’s environment, to control the activation of 

signaling pathways and to turn over membrane 

components and cargoes. During tumor progression, 

the microenvironment is remodeled and its rigidity 

increases, thus forming the tumor niche. This stiffness 

is sensed by integrins which can cluster in clathrin-

coated structures (CCSs) and initiate signals for 

proliferation and migration. High stiffness was shown 

to strengthen the interaction between integrins and the 

substrate, hence preventing CME, and this is referred 

to as “frustrated endocytosis” resulting in a sustained 

signaling instead of down-regulation of the signal by  

the endo-lysosomal pathway. My PhD project 

relied on these previous findings, with a particular 

focus on another mechanical alteration observed in 

tumors, confinement. Indeed, the uncontrolled 

proliferation of cancer cells in a spatially restricted 

area increases compressive forces. My results 

indicate that confinement leads to frustrated 

endocytosis and hence to sustained signaling at the 

plasma membrane. In addition, compression 

promotes HB-EGF shedding at the surface, and the 

resulting EGF product activates the EGFR in a 

paracrine manner and the Erk signaling pathway. 

Indeed, both the absence of EGFR ligands in the 

medium and the inhibition of the shedding 

demonstrate the necessity of this mechanism for 

EGFR activation. Together, these events cooperate 

to strongly activate the Erk pathway known to 

govern tumor growth. 
 

 


