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Résumé

ENSO, pour El Niño-Southern Oscillation, est le mode de variabilité dominant du système
climatique à l’échelle inter-annuelle. C’est un phénomène couplé océan-atmosphère qui se
produit dans le Pacifique tropical tous les 2 à 7 ans. Composé d’alternance d’événements
chauds, El Niño, et d’événements froids, La Niña, cette oscillation naturelle entraîne de fortes
déstabilisations du système météorologique qui s’étendent bien au-delà du bassin Pacifique par
le biais de téléconnexions atmosphériques. En modifiant la circulation globale atmosphérique,
ces événements impactent fortement les systèmes socio-économiques de nombreuses régions
du monde.

ENSO se définit par rapport à l’état moyen du Pacifique tropical, qui est soumis au
réchauffement climatique. Ainsi, en plus d’un réchauffement des eaux de surface plus rapide
dans le Pacifique oriental que dans les régions alentours, une augmentation de la stratification
moyenne est projetée dans le Pacifique tropical, tendance déjà observée dans le Pacifique
central sur les 50 dernières années. Ces changements de stratification dans l’océan peuvent,
d’un point de vue théorique, conduire à des modifications significatives des caractéristiques
d’ENSO.

ENSO est donc susceptible d’être modifié avec le réchauffement climatique. Compte tenu
de ses conséquences socio-économiques, et pour pouvoir atténuer ses dommages potentiels,
il est important de mieux le comprendre afin de prévoir son évolution avec le réchauffement
climatique. Or à l’heure actuelle, il reste encore beaucoup d’incertitudes sur la réponse
d’ENSO au réchauffement climatique. Ceci tient en partie aux biais des modèles couplés de
climat dans les régions clefs du Pacifique tropical pour ENSO, c’est-à-dire la région occidentale
de la piscine d’eau chaude (“Warm Pool”) et la région orientale (“Cold Tongue”).

De plus, ENSO exhibe une grande diversité, en termes d’amplitude, de fréquence et de
structures spatiales, en particulier entre les événements chauds El Niño. Cette diversité
des événements El Niño peut se caractériser en particulier par deux régimes de variabilité
statistiquement indépendants mais liés entre eux par la non-linéarité du système couplé du
Pacifique tropical. L’existence de ces deux régimes invite à prendre avec précaution les
résultats des études qui ne les discriminent pas.

Dans ce travail de thèse, nous nous sommes intéressés à la relation entre la diversité
d’ENSO, en particulier des événements chauds El Niño, et l’état moyen du Pacifique tropical,
qui va donc être modifié par le réchauffement climatique.

En premier lieu, nous avons cherché à réévaluer les caractérisations de la diversité des
événements El Niño. Mieux comprendre cette diversité est primordiale car les impacts
météorologiques diffèrent en fonction des types d’événements. Nous avons pour cela util-
isé le modèle de climat couplé CESM-LE, qui fournit une simulation de longue durée (1801
ans) sans forçage anthropique ainsi qu’un grand ensemble de réalisations (40 à 42 simulations)
du climat historique (1920-2005) et futur (2006-2100) sous l’hypothèse du scénario RCP8.5
d’émission soutenue de gaz à effet de serre. Nous avons ensuite analysé le changement des
statistiques de la diversité d’ENSO avec le réchauffement climatique. En particulier, nous
montrons que les événements El Niño forts, qui présentent un réchauffement important dans le
Pacifique oriental, voient leur pic d’anomalies en températures de surface être décalé de l’hiver
au début du printemps (Février-Mars-Avril, FMA). Cette analyse a été mise en perspective
avec les résultats récents qui montrent que les événements El Niño extrêmes en précipitation
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RÉSUMÉ

dans le Pacifique oriental doubleront d’ici 2100 d’après la génération actuelle des modèles de
climat. En effet, cette période FMA est naturellement propice à provoquer des précipitations
du fait de la position climatologique de la zone de convergence inter-tropicale (ITCZ), qui se
trouve la plus au sud à cette saison. Le fort couplage saisonnier entre les anomalies chaudes
de températures de surface des événements El Niño qui culminent en FMA et l’ITCZ explique
ainsi un quart de l’augmentation des événements El Niño extrêmes en précipitation.

Enfin, les processus océaniques pouvant être associés à cette plus forte persistance des
évènements EP El Niño et au décalage temporel de leur pic de réchauffement ont été di-
agnostiqués. Nous proposons l’hypothèse selon laquelle ces changements proviennent d’un
processus de recharge plus important et d’une rétroaction de la thermocline plus efficace
dans le Pacifique oriental, du fait d’une augmentation de la stratification verticale du Paci-
fique équatorial dans un climat plus chaud, tel que simulé par CESM-LE.

Mots clés : Oscillation australe El Niño, Changement climatique, Large Ensemble CESM,
Variabilité décennale, El Niño extrêmes.
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Abstract

El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the tropical
Pacific on inter-annual scale. This phenomenon, alternating warm events, called El Niño,
and cold events, called La Niña, affects weather events, ecosystems, agriculture and fish-
eries worldwide via atmospheric and oceanic teleconnections. Given the socio-economic and
meteorological impacts that ENSO can cause, projecting its evolution with climate change
presents strong challenges.

There are still many uncertainties about the evolution of ENSO in the context of global
warming. This is partly due to biases of Coupled General Circulation Models (CGCMs) in
ENSO key areas of the tropical Pacific, i.e. the western tropical Pacific (“Warm Pool” region)
and the eastern tropical Pacific (“Cold Tongue” region). In addition to a faster warming of
surface waters in the eastern Pacific than in the surrounding regions, global warming will lead
to an increase in the equatorial Pacific mean stratification, a trend observed in the central
Pacific over the past 50 years. From a theoretical point of view, these changes in ocean
stratification can lead to significant modifications in the characteristics of ENSO.

ENSO exhibits an important diversity of amplitude and spatial patterns, especially be-
tween the warm El Niño events. This diversity of El Niño events is characterised in particular
by two statistically independent variability regimes but linked together by the non-linearity
of the coupled tropical Pacific system. The existence of these two regimes calls for caution
in taking the results of studies that do not discriminate against them.

In this thesis, we focused on the changes in the statistics of El Niño’s diversity and related
changes in oceanic dynamics as a result of global warming.

We first assessed the characterisations of the diversity of El Niño in the CESM-Large
Ensemble model. CESM-LE provides a long-term simulation (1801 years) without anthro-
pogenic forcing, and multiple realisations of the climate (40 members) over the 1920-2100
period, with a combination of both natural and anthropogenic climate forcings. We analysed
changes in ENSO diversity statistics (amplitude, seasonality) with global warming. This
analysis has been put into perspective with recent results showing that ENSO-induced ex-
treme precipitation events in the eastern Pacific will double by 2100. In particular, we show
that the strong El Niño events, which show significant warming in the eastern Pacific, have
their peak of sea surface temperature (SST) anomalies shifted fro winter to early spring
(February-March-April, FMA). This FMA period is naturally conducive to precipitation due
to the southernmost climatological position of the inter-tropical convergence zone (ITCZ).
The strong seasonal coupling between the positive SST anomalies of the El Niño events that
peak in FMA and the ITCZ thus explains one quarter of the increase in the frequency of
extreme precipitation El Niño events in the future.

Finally, the oceanic processes that may be associated with a greater persistence of EP El
Niño events and the time lag of their warming peaks have been diagnosed. We propose that
these changes are due to a larger recharge process and a more effective thermocline feedback
in the eastern Pacific, two characteristics related to the increase in vertical stratification of
the equatorial Pacific.

Keywords: El Niño Southern Oscillation, Climate Change, CESM Large ensemble,
Decadal Variability, extreme El Niño.
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Introduction générale

L’Oscillation Australe - El Niño, ou ENSO (l’acronyme anglais d’El Niño-Southern Oscil-
lation), est le mode de variabilité dominant du Pacifique tropical à l’échelle inter-annuelle.
Ce phénomène couplé océan-atmosphère, alternance d’événements chauds, El Niño, et d’évé-
nements froids, La Niña, entraîne de fortes déstabilisations du système météorologique, qui
s’étendent bien au-delà du bassin Pacifique par le biais de téléconnexions atmosphériques. Ce
déséquilibre de la circulation atmosphérique à l’échelle globale impacte fortement les systèmes
socio-économiques de nombreuses régions. Parmi ses impacts, on peut citer une perturbation
de la mousson, des sécheresses et des feux de forêts en Indonésie, en Inde et dans le nord-
est de l’Australie pendant l’été précédant le pic de l’événement El Niño, une intensification
de la formation de cyclones tropicaux dans le Pacifique nord-ouest, des inondations et des
glissements de terrain pendant l’hiver en Équateur, au Pérou et dans le sud-ouest des États-
Unis, une interruption des conditions favorables à la pêche industrielle aux anchois au large
des côtes péruviennes et un blanchissement qui peut être dévastateur du corail du Pacifique
tropical (Goddard and Dilley, 2005; McPhaden et al., 2006). A titre d’exemple, l’événement
El Niño de 1997-98 a entraîné des coûts estimés à 33 milliards de dollars dans le monde.
Compte tenu des répercussions sur les systèmes économiques d’agriculture et de pêche, sur
les écosystèmes marins et terrestres, il est indispensable de mieux comprendre ce phénomène
afin de mieux le prévoir et de pouvoir mettre en place des systèmes d’alerte et de réduction
des vulnérabilités des sociétés touchées.

ENSO est une perturbation du cycle saisonnier du Pacifique tropical. En conditions nor-
males, les températures de surface de la mer (SST pour Sea Surface Temperatures) dans
l’ouest du Pacifique tropical sont les plus chaudes au monde (supérieure à 28 ◦C) alors que les
SST dans le Pacifique oriental sont plus froides de 4–10 ◦C. Cette “piscine d’eaux chaudes”
(ou “Warm Pool” en anglais) à l’ouest est maintenue par les alizés qui soufflent d’est en ouest
le long de l’équateur. Au-dessus de ces SST chaudes, la convection atmosphérique profonde
peut se développer, générant de fortes précipitations sur le continent maritime, l’ouest du
Pacifique tropical et l’est de l’océan Indien. Dans le Pacifique est, les alizés entraînent une re-
montée d’eau froide plus profonde le long de la côte et de l’équateur, ce qui refroidit la surface
et forme la “langue d’eau froide” (ou “Cold tongue” en anglais). Ce contraste de SST entre
l’est et l’ouest, dû aux vents accélérés vers la convection profonde atmosphérique à l’ouest,
entraîne une pression plus élevée à l’est qu’à l’ouest, ce qui renforce les alizés. L’état moyen
du Pacifique tropical est ainsi maintenu par une boucle positive couplée océan-atmosphère,
appelée rétroaction de Bjerknes (Bjerknes, 1969).

De faibles changements de l’état moyen du Pacifique tropical peuvent entraîner la crois-
sance d’ENSO grâce à la rétroaction de Bjerknes. Pendant les événements El Niño, des anoma-
lies positives de vents d’ouest dans le Pacifique équatorial occidental et central vont déclencher
une onde de Kelvin chaude qui, en approfondissant la thermocline lors de son déplacement
vers l’est, va entraîner le réchauffement des eaux de surface dans le Pacifique équatorial central
et oriental. Ces anomalies positives de SST à l’est vont renforcer le relâchement des alizés,
ce qui va continuer d’affaiblir l’upwelling des eaux froides à l’est, renforçant les anomalies
chaudes de SST. La rétroaction de Bjerknes va alors être contrée par plusieurs rétroactions
négatives, venant de l’ajustement dynamique lent de l’océan. Parmi les théories des rétro-
actions négatives retardées, l’oscillateur recharge-décharge (Jin, 1997a,b) est le paradigme le
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INTRODUCTION

plus largement accepté. L’ajustement lent de l’océan aux coups de vents d’ouest (aux ali-
zés) a pour effet de décharger (recharger) le contenu en chaleur du Pacifique équatorial, ce
qui met fin à l’événement El Niño (La Niña) et fait basculer dans la phase négative (posi-
tive) d’ENSO. L’océan joue ainsi le rôle de force compensatrice du système couplé instable
océan-atmosphère. Cela procure le caractère déterministe de la dynamique d’ENSO, rendant
possible sa prévision à 6-9 mois. Pendant les événements La Niña, la boucle inverse conduit à
des SST en dessous de la normale dans le Pacifique équatorial central et oriental, renforcées
par des alizés plus forts que la moyenne.

Cependant, ces théories oscillatoires sur lesquelles repose la vision cyclique auto-entretenue
d’ENSO n’expliquent pas l’irrégularité de sa fréquence d’occurrence, l’asymétrie entre les évé-
nements chauds (El Niño) et froids (La Niña), ni la diversité des événements. En plus d’être
plus forts en intensité, les événements El Niño exhibent en effet une diversité spatiale plus
prononcée par rapport aux événements La Niña. L’intérêt grandissant pour la diversité des
événements El Niño ces vingt dernières années a soulevé la question de leur définition, compte
tenu de la multiplicité de leurs structures spatiales, de leurs amplitudes, de leurs évolutions
temporelles ou encore de leurs impacts météorologiques. De nombreuses métriques (et déno-
minations) ont ainsi été proposées et il est maintenant reconnu qu’au moins deux degrés de
libertés sont nécessaires pour décrire El Niño dans sa diversité. Suivant les méthodes utili-
sées, la diversité d’El Niño est mise en avant à travers ses structures spatiales (Trenberth and
Stepaniak, 2001; Ashok et al., 2007; Kug et al., 2009; Kao and Yu, 2009; Yeh et al., 2009a;
Ren and Jin, 2011), ou l’intensité de certaines de ses caractéristiques dont le réchauffement de
l’océan de surface (Takahashi et al., 2011; Dommenget et al., 2013; Takahashi and Dewitte,
2016), ou les précipitations induites en particulier dans le Pacifique oriental (Cai et al., 2014,
2015a, 2017; Williams and Patricola, 2018).

Cette thèse s’inscrit dans ce contexte riche en études sur la diversité et la complexité
d’ENSO (Timmermann et al., 2018). Un état de l’art des avancées sur cette problématique
est décrit au chapitre 1 “Background”. La compréhension des processus physiques sous-jacents
à la diversité spatiale, temporelle et d’amplitude est primordiale pour une meilleure prédicti-
bilité d’ENSO, en particulier dans un contexte où ENSO est susceptible d’être modifié dans
un climat plus chaud.

Le développement exponentiel des ressources numériques ces dernières décennies a permis
d’améliorer la capacité des modèles couplés de climat global (CGCMs pour Coupled General
Circulation Models) à simuler de manière réaliste la variabilité du climat et ENSO. Même si
des biais persistent, en particulier dans la simulation de la diversité et de l’asymétrie d’ENSO,
les modèles de climat sont des outils indispensables à l’amélioration de la compréhension de ce
phénomène complexe couplé océan-atmosphère et à la projection des changements induits par
le réchauffement climatique. Mes travaux de thèse se basent principalement sur les simulations
du modèle couplé de climat issu du projet Community Earth System Models Large Ensemble
(CESM-LE) développé par le National Center for Atmospheric Research (NCAR) (Kay et al.,
2015). L’un des grands intérêts du projet CESM-LE est qu’il fournit différents types de
simulations : une simulation longue durée (1801 ans) sans forçage anthropique, qui permet
d’analyser la variabilité interne du système climatique simulé sans changement de forçage
externe, et un grand ensemble de réalisations (40 à 42 simulations) du climat historique (1920-
2005) et du climat futur (2006-2100) sous l’hypothèse du scénario RCP8.5 d’émission de gaz
à effet de serre tel que définit par le Groupe d’experts intergouvernemental sur l’évolution
du climat (GIEC). Ce modèle, ainsi que les jeux de données d’observation sont décrits au
chapitre 2 “Data and methods”. Il y est également décrits les outils statistiques utilisés tout
au long de cette thèse, ainsi que les hypothèses de calcul du bilan de chaleur effectué sur la
grille native du modèle CESM-LE. L’évaluation de la simulation de la variabilité du Pacifique
tropical et d’ENSO par CESM-LE est aussi présentée dans ce chapitre.
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Le premier objectif de cette thèse sera de réévaluer les caractérisations de la
diversité d’ENSO et plus particulièrement de sa phase positive El Niño dans le
modèle couplé de climat CESM-LE. Quels sont les indices qui caractérisent le mieux la
diversité d’ENSO ? Sont-ils statistiquement robustes pour différents jeux de données d’obser-
vations ou de simulations de modèles couplés de climat ? Pour répondre à ces questions, nous
nous sommes plus particulièrement intéressés à deux approches distinctes et couramment
utilisées. La première méthode consiste à distinguer les événements El Niño par leurs struc-
tures spatiales dans les régions historiques Niño-3 (5°S-5°N, 210°E-270°E) et Niño-4 (5°S-5°N,
160°E-210°E) qui mesurent la variabilité associée au Pacifique central et oriental respective-
ment. Deux types d’événements El Niño sont ainsi classifiés, les événements “Central Pacific”
(CP) et les événements “Eastern Pacific” (EP) (Kug et al., 2009). La seconde méthode dis-
tingue les événements El Niño par l’intensité de leur réchauffement dans le Pacifique oriental
en utilisant les modes de variabilité principaux du Pacifique tropical dans toute sa largeur.
Elle définit les événements “forts” et les événements “modérés”, qui ont par définition une
signature de réchauffement des eaux de surface moins marquée dans le Pacifique oriental.
Un des intérêts de cette méthode est qu’elle permet de ne pas être contraint d’analyser les
événements chauds à partir de leur structure spatiale pendant leur pic hivernal. Elle permet
à l’inverse de couvrir l’ensemble de leur évolution spatio-temporelle dans une large région
de forte variabilité du Pacifique est. Cette analyse comparative fait l’objet du chapitre 3
“Characterising ENSO diversity”.

Les asymétries d’ENSO, qu’elles soient mesurées entre les événements chauds El Niño et
froids La Niña ou entre les événements chauds entre eux, sous-tendent la notion de proces-
sus non-linéaires intervenant dans les mécanismes d’ENSO. Parmi les sources de ces non-
linéarités, on peut citer la convection profonde atmosphérique et les processus océaniques
d’advection de chaleur. Plusieurs études ont suggéré que les processus océaniques non-linéaires
étaient liés à la variabilité décennale du Pacifique tropical et à la modulation basse-fréquence
d’ENSO lui-même (Rodgers et al., 2004). Ainsi, la modulation basse-fréquence d’ENSO pour-
rait produire des rectifications non-linéaires de la variabilité basse-fréquence du Pacifique
tropical via ses asymétries. A l’inverse, certaines périodes caractérisées par des états moyens
spécifiques du Pacifique tropical semblent favoriser un certain régime d’El Niño comme on a
pu le constater ces dernières décennies avec un regain de la fréquence d’occurrence des événe-
ments CP El Niño. L’état moyen du Pacifique tropical influence-t-il les différents régimes des
événements El Niño ? Est-ce que cette diversité rectifie en retour l’état moyen ? Le second
objectif de cette thèse sera de diagnostiquer la variabilité interne de la diversité
d’ENSO et ses rétroactions sur l’état moyen dans le modèle CESM-LE. Ces ques-
tions seront appliquées au modèle de climat CESM-LE et les résultats seront comparés à des
résultats existants établis avec d’autres modèles de climat. Ces résultats sont présentés au
chapitre 4 “Low-frequency modulation of ENSO diversity”.

Enfin, le chapitre 5 “ENSO diversity and global warming” est consacré à l’impact du
réchauffement climatique sur ENSO, et en particulier sur les événements El Niño forts. Les
modèles couplés de climat projettent des changements significatifs de l’état moyen du Paci-
fique tropical, dont certains avec un forts consensus entre les modèles. Ainsi, la Circulation
de Walker, circulation zonale à l’échelle de l’océan Pacifique, est susceptible de s’affaiblir
(Vecchi and Soden, 2007), ce qui va diminuer la puissance des alizés et altérer la structure
thermique et les courants moyens du Pacifique tropical (DiNezio et al., 2009; Santoso et al.,
2013). L’augmentation projetée de la stratification verticale de l’océan tropical peut conduire
à d’importants changements dans les caractéristiques d’ENSO par l’impact qu’elle peut avoir
sur la rétroaction de la thermocline, en particulier dans le Pacifique est (An and Jin, 2001;
Dewitte, 2000). Cependant, les modèles couplés de climat présentent une forte dispersion
de la projection de l’amplitude d’ENSO dans un climat plus chaud (Bellenger et al., 2014;
Chen et al., 2017a). D’un autre côté, il a été montré que le nombre d’événements El Niño
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extremes, c’est à dire qui sont accompagnés d’une forte signature en précipitation anormale
dans l’est du Pacifique, est susceptible d’augmenter en situation future (Cai et al., 2014).
Cette augmentation de fréquence est liée à l’augmentation des températures de surface de
l’océan, plus rapide dans le Pacifique est, réduisant le gradient méridional de la SST et facili-
tant ainsi le déplacement vers le sud de l’ITCZ. Cependant, les mécanismes associés à ENSO
lors de ce déplacement facilité de l’ITCZ restent peu clairs. Quels sont les changements de
statistiques de la diversité d’ENSO avec le réchauffement climatique ? Comment concilier les
deux résultats émanant des modèles couplés de climat qui paraissent contradictoires avec,
d’un côté, une absence de consensus sur les changements de variabilité du Pacifique tropical
oriental et, de l’autre côté, une augmentation significative du nombre d’événement extrême
en précipitation induite par El Niño dans le Pacifique oriental ? Quels sont les (changements
de) processus fondamentaux qui gouvernent les changements de diversité d’ENSO dans un
climat plus chaud ? Le troisième objectif de cette thèse sera de diagnostiquer les
changements projetés de statistiques associés à la diversité d’ENSO lorsqu’elle
est définie par son intensité dans la région de variabilité orientale du Pacifique
tropical. Cela requiert de distinguer dans le modèle CESM-LE le signal dû à la variabilité
interne de celui dû à la réponse du système climatique à l’augmentation des gaz à effet de
serre. Les processus thermodynamiques associés à ENSO et leur réponse au climat plus chaud
seront également étudiés, par l’analyse du bilan de chaleur lors des événements El Niño. Quels
sont les (changements de) processus fondamentaux qui contrôlent les variations d’amplitudes
d’ENSO dans un climat plus chaud ? Comment les changements des processus thermody-
namiques vont impacter la diversité d’ENSO ? Le dernier objectif de cette thèse sera
d’aborder certains aspects fondamentaux de la dynamique tropicale et portera
plus spécifiquement sur la sensibilité de la réponse dynamique de la diversité
d’ENSO au réchauffement climatique.
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General Introduction

El Niño-Southern Oscillation (ENSO) is a coupled ocean-atmosphere phenomenon that rep-
resents the dominant mode of year-to-year variability in the tropical Pacific. This phe-
nomenon, alternating warm events, called El Niño, and cold events, called La Niña, affects
weather events, ecosystems, agriculture and fisheries worldwide via atmospheric and oceanic
teleconnections. These impacts include a monsoon disturbance, droughts and forest fires in
Indonesia, India and north-eastern Australia in the boreal summer, winter floods and land-
slides in Ecuador, Peru and the south-western United States, an interruption of favourable
conditions for industrial anchovy fishing off the Peruvian coast and a potentially devastating
bleaching of the tropical Pacific coral (Goddard and Dilley, 2005; McPhaden et al., 2006).
As an example, the 1997-98 strong El Niño event inflicted costs of approximately $33 billions
in the world. Given the impact on economic systems such as agriculture and fisheries and
on marine and terrestrial ecosystems, a better understanding of this phenomenon is essen-
tial in order to better predict it and to be able to set up warning systems and reduce the
vulnerabilities of affected societies.

ENSO is a disruption of the tropical Pacific mean seasonal cycle. In normal conditions,
the sea surface temperatures (SST) in the western tropical Pacific are among the warmest
large-scale ocean temperatures in the world (greater than 28 ◦C), while the SST in the eastern
Pacific are 4 to 10 ◦C colder. The “Warm Pool” in the west is maintained by the trade winds
that blow from east to west along the equator. Above these warm SST, atmospheric deep
convection can develop, generating heavy rainfall over “the Maritime continent”, the western
tropical Pacific and the eastern Indian ocean. In the eastern Pacific, the trade winds drive
coastal and equatorial upwelling of deep cold water that cools the surface and forms the “Cold
Tongue”. The wind-driven zonal SST contrast, associated with deep atmospheric convection
in the west, results in higher pressure in the east than in the west, which reinforces the
trade winds. The tropical Pacific mean state is thus maintained by a positive loop coupled
ocean-atmosphere, called the Bjerknes feedback (Bjerknes, 1969).

Small changes in the state of the tropical Pacific can lead to ENSO growth thanks to the
Bjerknes feedback. During El Niño events, positive westerly wind anomalies in the western-
to-central equatorial Pacific trigger a warm Kelvin wave that, by deepening the thermocline
as it moves eastward, causes surface waters in the central and eastern equatorial Pacific to
warm. These positive SST anomalies in the east reinforce the weakening of the trade winds,
which further weakens the upwelling of cold waters in the east, reinforcing the warm SST
anomalies. The Bjerknes feedback is then offset by several negative feedbacks, which have
been suggested coming from the slow dynamic adjustment of the ocean as the restoring force
of the unstable ocean-atmosphere interactions of ENSO. These delayed feedbacks include the
widely accepted paradigm of the recharge-discharge oscillator (Jin, 1997a,b). The delayed
oceanic adjustment to the westerly (easterly) winds acts to discharge (recharge) the equatorial
upper-ocean heat content, which eventually terminates the El Niño (La Niña) event and
transitions to the negative (positive) phase of ENSO. ENSO is then described as a self-
sustained cycle. During La Niña events, the reverse loop leads to below-average SST in the
central-to-eastern equatorial Pacific, reinforced by stronger trade winds.

However, the main limitation of these oscillatory theories is that they do not explain
the irregularity of the frequency of occurrence of the phenomena, nor the strong asymmetry
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between warm (El Niño) and cold (La Niña) events. El Niño and La Niña are not mirror
images to each other. The complexity of ENSO is accentuated by the diversity of El Niño
events. In addition to being stronger in magnitude, El Niño events exhibit a more pronounced
spatial diversity compared to La Niña events. The growing interest in the diversity of El
Niño events over the last twenty years has raised the question of their definition, given
the multiplicity of their spatial structures, their amplitudes, their temporal evolution or
their meteorological impacts. Numerous metrics (and denominations) have been proposed,
highlighting the diversity of the spatial structures of the tropical Pacific (Trenberth and
Stepaniak, 2001; Ashok et al., 2007; Kug et al., 2009; Kao and Yu, 2009; Yeh et al., 2009a;
Ren and Jin, 2011), or the intensity of some of its characteristics, such as the warming of
the ocean surface (Takahashi et al., 2011; Dommenget et al., 2013; Takahashi and Dewitte,
2016), or induced rainfall (Cai et al., 2014, 2015a, 2017; Williams and Patricola, 2018) in
the eastern Pacific. A still on-going debate emerged to know whether the different regimes
of El Niño represent a continuum (Capotondi et al., 2015) or distinct phenomena (Ashok
et al., 2007; Karamperidou et al., 2015). The issue is directly linked to the definition of the
diversity of El Niño, whose characterisation requires two degrees of freedom (Trenberth and
Stepaniak, 2001; Yeh et al., 2009a; Takahashi et al., 2011; Ren and Jin, 2011).

This thesis is part of this rich context of studies on the diversity and complexity of ENSO
(Timmermann et al., 2018). A state of the art of progress on this problem is described in
Chapter 1 “Background”. Understanding, anticipating, and predicting ENSO behaviour on
seasonal to decadal and longer time scales remains a great challenge, especially in the context
of potential changes to ENSO in a warming climate.

The exponential development of computational resources in recent decades has improved
the ability of Coupled General Circulation Models (CGCMs) to realistically simulate climate
variability and ENSO. Although biases persist, in particular in the simulation of ENSO diver-
sity and asymmetry, climate models are essential tools to improve the understanding of this
complex ocean-atmosphere coupled phenomenon and the projection of its changes induced by
global warming. My PhD work is mainly based on simulations of the coupled climate model
from the Community Earth System Models Large Ensemble (CESM-LE) Project developed
by the National Center for Atmospheric Research (NCAR) (Kay et al., 2015). The CESM-LE
project provides a long-term simulation (1801 years) without anthropogenic forcing, which
makes possible to analyse the internal variability of the simulated climate system. It pro-
vides also multiple realisations of the climate (40 to 42 members) over the 1920-2100 period,
with a combination of both natural and anthropogenic climate forcings. Thanks to this large
ensemble of simulations of the historical and projected climate, we have access to a large
number of El Niño events that occur in climatic systems close to the observed climate, and
thus to the variability of ENSO statistics. The observation datasets, the climate model and
the statistical tools used in the thesis are described in Chapter 2 “Data and methods”. This
chapter describes also the numerical calculation of the heat equation used in the analysis of
ENSO physical processes as well as the assessment of the simulation of the Pacific variability
and ENSO by CESM-LE.

The first objective of this thesis will be to reassess the characterisations of
the diversity of ENSO and more particularly of its positive phase El Niño in the
coupled model of climate CESM-LE. Which indices best characterise the diversity of
ENSO? Are they statistically robust across observation datasets and simulations of climate
models? To address these questions, we focused on two distinct and widely used approaches.
The first method consists of distinguishing El Niño events by their spatial structures in
historical regions Niño-3 (5°S-5°N, 210°E-270°E) and Niño-4 (5°S-5°N, 160°E-210°E), which
measure the variability associated with the central and eastern Pacific respectively. Two
types of El Niño events are thus classified, “Central Pacific” (CP) and “Eastern Pacific” (EP)
events (Kug et al., 2009). The second method distinguishes El Niño events by the intensity
of their warming in the eastern Pacific using the main modes of variability of the tropical
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Pacific along the equator. It defines “strong” and “moderate” events, which by definition
have a less pronounced surface water warming signature in the eastern Pacific. One of the
advantages of this method is not to be constrained to analyse warm events from their spatial
structure during their winter peak. An important aspect seems indeed to analyse ENSO not
as a static spatial pattern at its winter peak but to cover its spatio-temporal evolution and
in particular its evolution phase. This comparative analysis of the two methods is presented
in Chapter 3 “Characterising ENSO diversity”.

The ENSO asymmetries, between El Niño and La Niña events on one hand, between
warm El Niño events on the other hand, underpin the notion of non-linear processes, in
particular in deep atmospheric convection and oceanic heat advection. Non-linearities in
oceanic processes seem to be the link between the decadal variability of the tropical Pacific and
the ENSO modulation. Indeed, numerical studies suggested that time-mean effect of ENSO
may product a non-linear rectification onto the low-frequency variability of the tropical Pacific
via ENSO asymmetries (Rodgers et al., 2004). Conversely certain periods, characterised by
specific tropical Pacific mean states, seem to favour El Niño’s flavours, as for example the
prevalence of the occurrence of CP El Niño events in recent decades. Does the mean state
of the tropical Pacific influence the type of El Niño events? Does ENSO diversity rectify the
mean state? The second objective of this thesis will be to diagnose the internal
variability of the ENSO diversity and its rectification onto the mean state in the
CESM-LE coupled model (Chapter 4 “Low-frequency modulation of ENSO diversity”).

Finally, the Chapter 5 “ENSO diversity and global warming” is devoted to the impact of
global warming on ENSO, and in particular on the strong El Niño events. Coupled climate
models project significant changes in the mean state of the tropical Pacific, some with strong
consensus between models. Especially, the Walker circulation is projected to weaken (Vecchi
and Soden, 2007), which will decrease the strength of the trade winds and thus alter the
thermal structure and the mean ocean circulation of the tropical Pacific (DiNezio et al.,
2009; Santoso et al., 2013). From a theoretical point of view, the projected increase in the
mean vertical stratification of the tropical Pacific can lead to significant modifications in
the characteristics of ENSO, through the impact it can have on the thermocline feedback,
especially in the eastern Pacific (An and Jin, 2001; Dewitte, 2000). However, there is still
a weak consensus among CGCMs on the projected ENSO variability in a warmer climate.
On the other hand, extreme El Niño events, which are associated with strong signature in
anomalous precipitation in the eastern Pacific, are predicted to increase in frequency in the
future (Cai et al., 2014). This increase in occurrence frequency has been argued to be due to
the faster temperature warming in the eastern equatorial Pacific facilitating the southward
migration of the Inter-Tropical Convergence Zone (ITCZ). While this offers a paradigm for the
climate change impact on ENSO, the underlying mechanisms remain unclear. What are the
changes in ENSO’s diversity statistics with global warming? How to reconcile the two results
emanating from coupled climate models that seem contradictory with, on the one hand, a
lack of consensus on changes in ENSO variability in the eastern tropical Pacific and, on
the other hand, a significant increase in the number of ENSO-induced extreme precipitation
events in the eastern Pacific? The third objective of this thesis will be to diagnose, in
CESM-LE, projected changes in statistics associated with ENSO diversity, when
defined by its intensity in the region of eastern tropical Pacific variability This
requires distinguishing the signal due to internal variability from that due to the response
of the climate system to the increase of greenhouse gases. A directly related issue concerns
the changes in ENSO mechanisms and feedback processes in a warmer climate. What are
the (changes in) fundamental processes controlling ENSO amplitude variations in a warmer
climate? How changes in thermodynamical processes would impact ENSO diversity? The
last objective of this thesis will be to address some fundamental aspects of tropical
dynamics and specifically focus on the sensitivity of the dynamical response of
the ENSO diversity to global warming.
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CHAPTER 1. BACKGROUND

The El Niño-Southern Oscillation (ENSO), the alternation of warm El Niño and cold
La Niña events, is a coupled ocean-atmosphere phenomenon and the most energetic mode
of inter-annual variability in the climate system. This fluctuation occurs in the tropical
Pacific and has meteorological, societal and economic impacts affecting the entire planet, via
atmospheric and oceanic teleconnections.

Improving our understanding of ENSO is fundamental to better predict its impacts and
ultimately reduce societal vulnerabilities by implementing an early warning system. Its pre-
dictability over several months is made possible thanks to the slow dynamic adjustment of
the ocean, which slows down the evolution of the coupled ocean-atmosphere system, contrary
to weather forecasts, limited to a few days.

Various theories explain different characteristics of this complex coupled phenomenon
that interweaves many spatial and temporal scales. These theories emphasize different inter-
actions and are sometimes distinct ways of seeing the same physical processes. But they are
oftentimes complementary and indispensable to forecast the phenomenon. The exponential
development of numerical resources over the last decades has improved the ability of Cou-
pled General Circulation Models (CGCMs) to simulate El Niño. Nonetheless the diversity
of ENSO representation by different CGCMs illustrates the models limitations to simulate
this complex interplay of ocean and atmospheric processes. Understanding, anticipating, and
predicting its behaviour on seasonal to multi-decadal time scales remain a great challenge,
especially in the context of potential changes of ENSO in a warming climate.

This introductory chapter presents state-of-the-art knowledge on ENSO characteristics
and, in particular, those discussed in this study. In section 1.1, ENSO general features are
described (e.g. dynamics, mean state, impacts). We focus specifically on ENSO diversity,
as the main background material for this thesis. We then review the main theories describ-
ing the oscillation’s mechanisms, in particular those involving equatorial wave dynamics and
explaining the transition from El Niño to La Niña events (section 1.2). However, the ob-
served ENSO irregularity and asymmetry are not accounted for by these linear theories and
understanding the complexity and diversity of the phenomenon have become a priority for
ENSO researchers. Several lines of investigation are presented in this chapter, from the at-
mospheric stochastic forcing to the intrinsic non-linearities of the coupled ocean-atmosphere
system. ENSO is also affected and modulated by mechanisms operating at a wide range of
timescales. For instance, ENSO is strongly phase-locked to the tropical Pacific seasonal cycle.
ENSO properties have also been shown to change according to the tropical pacific decadal
mean state. This complicates the analysis of ENSO dynamics especially considering the
short available instrumental records. This “ENSO timescale interaction issue” is discussed
in section 1.3. Finally, we present in section 1.4 some of the most recent progresses on the
understanding of ENSO response to global warming.

1.1 El Niño-Southern Oscillation

We first describe the main atmospheric and oceanic circulations in the tropical Pacific and
their variations during the two phases of ENSO, El Niño and La Niña. In this first section,
we immediately bring up the still open question of the El Niño events definition. It is still a
matter of debate considering its diversity of spatial patterns, amplitudes, temporal evolution
or impacts. We finally present a quick overview of the meteorological, environmental, but
also economic and societal consequences of ENSO.

1.1.1 Main features

ENSO occurs in the equatorial Pacific Ocean, which is the seat of intense atmospheric and
oceanic circulations related to general climate circulation. The solar energy, maximum at
the equator, is the most important driver of the large-scale atmospheric circulation, which
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1.1. EL NIÑO-SOUTHERN OSCILLATION

is organised in cells: the meridional Hadley circulation and the zonal Walker circulation
(Fig. 1.1).

(a) Hadley circulation (b) Hadley and Walker circulations

Figure 1.1 – Schematic representation of (1.1a) the Hadley Circulation (reprinted from NOAA Cli-
mate.gov1) and (1.1b) Walker (black lines) and Hadley (red lines) circulations in the tropical Pacific
(reprinted from Lough et al. (2016)).

The Hadley circulation is organised in meridional cells that redistribute the accumulated
energy in the equator towards higher latitudes in each hemisphere (Fig. 1.1a). Warm waters
at the equator are primarily in the western tropical Pacific and along bands on both sides
of the equator, forming the Inter Tropical Convergence Zone (ITCZ) and the South Pacific
Convergence Zone (SPCZ). The ITCZ is more intense due to the larger continental landmass
in the Northern Hemisphere and spans the entire Pacific. These convective zones in the
equatorial band (10°S-10°N) lead to convergence of cold and dry coastal surface winds from
the mid-latitudes to the tropics where they moisten and warm, constituting the north and
south cells of the Hadley circulation. Through the conservation of the angular momentum,
these winds are deflected to the right (left) in the northern (southern) hemisphere, resulting
in the north-east (south-east) trade winds that blow on average from east to west in the
equatorial Pacific (Fig. 1.1b). Crossing the Pacific Ocean along the equator, the trade winds
gradually charge in moisture and heat through evaporation, reinforcing the warming of the
western Pacific. Moist warm air rises spontaneously into cumulus towers above this “Warm
Pool”, which exceeds the convective instability threshold of ∼ 27.5 ◦C (Graham and Barnett,
1987) causing significant rainfall. These convective towers constitute the ascending branch
of the east-west oriented Walker circulation (Bjerknes, 1969). Aloft the air that has lost its
moisture diverges in the upper troposphere to subside, dry, over colder (due to the upwelling)
regions at the eastern edge of the ocean, that gets little precipitation. The trade winds close
the large-scale Walker atmospheric circulation, blowing from east to west on the surface of
the equatorial Pacific.

In the tropics, atmospheric circulation is the main driver of the upper ocean circulation,
due to the strong oceanic vertical stratification characterised by a shallow layer of warm water
over a deep layer of colder water, separated by the thermocline (i.e. the sharp boundary sep-
arating warm upper waters from cold deeper waters, typically marked by the 20 ◦C isotherm).
The trade winds cause a divergence of the Ekman transport northward (southward) to the
north (south) of the equator, which generates an equatorial upwelling of colder subsurface
water forming a “Cold Tongue” that stretches from the south American coast to near the
dateline (Fig. 1.2a). The trade winds pressure along the equator exerts a force onto the up-
per ocean directed westward that pushes the equatorial warm waters to the west, causing an
accumulation of water in the “Warm Pool”. The induced slope of the ocean surface, higher
in the west than in the east, causes a mirror structure of the oceanic thermocline that shoals

1www.climate.gov
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eastward. On average, the sea level is 60 cm higher and the thermocline 150 m deeper in the
west (up to 200 m deep) than in the east Pacific (30 m in the far eastern Pacific). Because of
the climatological mean depth of the thermocline, the east-west contrast of the Sea Surface
Temperature (SST) increases. The deep thermocline in the west allows surface temperatures
above 28 ◦C to hold up while in the east the shallow thermocline results in more efficient
cooling of the surface layer by vertical mixing and upwelling of deep cold water. Finally, the
trade winds maintain the zonal SST gradient, which confines the atmospheric convection in
the western Pacific, reinforce the associated zonal atmospheric pressure gradient and thus the
Walker circulation, which in turn reinforces trade winds and zonal SST gradient (forming a
positive feedback loop).

The trade winds maintain also a westward zonal current, the South Equatorial Current,
and induce a divergence of equatorial meridional currents. The amplitude of the trade winds,
driving the divergence of the surface currents, accounts for the intensity of the vertical ve-
locities in the superficial ocean and thus for the upwelling of cold water observed along the
equator. The related changes in SST will in turn affect the equatorial atmospheric circula-
tion, illustrating the strong coupling between the atmosphere and ocean in the tropics. The
tropical Pacific mean state results then from the coupling between the large-scale Walker
circulation in the atmosphere and the spatial structure of the underlying SST (Dijkstra and
Neelin, 1995). These air-sea coupled mechanisms involve processes that are both thermal
(via heat fluxes between the equatorial Pacific Ocean and the atmosphere) and dynamical
(via the action of the wind on the ocean surface).

(a) Normal conditions (b) El Niño conditions

Figure 1.2 – Schematic showing (1.2a) the normal and (1.2b) El Niño conditions in the tropical Pacific
(reprinted from McPhaden et al. (2010)).

However, the tropical Pacific is not in a steady state. Its variability arises from the strong
air-sea coupling that can initiate an unstable disturbance.

El Niño conditions (Fig. 1.2b) are characterised by a relaxation of the trade winds that
allows the eastward extension of the western Pacific Warm Pool as well as the weakening of the
equatorial upwelling. This leads to the deepening of the thermocline in the eastern Pacific and
thus to an anomalous warming of the oceanic surface layer off the coasts of Ecuador and Peru,
which may warm by up to 2 to 4 ◦C. This warming in the east decreases the SST contrast
along the equator, which further reduces the trade winds. This mutual reinforcement between
the SST gradient and the winds strength, in a positive feedback loop called the “Bjerknes
feedback” (see paragraph 1.2.1.1), causes the rapid development of El Niño. The Walker
circulation is destabilised via the decrease of the zonal temperature gradient. The convective
atmospheric cells follow the warm surface waters from the west to the central Pacific and
therefore shift the location of intense tropical rainfalls. The ITCZ and SPCZ shift southward
and north-eastward respectively. Essentially, the major source of heat for the atmospheric
circulation moves towards the central Pacific, and the whole atmosphere responds to this
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change, with important weather impacts. Actually, changes in sea surface temperature are
both the cause and consequence of wind fluctuations, interacting as a positive air-sea feedback
and causing a continuous horizontal redistribution of warm surface waters.

The reverse disturbance leading to the displacement of the ascending branch of the Walker
circulation further west is called La Niña (Philander, 1990). During La Niña events, the
Walker circulation is reinforced with strong trade winds confining the convective Warm Pool
to the west and reinforcing the Cold Tongue cooling in the east.

(a) Seasonal cycle of the equatorial Pacific (b) Niño-3 and Niño-4 SST indices

Figure 1.3 – (1.3a) Seasonal cycle of the equatorial Pacific (5°S-5°N) of SST (colour scale) and pre-
cipitation (contour, at intervals of 2 mm per day) in HadISST v1.1 (1950-2017) and GPCP v2.3
(1979-2017) datasets respectively. Red line materialises the 28 ◦C isotherm. (1.3b) Seasonal cycle
of the eastern (red line) and the central (blue line) Pacific. The eastern and central Pacific regions
are materialised by the SST averaged over the Niño-3 (5°S-5°N, 210°E-270°E) and Niño-4 (5°S-5°N,
160°E-210°E) regions respectively, over the same HadISST period.

ENSO is thus a year-to-year disruption of the seasonally evolving climatological state of
the tropical Pacific, although the latter tends to favour its development in certain seasons.
The climatological state of the tropical Pacific varies seasonally in response to the seasonal
variations of solar irradiance with a slight lag due to the heat capacity of the ocean. Sea-
sonal variations in the tropical Pacific reach their maximal values in boreal spring and fall
(Fig. 1.3). In spring, the ITCZ moves equatorward and the southeasterly winds weaken. The
equatorial and coastal upwelling weakens, which allows the warming of the Cold Tongue, and
the eastern Pacific SST usually reaches its seasonal maximum. First, the vertical entrainment
velocity of cold subsurface water toward the mixed layer remains constant but the thickness
of the surface layer being increased (variations of the thermocline depth), the surface layer is
less cooled on average and a warm SST anomaly appears in the eastern Pacific. The warm-
ing is then amplified through a weakening of cold water upwelling (variations in the mean
upwelling velocity). However, as the surface gets warmer, evaporation increases, limiting the
development of temperature above 30 ◦C and therefore the warm inter-annual anomalies (re-
lated to the seasonal cycle). The spring warm phase of the Cold Tongue propagates westward
and reaches the central Pacific in boreal summer. The seasonal cycle of the central Pacific
SST has smaller amplitudes than in the eastern Pacific and is staggered over time (Fig. 1.3b).
The eastern SST seasonal cycle is driven by a strong ocean-atmosphere coupling while the
seasonal cycle in the western Pacific results mainly from changes in solar radiative forcing.
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In fall, the ITCZ moves towards 12°N when south-east trade winds are the most intense.
These seasonal changes, tied to the annual cycle of the insolation, in upwelling, ITCZ

location and winds stress play a key role in the onset and termination of ENSO. El Niño and
La Niña tend to develop during spring (April-June) and reach a maximum strength during
the next boreal winter (December-February) (see paragraph 1.3.1).

It has been observed that this phenomenon is irregular and has a return period between
2 and 8 years. The duration of an El Niño event is also variable and lasts less than La
Niña. This highlights one of the asymmetric features between the two ENSO phases. Ray
and Giese (2012) showed in reanalysis data (1871-2008) that the time between events may
range from several months to ten years and the duration of ENSO may vary from 5 to 27
months. Another asymmetric feature is that La Niña events have weaker amplitudes and
tend to last longer (generally 2 years). Finally, ENSO is governed by multi-scale processes,
from high frequency stochastic processes to mechanisms operating at decadal scales. All of
these features will be addressed and reviewed throughout this introductory chapter.

1.1.2 ENSO diversity

1.1.2.1 History of the diversity

Generally, El Niño events characterise the anomalous warming occurring in the eastern equa-
torial Pacific, associated with the weakening and even potentially the reversal of the trade
winds. However, “no two El Niño events are quite alike” (Wyrtki, 1975). He showed that
the 1965 El Niño event was different in terms of wind stress and SST from the other two
main events he studied (the 1957-1958 and 1972-1973 El Niño events). The 1965 event did
not exhibit a second temperature peak during the winter following the first growth of SST
anomalies.

A few years later, Rasmusson and Carpenter (1982) described the typical evolution of an
El Niño, by building a composite from 6 recorded events from 1951 to 1972, in terms of SST
anomalies, wind anomalies and velocity divergence. This composite is often referred to as the
canonical El Niño. It is characterised by a development of SST anomalies along the coast
of Peru and a subsequent spreading westward towards the central Pacific in boreal winter.
Rasmusson and Carpenter (1982) pointed out that large SST anomalies in the central Pacific
were unlikely during boreal winter unless significant SST anomalies were already in place
along the coast of Peru a few months before. Yet, they mentioned that the 1963 El Niño was
not preceded by positive SST anomalies in the far eastern tropical Pacific.

Conversely, Deser and Wallace (1990) showed that anomalous warming in this region
may take place without a developing El Niño and that it may develop separately from an
initial warming in the central Pacific. A change in the direction of propagation of El Niño
events was also observed at this time. The El Niño events of 1957, 1965 and 1972-73 were
propagating westward, from the far eastern Pacific to the central Pacific, consistently with the
canonical El Niño event described by Rasmusson and Carpenter (1982), while the events of
1982-1983, 1986-87 and 1991 propagated eastward. Wang (1995) suggested that such changes
in El Niño onset were linked to changes in the background state of the Pacific, determining
whether a warming along the South American coast leads or follows the warming in the
central Pacific. Boucharel et al. (2013) proposed that these changes in ENSO-related SST
anomalies propagation were in fact an artefact from the modulation of the seasonal cycle
amplitude in the eastern Pacific.

Another puzzling behaviour of ENSO was noticed by Latif et al. (1997). The warm
period of 1990-1994 can be either defined as a succession of small El Niño events or as a long
event of nearly 3 years depending on the studies. This raises the question of ENSO being
actually an oscillation or a series of stochastic events. Finally, the 20th century ended with
the strongest event ever recorded. The 1997-98 El Niño event could have caused $33 billion in
damage and cost 23 000 lives worldwide (Kerr, 1999). This event has been extensively studied
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(e.g. McPhaden (1999); Wang and Weisberg (2000); Vialard et al. (2001); Lengaigne et al.
(2003); Vecchi and Harrison (2006)) and has distinct and pronounced characteristics including
a propagation of SST anomalies eastward and an extraordinary amplitude of anomalous
warming in the eastern Pacific (4–5 ◦C). More recently, the 2015-16 El Niño was likely the
most widely anticipated event ever. It was preceded by nearly four decades of progress in
observing and prediction systems. It rivalled the 1997-98 event, showcasing advancements in
operational observing and prediction systems, while offering challenges for the future (early
peak not well predicted, L’Heureux et al. (2017)).

The last twenty years showed a resurgence of events peaking in the central Pacific (CP)
near the dateline. Such dissimilarities with the canonical view of El Niño revived the question
of ENSO diversity. These CP events characterised by anomalous warming near the dateline
induce different precipitation and temperature impacts around the world (Larkin and Har-
rison, 2005a,b). After the warm event of 2004, Ashok et al. (2007) defined a new flavour
of ENSO, that they called “El Niño Modoki”. Since the 2000s, the increase in such events
brought a profusion of indices to characterise the different types of observed El Niño (see fol-
lowing paragraph 1.1.2.2 for a description of the SST indices and associated denominations).
Despite the diversity and complexity of ENSO behaviours, it has been widely proposed to
classify ENSO events simply into two categories. El Niño events with a stronger warming in
the eastern Pacific are referred to as Cold Tongue El Niño (Kug et al., 2009) or Eastern
Pacific El Niño (Kao and Yu, 2009; Yeh et al., 2009a). El Niño events with a stronger
warming in the central Pacific are called Dateline El Niño (Larkin and Harrison, 2005a,b),
El Niño Modoki (Ashok et al., 2007), Warm Pool El Niño (Kug et al., 2009), or Central
Pacific El Niño (Kao and Yu, 2009; Yeh et al., 2009a).

Even if the vast majority of classifying methods uses the SST anomalies longitudinal loca-
tion, some have suggested to look at other features, such as the intensity of the SST warming
(moderate and strong El Niño of Takahashi et al. (2011)), the subsurface temperature (Yu
et al., 2010b), the induced precipitations (extreme El Niño of Cai et al. (2014), variable also
used by Williams and Patricola (2018)), the outgoing long-wave radiation (OLR) associated
signal (Chiodi and Harrison, 2013), the event onset time (Wang, 1995; Xu and Chan, 2001),
the propagation direction (Wang, 1995; McPhaden and Zhang, 2009), or the termination
(Lee et al., 2014). Kao and Yu (2009) suggested that many of these different classifications
share common features, mostly characterising different warming centres between two types
of El Niño events, one in the eastern and the other in the central Pacific. This diversity is
often referred to as the “flavours of El Niño”. The following provides a brief review of current
metrics to characterise ENSO diversity.

1.1.2.2 Metrics

In 2003, the National Oceanic and Atmospheric Administration (NOAA) defined El Niño
“as a phenomenon in the equatorial Pacific Ocean characterised by a positive sea surface
temperature departure from normal (for the 1971-2000 base period) in the Niño-3.4 region
(5°S-5°N, 120°-170°W, see Figure 1.4a) greater than or equal in magnitude to 0.5 ◦C, aver-
aged over three consecutive months” (which has become at least five consecutive overlapping
seasons by the NOAA Climate Prediction Center). This index, called the Oceanic Niño Index
(ONI), has been one of the most popular indices to characterise ENSO variability. However,
this definition added El Niño events that were not considered as El Niño until then (Larkin
and Harrison, 2005a). This is mainly because the criterion region, Niño-3.4 area, takes into
account conditions in the central equatorial Pacific (see Figure 1.4a).

It is now recognised that at least two degrees of freedom are needed to describe El Niño
events and their spatial diversity (Trenberth and Stepaniak, 2001; Yeh et al., 2009a; Takahashi
et al., 2011; Ren and Jin, 2011). El Niño events characterisation is often based on metrics
calculated from SST anomalies, a direct observation that may reflect the presence of an El
Niño event. The metrics must allow taking into account the diversity of the phenomenon while
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being relatively simple to compute. In the following, we present some of the most commonly
used indices of SST anomalies in the El Niño classification. It should be noted that because
there is less difference between the patterns of La Niña events, we focus exclusively in the
thesis on the diversity of warm events, even if the problematic of defining diversity also applies
to cold events and, in particular, to extreme La Niña events (Santoso et al., 2017). For a
review of the different indices used in the literature, we invite the reader to refer to Capotondi
et al. (2015).

Trans-El Niño : Trenberth and Stepaniak (2001) first proposed to use two indices to de-
scribe the distinct evolution of each El Niño or La Niña event. They proposed to use the
Niño-3.4 index and the Trans-Niño Index (TNI). The TNI represents the difference be-
tween the normalised SST anomalies averaged in the Niño-1+2 (0°S-10°S, 90°W-80°W)
and Niño-4 (5°S-5°N, 160°E-210°E) regions (see Fig. 1.4a).

El Niño “Modoki” : defined by Ashok et al. (2007) using the El Niño Modoki Index (EMI).
The EMI is defined by a linear combination of mean SST anomalies over specific regions
of the tropical Pacific:

EMI = [SSTA]A − 0.5 · [SSTA]B − 0.5 · [SSTA]C (1.1)

The brackets indicate the area-averaged SST Anomalies (SSTA) over the region A
(165°E-140°W, 10°S-10°N), B (110°W-70°W, 15°S-5°N), and C (125°E-145°E, 10°S-
20°N) (see Fig. 1.4b for the corresponding regions). An event is defined as a Modoki
event when the EMI is greater than 0.7 times the standard deviation of the mean
EMI. It should be noted for correspondence with other metrics, that the EMI is highly
correlated with the second Principal Component (PC2) of the Empirical Orthogonal
Function analysis (EOF, see paragraph 2.2.2.2) of the monthly SST anomalies over the
tropical Pacific (Ashok et al., 2007). The EOF analysis is a statistical method which
deconvolutes the spatio-temporal variability into orthogonal modes, composed of spatial
pattern modes (called EOF maps) and associated time series (called principal compo-
nent or PC). Often the first modes alone can capture most of the coherent variability
of the data. The first two modes are thus very often used to study the variability of the
tropical Pacific and ENSO in particular. According to Marathe et al. (2015), the EMI
is also correlated to the C-index defined by Takahashi et al. (2011) (see “Strong and
moderate El Niño” bullet point) and NWP index defined by Ren and Jin (2011) (see
“Warm Pool and Cold Tongue El Niño” bullet point). This method was questioned by
Lian and Chen (2012) who suggested that the spatial pattern of the Modoki event could
be an artefact due to the orthogonality constraint associated with the EOF technique.
Dommenget and Latif (2002) and Dommenget et al. (2013) also raised the limitations
of the interpretation of EOF modes as two physically independent modes, due to the
tendency of many physical modes to superpose into a single EOF mode. Marathe et al.
(2015) used various linear and non-linear approaches including an EOF and a cluster
analysis to confirm that the El Niño Modoki and the canonical El Niño display differ-
ent seasonal evolution and teleconnections, involving a different strength of the air-sea
coupled feedback. Following the denomination of Jeong and Ahn (2017), this method
is referred to as “AS” method.

“Warm Pool” and “Cold Tongue” El Niño : the terms were first defined by Kug et al.
(2009) based on historical El Niño indices. They compared the value of the mean SST
anomalies in the winter over the Niño-3 (5°S-5°N, 210°E-270°E) and Niño-4 (5°S-5°N,
160°E-210°E) regions (see Fig. 1.4a) to separate Warm Pool (WP) from Cold Tongue
(CT) El Niño events. The Warm Pool events are so called because the centres of action
of several atmospheric variables as well as the SST anomalies are related to the eastward
extension of the Warm Pool. This method has been widely used owing to its relative
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simplicity (Yeh et al., 2009a; Kug et al., 2009; Choi et al., 2011; Capotondi, 2013;
Stevenson et al., 2017) and we will also investigate further this definition in Chapter 3
(see paragraph 3.2.3). This method is referred to as “KU” method.

Arguing that the previous indices from Kug et al. (2009) are highly correlated, Ren and
Jin (2011) proposed other indices to characterise ENSO diversity:{

NCT = N3 − α N4

NWP = N4 − α N3

with α =

{
2/5, if N3N4 > 0.

0, otherwise.

N3 (N4) corresponds to the SST anomalies averaged in the Niño-3 (Niño-4) areas. These
two indices are a linear combination of the Niño-3 and Niño-4 indices conditioned by
the ENSO phase. The parameter α is data-dependent and it is used to transform the
base (Niño-3, Niño-4) into a base where the two clusters of CT and WP El Niño events
are centred on the new axes. They defined these indices also because they are easier to
calculate than the following indices of Kao and Yu (2009). This method is referred to
as “RJ” method.

“Central Pacific” and “Eastern Pacific” El Niño : first named by Kao and Yu (2009)
who used an EOF analysis combined with a linear regression. Before calculating the
first EOF mode associated with the CP (EP) El Niño, they subtract the SST anomalies
regressed onto the Niño-1+2 (Niño-4) index from the original SST anomalies field. This
method is referred to as “KY” method.

Several studies then took over the same terms of “Central Pacific” and “Eastern Pacific”
events using different methods of events classification. For instance Yeh et al. (2009a)
used this terminology but with a method approaching that of Kug et al. (2009).

“Strong” and “moderate” El Niño : first defined by Takahashi et al. (2011) using the
rotating leading EOF modes of the tropical Pacific SST anomalies. They suggested
to rotate by 45° the PC1-PC2 phase space because of the privileged directions of the
system: in the new base of the rotated indices, named E and C in Takahashi et al.
(2011), the strong El Niño regime is distributed along the E axis and the moderate and
cold regimes along the C axis. The axes appear to have dynamical meaning, when the
PC1 and PC2 axes result from maximising the variance of the SST of the first two EOF
modes. These indices (E and C) also allow the peak season as well as the location of the
warming being independent. The same rotation is also used by Dommenget et al. (2013),
based on similar arguments, calling the new axis PCEl Niño and PCLa Niña respectively.
The work of this thesis is based on this method (see chapter 3 and paragraph 3.2.2 for
more details). This method is referred to as “TD” method.

Finally, without explicitly seeking to separate two ENSO regimes, Giese and Ray (2011)
defined the Center of Heat Index (CHI) that breaks down the great diversity of El Niño
and La Niña behaviours into three components (longitude, amplitude and area). The CHI is
based on the longitudinal location of SST anomalies greater than 0.5 ◦C in the tropical Pacific
(5°S-5°N, 120°E-70°W) if the warm area is greater than the area of the Niño-3.4 region.

Other classifications of ENSO diversity based on spatial patterns has been proposed, using
different statistical methods such as agglomerative hierarchical clustering (AHC) (Singh et al.,
2011), self-organizing map (SOM) analysis (Johnson, 2013; Li et al., 2015), fuzzy clustering
analysis (Chen et al., 2015a) or pattern correlation coefficients (Jeong and Ahn, 2017) among
others.

1.1.2.3 Characterisation of ENSO diversity

Although the names and definitions of these El Niño types are slightly different, the Warm
Pool, Central Pacific, Dateline and Modoki El Niño events are often considered to describe
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(a) Traditional Niño regions (b) EMI regions

Figure 1.4 – Outline of regions over which SST anomalies (SSTA) are averaged to defined ENSO
SSTA indices. (1.4a) Historical Niño regions, corresponding to assorted Niño SSTA indices, with
Niño-4 (5°S-5°N, 160°E-210°E), Niño-3.4 (5°S-5°N, 120°-170°W), Niño-3 (5°S-5°N, 210°E-270°E) and
Niño-1+2 (0°S-10°S, 90°W-80°W). (1.4b) Regions used to compute the EMI index of Ashok et al.
(2007), with A (10°S-10°N, 165°E-140°W), B (15°S-5°N, 110°W-70°W), and C (10°S-20°N, 125°E-
145°E).

the same type of events, in which the warmest SST anomalies occur in the western-to-central
Pacific. By analysing the evolution of several El Niño events in the E-C phase space between
May(0) (of their developing year) and January(1) (of their mature phase), Takahashi et al.
(2011) confirmed that Modoki, CP and moderate El Niños can be grouped in the same
category, distinct from extreme warm events (see their Figure 1). It should be noted that
the canonical El Niño, referring to as the El Niño composite of Rasmusson and Carpenter
(1982), is often compared to EP El Niño events in literature (Kug et al., 2009; Kim et al.,
2009). However, it shares more features with moderate El Niños than with strong EP El
Niños, despite an initial warming in the eastern Pacific that the CP events do not have
(Takahashi et al., 2011; Dewitte and Takahashi, 2017). For instance, in the E-C phase space,
the canonical El Niño event of 1957-58 (Rasmusson and Carpenter, 1982) is close to Modoki
or CP El Niño events (Takahashi et al., 2011).

Commonly, the typical Eastern Pacific (EP) El Niño develops strongly in the (far)
eastern Pacific (Niño-1+2 region, see Figure 1.4a) during boreal spring. Although sometimes
the developing SST anomalies do not have propagating characteristics and are thus considered
as quasi-stationary (Kug et al., 2009), it generally extends westward during summer (Kao
and Yu, 2009), meeting a second warming zone that develops in the central Pacific following
local westerly wind events (Wang and Weisberg, 2000). The peak of positive SST anomalies
is reached in boreal winter, before retreating in an almost identically opposite way that
restores the normal cold waters of the eastern Pacific Cold Tongue during the following
spring. Typically, the Niño regions experience this decay in April of the second year except
in the Niño-1+2 region, where the decay may occur later, in July (Kao and Yu, 2009). It
should be noted however that some differences appear in the development of strong El Niño
events: during the 1982-83 events for instance, no initial warming in the extreme east has
been observed but the SST anomalies herein were amplified in the spring after the mature
phase of the event.

The Central Pacific (CP) El Niño has a different structure with positive SST anoma-
lies confined in the western-to-central Pacific (Kao and Yu, 2009). Positive SST anomalies
often begin during the summer months near the international dateline (180° longitude). The
event spreads meridionally with extension to the eastern subtropics, but fails to propagate
zonally to the extent that the EP El Niño does. The mature phase of the event, with maxi-
mum SST anomalies amplitudes, is also often reached in winter and the event retreats during
spring of the second year. Furthermore, CP (EP) El Niño events are characterised by weaker
(stronger) SST anomalies and have a shorter (longer) duration, around 9 (15) months.

Lai et al. (2015) analysed the spatial evolution over the equatorial Pacific of all observed
El Niño events over 1980-2013. They concluded that almost all events start with a warming
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(+0.5 ◦C) in the central Pacific. They also showed that all CP El Niños and their hybrid El
Niños decay with a warming in the central Pacific. Only EP El Niño, which correspond in
their study to the two strong El Niño events of 1982-83 and 1997-98, end with a warming
in the eastern Pacific. Thus, the initiation phase would be similar between El Niño events,
which would then differ in their direction of propagation (see paragraph 1.2.2.4).

Some studies suggested that other classifications, such as moderate versus extreme El Niño
events could be more relevant. Among the different SST anomalies metrics presented above,
the “TD” classification also integrates information on the strength of the event. It leads to a
categorisation between strong and moderate El Niño events, based on the underlying Bjerknes
feedback (Takahashi and Dewitte, 2016) as well as between moderate CP and moderate EP El
Niño events, based on the variability in the far eastern Pacific related to an air-sea interaction
mode (Dewitte and Takahashi, 2017).

In addition to a possible more physical approach to the phenomenon, the differentiation
of strong or extreme El Niño events is of prime importance because of the greater and
dramatic socio-economics global impacts (Philander, 1990; McPhaden et al., 2006). Another
approach for identifying extreme El Niño has been proposed by Cai et al. (2014) and focuses on
precipitation anomalies rather than SST anomalies. Characterised by an important warming
in the eastern Pacific with SST exceeding 28 ◦C, the two observed strong El Niño events
of 1982-83 and 1997-98 induced precipitation anomalies in the eastern equatorial Pacific,
normally dry and cold (Philander, 1983; McPhaden, 1999). Indeed, during strong El Niño
events, the ITCZ moves from its climatological location (8°N) to the eastern equatorial Pacific
(Rasmusson and Carpenter, 1982; Lengaigne and Vecchi, 2010) due to the weakening of the
zonal and meridional SST gradients. It leads to atmospheric convection and exceptional
rainfall (> 5 mm/day) in the eastern Pacific. Cai et al. (2014) showed that the precipitation
in the eastern Pacific increases non-linearly with the increase of SST anomalies in Niño-3 and
the decrease in the eastern Pacific meridional SST gradient. Cai et al. (2014, 2015a, 2017)
defined thus an extreme El Niño event when the boreal winter (DJF) rainfall in the Niño-3
region is beyond an arbitrary threshold of 5 mm/day.

More recently, an index based on the longitude of the deep convection in the equatorial
Pacific basin has been proposed by Williams and Patricola (2018). Based on the same idea
as the precipitation index of Cai et al. (2014), it allows in addition to discriminate the effect
of the increase in column water vapour due to warming in order to focus on the rain-related
ENSO effect. The proposed ENSO Longitude Index (ELI) contains longitude information
of where deep convection occurs along the equatorial Pacific. Surprisingly they proposed
only one index to characterise ENSO diversity, arguing that it accounts for the non-linear,
threshold-like response of deep convection to SST. The index is not weighted by how much
SST exceeds the threshold, it is not an indication of total magnitude of the event. However,
depending on the resulting longitude value, the index makes it possible to determine the
displacement of the deep convection associated with El Niño events and so, indirectly, the
qualitative importance of the warming in the eastern Pacific where the relationship rainfall-
SST is non-linear (see paragraph 1.2.2.3). One of the main advantage of the index is that it
is robust to changes in the SST background state since the convection threshold used for the
calculation of the index is defined by comparison with the tropics-wide average SST.

Finally, Dewitte and Takahashi (2017) showed that CP and Modoki El Niño events may
be apprehended as moderate CP events while canonical El Niño events as moderate EP
events. This classification is close to that proposed by Chen et al. (2015a) who defined three
distinct SST warm patterns: the extremely strong El Niño event, with large warming near
the South American coast, the CP El Niño, a weak warm event centred near the dateline
and the canonical El Niño event with moderate warming in the central-eastern Pacific. We
will come back in more details on this classification in terms of amplitude (extreme versus
moderate) closely related to the classification in terms of SST anomalies patterns (EP versus
CP) in the chapter 3.
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The different classifications agree that the observed El Niño events of 1983-83, 1997-98 and
to a lesser extent 2015-16 are strong or extreme events (Takahashi et al., 2011; Santoso et al.,
2017; Cai et al., 2017). However, even between extremes events with the same magnitude
of SST anomalies across the central and eastern equatorial Pacific (L’Heureux et al., 2017)
(see Niño-3.4 index in Fig. 1.5), the temporal and spatial evolutions of the tropical Pacific
show important discrepancy (Abellán et al., 2017b). The anomalous warming of the 1997-98
El Niño develops in the eastern tropical Pacific in late boreal spring - early summer and
then extends to the central Pacific the next winter. The anomalous warming of the recent El
Niño event is less intense in the eastern Pacific and extends further west of the dateline. The
associated precipitation field is even more contrasted with a spatial extension far eastward
and a maximum of precipitation in the Niño-3.4 region in winter for the 1997-98 event while
the displacement of the precipitation centre remains confined to the central Pacific with a
maximum of precipitation located in the Niño-4 region in winter for the 2015-16 event (see
spatial patterns in Fig. 1.5).

Figure 1.5 – Time-longitude sections of the equatorial band (2°S-2°N) SST anomalies (◦C) for (left)
the 1997-98 El Niño event and (middle) the 2015-16 El Niño event (HadISST v1 dataset). The con-
tours represent the evolution of the precipitation (mm/day) with intervals every 4 mm/d (GPCP v2.3
dataset). On the right figure is shown the time-evolution of (solid lines) the Niño-3.4 index (SSTA
averaged over 5°S-5°N, 190-240°E, black box of the left figures) and (dashed lines) the E-index during
both events (1997-98 in red, 2015-16 in blue).

When using the E-index defined by Takahashi et al. (2011), differences between both
events are significant (see E-index in Fig. 1.5): the maximal amplitude is of 2 ◦C greater for
the 1997-98 event than for the 2015-16. The warm period of the 1997-98 El Niño, when
the E-index is greater than 1.5 ◦C, lasts twice as long, from June 1997 to June 1998 when
the 2015-16 event warm period lasts from July 2015 to January 2016. Finally, while the
1997-98 event presents a marked peak in December 1997, the 2015-16 event reaches a SST
anomalies peak not as large but that persists more than the 1997-98 event. These differences
of evolution of the E-index are reflected in the spatial pattern of the two events, with a
significant warming in the extreme east of the Pacific Ocean (Niño-1+2 region) for the 1997-
98 event (L’Heureux et al., 2017), the E-index explaining most of the variability of the
eastern Pacific (see paragraph 3.2.2) when the 2015-2016 event had an important warming
in the Niño-4 region in addition to the exceptional warming in Niño-3.4 region (Xue and
Kumar, 2017; L’Heureux et al., 2017; Abellán et al., 2017b). Even if these two events are
characterised as strong events, their temporal and spatial evolution is drastically different.

Williams and Patricola (2018) pointed out that the ONI index cannot effectively capture
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the differences between the 1997-98 and 2015-16 El Niño events because the variation between
them in the phase space PC1-PC2 is orthogonal to the variability explained by ONI (their
figure 3a). Santoso et al. (2017) raised also the difficulty of defining strong El Niño since
extreme El Niño, defined by Cai et al. (2014) from a threshold of precipitation in the eastern
part of the tropical Pacific, does not necessarily propagate eastward as extreme El Niño events
defined by Santoso et al. (2013) or McPhaden and Zhang (2009) do.

Thus, the El Niño classification into strong events may also depend on the metrics used.
Similarly, the classification between CP and EP El Niños is dependent on the metrics used, as
shown by Singh et al. (2011) and Jeong and Ahn (2017) in observations, or by Stevenson et al.
(2017) using a large ensemble Coupled General Circulation Model (CGCM). These studies
inter-compared different methods using several datasets. Singh et al. (2011) compared the
“AS”, “KY”, “KU” methods among others to their Sea Surface Salinity (SSS) clustering.
Jeong and Ahn (2017) compared “AS”, “KY”, “KU”, “RJ” and “TD” methods. Stevenson
et al. (2017) used the “KU”, “KY” and Yeh et al. (2009a)’s methods.

The use of these different indices leads to different classifications of El Niño events type,
which may question the validity of the results that estimate the projected evolution of El
Niño statistics in a warmer climate. The use of simplified indices, useful for studying complex
climate phenomena, is above all a tool for accessing the diversity of ENSO in a qualitative
way. It must be kept in mind that compositing El Niño events via these metrics can mask
significant differences between events of the same class.

Knowing that ENSO diversity causes different global impacts (see paragraph 1.1.3 and
Larkin and Harrison (2005a); Ashok et al. (2007) among others) and may contribute differ-
ently to climate variability (see paragraph 1.3.2 and Lee and McPhaden (2010); Choi et al.
(2012); Johnson (2013) among others), the characterisation of El Niño flavours by adapted
metrics is crucial to understand their associated dynamics, from the atmospheric stochastic
forcing to ENSO feedbacks (see section 1.2 of the chapter). The characterisation of the ENSO
diversity is also of prime importance to estimate changes in frequency of occurrence of El
Niño due to internal variability (see section 1.3) and due to global warming (see section 1.4).

1.1.2.4 A “wicked” problem

As mentioned by Christina Karamperidou at the recent ENSO conference in Guayaquil,
Ecuador in 20182, ENSO is a “wicked” problem. A wicked problem is defined by its difficulty
or impossibility to solve because of incomplete or contradictory knowledge and changing
requirements that are often difficult to recognise3. The main feature of a wicked problem is
that it has no definitive formulation, neither stopping rule, nor ultimate test of a solution.
There is always more than one solution for a wicked problem, with the appropriateness of
the solution depending greatly on the individual perspective of the designer of the solution.
Taking into account the elements presented previously, it appears that ENSO diversity is
difficult to define and can be assessed in many different ways, whether one want to diagnose
the event’s intensity or its spatial pattern for instance. This issue raises several questions.

How to define ENSO diversity? Which variable(s) should we use? Temperature or
precipitation or more at once? Should the flavours be defined by their intensity or their
spatial pattern? Should we analysed the climate variables at a fixed time, commonly during
the mature phase of the events, or characterise their temporal evolution? If, conversely,
the descriptive approach through climate variables is not the one chosen, should we rely
on physical processes? If so, which ones? As long as one does not better understand the
mechanisms that govern the different flavours of ENSO, it is difficult to consider putting
forward a particular physical process. There is (for now) no definitive formulation for ENSO
diversity and the many metrics proposed over the last twenty years reflect this ambiguity.

2http://www.ensoconference2018.org/
3Source: Wikipedia
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An important underlying issue of the diversity definition is how we should approach
ENSO diversity? As a continuum representation of an asymmetric phenomenon or as
two independent modes? The underlying issue is to determine whether the two El Niño
flavours involve different physics or can emerge fro the same dynamics.

The continuum view comes from the apparent continuous distribution of the longitudes
of the ENSO SST anomalies peaks: El Niño and La Niña events have a large longitudinal
distribution, and their anomaly centres intertwine. In this framework, weak or moderate
El Niño and extreme La Niña have similar patterns with a broad range of longitudes while
extreme El Niño are outliers with intense warming in the eastern Pacific. Johnson (2013),
using observations over 1950-2011, suggested a framework representing ENSO as a continuum
that can be explained by 9 statistically distinguishable patterns. In a CGCM capturing
realistically ENSO diversity, the GFDL CM2.1 (see paragraph 2.1.2.1 for a description of
the model), the peaks of the El Niño events shift eastward as they strengthen (Fig. 1.6a(b),
reprinted from Capotondi et al. (2015)), a result also observed in the reanalysis dataset
SODA v2.2.4 (see Figure 9a of Giese and Ray (2011) and paragraph 2.1.1 for a presentation
of the reanalysis dataset). However, in the reanalysis dataset over the period 1871-2008, the
central longitude of the ENSO warming is indistinguishable from a Gaussian distribution
centred near 140°W (Giese and Ray, 2011) when a weak bi-modality appears in the pre-
industrial (PI) control simulation of the CGCM (Fig. 1.6aa). Note that the centre of warming
used by Giese and Ray (2011) is determined via the CHI index (see paragraph 1.1.2.2), which
considers the warming over an area at least equal to the area of the Niño-3.4 region. The
centre is calculated for each month of the event. In contrast, Capotondi et al. (2015) used
maximum SST anomalies (5°S-5°N) in DJF to determine the associated longitude in the
model. Although these two methods are not comparable, El Niño warming centres appear
to occupy a wide range of longitudes. Fedorov et al. (2015) confirmed that CP and EP
El Niños could be viewed as a continuum especially when focusing on the average warming
magnitude and the anomaly heat centre rather than on the maximum SST anomalies and
the exact longitude of this maximum. Characterising El Niños as strictly central or eastern
events appears contradictory with this continuity in the distribution of longitudes (Giese and
Ray, 2011; Johnson, 2013; Capotondi et al., 2015). Moreover, the spatial patterns of CP
and EP events are often compared to the first two modes of the tropical Pacific variability
obtained from an EOF analysis (Ashok et al., 2007). The second EOF mode, whose pattern
may resemble CP El Niño spatial pattern (see paragraph 2.1.4.2 and Fig. 2.8), may rather be
considered as a “modulator” for describing inter-event differences and requires a substantial
projection onto the first EOF mode to appear. Indeed, an El Niño event may be considered
as an appropriately weighted superposition of the two modes. Cai et al. (2015a) argued that
this feature of ENSO involving both EOF modes represents a continuum. Another argument
is that the existence of two modes of ENSO variability would imply the existence of different
deterministic processes that favour one mode over the other. Lai et al. (2015) argued that
observed El Niño events (1980-2013) form a continuum with CP and EP El Niño events at each
end. The “location” of an El Niño event on this continuum depends on the respective value
of two parameters, the zonal wind anomalies and the recharged state of the western Pacific
(see paragraph 1.2.3.2). However, Newman et al. (2011) showed that the central and eastern
Pacific variability associated with the two regimes may arise from natural random variation,
as may the multidecadal variations in ENSO flavours characteristics (see paragraph 1.3.2).
Note that they described ENSO flavours as different combinations of two orthogonal spatial
patterns, precursors to CP and EP El Niño events and excited by stochastic atmospheric
forcing, which can be assimilated to a continuum of mixed CP and EP patterns.

Conversely, numerous studies argued that EP and CP El Niños are distinct regimes be-
cause of the distinct seasonal evolution of their SST anomalies patterns, their distinct meteo-
rological impacts, their distinct oceanic and atmospheric processes or their frequency change
after the climate regime shift of 1977 (Ashok et al. (2007); Kao and Yu (2009); Kug et al.
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(2010); Ren and Jin (2011) among many others). Ashok et al. (2007) raised first the question
of whether the Modoki El Niño, with a pattern of warming in the central Pacific flanked by
colder SST anomalies on both sides along the equator, is a part or not of El Niño evolu-
tion. They suggested that the two regimes are actually two major orthogonal modes of the
ocean-atmosphere coupled system in the tropical Pacific. A comparative analysis of various
linear and non-linear approaches and composite analysis techniques has been conducted on
observed and reanalysed climate datasets to further investigate whether these regimes are
two distinct phenomena (Marathe et al., 2015). In particular, they analysed the seasonal
evolution of Modoki and canonical El Niño events and suggested that due to their distinct
evolution in summer season, their persistent warming in central Pacific and their distinct
teleconnections, Modoki El Niño events should be classified as distinct events. They called
for considering the Modoki El Niño as a separate phenomenon, at least for the purpose of
applications and impact studies. With a different approach, Ren and Jin (2011) showed that
the two types of El Niño, named WP and CT El Niño in their study, may be considered as
two independent modes of ENSO although the data is too short to be statistically significant.
Indeed, the two modes correspond to different zonal propagation of ENSO SST anomalies
and the climate shift in 1976-77 led to ENSO regime changes with the increase in CP ENSO
regime.

The possible coexistence of two ENSO-like modes in the ocean-atmosphere coupled sys-
tem under the present climate conditions was noted by Bejarano and Jin (2008). These
modes resemble to the two observed regimes of ENSO. These two ENSO-like modes, called
Quasi-Biennial (QB) and Quasi-Quadrennial (QQ), are further investigated in various studies
in terms of dynamic processes or sensitivity to the mean state (Wang and Ren, 2017; Xie and
Jin, 2018; Timmermann et al., 2018). These studies highlighted the role of the background
state to be conducive in the preferential occurrence of one of the two modes. Especially,
combining these previous results, Timmermann et al. (2018) suggested to apprehend ENSO
complexity through the co-existence of two linear Eigen-modes, which can be derived from
a deterministic, intermediate-complexity coupled model and a number of excitation mecha-
nisms. This approach as well as its integration into the ENSO complexity, which has many
others asymmetries, is discussed in paragraph 1.2.3.

However, one may argue that the dichotomy between EP and CP events is not well
defined when using the different SST anomalies metrics presented above. The classification
of some observed events depends on the methods used (see also chapter 3), suggesting that
the longitudinal location of SST anomalies El Niño peaks is not an optimal variable to analyse
ENSO diversity. Some suggested that other classifications than two spatial modes, such as
moderate and extreme El Niño regimes, could be more relevant (Lengaigne and Vecchi, 2010;
Takahashi et al., 2011; Takahashi and Dewitte, 2016; Takahashi et al., 2018). The diversity
of El Niño and more generally of ENSO may thus be the response of the system to non-
linearities as suggested by Takahashi et al. (2011) and Dommenget et al. (2013) (see also
paragraph 1.2.2). When increasing the number of ENSO statistics through the use of long
CGCM simulations, Takahashi et al. (2011) noticed a marked anisotropy of the main modes
of variability of the tropical Pacific, and therefore ENSO. The phase space of the principal
component (PC) timeseries associated with the two main EOF modes presents indeed a
boomerang shape, revealing the non-linearity of the coupled system (see also Dommenget
et al. (2013); Karamperidou et al. (2017) and the paragraph 2.1.4.5). They suggested that
La Niña, weak and strong El Niño, EP and CP El Niño are part of the same non-linear
phenomenon rather than independent modes of variability. No privileged cluster of Modoki
or CP El Niño events appears in the ENSO phase space. However, when focusing on El Niño
events solely, a bi-modality in the E-C phase space is revealed in the model, corresponding
to the moderate and strong El Niño regimes (Fig. 1.6b). This bi-modality in the SST peaks
distribution during El Niño events is suggested in observations (solid circles in Fig. 1.6b) even
if the record of El Niño events is too short to statistically reject the null hypothesis of a uni-
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(a) Longitudes bivariate distribution (b) El Niño asymmetry

Figure 1.6 – (Fig. 1.6a) Distribution of the equatorial (5°S-5°N) DJF SST anomalies during El Niño
events in GFDL CM2.1 PI-control simulation (4000 years). An El Niño event is defined when DJF
Niño-3 SSTA exceeds 0.5 ◦C. (a) Distribution of peak SSTA longitudes (°E). (b) Scatterplot of the
peak SSTA value (◦C) vs the longitude (°E) at which it occurs. (c) Distribution of peak SSTA values
(◦C). The figure is reprinted from Capotondi et al. (2015). (Fig. 1.6b) Bivariate E-C probability
density function of the El Niño peaks for GFDL CM2.1 PI-control and 20th century simulations
(open circles). Observed El Niño peaks (HadISST, 1920-2013) are indicated in solid circles with the
year corresponding. Reprinted from Takahashi and Dewitte (2016).

modal distribution based on observations alone. Recently, Takahashi et al. (2018) confirmed
that the two El Niño regimes, moderate and strong, exist in a simplified model (recharge-
discharge model, see paragraph 1.2.1.2) in which a single non-linearity is introduced.

As a response to the rising debate, the strong El Niño of 2015-16 occurred. Its positive
SST anomalies have potentially exceeded the previous records observed in the Niño-3.4 region
(L’Heureux et al., 2017; Xue and Kumar, 2017; Dewitte and Takahashi, 2017), classifying it
as a strong El Niño event by the amplitude. However, the warming in the far eastern Pacific
were not so pronounced (Fig. 1.5), which did not cause the convection to move as much in
the eastern Pacific as during the other two observed strong EP El Niño events. As a result,
the 2015-16 El Niño event did not have the expected rainfall impacts in Ecuador and Peru
(Sanabria et al., 2018). The event was followed by a weak La Niña event whereas usually
strong El Niños are followed by strong La Niñas. The 2015-16 El Niño may appear rather
like an EP-CP hybrid El Niño (Paek et al., 2017) with wet conditions in the central Pacific or
like a moderate-strong hybrid El Niño with an eastern Pacific signature not so pronounced.

Finally, should we consider ENSO as two independent spatial modes modulated
by the background state or as two modes arising from the non-linearities in
the coupled system? Chen et al. (2015a) proposed to reconcile the debates between the
two different views, spatial versus amplitude. In their framework, ENSO appears to be a
symmetric, canonical cycle in the central to eastern equatorial Pacific, representing a large
portion of El Niño and La Niña events. Superimposed on this basic cycle are rare extreme
El Niño events in the eastern Pacific, triggered by non-linearities or stochasticity, and weak
but more frequent warm events near the dateline, forming the different flavours of El Niño.
This approach adds a flavour to El Niño compared to the view of Takahashi et al. (2011);
Takahashi and Dewitte (2016) and Dewitte and Takahashi (2017). The latter argued that
CP El Niño and the canonical El Niño are the components of the same broad central-to-
eastern Pacific phenomenon and that the El Niño phenomenon as a whole also includes some
extremely strong EP El Niño.

Chen et al. (2015a) remind however that any classification is to some extent subjective,
and is often chosen based on practical convenience rather than rigorous mathematics. A
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minimal criterion for a valid classification is consistent with the physical picture from our
current understanding of El Niño dynamics but therefore is evolving. Better understanding
of the underlying processes will only improve it.

1.1.3 Impacts and teleconnections

ENSO exerts profound impacts that extend well beyond the Pacific basin. It affects global
weather patterns through thermal exchanges during the displacement of the warm waters of
the Pacific. The relocation of the convective areas of the Pacific disrupts the teleconnections
of the tropical atmospheric circulation patterns with the mid-latitudes, which in turn modifies
the mid-latitude jet streams and influences more distant areas.

El Niño events have large impact, whether in precipitations (Ropelewski and Halpert,
1987) than in surface temperature (Halpert and Ropelewski, 1992). Their impacts have
been widely studied and resumed in Figure 1.7. The reorganisation of the tropical thermal
machine disrupts weather particularly around the Pacific basin. In boreal summer (Fig. 1.7,
bottom panel), it is known to cause serious droughts in north-eastern Australia, Indonesia and
India, perturbing the monsoon in these places, causing eventually huge forest fires. In boreal
winter (Fig. 1.7, top panel), it causes important precipitation in Ecuador and coastal Peru,
as well as in the south-west of the USA, which can lead to floods and landslides. Conversely,
it induces precipitation deficits over the northern part of South America, Indonesia and
Australia. It alters biogeochemical activity through the decrease in the upwelling off the
South American coast, which has repercussions on fishing activities, especially on anchovy
fishing, one of the main driver of the Peruvian economy. The 1982-83 (Philander, 1983) and
1997-98 (McPhaden, 1999) extreme El Niño events were the most impacting and destructive.
They were accompanied with devastating floods in Peru, severe droughts and forest fires in
southeast Asia, disappearance of marine life and native bird populations of the Galapagos
as well as severe coral bleaching in the Pacific, impacting marine and terrestrial ecosystems,
agriculture, freshwater supplies, hurricane activity and other severe weather events worldwide
(Goddard and Dilley, 2005; McPhaden et al., 2006).

Figure 1.7 – El Niño common impacts around the world in (top) boreal winter and (bottom) boreal
summer (Reprinted from NOAA Climate.gov4).

However, CP El Niño has a different footprint on regional climates worldwide (Larkin and
Harrison, 2005b; Ashok et al., 2007; Yeh et al., 2009a). Central Pacific El Niño is associated

4www.climate.gov

25



CHAPTER 1. BACKGROUND

with globally cool temperatures, except for parts of South America. During CP El Niño,
northern India receives wet conditions in boreal summer and Australia experiences severe
droughts. CP El Niño conditions intensify also the genesis of tropical cyclones over the west-
ern North Pacific during boreal summer since the early 1990s (Chen and Tam, 2010; Kim
et al., 2011; Liu and Chen, 2018) as well as over the South China sea (Chen, 2011). These
different impacts are explained by the sensitivity of the atmosphere to the oceanic warm-
ing. SST patterns are essential for determining the atmospheric response, particularly in the
Warm Pool region, where subtle SST variations may have large impacts on the location and
intensity of latent heat release in the atmosphere and thus on the global atmospheric circula-
tion. Therefore, due to the potential combination of atmospheric sensitivity and anomalous
warming in an already warm climatological region, the central Pacific plays a central role
in remote off-equatorial impacts. Thus, even if CP El Niño events have smaller zonal scales
and weaker SST anomalies than EP El Niño events, the atmospheric response to the SST
anomalies is stronger indicating stronger teleconnections between Tropics and mid-latitudes
(Weng et al., 2009).

But even strong El Niño events do not always have the expected impacts, such as the
normal Indian summer monsoon rainfall in 1997 (McPhaden et al., 2010). External influences
such as in that case the co-occurrence of an Indian Ocean Dipole or changes in decadal
variability between ENSO and the monsoons (Kumar, 1999) may interfere. Predicting climate
impacts associated with ENSO outside the tropics is likewise problematic because weather
noise can obscure teleconnections from the tropics.

Finally, ENSO teleconnection can be systematically strengthened over many land regions
with global warming, leading to increased inter-annual variability in regional temperature
extremes and wildfire frequency (Fasullo et al., 2018). For instance, the strong 2015-16 El
Niño event prolonged the longest global coral die-off started in 2014 due to record ocean
temperatures and highly enhanced tropical cyclone activity (Brainard et al., 2018). All of
these impacts usually accompany El Niño events but are reinforced by the SST background
warming, likely due concomitantly to global warming and the positive phase of the Pacific
Decadal Oscillation.

1.2 ENSO’s theories

In the first part of this section, we present the canonical view of the ENSO quasi-oscillation,
which develops under the influence of the Bjerknes air-sea coupled feedback. The positive
anomalies will be offset by several negative feedbacks. Amongst them, the recharge-discharge
oscillator is now a widely accepted paradigm to explain the delayed negative feedback due to
oceanic processes, which eventually terminates the ENSO event. However, strong asymmet-
ric features due to numerous multi-scales interactions and non-linearities make ENSO more
complex than this simplified quasi-oscillatory theory. The second part of this section will
attempt to present the main causes suspected of introducing asymmetries into the ENSO
system.

1.2.1 The canonical view of ENSO

1.2.1.1 Growth of anomalous warming

Anomalous warming in the central-to-eastern equatorial Pacific is chosen as a starting point.
By reducing the zonal SST gradient along the equator, the warming weakens the trade winds
further reducing the zonal SST gradient. The direct response of the trade winds to zonal
contrast of SST is the atmospheric component of the positive (amplifying) Bjerknes feed-
back.

The weakening of the trade winds also flattens the mean thermocline, deepening it in the
eastern Pacific, and reduces the wind-driven equatorial upwelling, causing warming in the
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eastern Pacific, decreasing the zonal SST gradient, which further weakens the trade winds.
Other positive feedbacks amplifying the warming in the eastern Pacific complement the

Bjerknes feedback. The weakening of the trade winds increases the advection of warm waters
of the Warm Pool towards the east and amplifies the initial warming: this is the zonal
advection feedback or the zonal advection of mean SST by the anomalous current. The
weakening of the upwelling reduces the vertical advection of deep cold water to the surface in
the eastern Pacific and amplifies the initial warming: this is the upwelling feedback or the
vertical advection of mean temperature by the anomalous vertical current. The deepening
of the thermocline in the eastern Pacific results in warm surface water being spread over
a greater depth in subsurface. Subsurface water upwelled are warmer than usual, which
amplifies the initial warming: this is the thermocline feedback or the vertical advection
of anomalous subsurface temperature by the mean upwelling.

It should be noted that coupling air-sea interactions are strong in the western Pacific
(Picaut et al., 1997) while interactions between SST and thermocline depth are strong in
the eastern Pacific (Vialard et al., 2001), which influences the balance between the different
processes involved.

These positive ocean-atmosphere instabilities lead to a never ending warm state. The
reverse situation with negative anomalies leads in the same way to a cooler permanent state
(La Niña-like). A negative feedback is needed to turn the system around.

1.2.1.2 ENSO wave theories

In the 1980s and 1990s, the understanding of El Niño has progressed a lot thanks especially
to the development and spread of observation network over the tropical Pacific (TOGA,
McPhaden et al. (2010)) then satellite observations. New theories have emerged based on
a mechanistic approach through highly parameterised simplified coupled models to explain
the quasi-oscillatory nature of ENSO. In particular, linear theories based on equatorial wave
theory introduced negative oceanic feedbacks.

Four conceptual ENSO oscillator models have been proposed: the delayed oscillator
(Suarez and Schopf, 1988; Battisti and Hirst, 1989), the recharge oscillator (Jin, 1997a,b), the
western Pacific oscillator (Weisberg and Wang, 1997), and the advective-reflective oscillator
(Picaut et al., 1997). These oscillator models emphasise negative feedbacks on SST anomalies
of respectively the delayed effect of reflected Kelvin waves at the ocean western boundary, a
discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and
anomalous zonal advection. These negative feedbacks may work together for terminating El
Niño warming, as suggested by the unified oscillator (Wang, 2001). In these models, the sys-
tem oscillates owing to the presence of a fast positive feedback (e.g. the Bjerknes feedback),
which causes the growth of El Niño and of a slow negative feedback (the slow adjustment
of the ocean) that reverses the initial growth into its opposite phase. The oscillatory nature
of ENSO can therefore be linked to the coupled nature of the equatorial ocean-atmosphere
system, in which the ocean provides the memory of the system. We detail here the delayed os-
cillator as well as the widely used recharge-discharge paradigm. We invite the reader to refer
to Wang and Picaut (2004) for a review of the main theories on these coupled oscillations and
a discussion on their interaction with the shorter time-scale variability. The French-speaking
reader can also refer to the thesis of Boucharel (2010).

Wyrtki (1975), observing a strengthening of the trade winds in the central Pacific the
years preceding a warm event, first hypothesised that this resulting accumulation of warm
water in the western Pacific (build-up) were part of the onset of El Niño. When the system
reaches a critical state, a relaxing of the trade winds is enough for the accumulated warm
waters to move towards the east in the form of Kelvin waves. He suggested that at the end of
the warm event, these waters are redistributed to higher latitudes, especially along the coasts
of South America. Cane and Zebiak (1985) suggested that this recharge of warm water in
the western Pacific is a pre-conditioning ocean state necessary for the onset of a warm event.
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The delayed oscillator (Suarez and Schopf, 1988; Battisti and Hirst, 1989) resuming
the idea of a displacement of warm waters through Kelvin waves, also proposed a negative
feedback by free propagation of equatorial oceanic waves (Fig. 1.8). A relaxing of the trade
winds, which can even go as far as positive westerly wind anomalies, near the dateline in
the central Pacific, generates equatorial downwelling Kelvin waves towards the east and up-
welling Rossby waves toward the west. A downwelling Kelvin wave is an eastward propagating
oceanic internal wave (∼3 m/s) that deepens the thermocline. An upwelling Rossby wave is
a westward propagating oceanic internal wave (∼1 m/s) that shoals the thermocline and is
characterised by two symmetric anomalies on both sides of the equator. The downwelling
Kelvin waves deepen the thermocline in the eastern Pacific and reduce the efficiency of clima-
tological upwelling, which warms the surface layer. The weakened zonal SST gradient then
reinforces the original wind anomalies. Instability of the coupled ocean-atmosphere system
is initiated, favouring the Bjerknes feedback. The upwelling Rossby waves generated by the
initial warming in the central Pacific reflect at the western boundary of the equatorial Pa-
cific as upwelling Kelvin waves, which counter the effect of the downwelling Kelvin waves by
progressively shoaling the thermocline and cooling the SST. They can reverse positive SST
anomalies and help start a cold event. The propagation of Kelvin and Rossby waves at dif-
ferent speeds explains the delay between fast positive feedback, by forced downwelling Kelvin
waves, and slow negative feedback, by reflected upwelling Kelvin waves, giving the name to
the delayed oscillator. The delayed oscillator states that ocean subsurface adjustment due
to individual free Kelvin and Rossby waves provide memory of the oscillation between warm
and cold phases. It should be noted that in reality the winds excite a continuum of waves
rather than a few isolated ones.

Figure 1.8 – Schematic diagram of the delayed oscillator. Positive SST anomalies (red) in the equatorial
eastern Pacific cause westerly wind anomalies (large arrows) that drive downwelling Kelvin waves (thin
solid arrow) eastward and act to increase the positive SST anomalies. The westerly wind anomalies also
generate oceanic equatorial upwelling Rossby waves (thin dashed arrow), which propagate westward
and eventually reflect from the western boundary as equatorial Kelvin waves. Since the thermocline
anomalies for the reflected upwelling Kelvin waves have an opposite sign to those of the directly
forced downwelling Kelvin waves, they provide a negative feedback for the coupled system to oscillate.
(Reprinted from Saint-Lu and Leloup (2016), adapted from Wang and Picaut (2004)).

This mechanism is responsible for the low-frequency behaviour observed in the simplified
coupled model of Zebiak and Cane (1987), which has successfully predicted El Niño event
onsets and is still widely used in more complex forms in the study and prediction of ENSO
(Neelin and Jin (1993); Fedorov and Philander (2000); Bejarano and Jin (2008) among many
others). Many observational studies have attempted to confirm the theory and point out that
while the termination of El Niño events has consistently occurred with the cyclic nature of the
delayed oscillator (Boulanger and Menkes, 1999), their initiation is less obvious (Kessler and
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McPhaden, 1995), which led Mantua and Battisti (1994) to limit the role of wave reflections on
the western edge of the Pacific to the termination of the El Niño events. However, Boulanger
(2003) demonstrated that 80 % of the Kelvin wave signal at 175°E over the observation period
of 1993-2001 is wind-induced rather than being the adjusted contribution of the Rossby wave
reflection suggested by the delayed oscillator.

The recharge-discharge (RD) oscillator (Jin, 1997a,b), a widely accepted paradigm
of ENSO dynamics, is based on the oceanic heat transfer from the equatorial region toward
the off-equatorial regions and vice-versa (Fig. 1.9). Echoing the ideas of Wyrtki (1975) and
Cane and Zebiak (1985), Jin (1997a,b) proposed that the fundamental mechanism of ENSO
oscillation is the delay between the adjustment of SST anomalies and that of the heat con-
tent over the entire basin. During an El Niño event (I), westerly wind anomalies decrease
meridionally with latitude and the resultant wind stress curls drive meridional subsurface
ocean transport, the zonally integrated Sverdrup transport (solid thick arrows). The merid-
ional transport slowly discharges the equatorial heat content (characterised by the depth of
the thermocline, to access the Warm Water Volume, WWV) poleward, which results in a
homogeneous abnormally shallow thermocline at the end of the discharge (II). It allows cold
water being pumped to the surface through the mean climatological upwelling in the eastern
Pacific, which initiates the cold phase of La Niña (III). The greater zonal SST gradient and
thus easterly anomalies cause equatorward heat content recharge through Sverdrup transport
(IV) and possibly the repositioning in El Niño phase (I). The slow adjustment of the ocean
is characterised through two zonal modes of the thermocline depth: the tilt mode (I and III)
and the WWV mode (II and IV). Recharge-discharge processes play key role in initiation and
termination of El Niño events.

Figure 1.9 – Schematic diagram of the recharge oscillator. The four phases of the recharge-discharge
oscillation: (I) the warm phase, (II) the warm to cold transition phase, (III) the cold phase, and (IV)
the cold to warm transition phase (Reprinted from Meinen and McPhaden (2000) and adapted from
Jin (1997a)).

Clarke et al. (2007) proposed a RD oscillator differing in that it emphasises the recharge-
discharge of ocean heat content in the west-central Pacific region, rather than in the eastern
Pacific. Jin and An (1999) proposed an extension of the RD oscillator by explicitly including
the zonal advective feedback (ZAF) when previous oscillators focused on one oceanic feedback
alone, the thermocline feedback (TCF) (Suarez and Schopf, 1988; Battisti and Hirst, 1989;
Jin, 1997a,b) or the zonal advective feedback (Picaut et al., 1997) (see paragraph 2.3.1.4 for
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the expression of these heat advection terms). They showed that both feedbacks are dynami-
cally connected through the geostrophic balance between the upper-ocean zonal currents and
the meridional gradient of the thermocline depth. They suggested that the two feedbacks
contribute equally to the growth and transition of ENSO (An and Jin, 2001).

The RD paradigm is more general than the delayed oscillator by not relying explicitly
on equatorial wave propagation. But the mechanism remains fundamentally the same, in
both cases representing the slow adjustment of the equatorial ocean to wind anomalies (slow
relative to the 2-3 months basin-crossing time of the Kelvin waves). In the case of the delayed
oscillator, Rossby waves and their reflection are the means by which mass is added or removed
from the equatorial surface layer. In the case of the RD oscillator, a disequilibrium between
zonal winds stress and zonal-mean equatorial thermocline depth drive meridional convergence
or divergence of Sverdrup transport. One interest of the RD oscillator formulation is that
variables may be assessed easily in observations. Moreover, the zonal mean warm water
volume (essentially Wyrtki’s build-up) being in quadrature with east Pacific SST leading by
about a quarter of the period of the oscillation, is a good predictor of ENSO (Meinen and
McPhaden, 2000). Positive (negative) peaks of warm water volume anomalies produce then
the transition from El Niño to La Niña (and vice-versa), with the memory of the system in the
zonal mean thermocline depth. Meinen and McPhaden (2000) showed that the RD processes
are observable, even if not symmetric. However, Kessler (2002) showed in observations that
the coupled system is able to remain in a weak discharged La Niña state for up to two years,
so that memory of previous influences would be lost. Moreover, the role of the western Pacific
equatorial heat content, rather than the mean equatorial heat content along the entire Pacific,
is recently again put forward (Boschat et al., 2013; Izumo et al., 2018). We return to some
limitations of this schematic in paragraph 1.2.2.1.

Despite their relative simplicity, simplified oscillators models have forecast skills compa-
rable to those of more complex models (Latif, 1998). They describe reasonably well ENSO
dynamics, especially the termination of El Niño events, despite some intrinsic limitations
indicated previously. However, being essentially linear, they are not sufficient to explain the
complexity of the phenomenon, especially the cause of the observed irregularities in ENSO.
Each El Niño event is different in terms of growth, development and decay, both temporally
and spatially. The oscillatory theories do not explain the irregular frequency of occurrence
of ENSO, asymmetries between warm and cold events, in magnitude and duration, or the
asymmetrical phase transition. Indeed, El Niño events can reach larger amplitudes than La
Niña events (Hoerling et al., 1997) but La Niña generally lasts longer (Okumura and Deser,
2010). El Niño events are often followed by La Niñas, while La Niña events are less frequently
followed by El Niños (Kessler, 2002; Yu et al., 2010b). It seems however that CP El Niños
are less followed by La Niñas than EP El Niños (Kao and Yu, 2009; Kug et al., 2009).

For instance, an indicator of the amplitude asymmetry between El Niño and La Niña is
the skewness of SST anomalies-based ENSO indices. The skewness is the third moment of the
probability distribution function of a variable and quantifies whether the distribution tails
are long or short, thick or thin (see paragraph 2.2.1.1). Despite the apparent normality of
the distribution of the Niño-3.4 index (top inset in Fig. 1.10), the skewness along the equator
turns from slightly negative in the western-to-central Pacific (in Niño-4 region, it is equal
to -0.5) to highly positive in the eastern Pacific, quantifying the fact that El Niño events
reach larger amplitudes than La Niña events (Fig. 1.10). When removing the contribution
of the extreme El Niño (4 events) and La Niña (7 events), the skewness decreases severely,
demonstrating the non-linear nature of strong ENSO events.

Dommenget et al. (2013) showed that ENSO skewness is not only a characteristic of the
amplitude asymmetry of events (El Niño events being stronger than La Niña events) but also
of the spatial pattern and time evolution of ENSO. Their spatial patterns are asymmetric
with strong (moderate) La Niña events in the central (eastern) Pacific and strong (moderate)
El Niño events in the eastern (central) Pacific (Schopf and Burgman, 2006; Kao and Yu, 2009;
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Figure 1.10 – Skewness of SST anomalies along the equatorial Pacific from 1950 to 2016 (black line)
and comparison when strong ENSO (El Niño and La Niña) events are removed (blue line). The
developing and decaying years (that is 12 months before and after the winter peak) of the strongest
ENSO events are removed from the calculation of the skewness. The strong events are the 1972-73,
1982-83, 1997-98, 2015-16 El Niño, and the 1973-74, 1975-76, 1988-89, 1998-99, 1999-00, 2007-08,
2010-11 La Niña events. Inset shows histogram of standardized Niño-3.4 anomalies (grey shading),
with the overlaid black curve indicating histogram of 10,000 random numbers generated from a normal
distribution. (Reprinted from Santoso et al. (2017)).

Frauen and Dommenget, 2010; Yu et al., 2010b). Non-linear effects are neglected completely
in oscillatory theories, although non-linearities cause the asymmetry between El Niño and La
Niña events (An and Jin, 2004; Frauen and Dommenget, 2010).

Finally, ENSO spectrum does not show marked peaks at very specific frequencies but
seems continuous and must certainly correspond to a very large number of excited modes.
For instance, oscillatory theories do not take into account interactions with the seasonal
forcing, that will disrupt inter-annual variability by favouring the phase locking of the events
on the seasonal cycle, especially contributing to the termination of the events (Lengaigne
et al., 2006; Lengaigne and Vecchi, 2010; McGregor et al., 2012; Stein et al., 2014).

All of these sources of non-linearities are discussed in the following paragraphs 1.2.2, 1.2.3
and section 1.3.

1.2.1.3 Coupled instabilities theory

Other theories seek in the ocean-atmosphere coupled modes themselves the origin of frequency
oscillations compatible with those of ENSO. The ENSO cycle is partly due to a destabili-
sation of mean circulation, and the coupled instabilities approach allows us to consider this
relationship. In these linearised ENSO models, the prescribed mean state acts as a source
of energy for anomaly growth, controlling the spatial and temporal scales of the simulated
ENSO cycle (growth rate, oscillation period, spatial structure, propagation). These theories
identify negative and positive feedbacks in the equatorial Pacific that may trigger El Niño
and La Niña events and the transition between them. Dominant instabilities from the ocean-
atmosphere coupled system are identified for which a slight disturbance is potentially the
most likely to develop.

The description of instabilities is generally understood through linear stability analysis,
which is the Eigen modes analysis of a simplified coupled model, linearised with respect to a
climatological basic state. The spatial and temporal scales of variability are then determined
through the dominant instabilities of the linearised system, that is the leading coupled modes
issued from linear stability. The objective is to study the tendency of the model to favour
one coupled mode of oscillation over the other in response to changes in basic parameters
of the mean state, such as intensity of the trade winds, thermocline depth, or temperature
difference across the thermocline. Thus, they permit the exploration of the phase space of
the ENSO mode (Neelin et al., 1998).

The temporal stability analysis of models has allowed the identification of various types
of coupled modes of the equatorial Pacific. They are usually classified depending on the
physical processes involved. Neelin and Jin (1993) classified coupled instabilities according
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to the adjustment time of each of the coupled system components, which explain the low-
frequency behaviour of numerous coupled models. They identified the spatial and temporal
characteristic scales of three important dynamical and thermodynamical mechanisms for
the ocean-atmosphere coupled system: the air-sea coupling (“coupling parameter”), the SST
adjustment time to feedback and damping processes, and the “surface layer parameter” which
governs the adjustment time to vertical advection. They distinguished two coupled modes:

• the fast-SST regime where the adjustment time of SST to coupled system is fast com-
pared to the adjustment time of the ocean dynamics, and

• inversely, the fast-wave regime, or slow SST mode, where the velocity of the waves
is infinite and the dynamic adjustment time of the ocean to wind variations through
equatorial waves is fast compared to the thermodynamic adjustment time of the coupled
system. The ocean is then in equilibrium with the wind.

The second mode gives a different view of the coupled system in which the slow adjustment
of the ocean is secondary. The temporal scales of ENSO depend on the dynamic adjustment of
the ocean but also on the thermodynamic adjustment of the mixed layer. Neelin et al. (1998)
indicated later that the slow SST mode is closely related to the delayed oscillator, which does
not involve coupling in the western Pacific and for which equatorial waves are responsible for
time scales of dynamic and thermodynamic conditions. In nature, the observed (canonical)
ENSO is in fact mixed fast-SST/wave modes of delayed oscillator type, for which ocean
dynamics play an important role in the evolution of SST and ocean-atmosphere coupling.

Fedorov and Philander (2000, 2001) and An and Jin (2001) classified coupled instabilities
through two oceanic processes important for the air-sea coupling in the tropical Pacific:

• the thermocline processes: the variability of the thermocline depth as well as the en-
trainment of water across the thermocline modify the sea surface temperature, in par-
ticular a deepening of the thermocline warms sea surface waters by decorrelating the
upwelling of deep cold water from the mixed layer;

• the zonal advection processes: zonal currents bring heat through mean zonal tempera-
ture gradient.

Fedorov and Philander (2001) and An and Jin (2001) further suggested that the relative
strength of these two processes could lead to different regimes of ENSO in terms of amplitude,
frequency and propagation.

(a) Thermocline process mode (b) Zonal advection process mode

Figure 1.11 – Schematic diagrams of the spatial structure of the two idealized modes resulting from
the stability analysis of Fedorov and Philander (2000, 2001). Arrows indicate winds, shaded areas
show changes in thermocline depth (“temp” refers to surface temperature). These conditions, during
El Niño, correspond to departures from a background state. 1.11a shows the mode associated with
the thermocline process, known as the delayed oscillator. 1.11b shows the mode associated with the
zonal advection process. Reprinted from Fedorov and Philander (2000).

Fedorov and Philander (2001) identified two unstable modes of coupled instabilities asso-
ciated with these processes (Fig. 1.11). Thermocline processes induce remote feedback with
SST variations occurring mainly in the eastern Pacific, in response to vertical movements of
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the thermocline induced by wind fluctuations in the western Pacific. This mode is part of
the adjustment of the ocean basin to wind variations, similar to that described in oscillatory
models and often referred as the delayed oscillator mode. It has long periods of several years
(∼ 5 years) and a slight eastward propagation. Zonal advection processes induce a local cou-
pled instability, propagating slowly westward. It does not involve any vertical movement of
the thermocline but depends on the entrainment of cold water across a shallow thermocline.
Winds that converge towards a warm disturbance can cause cooling on its eastern side (by
westward advection and upwelling of cold water) and warming on the western side. The
resultant local mode is associated with relatively short periods of one or two years. It is
referred to as the SST mode. The low-frequency (high-frequency) mode is prominent when
the background state has a deep (shallow) thermocline. Both require zonal winds of a certain
intensity, to elevate the thermocline in the east in the case of the delayed oscillator, to create
zonal temperature gradients in the case of the local mode. Fedorov and Philander (2001)
suggested that ENSO is a hybrid type of these two modes whose properties change gradually
with time as the background state changes.

An and Jin (2001) showed in their conceptual model that the two feedbacks tend to
contribute to the growth and phase transition of ENSO for different strengths of the air-sea
coupling, which characterises the intensity of the wind stress response to SST anomalies.
However, these two feedbacks control the leading coupled mode in different ways. The main
consequence of these sensitivities is that the growth rate and frequency of the ENSO mode
may be sensitive to slight changes in basic-state parameters, which control the strength of
these feedbacks.

The results from Fedorov and Philander (2000) and An and Jin (2001), even if they
slightly differ in formalism (focus on the importance of the mean thermocline rather than
the mean upwelling in Fedorov and Philander (2000)) resemble and confirm the importance
of the mean state and the associated balance between the thermocline feedback (TCF) and
the zonal advective feedback (ZAF) upon ENSO frequency.

Various studies have subsequently investigated these coupled modes, using a more complex
Zebiak-Cane model (Zebiak and Cane, 1987) on which the stability analysis is based (Bejarano
and Jin, 2008; Xie and Jin, 2018). They are discussed in the paragraph 1.2.3.1.

It is interesting to note that this approach reconciles all the theories reviewed previously,
and, in particular, the possibility of the system to evolve from one mode of variability to
another.

1.2.1.4 Is El Niño episodic or cyclic?

In the framework of the theories presented previously, processes involved in the ENSO cycle
are shown schematically in Figure 1.12.

Figure 1.12 – Main positive feedbacks in ENSO as a cycle. Z20 denotes the thermocline depth through
the depth of the isotherm 20 ◦C and τx denotes the zonal wind stress (Reprinted from Zelle et al.
(2004)).
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SST variations are still chosen as a starting point. Positive SST anomalies in the eastern
equatorial Pacific change the strength of the trade winds, mainly in the central Pacific. This
change directly influences local SST through anomalous zonal advection, Ekman pumping
(upwelling of cold water), evaporative cooling and mixing (see also paragraphs 1.2.2.4 and
1.2.3.1). The reduction, or even reversal, of the trade winds also produces eastward Kelvin
waves, which deepen the thermocline and warm the SST in the eastern Pacific, completing
the cycle.

This loop of positive feedbacks requires to be reversed, through the discharge paradigm
for instance. The oscillatory feature of ENSO is then explained by a growth through positive
Bjerknes feedback and a phase transition through a delayed negative feedback. What does
not appear explicitly in this diagram is that the loop is never the same for each event, in
intensity, in spatial location or in temporal evolution. Moreover, an El Niño event rarely
follows a La Niña event, not supporting a cyclic view of ENSO. The irregularities of ENSO,
visible also in its broad inter-annual power spectrum, spanning 2-7 years per cycle, arise from
non-linearities in the coupled system or from external influences, within a certain background
state (see paragraphs 1.2.2 and 1.2.3). Their integration in the system depends on how to
apprehend ENSO:

• as a self-sustained, unstable oscillatory mode of the coupled ocean-atmosphere system
(Zebiak and Cane, 1987; Jin, 1997a; Meinen and McPhaden, 2000; Chen et al., 2004).
In that case, the system uses an external source of power, without any corresponding
periodicity, to maintain. The system itself modulates the phase at which the external
source of power acts on it. A negative damping term is included in the system and causes
an exponential growth over time of the amplitude of small perturbations, until the
non-linearities of the system become important and limit their amplitude. The system,
unstable enough, may be therefore self-regulated by internal non-linear processes whose
characteristics (period, magnitude, spatial pattern) are determined by the background
state. In that case, the system is sensitive to initial conditions due to its non-linearities,
its predictability is thus limited;

• as a stable weakly damped oscillatory system maintained by random disturbances such
as the atmospheric noise (Philander and Fedorov, 2003); The movement of the system
is due to external forcing, necessary to maintain its variability.

• as a succession of independent and episodic events triggered randomly in a strongly
damped system (Wyrtki, 1975; Kessler, 2002; Neske and McGregor, 2018). In that case,
the stochastic atmospheric forcing is the essential El Niño trigger and random triggers
at different times result in the impression of a continuous oscillation. ENSO is then
only a direct response to random disturbances and becomes difficult to predict because
it is controlled by atmospheric noise.

These two first views integrate that ENSO is a deterministic phenomenon. For each initial
condition at time t0, there is a single possible state at each next time-step. Even if the
dynamic system is non-linear and its behaviours seem to be unpredictable through their
random appearance, it is deterministic. This is called chaos.

A recent approach suggests that EP El Niño events can be considered as a self-sustained
oscillation with a phase-reversal signal when CP El Niño events are local episodic events,
triggered by external forcing rather than part of the cycle (Kao and Yu, 2009). Chen et al.
(2015a) argued that by decomposing El Niño diversity into three different flavours, canonical,
extreme and weak dateline El Niño events, ENSO can be viewed as an interplay between a
self-sustained symmetric oscillation (central-to-eastern canonical El Niño and La Niña events
acting as the Recharge-Discharge paradigm) and the atmospheric forcing (via the Westerly
Wind Bursts, see paragraph 1.2.2.2) partially modulated by El Niño itself and giving rise to
the different flavours of El Niño.

Whether ENSO is considered as a self-sustained or damped oscillator, or an interplay
between them, it appears not truly cyclic. ENSO system is destabilised by noise-induced
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instabilities or non-linearities whose different sources are invoked in the literature, without
knowing the actual contribution of each of them. The irregularities of the ENSO cycle
may arise from tropical or extra-tropical atmospheric forcing (paragraphs 1.2.2 and 1.2.3),
multi-scale interactions, from the seasonal cycle to the mean state (section 1.3), but also
from non-linearities in the different coupled atmosphere-ocean feedback processes, which are
generally more intense during El Niño events (paragraphs 1.2.2 and 1.2.3).

The current and mostly still open questions can be summarised as: Where does the El
Niño / La Niña asymmetry come from? And the diversity of El Niño events? Are the
same processes involved? Is there a specific type of El Niño, strong versus moderate event,
eastward versus westward propagating event, central versus eastern Pacific pattern, favoured
by atmospheric precursors? Or by ocean pre-conditioning?

As described previously, different ENSO asymmetries can be identified. Despite the com-
plexity of ENSO and the fact that its spatial and temporal multi-scales can not be easily
decorrelated, I sought to address the complex issue of ENSO asymmetries via two angles:
its asymmetries in amplitude (paragraph 1.2.2) and in spatial patterns (paragraph 1.2.3). In
terms of amplitudes, the asymmetries between El Niño and La Niña are taken into account,
as well as the asymmetries between strong and moderate El Niño. In terms of spatial pat-
terns, the asymmetries between CP and EP El Niño are investigated. The fact that extreme
El Niño events are all EP El Niños but not all EP El Niños are strong events remind us that
it can not be so simple.

1.2.2 Amplitude asymmetry (and associated ENSO non-linearities)

Dommenget et al. (2013) recalled that both El Niño and La Niña extreme events are more
likely than expected of a normal distribution. The propensity to extreme events as well as
asymmetry of duration and phase transition may arise from:

• multiplicative noise (paragraph 1.2.2.2) acting under oceanic favourable conditions
(paragraph 1.2.2.1);

• non-linear convective response to SST (paragraph 1.2.2.3);
• non-linear oceanic advection (paragraph 1.2.2.4).

1.2.2.1 Warm water volume asymmetry

The upper ocean heat content variations along the equator is suggested to play a key role
as a precondition for El Niño and La Niña development by both theory (Recharge-Discharge
oscillator, Jin (1997a,b)) and observations (Meinen and McPhaden, 2000). An unusual high
(low) heat content tends to favour the development of an El Niño (La Niña). El Niño
termination purges then excess heat to higher latitudes.

Meinen and McPhaden (2000) showed that two main modes of the EOF analysis (see
paragraph 2.2.2.2) of the 20 ◦C isotherm depth describe respectively the tilt mode and the
Warm Water Volume (WWV) mode (see Figure 1.9). The tilt mode has opposite signs in the
eastern and western Pacific and is in phase with ENSO and the zonal wind forcing (Bunge
and Clarke, 2014). The WWV mode is associated with the recharge and discharge of warm
water in the off-equatorial Pacific. Meinen and McPhaden (2000) defined the WWV index as
a volume of warm water with temperature greater than 20 ◦C in the equatorial Pacific region
(5°S-5°N). This index, proxy of the equatorial heat content, is used as an ENSO predictor:
westerly winds anomalies occurring in spring (6-9 months before the peak of an El Niño
event) impact directly the WWV mode to give the tilt mode associated with El Niño. A
build-up (deficit) of heat content leads El Niño (La Niña) SST variations by 2-3 seasons,
underlining the role of the oceanic state for long-term ocean subsurface memory and ENSO
predictability.

A representation of the RD oscillator mechanism is made through the descriptive phase
space of an ENSO temperature metric, such as mean Niño-3 SST anomalies, versus the WWV
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(Fig. 1.13). In the linear theory of the RD oscillator, the trajectory in this phase space is
represented by an ellipse (see figure 2 of Timmermann et al. (2018)). Despite mainly irregular
orbits and a positive skewness in eastern tropical Pacific SST anomalies (Fig. 1.13b), some
trajectories appear more deterministic resembling a recharge-discharge oscillator: during the
onset of strong El Niño events, a slow discharge of the heat content begins from maximum
positive Z20 towards large positive SST anomalies. Then Z20 starts to strongly decrease just a
few months before the SST anomalies peak, then leading to neutral and negative values of SST
anomalies. It should be noted that this asymmetric feature of the RD oscillator with two types
of decrease of the heat content, first slow then sharp when SST anomalies increase towards
its peaks (Fig. 1.13a), may be explained by a non-linear facilitator favouring the development
of strong El Niño events, subject of this paragraph 1.2.2 (see following paragraphs).

(a) (b)

Figure 1.13 – Monthly evolution of ENSO in SST-Z20 (or h) phase space. The El Niño SST proxy is
the Niño-3 SST anomalies index. The proxy of the heat content (Z20 or h) is the depth anomaly of the
20 ◦C isotherm averaged over the equatorial band (5°S-5°N, 120°E-80°W (Fig. 1.13b) and 130°E-80°W
(Fig. 1.13a)). In Figure 1.13a, the SST data come from the NOAA Climate Prediction Center, Z20 is
computed from the Australian Bureau of Meteorology Research Center (BMRC) gridded subsurface
temperatures. The line color changes at the peak of each El Niño SST maximum, which is also shown
as a large dot, and its date is labeled. The final point is May 2002, noted with a large black dot.
In Figure 1.13b, the observation data correspond to the ERSST v3b dataset (1950-2016) for SST, a
combination of SODA 2.2.4 (1950-1979) and GODAS (1980-2016) for Z20. The data are smoothed
with a 1-2-1 filter. The cross indicates the origin, the line corresponds to SST = 1.5 ◦C, and the arrow
indicates the direction of the evolution of the strong El Niño events. Figure 1.13a is reprinted from
Kessler (2002), Figure 1.13b is reprinted from Takahashi et al. (2018)

However, after the discharge of the heat content, a pause may be marked in a weakly
recharged state (Kessler, 2002). The recharge phase lasts longer and is less intense (Fig. 1.13).
The pause can last up to two years, far longer than the ocean dynamic memory of the region.
The cyclic view, with El Niño events following La Niña events, is rarely observed because of
the weaker accumulation of oceanic memory during La Niña, insufficient for a transition to
El Niño (An et al., 2005b). Moreover, the precursor role of the heat content is not systematic
and seems to have decreased to one season over the last decades (McPhaden, 2012; Lu et al.,
2017).

The underlying processes contributing to the WWV is still unclear. In the initial RD
oscillator paradigm (Jin, 1997a), the slower oceanic feedback at the origin of the cyclic vari-
ation of the equatorial heat content is related to the Sverdrup balance. In this theory, the
recharge oscillation relies on the non-equilibrium between the zonal-mean equatorial ther-
mocline depth and wind stress. The anomalous easterly (westerly) wind stress during La
Niña (El Niño) induces a slow recharge (discharge) of warm water through meridional trans-
port converging towards the equatorial band (diverging poleward). Bosc and Delcroix (2008)
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suggested that meridional transport variability was mainly due to Rossby waves dynamics.
As they propagate, the Rossby waves modify the thermocline depth as well as the sea-level,
generating anomalies of meridional currents that induce the recharge (or discharge) of the
equatorial band in warm waters before (or during) an El Niño event. Clarke (2010) argued
that the WWV mode is not due to a dominant meridional divergence driven by the wind,
as suggested by Jin (1997a,b) because meridional and zonal divergence approximately cancel
each other. More recently, Lu et al. (2017) showed that WWV changes are as much regu-
lated by meridional convergence as by zonal transport from western boundaries, which leads
by about 4-5 months the meridional convergence. The authors argued also that the strong
western boundary transport suggests an off-equatorial forcing.

These uncertainties raise questions about the effectiveness of WWV as a predictor. Bunge
and Clarke (2014) suggested that the change in the predictor role of the WWV index was
linked to the decadal variability of the oceanic background state. After 1998 and before 1973,
the equatorial Pacific is characterised by mean La Niña-like conditions, inducing a westward
displacement of the anomalous wind forcing. This westward displacement of the zonal wind
forcing leads to a westward displacement of the tilt mode, which increases the tilt mode
contribution to the WWV. The WWV index is then no longer a good predictor of ENSO
because it contains not only a non-equilibrium mode variability (second EOF mode, WWV
mode) but also the tilt mode variability (first EOF mode) after 1998. Conversely, the second
EOF mode amplitude decrease is suggested to be due to large-scale linear dynamics and a
more in phase reflection of energy from the western boundary due to the westward shift of
the zonal wind forcing, which generates a lower-amplitude non-equilibrium mode variability
(Clarke, 2010; Fedorov, 2010).

Neske and McGregor (2018) showed recently by decomposing the WWV into its instanta-
neous and adjusted responses that roughly half of the WWV variability is dominated by the
instantaneous response and is thus only as predictable as the winds that drive this compo-
nent, raising questions about the self-sustained cycle view of ENSO. The adjusted response
is due to the effect of Rossby waves, excited by Westerly Wind Bursts (WWBs, also called
Westerly Winds Events or WWEs) more than two months earlier and reflected at the western
boundary. This WWV contribution is consistent with the oscillators theories (Suarez and
Schopf, 1988; Battisti and Hirst, 1989; Jin, 1997a,b). The instantaneous response is related
to WWV changes due to Ekman transports induced by WWBs. Neske and McGregor (2018)
showed that the balance between the two types of WWV contribution changed between the
pre and post-2000 periods. For the pre-2000 period, both contributions are important while
the instantaneous contribution is dominant after 2000. It means that the instantaneous
WWV recharge, associated with westerly wind bursts, is largely responsible for the pre-El
Niño event recharge since 2000. It is consistent with the increase of the influence of the
tilt-mode showed by Bunge and Clarke (2014) and with the decrease of the predictability of
ENSO after 2000 (Lu et al., 2017). In that case, the oscillatory nature of ENSO is reduced
as the weaker adjusted WWV changes are overpowered by the instantaneous contribution.

The questioning of oscillator theories is further supported by the asymmetric WWV con-
tribution between El Niño and La Niña events. The recharge process prior to an El Niño
event is dominated by the instantaneous contribution while the discharge process accompa-
nying an La Niña event appears to be dominated by the adjusted contribution (Neske and
McGregor, 2018). It is consistent with Kessler (2002) who showed that ENSO oscillatory
behaviour can pause for a longer time in a weakly recharged La Niña state (see Fig. 1.13).
In this case, the reinvigoration of ENSO would be due to the instantaneous WWV response.
Moreover, the fact that the pre-conditioning oceanic state, with warm water build-up in the
equatorial Pacific, may arise from WWBs in a short term rather than be slowly charged years
before an El Niño event (McGregor et al., 2016; Neske and McGregor, 2018), could explain
the equatorial WWV changes during the weak 2014-15 El Niño event. A rapid increase of the
WWV occurred in the first few months of 2014, concomitantly with observed strong WWBs,
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which differs from the view of a slow build-up. Chen et al. (2015a) observed in the same way
that the 2014 spring conditions of the equatorial heat content and WWBs suggested that a
super El Niño was unlikely to take place. When strong El Niño events are preceded by a large
build-up of heat content in winter (January-February), WWBs in March-April favour coupled
interactions between modulated WWBs and SST background state (see paragraph 1.2.2.2),
which can lead to extreme El Niño events. Note however that Takahashi and Dewitte (2016)
recently suggested that a high heat content in winter is not a necessary condition for strong
El Niño events to occur, in contrast to results from Lai et al. (2015) and Puy et al. (2017)
among others.

More recently, Izumo et al. (2018) showed that WWV variations are dominated by the
fast downwelling Kelvin wave contribution in response to zonal wind anomalies during the
preceding 3 months, in agreement with McGregor et al. (2016) and Neske and McGregor
(2018). It means that the forced Rossby wave contribution to WWV is relatively weak in
March-April-May and the spring WWV contains more information from wind variations of the
last few months than of the last year. Therefore the WWV in this season does not generally
reflect the influence of the previous phase of the ENSO cycle, which is consistent with the
findings of Chen et al. (2015a) for the 2014-2015 event. They argued that the long-term
memory could be better understood by taking into account the heat content in the western
Pacific, which is dominated by the forced Rossby waves. A better oceanic predictor of ENSO
at 10-18 months lead times is then the WWVW (120°E-155°W). They further suggested that
an extended index to the southern Pacific, where off-equatorial Rossby waves propagation
are slower, may be an even better index (notably in previous fall before ENSO onset) to
fully integrate the wind information and capture the slower long-term recharge related to the
recharge oscillator theory (Clarke, 2010).

Using WWVW as a predictor, Planton et al. (2018) showed that La Niña events are
more predictable than El Niño events. They argued that the asymmetry between recharged
and discharged states, with La Niña events that can last two years while it is rarely the
case for El Niño events, is not the sole source of the increased predictability of La Niña
events. The enhanced predictability is suggested to be linked with the larger negative heat
content anomalies ahead of La Niña events (see Figure 1.13) and a more unstable and more
stochastic ocean-atmosphere system during El Niño. Indeed, despite the deterministic control
of WWBs and ocean state interaction (see paragraph 1.2.2.2), WWBs have a sufficiently
strong stochastic component to yield a broad range of El Niño amplitudes starting from the
same initial state in boreal fall (Puy et al., 2017). Moreover, WWBs can have very different
values for a given El Niño amplitude (see also paragraph 1.2.3.2) that may lead to a weaker
El Niño predictability. This result is consistent with findings of Dommenget et al. (2013) who
argued that strong El Niño events are mostly wind driven and less predictable and strong La
Niña events are mostly thermocline depth driven and better predictable.

1.2.2.2 Multiplicative atmospheric noise

Numerous studies suggest that ENSO irregularities may be partly explained by the high
frequency atmospheric variability (Kessler and Kleeman, 2000; Lengaigne et al., 2004; Eisen-
man et al., 2005; Hu et al., 2014). It would play a role of “spark” in the establishment
and evolution of temperature anomalies in the equatorial Pacific Ocean, which would present
favourable conditions acting as a “fuel” according to the metaphor of Mike McPhaden (ENSO
conference 20185).

Atmospheric forcing, such as westerly wind bursts, occurs over time-scales of few days.
Because the decorrelation time-scale of this high frequency atmospheric variability is much
shorter than that of ENSO, its spectral signature appears approximately like that of a white
noise, capable of acting on the slow component of the system (the ocean). In that case, the

5http://www.ensoconference2018.org/
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noise is an added external forcing to the system. If we take into account the modulation
of the atmospheric noise by ENSO and more specifically by the background state, the noise
becomes a multiplicative atmospheric noise. In that case, initial subsurface ocean conditions
could modulate the role of stochastic wind forcing in producing asymmetry and diversity.
These distinctions are discussed below (see also Levine et al. (2016)).

A large part of the high-frequency atmospheric variability occurs in the form of WWBs,
characterised by sporadic but strong surface wind anomalies that persist for a few days to a
few weeks (2-40 days) and develop in the western Pacific, usually west of the eastern edge
of the Warm Pool (Vecchi and Harrison, 2000; Eisenman et al., 2005; Seiki and Takayabu,
2007; Puy et al., 2016a). They occur over warm water (> 28 ◦C) associated with enhanced
convection, preferentially around the boreal winter season. Their probability of occurrence
significantly increases during active periods of intra-seasonal tropical variability, such as the
Madden–Julian Oscillation (MJO) and Convectively-coupled Rossby Waves (CRW) (Seiki
and Takayabu, 2007; Puy et al., 2016a; Gushchina and Dewitte, 2019). Also, there is the
possibility of WWBs to be triggered by pair of Tropical Cyclones (TC), highlighting a two-
ways feedbacks between TC activity and ENSO (Lian et al., 2018a). Moreover, Puy et al.
(2016a) showed that WWBs are modulated by the intra-seasonal atmospheric variability.
WWBs associated with MJO active phase tend to have a larger zonal extension and last
longer than those associated with Rossby waves and are therefore likely to have a greater
impact on the ocean.

WWBs have two effects on ocean dynamics. Their related wind stress anomalies induce
a meridional surface water convergence towards the equator, which deepens the thermocline,
exiting a strong wind-forced downwelling Kelvin waves propagating eastward. The deepening
of the thermocline during the wave propagation limits the exchange of cold waters between
the deep ocean and the surface, causing the warming of the SST in the central and eastern
equatorial Pacific. WWBs also generate equatorial surface currents anomalies, which advect
warm water eastward, extending the eastern edge of the Warm Pool (Picaut et al., 1997).

The role of WWBs in the onset and development of the particularly strong 1997-98 El
Niño event was widely studied, arguing that westerly wind events in late 1996 and the first
half of 1997 played a crucial role in the onset and development of the event (McPhaden
(1999); Boulanger and Menkes (1999); Lengaigne et al. (2002, 2003) among others). The
first reversal of the trade winds in winter 1996-97 led to warming in central Pacific, then
a second episode of westerly wind event in March 1997 led to warming in the far eastern
Pacific. The second event in March 1997 is one of the most intense measured to date, in
terms of intensity (up to 0.2 N/m2), fetch (more than 30° longitude), and duration (about a
month, from mid-February to mid-March) (Lengaigne et al., 2003). Similar frequent WWBs
were observed during the development of strong El Niño events in the boreal winters of 1982
and 2015 (Wyrtki, 1985; Hu and Fedorov, 2017).

Because of their short time-scale, they were initially treated as an external (additive, see
definition above) stochastic forcing to explain the irregularity of ENSO given the determin-
istic physics of the oscillator (Penland and Sardeshmukh, 1995; Moore and Kleeman, 1999).
However, observational studies have shown that WWBs are more frequent prior and during
an El Niño event (Delcroix et al., 1993; Harrison and Vecchi, 1997; McPhaden, 1999), sug-
gesting that WWBs that force ENSO, may depend to some extent on the ENSO background
state. Modelling studies support these observational findings, showing that WWBs are signif-
icantly more likely to occur when the Warm Pool is extended eastward, beyond the dateline
(Eisenman et al., 2005; Puy et al., 2016a). Lengaigne et al. (2003) analysed the impacts of
the ocean response to the WWBs onto the atmosphere, using an Atmospheric General Cir-
culation Model (AGCM). They confirmed that the eastward displacement of the Warm Pool
initially induced by WWBs promoted the occurrence of subsequent WWBs in the following
months (previous results from Vecchi and Harrison (2000)). The characteristics of the later
WWBs are controlled both by the eastward extension of the Warm Pool and by the SST
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gradients established in the far western Pacific, where WWBs induced a cooling (Lengaigne
et al., 2003), and their location is dependent on the eastern edge of the Warm Pool (Hayashi
and Watanabe, 2017).

The mechanism is as follows: the warming generated by the wind-forced downwelling
Kelvin waves in the central to eastern Pacific decreases the zonal SST gradient. The subse-
quent eastward displacement of the Warm Pool induces a weakening of the trade winds in
the central to eastern Pacific and a reduction of the equatorial upwelling, which both further
increase the initial SST warming. In parallel, the eastward displacement of the warmest
water from the western to the central Pacific induces an eastward shift of convection that
consequently promotes the occurrence of further frequent and intense WWBs in the following
months. These events reinforce the initial warming in the eastern Pacific through the genera-
tion of additional Kelvin waves. Air-sea coupled interaction between WWBs and anomalous
warming in the central Pacific constitutes thus a positive feedback for the development of an
El Niño event.

Eisenman et al. (2005) and Gebbie et al. (2007), using respectively an intermediate com-
plexity coupled model and an hybrid coupled model, showed that considering WWBs as
modulated (semi-stochastic) results in an ENSO amplitude twice as large as in a scenario
with purely stochastic WWBs with the same amplitude and average frequency, as they gen-
erate only a weak oceanic response. If the ocean background state affects the probability
of occurrence of WWBs, then they cannot just be considered as purely stochastic (additive)
events but also state dependent (multiplicative). They suggested considering WWBs as an
internal part of the coupled ENSO system, being partially stochastic and partially affected
by the large-scale ENSO dynamics, rather than being completely external to ENSO. Puy
et al. (2017) confirmed that numerous and strong WWBs favour the development of a strong
El Niño event, with a particular emphasis on summer/fall WWBs occurrence increasing the
probability for an extreme El Niño. Modulated WWBs are more effective at triggering El
Niño than if they were randomly distributed, which is roughly equivalent to enhancing the
ocean-atmosphere coupling coefficient (Eisenman et al., 2005). In addition to the crucial role
that WWBs play in the triggering and development of the warm phase of ENSO, they are
also involved in the irregularity of ENSO, in terms of timing (Gebbie et al., 2007; Jin et al.,
2007) or strength (Lengaigne et al., 2004; Eisenman et al., 2005; Gebbie et al., 2007), favour-
ing the El Niño - La Niña asymmetry. They affect El Niño but not La Niña due to their
unidirectional nature, reinforcing asymmetric feature between El Niño and La Niña events
with extreme El Niño events stronger than extreme La Niña events. Jin et al. (2007), using a
RD oscillator, and Chen et al. (2015a), using a model of intermediate complexity, confirmed
that the modulation of WWBs by the oceanic background state is responsible for the aperi-
odicity of ENSO and asymmetry in the predictability of the onsets. This enhancement of the
intra-seasonal variability of surface winds induces a deterministic response of the atmosphere
to the SST, allowing for an increased predictability.

Multiple WWBs, and especially WWBs around June, appear thus particularly impor-
tant for the onset and development of strong El Niño events. Conversely, their absence,
particularly in the preceding spring from April to June, is likely to have contributed to the
aborted development of the expected 2014-15 El Niño event, significantly limiting the growth
of the event (Menkes et al., 2014). Despite favourable oceanic conditions for the occurrence
of WWBs, similar to those preceding the 1997 El Niño, they did not occur and only a weak
El Niño occurred in 2014 (Puy et al., 2017). Moreover, not all WWBs during favourable
oceanic conditions give rise to an oceanic response sufficient to significantly influence ENSO.
Lengaigne et al. (2004) conducted a sensitivity study of the triggering of El Niño events by
WWBs in a coupled ocean-atmosphere model and showed that despite oceanic favourable
conditions, the same WWBs can lead to different oceanic response, ranging from strong El
Niño to neutral conditions. They suggested that the diversity between the members was due
to the internal atmospheric variability during and following the inserted WWB in the model.
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Puy et al. (2017), using ensemble simulations, further showed that despite favourable oceanic
conditions, the WWBs activity in their favoured spring/summer season, when the Warm Pool
extends abnormally to the east, is subject to variation responsible for the large spread of the
ensemble members’ response. The stochastic part of WWBs leads to an intrinsic limitation
of the predictability of the magnitude or even occurrence of El Niño events. Takahashi and
Dewitte (2016) showed also that a “strong enough” westerly wind stress anomaly in the cen-
tral Pacific in late boreal summer is a necessary condition for the development of a strong
El Niño in the following winter, which could make the statistics of El Niño regime (strong
versus moderate) very sensitive to the characteristics of the stochastic forcing.

The fast varying WWBs - slow ocean background interaction is not deterministic, but
probabilistic, leaving an important role to the stochasticity of the atmosphere in the evolution
of El Niño (Puy et al., 2017). This strong sensitivity of the coupled response to WWBs
may therefore point to inherent limits in El Niño predictability, as the high frequency wind
variability over the Warm Pool region remains largely unpredictable.

Finally, the deterministic part of WWBs strongly depends on and in turn affects the low-
frequency development of El Niño. However, the stochastic part of the modulated WWBs
makes this deterministic interaction only probabilistic. Another feature of the interaction
between the WWBs and the ocean background state is that the latter does not response the
same way to WWBs. This is discussed in paragraph 1.2.3.2. Lastly, the positive feedback
loop between the large-scale SST field (i.e. the Warm Pool eastward extension) and the
numbers and magnitude of WWBs can be viewed as an intra-seasonal component of the
Bjerknes feedback, which will be discussed in the following paragraph 1.2.2.3.

1.2.2.3 Non linear response of the tropical convection

The Bjerknes feedback is at the heart of the mechanism of SST anomalies amplification in
the equatorial Pacific. It can be understood as a deterministic, large-scale coupling between
wind stress and SST anomalies. It has been clearly demonstrated in the recent literature
that when ocean background state is favourable, the El Niño development phase favoured the
occurrence of WWBs intra-seasonal component involved in the Bjerknes feedback (Lengaigne
et al., 2004; Eisenman et al., 2005; Gebbie et al., 2007). The conditions for setting up the
Bjerknes feedback can thus play a major role in the development of strong El Niño events.

Observations show non-linear relationship between tropical sea surface temperature and
precipitation on climate time-scales, since the SST must exceed a threshold for deep convec-
tion to occur. This critical value may vary between 26 and 29 ◦C depending on the criteria
for convection and types of data, the values of 27.5-28 ◦C being often retained (Graham and
Barnett, 1987; Johnson and Xie, 2010; Jauregui and Takahashi, 2018). Therefore oceanic
regions of active convection such as the Warm Pool depend on the underlying value of SST
(Gadgil et al., 1984) and once the SST threshold of 28 ◦C is crossed, deep convection can take
place.

This non-linear feature induces a distinct behaviour between the western and the eastern
Pacific. Due to the zonal asymmetry of the climatological SST, even small deviations of
the SST from its climatological value can excite large rainfall deviations on the periphery
of the west Pacific Warm Pool region, whereas positive anomalies of significant amplitude
are required to induce convection within the east equatorial Pacific Cold Tongue. On the
other hand, negative SST anomalies in the Cold Tongue region have no further effect on the
normally dry conditions, leading to appreciable non-linearity between the effects of El Niño
and La Niña on tropical rainfall. Thus, rainfall anomalies associated with El Niño events are
located east of the dateline, and west of the dateline during La Niña events (Hoerling et al.,
1997). Due to this non-linear threshold convection, the maximum inter-annual variability of
rainfall over the equatorial Pacific is shifted several thousand kilometres west of the maximum
inter-annual variability of SST (Deser and Wallace, 1990). Clarke et al. (2007) also highlighted
the role of the threshold for triggering deep atmospheric convection (SST around 28 ◦C) in
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the RD oscillator theory because of the induced differences in the coupled dynamics between
the western and the eastern Pacific.

(a) Observations (1979-2010) (b) Observations (1979-2016) (c) CMIP database

Figure 1.14 – Relationship of eastern equatorial Pacific (Niño-3 area) December-January-February
(DJF) total rainfall with (Fig. 1.14a) DJF Niño-3 SST and (Fig. 1.14b and 1.14c) meridional SST
gradients in the Niño-3 longitude range. The meridional SST gradient is defined as the average SST
over the off-equatorial region (5°N-10°N, 150°W-90°W) minus the average over the equatorial region
(2.5°S-2.5°N, 150°W-90°W). Figure 1.14a (Figure 1.14b) corresponds to observations over 1979-2010
(1979-2016), figure 1.14c corresponds to control simulations of 9 CMIP3 and 11 CMIP5 selected
models. In figures 1.14a and 1.14c, extreme El Niño (defined as events for which austral summer
rainfall is greater than 5 mm per day), moderate El Niño (defined as events with SST anomalies
greater than 0.5 standard deviation over the corresponding period (since 1979 in Fig. 1.14a, ) that
are not extreme El Niño events), and La Niña and neutral events, are indicated by red, green and
blue dots respectively. During extreme El Niño, the meridional SST gradient diminishes, or reverses,
shifting the ITCZ to the eastern equatorial Pacific (Fig. 1.14b and 1.14c). In figure 1.14c, the number
of moderate El Niño and extreme El Niño events is shown. The figures are reprinted from Cai et al.
(2014, 2017).

Non-linearities in atmospheric deep convection have also been used to directly define
extreme events, whether cold or warm (Cai et al., 2014, 2015a,b, 2017). During El Niño,
precipitation anomalies in the eastern tropical Pacific are facilitated by the southward shift
of the ITCZ due to the reorganisation of the large-scale atmospheric circulation (Rasmusson
and Carpenter, 1982). Confirming the non-linear relationship between SST and precipitation
anomalies in the eastern Pacific (Lengaigne and Vecchi, 2010), Cai et al. (2014) showed
in models from the Coupled Model Intercomparison Project (CMIP) phases 3 and 5 (see
paragraph 2.1.2 for more information on models) that the pronounced shift of the convective
zone, facilitated by the weakening of meridional SST gradient in the eastern Pacific (Fig. 1.14b
and 1.14c), induced a non-linear relationship between SST and rainfall anomalies (Fig. 1.14a),
characterising distinctly extreme El Niño.

Rainfall in the Niño-3 region is then a correct indicator of extreme El Niño events, whether
in observations or CGCMs. Similar to the previous study of Lengaigne and Vecchi (2010),
Cai et al. (2015a, 2014, 2017) defined extreme El Niño events when the boreal winter rainfall
in the Niño-3 region is beyond an arbitrary threshold of 5 mm/day. They then used this
definition, with the same rainfall threshold, to estimate changes in extreme El Niño statistics
with global warming as we will see in paragraph 1.4.2.1.

However, Johnson and Xie (2010) showed that the convective threshold of SST in the
convective region is not absolute and varies with respect to the mean climate (e.g. the
temperature of the free troposphere). Williams and Patricola (2018) raised the question to
what extent rainfalls in the eastern Pacific, indicative of deep convection, reflect the dynamics
of ENSO or the increase in column water vapour with warming when analysing ENSO rain-
based statistics in future scenarios. They developed thus an ENSO Longitude Index (ELI)
based on the non-linear, threshold-like response of deep convection to SST, which takes into
account the seasonal changes in the SST as well as changes in climatological SST and its
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seasonal cycle with global warming (see paragraph 1.4.2.2). This study confirmed the strong
relationship between ENSO and the non-linear response of deep convection to SST anomalies.

The Bjerknes feedback involves westerly winds stress anomalies that may be driven by
an anomalous zonal SST gradient (Bjerknes, 1969) but also from this anomalous deep atmo-
spheric convection in the western to central equatorial Pacific (Clarke, 1994, 2014), which
may induce non-linearities in the Bjerknes feedback. Kang and Kug (2002) suggested that
the non-linear El Niño / la Niña response to wind stress anomalies, which is associated with
the different spatial distributions of convection anomalies during the two ENSO phases, plays
an important role in the formation of the asymmetries amplitudes and durations. The rela-
tively weak SST anomalies during La Niña are related to the westward shift of wind stress
anomalies by about 10-15° longitude. The SST anomalies over the equatorial Pacific become
weaker as the zonal wind stress shifts to the west. Takahashi and Dewitte (2016) showed in
observations that the convective and wind stress responses to SST warming in the eastern
Pacific (the E-index) correspond, which supports the conclusion that the non-linearity in the
Bjerknes feedback emerges from the triggering of deep convection. Takahashi and Dewitte
(2016) further suggested that the westerly wind stress response was a function of the E-index
amplitude, the zonal wind response to low E-index being mainly a response to zonal SST
gradients whereas the zonal wind response to high E-index may be mainly a non-linear and
localised east of the dateline response to convection. Different studies highlighted that the
Bjerknes feedback is non-linear and that this non-linearity may be responsible for ENSO
asymmetry. Note that this non-linear response being an intrinsic part of the thermodynamic
control on deep convection, the non-linear response of the wind stress is also dependent on
the equatorial SST anomalies position.

Frauen and Dommenget (2010) argued that while the asymmetry of ENSO is often at-
tributed to oceanic processes, the non-linear and seasonal varying atmospheric feedback can
also play a significant role in this asymmetry. The asymmetry between eastern Pacific SST
anomalies during El Niño and La Niña can be explained by non-linearities in the zonal winds
response to equal-strength but opposite SST anomalies (Fig. 1.15a). Dommenget et al. (2013)
reinforced this results showing that the non-linearities of ENSO associated with the non-linear
response of the zonal winds are also reflected in its spatial pattern and sequencing evolution.
The sequencing asymmetry involves the tendency of warm events to be followed by cold
events more readily than vice-versa. They extended the analysis to coupled models of the
CMIP3 database, in addition to the same hybrid model of Frauen and Dommenget (2010).
They suggested that the spatial differences associated with the EP and CP El Niño types (see
paragraph 1.1.2) are at least partially related to these non-linearities. Indeed, strong El Niño
events are shifted to the east while strong La Niña events are shifted to the central Pacific.
Weak or moderate El Niño events are more shifted to the central Pacific than weak La Niña
events. Therefore, strong (weak) El Niño events are mostly EP (CP) El Niños. These spatial
pattern and amplitude asymmetries arise from the non-linear response of the zonal wind in
the central Pacific to SST. The zonal wind stress is a function of both the amplitude and
location of the SST in the central Pacific: it responds stronger and further east to positive
SST anomalies, as observed by Kang and Kug (2002). This non-linear response of the wind
stress supports the eastward shifted El Niño pattern. Dommenget et al. (2013) also qualita-
tively analysed the second element of the Bjerknes feedback, the thermocline depth sensibility
to zonal wind. The fact that strong La Niña events tend to follow an El Niño event could
suggest that the strong La Niña events are triggered partially by the ocean state set by the
preceding El Niño event. No such ocean state may exist for strong El Niño events, which
in turn would suggest that strong El Niño events might be forced by random atmospheric
forcing. They suggested that strong El Niños are forced more strongly by zonal wind than
by thermocline depth, which makes them less predictable, while strong La Niñas, preceded
by El Niño events, are mostly thermocline depth driven and thus better predictable.

Concomitantly, Choi et al. (2013b) confirmed the non-linear relationship between zonal
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wind and SST anomalies using a delayed-oscillator conceptual model, modified such that
wind stress anomalies depend more strongly on SST anomalies. The strengthening of the air-
sea feedback produces larger El Niño events that overshoot more rapidly into the opposite
phase than La Niña events do. It should be noted that the sequencing asymmetry can be
obtained only if there is stochastic external forcing included in the delayed-oscillator model.
They also noted the importance of the realistic simulation by CGCMs of the spatial pattern
of the wind stress. Bias in its representation, whether in mean location or meridional extent,
could favour a symmetric ENSO evolution. They finally suggested that the non-linearities in
atmospheric convection are a source of the stronger wind stress response sensitivity during
warm events.

(a) (b)

Figure 1.15 – Non-linearities in the Bjerknes feedback: interaction between zonal winds and SSTA.
(Fig. 1.15a) Scatterplot of central Pacific zonal wind stress anomalies (6°S-6°N, 160°E-140°W) and
Niño-3 SSTA with linear (solid line) and quadratic (dashed line) regression. The contour interval is
5.0 K/Pa. Figure reprinted from Frauen and Dommenget (2010). (Fig. 1.15b) Scatterplot of central
Pacific (180°W-140°W, 5°S-5°N) pseudostress (estimated from monthly Tropical Atmosphere Ocean
(TAO) wind speed and zonal wind data (McPhaden et al., 1998)) and Niño-3 SSTA (ERSST v3b,
see paragraph 2.1.1). The piecewise linear regression fit (ARE-SLab from Jekabsons (2013)) yields a
threshold SST of Tc=1.33 K and a nonlinear enhancement of 56 %. Blue and red dots correspond to
July-June of 1997-98 and 2015-16, respectively. Figure reprinted from Takahashi et al. (2018).

The studies are mostly oriented towards explaining the asymmetrical features of ENSO
(magnitude, aperiodicity, phase transition, pattern spatial) rather than focusing on the onset
phase of strong El Niño events, although it is now recognised that they are subject to strong
non-linear processes (Santoso et al., 2017). Unlike previous studies, Takahashi and Dewitte
(2016) were interested in the possible bi-modality of El Niño events (and not statistical
asymmetrical features of ENSO) that non-linearities could explain. Using the E and C
indices (Takahashi et al., 2011; Dommenget et al., 2013), which differentiate strong warm
events from moderate warm or cold events, they suggested that two distinct regimes of El
Niño events exist (see also Figure 1.6b). Even if the relatively short period of observation
does not allow to reject statistically the null hypothesis of a uni-modal distribution, the use of
a CGCM suggested that non-linearities in the Bjerknes feedback lead to the existence of two
separate dynamical regimes. Strong El Niño regime is triggered beyond a positive threshold
in SST anomalies (Fig. 1.15b). Once the normally cold waters of the eastern tropical Pacific
are warm enough to cause significant rainfall, the growing El Niño switches into a faster
mechanism: the Walker circulation dramatically shifts to the eastern Pacific and the physical
processes that lead to the growth of El Niño strengthen even more beyond this threshold
(by a factor of 3). Recently, Takahashi et al. (2018) showed that a RD oscillator model in
which is implemented a non-linear mechanism is able to reproduce the two El Niño regimes.
They suggested that the sustained low-frequency component of the stochastic forcing plays
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a key role for the onset of strong El Niño events (when SST anomalies are greater than the
threshold), at least as important as the precursor positive heat content anomaly (Fig. 1.16).

Figure 1.16 – Evolution of the joint T-h (or Z20) PDFs for an ensemble iniitially centred at T=0.6,
h=1.0 (black line) after 3 (blue), 6 (green), 9 (red), and 12 (black) months from the solution of
the Fokker–Planck equation for the nonlinear RD model. For visualization purposes, the PDFs were
normalised by their peak value and contoured at 0.1–0.9 with an interval of 0.1. The probability that
T is greater than the threshold 1.5 ◦C is indicated for each time as %. Reprinted from Takahashi et al.
(2018).

Takahashi and Dewitte (2016) suggested that this non-linear relationship is instrumental
in determining the El Niño regime. The westerly wind stress anomalies in the central Pacific
in late boreal summer influence SST anomalies in the eastern Pacific the following winter.
It should be noted that these studies do not take into account the time-evolution of the
wind stress forcing, whether in terms of eastward shift or meridional extension whereas these
features are suggested to play a significant role in the response of the feedback. A refinement
of the method could lead to a better understanding of the link between the intra-seasonal
variability of WWBs and the Bjerknes feedback.

Dewitte and Takahashi (2017) further investigated the developing phase of the 1972-73
and 2015-16 El Niño events, categorised respectively as moderate EP El Niño events, and
not as strong EP El Niño events. They showed that their developing phase was marked by
equatorial easterlies in the eastern Pacific (east of 130°W) in September, which prevented
the SST anomalies growth of the events. These easterlies are connected to off-equatorial
southerly winds in the far eastern Pacific, in response to the coastal SST warming off Peru,
which develops in the previous spring (see the air-sea mode of the developing Bjerknes feed-
back in paragraph 1.2.3.3). The possible origins of these positive SST anomalies along the
Peruvian coast are discussed in their study, suggesting among other candidates the South
Pacific Meridional Mode (see Zhang et al. (2014) and paragraph 1.2.3.3) even if it operates
at larger scale than the far eastern Pacific. Thus, during moderate EP El Niño events (con-
trary to extreme EP El Niño events), the appearance of easterlies in the far eastern Pacific
(20°S-20°N, 130°W-80°W) in September acts to damp the growth of SST anomalies in the
eastern Pacific. Interestingly, Hameed et al. (2018) suggested similarly that differences be-
tween strong EP El Niño and moderate El Niño may be explained by easterly winds in the far
eastern Pacific (15°S-15°N, 120°W-80°W). They argued however that the damping easterlies
arise from ENSO itself, coming from atmospheric Kelvin waves that develop at the eastern
edge of the ENSO-induced convective anomalies (Gill, 1980). They further suggested that an
extreme El Niño develops thanks to interaction with the positive phase of the Indian Ocean
Dipole (IOD, Saji and Yamagata (2003)) and the weak but persistent westerly winds modu-
lated by the IOD. Further investigations are needed to determine the possible mechanisms of
the far eastern Pacific easterly winds variability in fall, whether ENSO-induced or stochastic,
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as well as to diagnose if and which counter-acting forcing is needed for a strong El Niño to
develop.

1.2.2.4 Non linear oceanic processes

An asymmetry between El Niño and La Niña also exists in the direction of zonal phase prop-
agation: extreme El Niño events, in particular the 1982-1983 and 1997-98 El Niño, propagate
eastward whereas moderate (CP) El Niño and La Niña events propagate westward (McPhaden
and Zhang, 2009; Santoso et al., 2013; Boucharel et al., 2013). The direction of propagation
of SST anomalies comes from a competition between the 3 main positive feedbacks (Neelin
et al., 1998) Typical mechanisms associated with propagating SST variability include compe-
tition between surface-layer feedbacks and the thermocline feedback (TCF). The surface-layer
feedbacks include the zonal advective feedback (ZAF) and the upwelling feedback (also called
Ekman (pumping) feedback) that is the reduction of the upwelling due to reduced Ekman
pumping as the trade winds weaken. They tend to reinforce the initial warming and shift it
to the west through anomalies of zonal current and upwelling respectively. In the thermo-
cline feedback, on the other hand, the thermocline slope tends to balance the wind stress,
resulting in a deeper thermocline to the east of the original SST anomaly. This creates warm
subsurface temperature anomalies carried to the surface via the mean upwelling, reinforcing
the original anomalies eastward. These processes can establish propagation of SST anomalies
in either direction: eastward if the thermocline feedback dominates, westward otherwise, due
to the different centres of action of these two feedbacks. The role of the thermocline feedback
is preponderant in the eastern Pacific (An and Jin, 2001) as stressed in the delayed oscillator
(Suarez and Schopf, 1988; Battisti and Hirst, 1989) and the recharge-discharge theories (Jin,
1997a,b) whereas the zonal advective feedback is a key process in the central Pacific (Picaut
et al., 1996; Vialard et al., 2001) but also in the eastern Pacific (Jin and An, 1999).

It should be noted that these two propagation directions could be facilitated by the
alternating background state (Trenberth, 1990; Fedorov and Philander, 2000; An and Wang,
2000; Dewitte, 2000; Boucharel et al., 2009; Wang and Ren, 2017). However, one limitation
of this view is that the background state does not affect La Niña events and it is unclear
whether marked eastward propagation affects other events than extreme El Niño. Numerous
El Niño events may rather undergo stationary growth (Neelin et al., 1998; Boucharel et al.,
2013). The competition between oceanic feedbacks can play a role in the diversity of El Niño
spatial patterns as we see in paragraph 1.2.3.1.

Focusing more specifically on the difference in propagation direction of extreme El Niño
events compared to other warm moderate or cold events, Santoso et al. (2013) showed that the
interplay between ENSO-related current anomalies and climatological currents determines
how the equatorial Pacific circulation influences the zonal propagation of SST anomalies
(Fig. 1.17). ENSO-related current anomalies has an opposite effect depending on the type
of event. Easterly current anomalies, stronger than the average westward current, lead to a
reversed flow during extreme El Niño events, leading to a dominant eastward propagation.
For moderate El Niño events, eastward current anomalies are very small compared to the
westward climatological current and thus the total current remains westward. The same
occurs during La Niña events. The direction of propagation being the result of the balance
between the westward mean current and the eastward ENSO-induced current anomalies, a
change in ENSO intensity or in the mean current can therefore influence the propagation
asymmetry.

Another oceanic process often invoked to be responsible for ENSO asymmetry is the
term of non-linear temperature advection of anomalous temperature by anomalous current,
called the “Non-linear Dynamical Heating” (NDH, see paragraph 2.3.1.4). Jin et al. (2003a)
found that the NDH is positive for both the cold and warm ENSO phases. It enhances the
extreme El Niño amplitude and weakens the amplitude of the subsequent La Niña, resulting
in the asymmetry in the magnitude of warm/cold events. An and Jin (2004) showed that the
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Figure 1.17 – Schematic of competing effects of oceanic processes on zonal propagation direction
during ENSO events. (a) During extreme El Niño events, zonal currents in the equatorial Pacific
(large grey arrow) have the effect of shifting the initial warm surface anomalies (dashed red patch)
eastwards, because the current anomaly ua (red arrow) is eastward and exceeds the strength of the
westward background current u (black arrow). This effect counters westward propagation induced by
the zonal advective and Ekman pumping feedbacks (blue arrow) and enhances eastward propagation
induced by the thermocline feedback (pink arrow). (b) During La Niña events, the zonal currents
are prominently westward because the current anomaly always enhances the westward mean current.
This weakens the thermocline feedback effect and enhances westward propagation as induced by the
other two dynamical feedbacks. Reprinted from Santoso et al. (2013).

NDH warming is induced by the eastward propagation of the extreme El Niño events, which
provide a favourable phase relationship between temperature and current. During westward-
propagating El Niño events, the phase relationships between zonal temperature gradient
and current and between the surface and subsurface temperature anomalies prevents the
NDH-induced warming. An et al. (2005a) confirmed a strong relationship between intensity
and propagating feature of ENSO: strong (weak) ENSO events move eastward (westward).
However, An et al. (2005a) and Zhang and Sun (2014), analysing respectively the CMIP3 and
CMIP5 database, showed that the majority of CGCMs underestimates ENSO asymmetry.

Conversely, Liang et al. (2017) questioned the role of NDH in the growth of extreme El
Niño events. They showed that non-linear oceanic advection does not guarantee the amplitude
asymmetry between El Niño and La Niña in CMIP5 models. Takahashi and Dewitte (2016)
showed that oceanic non-linear advection is not essential for the onset of strong El Niño
events in reanalysis datasets and a CMIP3 CGCM. The NDH makes a contribution later on,
by delaying the decay of the strong event. However, the estimation of NDH is complicated
by the limited subsurface observations and their integration in theoretical models required
possibly taking into account other processes such as wave dynamics (Takahashi and Dewitte,
2016).

Others non-linearities in oceanic processes may impact ENSO asymmetries, such as the
non-linear rectification of Tropical Instability Waves (TIW) onto the mean state, more active
during La Niña events (Vialard et al., 2001; An, 2009; Boucharel and Jin, 2020), the non-linear
interaction between wind-forced downwelling Kevin waves and dynamical fronts located at
the eastern edge of the Warm Pool (Boulanger et al., 2001), the vertical mixing in the oceanic
mixed layer more effective during El Niño events.

1.2.3 Spatial asymmetry

Numerous studies have focused on the physical processes underlying the distinct character-
istics of Central Pacific (CP) and Eastern Pacific (EP) El Niño events (Ashok et al., 2007;
Kao and Yu, 2009; Kug et al., 2009, 2010; Capotondi, 2013).

EP El Niño events tend to involve basin-wide surface wind and subsurface ocean variations
and a strong relaxation of the equatorial thermocline zonal tilt. They are characterised
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by a prominent role of the thermocline feedback and a large eastward shift of the tropical
convection. CP El Niño events tend to appear, develop and decay in situ (i.e. events relatively
stationary), with surface winds, SST and subsurface temperature anomalies confined in the
central Pacific. They are associated with a stronger role of the zonal advective feedback and
a weaker role of the thermocline tilt variation, a stronger thermal damping during the decay
phase, a stronger locally atmospheric convective response and they are more susceptible to
be disrupted by wind noise. Whereas the dynamics of EP El Niño events are mainly related
to thermocline variations, CP El Niño events are likely to be more influenced by the zonal
advective feedback and atmospheric forcing (Kao and Yu, 2009; Kug et al., 2009).

ENSO diversity is likely to arise from the noise forcing as well as from the delicate balance
between positive and negative ocean-atmosphere feedbacks that act to enhance or suppress
the growth of SST anomalies. Several mechanisms have been suggested to explain ENSO
spatial diversity, such as:

• differences in the interaction between SST and thermocline according to the longitudinal
location of the warming, leading to a predominance of either the thermocline or zonal
advective feedback (Kug et al., 2009; Yeh et al., 2009a; Kug et al., 2010; Ren and Jin,
2013);

• differences in WWBs location and intensity and in their timing with favourable oceanic
conditions (Hu et al., 2012, 2014; Lai et al., 2015), which may lead to their modulation
by the oceanic mean state (Chen et al., 2015a; Hayashi and Watanabe, 2017);

• various off-equator atmospheric forcing, such as the North and South Pacific Meridional
Modes (Chiang and Vimont, 2004; Zhang et al., 2014; Stuecker, 2018), forcing from the
north-eastern sub-tropical sea level pressure (Yu et al., 2010a; Yu and Kim, 2011),
Asian-Australian monsoons forcing variations able to excite the CP El Niño type (Yu
et al., 2009) or trans-basin climate variations (Chikamoto et al., 2015);

• the seasonal-phase locking of the central Pacific processes (Yu and Kao, 2007) and the
dependence of the onset time of each type of El Niño to the timing of the mechanisms
that trigger El Niño events (Kao and Yu, 2009);

• the South Pacific booster (Hong et al., 2014);
• Tropical Instability Waves (An, 2008; Holmes et al., 2018).

I explore here more particularly the first two mentioned mechanisms and some of the
suggested off-equator precursors, knowing that ENSO diversity arises certainly from a com-
bination of different mechanisms, which may change according to the event.

1.2.3.1 Role of oceanic feedbacks

In the canonical view of ENSO evolving from the balance between the positive Bjerknes
feedback and negative feedback through oscillatory theories (see paragraph 1.2.1), SST and
thermocline depth variations play an important role. SST anomalies are the manifestation of
an El Niño event, while thermocline depth anomalies mark the onset and ending of an El Niño
event. Thermocline variations are a key mechanism in the development of El Niño events,
particularly in the eastern tropical Pacific where changes in the thermocline depth have more
effects on SST than in the western Pacific because of the shallower thermocline (An and
Jin, 2001; Jin et al., 2006). The deepening of the thermocline has the effect of suppressing
exchanges between the surface and subsurface, which reduces surface cooling in the eastern
Pacific. Conversely, zonal advection is a key process in the development of ENSO-related SST
anomalies in the central and western Pacific due to the large zonal temperature gradient near
the eastern edge of the Warm Pool. Abellán et al. (2017b) showed that the zonal advective
feedback is the main heating term during the development phase of the three strong El Niño
events in the central Pacific (Niño-3.4 region), although meridional and vertical advection
could be significant, particularly during the last event.

Zelle et al. (2004) showed that the relationships between fluctuations of the thermocline
depth and SST warming occur via two different pathways: the “upwelling pathway” and the
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“wind coupling pathway”, each associated with different time scales. The upwelling pathway
is more important in the eastern Pacific (220°E-270°E): the temperature anomalies caused
by thermocline depth anomalies are vertically advected to the surface by a combination of
upwelling and vertical mixing. The temperature anomalies appear at the surface two weeks
to two months later. Because of the deeper thermocline in the central Pacific, the upwelling
pathway is much smaller there. Conversely, the wind coupling pathway is more efficient in
the central Pacific (170°E-220°E): a thermocline depth anomaly in the central Pacific travels
eastward through Kelvin waves, causing SST anomalies in the eastern Pacific. Arguing that
these SST anomalies cause an eastward shift of the atmospheric convection region, they
induce zonal wind anomalies in the central Pacific. The anomalous westerly winds drive
anomalous eastward zonal advection across the temperature gradient of the eastern edge
of the Warm Pool shifted in the central Pacific, thereby causing positive SST anomalies
in the central Pacific. The anomalous zonal winds also heats up the surface waters directly
through reduced evaporative cooling and reduced Ekman pumping, diminishing the upwelling
of colder subsurface waters. Contrary to the upwelling pathway, a remote coupling through
wave dynamics and an atmospheric response is required. This pathway is non-local: it makes
an excursion to the eastern Pacific where the upwelling pathway acts. The temperature
anomalies in the central Pacific appear at the surface two to twelve months after thermocline
depth anomalies. The wind coupling pathway is less efficient in the eastern Pacific because the
zonal wind shows little response to anomalous SST there and the zonal surface temperature
gradient is weaker.

Finally, the thermocline feedback and vertical advection processes mostly operate in the
eastern Pacific where the thermocline is shallow, whereas, in the western to central Pacific,
SST is the closest to the deep atmospheric convection threshold, and hence more prone to
induce an atmospheric response.

In the last ten years, many studies have focused more precisely on the oceanic dynamical
processes associated with CP and EP El Niño events to better understand ENSO diversity
and determine whether ENSO flavours are dynamically distinct. Because of the different
preferential feedback centres of action, the thermocline feedbacks play a key role in the
development and decay of EP events while the zonal advective feedback is a key process
during CP events (Kug et al., 2009; Capotondi, 2013; Choi et al., 2011; Ren and Jin, 2013).
This distinction between EP and CP events is confirmed by diagnostic results from climate
models that can relatively realistically reproduce the two types of El Niño (Kug et al., 2010;
Capotondi, 2013). However, the feedbacks contribution in the different phases of each El Niño
types differs according to the studies. Kug et al. (2010) and Capotondi (2013) showed that
ZAF is also an active term in the eastern Pacific during the development of an EP El Niño
event, even if its contribution is half that of the TCF and of the same order of magnitude
that the upwelling feedback’s. Kug et al. (2010) suggested that, rather than the ZAF, the
surface heat flux were responsible for the decay of the CP El Niño events. Kug et al. (2009)
concluded that the Ekman pumping feedback plays a minor role in both types of El Niño
events. Ren and Jin (2013) argued that TCF and ZAF contribute jointly to the development
of both types of El Niño events, whereas ZAF provides the main negative contribution to the
phase transitions, contrary to Kug et al. (2010). Fedorov et al. (2015) argued that TCF is also
important in the development of CP El Niño events although thermocline depth variations
are weaker. These differences in the contribution of each oceanic feedbacks come from the
difficulty of measuring them in observational datasets, from the intrinsic model biases (see
paragraph 2.3.1.4) and also from the different feedbacks’ definitions used by these studies
(see paragraph 2.1.2.2).

Associated with the strong influence of the thermocline feedback on SST anomalies in
the eastern Pacific, numerous studies using observations and reanalysis datasets (Kug et al.,
2009; Singh and Delcroix, 2013; Lai et al., 2015) or CGCMs (Kug et al., 2010; Capotondi,
2013) suggested that the oceanic heat content recharge-discharge process only applies to EP
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El Niño events. In particular, central Pacific SST anomalies appear first on the surface,
then extend down to a shallow layer of 100 m, over the thermocline (150-200 m), indicating
that surface warming is not induced by subsurface dynamics (Kao and Yu, 2009; Yu et al.,
2010b; Choi et al., 2011). Moreover, warm CP El Niño events are not followed by a cold
event, normally induced by the discharge process (Yu and Kao, 2007; Kao and Yu, 2009; Kug
et al., 2010). The prominent ocean dynamical processes differ with the location of the El
Niño event, with the thermocline anomalies and the recharge-discharge processes becoming
progressively weaker as the peaks of the events move further west. However, the previous
results from CGCMs are likely biased by the westward shift of the regions in which the heat
budget is calculated, reinforcing the weak signal of the RD oscillator. Capotondi (2013)
showed that, for CP El Niño, the recharge-discharge processes still occur but with weaker
evolution, while for CP-m El Niño events, defined by shifting westward Niño indices, they
become absent. By removing the decadal variability of EP El Niño before contrasting the two
ENSO regimes, Ren and Jin (2013) indicated that both EP and CP El Niño events undergo
the same recharge-discharge oscillator mechanism, though CP El Niño has reduced feedback
processes.

Ren and Jin (2011, 2013) connected the two El Niño types with the two leading ENSO-
like coupled modes co-existing in the tropical Pacific under current climate conditions: the
low-frequency quasi-quadriennal (QQ) mode and the higher-frequency quasi-biennial (QB)
mode (Bejarano and Jin, 2008). These two modes first emerge from the suggested existence
of a near-annual coupled mode (Jin et al., 2003b) in addition to the slow 2-7-yr cycles of
ENSO. Two similar ENSO-like modes, a low-frequency remote mode in the eastern Pacific
that is triggered by the wind stress in the western-central Pacific and a fast local SST mode
in the central Pacific, which is controlled by local winds and ocean currents, were also noted
by Fedorov and Philander (2000, 2001), whose findings can be further tracked back to some
earlier theoretical ENSO studies (Neelin and Jin, 1993) (see paragraph 1.2.1.3). Fedorov and
Philander (2000, 2001) showed thus that a change in the background conditions of thermocline
depth and surface winds in the tropical Pacific may change ENSO properties, switching
from a slow (period of 5 years) thermocline mode to the fast (period de 2-3 years) SST
mode associated with zonal advective feedback and stronger in the central Pacific. The
approach between the previous studies and that of Bejarano and Jin (2008) differ highly in
that previous studies focused only on one leading mode, suggesting that its nature could
change smoothly, from a recharge-discharge mode to a fast SST mode, according to the
parameters of the background state. Bejarano and Jin (2008) showed that two (linear) coupled
modes, independent and unstable, coexist in a modified Zebiak and Cane (ZC) intermediate
model under climate conditions that resemble those of the present climate. That means that
two types of El Niño events can co-occur in some ENSO regimes, which supports at least one
type of unstable ENSO modes. More recently, Xie and Jin (2018) with a modified atmospheric
component in the modified ZC model of Bejarano and Jin (2008) showed that these two modes
can co-exist within a broad range of mean states and are sensitive to changes in the mean
state. Unlike previous studies, they are interested in determining the mean state conditions
favouring the dominance of one mode over the other (Fig. 1.18). The QQ mode (EP ENSO-
like mode) is more prominent when the mean thermocline is deep and the trade winds are
weak. It is dynamically controlled by the thermocline feedback, overcoming damping effects
during the development of an El Niño event. The vertical movements of the thermocline
that produce the dominant effect on the SST are determined by the ocean mass adjustment
to the winds in the equatorial region. The QQ mode resembles a recharge-discharge mode,
with positive SST anomalies in the eastern Pacific. It has a typical period between 3.5 and
8 years. The QB mode (CP ENSO-like mode) is dominant when the mean thermocline is
shallow and the trade winds are strong. It is governed by the zonal advective feedback during
the phase transition, while the role of the thermocline feedback is mainly to overcome the
negative feedback of the damping terms. The QB mode with the maximum SST anomalies
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centred more toward the central Pacific has a period between 1.5 and 3 years. The ZAF
provides the primary negative contribution for phase transitions of both modes. Capotondi
and Sardeshmukh (2015) using a linear inverse modelling framework suggested also that the
initial subsurface conditions of the thermocline depth along the equator determine the El
Niño type: a deeper (shallower) thermocline in the eastern Pacific and a shallower (deeper)
thermocline in the central Pacific are conducive to EP El Niño type. However, it is quite at
odds with the results from Yu and Kim (2010) who suggested that CP El Niño events could
occur with different oceanic subsurface state (recharge, discharge or neutral thermocline state)
and that this state at the peak phase of the event can be a potential predictor of its transition
phase (EP warming, EP cooling (abrupt termination) or symmetric decay with respect to
the growth).

Anyway, the ocean subsurface background state most definitely plays a role in ENSO
diversity. The stability analyses are intended to determine the conditions that favour the
dominant mode(s) and the induced changes in these modes. A change in the mean state of
wind field and thermocline depth can thus determine which dynamical state the evolution El
Niño mode would follow. Numerous studies argued therefore that changes in the background
conditions have contributed to change in El Niño properties at different past periods, such
as the late 1970s (Fedorov and Philander, 2001; Ren and Jin, 2013) or around 2000s (Thual
et al., 2013; Wang and Ren, 2017). These different sensitivities to the background state are
discussed in paragraph 1.3.2. Changes in ENSO properties due to changes in the background
state lead to changes in oceanic feedback contributions, which can modify the direction of
propagation (Neelin and Jin, 1993).

Xie and Jin (2018) argued that the instabilities of the two leading ENSO-like modes are
essential to ENSO diversity. The spatial diversity is indeed generated in part by the different
oscillation frequencies of the two modes but also by external excitation processes. Both modes
operating not far away from their zero growth rate (that is their criticality, see figure 1.18c,
lower left) in current background states, they can be easily excited by other processes.

Because CP El Niño events are not fully described by oceanic subsurface dynamics, nu-
merous studies already emphasised the role of air-sea interactions and dynamical or ther-
modynamical processes in the ocean mixed layer in the growth and decay of CP El Niño
events (Kao and Yu, 2009; Choi et al., 2011; Lai et al., 2015). The central Pacific is indeed a
critical region for thermodynamical air-sea coupling processes, due to the movements of the
equatorial edge of the Warm Pool (Picaut et al., 2001; Maes et al., 2004), which makes SST
anomalies more sensitive to air-sea interactions than to interactions with the thermocline
depth. The ocean mixed-layer thermodynamical and dynamical processes affect both heat
fluxes and the WWBs, which are themselves controlled by convective processes. The studies
which emphasised the role of atmospheric forcing in the CP El Niño dynamics often suggested
that the initial establishment of the equatorial SST anomalies is forced by atmospheric forc-
ing and that the ocean (local) advection processes are important only after the central Pacific
warming onset to amplify SST anomalies (Yu et al., 2010a). Kug et al. (2010) and Dewitte
et al. (2012) showed that the decay phase of CP El Niño is mainly due to a thermal damping
process and not to a discharge process, since the warm event is generally not followed by a
cold one. For all these differences, the CP El Niño events have been suggested to be more
stochastic than oscillatory.

It should be however noted that the common bias of CGCMs such as the too weak winds
response to SST anomalies and the too cold Cold Tongue could lead to an unrealistic balance
between ENSO mechanisms and errors that cancel each others out, or in other words good
ENSO statistics for the wrong reasons (Kim and Jin, 2011; DiNezio et al., 2012; Bayr et al.,
2018b).

We discuss in the following paragraphs two mechanisms proposed to explain the triggering
or reinforcing of CP El Niño events: the role of the westerly wind bursts and the associated
recharged-discharged oceanic state (paragraph 1.2.3.2), the thermodynamic processes and
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Figure 1.18 – (a, b) Leading two Eigen-modes of tropical Pacific SSTA and equatorial thermocline
depth anomalies (averaged between 5°S-5°N) with periods of about 4 years (quasi-quadriennal (QQ)
mode) and about 2 years (quasi-biennial (QB) mode), calculated from an intermediate ENSO model
(Xie and Jin, 2018). The differences in longitudinal location of the centre in SSTA and thermocline
anomalies are largely due to the different roles of the zonal advective feedback (ZAF) and thermocline
feedback (TCF). (c) Growth rates of the two Eigen-modes as a function of the mean thermocline depth
(H) and the mean strength of equatorial trade winds relative to climatological conditions. Black dots
mark the mean state for the modes displayed in figures a and b. (d, e, f) Patterns of SSTA (HadISST
v1.1 dataset) and equatorial 20 ◦C thermocline depth anomalies (Tropical Atmosphere Ocean (TAO)/
Triangle Trans-Ocean Buoy Network (TRITON) data) for typical EP (1997-98), CP (2009-10) El Niño
and La Niña (2010-11) events (November-January). The main non-linear excitation and cross-scale
interaction mechanisms are schematically represented: annual cycle (ACY), WWEs, South Pacific
booster (SPB), North and South Pacific meridional modes (NPMM and SPMM, respectively) and
tropical instability waves (TIW). The solid red, eastward (blue, westward) arrows represent the ZAF
and the red, upward (blue, downward) arrows denote the TCF for El Niño (La Niña) conditions. The
relative sizes and different zonal positions of the arrows indicate qualitatively the strength and areas
of strong feedback efficiency. Curly upward (downward) arrows denote damping net surface heat flux
(HF) feedback. Reprinted from Timmermann et al. (2018), adapted from Xie and Jin (2018).
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some of the suggested off-equator precursors (paragraph 1.2.3.3).

1.2.3.2 Multiplicative atmospheric forcing

Puy et al. (2017) noticed that even if the dynamical subsurface ocean (i.e. thermocline)
response to WWBs follows relatively well the equatorial waves theory (Schopf and Harrison,
1983), the SST response presents a large spread for a same WWBs forcing, depending on the
mean state. Yet the spatial structures of SST anomalies are essential for determining the
atmospheric response to ENSO. This affects in turn the structure of atmospheric stochastic
forcing. Numerous studies showed that the response of the ocean to WWBs depends on
its background state and so of the timing of the WWBs relative to the recharge-discharge
state of the equatorial Pacific heat content (Fedorov, 2002; Lengaigne et al., 2004; Hu et al.,
2014; Fedorov et al., 2015; Capotondi and Sardeshmukh, 2015; Lai et al., 2015). A westerly
wind event is much more likely to trigger an EP El Niño event if the Pacific heat content is
recharged than when it is in a neutral or discharged state. Lai et al. (2015) suggested that
the recharged state is particularly important in the western Pacific for the strong continuous
westerly anomalies to initiate the triggering of an EP El Niño event and to sustain the
eastward propagation of Kelvin waves to the eastern Pacific. A moderate El Niño event,
localised preferentially in the central Pacific, may occur for a recharged state in the absence
of WWBs or for a neutral state with WWBs (Hu et al., 2014; Fedorov et al., 2015; Lai et al.,
2015). The initial recharge state in the western Pacific controls the response of the system
to atmospheric perturbations. However, even slight differences in the initial conditions can
change the situation, leading to the development of weaker events (Fedorov et al., 2015). The
exact same WWB can thus induce a variety of events ranging from extreme EP events to
weak CP events or lead to no warming at all, depending on the ocean initial state at the
moment of the wind burst.

Chen et al. (2015a) further investigated the role of WWBs in ENSO diversity, including
CP, moderate EP and extreme EP El Niño events. They suggested that WWBs may behave
as two types of triggers: they may produce EP El Niño events in the eastern Pacific through
the combined effect of Kelvin waves (that deepens the thermocline in the central-to-eastern
Pacific and favours the thermocline feedback) and the advection of warm water (displacing
the edge of the Warm Pool eastward). When the integrated WWB intensity and the upper
ocean heat content are both very high, and particularly when WWBs cross the dateline (see
also paragraph 1.2.2.2), SST anomalies in the eastern equatorial Pacific are largely enhanced
by the local thermocline feedback to generate an extreme EP El Niño. When the oceanic
background state is not favourable for the RD process, they may generate CP El Niño through
advection processes alone with WWBs confined to the western Pacific. WWBs would thus
destabilise the regular ENSO oscillation, which then alternates alone between canonical El
Niño events and La Niña events. The magnitude and the type of an El Niño event depend
then on the interplay between the WWBs and the upper ocean heat content.

More recently, Hayashi and Watanabe (2017) used an ocean-atmosphere coupled model of
intermediate complexity, including a prescribed annual cycle and state-dependent stochastic
noise that mimics WWBs. Conducting experiments with additive versus state-dependent
noise, they showed that both experiments contribute to the occurrence of the two types of El
Niño. However, the state dependence of the stochastic noise guarantees the existence of CP El
Niño events, regardless the efficiency of the thermocline feedback since the increased likelihood
of WWBs occurrence at the eastern edge of the Warm Pool results in a positive feedback
in the central Pacific (Fig. 1.19). When considering additive WWBs (b in Fig. 1.19), the
zonal advection due to WWBs (thick dashed arrow) simultaneously excites the central Pacific
warming accompanied by the atmospheric response to SST. Then the zonal advective feedback
induces CP El Niño. The additive WWBs may also act to trigger EP El Niño through the
downwelling Kelvin waves (thick bold arrow), which propagate to the eastern Pacific within a
few months. The system favours EP El Niño events when the thermocline feedback, effective
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in the eastern Pacific is large enough. When the WWBs are state dependent (c in Fig. 1.19),
the positive central Pacific (Niño-4) SST anomalies increase the probability of occurrence
of WWBs (thick grey arrow), enhancing the zonal advective feedback in the western-central
Pacific to generate CP El Niño events. Gushchina and Dewitte (2012) previously argued that
intraseasonal tropical variability tends to trigger EP El Niño events, with enhanced MJO
and equatorial Rossby waves activity during spring-summer before the peak, while it tends
to contribute to the persistence of CP El Niño events with enhanced activity mainly during
the mature and decaying phases.

Figure 1.19 – Main ENSO feedbacks taking into account the spatial diversity. τx, h and T indicate
the zonal wind stress associated with ENSO, thermocline depth and SST anomalies respectively. T3

and T4 are the SST anomalies in the Niño-3 and Niño-4 region respectively. τWWE indicates the
wind stress associated with (b) additive and (c) state-dependent WWBs. AD refers to additive noise
experiment, SD to state-dependent noise experiment. Circles with blue (red) shadings represent the
feedbacks to produce EP (CP) El Niño events. All the dashed arrows indicate the zonal advection.
Thick black solid and dashed arrows in (b),(c) indicate the roles of τWWE, and a thick grey arrow
in (c) represent the state dependence. The figure is reprinted from Hayashi and Watanabe (2017),
updated from Zelle et al. (2004)

Lai et al. (2015) showed in observations that both an ocean recharged state and WWBs
are necessary for the development of El Niño events, whether they are CP or EP types.
The two parameters contribute differently for each flavour: for EP El Niño events, an ocean
recharged state and strong WWBs are required while different CP El Niño events can occur
either when the western Pacific is moderately recharged with only moderate WWBs or when
the western Pacific is strongly (weakly) recharged but with a weak (strong) WWB. Both
parameters being required for an El Niño event to develop, they considered the CP and EP
El Niño as the end members of the El Niño continuum (see paragraph 1.1.2.4).

Consequently, the observed El Niño diversity, including the occurrence of extreme events
(see paragraph 1.2.2.2), depends conjointly on the stochastic atmospheric processes and their
state-dependence, as well as on the recharged state of the ocean, which modulates El Niño
properties within a broad continuum. The occurrence of extreme El Niño events involves
further uncertainty associated with chaotic atmospheric dynamics (paragraph 1.2.2.2).

Hu et al. (2014) suggested the existence of a threshold in the metric they used beyond
which the behaviour of the coupled system is different. The metric is related to ocean
energetics via the Available Potential Energy (APE) characterising the tropical thermocline.
When the APE anomalies are stronger than this threshold, an EP El Niño may develop
whereas for weaker anomalies, a CP warming occurs. The transition between the two types
of events is actually gradual and involves a strengthening of the thermocline feedback that
gives rise to greater APE anomalies. Even if Hu et al. (2014) analysed EP versus CP warming,
this bursting behaviour seems to be comparable with the behaviour of the Bjerknes feedback
related to the onset of extreme El Niño events (see paragraph 1.2.2.3). Interestingly, Hu et al.
(2014) imposed a wind stress anomaly that matches the WWB observed in February-March
1997 during the extreme observed El Niño event with a recharged state. Their EP El Niño
event is therefore an extreme El Niño events. It could be interesting to test the sensitivity
of the coupled system in the same configuration but for a moderate EP El Niño event to
determine if the threshold in the APE metric, characterising the tropical thermocline, exist
for all EP El Niño events or for extreme El Niño events only.
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WWBs may be caused by tropical drivers, such as the MJO or CRW (see paragraph 1.2.2.2)
or the Asian winter monsoon or by extra-tropical drivers, such as the North Pacific Oscillation
(NPO) wintertime or the Pacific Meridional Mode (PMM) (see following paragraph 1.2.3.3).
However, such remote influences appear to be mediated primarily by how they project onto
wind variations in the equatorial Pacific.

1.2.3.3 Off-equator atmospheric precursors

Off-equator atmospheric variability may also play a role in the onset of ENSO and may
also be involved in ENSO diversity. Numerous studies noticed that CP El Niño events are
often associated with SST anomalies in subtropical regions, with for instance anomalous
warming extending from the central Pacific to Baja California (Ashok et al., 2007; Kao and
Yu, 2009), although such warming was also observed before the extreme El Niño event of
1997-98 (Yu and Paek, 2015). Yu et al. (2010a) suggested that given the lagged correlation
between central Pacific and off Baja California SST anomalies (several months), the warming
off Baja California may serve as a trigger for the development of CP El Niño events. The
SST anomalies persist several months and extend south-westward, reaching the equatorial
Pacific when the El Niño event begins to grow.

Several studies (Vimont et al., 2003; Yu and Kim, 2011) suggested that the initial warming
outside Baja California is forced by atmospheric fluctuations via surface heat fluxes, particu-
larly those associated with the North Pacific Oscillation (NPO), the dominant dominant mode
of atmospheric variability in the north Pacific in terms of large-scale SLP signature (Rogers,
1981). The NPO is characterised by out-of-phase variations in SLP between subtropics and
higher latitudes (Fig. 1.20a). When the wintertime NPO exhibits negative anomalies in its
southern lobe, it is suggested to be able to trigger an El Niño event during the following winter
via the Seasonal Foot printing Mechanism (SFM) (Vimont et al., 2003). The weakened trade
winds over the central and eastern sub-tropical Pacific reduce the upward surface net heat
flux, which causes SST warming. The winter footprint on SST via changes in wind-induced
latent heat flux, persists over the subtropical northern Pacific (0-20°N) into the spring via
thermodynamic air-sea interaction, often called wind-evaporation-SST (WES) feedback (Xie
and Philander, 1994) and, in turn, forces a pattern of atmospheric circulation anomalies in-
cluding summer westerly wind stress anomalies along the equatorial western Pacific. Wind
anomalies induced by the convection tend indeed to be located to the south-west of the initial
subtropical SST anomalies (Xie and Philander, 1994), where new positive SST anomalies can
be formed through a reduction in wind evaporation. The wind anomalies, when in the deep
tropics, would subsequently act as a trigger for ENSO by weakening the Walker circulation.
This mechanism of the SFM via the WES feedback offers a way to explain how the subtrop-
ical SST anomalies can be sustained from boreal winter, when the extratropical atmospheric
variability (the NPO in this example) is the most active, to the following spring or summer
and subsequently excites El Niño events. However, the definition of the NPO index is crucial
in the connection between the winter NPO and the subsequent winter El Niño (Chen and
Wu, 2018). In particular, the NPO index should be defined over the appropriate subtropical
North Pacific region, extending to near-equatorial regions but not extending too far north.

It has been also noted that the SST anomalies pattern of the subtropical precursor of a
(preferentially CP) El Niño event (characterised by positive SST anomalies extending from
the equatorial central Pacific to the north-eastern subtropical Pacific) strongly resembles the
Pacific Meridional Mode (PMM), the leading coupled atmosphere-ocean (surface wind-SST)
mode of variability in the subtropical Pacific (Chiang and Vimont, 2004; Chang et al., 2007).
This strong coupling between SST and surface winds can be explained by the WES feedback
mechanism. The PMM is characterised by an anomalous north-south SST gradient coupled
to an anomalous latitudinal shift of the ITCZ toward the warmer hemisphere (Fig. 1.20b).
Anomalous south-westerly winds extend from the equatorial dateline to the Baja Peninsula.
Anomalies are maximized in boreal spring with SST anomalies lagging wind anomalies by
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approximately one month because of the slower SST response to peak mid-latitude atmo-
spheric variability in boreal winter (Chiang and Vimont, 2004; Chang et al., 2007). Unlike
ENSO, the PMM does not require ocean dynamics for its existence and instead evolves via
the WES feedback and is thought to be energised through the SFM by stochastic atmospheric
forcing in the mid-latitudes (Chiang and Vimont, 2004; Di Lorenzo et al., 2015; Thomas and
Vimont, 2016).

(a) North Pacific Oscillation (b) Pacific Meridional Mode

Figure 1.20 – 1.20a Second EOF mode of D(-1)JFM(0) Sea Level Pressure (SLP) anomalies over the
North Pacific (15°N-80°N, 120°E-120°W). The SLP are from the 20Crv2 dataset (December 1871 to
November 2012). The figure is reprinted from Shin and An (2018)). 1.20b Instantaneous SST (◦C,
data from HadISST v1 over the period 1948-2016) and surface wind (m/s, data from NCEP v1 over
the period 1948-2016) regression patterns for the anomalous normalized PMM index. The figure is
reprinted and adapted from Stuecker (2018)).

Several studies showed that the positive phase of the NPMM can excite central Pacific
ENSO variability, operating as an effective conduit through which the north Pacific variability,
particularly the NPO, triggers ENSO (Chang et al., 2007; Yu et al., 2010a; Larson and
Kirtman, 2014; Yu and Paek, 2015; Thomas and Vimont, 2016). A significant number of El
Niño events, mostly CP El Niño events, are preceded by a distinctive SST warming and south-
westerly wind anomalies in the vicinity of the ITCZ during the boreal spring, representative
of the NPMM (Chang et al., 2007). The arrival of the subtropical Pacific precursor in
the equatorial central Pacific could trigger local air-sea interactions that intensify local SST
anomalies into a CP El Niño event via surface heat fluxes (Yu et al., 2010a) or the wind-
induced surface ocean advection (Kug et al., 2009). The generation of CP El Niño events
is directly related to the mixed-layer dynamics forced by subtropical Pacific precursors, and
not to the thermocline variations.

However, the PMM-ENSO relationship and more generally the low-frequency atmosphere-
ocean coupled variability mode acting as a subtropical precursor of ENSO, is not yet clearly
understood. Chen et al. (2013) showed that a positive wintertime NPO is not sufficient to
trigger an El Niño event. They suggested that a positive phase of the Arctic Oscillation
in spring is required for a SST warming to occur in the following winter. Shin and An
(2018) showed in turn that when either the NPO or PMM occur alone, El Niño events are
rarely triggered. But they found that when the NPO and PMM occur simultaneously during
spring, an El Niño event is favoured during the following winter. However, these studies
(Chen et al., 2013; Shin and An, 2018) do not differentiate EP from CP El Niño. Thomas
and Vimont (2016) argued that PMM-ENSO relationship may present large spread between
individual El Niño events and suggested that natural variability has important implications
for the predictability of ENSO through the PMM. Larson and Kirtman (2014) showed, using
a forecast model ensemble, that positive PMM events are a useful predictor of EP El Niño
events in both observations and model forecasts with some skill, yet less skill than for CP El
Niño events. Recently, Stuecker (2018) suggested that PMM and CP El Niño events cannot
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be considered as two dynamically independent climate modes. Indeed, CP ENSO and PMM
have close instantaneous relationship in the observations both on inter-annual and decadal
time-scales, suggesting a strong coupling and fast positive feedback (the missing piece that
remains to be found) between the two climate phenomena. He also showed that hardly any
correlation exists between the EP ENSO index and the PMM.

The PMM is often studied in the northern hemisphere and referred to as the North Pacific
Meridional Mode (NPMM) (Chiang and Vimont, 2004), but some studies highlighted a similar
meridional mode in the South Pacific (SPMM) (Hong et al., 2014; Zhang et al., 2014; Larson
et al., 2018). The associated off-equatorial southeast trade winds variability alters latent
heat fluxes and SST and initiates a WES feedback that propagates signals north-westward
into the tropics. Larson et al. (2018) suggested that the SPMM could modulate ENSO
amplitude, by modulating the heat flux damping through fluctuations in the south-easterly
trade winds intensity in the south-east Pacific. Min et al. (2017) suggested that the SPMM
mainly favours the development of EP El Niño warming, whereas the NPMM mainly favours
the development of CP El Niño warming.

Dewitte and Takahashi (2017) investigated the differences between the developments of
moderate EP and moderate CP El Niño events. In the far eastern Pacific in the boreal summer
preceding the winter peak, moderate EP El Niño events are characterised by significant
warm anomalies, while moderate CP El Niño events are characterised by weak positive SST
anomalies (even potentially slightly negative). They emphasised the major role of air-sea
interactions in the eastern Pacific for the distinct development of these two types of events.
The air-sea mode, assimilated to a developing seasonal Bjerknes feedback, is associated with
a positive (negative) phase which consists in warm (weak warm or cold) SST anomalies
along the coast of Peru in boreal spring that extends up to 130°W in summer and a low-level
atmospheric response west of 130°W accompanied by westerly (easterly) winds in July-August
before the winter peak of the EP (CP) El Niño event. Thus, the development of moderate
EP El Niño events differs from the one of moderate CP El Niño events by an eastern air-
sea mode of the developing Bjerknes feedback, which further induces equatorial downwelling
Kelvin waves.

It should be noted that the relationship between the subtropical atmospheric modes of
variability and (CP) ENSO is likely to be sensitive to low-frequency variations of the mean
state. For instance, the SLP and SST variations associated with the NPO can excite SST
variability in the tropical central Pacific especially after 1990 (Yu et al., 2012; Yeh et al.,
2015).

1.3 Multi-scale interactions

As seen previously, the ENSO framework involves a multitude of time-scales, from intra-
seasonal (few weeks) to inter-decadal. The notion of scale interaction in fact describes the
two-ways feedbacks between small spatial and high-temporal scales and large spatial scale of
low-frequency variability (seasonal to multi-annual) of the climate system. These interactions
are an additional part of ENSO complexity (Timmermann et al., 2018) and the main ones
are reviewed in the following.

1.3.1 Seasonal phase-locking

El Niño events tend to initiate in boreal spring, develop in summer and fall, reach their
maximum amplitude in the later boreal fall or early boreal winter and then rapidly decay in
the following end of winter or spring (Rasmusson and Carpenter, 1982). This “seasonal phase-
locking” modifies the seasonality of the ocean-atmosphere coupled system stability, which
favours the development of ENSO-like anomalies mainly in periods of strong instabilities.

SST anomalies will generally appear in the boreal spring, when the eastern Pacific is
warmest, making the convection process even more sensitive to temperature changes. They
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will then be able to grow in summer, when the equatorial upwelling is strong, making the
surface temperature more sensitive to disturbances of the thermocline (among others vertical
processes). The strength of the Walker circulation changes the stability of the seasonal cycle.
Deep convection in the western Pacific, for example, peaks during the boreal spring, while
the zonal surface temperature gradient peaks in September. The Cold Tongue annual cycle
modulates the strength of the ocean-atmosphere coupled feedback, especially the Bjerknes
feedback in the eastern Pacific. The anomalous warming will peak in winter as the cou-
pling between the ocean and the atmosphere decreases (Zebiak and Cane, 1987) and the
trade winds become stronger. This also leads to marked seasonal contrasts in ENSO climate
impacts and predictability, especially via the reduced persistence of equatorial Pacific SST
anomalies during boreal spring. ENSO loses its periodicity due to interaction with the sea-
sonal cycle, which is a source of ENSO irregularity. Frauen and Dommenget (2010) showed in
a numerical experiment that the seasonality of ENSO amplitude changes can be attributed
to the seasonally varying sensitivity of the atmospheric response to SST anomalies. The
seasonal cycle of the non-linear coupling between zonal wind stress and SST and between net
heat flux and SST, influences the temporal evolution of ENSO amplitude by acting seasonally
on the SST damping.

The seasonal forcing also forces the termination of events. One of the suggested mech-
anisms for strong El Niño events termination involves in particular the southerly shift of
westerly wind anomalies from symmetric about the equator to the southern hemisphere dur-
ing boreal winter (Harrison and Vecchi, 1999; Lengaigne et al., 2006; Vecchi and Harrison,
2006). Harrison and Vecchi (1999) first suggested that the shoaling thermocline that leads
to the El Niño decay in the eastern Pacific could be explained by a direct seasonally varying
wind-forced process without invoking any wave reflection as a negative feedback (Suarez and
Schopf, 1988; Battisti and Hirst, 1989). This direct wind-forced response is carried out by
an abrupt southward shift of the central Pacific westerly winds, which are not longer able to
strongly force the oceanic equatorial waveguide, leading to an intense shoaling of the thermo-
cline in the eastern Pacific. This constrains a rapid El Niño demise in the following months
(spring). Indeed, prior to the meridional shift, the westerly zonal wind anomalies along the
equator are responsible for maintaining the deep eastern equatorial thermocline (Harrison
and Vecchi, 1999; Vecchi and Harrison, 2003, 2006). Lengaigne et al. (2006) suggested that
the southward displacement of the winds is driven by the southward displacement of the
warm water in the central Pacific in winter in response to the seasonal evolution of solar in-
solation, shifted south of the equator during boreal winter. This termination mechanism was
observed for the 1997-98 (Vecchi and Harrison, 2006) and 2002-03 El Niño events (Vecchi and
Harrison, 2003). McGregor et al. (2012) demonstrated that the southward shift of westerly
winds that leads to the rapid decay of El Niño events is also related to seasonal development
(DJF/MAM) of the South Pacific Convergence Zone (SPCZ) due to the seasonal evolution of
solar insolation. They also showed that the southward shift of wind stress anomalies during
the mature phase of El Niño in winter causes the asymmetric discharge of the equatorial heat
content and plays a significant role in the rapid decay of the event, which strongly acceler-
ate the termination of large El Niño events associated with the Sverdrup-transport induced
discharge.

It should be noted that the termination of moderate El Niño events appears much less
sensitive to the southward shift of the westerly winds in winter (Lengaigne et al., 2006;
Zhang et al., 2015a; Karamperidou et al., 2015), even if the system is still preconditioned
(shallow thermocline) for rapid event termination in both cases (Lengaigne and Vecchi, 2010).
For moderate El Niño events, the thermocline shoaling caused by the decrease of equatorial
westerly wind anomalies, even if less pronounced, may still transfer the coupled system into an
unstable state in spring. This makes the eastern Pacific very sensitive to wind perturbations
and allows a rapid surge of cold upwelled SST in spring and leads to La Niña conditions in
the following months (Lengaigne et al., 2006). In other cases, weaker subseasonal easterly
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activity combined with a slightly deeper thermocline allows the coupled system to maintain
warm conditions until the following summer.

Lengaigne et al. (2006) however showed that even with a fixed solar insolation, El Niño
events may eventually decay, implying that other mechanisms contribute to terminate the
events. In particular, negative feedback of oscillator models (the delayed action oscillator
or the recharge-discharge mechanism) play also a role both in the termination of events and
in the warm-cold phase transition, by their memory effect. Recently, Abellán et al. (2017a)
highlighted that in addition to the south wind-shift, the magnitude and zonal extent of the
wind changes that accompany this south wind shift also drive changes in WWV and prime the
ENSO system for termination. They suggested that more processes are likely to be involved
in the spring termination of ENSO events, such as the seasonally changing cloud feedbacks
(Dommenget and Yu, 2016).

Figure 1.21 – The annual cycle (Tone 1) together with ENSO (Tone 2) generate the unusual surface
wind pattern in the western Pacific, that is the Combination Tone. Reprinted from the personal page
of M.F. Stuecker6

Finally, a large fraction of the tropical Pacific variability is explained by the annual cycle.
As the coupled system of the equatorial Pacific is partly non-linear, the interaction between
one (or more) inter-annual mode and the annual mode can generate a subharmonic frequency
locking. Jin et al. (1994) and Tziperman et al. (1994) found in simplified and intermediate
complex model that the non-linear interaction between ENSO and the eastern Pacific annual
cycle is able to generate new time-scales and explain ENSO irregularity. These new time-
scales include combinations of the annual and ENSO frequencies. Stuecker et al. (2013)
further investigated the non-linear interaction between western Pacific seasonal cycle and
inter-annual ENSO variability in observations and GCM simulations. They showed that the
non-linear atmospheric response to this interaction gives rise to a near-annual combination
mode (C-mode) with periods of 9-10 months and 15-18 months (Fig. 1.21). The atmospheric
C-mode over the Pacific Warm Pool is associated with the seasonally modulated termination
process of strong El Niño events through the DJF/MAM weakening of winds south of equator.
This leads to the southward shift of El Niño-related wind anomalies (McGregor et al., 2012)
and accelerates the termination of the event by generating eastward propagating upwelling
Kelvin waves and a northward heat discharge. The C-mode operating only for strong El Niño
events, and not for La Niña or weak El Niño, it is one reason why strong El Niño events are
shorter than La Niña events.

1.3.2 ENSO modulation

ENSO properties (amplitude, frequency, spatial distribution) vary over decadal to multi-
decadal time scales. This ENSO modulation can lead to a confused detection of anthropogenic

6http://www2.hawaii.edu/~stuecker/publications.html
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influence on short-term climate measurements (Fig. 1.22): to what extent is the observed
modulation of ENSO the cause or consequence of anthropogenic changes or intrinsic multi-
decadal changes in the background state of the equatorial Pacific?

Figure 1.22 – Decadal variability drawn by Bas Kohler7, who attended the 4th ECCWO Symposium8

2018.

The observational records are too short to sufficiently constrain multi-year variability
(Wittenberg, 2009) and to quantify all the possible sources of the decadal modulation of
ENSO characteristics. Different sources of the modulation have been suggested, including
stochastic origin, internal variability in the tropical Pacific, extra-tropical atmospheric or
oceanic teleconnections or external forcing.

An interannual process without inter-event memory can occasionally produce very long
time periods in between El Niño events, resulting in an apparent low-frequency modulation
of ENSO. Wittenberg (2009) showed for instance from statistical tests that multi-decadal
spontaneous modulation of ENSO can happen stochastically from the inter-annual ENSO
time scales and its seasonal phase-locking.

The low-frequency modulation of ENSO may also internally emerge, in the absence of
any variation in external forcing. This has been confirmed by numerical simulations (Wit-
tenberg, 2009; Newman et al., 2011; Stevenson, 2012). ENSO decadal modulation can be
described by an internal process of the tropical Pacific climate system without invoking any
extra-tropical influences, and conceived through the coupled instabilities approach, in which
the prescribed mean state induces ENSO characteristics (see paragraph 1.3.2.1). A distur-
bance in the subtle balance of dominant dynamical feedbacks can destabilise the climate and
change ENSO stability (Fedorov and Philander, 2000; Bejarano and Jin, 2008). Changes in
external forcing, such as orbital forcing, also induce changes in ENSO properties at longer
time-scales, as shown in paleo-proxies records and modelling of the climate of the past (see
paragraph 1.3.2.2).

In turn, the intrinsic modulation of ENSO can affect the multi-decadal mean state through
a positive feedback between ENSO and decadal climate modes (paragraph 1.3.2.3). In par-
ticular, the internal non-linearities of the tropical coupled system dynamics, such as the
asymmetry between El Niño and La Niña, can modify the mean state through internal recti-
fication processes (Timmermann and Jin, 2002; Jin et al., 2003a; Rodgers et al., 2004; Schopf
and Burgman, 2006). This might be attributable to a two-way feedback between the cli-
mate state and ENSO. While ENSO induces tropical Pacific decadal variability through a
non-linear rectification effect, the climate state provides favourable conditions for a specific
regime of ENSO (Choi et al., 2009).

ENSO modulation is apprehended through many different characteristics, such as its
variability (whose common metric is the standard deviation), its spatial diversity (whose
common metric is the ratio EP/CP El Niño events) or its direction of propagation. It is still

7www.baskohler.nl, www.bocadillo.fr
8https://meetings.pices.int/meetings/international/2018/climate-change/Background
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unclear if there is a relationship between these different parameters, even if ENSO intensity
seems to be enhanced during periods with more frequent occurrence of EP El Niño events.
In the following paragraphs, the low-frequency variability of the ENSO SSTA indices as well
as the frequency of occurrence of the two ENSO regimes are regularly used as a metric to
determine climate shifts.

An issue directly stemming from the modulation of ENSO is the definition of El Niño and
La Niña events in relation to an average value. For instance, Fedorov and Philander (2001)
showed the different interpretations of the tropical Pacific inter-annual variability when the
reference value is no longer the mean temperature over the recent past period but the slowly
undulating decadal fluctuation (Fig. 1.23).

(a) Reference line as a mean value (b) Reference line as decadal modulation

Figure 1.23 – Interannual oscillations of SST (◦C) in the eastern equatorial Pacific (5°S-5°N, 80-
120°W) relative to (1.23a) a time-averaged temperature for the dataset and (1.23b) the low-frequency
interdecadal changes. Two different low-pass filters have been applied to the data with the cut-off
frequencies of approximately 0.9 and 0.09/yr. The darker (lighter) part indicates the warm (cold)
period that can lead to El Niño (La Niña) events. The figure is reprinted from Fedorov and Philander
(2001)

The past evolution of the ENSO modulation is essential to understand the evolution to
come. However, the analysis is made complicated by the intrinsic definition of ENSO with
respect to a fluctuating mean state as well as by the difficult decorrelation of the causes of
these low-frequency variations, whether they are internal or external to the climate system.

1.3.2.1 (Past) changes in the background state

Climate shifts correspond to somewhat abrupt decadal modulations of the characteristics
of the tropical Pacific background state. Numerous studies highlighted a climate shift that
occurred in 1976-1977 (Trenberth, 1990) via changes in correlated relationship between cen-
tral Pacific and eastern Pacific SSTA indices (Trenberth and Stepaniak, 2001; Ashok et al.,
2007; Ren and Jin, 2011) and changes in the statistical moments of the distribution of Niño
indices, such as the standard deviation or skewness (Kao and Yu, 2009), even if the statistical
significance is low because of the brevity of the time series.

Manifestations of the shift include stronger EP El Niño after (Kao and Yu, 2009) along
with more El Niño than La Niña events (Fedorov and Philander, 2000). The return period
of El Niño events also seems to have changed, even if the change depends on studies: from 2
years to 4 years after the climate shift for EP El Niño events while no change for CP El Niño
occurrence according to Kao and Yu (2009), from 3-4 years to 4-6 years for El Niño events
(defined by the Niño-3.4 index) according to An and Wang (2000). Moreover, before (after)
the 1976-77 climate shift, positive SST anomalies tend to be initiated in the eastern (central)
equatorial Pacific and moved westward (eastward) into the central equatorial Pacific (from
the central Pacific or developed concurrently in the central and eastern Pacific) (Rasmusson
and Carpenter, 1982; Wang, 1995; An and Wang, 2000; Fedorov and Philander, 2000; Ren
and Jin, 2011).

After this 1976-77 climate shift, the equatorial Pacific experienced an increase in vertical
stratification (Moon, 2004) as well as an eastward shift of the westerly wind anomalies (An
and Wang, 2000). An and Wang (2000); An and Jin (2000) suggested that after the 1976-77
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climate shift, the background conditions were more favourable to the thermocline feedback
than to the zonal advective feedback, which leads to the eastward propagation of ENSO
modes and produces positive NDH, enhancing ENSO asymmetry and non-linearities (Jin
et al., 2003a).

A more recent climate shift occurred around 2000 in ENSO properties, with more frequent
CP El Niño observed after 2000 and an almost disappearance of EP El Niño events (Kumar
and Hu, 2014; Wang and Ren, 2017). The variability of the SST in the central Pacific slightly
increased but weakened significantly in the eastern Pacific after 2000 (Guan and McPhaden,
2016). The frequency of these more frequent CP El Niño events is in the quasi-biennial band
and their amplitude is relatively moderate compared to that of EP El Niño events. After
2000, ENSO events occurred more frequently but became much weaker. The main directions
of SST anomalies propagation seem to have turned from eastward to almost static (Wang and
Ren, 2017). Ren and Jin (2013) suggested that the propagation of EP El Niño events may
change, while CP El Niño events made almost no contribution to the eastward propagation.
It should be however noted that it is still unclear to what extent such results are not only
related to the occurrence of two strong El Niño events during the 1980s-1990s. Finally, this
second climate shift is accompanied by a decrease in the leading relationship of WWV on
Niño-3.4 SSTA index, decreasing ENSO predictability (see McPhaden (2012); Kumar and Hu
(2014); Neske and McGregor (2018) and paragraph 1.2.2.1). Note that intraseasonal tropical
variability, and, in particular, MJO and equatorial Rossby waves activities, may also have
undergone decadal changes in ENSO flavours around the 2000s (Gushchina and Dewitte,
2019).

It should be noted that the increase in the frequency of occurrence of CP El Niño events
may begin before the 2000 shift. Ashok et al. (2007) argued that CP El Niño events increased
since the 1976-77 climate shift, by analysing separately the 1958-1978 and 1979-2004 periods.
Yeh et al. (2009a) determined that the number of CP El Niño events increased noticeably
after 1990 when analysing a 1854-2007 SST dataset. Although some have seen this recent
increase in occurrence of CP El Niño events as a consequence of global warming (Yeh et al.,
2009a), it seems that the current trend to more CP relative to EP El Niño events is consistent
with natural variability (Newman et al., 2011; Yeh et al., 2011).

After the 2000 climate shift, the tropical Pacific mean state returned to a colder mean
state than during the 1980s-1990s. Chung and Li (2013) found the mean state of the equa-
torial Pacific since the last regime change (1999 for them) characterised by enhanced trade
winds and a significant cooling (warming) over tropical eastern (western) Pacific. The SST
variability decreased in the eastern Pacific but increased in the central Pacific. The slope
of the thermocline is sharper (McPhaden et al., 2011), although the change is weak. This
background state appears more La Niña-like. However, this mean state change observed
in the tropical Pacific this last decades is opposite to what one would expect to produce
more frequent CP El Niño events (McPhaden et al., 2011). They suggested that the nat-
ural decadal variations of El Niño projected onto changes in the background state because
of the asymmetric spatial patterns of CP and EP El Niño events (see paragraph 1.3.2.3).
By contrasting periods favouring CP El Niño from periods favouring EP El Niño events in
a CGCM, Choi et al. (2011) suggested that CP El Niño events tend to occur more often
when the zonal mean SST gradient is stronger due to an enhancement of the trade winds
in the eastern Pacific similarly to the observed background state since 2000. They showed
that during these periods of high-CP El Niño activity, even if the mean thermocline is deeper,
primarily over the western-to-central Pacific, the vertical stratification is more unstable in the
central Pacific. This leads to intensified ZAF, which promotes an increased generation of CP
El Niño events. Guan and McPhaden (2016) showed that the TCF experienced a prominent
(slight) reduction from 1980-1999 to the 2000s in the eastern (central) Pacific (Niño-3 versus
Niño-4 regions) while the ZAF were less affected. It seems that changes in the mean state
leads to an imbalance between the two main oceanic feedbacks, favouring or disfavouring the
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TCF in particular. Confirming the importance of TCF, Boucharel et al. (2015) found that
the TCF and the dynamical damping account for most of the multidecadal ENSO variance
in the equatorial Pacific.

The changes in ENSO features (frequency, direction of propagation) associated with the
background state change from 1960-1970s to 1980-1990s appear consistent with the coupled
instabilities theory, in which the prescribed mean state allows the growth of ENSO-associated
anomalies (see paragraph 1.2.1.3). Ren and Jin (2013) suggested from the coupled instabilities
theory approach (see paragraph 1.2.3.1) that EP El Niño, which corresponds to the QQ mode
of Bejarano and Jin (2008), has been enhanced, and CP El Niño, which corresponds to the
QB mode, occurred more frequently during the period 1980-2000. Xie and Jin (2018) further
investigated changes in the QQ and QB modes related to changes in the background state
and showed that a background state resembling the 1980-1990s (deeper mean thermocline
and weaker mean trade winds) favoured the dominance of the QQ mode. This is consistent
with previous results from Fedorov and Philander (2001) and a background state resembling
the La Niña-like mean state after 2000 with slightly stronger trade winds and a shallower
mean thermocline, which favours the dominance of the QB mode (CP El Niño events). Wang
and Ren (2017) suggested that the weakening of the mean trade winds may induce a weaken
QQ mode after 2000 while the QB mode remains active and even became dominant. Thus,
the slow-varying background state of the tropical Pacific is likely to control the preferred
occurrence between CP and EP El Niño events generating the spatio-temporal complexity of
ENSO. Choi et al. (2011) and Boucharel et al. (2011) showed a strong negative correlation
between the low-frequency occurrence of CP and EP El Niño events in a CGCM, suggesting
a possible relationship between the mean state and El Niño flavour.

In the coupled instabilities theory, there is no asymmetry between El Niño and La Niña
in either anomaly amplitude or phase propagation, because of the linear dynamics invoked.
However, while the direction of propagation of EP El Niño events may have changed during
the climate shifts, the westward direction of La Niña SST anomalies propagation remained
the same after the 1976-77 climate shift (McPhaden and Zhang, 2009). The El Niño - La
Niña asymmetry as well as changes in SST variability at different longitudes suggest that the
examination of changes in ENSO properties should not use a single index at a fixed location
but must take into account the spatial asymmetry of ENSO anomalies.

The decadal changes in the mean state result in changes in the relative importance of
the two main oceanic feedbacks, the thermocline and zonal advective feedbacks, in different
tropical Pacific regions, which may compensate each other. The linear stability theory does
not take into account different longitudinal behaviours. Boucharel et al. (2015) developed
a method providing local information of dynamical feedbacks over all the tropical Pacific
and showed that the eastern Pacific displayed a decrease of the thermocline feedback and
the dynamical damping since 2000 while the western Pacific displayed an intensification.
Lübbecke and McPhaden (2014) linked this weakening of the TCF in Niño-3 region to a
reduced thermocline slope associated with a weak response of the wind stress to eastern
Pacific SST anomalies. On the other hand, Dewitte et al. (2013) showed that the stronger
equatorial stratification after the 1976-77 shift favoured the thermocline feedback (TCF)
in the western-central Pacific. The increase of the vertical stratification allows for a more
effective influence of the thermocline depth variations on the mixed-layer variability in the
central Pacific. According to this study, the ZAF show decadal modulation east of the
dateline. The main oceanic feedbacks may experience different decadal changes according to
the region of the equatorial Pacific, leading to a different balance between them, which can
favour different El Niño regime.

Contrasting the regions where changes in oceanic feedback may be different appears to be
determinant in the selection of the favoured El Niño type. However, the coupled instabilities
theory emphasised the role of the mean thermocline depth, as a proxy of the vertical strati-
fication along the equator. Observations and oceanic reanalysis reveal a small change in the
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mean thermocline depth at decadal-to-interdecadal time scales. Conversely, changes in strat-
ification that affect both the intensity and sharpness of the thermocline, as well as changes in
the slope of the thermocline, can be far more pronounced. For instance, a slight flattening of
the thermocline, as experienced after the 1970s, is associated with an increased stratification
in the central equatorial Pacific. Moreover, a deeper thermocline in the eastern Pacific, due
to a flattened equatorial thermocline, is expected to reduce ENSO activity due to a weakened
Walker circulation and reduced ocean-atmosphere coupling (Zebiak and Cane, 1987; Meehl
et al., 2001). However, CGCMs and conceptual models (Rodgers et al., 2004; Cibot et al.,
2005; Choi et al., 2009; Thual et al., 2011) provide counter-intuitive relationship between
thermocline depth variation and low-frequency ENSO mode. Dewitte et al. (2007) suggested
that a flatten thermocline may be associated with stronger ENSO modulation through dif-
ferent longitudinal contributions of the baroclinic modes derived from the equatorial wave
dynamics. The suggested tropical mechanism involves the non-linear rectifying effect (see
paragraph 1.3.2.3). But changes in the thermocline depth favouring CP El Niño events are
not consistent between studies. Yeh et al. (2009a) and Xie and Jin (2018) suggested that
a shallower thermocline (in the central Pacific) favours CP El Niño events when Choi et al.
(2011) and Wang and Ren (2017) argued that it comes from a deeper thermocline in the
western-to-central Pacific.

Finally, the separation in two distinct periods of ENSO modulation is not so clear. Ashok
et al. (2007) and Yeh et al. (2009a) underlined recently that the number of CP El Niño
events increased, compared to previous period even if the periods are not the same (1958-
1978 for Ashok et al. (2007), 1854-1990 for Yeh et al. (2009a)). Moreover, the CP and EP
distinction is dependant on the diagnostic method used (see paragraph 1.1.2). The direction
of propagation is another ENSO property lacking a clear definition. Whereas Santoso et al.
(2013) considered that strong El Niño events propagate eastward, Wang (1995) suggested
that not only the 1982-83 strong El Niño events but also the 1986-87 and 1991 began with an
anomalous warming in the central Pacific before the coastal warming off Ecuador. McPhaden
and Zhang (2009) with a longer time-series suggested that all El Niño events since 1980 (2
strong El Niño and 6 weak-to-moderate El Niño events) showed clear eastward propagation.
They further argued that the suggested westward propagation of SST anomalies during the
termination phase of the weak-to-moderate El Niño composite is an artefact of the tendency
for La Niña to follow El Niño since La Niña events are associated with not only unusually cold
SST in the eastern basin but unusually warm SST in the far western Pacific. Rather than
number of events or direction of propagation, other indicators such as regional variability
(central versus eastern SST anomalies) or main modes of variability (PC time-series) seems
to be more reliable to differentiate ENSO modulation.

Periods of climate shifts were extensively studied since the development of reliable obser-
vations. But interestingly, combined existence of CP and EP El Niño events has been shown
during the last millennium (Stevenson et al., 2017) and can go back to the mid-Holocene
(Karamperidou et al., 2015).

1.3.2.2 Changes in external forcing

Changes in external forcing play also a role in the slow-varying changes of ENSO properties.
Past climate are characterised by different Earth’s orbital parameters while present and
future climates mainly undergo the influence of changes in radiative forcing due to anthropic
activities such as greenhouse gas (GHG) and aerosols emissions. Volcanic eruptions provide
also strong climate control on a large spatial scale, even if at shorter time scales (Khodri
et al., 2017). It was for instance the greatest climate control during the pre-industrial period
(Stevenson et al., 2017).

At larger time-scale, the impact of orbital forcing on ENSO amplitude may be investigated
through paleo-proxies and past climate simulations. Karamperidou et al. (2015) showed that
changes in tropical Pacific seasonal cycle (SST and winds) due to orbital forcing changes
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during the mid-Holocene lead to changes in timing and duration especially for EP El Niño
events. They were less frequent, with a lower variance and tended to develop more slowly
and decay faster, with a shift of the seasonality. Few changes in CP El Niño events appeared
although a slight increase in their occurrence frequency as observed. They argued that
changes in EP El Niño events properties are linked to changes in the western Pacific winds
seasonal cycle, which remotely controlled the eastern Pacific during ENSO development. In
the western Pacific, a weakening of the trade winds in early boreal spring in the mid-Holocene
initiates an anomalous downwelling annual Kelvin wave, which reaches the eastern Pacific
during the ENSO development season, weakens the upper ocean stratification, and results in
reduced ENSO upwelling feedback. The correct representation of forcing in the CGCMs is
therefore crucial.

Stevenson et al. (2017) analysed the more recent period of the last-millennium (850-2005)
through model simulations with a longer duration than the time scales of ENSO internal
variability (Wittenberg, 2009; Stevenson et al., 2010; Stevenson, 2012). Thanks to different
forcing scenarios (GHG, ozone and aerosols, volcanic, land use and land cover, orbital changes
and solar irradiance), they investigated the impact of each forcing separately, as well as the
combined impact (“full forcing”). The major controls on mean climate are greenhouse gas-
driven warming and tropospheric ozone/aerosol-driven cooling during the twentieth century,
and volcanic eruptions during the pre-industrial period. Since the beginning of the indus-
trial period (∼ 1850), GHG emissions are responsible of an increase in Pacific temperatures
characterised by a stronger warming in the eastern equatorial Pacific than in the western,
associated with a weakening of the Walker circulation (see paragraph 1.4.1). On the contrary,
the effect of ozone and aerosols leads to an overall cooling across the tropics and, in particular
in the equatorial Pacific, accompanied by a strengthening of the trade winds. These effects
cancel each other out on the Pacific, but some warming due to GHG persists, mostly on the
Warm Pool and in the south-east tropics. They conclude that changes in ENSO amplitude,
computed as the 20-year running SST anomalies variance in the Niño-3.4 region, between
the post-industrial period and the last millennium are close to the detectability threshold,
suggesting that the changes in the twentieth century forcing have not yet played a substantial
role. When analysing paleo-climate reconstructions, a recent ENSO amplitude strengthen-
ing is emphasised. For instance, McGregor et al. (2013) suggested that the ENSO variance
(Niño-3.4) for any 30 year period during the interval 1590-1880 was considerably lower than
that observed during 1979-2009. (Liu et al., 2017) using reconstructions (based on oxygen iso-
topes) established that the variability of Niño-4 SST increased from 1190 to 2007. However,
the estimation of past ENSO variability through paleo-proxies shows uncertainties due to
proxy resolution (from seasonally to centennially resolved) and spatial sparsity. Karamperi-
dou et al. (2015) pointed out that the spatial diversity of ENSO, and therefore the location
of the proxy records, needs to be taken into account when analysing ENSO variance.

1.3.2.3 Rectification onto the mean state

Although many studies questioned how changes in mean state may affect ENSO variability,
the opposite question, how changes in ENSO can affect long-term changes in the tropical
Pacific climate, has also been the subject of many studies.

Decadal modulation of ENSO is partly explained by the source of irregularities described
in paragraph 1.2.2. Timmermann et al. (2003) and An and Jin (2004) related the El Niño-La
Niña asymmetry to the intrinsic non-linearities of the tropical Pacific coupled system via the
NDH (see Jin et al. (2003a) and paragraph 1.2.2.4). This dynamical relationship between
decadal modulation of ENSO, asymmetry and NDH, is based on the decadal changes in the
mean climate state, which may produce favourable conditions for the thermocline feedback
rather than the zonal advection feedback, resulting in the eastward spread of ENSO-related
atmospheric and oceanic variables (Jin et al., 2003a; An and Jin, 2004). This eastward
propagation of the ENSO mode more easily produces a positive NDH, which results in the El

65



CHAPTER 1. BACKGROUND

Niño-La Niña asymmetry. Whatever the phase of the ENSO cycle, this term is indeed always
positive, which implies an increased warming in the El Niño period (pushing the positive
anomaly to increase) as well as a cooling damping in the La Niña period (preventing the
negative anomaly to grow too much). In this way, this reinforces the mean state control on
ENSO asymmetry (Fig. 1.24). On decadal time scales, the heat balance is not zero since there
remains a residual coming from the compensation between warm and cold events (positive
NDH), causing an additional warming potentially having an effect on the mean state itself
(Jin et al., 2003a; Rodgers et al., 2004; Choi et al., 2009). Jin et al. (2003a) have shown that
at least half of the observed warming of the tropical Pacific in recent decades is due to NDH
warming.

Figure 1.24 – Schematic diagram of suggested cause and effect for the interdecadal changes in ENSO
asymmetry. The figure is reprinted from An (2009).

Other aspects of the El Niño-La Niña asymmetry show in their respective mean intensity
(stronger SST anomalies during El Niño events) and spatial centre of action (a larger westward
extension of negative SST anomalies during La Niña events). The mean spatial pattern
associated with the residual (that is the sum) of the composite El Niño and La Niña pattern
looks like a zonal dipole along the equator, warm in the east and cold in the west during
ENSO-active periods. Interestingly, these residuals of incomplete compensation between the
two types of ENSO events are similar to the spatial pattern associated with the decadal
changes in SST, that is the Tropical Pacific Decadal Variability (TPDV) (Rodgers et al.,
2004; Cibot et al., 2005; Choi et al., 2009). These studies have thus suggested that these
residuals induced by ENSO asymmetry can rectify into background conditions and lead to
the slow variability of the tropical Pacific. Decadal changes in the tropical Pacific (TPDV)
emerge at least in part from the non-linear rectified effect of ENSO onto the mean state, by
transferring energy from high frequencies variability to low frequencies through non-linear
processes. Moreover, this TPDV mode is strongly correlated to ENSO decadal modulation,
so that periods of high ENSO activity are characterised by a flattening of the equatorial
thermocline associated with a deepening of the thermocline and a warming of subsurface
waters in the eastern Pacific (Rodgers et al., 2004; Cibot et al., 2005). It is a counter-intuitive
result because this particular spatial pattern of the mean state should accompany a reduced
activity of ENSO (Zebiak and Cane, 1987; Meehl et al., 2001). This therefore questions
the commonly accepted assumption that the low-frequency modulations of ENSO are due to
decadal changes in the mean state. Conversely, it suggests that the decadal background state
(TPDV) associated with periods of high ENSO activity can be interpreted as the residual
of ENSO asymmetry. Because this pattern spatial is also similar to TPDV, the decadal
modulation of ENSO induces the mean state associated with the dominant decadal mode of
variability.

Choi et al. (2009) further suggested that the warming (cooling) of the ocean surface can
cause an increase (decrease) in the variability of ENSO whereas the deepening (shoaling) of
the thermocline can cause a suppression (an increase) in the variability of ENSO. In other
words, the high variability of ENSO is mainly due to changes in the mean SST, whereas, as
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expected, the average thermocline plays a role in suppressing ENSO activity. It provides a
reasonable answer to the counter-intuitive mean state associated with high ENSO activity
in these studies. Choi et al. (2013a) suggested that the strength of this feedback depends
on ENSO variability in CGCMs. The tropical Pacific decadal oscillation is likely to be an
intrinsic mode of the tropical Pacific that affects and is influenced by ENSO at the same
time. There is a positive feedback with the mean SST and a negative feedback with the
mean thermocline depth that destabilise the tropical Pacific decadal oscillation (Fig. 1.25).

Figure 1.25 – Schematic diagram showing the interactive two-ways feedbacks mechanism of decadal
variability in the tropical Pacific. The figure is reprinted from Choi et al. (2009).

It should be noted however that the TPDV mode is often the second mode of decadal
variability found in most of the CGCMs used in these studies (Cibot et al., 2005; Choi et al.,
2013a). It could be explained by the simulated frequency of El Niño events too high (quasi-
biennial), which would be imprinted too strongly in the decadal variability of the tropical
Pacific compared to observations.

Asymmetry between warm EP and CP El Niño events can also result in changes in the
mean state. Because CP El Niño events have a short period of return and tend not to be
followed by a La Niña event, their occurrence may modulate the climate mean state in the
tropical Pacific, by an accumulative warming (Kug et al., 2009; McPhaden et al., 2011). It
may be the case of the recent warm periods of 1990-1995 and 2001-2006. Lee and McPhaden
(2010) suggested that the warming trend of the Warm Pool SST in the central Pacific over
the period 1980-2010 is primarily a result of more intense CP El Niño events rather than
a warming of the mean SST, even if the observed period is too short for the results to be
statistically significant.

The low-frequency variability and the forcing changes such as the global warming can
thus strongly overlap and the decorrelation of their signals, if possible, is a crucial remaining
challenge for the climate community (see next section 1.4).

1.4 Global warming

The Earth’s climate is changing, more drastically than it could have due to only internal
variability (see paragraph 1.3.2). The main radiative forcing today comes from anthropogenic
greenhouse gases, with the most telling indicator being the concentration of CO2 in the
atmosphere. The global mean CO2 concentration exceeded 400 ppm in 2016, highest level
ever achieved in 800,000 years. As a consequence, the last four years are the warmest years
recorded since 18809 and 16 of the 17 warmest years have occurred since 200010.

To determine the response of the climate system to global warming, simulations of the
climate system are used under different scenarios of future radiative forcing. Some projected
changes of the mean state with global warming are common to a large number of models (see

9https://climate.copernicus.eu
10https://www.ncdc.noaa.gov/
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paragraph 1.4.1). However, CGCMs projections may underestimate long-term warming, due
in particular to the underestimation of the polar amplification, by a factor of two (Fischer
et al., 2018).

Due to complex and numerous feedbacks, there is no consensus on the response of ENSO
feedback to global warming, neither on the response of ENSO diversity to global warm-
ing. Changes in the mean state due to global warming may induce changes in ENSO
statistics (see paragraph 1.4.2.1) and thermodynamical and dynamical processes (see para-
graph 1.4.2.2), which may be different to changes due to internal low-frequency variability
(see paragraph 1.3.2.1). Important questions, with many socio-economic issues, are thus still
open:

• Has global warming already affected ENSO?
• To what extent do recent observed changes in ENSO result from anthropogenic forcing

or intrinsic multi-decadal fluctuations of the climate system?
• How will global warming impact ENSO in the future?

Understanding if and how El Niño characteristics will evolve in a warming world is a
major issue because it causes extreme weather conditions around the world.

1.4.1 Changes in the mean state

Some projected changes in the tropical Pacific mean state under global warming scenarios
appear to be robust features among CGCMs (CMIP3 and CMIP5 databases):

• the Walker circulation is projected to weaken (Vecchi et al., 2006; Vecchi and Soden,
2007). This feature is contrary to what has been observed in recent decades (see para-
graph 1.3.2.1);

• the equatorial Pacific is projected to warm faster than the off-equatorial Pacific (Collins
et al., 2010), the east equatorial Pacific and the maritime continent faster than the
central equatorial Pacific (Xie et al., 2010), the surface faster than the subsurface;

• the equatorial Pacific mean rainfall is likely to increase, following a warmer-gets-wetter
pattern (Xie et al., 2010; Chadwick et al., 2013; Xie et al., 2015).

It should be noted that these climate change features are those that occur during El
Niño events. An ENSO analogy is thus often invoked for interpreting tropical Pacific climate
change. The east-west asymmetry that can result from a change in forcing can be amplified
in the same way as the initial disturbance leading to an El Niño (or La Niña) event, through
the different coupled feedbacks. This would then lead to an altered mean state of the tropical
Pacific resembling an El Niño or La Niña event. For instance, recent observed changes in
the tropical Pacific are referred to as a La Niña-like state (see paragraph 1.3.2.1) and future
projected state of the tropical Pacific is often referred to as an El Niño-like state. However,
subsurface temperature projected changes are not consistent with an El Niño-like state.

The Walker circulation is projected to weaken (Vecchi and Soden, 2007; Chung et al.,
2019), which will decrease the strength of the trade winds and thus alter the thermal structure
and ocean circulation of the tropical Pacific (DiNezio et al., 2009; Santoso et al., 2013). This
will in particular promote a slower equatorial circulation (Vecchi et al., 2006; Vecchi and
Soden, 2007; DiNezio et al., 2009) and a weakening of the equatorial upwelling (DiNezio
et al., 2009; Dewitte et al., 2013). At inter-annual time scales, the weakened mean trade
winds lead to a flattening of the thermocline (Philip and van Oldenborgh, 2006; Vecchi and
Soden, 2007; Yeh et al., 2009a), a reduction of the cold water upwelling in the eastern Pacific,
a relative warming of the eastern Pacific SST compared to the western SST, and in turn an
even stronger weakening of the trade winds through the Bjerknes feedback.

The equatorial thermocline become shallower and sharper in all CGCMs projections (Vec-
chi and Soden, 2007; Yeh et al., 2009a; DiNezio et al., 2009). The increased vertical strat-
ification due to the global warming is likely not only over the eastern Pacific (except the
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(a) Current tropical Pacific mean state (b) Flattening and shallowing of the mean
thermocline

(c) Projected changes in the mean state

Figure 1.26 – Projected changes in the mean state under global warming. (1.26a) Mean current cli-
mate conditions in the tropical Pacific, indicating SST, surface wind stress and associated Walker
circulation (white and black arrows), the mean position of deep convection and the mean upwelling
(blue arrow) and position of the mean thermocline. (1.26b) Ensemble mean thermocline depth for
(red line) the twentieth century (20C3M) and (red line) the Special Report for Emission Scenario A1B
climate change projection applied to CMIP3 models (SRESA1B). (1.26c) The projected mean climate
conditions under climate change. The trade winds weaken (narrow white arrows), the thermocline
flattens and shoals, the upwelling is reduced (narrow blue arrow) although the mean vertical tem-
perature gradient is increased and SST (shown as anomalies with respect to the mean tropical-wide
warming on the right) increase more on the equator than off. It should be noted that SST anomalies
are expressed with respect to the basin averaged temperature change, so that blue colours indicate a
warming smaller than the basin mean, not a cooling, red colours indicate more warming than in aver-
age in the rest of the basin. Figures 1.26a, 1.26c are reprinted from Collins et al. (2010), figure 1.26b
is reprinted from Yeh et al. (2009a).
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far eastern Pacific) but also over the whole equatorial Pacific. This is due to a dynamical
adjustment to the decrease of equatorial trade winds (Vecchi and Soden, 2007) as well as
the tendency of surface waters to warm up faster than the deep ocean (Vecchi and Soden,
2007; DiNezio et al., 2009). Changes in thermocline depth in the eastern Pacific are thus
affected by two compensating processes: the rise of the mean thermocline tends to reduce its
depth in the eastern Pacific but a weakening of the equatorial tilt of the thermocline tends
to deepen it in the western Pacific. The resulting thermocline depth in the eastern Pacific
leads to opposite ENSO feedbacks (Collins et al. (2010), see paragraph 1.4.2.2) but depends
on the CGCM.

SST will warm faster at the equator than in off-equatorial regions because the weaker
Walker circulation will lead to a slowdown in the horizontal ocean circulation and a reduction
in thermal flow divergence in the equatorial Pacific. Consequently, less heat content will be
transferred poleward (Vecchi and Soden, 2007; DiNezio et al., 2009). This enhanced equatorial
warming is also associated with a weaker evaporation damping on the equator (Xie et al.,
2010).

Another robust feature of the CGCMs ensemble-mean prediction is the increase of the
mean rainfall over the central and eastern equatorial Pacific. This change in mean tropical
rainfall is related to the atmospheric circulation (Chadwick et al., 2013), which in turn is
closely related to changes in mean SST spatial patterns. The weakening of the zonal and
meridional SST gradient, due to the different warming rates in different tropical Pacific
regions, favours a shift in convective areas. Slight changes in SST will facilitate the convection
whereas strong current gradients, barriers of convection, require stronger changes (Cai et al.,
2014).

However, these projections are to be nuanced because the projected changes in SST and
rainfall occur in a region where CGCMs display known and persistent climate biases such as
the double ITCZ and the Cold Tongue cold bias (see also paragraph 2.1.2.2). The shared
common biases of the simulated tropical Pacific mean state by CGCMs reflect some common
deficiencies in the models. This may potentially interact with the warming effect from GHG
forcing, and may produce unrealistic climate change patterns that interfere with model pro-
jections (Collins et al., 2010). The simulation of tropical rainfall is not realistic even in the
current climate, with in particular a tendency by CGCMs to simulate a double ITCZ, which
makes projected changes highly uncertain (Ma and Xie, 2013). The Cold Tongue bias, which
consists in a Cold Tongue region too cold and that extends too far to the west, may be of
the same order of magnitude as the projected climate change signal in some models (DiNezio
et al., 2010). Moreover, despite the relatively robust projection of a reduction in the mean
sea-level pressure (SLP) gradient across the equatorial Pacific (Vecchi et al., 2006), the weak-
ening of the zonal SST gradient is not systematically simulated (Vecchi and Soden, 2007; Yeh
et al., 2012). Changes in the east-west SST gradient under global warming are also poorly
related to the climatological thermocline depth in CGCMs (Li et al., 2016). The relationship
between SST, thermocline and trade winds may become less strong than that resulting from
the current Bjerknes feedback. This is in contrast to El Niño events, when the thermocline
response is heavily dominated by a less tilted thermocline. The unexpected response of SSTA
zonal gradient seems to be due to the excessive Cold Tongue bias in CGCMs, which induces
an excessive projected SST warming in the western Pacific (Li et al., 2016; Ying et al., 2019).
Thus, the projected SST tropical Pacific warming pattern should be closer to an El Niño-like
pattern when correcting the Cold Tongue bias.

1.4.2 Changes in ENSO characteristics in a warmer climate

1.4.2.1 Changes in ENSO statistics

Projected atmospheric and oceanic mean state changes in the tropical Pacific are likely to
alter the amplitude, frequency, seasonal timing or spatial patterns of ENSO. However, some
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of the projected changes in the tropical Pacific mean state due to global warming are not
subject to inter-model consensus, and conversely, some robust projected changes may actually
be due to recurrent and common model biases. As a result of these limitations, there is no
inter-model consensus on the evolution of ENSO amplitude and frequency (DiNezio et al.,
2012; Bellenger et al., 2014). When analysing the evolution of the statistics of traditional
ENSO indices, such as the Niño-3 index or the ONI, there is no consensus on changes in ENSO
variability, neither with global warming, nor over the last century with the increase of GHG
(Collins et al., 2010). For instance, even if all CMIP5 models simulate a mean warming in the
Niño-3.4 region, its variability shows a wide spread among CGCMs (Fig. 1.27). More models
simulate a weakening of ENSO amplitude but when the model does simulate a strengthening
of the ENSO amplitude, this increase is more important.

Figure 1.27 – Comparison of (left) Niño-3.4 mean state and (right) ENSO amplitude in current and
future climates. The 37 CMIP5 models are sorted according to the 100-yr averaged Niño-3.4 SST
(SSTA standard deviation in the figure on the right) in the twentieth century (20C, historical runs,
1900-1999). The black vertical line marks the 20C observation value. The multi-model mean (MMM)
is shown at the top, with 20C in orange and 21C (the twenty-first century, RCP8.5 scenario, 2000-
2099) in blue. Pre-industrial control simulations of each model are divided into 100-yr sliding epochs
to calculate the 100-yr averaged SST and the 2.5th-97.5th percentile of the distribution are shown as
grey horizontal lines. The number of models with decreased (<) or increased (>) change is indicated.
The number in the brackets is the count for significant changes out of the range given by the control
run. In addition, in the figure on the right, the 21C results with an increased (decreased) change are
shown filled (unfilled). The figures are reprinted from Chen et al. (2017a).

When selecting models that are able to simulate non-linear processes associated with
extreme El Niño events, only 12 over 21 models project an increase in ENSO amplitude in the
Niño-3 region and only 12 over 21 generate an increased frequency of extreme (precipitation)
El Niño events (Cai et al., 2015a).

Projected changes in El Niño intensity are also heavily model dependent (Guilyardi et al.,
2009b; Kim and Yu, 2012; Bellenger et al., 2014; Chen et al., 2017b) and not significantly
distinguishable from natural modulation (Stevenson, 2012; Chen et al., 2017a; Zheng et al.,
2018). This uncertainty is mainly due to the inter-model uncertainty in the spatial pattern
of tropical Pacific surface warming (Zheng et al., 2016), simulating a pattern that can go
from an El-Niño-like to a La Niña-like warming pattern. Models projecting an enhanced
(reduced) mean warming in the eastern equatorial Pacific project an increased (decreased)
ENSO amplitude (Zheng et al., 2016). These differences in projected patterns are mainly
due to the common Cold Tongue bias and correcting this bias favours an El Niño-like mean
warming pattern (Li et al., 2016; Ying et al., 2019). This suggests a probable increase in
ENSO-related SST variance under global warming.
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Chen et al. (2017b) suggested that the divergence in projections of El Niño amplitude
changes comes from the simulation of the climatological mean Pacific subtropical cells (STC).
They induce changes in the anomalous thermocline response to wind forcing through pertur-
bations of the meridional structure of ENSO. This bias leads to a westward shift of ENSO
variability as well as a meridionally constrained structure. That means that such simulated
spatial patterns are subject to caution, whereas the phenomenon is usually defined from
departure from the mean state in fixed equatorial Pacific regions, such as Niño-3 or Niño-3.4.

Changes in ENSO diversity are also subject to many uncertainties. Kim and Yu (2012)
showed that CMIP5 models better simulate the observed spatial patterns of the two types of
ENSO than CMIP3 models, with a smaller inter-model intensity spread. By using the “KY”
method (see paragraph 1.1.2.2) and selecting CMIP5 models that simulate well the observed
ENSO diversity, they showed that the intensity of CP ENSO steadily increases from the
pre-industrial (PI) to the RCP4.5 simulations (see Taylor et al. (2012) and paragraph 2.1.2)
through historical simulations (current climate), while the intensity of EP ENSO increases
from the PI to the historical simulations and then decreases in the RCP4.5 projections. The
CP-to-EP ENSO intensity ratio, as a result, is almost the same in the pre-industrial and
historical simulations but increases in the RCP4.5 simulations. It is consistent with results of
Yeh et al. (2009a), who suggested that the proportion of CP El Niño events would increase
compared to EP El Niño events from historical to RCP8.5 climate in 11 CMIP3 models.
Using the linear instabilities coupled theory in the most likely future mean state of the
tropical Pacific (i.e. weaker trade winds, weaker Cold Tongue, and shallower thermocline),
Xie and Jin (2018) determined that the CP ENSO activity is projected to increase.

However, the proliferation of indices used to define each kind of El Niño events (see
paragraph 1.1.2.2) has led to somewhat contradictory projected changes in ENSO statistics.
In contrast to the results previously presented, Cai et al. (2014, 2015a, 2017) suggested
that the frequency of occurrence of extreme precipitation El Niño events, associated with
anomalous precipitation in the eastern Pacific, would increase with global warming (see next
paragraph). Wang et al. (2017) showed that the occurrence frequency of extreme precipitation
El Niño events (defined as Cai et al. (2014)) will continue to increase even after stabilising
the warming at 1.5 ◦C, which is the aspirational target of the Paris Agreement and the
Special Report on Global Warming of 1.5 ◦C (SR15) of Intergovernmental Panel on Climate
Change (IPCC). They argued that the extreme precipitation El Niño occurrence frequency
would continue to increase up to a century after the warming stabilisation. A deepening
of the thermocline after the stabilisation would result in a faster warming of the eastern
equatorial Pacific than the off-equatorial regions. Recently, Williams and Patricola (2018),
using also a convection proxy, projected that extreme El Niño, Modoki El Niño and La Niña
events would all become more frequent in the future climate, whereas the tropical Pacific
would experience less neutral conditions. Santoso et al. (2013) and Chen et al. (2017a)
suggested that global warming will favour more eastward propagating El Niño events, which
is a feature presently mostly associated with strong El Niño events. The increase in extreme
El Niño events is in turn conducive to an increase in the frequency of La Niña events due to
a discharged thermocline that favours the influence of cold subsurface waters in the central
Pacific, preferential region of La Niña events.

These different projection studies however are not based on the same definitions of El
Niño and it is difficult to estimate whether there is a correspondence between their results.
Moreover, another difficulty is the lack of consensus among CGCMs on the response of ENSO
feedbacks to global warming.

1.4.2.2 Changes in ENSO dynamics

Mean state changes (especially the SST zonal gradient, namely the El Niño or La Niña-like
warming pattern) may induce opposite changes in ENSO amplitude, which may explain the
weak agreement in projected changes of ENSO variability among CGCMs. Changes in mean
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state can lead to a different balance between damping or amplifying processes (Philip and
van Oldenborgh, 2006) and, possibly, to wrong compensation between them (Collins et al.,
2010). Moreover, the two regimes of El Niño are likely to have different sensitivity to changes
in mean state. Changes in ENSO-related feedbacks are thus not only linked to changes in the
mean state but also to changes in ENSO-related anomalies. In addition to the delicate balance
of the ENSO feedback loop, the diversity in models sensitivity to global warming makes it
difficult to identify which parameter, characterising changes in the mean state, is critical.
Models biases, both in the simulated mean state and ENSO atmospheric feedbacks, such as
the wind-SST (atmospheric part of the Bjerknes feedback) or the heat flux-SST feedbacks,
can lead to unrealistic errors compensations (Bayr et al. (2018b), see also paragraph 2.1.2.2).
However, some assumptions can be made using theoretical and numerical simulations that
account for some of the robust changes in the tropical Pacific background.

The different projected changes of the thermocline characteristics, most notably its shoal-
ing, sharpening and flattening, can have different effects on ENSO activity. An et al. (2008)
even suggest that changes in the vertical temperature gradient is more influential on ENSO
than changes in the mean surface temperature. The coupled instabilities models of Fedorov
and Philander (2000) and Bejarano and Jin (2008) indicate that a shallower mean thermo-
cline may lead to an increase in ENSO variability. However, these theories do not take into
account regional disparities between the central and eastern Pacific. The dynamics of ex-
treme El Niño events, which project mainly onto the eastern Pacific, are different from that
of moderate events (Santoso et al., 2013; Cai et al., 2014; Capotondi et al., 2015) and their
response to global warming must therefore be studied separately.

A shallower mean thermocline is due to a rise in the central Pacific and a slight deepening
in the eastern Pacific under global warming scenarios (Fig. 1.26b). It is consistent with the
weakening of the Walker circulation (Vecchi et al., 2006). A shallower thermocline is more
sensitive to wind variations and enhances ocean-atmosphere interactions in the mixed layer
(Philip and van Oldenborgh, 2006), which may perturb ENSO dynamics. SST become more
sensitive to variability of the thermocline depth, which is likely to destabilise the balance of
the two main ENSO oceanic feedbacks, the thermocline and the zonal advective feedback.
A shallow thermocline tends to favour the ZAF in the central Pacific, which favours CP El
Niño events (Kug et al., 2009). Moreover, a shallower thermocline in the central Pacific tends
to reinforce SST anomalies induced by vertical advection there, because vertical movements
of isotherms through the thermocline may influence SST variability more easily (Dewitte
et al., 2013). A sharper thermocline may also enhance the zonal subsurface temperature
gradient, which would increase the subsurface zonal advection and thus would increase the
ENSO amplitude (DiNezio et al., 2012).

Similarly, a flattening of the thermocline tends to enhance the ZAF in the central Pacific
and decrease the TCF in the eastern Pacific, which may promote a westward shift of the
ENSO-induced warming (Yeh et al., 2009a).

Changes in the thermocline depth in the east of the equatorial Pacific could also affect the
characteristics of El Niño. In the current climate, the mean upwelling in the eastern Pacific,
associated with the mean subsurface zonal advection, acts to reinforce the climatological
zonal and vertical temperature gradients. This tends to weaken anomalous SST warming in
this region. Both the mean upwelling and advection are projected to decrease in CGCMs
under global warming because of the weakening of the trade winds (Vecchi et al., 2006).
This could favour an increase in ENSO activity in the eastern Pacific (Collins et al., 2010).
However, a weaker mean upwelling (w) may produce a weaker thermocline feedback in the
eastern equatorial Pacific, and thus decrease EP El Niño variability (DiNezio et al., 2012). A
shallower thermocline depth in the eastern Pacific (which is not the case if the thermocline
flatten with a slight deepening in the eastern Pacific), would be more influential on SST
variability (Philip and van Oldenborgh, 2006) and therefore favour an increase of ENSO
variability in the eastern Pacific.
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Another likely impact of global warming is the increase in ENSO-related rainfall variability
in the central and eastern tropical Pacific (Power et al., 2013). The more frequent establish-
ment of atmospheric convection in the eastern equatorial Pacific is induced by the decrease
or even reversal of the meridional and zonal SST gradients (Cai et al., 2014, 2015a, 2017),
rather than by localized warming that exceeds the convective threshold (which is likely to in-
crease with the mean SST (Johnson and Xie, 2010)). They argued that because of the faster
SST warming in the eastern tropical Pacific and the associated decrease in the meridional
gradient, the ITCZ is likely to move more often southward and induce ENSO precipitation
in the eastern Pacific. The ITCZ southward shift and the increase in extreme rainfall in the
eastern Pacific are two features associated with extreme El Niño events. This mechanism will
induce a doubling in occurrence frequency of extreme precipitation El Niño events, defined
in terms of eastern equatorial rainfall pattern, under the global warming RCP8.5 scenario.
However, Cai et al. (2017) and Williams and Patricola (2018) pointed out that it is unclear
to what extent rain-based indices reflect changes in ENSO variability dynamics or changes
in mean state due to the increase in column water vapour. Cai et al. (2017) decomposed the
rainfall time-series trends in Niño-3.4 and argued that the increased frequency in occurrence
of extreme precipitation El Niño events account for 50 % of the increase in mean rainfall.
They confirmed, analysing the upward atmospheric vertical velocity, another proxy for deep
convection less subject to an arbitrary threshold than rainfall, that the greater warming in the
eastern equatorial Pacific than surrounding regions (Xie et al., 2010) would make convection
easier to establish in the normally cold and dry Niño-3 region, even without SST changes (Cai
et al., 2014). Williams and Patricola (2018) showed, using a method taking into account the
increase in the convective threshold under global warming, that both CP and extreme EP El
Niño frequency should simultaneously increase. This is because both the central and eastern
Pacific SST shift closer to the convective threshold (Johnson and Xie, 2010). However, we
should keep in mind that these results are directly related to the projected tropical Pacific
warming pattern, which is sensitive to common model bias, although the Cold Tongue bias
rectification seems to favour warming in the eastern Pacific and thus facilitate ENSO rainfall.

Another robust change in the projected mean state among CGCMs is the weakening of
the westward equatorial mean currents, which can even lead to currents reversals (Vecchi
et al., 2006; Santoso et al., 2013). Santoso et al. (2013) suggested that this is a determining
factor for the future increase (up to a doubling) of El Niño events that propagate eastward
whatever their magnitude. The eastward propagation is a current feature of extreme El Niño
events, contrary to moderate El Niño and La Niña events. However, when analysing observed
eastward propagating El Niño events after 1976, especially the two extreme El Niño events of
1982-83 and 1997-98, the propagation direction is partly due to the weakening of the westward
mean currents and partly due to eastward current anomalies, strong enough to reverse the
mean current. In future climate simulated by 40 CMIP3 and CMIP5 models, Santoso et al.
(2013) showed that eastward propagating El Niño events are mainly associated with the
projected mean currents weakening. This facilitates the current reversal and increases the
probability of eastward propagating El Niño events of any intensity, and not only of high
magnitude as in present situation. When they are associated in addition with a currents
reversal (45 %), El Niño events are mainly (85 %) of large magnitude, often even higher than
in historical climate.

Balance between atmospheric feedbacks (Rädel et al., 2016) or climatological mean Pacific
subtropical cells (STC) (Chen et al., 2015b, 2017b) have also been suggested to explain the
wide ENSO amplitude spread among models. For instance, Rädel et al. (2016) suggested that
the response of ENSO amplitude to climate change will in part be determined by a balance
between increasing cloud longwave feedback and a possible reduction in the area covered by
upper-level clouds, known to strengthen the Bjerknes feedback.

As discussed in paragraph 1.4.1, model uncertainties in ENSO amplitude changes are
related to the tropical Pacific warming pattern (Zheng et al., 2016; Li et al., 2017): El Niño
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(La Niña)-like warming reduces (increases) the mean SST barrier to the tropical convec-
tion threshold (Johnson and Xie, 2010) in the eastern Pacific, reinforcing (weakening) the
convection feedback on ENSO and reinforcing (suppressing) the ENSO SST variability via
the Bjerknes feedback. The diversity of warming patterns in CGCMs is related to the Cold
Tongue bias, which may modify ENSO dynamics by inducing biases in both oceanic and at-
mospheric feedbacks and inducing error compensation (Guilyardi et al., 2009a; DiNezio et al.,
2012; Kim et al., 2014; Bayr et al., 2018a,b). The Cold Tongue bias shifts the rising branch
of the Walker circulation too far to the west (by up to 30° in CMIP5 models), resulting in an
underestimation of two important ENSO atmospheric feedbacks, the atmospheric component
of the Bjerknes feedback (wind-SST feedback) and the heat flux-SST feedback (Bayr et al.,
2018a). It leads to erroneous convective response during ENSO, which becomes driven by an
anomalous positive shortwave radiation feedback rather than the realistic wind-SST feedback
(Bayr et al., 2018b).

Additionally to the large diversity of ENSO projected changes by CGCMs summarized
above, the natural ENSO variability also hinders our understanding of the effect of global
warming on ENSO properties (Stevenson, 2012; Zheng et al., 2018). Uncertainties in ENSO
amplitude due to internal variability are indeed of the same order of magnitude as those due
to anthropogenic forcing (Zheng et al., 2018).
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ENSO impacts

ENSO affects weather events, ecosystems, agriculture and fisheries worldwide through
atmospheric and oceanic teleconnections. The impacts of the Eastern Pacific El Niño events
include a monsoon disturbance, severe droughts and forest fires in Indonesia, India and north-
eastern Australia in the boreal summer, winter floods and landslides in Ecuador, Peru and the
south-western United States, an interruption of favourable conditions for industrial anchovy
fishing off the Peruvian coast and a potentially devastating bleaching of the tropical Pacific
coral (Goddard and Dilley, 2005; McPhaden et al., 2006). As an example, the 1997-98 strong
El Niño event inflicted costs of approximately $33 billions in the world.

The impacts of ENSO are likely to change in intensity with global warming. Weaker El
Niño events could produce increased impacts in terms of regional temperature extremes (heat
waves) and wildfire frequency, mainly due to changes in land-atmosphere feedbacks (Fasullo
et al., 2018).

Canonical ENSO

• Simplified view of ENSO

ENSO is a disruption of the tropical Pacific mean state. In average, the sea surface
temperatures (SST) in the western tropical Pacific are among the warmest in the world
(greater than 28 ◦C), while SST in the eastern Pacific are 4 to 10 ◦C colder. The “Warm
Pool” in the west is maintained by the trade winds that blow from east to west along the
equator. Above these warm SST, atmospheric deep convection can develop, generating heavy
rainfall over “the Maritime continent”, the western tropical Pacific and the eastern Indian
Ocean. In the eastern Pacific, the trade winds drive coastal and equatorial upwelling of deep
cold water that cools the surface and forms the “Cold Tongue”. The thermocline, the sharp
boundary separating warm upper waters from cold deeper waters, is close to the surface in
the eastern Pacific, which favours the transport of cold water to the surface and deep in
the western Pacific. This wind-driven zonal SST contrast results in higher pressure in the
east than in the west, which reinforces the trade winds. The tropical Pacific mean state
is thus maintained by an ocean-atmosphere coupled positive loop, between winds, SST and
thermocline depth, called the Bjerknes feedback. Colder SST in the eastern Pacific than in
the western Pacific drive stronger easterly winds due to the zonal pressure gradient. The
easterly winds, in turn, reinforce the upwelling of cold waters, by shoaling the thermocline
close to the surface; surface waters in the eastern Pacific become even colder and so on.

ENSO anomalies can grow thanks to the SST-wind Bjerknes feedback. Suppose to start
with an anomalous warming in the eastern Pacific, due to a depressed thermocline for in-
stance. The zonal SST contrast decreases, so does the pressure gradient, which leads to a
weakening of the trade winds. The upwelling of cold water is therefore reduced and the
thermocline in the eastern Pacific subsequently deepens, which reinforces the SST warming.
Thus, during El Niño (La Niña) events, anomalous westerly (stronger easterly) winds in the
western-to-central equatorial Pacific and positive (negative) SST anomalies in the eastern
equatorial Pacific reinforce each other. The transition from the warm El Niño to the cold La
Niña phase requires a delayed negative feedback, which has been suggested to come from an
ocean dynamical adjustment, i.e. the restoring force of the unstable ENSO ocean-atmosphere
coupled interaction. These negative feedbacks include the widely accepted recharge-discharge
(RD) paradigm.
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The key variable is the thermocline depth, whose wind-driven variations are not as per-
fectly in phase with the winds as they are with SST changes. The delayed oceanic subsurface
adjustment to the winds acts to discharge (recharge during La Niña events) the equatorial
upper heat content, i.e. the amount of warm water above the thermocline, and eventually
terminates the ENSO event. The upper heat content could provide thus the memory of the
oscillation between the warm and cold phases of ENSO.

At first approximation, the ENSO ocean dynamics is linear, while the surface layer air-
sea coupled processes that determine the SST variability are quite non-linear. The main
structuring theories of ENSO were built in stages:

∗ Sir Gilbert Walker defined the Southern Oscillation in 1923;
∗ Bjerknes (1969) described the air-sea coupled feedback at play in the tropical Pacific

and defined ENSO as a tropical Pacific-scale phenomenon;
∗ Wyrtki (1975) showed that El Niño needs a recharge of heat content in the western

Pacific, or in other terms a “build-up” of warm water, to onset;
∗ Zebiak and Cane (1987) and Jin (1997a,b) took up the previous ideas and turned

them into equations and models.

However, this self-sustained oscillator view of ENSO, with the oceanic heat content as the
system’s memory, has been challenged by recent studies (Takahashi and Dewitte, 2016; Neske
and McGregor, 2018). Moreover, it does not explain the initiation phase of ENSO events,
nor the diversity of their spatial structures, nor the irregularity of their temporal evolutions.

• A lot of feedbacks

The dynamics of ENSO involves a lot of feedbacks, making the picture rather complicated.
In addition to the atmospheric component of the Bjerknes air-sea coupled feedback (between
SST and winds), oceanic feedbacks are involved through the thermocline depth variations:

∗ the zonal advective feedback (ZAF): advection of mean temperature by anomalous
zonal currents;

∗ the thermocline feedback (TCF): vertical advection of anomalous warm subsurface
waters by the mean upwelling;

∗ the Ekman or upwelling feedback: vertical advection of mean ocean temperature by
anomalous upwelling.

Thermodynamic feedbacks are also invoked in ENSO dynamics, such as the atmospheric
seasonal-phase locking feedback (Lengaigne et al., 2006), the thermal damping by net surface
heat flux (negative feedback), the cloud radiative feedback, which may be positive or negative
feedback depending on the nature of clouds (Rädel et al., 2016), among others.
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ENSO diversity

ENSO diversity refers to the spatial and temporal diversity among El Niño events. The
two main classifications used in this thesis are:

∗ the Central Pacific (CP) and Eastern Pacific (EP) El Niño events, differen-
tiated by the location of anomalous SST warming (Kao and Yu, 2009; Kug et al.,
2009; Yeh et al., 2009b);

∗ the strong and moderate El Niño events, differentiated by the intensity of the
SST warming in the eastern Pacific, a region of high variability (Takahashi et al.,
2011).

The spatial diversity is related to the amplitude and flavour of the event: while CP El
Niño events are exclusively moderate or weak, strong El Niño events are only EP El Niños.
However, EP El Niño events can be both moderate and strong (Dewitte and Takahashi,
2017).

• Spatial diversity

In addition to their distinct SSTA warming centres, EP and CP El Niño events are
commonly distinguished from different characteristics.

∗ EP El Niño events display a stronger SSTA warming, basin-wide thermocline and
surface winds variations, with phase reversal signatures and discharges of heat con-
tent as described by ENSO waves theories (Suarez and Schopf, 1988; Jin, 1997a),

∗ CP El Niño events tend to appear, develop and decay in situ (i.e. events relatively
stationary), with surface winds, SST and subsurface temperature anomalies confined
in the central Pacific.

Different mechanisms have been suggested to explain ENSO spatial diversity, including:

∗ the distinct roles of the oceanic processes: the TCF play a key role in the devel-
opment and decay of EP events while the ZAF is a key process during CP events
(Kug et al., 2009; Capotondi, 2013; Choi et al., 2011; Ren and Jin, 2013). The
thermocline depth variations and the recharge-discharge processes could become
progressively weaker as the SSTA peaks of the events move further west;

∗ a balance between the recharged state of the equatorial Pacific and the modulated
WWBs, which could trigger CP or EP El Niño events following the values of these
two parameters, and which could thus create the continuum of El Niño diversity
(Chen et al., 2015a; Lai et al., 2015);

∗ the key role of the atmospheric forcing in the CP El Niño onset, via the sensitivity
of the central Pacific mixed-layer dynamics to sub-tropical precursors, such as the
North Pacific Oscillation (NPO) or the Pacific Meridional Mode (PMM) (Vimont
et al., 2003; Chang et al., 2007; Yu and Paek, 2015; Thomas and Vimont, 2016);

∗ the role of air-sea interactions in the eastern Pacific, assimilated to a developing
seasonal Bjerknes feedback mode, which could trigger moderate EP El Niño events
in boreal summer (Dewitte and Takahashi, 2017).

These two flavours of El Niño events could be connected to the “T-mode” and “SST-mode”
(Fedorov and Philander, 2001) or “quasi-quadriennal” and “quasi-biennal” modes (Bejarano
and Jin, 2008; Xie and Jin, 2018), highlighting the role of the tropical Pacific background
state in ENSO flavours.
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• Intensity diversity

Non-linear processes have been suggested as essential in the development of strong EP El
Niño events (Santoso et al., 2017), including:

∗ Coupled interactions between modulated WWBs and SST (Puy et al., 2016b) could
be an important trigger of strong El Niño. The key role of the WWBs has been high-
lighted in the development of strong El Niños, whether in March-April (Boulanger
and Menkes, 1999; Lengaigne et al., 2002; Chen et al., 2015a) or in summer/fall
(Takahashi and Dewitte, 2016; Puy et al., 2017). Hameed et al. (2018) suggested
that the westerly winds that counter the easterlies are favoured by the positive phase
of the Indian Oscillation Dipole (IOD). The majority of studies considers that an
associated high recharged state in winter is required for a strong El Niño event to de-
velop, but it may not be a necessary condition (Takahashi and Dewitte, 2016). The
modulation of the WWBs response by the tropical Pacific mean state depends on
both the WWBs characteristics and the structure of the underlying ocean. However,
the stochastic part of the modulated WWBs may cancel El Niño growth, making the
phenomenon only probabilistic (Puy et al., 2017). Moreover, the presence of WWBs
in the central Pacific in late summer and early fall seems crucial in the development
of an EP El Niño into a strong El Niño event, as they counter the easterly winds in
the far eastern Pacific. The origin of the latter are suggested to be due to ENSO
itself (Hameed et al., 2018), or to a SST warming off the Peruvian coast, which could
be linked to the SPMM for instance (Dewitte and Takahashi, 2017).

∗ Non-linearities in the Bjerknes feedback could explain the evolution of an EP El
Niño event into a strong El Niño event (Dommenget et al., 2013; Takahashi and
Dewitte, 2016; Takahashi et al., 2018). When the eastern Pacific SST warming
reaches a threshold, the Bjerknes feedback is amplified and accelerate the warming.
The reasons why the eastern Pacific is able to reach this unusually high warming
are still investigated. Note that non-linearities in the SST-wind feedback may be
induced by the non-linear response of the tropical atmospheric convection to SST
(Cai et al., 2014).

∗ Non-linear oceanic processes, such as the Non-linear Dynamical Heating (NDH) (An
and Jin, 2004; An et al., 2005a), have also been suggested to trigger strong El Niño
events, although recent studies questioned the role of NDH in the growth of strong
El Niño events (Takahashi and Dewitte, 2016; Liang et al., 2017). Subtle balance
between oceanic feedbacks, especially between TCF and ZAF, may also play a role
in the development into a strong El Niño event and also dictate the direction of
propagation of the event (Neelin et al., 1998; Santoso et al., 2013).
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Low-frequency Pacific variability

ENSO properties (amplitude, frequency, spatial distribution) vary over decadal to multi-
decadal time scales. Different sources of the modulation have been suggested, including
stochastic origin, internal variability in the tropical Pacific, extra-tropical atmospheric or
oceanic teleconnections, or external forcing.

The low-frequency modulation of ENSO may emerge from internal processes of the tropi-
cal Pacific climate system, in the absence of any variation in external forcing. ENSO decadal
modulation can then be conceived through the coupled instabilities approach, in which the
prescribed mean state induces ENSO characteristics (Fedorov and Philander, 2000; Bejarano
and Jin, 2008).

In turn, the intrinsic modulation of ENSO can affect the multi-decadal mean state through
a positive feedback between ENSO and decadal climate modes. In particular, the internal
non-linearities of the tropical coupled system dynamics, such as the asymmetry between
El Niño and La Niña, can modify the mean state through internal rectification processes
(Timmermann and Jin, 2002; Jin et al., 2003a; Rodgers et al., 2004; Schopf and Burgman,
2006).

This ENSO modulation can lead to a confused detection of anthropogenic influence on
short-term climate measurements: to what extent is the observed modulation of ENSO the
cause or consequence of anthropogenic changes or intrinsic multi-decadal changes in the
background state of the equatorial Pacific?

Internal variability appears to be a crucial component of the uncertainties of climate
projections since, for instance, the spread among models of the ENSO amplitude changes
due to the internal variability is comparable to the spread of the projected ENSO amplitude
changes with global warming (Zheng et al., 2018).
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Changes in a warmer climate

The climate is changing: the atmospheric concentration of CO2, powerful greenhouse gas,
has exceeded 400 ppm. As a result, the last four years have been the warmest years on record
since 1880 and 16 of the 17 warmest years have occurred since 2000. The global warming of
surface temperature alters ocean temperatures as well as large-scale atmospheric and oceanic
circulations.

• Changes in the tropical Pacific mean state

There is a strong consensus among CGCMs on some projected changes of the mean
state under global warming scenarios. In particular, the Walker circulation is projected to
weaken (Vecchi and Soden, 2007), which will decrease the strength of the trade winds and
thus alter the thermal structure and ocean circulation in the tropical Pacific (DiNezio et al.,
2009; Santoso et al., 2013). The equatorial thermocline is projected to become shallower
and sharper (Vecchi and Soden, 2007; Yeh et al., 2009a). The equatorial Pacific is projected
to warm faster than the off-equatorial Pacific (Collins et al., 2010) and the east equatorial
Pacific and the maritime continent faster than the central equatorial Pacific (Xie et al., 2010).
The warming pattern is projected to be more “El Niño-like”, even if uncertainties remain due
to the strong biases exhibited by the models and their inability to simulate the current La
Niña-like pattern.

• Changes in ENSO

The questions of whether global warming has already affected ENSO and how global
warming will affect ENSO in the future are still open. There is no inter-models consensus on
the evolution of ENSO amplitude and frequency based on the statistics of traditional ENSO
indices (Collins et al., 2010; Bellenger et al., 2014). Projected changes in El Niño intensity
are also heavily model dependent (Guilyardi et al., 2009b; Kim and Yu, 2012; Bellenger
et al., 2014; Chen et al., 2017b) and not significantly distinguishable from natural modulation
(Stevenson, 2012; Chen et al., 2017a; Zheng et al., 2018). Uncertainties on the future of
ENSO mainly come from model biases and especially from the spread among models in the
projection of the spatial pattern of tropical Pacific surface warming (Zheng et al., 2016).
However, some features associated with extreme El Niño events in current climate have
higher and robust probability of occurrence in the future climate, such as the zonal direction
of propagation (Santoso et al., 2013) or the extreme ENSO-induced precipitation events (Cai
et al., 2014). Although these studies are heading towards a mechanistic understanding of
ENSO’s sensitivity to climate change, they are hindered by the difficulties associated with
the high spread among models (i.e. relatively weak consensus).
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2.1 Data description

ENSO is the main mode of variability in the tropical Pacific. It has been observed that
this inter-annual phenomenon has a return period of between 2 and 7 years, governed by
multi-scale processes ranging from unpredictable high frequency variability to low-frequency
modulation through seasonal time scales. Past studies have shown that ENSO is modulated at
low frequency, inter-decadal to inter-centennial time scales, which induces changes in intrinsic
ENSO statistics when analysing shorter periods (Wittenberg, 2009; Stevenson et al., 2010;
Stevenson, 2012). This long-term modulated variability can not be clearly distinguished
in the too short instrumental records compared to the time-scale of ENSO variability. As
an evidence, ENSO analysis in observations, especially when taking the period with a better
reliability of measurements, since 1950, is tantamount to reviewing ENSO statistics with only
a few recorded events and rare strong El Niño events. It is thus difficult to characterise ENSO
diversity and to understand associated dynamics with high statistical confidence through only
observation datasets. Paleo-climate proxy data provide an alternative to reconstruct ENSO
variability in past climates. Paleo ENSO records showed that ENSO has been around for at
least millennia (Lu et al., 2018). Paleo-proxies are either direct proxies of ENSO (such as
coral and mollusc records) or indirect proxies from remote regions impacting by ENSO (the
proxies are then lake sediment, tree ring, speleothem). Paleo-proxies provide indirect measure
of atmospheric or oceanic temperature, often through the analysis of the oxygen isotope ratio
(δ18O/δ16O). However, they are scattered and punctual and inconsistencies among the data
or large uncertainties in the measurement lead to coupling the paleo-proxies analysis with
past climate simulations (Karamperidou et al., 2015).

Thus, in a complementary way to observations sparsity (paragraph 2.1.1), long climate
simulations (see paragraph 2.1.2) are used to provide information on internal variability and
to estimate changes in a warmer climate. However, although models are the main tools for
estimating the potential impact of climate change on ENSO, they are subject to systematic
biases (paragraph 2.1.2.2) and uncertainties about their ability to simulate features and mech-
anisms specific to ENSO (paragraph 2.1.4). It results in confidence in models projections at
the “medium” level according to the Intergovernmental Panel on Climate Change (IPCC)
report (paragraph 2.1.2.1). In this thesis, we use a Coupled General Circulation Model
(CGCM), CESM-LE, which provides a long simulation without anthropogenic forcings as
well as multiple realisations of the climate, over the 1920-2100 period with a combination of
both natural and anthropogenic climate forcings (paragraph 2.1.3). The realism of ENSO in
the CESM-LE simulations is confronted with observations (paragraph 2.1.4).

2.1.1 Observations and Reanalysis

Different datasets of observations or reanalysis are used to analyse the efficiency of the general
coupled model to reproduce the climate system and to estimate whether the simulation
of the internal climate variability spread simulated by the members of CESM-LE includes
the observed climate trajectory. Observation datasets are derived from satellite or in-situ
measurements while reanalysis are a combination of dynamical models and assimilation of
all the observations available at the time the analysis is performed, to reproduce the recent
past climate system.

Note that we have chosen as the start date the year 1950 because it has been shown that
before this date, which corresponds to the improvement of the spatial and temporal coverage
of the Sea Surface Temperature (SST) data, the reconstructed data may have been altered
by the interpolation method (Deser et al., 2010; Ray and Giese, 2012).

HadISST v1.1

We employ the Met Office Hadley Centre’s Sea Ice and Sea Surface Temperature version 1.1
(HadISST v1.1) dataset (Rayner, 2003). The dataset is provided by the Met Office Hadley
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Centre, from their Web site at https://www.metoffice.gov.uk/hadobs/hadisst/. This
monthly average sea surface temperature dataset comes from the Met Office Marine Data
Bank (MDB), consisting mainly of in-situ measurements of ship tracks up to 1996, and from
data received through the Global Telecommunications System (GTS) since 1982. SST from
the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) have been used
through 1997 to enhance MDB data coverage. Since 1998, the NCEP-GTS is used. The
reconstruction of SST uses a reduced-space optimal interpolation method.

It has been recently shown that the HadISST v1.1 dataset presents numerous problems
among which a lower variability of the global SST than in the OISST dataset (Optimum Inter-
polation Sea Surface Temperature, an observation dataset developed by the NOAA (Banzon
et al., 2016)), a large zonal discontinuity of SST at the dateline which might limit the spatial
gradients analysis and additional zonal discontinuities at intervals of 2° of longitude which
makes the dataset inadequate to study spatial derivatives of SST 1. Moreover, a misrepre-
sentation of the equatorial Pacific trend over the observed period (1900-2010), cooling rather
than warming (Deser et al., 2010), could alter results due to the interpolation method. De-
spite these known limitations, we use this commonly used dataset, in addition to the one
below, to improve the robustness of the results presented.

The dataset has a resolution grid of 1° latitude-longitude. We use the period from January
1950 to December 2017.

ERSST v3b

The National Oceanic and Atmospheric Administration (NOAA) Extended Reconstructed
Sea Surface Temperature version 3b (ERSST v3b) dataset is also used (Smith et al., 2008).
The dataset is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from
their Web site at https://www.esrl.noaa.gov/psd/.

The monthly average sea surface temperature dataset comes from the ICOADS up to 2007,
which includes buoy and ship observations, and from the NCEP-GTS since 2007. Satellite
SST data are not used, unlike version 3 described in Smith et al. (2008), because they led
to the appearance of residual cold biases. The reconstruction of the SST uses improved
statistical methods to fill in missing data due to sparse in-situ data. The statistical methods
is well explained on the Web site https://climatedataguide.ucar.edu/climate-data/ in
the tab ERSST v3 and v3b, Expert Guidance. Unlike the HadISST dataset, the ERSST
dataset takes into account changes in SST measurement practices over time.

The dataset has a resolution grid of 2° latitude-longitude. We also use the period from
January 1950 to December 2017.

GPCP v2.3

The precipitation comes from the Global Precipitation Climatology Project (GPCP) Monthly
Analysis Product version 2.3 (Adler et al., 2003). The monthly dataset is available at
http://eagle1.umd.edu/GPCP_CDR/Monthly_Data/. The precipitation dataset is composed
from rain gauges stations over land, radars and satellites data over land and ocean. It
combines indirect measurements through satellites which measure brightness temperature
of clouds converted to rain rate, and radars which measure energy reflected by clouds and
rain drops, with direct but sparse and localised measurements of rain gauges. The lack of
direct measurement over ocean which does not allow validation of satellite estimates induces
systematic errors.

The dataset has a resolution grid of 2.5° latitude-longitude. We use the period from
January 1979 (beginning of the dataset) to December 2017.

SODA v2.2.4

We use also the Simple Ocean Data Assimilation (SODA) reanalysis version 2.2.4 (Carton

1http://ir.librairy.oregonstate.edu/concern/defaults/kw52j9632
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and Giese, 2008). SODA v2.2.4 is forced by 20CRv2 winds dataset (Compo et al., 2011) and
constrained by assimilation, via an optimal interpolation scheme, of all available observed
temperatures and salinities. The reanalysis variables are ocean temperature, salinity, hori-
zontal and vertical ocean velocities, sea level and wind stress. The reanalysis dataset uses
POP model as ocean component, the same component as the CESM-LE (see paragraph 2.1.3).

The reanalysis dataset has a resolution grid of 0.5° latitude-longitude and 40 vertical
levels. We use the period from January 1950 to December 2010 (end of the dataset).

2.1.2 Coupled General Circulation models

Before focusing on the model used in this thesis (CESM-LE), we present succinctly the global
climate models, their purpose, their general components and their limits.

2.1.2.1 CGCMs, CMIP and IPCC

Climate models are used in different configurations for different purposes: to access to the past
climate, to investigate the behaviour of particular systems, to improve theory by comparing
for instance the impacts of different configurations on the simulated dynamics, to forecast
weather, to project changes under various greenhouse gases (GHGs) scenarios, among many
other purposes. They are also used in addition to observations that have limitations in terms
of spatial and temporal density. For instance few in-situ observations are available in oceans,
especially in subsurface (Fig. 2.1). The development of the ARGO floats (Roemmich and
Owens, 2000) leads to a significant increase in the spatial and depth repartition of measures,
but their recent development does not provide for now a long-timeserie of records.

Figure 2.1 – Number of temperature observations in global ocean versus depth. The temperature
measures come from XBTs, fixed moorings (such as TAO (Pacific) or PIRATA (Atlantic) programs)
and ARGO floats. The figure is reprinted from Hurrell et al. (2009).

Modelling the Earth climate system requires the development of a numerical code to solve
physical, thermo-dynamical, chemical, and biogeochemical equations of the system. Several
steps are needed to construct the model:

• identification of the relevant processes;
• theory;
• simplification of the theory (elimination of unnecessary processes);
• discretisation of the equations, consisting in cutting the space in meshes and the time

in elementary steps;
• parameterisation of unresolved processes;
• implementation as computer code.

The different steps lead intrinsically to uncertainties in the representation of the system.
The discretisation of the equations and the parameterisation of the sub-grid or sub-time scale
processes are the two main steps where assumptions and choices of the configuration lead to
a large range of behaviours between models and to numerical errors.

These choices are also dictated by the objectives of the modelling and different types of
simulations are used depending on the purpose:
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• Forecasts: they can be retrospective (or hind-cast) or weather forecasts. Hind-casts
are used in the past, to determine if the model performs well or not. They are repre-
sentations seeking to reproduce the state of the climate system as close as possible as
it has been observed. Weather forecasts correspond to the simulations used to predict
future weather, up to two weeks. These simulations use data assimilation.

• Climate predictions: this kind of simulations predict the average future climate
changes, on time scales that can go from the season to the next decade.

• Climate projections: climate projections are used to gain access to the Earth’s cli-
mate over long periods of time (decades up to centuries). They require hypothesis or
reconstructions of external forcings, such as orbital forcings (in particular for paleo-
climate or last millennium simulations) or green-house gases scenarios (for future pro-
jections of the Earth’s climate under global warming). They use coupled climate system
models. I mainly use this kind of simulations in my thesis work.

A Coupled General Circulation Model (CGCM) is composed of several components de-
scribing the evolution of different spheres of the earth climate system such as the atmosphere,
the ocean, the biosphere, the ice sphere. The main improvement in the last generation of
CGCMs, called Earth System Model (ESM) is the introduction of an interactive carbon cycle
component (Flato, 2011). This improvement was motivated by the impact of the terres-
trial and oceanic ecosystems in the modifications of the carbon cycle with global warming
(Friedlingstein et al., 2006). The main components of each kind of coupled model are:

• Physical climate system: atmosphere, ocean, cryosphere, land surface and exchange
processes of energy, water and momentum (definition of the World Climate Research
Program);

• Earth System: Physical climate system + aerosols + biogeochemical cycles + terrestri-
als and marine biology + atmospheric chemistry.

These CGCMs have been particularly developed in the framework of the Intergovern-
mental Panel on Climate Change (IPCC), an international initiative to raise awareness of
climate change that began in 1988. IPCC was created by the United Nations Environment
Programme (UN Environment) and the World Meteorological Organization (WMO). The
objective is to establish reliable projections of changes in the climate system due to human
activities. The human activities are changing the composition of the atmosphere in particular,
the spheres of the climate system in general. Some of these modifications have direct (green-
house gases emissions) or indirect (atmospheric chemical reactions) impact on the Earth’s
energy balance through radiative forcings changes and therefore are factors of climate change.

The Earth’s energy is balanced between the solar incoming radiation, source of power of
the climate system, and the outgoing radiation (Fig. 2.2a). However, beyond natural varia-
tions (see paragraph 2.1.2.3 for the natural modulation of the solar radiation for instance),
changes in the incoming short-waves radiation may occur from changes in clouds or aerosols
while changes in the outgoing radiation may emerge from changes in the Earth’s temperature
(surface or atmosphere). Radiative forcing is defined as the propensity of these factors to
conserve solar energy on Earth or to send it back into space. For instance, greenhouse gases
present positive radiative forcing because they contribute to warm the atmosphere by sending
back to the Earth the long-wave radiation emitted by the Earth. Conversely, some aerosols
are likely to have negative radiative forcing by preventing solar radiation from reaching the
Earth’s surface and low atmosphere, reflecting them to space. Figure 2.2a shows the different
energy fluxes and the impact of different factors on them.

Climate feedbacks need to be taken into account in this balance (Fig. 2.2b). Climate
change can induce changes in various biogeochemical cycles (in particular water and carbon
cycles) that can reinforce (positive feedbacks) or mitigate (negative feedbacks) the expected
warming. As an example of positive feedback, the relationship between warming the atmo-
sphere and increasing its water vapour content further amplifies the initial warming. Another
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example of positive feedback is related to ice melting, in response to high latitudes warming,
which induces a decrease in surface albedo which decreases the proportion of radiation re-
flected by the surface, increasing the absorbed portion of radiation and the warming. Clouds
and aerosols feedbacks may be positive or negative, affecting both solar radiation and long-
waves radiation emitted from surface. They are widely responsible for the large inter-model
uncertainties in the projected changes due to the climate change. Figure 2.2b shows the
different climate feedbacks and their estimated contribution sign.

(a) Radiative forcings (b) Climate feedbacks

Figure 2.2 – (2.2a) Radiative balance between incoming solar short-wave radiation (SWR) and out-
going long-wave radiation (OLR). Ozone and aerosols, emitted mostly by human activities, absorb,
scatter and reflect SWR. Clouds whose properties may be modified by anthropogenic aerosols, have
different possible interactions with SWR and LWR. Finally, anthropogenic GHGs change outgoing
long-wave radiation by absorbing long-wave radiation (LWR) emitted from the surface. (2.2b) Cli-
mate feedbacks relative to the GHGs increase. The figures are reprinted from the fifth Assessment
Report (AR5) of the IPCC.

The IPCC is currently in its Sixth Assessment cycle, the Fifth Assessment Report (AR5)
was released in 2014. Most of the results of the IPCC working group I are based on studies
using CGCMs to project future climate changes and related impacts according to different
scenarios. In particular, a collaborative climate modelling process, coordinated by the World
Climate Research Programme (WCRP), has emerged through the Coupled Model Inter-
comparison Project (CMIP) since 1995. The last released set of CGCMs, CMIP5 (Taylor
et al., 2012), used in the preparation of the AR5, provides a multi-model ensemble for:

• examining whether the models realistically simulate the recent past;
• providing two time scales of projections of the future climate: near term (out to about

2035) and long term (out to 2100);
• determining the mechanisms responsible for differences in model projections in particu-

lar in poorly understood feedbacks such as those involving clouds and the carbon cycle.
The underlying issue is to understand why similarly forced models produce a such range
of climate responses.

The AR5 adopted 4 scenarios of GHGs concentration of long-term (century time scale)
integrations to simulate future climate. They are named Representative Concentration Path-
way (RCP) with a value corresponding to the radiative forcing in the year 2100 relative
to pre-industrial: +2.6, +4.5, +6.0 and +8.5 (W/m2) (Meinshausen et al., 2011). We use
simulations forced with the RCP8.5 scenario in the thesis.

All 4 scenarios are possible depending on how much GHGs are emitted in the years to
come. However, since 2000, the trajectories of several markers (global temperature, sea level
rise, Arctic sea-ice extent among others) follow those of the RCP8.5 scenario, which projects
a global average temperature increase of 3.7 ◦C (2.6 to 4.8 ◦C). The global temperature have
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already increased by 1.1 ◦C compared to the pre-industrial level. 2015, 2016, 2017, 2018
were the warmest years since 1850 and the pre-industrial period. The CO2 atmospheric
concentration reaches 400 ppm in average, a concentration never reached in 2.2 million years.

During the 2015 United Nations Climate Change Conference in Paris (COP21), the Paris
Agreement has been adopted, setting a long-term goal of holding the increase in global
mean temperature well below 2 ◦C above pre-industrial levels, pursuing efforts to limit the
temperature increase to 1.5 ◦C. A recent IPCC Special Report on Global Warming of 1.5 ◦C
above pre-industrial levels (SR15), released in October 2018, assessed climate risks of two
scenarios of global warming, +2.0 ◦C compared to +1.5 ◦C. They showed that every half
of degree of warming matters, amplifying risks on human societies through an increase in
extreme events such as heating waves, droughts, cyclones and tropical storms, floods. While
the commitments made by states under the Paris Agreement to reduce emissions are not
sufficient to limit global warming to 2 ◦C, and even less to 1.5 ◦C, the SR15 concludes that it
is essential to engage in a profound ecological transition of our societies in the next decade,
through de-carbonisation of the key sectors of energy, transport and agriculture.

CGCMs are therefore powerful tools used in future climate projections. In the thesis, we
investigate ENSO in the Large Ensemble of CESM. In comparison of CESM-LE, we use the
SST field of one model of the previous CMIP3 database: the Geophysical Fluid Dynamics
Laboratory Climate Model version 2.1 (GFDL CM2.1) (Delworth et al., 2006; Wittenberg
et al., 2006). We use the long-term (500 years) PI-control simulation of GFDL CM2.1, which
offers the possibility to establish statistical significances of ENSO properties to compare with
those in CESM-LE.

The choice of this model is motivated by the fact that it simulates consistently main
features of the tropical Pacific and ENSO (Guilyardi, 2006; van Oldenborgh et al., 2005;
Wittenberg et al., 2006). Moreover, the GFDL CM2.1 is one of the few models simulating
realistically the diversity of ENSO (Ham and Kug, 2012; Yu and Kim, 2013; Capotondi et al.,
2015) exhibiting in particular a bimodal distribution of the SST variability accounting for
extreme El Niño events (Takahashi et al., 2011). The GFDL CM2.1 is then widely used to
investigate different features of ENSO, such as dynamics processes associated with the two
spatial flavours of El Niño (Kug et al., 2010) or still the ENSO’s flavours modulation with
the mean state (Choi et al., 2011). Finally, Takahashi et al. (2011); Takahashi and Dewitte
(2016) and Dewitte and Takahashi (2017) investigated how realistically the model simulates
the ENSO diversity through strong and moderate El Niño events regimes. The thesis work
is based on the same approach of strong and moderate El Niño events but in CESM-LE.

2.1.2.2 Models’ biases

The presence of biases in a model suggests that at least one mechanism is poorly simulated,
which may impact future projections. Their evaluation is required to take them into account
when interpreting results.

The major source of diversity between simulated surface temperature in CGCMs comes
from the simulation of clouds, atmospheric convection, and oceanic mixing (Bellenger et al.,
2014). In particular, the representation of clouds and their response to SST, which can lead
to atmospheric convection and change wind circulation, is of paramount importance in the
realistic simulation of the climate system and its modes of variability, including ENSO (Lloyd
et al., 2009, 2011, 2012; Bayr et al., 2018b). However, resolving convection processes requires
a resolution of 1 km while it is 100 km in CMIP5 models.

When focusing on the tropical Pacific, common and known biases affect the mean state and
natural variability, especially in ENSO key areas of the Tropical Pacific: the western region
(the “Warm Pool”) and the eastern region (where the thermocline influence is important).
The main biases of the current mean state in the tropical Pacific are:

• an equatorial Cold Tongue too intense (too cool) and extending too westward;
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• a double Inter-Tropical Convergence Zone (ITCZ);
• a bias in eastern Pacific SST off Equator and Peru, in the upwelling region.

The Cold Tongue bias is suggested to be due to a misrepresentation of the air-sea interac-
tions via too strong zonal currents as well as excessive oceanic upwelling, related to too strong
simulated zonal winds (Zheng et al., 2012; Vannière et al., 2013; Li and Xie, 2014). It results
in deficient precipitation and surface easterly wind biases in the western half of the Pacific (Li
and Xie, 2014). The equatorial Pacific Cold Tongue bias leads also to the underestimation
of two important atmospheric feedbacks in ENSO dynamics: the positive (amplifying) wind-
SST feedback and the negative (damping) net heat flux-SST feedback, both dependent on
SST (Lloyd et al., 2011; Bayr et al., 2018a). During El Niño (La Niña) events, the convective
response to SST warming in the western-to-central Pacific induces an eastward (westward)
shift of the rising branch of the Walker circulation. The displacement of the atmospheric
deep convection leads to ENSO zonal wind-SST and heat flux feedbacks. However, the Cold
Tongue bias shifts the rising branch of the Walker circulation (see paragraph 1.1.1) west-
ward by up to 30°, which results in a weak convective response during ENSO events. Bayr
et al. (2018a) showed that the two important ENSO feedbacks are mainly related to the SST
mean state rather than to differences in model parameterisation. The representation of the
mean state is all the more crucial because the biases can partly compensate and still simulate
realistic ENSO amplitude (Lloyd et al., 2009; Bellenger et al., 2014; Bayr et al., 2018b).

The double ITCZ bias refers to excessive precipitation in the southern tropical Pacific,
corresponding to a simulated symmetric counterpart of the north ITCZ (see paragraph 1.1.1).
It induces warmer SST, weaker easterly, and stronger meridional wind divergences away
from the equator relative to observations (Zhang et al., 2015b). The double ITCZ bias
invokes global processes. Hwang and Frierson (2013) showed that cloud biases outside the
tropical band contribute to the double ITCZ bias because tropical precipitation moves to the
hemisphere that receives the most heat, from sun or ocean. Li and Xie (2014) suggested that
the double ITCZ bias is linked to an excessive solar radiation in the southern hemisphere
Pacific resulting from insufficient cloud radiative forcings.

The region of the far eastern equatorial Pacific (off Equator and Peru) is also particularly
biased in CGCMs (Richter, 2015; Zuidema et al., 2016). The coastal upwelling is not ade-
quately simulated, as are cloud coverage and feedbacks, making SST too warm compared to
observations. This bias has long been associated with a lack of low clouds due to SST errors,
but the errors seem to come only from the atmospheric component (Zuidema et al., 2016).
Exarchou et al. (2018) showed in a complementary way in the tropical Atlantic that the warm
SST bias is due to an excessive solar absorption in the ocean mixed layer, which can be linked
to the unrealistically low cloud cover, but it may also be due to the lack of simulation of the
biological productivity variability in the ocean. However, Takahashi and Dewitte (2016) and
Dewitte and Takahashi (2017) showed that it is a key region in the growth of El Niño event
and in its differentiation between moderate and strong events.

A realistic simulation of the background state is therefore essential to the projection
of the climate system responses to global warming (Fedorov and Philander (2000), see also
paragraph 1.4.1). The Cold Tongue bias and the double ITCZ remain large in CMIP5 models
and explain more than three-fourths of inter-models spread in the tropical Pacific precipitation
pattern (Li and Xie, 2014). And differences in simulated mean-state SST between models
are suggested to provide spread in ENSO simulation in current climate models (Bayr et al.,
2018a). Karamperidou et al. (2017) showed also that the representation of ENSO oceanic non-
linearities is a key element to correctly apprehend the physical processes linked to ENSO and
may affect the tropical Pacific response to external forcing. It should be noted however that
the CMIP5 generation of CGCMs has improved the representation of the tropical Pacific mean
state (mean zonal SST gradient), in particular due to the increased latitudes resolution leading
to a more realistic simulation of the equatorial upwelling even if there is no improvement in
the resolution of the double ITCZ bias in CMIP5 compared to CMIP3 database (Zhang et al.,
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2015b).

The ENSO simulation presents large spread between models and in particular:

• the ENSO amplitude shows large inter-models discrepancy;
• the dominant period of ENSO is between 2-3 years instead of 3-8 years in observations;
• the ENSO SST anomalies (SSTA) have a meridional structure too narrow and extending

too westward;
• the seasonal phase locking of ENSO is weakly represented in models.

It has been shown that the improvement of the Cold Tongue improves other characteristics
of ENSO, whose variability extend too far to the west (Bellenger et al., 2014). Xiang et al.
(2012) showed that the Cold Tongue bias drastically reduces the thermocline feedback in
the eastern Pacific, whose equilibrium with the zonal advective feedback ultimately leads to
divergent changes in ENSO amplitude simulated by the CMIP5 models (Chen et al., 2017b).
An excessive Cold Tongue bias also leads to a weak seasonal phase-locking by reducing the
Ekman and thermocline feedbacks in late boreal fall and early winter (Wengel et al., 2018).
The associated shallow thermocline may induce the too short dominant period of ENSO that
leads to increased inter-annual variability (Meehl et al., 2001). The short dominant period of
ENSO could also be enhanced through the biases of the simulated seasonal cycle (upwelling,
zonal current and SST), which leads to the enhancement of a fast coupled mode that interacts
with the ENSO mode (Dewitte et al., 2007). Biases in the mean surface circulation lead
to biases in the advection terms which modifies the mode of privileged variability of the
equatorial Pacific. An enhanced (diminished) contribution of the zonal advective feedback
is associated with the prevalence of the fast surface-driven (slow recharge-oscillator) ENSO
mode (Jin and Neelin, 1993; Neelin et al., 1998) and a trend toward a cooler (warmer) mean
state in the western to central equatorial Pacific (Belmadani et al., 2010).

The weak atmospheric response to SSTA patterns may also alter ENSO dynamics. Its
enhancement in models leads to improving the ENSO seasonal phase locking and the asym-
metry El Niño-La Niña (Bayr et al., 2018a). Abellán et al. (2017a) showed that most CMIP5
models realistically reproduce the southward shift of the westerly winds in winter, improv-
ing the winter peak of ENSO, even if the seasonal synchronisation is still underestimated.
The atmospheric mean state biases impact likewise the ability of a model to simulate the
two types of ENSO flavours. Ham and Kug (2012) showed that it is directly linked to the
sensitivity of the atmospheric response to distinct SSTA patterns, which can be relatively
weak due to climatological dry and cold biases in the equatorial central Pacific. Li et al.
(2017) suggested that integrating the radiative effects of precipitating ice in models would
also improve the simulated life-cycle of Central Pacific (CP) El Niño events. Because of the
models’ systematic biases, there are too many extreme events in models. Conversely, Graham
et al. (2017) showed that due to the Cold Tongue bias, CGCMs tend to simulate fake El Niño
events, double peaking in the tropical band. Finally, a limited number of climate models is
able to simulate the statistics of the two types of ENSO events even if the ENSO diversity is
better simulated in CMIP5 than CMIP3 models (Kim and Yu, 2012; Ham and Kug, 2012).

CGCMs are then powerful and useful tools to examine ENSO dynamics and interactions
between global warming and ENSO, but their biases must be taken into consideration when
interpreting results (see paragraph 1.4.2). It is likely that the CGCMs capture behaviours
similar to reality but also non-realistic behaviours (Graham et al., 2017). Moreover, inter-
comparison CMIP studies hypothesised that the “true” value is the multi-model ensemble
mean. However, the value may be obtained for wrong reasons, altering the search for under-
lying processes, as shown by Kim (2011) (analysing the CMIP3 database) and Bayr et al.
(2018b) (analysing the CMIP5 database) among others. Most models with a too weak winds
response to SSTA have effects on thermocline variability, zonal advection and thermal damp-
ing, which may indeed lead to errors that cancel each other, simulating good ENSO statistics
for the wrong reasons.
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2.1.2.3 Estimation of the internal variability

In addition to projections of the future climate, CGCMs provide access to the internal vari-
ability of the simulated climate system. The variability of the system can be decomposed
into two components: forced (natural or anthropogenic) variability and internal (natural)
variability. The natural (other than anthropogenic) variability is the sum of:

• the variability due to external forcings such as solar radiation that modulates the ra-
diative budget. It is called external or forced variability;

• and the variability due to internal mechanisms linked to exchanges of energy, mass and
movement, within or between the different spheres of the climate system (atmosphere,
ocean, cryosphere, biosphere). It is called internal or intrinsic variability.

The main natural forcings affecting the (forced) variability of the system are the mod-
ulation of the solar radiation at short time-scales (day and seasonal cycles), the volcanic
eruptions modifying incoming short-wave radiation, the decadal modulation of the solar ra-
diation through sunspots (period of 11 years), and the variations of the astronomical param-
eters of the Earth (eccentricity, obliquity and precession) due to interplanetary gravitational
interactions (Milankovitch cycle).

The internal variability comes from intrinsic mechanisms of each climate components (in
particular from the unstable nature of the atmosphere and ocean components) as well as from
interactions between the different components of the system. They can generate irregular
fluctuations and quasi-periodic cycles. The internal variability may indeed be organised
around preferential structures, characterising modes of variability with different time-scales
(and space-scales) such as intra-seasonal variability (Madden-Julian Oscillation, MJO), inter-
annual variability (ENSO), decadal variability (Pacific Decadal Oscillation, PDO), etc. These
modes of internal variability interact with each other (for instance ENSO and the PDO, see
paragraph 1.3.2) and are also modulated by external forcings.

Detection and attribution of changes in climate require the understanding and assessment
of the natural variability of the climate system. Thanks to CGCMs simulations, internal
variability may be assessed through two different approaches.

The first method is based on PI-control simulations, which are long-term simulations
with only natural forcings, without anthropogenic forcings. Variability in such simulations
is induced by variations that the system is capable to generate itself, without variability in
external forcings. Different possible states that the climate system can take spontaneously
are described when they are integrated over a long time enough. The simulation provides
thus a reliable estimate of the internal variability of the climate system, before industrial
period.

The second approach relies on multiple realisations of a simulation, whose initial condi-
tions are slightly perturbed. The dispersion of the different trajectories simulated by each
member of the ensemble simulations corresponds to the internal variability of the climate
system, caused mostly by the non-linear nature of the climate dynamics. This method is
based on the theory of Lorenz (Lorenz, 1963) who highlighted the chaotic nature of the cli-
mate system and demonstrated sensitivity to the initial conditions of a deterministic chaotic
system through its attractor.

These two methods are not equivalent. Ensemble simulations allow a statistical descrip-
tion based on the realisation of independent events. PI-control simulation approach requires
to make certain assumptions on the properties of the system. In particular, we consider
that internal variability without anthropogenic forcing is similar to that with anthropogenic
forcing when studying the internal variability observed in the near past. In that case, in-
ternal variability and anthropogenic forcing do not interact. The equivalence between the
two methods also requires the assumption of the ergodicity of the system, that is, the mean
value of a statistically computed quantity over time is equal to the mean over the statistical
ensemble of a very large number of measurements. It means that temporal and ensemble
statistics are asymptotically equivalent.
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In this thesis, we use both methods to access to the internal variability of the simulated
climate system: a long-term pre-industrial control simulation (1801 years) and a large ensem-
ble of simulations of the historical and future climate system computed from a single model,
CESM1. In the first case, the variability of the climate system, used to establish if it is not
enough on its own to explain the detected changes, integrates only the internal variability
since the natural external forcings are constant. In the second case, the variability of the
system comes from both internal and external forcings, including anthropogenic forcings of
the 20th century.

Many studies use the CMIP multi-model ensemble to evaluate changes in the climate
system due to changes in external forcings and more particularly in radiative forcing induced
by human activities. However, this method requires the assumption that differences in physics
modelling between models (equations, discretisation, parameterisation, spatial and temporal
resolution) cause very low dispersion compared to the dispersion due to the variability of
the system. Another approach to counter the latter assumption is to discriminate models
that poorly simulate main features of the studied phenomenon. It is common to choose a
subset of CGCMs that reproduce a particular feature of ENSO. In that case, the method
requires the assumption that the CGCMs subset simulates a more reliable ENSO than the
multi-model ensemble mean. The difficulty is then to define the “bad” representation of the
ENSO feature, which can be biased by the result that we are looking for. The robustness of
the results when only few models of the ensemble remain can also be reduced.

The development of large ensemble of simulations (in addition to CESM-LE, the Canadian
Earth System Model Large Ensembles (CanESM2) (Kirchmeier-Young et al., 2016), and the
Max Planck Institute for Meteorology (MPI-M) Grand Ensemble (MPI-GE) (Bittner et al.,
2016), publicly available from the end of 2018 for instance) is very promising and can only
lead to an improved understanding of the variability of the climate system. They provide
unambiguous characterisations of the simulated internal variability in a changing climate
without being confounded by different model configurations.

2.1.3 CESM-LE project

2.1.3.1 Presentation

The model used in this study is the Community Earth System Model Large Ensemble (CESM-
LE) Project developed by the National Center for Atmospheric Research (NCAR) (Kay et al.,
2015). The data are available on-line on www.earthsystemgrid.org. We acknowledge the
CESM Large Ensemble Community Project and NSF/CISL/Yellowstone for providing model
outputs and supercomputing resources needed for a such ensemble simulations.

The CESM-LE project provides multiple realisations (42 members in the historical forc-
ing conditions and 40 members of future projection with the RCP8.5 scenario) of simulation
of climate trajectories over the period 1920-2100. The model components and the external
radiative forcing (historical up to 2005 and RCP8.5 thereafter) are the same for all realisa-
tions, but with small atmospheric or oceanic initialisation differences. The spread between
members is thus considered to be solely due to the internal variability of the climate system
(see paragraph 2.1.2.3). It is therefore an indispensable tool for studying climate change
taking into account the internal climate variability, which can be differentiated from model
errors thanks to the ensemble (Kay et al., 2015).

All the simulations use the Community Earth System Model, version 1 (CESM1), coupling
the Community Atmosphere Model version 5.2 (CAM5.2) atmosphere component (Hurrell
et al., 2013), the Los Alamos National Laboratory (LANL) Parallel Ocean Program version 2
(POP) ocean component (Smith et al., 2010), the Community Land model version 4 (CLM4)
land component (Oleson et al., 2010; Lawrence et al., 2011) and the LANL Community
Ice CodE (CICE4) sea ice component (Hunke and Lipscomb, 2010) (Fig. 2.3). CESM1
simulations are all fully coupled. All components of the model are approximately 1° horizontal
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resolution.

Figure 2.3 – CESM-LE component models. Reprinted from Kay et al. (2015).

Different kind of simulations are provided and used in the thesis:

PI-control run : a 1801 years long simulation of the pre-industrial earth climate system.
The radiative forcing conditions are the reconstructed conditions of 1850, fixed in time
along the simulation. The initial conditions of the ocean come from a succession of pre-
vious long runs corresponding to a long spin-up, which allows to reach the radiative bal-
ance through an adjustment of the Top Of the Atmosphere (TOA) balance (∼ 0 W/m2)
by tuning parameters. This first step is required also to reach quasi-equilibrium in par-
ticular of the slow ocean component (deep ocean). Then using the tuning parameters,
the simulation is restarted with initialisation conditions from the World Ocean Atlas,
often referred to as the Levitus climatology, based on current observations (Levitus,
1983).

Historical runs : 42 simulations of the recent past (1850-2005). The external forcing used
comes from time-varying historical observations and estimations and includes green-
house gases concentrations, volcanic eruptions, and solar variability for the main con-
tributions (Lamarque et al., 2010). The ensemble members of historical simulations are
initialised with different conditions:

• member 1: starts on 1850, is initialised with the conditions of a randomly selected
date of the control run (1 January 402);

• member 2: starts on 1920, is initialised with the January 1, 1920 conditions of the
member 1 and started with 1-day lagged ocean temperatures;

• members 3-35 and 101-107: start on 1920. The slightly different initial atmospheric
state was created by a random disturbance of the air temperature field of the
member 1. Perturbations occur at the level of round-off errors, which creates
differences in initial global atmospheric temperatures less than one-trillion of a
degree (order of 10−14 K).

RCP8.5 runs : 40 simulations under the RCP8.5 scenario of the CMIP5 design protocol
(see paragraph 2.1.2.1 and Taylor et al. (2012)).

Ensemble members 1-35 were completed at NCAR, ensemble members 101-107 were com-
pleted at the University of Toronto. It is a possibility that the difference of computing plat-
form for the last members may introduce numerical errors among members that in that case
would be added to the internal variability of the climate system.

The CESM1 is the next generation of earth system models of the Community Climate
System Model (CCSM) developed by NCAR. The main differences and additional capabilities
between the previous model version, CCSM4 (Gent et al., 2011), and CESM1(CAM5) used
in the large ensemble project are the following:

• the parameterisation of diabatic processes and aerosols properties has been improved
in the new atmospheric component CAM5, released with CESM1. New schemes were
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developed or updated for clouds processes, aerosol formation and removal, radiative
properties of aerosols and cloud particles, radiative transfer, and convection and turbu-
lence. In particular, it makes it possible to simulate interactions between aerosols and
clouds and their combined radiative impacts. Thus both direct and indirect effects of
aerosols are taken into account and the impact of anthropogenic aerosols emissions on
the radiative forcing of climate by clouds may be assessed;

• a biogeochemical module, based on the nutrient-phytoplankton-zooplankton-detritus
scheme, is integrated as well as an interactive carbon and nitrogen cycle, fully prognos-
tic;

• an upper atmosphere component, the Whole Atmosphere Community Climate Model
(WACCM), is integrated in CAM dynamics and physics;

• an atmospheric chemistry module, CAM-CHEM, is used;
• and a completely new land ice component is included.

It should be noted that tuning of simulations is performed on PI-control and historical
simulations allowing modifications of the sea ice albedo, which controls the mean Arctic sea
ice thickness, and parameterisations of the clouds, which controls the radiation balance at
the top of the atmosphere (Gent et al., 2011). For more details, the reader can refer to Kay
et al. (2015) and Meehl et al. (2013).

Figure 2.4 – Global surface temperature anomalies (1961-1990 base period) for the PI-control simula-
tion (blue line), individual ensemble members of historical and RCP8.5 simulations (the member one
in black line, the other members in grey lines) and observations (red line) from HadCRUT4 (Morice
et al., 2012). Reprinted from Kay et al. (2015).

The ensemble begins in 1920, date from which are initialised with slightly differences 41
members with historical forcing conditions (all except member one). The large ensemble
can be used for instance to evaluate changes in the global surface temperature from the pre-
industrial period to future under the RCP8.5 forcings (Fig. 2.4). The increase in temperature
is estimated to 5 ◦C by the year 2100 (ensemble mean value) with a spread due to the internal
variability (inter-member spread) equal to 0.4 ◦C. Note also that the observed temperature
timeserie is included in the spread of the historical members of CESM-LE.

Another advantage of a large ensemble of climate simulations is its ability to generate
many realisations that allow for a robust sampling of the internal climate variability simulated
by the model. We have thus access to a large number of El Niño events occurring during each
period. The spread over a long-term period for the PI-control simulation is indicative of the
internal variability of the climate system, whereas the spread over the different members of
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historical and RCP8.5 simulations is indicative of the total transient variability (with internal
and external variability).

We document in the paragraph 2.1.4 the ability of CESM-LE to simulate the tropical
Pacific and the ENSO phenomenon, focus of the thesis.

2.1.3.2 Ocean component: POP model

The oceanic model incorporated in CESM-LE is the Parallel Ocean Program (POP) (Smith
et al., 2010). POP is a fixed volume ocean model.

(a) Dipole POP grid (b) Plan representation

Figure 2.5 – Representation of the Arakawa B-grid used by POP ocean model. 2.5a shows the
orthogonal curvilinear mesh-grid with the displaced pole (from Smith et al. (2010)). 2.5b shows the
projection of the mesh-grid over the Pacific ocean onto plan coordinate (drawn by Charles Baillon).

The POP grid is an orthogonal curvilinear grid with displaced pole. In the Northern
Hemisphere, the pole is displaced into land masses (Fig. 2.5a) in order to avoid merge merid-
ians into a point of convergence, called the “North Pole singularity” over the oceans. The
meshes are regular in the southern hemisphere, on a Mercator polar grid and they smoothly
get distorted in the northern hemisphere, from the Equator. The horizontal resolution is 1°
longitude-latitude with a lower meridional grid spacing when approaching the equator (∼
0.25°) to more accurately resolve the equatorial dynamical processes. POP model is a level
z-coordinate model that uses 60 non-uniform vertical levels, whose thickness is relatively thin
in surface layers (10 m) and increases with depth (250 m at the bottom of the ocean). The
vertical resolution is enhanced in the upper levels to improve SST in the main upwelling
regions including the equatorial Pacific upwelling. Gent et al. (2011) showed that in the
previous version of the model (CCSM4), the tightening of the vertical resolution together
with improvements in the atmospheric component of the model (CAM) helped to improve
the spatial and temporal characteristics of ENSO.

The boundary conditions do not permit flux for tracers (zero tracer gradient normal to
boundaries) and velocities are zero at the borders. The fluxes of momentum, heat and fresh-
water are applied as surface boundary conditions to vertical mixing terms. These turbulent
fluxes of the near surface atmospheric state are parameterised by bulk formulae, including a
feedback of the state of the ocean surface onto the fluxes (Large and Yeager, 2009).

More information on the ocean model physical processes and parameterisations can be
found in Danabasoglu et al. (2012). We are interested in the tropical Pacific, between 35°S and
35°N. We will focus on the 10°S-10°N band to characterise El Niño diversity (see chapter 3)
and on the equatorial band (2°S-2°N) to assess the oceanic processes involved in the El Niño
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evolution (see in particular chapter 5).

2.1.4 Modelling ENSO

The objective of the paragraph is to investigate whether CESM-LE simulates realistically
ENSO and the tropical Pacific. We invite the reader to refer to Meehl et al. (2013); Park
et al. (2014) and Kay et al. (2015) for detailed climate change projections over the globe
simulated in CESM1(CAM5).

Several recent studies have documented the ability of CESM1 or the previous version,
CCSM4, to simulate the tropical Pacific and the variability associated with ENSO (Gent
et al., 2011; Deser et al., 2012; Hurrell et al., 2013; Zhang et al., 2017). The bias of the
double Inter-Tropical Convergence Zone (ITCZ) remains in CESM1 as well as an excessive
tropical water cycle (Hurrell et al., 2013). The Cold Tongue bias in CESM1 has been shown
to be related to the convective momentum transport parameterisation (Woelfle et al., 2018).
Despite the remaining mean-state biases, the simulation of ENSO has been improved from
CCSM4 to CESM1, with in particular a larger range of frequency of events, with a more
realistic 3-6 years period even if the model still overestimates the magnitude of ENSO (Hurrell
et al., 2013). The asymmetry of ENSO, with a longer duration of La Niña compared to El
Niño is also simulated (Deser et al., 2012). However, Zhang et al. (2017) showed that CCSM4
and CESM1 underestimate observed ENSO asymmetry, mainly because of an overestimation
of the cold SST anomalies during La Niña phase. This is directly linked to atmosphere
components of the models (CAM4 and CAM5 respectively) which simulate a stronger time
mean zonal wind than observed.

We use different datasets of observations (see paragraph 2.1.1): HadISST v1.1 (1950-
2017) and ERSST v3b (1950-2017), and reanalysis: SODA v2.2.4 (1950-2010), to compare
the observed variability of the tropical Pacific and the main features of ENSO with that
modelled by CESM-LE and GFDL CM2.1. The three datasets of SST observations, HadISST
v1.1, ERSST v3b and SODA v2.2.4, allow an estimation of uncertainties due to products
construction methods and measure errors. The two PI-control simulations of CESM-LE
and GFDL CM2.1 are used to compare simulated climates and highlight possible errors
compensation. GFDL CM2.1, even if it is a CGCM of the previous CMIP3 generation, was
chosen because it has already been studied using the method of El Niño events detection that
we use and it simulates realistically main features of ENSO (see paragraph 2.1.2).

For each dataset, the anomalies data are the departure from the mean climatology over
the entire timeserie and are linearly detrended at each grid point (see paragraph 2.2.2.1).

2.1.4.1 Seasonal cycle

The simulation of the seasonal cycle of the equatorial Pacific SST (2°S-2°N) is evaluated
in the models. The SST seasonal cycle is of prime importance in the dynamics of ENSO.
El Niño phases are locked on the seasonal cycle, they commonly start in the boreal spring
when the eastern Pacific SST are warmer (Fig 2.6a, 2.6b and 2.6c), develop in summer when
the air-sea coupling is stronger, reach their amplitude maximum in winter and vanish in the
following spring after the trade winds have strengthened. Some seasons are more conducive
than others to El Niño development and the seasonal cycle also constrains the termination
of events. The reader is invited to refer to the paragraph 1.3.1 for more information.

Many studies showed that CGCMs do not simulate realistically the seasonal phase locking
of El Niño (Bellenger et al., 2014; Chen et al., 2017a). The PI-control simulations of CESM
and GFDL CM2.1 reproduce a seasonal cycle with alternation of warm and cold SST in
spring and fall in the eastern Pacific but with different bias. In both cases, the Cold Tongue
bias leads to a westward shift of the climatological Warm Pool, materialized by the 28 ◦C
isotherm. The westward shift is more pronounced for GFDL CM2.1 (Fig. 2.6d) than for
CESM-LE (Fig. 2.6e). As a consequence, the Warm Pool is colder in CGCMs.
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(a) HadISST v1.1 (1950-2017) (b) ERSST v3b (1950-2017) (c) SODA v2.2.4 (1950-2010)

(d) GFDL CM2.1 (e) PI-control CESM-LE (f) Historical CESM-LE

Figure 2.6 – Longitudes-time evolutions of the seasonal cycle of equatorial Pacific SST (2°S-2°N) for
(Fig 2.6a) HadISST v1.1 (1950-2017), (Fig 2.6b) ERSST v3b (1950-2017), (Fig 2.6c) SODA v2.2.4
(1950-2010), (Fig 2.6d) the PI-control simulation of GFDL CM2.1 (500 years), (Fig 2.6e) the PI-control
simulation of CESM-LE (1801 years) and (Fig. 2.6f) the ensemble-mean of the historical simulations
of CESM-LE (42 members).
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GFDL CM2.1 PI-control simulation has a seasonal cycle too cold and weak in the eastern
Pacific, with small differences in amplitude between warm (spring) and cold (fall) seasons in
the eastern Pacific (3.8 ◦C at 250°E). The Cold Tongue bias is less pronounced in CESM-LE,
the colder SST are above 21 ◦C (around 20 ◦C in GFDL CM2.1) and the difference between
spring and fall seasons is ∼ 4.8 ◦C, both values are only 1 ◦C colder than in observations.
However, in observations, the maximal signature of the cold water of the upwelling is located
more at the east of the equatorial Pacific, close to 270°E. The smaller difference in tempera-
tures between warm and cold seasons in GFDL CM2.1 decreases the strength of the ENSO
seasonal phase locking. Wengel et al. (2018) showed indeed that an excessive Cold Tongue
in CGCMs leads to weak seasonal phase-locking by reducing the Ekman and thermocline
feedbacks in late boreal fall and early boreal winter.

At last, a warm bias of GFDL CM2.1 along the coast of South America, diagnosed by
Wittenberg et al. (2006), is also highlighted in Figure 2.6d, while it is less pronounced in
CESM-LE.

2.1.4.2 Variability of the tropical Pacific surface temperatures

ENSO is the most important source of natural variability on inter-annual time-scales in the
tropical Pacific (see paragraph 1.1).

(a) HadISST v1.1
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(c) SODA v2.2.4
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(d) GFDL CM2.1
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(e) PI-control CESM-LE
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(f) Mean historical CESM-LE
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Figure 2.7 – Spatial patterns of the inter-annual SSTA variability (standard deviation) of the tropi-
cal Pacific (30°S-30°N) for (2.7a) HadISST v1.1 (1950-2017), (2.7b) ERSST v3b (1950-2017), (2.7c)
SODA v2.2.4 (1950-2010), (2.7d) the PI-control simulation of GFDL CM2.1 (500 years), (2.7e) the
PI-control simulation of CESM-LE (1801 years) and (2.7f) the ensemble mean of historical simulations
of CESM-LE (1 member over 1850-2005 and 41 members over 1920-2005). The boxes represent the
Niño-3 (blue) and Niño-4 (red) regions respectively. The data are linearly detrended and the annual
cycle is removed.

The spatial pattern of the observed inter-annual variability (Fig. 2.7a, 2.7b and 2.7c) has
maximum values, around 1.25 ◦C, located along the coast of Ecuador and Peru. This warming

100



2.1. DATA DESCRIPTION

is less developed in ERSST v3b which has a coarser resolution (2° latitude-longitude). The
intensity of this coast warming is not so pronounced in CESM-LE with a maximum value
less that 1 ◦C. GFDL CM2.1 reproduces this warming at the South American coast, but
the amplitude in the eastern Pacific is much larger than observed, with maximum values
above 1.75 ◦C. The SODA v2.2.4 reanalysis shows SST standard deviations larger in the
eastern Pacific than the observed datasets and a slightly westward shift of the zonal extension,
probably due to the combination of dynamical model in the observations. As a reminder, the
model used in SODA reanalysis is the POP model (Smith et al., 2010), the ocean component
of CESM-LE.

The strong variability region are shifted westward in both models compared to observation
patterns. It is particularly the case in GFDL CM2.1, where large inter-annual SSTA are
simulated all along the equator, in a lesser extent in CESM-LE. The westward extension
of the tropical Pacific variability, linked to the westward extension of the Cold Tongue, is
a common and well documented feature of CGCMs (see paragraph 2.1.2.2 and Wittenberg
et al. (2006); Capotondi et al. (2006); Bellenger et al. (2014) among others). Another common
CGCM bias visible in the figures is the too high variability of the equatorial Pacific, especially
in GFDL CM2.1.

The inter-annual variability of the tropical Pacific is also assessed by an Empirical Or-
thogonal Functions (EOF, see paragraph 2.2.2.2) analysis applied to the SSTA (10°S-10°N).
While the first mode resembles the canonical El Niño event (Ashok et al., 2007), the second
mode tends to capture the spatial asymmetry between the canonical El Niño and La Niña
events (Hoerling et al., 1997; Rodgers et al., 2004). Figure 2.8 shows the first two EOF modes
for each dataset over the same period as for Figure 2.7.

Once again, the westward extension bias of the Cold Tongue appears in the model modes,
as well as the detachment from the South American coast of the mode 1 warming. Wittenberg
et al. (2006) noted that the tropical Pacific SST variability is shifted by 20°-30° westward
compared to the observed spatial pattern. Here the localisation of the mean 28 ◦C isotherm,
an indicator of the Warm Pool (materialized by the black lines in Fig. 2.8), is shifted westward,
of 25° for the CESM PI-control simulation and 35° for the GFDL CM2.1 simulation. Another
feature bias to note is the weak meridional extension of the variability, confined to the equator
in the CGCMs.

The first two modes of the EOF analysis account for most of the variability in the tropical
Pacific (Table 2.1). Except for SODA v2.2.4, the variance explained by the first two modes
exceeds 75 % for each dataset. Note that the reduced period available for SODA compared
to ERSST or HadISST does not explain the smaller variance, since when determining the
variance explained by the two first modes of HadISST over the same period 1950-2010, it
is equal to 78.8 %. The variance explained by the first two modes is slightly smaller for
the CESM-LE PI-control simulations than for the historical ones, whose value is close to
the observed value. When considering the internal variability of the simulated historical
climate system, which is accessed by the different members of the large ensemble (indicated
in Table 2.1 is the standard deviation associated with the variance values of each member,
see following paragraph), the observed variance of HadISST v1.1 dataset is not included in
the internal variability but the first mode of the ERSST v3b dataset is.

2.1.4.3 Variability of the equatorial Pacific subsurface temperatures

In the same way as for the SST, an EOF analysis is performed on the equatorial (5°S-5°N)
subsurface temperatures anomalies, from the surface to 200 m depth (Fig. 2.9).

Even if the integration time differs between the three datasets (SODA v2.2.4 reanalysis,
PI-control and historical simulations of CESM-LE), the two leading simulated modes have
patterns similar to those observed. However, a longitude shift of 10° to the west of the
positive surface temperature anomalies is found in both simulated modes, as a consequence
of the common cold tongue bias of CGCMs (see paragraph 2.1.2.2). The 20°C mean isotherm
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(a) HadISST v1.1
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(b) ERSST v3b
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(c) SODA v2.2.4
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(d) GFDL CM2.1
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(e) PI-control CESM-LE
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(f) Mean historical CESM-LE
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Figure 2.8 – First two modes of the EOF analysis of the tropical Pacific SSTA (10°S-10°N) of (2.8a)
HadISST v1.1 (1950-2017), (2.8b) ERSST v3b (1950-2017), (2.8c) SODA v2.2.4 (1950-2010), (2.8d)
the PI-control simulation of GFDL CM2.1 (500 years), (2.8e) the PI-control simulation of CESM-LE
(1801 years) and (2.8f) the ensemble mean of historical simulations of CESM-LE (1 member over
1850-2005, 41 members over 1920-2005).

EOF modes Mode 1 Mode 2 Total variance
explained

HadISST v1.1 67.7 % 11.5 % 79.2 %
ERSST v3b 69.8 % 11.4 % 81.2 %
SODA v2.2.4 56.9 % 9.8 % 66.7 %
GFDL CM1.2 PI-control 65.3 % 11.2 % 76.5 %
CESM-LE PI-control 70.2 % 7.7 % 77.9 %
CESM-LE historical 71.1 % ±1.8 8.2 % ±1.0 79.4 %

Table 2.1 – Variance explained by the two first modes of the EOF analysis of the tropical Pacific
SSTA (10°S-10°N) of HadISST v1.1 (1950-2017), ERSST v3b (1950-2017), SODA v2.2.4 (1950-2010),
the PI-control simulation of GFDL CM2.1 (500 years), the PI-control simulation of CESM-LE (1801
years) and the ensemble mean of historical simulations of CESM-LE (1 member over 1850-2005, 41
members over 1920-2005). The errors associated with the CESM-LE historical values correspond to
the spread of the corresponding standard deviation computed for each member of the ensemble.
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(black lines), a proxy of the depth of the thermocline, is realistically simulated by CESM-LE,
even if the slope of the thermocline in the east Pacific is more pronounced than in observations.
Consistently with previous studies (Kumar and Hu, 2014; Choi et al., 2013a), the subsurface
temperature variations are mainly localised along the thermocline. These two patterns reveal
the well known modes of subsurface ENSO variability: the “Tilt” mode (the first leading
mode of each dataset, left column of Figure 2.9) and the “Warm Water Volume” (WWV)
mode (the second leading mode of each dataset, right column of Figure 2.9) of the recharge-
discharge oscilllator paradigm (see Jin (1997a); Clarke (2010); Meinen and McPhaden (2000)
and paragraphs 1.2.1.2 and 1.2.2.1).

EOF mode 1: Tilt mode EOF mode 2: WWV mode
(a) SODA v2.2.4

Variance explained: 49.8 % Variance explained: 22.7 %

(b) PI-control CESM-LE

Variance explained: 57.2 % Variance explained: 21.6 %

(c) Historical CESM-LE ensemble-mean

Variance explained: 57.1 % ±1.6 Variance explained: 21.3 % ±1.0

Figure 2.9 – Spatial patterns of the two leading modes (left: mode 1 and right: mode 2) of the
EOF analyse of the equatorial subsurface temperature anomalies averaged between 5°S-5°N for (2.9a)
SODA v2.2.4 reanalysis (1950-2010), (2.9b) PI-control CESM-LE simulation (1801 years) and (2.9c)
the ensemble-mean of CESM-LE historical simulations (1850-2005 for 1 member, 1920-2005 otherwise).
In black lines are the respective mean 20 ◦C isotherm, a proxy of the thermocline. The variance
explained by each mode are indicated below the corresponding panel. The annual cycle is removed
and the data are linearly detrended.

The tilt mode shows a vertical dipole structure with opposite temperatures between the
eastern and western equatorial Pacific, and surface warming extending from the eastern
Pacific. Note that the tilt mode patterns are consistent with those of Kumar and Hu (2014)
using two other observation datasets (the global ocean data assimilation system (GODAS)
and the tropical atmosphere ocean (TAO) project) in the equatorial Pacific (5°S-°N) (see their
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Figure 1). The magnitude of the variability explained by the simulated tilt modes is slightly
larger than the observed one in the positive center of high variability in the eastern Pacific
and slightly smaller, further west and shallower in the negative center in the western Pacific
(see also the total variances in Figure 2.9). Compared to the 6 CMIP3 models analysed by
Choi et al. (2013a), the spatial patterns of the simulated tilt mode of CESM-LE are similar
to that of the GFDL CM2.0 and GFDL CM2.1 models (see their Figure 2, left column).

The tilt mode corresponds to the instantly adjustment of the thermocline to zonal wind
stress forcing in the western-to-central tropical Pacific, via Kelvin waves propagation. It is
associated with variations in thermocline depth, with the deepening (raising) of the thermo-
cline in the eastern equatorial Pacific during El Niño (La Niña) events in response to zonal
wind stress. It is confirmed by the lag-correlation of the principal component (PC) time-
series associated with the tilt mode and the first mode of the tropical SSTA EOF analysis
(see paragraph 2.1.4.2) or the Niño-3.4 SSTA index, which are ENSO proxies. The tilt mode
is highly correlated to ENSO indices whether in the SODA reanalysis dataset (correlation
coefficient equal to 0.91 with both ENSO indices, significant at 99 % confidence level with a
lag of one month) or in the PI-control simulation of CESM-LE (correlation coefficient equal
to 0.97 with both ENSO indices, significant at 99 % confidence level with 0 lag). This mode
is thus related with El Niño characteristics during its mature phase (Meinen and McPhaden,
2000; Choi et al., 2013a). It is also consistent with the spatial pattern of the regression of
the equatorial Pacific SST anomalies (10°N-10°S) onto the principal component of the tilt
mode (Fig. 2.10, top panels). The SST pattern spatial associated with the the tilt mode is
similar to that of El Niño, represented through the first mode of the SSTA EOF analysis of
the equatorial Pacific (10°S-10°N, see Figure 2.8 in paragraph 2.1.4.2). The pattern corre-
lation coefficient is equal to 0.99 for the SODA reanalysis dataset and 1 for the PI-control
simulation of CESM-LE.

EOF mode 1 EOF mode 2
(a) SODA v2.2.4
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(b) PI-control CESM-LE
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Figure 2.10 – Regressed spatial patterns of the equatorial SSTA onto the (left) first and (right)
second leading modes of the EOF analyse of the equatorial subsurface temperature anomalies averaged
between 5°S-5°N for (2.10a) SODA v2.2.4 reanalysis (1950-2010) and (2.10b) PI-control CESM-LE
simulation (1801 years). The first mode is associated with the tilt mode and the second leading mode
with the WWV mode. In black lines are the respective mean 28 ◦C isotherm, a proxy of the warm
pool. The annual cycle is removed and the data are linearly detrended.

The “WWV” shows a basin-wide structure and is associated with variations in warm
water volume. It is more representative of the delayed adjustment of the ocean to wind
stress curl. Its simulated magnitude is lower than the observed one (see right column of
Figure 2.9 and the associated total variances). The positive simulated variability spans the
entire width of the Pacific, becoming shallower to the west of the dateline, which is not
observed. This westward bias induces the appearance of two eccentric centres of low surface
warming, around 160°E and 250°E that can be found in the regressed map of the SSTA onto
this mode (Fig 2.10b). A more pronounced upwelling of cold water is simulated in the east
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up to 50 m deep, which induces an inlet of cold water in the south-east in the associated
regressed map. The bias in the simulation of the WWV mode in CESM-LE leads to poor
spatial correlations with El Niño patterns (0.28 for CESM-LE PI-control simulation against
0.66 in SODA v2.2.4 dataset).

The WWV mode usually leads ENSO SSTA by 6-9 months (Kessler, 2002). However,
numerous studies highlighted a shift in the lag-correlation between the WWV mode and
ENSO SSTA that occurred around 2000s (McPhaden, 2012; Kumar and Hu, 2014; Hu et al.,
2017). When analysing the WWV mode through the WWV index (volume of warm water
with temperature greater than 20 ◦C integrated along the equatorial Pacific), McPhaden
(2012) showed that WWV’s lead over ENSO SSTA decreased from 2-3 seasons during the
1980s and 1990s to one season in the 2000s. The decrease in duration of lead correlation of
WWV over ENSO is confirmed by Hu et al. (2017) with longer time-series of observations.
Kumar and Hu (2014) and Hu et al. (2017) showed that this change is accompanied by an
increase in the frequency of both WWV and ENSO, due to a westward shift of the Bjerknes
feedback centre of action.

(a) SODA v2.2.4 for the 1950-2010 period

(b) SODA v2.2.4 for the 1979-1999 period

Figure 2.11 – (Left panels) Time-series of (blue) WWV mode and (red) ENSO index defined as
the first principal component (PC) of the EOF analysis of SSTA equatorial Pacific (10°S-10°N) in
SODA v2.2.1 reanalysis dataset for different periods: (2.11a) 1950-2010 period and (2.11b) 1979-1999
period. (Right panels) The lag-correlation coefficients between the two indices for the corresponding
periods.

When analysing the lead-lag correlation between the WWV and ENSO modes in SODA
v2.2.4, this feature of shift in 2000 is found even if the time-series ends in 2010 (Fig. 2.11). For
the entire 1950-2010 period, the maximum absolute correlation (c = −0.65) occurred when
the ENSO SSTA mode leads the WWV mode by 10 months. For the limited period 1979-
1999, the maximum absolution correlation (c = 0.69) occurred when the WWV mode leads
the ENSO mode by 8 months. Note that no change in lead-lag correlation occurred between
the tilt mode and ENSO SSTA mode in SODA v2.2.4 dataset. The CESM-LE simulations
show lead-lag correlations similar to those observed over the entire period (and similar to
those between the WWV and tilt modes, due to the almost simultaneous nature of the tilt
and ENSO modes). The lead (lag) of the ENSO mode over the WWV mode corresponds
to the peak phase of El Niño followed (preceded) by a discharge (recharge) of heat content
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(whose WWV is a proxy) in the equatorial Pacific, and conversely for La Niña.

(a) SODA v2.2.4
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(b) WWV and tilt modes lag-correlations
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Figure 2.12 – (2.12a) (Left) The tilt mode (blue) and the Warm Water Volume (WWV) mode (red)
defined from the leading principal components (PC) of the EOF analysis of the subsurface temper-
ature anomalies averaged between 5°S-5°N for SODA v2.2.4 reanalysis (1950-2010). (Right) Cross-
correlation between the two PC showing a maximum of absolute correlation (c = −0.56) with a lag
of WWV over tilt mode of 8 months. The positive correlation (c=0.39) occurs when the WWV mode
leads the tilt mode by 7 months. (2.12b) Cross-correlation between the WWV mode and the tilt
mode for (left) SODA v2.2.4, (middle) CESM-LE PI-control simulation and (right) CESM-LE histor-
ical simulations. The maximum absolute correlation is higher for CESM-LE simulation (c ∼ − 0.70)
with lags between 7 and 9 months depending on the historical member (8 months for the PI-control
simulation). The positive correlation in PI-control simulation occurred for a lead of the WWV over
the tilt mode by 7 months (c=0.52).

It was verified that the PC time-series of the tilt and WWV modes are in quadrature
(Fig. 2.12) in a similar way to WWV and ENSO modes (Fig. 2.11 for SODA 2.2.4 dataset).
This quadrature leads to the oscillatory feature of ENSO as described above. It is consis-
tent with Kumar and Hu (2014) (see their Figure 3d). The simulated correlations occurred
with the same lead-lag durations, but the strength of the correlations is higher than in the
reanalysis dataset.

2.1.4.4 Variability of ENSO

The ENSO amplitude is often measured through the Niño-3 SSTA standard deviation (Guil-
yardi et al., 2009b; Bellenger et al., 2014; Chen et al., 2017b). Bellenger et al. (2014) showed
that the CMIP5 and CMIP3 ensemble-mean values of ENSO amplitude is comparable to ob-
servations, but the spread of ENSO amplitudes is reduced by half in the CMIP5 database com-
pared to the CMIP3 database, although models still tend to overestimate ENSO variability.
According to Gent et al. (2011); Deser et al. (2012) and Hurrell et al. (2013), CESM1(CAM5)
correctly simulates some intrinsic characteristics of ENSO, such as a more realistic 3-6 years
period, but overestimates its magnitude compared to observations. To take into account the
westward bias of the Cold Tongue in the CGCMs, we not only compute the Niño-3 but also
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the Niño-3.4 standard deviation (Table 2.2).
We compute the spread of the internal variability associated with the value of ENSO

amplitudes. As explained in paragraph 2.1.2.3, two types of natural variability are estimated:

• from the PI-control simulations: these simulations are long enough to provide a large
range of variability of the climate system, only due to low-frequency changes. This
internal variability corresponds to climate with constant external forcing and without
anthropogenic influence, that is variations generated by the climate system itself. We
calculate the variability associated with periods of duration similar to the observations.

• from the ensemble simulations: thanks to the different members, differing in only very
small change of the initial atmospheric conditions, we estimate the internal variability
through the spread of the different climate trajectories followed by each member of the
ensemble. This internal variability is subject to changes of the climate system due to
changes in external forcings.

Even if these two definitions of the internal variability are not equivalent, it gives an order of
magnitude of the different states that the climate system can take.

SSTA standard deviation Niño-3 Niño-34
HadISST v1.1 0.86 0.83
ERSST v3b 0.87 0.84
SODA v2.2.4 0.89 0.84
GFDL CM1.2 PI-control 1.25 ± 0.15 1.25 ± 0.15
CESM-LE PI-control 0.84 ± 0.07 0.90 ± 0.08
CESM-LE historical 0.95 ± 0.08 0.99 ± 0.08

Table 2.2 – ENSO amplitudes derived from the standard deviations of the Niño-3 and Niño-3.4 indices.
The errors associated with the PI-control values correspond to the spread (standard deviation) of the
standard deviation of the concerned index computed for overlapping 68 years period, taken every
50 years. The 68 years duration has been chosen as the duration of the observations dataset. The
errors associated with the CESM-LE historical values correspond to the spread of the corresponding
standard deviation computed for each member of the ensemble.

The ENSO amplitudes in the Niño-3 region in CESM PI-control simulation, computed
from periods of same length than the observed one (68 years), are close to the observed
values, the latter being included in the internal variability of the simulated pre-industrial
climate. However, the ENSO amplitudes in the Niño-3.4 region tend to be slightly too high
in the PI-control simulation. The amplitudes of ENSO variability in CESM-LE increase from
Niño-3 to Niño-3.4 regions, while it is the opposite trend in observations. This is due to
the westward Cold Tongue bias, shifting the variability westward and decreasing it along
the South American coast (see figures 2.7 and 2.8), associated with the trend of CGCMs to
overestimate ENSO variability. The bias of overestimating ENSO amplitudes appear clearly
in historical simulations with ENSO amplitudes in Niño-3.4 region whose associated internal
variability no longer includes observations. This overestimating bias is more pronounced in
GFDL CM2.1 whose internal spread never includes observation values.

Another important feature of ENSO is the seasonal phase locking, that we investigate
through the climatological variance of the Niño-3, Niño-4, E and C indices (Fig. 2.13). Zheng
et al. (2018) showed that the monthly ENSO amplitudes in the Niño-3 region simulated
by the historical members of CESM-LE are overestimated compared to those observed, in
particular from January to April and from July to September. The magnitude of Niño-3
ENSO amplitudes being less pronounced in the CESM PI-control simulation than in historical
simulations, the Niño-3 climatological variance of the latter is very close to the observed one.
The winter peak is slightly weaker and the month of least variability is the month of May
in CESM-LE when it is earlier, in March-April in observations. The Niño-3 climatological
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variance of GFDL CM2.1 is not so well simulated, as it was highlighted by Wittenberg et al.
(2006); Guilyardi (2006) and Bellenger et al. (2014). The quasi-inverse seasonal cycle of the
variability in Niño-3 simulated by GFDL CM2.1 is consistent with Chen et al. (2017a) who
showed a more important probability of occurrence of Eastern Pacific (EP) El Niño in early
summer (July-August) than in winter (January-February). This bias is likely related to the
semi-annual cycle of the convection and currents mean state, which is associated with the
double ITCZ bias and the seasonal reversal of the meridional SST gradient and winds in the
eastern Pacific (Wittenberg et al., 2006).

(a) Niño-3 SSTA index
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(b) E-index
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(c) Niño-4 SSTA index
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(d) C-index
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Figure 2.13 – Monthly evolution of the variability of (Fig 2.13a) Niño-3 SSTA index, (Fig 2.13b)
E-index, (Fig 2.13c) Niño-4 SSTA index and (Fig 2.13d) C-index for the observed datasets (over 68
years) and for the PI-control simulation of (dark blue) CESM-LE and (turquoise) GFDL CM2.1. The
error bars in the PI-control values correspond to the different values of the Niño-3 variability computed
for overlapping 68 years period, taken every 50 years. The 68 years duration has been chosen as the
duration of the observations datasets. The SST anomalies indices are analysed after removing the
climatological monthly means and the linear trend from the data.

When moving westward, to the Niño-4 region, the variabilities of the PI-control simula-
tions present more differences with the observed variability, since the latter decreases rapidly
towards the west when the simulated variabilities remain stable (Fig. 2.13c compared to
Fig. 2.13a). Interestingly, the climatological variance of GFDL CM2.1 changes and becomes
similar to the observation cycle with a more pronounced peak in winter and a decrease in
variability in March-April. It reinforces the idea that the SSTA variability in the eastern
Pacific in some CGCMs, as GFDL CM2.1, is altered by the misrepresentation of the seasonal
cycle of a SST forcing such as meridional winds in the eastern Pacific (Wittenberg et al.,
2006).

The climatological variances of the normalised E and C indices have also time offsets
(Fig. 2.13b and 2.13d). The observed E index variability has two main period of peak: a
long period with higher variability from late spring to early fall and a shorter period in
November-December. The CESM-LE E-index variability shows a pronounced peak in July-
August-September and a second increase in November-December. The summer peak is off by
1-2 months. Consequently, the period of low variability, in February-March in observations,
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occurs in April-May in CESM-LE PI-control simulation. Conversely, the GFDL CM2.1 E-
index variance has a winter peak shifted in early spring (February-March) with surprisingly
its period of low variability in October-November. The E-index is an indicator of strong
EP El Niño events which it was shown that the trigger was linked to the Bjerknes feedback
(Takahashi and Dewitte, 2016), air-sea coupling feedback whose strength is modulated by the
annual cycle. The climatological C-index variability is composed of two main season, with
larger variability in winter and weaker variability in summer. The simulated C-index vari-
ability showed time-lag with observations, leading (lagging) of two months for GFDL CM2.1
(CESM-LE). These variabilities are strongly linked to the simulation of ENSO dynamics and
more precisely of strong El Niño dynamics and will be further investigated in this thesis.

2.1.4.5 ENSO non linearities

The representation of the non-linearities associated with ENSO is decisive in the representa-
tion of ENSO feedbacks in the CGCMs (Karamperidou et al., 2017). Following Dommenget
et al. (2013), they suggested a metric of ENSO non-linearities, the leading coefficient α of the
polynomial regression of the shape of the climate system in the phase space of the two lead-
ing principal components of the EOF analysis, PC1-PC2, for the mean December-January-
February (DJF) values (Fig. 2.14). α is thus expressed as PC2 = α · PC12 + b · PC1 + c.
The value of the α coefficient gives an indication on the shape of the non-linear relationship
between the two main modes of variability in the tropical Pacific.

The values of α obtained from the PI-control run (α = −0.35 ± 0.07) or from the set of
historical members of CESM-LE (α = −0.37 ± 0.08) are close to the observed value obtained
in the HadISST dataset (1950-2017) (α = −0.39) or in the ERSST dataset (1950-2017)
(α = −0.37) and their spread includes the observed value. However, it should be noted that
the value of the α coefficient is dependant on the chosen period and more particularly on
the number of years (months) retained for the calculation. Karamperidou et al. (2017) found
an α coefficient equal to −0.29 ± 0.03 with the same observations dataset HadISST v1.1 but
using a period of 139 years. Cai et al. (2018), using 5 different datasets over different periods
covering from 1948 to 2015 found an α value equal to −0.31.

The GFDL CM2.1 shape of the non-linearities in DJF is slightly different from the ob-
served ones, with in particular a tightening toward high values in PC1 which leads to high
absolute values of α. The computed value of α being largely dependant of the number of data
available, we computed the range of the internal variability on the PI-control simulations for
periods of same length than the observed ones (67 winters). Whereas the dispersion asso-
ciated with the CESM-LE model includes the observed values, whether it is the variability
associated with the low frequency variations (Fig. 2.14e where the standard deviation of the
possible α values is indicated) or that associated with the large ensemble (Fig. 2.14f), the
range of the internal variability of the α values of GFDL CM2.1 is still slightly higher than
the observed values.

Despite these differences, both models, CESM-LE and GFDL CM2.1 are included in
the group of models with strong nonlinearities (group A) of Karamperidou et al. (2017),
a necessary condition for the simulation of fundamental ENSO feedbacks. The models are
both able to reproduce the PC1/PC2 relationship, indicative of ENSO non-linearities in the
system. In the PC1-PC2 phase space, when localising points associated with El Niño events,
strong El Niños are deported towards the end of the boomerang shape, towards high values
of PC1 whereas moderate El Niños are localised in the inflexion zone of the boomerang.
Takahashi et al. (2011) suggested to rotate the axes to obtain a new basis with a more
physical meaning, tracing the signature of strong and moderate El Niño events. The E and
C indices thus obtained are used in the rest of this thesis work to define strong and moderate
El Niño events.
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(a) HadISST v1.1 (α = -0.39)
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(b) ERSST v3b (α = -0.37)
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(c) SODA v2.2.4 (α = -0.39)
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(d) GFDL CM2.1 (α = -0.43 ±0.04)
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(e) PI-control CESM-LE (α = -0.35 ±0.07)
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(f) Historical CESM-LE (α = -0.37 ±0.08)
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Figure 2.14 – December-February (DJF) mean first and second scaled principal components (PC1 and
PC2) of the EOF analysis of the tropical Pacific SSTA (10°S-10°N) of (2.14a) HadISST v1.1 (1950-
2017), (2.14b) ERSST v3b (1950-2017), (2.14c) SODA v2.2.4 (1950-2010), (2.14d) the PI-control
simulation of GFDL CM2.1 (500 years), (2.14e) the PI-control simulation of CESM-LE (1801 years)
and (2.14f) the ensemble mean of historical simulations of CESM-LE (42 members). Black lines
represent the (ensemble-mean for historical simulations) fitted polynomial regression used to measure
the α coefficient. Blue lines in figures 2.14d and 2.14e represent the fitted polynomial regression for
different periods of 86 years over the PI-control simulations (the duration is the same as the duration
of 41 of the historical members of CESM-LE). Blue lines in figure 2.14f represent the fitted polynomial
regression for each historical member of CESM-LE. The principal components are normalised by their
respective standard deviation to have a unit variance.
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2.2 Methodological tools

We describe here the different data analysis tools used in this thesis. The study of the
different physical variables involved in ENSO requires statistical transformations and post-
processing to be interpreted. Different methodological tools are applied to prepare, transform
and interpret data. Some of these tools are classified as supervised machine learning tasks,
such as the regression, some are classified as unsupervised such as the Empirical Orthogonal
Functions or the clustering.

2.2.1 Descriptive statistics

Statistics are based on the notion of (discrete) random variable. To characterise datasets, we
analyse the probabilities of distribution of the random variable studied. The distribution of
a variable is a function that associates a frequency of occurrence with each possible values
of the series. It is called the probability density function (PDF). The PDF is often normally
distributed for climate variables. It is not the case of precipitation which has a skewed
distribution We study therefore the model, or population, from the analysis of the data
described by this model, by using different characteristics of the random variable and its
probability distribution.

2.2.1.1 Moments of a probability distribution

Moments are statistical tools characterising the shape of the considered variable probability
distribution. In the thesis, we mainly use the first three moments: the mean (first moment),
the variance (second central moment) and the skewness (third standardised moment). They
are expressed as:

Mean =
1
N

N∑
i=1

xi

Standard deviation =

√√√√ 1
N − 1

N∑
i=1

(xi − mean)2 = std

Skewness =
1
N

N∑
i=1

(xi − mean)3

std3

The standard deviation (std), that is the square root of the variance, is often used to
describe the deviation from the mean of a data sample, which is one measure of the dispersion.
The skewness describes the asymmetry of the distribution, i.e. it quantifies whether the
distribution tail, left or right, is long or short, thick or thin. If the distribution is symmetric,
the skewness is equal to 0. If the distribution spreads to the left (right) with a longer tail on
the negative (positive) side of the mean, the skewness is negative (positive).

The statistical moments of the “weather distribution” are likely to change with global
warming (Fig. 2.15), which can lead to modify the likelihood of the occurrence of extreme
weather events. By shifting the mean of a climate variable whose the PDF is normally
distributed, such as surface temperatures for instance, what was defined as extreme positive
(negative) events in historical climate become more (less) frequent. These changes are non-
linear: a small change in the mean value can result in large changes in the probability of
occurrence of extreme events. Changes in the variability of the variable can complicate the
projected changes in the probability of occurrence of weather events. Changes in mean,
variance and the symmetry of the distribution (skewness) may occur concomitantly and
modify in different ways the frequency of occurrence of extreme events.
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Figure 2.15 – Schematic representations of the PDF of a normally distributed climate variable such
as temperatures. Shaded areas correspond to the probability of occurrence of extreme events, that is
events in the tails of the distribution, that occur infrequently. Changes in the probability of occurrence
of extreme events are affected by changes (a) in the mean, (b) in the variance, and (c) in both the
mean and the variance. The figure is reprinted from IPCC Third Assessment Report (AR3, see
https://www.ipcc.ch/report/ar3/wg1/the-climate-system-an-overview/).

2.2.1.2 Quantiles of a probability distribution

The quantile q of a data set is the value that divides this data into two parts:

• above of this value (to the right in the PDF representation), there are q% of data,
• below of the value (to the left), there are (100 - q)% of data.

The quantile is equivalent to the cumulative frequency of the distribution. Quantiles
are used to estimate the confidence interval associated with significance tests (see para-
graph 2.2.4).

Quantiles are also used as another measure of the dispersion of the data, by the Inter-
quartile range (IQR). The IQR is defined as the difference between the 75th and 25th per-
centiles.

2.2.1.3 Kernel density estimation of a probability distribution

The probability density function of the data in the E-C indices phase space (2D) is estimated
through a kernel density estimation (KDE). The estimation of the PDF of the E and C indices
is made in Chapter 3 in the analysis of the bi-modality of the El Niño events. The main ad-
vantage of this method is that it is non-parametric, not assuming any distribution underlying
the data. This choice is made because the E and C indices do not have a strict Gaussian
distribution. In particular, the E-index (C-index) has a positive (negative) skewness.

The KDE is a neighbour-based approach. It calculates a kernel function centred in each
data and this kernel function then extends symmetrically to cover the neighbours of the
data. The width of the extension is determined by the bandwidth of the kernel function.
The total probability density function is then estimated as the sum of the kernel functions
on each data. The bandwidth is thus a smoothing parameter whose choice is decisive. A
window width that is too small will favour local spikes in densities while a too large window
width will smooth the entire distribution. We compared different bandwidths, estimated by
methods such as Scott or Silverman methods and which may be optimised by cross-validating
under the assumption of maximum likelihood or least squares. A Gaussian kernel is chosen.
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2.2.2 Pre-processing and data transformation

2.2.2.1 Calculation of anomalies

Preliminary processing of the time series consists in removal of known signals prior to analysis
so they will not confound the interpretation of the results. It can be view as a “pre-whitening”
step. This supposes to know what is the signal that one wants to withdraw. In our case,
ENSO is a phenomenon described as a departure from the mean state. The mean state, as
well as the trend of global warming have to be removed before processing the data.

Seasonal cycle

The first step is thus to remove the mean state, more particularly the monthly mean state or
annual cycle. When specified as anomalies, it means that data are deseasonalised, that is the
annual cycle is removed in each grid point. The annual cycle is considered constant over the
entire studied period unless otherwise mentioned. The entire periods are thus the PI-control
duration (1801 years), the historical period of simulation (1850-2005 for the first member of
CESM-LE, 1920-2005 for the other members), the RCP8.5 period of simulation (2006-2100)
and the observed period when analysing observations dataset (1950-2017). When comparing
with the method of detrend of Cai et al. (2018) in the paragraph 3.4, the considered period
is the first 100 years of the concatenated historical and RCP8.5 simulations.

Therefore, a constant annual cycle is removed, even if the mean state is not a stationary
state (see paragraph 1.3.2) and can be modulated by low-frequency fluctuations or climate
shifts (Boucharel et al., 2009). We make the assumption that the seasonal cycle is an additive
signal de-correlated to the rest of the variations.

Global change trend

To detrend the data and remove in particular the long-term trend due to global warming,
the linear monthly trend at each grid point is removed. It is done using the least squares
method to estimate the growth rate of the fitted straight line, by minimising the sum of the
squared errors between the data and the fitted line.

In the paragraph 3.4, we compare this detrend method with two others. The first com-
pared method considers a quadratic trend due to global warming, applied to the concatenated
historical and RCP8.5 periods. The second compared method consists in removing the mean
surface state of the tropical Pacific (30°S-30°N) at each time step. This method, called rela-
tive SST anomalies, is used by Khodri et al. (2017) using tropical Pacific (20°S-20°N) mean
over the 5 years preceding the volcanic event they are studying.

One of the characteristics of the first two methods is to consider that global warming trend
is not the same everywhere (in each grid point), which is consistent with an El Niño-like warm-
ing pattern even if there is no consensus in the global climate models (see paragraph 1.4.1).
Conversely, the last method considers that the climate change trend is the same over the
equatorial Pacific.

2.2.2.2 EOF analysis

Empirical Orthogonal Functions (EOF), also called Principal Component Analysis (PCA),
are widely used in Earth sciences. It is a mathematical method for unsupervised reduction
in dimensionality of the data. The technique determines the dominant spatial patterns of
variability of geophysical fields, the time variation associated with each pattern and a measure
of their relative importance.

The dataset is analysed as a 2D-field, in our case with dimensions of (space, time). The
technique consists in a statistical decomposition of the 2D-field into a sum of spatial (�e) and
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temporal (PC) modes such as:

�X =
k∑

i=1

PCi · �ei

The �e vectors correspond to the spatial structures (x, y) that can account for the tempo-
ral variations of X(x, y, t). The PC(t) time-series are the respective contributions of the
corresponding spatial structure to the spatial variation of X at each time-step. It gives the
temporal variation of the amplitude of each corresponding EOF pattern. Often, only a small
number of modes captures almost all the variance within the original dataset. This feature
makes EOF analysis an effective tool for compressing multi-dimensional datasets.

The main assumption of the EOF analysis is that the modes are orthogonal. The or-
thogonal constrain in space (time) means that there is no spatial (simultaneous temporal)
correlation between any two EOFs (PCs).

Mathematically, the EOF analysis is an eigenvalue problem and the EOF spatial patterns
are found by computing the eigenvalues and eigenvectors of the (spatially weighted) anomaly
covariance matrix of the dataset (X). The eigenvalues of the covariance matrix (often referred
to as λi) explain the fraction of the data variance along each of the new axes represented by
the eigenvectors �ei. The PC time-series are then determined by projecting the correspond-
ing eigenvector onto the anomalies dataset. In the thesis, we use an equivalent method of
the Singular Value Decomposition (SVD) (Björnsson and Venegas, 1997). In this case, the
singular values are the square roots of non-zero eigenvalues of the covariance matrix.

The PC time series are scaled to have unit variance (without units). The EOF spatial
patterns obtained are dimensionless unit vectors and show (only) the map of the variance. To
have access to the actual amplitude of the data (in physical units), the EOF spatial pattern
are multiplied by square root of the corresponding eigenvalue.

Note that we took into account the weighted area matrix to compensate for grid spacing
in the geophysical dataset (Baldwin et al., 2009).

In the thesis, this EOF analysis is used to determine the main variability modes of the
tropical and the equatorial Pacific and is the basis for the El Niño events detection (see
paragraph 3 for more details) and for the low-frequency variability modes of the equatorial
Pacific (see paragraph 4). Note that for the El Niño events detection, the two first principal
component (PC) time-series are linearly combined, equivalent to perform rotation of these
two PC. This results in a new set of orthogonal time-series (called E and C indices), but the
eigenvectors associated with each of the new time-series may no longer be orthogonal. The
E and C indices are expressed as:

E =
(PC1 − PC2)√

2

C =
(PC1 + PC2)√

2

where the PC1 and PC2 are the normalised principal components of the first two EOF
modes of SST anomalies in the tropical Pacific (10°S-10°N) (see paragraph 2.1.4.2 for the
EOF analysis and 3.2.2 for the E and C modes). An El Niño event can be described as
an appropriate weighted superposition of these two modes. The associated spatial patterns
of the E and C indices are the regression of the E and C time series onto the dataset (see
paragraph 2.2.3.3). The resulting map has amplitude in the physical units of the dataset.
This method can be applied to other variables, as done in paragraph 5.3.4.1 with the zonal
wind stress dataset.

The main limitations of the EOF analysis is that the main modes obtained may not
correspond to physical variability modes (Dommenget and Latif, 2002) and that the EOF
spatial patterns may be domain dependent.

The reader is advised to refer to Chapter 13 of Storch and Zwiers (1999) for more infor-
mation and detailed equations of the EOF analysis, and Björnsson and Venegas (1997) for
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more information on correspondence between the EOF analysis via the covariance matrix of
the data field and the SVD of the data field.

The Python package “eofs” is used for the computation of the EOF (see Dawson (2016)
and https://ajdawson.github.io/eofs/).

2.2.2.3 Clustering classification

Cluster analysis is a statistical technique that groups objects with similar characteristics
in the same group or cluster. Objects in the same cluster are more similar to each other,
according to the imposed criteria, than to those in other clusters. Due to their characteristics,
data-clustering methods have been widely used in the analysis of ENSO flavours. Singh et al.
(2011) and Kao and Yu (2009) used an (agglomerative) hierarchical clustering, Johnson (2013)
and Li et al. (2015) used a self-organizing map (SOM) analysis, which is an unsupervised
neural network method, Chen et al. (2015a) used a fuzzy clustering analysis and Takahashi
et al. (2011) used a k-mean clustering analysis. It is the latter method that we use to study
the density function associated with the E and C indices (see paragraph 3.2.2.2).

The k-mean analysis is a vector-based cluster analysis. It separates data in k groups
of equal variance, tending to define cluster of comparable spatial extent. Each cluster is
described by the mean of the data in the cluster, called the centroid. After initialisation and
choice of k groups in the data, the k-mean algorithm determines the associated centroids.
Then it will assign each data to its nearest centroid, then recalculate associated centroids
and repeat these steps until the centroids do not change significantly. Note that the k-mean
analysis may converge to a local minimum, depending on the initialisation. To avoid this,
the computation is done several times.

The k-mean analysis requires to pre-specify the number of clusters, k (see Pham et al.
(2005) for methods for selecting the number of clusters). We used k=2 following Takahashi
and Dewitte (2016) and verified by other methods that this value was appropriate. In par-
ticular, we used a silhouette analysis which determines the distance between the resulting
clusters, for k ranging from 2 to 7. We also used the mean shift clustering, a centroid-based
method which determine the modes (the maxima) in a smooth density of data.

2.2.2.4 Wavelet analysis

One of the goal of wavelets analysis is to provide and conserve informations about the time
varying amplitude at different frequencies of the signal. It describes time-series not only in
frequency (as the Fourier transform method) but also in time, which is particularly interesting
when the signal is not stationary. In the thesis, the wavelet transform analysis is used
in Chapter 4 to determine the main time-scales of ENSO variability over long periods to
highlight its low-frequency modulation.

The wavelet transform method steps are described in Torrence and Compo (1998). The
Morlet wavelet function is used and the wavelet transform is made in Fourier space. The
analysed time-series are padded with enough zeros to prevent wrap-around effects from the
end to the beginning of the time-series.

The wavelet analysis has been rectified as suggested by Liu et al. (2007). They showed that
the method described by Torrence and Compo (1998) has a bias that favours low frequencies
and does not allow a comparison of the peaks between the different wavelet scales because
the energy is not comparable. The energy must thus be divided by the scale associated with
it to compensate the bias.

The resulting wavelet power spectrum is expressed in variance2 units.
The Python script of Evgeniya Predybaylo, based on Torrence and Compo (1998) method,

is used to calculate the wavelet transform but with bias correction added. The script is
available at http://atoc.colorado.edu/research/wavelets/.
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2.2.3 Models

2.2.3.1 Regression and piecewise linear regression

The simple regression is a model for predicting a linear relationship between one explained
variable Y (the dependent variable or the response) and an explanatory variable X (the
independent variable or the predictor). The linear model is expressed as:

Y = aX + b

where a is the slope and b is the intercept.
If we have n realisations of the explained variable Y and the explanatory variable X, the

model is expressed as:
yi = axi + b + εi

with εi the error term. The error term corresponds to the differences between the true value
of Y and the predicted/estimated value of Y (Ŷ ).

In a regression model, the errors tend to be minimised by finding the “line of best fit”.
In the thesis, the coefficients a and b are estimated using the ordinary least squares criterion
that is the fitted line minimizes the sum of squares residual (SSR).

SSR =
N∑

i=1

(yi − ŷi)2

where ŷi is the model prediction and yi is the observed result.
The most common way to evaluate how the model fits the data is to calculate the R-

squared coefficient, R2. The R2 coefficient is defined as the ratio between the variance
explained by the regression (Sum of squares explained, SSE) and the total variance (Sum
of squares total, SST), in the case of a univariate linear regression (because SST = SSE +
SSR).

R2 =
SSE

SST
= 1 − SSR

SST
= 1 −

N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − ȳ)2

with ȳ = 1
n

N∑
i=1

yi the mean of Y.

R2 varies between 0 and 1, with values close to 1 indicating a good predictive power of
the model because it means that more variance is explained by the model. Note that the R2

increases every time a new feature is added to the model, selecting the model with the highest
R2 does not necessarily mean choosing the best linear model. An alternative approach is to
use the adjusted R2 which increases only if the new term improves the model more than
would be expected by chance and can also decrease with poor quality predictors.

We also use a piecewise linear regression in the thesis (see Chapter 5). It fits the data with
continuous piecewise linear functions. The optimal location for line segments is estimated
via a differential evolution and by minimising the sum of the square of the residuals. The
Python package “pwlf” is used for the computation of the piecewise linear regressions (see
https://jekel.me/piecewise_linear_fit_py/).

A regression model indicates a tendency for two indices to co-vary and is related to the
correlation coefficient.

2.2.3.2 Correlation and spatial pattern correlation

Correlation is a statistical tool which measures the tendency of two variables X and Y to co-
vary. Correlation does not predict the evolution of Y relative to X as the linear regression but
gives intensity of the relationship between the two variables. It does not distinguish between
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dependent and independent variables. Correlation coefficient depends on the dispersion of
the different data around the regression line. In addition to using correlation as an indicator
of the intensity of a linear relationship between two variables, correlation is also used to
determine the tendency of two time series to vary similarly at the same time step. In that
case, it is referred as Pearson’s correlation coefficient.

The linear correlation coefficient of Pearson is the covariance of the two variables divided
by the product of their standard deviations:

rx,y =
cov(X, Y )

σxσy

=

N∑
i=1

1
N

(xi − x̄)(yi − ȳ)√
1
N

N∑
i=1

(xi − x̄)2

√
1
N

N∑
i=1

(yi − ȳ)2

The values of the correlation coefficient are between -1 (total negative correlation) and 1 (total
positive correlation). When equal to 0, there is no correlation between the two variables.

The link between linear regression and correlation appears through the expressions of the
correlation coefficient and the slope of the regression. The slope of the linear regression is:

a =

N∑
i=1

(xi − x̄)(yi − ȳ)

N∑
i=1

(xi − x̄)2

=
cov(X, Y )

σ2
x

Finally, a = r(x,y)
σy

σx
. The linear correlation coefficient is the standardized slope of a

simple linear regression.
The spatial pattern correlation coefficient corresponds to the Pearson product-moment

coefficient between two variables at corresponding locations on two different maps. It is used
in Chapter 4 to establish correlation between different modes of variability of the equatorial
Pacific. The method has some limitations, including the fact that it applies to global patterns
and are insensitive to local variations (Long and Robertson, 2018).

2.2.3.3 Bi-linear regression

As mentioned in paragraph 2.2.2.2, multiple linear regression is also used to estimate spatial
patterns associated with time series. In particular, the spatial pattern associated with the
E and C indices is determined by a bi-linear regression at each location, that is a linear
regression to multiple input variables (the two indices) onto a 3-D field (SST for instance).
In the case of the E and C indices regressed onto the detrended monthly SST anomalies, the
bi-linear regression is expressed as:

SSTA(x, y, t) = α(x, y) · E(t) + β(x, y) · C(t) + constant + residuals

α(x, y) is the spatial pattern corresponding to the E-mode, β(x, y) corresponds to the
spatial pattern associated with the C-index. It is therefore used to determine the associated
SSTA spatial patterns of the E and C modes (see paragraph 3.2.2). The resulting map has
amplitude in the physical units of the dataset. This method is also applied to zonal wind
stress fields in paragraph 5.3.4.1.
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2.2.4 Significance of the results

Statistical tests are used to verify the validity of a hypothesis in order to extrapolate the
results obtained from a sample to an global population. A null hypothesis is formulated in
such a way as to correspond to a postulate that one is only willing to reject with a high
degree of certainty. A hypothesis test is therefore a kind of demonstration by the opposite
of what we are trying to prove. For example, when analysing how changes in a variable due
to global warming are significant, the variable is compared between the historical climate
(sample x1) and the future climate (sample x2). The null hypothesis is that there is not
significant difference between the samples, via for instance the mean of the samples: the null
hypothesis is “The two means of the samples are identical”. The statistical test determines
the probability that the null hypothesis is true. If the null hypothesis cannot be rejected, no
conclusion can be drawn from the samples concerned, as the probability that the distribution
(means) is due to chance is high. Otherwise, differences between the means of the two
samples are statistically significant. Note that the test does not make any assumptions about
the equality of the distribution shapes of the two samples.

The conclusion adopted (whether or not the null hypothesis is rejected) is established with
a certain probability of error. The p-value represents the probability of making a mistake
on the rejection of this hypothesis: a low value of the p-value indicates that the hypothesis
is rejected with a high certainty, while a high value indicates that the hypothesis probably
cannot be rejected. A result is then said to be statistically significant when the p-value is less
than a probability threshold of rejecting the null hypothesis when it is true. The probability
threshold is generally equal to 0.05 (5 %) but may vary in the thesis up to 0.01 (1 %). The
result is statistically significant at 95 % (99 %) confidence level. Note that the p-value is also
used to validate the regression and correlations described above. The null hypothesis is then
written “the linear trend is null” or “the correlation is null”. If the p-value of a regression is
less than the probability threshold, then the null hypothesis is rejected and the trend obtained
by regression is considered significantly different from zero.

There are two main categories of tests: parametric tests and non-parametric tests. Para-
metric tests require that the form of the distribution of the studied variable be specified. This
may be a normal distribution, which is the general case when dealing with large samples or
the majority of climate variables such as temperatures. Non-parametric tests apply when it
is not possible to make an assumption about the distribution of the variable. They do not
refer to a particular distribution and can therefore be applied to small samples. They are
theoretically less powerful than parametric tests on large samples but much more accurate
on small samples. Note that for precipitation datasets, it is not possible to apply parametric
tests. For instance, comparing the ensemble-means of each climate, historical and future,
requires a non-parametric test.

2.2.4.1 Student’s T-test

Student’s T-test is a parametric method, it requires that the statistical distribution of the
two samples be known. For instance, we compare the means μ1 and μ2 of the samples x1
and x2 of the historical and future climate respectively. The samples also have n1 and n2

elements and variances equal to σ1 and σ2 respectively. In these conditions, corresponding
to the Welch’s test, the t statistic to test whether the means are different is defined as:

t =
μ1 − μ2√

σ1

n1
+ σ2

n2

The two means are significantly different if |t| is greater than 1.96 for a statistical significance
threshold equal to 0.05.
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2.2.4.2 Bootstrap test

Bootstrap test is a non-parametric method. Consider the derived quantity to compare is
the difference between the ensemble-means of each climate, historical and RCP8.5, with
respectively 42 and 40 members in each set. The different steps of the method are as follows:

• take a random sample with replacement, of the same length as the initial sample (42
(40) elements for historical (RCP8.5) set) but which may contain the same element
several times,

• calculate the difference between the average of this new set of RCP8.5 means minus the
average of the new set of historical means. It is the (first) derived quantity,

• repeat the draw n times,
• the probability distribution function obtained from the n derived quantities, called the

(empirical) bootstrap distribution, is used to calculate a confidence interval to test the
hypothesis. For instance the 2.5 % and 97.5 % ranking from the probability distribution
function indicate the 95 % confidence level. If zero is included in the interval, the
means of the two samples are not significantly different and the null hypothesis can not
be rejected. Instead of a confidence interval, the empirical variance of the bootstrap
distribution can be used to estimate the standard error of the derived quantity.

Instead of construct the bootstrap distribution associated with the difference of the means
of the two samples, a comparison between the bootstrap distributions of each sample can be
performed. This methods needs to use at least n=1000 bootstrap samples and requires that
the bootstrap distribution be symmetric and centred on the original sample parameter (Efron,
1982). In the thesis, we use n=10,000.

2.2.4.3 Wilcoxon test

Wilcoxon rank-sum test, also called Mann-Whitney U-test, is a non-parametric method
(Wilcoxon, 1945; Mann and Whitney, 1947). The test estimates the distribution of the
rank of two samples to determine whether the means of the distributions are the same. The
procedure classifies the sample values from the smallest to the largest, ranging from rank 1
(the smallest observation) to rank (n1 + n2). The test statistic is then given by:

U1 = R1 +
n1(n1 + 1)

2

U2 = R2 +
n2(n2 + 1)

2

where Ri is the sum of the ranks in sample i.
For large samples, Ui is approximately normally distributed. In this case, a standardized

value of the test statistic is defined as:

z =
Ui − μi

σi

where μi and σi are the mean and standard deviation of Ui and for i=1:

μ1 =
n1n2

2

σ1 =

√
n1n2(n1 + n2 + 1)

12

z is the same regardless of the U used.

Note that the choice of the non-parametric method does not lead to significant change in
the significance of the results.
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2.3 Heat budget computation and validation

2.3.1 Oceanic mixed layer thermodynamics

2.3.1.1 General temperature equations

Ocean dynamics are described in the POP model by the 3-D primitive equations of Navier-
Stokes for a “thin” fluid using the hydrostatic and Boussinesq approximations. The Boussi-
nesq approximation allows to consider the density as constant, except in pressure.

The temperature equation, when using the Boussinesq approximation, is:

DT

Dt
=

∂T

∂t︸︷︷︸
a

+ �u · ∇T︸ ︷︷ ︸
b

= AH∇2
HT︸ ︷︷ ︸

c

+
∂

∂z
(AV (z)

∂T

∂z
)︸ ︷︷ ︸

d

+ Qnet︸ ︷︷ ︸
e

(2.1)

where:

• T is the 4D-potential temperature (K);
• �u the 4D-velocity field (m/s);
• AH the horizontal thermal diffusivity (m2/s), assumed to be spatially constant;
• AV the vertical thermal diffusivity (m2/s);
• Qnet the effective net ocean-atmosphere heat flux (K/s).

The term a of the equation is the rate of change of temperature. The term b is the
3D-advection of heat, the terms c and d are respectively the horizontal and vertical diffusion
of heat and the term e corresponds to the atmospheric forcing.

2.3.1.2 Within the oceanic surface layer

We are interested in oceanic processes at play in the oceanic mixed layer, which is defined
as the surface layer where variables such as temperature, salinity and density are vertically
homogeneous. This oceanic boundary layer constitutes the coupling zone with the atmo-
sphere where turbulent processes are important because of the exchange of energy (e.g heat
flux), mass (e.g evaporation and precipitation) and momentum (e.g wind stress) with the
atmosphere (its boundary layer).

For reasons of simplification of calculations of the heat budget, we consider a fixed depth of
the mixed layer, which allows to neglect the entrainment process of heat into the mixed layer,
due to the tendency term of the mixed layer depth. Estimating a temporally varying mixed
layer heat budget is complex especially because it requires the estimation of the entrained
and detrained water of the mixed layer, whose volume changes concomitantly.

We assume that the temperature is vertically homogeneous over the fixed-depth layer.
The heat budget of the oceanic layer is obtained by integrating vertically the temperature
equation from the bottom of the layer (-h) to the surface. Moreover, we consider that the
horizontal mixing and the vertical turbulent heat flux terms are negligible. Under these
assumptions, the heat budget equation becomes:

1
h

∫ 0

−h

∂T

∂t
dz =

1
h

∫ 0

−h

(
−u

∂T

∂x
− v

∂T

∂y
− w

∂T

∂z

)
dz + Qnet + R

The writing of the equation is simplified:[
∂T

∂t

]
= −

[
u

∂T

∂x

]
−
[
v

∂T

∂y

]
−
[
w

∂T

∂z

]
+ Qnet + R (2.2)

with

•
[
∗
]

= 1
h

∫ 0
−h ∗ dz;

• h is the fixed depth of the surface layer (m);
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• u, v and w are the 4-D scalar components of the zonal, meridional and vertical currents
respectively (m/s).

The horizontal mixing and the vertical diffusion of heat (terms c and d of the equation 2.1)
are neglected in the study and included in the residuals R term. The residuals term includes
also the short-wave fluxes of heat out of the base of the mixed layer (see paragraph below), the
change in temperature associated with the freshwater flux, the sub-grid scale and sub-monthly
time scale contributions including the impact of tropical instability waves and numerical errors
due in particular to the off-line calculation of the heat budget and to the numerical diffusion
associated with the finite difference approximation in solving equations (see paragraph 2.3.2).

It has been verified that the temperature is vertically homogeneous within the surface
layer, even if some differences may occur in the eastern Pacific due to the shallow thermocline.

Note that a linearised, implicit free-surface formulation is used for the barotropic mode in
CESM1 simulations, but will be neglected in our budget, as well as surface freshwater fluxes.
These latter are treated in POP model as virtual salt fluxes, using a constant reference
salinity, which leads to a constant net ocean volume (but not ocean mass).

2.3.1.3 Net surface heat flux

The net ocean-atmosphere heat flux, Qnet of the equation 2.2 includes surface heat fluxes
(SHF) and penetrating short-wave radiation (SWR). It can be expressed as:

Qnet =
Qs

ρ0 Cp h
(2.3)

with

• ρ the sea-water reference density (kg/m3);
• cp the specific heat content (J/(kg · K));
• and h the depth of the oceanic layer (m).

The density of the sea water is assumed to be constant at 1026 kg/m3, the specific heat
content is fixed at 3996 J/(kg · K), which are the values used in CESM-LE simulations.

The surface heat flux Qs is composed of the short-wave solar radiation, the outgoing
long-wave radiation, the latent heat flux and the sensible heat flux.

We use the SHF variable of the CESM-LE (W/m2), corresponding to the “total surface
heat flux including SW” according to the model description. This variable is provided in
monthly data, directly interpolated on the ocean grid of POP model. It is a prognostic
output variable of the atmospheric model. Carlos Conejero, a Ph.D. student colleague from
Legos, verified that this variable corresponded, at least up to the mid-latitudes, to the sum
of the short-wave radiation (QSW ), long-wave radiation (QLW ), latent heat flux (QLH) and
sensible heat flux (QSH) also provided by the NCAR Website.

The POP model uses a parameterisation to determine the penetrative solar irradiance
heat flux at depth h. It is parameterised by a Jerlov type I water hypothesis applied to open
ocean: a fraction of the solar radiation reaches the depth z such as fSW = c ∗ exp

(
z

depth1

)
+

(1 − c) ∗ exp
(

z
depth2

)
with 0.58 <= c <= 0.78. We neglect this term in our heat budget,

considering that no solar heat flux escapes through the base of the surface layer. Similarly, we
do not take into account the attenuation of heat flux by other processes, such as absorption
by chlorophyll.

2.3.1.4 Reynolds decomposition

To analyse the different physical processes, we decompose the equation between the mean
and the eddy terms by a Reynolds decomposition that is a linearisation of the equation 2.2
around a mean state at equilibrium. Each advection terms are decomposed into the advection
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of mean temperature by anomalous current, the advection of anomalous temperature by mean
current and the advection of anomalous temperature by anomalous current. The anomalous
temperature tendency is then expressed as:[

∂T
′

∂t

]
= −

[
u

∂T

∂x

]′

−
[
v

∂T

∂y

]′

−
[
w

∂T

∂z

]′

+
Q

′

net

ρ0 Cp h
+ R

′

=

[
−ū

∂T
′

∂x
− v̄

∂T
′

∂y

]
︸ ︷︷ ︸

a

−
[
w

∂T
′

∂z

]
︸ ︷︷ ︸

b

−
[
u

′ ∂T

∂x

]
︸ ︷︷ ︸

c

−
[
v

′ ∂T

∂y

]
︸ ︷︷ ︸

d

−
[
w

′ ∂T

∂z

]
︸ ︷︷ ︸

e

−
[
u

′ ∂T
′

∂x
+ v

′ ∂T
′

∂y

]
−
[
w

′ ∂T
′

∂z

]
︸ ︷︷ ︸

f

+
Q

′

net

ρ0 Cp h︸ ︷︷ ︸
g

+ R′

︸︷︷︸
h

= MHD + TCF + ZAF + MAF + UPW + NDH + Q + R

(2.4)

where the over-bar notation represents the climatological monthly mean and the prime
denotes the inter-annual anomalous quantity. Square brackets indicate vertical integration
over the surface layer, whose depth is set at 80 m.

The heat equation is then composed by different feedbacks:

• a : the anomalous temperature advection by the mean horizontal currents, referred as
the mean horizontal dynamic heating term (MHD) (Guan and McPhaden, 2016);

• b : the vertical anomalous temperature advection by the mean vertical velocity, referred
as the thermocline feedback (TCF);

• c : the mean temperature advection by the anomalous zonal current referred as the
zonal advective feedback (ZAF);

• d : the mean temperature advection by the anomalous meridional current (MAF);
• e : the mean temperature advection by the anomalous vertical current, referred as the

upwelling feedback (UPW);
• f : the non-linear terms are referred as the non-linear dynamical heating (NDH) (Jin

et al., 2003a; Ren and Jin, 2013; An and Jin, 2004);
• g : the surface heat flux term referred as the thermodynamical damping (TD) (Ren

and Jin, 2013; Guan and McPhaden, 2016).

The main feedbacks involved in the dynamics of ENSO are the zonal advective feedback
and the thermocline feedback (An and Jin, 2000, 2001; Fedorov and Philander, 2001), to
which we can add a term of damping feedback (Jin and Neelin, 1993; Neelin et al., 1998).
The zonal advective feedback accounts for the zonal heat advection by anomalous zonal cur-
rent in a mean zonal gradient of temperature, which is the case at the scale of the equatorial
Pacific, with warmer water in the western Pacific than in the eastern Pacific. The thermo-
cline feedback accounts for vertical heat advection of temperature anomalies by the mean
upwelling, where temperature anomalies are related to thermocline vertical displacements.
The thermocline feedback can be defined by decomposing the mean upwelling feedback in an
approximation (Jin and Neelin, 1993; Ren and Jin, 2013):

− w
∂T

′

∂z
= w

T
′

sub

H
− w

T
′

H
(2.5)

where H is the effective mean mixed layer depth for the vertical advection and the sub-
script “sub” denotes a subsurface-layer immediately below the mixed layer.

Note that the different feedback definitions and names may vary depending on the stud-
ies. Takahashi and Dewitte (2016) group the terms of MHD, ZAF and MAF to obtain
the horizontal linear advection and the terms of TCF and UPW to obtain the vertical lin-
ear advection. Their non linear dynamical heating term (NDH) removes the seasonality of
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the non-linear advection by adding
[
u′ ∂T

′

∂x
+ v′ ∂T

′

∂y
+ w′ ∂T

′

∂z

]
to our NDH term. Guan and

McPhaden (2016) defines the Ekman feedback as our upwelling feedback while Ren and Jin
(2013) defined the Ekman pumping feedback as

[
−v

′ ∂T
∂y

− w
′ ∂T

∂z

]
.

2.3.2 Discretisation on the model grid

The heat budget was calculated off-line from monthly outputs, on the native grid of CESM-
LE. We use the centred second-order finite differences scheme for advective derivation and a
leap-frog time stepping for temporal derivation as described in paragraph 2.3.2.2.

2.3.2.1 POP model grid

The ocean POP model (Smith et al., 2010) utilizes a staggered grid. A staggered grid defines
scalar variables (temperature, pressure, density, etc..) in the centre of the control volumes
(named T-cells here) whereas vector variables (velocity e.g.) are located at the cell faces
or cell corners. The main advantage of a staggered grid is that it allows to represent the
wave propagation and to maintain the conservation properties. It prevents the decoupling of
pressure and velocity, which can lead otherwise to discretisation errors and to checker-board
patterns in the results.

The staggered grid of the POP model is an Arakawa B-grid (Arakawa and Lamb, 1977),
that is the horizontal velocities are defined at the north-east corners of the T-cells. On
Figure 2.16, the T-cells are illustrated by the solid lines, the U-cells by the dashed lines. The
indexing for points (i,j) is increasing eastward and northward respectively. For the same (i,j)
indices, a vector lies on the centre of the U-cells located on the north-east (upper right) of
the centre of the T-cells where the scalar stands.

The main advantage of B-grid is that because the horizontal velocities are on the same
grid point, the calculation of the zonal (�u) and meridional (�v) velocities contribution to the
Coriolis force is easy at a given point, unlike the common Arakawa C-grid for example, for
which this calculation requires the interpolation of the horizontal components of the velocity.
This interpolation can be particularly problematic when the eddies are on the scale of the
grid, resulting to spurious vertical velocities.

(a) Lengths of cells (b) Lengths between variables

Figure 2.16 – Representation of the Arakawa B-grid used by POP ocean model (from Smith et al.
(2010)) indicating scalars (T) and velocities (U, V) grid points, (2.16a) lengths of cells and (2.16b)
lengths between variables used in the numerical scheme (see paragraph 2.3.2.3). The figure 2.16a is
reprinted from Smith et al. (2010) and the figure 2.16b was drawn by Estelle Carréric.

The vertical grid uses a level-coordinate system. This kind of vertical coordinates allows
a good resolution of the oceanic surface layers and, thus, of the air-sea interactions. However,
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the staircase representation of the topography can generate irregularities in the bottom of
the ocean and the numerical non-convergence of the solutions. The k-index in the vertical
dimension is increasing with depth (Fig. 2.17b). The vertical grid is also a staggered grid
(Lorenz grid) where the vertical velocity components are located on the top face of the T-
grid (Fig. 2.17a). The vertical grid of POP model is composed of 60 levels with a decreasing
resolution going towards the bottom of the ocean, from 10 m in the first 155 m to 250 m.

(a) staggered cube (b) Vertical staggered grid

Figure 2.17 – Representation of the vertical staggered grid (Reprinted from Smith et al. (2010))

More information on the ocean model can be found in the POP reference manual (Smith
et al., 2010). The manual of MOM model, whose grid is also an Arakawa B-grid, has been
also very useful to understand the intrinsic characteristics of the grid and discrete equations
associated with, because the numerical formalism and assumptions related are particularly
well described (Griffies et al., 2004, 2010).

2.3.2.2 Temperature equations formalism

When running a simulation, the POP model can be used with different advection schemes: the
centred scheme, the third-order upwind advection scheme and the flux-limited Lax-Wendroff
algorithm. To calculate the heat budget off-line, we use the centred second-order finite
differences scheme. The time derivative is approximated using a leap-frog time stepping.
Thus, when the temperature tendency is computed between the time levels n-1 and n+1, the
advective terms are calculated at the time level n.

We consider that the changes in tracer concentration associated with the freshwater flux
and the changes in volume of the surface layer due to undulations of the free surface are
negligible. The discrete temperature transport equations are then written in the POP model
formalism as:

T n+1 − T n−1

2Δt
= −LT (T n) + DH(T n−1) + DV (T n+1) + S (2.6)

where LT is the advection operator in T-cells, DH,V are the diffusion operators in the hori-
zontal and vertical directions and S are the source terms.

This equation is partly that used to calculate the temperature field at each time step in the
model, without our simplifying assumptions. The discretisation of each term of this equation
is described in the following paragraphs considering the centred second-order scheme.

Temporal derivative term : using a leapfrog scheme (second order), the discretisation
becomes :

∂T

∂t
(n, i, j, k) =

T (n + 1, i, j, k) − T (n − 1, i, j, k)
2Δt(n)

(2.7)

where Δt is the time-step. We assume that there is no change in volume of the surface
layer due to undulations of the free surface.

124



2.3. HEAT BUDGET COMPUTATION AND VALIDATION

Advection term : In general coordinates and using the standard second-order centred ad-
vection scheme, the advection operator for the temperature tracer is given by (cf. equa-
tion 3.14 in Smith et al. (2010)):

LT (T ) =
1

Δy
δx

[(
Δyux

y
)xy

T
x
]

+
1

Δx
δy

[(
Δxuy

x
)xy

T
y
]

+ δz(wT
z) (2.8)

• The factors Δx and Δy inside the difference operators (δx and δy) are located at
U-points and correspond to DXU and DYU respectively (see Fig. 2.16b).

• The factors ΔT
y and ΔT

x outside the difference operators are located at T-points.

• The difference operators and the average operators are defined by (cf. equations
3.4 and 3.5 in Smith et al. (2010)):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂ϕ

∂x
=

ϕ(x + Δx

2 ) − ϕ(x − Δx

2 )
Δx

ϕx =
ϕ(x + Δx

2 ) + ϕ(x − Δx

2 )
2

with similar definitions in the y and z directions. These formulas apply for uniform
grid spacing, which is not the case of the POP B-grid. For a uniform grid, if ϕ is a
tracer located at T-points, then ϕ(x+ Δx

2 ) is located on the east face of the T-cell.
For the POP B-grid, the definitions should be adapted such that the variables lie
at T- or U-cell centres as appropriate.

Thereby, regarding the horizontal advection terms, the mass fluxes Δyux
y

and Δxuy
x

as
well as the temperature fields T

x and T
y are located on the lateral faces of the T-cells.

The zonal advection term can thus be expressed at each time step by:

ADVx(i, j, k) =
1

Δy
δx

[
Δyux

y
T

x
]

=
∂[ue(i, j, k) Te(i, j, k)]

∂x

=
ue(i, j, k) Te(i, j, k) − uw(i, j, k) Tw(i, j, k)

DXT (i, j)

=
ue(i, j, k) Te(i, j, k) − ue(i − 1, j, k) Te(i − 1, j, k)

DXT (i, j)
(2.9)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue(i, j, k) =
u(i, j, k) DY U(i, j, k) + u(i, j − 1, k) DY U(i, j − 1, k)

2 DY T (i, j, k)

uw(i, j, k) = ue(i − 1, j, k)

Te(i, j, k) =
T (i + 1, j, k) + T (i, j, k)

2
Tw(i, j, k) = Te(i − 1, j, k)

ue is the velocity in the x-grid direction centred on the east face of the T-cells. The
definition is similar in the y-grid direction.

The vertical advection term includes the vertical velocity which is calculated by in-
tegrating the continuity equation (L(1) = 0) from the surface down to level k. The
continuity equation gives (equation 3.7 in Smith et al. (2010)):

∂w

∂z
= − 1

ΔT
y

δx(ΔU
y ux

y
) − 1

ΔT
x

δy(ΔU
x uy

x
) = −∇�u (2.10)
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The divergence is located at T-points. The vertical velocity is thus calculated by:

w(k + 1) = −w(k) +
dzw

2 · TAREA(i, j)

[
ux(i, j)DY U(i, j) + ux(i, j-1)DY U(i, j-1)

− ux(i-1, j)DY U(i-1, j) − ux(i-1, j-1)DY U(i-1, j-1)
]

(2.11)

with w(k=0) = 0 at the surface when we neglect the evolution of the free surface over
time.

Note that because a time-step was missing in the vertical velocity field for one historical
member of the CESM-LE (number 033), we compute the vertical velocity for that
member through this equation. The other non-missing time-steps being equal to our
calculation, this reinforces our understanding of the formalism of the POP model.

The vertical advection term becomes:

ADVz(i, j, k) =
∂[w(i, j, k) T (i, j, k)]

∂z

=
wtop(i, j, k) Ttop(i, j, k) − wbottom(i, j, k) Tbottom(i, j, k)

∂z

=
wtop(i, j, k) Ttop(i, j, k) − wbottom(i, j, k) Tbottom(i, j, k)

∂z

=
w(i, j, k) Ttop(i, j, k) − w(i, j, k + 1) Ttop(i, j, k + 1)

∂z
(2.12)

with Ttop = Tk−1+Tk

2

Finally, the 3D-advection of tracers expressed by finite-difference scheme is:

ADV (i, j, k) = −ue Te − uw Tw

DXT
− vn Tn − vs Ts

DY T
− w(k) TT − w(k + 1) TB

dz
(2.13)

(see equation 6.1 in Smith et al. (2010) without the third-order upwind advection scheme
in temperature).

The fluxes of heat and freshwater are applied in the numerical scheme of POP model as
surface boundary conditions to vertical mixing terms (term d in equation 2.1 and terms DH,V

in equation 2.6). We neglect the freshwater and vertical mixing terms in our heat budget
calculation, the heat fluxes are included in the S term of equation 2.6.

2.3.2.3 Discretisation of our advection terms

The previous paragraph describes the temperature advection formalism when using the con-
tinuity hypothesis to express the advection of the tracer (equation 2.8). Then the advection
terms are calculated using the product rule. This formalism is used to calculate the temper-
ature field at each time step in POP model.

However, in our case, we want to have access to each advection term individually. We can
not used the continuity hypothesis to express the advection operator. We want to compute
in each direction the fluxes across cell faces, that is the product of the advective velocity by
the associated gradient of temperature at each cell. To do that, we need to calculate the
advective velocity components on the corresponding face of the tracer cells, which requires,
on the B-grid, averaging the prognostic B-grid horizontal velocity components. We compute
the horizontal components of the advection velocity on the centres of T-cells, in order to
have the horizontal advective components at the same grid point. We re-write our different
advection terms in the POP formalism:
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Zonal advection term :

u(i, j, k)
∂T (i, j, k)

∂x
= ucentre(i, j, k) · ∂Te(i, j, k)

∂x

=
ue(i−1)HUS(i−1) + ue(i)HUS(i)

2 · DXT(i)
· Te(i) − Te(i−1)

DXT(i)
(2.14)

where ucentre is the zonal velocity at the centre of the T-cell, ue and Te are respectively
the zonal velocity and the temperature in the middle of the east T-cell face:⎧⎪⎪⎨

⎪⎪⎩
ue(i, j, k) =

u(i, j − 1, k)DY U(i, j − 1, k) + u(i, j, k)DY U(i, j, k)
2 · HTE(i, j, k)

Te(i, j, k) =
T (i + 1, j, k) + T (i, j, k)

2

Meridional advection term

v(i, j, k)
∂T (i, j, k)

∂y
= vcentre(i, j, k) · ∂Tn(i, j, k)

∂y

=
vn(j−1)HUW(j−1) + vn(j)HUW(j)

2 · DY T(j)
· Tn(j) − Tn(j−1)

DY T(j)
(2.15)

where vcentre is the meridional velocity at the centre of the T-cell, vn and Tn are
respectively the meridional velocity and the temperature in the middle of the north
T-cell face:⎧⎪⎪⎨

⎪⎪⎩
vn(i, j, k) =

v(i − 1, j, k)DXU(i − 1, j, k) + v(i, j, k)DXU(i, j, k)
2 · HTN(i, j, k)

Tn(i, j, k) =
T (i, j + 1, k) + T (i, j, k)

2

Vertical advection term

w(i, j, k)
∂T (i, j, k)

∂z
= w(i, j, k) · T(i,j,k−1) − T(i,j,k)

dzw(k−1)
(2.16)

with dzw the thickness of layer associated with the vertical velocity grid.

It should be noted that different checks were made at each step of computation. It
has been verified that the sum of the three Reynolds decomposition terms of the advection
tendency in each direction is equal to the corresponding advection tendency. It means that the

contribution of the
[
u

′

i
∂T

′

∂xi

]
component in each direction is very weak, that is the seasonality

of the non-linear vertical advection is small.
It has also been verified that the different terms of the heat budget were corresponding to

the heat budget calculated on-line directly by the model. Indeed, a variable, named ADVT, is
available directly on the NCAR Website and corresponds to the vertically integrated tempera-
ture advection tendency. Our integrated temperature tendency along the entire water column
is comparable to this variable even if there are locally pronounced differences, especially in
the eastern Pacific.

2.3.3 Projection onto the E and C modes

The different tendency terms of the SST equation (see equation 2.4) are then projected
onto each of the spatial patterns of the E and C modes following the method developed by
Takahashi and Dewitte (2016). First, the heat budget within the surface layer is computed
by vertically integrating the anomalous temperature equation from the bottom of the layer,
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fixed at 80 m, to the surface. We project the resulting terms onto the spatial patterns of the
first two normalised EOF modes of the equatorial Pacific (2°S-2°N). The resulting time-series
are then linearly combined according to the definition of the E and C indices.

For instance, the projection of the heating rate onto the E mode is calculated as:

〈 ∂T
′

∂t
| E 〉 =

1
NxNy

∫ 290°E

120°E

∫ 2°N

2°S

(
∂T

′

∂t
(x, y, t) · E(x, y)

)
dxdy (2.17)

This gives us the contribution of each term of the heat budget to the two main rotated modes
of variability of the equatorial Pacific, the E and C modes. The method is equivalent to the
average of the tendency terms over the main influence regions of the E and C patterns.

This method has the advantage of estimating objectively the region of influence of the
different feedbacks, compared to the method where tendency terms are averaged over the
classical Niño-4 and Niño-3 regions, or modified versions of them to take into account mean
state biases in the CGCMs (Kug et al., 2010; Capotondi, 2013; Stevenson et al., 2017).
Moreover, the E and C patterns of the future climate can be modified compared to the
present climate (see chapter 5). Our method take into account changes that may take place
in the location of the main centres of action of the two types of El Niño events.

Finally, we take into account amplitude changes in the E and C modes with global warming
by scaling the RCP8.5 heat budget terms by the projection coefficient of the RCP8.5 E and
C patterns on their counterparts of the historical run. The scaling coefficients are equal to
1.18 (±10 %) for both E and C modes over 2°S-2°N. Changes in the heat budget due to global
warming are analysed in chapter 5.

2.3.4 Validation of the heat budget

2.3.4.1 Comparison with observations

We compare a strong El Niño event chosen randomly in the PI-control simulation with an
observed strong El Niño event. Firstly, we present the time-longitude evolution of different
variables during the simulated El Niño event. The different variables are averaged along the
equator, between 2°S and 2°N.

(a) SST anomalies (b) TAUX anomalies

Figure 2.18 – Time-longitude sections of the equatorial (2°S-2°N) for a strong El Niño event in the
CESM-LE PI-control simulation. The shadings represent the evolution of (2.18a) the SSTA (◦C)
and (2.18b) the anomalous zonal wind stress (10−2 N/m2) respectively. The contours in figure 2.18b
represent the evolution of the SST, with intervals every 0.5 ◦C.

The PI-control El Niño event is classified as strong El Niño (see chapter 3), meaning that
the anomalous warming is strongly expressed in the E-mode of variability of the tropical
Pacific. The SST anomalies (Fig. 2.18a) are stronger in the eastern Pacific during the mature
phase of the event (NDJ) than in the central Pacific. These anomalies are directly linked to
the anomalous surface zonal wind stress (Fig. 2.18b) during the mature phase of the event,
through the Bjerknes feedback : the zonal SST gradient reinforces the westerly winds through
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the zonal sea level pressure gradient and in turn the zonal wind stress enhances the zonal
SST gradient. SSTA (Fig. 2.18a) and zonal wind stress anomalies (Fig. 2.18b) time-longitude
patterns are comparable to those of L’Heureux et al. (2017) who make a comparative analysis
of the last three strong El Niño events observed (see their figures 2 and 4 respectively).

We compare the evolution of the total heating rate during this event to that observed
during the strong El Niño event of 1997-1998. The reanalysis dataset used is SODA v2.2.4
(see paragraph 2.1). The total heating rate is integrated over the surface layer, whose depth
is fixed at 80 m and averaged along the equator, between 2°S-2°N.

(a) A PI-control strong El Niño event (b) El Niño 1997-1998 (SODA v2.2.4)

Figure 2.19 – Comparison of the total heating rate of (2.19a) a strong El Niño event of the CESM-LE
PI-control simulation and (2.19b) the 1997-98 strong El Niño event in SODA v2.2.4 (◦C/month).
The tendency term is averaged along the equator between 2°S-2°N and integrated on the fixed-depth
surface layer equal to 80 m.

Even if the maxima values are greater for the CESM-LE event than for the observed
1997-98 El Niño, the spatial evolution of the heating rate is similar. In the eastern equatorial
Pacific, the CESM-LE El Niño event presents an alternation of positive and negative anoma-
lies temperature tendency during the developing phase of the Niño event, which is not so
pronounced in the observed event. The boreal summer peak spreads further west, with more
intensity and quicker during the CESM-LE event than the observed one. The westward shift
is observed, but later and weaker (around 180°W in November). The negative temperature
tendency during the decay phase is more abrupt and pronounced in the CESM-LE event
than in the observed event. The cooling rate is also extending more to the west. Finally, the
decaying phase occurs later, starting between January and February while for the observed
event, the negative anomalies begin in November. However, some of these features are likely
due to inter-event variability. CESM-LE seems to simulate realistically the evolution of El
Niño despite an extension further west, a stronger amplitude and a faster phase of decay.

We compare also different tendency terms of our heat budget calculated during strong El
Niño events of the CESM-LE historical simulations with those of the three observed strong
El Niño events analysed by Abellán et al. (2017b) (Fig. 2.20). They computed the heat
budget in the Niño-3.4 region (170°W-120°W and 5°S-5°N) and over a fixed mixed layer of
depth 50 m. Our tendency terms are integrated over a fixed mixed layer of depth 80 m.

We present only the year before the winter peak for our composites. Thus, only the
months of January(Y0) to December(Y0) of Figure 2.20a are compared to Figure 2.20b. It
should be noted that Abellán et al. (2017b) applied a three-month running mean filter on
their terms. Interestingly, the different terms of the CESM-LE historical composite are very
similar to those of the observed one. The total heating rate has a greater peak, around 0.5 ◦C
per month, while those observed reach 0.4 ◦C per month, but the values of the observed events
are smoothed by the applied filter. However, the 1997-98 El Niño has a temporal evolution
of its heating rate, with a period of peak when the heating rate is greater than 0.2 ◦C/month
from January(Y0) to October(Y0), that is outside the 95 percentiles of the simulated strong
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(a) Observed tendency terms (b) Historical ensemble mean tendency terms

Figure 2.20 – Time evolution of the heat budget tendency terms of (2.20a) the three observed El
Niño events and (2.20b) the historical ensemble-mean strong El Niño events in the Niño-3.4 region
(◦C/month). Figure 2.20a is the figure 9 of Abellán et al. (2017b). Black line is the 2015-16 El Niño,
red line is the 1997-98 El Niño and yellow line is the 1982-83 El Niño. The shading corresponds to
the standard deviation between the three datasets they used (GODAS, PEODAS and ORA-S4). The
temporal evolution over 24-month prior to the event peaks is shown. In figure 2.20b, the temporal
evolution over 12-month prior to the event peaks is shown. Thus, only the months of January(Y0)
to December(Y0) of Figure 2.20a are compared to Figure 2.20b. The shading corresponds to the 5th
and 95th percentiles between the events of the historical strong composite.

El Niño composite. The simulated strong El Niño composite is similar to the two other strong
El Niño events that are included in the spread of the composite.

The two main zonal advective terms, the mean zonal dynamic heating term and the zonal
advective feedback, present lower amplitudes in November and December than the 1997-98
and 1982-83 events. These terms would play a less important role during the mature phase
of the event, but this may come from the cold tongue bias of the model. The prominent role
of the zonal advection in the central Pacific could be shifted westward in the model. The
mean meridional dynamic heating term, however, does not follow the same evolution as for
the observed events with a decrease at the end of the summer while it increases throughout
the year in observations. The others two meridional terms present similar amplitudes and
evolutions. The vertical advection terms present higher amplitudes in the simulated strong
El Niño composite (see the different plot scale), but show similar temporal evolution.

Finally, considering the preceding comparison, the heat balance during the strong El Niño
events seems to be simulated realistically by the model.

2.3.4.2 Comparison with previous projected heat budget onto the E mode

Takahashi and Dewitte (2016) projected the heat budget of the two strong El Niño events
observed (1982-82 and 1997-98) as well as strong El Niño events simulated in GFDL CM2.1
onto their respective E mode. We reprint their figure 6 and compare it to the same diagnosis
applied to the strong El Niño events of the historical members of CESM-LE (Fig. 2.21).

Both periods have similar feedback contributions in observations, GFDL CM2.1 PI-control
simulation or CESM-LE historical simulations, with, however, reinforced contributions of
linear vertical advection and weaker contributions of linear zonal advection in CESM-LE
simulations. The spread associated with the inter-events ensemble is more pronounced in
CESM-LE, providing contributions that can be opposed for the same period (particularly for
the period 1, see the NDH and ADVXY terms) according to the event.
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(a) Drakkar and GFDL CM2.1 - First period (b) Historical CESM-LE

(c) Drakkar and GFDL CM2.1 - Second period (d) Historical CESM-LE

Figure 2.21 – Oceanic advective contributions to the rate of SST change in E (top, Fig. 2.21a and 2.21b)
from January(Y0) to July(Y0) and (bottom, Fig. 2.21c and 2.21d) from July(Y0) to January(Y1) of
strong and moderate El Niño events in (left) Drakkar, (middle) GFDL CM2.1 and (right) CESM-LE.
Unit is ◦C/month. The red bar accounts for the non-linear dynamical heating (NDH) whereas the
green and blue bars represents the horizontal and vertical linear advection respectively. The orange
vertical segment provides the inter-events standard error on the advection terms (14 moderate and
2 strong events for Drakkar). Note the different scales. Figures 2.21a and 2.21c are reprinted from
Takahashi and Dewitte (2016).
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2.3.4.3 Limitations of our heat budget calculation

Our calculation of the tendency terms of the SST equation in CESM-LE simulations has
limitations that must be kept in mind when interpreting the results.

First of all, the budget is not closed because, in addition to numerical errors, contributions
are not calculated, such as:

• which can lead to poor estimates of the first order: the assumption of the fixed depth
of the mixed layer (see paragraph 2.3.1.2);

• which can lead to poor estimates of the second order : the vertical turbulent heat flux
(term d of equation 2.1);

• which can lead to poor estimates of the third order, the horizontal turbulent mixing
(term c of equation 2.1);

• which can lead to poor estimates of the fourth order, the penetration of the heat flow
under the mixed layer (see paragraph 2.3.1.3).

The main limitation of our heat budget comes from the fixed depth of the mixed layer.
We chose this hypothesis for simplification of calculations because it allows to neglect the
entrainment process of heat into the mixed layer (see paragraph 2.3.1.2). Numerous studies
used the same assumptions (e.g. Kug et al. (2010); Capotondi (2013)).

Another issue in the time-varying mixed layer depth is the choice of the definition of
the mixed layer, which can lead to important differences between estimated depths. Indeed,
different methods are valid but not equivalent. The most common method consists in defining
the depth of the mixed layer such that the temperature is 0.2 to 1 ◦C colder than the sea
surface temperature. Another definition of the mixed layer is used in CESM-LE simulations:
following Large et al. (1997), the mixed layer depth is defined as the shallowest layer k1 where
the local buoyancy gradient is equal to the maximum value of the buoyancy gradient between
the surface and the depth k within the water column. This definition leads to a deeper mixed
layer than the first definition. This definition is used for instance in the calculation of the heat
budget by Stevenson et al. (2017), using simulations of the Last Millennium Ensemble (LME)
Project (Otto-Bliesner et al., 2016). They found in particular that the main contributions in
the heat budget of the El Niño events in the fixed regions of Niño-3m (2.5°S-2.5°N, 190-250°E)
and Niño-4m (2.5°S-2.5°N, 140-190°E) are from the zonal advective feedback (ZAF) and the
upwelling feedback, for the latter to the detriment of the thermocline feedback. They argued
that the deeper depths of the mixed layer estimated by the Large et al. (1997)’s method
tend to damp the thermocline feedback. This sensitivity of the advection terms highlights
the difficulty of comparing ENSO heat budget studies with each other, whereas integration
depths differ.

A method of intermediate complexity to improve the consideration of the effects of the
varying depth of the mixed layer is to use a longitude-varying depth, contrasting the deeper
(shallower) mixed layer in the western (eastern) Pacific, rather than a time-varying depth.
The zonal contrast in the equatorial Pacific mixed layer depths is likely to impact the results
of the different terms of the heat budget, especially the vertical advection terms. Taking into
account a stepped or linearly varying depth from west to east may facilitate the physical
interpretation of the heat budget by approximating the effective heat transfer between the
deep and the surface layers.

Lastly, the off-line calculation of the heat budget from monthly outputs is likely to influ-
ence results by adding numerical approximations.
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• CESM-LE project
The CESM Large Ensemble (CESM-LE) Project (Kay et al., 2015) is a set of climate

model simulations developed by NCAR (Colorado, USA) and available on-line on www.

earthsystemgrid.org (see paragraph 2.1.3). We use three different scenarios of fully cou-
pled simulations: 1) the Pre-industrial (PI-control) scenario aggregating 1801 years, 2) the
historical scenario (1920-2005) aggregating 42 members for a total of 3682 years and 3) the
RCP8.5 radiative forcing scenario (2006-2100) aggregating 40 members for a total of 3800
years of simulated climate system.

The important number of realisations of the same climate system is particularly inter-
esting to study climate phenomena that can follow different trajectories solely because of
internal variability. It is an indispensable tool to apprehend a climate phenomenon such
as ENSO, which presents strong natural and low-frequency modulations in its intrinsic be-
haviour (Wittenberg, 2009; Stevenson, 2012). Zheng et al. (2018) showed that at least 15
members of a simulations ensemble are required to differentiate the effects of climate change
from those of internal variability on ENSO.

• ENSO modelling by CESM-LE

We confirmed that CESM1, the CGCM used in the CESM-LE project, simulates realisti-
cally the variability of the tropical Pacific even if common CGCMs biases remain, especially
the cold tongue bias and the double ITCZ (see paragraph 2.1.4). The simulation of the SST
seasonal cycle is close to observations despite a westward shift of the cold tongue. This is
all the more interesting because ENSO is particularly linked to the SST seasonal cycle (see
paragraph 1.3.1). The simulation of ENSO by CESM-LE shows larger variability than ob-
served, more confined equatorially (that is the meridional extension of El Niño is too small)
and extending too far westward in the Pacific. Overall some intrinsic characteristics of ENSO
are realistically simulated, such as a realistic 3-6 years period and a seasonality of its vari-
ance close to the observed one. The model has also skill in simulating ENSO diversity and
non-linearities (Stevenson et al., 2017; Dewitte and Takahashi, 2017). These results give us
confidence in the use of CESM-LE as a test-bed to better understand the mechanisms and
sensitivity of ENSO diversity (chapter 3) to the Pacific mean state (chapter 4) or to climate
change (chapter 5).

• Thermodynamical and dynamical oceanic processes

A heat budget of the mixed layer is performed to diagnose oceanic processes during El
Niño events, in the framework of ENSO diversity and possible changes due to global warming.
We perform the heat budget with a fixed depth of integration of the oceanic mixed layer,
which can cause limitations in physical interpretation that we have to take into account in
physical interpretations. Considering a longitude-varying depth could lead to a better closure
of the heat budget and is a possible way of improving the results of this part of the thesis.
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• Data quantities challenging

Modelling the climate system is directly related to the numerical development. Espe-
cially, the simulation of a growing number of processes involving different scale mechanisms
requires the use of increasingly fine resolutions that make numerical simulations more and
more expensive in terms of computation time and storage capacity (Fig. 2.22). Just for the
CESM-LE, considering PI-control, historical and RCP8.5 simulations, about 1650 gigabytes
are needed to download associated files with one 4D variable, such as the vertical velocity
(for all ensemble members). In total about 6.5 terabytes had to be downloaded, a quantity
of data that must then be processed.

Figure 2.22 – Projected climate data volume, coming from models (yellow), remotely sensed data
(blue) and in situ measurements and past proxy (green). Reprinted from Overpeck et al. (2011)

• Tools

The post-processing of the large ensemble is thus challenging, if only because of the large
amount of data. However, the data scientist community is getting organized and is devel-
oping more and more tools to facilitate this post-processing. In particular, when using the
Python programming language, many packages are available that continue to develop to fa-
cilitate the exploitation of geoscience data. The majority of these geoscience packages uses
the SciPy Stack ecosystem (https://www.scipy.org/), which provides the core packages
NumPy (http://www.numpy.org/), SciPy library (https://docs.scipy.org/doc/scipy/

reference/), Matplotlib (https://matplotlib.org/) and pandas (http://pandas.pydata.

org/), that I used a lot.
An interesting and powerful package, which has developed particularly from the end of my

first year of thesis, is the xarray library (see Hoyer and Hamman (2017) and http://xarray.

pydata.org). It makes it easy to manipulate georeferenced, labelled multi-dimensional ar-
rays. The first interest is that dimensions, coordinates and attributes of netCDF files are
understood as such to compose an object on which functions can be directly and easily
applied. Another interest is the rapid development of integrated functions adapted to the
post-processing of geoscience data. Finally, it is possible to integrate Dask with xarray, which
supports parallel computations and streaming computation. Dask allows to make calcula-
tions on datasets which do not fit into memory, by “chunking” the matrix into many small
pieces.
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Despite its complexity, xarray remains intuitive to use, fun and accessible. In addi-
tion, many projects related to xarray continue to develop. I used for instance the pack-
ages: “eofs” for the computation of the EOF (see Dawson (2016) and https://ajdawson.

github.io/eofs/), “pwlf” for the computation of the piecewise linear regressions (see https:

//jekel.me/), “oocgcm” for inspiration and transcription on the B-grid of the POP model
(https://oocgcm.readthedocs.io/en/latest/), “marc cesm” project for optimisation of
the management of CESM files (https://github.com/darothen/experiment) among oth-
ers.

I also used the statsmodels (https://www.statsmodels.org) and scikit-learn (https:

//scikit-learn.org) packages, dedicated to statistics and machine learning.
Finally, an interactive computational environment has also matured during my Ph.D.

and drastically changed the way I code: the Jupyter Notebook (https://ipython.org/

notebook.html), whose ancestor was Ipython. Without the prior or concomitant develop-
ment of all these Python packages, my Ph.D. would not have been the same.
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CHAPTER 3. CHARACTERISING ENSO DIVERSITY

3.1 Preamble

Over the past two decades has emerged the question of defining the spatial diversity of ENSO
(see paragraph 1.1.2). This issue is essential to project the evolution of ENSO, whose diversity
leads to different meteorological impacts and different rectification effects on the mean state
(see Chapter 1).

We focus in this chapter on two main methods commonly used in literature to characterise
ENSO diversity.

The first method is the one proposed by Takahashi et al. (2011) (see paragraph 3.2.2).
Using an EOF analysis of the tropical Pacific SSTA, they linearly combined the principal
components (PC) time-series associated with the two first modes of variability. The new
orthogonal base obtained highlights strong El Niño events by projecting them positively
onto one of the new axes, while moderate El Niño events and La Niñas project on the
other axis. The method is supported by the non-linear behaviour of the Bjerknes feedback:
extreme Eastern Pacific (EP) El Niño events are reflected in an enhancement of the Bjerknes
feedback, when the SST anomaly exceeds a threshold (∼ +2 ◦C) in the far eastern Pacific
(e.g. as measured by the E index) (Takahashi and Dewitte, 2016; Takahashi et al., 2018). In
the simulations of the GFDL CM2.1 CMIP3 model, (Takahashi and Dewitte, 2016) showed
that the threshold may be approached by a k-mean cluster analysis in the E and C phase
space, highlighted by the apparent bi-modality of the simulated ENSO system. However,
this bi-modality is not so well defined in CESM-LE and we test the sensitivity of the k-mean
analysis to the period of the data trained (paragraph 3.2.2.2) as well as the sensitivity of the
clustering to a fixed threshold (paragraph 3.2.2.3).

The second method (see paragraph 3.2.3) is a commonly used method using SSTA indices
in historical Niño regions to separate Central Pacific (CP) and EP El Niño events (Kug et al.,
2009; Yeh et al., 2009a; Capotondi, 2013; Stevenson et al., 2017). This method was chosen
because it is widely used, whether for the investigation of dynamic processes (Kug et al.,
2009, 2010; Capotondi, 2013; Stevenson et al., 2017), for the analysis of the ENSO’s flavours
modulation with the mean state (Choi et al., 2011) or for the analysis of changes in ENSO
statistics with global warming (Yeh et al., 2009a). A EP (CP) El Niño is defined when the
mean SST anomalies (SSTA) over the Niño-3 region (5°S-5°N, 210°-270°E) is greater (lower)
than the SSTA mean in Niño-4 region (5°S-5°N, 160°-210°E). Due to the common Cold Tongue
bias of the CGCMs, recent studies have used regions shifted 20° to the west (Kug et al., 2010;
Capotondi, 2013; Stevenson et al., 2017), which increases the risk of integrating the so-called
double peaked El Niño events that CGCMs unrealistically simulate (Graham et al., 2017). A
comparative analysis of both regions in El Niño definition is presented in paragraph 3.2.3.3.
The sensitivity of this definition of El Niño diversity to the choice of the winter season is also
analysed (see paragraph 3.2.3.2). Note that by abuse of language and because many studies
have taken up these terms independently of the method used, the EP (CP) El Niño events
are called Cold Tongue (CT) (Warm Pool, WP) El Niño events in an equivalent way.

These two methods are not equivalent by nature: whereas the CP/EP method investigates
the ENSO diversity through the position of the anomalous warming, whatever its intensity,
the strong/moderate method has an approach focused on the intensity of warming through
the E-index. However, the spatial patterns associated with the strong/moderate methods
project variability mainly in eastern Pacific and central Pacific respectively, which can get
closer to the method of detection by spatial position directly.

The objective of the chapter is thus to analyse strong/moderate El Niño events compar-
atively to CP/EP El Niño events to assess their intrinsic characteristics and evaluate their
robustness and correspondence.
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3.2 Robustness of definitions

The objective of this section is to investigate the sensitivity of both methods to various
parameters depending on the intrinsic characterisations of each method.

After presenting corresponding metrics used, different tests are applied:

• for the strong/moderate classification, the sensitivity to the categorization method
(cluster analysis) and to the index threshold is tested,

• for the EP/CP classification, the sensitivity to the season and to the region considered
is tested.

Regarding the ENSO statistics, it should be noted that counting El Niño events is often
computed by year (Kug et al., 2010; Choi et al., 2011; Cai et al., 2014; Stevenson et al., 2017).
Another method is to consider each period above the threshold during at least 3 consecutive
seasons (ONI definition) or 5 consecutive months as a single event, whatever its duration.
In observation datasets, the warm event from 1986 to 1988 occurs during two consecutive
winters without the indices failing below the threshold, regardless of the dataset or definition
used (Fig. 3.1). The last event of 2014-2015 occurs also during two consecutive winters in the
HadISST dataset according to the ONI definition. These two observed examples show the
difficulty of defining El Niño events from a threshold exceeded for more than one season. How
to count El Niño events is not well established, but is of first importance when projecting
changes in ENSO diversity statistics with global warming (Yeh et al., 2009a; Cai et al., 2014).
The two different methods can cause differences in estimating the frequency of occurrence of
El Niños, but also in estimating the proportion of strong/moderate or EP/CP events.

For consistency with previous studies, we use the method based on detection of El Niño
events per year when regarding frequencies of occurrence of events defined from the ONI index
(EP/CP method). But, with the strong/moderate method, we use a detection of events per
warm period. Indeed, this method does not require an event peak in winter to define an El
Niño event and it allows the event to reach its peak in any season, unlike the ONI method
which is based on a peak in winter. Counting the event per year when defining El Niño events
with the strong/moderate method is tricky and would require to cut arbitrarily the calendar
year before applying the cluster analysis.

When comparing El Niño composites, we use the method based on detection by warm
periods. The 12-month El Niño event that is then selected is the 12-month period that
includes the maximum index value of the entire initial warm period. Although it reduces the
number of events in the El Niño composite, this method provides a better representation of
the strong events on which we focus afterwards.

3.2.1 El Niño: an anomaly compared to the mean state

The two studied methods each use two different indices, recognising that at least two degrees
of freedom are needed to reflect ENSO diversity (Trenberth and Stepaniak, 2001; Yeh et al.,
2009a; Takahashi et al., 2011; Ren and Jin, 2011). But, as a first step, before classifying the
two types of events, an El Niño event must be defined. The CP/EP method is more inclined
to use the Oceanic Niño Index (ONI), defined by the 3 months running mean of the SST
anomalies in the Niño-3.4 region (5°S-5°N, 120°-170°W). In that case, an El Niño (La Niña)
event is defined when the ONI is higher (lower) or equal to +0.5 ◦C (−0.5 ◦C) over at least five
consecutive overlapping seasons (definition of the NOAA Climate Prediction Center). The
strong/moderate method defined an El Niño event based on the PC1 timeserie: an El Niño
event is defined when the value of the first principal component of the Empirical Orthogonal
Function (EOF, see paragraph 2.2.2.2) analysis of the tropical Pacific SSTA (10°S-10°N)
exceeds its 75th percentile over at least 5 consecutive months.

The definition based on PC1 is comparable to the definition based on ONI in particular
because the PC1 is strongly correlated with the ONI index (Table 3.1). The correlation
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coefficients are computed as a Pearson correlation coefficients and it has been verified that
all p-values associated are negligible.

HadISST
v1.1

ERSST
v3b

SODA
v2.2.4

GFDL CM1.2
PI-control

CESM-LE
PI-control

Correlation
coefficient

0.964 0.963 0.967 0.985 ± 0.002 0.990 ± 0.001

Table 3.1 – Pearson correlation coefficient between the ONI and PC1 indices. The observations corre-
lation coefficients are determined over all the dataset (1950-2017 for HadISST v1.1 and ERSST v3b,
1950-2010 for SODA v2.2.4). The correlation coefficients for the PI-control simulations are computed
over all the dataset and over 68-yr periods which do not overlap. The mean of the 68-yr correlation
coefficients is equal to the all dataset correlation coefficient to an accuracy of 10−4. The associated
errors correspond to the standard deviation of the 68-yr correlation coefficients. The duration of 68-yr
has been chosen because it is that of observation datasets.

A comparison of the two methods of El Niño definition is made on observation datasets
(Fig. 3.1). It has been verified that all the periods considered as an El Niño event at least
by one of the two datasets are cited in Trenberth (1997) analysing 1950-1997 SSTA using a
base period climatology from 1950 to 1979 and are referenced by NOAA Climate Prediction
Center or still in the El Niño composite of Timmermann et al. (2018) (see their Figure 1).

First of all, it should be noted that the definition based on ONI does not characterise
the same El Niño events in the two observations datasets with the same base period (orange
marks, top in figure 3.1). One event occurring during the winter of 1953 is spotted in the
ERSST v3b dataset, but not in the HadISST v1.1 dataset. This event, referenced by NOAA1,
is one of the events constituting the canonical El Niño composite of Rasmusson and Carpenter
(1982). It is also quoted by Wyrtki (1975) who catalogues it as a small event. Conversely,
another event is spotted in the HadISST v1.1 dataset, but not in the ERSST v3b dataset, the
event occurring during the winter of 2006. It is also an event referenced by NOAA and cited
in some studies (Kao and Yu, 2009; Yeh et al., 2009a; Lee and McPhaden, 2010; Singh et al.,
2011). Interestingly, this event can be classified as either a CP warm event (Kao and Yu,
2009) or a EP event (Yeh et al., 2009a). We will see in paragraph 3.2.3 the difficulties posed
by this classification. These differences between datasets are mainly due to the duration of
the events. Often the events are not defined because the criterion is reached less than 5
consecutive periods.

A better correspondence is found with the definition based on PC1 (red marks, bottom in
figure 3.1): the main difference between the two datasets is the duration of the events, which
in particular leads to the separation of the 1968-1969 warm period into two individual events
in ERSST v3b. However, this split into two events is also done with the definition based on
ONI. The definition based on PC1 may be less sensitive to the dataset.

We investigate the correspondence between the two methods, relative to the declared El
Niño events. In both datasets, the PC1 definition does not see the event occurring during the
winter of 1977, following the warm event of 1976, nor the event of winter 2004. Conversely,
the PC1 definition defines two warm events, in 1979 and 1993. Only the 1993 event is not
catalogued as a warm event by NOAA. The three periods (1976-1980, 1990-1995, 2002-2005)
concerned by these definition differences are prolonged warm periods when warm events are
likely to occur every year or two. These warm periods have been apprehended in different
ways previously. First of all, it should be noted that for each event of these warm periods,
the other index that does not see the event is close to the definition criterion. Trenberth
(1997) showed in the same way that considering the 1990-95 period as one long El Niño event
or three consecutive events depended on the choice of the SSTA index threshold. Fedorov
and Philander (2000) modified the El Niño perception of this warm period by showing that

1http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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(a) HadISST v1.1 (1950-2017 base period)
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(b) ERSST v3b (1950-2017 base period)
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Figure 3.1 – ONI timeseries (◦C) for (3.1a) HadISST v1.1 (1950-2015) and (3.1b) ERSST v3b (1950-
2015). El Niño events obtained by the ONI definition are marked in orange and hatched (when the
ONI is over 0.5 ◦C during at least 5 consecutive overlapping seasons) and the periods corresponding
to El Niño events obtained by the PC1 definition are superimposed in red (when the PC1 is over its
75th percentile during at least 5 consecutive months).

this warm period could not be considered as an exceptionally long event if one considered
SST departure from decadal fluctuations rather than mean climatology. In that case, this
warm period represents the persistence of warm background conditions rather than a chain
of moderate El Niño events or a long El Niño event. Finally, Kessler (2002) mentioned the
period of the early 1990s as exceptional because these El Niño events (1993 and 1994-95)
which follow each other closely have small amplitudes and do not last long. He suggested
that these El Niño events do not need initiating warm water recharge in the western Pacific
to be trigger. These different results highlighted the diversity of flavours of El Niño events
and its closed relationship with decadal modulation of the background state, which is still an
open issue and is the backdrop to these thesis work.

Finally, the difference between methods and between datasets is mainly due to the dura-
tion criterion imposed to define an El Niño events. However, these dataset-sensitive El Niño
events have low amplitude and/or duration, which does not affect the statistics of strong
events as defined by Takahashi et al. (2011) of primary interest in our study.

In the CESM PI-control simulation, according to the two definitions, there are 375 El
Niño events defined by the PC1 and 371 El Niño events defined by the ONI over the 1801
years of simulation. Among them, 16 El Niño events are defined by the ONI, but not by
the PC1, and 20 El Niño events are defined by the PC1, but not by the ONI index. This is
mainly due to a long event based on the ONI definition being split into two PC1 definition
events. And some short events defined by the ONI are not seen by the PC1 index (11 events),
and conversely (6 events). These classification differences due to the definition tend to cancel
each other and it represents 1 % of total differences. The same exercise is reproduced in
GFDL CM2.1 PI-control simulation. There are 96 El Niño events defined by the PC1 and
118 El Niño events defined by the ONI over the 500 years of simulation. The difference comes
from small El Niño events defined by the ONI index and not by the PC1.

So it must be kept in mind that these differences could affect statistics when looking at
the correspondence between moderate El Niño events and CP/EP El Niño events defined by
the two methods used in this chapter.

3.2.2 Strong and moderate El Niños

3.2.2.1 The metrics

Recent studies have suggested that the diversity of El Niño can be interpreted as resulting
from the existence of two distinct dynamical regimes (Takahashi et al., 2011; Takahashi
and Dewitte, 2016; Takahashi et al., 2018), a regime encompassing La Niña events and
moderate El Niño events with a centre of action in the central Pacific, and the other regime
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associated with extreme Eastern Pacific El Niño events. Building on this recent progresses
to characterise ENSO diversity, we use the E and C indices defined by Takahashi et al.
(2011) as E = (PC1−PC2)/

√
2 and C = (PC1+PC2)/

√
2 where the PC1 and PC2 are the

normalised principal components of the first two EOF modes of SST anomalies in the tropical
Pacific (10°S-10°N) (see paragraph 2.1.4.2 and Figure 2.8 for the corresponding EOF spatial
patterns). The E and C indices are thus linearly uncorrelated by construction. The E and C
indices describe two variability modes of the equatorial Pacific, statistically independent but
linked together by the non-linearities of the Pacific coupled system (Takahashi et al., 2011;
Dommenget et al., 2013; Karamperidou et al., 2017).

A multiple linear regression of the SSTA onto these indices (see paragraph 2.2.3.3) is
used to determine the spatial SSTA patterns associated with each index (Fig. 3.2). The E-
pattern explains most of the variability in the eastern Pacific and is related to strong warm
events, the C-pattern explains the variability in the central Pacific and is related to cold and
moderate warm events. The evolution of an El Niño event is a combination of these two
modes (Takahashi et al., 2011), the E and C indices allowing the characterisation of the El
Niño spatial type (EP versus CP) and its amplitude (strong versus moderate) (Takahashi
and Dewitte, 2016; Dewitte and Takahashi, 2017).
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(b) ERSST v3b
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(c) SODA v2.2.4
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(d) GFDL CM2.1
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(e) PI-control CESM-LE
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(f) Mean historical CESM-LE
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Figure 3.2 – Maps (◦C) of linear regressions of SSTA onto the E (top) and C (bottom) indices for (3.2a)
HadISST v1.1 (1950-2017), (3.2b) ERSST v3b (1950-2017), (3.2c) SODA v2.2.4 (1950-2010), (3.2d)
the PI-control simulation of GFDL CM2.1 (500 years), (3.2e) the PI-control simulation of CESM-LE
(1801 years) and (3.2f) the ensemble-mean of historical simulations of CESM-LE (42 members). The
SST are linearly detrended over all the time period. Also shown is the corresponding 28 ◦C isotherm.
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In the E-mode, the peak of warm SST anomalies is located east of 120°W. In observations,
the warm peak of SSTA extends from the coast of Peru-Ecuador to 110°W, while it is not
so linked to the South-American coast in CESM-LE, where it is located further west. As
described in paragraph 2.1.2.2, we can thus note the westward bias of the Cold Tongue and
the more constrained along the equator warming region in the CGCMs. CESM-LE and GFDL
CM2.1 simulate the center of the patterns displaced to the west compared to observations by
20° and 30° for the E and C patterns respectively, which is comparable to the CMIP5 ensemble
(cf. Figure 1 of Matveeva et al. (2018)). This bias in CGCMs is often bypassed in previous
studies by shifting Niño regions 20° westward in order to classify El Niño diversity (Kug
et al., 2010; Capotondi, 2013; Stevenson et al., 2017). The associated results are discussed in
paragraph 3.2.3.3. The use of the E and C indices, which integrate the whole tropical Pacific
band, allows us to overcome this issue.

These E and C patterns can be compared to patterns of variability associated with the
Central Pacific (CP) and Eastern Pacific (EP) warming established by Kao and Yu (2009) on
observations (HadISST). They used an EOF analysis associated with a linear regression of
the tropical Pacific SSTA (their figure 3). Interestingly, even if the period of observations is
not the same, the patterns are very similar with an extension of the eastern warming region
to the dateline in the EP pattern and a region of maximum warming centred on the dateline
in the CP pattern.

Thanks to this central and eastern tropical Pacific variability patterns, we distinguish El
Niño diversity. Following Takahashi et al. (2011), moderate and strong El Niño events are
classified using the time-series associated to the PC1 and the E-index. Firstly, an El Niño
event is defined when the PC1 value is greater than or equal to its 75 percentile over at least
5 consecutive months. This method makes it possible not to assume that El Niño peaks can
be identified in one single season (usually in boreal winter in previous studies). Secondly,
regarding the classification in terms of amplitude, based on the analysis of observations and a
long-term CGCM simulation (GFDL CM2.1), Takahashi and Dewitte (2016) suggested that
moderate events may be defined as those for which the E index does not exceed 1.5-1.8 ◦C
which corresponds to the threshold for which there is a sudden enhancement of the Bjerknes
feedback in the eastern Pacific. In the E and C indices phase space, strong El Niño events
will thus project on the high positive values along the E index axis, while moderate El Niño
events will get closer to high values of the C-index axis.

When we analyse observations and reanalysis classification in the E and C indices phase
space (Fig. 3.3a, 3.3b and 3.3c), two historical strong El Niño events emerge from the pattern:
1982-1983 and 1997-98 El Niños. These two strongest events recorded have been widely
studied, used as extreme events framework in the literature (McPhaden, 1999; Vialard et al.,
2001; Kug et al., 2009; Cai et al., 2014; Takahashi and Dewitte, 2016). Takahashi and Dewitte
(2016) showed that these two strong El Niño events were associated with non-linearities in the
Bjerknes feedback favouring an increase in the growth rate of these events. Interestingly, the
last strong event of 2015-2016, even if it is often compared to the 1982-83 and 1997-98 strong
events because of its strong signal in the Niño3.4 index (L’Heureux et al., 2017; Abellán
et al., 2017b), is not so distinguishable from other strong (but not very strong) El Niños,
such as the 1951 and 1957 events for instance. This event has been shown to be different
in terms of induced impacts, such as precipitation anomalies in Northern Peru L’Heureux
et al. (2017). Dewitte and Takahashi (2017) showed that for this event and the strong event
of 1972-73, the 28 ◦C isotherm, a proxy of the Warm Pool, did not extend so far east as for
the two preceding extreme El Niño events. They classify them as moderate Eastern Pacific
(EP) events rather than strong events. This moderate classification of the two latter events
is further highlight when analysing the temporal evolution of their E and C indices before
the December month (Fig. 3.4). While strong events project strongly along the E axis (1982-
83 and 1997-98 events), the events of 1972-73 and 2015-16 have lower E values (half) and
stronger C values. The moderate El Niño event of 2009-10, typical CP El Niño events with
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(b) ERSST v3b
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(c) SODA v2.2.4
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(d) GFDL CM2.1
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(e) PI-control CESM-LE
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(f) Mean historical CESM-LE
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Figure 3.3 – K-mean cluster analysis on the E-peak of El Niño events for (3.3a) HadISST v1.1 (1950-
2017), (3.3b) ERSST v3b (1950-2017), (3.3c) SODA v2.2.4 (1950-2010), (3.3d) the PI-control simu-
lation of GFDL CM2.1 (500 years), (3.3e) the PI-control simulation of CESM-LE (1801 years) and
(3.3f) the ensemble of historical simulations of CESM-LE (42 members). The k-mean analysis classi-
fies (red) strong and (green) moderate El Niño events. In blue are shown non-El Niño years (which
are therefore not used in the k-mean analysis). In orange for observations and reanalysis are shown
mixed El Niño events, whose E-peak is close to the threshold.
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a high peak in the Niño-4 region (Lee and McPhaden, 2010) shows a development with low
E values and strong C values. These differences in the evolution of moderate El Niño events
can be related to the EP and CP events classification, the signature in E makes it possible to
differentiate moderate events that develop exclusively in the central Pacific from moderate
events that also have warming in the eastern Pacific (Dewitte and Takahashi, 2017).

Figure 3.4 – E-C phase space for the month of Decembre. Blue dots correspond to El Niño years.
Five El Niño events (1972, 1982, 1997, 2009 and 2015) are highlighted, with their evolution from
July to December (last dot labeled with the year is the December value). The oblique gray lines are
the iso-contours of the approximate Niño-3.4 index in the E and C space (Niño-3.4=0.47E+0.67C).
Reprinted from Dewitte and Takahashi (2017).

In this thesis work, we adopt a similar approach than Takahashi et al. (2011), applying a
k-mean cluster analysis (with k=2, see paragraph 2.2.2.3) for each dataset and for each period,
present and future, including all members of CESM-LE simulations. The methodology is the
following: a k-mean clustering is performed on the peak values of the E-index of each El Niño
event of the PI-control simulation. As mentioned before, the considered peak of the event
for the cluster analysis is not imposed to be in the winter season. Once the model is trained,
it is applied over each period of simulations (Fig. 3.3). The values of the E-index which
separate the two clusters are between 2 and 2.5 ◦C, except for the PI-control simulation of
GFDL CM2.1 the limit being more close to 3 ◦C. This greater threshold value is due to the
more important bias of GFDL CM2.1 simulating greater ENSO variability (see paragraph
2.1.2.2).

3.2.2.2 Sensitivity to the k-mean analysis

The k-mean analysis on the El Niño peaks in the E-C phase space, suggested by Takahashi
and Dewitte (2016), is sustained by the bimodal probability distribution function apparent
for the GFDL CM2.1 PI-control and 5-members historical simulations (see their figure 2).
The bimodal distribution of the El Niño peaks in this space phase is less pronounced in
CESM-LE PI-control and 42-members historical simulations than in GFDL CM2.1 (Fig 3.5
with dots corresponding to the red and green dots in figure 3.3). The PDF is estimated
via a kernel density estimation (KDE, see paragraph 2.2.1.3). Different bandwidths have
been tested. However, when investigating El Niño events through their E peaks (Fig. 3.5a),
the probability distribution function exhibits a slight bimodality that we do not find when
investigating El Niño events through their PC1 peaks as used by Takahashi and Dewitte
(2016) (Fig. 3.5b). We recall here that we do not assume that the El Niño peak can be
identified in one single season, the different peaks used in figure 3.5 are scattered throughout
the calendar year, even if there are preferential peak seasons as we will see later (Chapter 5).
Consequently to the distribution, the k-mean clustering gives different classification of El
Niño events, as highlighted by the repartition of strong (red dots) and moderate (blue dots)
in Figure 3.5.
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(a) E peaks
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Figure 3.5 – El Niño peaks in the E-C phase space for the CESM-LE PI-control and historical (42
members) simulations. Blue (moderate El Niño) and red (strong El Niño) are identified through a
k-mean (k=2) analysis. The probability distribution function (contours) is computed via a Kernel
density estimation (KDE). A comparative analyse is done using the E peaks (3.5a) and the PC1
peaks (3.5b) of El Niño events.

Alongside that, the k-mean clustering can be used as a predictor or as a simple classifier.
As a predictor, we train the k-mean clustering on the PI-control El Niño peaks and use it
onto each ensemble of the historical and RCP8.5 El Niño peaks respectively. The underlying
assumption is that the climate system on which the k-mean clustering is applied remains
stable in terms of intrinsic features, that is the classification of strong and moderate El Niño
events in our case. It could not be the case of the RCP8.5 climate. As a classifier, a new k-
mean cluster is applied on each period of simulations. As a consequence, the k-mean analysis
gives different classifications of the historical and RCP8.5 El Niño events. A comparative
analysis of the different applications of the k-mean analysis (E-peaks versus PC1 peaks,
predictor versus classifier) is done (Fig. 3.6 and Table 3.2).

Figure 3.6a shows the relative proportions of strong El Niño events according to the
method used. Following Stevenson et al. (2017), the relative proportion is computed as the
frequency of occurrence of strong El Niño events (number of strong El Niño per year) for
the historical and RCP8.5 periods respectively and expressed as the relative difference to
the PI-control simulation. Slight differences appear between methods. While the frequency
of occurrence of strong El Niño events is lower in historical simulations than in PI-control
simulation when applying the clustering onto the E-peaks (value lower than 0), the frequency
of occurrence is slightly higher when applying onto the PC1 peaks. However, the result can
be the opposite depending on the member, the interquartile range (IQR) associated with
the frequency of occurrence of strong El Niño events of each member shows large spread.
This spread is partly due to one of the intrinsic features of strong El Niño events, namely
their modulation by low-frequency internal variability. Depending on the historical member,
the number of strong El Niño events comes from 2 to 10 over the historical period (156
years for the member 1, 86 years otherwise), that is to say from simple to fivefold. With
regard to RCP8.5 simulations, the frequency of occurrence of strong El Niño events increases
compared to the PI-control simulation, whatever the method. The increase is statistically
significant for all methods, according to a Wilcoxon test and a bootstrap test. Interestingly,
the relative differences of moderate El Niño events differ little (no statistically significant
change), whatever the k-mean method and whether in historical or in RCP8.5 simulations
compared to PI-control simulation (Fig. 3.6b).

Figure 3.6c shows the relative occurrence ratio of strong El Niño events compared to
moderate El Niño events according to the k-mean method used. Following Yeh et al. (2009a),
the occurrence ratio is the ratio of the frequency of occurrence of strong events to that of
moderate events. The different occurrence ratios are indicated in Table 3.2. Each ratio is
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(a) Strong events proportion (b) Moderate events proportion

(c) Changes of occurrence ratio

Figure 3.6 – Proportion of El Niño events according to the k-mean method in (blue) historical sim-
ulations and (red) RCP8.5 simulations. The k-mean methods are using the clustering as a predictor
onto the E peaks (Predictor, E-peaks), using the clustering as a classifier onto the E peaks (Classi-
fier, E-peaks) or using the clustering as a classifier onto the PC1 peaks of El Niño events (Classifier,
PC1-peaks). Frequencies of occurrence of (Fig. 3.6a) strong and (Fig. 3.6b) moderate El Niño events
expressed as difference relative to the PI-control simulation. The relative differences of frequencies
of occurrence are computed following Stevenson et al. (2017). The associated occurrence fractions
in the PI-control simulation are shown in Table 3.2. (Fig. 3.6c) Associated relative differences of
strong / moderate El Niño occurrence ratios compared to the PI-control ratio. The occurrence ratios
are computed following Yeh et al. (2009a). The error bars correspond to the inter-members spread
estimated through the interquartile range.
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then calculated relative to the PI-control simulation. The strong/moderate occurrence ratios
in historical simulations are slightly similar regardless of the k-mean method (cf Table 3.2),
but compared to the associated ratio in the PI-control simulation, the main difference appears
between applying the cluster analysis to E or PC1 peaks. When considering E-peaks, the
ratio is lower in historical simulations than in PI-control simulation, that is the proportion of
strong El Niño events compared to moderate El Niño events is lower in historical simulations.
More precisely, the frequency of occurrence of strong El Niño events slightly decreases and the
frequency of occurrence of moderate El Niño events slightly increases in historical simulations
for both methods. Conversely, the frequency of occurrence of strong El Niño events increases
in historical simulation for the PC1 k-mean method. In RCP8.5, the ratio increases, which is
mainly due to the increase in the frequency of occurrence of strong El Niño events. While in
historical simulations the frequency of occurrence of strong events is more than half that of
moderate events (around 0.40), it increases in RCP8.5 simulations so that the frequency of
occurrence of moderate El Niños is only twice (or less than twice for the k-mean clustering
as a predictor onto the E peaks) as important compared to the frequency of occurrence of
strong El Niño events. For all method, the frequency of occurrence of strong El Niño events
increases compared to that of moderate El Niño events in RCP8.5 simulations. Note, however,
that the increase in RCP8.5 simulations only means a return to the value calculated for the
pre-industrial period, after having experienced a decrease in the historical simulations, for
the method of clustering as a classifier on the E peaks.

PI-control Historical
Strong Mod. Ratio Strong Mod. Ratio Strong Mod. Ratio

k-mean as a
predictor

onto E peaks
122 253 0.48 237 538 0.44 302 541 0.56

k-mean as a
classifier onto

E peaks
122 253 0.48 222 544 0.41 270 565 0.48

k-mean as a
classifier onto

PC1 peaks
99 276 0.36 210 556 0.38 276 559 0.49

Table 3.2 – Number of strong and moderate El Niño events in each period of simulation depending
on the k-mean method. The number of events is calculated considering all the years of simulation
available, that is 1801 years in PI-control simulation, 3682 years in historical simulations and 3800
years in RCP8.5 simulations.

Finally, whatever the k-mean method, there is some common features:
• the proportion of strong El Niño events increases in RCP8.5 simulations compared to

the PI-control simulation (the increase is statistically significant for all methods),
• the proportion of moderate El Niño events remains stable in historical and RCP8.5

simulations compared to PI-control simulation (not statistically significant change),
• the frequency of occurrence of strong El Niño events increases compared to that of

moderate El Niño events in RCP8.5 simulations, even if it remains twice as weak as
that of moderate El Niño events.

3.2.2.3 Sensitivity to the threshold

Takahashi and Dewitte (2016) showed that the bi-modality in the E-C phase space of the El
Niño peaks can be explained by the enhancement of the Bjerknes feedback when the SST
anomalies exceed a threshold in the far eastern Pacific, that is as measured by the E index.
The k-mean clustering analysis does not hypothesis that this threshold is a fixed value, rather
a value of the E index which is a positive function of the C index. The function changes in
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RCP8.5 climate (see Figure 3.5). For instance, when considering the mean value of the E
threshold in the different k-mean methods, the historical (RCP8.5) threshold is included
between 2 and 2.3 ◦C (1.7 and 2.4 ◦C). The decrease in the E peak in future climate may
occur, meaning that the non-linear threshold of the SSTA warming is easier to be reached,
facilitating the Bjerknes feedback in the eastern Pacific.

A sensitivity test to the threshold in E-index is conducted for the k-mean predictor method
onto the E peaks. The different values tested are 1.9, 2.0 and 2.1.

As expected, the lower the threshold, the higher the proportion of strong events (Fig. 3.7).
Lowering the threshold results in a statistically significant increase in the proportion of strong
events compared to moderate events, with the frequency of occurrence of moderate El Niño
events not changing significantly, either in historical or future simulations. The frequency of
occurrence of strong El Niño events can reach a similar frequency occurrence than that of
moderate El Niño events for some RCP8.5 members, for a threshold equal to 1.9 ◦C. Com-
pared to the strong / moderate frequency of occurrence ratio in the PI-control simulation
(Fig. 3.7b), the ratio is almost the same in historical simulations and increases in RCP8.5
simulations. Separation between strong and moderate is highly dependant on the threshold
and more physical basis are needed particularly in the case the bimodal probability distri-
bution function is not so well defined as in GFDL CM2.1. Takahashi and Dewitte (2016)
suggested to analyse the relationship between the E-index and the wind stress could serve
to determine the threshold. However, this threshold could vary in time due to background
climate state (Johnson and Xie, 2010) (see also Chapter 5).

(a) Changes of occurrence ratio (b) Changes of relative occurrence ratio

Figure 3.7 – (Fig. 3.7) Absolute and (Fig. 3.7b) relative strong/moderate El Niño occurrence ratio for
different thresholds in the E-C phase space delimiting strong and moderate events. The threshold is
applied onto the E-peaks of the El Niño events. The test is applied on the (blue) historical and (red)
RCP8.5 simulations. The occurrence ratios are computed following Yeh et al. (2009a). The error bars
correspond to the inter-members spread estimated through the interquartile range.

3.2.3 Eastern and Central Pacific El Niños

3.2.3.1 The metrics

Following Kug et al. (2010), we classified two types of El Niño based on their spatial patterns
of SSTA. As mentioned before, we use equivalently both the denomination of Warm Pool
(WP) and Central Pacific (CP) events for El Niño events whose variability is strong in the
centre of the Pacific and the denomination of Cold Tongue (CT) and Eastern Pacific (EP)
events for El Niño events whose variability is higher in the eastern Pacific. As a reminder,
CP events are identified when Niño-4 index is greater than 0.5 ◦C and greater than Niño-3
index. EP events are identified when Niño-3 index is greater than 0.5 ◦C and greater than
Niño-4 index. Niño-3 (Niño-4) index is defined as the averaged SST anomalies over 5°S-5°N,
150°-90°W (5°S-5°N, 160°E-150°W).

Kug et al. (2010) fixed the November-January period (NDJ) as the peak phase of El Niño
events and used it to compare the mean Niño-3 and Niño-4 indices for classification. Ham and
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Kug (2012) used the same definition but considering the December-February (DJF) season
in CMIP3 CGCMs, as well did Yeh et al. (2009a) in observations (ERSST v2, 1854-2007).
Capotondi (2013) used the same definition as Kug et al. (2010) but considering the January-
March (JFM) season, in a CMIP3 CGCMs, the CCSM4 PI-control simulation, previous
version of CESM1. In the paragraph 3.2.3.2, we analyse the sensitivity of ENSO statistics to
the chosen season in observations and two CGCMs in order to estimate the dependence of
the classification to the peak season.

Another point is that Kug et al. (2010) actually defined El Niño events from modified
Niño indices. Because of the westward shift of the climatological Cold Tongue diagnosed
in CGCMs and in the model they used (GFDL CM2.1), shifting ENSO variability to the
west (Wittenberg et al., 2006), Kug et al. (2010) used Niño-3m and Niño-4m indices, defined
on the areas shifted 20° westward compared to the historical Niño indices (Niño-3m: 5°S-
5°N, 170°-110°W and Niño-4m: 5°S-5°N, 140°E-170°W). Capotondi (2013) used both regions,
conventional and modified, to define El Niño events. They showed that ENSO repartition
statistics presented large discrepancy between the GFDL CM2.1 PI-control simulation used
(500 years) by Kug et al. (2010) and the CCSM4 PI-control simulation (500 years) they
analysed, but also between the classification EP/CP with the conventional Niño regions or
the modified ones using the same model, CCSM4. In the paragraph 3.2.3.3, we analyse the
sensitivity of ENSO statistics to the 20° westward shift of the region in two different CGCMs
with exactly the same season definition, in order to estimate the reliability on the westward
shift of the Niño regions depending on the intrinsic bias of the CGCMs used.

It is unclear whether these different studies used a minimum duration threshold to define
an event. In our case, we first define an El Niño event through the ONI definition (see
paragraph 3.2.1). Once the event defined, the classification between WP (CP) or CT (EP)
events is made from the different hypotheses described previously.

3.2.3.2 Sensitivity to the season

Many studies use different seasons to differentiate CP (or WP) and EP (or CT) El Niños.
Table 3.3 shows the alternation of recorded El Niño events, depending on the peak season
considered for two observation datasets. Choosing the NDJ season favours CT El Niños,
while choosing the JFM season favours WP El Niños. The ratio of WP events to CT events
is going from 24 % (27 %) to 62 % (53 %) in HadISST (ERSST) dataset, the number of WP
events going from simple to more than double.

Only 4 historical events are characterised as Warm Pool El Niño events, whatever the
dataset and the season considered: the 1968-1969, 1977-1978, 1994-1995 and 2004-2005.
Interestingly, two of them (1977-1978 and 2004-2005) are events not detected by the PC1
definition, occurring during prolonged warm periods when warm events are likely to occur
every year or two, which is also the case for the 1994-1995 event. The last three events are
classified as Warm Pool El Niño events by Kug et al. (2009) starting their analysis from 1970
and using the mean September-February SSTA spatial pattern to classify historical El Niño
events into three categories: WP El Niño, CT El Niño and mixed El Niño. Two others El
Niños are classified as WP El Niños: the 1990-1991 event (not detected in the used dataset,
Kug et al. (2009) used ERSST v2 from 1970 to 2005) and 2002-2003 event, included in a
warm period. Timmermann et al. (2018) classified the El Niño events of 1968, 1994 and 2009
as CP events which are some of the consistent CP El Niño events throughout the dataset and
the season.

Figure 3.8 shows the proportion among El Niño events of each type of events in PI-
control simulations, according to the season of the SSTA peak considered and according to
the two counting methods (see 3.2 the introduction). It should be noted that the sum of the
proportions of WP and CT events are not equal to 100 % because there are some events (6 in
CESM1 and 13 in GFDL CM2.1) that occur during the calendar year without reaching the
month of January(+1). The mean value of Niño indices for the seasons NDJ, DJF or JFM
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HadISST ERSST
NDJ DJF JFM NDJ DJF JFM

1951 CT CT CT
1953 CT CT CT
1957 CT CT WP CT CT CT
1963 CT CT WP CT CT WP
1965 CT CT WP CT CT WP
1968 WP WP WP WP WP WP
1969 CT CT WP CT CT WP
1972 CT CT CT CT CT CT
1976 CT CT CT CT CT CT
1977 WP WP WP WP WP WP
1982 CT CT CT CT CT CT
1986 CT CT CT CT CT CT
1987 CT WP WP CT CT WP
1991 CT CT CT CT CT CT
1994 WP WP WP WP WP WP
1997 CT CT CT CT CT CT
2002 CT CT WP CT CT WP
2004 WP WP WP WP WP WP
2006 CT CT WP
2009 CT CT WP WP WP WP
2014 WP WP WP
2015 CT CT CT CT CT CT

Table 3.3 – Classification of El Niño events between Warm Pool (WP) and Cold Tongue (CT) events
in HadISST v1.1 (1950-2017) and ERSST v3b (1950-2017) according to the peak season considered.
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is not calculated in this case and the events are therefore not classified.

(a) Counting per year (b) Counting per period

Figure 3.8 – Comparison of the proportion (percent) of WP (blue) and CT (red) El Niño events
according to the considered season of the SSTA peak: November-January (NDJ), December-February
(DJF) and January-March (JFM) for the PI-control simulation of CESM1 (1801 years) and GFDL
CM2.1 (500 years, hatched). Fig 3.8a presents the proportion of each event when counting events per
year, Fig 3.8b when counting events per period during which the criterion is met.

It appears that the choice of the season to look at the peak of ENSO is important and a
lag of two months can alter the ratio of the two types of events, regardless of the counting
method used. The ratio of WP to CT events can be from 0.5 (NDJ per year) to 3.8 (JFM per
year) for CESM1 and from 1.62 (JFM per year) to 2.4 (NDJ per year) for GFDL CM2.1. In
CESM1, the ratio may be inverted according to the season. The use of the method per period
does not change the type of most frequent event following the season, even if it changes the
value of the ratio by changing the number of events selected.

CESM1 PI-control simulation favours CT El Niño events when considered in NDJ season,
while favours WP El Niños in JFM season. It is a feature also encountered in observations.
Conversely, GFDM CM2.1 PI-control simulation tends to act in the opposite way, increasing
the number of CT El Niño events in JFM season even if the proportion of WP events is
always higher. The classification of CT/WP event by comparing the value of Niño-3 and
Niño-4 indices is strongly dependent on the chosen season. Note, however, that the NDJ and
DJF seasons show less important variability in GFDL CM2.1 PI-control and observations
datasets than in CESM-LE.

Despite the sensitivity of the definition to the region or season, both CGCMs tend to
simulate more WP events than CT events in contrast to previous studies. Stevenson et al.
(2017) using the 850 control simulation of the CESM last millennium ensemble found a
proportion of WP events equal to 31 % with the definition of Kug et al. (2010), 36 % with
the definition of Kao and Yu (2009) and 44 % with the definition of Yeh et al. (2009a), that
is less WP than CT events. However, these differences in results could come from the shifted
Niño regions they used, at least in the case of the Kug et al. (2010) method (the westward
shift is not mentioned for the two others methods Stevenson et al. (2017) used). Indeed, we
will show in paragraph 3.2.3.3 that shifting westward the metrics boxes leads to a favoured
classification of events in CT El Niño events.

We further analyse changes in CT/WP events occurrence ratio with global warming in
CESM-LE (with the method based on periods). Changes in the frequency of occurrence of
both CT (Fig. 3.9a) and WP (Fig. 3.9b) El Niño events in historical and RCP8.5 simulations
compared to the PI-control simulation show large discrepancy depending on the choice of the
peak season. The frequency of CT El Niño events may slightly decrease in RCP8.5 simulations
compared to historical simulations (NDJ season) or strongly increase (JFM season). Only
changes for the DJF season are not statistically significant. For all seasons, the frequency of
occurrence of CT El Niño events increases compared to PI-control simulation. Conversely,
the frequency of occurrence of WP El Niño events may slightly decrease in JFM (change not
statistically significant) or strongly increase in DJF and NDJ (changes statistically signifi-
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cant). The resulting changes in the occurrence ratio of CT / WP El Niño events (Fig. 3.9c)
with global warming are contradictory depending on the considered season. The ratio is
projected to decrease with global warming, even below the ratio of the PI-control simulation
when considering the NDJ season, while it is projected to increase, until the proportion ratio
of CT and WP El Niño events is inverted, when considering the JFM season.

(a) CT events proportion (b) WP events proportion

(c) Changes of occurrence ratio

Figure 3.9 – Proportion of El Niño events according to the season of the peak in (blue) historical
simulations and (red) RCP8.5 simulations. The considered seasons of El Niño peak are November to
January (NDJ), December to February (DJF) and January to March (JFM). Frequencies of occurrence
of (Fig. 3.9a) CT and (Fig. 3.9b) WP El Niño events expressed as difference relative to the PI-control
simulation. The relative differences of frequencies of occurrence are computed following Stevenson
et al. (2017). (Fig. 3.9c) Associated relative differences of CT / WP El Niño occurrence ratios
compared to the PI-control ratio. The occurrence ratios are computed following Yeh et al. (2009a).
The error bars correspond to the inter-members spread estimated through the interquartile range.

3.2.3.3 Sensitivity to the region

Another issue concerns the most appropriate regions of ENSO variability. Wittenberg et al.
(2006) noted that the tropical Pacific SST variability is shifted by 20-30° westward in GFDL
CM2.1 simulations compared to the observed spatial pattern. This common bias is due to the
westward shift of the climatological Cold Tongue, shifting ENSO variability westward (see
paragraphs 2.1.2.2 and 2.1.4). Kug et al. (2010) suggested to use modified Niño-3 and Niño-4
indices, defined on the areas 5°S-5°N, 170°-110°W and 5°S-5°N, 140°E-170°W respectively to
characterise ENSO variability within the Cold Tongue bias. The modified regions are then
the traditional regions displaced 20° to the west.

The variability in each Niño regions are compared between observations datasets, GFDL
CM2.1 and CESM-LE simulations (Fig. 3.10a). GFDL CM2.1 tends to overestimate vari-
ability more than CESM-LE, as pointed out by Bellenger et al. (2014), and both tend to
overestimate variability compared to that observed, with a discrepancy between simulated
and observed values increasing when moving westward. It is less pronounced in CESM-LE
than in GFDL CM2.1, consistent with the fact that the Cold Tongue bias is reduced by
30-40 % in CMIP5 models compared to CMIP3 models Bellenger et al. (2014). Although the
bias is less pronounced in CESM-LE, we use both models to compare WP-CT classification
methods (Fig. 3.10b).
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Three different methods of counting are compared, both presented previously and a new
one (called “Per DJF year”) that allows to remain consistent with other studies because it
is not clear whether they used a minimum duration threshold to define an El Niño event.
Kug et al. (2010) found 121 WP-modified El Niños and 84 CT-modified El Niños with the
same GFDL CM2.1 model. It is different from the number of events found by the first two
methods. It has been verified that the differences come from the definition: they defined
an event, whether CT or WP, when one of both mean winter Niño-3 or Niño-4 indices is
greater than 0.5 ◦C, without taking into account a minimum duration for the definition of an
event. Capotondi (2013) defined normal and modified El Niño events with conditions only
on traditional Niño indices or with conditions only on modified Niño indices respectively.
Each of these small variant definitions results in different numbers of selected events and
therefore different proportions of CT and WP El Niños. The sensitivity test is applied for El
Niño peaks defined during the DJF season (see paragraph 3.2.3.2). The first (second) column
of Figure 3.10b can thus be directly compared to the second column (DJF) of Figure 3.8a
(Figure 3.8b).

(a) Inter-annual Variability of Niño regions

Nino3 Nino34 Nino4 Nino4m
0.0

0.5

1.0

1.5

2.0

S
ta
nd
ar
d
de
vi
at
io
n
(°
C
)

HadISST

ERSST

SODA

GFDL PI-control

CESM PI-control

CESM Historical

CESM RCP8.5

(b) Proportion of WP/CT events

Figure 3.10 – (Fig. 3.10a) Inter-annual variability computed over different regions: Niño-3 (5°S-5°N,
150°-90°W), Niño-34 (5°S-5°N, 170°-120°W), Niño-4 (5°S-5°N, 160°E-150°W) and Niño-4m (5°S-5°N,
140°E-170°W). The variability is computed over period of 68 years, like the observations dataset
duration, for the PI-control simulation of CESM-LE (pink), GFDL CM2.1 (turquoise), historical
(blue) and RCP8.5 (red) simulations of CESM-LE. The error bars in the PI-control values correspond
to the spread of overlapping 68-year periods, taken every 50 years, included in the duration of the
simulation. The error bars in the historical and RCP8.5 simulations correspond to the spread between
members. (Fig. 3.10b) Proportion (percent) of WP-m (blue) and CT-m (red) El Niño events defined
in DJF from the modified regions Niño-3m (5°S-5°N, 170°-110°W) and Niño-4m, for the PI-control
simulation of CESM (1801 years) and GFDL CM2.1 (500 years, hatched). Three different methods of
counting are compared: per ONI year, per period during which the criterion is met or per DJF winter
during which the criterion is met (regardless of duration).

Even if the choice of the method does not change which type of event is more frequent
in CESM-LE, it does in GFDL CM2.1. It is the opposite sensitivity as in paragraph 3.2.3.2.
Displacing Niño regions westward favours drastically CT(-m) El Niño events, few SSTA peaks
occurring west to the dateline, even if the SSTA variability in this region is higher in CGCMs
than in observations (Fig. 3.10a).

This artefact effect can, however, be masked by counting events in DJF season, without
condition on duration, as used in many studies. Indeed, the definition of unconditional events
over the duration of warming seems to capture more the inter-annual SSTA variability in the
central to western Pacific than the variability of El Niño itself, since more WP(-m) El Niño
events are detected. Counting per DJF year considers more warming events as El Niño events
and the extra events are almost all WP(-m) El Niño events, which are then warming episodes
normally not defined as El Niño events. These western warm events could be related to the
“double peaked” bias El Niño events of which Graham et al. (2017) revealed the existence in
CGCMs and which can be assimilated to WP El Niño events when compositing.
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3.3 Correspondence of definitions

Due to the spatial variability expressed by the E and C modes, one might want to com-
pare moderate El Niño events to Central Pacific events on one hand and strong El Niño
events to Eastern Pacific events on the other hand. We investigate the relationship between
strong/moderate and CP/EP El Niño events in terms of indices evolution and statistics in
CESM-LE. Note that we use El Niño composites of the historical simulations in this para-
graph.

3.3.1 Temporal evolution of the sea surface temperatures

Strong and moderate El Niño events show different temporal evolution of the E and C indices
(Fig. 3.11a). Strong El Niño event has high values of the E-index during the development of
the event, from a fast increase from April to August(0) (+2.8 ◦C per 4 months) to a decrease
giving way to the development of an La Niña event in June-July(+1) (visible on the C index).
The E index accounts for SST variability in the far eastern Pacific, where the thermocline is
shallow and the thermocline feedback more intense than in the central equatorial Pacific. So,
when a Kelvin wave is triggered during the development of ENSO (typically during Feb-April
Y(0)), the SST increase in the far eastern Pacific, which projects on the E mode, then El
Niño develops, which maintains an elevated E. In other words, the first part of the warming
in E is due to the forced Kelvin wave acting as a trigger of ENSO, while the second part of
the warming in E is more associated with the growing coupled mode. A strong discharge is
then captured by the C-index, from June-July Y(1), corresponding to strong La Niña events
following strong El Niño events. Moderate El Niño shows similar evolution but with lower
positive magnitude of the E-index (3.2 times lower on average) and higher value of the C-
index than the E-index from the end of the first year to the decay of the event. It indicates
that the SSTA warming associated with the moderate El Niño composite is more pronounced
in the central than in the eastern Pacific, corresponding more generally to the definition of
CP El Niño event (Yeh et al., 2009a).

This spatial difference between strong and moderate El Niño events is observable on the
temporal evolution of the conventional Niño-3 and Niño-4 indices (Fig. 3.11b). For strong
(moderate) events, the magnitude of Niño-3 (Niño-4) index, describing the variability of the
eastern (central) equatorial Pacific, is much larger (slightly more pronounced) than that of the
Niño-4 (Niño-3) index. During strong events, the eastern Pacific experiences strong warming,
which corresponds to the definition of EP-events. However, both Niño-3 and Niño-4 indices
have similar magnitudes for moderate events, with a shift of 1-2 months in the peak of the
Niño-4 index. The classification between CP and EP events for moderate events is thus very
sensitive to the peak season in question (NDJ or DJF usually used) as showed in paragraph
3.2.3.2.

3.3.2 Correspondence between El Niño events

The proportion of strong and moderate El Niño events classified as EP or CP El Niño events
is investigated. We use historical and RCP8.5 simulations. We compute the probability
of occurrence of El Niño events per 10 years, probability over 40 simulated climates. It
corresponds to the ensemble-sum of the number of events per 10 years for each year normalised
by the number of members (Fig 3.12).

As expected, most of strong El Niño events, whatever in historical or RCP8.5 simulations,
are classified as EP El Niños. 87 % and 89 % of strong El Niño events are EP El Niño events
in historical and RCP8.5 simulations respectively. However, EP El Niño events are not all
strong El Niño events. All strong El Niño have a SST warming in the eastern equatorial
Pacific as expected by definition, but all events characterised by greater warming in the
eastern than in the centre of the equatorial Pacific in boreal winter are not necessarily strong
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(a) Temporal evolution of E and C indices

(b) Temporal evolution of Niño-3 and Niño-4 indices

Figure 3.11 – Temporal evolution of CESM-LE historical strong (left) and moderate (right) El Niño
events composite for (Fig. 3.11a) the E and C indices and (Fig. 3.11b )the Niño-3 and Niño-4 indices.
The shading indicates the range of values between the 25 and 75 percentiles of the distribution of the
composite.
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events as defined by the E-index. It is consistent with Dewitte and Takahashi (2017), who
showed that even if by definition strong El Niño events are preferentially EP events, this is
not the opposite case of the moderate events. The latter may as well be moderate Eastern
Pacific El Niño, having not passed the threshold of the Bjerknes feedback, counteracted by
easterly winds in boreal fall before the winter peak.

Interestingly, the proportion of EP El Niño events being also classified as moderate El
Niño events tends to decrease, from 35 % during the first 50 years of historical simulations
to 20 % during the last 50 years of RCP8.5 simulations. Takahashi and Dewitte (2016) and
Takahashi et al. (2018) suggested that strong El Niño events are EP El Niño events whose
warming in the eastern Pacific reaches a threshold that enhances the Bjerknes feedback. The
increased proportion of EP El Niño events being strong El Niño events with global warming
could thus be related to an easier enhancement of the Bjerknes feedback. Several reasons
may be invoked such as a change in the seasonal cycle of the Bjerknes feedback and the
air-sea mode associated (Dewitte and Takahashi, 2017), disconnecting the enhancement from
the easterly winds in September that come from the coastal SSTA off Peru. The threshold
leading to the enhancement of the Bjerknes feedback may also become easier to reach in a
warmer climate, favouring the EP El Niño events to become strong El Niño events.

Figure 3.12 – Temporal evolution of the probability of occurrence of El Niño per 10 years of strong
(red) and moderate (blue) El Niño and their proportion of being classified as EP (dark colors) or CP
(light colors and hatched) El Niño events.

These changes in the characteristics of El Niño events with global warming are further
investigated in Chapter 5.

3.4 Discussion: A coupled system in transition

One of the intrinsic complexities of ENSO definition is that this phenomenon is described in
relation to a mean state. The question that arises is: How to define the mean state in
a climate that varies over time?

ENSO characteristics, such as frequency and asymmetry, are modulated at low-frequency,
which is related to changes in the mean state (see paragraph 1.3.2 and chapter 4). However,
changes in mean state can result from the ENSO rectification effects, that is from residual
effects of ENSO asymmetry (see paragraph 1.3.2.3 and Rodgers et al. (2004)). For instance,
Lee and McPhaden (2010) argued that the warming trend of the Warm Pool SST in the
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central Pacific over the period 1980-2010 is primarily a result of more intense CP El Niño
events rather than a mean SST warming due to climate change.

This dependence of the ENSO definition on the mean state, and therefore on the chosen
base-period, is all the more problematic as the mean state changes rapidly because due to
strong external forcing, i.e. the increase in greenhouse gases. The main issue is on the trend
of global warming due to climate change. Is that possible to entirely separate the
signal of global warming from the internal variability of the climate system? If
so, how to remove this trend?

Different methods have been suggested; we investigate in this paragraph three of them: re-
moving a linear trend, removing a quadratic trend (Cai et al. (2018) for instance) or removing
a relative SST signal (Zheng et al. (2016); Khodri et al. (2017) for instance).

The main method used in this thesis is to remove a linear trend. To calculate the EOF
modes, that are used to define the E and C indices, and thus to define El Niño events, we
consider separately the historical and RCP8.5 periods. For each period (and each member),
we remove the mean annual cycle and we linearly detrend the SST before the EOF calculation.

Cai et al. (2018) removed the annual cycle of the first 100 years of the simulations,
that is to say about the historical period, and quadratically detrended the entire period
(concatenated historical and RCP8.5 simulations). In addition to the type of trend, the
seasonal reference cycle is not the same as in the linear detrend method. Their underlying
assumption is that the seasonal cycle do not change with global warming. Moreover, they
applied the EOF analysis over the entire period, while we calculate the EOF over the historical
and RCP8.5 periods separately.

In both methods, the strong underlying assumption is that the global warming is uncor-
related to internal variability but affects the frequency of the climate phenomenon. Internal
variability is superimposed on global warming.

We will also test a different detrend method, which consists in removing the surface mean
state of the tropical Pacific (30°S-30°N) at each time step. This method is used by Zheng et al.
(2016); Khodri et al. (2017) and called relative SST anomalies. Unlike previous methods, the
subtracted warming is the same (same shape and amplitude) throughout the studied region.
The previous methods impose the shape of the trend, but allow the warming amplitude to
be different at each point.

The climatological variances of the E-index obtained with the different methods are com-
pared (Fig. 3.13). The linear method leads to greater amplitude of the variability as well as a
larger inter-member spread. Conversely, the climatological variance of the E-index obtained
with the relative SSTA method shows a seasonal cycle with less variations. Surprisingly,
the E-index variance is weaker in RCP8.5 simulations than in historical simulations when
applying the relative SSTA method, which corresponds to an opposite result to the other
two methods. This result is explained by the intrinsic nature of the global warming trend
considered. In the relative SSTA method, the subtracted warming trend is the same in the
whole tropical Pacific, while in the other two methods, the subtracted warming trend is dif-
ferent in the different regions of the Pacific. In particular, the eastern tropical Pacific is
projected to warm more rapidly than the western tropical Pacific and off-equator regions (see
paragraph 5.3.1 and Fig. 5.3). The subtraction of these different trends has a distinct impact
on the variability of the eastern Pacific in particular.

The monthly evolution of the climatological variance is similar between methods, even if
the monthly rates of changes between historical and RCP8.5 differ. In historical climates,
the E-index variance has a significant peak in summer (July-August-September), followed by
a second smaller peak in winter (November-December). In RCP8.5 simulations, the peak in
E-index variance in summer remains, can be strengthened, while the second peak is shifted
to late winter, early spring (February-March-April, FMA). Whatever the method used to
remove the warming due to climate change, the E-index variance increases the most in FMA
and decreases the most (the relative SSTA method) or increases the least (the other two

158



3.4. DISCUSSION: A COUPLED SYSTEM IN TRANSITION

(a) Linear detrend (b) Quadratic detrend

(c) Relative SSTA

Figure 3.13 – Climatological variance of the E-index for historical (blue) and RCP8.5 simulations with
(3.13a) the linear detrend method applied, (3.13b) the quadratic detrend method applied and (3.13c)
the relative SSTA method applied on the SST of the tropical Pacific before the calculation of the
E-index (10°S-10°N). See text for details on the different methods. The error bars correspond to the
spread between the different members of each ensemble. The statistical significance of the changes
between historical and RCP8.5 variances has been calculated from a Wilcoxon test and a bootstrap
test. The changes are statistically significant at the 95 % level confidence, except for the months of
November and December for the detrend methods and the months of May, June, July, August and
September for the relative SSTA method.
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methods) in December, in RCP8.5 climate compared to historical climate. The increase
in FMA is statistically significant at the 95 % confidence level based on a Wilcoxon and a
bootstrap test (see paragraph 2.2.4) for all methods. This feature is particularly interesting
in the analysis of changes in ENSO statistics with global warming (see Chapter 5).

An important difference between the relative SSTA method and the other two methods is
in the way the processes responsible for the warming trend are understood. In the first two
methods, the temperature warming (linear or quadratic) is considered only due to climate
change. However, the faster warming in the eastern tropical Pacific can also be induced by
ENSO in a warmer climate (process change) or by ENSO low-frequency modulation (internal
variability). The relative SSTA method leaves the possibility of a possible role of ENSO
(and others processes) in the warming trend. The result of the climatological changes in the
E-index variance indicates that, whatever the processes considered responsible for the SST
warming, the FMA increase in the E-index variance is robust and due to global warming.
Possible change in processes that could lead to enhanced warming in the eastern Pacific is not
(only) involved. Note that the definition of El Niño events differ between methods, because
they are defined from the mean state without the warming trend. It could be interesting to
analyse the spatial pattern and evolution associated with El Niño events defined from the
relative SST method. Impact of internal processes onto the warming trend in the eastern
Pacific could thus be diagnosed.

Note that another method taking into account the warming pattern over a different spatial
scale, like the relative SST method, is defined by Williams and Patricola (2018). Using the
relationship between rainfall and SST warming in the tropical Pacific during El Niño events,
they defined a SST-based index to estimate the longitude of the centre of action of the El Niño
event. Their index tracks the zonal shift of the ascending branch of the Walker Circulation
through the SST threshold associated with the atmospheric convection. To determine the SST
threshold, they use the mean tropical SST over 5°S-5°N as a reference. The main advantage is
that the index integrates changes in SST with climate change and does not require to define
SST anomalies relative to an arbitrarily chosen climatology. This method is particularly
suitable for precipitation that is not linearly impacted by climate change. As a perspective,
it would be interesting to evaluate the relationship between their index of convective longitude
and the E-index during historical climates, and whether this relationship changes with global
warming. This could provide more insight into the non-linear relationship between SST and
convection in the eastern Pacific (see chapter 5).
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A lot of different paired indices have been suggested in recent studies to characterise
ENSO diversity and its spatial diversity. However, numerous studies highlighted that ENSO
definition is dependent on the metrics used (Singh et al., 2011; Stevenson et al., 2017). This
raises the difficult consensus of El Niño definition. Two different methods with different
approaches of ENSO are compared: the strong/moderate method highlights the ENSO am-
plitude in two spatial patterns of variability, whereas the EP/CP definition is based on the
traditional SST indices in fixed regions.

• EP/CP method

The main advantage of this method is its simplicity, it only requires calculating the
traditional indices Niño-3 and Niño-4 during winter. Past studies using CGCMs focused on
Niño-3 or Niño-3.4, that is fixed regions, to define El Niño, hypothesising that the warming
centre associated with El Niño was correctly simulated by CGCMs, or shifting the regions
westward to take into account at least one common bias of CGCMs, the Cold Tongue bias.
Graham et al. (2017) showed that the equatorial cold bias can lead to the existence in CMIP5
CGCMs of “double peaked” El Niño events that have never been observed. These “double
peaked” events may be mistaken for a central El Niño event when composited. The impact
of CGCM biases, particularly pronounced in the fixed regions used in this definition, limits
the confidence that can be placed in the results obtained by this method. Moreover, the
definition of El Niño events depends on the winter months selected. Lag of one month in the
winter season changes the classification of El Niño events, also in observation datasets. It
finally appears that the definition is hardly robust in either observations or models.

• Strong/moderate method

The main advantage of the method is its independence from fixed regions and, therefore,
from model biases. Indeed, the classification of strong/moderate El Niño events from the
amplitude of the first mode of variability of the tropical Pacific allows not to be constrained
by the localisation of the warming. However, the bi-modality of the tropical Pacific variability,
on which the definition of strong/moderate El Niño events of Takahashi et al. (2011) is based,
does not appear clearly in CESM-LE. Takahashi and Dewitte (2016) showed that the ENSO
regimes of strong and moderate events may be linked to non-linear processes in the Bjerknes
feedback. But, the determination of a threshold distinguishing ENSO regimes is not yet well
understood. Thus a variation of ± 5 % of the threshold leads to a variation of the number
of strong El Niño events from 225 (-5.1 %) to 262 (10.5 %) for the historical simulations
and from 271 (-10.3 %) to 322 (6.6 %) for the RCP8.5 simulations in CESM-LE. Overall, this
method provids robust statistics in estimating ENSO amplitude changes with global warming
in climate models (see Cai et al. (2018), Chapter 5 and Annexe A).
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• ENSO and the mean state

Different issues arise from the definition of ENSO as a departure from the mean state.
First is the definition of the mean state. The underlying problematic is to take into account
the low-frequency variability (see paragraph 1.3.2). Fedorov and Philander (2001) showed
that by defining the inter-annual oscillation of El Niño from a mean state that fluctuates
on the decadal scales rather than from a time-averaged temperature of the past periods,
the interpretation of an exceptionally long El Niño became a record of the persistence of
warm background conditions. Kang and Kug (2002) suggested to define El Niño events as
a departure from the mean state of non-ENSO years, because of the asymmetry between El
Niño and La Niña events. Indeed, El Niño being larger than La Niña, the time mean state
could be biased toward warmer conditions.

Once removed the low frequency variability, the second issue is the definition of the
seasonal cycle. Should we consider a constant seasonal cycle over the period considered (entire
periods of historical simulations up to 100 years, depending on the studies) or a seasonal
cycle that varies with decadal fluctuations? The computation of anomalies with respect to
the seasonal cycle is directly linked with the previous point. In this study, as in many studies,
the seasonal cycle is considered stationary over the considered period (respectively historical
and RCP8.5 in this study). However, beyond decadal fluctuations, this method makes the
strong assumption that the climate system is stabilized, which is not the case for future
simulations given the strong external forcing. Others methods could be to apply a filter, as
for instance a 13-month Hanning filter, to remove any remaining seasonality (Singh et al.,
2011) or to use complex empirical orthogonal functions to separate ENSO from the seasonal
cycle and its spatiotemporal behaviour (Boucharel et al., 2013). Cai et al. (2018) removed
a constant annual cycle, but of historical periods for the entire timeserie of historical and
RCP8.5 period. In that case, the underlying assumption is that the seasonal cycle does not
change with global warming. When analysing current observations, an usual method is to
remove a 30-years running mean climatological SST, which takes into account a possible trend
due to global warming. Note that in our comparative analysis of observations, we remove a
constant annual cycle over the considered period.
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CHAPTER 4. LOW-FREQUENCY MODULATION OF ENSO DIVERSITY

4.1 Preamble

ENSO properties (amplitude, frequency, spatial distribution) exhibit low-frequency varia-
tions, at decadal to multi-decadal time scales (Timmermann, 2003; Cibot et al., 2005).
Different sources of modulation have been suggested, including stochastic origin, internal
variability in the tropical Pacific, extra-tropical atmospheric or oceanic teleconnections, or
external forcing (see paragraph 1.3.2).

The modulation of ENSO spatial diversity by the tropical Pacific mean state has also been
highlighted. In particular, stronger zonal mean SST gradient and trade winds (i.e. La Niña-
like SST pattern) are associated with a higher occurrence of CP El Niño events (McPhaden
et al., 2011; Choi et al., 2011; Chung and Li, 2013). However, the mechanisms of the decadal
modulation of ENSO and its flavour are still unclear.

Many studies argued that, in turn, ENSO non-linearities associated with El Niño-La Niña
asymmetry can induce residuals, which modulate the tropical Pacific mean state through
internal rectification processes (Timmermann and Jin, 2002; Jin et al., 2003a; Rodgers et al.,
2004; Schopf and Burgman, 2006). This might be attributable to a two-way feedback between
the climate state and ENSO. While ENSO induces tropical Pacific decadal variability through
a non-linear rectification effect, the climate state provides favourable conditions for a specific
regime of ENSO (Choi et al., 2009). As an example, the mean SST warming in the eastern
Pacific develops with the intensification of ENSO activity periods and an enhanced El Niño-La
Niña asymmetry.

Understanding the relationship between low-frequency ENSO modulation and the tropical
Pacific mean state is crucial, especially in the context of global warming. ENSO modulation
can, indeed, lead to a confused detection of the anthropogenic influence. As an example,
Zheng et al. (2018) showed in CGCMs that the diversity of the ENSO amplitude changes due
to the internal variability is comparable to the diversity of the projected ENSO amplitude
changes with global warming.

In this chapter, we investigate the low-frequency modulation of ENSO diversity by the
tropical Pacific internal variability, in the absence of any variation in external forcing. In that
case, the internal variability of the system can emerge from the integration of atmospheric
noise by a passive ocean through mixing layer processes (Clement et al., 2015), or from
coupled interactions with the high-frequency variability of the atmosphere (see paragraph
2.1.2.3).

The relationship between the tropical Pacific mean state, ENSO modulation and ENSO
diversity modulation has been widely investigated in the GFDL CM2.1 PI-control simulation
(Kug et al., 2010; Choi et al., 2011, 2012, 2013a). Choi et al. (2011) argued that ENSO
flavours depend on the background state in GFDL CM2.1. They showed that the the tropical
Pacific decadal variability (TPDV) modulates periods of high-occurrence of CP or EP El Niño
events. Choi et al. (2012) showed moreover that the decadal modulation of ENSO amplitude
(through the definition of strong and weak-ENSO amplitude periods) and of ENSO spatial
diversity (through the EP and CP El Niño events definition) are related in GFDL CM2.1.
Strong EP El Niño and CP La Niña events occur more frequently during the period of high
ENSO amplitude, while weak CP El Niño and EP La Niña events occur more frequently
during the period of low ENSO amplitude. They argued that the residuals induced by ENSO
asymmetry (El Niño-La Niña) can generate decadal variability in the tropical Pacific, since
they resemble the first mode of the TPDV, especially during the mature phase of the decadal
oscillation. The second mode of the TPDV would then be representative of the transition of
the decadal oscillation phase. Finally, Choi et al. (2013a) showed in a set of CGCMs including
GFDL CM2.1 that the strength of the relationship between the first mode of the TPDV and
the ENSO residuals further intensifies the interactive feedback between the two processes.

We thus compare the behaviour of the long-term PI-control simulation of CESM-LE and
GFDL CM2.1, in which the external forcing is fixed. These simulations are longer than the
time scales of ENSO internal variability (Wittenberg, 2009; Stevenson, 2012).
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After having determined the modes of low-frequency variability simulated in CESM-LE
(paragraph 4.2), we will investigate the relationship between the different flavours of El Niño
and the low-frequency variability of the tropical Pacific (paragraph 4.3). Central Pacific (CP)
and Eastern Pacific (EP) El Niños on one side, strong and moderate El Niños on the other
side are analysed (see paragraphs 1.1.2 and 3.2 for more details on ENSO flavours). ENSO
modulation is therefore apprehended through its variability and its spatial diversity.

4.2 Low-frequency modulation of the tropical Pacific

4.2.1 Variability of tropical Pacific surface temperatures

4.2.1.1 Inter-annual variability

A wavelet analysis (see paragraph 2.2.2.4) is used to determine the main time-scales of ENSO
variability. Wavelet analysis allows to visualise on the same graph the temporal (x-axis) and
frequency (wavelet period in years on the y-axis) evolution of the variance of the ENSO index.
Following Torrence and Compo (1998), a Morlet wavelet analysis is applied on the E (Fig. 4.1
and 4.3) and C (Fig. 4.2) indices. The wavelet analysis has been corrected as suggested by
Liu et al. (2007). They showed that the initial method has a bias that favours low frequencies
and does not allow a comparison of the peaks between the different wavelet scales because
the energy is not comparable. This latter must be divided by the scale associated with it to
compensate the bias.

E-index variability
(a) HadISST v1.1 (b) ERSST v3b

(c) SODA v2.2.4 (d) Number 015 of historical members

(e) Number 024 of historical members (f) Number 107 of historical members

Figure 4.1 – Wavelet power spectrum using the Morlet wavelet of the E-index of (4.1a) HadISST v1.1
(1950-2017), (4.1b) ERSST v3b (1950-2017), (4.1c) SODA v2.2.4 (1950-2010) and (4.1d) member 15,
(4.1e) member 24 and (4.1f) member 107 of CESM-LE historical simulations (1920-2005). The shaded
contours are at normalised variance of 0.25, 0.5, 1, 2, 4, 8 and 16 (◦C2). The black contours enclose
the 95 % significance regions of energy, when comparing to a red-noise background spectrum. Hatch
indicates the cone of influence where zero-padding reduces the variance, that is where edge effects
become important.
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The observed wavelet power spectra of the E-index (Fig. 4.1a, 4.1b and 4.1c) and C-index
(Fig. 4.2a, 4.2b and 4.2c) emphasize changes with time of the ENSO variability time-scales.

Periods of high oscillation frequency alternate with periods of lower frequency, such as,
for the E-index, the 1960-1975 (2-4 years) and 1980-2000 (4-6 years) periods highlighted by
An and Wang (2000). The change in oscillation frequency is concomitant with the 1976-77
climate shift that caused inter-decadal change in dominant EP-ENSO period (Kao and Yu,
2009). The period 1980-2000 of low frequency includes the strong (EP) El Niño events of
1982-1983 and 1997-1998, pointed out by strong E-index amplitudes. Conversely, the 2000s
saw a decrease in the E-index variability, simultaneous with observed changes toward an
amplified central Pacific variability period (Fig 4.2). This recent period of low activity in the
eastern Pacific is comparable to the period 1950-1960, while the central Pacific has already
experienced periods of similar oscillation frequency, but of lower intensity than the recent
period. This feature can be related only to the internal variability of the climate system (Yeh
et al., 2011) rather than to a response to the increasing greenhouse gases concentration (Yeh
et al., 2009a).

The C-index wavelet power shows less variation in oscillation periods, between 2 and 5
years, than the E-index and no change occurred with the climatic shift of 1976-77, unlike
the E-index, consistent with Kao and Yu (2009). Note that the amplitude of the C-index
variance is less pronounced than that of the E-index in observations dataset (Fig. 4.2a, 4.2b,
4.2c).

Interestingly, historical runs of CESM-LE (Fig. 4.1d, 4.1e, 4.1f for the E-index, and
Fig. 4.2d, 4.2e, 4.2f for the C-index) display a realistic simulation of the ENSO variability,
with a range of variability (2-8 years) closer to that observed than the previous generation
of CGCMs that tended to center the variability around 2 years (Meehl et al., 2001; Dewitte
et al., 2007). However, the C-index variability is less realistically simulated, with in particu-
lar an oscillation period between 4–8 yr rather than between observed 2–4 yr (Fig. 4.2d, 4.2e,
4.2f).

Moreover, the simulated variability is not so regular as it used to be in CGCMs (see
paragraph 2.1.2.2). Despite slightly stronger magnitudes, the alternation of periods of high
and low activity and of different duration is realistically simulated. These periods can be
relatively long, as is the case for the member 024 with a low activity period of 45 years in
the eastern Pacific (Fig. 4.1e). A large spread of wavelet power spectra is observed among
each historical member of CESM-LE. Note that periods of high C-index variability seem to
be more concomitant with periods of high E-index variability than in observations.

Finally, EP and CP-ENSO experiment low-frequency modulation of their variability, with
alternation of high and low activity period as well as changes in the preferential period of
oscillation. It is consistent with results of Torrence and Compo (1998) on the reconstructed
Niño-3 index since 1871. They highlighted an alternation of periods of several decades of
high activity (1880-1920 and 1960-1990) and lower power (1920-1960).

This observed internal variability is the topic of the chapter. However, due to the length of
the observation records, it is difficult to diagnose this low-frequency modulation (Wittenberg,
2009; Stevenson et al., 2010; Stevenson, 2012). Our analysis of the ENSO internal variability
is therefore based on PI-control simulations of two long-term CGCMs, CESM-LE (1801 years)
and GFDL CM2.1 (500 years) (see paragraph 2.1 for a description of the models).

Wittenberg (2009) showed that periods of low or high variability can last up to 100 years
(their M3 and M4 periods for instance). The wavelet analysis of the PI-control E-index
(Fig. 4.3) confirms this result with a low variability period of 100 years in GFDL CM2.1
around the year 500 and in CESM-LE around the year 1300 for instance.

GFDL CM2.1 simulates stronger magnitudes of variability than CESM-LE and obser-
vations, which is a known bias of CGCMs in general, of GFDL CM2.1 in particular (see
paragraph 2.1.4.4). Morevoer, the bias in the shift towards higher oscillation periods (4–
8 yr rather than observed 2–4 yr) of the C-index is also present in the CESM-LE PI-control
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C-index variability
(a) HadISST v1.1 (b) ERSST v3b

(c) SODA v2.2.4 (d) Number 015 of historical members

(e) Number 024 of historical members (f) Number 107 of historical members

Figure 4.2 – Same as Fig. 4.1 but for the C-index.

simulation and, in a lesser extent, in the GFDL CM2.1 PI-control simulation (not shown).
Using reconstructed SST over the period 1871-1997, Torrence and Compo (1998) sug-

gested that ENSO modulation, defined by the Niño-3 index variance, has a modulation
period of 15 yr. Historical simulations of CESM-LE show lower-frequency modulations of the
E-index but with disparity between members, ranging from 10-15 to around 30 years time-
scales for the E-index (Fig. 4.1d, 4.1e, 4.1f). The PI-control simulations of both models show
a high power of the E and C indices in the band between 20-35 years. The low-frequency
modulation of ENSO, based on the PI-control simulations of CESM-LE and GFDL CM2.1,
is investigated in the following paragraph.

4.2.1.2 Low-frequency variability

Following Torrence and Webster (1999); Timmermann (2003); Cibot et al. (2005); Choi et al.
(2009), we apply a wavelet analysis to the ENSO indices, in order to characterise the low-
frequency modulation of ENSO amplitudes. We first analyse the global wavelet spectrum
(that is the time-averaged wavelet spectrum), corrected according to Liu et al. (2007), of
the E index (the diagnostic on the C index is not shown). The most powerful frequency
band is determined, ranging from 1-8 to 2-16 years following the datasets. For clarity and
consistency with previous studies, the frequency band between 2 and 8 years is used (Torrence
and Compo, 1998).

We then calculate the inter-annual (2-8 years) wavelet variance of the E-index, called
E-Var on the same way as Rodgers et al. (2004); Cibot et al. (2005). It corresponds to the
scale-averaged wavelet power between periods of 2 and 8 years, that is the weighted sum of the
wavelet power spectrum over scales from 2 to 8 years. The filtered time-series obtained is used
to characterise the low-frequency modulation of the preferred ENSO time-scales (Torrence
and Webster, 1999; Timmermann, 2003; Cibot et al., 2005). We finally derived the global
wavelet spectrum of the rectified E-Var (Fig. 4.4). The same diagnosis is applied to the
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CHAPTER 4. LOW-FREQUENCY MODULATION OF ENSO DIVERSITY

(a) GFDL CM2.1 E-index

(b) PI-control CESM-LE E-index

Figure 4.3 – Wavelets power spectrum, using the Morlet wavelet, of the E-index of (4.3a) GFDL CM2.1
PI-control simulation (500 years) and (4.3b) CESM-LE PI-control simulation (1801 years). The shaded
contours are at normalised variance of 0.25, 0.5, 1, 2, 4, 8 and 16 (◦C2). The black contours enclose
the 95 % significance regions of energy, when comparing to a red-noise background spectrum. Hatch
indicates the cone of influence where zero-padding reduces the variance, that is where edge effects
become important.
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C-index.

E-index C-index
(a) PI-control CESM-LE

(b) PI-control GFDL CM2.1

Figure 4.4 – Scaled global wavelets power of (left column) the E-Var index and (right column) the C-
Var index of (4.4a) CESM-LE PI-control simulation (1801 years) and (4.4b) GFDL CM2.1 PI-control
simulation (500 years). The scale is computed following the bias rectification of Liu et al. (2007).

Note that the GFDL-CM2.1 PI-control simulation has global spectrum peaks of larger
amplitude than the CESM-LE PI-control simulation, due to the overestimation bias of ENSO
amplitude (see paragraph 2.1.4.4).

The results indicate that the E-Var exhibits low frequency modulation at the dominant
periods of 20-40 years for CESM-LE with two peaks around 22 and 37 years respectively, at
the dominant periods of 20-30 years for GFDL CM2.1 with a main peak around 26 years.
The C-Var index is modulated in the 25-35 years spectral band for CESM-LE, with peaks
around 26 and 31 years and centred around 25 years for the GFDL CM2.1. It can also be
noted that a smaller peak is present for the GFDL CM2.1 E-Var index, around 13 years,
a period that is also found for the Niño-3 and Niño-4 indices in this model (not shown).
Previous studies using Niño-3 modulation index suggested a low-modulation in the spectral
band of 12-20 years (Torrence and Webster, 1999), 16-17 years (Timmermann, 2003), 10-20
years (Cibot et al., 2005) or still 16 years (Choi et al., 2009). The higher frequency of ENSO
modulation could be explained by the length of the datasets used in these studies. As an
example, Choi et al. (2012) showed that the spectral peak of their decadal ENSO amplitude
index is around 29 years in the GFDL CM2.1 PI-control simulation. Their decadal ENSO
amplitude index is calculated in the same way by a wavelet analysis from the modified Niño-
3.4 SSTA index (5°S-5°N, 140°E-110°W). By analysing the modulation of the E-Var index
in CESM-LE historical simulations (minimum duration of 86 years), a preferential spectral
band around 16 years is found, which confirms the need for a long-term simulation to access
the ENSO low-frequency modulation (Wittenberg, 2009).

Finally, the 2-8 years variance of E and C indices show decadal modulation around 30
years. A 31 yr window of modulation will subsequently be used to study inter-decadal changes
in variance of ENSO and its relationship with the mean state.

4.2.2 Variability of equatorial Pacific subsurface temperatures

The tropical Pacific decadal variability (TPDV) is investigated through the slow varying
modes of vertical stratification in the tropical Pacific (Choi et al., 2013a). To calculate the
TPDV modes in the CESM-LE PI-control simulation, we apply a 31 yr running-mean filter
on subsurface temperature anomalies, averaged between 5°S-5°N, before performing an EOF
analysis (Fig. 4.5). The 31 yr running mean filter was chosen from the results on the decadal
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modulation of ENSO (see previous paragraph 4.2.1.2).
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(b) Mode 2: ENSO-induced
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Figure 4.5 – Spatial patterns of the two leading modes of the EOF analyse of the decadal equatorial
subsurface temperature anomalies averaged between 5°S-5°N for CESM-LE PI-control simulation.
The decadal equatorial subsurface temperature anomalies, de-seasoned and linearly detrended, are
computed by applying a 31 yr running-mean filter. In black line is the mean 20 ◦C isotherm, a proxy
of the thermocline. The mode 1 (4.5a) is called ENSO-like mode of the tropical Pacific decadal
variability (TPDV), the mode 2 (4.5b) is the ENSO-induced TPDV mode.

Several studies showed that one of the two leading mode of the TPDV is related to the
decadal ENSO modulation and thus called the ENSO-induced TPDV mode (Timmermann,
2003; Dewitte et al., 2009). In CGCMs, this ENSO-induced mode can be either the first or
the second mode of variability of the EOF analysis (Choi et al., 2013a). To determine which
mode corresponds to the ENSO-induced TPDV in the CESM-LE PI-control simulation, the
correlation between the associated PC time-series and a decadal modulation index of ENSO
amplitude is calculated. The EOF mode that yields the highest temporal correlation between
its PC time-series and the ENSO decadal modulation index is classified as the ENSO-induced
TPDV.

The ENSO variability modulation index is defined as the 31 yr sliding standard deviation
of Niño-3.4 SSTA index. In CESM-LE, the ENSO-induced (ENSO-like) TPDV mode is the
second (first) mode of the CESM-LE PI-control simulation and has a correlation equal to
0.71 (0.44) with ENSO modulation index, statistically significant at 99 % confidence level.
The correlation between ENSO amplitude modulation and the TPDV ENSO-induced mode
in GFDL CM2.1 is equal to 0.94, with the ENSO amplitude modulation index defined from
a 20 yr sliding standard deviation of Niño-3m (Choi et al., 2012). It should be noted that,
in CESM PI-control simulation, the ENSO-induced TPDV mode is not only correlated with
the ENSO modulation defined from the Niño-3.4 SSTA index but also with different SSTA
modulation indices all along the central to eastern Pacific (Table 4.1).

ENSO-like ENSO-induced
31-yr run-std E-index 0.34 0.62
31-yr run-std Niño-3 0.39 0.74
31-yr run-std Niño-34 0.44 0.71
31-yr run-std Niño-4 0.49 0.66
31-yr run-std Niño-4m 0.37 0.69
31-yr run-std C-index 0.38 0.63

Table 4.1 – Correlation coefficients between indices of ENSO modulation and the two leading modes
of the decadal subsurface temperature variability for the PI-control CESM-LE simulation. The cor-
relations are statistically significant at 99 % confidence level.

The ENSO-induced TPDV mode is characterised by an east-west dipole along the equator.
Its spatial pattern resemble the ENSO-induced pattern of GFDL CM2.1 PI-control simulation
(see Figure 5 of Choi et al. (2011) or Figure 8b of Choi et al. (2012) using a 20 yr running-mean
filter on the equatorial subsurface temperatures and Figure 2c middle column of Choi et al.
(2013a) using a 10 yr running-mean filter). Several studies showed that this decadal mode
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could be induced by the rectification effect of ENSO due to the residual of the asymmetry
between El Niño and La Niña onto the mean SST (Timmermann, 2003; Rodgers et al., 2004;
Cibot et al., 2005; Schopf and Burgman, 2006; Choi et al., 2012).

The spatial pattern associated with the ENSO-like TPDV mode presents a similar vertical
structure than the so-called tilt mode of ENSO (Fig. 2.9). The pattern correlation between
these two vertical structures is 0,96, statistically significant at 99 % confidence level (the cen-
tred correlation is equal to 0.90 statistically significant at 99 %). The center of the anomalies
of ENSO-like TPDV is located further west than for the ENSO mode, which is similar to
the results of Choi et al. (2013a) using the CMIP5 database. The ENSO-like TPDV has a
weak temporal correlation with the ENSO decadal modulation, despite their similar spatial
structure (Table 4.1). This result is coherent with previous studies (Yeh and Kirtman, 2004;
Dewitte et al., 2009; Choi et al., 2013a).

A regression of the tropical Pacific SST anomalies onto the principal component of each
TPDV mode is performed (Fig. 4.6). The SST anomalies associated with the ENSO-induced
mode present a west-east dipole along the equator, directly linked to the ENSO-induced
TPDV temperatures profile (Bottom panel of Fig. 4.6). These results are consistent with
Choi et al. (2009, 2011, 2013a). Note, however, that the negative anomalies expand more
eastward than for the GFDL CM2.1 PI-control simulation with a 10 yr running-mean filter
(Figure 3c of Choi et al. (2013a)) and, to a lesser extent with a 20 yr running-mean filter
(Figure 9a of Choi et al. (2012)). The SST anomalies associated with the ENSO-like mode
extend off-equator, in particular southward, while most of the variability in ENSO mode is
constrained along the equator in the CESM-LE.
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Figure 4.6 – Regressed spatial patterns of the equatorial SSTA onto the (top) ENSO-like and (bottom)
ENSO-induced TPDV modes. The TPDV modes are defined from an EOF analyse of the decadal
equatorial subsurface temperature anomalies averaged between 5°S-5°N for the CESM-LE PI-control
simulation (1801 years). The black line is the mean 28 ◦C isotherm, a proxy of the warm pool.
The decadal equatorial subsurface temperature anomalies, de-seasoned and linearly detrended, are
computed by applying a 31 yr running-mean filter.

The ENSO-like mode explains 56.6 % of the total decadal variance and the ENSO-induced
mode 23.4 % in the CESM-LE PI-control simulation. It is consistent with the SST TPDV
modes of Zheng et al. (2018), applying a 11 yr low-passed filter onto the SSTA. However, the
variance explained by these two modes is highly dependant on the CGCM used, the leading
mode may not be the same (Choi et al., 2013a). The leading modes of TPDV are thus
swapped in CESM-LE compared to GFDL CM2.1, which is mainly used in the compared
studies. Whether with a 10 yr or a 20 yr running-mean filter, the first mode in GFDL CM2.1
is the ENSO-induced mode explaining 59 % of the total variance (Choi et al., 2011, 2013a), the
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second mode is the ENSO-like mode explaining 22 % of the total variance (Choi et al., 2013a).
The difference of explained variances by the two leading modes of subsurface equatorial
temperatures variability between CGCMs could induce a different dynamical relationship
of ENSO with the mean state. This issue is discussed in more detail in the Synthesis and
Perspectives paragraph.

4.3 Relationship between ENSO and mean state

We analyse the possible relationship between the occurrence frequency of the different types of
El Niño events and the mean state of the tropical Pacific. The occurrence frequency is defined
by counting each El Niño events during the 31 yr sliding periods, following the methods of
Kug et al. (2010); Choi et al. (2011). Note that an El Niño event is defined as long as the
threshold of the corresponding index (ONI for EP/CP events or PC1 for strong/moderate
events) is exceeded and not per winter where the threshold is exceeded as in previous studies
(see paragraph 3.2).

4.3.1 Eastern and Central Pacific El Niños

We define Eastern Pacific (EP) and Central Pacific (CP) El Niño events through the definition
described in the paragraph 3.2.3 and using DJF mean SSTA indices .

The low-frequency occurrence of EP and CP events shows decadal variations, larger for
CP events than for EP events for both models, CESM-LE and GFDL CM2.1 (Fig. 4.7). The
correlation between the occurrence frequencies of the two types of events is equal to -0.58 for
both models. These negative correlations are consistent with Choi et al. (2011), who found a
correlation equal to -0.65 for the GFDL CM2.1 PI-control simulation using the modified SSTA
indices, due to the westward Cold Tongue bias. There is an inverse relationship between the
EP and CP El Niño occurrences on decadal time scales. Choi et al. (2011) suggested that
this inverse relationship is induced by change in the mean state.

Kug et al. (2010) showed that the occurrence frequency of CP-modified El Niño events is
correlated (0.70) with the low-frequency mean Niño-4m SSTA index (5°S-5°N, 140°E-170°W)
in GFDL CM2.1 PI-control simulation. They used a window of 20 yr to establish the slow-
varying indices and analysed the CP El Niño events and the mean state in the modified
Niño-4 region, that is shifted of 20° longitude to the west to take into account the westward
Cold Tongue bias of GFDL CM2.1. They suggested that this relationship between CP-
m occurrence frequency and the warmer state of the tropical decadal variability could be
related to either non-linear rectification effect (Timmermann, 2003; Rodgers et al., 2004; An
et al., 2005a; An, 2009) or the mean state providing favourable conditions for the occurrence
frequency of CP El Niño events.

The same diagnostic is applied using the PI-control simulations of CESM-LE and GFDL
CM2.1. The diagnostic is repeated for the occurrence frequency of EP El Niño events. The
correlation coefficients with different ENSO modulation indices are calculated (Table 4.2).

The link between number of flavours of El Niño events and SST mean state in the asso-
ciated region of main variability (Niño-4 region for CP El Niño and Niño-3 region for EP El
Niño) is much less pronounced in CESM-LE than in GFDL CM2.1. EP El Niño occurrence
frequency is positively correlated at the slow-varying mean SSTA in the eastern Pacific, but
the correlation is particularly low with the Niño-3 SSTA index. Surprisingly, EP El Niño
occurrence frequency is more correlated with the E-index than with traditional ENSO in-
dices by which the event is defined. The correlation quickly decreases when moving westward
towards the Niño3.4 region.

The occurrence frequency of CP El Niño events is linked to the mean state in the western-
to-central tropical Pacific in both models (see also Figure 4.8). However, the relationship is
more pronounced and more spread westward in GFDL CM2.1 than in CESM-LE.
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(a) CESM-LE PI-control simulation (c = −0.58)
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Figure 4.7 – Occurrence frequency of EP (red) and CP (blue) El Niño events over 31 yr sliding periods
for the PI-control simulations of (4.7a) CESM-LE (1801 years) and (4.7b) GFDL CM2.1 (500 years).
The EP and CP El Niño events are defined by the ONI index and classified by comparing Niño-3 and
Niño-4 SSTA indices.

CESM-LE GFDL CM2.1
CP El Niño frequency

31-yr run-mean Niño-34 0.38 0.38
31-yr run-mean Niño-4 0.54 0.70
31-yr run-mean Niño-4m 0.42 0.65
31-yr run-mean C-index 0.52 0.63

EP El Niño frequency
31-yr run-mean E-index 0.44 0.71
31-yr run-mean Niño-3 0.14 0.54
31-yr run-mean Niño-34 -0.01* 0.06*

Table 4.2 – Correlation coefficients between decadal modulation SSTA indices and occurrence fre-
quency of CP and EP El Niño events over 31 yr sliding periods, for the PI-control simulations of
CESM-LE and GFDL CM2.1. The correlations are statistically significant at 99 % confidence level
except for *.
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(a) CESM-LE PI-control simulation (c = 0.54)
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(b) GFDL CM2.1 PI-control simulation (c = 0.70)

0 100 200 300 400 500

0

1

2

3

4

5

6

7

8

9

C
P
fr
eq
ue
nc
y

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

M
od
ul
at
io
n
N
iñ
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Figure 4.8 – Frequency of occurrence of CP (blue) El Niño events over a 31 yr sliding period and the
31 yr running mean Niño-4 SSTA index for (4.8a) the PI-control simulation of CESM-LE (1801 years)
and (4.8b) the PI-control simulation of GFDL CM2.1 (500 years). The corresponding correlation
coefficient is indicated and statistically significant at 99 % confidence level.

We investigate the same way the relationship between the occurrence frequencies of El
Niño events and the subsurface temperature mean state. The subsurface slow-varying states
are characterised by the TPDV modes (see paragraph 4.2.2). Choi et al. (2011) showed
that the number of occurrences of CP-modified events is correlated with the ENSO-induced
TPDV mode (-0.64 statistically significant at the 99 % confidence level) in the GFDL CM2.1
PI-control simulation.

The relationship between the frequency of occurrence of CP events and the ENSO-induced
TPDV mode is not so pronounced in CESM-LE than in GFDL CM2.1 (Fig. 4.9). Surprisingly,
the frequency of occurrence of CP events is even more linked to the ENSO-like TPDV mode.

One of the difficulty of the diagnostic is the way to count El Niño events. When counting
CP events per year (and not per period as presented in figure 4.9), the correlation coefficient
with the ENSO-induced mode goes up to -0.56. And when counting all El Niño events
(CP and EP) per year, the correlation coefficient reaches -0.64. It seems that more than
a relationship between the occurrence frequency CP El Niño events and the ENSO-induced
TPDV mode, it could be a relationship between the low-frequency variability of the tropical
Pacific and the ENSO-induced TPDV mode (Table 4.1). It is consistent with the higher
correlations when counting all El Niño years, since then the occurrence frequency tends to
approach the ENSO amplitude variability. This interaction requires further investigations in
CESM-LE.

4.3.2 Strong and moderate El Niños

The same analysis is performed but for strong and moderate events, defined as in paragraph
3.2.2. The correlation between the frequencies of the two types of events is equal to -0.50
for CESM-LE, to -0.69 for GFDL CM2.1 (Fig. 4.10). The correlation is negative, showing
an inverse relationship between the number of moderate and strong El Niño occurrences on
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4.3. RELATIONSHIP BETWEEN ENSO AND MEAN STATE

(a) ENSO-induced (c = −0.35)
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(b) ENSO-like (c = 0.40)
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Figure 4.9 – Frequency of occurrence of CP (blue) El Niño events over a 31 yr sliding period and the
PC timeserie associated with (4.9a) the ENSO-induced mode and (4.9b) the ENSO-like mode for the
PI-control simulation of CESM-LE (1801 years).

decadal time scales. This is consistent with previous results comparing EP and CP El Niño
occurrence frequencies. Note that the decadal modulation frequency is larger for moderate
events than for strong events.

CESM-LE GFDL CM2.1
Moderate El Niño frequency

31-yr run-mean Niño-4 0.42 0.51
31-yr run-mean Niño-4m 0.50 0.51
31-yr run-mean C-index 0.51 0.48

Strong El Niño frequency
31-yr run-mean E-index 0.63 0.62
31-yr run-mean Niño-3 0.32 0.54
31-yr run-mean Niño-34 0.20 0.23

Table 4.3 – Temporal correlation coefficients between decadal modulation SSTA indices and the fre-
quency of occurrence of strong and moderate El Niño events over 31 yr periods, for the PI-control
simulations of CESM-LE and GFDL CM2.1. The correlations are statistically significant at 99 %
confidence level.

The correlations between the number of strong and moderate events over 31 years and
the slow-varying mean SSTA indices are computed in the same way as for EP and CP events
(Table 4.3). There is a positive relationship between the low-frequency occurrence of moderate
events and the mean state of the central tropical Pacific, but less pronounced than for the
low-frequency occurrence of CP El Niño events, in particular in GFDL CM2.1. Moderate
El Niño events tend to be more CP El Niño than EP El Niño events in CESM-LE (see
paragraph 3.3.2). However, the physical process associated with each kind of events may not
be the same, explaining the difference in relationship.
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CHAPTER 4. LOW-FREQUENCY MODULATION OF ENSO DIVERSITY

(a) CESM-LE PI-control simulation (c = −0.50)
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(b) GFDL CM2.1 PI-control simulation (c = −0.69)
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Figure 4.10 – Frequency of occurrence of strong (red) and moderate (blue) El Niño events defined
by the normalised PC1 time-series and by the E-index over a 31 yr sliding period for the PI-control
simulation of (4.10a) CESM-LE (1801 years) and (4.10b) GFDL CM2.1 (500 years).

The relationship between moderate El Niños occurrence frequency and the ENSO-induced
TPDV mode is slightly more pronounced than with CP El Niños. The correlation coefficient
is equal to -0.42, statistically significant at 99 % level.
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Synthesis and Perspectives

• TPDV modes

The tropical Pacific decadal variability modes in the PI-control simulation of CESM-LE
behave in the same way as previous results using different models. The ENSO-induced mode
is correlated with low-frequency ENSO modulation, while the pattern of the ENSO-like mode
is similar to the spatial pattern of El Niño.

However, in CESM-LE as in others CGCMs (Choi et al., 2013a), the ENSO-induced
mode is the second mode of main variability of the equatorial Pacific, which is not the case in
previous studies (Rodgers et al., 2004; Cibot et al., 2005). This different characteristics of the
tropical Pacific variability could arise from the too strong and too regular variability simulated
by previous models. ENSO residuals may act too strongly in these models with respect to
observations and this may be sufficient to induce the dominant decadal mode of the model.
This question is beyond the scope of this study but deserves further investigation and should
be kept in mind as it may reveal different low-frequency dynamic processes depending on the
CGCMs. In particular, Choi et al. (2012) suggested that the ENSO-like mode corresponds
to the phase transition of the decadal oscillation. The ENSO-induced mode would be a
positive feedback with ENSO modulation, reinforcing itself when the amplitude of ENSO
modulation increases and being active during the mature phase of the decadal oscillation.
The ENSO-like mode would be a negative feedback that leads the phase change of the decadal
oscillation. However, the variance explained by the two modes in CESM-LE does not seem
to be consistent with this interpretation. Choi et al. (2013a) suggested that the variance of
each mode depends on the strength of the two-ways feedback between the residuals of ENSO
asymmetry and the ENSO-induced mode. The higher the variance explained by the ENSO-
induced mode, the stronger the two-ways feedback and the higher the ENSO amplitude
variability. This relationship therefore appears to be highly subject to ENSO amplitude
biases in CGCMs (see paragraph 2.1.2.2) and requires further studies, especially in CESM-
LE. An interesting diagnosis could thus to analyse the relationship between ENSO asymmetry
residuals and TPDV in CESM-LE and extend this diagnosis to historical simulations, which
could highlight the mechanism at work through inter-member variability.



Synthesis and Perspectives

• TPDV modes and ENSO modulation

Kug et al. (2010) and Choi et al. (2012) showed in the GFDL CM2.1 PI-control simula-
tion that the low-frequency modulation of CP El Niño (through the slow-varying occurrence
frequency) is highly correlated with the slow-varying SST mean state of the central Pacific
and the ENSO-induced TPDV mode (correlation coefficients equal to 0.70 and -0.64 respec-
tively). These relationships are much less pronounced in the CESM-LE PI-control simulation.
In GFDL CM2.1, this relationship induces a direct link between the mean vertical stratifi-
cation and ENSO. Low-frequency changes in stratification lead to a direct change in the
dynamics and then, indirectly, to the associated thermodynamic processes in GFDL CM2.1.
In CESM-LE, the link between the mean vertical stratification and ENSO variability seems
to be more complicated and needs further investigations.

In CESM, the ENSO-induced TPDV mode appears correlated with the low-frequency
variability of the tropical Pacific, rather than with the occurrence frequency of CP El Niño
events. This distinct feature may arise from a model bias in the simulation of the TPDV
modes, and, in particular, in the ENSO-induced mode. Indeed, in addition to explaining a
lower variance, the mode also spreads further over the central Pacific, with positive anomalies
confined in the eastern Pacific. This bias is particularly visible on the regressed spatial pattern
onto the SST. Further investigations, particularly on the spatial patterns associated with the
residuals due to El Niño-La Niña asymmetry, are needed. Indeed, the relationship between
the TPDV and the two-way feedback on ENSO variability, through the non-linear rectification
effects, could explain the distinct features between the TPDV and ENSO.

Zheng et al. (2018) showed that the TPDV is related to the CESM-LE inter-member
spread of the SST warming by 2100, under the sustained RCP8.5 scenario. They suggested
that the two-ways feedback between TPDV and ENSO modulation trough ENSO rectifica-
tion effects leads to uncertainties on the SST warming rate and on ENSO amplitudes under
global warming. Given this strong contribution of internal variability to projected changes,
the mechanisms linking ENSO and TPDV in CESM-LE require further study. In particular,
understanding why the spatial pattern of the ENSO-induced mode seems to shift eastward
when descending into low frequency variability could be the key linking the different charac-
teristics observed in CESM.

Finally, Choi et al. (2011) and Choi et al. (2012) used the modified Niño SSTA indices to
define El Niño flavours and their definition of El Niño and La Niña events has criteria only
during the winter season, without condition of duration of the event (see paragraph 3.2.3).
The definition of ENSO diversity is an issue when analysing relationship between the mean
state and ENSO flavours.



Chapter 5

ENSO diversity and global warming

Contents

5.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2 Article submitted to Climate Dynamics . . . . . . . . . . . . . . . 180

5.3 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . 221

5.3.1 Changes in mean state under greenhouse gas forcing . . . . . . . . . 221

5.3.2 The seasonally stratified El Niño events . . . . . . . . . . . . . . . . 224

5.3.3 Changes in ENSO statistics . . . . . . . . . . . . . . . . . . . . . . . 226

5.3.3.1 Changes in frequency of occurrence . . . . . . . . . . . . . 226

5.3.3.2 Changes in the relationship between temperature and rain-
fall in the eastern Pacific . . . . . . . . . . . . . . . . . . . 229

5.3.4 Discussion: Focus on the processes that can explain the persistence
of Niño events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

5.3.4.1 Changes in the Bjerknes feedback . . . . . . . . . . . . . . 233

5.3.4.2 Changes in the thermocline feedback . . . . . . . . . . . . . 235

Synthesis and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 237

179



CHAPTER 5. ENSO DIVERSITY AND GLOBAL WARMING

5.1 Preamble

One of the debated issue is to predict changes in El Niño features, such as amplitude or diver-
sity, with global warming (see paragraph 1.4.2). Most CMIP models project a deepening of
the thermocline in the eastern Pacific in response to the weakening of the Walker circulation,
which could reduce the effectiveness of the upwelling and thermocline feedbacks (DiNezio
et al., 2012), and thus decrease ENSO amplitude. In the meantime, the projected intensifica-
tion of the vertical stratification may strengthen the thermocline feedback, by increasing the
sensitivity of SST anomalies to thermocline depth fluctuations (Zelle et al., 2004; Dewitte
et al., 2013), and thus increase ENSO amplitude.

The two regimes of El Niño are also likely to have different sensitivity to changes in mean
state. Changes in the background state of the tropical Pacific could favour CP El Niños,
by flattening the thermocline in the central Pacific (Yeh et al., 2009a), or by preventing the
growth of positive SSTA in the eastern tropical Pacific, due to a weakened Bjerknes feedback
(Li et al., 2017). They could also favour extreme eastern El Niños, by promoting southward
movement of the ITCZ (Cai et al., 2014), by shallowing the thermocline in the eastern Pacific
(Philip and van Oldenborgh, 2006), or by weakening the westward mean equatorial currents
(Santoso et al., 2013).

However, the dispersion of the ENSO response among the models does not allow to es-
timate significant trends in El Niño amplitude change. CGCMs have common biases in the
tropical Pacific mean state simulation, which may lead to divergent model responses in ENSO
simulation (see section 1.4 and paragraph 2.1.2.2). In particular, the inter-model uncertainty
is mainly due to the different simulations of the tropical Pacific surface warming, simula-
tions ranging from an El Niño-like to a La Niña-like warming pattern: models projecting an
enhanced (reduced) mean warming in the eastern equatorial Pacific project increased (de-
creased) ENSO amplitude (Zheng et al., 2016). These differences in the projected patterns
are mainly due to the common cold tongue bias of CGCMs. Correcting this bias favours El
Niño-like mean warming pattern (Li et al., 2016; Ying et al., 2019). This result suggests a
probable increase in ENSO-related SST variance under global warming.

It also suggests that, given the existing uncertainties about projected spatial patterns, it is
hazardous to estimate ENSO magnitude changes based on fixed tropical Pacific regions, such
as Niño-3 or Niño-3.4, subject to these biases. As highlighted in chapter 3, using the E and C
indices defined by Takahashi et al. (2011) makes it possible to overcome this localised spatial
constraint. In this chapter, we focus on strong El Niño events defined from a threshold on
the E-index. The objectives of this chapter, whose main results are published in the journal
Climate Dynamics, are:

• to diagnose changes associated with global warming in ENSO statistics simulated by
CESM-LE,

• to document changes in ENSO mechanisms and feedback processes, to improve our
mechanistic understanding of the impact of a warmer climate on ENSO.

5.2 Article submitted to Climate Dynamics

Given the socio-economic and meteorological impacts that can cause ENSO, the projection
of its evolution with climate change presents strong challenges. In the following publication,
changes in ENSO statistics with climate change are first analysed to diagnose the associated
process changes. We focus on strong El Niño events defined by the E and C indices following
the method of Takahashi et al. (2011).

This method has recently been used by Cai et al. (2018) (see Annexe 5.3.4.2). Using the
E and C indices, they analysed ENSO variability at the action centres of the SST warming
of each model, rather than at fixed regions (Fig. 5.1). They showed that the majority of
the models simulates a robust and significant increase of the SST variability in these action
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5.2. ARTICLE SUBMITTED TO CLIMATE DYNAMICS

centres, whose longitude differ in each model. When the model simulates an increase in the
E-index SST variance, it generally results in more occurrences of EP El Niño events for a
given intensity. Analysing a set of models simulating realistically the non-linear character of
ENSO (see paragraph 2.1.4.5), they argued that this increase in the variance of EP El Niño
events is associated with the projected stronger vertical stratification in the central Pacific.

Figure 5.1 – (Top panel) Projected changes in E-index variance (standard deviation) between present-
day (1900-1999, blue bars) and future (2000-2099, red bars) simulation periods. 24 of the 34 CMIP5
models show an increase in the E-index variance (models that simulate a decrease in E-index variance
are greyed out). Note that the 17 CMIP5 models selected in the study because of their realistic
representation of ENSO non-linearities are on the left part of the panels, to the left of the vertical
gray line. 15 of the 17 selected models simulate an increase in the E-index variance. (Bottom panel)
Same as on the top panel but for the Niño-3 SSTA index. The ensemble mean is shown on the far
right of the two panels. Error bars correspond to the standard deviation of the bootstrap distribution,
that is of 10,000 inter-realisations with replacement. The multi-model mean increase in the E-index
variance (top panel) is statistically significant at more than the 95 % confidence level, which is not
the case for the Niño-3 SSTA variance change (bottom panel). Reprinted from Cai et al. (2018).

CESM-LE also simulates this increase in EP Niño variability. We further investigate the
E-index variance and show that its climatological variance is projected to change with global
warming, in particular during the late winter, early spring (February-March-April, FMA
hereafter). This change in the seasonal cycle of the SST variability in the action centres of
EP El Niño warming is associated with an increased duration of strong EP El Niño events
by two months in the warmer climate (see paragraph 5.3.2 for supplementary materials).
This higher persistence of strong EP events is interpreted as resulting from both a stronger
recharge process and a more effective thermocline feedback in the eastern equatorial Pacific,
associated with the increased vertical stratification across the equatorial Pacific with global
warming.

Moreover, we show that the increase in strong EP El Niño events peaking in FMA in the
warmer climate explains one quarter of the increase in frequency of occurrence of extreme
precipitation events defined as Cai et al. (2014) in the CESM model. And 34 % of the increase
in extreme precipitation events are concomitant with weak to moderate El Niño events and
thus associated with the warmer mean SST. We therefore argue that both the increase in
mean SST in the eastern equatorial Pacific and the change in ENSO processes associated with
differential warming between the surface and the subsurface (i.e. sharper mean thermocline)
contribute to the increase in extreme precipitation events in a warmer climate in this model
(see paragraph 5.3.3.2 for supplementary materials).
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Abstract 29 

 30 

While there is evidence that ENSO activity will increase in association with the increased vertical stratification due to 31 

global warming, the underlying mechanisms remain unclear. Here we investigate this issue using the simulations of the 32 

NCAR Community Earth System Model Large Ensemble (CESM-LE) Project focusing on strong El Niño events of the 33 

Eastern Pacific (EP) that can be associated to flooding in Northern and Central Peru. It is shown that, in the warmer 34 

climate, the duration of strong EP El Niño events peaking in boreal winter is extended by two months, which results in 35 

significantly more events peaking in February-March-April (FMA), the season when the climatological Inter-Tropical 36 

Convergence Zone is at its southernmost location. This larger persistence of strong EP events is interpreted as resulting 37 

from both a stronger recharge process and a more effective thermocline feedback in the eastern equatorial Pacific due to 38 

increased mean vertical stratification. A heat budget analysis reveals in particular that the reduction in seasonal 39 

upwelling rate is compensated by the increase in anomalous vertical temperature gradient within the surface layer, 40 

yielding an overall increase in the effectiveness of the thermocline feedback. In CESM-LE, the appearance of strong EP 41 

El Niño events peaking in FMA accounts for one-quarter of the increase in frequency of occurrence of ENSO-induced 42 

extreme precipitation events, while one-third results from weak-to-moderate El Niño events that triggers extreme 43 

precipitation events because of the warmer mean SST becoming closer to the convective threshold. In CESM-LE, both 44 

the increase in mean EP SST and the change in ENSO processes thus contribute to the increase in extreme precipitation 45 

events in the warmer climate. 46 

 47 

Keywords: CESM-LE, extreme El Niño event, climate change, vertical stratification   48 



1. Introduction 49 

 50 

El Niño-Southern Oscillation (ENSO) is the most important mode of inter-annual variability in the tropical Pacific. 51 

By impacting meteorological conditions worldwide via atmospheric teleconnections (Ropelewski and Halpert, 1987; 52 

Yeh et al., 2018), it leads to dramatic societal and economics impacts (McPhaden et al., 2006). Understanding if and 53 

how El Niño characteristics will change with global warming has been a major concern since the first Coupled Model 54 

Intercomparison Projects in the 1990s (Meehl et al., 2000). While large progresses in our vision of the likely changes in 55 

ENSO statistics have been made in the recent decades (Yeh et al., 2009a; Power et al., 2013; Cai et al., 2014; 2015b), 56 

there are still many uncertainties in the mechanisms at play to explain the changes in statistics in the context of global 57 

warming, all the more so as models have persistent biases (e.g. westward shift in the center of action of El Niño (Zheng 58 

et al., 2012; Li and Xie, 2013), double Inter-Tropical Convergence Zone (ITCZ) syndrome (Hwang and Frierson, 2013; 59 

Li and Xie, 2013), warm bias in the far eastern Pacific (Richter, 2015)). These biases can in particular impact the 60 

realism of ENSO diversity in models (Ham and Kug, 2012; Karamperidou et al., 2017) by, for instance, influencing the 61 

evolution of Sea Surface Temperature (SST) anomalies during El Niño development (Santoso et al., 2013; Dewitte and 62 

Takahashi, 2017), favoring so-called double peaked El Niño events (Graham et al., 2017) or yielding compensating 63 

errors amongst the main ENSO feedbacks (Bayr et al., 2018). Since ENSO diversity is also a manifestation of the non-64 

linearity of ENSO (Takahashi et al., 2011; Capotondi et al., 2015) that can impact mean state changes at low-frequency 65 

(Lee and McPhaden, 2010; McPhaden et al., 2011; Choi et al., 2012; Karamparidou et al., 2016), these biases are also 66 

likely influential on the way models simulate internal variability (Zheng et al., 2017). This has been a limitation to gain 67 

confidence in the projections of ENSO changes by these same models, but also to infer a clear mechanistic 68 

understanding of the sensitivity of ENSO to climate change. 69 

So far, two broad views of the mechanisms at work in ENSO change due to global warming have been documented: 70 

1) The projected faster warming of the eastern equatorial Pacific compared to that of the central Pacific will induce an 71 

easier eastward shift of the convection area from the central Pacific, through a weakening of westward mean equatorial 72 

currents associated with the reduction of the equatorial trade winds (Vecchi et al., 2006; Santoso et al., 2013); 2) The 73 

faster eastern equatorial Pacific surface warming due to climate change will reduce the meridional SST gradient in the 74 

eastern Pacific so that the ITCZ is likely to move more often southward, inducing an increase in the number of ENSO-75 

induced extreme precipitation events in the eastern Pacific (Power et al., 2013; Cai et al., 2014, 2015b, 2017). Note that 76 

this applies to the warm phase of ENSO and not to the cold phase (La Niña) for which the faster warming of the 77 

Maritime continent in the Indonesian sector will tend to facilitate extreme La Niña events (Cai et al., 2015a). 78 

Although these paradigms of the impact of climate change on ENSO provide useful guidance for analyzing and 79 

interpreting models, they present two main related caveats: first, they allow explaining the increase in ENSO-related 80 



extreme precipitation events but do not address changes in ENSO statistics itself. In particular, the increase in extreme 81 

precipitation events does not necessarily require that El Niño events become stronger. This issue is nevertheless relevant 82 

considering the oceanographic consequences of strong El Niño events on the marine ecosystems in particular along the 83 

coast of Peru and Chile (Barber and Chavez, 1983; Carr et al., 2002). Second, in their principles, these paradigms only 84 

consider changes in surface processes (mixed-layer) although the latter are tightly linked to dynamical changes 85 

associated with thermocline processes. In particular, the differential warming between the surface oceanic layer and the 86 

thermocline under anthropogenic forcing yields a significant increase in vertical stratification across the equatorial 87 

Pacific (Yeh et al., 2009a; DiNezio et al., 2009; Capotondi et al., 2012) that can be influential on ENSO dynamics 88 

through a number of processes. Not only it modulates the way the wind stress forcing projects on the wave dynamics 89 

(Dewitte et al., 1999; 2009), influencing ENSO stability (Dewitte et al., 2007; Thual et al, 2013), but it also directly 90 

influences the so-called thermocline feedback, that is the sensitivity of SST to thermocline fluctuations (Zelle et al., 91 

2004), a key process during Eastern Pacific (EP) El Niño events (Zebiak and Cane, 1987; An and Jin, 2001). The effect 92 

of changes in vertical stratification on ENSO dynamics in the context of global warming has been suggested in former 93 

studies (Yeh et al., 2009ab; 2010; DiNezio et al., 2009; Stevenson et al., 2017). Recently it has been shown that the 94 

variance of EP El Niño events increases in association with the stronger vertical stratification in the central Pacific in a 95 

set of models that realistically simulate the non-linear character of ENSO (Cai et al., 2018). While this study 96 

consolidates the confidence in climate change projections by showing a large inter-model consensus with regards to 97 

their sensitivity to changes in vertical stratification, the statistical approach somehow limits a clear understanding of the 98 

oceanic processes involved. It thus calls for advancing our mechanistic understanding of the sensitivity of EP El Niño 99 

events to changes in vertical stratification in the context of climate change. In particular, the main question that 100 

motivates the present work is: Through which processes are strong EP El Niño events favored in the warmer climate 101 

and how does their increase in frequency explain the increased occurrence of extreme precipitation events? 102 

Here we take advantage of the simulations of the CESM-LE project (Kay et al., 2015) to investigate the 103 

mechanisms behind the sensitivity of ENSO statistics to mean state changes focusing on strong EP El Niño events that 104 

are those associated with extreme events (Takahashi et al., 2011; Takahashi and Dewitte, 2016, hereafter TD16). The 105 

CESM-LE project provides a large number of realizations of the same model, the NCAR Community Earth System 106 

Model (CESM), a Coupled General Circulation Model (CGCM) that accounts for  ENSO diversity with some skill 107 

(Stevenson et al., 2017; Dewitte and Takahashi, 2017). The CESM model also simulates changes in mean SST pattern 108 

between the present climate (historical) and the climate corresponding to RCP8.5 future greenhouse gas emission 109 

scenarios (hereafter RCP8.5) comparable to those of the CMIP5 ensemble mean (Vecchi and Soden, 2007; Li et al., 110 

2016), that is an El Niño-like pattern warming. Finally, this model also predicts an increase in ENSO-related extreme 111 

precipitation events in a warmer climate comparable to that of the CMIP5 ensemble (Cai et al., 2014), thus offering a 112 



perfect test-bed for better understanding the relative influence of the gradual SST warming and the changes in ENSO 113 

dynamics on the statistics of extreme precipitation events. 114 

The paper is organized as follows: after describing the data sets and the methods used in section 2, we document 115 

the changes in ENSO statistics due to global warming (section 3), highlighting changes in the seasonality of the number 116 

of events. Section 4 presents a heat budget analysis where changes in the composite evolution of the tendency terms 117 

associated with global warming are interpreted in the light of an analysis of change in the thermocline feedback in the 118 

model. Section 5 is a discussion followed by concluding remarks. 119 

 120 

2. Data and Method 121 

 122 

2.1. Data 123 

 124 

We use long-term simulations of the NCAR Community Earth System Model Large Ensemble Project (CESM-LE) 125 

(Kay et al., 2015). The 42 and 40 members of the historical runs (1850-2005 for one member, 1920-2005 otherwise) 126 

and RCP8.5 runs (2006-2100) are respectively used here consisting in a total of 3682 and 3800 years, which allows 127 

estimating the spread between the members and thus confidence levels in the statistics (estimated by a Wilcoxon rank 128 

sum test in this study). 129 

As defined by the CMIP5 design protocol (Taylor et al., 2012), the historical external forcing is composed of the 130 

observed atmospheric composition changes due to emissions of greenhouse gases and aerosols and the natural volcanic 131 

132 

emissions of greenhouse gases, where the 8.5 label corresponds to an estimation of the radiative forcing (8.5 W/m²) at 133 

the end of the simulation that is the year 2100. 134 

The simulations of the CESM-LE project use the Community Earth System Model, version 1 (CESM1) (Hurrell et 135 

al., 2013) coupling the Community Atmosphere Model version 5 (CAM5) atmosphere component (Meehl et al., 2013), 136 

the Los Alamos National Laboratory (LANL) Parallel Ocean Program version 2 (POP) ocean component (Smith et al., 137 

2010), the Community Land model version 4 (CLM4) land component (Oleson et al., 2010) and the LANL Community 138 

Ice CodE (CICE4) sea ice component (Hunke and Lipscomb, 2010). All components of the model are approximately 1° 139 

horizontal resolution. The atmospheric component has 30 vertical levels, the oceanic component has 60 vertical layers. 140 

CESM1(CAM5) still presents some of the persistent biases of coupled models, such as a westward shift of the cold 141 

tongue, the double ITCZ and an excessive mean precipitation in the tropical Pacific (Hurrell et al., 2013). However, as 142 

its previous version CCSM4, CESM1(CAM5) correctly simulates some intrinsic characteristics of ENSO such as a 143 

realistic 3-6 years period but overestimates the magnitude compared to observations (Gent et al., 2011; Deser et al., 144 



2012; Hurrell et al., 2013). The seasonality of the ENSO variance is well represented despite the magnitude bias and a 145 

larger difference between winter and summer. It implies that the observed variance values are outside the simulated 146 

CESM-LE internal variability for certain months of the year (January to April) (Zheng et al., 2017). This model also 147 

accounts for many ENSO properties, in particular its diversity (Stevenson et al., 2017; Dewitte and Takahashi, 2017). 148 

Karamperidou et al. (2017) and Cai et al. (2018) showed the importance of ENSO non-linearities in the response of the 149 

tropical Pacific to global warming. The metric of non-150 

in the leading coefficient of the parabolic approximation of the ENSO variability in the first and second principal 151 

components (PC) of SST anomalies in the tropical Pacific space, is used here as an integrated measure of diversity (see 152 

also Dommenget et al. (2013) for such an approach) - 0.37±0.08 (±22%) for the CESM-LE 153 

historical run, which is close to the estimate from HadISST v1.1 observations (1950- -0.39) and from some 154 

CMIP5 models (Karamperidou et al., 2017; Cai et al., 2018). 155 

than the threshold val -0.15) to discriminate non-linear models. The CESM 156 

model has thus a non-linear behavior similar to that of the ensemble model used in Cai et al. (2018). 157 

Stevenson et al. (2017) showed that the ENSO diversity in the CESM model is sensitive to various forms of 158 

external forcing using the Last Millennium Ensemble that contains many realizations of the 850 2005 period with 159 

differing combinations of forcing. In particular, anthropogenic changes in greenhouse gases and ozone/aerosol 160 

emissions can alter the persistence of EP and CP El Niño events, although forced changes in ENSO amplitude are 161 

generally small because of compensating effects between changes in oceanic processes. Here since we focus on the 162 

RCP8.5 scenario that corresponds to a significantly larger external forcing on the mean climate, we expect to identify 163 

more pronounced changes in ENSO processes, aided by our methodological approach to derive robust ENSO diversity 164 

changes in models (See section 2.2).   165 

The HadISST v1.1 monthly average sea surface temperature dataset (Rayner, 2003) is used to estimate whether the 166 

representation of the internal climate variability spread simulated by the members of CESM-LE includes the observed 167 

contemporary climate trajectory. The dataset has a resolution grid of 1° latitude-longitude. We use the period from 168 

January 1950 to December 2017. 169 

 170 

2.2. Definition of El Niño events and extreme precipitation events 171 

 172 

a) El Niño events 173 

Considering that at least two indices should be used in order to account for the different locations of SST 174 

anomalies peaks (Trenberth and Stepaniak, 2001; Takahashi et al., 2011; Ren and Jin, 2011; Dommenget et al., 2012), 175 

we use the E and C indices defined by Takahashi et al. (2011) as E = (PC1 - 176 



the PC1 and PC2 are the normalized principal components of the first two empirical orthogonal function (EOF) modes 177 

of SST anomalies in the tropical Pacific (120°E-290°E; 10°S-10°N). The E and C indices are thus linearly uncorrelated 178 

by construction. They are calculated separately for the two different periods (historical versus RCP8.5). The SSTs are 179 

linearly detrended and the seasonal cycle is removed for each period and for each member independently, prior to 180 

carrying the EOF decomposition. A bilinear regression of the SST anomalies onto these indices is used to determine the 181 

SST anomalies spatial patterns associated with each index (Figure 1), indicating a relative good agreement between 182 

model and observations, although CESM simulates the center of the patterns displaced to the west compared to 183 

observations by 20° and 30° for the E and C patterns respectively. This westward bias of the SST variability is 184 

comparable to the CMIP5 ensemble (cf. Figure 1 of Matveeva et al. (2018)). Note also the cold tongue bias as 185 

evidenced by the position of the mean 28°C isotherm in Figure 1, that is shifted westward by 25°, a feature common to 186 

many other CGCMs (Wittenberg et al., 2006; Bellenger et al., 2014). These biases have been detrimental for comparing 187 

observations and models, particularly from historical ENSO indices, because the use of fixed regions (e.g. Niño-3) for 188 

averaging quantities results in differences that reflect this shift in variability and mean state rather than the actual 189 

dynamics of the system. For instance, Graham et al. (2017) showed that the recurrent CGCMs equatorial Cold Tongue 190 

bias can lead to the simulation of fake  El Niño events that have never been observed, double peaking in the tropical 191 

192 

increases the risk of integrating so-193 

compositing, although they have more commonalities with the observed EP El Niño events. We will thus follow the 194 

methodology of TD16 which projects tropical Pacific variability (and feedbacks) onto the E and C modes rather than 195 

fixed regions to avoid these limitations (see section 2.3.). Note that this method has proven to be skillful in showing a 196 

strong inter-model consensus on the SST variability of EP El Niño events despite differences in the details of El Niño 197 

simulation across models (Cai et al., 2018). 198 

In order to diagnose changes in ENSO statistics between the present and future climates, we estimate the E and C 199 

modes for the two periods, the historical period (1920-2005) and the RCP8.5 period (2006-2100), which provides two 200 

sets of E and C modes (patterns and timeseries). The change in statistics is therefore reflected here in both the pattern 201 

and the temporal evolution of the modes. This is motivated by the fact that the ENSO pattern is changing between the 202 

present and future climate (Figure 2). The E and C indices have been normalized so that the patterns can be expressed 203 

in °C. In particular, there is a westward amplification (by 20°) of the E mode and an eastward amplification (by 35°) of 204 

the C mode in the warmer climate. In order to take into account these changes in the spatial patterns, the E and C 205 

indices of the RCP8.5 simulations are scaled by the projection of the associated spatial pattern on its counterpart of the 206 

historical runs. The scaling coefficients are equal to 1.16±10% (±0.12) for both E and C modes over 10°S-10°N. This 207 

allows comparing changes in the amplitude of the composite evolution of the E and C indices (Figure 3) and not just 208 



changes in temporal evolution. Note that this method yields similar results than the one used in Cai et al. (2018), that 209 

does not consider change in spatial patterns of the E and C modes, but instead performs an EOF analysis of SST 210 

anomalies over the whole record (1920-2100). In particular, the increase in the variance of the E index in DJF from 211 

historical t212 

85 years of each period. The largest difference in methods is the dispersion amongst the members that is in general 213 

larger in the method used here. Despite these differences, we find that the increase in variance of the E index in DJF is 214 

significant at the 95% confidence level based on a Wilcoxon test for both methods. CESM simulates thus an increase in 215 

the DJF E-index variance in the future climate, regardless of the method, comparable to 17 models of the CMIP5 data 216 

base that account realistically for the non-linear behavior of ENSO (Cai et al., 2018). 217 

 218 

El Niño events are defined from the PC1 derived from the analysis of the main mode of variability of the tropical 219 

Pacific by the EOF method. El Niño events are when the value of the PC1 exceeds its 75% percentile over at least 5 220 

consecutive months, regardless of season. Our definition is slightly different from that of TD16 that seek for El Nino 221 

peaks over 2-year running mean time windows with a 1-2-1 filter applied to the PC1. We checked that both methods 222 

provide very comparable statistics by applying our definition to the GFDL CM2.1 PI-control simulation and comparing 223 

our results with that of TD16. In the meantime, it has been also verified that using the historical definition by the ONI 224 

index does not change ENSO statistics on the PI-control simulation of CESM. El Niño classes (strong versus moderate) 225 

are then defined based on the E index. When the E-index value reaches a threshold value (interpreted here as the value 226 

of SST anomalies in the far eastern Pacific needed for deep convection to be activated) a strong EP event takes place.  227 

This threshold is estimated from a k-mean cluster analysis (k=2) applied jointly to the E and C values during El Niño 228 

years and for the calendar month when the E-index is maximal. It yields two classes that correspond to moderate (either 229 

EP or CP) Niño events (cluster 1) and strong EP El Niño events (cluster 2). We find a threshold value of 2.2°C for the 230 

PI-control simulation (see also Dewitte and Takahashi (2017)). Note the PI-control and historical simulations of CESM 231 

do not exhibit a well-defined bimodal distribution in the (E, C) space conversely to the GFDL CM2.1 model (see TD16), 232 

so that the determination of this threshold value is somewhat subjective and certainly sensitive to the model biases. 233 

Nevertheless the model exhibits a clear non-linearity in the response of the wind stress to SST anomalies in the eastern 234 

Pacific (Figure S1  Supplementary material). The cluster analysis applied to historical and RCP8.5 simulations yields 235 

threshold values similar to the PI-control value. Sensitivity tests to this threshold value (taking an error of 5%) indicate 236 

that results presented in this paper are not impacted significantly. For a variation of ±5% of the threshold, the number of 237 

strong El Niño events varies from 225 (-5.1%) to 262 (10.5%) for the historical simulations and from 271 (-10.3%) to 238 

322 (6.6%) for the RCP8.5 simulations. 239 

 240 



b) Extreme precipitation events 241 

 242 

The definition follows that of Cai et al. (2014), that is based on the total DJF rainfall averaged over the Niño-3 243 

region (150°W-90°W; 5°S-5°N). An extreme precipitation event is such that the rainfall index is above the threshold 244 

value of 5 mm/day. This definition was shown to be robust in accounting for changes in statistics of extreme events due 245 

to global warming despite the arbitrary choice of the threshold value in the warmer climate (Cai et al., 2017). 246 

Noteworthy, with such a definition, all extreme precipitation events are however not necessarily associated with a 247 

strong or weak to moderate El Niño event. In particular, extreme precipitation events are defined from a threshold value 248 

of the DJF Niño-3 rainfall index. In that case, when two consecutive winters are affected by the same episode of 249 

anomalous positive surface temperature, causing precipitation events in DJF, the same warm episode is counted as two 250 

independent El Niño events . It thus allows two extreme precipitation events to take place from one year to another, 251 

while strong or weak-to-moderate El Niño events can last over more than one year (with the selected year 252 

corresponding to the maximum amplitude of the PC1 timeseries of the EOF analysis of SST anomalies). Nevertheless, 253 

with such a definition, 96% of the extreme precipitations events are concomitant with a strong El Niño event in the 254 

historical runs (Table 1). As will be seen, this percentage is reduced in the RCP8.5 runs (55%) due to both changes in 255 

the seasonality of strong El Niño events and the gradual warming of the eastern equatorial Pacific. 256 

 257 

2.3. Heat budget 258 

 259 

The equation of the SST change within the surface layer that is used for the heat budget is the following: 260 

(1) 261 

The prime denotes the monthly anomaly relative to the mean climatology. T is the 4D-potential temperature, u, v 262 

and w are respectively 4-D zonal, meridional and vertical currents. Square brackets indicate vertical integration over the 263 

surface layer, whose depth is set at 80m. The first three right hand side terms correspond respectively to the zonal, 264 

meridional and vertical advections. The term Qnet is the net ocean-atmosphere heat flux, including surface fluxes and 265 

penetrating short- 0 and Cp are respectively the sea-water reference density (kg/m3) 266 

and the specific heat content (J/(kg.C)). The residual term R includes the short-wave fluxes of heat out of the base of the 267 

mixed layer, the change in temperature associated with the freshwater flux, the horizontal and vertical diffusion of heat, 268 

and errors associated with the off-line calculation and the use of monthly mean outputs. The method further follows 269 

TD16 that consists in projecting the tendency terms of the SST equation (Eq. 1) onto the spatial patterns of the first two 270 

normalized EOF modes of the equatorial Pacific (2ºS-2ºN). The resulting timeseries are then linearly combined 271 



according to the definition of the E and C indices, which is convenient for infering how processes contribute to the rate 272 

of change of SST anomalies in the E and C equatorial regions (Figure 2). The projection of the heating rate onto the E 273 

mode is thus expressed as: 274 

 

 275 

This method has the advantage of objectively estimating the region of influence of the different feedbacks and 276 

their changes in a warmer climate, compared to the method where tendency terms are averaged over the classical Niño-277 

4 (5°S-5°N, 160°E-210°E) and Niño-3 (5°S-5°N, 210°E-270°E) regions, or modified versions of them to take into 278 

account mean state biases in the CGCMs (Kug et al., 2010; Capotondi, 2013; Stevenson et al., 2017). Since the E and C 279 

patterns are modified in the future climate (see Figure 2 and section 2.2.a), ourmethod thus takes into account changes 280 

that may occur in the location of the main centers of the thermodynamical processes. To be able to compare the 281 

amplitude in the evolution of the tendency terms between the two climates, tendency terms for the RCP8.5 simulations 282 

are scaled by the projection coefficient of the RCP8.5 E and C patterns on their counterparts in the historical runs. The 283 

projection is done here over the domain (120°E-290°E; 2°S-2°N). The values of the scaling coefficient are equal to 1.18 284 

(±10%) for both E and C modes over 2°S-2°N. The heat budget was calculated on the model native grid. The CESM 285 

uses the ocean POP model (Smith et al., 2010), which has a staggered Arakawa B-grid (Arakawa and Lamb, 1977). The 286 

centered second-order finite differences scheme and leap-frog time stepping were used for the calculation of the 287 

tendency terms following the model grid discretization. 288 

 289 

3. Changes in Eastern Pacific El Niño events 290 

 291 

3.1. Composite evolution 292 

 293 

As a first step we present the composite evolution of the E and C indices during moderate and strong events in the 294 

two climates (Figure 3). It indicates that, in this model, strong (moderate) El Niño events are preferentially of EP (CP) 295 

types because strong (moderate) El Niño events have large (weak) values of the E index. The E index during strong El 296 

Niño event tends also to peak from Aug(Y0), which is counterintuitive if compared to other historical indices (e.g. 297 

NINO34). This can be understood as follows: The E index accounts for SST variability in the far eastern Pacific where 298 

the thermocline is shallow and the thermocline feedback more intense than in the central equatorial Pacific. So when a 299 

Kelvin wave is triggered during the development of ENSO (typically during Feb-April Y(0)), the SST increase in the 300 

far eastern Pacific a couple month later, which projects on the E mode, then El Niño develops, which maintains an 301 



elevated E. In other words, the first part of the warming in E is due to the forced Kelvin wave acting as a trigger of 302 

ENSO, while the second part of the warming in E is associated with the growing coupled mode. The values of the C 303 

index are somewhat larger for moderate than for strong El Niños during the development phase. The C index has 304 

weaker positive values for strong El Niño events and can become negative during their decaying phase because strong 305 

El Niño events tend to be followed by La Niña events (DiNezio and Deser, 2014), which the C index accounts for. The 306 

evolution of the indices is comparable to observations (see Figure 4 of TD16) although the comparison is limited for 307 

strong El Niño events owing to their too few numbers in the observational record.  308 

The striking feature of Figure 3 is that the temporal evolution and amplitude of the indices do not change much 309 

from the present to the future climate in particular during the developing and mature phases of the El Niño composite, 310 

even if there are time frames when amplitude changes are statistically significant according to a Wilcoxon rank sum test. 311 

However, strong EP El Niño events last significantly longer by 2 months in the RCP8.5 simulations peaking in March 312 

(Y1) instead of December (Y0), while the central Pacific cools earlier and more than in the present climate. This 313 

suggests changes in seasonality of some events. Moderate El Niño events exhibit in general weaker changes in their 314 

evolution and amplitude, although there is a similar increase in persistence of the E index than that of strong events. 315 

 316 

3.2. Seasonal stratification 317 

 318 

In order to get further insights into the changes in ENSO statistics, the changes in the numbers of strong and 319 

moderate EP El Niño events are stratified according to the month of their peak value of the E index. Figure 4 allows 320 

identifying periods in the c s changes 321 

significantly from the historical to the RCP8.5 simulations.  Considering periods in the calendar year when the number 322 

of events is above 15 events for 3 to 4 consecutive m323 

Jul-Aug-Sep (JAS), Oct-Nov-Dec-Jan (ONDJ) and Feb-Mar-Apr (FMA) (see Table 1). The threshold value of 15 events 324 

is selected arbitrarily and corresponds to 2% of the total number of events.  325 

The results indicate a drastic change in the seasonal distribution of the number of events between the two climates. 326 

The most important changes are for strong EP El Niño events, with a significant increase (+1315%) in the number of 327 

events peaking during FMA. This is also observed for moderate EP El Niño events but to a lesser extent (+92%). Such a 328 

change indicates that, while the mean amplitude of EP El Niño event is weakly impacted by global warming (Figure 3), 329 

this is not the case for the seasonal variance of the E index. This is evidenced in Figure 5 that shows the climatological 330 

variance of the E index for the two climates. There is a significant increase in the E index variance (at the 95% 331 

confidence level based on a Wilcoxon test) at almost all calendar months, more pronounced for the FMA season (+ 40% 332 

increase in variance). The large increase in variance of the E index in FMA is likely to translate in a larger number of 333 



extreme precipitation events in the warmer climate because this corresponds to the season when the ITCZ has its 334 

southernmost position (Xie et al., 2018). In the CESM mode, the frequency of occurrence of extreme precipitation 335 

events (see definition in section 2.2) is projected to increase from 0.04 per 10 years (one event every 24.7 years) to 0.16 336 

(one event every 6.4 years) on average over the last 50 years of the RCP8.5 simulations, which corresponds to a 3.9 fold 337 

increase of the number of extreme events at the end of the 21st century (+225% increase from the present to the future 338 

climates, Table 1). The CESM model thus projects more than a doubling of extreme precipitation events in the future 339 

climate, consistent with Cai et al. (2014). The CESM model exhibits however a more modest increase, from the present 340 

to the warmer climate, in the number of strong EP El Niño events than in the number of extreme precipitation events. In 341 

particular, the number of strong EP El Niño events (extreme precipitation events) increases from 237 (146) in the 342 

historical period to 302 (489) in the RCP8.5 period, which corresponds to an increase of their frequency of occurrence 343 

(in events/decade) of +18% from the present to the future climates (Table 1), so that the increase in strong EP El Niño 344 

events is much less that the increase in extreme precipitation events. This can be interpreted broadly as resulting from 345 

the fact that moderate EP El Niño events can yield extreme precipitation events in the warmer climate due to increased 346 

mean SST in the eastern equatorial Pacific (Cai et al., 2014), independently of whether or not the moderate EP El Niño 347 

events undergo a change in their dynamics. However, since the overall number of EP El Nino events has almost no 348 

change, the 18% increase in the frequency of strong EP El Nino events indicate that global warming may favor the 349 

- that the increase in extreme precipitation events in the warmer climate does 350 

not solely results from the warming of the cold tongue (Cai et al., 2014). This will be further documented in the 351 

discussion section. In the following, we investigate the processes explaining the increased persistence of EP El Niño 352 

and the emergence of events peaking in FMA in the warmer climate, focusing on key ENSO oceanic processes sensitive 353 

to the increased vertical stratification, i.e. the thermocline feedback and the recharge of heat content.  354 

 355 

4. ENSO processes and increased stratification 356 

 357 

In this section, the focus is on the processes that could explain the increased variance and persistence of the E 358 

index in FMA. As mentioned in the introduction, the increase in vertical stratification is a salient feature of the climate 359 

change pattern on temperature in the ocean, which has implications for ENSO dynamics. Not only it modulates the 360 

thermocline feedback through changing the relationship between SST and thermocline depth fluctuations (Dewitte et al., 361 

2013), but it can also influence the dynamical response of the ocean through the projection of momentum forcing on the 362 

wave dynamics (Philander, 1978; Dewitte, 2000), and thereby the ENSO stability (Yeh et al., 2010; Thual et al., 2011, 363 

2013). Recently Cai et al. (2018) showed that changes in vertical stratification due to greenhouse warming are 364 

associated with the increase in variance of the EP El Niño events in an ensemble composed of models simulating ENSO 365 



diversity/non-linearity similar to that of CESM (see section 2). We thus here use the CESM simulations to get insights 366 

in the mechanisms at work for explaining the increased climatological variance in strong EP El Niño events. 367 

 368 

4.1. Recharge-discharge process 369 

 370 

Heat content along the equator is a precursor of ENSO and its primary source of predictability, which has been 371 

conceptualized by the recharge-discharge oscillator model (Jin, 1997). Although large heat content anomalies are not 372 

always necessary for strong EP El Niño to occur (TD16), it is worth diagnosing the recharge-discharge process in the 373 

model, as it can explain to some extent the persistence of SST anomalies during ENSO. In the framework of the simple 374 

recharge-discharge model (Jin, 1997), a stronger recharge would imply a longer lasting El Niño event once it has 375 

developed. Figure 6 shows the strong El Niño composite evolution of estimates of the so-called tilt and warm water 376 

volume (WWV) modes that depict the recharge discharge-discharge process (Clarke, 2010). The WWV mode is phase-377 

shifted (ahead by ~6 months) with the tilt mode that accounts for the quasi-instantaneous response of the eastern Pacific 378 

thermocline to wind stress anomalies. It is clear from Figure 6a that the recharge process is increased in the warmer 379 

climate (the mean over the period Jun(Y0)-Oct(Y0) increases from 0.55 m to 6.25 m between the two climates), while 380 

the tilt mode amplitude also increases prior to the ENSO peak (Figure 6b). The tilt mode amplitude increase is 381 

consistent with westerly winds projecting more on the ocean dynamics in the warmer climate due to the increased 382 

stratification in the central Pacific (Figure 7) (Dewitte et al., 1999; Thual et al., 2011). Note that it was checked that the 383 

384 

mode which does take explicitly into account the change in stratification) during the EP El Niño events is not 385 

significantly changed between the two climates (not shown) so that the increase in the amplitude of the tilt mode is not 386 

the result of changes in the amplitude of wind stress forcing that contributes to the build-up of heat content, but instead 387 

has to result from the fact that wind stress forcing projects more efficiently onto wave dynamics due to the increased 388 

stratification. The increase lasts until Jan(Y1) so that the effect on SST anomalies could last until ~Mar(Y1) through the 389 

thermocline feedback because of the delayed response of SST anomalies to thermocline fluctuations (Zelle et al., 2004; 390 

see also section 4.2). Regarding the WWV mode, the change in amplitude in Jul(Y0)-Oct(Y0) from the present to the 391 

future climate is certainly more difficult to interpret because of likely compensating effects amongst different processes 392 

(Thual et al., 2011; Lengaigne et al., 2012; Izumo et al., 2018), the potential role of changes in off-equatorial high-393 

frequency winds (McGregor et al., 2016; Neske and McGregor, 2018) and other sources of external forcing (see section 394 

5). However, the increase in amplitude of the WWV can be associated to a large extent with the increased occurrence of 395 

the strong events peaking in FMA as evidenced by the composite of the WWV evolution with and without strong events 396 

peaking in FMA (Figures 6c and 6d). The increase in amplitude of the WWV is statistically significant (at 95% 397 



confidence level based on a Wilcoxon rank sum test) from Apr(Y0) to Jan(Y1) when considering the events peaking in 398 

FMA. The increase is statistically significant only from Jun(Y0) when El Niño events whose peak occurs in FMA are 399 

not considered. Note that the same diagnosis was done using the thermocline depth, i.e. the depth of the maximal 400 

vertical temperature gradient. While the change with global warming of the WWB amplitude prior to the ENSO peak 401 

(i.e. Jun(Y0)-Oct(Y0)) is less pronounced, it is statistically significant when considering strong El Niño events peaking 402 

in FMA (not shown). . 403 

 404 

4.2. Mixed-layer processes 405 

 406 

While the strengthened vertical stratification increases the effectiveness of momentum flux onto the wave 407 

dynamics (Dewitte et al., 1999), which tends to destabilize ENSO by increasing the coupling efficiency between the 408 

ocean and the atmosphere (Thual et al., 2011; 2013), the sensitivity of ENSO to changes in stratification also operates 409 

through changes in the mixed-layer processes. Owing to the shallow thermocline in the eastern Pacific, the main 410 

oceanic process there is the mean vertical advection of anomalous temperature ( ), often referred to as the 411 

thermocline feedback (An and Jin, 2001). Since changes in the thermocline feedback not only depend on changes in the 412 

magnitude of the seasonal upwelling rate ( ) but also on changes in the vertical gradient of anomalous temperature 413 

between the surface and the base of the mixed layer ( ), inferring its sensitivity to vertical stratification is not 414 

straightforward. In particular, increased stratification in the eastern Pacific may reduce the effectiveness of upwelling 415 

through flattening and tightening the isotherms, while it could increase the sensitivity of SST anomalies to thermocline 416 

fluctuations through enhancing mean vertical diffusivity (Zelle et al., 2004). Compensating effects are thus possible.  417 

 418 

As a first step, we present the composite evolution during strong El Niño events in the eastern Pacific (E region) of 419 

the mixed-layer processes (tendency terms) for the present and future climates (Figure 8). For conciseness sake, we 420 

focus hereafter on the developing and peak phases, noting also that the residual term being relatively large during the 421 

decaying phase (Figure 8e), the interpretation of the results is not straightforward during that particular phase. As 422 

expected, total vertical advection exhibits the largest amplitude (Figure 8d). It was checked through a Reynolds 423 

decomposition of the tendency terms that the main contributor to total vertical advection is the thermocline feedback, 424 

with non-linear vertical advection and anomalous 425 

marginally contributing during the onset and peak phase of strong EP El Niño events (Figure S2  Supplementary 426 

material) consistently with TD16. The residual term has a comparable contribution (cooling) than the thermal damping 427 

term, and can be interpreted as resulting from the reduced vertical diffusivity in the first 80m as the mixed-layer 428 



deepens. The largest changes between the present and future climates are for vertical advection and thermal damping 429 

with a 71% increase (90% reduction) for the average over Apr(Y0)-Feb(Y1) for vertical advection (thermal damping) 430 

relatively to the value over the present climate (Figure 8f). Changes in these two opposite sign terms explain why the 431 

rate of SST change is hardly impacted from the present climate to the future climate. While the larger contribution of 432 

thermal damping is expected from the increase variance of the E index from the present to future climate, the increase in 433 

the magnitude of vertical advection is more difficult to interpret. 77% of this increase is associated with the contribution 434 

of climatological vertical advection of anomalous temperature (Figure S2), so that it can be interpreted as resulting from 435 

the combined effects of the weakening of the Walker circulation on the seasonal upwelling on the one hand (DiNezio et 436 

al., 2009; Dewitte et al., 2013; Chung et al., 2019) and of the increased stratification on the relationship between SST 437 

and thermocline anomalies on the other hand. Figures 9ab present estimates of the changes of these two quantities (i.e. 438 

upwelling rate and the slope of the linear relationship between SST and thermocline anomalies) between the two 439 

climates. The slope of the linear relationship between SST and thermocline anomalies is estimated for lag between -6 440 

and 6 months and the maximum value is shown considering that temperature anomalies in the vicinity of the 441 

thermocline are transported to the surface by a combination of upwelling and vertical mixing, which introduces a delay 442 

in the time dependence of the local relation between SST and thermocline anomalies (Zelle et al., 2004). As expected, 443 

the climatological upwelling rate is reduced in the warmer climate (Figure 9a). The reduction is most important in 444 

boreal winter reaching -14% in March. The decrease is statistically significant at the 95% confidence level except for 445 

the month of October. On the other hand, the sensitivity of the SST to thermocline fluctuations is significantly increased 446 

in particular with a maximum relative increase in August (+ 100 %). On average over the year, the relationship between 447 

SST and thermocline fluctuations is increased by 46%. Such increase largely compensates for the decrease in 448 

climatological upwelling and yield an overall increase in the thermocline feedback as evidenced by Figure 9c that 449 

shows the change in climatological variance of the mean vertical advection of anomalous temperature between the 450 

present and the future climate. In particular, the relative increase in variance is maximum in May-June-July (+83%), 451 

which corresponds to the season when the tropical Pacific system becomes highly unstable (Stein et al., 2010) and is 452 

more susceptible to develop an El Niño event. As a summary, Figure 8f presents the averaged changes in amplitude of 453 

the tendency terms during the developing phase of strong EP El Niño events. The largest increase is for vertical 454 

advection (+71%), 77% of which is attributed to the thermocline feedback. 455 

 456 

5. Discussions and concluding remarks 457 

 458 

We have investigated the sensitivity of ENSO dynamics to mean state changes in a model that has skill in 459 

simulating ENSO diversity and non-linearity. We find that, in the CESM model, the persistence of strong EP events is 460 



increased by 2 months so that the variance in SST anomalies in the eastern Pacific is significantly increased over the 461 

FMA season when the ITCZ is about to reach its southernmost position. Noteworthy a similar behavior is found in the 462 

CMIP5 ensemble (Figure 10), allowing to some extent to generalize the results obtained here from the CESM model. 463 

While recent studies have shown that the number of extreme precipitation events associated with El Niño is 464 

projected to increase in the warmer climate (Cai et al., 2014; 2015b), the mechanisms by which this will take place 465 

remain unclear. Here we suggest that a portion of the increase in extreme precipitation events in the warmer climate is 466 

associated with the increase in the number of strong EP El Niño events, in particular those that peak in FMA, which 467 

corresponds to the season when climatological SST in the eastern Pacific is already high. Those events are thus strongly 468 

coupled to the ITCZ and do not necessarily require the anthropologically-forced mean SST warming trend in the eastern 469 

Pacific to yield extreme precipitation events. In order to estimate the proportion of extreme precipitation events that 470 

relates either to moderate or strong El Niño events, we consider the number of events over 10-year running windows 471 

among all simulation members (i.e. at least 400 years are considered for each chunk) and estimate the proportion of El 472 

Niño events (strong and moderate) compositing extreme precipitation events along historical and RCP8.5 periods 473 

(Figure 11). The increase (by 1315%) in the frequency of occurrence of strong EP El Niño events peaking in FMA 474 

explains 24% of the increase in the frequency of occurrence of extreme precipitation events in the CESM model. 9% 475 

and 21% of the increase in the frequency of occurrence of extreme precipitation events are explained by the frequency 476 

of occurrence of strong El Niño events peaking in ONDJ and JAS respectively (see section 3.2 for the definition of 477 

. This sums to 54% of the increase in the frequency of occurrence of extreme precipitation events thus 478 

explained by the increase in the frequency of occurrence of strong El Niño events. Concomitantly, the increased 479 

proportion of extreme precipitation events associated with weak and moderate El Niño events (which represents an 480 

additional 0.43 events/decade of weak to moderate El Niño events that relates to an extreme precipitation events in the 481 

warmer climate) results in that 34% of the increase in extreme precipitation events are associated with moderate El 482 

Niño events and thus due to the warmer mean SST in the eastern equatorial Pacific. Note that in the present climate, 483 

there is almost no weak to moderate El Niño event (i.e. 0.003 events/decade) that relates to extreme precipitation events 484 

(versus 0.43 events/decades in the future climate). The remaining 12% of the increase in the frequency of occurrence of 485 

extreme precipitation events could not be explained by the occurrence of an El Niño event and thus corresponds to 486 

internal variability in precipitation in a warmer climate. Overall Figure 11 illustrates the influence of the number of 487 

events peaking in FMA on the change in extreme precipitation events in the warmer climate, although very few of these 488 

events (9) exist in the historical simulation. It indicates that changes in the statistics of extreme precipitation events 489 

cannot be solely attributed to changes in mean SST in the equatorial eastern Pacific i.e. the warmer mean SST becoming 490 

closer to the convective threshold, but also depend on changes in ENSO dynamics. 491 



suggested to be associated with 492 

the increased vertical stratification across the equatorial Pacific, a salient feature of the climate change patterns in 493 

climate models (Yeh et al., 2009; DiNezio et al., 2009; Cai et al., 2018). Cai et al. (2018) showed in particular that the 494 

increased variance in Eastern Pacific SST anomalies is associated with the increase in vertical stratification. We suggest 495 

further that the increased persistence of EP El Nino events is resulting from both a stronger recharge process and a more 496 

effective thermocline feedback in the warming climate due to an increased vertical stratification. In particular, the 497 

sensitivity of SST anomalies in the far eastern Pacific to thermocline fluctuations is significantly increased in FMA and 498 

overwhelms the reduction in mean upwelling (Figure 9). The recharge process is also shown to be enhanced in the 499 

warmer climate, which can be interpreted as resulting from the increased stratification in the central-western Pacific 500 

where wind stress can be more efficiently projected onto the wave dynamics. Overall our study suggest that the 501 

influence of the increased ocean vertical stratification in a warmer climate on ENSO could be understood in terms of 502 

two main mechanisms involving mostly linear processes, i.e. 1) on the dynamical side, a stronger recharge process and 503 

an overall more energized wave dynamics, and 2) on the thermodynamical side, an increased thermocline feedback in 504 

the eastern Pacific. These processes work together to produce the increased persistence/variance in EP El Niño events in 505 

the warmer climate.  506 

Of course, considering the coupled nature of ENSO, there are other potentially important processes that could be 507 

at play to explain the longer duration of strong EP El Niño events in the warmer climate and their changing seasonal 508 

stratification. In particular, non-linear oceanic processes are important for the strong El Niño regime (Jin et al., 2003) 509 

although non-linear advection, the main contributor to the oceanic non-linearities during ENSO, does not appear 510 

essential for the onset of strong EP El Niño events (TD16), a feature that is also observed here (Figure S2c). 511 

Nevertheless non-linear advection is increased by 120% from the present to the future climate, over Apr-May-Jun(Y1), 512 

the period over which it peaks in the E region, contributing to the longer persistence of warm anomalies during strong 513 

El Niño events. Determining if such increase is related to the increase in vertical stratification would deserve further 514 

investigation which is beyond the scope of the present study considering the likely interplay between the various non-515 

linear processes. The other important non-linear processes for ENSO are those encapsulated in the Bjerknes feedback 516 

and are atmospheric processes by nature (Dommenget et al. 2013, TD16). While the details of the change in the 517 

characteristics of the Bjerknes feedback is beyond the scope of the present study, we note that, within the 518 

approximations of our methodological approach, the slopes of the piecewise linear relationship between the E index and 519 

the zonal wind stress in the eastern equatorial Pacific are weakly changed from the present to the future climate (See 520 

Figure S1). This suggests that the characteristics of the Bjerknes feedback are not fundamentally modified in this model 521 

from the present to the future climate, although the convective SST anomaly threshold appears to have changed 522 

consistently with Johnson and Xie (2010) that showed that it is not absolute and varies with the mean climate (e.g. the 523 



temperature of the free troposphere). The other key ingredient for strong El Niño events to develop, that was not looked 524 

at here although it can non-linearly interact with the equatorial ENSO dynamics, is the nature of the changes in the 525 

external stochastic forcing that has multiple facets. While high-frequency stochastic forcing, in the form of Westerly 526 

Wind Bursts (WWBs), is expected to energize more wave dynamics in the warmer climate, it is not clear how its 527 

characteristics will change in the future (Bui and Maloney, 2018; Maloney et al., 2019). We note here that, in the CESM 528 

mode, the high-frequency (frequency > 90 days-1) variance of the equatorial zonal wind stress is increased from the 529 

present to the future climate (not shown), which could contribute to the stronger recharge process in the warmer climate 530 

for strong El Niño events (see Figure 6). This would deserve further investigation which is planned for future work. In 531 

particular, since there is more and more evidence that the low-frequency component of the external forcing to ENSO is 532 

certainly as important as the high-frequency component (Dommenget and Yu, 2017; Takahashi et al., 2018), such 533 

investigation will have to consider all aspects of the external forcing, including the North Pacific Meridional Mode 534 

(Chiang and Vimont, 2004) that is also suggested to become more energetic in the warmer climate in this model 535 

(Liguori and DiLorenzo, 2018).  536 

 537 
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5.3. SUPPLEMENTARY MATERIALS

5.3 Supplementary materials

5.3.1 Changes in mean state under greenhouse gas forcing

Changes in ENSO statistics are intimately related to changes in the mean state of the tropical
Pacific (see section 1.4 and paragraph 5.1). In particular, mean zonal SST gradient and mean
vertical temperature gradient are of paramount importance in ENSO’s dynamics, especially
because the zonal advective feedback (ZAF) and the thermocline feedback (TCF) are explic-
itly dependent on each of them respectively. Their changes with global warming and changes
in their interaction require special attention. In this paragraph, we focus thus on changes in
surface temperatures and vertical profile of equator temperatures simulated by the model.

To estimate changes in SST due to global warming, we calculate the warming trend
through a linear regression over the RCP8.5 period (2006-2100). We consider the RCP8.5
period as a whole because the increase in SST is very low before (1920-2005) and only really
starts at the beginning of future simulations. It is the case whether in the Pacific between
35°S-35°N, or between 10°S-10°N, or between 5°S-5°N, whether on the entire width of the
Pacific or in the Niño-3 or in the Niño-4 regions (Fig. 5.2).

(a) Niño-3 region (b) Niño-4 region

Figure 5.2 – Surface temperature for individual ensemble members of historical and RCP8.5 simu-
lations (grey lines) and the ensemble mean (red line), averaged over (5.2a) Niño-3 region (5°S-5°N,
210°E-270°E) and (5.2b) Niño-4 region (5°S-5°N, 160°E-210°E). The slope 1 (slope 2) indicates the
warming rate (◦C/100 years) over the period before (after) the date break calculated via a piecewise
linear regression.

For each region, the date from which temperature warming follows a new linear regression
slope (according to a piecewise linear regression, see paragraph 2.2.3.1) is close to January
2006 (from November 2005 to September 2006 for the different regions included between 10°S
and 10°N, and October 2007 when considering the Pacific between 35°S-35°N). Changes in
the regression slope of global warming are almost immediate between 5°S-5°N. The warming
rate over the historical period is in the order of 0.35 to 0.4 ◦C per century, while it reaches
10 times more over the period 2006-2100. Results are similar, even if slightly weaker, when
calculating the warming trend via differences between the last 20 years in RCP8.5 (2080-2100)
and the last 20 years in historical climate (1980-2000).

The CESM-LE ensemble mean warming pattern of the tropical Pacific is an “El Niño-
like” pattern (Fig. 5.3) (Collins et al., 2010; Xie et al., 2010). The eastern Pacific is projected
to warm faster than the western Pacific, which will decrease the zonal SST gradient in the
tropical Pacific. Figure 5.2 shows consistently that the mean SST in Niño-3 at the end of
future simulations reach values that are close to those of the future mean SST in Niño-4.
The mean SST differences between Niño-4 and Niño-3 regions decrease from 2.5 ◦C to 2 ◦C.
It is consistent with Zheng et al. (2018) who analysed the warming pattern simulated by
each individual member of the CESM large ensemble (their figure 4). The eastern equatorial
Pacific warms also faster than the off-equatorial regions, especially in the south Pacific. These
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Figure 5.3 – CESM-LE ensemble mean warming rates of SST (◦C/100 years) over the RCP8.5 period
(2006-2100).

features of changes in mean state due to global warming, consistent with projected mean
changes simulated by CMIP5 models (see paragraph 1.4.1), are likely to influence changes in
ENSO statistics and dynamics (see paragraph 1.4.2).

Lian et al. (2018b) showed that especially the eastern equatorial Pacific has experienced a
cooling over the historical period (1880-2015) in observation datasets, which is the opposite of
the historical simulations. They argued that, in models, the atmospheric response to global
warming, leading to an El Niño-like pattern through the weakening of Walker circulation,
suppresses the oceanic response to global warming, which would lead to an La Niña-like
pattern through an increase in vertical stratification and a strengthening of the zonal gradient
of SST.

When analysing the warming trend observed in HadISST v1.1 over the period 1950-2005,
the “La Niña-like” warming pattern is not so pronounced, nor is the “El Niño-like” warming
pattern in the historical simulations of CESM-LE (Fig. 5.4a). The warming pattern of the
ensemble mean of the CESM-LE historical simulations is also estimated (Fig. 5.4b). Although
the warming rates are less pronounced in the simulation, and no cooling is simulated, there are
common characteristics. The far eastern Pacific experiences a cooling, which is also simulated
by CESM-LE. A large area, from the Baja California coast to the western-to-central equatorial
Pacific, has warmed over this period. However, this area is divided in observations by a
narrow band along the equatorial upwelling that seems to have strengthened, feature that is
not simulated. The oceanic circulation in the tropical south Pacific and in the mid-latitudes
north Pacific seems not to be realistically simulated in CESM-LE. The pattern of warming
in the tropical south Pacific extends from the central to the eastern equatorial Pacific Pacific
in observations while an inverted warming pattern that goes up to the Maritime Continent
is simulated by CESM-LE. The mid-latitudes in the north Pacific has experienced a cooling
that is not simulated.

However, these features of the mean warming pattern of CESM-LE in historical simula-
tions should be taken with caution, given the disparity among members. While the warming
pattern of member 019 (Fig. 5.4d) resembles the one observed, the pattern of member 003
(Fig. 5.4c) experiences a lower warming at the equator and in the south-eastern tropical Pa-
cific. The two patterns show distinct warming trends, particularly off Baja California coast
and in the equatorial Pacific. Note that in both case, the dynamics of the southern tropical
Pacific is not well simulated. The majority of historical members simulates an El Niño-like
warming. However, around a third of the historical members simulates less warming in the
eastern equatorial Pacific than in the western equatorial Pacific and in the off-equator regions.
These simulation failures, related to model biases, require further investigation to make fu-
ture projections more reliable (Li et al., 2016; Ying et al., 2019; Lian et al., 2018b). Note,
however, that despite the wide dispersion of patterns warming in the historical climate, the
warming patterns projected into the future climate are very similar. Internal variability has
very little impact on projected surface warming. This result is consistent with Zheng et al.
(2018) (see their Figure 4).
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(a) HadISST (1950-2005) (b) Ensemble mean historical (1950-2005)

(c) Historical member 003 (d) Historical member 019

Figure 5.4 – Warming rates of SST (◦C/100 years) over the historical period (1950-2005) for (5.4a)
HadISST v1.1, (5.4b) the ensemble mean of CESM-LE historical simulations, (5.4c) the member 003
and (5.4d) the member 019 of CESM-LE historical simulations .

CESM-LE projects also an increase in the vertical stratification with global warming, due
to the faster warming in surface (Fig. 5.5). The increased stratification leads to a flattened
thermocline, defined by the depth of the maximum of the vertical temperature gradient (red
lines in Figure 5.5), consistent with Vecchi and Soden (2007) and Yeh et al. (2009a). The
thermocline flattens especially because it becomes shallower in the central Pacific. However,
in the far eastern Pacific, east of 270°E, the thermocline depth does not change with global
warming, unlike the depth of the 20 ◦C isotherm (Z20) (black lines in Figure 5.5). Even if Z20
is widely used as a proxy of the thermocline depth, Castaño Tierno et al. (2018) showed that
both definitions give different results from estimated depths, whether in reanalysis dataset
(SODA v2) or CMIP5 simulations. In reanalysis dataset, the thermocline depth is shallower
in the far eastern Pacific and west of 160°W. This feature is even more pronounced in CMIP5
models. Moreover, the seasonal cycle of the thermocline depth especially in the eastern
Pacific has much more pronounced variations than that of the Z20. These differences might
be reinforced in the future climate and using the Z20 as a proxy for the thermocline depth
can lead to misinterpretations of mean state and process changes (Yang and Wang, 2009;
Castaño Tierno et al., 2018).

(a) RCP8.5 minus historical ensemble-mean (b) Dispersion among members

Figure 5.5 – Changes in vertical stratification in CESM-LE. (5.5a) Differences between ensemble-mean
RCP8.5 minus historical equatorial (2°S-2°N) temperature anomalies (◦C). (5.5b) Dispersion among
the ensemble of the mean temperature difference (◦C). Red lines indicate the ensemble-mean depth
of the thermocline defined as the depth of the maximum value of the vertical temperature gradient.
Black line are the ensemble-mean depth of the 20 ◦C isotherm. Solid lines are for the ensemble-mean of
CESM-LE historical simulations and dashed lines are for the ensemble-mean of RCP8.5 simulations.

In the present work, the diagnostics of changes in oceanic processes are based on the
anomalies of Z20, i.e. with its mean depth removed, so that we expect much less sensitivity to
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the way the thermocline is calculated, because the processes that form the mean thermocline
are distinct from those that produce thermocline fluctuations. The mean thermocline is, in
particular, constrained by vertical mixing and the ventilation from the mid-latitudes (Wyrtki,
1961; Harper, 2000), while the thermocline inter-annual anomalies result mostly from the
equatorial wave dynamics (Zebiak and Cane, 1987). Both types of processes have a different
sensitivity to climate change.

5.3.2 The seasonally stratified El Niño events

In the submitted publication (see paragraph 5.2), we show that the E-index during El Niño
events can peak at different seasons, preferably in winter (from October to January, ONDJ)
and summer (from July to September, JAS). This feature leads to the classification of El
Niño events according to the seasonal stratification of the E-peak:

• El Niño events whose the E-peak occurs between July and September, referred as JAS
El Niño events and represented by the blue color thereafter,

• El Niño events whose the E-peak occurs in winter, between October and January,
referred as ONDJ El Niño events (red color),

• and El Niño events whose the E-peak occurs at the end of the winter, early spring,
referred as FMA El Niño events (green color).

The months of May and June are excluded of the seasonal stratification of the El Niño
events, because few events are peaking during these months, whether in historical or RCP8.5
runs (see figure 4 of the paper).

All events show similar development (or not distinguishable significantly) of the E and C
indices until August, with, in particular, an initial abrupt increase of the E-index from April
to August of the developing year (year Y0), whatever in historical or RCP8.5 simulations (see
also paragraph 3.3.1). In historical simulations (Fig. 5.6a and 5.6c), JAS El Niño events have
an E-index which only decreases after a punctual peak in summer, first slowly until April of
the next year and then more abruptly. In the same time, after the summer peak, the C-index
is always positive and greater than for the others kind of events. ONDJ El Niño events
present a more known evolution, with a positive E-peak centred in October-December. FMA
El Niño events have grater magnitude in E-index than ONDJ El Niño events and the E-index
continues to grow to reach a peak in February-March, then decay rapidly. The C-index is
negative as of January.

Interestingly, in RCP8.5 simulations (Fig. 5.6b and 5.6d), JAS and ONDJ composite
events do not show great differences in the evolution of the E or C indices. The main
differences appear for the FMA El Niño composite, but it is also due to the fact that there
are very few El Niño events in the historical FMA composite (9 events) and that these
events are very strong in terms of magnitude. Thus, the RCP8.5 FMA El Niño composite is
composed of more “normal” strong events.

Finally, El Niño events can have E-peaks that do not coincide with peaks on traditional
SSTA indices, like PC1 or Niño-3.4 index. This is the case in historical situation and it will
be amplified in future situation. Note that traditional ENSO indices, such as the Niño-3
index, have a projection on both the E and C indices. Niño-3 index can thus be expressed as
Niño-3 = α E + β C. When the E-index peaks in summer during strong events, the C-index
is negative at the same time (Fig. 5.6), so that the Niño-3 index cannot peak at that time,
but instead peaks when the C-index peaks, i.e. in Dec Y(0) since the E-index remains almost
constant between Aug and Dec Y(0). Thus, the events with E-peak in July-August-September
correspond to events with peak in Niño-3 mainly in NDJF owing to the larger contribution of
the C-index to Niño-3 as El Niño develops. The shift in seasonality of the E-peak during El
Niño events does not occur when looking at other SST indices (PC1, Niño-4, Niño-3, Niño-
34 SSTA indices), whose distributions remain centred in boreal winter (December-January),
even if a weak peak appears for Niño-3 and Niño-34 SSTA indices in the future climate (not
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Mean historical strong El Niños

(a) E-index

Mean RCP8.5 strong El Niños

(b) E-index

(c) C-index (d) C-index

Figure 5.6 – Temporal evolution of (top) the E-index and (bottom) the C-index of strong El Niño
events, for the composite events of (left) the 42-members of the historical simulation and (right) the
40-members of the RCP8.5 simulation. Composites consist of strong events whose E-peak occurs in
(blue) July-August-September (JAS), (red) October-November-December-January (ONDJ), (green)
in February-March-April (FMA). In black lines are the composite event according the definition of
extreme events by Cai et al. (2014). The shadow corresponds to events of the strong regime between
the 25th et 75th percentiles.
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shown). Time-longitude evolutions of SSTA, zonal wind stress anomalies and precipitation
for the different types of El Niño events are described in detail in Annexe 5.3.4.2.

The change in the El Niño E-peak season appears to be a robust feature of the future
climate. The increase in the number of FMA El Niño events is associated with an increase in
the E-index variance in FMA. We show that this increase in E-index variance is also simulated
by a set of CMIP5 models that realistically represents the non-linear Bjerknes feedback (see
Figure 10 of the paper, paragraph 5.2). Moreover, this increase in the E-index variance during
FMA in CESM-LE is not dependent on the method used to remove the signal of the global
SST warming (see section 3.4). Although the choice of the method affects the mean E-index
variability and the rate of change of certain monthly E-index variances, this rate is positive
whatever the method for the months of February to April. This means that, whatever the
method, the variability in FMA increases significantly (at the 95 % confidence level) between
historical and RCP8.5 simulations of CESM-LE.

Another interesting feature of changes in El Niño events in RCP8.5 simulations appears
when comparing strong events with extreme events defined by Cai et al. (2014), referred
as extreme precipitation events (black lines in Figure 5.6). Extreme precipitation El Niño
events present an evolution of the E and C indices very similar to ONDJ strong El Niño
events in historical simulations. However, in RCP8.5 simulations, extreme precipitation El
Niño events present a lower amplitude than strong El Niño events. In fact, RCP8.5 extreme
precipitation El Niño composite is also composed of El Niño events classified as moderate
from E-index. The increase in extreme precipitation events corresponding to events that
cause rainfall in the eastern Pacific during the boreal winter, it is interesting to understand
how events associated with a warming, even moderate, of the SST projected on the E-index
in summer cause rains in the eastern tropical Pacific in winter in RCP8.5 simulations. This
interesting change in classification of extreme precipitation El Niño events is discussed in the
publication (see paragraph 5.2) and in the paragraph 5.3.3.2.

This seasonal variation in the E-peak is also an observable feature (Fig. 5.7). The most
commonly observed El Niño has a E-peak in winter (top panels). The strong El Niño events
of 1997-98 and 2015-16 belong to this category. On the other hand, the strong El Niño event
of 1982-83, although displayed with the winter events in Figure 5.7a, has its peak in June
of the second year (June Y1). In addition to these strong El Niño events, some moderate
El Niños, in 1994, 2002 and 2006, have also their peak in winter. However, their evolution
differs from strong events: it is not a smooth and regular warming but a short, rapid and
small amplitude warming. The strong El Niño event of 1972-73 is a summer event (JAS,
Fig. 5.7b). Except this event, all JAS El Niño are moderate. This category has a large
dispersion, particularly in the month of their peak, which can occur from May (1965, 1969)
to September (1979, 1987). Another small category appears with El Niño events that follow
each other from one year to the next, and that preferentially peak in the spring (Fig. 5.7c).

The peak on the E index can be translated into a maximum anomalous warming in one
of the ENSO fixed regions (Niño-3 or Niño-3.4) and thus be diagnosed in previous studies.
Thus Kessler (2002) mentioned that SSTA peaks occurred in others seasons than winter, such
as August 1987, February 1992 and May 1993 for the corresponding El Niño events using
NCEP/NOAA dataset. Neelin et al. (2000) showed that, even if most El Niño events have a
maximum warming in winter, some events have a peak in fall or even in the spring season.
They mentioned the local maximum in August of the 1972-73 El Niño event and the peak
(in Niño-3 region) in September of the 1987 El Niño event.

5.3.3 Changes in ENSO statistics

5.3.3.1 Changes in frequency of occurrence

The frequency of occurrence of (total) El Niño events, whether defined by PC1 or ONI, is
projected to slightly increase, but not dramatically (Table 5.1).
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(a) Winter peak (b) Summer peak

(c) Double year, spring peak

Figure 5.7 – Temporal evolution of the E-index during observed El Niño events. The solid lines
correspond to the HadISST v1.1 dataset, the dashed lines to ERSST v3b.

Historical RCP8.5
Frequency Return period Frequency Return period

PC1 El Niños 0.21 1 event/4.8 years 0.24 1 event/4.2 years
ONI El Niños 0.21 1 event/4.7 years 0.25 1 event/4.1 years

Table 5.1 – Changes in frequency of occurrence (and return period) of El Niño events. The frequency
of occurrence in historical (RCP8.5) simulations are estimated over 1920-2005 (2051-2100, the last
fifty years of simulation).

227



CHAPTER 5. ENSO DIVERSITY AND GLOBAL WARMING

Note that the return periods of PC1 El Niños in historical simulations are close to those
computed for the PI-control simulation with return periods of 1 event every 4.8, 14.8 and
7.1 years for all PC1, strong and moderate El Niños respectively. The PI-control simulation
does not include anthropogenic forcing. Thus the frequency evolutions analysed during the
RCP8.5 simulations and attributed to global warming does not seem to be apparent yet on
average over the 86 years of historical simulations.

When focusing on strong and moderate events statistics (Table 5.2), it appears that the
probability of occurrence of moderate El Niños will probably not change much in the future,
and that of strong El Niños is likely to increase, multiplied by an ensemble-mean coefficient
of 1.35.

The probabilities of frequency of occurrence of EP and CP El Niños, very close to each
other in historical simulations (Table 5.2), are likely to evolve differently. In particular,
the frequency of CP El Niños is projected to increase with global warming in CESM-LE
simulations, consistent with the result of Yeh et al. (2009a) using a set a CMIP3 CGCMs.
However, in PI-control simulation, the return periods of EP and CP El Niños are estimated
to 1 event every 11.3 years and 1 event every 8.7 years respectively, while the return periods
of ONI El Niño is estimated to 1 event every 4.9 years. It seems that the internal variability
can play a significant role in the estimation of frequencies according to the period studied
(Wittenberg, 2009).

Return period Historical RCP8.5
Strong El Niños 1 event/15.4 years 1 event/11.4 years

Moderate El Niños 1 event/6.9 years 1 event/6.8 years
EP El Niños 1 event/9.6 years 1 event/9.4 years
CP El Niños 1 event/9.9 years 1 event/7.6 years

Table 5.2 – Changes in frequency of occurrence (and return period) of El Niño events depending
on its diversity. The frequency of occurrence in historical (RCP8.5) simulations are estimated over
1920-2005 (2051-2100, the last fifty years of simulation).

To further analyse changes in frequency of El Niño events during the 21st century, while
taking into account the internal low-frequency variability, we compute the probability of
occurrence of El Niño events per 10 years, that is the ensemble-sum of the number of events
per 10 years for each year normalised by the number of members (Fig 5.8). The probabilities
of occurrence in historical and RCP8.5 simulations are compared to the internal variability
estimated from the PI-control simulation. The spread of the natural variability is estimated
through a bootstrap test: 42 periods (same value as the number of historical members) of
100 years are taken randomly in 1801 years of the PI-control simulation. The sum of the
numbers per 10 years of each type of El Niños along the 100 years is then normalised by
the number of periods. The result obtained is a timeserie of 100 years of the probability of
occurrence of each type of El Niño event, comparable to that obtained from the historical
members. We repeat the calculation 5,000 times randomly and compute the 5th and the
95th percentiles in order to estimate the spread of the internal variability (dashed lines on
figures 5.8a, 5.8b, 5.10a). The same exercise was performed using 40 periods as the number
of RCP8.5 members, the number of members of climatic systems does not change the results,
the differences being of the order of 10−3. The number of members of the simulations is high
enough to obtain a satisfactory significance of the climate system (Zheng et al., 2018).

Note first that the frequencies of occurrences of all PC1 or all ONI-based on definition
El Niño events (Fig. 5.8, yellow lines) are very close to each other as well as in PI-control
simulation, that is without anthropogenic forcing, and in historical simulations. The evolution
of the number per 10 years of all PC1 or ONI based on definition El Niño has little dispersion
with a maximum difference between the extreme values of the order of 0.50 event per 10
years (±0.25 event per 10 years around the mean value), except at the end of the RCP8.5
simulations when the values begin to come out, for several periods in a row, of the values
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(a) Strong and moderate El Niño events
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(b) EP and CP El Niño events
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Figure 5.8 – Temporal evolution of the probability of occurrence of El Niño events per 10 years for
(5.8a) El Niño events defined by the PC1 and (5.8b) El Niño events defined by the ONI (yellow line).
On 5.8a appear also the numbers per 10 years of strong (red line) and moderate (blue line) El Niños
while on 5.8b appear also the numbers per 10 years of EP (red line) and CP (blue line) El Niños
defined in DJF. The dashed lines of each color represent the 5th and the 95th percentile values of
probability of each event in the PI-control simulation determined from a 5,000 bootstrap draws using
42 periods of 100 years randomly taken in 1801 years of the PI-control simulation. The number of
events is counted by considering periods definition.

that the system can take in PI-control simulation with internal variability.
The frequency of occurrence of the diversity of El Niño (strong and moderate (Fig. 5.8a)

or EP and CP El Niño events (Fig. 5.8b presents larger spread in historical simulations.
Their frequency could be more influenced by low-frequency variability, with a frequency of
occurrence out of the PI-control spread, from 1925 to 1940 for the PC1-based on definition
events (Fig. 5.8a) and from 1970 to 1995, and more particularly from 1985 to 1995, for the
ONI-based on definition events (Fig. 5.8b). These low-frequency fluctuations lead to more
or less long periods of alternation of the EP/CP ratio. A longer period of distribution of the
EP/CP ratio is simulated, for example, at the end of the historical simulations. Surprisingly,
this period of historical ensemble-mean low rate of CP compared to EP events occurs at
the same time as the observed period categorised as being favourable to EP events (An and
Wang, 2000; Kao and Yu, 2009). The new increase in CP events in the early 2000s can
similarly be compared to the observed last decades favouring CP events (Wang and Ren,
2017). This resemblance of the low-frequency internal variability, simulated on average by
the members, with the observations, requires further investigation in order to understand if
it can be related, for instance, to a realistic representation of the low-frequency phases of
the internal variability, or to a response to forcings, changing with GHG emissions, of the
historical simulations.

At the end of the RCP8.5 simulations, from 2055, it is projected that the frequency of
occurrences of El Niño events, whatever the diversity, will increase beyond the internal vari-
ability spread. A long period with more CP than EP events is projected, with a higher CP
number than the internal variability spread of the system without anthropogenic forcing,
which is consistent with results of Yeh et al. (2009a). Regarding strong and moderate evolu-
tion, although it seems that there are always more moderate than strong El Niño events in
PI-control and historical simulations, it appears that it could be different with global warming
due to the increasing number of strong events in particular.

5.3.3.2 Changes in the relationship between temperature and rainfall in the
eastern Pacific

Changes in statistics of extreme precipitation El Niño events are compared to changes in
strong El Niño statistics. Extreme precipitation El Niño events are defined as Cai et al.
(2014, 2017), focusing on precipitation anomalies rather than SSTA.

Precipitation anomalies are induced during El Niño events in the eastern tropical Pacific
due to the southward shift of the Inter-tropical Convergence Zone (ITCZ) (Rasmusson and
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Carpenter, 1982). Based on the coupling between SST, atmospheric convection and circula-
tion, Cai et al. (2014, 2017) defined extreme precipitation El Niño events when the boreal
winter rainfall in the Niño-3 region is beyond an arbitrary threshold of 5 mm/day. Note that
they defined El Niño events (normal and extreme) when the mean DJF Niño-3 SSTA index
is greater than 0.5 times the standard deviation of the index during the control simulation.
We use this method to define extreme precipitation El Niño events in CESM-LE. However,
this method allows two events to follow from one year to the next, which is less often the
case with the method based on the E and C indices, which follows the temporal evolution
of the SSTA index: as long as the index has not dropped below the detection threshold, we
consider this warm episode to be a single El Niño event. This explains the differences in the
total number of El Niño events per simulation (see Fig.5.10).

(a) DJF climatology
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Figure 5.9 – CESM historical ensemble-mean spatial patterns of SSTA and precipitation of (5.9a)
December-January-February (DJF) mean state and (5.9b) DJF extreme precipitation El Niño com-
posite. Extreme El Niños are defined following Cai et al. (2014) from a rainfall threshold in the
Niño-3 region (black box, 5°S-5°N, 210°-270°E)). The blue boxes materialise the regions used for the
calculation of the SST meridional gradient.

Cai et al. (2014) analysed the non-linear relationship between the values of DJF Niño-3
SSTA and rainfall on one hand, and the values of DJF meridional SST gradient and Niño-
3 rainfall on the other hand. The meridional SST gradient is defined as the mean DJF
SST over the region 5°N-10°N, 210°-270°E (longitudes of Niño-3 region, top blue box on
Fig. 5.9b) minus the mean DJF SST over the region 2.5°S-2.5°N, 210°-270°E (bottom blue
box). In normal winter conditions (Fig. 5.9a), SST are colder in Niño-3 region due to the
mean equatorial upwelling and there is few or no precipitation in this region, the Walker
circulation bringing dry air down.

During strong El Niño events, an anomalous warming of the eastern tropical Pacific leads
to an eastward shift of convection and an equatorward shift of the ITCZ. Exceptional rainfall
then occurs in the usually dry region of the eastern equatorial Pacific (Fig. 5.9b). The rainfall
anomalies follow, with a non-linear relationship, the increasing SST and the decreasing or
even reversing SST meridional gradient, which is an indicator of the equatorward shift of the
ITCZ (Cai et al., 2014). They concomitantly show that moderate events, with anomalous
warming in the central Pacific, do no cause the same displacement of the ITCZ and therefore
the same increase in rainfall or decrease in the meridional gradient in the Niño-3 region. They
define thus extreme El Niño from a precipitation threshold of 5 mm/day.

In CESM-LE, the frequency of occurrence of extreme precipitation events is projected to
increase from 0.04 (one event every 24.7 years) to 0.16 (one event every 6.4 years) in average
of the last 50 years of RCP8.5 simulations, which corresponds to a 3.9 fold increase of the
number of extreme events at the end of the 21st century. The CESM-LE model thus projects
more than the doubling of extreme events projected in a set of CMIP3 and CMIP5 models
(Cai et al., 2014).

An interesting feature of changes in El Niño statistics with global warming appears when
analysing the number of seasonal types of strong and extreme El Niños and, therefore, the
change of their frequency of occurrence between historical and RCP8.5 simulations (Fig. 5.10).

The frequency of occurrence of all strong El Niños increases from around 0.3 events per 10
year at the beginning of the historical simulations to around 1 per 10 years at the end of the
RCP8.5 simulations (Fig. 5.10a, yellow lines). But, the increase is attributable to different
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reasons according to the periods: until the end of the historical simulations, the increase is
mainly due to the increase in the ONDJ strong El Niño events frequency (red lines), while
it is mainly due to the increase of the FMA strong El Niño events frequency in the RCP8.5
simulations (green lines).

In historical simulations, the values of probability of occurrences of strong events per
10 years navigate around the values of the internal variability determined in the PI-control
simulation (horizontal yellow dotted lines). But, in RCP8.5, a positive trend in the probability
of occurrence of strong events results in values beyond the internal variability of the PI-control
simulation. It is associated with a more pronounced positive trend in the probability of
occurrence of FMA strong events, almost non-existent in historical and PI-control simulations.
Conversely, the probability of occurrence of ONDJ strong events decreases drastically in
RCP8.5 simulations, while they composed half of the events in historical and PI-control
simulations.

(a) Strong and extreme El Niño (b) Seasonal stratification of extreme El Niño

Figure 5.10 – (5.10a) Temporal evolution of the probability of occurrence of El Niño events per 10
years for (yellow line) strong, (black line) extreme precipitation and seasonal stratified El Niño events:
(blue line) strong JAS, (red line) strong ONDJ and (green line) strong FMA El Niño events. The
dashed lines of each color represent the 5th and the 95th percentile values of probability of each event
in the PI-control simulation determined from a 5,000 bootstrap draws, using 42 periods of 100 years
randomly taken in 1801 years of the PI-control simulation. (5.10b) Same as (5.10a) but for extreme
precipitation El Niño events. The proportion of seasonal classification of strong and moderate El
Niño events is indicated by coloured shadows: blue for JAS events, red for ONDJ events and green
for FMA events. Hatch indicates proportion of moderate El Niño events. The number of events is
counted by considering periods definition for strong events and by considering years as Cai et al.
(2014) for extreme events. In RCP8.5, some extreme El Niño events are thus not classified as PC1
based on definition (26 events that is 5.3 %), mainly because they are included in the same PC1 based
on definition El Niño periods (21 of 26 non classified events).

When comparing seasonal strong events with extreme precipitation events (Fig. 5.10a,
black lines), it appears that, whereas, in historical simulations, the temporal evolution of the
number every 10 years of extreme precipitation events is correlated with the number every 10
years of strong ONDJ El Niño events (0.82), it becomes strongly correlated with the number
every 10 years of strong FMA El Niño events in RCP8.5 simulations (0.93).

Moreover, while extreme events are classified almost solely as strong events in historical
simulations (only 3.4 % of extreme precipitation events (that is 5 events) are moderate El
Niños), 34 % of extreme precipitation events in RCP8.5 simulations are classified as moderate
El Niño according to the E-index (Fig. 5.10b).

It means that, according to the definition of extreme precipitation El Niño events, more
El Niño events cause rain anomalies in the eastern Pacific with global warming, whatever
its SST warming intensity. Cai et al. (2014, 2017) suggested that it is due to a facilitating
equatorward shift of the ITCZ, due to a faster warming in the eastern equatorial Pacific and
thus a decrease in SST meridional gradients. They showed furthermore that more extreme
precipitation El Niños are associated with smaller SSTA with global warming compared to
historical simulations and that there will be more convective episodes associated with more
than 2 mm/d in the eastern Pacific. However, it is not clear whether the increase in the
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frequency of occurrence of extreme precipitation El Niño events is due to the increasing
eastern convective episodes due to a change in the mean state, or whether it is accompanied
by an increase in strong El Niño events, one of the characteristics of which is the displacement
of the ITCZ.

In the discussion of the paper (see paragraph 5.2), we show that the emergence of strong
FMA El Niño events in the warmer climate explains one quarter of the increase in frequency
of occurrence of extreme precipitation events in the CESM model. Concomitantly, 34 % of the
increase in extreme precipitation events is associated with weak to moderate El Niño events.
The increase in extreme precipitation events in a warmer climate is thus attributed not only
to the increase in mean SST in the eastern equatorial Pacific, through the growing part of
moderate El Niño events that contribute to ENSO precipitation events, but also to changes in
ENSO characteristics, through the increase in strong El Niño events peaking in FMA, when
the ITCZ is about to reach its southernmost position. Those events are thus strongly coupled
to the ITCZ and do not necessarily require the anthropologically-forced mean SST warming
trend in the eastern Pacific to yield extreme precipitation events. In CESM-LE, both the
increase in mean SST in the eastern equatorial Pacific and the change in ENSO processes
associated with the differential warming between the surface and the subsurface (i.e. sharper
mean thermocline) thus contribute to the increase in extreme precipitation events in the
warmer climate.

Another interesting feature, which requires further investigation, is the growing number
of JAS El Niño events that are considered as extreme ENSO precipitation events in RCP8.5
simulations, half of which are classified as moderate events (Fig. 5.10b). Because extreme
precipitation El Niño events cause rainfall in the eastern Pacific during the boreal winter, it
will be interesting to understand how events, associated with a warming, even moderate, of
the SST projected on the E-index in summer, cause rains in the eastern tropical Pacific in
winter in RCP8.5 simulations.

An equivalent decomposition of EP and CP El Niño events is performed by matching
each event to an event of seasonal stratification (JAS, ONDJ and FMA), whether strong or
moderate events (Fig. 5.11).

(a) EP El Niño events (b) CP El Niño events

Figure 5.11 – Seasonal stratification of the temporal evolution of the probability of occurrence of El
Niño events per 10 years for (5.11a) EP El Niño events and (5.11b) CP El Niño events. Seasonal
stratification includes strong and moderate classification. In blue is the proportion of moderate and
strong JAS El Niño events, in red the proportion of ONDJ El Niño events and in green the proportion
of FMA El Niño events.

In historical simulations, EP El Niño are composed of JAS and ONDJ El Niño events, the
proportion of one relative to the other being dependant of the period. In RCP8.5 simulations,
the proportion of ONDJ El Niño events tend to be replaced by FMA El Niño, as the latter
becomes more frequent with global warming. The proportion of ONDJ and FMA El Niño
events in EP events is thus 52 % in historical simulations and 57 % in RCP8.5 simulations.
No significant change appears regarding JAS El Niño events compositing EP El Niño events
(44 % of EP El Niño events in historical simulations, 40 % in RCP8.5 simulations).

232



5.3. SUPPLEMENTARY MATERIALS

With global warming, CP El Niño events tend to become more often classified as JAS
El Niño events, from 47 % in historical simulations to 67 % in RCP8.5 simulations, and even
70 % in the last fifty years of RCP8.5 simulations. It suggests that El Niño events that have
a summer signature on the E index (JAS El Niño) tend to have more signal in the center of
the equatorial Pacific during the next winter, which underlies a westward propagation of the
heating zone. This requires further investigation.

5.3.4 Discussion: Focus on the processes that can explain the persistence
of Niño events

5.3.4.1 Changes in the Bjerknes feedback

The strength of the Bjerknes feedback is assessed through the μ coefficient defined by Jin
et al. (2006). It comes from the recharge-discharge linear equations and is expressed as the
linear regression coefficient between zonal wind stress and SST:

[τx] = μ [SST ] (5.1)

with [∗] the spatial average. It is usually calculated from the average of zonal wind stress
anomalies τx in the western-to-central Pacific, such as, for instance, in the Niño-4 region, and
the average of SST anomalies in the eastern Pacific, such as in the Niño-3 region for example
(Bellenger et al. (2014) for instance).

E-mode
(a) Historical ensemble-mean

C-mode
(b) Historical ensemble-mean

(c) RCP8.5 ensemble mean (d) RCP8.5 ensemble mean

(e) Members spread (f) Members spread

Figure 5.12 – Bi-linear regression of the zonal wind stress fields onto the (left column) E and (right col-
umn) C indices. (5.12a and 5.12b) Historical ensemble-mean zonal wind stress E and C modes respec-
tively and (5.12c and 5.12d) RCP8.5 ensemble-mean zonal wind stress E and C modes (10−1 N/m2).
(5.12e and 5.12f) E and C zonal wind stress modes averaged over 2°S-2°N for (blue) historical and
(red) RCP8.5 members. The maximum value of each profile is retained to determine the location of
each centre of action, following the method of Cai et al. (2018).
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To avoid being constrained by fixed regions, we use the method based on the E and C
modes, used by Cai et al. (2018) We first calculate the E and C modes associated with the
zonal wind stress through a bi-linear regression (see paragraph 2.2.3.3), in the same way as for
determining the SST spatial patterns associated with E and C modes. The most important
changes in the mean wind stress patterns with global warming are visible on the E-mode. In
addition to an increase in intensity, the E-mode pattern will experience a tightening of its
centres of action. This feature is found on the profiles along the equator for each member, with
a larger peak and less dispersion in the location of these peaks between members (Fig. 5.12e).

The location of the E-peak of each member is retained to calculate the Bjerknes feedback,
rather than using a mean value in a fixed region as it is usually calculated (Fig. 5.13a). A
piecewise linear regression (see paragraph 2.2.3.1) is used to determine the optimum slope
change points between each regression. As comparison test, the Bjerknes feedback has been
also calculated for a fixed region (150°E-190°E, 5°S-5°N, Fig. 5.13b). The results, and in
particular the values of the slope change points, are similar when using the zonal wind stress
averaged between 5°S-5°N or its projection onto the E and C modes between 2°S-2°N.

(a) E mode anomalies centres (b) Region 150°-190°E

Figure 5.13 – Response of monthly zonal wind stress anomalies (10−1 N/m2) to SST in the eastern
Pacific (E-index averaged between 10°S-10°N) for (blue) historical and (red) RCP8.5 simulations.
(5.13a) Zonal wind stress, averaged between 5°S-5°N, at the location along the equator where the
regression of the zonal wind stress onto the E mode (2°S-2°N) peaks and (5.13b) zonal wind stress
averaged in the western-to-central region 150°E-190°E, 5°S-5°N. 50 bins were defined on the maximum
range of values of the E-index in historical and RCP8.5 simulations respectively, and the median wind
stress anomaly and E-index are identified for each bin (circles). The method is similar to the one
used in Cai et al. (2018) applied to the CMIP5 models, except that a linear piecewise regression was
carried out here, rather than two separate linear regressions for positive and negative median index
values.

The results are similar than those of Cai et al. (2018) when analysing CMIP5 models,
with a distinct behaviour for negative and positive values of the E-index (see their figures
S1e,f and S3e,f). The E values of the first slope change point are equal to 0.53 (0.55) in
historical climate and 0.17 (0.11) in future climate, when considering the longitude of the
center of action of the E-mode (150°E-190°E, 5°S-5°N region). For positive values of the
E-index, the response of the zonal wind stress is amplified, reinforcing the strength of the
Bjerknes feedback to warm the eastern Pacific. The characteristics of the Bjerknes feedback,
as simulated by the model, change slightly with global warming.

However, in CESM-LE, the Bjerknes feedback shows another behaviour for higher E-
values, with a decrease in the strength of the response, even if it remains higher than that
for negative values of the E-index. The E-thresholds of the second slope change point are
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equal to 2.01 (1.93) in historical climate and 1.77 (1.75) in future climate, when considering
the longitude of the center of action of the E-mode (150°E-190°E, 5°S-5°N region). These
threshold values approximate the thresholds used to distinguish strong El Niño events from
moderate El Niño events. With a two-step behaviour, the non-linearities of the Bjerknes
feedback in CESM-LE seem to act differently than in the GFDL CM2.1 model. Because
this threshold value also intervenes in the bi-modality of the El Niño events in GFDL CM2.1,
non-linearities of the Bjerknes feedback deserve further investigation and comparative analysis
between models and observations.

5.3.4.2 Changes in the thermocline feedback

We investigated the role of thermocline feedback changes in the persistence of El Niño events
with global warming.

The thermocline feedback amplifies the surface warming during an El Niño event by the
thermocline deepening in the east equatorial Pacific: subsurface waters, warmer than in
normal conditions, are then raised by the mean upwelling (w). In first approximation, the
TCF can be expressed by:[

w
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∂z
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′
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)
(5.2)

With global warming, vertical stratification is projected to intensify with steeper tem-
perature gradients in the vicinity of the thermocline. The thermocline is also projected to
be shallower (Yeh et al., 2009a) and flatter (Philip and van Oldenborgh, 2006; Vecchi and
Soden, 2007).

Figure 5.14 – Mean upwelling (m/day) plotted against the variability of the vertical temperature
anomalies gradient (10−2 ◦C/m) in the eastern Pacific (Niño-3 region) for historical (dots) and RCP8.5
(diamonds) members and for seasons whose colours follow El Niño events stratification colours: blue
for the months of January, October, November and December; green for the months of February,
March and April; red for the months of July, August and September; and grey for the months of May
and June.

In CESM-LE, although the flattening of the climatological isotherm 20 ◦C under global
warming causes its deepening in the east of the equatorial Pacific, as proposed by Collins
et al. (2010), the flattening of the climatological thermocline, defined as the location of the
maximum in the vertical gradient of temperature, does not. The climatological thermocline
tends to be shallower in the central Pacific but remains at similar depths in the east (Fig. 5.5).
However, its variability increases in the east of the equatorial Pacific under global warming,
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which is likely to enhance the thermocline feedback. The decrease of the mean upwelling
is largely compensated by the increase in the variability of the vertical temperature gra-
dient. It results in an overall increase in the thermocline feedback (see the publication in
paragraph 5.2).

Monthly changes in each component of the thermocline feedback with global warming are
highlighted in Figure 5.14. The decrease in mean upwelling is effective in any given month,
but with a higher rate of decrease for the months of October to April (red and green, from
dots to diamonds). The increase in the variability of the vertical temperature gradient is
greater from October to January (red dots and diamonds). The monthly evolutions of the
two components thus modulate the monthly evolution of the thermocline feedback (Figure
9c of the publication). However, understanding the mechanisms behind the change in the
seasonal cycle of the two components needs further investigation. The increase in tropical
Pacific vertical stratification and change in seasonal cycle of the thermocline depth must also
be put in perspective with these seasonal cycle changes.
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• Changes in ENSO statistics with global warming

In CESM-LE, the seasonality of the peak of the E-index during El Niño events is projected
to change with global warming. Especially, the model projects the emergence of El Niño
events peaking in February-March-April (FMA). Even if moderate El Niño events are also
subject to this emergence of FMA events (+92 %), it is mostly strong El Niño events that are
affected by this longer persistence (+1315 % in occurrence frequency). Conversely, strong El
Niño events peaking between October and January (ONDJ events) experience a significant
decrease.

• Changes in extreme precipitation El Niño events processes

CESM-LE simulates an increase of 3.9 in the frequency of occurrence of extreme precipi-
tation El Niño events as defined by Cai et al. (2014). The changes in the statistics of extremes
precipitation events cannot be solely attributed to changes in mean SST in the equatorial
eastern Pacific, but also depends on changes in ENSO dynamics, in particular associated with
the differential warming between the surface and the subsurface.

Because extreme precipitation El Niño events cause rainfall in the eastern Pacific during
the boreal winter, it may be interesting to understand how events, associated with a warming,
even moderate, of the SST projected on the E-index in summer, cause rains in the eastern
tropical Pacific in winter in RCP8.5 simulations.

• These changes are associated with changes in vertical stratification

The increased stratification in the eastern Pacific with global warming reduces the ef-
ficiency of the upwelling by flattening and tightening the isotherms. On the other hand,
the strengthened vertical stratification increases the sensitivity of SSTA to thermocline fluc-
tuations by enhancing mean vertical diffusivity (Zelle et al., 2004). This increase largely
compensates for the decrease in climatological upwelling and yields an overall increase in the
thermocline feedback with global warming in CESM-LE. The increase in thermocline feed-
back with global warming is thus likely to play a key role in the persistence of El Niño events
and the emergence of FMA El Niños.

• However, little confidence in simulating temperatures near the thermocline

There are significant persistent biases in mean temperatures in the vicinity of the thermo-
cline, not only in CGCMs but also in reanalysis products (Xue et al., 2017). The TPOS2020
program, currently under discussion (Smith et al., 2019), could provide the observational
strategy needed to improve oceanic model formulation (e.g. mixing parametrisations, resolu-
tion).

• Involved processes deserve further investigation

In addition to the thermocline feedback, other processes may play a role in the persistence
of El Niño events, such as the non-linear dynamical heating, the non-linear processes encap-
sulated in the Bjerknes feedback (Dommenget et al., 2013; Takahashi and Dewitte, 2016),
the external stochastic forcing and, in particular, the role of the Westerly Wind Bursts
(WWBs). These different processes would deserve further investigation. For instance, the
non-linear behaviour of the Bjerknes feedback is simulated differently in CESM-LE compared
to GFDL CM2.1, which may impact the simulation of strong El Niño events and, therefore,
their persistence.





Conclusions et Perspectives

Ce travail de thèse a porté sur la diversité des événements de l’Oscillation Australe El Niño
ou ENSO (l’acronyme anglais pour El Niño-Southern Oscillation) et sur ses changements
projetés avec le réchauffement climatique. La diversité des occurrences du phénomène ENSO
a connu un regain d’attention ces dernières décennies du fait d’une augmentation du nombre
d’événements El Niño qui ont présenté un réchauffement anormal des eaux de surface océa-
niques au centre du Pacifique tropical plutôt qu’à l’est, où le phénomène a généralement une
plus forte signature en anomalies positives de températures des eaux de surface océaniques
(SST pour Sea Surface Temperatures) (Ashok et al., 2007; Lee and McPhaden, 2010). Ces
différences spatiales de réchauffement de la surface de l’océan pendant les événements El Niño
sont déterminantes dans la réponse atmosphérique qu’elles entraînent autour du bassin Paci-
fique et les téléconnexions associées entre les tropiques et les moyennes latitudes (Weng et al.,
2009). De subtiles variations des SST du Pacifique central peuvent avoir de forts impacts sur
la localisation et l’intensité du dégagement de chaleur latente dans l’atmosphère, impactant
alors la circulation atmosphérique globale. Ainsi, même s’ils présentent des extensions zonales
de réchauffement de SST plus petites et des intensités plus faibles que les événements El Niño
du Pacifique est, les événements El Niño du Pacifique central sont susceptibles d’induire une
réponse atmosphérique et des téléconnexions extra-tropicales plus fortes (Weng et al., 2009).
Il apparaît donc primordial de mieux comprendre les événements ENSO et leur diversité pour
mieux les anticiper.

Dans un premier temps, j’ai évalué les caractéristiques de la diversité d’ENSO,
et plus particulièrement celle des événements chauds, les événements El Niño
(chapitre 3). J’ai pour cela comparé deux approches de caractérisation de cette diversité,
en utilisant les simulations de contrôle de deux modèles couplés de climat, CESM-LE et
GFDL CM2.1.

La première méthode de caractérisation de la diversité d’El Niño repose sur la distinction
spatiale des centres d’actions du réchauffement des eaux de surface du Pacifique tropical
pendant les événements El Niño (Kug et al., 2009; Kao and Yu, 2009; Yeh et al., 2009a). En
particulier, cette méthode compare les intensités de réchauffement dans les régions historiques
d’étude d’ENSO, à savoir la région Niño-3 à l’est (5°S-5°N, 210°E-270°E) et la région Niño-4
au centre (5°S-5°N, 160°E-210°E) du Pacifique tropical. Deux types d’événements El Niño
sont ainsi classifiés, les événements El Niño dits “Central Pacific” (CP) et les événements dits
“Eastern Pacific” (EP) (Kug et al., 2009). Les événements EP (CP) El Niño correspondent
aux hivers El Niño pendant lesquels l’indice Niño-3 (Niño-4) est supérieur à l’indice Niño-4
(Niño-3) (et supérieur au seuil de détection des événements El Niño), c’est à dire lorsque le
réchauffement anormal des eaux de surface est plus marqué à l’est (au centre) du Pacifique
tropical.

Plusieurs études ont suggéré que les dynamiques associées à ces deux types d’événements
étaient différentes, avec une dynamique déterministe expliquée par la théorie de l’oscillateur
recharge-décharge (Jin, 1997a) pour les événements EP El Niño et une dynamique plus mar-
quée par le forçage atmosphérique pour les CP El Niño (Kao and Yu, 2009; Kug et al., 2009).
En effet, du fait des forts contrastes zonaux du Pacifique le long de l’équateur, que ce soient
en termes de SST, de profondeur de thermocline ou encore de sensibilité à la convection
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atmosphérique, le centre et l’est du Pacifique tropical sont susceptibles de favoriser des pro-
cessus différents. En particulier, deux processus océaniques jouent un rôle primordial dans
le développement des événements ENSO, les processus de thermocline et d’advection zonale.
La position longitudinale de la zone de réchauffement anormale au début des événements
El Niño entraîne une prédominance de l’un ou l’autre de ces processus. Dans le Pacifique
équatorial oriental, l’approfondissement de la thermocline pendant le développement des évé-
nements El Niño diminue le refroidissement en surface en limitant les échanges entre la surface
et la subsurface (Vialard et al., 2001). Plus particulièrement, l’advection verticale moyenne
des anomalies de température de subsurface, processus appelé rétroaction de la thermocline
(thermocline feedback en anglais, ou TCF), est accentuée dans le Pacifique oriental où les
changements de profondeur de la thermocline ont plus d’effets sur les SST en raison d’une
thermocline moyenne moins profonde que dans le Pacifique ouest et central (An and Jin,
2001; Jin et al., 2006). A l’inverse, les processus d’advection zonale sont primordiaux dans
le Pacifique ouest et central (Picaut et al., 1996). En particulier, l’advection zonale du gra-
dient de température par les anomalies de courants, appelée rétroaction de l’advection zonale
(zonal advective feedback en anglais ou ZAF), est plus efficace dans le développement d’ano-
malies de SST liées à ENSO dans le Pacifique central en raison du gradient de température
zonal important près du bord est de la Warm Pool. Les différences de températures des eaux
de surface, entre l’est froid (la langue d’eau froide ou “Cold Tongue”) et l’ouest chaud (la
piscine d’eau chaude, ou “Warm Pool”), entraînent également une plus forte sensibilité du
déclenchement de la convection atmosphérique au centre du Pacifique qu’à l’est, où de plus
fortes anomalies de SST seront nécessaires.

La seconde méthode se base sur l’existence de deux modes principaux de variabilité du
Pacifique tropical. Ces modes sont calculés par la méthode de décomposition orthogonale aux
valeurs propres (Empirical Orthogonal Functions en anglais, ou EOF). Le centre d’action du
premier mode de variabilité se situe à l’est, celui du second mode de variabilité se situe au
centre du Pacifique tropical (Takahashi et al., 2011). Ces deux modes de variabilité conduisent
à la définition de deux régimes El Niño, intrinsèquement liés aux non-linéarités du système
couplé océan-atmosphère. Les événements chauds, dont la signature en SST s’imprime forte-
ment à l’est, sont en effet ceux qui présentent les plus fortes intensités (Dommenget et al.,
2013; Takahashi and Dewitte, 2016). Les deux régimes d’El Niño ainsi définis, les événements
forts et les événements modérés, se distinguent par l’intensité du réchauffement des eaux de
surface dans le Pacifique tropical est.

J’ai estimé la robustesse de ces deux définitions en les comparant dans des jeux de données
d’observations et de simulations numériques du système climatique. Dans un premier temps,
j’ai utilisé deux simulations du climat pré-industriel, c’est à dire sans forçage anthropique
et avec un forçage externe constant. Ces simulations sont appelées simulations de contrôle
pré-industriel, ou simulations “PI-control”. Ce sont des simulations longues, qui permettent
d’estimer la variabilité interne du système climatique sans interaction avec des changements
des forçages externes. Les simulations PI-control sont celles des modèles couplés CESM1
(1801 années de simulation) et GFDL CM2.1 (500 ans). Dans un second temps, j’ai utilisé
un large ensemble de simulations du climat en situation historique (42 membres, 1920-2005)
et de projections climatiques sous le scénario d’émission soutenue de gaz à effet de serre,
appelé scénario RCP8.5 (40 membres, 2006-2100). Ces simulations proviennent du modèle de
climat couplé CESM Large Ensemble (CESM-LE) Project, développé par le National Center
for Atmospheric Research (NCAR, Colorado, USA). Ce modèle simule de façon réaliste et
satisfaisante la variabilité du Pacifique tropical et d’ENSO, même si certains biais connus et
fréquents dans les modèles de climat couplés restent présents, comme le biais froid de la Cold
Tongue ou encore la double zone de convergence inter-tropicale (ITCZ pour Inter-tropical
convergence zone).

Plusieurs études ont montré que la définition des événements El Niño est fortement dé-
pendante des indices utilisés et donc de la méthode utilisée (Singh et al., 2011; Stevenson

240



CONCLUSIONS ET PERSPECTIVES

et al., 2017). Je montre qu’au sein d’une même méthode, la définition des événements El Niño
est également dépendante de plusieurs paramètres spatiaux-temporels. En effet, la première
méthode décrite précédemment, qui définit les événements El Niño à partir des régions fixes
de variabilité observée du Pacifique tropical (les régions Niño-3 et Niño-4), est fortement dé-
pendante de la saison hivernale considérée pour le pic de l’événement. Ainsi, pour un même
jeu de données, qu’il soit d’observations ou de simulations de contrôle, la détection des événe-
ments El Niño CP ou EP diffère suivant que l’on utilise les mois de novembre à janvier (NDJ),
de décembre à février (DJF) ou de janvier à mars (JFM) pour définir le pic de l’événement.
Cette différence peut entraîner une inversion du ratio du nombre d’événements CP comparé
au nombre d’événements EP El Niño. Cette sensibilité à la saison du pic peut s’expliquer par
l’évolution spatiale et temporelle des événements El Niño, dont la direction de propagation
zonale des eaux chaudes vient modifier les valeurs moyennes des SST entre novembre et mars.
De plus, cette méthode de définition des événements El Niño à partir des régions fixes, Niño-3
et Niño-4, apparaît difficilement applicable aux modèles de climat global du fait de leurs biais
récurrents. Ces biais sont particulièrement prononcés dans les régions utilisées pour définir
ENSO, ce qui complique l’interprétation des processus physiques associés et limite fortement
la confiance que l’on peut avoir en ces résultats.

La deuxième méthode, utilisant les indices associés aux deux principaux modes de va-
riabilité du Pacifique tropical, permet de s’affranchir de cette spatialisation fixe des indices.
Ces deux modes de variabilité sont décrits par les indices E et C, obtenus par une combinai-
son linéaire des séries temporelles, ou composantes principales, associées aux deux principaux
modes de variabilité issus de l’analyse EOF. Le mode E explique la plus grande partie de la va-
riabilité du Pacifique oriental et est associé plus spécifiquement aux événements El Niño forts,
alors que le mode C a un centre d’action dans le Pacifique central et englobe les événements
La Niña et les événements El Niño modérés. Cependant, la classification des événements El
Niño en événements modérés ou forts est dépendante de la valeur du seuil retenu sur l’indice
E pour différencier ces deux types d’événements. Takahashi and Dewitte (2016) ont fait va-
loir que ce seuil de séparation des deux régimes d’El Niño est directement lié à la rétroaction
de Bjerknes. Au delà de ce seuil, les non-linéarités du système couplé océan-atmosphère du
Pacifique tropical entraînent une forte amplification de la rétroaction de Bjerknes : une légère
augmentation des SST dans le Pacifique oriental provoque alors une réponse accrue de la
tension de vent zonal, ce qui amplifie le réchauffement initial dans cette région du Pacifique
tropical. La rétroaction de Bjerknes apparaît ainsi non linéaire et fonction du réchauffement
en surface dans le Pacifique tropical oriental. Takahashi and Dewitte (2016) et Takahashi
et al. (2018) suggèrent que les événements El Niño forts sont des événements El Niño dont
le réchauffement à l’est du Pacifique atteint ce seuil en SSTA, ce qui renforce la rétroaction
de Bjerknes. Ce comportement non-linéaire est diagnostiqué dans le modèle GFDL CM2.1 à
partir d’un seuil compris entre +1.5 et +2 ◦C d’anomalies de SST dans le Pacifique est. Il se
matérialise par une bi-modalité de la distribution des événements El Niño dans l’espace des
phases correspondant aux deux modes de variabilité du Pacifique tropical, c’est à dire dans
l’espace des indices (E, C). Cependant, ce comportement bi-modal est peu marqué dans les
simulations du modèle CESM-LE. L’estimation de ce seuil peut ainsi être considérée comme
subjective dans notre étude. Une modification de ±5 % du seuil entraîne ainsi une variation
du nombre d’événements El Niño forts comprise entre 225 (-5.1 %) et 262 (10.5 %) pour les
simulations historiques et entre 271 (-10.3 %) et 322 (6.6 %) pour les simulations RCP8.5.

Néanmoins, le comportement non-linéaire de la rétroaction de Bjerknes est simulé par
CESM-LE. Il est toutefois associé à des valeurs de l’indice E plus faibles (proches de 0 ◦C)
que dans les observations ou dans la simulation de contrôle de GFDL CM2.1 (proches de
2 ◦C). Il semble également que le comportement non-linéaire de la rétroaction de Bjerknes
s’effectue par paliers dans le modèle CESM-LE, avec un premier seuil, proche de 0 ◦C, qui
entraîne une forte amplification de la rétroaction et un second seuil, proche de 2 ◦C, au delà
duquel la rétroaction de Bjerknes est atténuée par rapport au premier seuil. Cette différence
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de comportement entre les modèles CESM-LE et GFDL CM2.1 nécessite de plus amples in-
vestigations, qui pourraient être également effectuées sur l’ensemble des modèles de la phase
5 du projet d’inter-comparaison de modèles (CMIP5 pour Coupled Model Intercomparison
Project) du Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC). Il sem-
blerait en effet que certains des modèles CMIP5 présentent un comportement moyen similaire
à celui de CESM-LE, avec un seuil proche de E=0.5 ◦C et potentiellement un comportement
plus faible au-delà de 1.5 ◦C (cf la figure S1e de Cai et al. (2018) pour l’ensemble des mo-
dèles CMIP5 ou leur Figure S3e pour les modèles sélectionnés du fait de leur simulation des
non-linéarités associées à ENSO, qui affichent un seuil proche de E=0 ◦C).

J’ai ensuite comparé les deux méthodes entre elles. Les événements forts sont préférentiel-
lement des événements EP El Niño que ce soit en simulations historiques (87 % des événements
forts sont des EP El Niño) ou futures (89 % des événements forts), du fait de leur définition
par l’indice E. C’est cohérent avec les observations et en particulier les événements extrêmes
de 1982-83 et de 1997-98 (McPhaden and Yu, 1999), ainsi qu’avec les résultats de nombreuses
études qui ont montré que les événements El Niño les plus forts en termes d’intensité se déve-
loppent à l’est du Pacifique tropical (Takahashi et al., 2011; Chen et al., 2015a; Santoso et al.,
2017). Cependant, tous les événements EP El Niño ne sont pas des événements forts. Ainsi,
même si les événements modérés sont préférentiellement des événements CP El Niño, 33 %
sont classifiés comme étant des EP El Niño dans les simulations historiques. Nous revenons
par la suite sur le changement projeté de ces caractéristiques des événements El Niño avec le
réchauffement climatique.

Dans un second temps, je me suis intéressée à l’impact que peut avoir la
modulation basse-fréquence de l’état moyen du Pacifique tropical sur la diversité
d’El Niño et aux rectifications possibles de la modulation d’ENSO sur l’état
moyen (chapitre 4). Les mécanismes associés à la modulation basse-fréquence de la diversité
d’ENSO sont encore mal compris. Plusieurs études ont suggéré que la diversité spatiale d’El
Niño, définie par les événements EP et CP, était modulée à basse fréquence par l’état moyen,
qu’elle pouvait en retour rectifier à travers les résidus d’ENSO dus à l’asymétrie entre les
événements El Niño et La Niña (Choi et al., 2009, 2012).

Cependant, alors que la relation est forte entre le mode de variabilité basse-fréquence du
Pacifique tropical (TPDV pour Tropical Pacific Decadal Variability), appelé ENSO-induced,
et la fréquence d’occurrence des événements CP El Niño dans la simulation de contrôle du
modèle GFDL CM2.1, elle n’est que faiblement diagnostiquée dans la simulation de contrôle
de CESM.

Plusieurs sources d’incertitudes peuvent expliquer ces différents comportements de la va-
riabilité interne simulée par les modèles. La première interrogation vient de la simulation de la
variance du mode TPDV ENSO-induced. Dans le modèle CESM, le mode ENSO-induced est
le second mode dominant de la variabilité décennale du Pacifique tropical, alors que c’est le
principal mode de variabilité décennale dans le modèle GFDL CM2.1. Ce mode explique 59 %
de la variance totale dans GFDL CM2.1 alors qu’il n’explique que 23 % de la variance totale
dans CESM. Ces différences de variabilité peuvent ainsi entraîner des mécanismes différents
d’interaction entre l’état moyen et la modulation basse-fréquence d’ENSO. En particulier,
Choi et al. (2013a) ont suggéré que la variance de chacun des deux modes dépend de la
force de la relation entre les résidus dus à l’asymétrie d’ENSO et le mode TPDV ENSO-
induced. Dans leur mécanisme, plus la variance expliquée par le mode ENSO-induced est
élevée, plus la rétroaction bidirectionnelle entre la modulation d’ENSO et l’état moyen (à
travers les résidus non-linéaires d’ENSO) est forte, plus la variabilité de l’amplitude d’ENSO
est élevée. Cependant, cette relation apparaît sujette aux biais récurrents des modèles de
climat, en particulier du fait d’une amplitude régulièrement sur-estimée d’ENSO. Un diag-
nostic intéressant pourrait ainsi consister à analyser la relation entre les résidus d’ENSO et
le mode TPDV ENSO-induced dans CESM-LE et d’étendre ce diagnostic aux simulations
historiques, ce qui pourrait permettre d’appréhender le mécanisme à l’oeuvre à travers la
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variabilité inter-membre.
La seconde incertitude vient de la simulation de la structure spatiale du mode ENSO-

induced. Dans le modèle CESM, les anomalies négatives du mode ENSO-induced s’étendent
plus loin dans le Pacifique central, confinant les anomalies positives dans le Pacifique oriental.
Ce biais est particulièrement visible dans la structure spatiale des SST associées à ce mode.
Il pourrait conduire à une modification de la relation entre le mode ENSO-induced et les
résidus associés à l’asymétrie d’ENSO, puisque ces derniers sont plus susceptibles à l’inverse
d’avoir une structure spatiale qui s’étend vers l’ouest compte tenu du biais, récurrent dans les
modèles de climat, de la langue d’eau froide qui s’étend trop à l’ouest du Pacifique équatorial.

Zheng et al. (2018) ont montré que le mode TPDV ENSO-induced et la dispersion, entre
les membres du grand ensemble CESM, du réchauffement simulé des SST à l’horizon 2100 sous
le scénario RCP8.5 étaient fortement liés. Ils suggèrent ainsi que l’intéraction bi-directionnelle
entre l’état moyen du Pacifique tropical et ENSO entraîne en particulier des incertitudes sur
les taux de réchauffement des SST dus au changement climatique. Compte tenu de cette
forte contribution de la variabilité interne sur les changements projetés et en particulier sur
le changement d’amplitude d’ENSO, les mécanismes liant ENSO et le TPDV dans CESM-LE
nécessitent de plus amples études.

Enfin, j’ai étudié les changements projetés des statistiques d’ENSO et des pro-
cessus thermodynamiques associés au phénomène dans le contexte de réchauffe-
ment climatique (chapitre 5).

Dans un premier temps, je me suis intéressée aux changements de statistiques
d’ENSO du fait du réchauffement climatique dans CESM-LE. Nous montrons que la
variance des anomalies de SST dans le Pacifique tropical oriental (retranscrites par le mode
E) augmente de façon significative (statistiquement significatif à 95 %) entre les simulations
historiques et futures de CESM-LE. Cette augmentation est associée à une augmentation de
la fréquence d’occurrence des événements El Niño forts, bien que cette augmentation soit
modérée (+24 %) et non linéaire, soumise à de fortes variations basse fréquence. Ce résultat
est cohérent avec les résultats obtenus à partir des modèles CMIP5 et publiés dans la revue
Nature (Cai et al., 2018). Cet article est présenté en annexe 5.3.4.2. Cette augmentation de la
variabilité du Pacifique tropical oriental est associée à l’augmentation de la stratification ver-
ticale du Pacifique central. Nous revenons par la suite sur les processus océaniques impliqués
dans ce changement de statistiques d’ENSO.

De plus, nous montrons, par l’analyse du cycle saisonnier de la variabilité du mode E,
que la variance de l’indice E augmente significativement pendant les mois de février, mars
et avril (FMA) avec le réchauffement climatique. Cette augmentation significative est asso-
ciée à une augmentation de la fréquence d’occurrence des événements forts EP El Niño qui
culminent pendant cette saison FMA et à une augmentation de la durée moyenne des événe-
ments forts EP. Il est intéressant de noter que cette augmentation de la variance de l’indice
E en FMA est indépendante de la méthode utilisée pour retirer la tendance imprimée sur les
SST par le réchauffement climatique. J’ai en effet testé deux autres méthodes permettant de
retirer le signal du changement climatique, en plus de la méthode de tendance linéaire. La
deuxième méthode consiste à retirer une tendance quadratique en chaque point, la troisième
méthode soustrait le réchauffement moyen calculé sur une plus grande région (méthode uti-
lisée par Khodri et al. (2017)). Pour cette dernière méthode, la région du Pacifique tropical
(30°S-30°N) a été considérée. Qu’elle que soit la méthode appliquée, la variance de l’indice E
augmente de façon significative statistiquement en FMA, alors même que les changements de
la variance de E peuvent être opposés suivant les méthodes pour les autres mois de l’année.
Enfin, des résultats préliminaires conduits sur des modèles CMIP5 semblent confirmer cette
augmentation de la variance des anomalies de SST dans le Pacifique équatorial oriental dans
un climat plus chaud.

Un des résultats marquants de ces dernières années, concernant le changement de statis-
tiques d’ENSO avec le réchauffement climatique, est l’augmentation projetée de la fréquence
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d’occurrence des événements El Niño extrêmes en précipitation à l’est du Pacifique (Cai et al.,
2014, 2015b, 2017). La fréquence d’occurrence de ces événements extrêmes en précipitation
est susceptible de doubler avec le réchauffement climatique à l’horizon 2100 selon les modèles
CMIP5 (Cai et al., 2014) et même quasi-quadrupler dans CESM-LE. Compte tenu des im-
pacts météorologiques et socio-économiques de ce type d’événements extrêmes, nous avons
cherché à mettre en relation cette augmentation des événements extrêmes en précipitation
avec la persistance observée des événements forts EP El Niño. Nous montrons que l’émergence
de ces événements forts EP El Niño qui ont leur pic de SST en FMA dans le climat futur
explique un tiers (33 %) de l’augmentation de la fréquence d’occurrence des événements El
Niño extrêmes en précipitation. En effet, la période FMA est celle pendant laquelle les SST
dans le Pacifique oriental connaissent leur pic saisonnier et l’ITCZ est sur le point d’atteindre
sa position la plus au sud (Xie et al., 2018), ce qui renforce le couplage entre El Niño et
l’ITCZ et favorise les précipitations extrêmes. Du fait de ce fort couplage saisonnier entre les
événements forts FMA El Niño et l’ITCZ, un réchauffement des eaux de surface dû au forçage
anthropique n’est pas nécessaire pour produire des épisodes de précipitation extrêmes dans le
Pacifique tropical est. Par ailleurs, 34 % de l’augmentation de la fréquence d’occurrence des
événements El Niño extrêmes en précipitation est associée à des événements El Niño d’inten-
sité faible à modérée, et donc associée au réchauffement global des SST. Nous montrons ainsi
que dans le modèle CESM-LE, l’augmentation projetée des événements El Niño extrêmes
en précipitation s’explique à la fois par l’augmentation des SST moyennes dans le Pacifique
oriental et par les changements des processus d’ENSO associés au réchauffement plus fort en
surface qu’en subsurface conduisant à une thermocline plus resserrée et une augmentation de
la stratification verticale.

Ainsi, ces résultats réconcilient les travaux de recherche de la dernière décennie sur les
changements de statistiques d’ENSO qui mettaient en exergue d’une part un manque de
consensus entre les modèles de climat sur l’évolution projetée de la variabilité de l’amplitude
d’ENSO dans le Pacifique oriental (région Niño-3 ou Niño-3.4) (Chen et al., 2017a) et, d’autre
part, l’augmentation projetée de la fréquence d’occurrence des événements El Niño extrêmes
en précipitation dans le Pacifique tropical oriental (Cai et al., 2014). L’analyse des événements
El Niño par le mode E de variabilité dominante du Pacifique tropical oriental a montré que
l’augmentation de la variance de l’indice E est significative statistiquement sur l’ensemble des
modèles CMIP5. La fréquence d’occurrence des événements El Niño forts EP augmentera dans
un climat plus chaud. Elle sera de plus accompagnée par une augmentation des événements
El Niño qui auront leur pic en SST plus tard qu’en situation actuelle, en FMA plutôt qu’en
NDJ. Cette augmentation explique en partie l’augmentation des événements de précipitation
extrême dans le Pacifique tropical oriental.

L’analyse par le mode E permet de considérer le phénomène ENSO dans son ensemble, en
conservant une continuité physique des processus dynamiques associés, ce que ne permet pas
l’analyse d’ENSO par des régions fixes de variabilités (à savoir les régions Niño-3 et Niño-4).
Cette méthode permet de prendre en compte de manière objective les centres d’action des
événements ENSO par les modes E et C. Elle permet également de s’affranchir des biais des
modèles dans la région du Pacifique tropical et en particulier du déplacement vers l’ouest de
la Cold Tongue climatologique.

Dans un second temps, je me suis intéressée aux changements de processus
thermodynamiques qui accompagnent et sont susceptibles d’expliquer les change-
ments de statistiques d’ENSO en situation future. Nous proposons l’hypothèse selon
laquelle la plus forte persistance des évènements EP El Niño et le décalage temporel dans
leur pic de réchauffement proviennent d’un processus de recharge plus important et d’une
rétroaction de la thermocline plus efficace dans le Pacifique est dans un climat plus chaud
tel que simulé par CESM-LE. En particulier, l’analyse du bilan de chaleur dans la couche de
mélange pendant les événements El Niño montre que la réduction de l’upwelling moyen du
fait de l’augmentation de la stratification verticale du Pacifique est largement compensée par
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l’augmentation du gradient vertical des anomalies de température au travers de la couche de
mélange ce qui conduit à une augmentation de la rétroaction de la thermocline.

Une problématique à la généralisation des résultats vient de la précision des modèles
de climat à simuler de manière réaliste l’état moyen du Pacifique tropical et les processus
associés à ENSO. En particulier, l’affaiblissement du gradient zonal de SST n’est pas sys-
tématiquement simulé en situation future malgré l’affaiblissement projeté de la Circulation
de Walker (Vecchi et al., 2006; Yeh et al., 2012). Le changement de ce gradient zonal de
SST n’est que faiblement relié aux changements de profondeur de la thermocline (Li et al.,
2016). La relation entre SST, profondeur de thermocline et alizés peut ainsi être plus faible
que l’actuelle relation observée par la rétroaction de Bjerknes. Cela entraîne des processus en
contradiction avec ceux en jeu pendant les événements El Niño pendant lesquels la réponse de
la thermocline est fortement dominée par une moindre inclinaison le long de l’équateur. Ces
changements contre-intuitifs peuvent provenir en particulier du biais récurrent des modèles
de climat à simuler une Cold Tongue excessive, ce qui provoque un réchauffement projeté
plus important dans le Pacifique ouest dans certains modèles de climat (Li et al., 2016; Ying
et al., 2019). Lorsque ce biais de la Cold Tongue est corrigé dans les modèles de climat,
le réchauffement projeté des températures de surface du Pacifique tropical ressemble à une
structure de type El Niño. Cependant, l’impact de ce biais de l’état moyen sur les processus
en jeu lors des événements ENSO actuels et futurs nécessite de plus amples investigations. De
plus, le réchauffement projeté en subsurface est diversement simulé dans le Pacifique central
dans la génération actuelle des modèles de climat (CMIP5). Compte tenu de l’importance des
processus de thermocline dans le développement des événements El Niño, une amélioration
des processus océaniques modélisés est nécessaire et peut passer par une optimisation des
paramétrisations des processus de mélange et par une augmentation de la résolution des mo-
dèles. Enfin, la simulation des non-linéarités du système climatique du Pacifique tropical est
primordiale dans la simulation de l’état moyen et des processus associés à ENSO (Boucharel
et al., 2011; Karamperidou et al., 2017; Cai et al., 2018). En particulier, les modèles qui si-
mulent de façon plus réaliste les non-linéarités associées à ENSO sont ceux qui retranscrivent
le mieux la diversité d’ENSO, que ce soit en termes de structures spatiales ou d’amplitude.

La compréhension de ces différents processus associés à ENSO et à l’état moyen du Paci-
fique tropical pourra être améliorée dans un avenir proche grâce à :

• des observations renforcées (température, vent de surface, courant), en particulier du
Pacifique est. Actuellement, le réseau d’observation du Pacifique tropical ne permet
pas d’obtenir des résolutions verticales et horizontales suffisantes pour correctement
analyser les non-linéarités des processus d’ENSO. Le développement d’un réseau d’ob-
servation amélioré du Pacifique tropical est en cours de discussion dans le cadre du
programme TPOS2020 (Tropical Pacific Observing System for 2020, Smith et al. (2019)
en cours de révision).

• une nouvelle génération de modèles couplés dans le cadre de la phase 6 du projet d’inter-
comparaison des modèles (CMIP6, Eyring et al. (2016)). La résolution plus importante
des modèles ainsi qu’une paramétrisation différente des processus océaniques peuvent
permettre d’améliorer :

– d’une part, la simulation des non-linéarités et de l’asymétrie d’ENSO, sous-estimées
de façon récurrente dans les modèles de climat,

– d’autre part, la simulation des processus couplés océan-atmosphère en jeu dans les
zones sujettes aux biais récurrents des modèles (le biais de la langue d’eau froide,
la double ITCZ et la région de l’extrême est du Pacifique équatorial).

Alors que nous nous sommes concentrés sur l’impact des changements de la stratification
verticale sur les processus liés à ENSO (le processus de recharge et la rétroaction de la ther-
mocline), d’autre processus peuvent potentiellement intervenir sur la plus grande persistance
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des événements El Niño mais également sur l’augmentation des événements forts El Niño en
situation future :

• l’augmentation des températures moyennes du Pacifique tropical qui peut faciliter le
dépassement du seuil de la rétroaction de Bjerknes, seuil qui est susceptible d’être
modifié avec l’état moyen (Johnson and Xie, 2010),

• un changement du cycle saisonnier de la rétroaction de Bjerknes et du mode d’interac-
tions océan-atmosphère associé dans la partie orientale du Pacifique tropical. Dewitte
and Takahashi (2017) ont suggéré que les événements modérés El Niño se différencient
des événements forts par l’émergence de coups de vent d’est en septembre dans l’ex-
trême est du Pacifique. Ces coups de vents d’est contre-carreraient la rétroaction de
Bjerknes dans le Pacifique est et empêcheraient l’événement EP El Niño de se dévelop-
per en fort El Niño en limitant le réchauffement qui alors ne dépasserait pas le seuil
requis. Un changement du cycle saisonnier de ce mode d’interactions air-mer avec le
réchauffement climatique pourrait déconnecter l’émergence de ces coups de vent d’est
de la croissance de l’événement El Niño. De plus amples investigations sont nécessaires
pour déterminer en particulier si ces épisodes de vent d’est sont stochastiques ou induits
par ENSO comme le suggèrent Hameed et al. (2018) et quel mécanisme se met en place
pour les contrer lors de la croissance d’un événement fort El Niño.

• des changements du forçage stochastique externe, tel que les coups de vent d’ouest
(WBWs pour Westerly Wind Bursts en anglais) qui interagissent non-linéairement avec
l’océan de surface jusqu’à le moduler (Chen et al., 2015a; Hayashi and Watanabe,
2017). Les WWBs sont susceptibles de modifier les processus de recharge du Pacifique
tropical lors des événements forts EP El Niño. Les WWBs font l’objet de nombreuses
études récentes (Puy et al., 2016b, 2017), tout comme les processus de recharge (Neske
and McGregor, 2018; Izumo et al., 2018). Leur interaction nécessite de plus amples
diagnostiques, en particulier concernant les mécanismes déterministes en jeu dans les
processus de modulation des WWBs par l’océan.

Deux régions sont donc au cœur des interactions océan-atmosphère en jeu lors des évé-
nements El Niño extrêmes. Le Pacifique tropical ouest est le centre d’action des coups de
vents d’ouest qui apparaissent déterminants dans la croissance d’un événement El Niño fort,
en particulier lorsqu’ils se produisent en été (Puy et al., 2017). Le Pacifique tropical oriental,
voire extrême-oriental, en plus des fortes interactions entre la surface et la thermocline, est le
siège des coups de vent d’est en été/automne qui sont à même de contrer le développement
d’un événement fort El Niño. Cependant, ces régions font encore l’objet de biais récurrents
dans leur simulation par les modèles couplés de climat.

Une autre interaction qui pourrait intervenir dans la persistance des événements forts El
Niño avec le réchauffement climatique est celle entre les anomalies de courant liées à ENSO et
les courants moyens. Santoso et al. (2013) ont montré que que les anomalies de courant liées
à ENSO avaient des effets opposés suivant l’intensité de l’événement El Niño. En particulier,
pendant les événements forts El Niño, les anomalies de courant d’est devenant supérieures
au courant moyen d’ouest, elles conduisent à un renversement des courants pendant les évé-
nements forts, qui se propagent alors vers l’est du Pacifique tropical. Ils ont suggéré que la
diminution projetée des courants zonaux moyens avec le réchauffement climatique (Vecchi
et al., 2006) faciliterait la propagation vers l’est des événements El Niño. Un diagnostique
préliminaire sur la direction de propagation des événements forts EP El Niño a été réalisé
dans le modèle CESM en tenant compte de la saison du pic des SST dans le Pacifique est.
La direction de propagation des événements est déterminée à partir de la pente du taux de
chauffage nul, c’est à dire quand dT/dt = 0 dans un diagramme représentant l’évolution de
l’événement El Niño à l’équateur. Les résultats préliminaires montrent que les événements
forts EP El Niño sont plus susceptibles de se propager vers l’est dans un climat plus chaud
qu’en situation actuelle, cohérent avec les résultats de Santoso et al. (2013) et que les évé-
nements forts EP FMA et ONDJ (Octobre-Janvier) El Niño sont plus susceptibles de se
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propager vers l’est que les événements forts JAS (Juillet-Septembre) El Niño. Ces résultats
pourraient confirmer le rôle renforcé de la rétroaction de la thermocline dans les événements
forts FMA et ONDJ El Niño en situation future. Cependant, cette méthode est dépendante
de la région en longitudes ou de la période du pic considérée et nécessite d’être affinée.

Enfin, la proportion d’événements EP modérés diminue dans un climat plus chaud, 24 %
(33 %) des événements El Niño modérés étant des EP El Niño en situation future (actuelle).
Takahashi and Dewitte (2016) et Takahashi et al. (2018) ont suggéré que les événements forts
El Niño sont des événements EP dont le réchauffement dans le Pacifique oriental atteint un
seuil qui renforce la rétroaction de Bjerknes. Ce changement peut être dû à une augmenta-
tion des événements EP El Niño qui deviennent des événements forts ou à une diminution
des événements modérés qui deviennent des événements EP El Niño (préférentiellement des
événements CP modérés). Dans le cas où les événements forts sont privilégiés, les mêmes
processus que ceux qui peuvent favoriser l’augmentation des événements forts El Niño et
leur persistance en FMA peuvent entrer en jeu. Dans le cas où les événements modérés CP
El Niño sont privilégiés aux événements modérés EP El Niño, un changement du mode sai-
sonnier d’interactions air-mer associé à la rétroaction de Bjerknes et qui intervient dans la
différentiation des événements modérés El Niño EP et CP peut être invoqué (Dewitte and
Takahashi, 2017). Cependant, Dewitte and Takahashi (2017) ont montré que deux modèles
de climat, GFDL CM2.1 et CESM-LE, qui simulent de façon réaliste la diversité d’ENSO et
les non-linéarités associées, ne reproduisent pas correctement les variations de SST lors de la
phase de développement des événements modérés (Avril-Octobre) en particulier le long de la
côte du Pérou. Cette région est en effet sujette à des biais importants dans les modèles de cli-
mat (Richter, 2015). Améliorer la représentation des interactions air-mer dans ces régions clés
de la dynamique océanique près des côtes apparaît ainsi primordial dans la compréhension
du développement de la diversité des événements El Niño.

Finalement, cette thèse, en étudiant l’évolution temporelle des événements El Niño, dé-
finis par leur intensité de réchauffement dans le Pacifique est plutôt que par leur différence
spatiale, a permis de mettre en avant différents comportements d’El Niño et en particulier leur
évolution saisonnière différente. Elle s’inscrit dans un contexte riche d’études qui ont amené
à la différentiation de la dynamique associée aux événements El Niño extrêmes (Chen et al.,
2015a; Takahashi and Dewitte, 2016; Santoso et al., 2017; Hameed et al., 2018; Takahashi
et al., 2018; Abellán et al., 2017b). Il semble émerger une vision d’ENSO constitué d’un côté
d’un continuum d’événements chauds faibles à modérés, dont la localisation spatiale s’étend
du Pacifique central (CP El Niño) au Pacifique oriental (EP El Niño modéré) et qui repré-
sentent la norme plutôt que l’exception et d’un autre côté d’événements extrêmes intensifiés
à l’est, fortement associés aux non-linéarités du système couplé océan-atmosphère. Certaines
approches ajoutent un mode biennal fortement influencé par le forçage atmosphérique, se
produisant localement dans le Pacifique central et ne donnant pas lieu au renversement de
phase d’ENSO par les événements La Niña (Kao and Yu, 2009; Chen et al., 2015a). Ce der-
nier mode se confondrait, en termes de structures spatiales de SST et de températures de
subsurface, avec les CP El Niño modérés, compliquant les diagnostics de processus associés.

L’analyse de l’évolution temporelle des EP El Niño et en particulier leur saison préféren-
tielle de pic en SSTA peut permettre de mieux appréhender le phénomène ENSO dans son
ensemble, en se détachant de la vision centrée sur les caractéristiques spatiales des événements
El Niño.
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This thesis work focused on the diversity of the El Niño-Southern Oscillation (ENSO) phe-
nomenon and its projected changes with global warming. ENSO diversity has received re-
newed attention in recent decades due to an increase in the number of El Niño events with
warming of surface waters in the central tropical Pacific rather than in the eastern Pacific,
where the phenomenon generally has higher positive Sea Surface Temperatures (SST) (Ashok
et al., 2007; Lee and McPhaden, 2010). These spatial differences in ocean surface warming
during El Niño events are crucial to the atmospheric response they cause around the Pacific
Ocean and the associated teleconnections between the tropics and mid-latitudes (Weng et al.,
2009). Subtle variations in Central Pacific SST can have strong impacts on the location and
intensity of latent heat release into the atmosphere, which impacts global atmospheric circu-
lation. Thus, even if they have smaller SST warming zonal extensions and lower intensities
than the El Niño events in the eastern Pacific, the El Niño events in the central Pacific are
likely to induce a stronger atmospheric response and extra-tropical teleconnections (Weng
et al., 2009). It is therefore essential to better understand ENSO events and their diversity
in order to better anticipate them.

First, I assessed the characteristics of ENSO diversity, and more particularly
that of warm events, El Niño events (chapter 3). To do this, I compared two ap-
proaches to characterise this diversity, using the control simulations of two Coupled General
Circulation Models (CGCMs): CESM-LE and GFDL CM2.1.

The first method of characterising El Niño diversity is based on the spatial distinction
of the action centres of SST warming in the tropical Pacific that can be observed between
El Niño events (Kug et al., 2009; Kao and Yu, 2009; Yeh et al., 2009a). In particular, this
method compares SST warming intensities in the ENSO historical regions, namely the Niño-
3 region in the east (5°S-5°N, 210°E-270°E) and the Niño-4 region in the central tropical
Pacific (5°S-5°N, 160°E-210°E). Two types of El Niño events are thus classified, “Central
Pacific” (CP) and “Eastern Pacific” (EP) El Niño events (Kug et al., 2009). EP (CP) El
Niño events correspond to El Niño winters during which the Niño-3 (Niño-4) SST anomalies
index is higher than the Niño-4 (Niño-3) SST anomalies index (and higher than the detection
threshold for El Niño events), i.e. when the anomalous warming of surface waters is more
pronounced in the eastern (central) tropical Pacific. Several studies have suggested that
the dynamics associated with these two types of events were different, with a deterministic
dynamic explained by the theory of the recharge-discharge oscillator (Jin, 1997a) for EP El
events Niño and a dynamic marked by atmospheric forcing for CP El Niño (Kao and Yu, 2009;
Kug et al., 2009). Indeed, due to the strong zonal contrasts of the Pacific along the equator,
whether in terms of SST, thermocline depth or sensitivity to atmospheric convection, the
central and eastern Pacific are likely to favour different processes. In particular, two oceanic
processes play a key role in the development of ENSO events, the thermocline and zonal
advection processes. The longitudinal position of the anomalous warming area at the onset
of El Niño events leads to a predominance of one or the other of these processes. In the eastern
equatorial Pacific, the deepening of the thermocline during the development of El Niño events
reduces surface cooling by limiting exchanges between the surface and the subsurface (Vialard
et al., 2001) In particular, the mean vertical advection of subsurface temperature anomalies, a
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process called thermocline feedback (TCF), is enhanced in the eastern Pacific where changes
in thermocline depth have more effects on SST, due to a shallower mean thermocline, than in
the western and central Pacific (An and Jin, 2001; Jin et al., 2006). On the other hand, zonal
advection processes are essential in the western and central Pacific (Picaut et al., 1996). In
particular, the zonal advection of the temperature gradient by current anomalies, a process
called zonal advective feedback (ZAF), is more effective in the development of ENSO-related
SST anomalies in the central Pacific due to the large zonal temperature gradient near the
eastern edge of the Warm Pool. Differences in SST between the cold eastern Pacific, referred
as to the “Cold Tongue”, and the warm western Pacific, referred to as the “Warm Pool”, also
lead to a greater sensitivity of the deep atmospheric convection onset in the central Pacific
than in the eastern Pacific, where stronger positive temperature anomalies will be required.

The second method is based on the existence of two main modes of variability in the
tropical Pacific, calculated by the Empirical Orthogonal Functions (EOF) method. The
centre of action of the first mode of variability is located in the eastern Pacific, that of the
second mode of variability is located in the central Pacific (Takahashi et al., 2011). These two
modes of variability lead to the definition of two El Niño regimes intrinsically linked to the
non-linearities of the coupled ocean-atmosphere system (Dommenget et al., 2013; Takahashi
and Dewitte, 2016). Warm El Niño events, whose SST signature is strongly printed in the
eastern Pacific, are also those with the highest intensities. The two El Niño regimes defined
by this methods, strong and moderate El Niño events, are distinguished by the intensity of
surface water warming in the eastern Pacific.

I estimated the robustness of these two definitions by comparing them in observational
datasets and numerical simulations of the climate system. First, I used two simulations of the
pre-industrial (PI) climate, i. e. without anthropogenic forcing and with constant external
forcing. These simulations are called PI-control simulations. These are long simulations
that are an essential tool for analysing the internal variability of the climate system without
interacting with changes in external forcings. The PI-control simulations are those of CESM1
(1801 years of simulation) and GFDL CM2.1 (500 years). In a second step, I used a large
set of historical climate simulations (42 members, 1920-2005) and climate projections under
the sustained greenhouse gas emission scenario, called the RCP8.5 scenario (40 members,
2006-2100). The simulations come from the CESM Large Ensemble (CESM-LE) Project,
launched by the National Center for Atmospheric Research (NCAR, Colorado, USA) and
intended for advancing understanding of internal climate variability and climate change.
This coupled climate model realistically simulates the variability of the tropical Pacific and
ENSO, although some known and frequent biases in CGCMs remain present, such as the cold
bias of the Cold Tongue or the double inter-tropical convergence zone (ITCZ).

Several studies showed that the definition of El Niño events is highly dependent on the
indices used and therefore on the method used (Singh et al., 2011; Stevenson et al., 2017). I
show that within a same method, the definition of El Niño events is also dependent on several
spatial-temporal parameters. Indeed, the first method described above, which defines El Niño
events from the fixed regions of observed variability in the tropical Pacific (Niño-3 and Niño-4
regions), is highly dependent on the winter season considered for the peak of the event. Thus,
for the same dataset, whether observations or control simulations, the detection of CP or EP
El Niño events differs depending on whether the months of November to January (NDJ),
December to February (DJF) or January to March (JFM) are used to define the event peak.
This difference may result in an inversion of the ratio of the number of CP events compared
to the number of EP El Niño events. This sensitivity to the peak season can be explained by
the spatial and temporal evolution of El Niño events, whose zonal direction of warm water
propagation changes the mean SST values between November and March. Moreover, this
method of defining El Niño events from fixed regions (Niño-3 and Niño-4 regions) appears
difficult to apply to CGCMs because of their recurring biases. These biases are particularly
pronounced in the regions used to define ENSO, which complicates the interpretation of the
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associated physical processes and severely limits the confidence that can be placed in these
results.

The second method, using the indices associated with the two main modes of variability
of the tropical Pacific, is not constrained by this fixed spatialization of the indices. These two
modes of variability are described by the E and C indices, obtained by a linear combination of
the time series, or principal components, associated with the two main modes of variability
derived from the EOF analysis. Mode E explains most of the variability in the eastern
Pacific and is more specifically associated with strong El Niño events, while mode C has a
focus in the central Pacific and includes La Niña and moderate El Niño events. However,
the classification of El Niño events as moderate or strong events depends on the threshold
value used on the E index to differentiate between these two types of events. Takahashi and
Dewitte (2016) argued that this threshold for separating the two El Niñoregimes is directly
related to the Bjerknes feedback. Above this threshold, the non-linearities of the tropical
Pacific coupled ocean-atmosphere system result in a strong amplification of the Bjerknes
feedback. A slight increase in SST in the eastern Pacific then causes an enhanced response
of zonal wind stress, which amplifies the initial warming in this tropical Pacific region. The
Bjerknes feedback thus appears non-linear and function of surface warming in the eastern
tropical Pacific. Takahashi and Dewitte (2016) and Takahashi et al. (2018) suggested that
strong El Niño events are El Niño events whose warming in the eastern Pacific reaches this
threshold in SSTA, thus reinforcing the Bjerknes feedback. This non-linear behaviour is
diagnosed, in GFDL CM2.1, from a threshold between +1.5 and +2 ◦C in SST anomalies in
the eastern Pacific. It is materialised by a bi-modality of the distribution of El Niño events in
the phase space corresponding to the two modes of variability of the tropical Pacific, i.e. in
the phase space of indices (E, C). However, this bi-modal behaviour is not very pronounced
in the CESM-LE simulations. The estimation of this threshold can therefore be considered
subjective in our study. A change of ±5 % of the threshold thus leads to a variation in
the number of strong El Niño events between 225 (-5.1 %) and 262 (10.5 %) for historical
simulations and between 271 (-10.3 %) and 322 (6.6 %) for RCP8.5 simulations.

Nevertheless, the non-linear behaviour of the Bjerknes feedback is simulated by CESM-
LE. However, it is associated with lower E-index values (close to 0 ◦C) than in observations or
in the control simulation of GFDL CM2.1 (close to 2 ◦C). It also appears that the non-linear
behaviour of the Bjerknes feedback is carried out in stages in CESM-LE, with a first threshold,
close to 0 ◦C, which results in a strong amplification of the feedback, and a second threshold,
close to 2 ◦C, beyond which the Bjerknes feedback is reduced compared to the first threshold.
This difference in behaviour between CESM-LE GFDL CM2.1 requires further investigation,
which could also be carried out on all models in Phase 5 of the Coupled Model Intercomparison
Project (CMIP5) of the Intergovernmental Panel on Climate Change (IPCC). It would indeed
seem that some of the CMIP5 models have a mean behaviour similar to that of CESM-LE,
with a threshold close to E=0.5 ◦C and potentially a lower behaviour beyond 1.5 ◦C (see Figure
S1e of Cai et al. (2018) for all CMIP5 model database or their Figure S3e for selected models
due to their ENSO non-linearities simulation, which have a threshold close to E=0 ◦C).

I then compared the two methods with each other. Strong events are preferably EP El
Niño events, whether in historical simulations (87 % of strong events are EP El Niño events)
or future simulations (89 % of strong events), due to their definition by the E index. This is
consistent with the observations and in particular the extreme events of 1982-83 and 1997-98
(McPhaden and Yu, 1999), as well as with the results of numerous studies that showed that
the most intense El Niño events develop in the eastern tropical Pacific (Takahashi et al.,
2011; Chen et al., 2015a; Santoso et al., 2017). However, not all EP El Niño events are strong
events. Thus, even if moderate events are preferentially CP El Niño events, 33 % are classified
as EP El Niño events in historical simulations. We then return to the projected change in
these El Niño flavours with global warming.

In a second step, I was interested in the impact that low-frequency modulation

251



CONCLUSIONS AND PERSPECTIVES

of the tropical Pacific mean state can have on the diversity of El Niño and the
influence of ENSO modulation on the mean state (chapter 4). The mechanisms
associated with the low-frequency modulation of ENSO diversity are still poorly understood.
Several studies suggested that the spatial diversity of El Niño, defined by the EP and CP
events, is modulated at low frequency by the mean state, which it could in turn rectify
through the ENSO residuals due to the asymmetry between El Niño and La Niña events
(Choi et al., 2009, 2012).

However, while the relationship between the Tropical Pacific Decadal Variability (TPDV)
mode, called ENSO-induced, and the frequency of occurrence of CP El Niño events, in the
PI-control simulation of CM2.1 GFDL, is strong, it is only poorly diagnosed in the CESM
PI-control simulation.

Several sources of uncertainty can explain these different behaviours of internal variability
simulated by the models. The first issue comes from the simulation of the ENSO-induced
mode variance. In CESM, the ENSO-induced mode is the second dominant mode of decadal
variability in the tropical Pacific, while it is the main mode of decadal variability in GFDL
CM2.1. This mode explains 59 % of the total variance in GFDL CM2.1 while it explains only
23 % of the total variance in CESM. These differences in variability can thus lead to different
interaction between the mean state and ENSO low-frequency modulation. In particular,
Choi et al. (2013a) suggested that the variance of each of the two modes depends on the
strength of the relationship between the residuals due to ENSO asymmetry and the ENSO-
induced TPDV mode. In their mechanism, the higher the variance explained by the ENSO-
induced mode, the higher the bidirectional feedback between the ENSO modulation and the
mean state (through the non-linear ENSO residuals), the higher the variability of the ENSO
amplitude. However, this relationship appears to be subject to recurrent climate model
biases, particularly the regularly overestimated amplitude of ENSO. An interesting diagnosis
could therefore consist in analysing the relationship between ENSO asymmetry residuals and
the TPDV ENSO-induced mode in CESM-LE, and extending this diagnosis to historical
simulations, which could highlight the mechanism at work through inter-member variability.

The second uncertainty comes from the simulation of the ENSO-induced mode spatial
pattern. In CESM, the negative anomalies of the ENSO-induced mode extend further into
the central Pacific, confining the positive anomalies into the eastern Pacific. This bias is
particularly visible in the regressed SST spatial pattern associated with this mode. It could
lead to a change in the relationship between the ENSO-induced mode and the residuals
associated with ENSO asymmetry, since the latter are more likely to have a spatial pattern
that extends westward given the bias, recurrent in CGCMs, of the Cold Tongue that extends
too far west of the equatorial Pacific.

Zheng et al. (2018) showed that the TPDV ENSO-induced mode and the dispersion, be-
tween the CESM-LE members, of the simulated SST warming by 2100 under the RCP8.5
scenario were strongly linked. They suggested that the two-ways feedback between the tropi-
cal Pacific mean state and ENSO leads in particular to uncertainties about the SST warming
rates due to climate change. Given this strong contribution of internal variability to projected
changes, and in particular to the change in ENSO amplitude, the mechanisms linking ENSO
and TPDV in CESM-LE require further study.

Finally, I studied the projected changes in ENSO statistics and thermody-
namic processes associated with the phenomenon in the context of global warm-
ing (chapter 5).

First, I was interested in the changes in ENSO statistics due to global warming
in CESM-LE. We show that the variance of SST anomalies in the eastern tropical Pacific
(transcribed by mode E) increases significantly (statistically significant at 95 % confidence
level) between historical and future CESM-LE simulations. This increase is associated with
an increase in the occurrence frequency of strong El Niño events, although this increase is
moderate (+24 %) and non-linear, subject to pronounced low frequency variations. This
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result is consistent with the results obtained from the CMIP5 models and published in the
journal Nature (Cai et al., 2018). This article is presented in appendix 5.3.4.2. This increase
in variability in the eastern tropical Pacific is associated with an increase in the vertical
stratification of the central Pacific. We will return to the ocean processes involved in this
change in ENSO statistics.

In addition, we show, by analysing the seasonal cycle of the variability of the mode E,
that the E-index variance increases significantly during the months of February, March and
April (FMA) with global warming. This significant increase is associated with an increase in
the frequency of occurrence of strong EP El Niño events that peak during this FMA season,
and an increase in the mean duration of strong EP El Niño events. It is interesting to note
that this increase in the E-index variance in FMA is independent of the method used to
remove the trend on SST due to global warming. I have indeed tested two other methods
to remove the climate change trend, in addition to the linear detrend method. The second
method consists of removing a quadratic trend at each point, the third method subtracts
the mean warming calculated over a larger region, following Khodri et al. (2017). For the
latter method, the tropical Pacific region (30°S-30°N) is considered. Regardless of the method
applied, the E-index variance increases significantly statistically in FMA, while changes in
the E-index variance can be opposed according to the methods for the other months of the
year. Finally, preliminary results from CMIP5 models seem to confirm this increase in the
SST anomalies variance in the eastern equatorial Pacific in a warmer climate.

One of the most significant results in recent years, regarding the change in ENSO statistics
with global warming, is the projected increase in the occurrence frequency of El Niño extreme
precipitation events in the eastern Pacific (Cai et al., 2014, 2015b, 2017). The frequency of
occurrence of these extreme precipitation events is likely to double with global warming by
2100 according to CMIP5 models (Cai et al., 2014), and even almost quadruple in CESM-LE.
Given the meteorological and socio-economic impacts of this type of extreme event, we have
sought to relate this increase in precipitation extreme events to the observed persistence of
strong events EP El Niño. We show that the emergence of these strong EP El Niño events
that have their SST peak in FMA in the future climate explains a third (33 %) of the increase
in the frequency of occurrence of extreme El Niño events in precipitation. Indeed, the FMA
period is the period during which SST in the eastern Pacific experience their seasonal peak
and the ITCZ is about to reach its southernmost position (Xie et al., 2018), which strengthens
the coupling between El Niño and the ITCZ and promotes extreme precipitation. Because
of this strong seasonal coupling between the strong FMA El Niño events and the ITCZ, a
SST warming due to anthropogenic forcing is not required to produce extreme precipitation
events in the eastern tropical Pacific. In addition, 34 % of the increase in the frequency of
occurrence of extreme precipitation El Niño events is associated with weak to moderate El
Niño events, and therefore associated with SST warming. We show that in CESM-LE, the
projected increase in extreme precipitation El Niño events is explained both by the increase
in mean SST in the eastern Pacific and by changes in ENSO processes associated with higher
surface warming than subsurface warming leading to a sharper thermocline and an increased
vertical stratification.

Thus, these results reconcile the research work of the last decade on ENSO statistical
changes under global warming. On the one hand, many studies highlighted a lack of consensus
between CGCMs on the projected evolution of ENSO amplitude variability in the eastern
Pacific (Niño-3 or Niño-3.4 regions) (Guilyardi et al., 2009b; Bellenger et al., 2014; Chen
et al., 2017a). On the other hand, the frequency of occurrence of extreme precipitation El
Niño events in the eastern tropical Pacific are projected to increase in the future by the
CMIP5 models (Cai et al., 2014, 2015a, 2017). The analysis of El Niño events by the mode E
of dominant variability in the eastern tropical Pacific showed that the increase in the E-index
variance is statistically significant across CMIP5 models. The frequency of occurrence of
strong EP El Niño events will increase in a warmer climate. It will also be accompanied by
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an increase in El Niño events, which will peak in SST later than in the current situation, in
FMA rather than in NDJ. This increase partly explains the increase in extreme precipitation
events in the eastern tropical Pacific.

The analysis of El Niño events by the mode E allows the ENSO phenomenon to be
considered as a whole, while maintaining a physical continuity of the associated dynamic
processes, which is not possible with the analysis of ENSO by fixed regions of variability
(Niño-3 and Niño-4 regions). This method objectively takes into account the action centres
of ENSO events by modes E and C. It also avoids model biases in the tropical Pacific region
and, in particular, the westward shift of the climatological Cold Tongue.

Secondly, I was interested in the changes in thermodynamic processes that
accompany and are likely to explain the changes in ENSO statistics in the future.
We suggest that the greatest persistence of EP El Niño events and the time lag in their
warming peak are due to a larger recharging process and more effective thermocline feedback
in the eastern Pacific in a warmer climate as simulated by CESM-LE. In particular, the
analysis of the mixed layer heat budget during the El Niño events shows that the reduction
in mean upwelling, due to the increase in Pacific vertical stratification, is largely offset by
the increase in the vertical gradient of temperature anomalies across the mixing layer, which
leads to an overall increase in the thermocline feedback.

An issue in generalising the results comes from the accuracy of CGCMs to realistically
simulate the tropical Pacific mean state and the processes associated with ENSO. In par-
ticular, the weakening of the SST zonal gradient is not systematically simulated in future
simulations, despite the projected weakening of the Walker Circulation (Vecchi et al., 2006;
Yeh et al., 2012). The change in the SST zonal gradient is only weakly related to changes in
thermocline depth (Li et al., 2016). The relationship between SST, thermocline depth and
trade winds may therefore be weaker than the current relationship observed by the Bjerknes
feedback. This leads to processes in contrast to El Niño processes, when the thermocline re-
sponse is strongly dominated by a lower inclination along the equator. These counter-intuitive
changes may be due in particular to the recurrent bias of CGCMs to simulate excessive Cold
Tongue, resulting in greater projected warming in the western Pacific in some models (Li
et al., 2016; Ying et al., 2019). When this Cold Tongue bias is corrected in CGCMs, the pro-
jected tropical Pacific SST warming resembles an El Niño-like pattern. However, the impact
of this mean state bias on the processes involved in current and future ENSO events requires
further investigation. In addition, the projected subsurface warming is variously simulated
in the Central Pacific in the CMIP5 models. Given the importance of thermocline processes
in the development of El Niño events, an improvement of modelled oceanic processes is re-
quired and can be achieved by optimizing mixing process parameterizations and increasing
model resolution. Finally, the simulation of the non-linearities of the tropical Pacific climate
system is essential in the simulation of the mean state and processes associated with ENSO
(Boucharel et al., 2011; Karamperidou et al., 2017; Cai et al., 2018). In particular, models
that more realistically simulate the non-linearities associated with ENSO are those that best
reflect ENSO diversity, both in terms of spatial patterns and amplitude.

The understanding of these different processes associated with ENSO and the tropical
Pacific mean state can be improved in the near future through:

• increased observations (temperature, surface wind, current), particularly in the eastern
Pacific. Currently, the tropical Pacific observation network does not provide sufficient
vertical and horizontal resolutions to properly analyse the non-linearities of ENSO
processes. The development of an improved observation network for the tropical Pacific
is being discussed as part of the TPOS2020 programme (Tropical Pacific Observing
System for 2020, Smith et al. (2019)).

• a new generation of coupled models as part of Phase 6 of the Model Intercomparison
Project (CMIP6,Eyring et al. (2016)). The higher resolution of the CGCMs and a
different parameterization of ocean processes can improve:
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– on the one hand, the simulation of ENSO non-linearities and asymmetry, which
are repeatedly underestimated in CGCMs,

– on the other hand, the simulation of coupled ocean-atmosphere processes at play
in regions subject to recurrent model biases (the cold water tongue bias, the double
ITCZ and the extreme eastern equatorial Pacific region).

While we focused on the impact of changes in vertical stratification on ENSO-related
processes (the recharging process and thermocline feedback), other processes can potentially
influence the greater persistence of El Niño events but also the increase in El Niño strong
events in future situations:

• the increase in mean SST in the tropical Pacific that can facilitate exceeding the Bjerk-
nes feedback threshold, which is subject to change with the mean state (Johnson and
Xie, 2010),

• a change in the seasonal cycle of Bjerknes feedback and the associated ocean-atmosphere
interaction pattern in the eastern tropical Pacific. Dewitte and Takahashi (2017) sug-
gested that moderate EP El Niño events are distinguished from strong EP El Niño
events by the emergence of easterly wind bursts in September in the far eastern Pacific.
These easterly wind bursts would counter the Bjerknes feedback in the eastern Pacific
and prevent the EP El Niño event from developing into a strong El Niño by limiting the
warming that would then not exceed the required threshold. A change in the seasonal
cycle of this mode of air-sea interactions with global warming could disconnect the
emergence of these easterly wind bursts from the growth of the El Niño event. Further
investigation is needed to determine in particular whether these easterly wind episodes
are stochastic or induced by ENSO as suggested by Hameed et al. (2018), as well as to
diagnose if and which counter-acting forcing is needed for a strong El Niño to develop.

• changes in external stochastic forcing, such as Westerly Wind Bursts (WWBs) that in-
teract non-linearly with the surface ocean until they modulate it (Hayashi and Watan-
abe, 2017). WWBs are likely to alter the recharge processes in the tropical Pacific
during strong EP El Niño events. WWBs are the subject of numerous recent studies
(Puy et al., 2016b, 2017), as are recharge processes (Neske and McGregor, 2018; Izumo
et al., 2018). Their interaction requires further diagnosis, in particular regarding the
deterministic mechanisms at play in the ocean modulation processes of WWBs.

Two regions are therefore at the heart of the ocean-atmosphere interactions at play during
extreme El Niño events. The western tropical Pacific is the centre of action for WWBs that
appear to be decisive in the growth of a strong El Niño event, especially when they occur
in summer (Puy et al., 2017). The eastern, even far eastern, tropical Pacific, in addition to
the strong interactions between the surface and the thermocline, is the site of easterlies wind
bursts in summer/fall that are able to counter the development of a strong El Niño event.
However, these regions are still subject to recurrent biases in their simulation by CGCMs.

Another interaction that could be involved in the persistence of El Niño strong events with
global warming is that between ENSO-related current anomalies and mean currents. Santoso
et al. (2013) showed that ENSO-related current anomalies have opposite effects depending on
the intensity of the El Niño event. In particular, during strong El Niño events, with the eastern
current anomalies becoming greater than the western mean current, they lead to a reversal
of currents during strong events, which then spread to the eastern tropical Pacific. They
suggested that the projected decrease in mean zonal currents with global warming (Vecchi
et al., 2006) would facilitate the eastward spread of El Niño events. A preliminary diagnosis
on the direction of propagation of strong EP El Niño events was carried out in CESM, taking
into account the season of the SST peak in the eastern Pacific. The direction of propagation
of the events is determined from the slope of the zero heating rate, i.e. when dT/dt = 0 in a
diagram representing the evolution of the event El Niño at the equator (Hovmuller diagram).
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Preliminary results show that strong EP El Niño events are more likely to spread eastward in
a warmer climate than in the current situation, consistent with the results of Santoso et al.
(2013). Strong EP FMA and ONDJ (October-January) El Niño events are also more likely
to spread eastward than strong JAS (July-September) El Niño events. These results could
confirm the enhanced role of thermocline feedback in strong FMA and ONDJ El Niño events
in future situations. However, this method is dependent on the longitudinal region or on the
peak period considered and needs to be refined.

Finally, the proportion of moderate EP events decreases in a warmer climate, with 24 %
(33 %) of moderate El Niño events being EP El Niño in future (current) situations. Takahashi
and Dewitte (2016) and Takahashi et al. (2018) suggested that the strong El Niño events
are EP events whose warming in the eastern Pacific reaches a threshold that reinforces the
Bjerknes feedback. This change may be due to an increase in EP El Niño events that become
strong events or a decrease in moderate events that become EP El Niño events (preferably
moderate CP events). In the case where strong events are privileged, the same processes as
those that can promote the increase of strong El Niño events and their persistence in FMA can
come into play. In the case where moderate CP El Niño events are favoured over moderate EP
El Niño events, a change in the seasonal mode of air-sea interactions associated with Bjerknes
feedback, which is involved in the differentiation of moderate El Niño EP and CP events, can
be invoked (Dewitte and Takahashi, 2017). However, Dewitte and Takahashi (2017) showed
that the two climate models, GFDL CM2.1 and CESM-LE, which realistically simulate ENSO
diversity and associated non-linearities, do not correctly reproduce SST variations during the
development phase of moderate events (April-October), particularly along the Peruvian coast.
This region is indeed subject to significant biases in CGCMs (Richter, 2015). Improving the
representation of air-sea interactions in these key regions of ocean dynamics near the coast
is therefore essential in understanding the development of the diversity of El Niño events.

This thesis, by investigating the temporal evolution of El Niño events, defined by their
warming intensity rather than by their spatial difference, highlighted different El Niño be-
haviours and in particular their different seasonal evolution. It is part of a rich context
of studies that led to the differentiation of the dynamics associated with extreme El Niño
events (Chen et al., 2015a; Takahashi and Dewitte, 2016; Santoso et al., 2017; Hameed et al.,
2018; Takahashi et al., 2018; Abellán et al., 2017b). There appears to be a vision of ENSO
consisting of:

• a continuum of weak to moderate warm events, whose spatial location extends from the
Central Pacific (CP El Niño) to the Eastern Pacific (moderate EP El Niño) and which
represent the norm rather than the exception,

• intensified extreme events in the eastern Pacific, strongly associated with the non-
linearities of the coupled ocean-atmosphere system.

Some approaches add a biennial mode strongly influenced by atmospheric forcing, occurring
locally in the central Pacific and not leading to ENSO phase reversal of La Niña events
(Kao and Yu, 2009; Chen et al., 2015a). The latter mode would merge, in terms of SST
spatial patterns and subsurface temperatures, with the CP moderate El Niño, complicating
the diagnosis of associated processes.

The analysis of the temporal evolution of the El Niño events, and in particular their
preferential SSTA peak season, can provide a better understanding of the ENSO phenomenon
as a whole, by moving away from the vision focused on the spatial characteristics of El Niño
events.
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Michael J. McPhaden10

The El Niño–Southern Oscillation (ENSO) is the dominant and most consequential climate variation on Earth, and is 

characterized by warming of equatorial Pacific sea surface temperatures (SSTs) during the El Niño phase and cooling 

during the La Niña phase. ENSO events tend to have a centre—corresponding to the location of the maximum SST 

anomaly—in either the central equatorial Pacific (5° S–5° N, 160° E–150° W) or the eastern equatorial Pacific (5° S–5° N, 

150°–90° W); these two distinct types of ENSO event are referred to as the CP-ENSO and EP-ENSO regimes, respectively. 

How the ENSO may change under future greenhouse warming is unknown, owing to a lack of inter-model agreement over 

the response of SSTs in the eastern equatorial Pacific to such warming. Here we find a robust increase in future EP-ENSO 

SST variability among CMIP5 climate models that simulate the two distinct ENSO regimes. We show that the EP-ENSO 

SST anomaly pattern and its centre differ greatly from one model to another, and therefore cannot be well represented 

by a single SST ‘index’ at the observed centre. However, although the locations of the anomaly centres differ in each 

model, we find a robust increase in SST variability at each anomaly centre across the majority of models considered. This 

increase in variability is largely due to greenhouse-warming-induced intensification of upper-ocean stratification in the 

equatorial Pacific, which enhances ocean–atmosphere coupling. An increase in SST variance implies an increase in the 

number of ‘strong’ EP-El Niño events (corresponding to large SST anomalies) and associated extreme weather events.

Alternating between El Niño and La Niña events, the ENSO affects 
extreme weather events, ecosystems and agriculture around the 
world1–7. ENSO events vary greatly8–15: the EP-ENSO is associated with 
strong El Niño events and weak cold SST anomalies, and is character-
ized by the maximum SST anomaly (the SST anomaly centre) being 
located in the eastern equatorial Pacific (the ‘Niño3’ region: 5° S–5° N, 
150°–90° W); the CP-ENSO is associated with strong or moderate La 
Niña events and modest El Niño events, and is characterized by the 
SST anomaly centre being located in the central equatorial Pacific 
(5° S–5° N, 160° E–150° W). EP-El Niño events are the strongest and 
most destructive El Niño events. During such events, SST warming in 
the Niño3 region leads to flooding in southwest USA, Ecuador and 
northeast Peru, and to droughts in regions that border the western 
Pacific1,4. In extreme cases, the disruption includes substantial loss of 
marine life in the eastern Pacific, mass bleaching of corals across the 
Pacific and beyond2, and movement of the intertropical convergence 
zone7 and of the South Pacific convergence zone towards the equa-
tor5,16, inducing catastrophic floods and droughts across the Pacific 
region5,7. Because of these severe effects, determining how EP-El Niño 
SST variability responds to greenhouse warming is one of the most 
important issues in climate science. However, over several model gen-
erations, there has been no inter-model consensus on future variability 
using conventional ENSO indices17–19.

This lack of consensus is despite inter-model agreement on the 
change in mean state and modest inter-model agreement on the 
response of CP-ENSO SST variability and on the change in certain 
characteristics of ENSO extremes. First, faster warming in the eastern 

equatorial Pacific than in the surrounding regions and in the equatorial 
Pacific than in the non-equatorial Pacific20 facilitates an increased fre-
quency of equatorward shifts of the convergence zones and increased 
rainfall variability, even if SST variability does not change7,16,21. The 
extreme shifts of the convergence zones occur during El Niño events, 
particularly during strong ones5,7,16. Second, El Niño events with  
eastward-propagating anomalies increase in frequency as a conse-
quence of weakening Walker circulation22. Finally, there has been 
a focus on the response of CP-ENSO SST variability to greenhouse 
warming. Although the frequency of CP-El Niño events is projected to 
increase, the robustness of the increased frequency is debated9,23–25. On 
the other hand, a projected faster warming in the surface layer of the 
ocean than at depths enhances the role of the relatively cold subsurface 
water in the central Pacific in generating strong La Niña events, leading 
to an increased frequency of extreme La Niña events under greenhouse 
warming26.

The response of EP-ENSO SST variability to greenhouse warming is 
even more uncertain, owing to the lack of inter-model consensus17–19. 
Previous examinations of this issue focused on SST variability at a fixed 
location, typically the Niño3 region17,18. This approach assumes that 
models simulate an EP-ENSO SST anomaly centre that can be repre-
sented by the Niño3 SST index, as is the case in observations. Here 
we show that the longitude of EP-ENSO SST anomaly centres differs 
greatly from one model to another, particularly when considering  
models that cannot simulate ENSO diversity. However, we also show 
that there is a robust increase across models in EP-El Niño SST varia-
bility at the anomaly centre of each model.
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Distinguishing SST anomaly centres
At least two ENSO indices are required to distinguish between 
CP-ENSO and EP-ENSO SST anomaly centres12,13. As in previous 
studies, we use the first two principal modes of an empirical orthogo-
nal function (EOF) analysis of monthly SST anomalies12,13, with each 
EOF mode (EOF1 and EOF2) described by a principal spatial pattern, 
and a principal-component time series scaled to have a variance of 
unity (see Methods section ‘Data, model outputs and EOF analy-
sis’). We applied the EOF analysis to each of five reanalysis products, 
which we take as the observed SSTs. The positive EOF1 phase exhib-
its a warm-anomaly centre in the central eastern Pacific; the positive 
EOF2 phase exhibits a warm-anomaly centre in the central Pacific and 
a cool-anomaly centre in both the eastern and western parts of the 
basin8 (Extended Data Fig. 1a, b). The SST anomaly pattern of an ENSO 
event is described by a combination of EOF1 and EOF2.

The two monthly principal-component time series display a nonlin-
ear (quadratic13) relationship between the two principal modes 
(Fig. 1a): PC2(t) = α[PC1(t)]2 + βPC1(t) + γ. For the observations, 
obtained from multi-reanalysis products (see Methods section ‘Data, 
model outputs and EOF analysis’), the mean value of α is −0.31, which 
is significantly different from zero at a confidence level of greater  
than 95%. An EP-ENSO event is described by an E-index12, which is 
defined as − /(PC1 PC2) 2  so that the associated warm-anomaly  
centre averaged over the season in which an EP-El Niño peaks 

(December–February) is in the eastern equatorial Pacific. The 
CP-ENSO regime is described by a C-index, defined as 

+ /(PC1 PC2) 2 , which has a warm-anomaly centre in the central 
equatorial Pacific (Extended Data Fig. 1c, d). The skewness of the 
observed monthly E-index is 1.48, reflecting a greater amplitude of 
EP-El Niño events than of cold SST anomalies. By contrast, the skew-
ness of the monthly C-index is −0.43, reflecting a stronger amplitude 
of CP-La Niña events than of CP-El Niño events.

Nonlinear dynamics generate skewness
The skewness of the C-index and E-index distributions encapsulates 
the asymmetry in their associated spatial patterns, and the physical 
processes responsible for ENSO diversity. Over the central Pacific, 
during a CP-El Niño event, eastward displacement of the atmospheric 
convection over the western Pacific warm pool is small, and zonal 
advection feedback dominates over other processes such as the ther-
mocline feedback10,11,13,14. An extreme La Niña event occurs when 
the central equatorial Pacific thermocline is shallower than normal. 
This is often associated with the aftermath of an EP-El Niño heat dis-
charge, during which Ekman pumping and nonlinear zonal advection 
are important, facilitating negative SST skewness26. Over the eastern 
equatorial Pacific, the formation of cool anomalies is curtailed by  
limited upward displacement of the climatological thermocline, which 
is already very close to the ocean surface. Instead, this climatological 
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Fig. 1 | Identifying the EP-ENSO anomaly centre in observations 
and models. a, Nonlinear relationship between the first and second 
principal components (PC1 and PC2) of SST anomalies averaged over 
December–February (black dots; see also Extended Data Fig. 1) from 
five observational reanalysis products. Grey dots indicate monthly data. 
The nonlinearity is determined by fitting these monthly data with the 
quadratic function PC2(t) = α[PC1(t)]2 + βPC1(t) + γ. The red curve 
shows the same fit, but using the December–February average (black 
points). b, SST anomaly patterns associated with EP-ENSO in two models, 
highlighting the large difference in the longitude of EP-ENSO anomaly 
centres (132.25° W for CESM1-CAM5; 101.75° W for IPSL-CM5A-LR) 
that can occur between climate models. c, The parameter α determined 
using the monthly data versus the skewness of the E-index and C-index for 
all models analysed (symbols). This parameter is a measure of the contrast 

between the CP-ENSO and EP-ENSO and of the size of the skewness 
of the corresponding C-index and E-index. Models with greater |α| 
systematically produce larger negative skewness in the C-index and larger 
positive skewness in the E-index. The large black filled circles indicate 
the observed value αobs (dashed line; the mean of the five observational 
reanalysis products). The 17 models that produce |α| < |αobs|/2 (above the 
dash-dotted line) are denoted by stars and referred to as ‘non-selected’; 
the other 17 models are shown using various symbols and correspond to 
the 17 models that we select for further analysis. Details of all models can 
be found in ref. 29. The linear fits (solid lines) between α and the E-index 
or C-index are displayed together with the correlation coefficient R, slope 
and P value from the regression. d, e, Nonlinear relationship between the 
December–February-average principal components for the selected (d) 
and non-selected (e) models, with the red curves showing quadratic fits.
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setting of the thermocline favours thermocline deepening and thus 
the development of strong warm anomalies during EP-El Niño events, 
which also involve substantial eastward movement of atmospheric 
deep convection from the western Pacific warm pool to the eastern 
equatorial Pacific.

These processes in the eastern Pacific region are enhanced by nonlin-
ear Bjerknes feedback, by which the response of zonal winds increases 
with positive SST anomalies, contributing to the positive SST skewness 
in the eastern equatorial Pacific13,14. We obtained the EP-El Niño and 
CP-El Niño SST anomaly pattern using a bi-linear regression of the 
quadratically de-trended December–February-average SST anomaly 
at each grid point onto the December–February-average E-index and 
C-index (Extended Data Fig. 1c, d), to focus on the peak ENSO season. 
The same was carried out for zonal wind stress anomalies (see Methods 
section ‘Diagnosis of nonlinear Bjerknes feedback’), but using monthly 
data to take into account that winds are important before the peak 
season. We then took the time series at the associated wind-stress 
anomaly centre (the longitude of the maximum wind anomalies aver-
aged over 5° S–5° N) to illustrate this nonlinear process. Wind-stress 
anomalies respond linearly to concurrent monthly SST anomalies in 
the CP-ENSO centre (Extended Data Fig. 1f). However, the response 
is nonlinear for EP-ENSO anomalies13,14,27,28: stronger for warm 
anomalies than for cold anomalies (Extended Data Fig. 1e). Enhanced 
westerly-wind anomalies induce a reduction in equatorial upwelling, 
an eastward tilting thermocline and westward upper-ocean currents, 
through Ekman pumping, zonal advection and, particularly, thermo-
cline feedbacks, which promote further growth of eastern Pacific warm 
anomalies14,27,28.

Skewness determines the anomaly centre
To identify the EP-ENSO anomaly centre in models, we conducted 
a similar analysis for 34 CMIP5 models. We applied EOF analysis  
to monthly SST anomalies, quadratically de-trended over the  
full period 1900–2099 (see Methods section ‘Data, model outputs  
and EOF analysis’). These models were forced with historical  
anthropogenic and natural forcings until 2005, and the 
Intergovernmental Panel on Climate Change Representative 
Concentration Pathway (RCP) 8.5 future greenhouse gas concen-
tration trajectory from 2006 onwards29. Although the multi-model 
average position of the EP-ENSO anomaly centre compares well with 
the observed position, the position of the anomaly centre differs from 
one model to another with a range of 61.5° in longitude (Extended 
Data Table 1), and the associated SST anomaly patterns could be very 
different (Fig. 1b). Our approach does not impose a fixed-location 
anomaly centre, in contrast to approaches that use the Niño3 index. 
This allows us to assess the response of the EP-ENSO SST simulated 
by each individual model.

By definition, the model-predicted SST anomaly centres associated 
with the C-index and E-index correspond to the maximum negative 
and positive skewness of these indices, respectively. Thus, identifying 
the CP-ENSO and EP-ENSO anomaly centre in a model is equivalent 
to locating the maximum negative and positive skewness, assuming 
that the model is able to generate skewness. An inter-model relation-
ship shows that models with a larger |α| systematically produce greater 
positive skewness in the E-index (correlation of 0.92) and greater neg-
ative skewness in the C-index (correlation of 0.84; Fig. 1c). Thus, the 
parameter α connects the two skewness values and measures the diver-
sity of the ENSO, which encapsulates the nonlinear Bjerknes feedback 
discussed above. The parameter α is also related to the response of 
zonal winds to eastern Pacific warm anomalies and to central Pacific 
cool anomalies (Extended Data Fig. 2). We therefore select models on 
the basis of their corresponding value of α.

The majority of models examined here simulate a value of |α| that is 
lower than the observed value, consistent with previous findings that 
many models struggle to simulate the two types of ENSO30,31, and the 
observed α32. Only 17 models produce a value of |α| that is at least 50% 
of the observed value and generate a reasonable, nonlinear PC1–PC2 

relationship (Fig. 1d; see Extended Data Fig. 3 for anomaly patterns and 
Extended Data Fig. 4 for the nonlinear relationship in some individual 
models). Excluding these 17 values, the next largest value of |α| is only 
36% of the observed value. We therefore use only these 17 models to 
assess changes in EP-ENSO under greenhouse warming. The remaining 
17 models (stars in Fig. 1c) generate small values of |α|—with some 
values of α having the opposite sign in at least one centre compared to 
the observed value (Fig. 1c)—and consistently produce a far weaker 
nonlinear PC1–PC2 relationship (Fig. 1e), indicating a weaker or lack 
of nonlinear Bjerknes feedback (see Extended Data Fig. 5 for anomaly 
patterns and Extended Data Fig. 6 for the lack of a nonlinear relation-
ship in some non-selected individual models). In these non-selected 
models, PC1 and PC2 are scattered without a well-defined relationship, 
which means that events with the same E-index can correspond to a 
combination of large PC1 and small PC2, or the other way around. As a 
result, the EP-El Niño anomaly pattern and the location of the anomaly 
centre vary substantially from one event to another, so it is difficult to 
assess the future change in variability.

Variability increases at the EP-ENSO centre
We compare the standard deviation (s.d.) of the E-index in the pres-
ent-day control (1900–1999) and future climate change (2000–2099) 
periods, each of 100 years. 15 of the 17 selected models (88%) simulate 
an increased variance in the E-index in the future period (red bars 
Fig. 2a). The two models that generate reduced EP-El Niño variability 
(CCSM433 and GFDL-ESM2M) also produce reduced climatologi-
cal rainfall in the equatorial eastern Pacific, in contrast to increased 
climatological rainfall in the ensemble average. However, it is not 
clear whether the reduced climatological rainfall is a consequence or 
a cause of the decreased EP-El Niño variability. The ensemble-mean 
increase in the standard deviation of EP-El Niño SST is 15%, which is 
significant at more than the 95% confidence level according to a boot-
strap test (see Methods section ‘Statistical significance test’; Extended 
Data Fig. 7a). The increase in variance translates to a 25% and 27% 
increase in occurrences of EP-El Niño events with an E-index of more 
than 0.75 s.d. and more than 1 s.d., respectively. For strong events 
(E-index > 1.5 s.d.; Fig. 2b), the increase in frequency is 47%, although 
there is no inter-model consensus on changes in intensity. By contrast, 
for the non-selected models, there is no inter-model consensus on the 
change in variance, with only 9 of the 17 models (53%) producing an 
increase (Extended Data Fig. 8a).

Sensitivity to emission scenarios and to  model generations suggests 
that 12 of the 15 selected CMIP5 models (80%) that are forced under 
RCP4.5 and five of the seven CMIP3 models (71%) forced under the 
A2 scenario and selected using the same value of α generate an increase 
in E-index variance (see Methods section ‘Sensitivity to emission sce-
narios’). In addition, a sensitivity test of our finding to model selec-
tion reveals that, even when all 34 CMIP5 models under RCP8.5 are 
considered, there is still a reasonable inter-model consensus on the 
increased E-index variance, with 24 of the 34 models (71%) simulating 
an increase (Extended Data Fig. 8a). By contrast, in terms of Niño3 SST 
variance, only 18 of the 34 CMIP5 models (53%) produce an increase 
(Extended Data Fig. 8b). In the selected models, the inter-model 
consensus is further enhanced because the CP-ENSO and EP-ENSO 
regimes are more distinguishable, with the EP-ENSO anomaly pattern 
and centre better defined than in the non-selected models, as indicated 
by the large |α| and SST skewness values. As such, for the selected mod-
els, the longitudinal range of the EP-ENSO anomaly centre is reduced 
from 61.5° to 28.5° and the Niño3 SST anomaly becomes a reasonable 
index to represent EP-El Niño events. 12 of the 17 selected models 
(70.5%) produce an increased Niño3 SST variance. This is a reasonable 
inter-model consensus, although still lower than that using the E-index 
(Extended Data Fig. 8a, b).

Stratification change boosts dynamic coupling
We find that although there is an ensemble-mean increase in |α|—
which signifies the continuous separation of eastern and central Pacific 
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centres—from the present-day to the future climate, the change is 
statistically insignificant and without an inter-model consensus. On 
the other hand, the change in mean climate is robust and can explain  
the increased EP-ENSO variance. For example, under greenhouse 
warming, the change in mean state includes faster warming in the east-
ern equatorial Pacific than in the surrounding regions20 (Extended Data 
Fig. 9a). Although its direct effect on SST variability is already removed 
through the quadratic de-trending process, there is a statistically sig-
nificant relationship between the intensity of the warming pattern and 
eastern Pacific variability (Extended Data Fig. 9b). The surface warm-
ing pattern, with stronger warming in the eastern equatorial Pacific 
than in the surrounding regions, contributes to the increased EP-El 
Niño variability by facilitating more frequent atmospheric convection 
in the region.

However, a greater contribution to this variability comes from 
increased vertical stratification of the upper equatorial Pacific 
Ocean (Fig. 3a, b). The increased vertical stratification is another  
robust feature of the change in mean state that is supported by  
a strong inter-model consensus17,18. To assess the effect of  
the increased stratification, we conduct a vertical mode decompo-
sition of the mean Brunt Väisälä frequency profiles (see Methods  
section ‘Wind projection coefficient’) and determine the projection 
of the wind-stress forcing momentum onto the dominant ocean  
baroclinic modes34,35 (the wind-projection coefficient), which  
measures the dynamical coupling between the atmosphere and  
the ocean at the wind anomaly centre36–38. The centre, determined  
by a bi-linear regression of quadratically de-trended monthly  
zonal wind anomalies onto the C-index and E-index, is located  
west of the SST anomaly centre (Extended Data Table 1). Because 
ENSO instability increases with wind–ocean coupling, stochastic 
forcing is more likely to trigger positive feedbacks for an El Niño 
event38–42. In all selected models, the coupling increases in the future 
climate (Fig. 3c). There is a strong inter-model consensus, and  
models with greater strengthening in vertical stratification at the  
wind anomaly centre systematically produce a greater increase in  
the coupling (Fig. 3d). Thus, the increased stratification enhances the 
EP-El Niño by increasing the dynamical coupling between the ocean 
and the atmosphere.

Additional analysis reveals that the dynamical coupling at the wind 
centre of the C-index increases from the present-day to the future  
climate by a similar amount, suggesting that the same mechanism  
operates for the CP-ENSO. This is indeed the case (see Methods section 
‘Response of central Pacific ENSO’). In particular, 11 of the 17 selected 
models (65%) generate an increased frequency of CP-El Niño, defined 
as when the magnitude of the C-index is greater than 1 s.d. The inter-
model consensus is not as strong as for the EP-El Niño, perhaps in 
part because there is no faster warming in the central Pacific region to 
facilitate atmospheric convection and thus enhance SST variability, as 
there is for the EP-El Niño.

Summary
Our finding of a greenhouse-warming-induced increase in EP-El Niño 
SST variance is in contrast to previous findings of no consensus using 
the Niño3 SST index. Previous studies assumed that all models produce 
an anomaly pattern and centre that can be represented by the Niño3 
index, as generally seen in observations. We show that the EP-ENSO 
pattern and its anomaly centre differ greatly from one model to another, 
and therefore cannot be represented by the spatially fixed Niño3 SST 
index. Further, the EP-El Niño SST anomaly centre is determined by 
the positive-skewness centre, which is governed by the associated 
nonlinear processes. Focusing on the different EP-El Niño anomaly 
centres for each model, there is an increase in EP-El Niño SST variance 
under greenhouse warming, with a strong inter-model consensus. The 
robust result arises from the use of process-based metrics representing 
the nonlinear Bjerknes feedback that underlies ENSO diversity. The 
increased SST variance stems from enhanced stratification of the upper 
equatorial Pacific Ocean under greenhouse warming, which enhances 
the wind–ocean coupling that is conducive to an increase in SST anom-
alies. With this projected increase, we should expect more extreme 
weather events associated with the EP-El Niño, with important implica-
tions for twenty-first-century climate, extreme weather and ecosystems.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0776-9.
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bars in the multi-model mean correspond to the 95% confidence interval. 
The differences between the present-day and future multi-model-mean 
E-index  (s.d.)  and between the present-day and future multi-model-
mean number of strong events are statistically significant at more than the 
95% confidence level. The increase in EP-ENSO SST variance (E-index 
variance) generally translates to more EP-El Niño events for a given 
E-index intensity.
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Fig. 3 | Mechanism for the projected increase in EP-ENSO variance.  
a, Multi-model-mean change in equatorial ocean temperature (the upper 
300 m) between future (2000–2099) and present-day (1900–1999) climates 
(colour scale; values are also indicated on each contour). The present-day 
(green) and future (black) thermoclines are also shown. The stratification 
increases and the thermocline shallows under greenhouse warming. 
b, Statistically significant (P < 0.001) relationship between the change 
(between future and present-day climates) in ocean stratification and the 
change (between future and present-day climates) in E-index. The ocean 
stratification is calculated as the difference between the mean temperature 
over the upper 75 m (cyan box in a) and the temperature at 100 m (purple 
line in a), both averaged over the longitude range 150° E–140° W. To 

enhance the inter-model comparability, the changes are scaled by the 
increase in global-mean temperature over the present-day and future 
periods. Approximately 55% of the change in E-index variance is 
attributable to the change in ocean stratification, much more than is due to 
the faster surface warming in the eastern equatorial Pacific (Extended Data 
Fig. 9). c, Comparison of the wind–ocean coupling coefficients (wind-
projection coefficients) in present-day and future climates. All models 
generate increased coupling in the future. ENSO instability increases with 
wind–ocean coupling. d, Statistically significant (P < 0.001) relationship 
between greenhouse-warming-induced changes in ocean stratification and 
in the wind–ocean coupling coefficient.
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METHODS
Data, model outputs and EOF analysis. We use five SST reanalysis products43–47 
to characterize ENSO diversity, and atmospheric circulation fields from the 
National Center for Environmental Prediction (NCEP) and the National Center 
for Atmospheric Research (NCAR) global reanalysis48. The five reanalysis products 
are: HadISST v1.1 (Hadley Centre Sea Ice and Sea Surface Temperature dataset 
version 1.1)43 from 1948 to 2015; ERSST v5 (Extended Reconstructed Sea Surface 
Temperature version 5)44 from 1948 to 2015; OISST v2 (NOAA Optimum 
Interpolation Sea Surface Temperature version 2)45 from 1982 to 2015; ORA-s3 
(ECMWF Ocean Analysis System: ORA-s3)46 from 1959 to 2009; and ORA-s4 
(ECMWF Ocean Analysis System: ORA-s4)47 from 1958 to 2013. We use a multi-
variate signal-processing method referred to as EOF analysis49 in an equatorial 
domain (15° S–15° N, 140° E–80° W) to de-convolve spatio-temporal variability 
into orthogonal modes, each described by a principal spatial pattern and an asso-
ciated principal component (PC) time series. The PC time series is scaled to have 
a standard deviation of one. For the observational reanalysis products, EOF anal-
ysis is applied to monthly SST anomalies, referenced to their long-term mean. The 
CP-ENSO and EP-ENSO regimes were reconstructed using EOF1 and EOF2 such 
that their temporal variability can be described by a C-index ( + /(PC1 PC2) 2) 
and an E-index ( − /(PC1 PC2) 2), respectively. Each regime is associated with a 
suite of distinct processes that lead to the negative and positive skewness in the 
C-index and E-index, respectively, as discussed in the main text. This approach 
was applied to 34 CMIP5 coupled global climate models (CGCMs; Extended Data 
Table 1) forced with historical anthropogenic and natural forcings, and future 
greenhouse gases under the RCP8.5 scenario29, covering the 200-year period 
1900–2099. Monthly anomalies referenced to the climatology of the first 100 years 
were constructed and quadratically de-trended.
Diagnosis of nonlinear Bjerknes feedback. For each model, we obtained the 
associated zonal wind-stress anomaly pattern through the same bi-linear regres-
sion onto the monthly E-index and C-index to identify the location of the maxi-
mum anomaly associated with each index. We used monthly anomalies to obtain 
the associated wind-stress anomalies (to capture that the wind-stress response 
is important during the development phase), but for the SST anomaly pattern 
and centre we focused on the mature phase of December–February. The westerly 
anomaly centre is located to the west of the SST anomaly centre, consistent with 
the fact that the warm anomalies are a dynamic consequence of wind-induced east-
ward-propagating equatorial downwelling Kelvin waves (Extended Data Table 1). 
Quadratically de-trended monthly wind anomalies at the centre were plotted 
against the monthly C-index and E-index, using all samples from observations, 
the 17 selected models and the 17 non-selected models. Samples were binned at a 
C- or E-index interval of 0.25 s.d. to obtain median values for each bin (Extended 
Data Figs. 1e, f, 3e, f and 5e, f).

The nonlinear Bjerknes feedback is measured by a ratio of the regression slope 
for binned values with a positive C-index, or E-index, over the slope for a negative 
index. A greater ratio indicates strong nonlinear Bjerknes feedback. For the non-se-
lected models, the wind response to SST anomalies associated with the C-index 
is essentially linear (ratio of 1.10; Extended Data Fig. 5f) and the response to SST 
anomalies associated with the E-index becomes moderately nonlinear (ratio of 
1.69; Extended Data Fig. 5e). For the selected models, the corresponding ratios are 
1.09 and 2.49 (Extended Data Fig. 3e, f); that is, there is a much stronger nonlinear 
response for the EP-ENSO regime. The response to SST anomalies associated with 
the E-index for the selected models is close to the observed value (2.42; Extended 
Data Fig. 1e). In other words, in the selected models the CP and EP regimes are far 
more distinguishable, and EP- and CP-ENSO anomaly centres are more clearly sep-
arated and better defined than in the non-selected models. This is reflected in the 
lack of, or weak, nonlinear relationship between PC1 and PC2 in the non-selected 
models, in which an EP-El Niño event is a combination of EOF1 and EOF2, which 
are uncorrelated, such that in a given model there is a strong inter-event diversity 
in the spatial pattern and the anomaly centre of the EP-El Niño.
Statistical significance test. We use a bootstrap method to examine whether the 
increased E-index variance is statistically significant. The 17 standard deviation 
values of the E-index in the present-day period from the 17 selected models are 
re-sampled randomly to construct 10,000 realizations of mean standard deviation 
over 17 models. In this random re-sampling process, any model is allowed to be 
selected again. The standard deviation of the 10,000 inter-realizations of mean 
standard deviation for the control period is 0.027. The same is carried out for the 
future period, and the standard deviation of the inter-realization is 0.024. The 
increased standard deviation in the future period is greater than the sum of these 
two standard deviation values, indicating statistical significance above the 95% 
confidence level (Extended Data Fig. 7a). Identical analyses for increased occur-
rences in EP-El Niño events with E-index > 1.5 s.d. and for increased wind-pro-
jection coefficients leads to the same conclusion (Extended Data Fig. 7b, c).
Sensitivity to emission scenarios. 32 CMIP5 models were forced under the 
RCP4.5 emission scenario and 15 were selected. 12 of the 15 selected models (80%) 

produced increased E-index variance. Using all models under this scenario, 20 of 
the 32 models (63%) generate an increase. The same conclusion is found when 
applying the same analysis and model-selection criterion on an ensemble of 16 
CMIP3 models forced under the A2 emission scenario. Seven CMIP3 models were 
selected and five (71%) produce increased E-index variance.
Wind projection coefficient. From linear theory, the total amount of momentum 
flux associated with equatorial wave dynamics can be estimated by the zonal wind 
stress along the equator multiplied by a coefficient, referred to as the wind-pro-
jection coefficient Pn, which depends on the vertical stratification of the ocean50. 
This coefficient corresponds to the coupling efficiency between the ocean and the 
atmosphere associated with equatorial wave dynamics for a particular baroclinic 
mode n34,35. In a multi-mode context, the coefficients associated with the first three 
baroclinic modes allow us to characterize the mean thermocline shape (sharpness), 
depth and intensity39–41. These coefficients have been used to diagnose the long-
term variability in vertical stratification along the equator associated with changes 
in ENSO amplitude in reanalysis products and CGCMs36,51,52. We calculate the 
wind-projection coefficients from climatological temperature and salinity profiles 
of the present-day and future climates36, and calculate the following quantity for 
both periods for each of the models53:
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Here Fn corresponds to the vertical mode structure and xE is the location along the 
equator, where the salinity and temperature profile are considered. This location 
is taken as the centre of action of the zonal winds stress for the EP regime and 
corresponds to the maximum amplitude of the regressed patterns of the zonal 
wind stress associated with the EP regime (Extended Data Table 1). The factor of 
150 is a normalizing coefficient (in metres), corresponding to the average ther-
mocline depth in the equatorial CP. The larger the value of P, the sharper the 
mean thermocline and the larger the input of momentum flux into the baroclinic 
ocean response.
Warming pattern. CGCMs produce a warming pattern with faster warming in 
the equatorial EP than in the surrounding regions, with a strong inter-model con-
sensus17,18,20. We calculated the warming in each model as the difference between 
the average over the future and present-day 100-year periods, and normalized it by 
the difference in the global-mean temperature (in units of warming per degree of 
global warming). We constructed a multi-model mean over the 17 selected models 
(Extended Data Fig. 9a) and then projected individual-model warming patterns 
onto the multi-model-mean warming pattern to obtain inter-model variations 
in the warming pattern. We examined the relationship between the inter-model 
warming pattern and change in the E-index (Extended Data Fig. 9b).
Response of central Pacific ENSO. Inter-model consensus on changes in monthly 
C-index variance is weaker compared to that of the monthly E-index, with 10 of 
the 17 selected models (59%) producing an increase. Without model selection, 19 
of the 34 models (56%) produce an increase.

In terms of changes in the frequency of CP-El Niño events, defined as when the 
December–February-average C-index is greater than 1 s.d., 11 of the 17 selected 
models (65%) produce an increase. Without model selection, 24 of the 34 models 
(71%) produce an increase.

In terms of changes in the frequency of extreme La Niña events, defined as when 
the magnitude of the December–February-average C-index is greater than 1.75 s.d., 
11 of the 17 selected models (65%) produce an increase. Without model selection, 
24 of the 34 models (71%) produce an increase. Note that some of the 24 models 
that contribute to the increased frequency of extreme La Niña events are different 
from those that contribute to the increased frequency of CP-El Niño events.
Code availability. Codes used to calculate the EOF and α can be downloaded from 
https://drive.google.com/open?id=1d2R8wKpFNW-vMIfoJsbqIGPIBd9Z_8rj; 
codes for calculating the wind-projection coefficients using ocean salinity and 
temperature are available on request.

Data availability
Data related to this paper can be downloaded from the following: HadISST 
v1.1, https://www.esrl.noaa.gov/psd/data/gridded/data.hadsst.html; ERSST v5, 
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstruct-
ed-sea-surface-temperature-ersst-v5; OISST v2, https://www.esrl.noaa.gov/psd/
data/gridded/data.noaa.oisst.v2.html; ORA-s3, http://apdrc.soest.hawaii.edu/dat-
adoc/ecmwf_oras3.php; ORA-s4, https://climatedataguide.ucar.edu/climate-data/
oras4-ecmwf-ocean-reanalysis-and-derived-ocean-heat-content; and CMIP5 data-
base, http://www.ipcc-data.org/sim/gcm_monthly/AR5/.
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Extended Data Fig. 1 | Properties of the observed ENSO diversity, the 
associated CP and EP regimes, and the nonlinear Bjerknes feedback.  
a, b, The diversity means that the pattern of any ENSO event may be 
reconstructed by a combination of the first (a) and second (b) principal 
pattern from an EOF analysis on monthly SST anomalies (colour scale) 
and the associated wind-stress vectors (scale shown top right). The 
associated monthly PC time series are used to describe their evolution, and 
the CP- and EP-ENSO regimes by the C-index ( + /(PC1 PC2) 2 ) and 
E-index ( − /(PC1 PC2) 2 ), respectively. c, d, The anomaly pattern 
associated with the EP-ENSO (c) and CP-ENSO (d) for December–February  

(DJF), the season in which ENSO events typically mature. e, f, Response to 
the E-index (e) or C-index (f) of monthly zonal wind-stress (Tauu) 
anomalies (in units of N m−2) at the anomaly centre (see Methods) 
associated with the E- or C-index, respectively. The monthly wind-stress 
anomalies were binned in 0.25-s.d. E- or C-index intervals, and the 
median wind-stress anomaly and index are identified for each bin (circles). 
A separate linear regression was carried out for positive (red) and negative 
(blue) median index values. The ratio of the slope for the positive indices 
(S2) over that for the negative indices (S1) is taken as an indication of the 
nonlinear Bjerknes feedback, which operates in the EP-ENSO.
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Extended Data Fig. 2 | Inter-model relationship between α and the 
zonal wind response to SST. a, Relationship between α and the response 
of monthly zonal wind anomalies to positive E-index values. Zonal wind 
anomalies are taken at the anomaly centre associated with the E-index. 

b, Relationship between α and the response of zonal wind anomalies to 
negative C-index values. Zonal wind anomalies are taken at the anomaly 
centre associated with the C-index.

© 2018 Springer Nature Limited. All rights reserved.



ARTICLE RESEARCH

Extended Data Fig. 3 | Properties of the selected models in terms of ENSO diversity, the associated CP and EP regimes, and the nonlinear Bjerknes 
feedback. As in Extended Data Fig. 1, but for only the 17 selected models.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 4 | Examples of the nonlinear relationship between 
the PC1 and PC2 time series in some selected models. a–d, December–
February averages, with an apparent inverted V-shaped nonlinear 

relationship between PC1 and PC2 for FIO-ESM (a), CCSM4 (b), CESM1-
CAM5 (c) and GFDL-ESM2M (d).

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 5 | Properties of the non-selected models in terms 
of ENSO diversity, the associated CP and EP regimes, and nonlinear 
Bjerknes feedback. As in Extended Data Fig. 3, but for only the 17  

non-selected models. In this case, the nonlinear Bjerknes feedback is much 
weaker.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 6 | Examples of the nonlinear relationship between 
the PC1 and PC2 time series in some non-selected models.  
a–d, December–February averages for ACCESS1-3 (a), inmcm4 (b),  

IPSL-CM5A-MR (c) and bcc-csm1-1 (d). In contrast to the selected 
models (Extended Data Fig. 4), these models display a weak or no 
nonlinear relationship between PC1 and PC2.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 7 | Histograms of 10,000 realizations of a bootstrap 
method for the present-day (control) and future (climate change) 
periods. Each realization is averaged over 17 models, independently 
resampled randomly from the 17 selected models. The standard deviation 
of the 10,000 inter-realization is calculated for each period. a, For the 
E-index, the standard deviations are 0.0263 (blue) and 0.0234 (red) for 
the two periods. b, For occurrences with E-index > 1.5 s.d., the standard 

deviations are 0.87 (blue) and 1.06 (red) for the two periods. c, For the 
wind-projection coefficient, the standard deviations are 0.036 (blue) and 
0.042 (red) for the two periods. The difference between the future and the 
present-day periods is greater than the sum of the two inter-realization 
standard deviation values (each indicated by half of the grey shaded 
region). The blue and red vertical lines indicate the mean values of 10,000 
inter-realizations for the present-day and future periods, respectively.
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Extended Data Fig. 8 | Projected change in EP-ENSO variability using 
the E-index and the Niño3 SST index. a, Comparison of the standard 
deviation of the E-index in the present-day (1900–1999) and future  
(2000–2099) 100-year periods for all 34 models. 24 of the 34 models 
show an increase in variance (the other 10 are greyed out). b, The same 
as a, but for the Niño3 SST index. Error bars in the multi-model mean 

are calculated as the standard deviation of the 10,000 inter-realizations. 
The multi-model-mean change in the E-index variance (a) is statistically 
significant at more than the 95% confidence level, but that in the Niño3 
SST index is not significant (b). The vertical line separates the selected 
(left) from the non-selected (right) models.
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Extended Data Fig. 9 | Relationship between SST warming and change 
in E-index for selected models. a, Multi-model-mean warming pattern 
(in °C per °C of global warming (GW); colour scale). First, for each model 
we construct a warming pattern by calculating the difference between 
the average SST anomalies over the future (2000–2099) and present-day 
(1900–1999) periods. Second, we scale this difference by the increase 
in global-mean SST simulated by the model over the corresponding 
period. Finally, we take the mean of the scaled difference over all models 
to construct the multi-model-mean warming pattern. b, Inter-model 

relationship between the intensity of the SST warming pattern (a) and 
change in E-index, also scaled by the corresponding increase in global-
mean SST in each model. The intensity of the scaled SST warming 
pattern for each model is obtained by regressing the scaled SST warming 
pattern for each model onto the scaled multi-model-mean SST warming 
pattern, using the region indicated by the black box in a. The inter-model 
relationship is statistically significant above the 95% confidence level, with 
the statistical properties shown.
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Extended Data Table 1 | Details of the 34 models

The final four columns show the longitudes (° E) of the monthly maximum zonal wind-stress (Tauu) anomalies and SST anomalies in the EP and CP patterns, averaged over 5° S–5° N, for the 34 CMIP5 
CGCMs, each forced under greenhouse gas concentration scenario RCP8.5. The first 17 models listed produce a reasonably large |α| and a nonlinear PC1–PC2 relationship (Fig. 1c, d). The zonal wind-
stress anomalies associated with the EP and CP patterns are obtained by regressing monthly anomalies onto the monthly E-index and C-index, respectively; the SST anomaly pattern and centre are 
identified in a similar manner, except using the December–February averages of the E and C indices and SST anomalies. ‘sst’, ‘τx’, ‘τy’, ‘so’ and ‘T’ in the third column indicate SST, zonal wind stress, 
meridional wind stress, ocean salinity and temperature that are available, respectively. The 17 non-selected models are shown in grey. ‘NaN’ indicates data not available.

© 2018 Springer Nature Limited. All rights reserved.
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APPENDIX B: SPATIAL FEATURES OF SEASONAL EL NIÑO

We analyse the spatial evolution of each kind of El Niño previously defined (see Chapter 3
and paragraph 5.3.2), for different climate variables: SST, precipitation and zonal wind stress.

Strong and moderate El Niños A comparison is made between the time-longitude SSTA
evolutions of strong and moderate composites and between historical and RCP8.5 simulations
(Fig. 15).

Historical strong El Niño events (Fig. 15a) are characterised by anomalous warming of
the surface ocean more intense and more confined in the eastern part of the equatorial Pacific
than moderate El Niño events (Fig. 15b). Strong El Niño composite starts in spring in
the eastern equatorial Pacific and develops rapidly. A first SSTA peak occurs in autumn
towards 250°E, then spreads westward (210°E) at the end of winter. Moderate El Niño
composite event starts later, at the beginning of summer, and presents rapidly a first SSTA
peak in the Niño-4 region (160°E-210°E). The second SSTA peak occurs at the beginning
of winter and spreads westward to join the warming in the central Pacific. The anomalous
peak warming in the Niño-3 region presents an important amplitude difference between both
type of events (3.4 ◦C and 1.7 ◦C for the ensemble-mean of the strong events and moderate
events respectively). The transition period differs between the two types of events with a
decay beginning in the east and spreading slowly westward until the end of the next summer
for moderate composite, while the decay is more abrupt and earlier in the central Pacific for
strong composite.

The RCP8.5 composites of these two types of events are similar to the historical com-
posites in terms of evolution, but with more pronounced intensities. The SSTA peak reaches
3.5 ◦C for strong composites and 2 ◦C for moderate composites and the maximal SSTA val-
ues are maintained longer. For moderate composites, the more pronounced SSTA are now
located in the central Pacific during winter. The differences between RCP8.5 and historical
moderate composites show a more intense warming in the central Pacific with global warm-
ing. Conversely, strong composites present a more rapid decay in the central Pacific. The
differences between RCP8.5 and historical strong composites confirm this weaker extension
towards the west, as well as a greater persistence in the east at the end of the event. The
changes are significant at the 95 % of confidence level.

For the rest of this section, we focus on strong or extreme precipitation El Niño events.

Seasonal El Niño The differences of the temporal evolutions of the E and C indices, that
led to the seasonal classification of El Niño events, are also found in the spatial evolution of
the composites of strong seasonal El Niño events.

Figure 16 shows the longitude-monthly evolutions of SST anomalies averaged between
2°S-2°N for strong JAS (left column), ONDJ (middle column) and FMA (right column) El
Niño composites in historical simulations (top), RCP8.5 simulations (middle row) and the
difference between the RCP8.5 and the historical composites (bottom).

The ONDJ strong historical composite (Fig. 16a, middle column) looks like the strong
historical composite (Fig 15a, left column), because they are slightly more numerous than the
other types of events and their intensity is stronger than the strong JAS historical composite,
which makes up the other important part of the strong composites. The latter (Fig. 16a,
left column) has less persistence in the eastern Pacific at the end of the event, before it
decays, than ONDJ composite and even less that FMA composite. The FMA strong historical
composite (Fig. 16a, right column) shows SSTA intensity particularly pronounced compared
to the others. However, the historical strong FMA El Niño composite is composed of only
few events (9 events over 3682 historical years), that are particular strong events in terms of
intensity. The historical composite thus has also stronger SST anomalies than the RCP8.5
composite (Fig. 16b, right column), which is composed of 119 events.

Regarding the RCP8.5 composites, JAS El Niño retains with lower intensities than the
other two. ONDJ and FMA El Niño have similar evolutions in RCP8.5, except for the weakest
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Historical simulations RCP8.5 simulations RCP8.5 minus historical

(a) Strong El Niño composites
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(b) Moderate El Niño composites
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Figure 15 – Longitudes-time SSTA evolutions of (Fig. 15a) strong and (Fig. 15b) moderate El Niño
composites for (left column) historical simulations, (middle column) RCP8.5 simulations and (right
column) the difference between the RCP8.5 and historical composites. The stippling on the latter
column indicates where the values of the ensemble of the RCP8.5 composites are significantly positively
or negatively larger than that of the ensemble of the historical composites according to a Wilcoxon
rank-sum test at 95 % confidence intervals. The SSTA are averaged between 2°S-2°N.
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Strong JAS Strong ONDJ Strong FMA

(a) Historical composites

(b) RCP8.5 composites

(c) RCP8.5 minus historical composites

Figure 16 – Longitudes-time SSTA evolutions of strong (left column) JAS, (middle column) ONDJ and
(right column) FMA El Niño composites for (16a) historical simulations, (16b) RCP8.5 simulations
and (16c) the difference between the RCP8.5 and historical composites. The stippling on the latter
row indicates where the values of the ensemble of the RCP8.5 composites are significantly positively
or negatively larger than that of the ensemble of the historical composites according to a Wilcoxon
rank-sum test at 95 % confidence intervals. The SSTA are averaged between 2°S-2°N.
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persistence in the western-central Pacific at the end of the event for FMA El Niño composite.
Because there are only few FMA El Niño events in historical simulations and that they

are particularly strong, in order not to artificially distort the conclusions, the comparative
evolution of JAS and ONDJ El Niño events between historical and RCP8.5 composites is first
analysed. In a second time, the comparative evolution of strong ONDJ and FMA El Niño
events, only in RCP8.5 climate, is conducted.
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(b) RCP8.5 composites
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Figure 17 – Longitudes-time SSTA evolutions of strong (left column) JAS, (middle column) ONDJ
El Niño and (right column) the difference between the strong ONDJ and JAS El Niño composites
for (17a) historical simulations and (17b) RCP8.5 simulations. The stippling on the latter column
indicates where the values of the ensemble of the ONDJ composites are significantly positively or
negatively larger than that of the ensemble of the JAS composites according to a Wilcoxon rank-sum
test at 95 % confidence intervals. The SSTA are averaged between 2°S-2°N.

Whether in historical or RCP8.5 simulations, the strong JAS El Niño composite exhibits
less east-west contrast than the ONDJ composite. During the developing phase of the event,
the ONDJ composite shows more pronounced warming in the eastern Pacific. The persistence
of the warming in the eastern Pacific at the end of the event, also more pronounced for the
ONDJ composite, is getting stronger in the future and spread more westward. Interestingly,
the differences in the evolution between both events are more important than between the
RCP8.5 and historical evolution of each event. Even if global warming will cause changes in
the evolution of each of these composites, it appears that these changes will be less pronounced
than those that already exist between these two types of events and that will be accentuated
in the future.
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When analysing the longitudes-time evolution of these JAS and ONDJ composites on
other variables, precipitation (Fig. 19) and zonal wind stress (Fig. 20), we find these differ-
ences in behaviour between our two composites.

Precipitation is an important indicator of El Niño event, in particular of strong El Niño
with warming in the eastern Pacific (Cai et al., 2014). The equatorial Pacific mean rainfall is
likely to increase, following a warmer-gets-wetter pattern (Xie et al., 2010; Chadwick et al.,
2013; Xie et al., 2015). CESM-LE projects also an increase in rainfall, which can be observed
in the annual cycle of rainfall in the equatorial Pacific (Fig. 18). The increase in detrended
annual cycle of rainfall occurs from January to June with a particularly pronounced increase
in April-May.

Historical simulations RCP8.5 simulations RCP8.5 minus historical

Figure 18 – Longitudes-time evolutions of (left) the historical ensemble-mean and (middle) the RCP8.5
ensemble-mean seasonal cycle of rainfall averaged between 2°S-2°N. The figure on the right represents
the difference between the RCP8.5 and the historical sets.

Regarding detrended precipitation in historical simulations (Fig 19a), the strong JAS
composite presents more precipitation than usual in the western Pacific during the developing
phase of the event around the dateline. The precipitation maximum region is located around
170°E from January to March, when there is more rainfall than usual along the equator.
The strong ONDJ composite is characterised by an important anomalous precipitation along
the equator from December to May, with a eastward extension of the maximum rainfall.
Differences between the two historical composites are thus particularly pronounced from
December to May, east of the dateline.

The RCP8.5 JAS composite shows more pronounced eastward intrusion of important
rainfall during the summer preceding of the developing year of the event (Fig. 19b, left col-
umn), facilitated by the more pronounced seasonal rainfall at this time. During the following
winter, the JAS spatial pattern of rainfall looks like the spatial pattern of historical ONDJ
composite, with similar intensities and the same intrusion to the east. For the ONDJ com-
posite (Fig. 19b, right column), the same intensification occurs during the winter, to achieve
rainfall greater than 7 mm / day all along the equator. Interestingly, the differences between
RCP8.5 and historical composites have similar shapes with more rainfall during summer and
winter. However, JAS differences composite has a more pronounced intensity and a more
westward extension. Despite the increase in rainfall with global warming, the differences be-
tween ONDJ and JAS composites in RCP8.5 have similar shapes with a maximum difference
in winter, even if this area is shifted eastward. Thus, the precipitation associated with ENSO
seems to be shifted eastward with global warming, which could perturb the traditional vision
that one has of the link precipitation - El Niño.
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Strong JAS Strong ONDJ ONDJ minus JAS

(a) Historical composites

(b) RCP8.5 composites

(c) RCP8.5 minus historical composites

Figure 19 – Longitudes-time detrended precipitation evolutions of strong (left column) JAS, (middle
column) ONDJ El Niño and (right column) the difference between the ONDJ and JAS strong El Niño
composites for (19a) historical simulations, (19b) RCP8.5 simulations and (19c the difference between
the RCP8.5 and historical composites. The stippling on the latter row indicates where the values of
the ensemble of the RCP8.5 composites are significantly positively or negatively larger than that of
the ensemble of the historical composites according to a Wilcoxon rank-sum test at 95 % confidence
intervals. The stippling on the latter column indicates where the values of the ensemble of the ONDJ
composites are significantly positively or negatively larger than that of the ensemble of the JAS
composites according to a Wilcoxon rank-sum test at 95 % confidence intervals. The precipitations
are averaged between 2°S-2°N.
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The zonal wind stress is usually used as a precursor of El Niño, Westerly Wind Events
(WWEs) often initiating strong El Niño through the initiation of equatorial downwelling
Kelvin waves. Figure 20 shows the same comparison as for rainfall between JAS and ONDJ
composite et their evolution with global warming.

Historical JAS composite presents several WWEs, beginning in boreal spring around
150°E, followed by several more intense episodes in summer with peaks around 210°E and
190° and in winter in the central Pacific. The RCP8.5 spatial evolution is similar but with
an intensification of the WWEs during the summer around 200°E.

Historical ONDJ composite presents the same beginning than JAS composite. An in-
tensification of the events occurs then but with a smaller eastern extension than for JAS
composite during summer. The maximum values occur during the winter between 180-200°E.
Once again, the RCP8.5 spatial evolution is similar than in historical simulations but with
an intensification of the values and a maximum reached in December around 180°.

The differences between the RCP8.5 and historical composites of each kind of events are
similar with in particular an intensification of the WWEs in the central Pacific during summer.
Interestingly, the differences between the two types of events are greater than the difference
for each composite between RCP8.5 and historical simulations. In particular, strong WWEs
at the end of autumn and in winter, propagating from 170°E to 210°E, work to strengthen
warming in the eastern Pacific during its peaks in SST and in E-index.

JAS and ONDJ composites are different in their evolution and keep these evolutionary
differences with climate change.

When comparing, in RCP8.5 simulations, ONDJ and FMA composites, the main differ-
ences appear along a diagonal longitudes-time, beginning around 180° in January and ending
more or less abruptly in the eastern Pacific around the summer following the event, for the
three studied variables. Even though the maximum values of SSTA in winter in the extreme
east of the equatorial Pacific around 270°E and in early spring around 210°E are lower for
RCP8.5 FMA composite than for RCP8.5 ONDJ composite, FMA composite shows a greater
persistence in the extreme east as early as spring. Precipitation follows anomalous warming
of SST and FMA composite is accompanied by more rain in particular in summer around
210°E and in next spring and summer in the extreme east until the decay of the event. These
warming areas are associated each time with more westerly winds than in ONDJ composite.

Extreme El Niño The same analyse is applied to the extreme precipitation El Niño com-
posite, defined by the rainfall threshold in the eastern Pacific.

The RCP8.5 extreme precipitation composite is clearly less intense in SSTA than that
of historical climate. As discussed in the paragraph 5.3.3.2, it is mainly explained by the
fact that extreme precipitation El Niño composite is composed of 34 % of events classified
as moderate according to the E-index in a warmer climate. The ensemble mean decrease
in the amplitude of the composite is also observed on the events of westerlies. However,
the precipitation pattern does not show the same evolution, between historical and RCP8.5,
partly because of the global SST warming in RCP8.5 simulations.
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Strong JAS Strong ONDJ ONDJ minus JAS

(a) Historical composites

(b) RCP8.5 composites

(c) RCP8.5 minus historical composites

Figure 20 – Same as 19 but for the zonal wind stress (10−1N/m2).
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Strong RCP8.5 ONDJ Strong RCP8.5 FMA FMA minus ONDJ

(a) SST anomalies (◦C)

(b) Detrended precipitation (mm/day)

(c) Zonal wind stress anomalies (10−1N/m2)

Figure 21 – Longitudes-time evolutions of (left column) ONDJ, (middle column) FMA and (right col-
umn) the difference between the FMA and ONDJ strong El Niño composites of RCP8.5 simulations
for (21a) SSTA (celsius), (21b) detrended precipitation (mm/day) and (21c) zonal wind stress anoma-
lies (10−1N/m2). The stippling on the latter column indicates where the values of the ensemble of
the ONDJ composites are significantly positively or negatively larger than that of the ensemble of the
JAS composites according to a Wilcoxon rank-sum test at 95 % confidence intervals. All the variables
are averaged between 2°S-2°N.
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Historical simulations RCP8.5 simulations RCP8.5 minus historical

(a) SST anomalies (◦C)

(b) Detrended precipitation (mm/day)

(c) Zonal wind stress anomalies (10−1N/m2)

Figure 22 – Longitudes-time evolutions of (left column) the historical ensemble-mean composite, (mid-
dle column) the RCP8.5 ensemble-mean composite and (right column) the difference between RCP8.5
and historical extreme precipitation El Niño composites for (21a) SSTA (◦C), (21b) detrended precip-
itation (mm/d mm/day) and (21c) zonal wind stress (10−1N/m2). The stippling on the latter column
indicates where the values of the ensemble of the RCP8.5 composites are significantly positively or
negatively larger than that of the ensemble of the historical composites according to a Wilcoxon
rank-sum test at 95 % confidence intervals. All the variables are averaged between 2°S-2°N.
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LA DIVERSITE D’ENSO ET LE CHANGEMENT CLIMATIQUE

Résumé : El Niño-Southern Oscillation (ENSO) est le mode de variabilité dominant
du Pacifique tropical à l’échelle inter-annuelle. Ce phénomène couplé océan-atmosphère est
à l’origine d’événements météorologiques extrêmes qui affectent de nombreuses régions du
monde. Compte tenu de ses conséquences socio-économiques, et pour pouvoir atténuer ses
dommages potentiels, il est important de mieux le comprendre afin de prévoir son évolution
avec le réchauffement climatique. Dans ce travail de thèse, nous nous sommes intéressés
en premier lieu à réévaluer la caractérisation de la diversité des événements El Niño. Ils
présentent en effet une grande diversité d’amplitude et de structures spatiales des anomalies
de température de surface de l’océan (SST). Nous avons ensuite analysé le changement des
statistiques de la diversité d’El Niño avec le réchauffement climatique. Nous avons pour cela
utilisé les simulations du modèle de climat couplé CESM-LE qui fournit un grand ensemble
de réalisations (40 simulations) du climat historique et futur (1920-2100) sous l’hypothèse
du scénario RCP8.5 d’émission soutenue de gaz à effet de serre. Nous montrons que les
événements El Niño forts, caractérisés par un réchauffement important dans le Pacifique
oriental, voient leur pic d’anomalies en SST être décalé de l’hiver au début du printemps
(Février-Mars-Avril, FMA). Nous proposons l’hypothèse selon laquelle ces changements de
l’évolution temporelle des événements El Niño forts proviennent d’un processus de recharge
plus important et d’une rétroaction de la thermocline plus efficace en situation future, du fait
de l’augmentation de la stratification verticale du Pacifique équatorial.

Mots clés : Oscillation australe El Niño, Changement climatique, Large Ensemble
CESM, Variabilité décennale, El Niño extrême.

ENSO DIVERSITY AND GLOBAL WARMING

Abstract: El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in
the tropical Pacific on inter-annual scale. This phenomenon affects weather events, ecosys-
tems, agriculture and fisheries worldwide via atmospheric and oceanic teleconnections. This
natural phenomenon is likely to be strongly impacted by global warming. In this thesis, we
first assessed the characterisation of the diversity of El Niño events. They exhibit a wide
range of amplitudes and spatial patterns of sea surface temperature (SST) anomalies. We
then analysed the change in ENSO diversity statistics (amplitude, seasonality) with global
warming. We used simulations from the coupled climate model CESM-LE, which provides
multiple realisations (40 members) of the historical and future climate (1920-2100), under
the assumption of the RCP8.5 scenario of sustained greenhouse gas emissions. We show that
strong El Niño events, which display significant warming in the eastern Pacific, have their
peak of SST shifted from winter to early spring (February-March-April, FMA) in the future
climate. Finally, the impact of the increase in the mean vertical stratification of the equa-
torial Pacific on ENSO diversity is assessed in terms of dynamic processes. We propose the
hypothesis that the greater persistence of strong El Niño events and the time lag of their
warming peaks are due to a larger recharge process and more effective thermocline feedback
in the eastern Pacific in a warmer climate as simulated by CESM-LE.

Keywords: El Niño Southern Oscillation, Climate Change, CESM Large Ensemble,
Decadal Variability, extreme El Niño.


