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Résumé

Mots clés : Cloud, Infrastructure, Algorithme, Ressources, Réseaux, Virtuali-

sation, Fonction de Réseaux Virtualisée, Blocage

L’un des défis majeurs auquel sont confrontés les opérateurs télécom aujourd’hui

est celui de perdre leur place sur le marché face à la multiplication des ser-

vices proposés par les grands acteurs du Web, tels que les GAFA ou Netflix.

En espérant mieux répondre aux besoins de ses clients, le secteur télécom est

désormais au cœur d’une transformation digitale. Cette transformation s’appuie

sur de nouvelles technologies émergentes telles que la virtualisation, les réseaux

définis par logiciels, et le déploiement des services réseaux sur le cloud. Ces

paradigmes ont été introduits par différentes initiatives (notamment l’ETSI) qui

visent à virtualiser les fonctions réseau en les déployant sur le cloud sous le terme

virtualisation des fonctions réseau (NFV). Cette nouvelle approche sur laquelle

s’appuient les opérateurs télécom pour accélérer leur transformation numérique

impactera non seulement la manière dont les réseaux sont définis mais aussi

le rôle principal de l’opérateur qui doit désormais gérer les ressources cloud en

combinaison avec les ressources réseaux.

Un deuxième enjeu technique de cette transformation pour l’opérateur est celui

de répondre aux contraintes critiques imposées par les fonctions de réseaux vir-

tualisées (NFV) tel que les contraintes temps-réel ou latence. En effet, plusieurs

fonctions réseaux présentent de fortes contraintes en termes de latence et doivent

par conséquent être déployées près de l’utilisateur final. Ces contraintes ont incité

les opérateurs télécom à revisiter leurs infrastructures pour répondre à ces exi-

gences; ceci en distribuant massivement leur data centers pour être présents dans

ce qu’on appelle les Points de Présence (PoP) en bordure du réseau. Ceci permet

de servir les utilisateurs finaux au plus près et répondre aux exigences strictes de

certaines fonctions réseaux, par exemple les fonctions de Radio Access Network

(RAN). Ces data centers disséminés sur la bordure du réseaux ont des capacités

limitées en termes de ressources (calcul, stockage et ressources réseaux), tout au

moins en regard des grands data centers déployés par les géants du cloud tels

que Amazon et Google. Le défi majeur auquel est confronté l’opérateur télécom



est celui de la gestion de l’infrastructure qui combine les ressources cloud et

réseau ; ceci implique la mise en place d’algorithmes adaptés pour l’allocation

de ressources dans ce contexte.

Dans cette thèse, on se propose d’analyser les modifications qui vont affecter

l’infrastructure de l’opérateur dans le but d’étudier l’allocation de ressources

dans le contexte de data centers distribués en bordure de réseau en tenant compte

de nouvelles contraintes qui n’ont pas été considérées dans les plateformes cloud

traditionnelles.

Nous proposons d’abord un modèle probabiliste d’estimation de blocage des

requêtes dans les plateformes cloud.

Traditionnellement, les ressources dans les plateformes cloud sont supposées in-

finies et le blocage des requêtes est généralement ignoré à cause de cette hy-

pothèse. Mais avec l’évolution de l’infrastructure de l’opérateur vers une infras-

tructure massivement distribuée et caractérisée par des capacités finies, le blocage

est une métrique clé pour évaluer les algorithmes d’allocation de ressources dans

ce contexte.

Pour l’analyse de cette métrique, nous avons proposé un modèle analytique pour

l’analyse de blocage dans un système cloud multidimensionnel, qui a été validé

dans un premier lieu en utilisant un simulateur à événements discrets écrit en

Matlab. Par la suite, nous avons effectué une analyse comparative des stratégies

d’allocation de ressources utilisés dans la littérature et par la plateforme de

gestion populaire Openstack.

Le modèle proposé ainsi que l’étude comparative, révèlent des résultats pratiques

sur l’évaluation de la performance des stratégies d’allocation de ressources ainsi

que le dimensionnement des systèmes cloud distribués avec des capacités limitées.

On propose également dans ce travail une stratégie d’allocation de ressources

qui facilite la gestion de l’infrastructure pour l’opérateur et qui présente des

performances meilleures que dans l’approche utilisée par la plateforme cloud

Openstack, fortement recommandée dans le contexte NFV.

La stratégie adoptée par le projet Tricircle, la version Openstack dédiée aux

déploiements multi-sites, étant très couteuse en termes d’échange d’informations

entre l’orchestrateur global et l’infrastructure, nous proposons un algorithme

d’allocation de ressources nommé CLOSE et qui prend en compte les informa-

tions locales seulement. Notre stratégie CLOSE propose également un mécanisme

de collaboration entre les plateformes cloud avec des capacités limitées. Ce



mécanisme consiste à défléchir les requêtes bloquées à cause de l’insuffisance de

ressources vers l’un des premiers voisins dans l’infrastructure avec un déplacement

qui respecte la contrainte de latence imposée par la requête.

Pour le choix de voisin, nous avons considéré 2 variantes de l’algorithme:

• aléatoirement parmi les premiers voisins de la plateforme qui a reçu la

requête initialement

• en se basant sur un compteur qui enregistre toutes les requêtes redirigées au

niveau de chaque plateforme. Ce compteur est une moyenne glissante dans

le temps qui reflète le niveau de congestion des data centers. L’idée, c’est

de choisir le data center qui a moins défléchi de requêtes dans le passé. Ce

compteur est donc défini en se basant sur des informations locales et limite

l’échange d’informations entre l’infrastructure et l’orchestrateur global.

Pour l’évaluation de performances de notre stratégie, nous avons défini plusieurs

scénarios de simulations pour comparer la performance de CLOSE contre celle

obtenue en utilisant le mécanisme proposé dans la littérature, notamment le pro-

jet Tricircle dédié pour les déploiements multi-sites dans Openstack. Il s’avère

que l’algorithme proposé présente des performances meilleures que dans l’approche

utilisée par la plateforme cloud Openstack, fortement recommandée dans le con-

texte NFV.

En effet, pour accélérer la transition vers la virtualisation, plusieurs projets ont

récemment émergé pour orchestrer les fonctions réseaux au sein de l’infrastructure.

Le projet ONAP a été créé en fusionnant deux des plus grandes initiatives open

source: ECOMP et Open-O.

En prenant des avantages de les deux projets, ONAP repose sur une architecture

unifiée pour offrir une plate-forme ouverte permettant aux utilisateurs finaux

de créer leurs propres fonctions de réseaux virtualisée. La plateforme vise à

automatiser, orchestrer et gérer les fonctions virtualisées et les services réseau.

On se propose dans ce travail d’explorer le mécanisme d’allocation de ressources

adopté par la plateforme d’orchestration ONAP, d’identifier les limites de ce

mécanisme pour proposer par la suite une solution mieux adaptée au contexte

NFV et qui ne nécessite aucune modification au préalable.

Dans l’architecture d’ONAP actuelle, les décisions de placement sont prises d’une

manière centralisée par le contrôleur de l’infrastructure. Basé sur un algorithme



heuristique, le planificateur Openstack favorise les serveurs avec la plus grande

quantité de ressources disponibles.

Cette mise en œuvre actuelle ne supporte aucune fonctionnalité multi-site, puisque

l’allocation des ressources est faite sans prise en compte de la situation géographique.

En effet, une fonction de réseau virtualisée est en général composé de plusieurs

composants (appelé également sous-fonctions ou microservices), qui exécutent

des tâches situés à différents niveaux fonctionnels du réseau, certains faisant

partie du plan de données(data plane), tandis que d’autres font partie du plan

de contrôle du réseau(control plane).

Les fonctions de type data plane présentent des contraintes strictes en terme de

latence tandis que les fonctions control plane sont plus tolérents. Partant de

cette observation, nous avons proposé un mécanisme d’allocation de ressources

qui favorise le placement des fonctions de type data plane au niveau de la bordure

du réseau en déplaçant les fonctions de type control plane vers d’autres niveaux,

étant donné qu’elle ne possèdent pas des contraintes strictes en terme de latence.

Pour cela, nous avons proposé un mécanisme de déflexion basé sur des seuils

d’acceptation des fonctions de type control plane au niveau de la bordure du

réseau. Ces seuils sont dynamiquement ajustés au cours du temps en se basant

sur les conditions de charges du système.

L’évaluation de performances de notre stratgéie proposée dans le cadre de la

plateforme ONAP a été réalisée avec des simulations en comparant les résultats

par rapport aux résultats données en utilisant l’approche adoptée par ONAP, à

savoir la stratégie d’allocation de ressources dans le projet multi-sites proposé

par Openstack. Il s’avère qu’en terme de taux de blocage global, notre stratégie

présente de meilleures performances par rapport aux performances obtenues avec

la stratégie adoptée par ONAP.

Finalement, dans le dernier volet de ce manuscrit, on se propose d’étudier l’ajustement

des seuils utilisés dans la contexte de la plateforme ONAP en se basant sur

la technique d’optimisation populaire, à savoir les algorithmes génétiques. La

stratégie qu’on propose consiste à définir des seuils d’acceptation de requetes

optimaux et qui améliorent la collaboration entre les data centers voisins, un

mécanisme que nous avons utilisé pour le placement des fonctions de réseaux

virtualisées dans ce travail. Dans plusieurs scénarios, nous avons prouvé avec des

simulations que les seuils optimaux données par l’algorithme génétique qu’on a

proposé améliore la collaboration et réduit significativement le taux de blocage

moyen de notre stratégie d’allocation de ressources.



Abstract

Key words : Cloud, Infrastructure, Algorithm, Resource Allocation, Networks,

Virtualization, Virtualized Network Function, Blocking

One of the major challenges for network operators is the proliferation of services

offered by the Web players (e.g., GAFA, Netflix, etc.). Trying to satisfy the

needs of their customers and to keep their footprint in the digital market, net-

work operators are rethinking their business models by adopting new emerging

technologies such as virtualization, software-defined networks, and the deploy-

ment of cloud-based network services. The paradigm of Network Function Vir-

tualization (NFV) has been introduced through the initiative by the European

Telecommunications Standards Institute (ETSI), which aims at virtualizing net-

work functions by deploying them on the cloud. This new approach on which

telecom operators rely to accelerate their digital transformation will impact not

only the way networks are defined but also the main role of the operator, who

now has to manage cloud resources in combination with network resources.

A critical point in NFV is raised by the intrinsic constraints of virtualized net-

work functions (VNFs) such as real-time or latency. Indeed, several network

functions have high latency constraints and must therefore be deployed close to

the end user. These constraints prompted telecom operators to revisit their in-

frastructure to meet these requirements, namely by massively distributing data

centers in the so-called Points of Presence (PoPs) at the edge of the network.

This allows the stringent requirements of certain network functions to be met;

this notably the case for virtual Radio Access Network (RAN), which consists

of virtualizing base station functionalities. These data centers geographically

spread at the edge of the network have rather limited capacity in terms of re-

sources (computing, storage and network resources) when compared with the

huge data centers deployed by cloud giants such as Amazon. The major chal-

lenge for a telecom operator is the infrastructure management that combines

cloud and network resources. This requires the implementation of appropriate

algorithms for the allocation of resources in this context.



In this thesis, we propose to analyze the modifications that will affect the infras-

tructure of the operator in order to study the allocation of resources by taking

into account new constraints that have not been so far considered in traditional

cloud platforms. We first propose a probabilistic model for the estimation of

blocking in cloud platforms; this point has not been addressed in the literature,

always assuming that cloud resources are infinite. This model, which has been

validated by several scenarios, will enable the operator to adequately dimension

the resources of its infrastructure. In addition, we evaluate the performance of

the most popular resource allocation algorithms that have been adopted in the

NFV context as in the traditional cloud based on this model.

We then propose a resource allocation strategy that facilitates the management of

the infrastructure by the operator. This strategy yields better performance when

compared to the approach adopted by the OpenStack cloud platform, highly

recommended in the NFV context. Finally, we analyze the management of re-

sources in NFV orchestration platforms by exploring the two basic functions in

this process, namely monitoring and scheduling. We also investigate the resource

allocation mechanism adopted by the popular ONAP orchestration platform to

identify its limits and to propose a solution that is better adapted to the NFV

context.
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1.1 Telecommunication Network Evolution

Technology is changing our lives faster than ever before. Communication, health

care or entertainment, our daily life is overwhelmed by the use of technology in

almost every field. This is made possible by the emergence of smart devices that

are becoming more ingrained in today’s routine.

The Fortinet White paper indicates that more than a million new smart devices

are connected to the Internet every day (Fortinet 2017) [2].

At the same time, with this explosion of the Internet of Things (IOT), the

network usage is exploding and the mobile data traffic is expected to increase

each year. In fact, a Cisco White Paper (Cisco 2016) reports that mobile data

is expected to grow by 11 times in the next four years and that 50 billion IOT

devices will be connected by 2021 [3].

This growth creates a challenge for telcos (telecom operators) who have to deal

with these new waves of demands and spend huge efforts to not only meet cus-

tomer demand but also to improve user experience.

Another major challenge facing telcos over the past years and all over the world is

the significant growth of Over-The-Top (OTT) providers such as Google, Amazon
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and Netflix. Telcos are losing their share of revenue as their primarily role is

limited to mere traffic carriers rather than service provisioning. Hence, network

operators need to regain their foothold in the market and make major changes

in how they build and run their networks, offer new services and interact with

customers [4].

As a result, telcos are embracing a new digital transformation that is rethinking

their business models by adopting new approaches and emerging technologies

such as the Virtualization of Network Functions (NFV).

One of the key initiatives in the communication industry is upgrading networks

to virtualization that will free telcos from hardware dependence. NFV aims at

decoupling network functions from proprietary hardware appliances so that such

functions can run as software on commercial off-the-shelf (COTS) hardware.

NFV is changing the way networks are managed, offering more scalability and

flexibility, and helping to create programmable networks for tomorrow’s needs.

Literally, NFV, this technology developed by the European Telecommunication

Standards Institute (ETSI), is a key enabler of the coming 5G infrastructure

helping to implement the most discussed concepts for designing 5G networks

such as Network Slicing. This concept makes it possible to create several virtual

networks on the top of the shared underlying infrastructure [5].

Another technological pillar in the architecture of future 5G mobile networks on

which telecom operators rely to accelerate their journey towards virtualization is

the Software Defined Network (SDN). SDN provides a programmable interface

that controls and orchestrates networks at different levels of abstraction. Thanks

to this paradigm, telcos can dynamically reconfigure the network using only

software mechanisms. This is the reason why SDN promises to bring more agility

and flexibility to the future network.

Network Virtualization is certainly a major revolution that will impact not only

the architecture of networks but also the network operators infrastructure. In

fact, to meet stringent real-time constraints, some network functions have to be

hosted close to end users (e.g. Radio Access Network (RAN) functions, firewalls,

deep packet inspection).

These latency requirements incite telcos to massively distribute their cloud in-

frastructure in order to be closer to end users. This lead to the development

of geographically distributed mini data centers at the edge of the network (i.e.

typically at Points of Presence (PoPs) level). Therefore, the network operator
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infrastructure is evolving towards a distributed architecture of edge data centers

with limited capacities deployed close to the end users.

To sum up, the new digital transformation is driven by the evolution of the net-

work operator infrastructure towards a massively distributed architecture cou-

pling cloud and network. However, due to this transformation, there are several

challenges facing telcos who want to run in-cloud network.

1.2 Problem Statement

As we have said, the telecommunication infrastructure is going through a major

transformation involving many radical changes. In fact, the recent emergence

of new bandwidth-intensive and time-constrained services notably Virtualized

Network Functions (VNFs) [6] is pushing network operators to geographically

distribute mini data centers at the edge of the network. These edge data centers

have rather small capacities of storage, compute and networking resources when

compared to huge centralized data centers deployed, for instance, by Google1 or

Amazon.

This groundbreaking transformation raises many new challenges for network op-

erators who henceforth have to manage cloud infrastructure in combination with

network. The real challenge lies in how to manage cloud platforms in combina-

tion with network. In other words, the network resource, namely the bandwidth,

must be considered in addition to cloud resources such as storage or compute

while instantiating services. In this context, we addressed this issue within cen-

tralized cloud platforms as well as massively distributed platforms.

In addition, we evaluated performance of the most popular resource allocation

algorithms by paying special attention to the blocking probability metric which

has so far not been considered in the cloud literature.

In fact, in the context of telco cloud and given the evolution of the infrastructure

that will very likely be composed of small data centers with limited capacities

and deployed at the edge of network, blocking is a key performance metric to

evaluate algorithms

Another major challenge that telco are facing while moving towards virtual-

ized network functions is to deliver end-to-end network services by instantiating

1https://www.google.com/about/datacenters/inside/locations/index.html
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VNFs, within the virtualized infrastructure, whilst taking into account their spe-

cific requirements. To cope with these challenges, there is a need to have a global

orchestration platform, including instantiation logic, life-cycle management, as

well as monitoring features. We explored in this thesis the monitoring feature

by studying the impact of monitoring traffic and evaluating some monitoring

tools that might be useful with regard to resource allocation. Furthermore, we

conducted a technical study of the popular orchestration platform, namely the

Open Network Automation Platform (ONAP). We finally proposed an appropri-

ate resource allocation strategy to adopt in this context and then presented to

ameliorate it using the Genetic Algorithm approach.

This work was done in the scope of Orange Labs research projects.

1.3 Document Structure

In Chapter 2, we first discuss the motivations that drive network operators

towards virtualization. We then review the context of our thesis by providing a

state of the art of cloud computing and virtualization. We focus on resource allo-

cation strategies and the related existing solutions. Finally, we present a testing

platform of a telco infrastructure that we have set up to identify hypotheses in

this context. Furthermore, this platform enabled us to explore capabilities of

some monitoring tools that may be useful for the resource allocation.

In Chapter 3, we conduct a study in order to evaluate performance of resource

allocation strategies under centralized as well as distributed approaches. First,

we propose an analytical model for the blocking analysis in multidimensional

centralized cloud system. We lead a comparative analysis of the most popular

placement’s strategies based on our proposed model. Second, we propose a new

strategy for resource allocation in distributed cloud context. We show that our

strategy yields better performance when compared to the strategy adopted by

the most popular cloud management platform, namely Openstack.

In Chapter 4, we present orchestration platforms for NFV by studying its

main features including monitoring and scheduling. We first study the impact of

monitoring traffic. We then propose an offloading strategy based on thresholds

that can be applicable in the context of ONAP. We finally propose to set the

optimal threshold for the offloading strategy based on the Genetic Algorithm

techniques.
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In Chapter 5, we point out the main contributions of this thesis and give the

research perspectives in relation to the ongoing works.
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2.1 Introduction

During the last decade, carrier grade virtualization technologies have been very

successful in offering on-line services via on-demand computing and storage ca-

pacities in the cloud (cf. EC2 by Amazon, Azure by Microsoft, etc.). While cloud
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resources were so far used to run applications owned by end users (residential or

business customers), various initiatives in the design of 5G networks, including

ETSI NFV and SDN, explore the virtualization of network. There is hence a clear

need for carry out a study aiming at understanding keys technologies notably

virtualization and cloud computing to diagnose the new challenges leveraged by

the emergence of network virtualization in the context of telco cloud.

In this chapter, we first discuss motivations for this work within Section 2.2. Sec-

tion 2.3 explores the background of the virtualization technology as well as the

cloud computing concept, then some prevalent data centers management tools

such as Openstack are presented. The main differences between centralized and

distributed cloud are discussed in Section 2.4. In Section 2.5, we present an

overview for resource allocation techniques in cloud computing with the corre-

sponding related works. An overview of a testbed platform set up to assimilate

the context in real case scenarios is presented in Section 2.6. Section 2.7 con-

cludes this chapter.

2.2 Motivations

The convergence of IT and Telecom is a fundamental transformation that will

deeply modify the way network operators conceive, produce and operate their

services. This transformation incites telcos to redefine their business model by

taking inspiration from IT cloud approaches in the manner of major actors such

as OTT players. This revolution is now made possible by the emergence of

new technological paradigms such as Network Function Virtualization (NFV),

Software Defined Network (SDN) and service orchestration. With reference to

5G networks, the complementary relation between these technologies is described

in [7].

2.2.1 Software Defined Network

As any new technology, there is no single definition of Software Defined Network.

Over the last two years, most definitions have emphasized decoupling control

logic from the forwarding hardware. In fact, the network intelligence is logically

centralized in software-based controllers so called the control plane, and network

devices become simple packet forwarding devices (the data plane) that can be

programmed via an open interface [8].
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The emerging definition of SDN is focusing less on decoupling control logic and

more on the ability to provide programming interfaces within network equip-

ments [9]. The main idea is to permit network operators to rely on network

resources in the same easy manner as they do on storage and computing re-

sources.

SDN promises to bring to the network what virtualization has brought to the

server domains during these last years; better use of network resources, simplifi-

cation and automation of network provisioning through the use of programmable

interfaces and a global abstraction of hardware resources [10].

2.2.2 Network Function Virtualization

In the recent few years, cloud and virtualization have enabled the emergence of

virtualization of network functions allowing network operators to decouple net-

work functions from proprietary hardware appliances so that such functions can

run in software. The ETSI Industry Specification Group for Network Functions

Virtualization (ETSI NFV) is the group charged with designing architecture and

developing requirements for various functions for telco networks.

NFV promises telco to deliver agility and flexibility by quickly scale up or down

services to address variation of demands and to support innovation by enabling

networking services to be running only via software on any industry-standard

hardware [11].

Reducing operator CAPEX and OPEX costs is also one of the major benefits

of NFV. In fact, NFV reduces equipment costs and power consumption due to

the freedom to choose and build the hardware in the most efficient way that

suit telcos needs and requirements [12]. It’s clear that NFV can address the key

trends confronting operators. Therefore, NFV is considered as one of the key

technologies on which telcos rely in their digital transformation.

2.3 Virtualization and Cloud Computing

Generally speaking, data centers offer the possibility to residential as well as busi-

ness customers to run applications by reserving computing and storage (CPU,RAM

and Disk storage). However, customers workloads have a dynamic aspect. In

fact, resource requirements vary continuously over the time, or are one resource

centric which means that they need one resource more than the others (CPU

8
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intensive or memory intensive). In such cases, most of the resources in the phys-

ical infrastructure of data centers are vastly underused especially if applications

are hosted on dedicated servers which is the case of traditional data centers.

2.3.1 Virtualization As a Paradigm

The revolution of the virtual technology has made possible the virtualization of

physical infrastructure in data centers enabling more efficient resource utilization

by pooling resources of storage, networking and computing from several formerly

siloed data centers to create a central, flexible pool of resources that could be

reallocated based on needs [13].

Virtualization allows multiple instances of different Operating Systems (OS) such

as Linux or windows to run simultaneously on a single physical host. Each OS

is running on a virtual machine and operates as if it was dedicated to a physical

computer. The guest OS accesses the hardware architecture underlying via a

lightweight system called Hypervisor kernel. The hypervisor acts as a referee

between the guest systems; it time-slices the physical processors and resources

to each VMs and ensures confinement of guests in their own space [14]. The

virtualization technology is a key enabler of cloud computing where applications

are not hosted on dedicated servers anymore, but instead in a number of running

virtual machines (VMs) and sharing physical resources of the physical machines

(PMs) behind [15].

Figure 2.1 shows the server virtualization architecture with the two components

core,notably the hypervisor and the VM.

Figure 2.1: Server Virtualization architecture.
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• Hypervisor An hypervisor or VM monitor is a system virtualization soft-

ware that is running within the operating system of the host. It recreates,

through software, a complete runtime environment for a program or a guest

system called virtual machine. The hypervisor manages and multiplexes

access to the physical resources maintaining isolation between all guests at

all time. All guest operations are intercepted and translated to be executed

by the host environment, which consumes hardware resources.

• Virtual machine The VM is the component core of the virtualization

architecture. It can be defined as a software implementation of a computer

that runs an operating system and executes programs just like a physical

computer. Virtual machine or guest uses virtual hardware resources offered

by the physical machine : virtual CPU, memory, hard disk and network

interface cards. Guest Operating system sees ordinary hardware devices

and is not aware that these devices are virtual.

Virtualization technology is a key enabler of Network Function Virtualization

that reveals practical insights into VNFs deployments. Several VNFs could for

example run on the top of the guest OS of one physical server. In the context of

the use case Cloud RAN, the virtualization intervenes at the BBU level. Figure

2.2 illustrates BBUs running on virtual machines on the top of COTS server. It

is clear that virtualization has many benefits, including reduced communication

time between BBUs and scalability since that VMs are much easier to turn off

or up than PMs [16].

Figure 2.2: Server architecture for BBUs Virtualization [1].

10



Chapter 2 Section 2.3

2.3.2 Resource virtualization

2.3.2.1 CPU virtualization

When many VMs are running on the same host, hypervisor time-slices the phys-

ical processors across all of them so each VM runs as if it has its own number of

virtual processors. This feature allows to run different OS in the same server.

2.3.2.2 Memory virtualization

When a VM starts to run, virtualization layer creates a contiguous addressable

memory space as the allocated memory for the VM. This allows the hypervisor

to run multiple VMs simultaneously while protecting memory of each VM from

being accessed by others.

2.3.2.3 Virtual networking

The key virtual components in the virtual networking are virtual Ethernet adapters

and virtual switches :

• A virtual machine can be configured with one or more virtual Ethernet

adapters.

• A host can contain multiple virtual switches which act just like any physi-

cal Ethernet switch and forwards frames at the data link layer. The virtual

switch enables VMs on the same host to communicate with each other using

the same protocols used over physical switches without the need for addi-

tional hardware. It also connects to the external network through physical

Ethernet adapters. The virtual switch is capable of binding multiple vir-

tual network cards together, offering greater availability and bandwidth to

the VM.

2.3.3 Resource overcommitment

Resource overcommitment is a process ensured by the hypervisor which enables

the allocation of more resource for VMs than the host physically has. For exam-

ple, a host with 6GB of memory available can runs 5 VMs with 2GB for each

one, so we can say that the host’s machine memory is overcommited. This is
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possible because hypervisor is aware of the resource utilization of each VM which

mostly don’t use its full allocated memory. This comes with benefits especially

for platforms developed for cloud computing where latency can be tolerated [17].

However, for latency-sensitive applications such as network functions, overcom-

mitment may affect performance of running VNFs.

Among best practices for performance of NFV recommended by VMWare, over-

commitment has to be disabled [18].

2.3.4 Benefits of Virtualization

Virtualization techniques provide several advantages for cloud computing [19],

notably:

2.3.4.1 Resource sharing

The major advantage of virtualization is resource sharing. Physical resources

of hosts are sharing among the virtual machines. Thus, running on the same

host, for each virtual machine is allocated a portion of it’s physical resources:

CPUs, physical network cards, disk controller and a region of memory. This

virtualization feature improves the resource utilization of servers counter to the

traditional approach which dedicates a server for each application.

Resource sharing can reduce communication time between VNF sub-functions by

deploying them in multiple VMs on top of the same physical host.

2.3.4.2 Server Consolidation

In traditional data centers, each application runs on a dedicated server,so most

of the resources in the physical infrastructure are vastly underused. But with

virtualization, multiple applications can run on a single server, which reduces

the number of servers.

Consequently, energy consumption is significantly reduced which is very advan-

tageous for Network operators looking to save network energy and to build green

network which became a critical requirement with the expanding of the network

size [20].
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2.3.4.3 Reducing costs

For the cloud provider, hardware is always the most expensive component in the

datacenter. Because virtualization reduces the number of servers, cost also goes

down.

As a matter of fact, Capex and Opex also go down for Network Operators which

is line with NFV goals.

2.3.4.4 Agility

One of the greatest advantage offered by virtualization and not available on

traditional data centers is live migration which enables to easily move a virtual

machine from one host to another for several needs. This feature makes the

infrastructure more agile and improves the resource utilization in the data center.

Virtualization offers great opportunities for telcos by ensuring agility, the big

promise of NFV.

2.3.4.5 Faster backup

Thanks to what we call a snapshot of a virtual machine which can provide

informations about the state of several machines at a single point in time, full

backup of what is running in the infrastructure can be created easily.

This feature eases the monitoring for the infrastructure management which is

considered as a critical requirement for NFV [21].

2.3.5 Cloud Management Platforms

In order to extend the server virtualization environment with an Infrastructure-

as-a-Service (IaaS) cloud, there is a need for cloud management platforms. These

deployment platforms are in charge of setting up virtual infrastructure and the

virtual management on top of that infrastructure.

There are many cloud deployment solutions that include all many components

necessary for the the management and the control of a virtualized infrastructure:

deployment, resource orchestration and application monitoring. Goals of these

platforms are the same, but architecture and strategies differ from a solution to

another.
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2.3.5.1 OpenNebula

OpenNebula is an open-source Cloud Management tool that enables several fea-

tures like security, virtualization, storage, and network solutions deployed in the

data center. These features also facilitate its integration with any product and

service in the cloud ecosystem, and management tool in the data center. Open-

Nebula provides an abstraction layer independent from underlying services to

support all these features.

2.3.5.2 Eucalyptus

Eucalyptus is an open-source software for deploying private and public cloud.

Due to its distributed architecture, Eucalyptus is scalable and compatible with

other technologies like Amazon Web Services (AWS). The architecture of this

software is made out of 6 components grouped into 3 layers:

• The first layer consists of the cloud controller and the storage service Wal-

rus. The cloud controller offers a web interface which is the management

tool that performs the resource scheduling. The Walrus component man-

ages storage for all VMs in the cloud environment.

• The second layer consists of the cluster controller, the storage controller,

and the VMWARE broker. The cluster controller acts as an intermediate

communicator between a cluster and the other controllers. It handles the

execution of the VMs. The storage controller manages storage within a

cluster. Furthermore, the VMWARE broker transforms Eucalyptus images

to VMWARE disks allowing an AWS compatible interface for VMWARE

environments.

• The last layer holds the node controller that in turn hosts the VMs. It acts

as a networking manager as well.

2.3.5.3 Openstack

“Network Functions Virtualization (NFV) is now synonymous with OpenStack.

When people say NFV, there is an implication that they are talking about Open-

Stack.”1

1“Dimensioning OpenStack Neutron for NFV Systems”, Mark Lambe, SDx Central, Septem-
ber 2014.
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Both ETSI and the Linux Foundation collaboration project, namely OPNFV,

have defined reference platforms for NFV that include Openstack as the Virtual-

ization Infrastructure Manager (VIM). This motivates our choice of Openstack

as a benchmark in this work.

An architectural as well as conceptual overview of this platform was presented

in [22] where authors enumerated the benefits of this platform. Openstack2 is a

set of open-source software for cloud management. This platform is based on a

modular architecture composed of several separate projects where each project

implements necessary functions needed to build an IaaS cloud. Multiple services

that Openstack components offer are reachable through API-requests exposed as

RESTFUL web services. Thus, Openstack is the most commonly used solution

in data centers because of the flexible and scalable properties it offers.

Architecture : The different components of the Openstack architecture are:

• Dashboard(Horizon): This is the web portal serving to control the vir-

tualized infrastructure. It allows users to manage VM instances and related

resources. Horizon is a web-based graphical interface where users specify

their needs in terms of VMs by communicating through Openstack API.

• Identity(Keystone): This is the manager of authentication and access

rights. Keystone provides a token-based authentication and high level au-

thorization. Users specify login and password in order to get a valid token

that allows them to fetch a specific resource for a time period.

• Image service(Glance): Provides services for discovering, registering

and retrieving VM images. Glance stores images that could be used as

template to launch instances.

• Compute(Nova): Nova compute is the core component of the Openstack

project. It is the manager of instances that is to say the creation, mod-

ification or removal of VMs. To ensure this function, NOVA is based on

three tools:

2https://docs.openstack.org/pike/
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1. NOVA- API : It supports API calls from the user. It initiates the boot

of VMs and verifies that certain rules are respected.

2. NOVA- COMPUTE : It runs on the host servers and manages the life-

cycle of VMs via the API hypervisor.

3. NOVA- SCHEDULER: It receives the VMs requests creation from the

queue and determines on which machine host the VM will be placed.

• Object storage(Swift): Swift contains cluster of servers to store large

amount of data. Every time a new node is added, the cluster scales hori-

zontally and in case of a node failure, Openstack works by moving content

to other active nodes.

• Block storage(Cinder): Cinder’s feature are to create more volume for

images.

• Networking(Neutron): Provides Network As A Service between device

interfaces managed by other Openstack services. Neutron relies on key-

stone for authentication and authorization for all API requests. When

creating a new instance, nova-compute communicates with the neutron

API to plug each virtual network interface card (NIC) on the instance into

a particular neutron network through the use of a virtual switch: Open-

Vswitch.

• Orchestration(Heat): This service implements an orchestration engine

for managing the entire lifecycle of resources within the infrastructure.

Basic Request flow in OpenStack: Figure ?? illustrates the request flow

when creating a VM in OpenStack. The required steps are described below:

1. The Dashboard is the access point of the request flow, it gets the credentials

of the connected user and, through a REST call, it gets an authentication

token from Keystone.

2. Horizon uses the token in order to connect to Nova.

3. Nova interacts with the database in order to store the state of the request.
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4. The VM creation request is sent to the message queue and the status of

the request is updated.

5. Nova uses a two-steps algorithms to find the best compute node to host

the instance.

6. The compute node asks Nova for information to prepare the creation of

the VM.

7. The compute node fetches the image to start the instance by interacting

with Glance.

8. Glance fetches the image stored in Swift and transmits it to the compute

node.

9. The node asks neutron to create the virtual interfaces of the instance and

establish the connectivity.

10. If the user wants a persistent storage, the node will ask Cinder to attach a

storage volume to the instance.

11. The compute node interconnects all previous informations, transmits it to

the hypervisor and start the instance.

2.4 Centralized vs Distributed Cloud Infrastructure

This section analyses cloud computing systems from a design perspective. A

comparison between centralized and distributed cloud data centers topologies

has been made in [23]. Based on locations, authors have distinguished two types

of data center topologies:

• Centralized cloud data center topology defined as a topology with one big

datacenter to service all clients requests around the globe [24].

• Distributed cloud infrastructure defined as multiple small data centers

spread across a large geographical area and interconnected with high ca-

pacity WAN leased lines [25].

Hence, in distributed cloud systems, requests can be serviced from locations

closet to them. Being closer to user has many advantages; this reduces the need

17



Chapter 2 Section 2.5

for network capacity especially for high bandwidth applications and improves

access latency.

Extend datacenters across geographical locations became common nowadays for

cloud service providers. For example, Google3 has invested significantly in con-

structing largescale datacenters across the world, to host their services. The

company has deployed at least 15 datacenters across 3 continents. Another ex-

ample is VSP.NET, a leading cloud services provider that is offering today cloud

hosting to over 10, 000 clients, in more than 180 different countries with 22 de-

ployed datacenters across 5 continents4.

Amazon Web Service (AWS) uses at least 13 locations all over the world with

35 availability zone spread over 13 locations all over the world.5

This will very likely be the case of network operators who plan to deploy data

centers at the points of presence of their network. Indeed, depending on the

geographical span of a network, several hundreds of PoPs could be deployed by

a medium-size network operator.

2.5 Related Work on Resource Allocation Strategies

Resource allocation is one of the most challenging problem in virtualized in-

frastructure management. In the recent few years, many research works have

addressed this problem considering the large number of possible optimization

criteria and different formulations that could be studied.

2.5.1 Problem Statement

It is an important decision where to allocate resources, in other words, where

to place required virtual machines of user request in cloud computing system.

Several works in the existing literature have addressed virtual machine placement

issue.

In this operation, first a set of virtual machines is given with some resource

requirements like CPU, memory, disk, etc. There are two keys approaches for

defining VM requirements based on taking provider-defined and user-defined

views:

3https://www.google.com/about/datacenters/inside/locations/index.html
4https://www.vps.net/cloud-datacenter-locations
5https://aws.amazon.com/fr/about-aws/global-infrastructure/
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• In the provider-defined view, cloud providers like Amazon EC2 predefine

limited number of types of VM configuration of resources requirements for

cloud users6.

• In the user-defined view, cloud providers such as IC cloud allow their cloud

users to define VM configuration based on their needs [26].

Then, a set of physical machines (PM) is given with different resources capacities

(CPU, memory and disk) on which those VMs are to be placed [27].

The placement process is to decide on which PM to place the different VMs

based on one of two goals :

• Load balancing: Placing the new VM in such a manner that it helps in

load balancing of resource utilization within the PM.

• Server Consolidation: Placing the new VM such that it helps in server

consolidation and that means favoring the PM with high load.

Basically, the problem of VM placement can be illustrated as in Figure 2.3 where

we have a set of virtual machines arriving at the scheduler that must make the

decision of where to fill the placement among 2 PMs.

interne Orange 1 

VM 

Occupied volume Occupied volume 

Scheduler 

VM VM VM VM VM 

Physical machine 1 Physical machine 2 

Figure 2.3: Virtual machine placement.

Due to the multidimensional characteristics of both VMs and PMs, the map-

ping VM-to-PM is an NP-hard problem which has been extensively studied in

cloud computing literature [28]. The problem is traditionally described as a Bin

Packing Problem where different size items are to be packed in bins of fixed size.

Although, here the problem translates into a Vector Packing Problem where PMs

are bins and VMs are items to be placed. Dimensions of vectors are the number

of resource required like CPU and memory.

In the following, we review algorithms for virtual machine placement.

6https://aws.amazon.com/fr/ec2/instance-types/

19



Chapter 2 Section 2.5

2.5.2 Resource Allocation Algorithms

Several works have addressed virtual machine placement problem, but most

methods focus on resource allocation mechanisms in centralized cloud platforms.

In this approach, the placement is fulfilled in centralized fashion and the possible

traffic that can be considered is only between VMs inside the same data center.

In such a context, a popular approach is to adopt an optimization formulation:

Given a demand for resources in terms of storage and computing, the problem

is to find the optimal request placement. This leads in general to Mixed Integer

Linear Programming (MILP) problems.

2.5.2.1 MILP

The problem is classically posed as a Mixed Integer Linear Programming problem

where objective function aims to reduce the number of physical hosts used or

costs due to different placement, hosts capacities with other restriction like power

consumption are specified as constraints.

Authors in [29] defined two constraints that need to be satisfied during the

placement process:

• Capacity constraint: For each dimension of a given PM, the sum of the

resource requirements of all VMs placed on it should be less than or equal

to the total available capacity.

• Placement Guarantee constraint: All VMs should be placed.

• Objective Function: Aims to minimize the number of PMs.

Using a linear programming tool, a solution of VM-to-PM mapping is generated.

Authors conducted some experiments which revealed that the time required to

generate a placement plan for 20 VMs reached more than 8.5 hours which is

undesirable in a practical scenario.

To achieve optimal resource placement, an exact formulation that aims at finding

the best placement of resources by maximizing the revenue and minimizing the

corresponding costs is proposed in [30]. The authors have also noted that the

ILP formulation suffers from scalability problems.

A similar approach was adopted in [31] to resolve the VNF orchestration problem

by providing a MILP formulation. Although the authors have proved that the
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time needed to evaluate the model increases more or less linearly with the number

of service to be placed, this approach requires all requests to be known in advance

and seems to be unable to manage rapid fluctuations of demand.

Thus, although the MILP formulation gives an exact placement plan, it does

not scale well with the increase in the number of virtual or physical machines.

Optimization approaches can be very time consuming, several works addressing

resource allocation in cloud systems proposed alternative approaches providing

solutions in more reasonable time.

2.5.2.2 Heuristic-based approaches

To reduce time complexity, several heuristics are introduced to give placement

plan that is close to the optimal solution.

2.5.2.2.1 FFD-based heuristics The typical approach for one-dimensional

bin packing problem is FFD (First Fit Decreasing). The principle is to order

the items and the bins by size. Starting with the first bin, it iterates over the

items placing any item it can into it. Once the first bin is filled, it proceeds to

the second bin from the ordered list, repeating the same process [32].

If the problem is constrained by a single resource CPU for example, then FFD

can be applied where the size of items is the number of required Cores by the

VM and the size of bins is the remaining Cores in the PM. But, generally the

placement problem is constrained by more than a single resource (CPU, memory,

disk). Thus, a generalization of the FFD is needed. Classically, to generalize FFD

to a multidimensional scenario,the multidimensional vector of PM capacities is

mapping into a single scalar called metric, then FFD for single resource can be

performed based in this metric. In existing literature, this approach has been

well explored but it stills not clear what formula to use to generate this metric so

that one-dimensional FFD can be performed. In what follows, we will investigate

some of existing methods in literature that calculate this scalar so-called metric

for FFD multidimensional problem .

a) Weighted sum : OpenStack scheduler 7

7https://docs.openstack.org/nova/pike/user/filter-scheduler.html
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The main role of the OpenStack scheduler called Nova-scheduler is to make

decision on where a new instance should be created according to its resources re-

quirements. The algorithm of nova scheduler only consider CPU speed, memory

capacity and hard drive capacity when scheduling an instance. During its work,

the scheduler iterates over all physical servers evaluating them with a metric

called score calculated thanks to a two-phases algorithm. Based on this score,

the one-dimensional FFD can then be performed [33]. First, a filtering process is

used to determine which hosts are eligible for consideration and an eligible host

list is created. Many filters are available for this end so that users can specify

which filters to use when performing the scheduling. Some of available filters:

• RAM filter: Ensures that only nodes with sufficient RAM are selected

for the eligible hots list. If the RAM is not used, the nova scheduler may

over-provision a node with insufficient RAM resources. By default, the

filter is set to allow over-commitment on RAM by 50 percent.

• Core filter: Ensures that only nodes with sufficient CPU cores are chosen

for the eligible host list. If the core filter is not used, the nova scheduler

may over-provision a node with insufficient physical cores. BY default the

filter is set to allow over-commitment based on a ratio of 16 virtual cores

to one physical core.

Then, a second process is applied against the list to determine which host is

optimal for fulfilling the request. It applies one or more cost function to get

numerical score for each host. The score is a way to select the suitable host and

is calculated this way:

scorehost = (wmultiplier
1 ∗norm(w1))+(wmultiplier

2 ∗norm(w2))+ ...+(wmultiplier
n ∗

norm(wn))

where wn is the normalized value of the amount of the resource n, and wmultiplier
n

is the weight associated to it. Multipliers can be negative or positive. If multi-

pliers are negative then we are favoring the host with largest available resource.

With the nova scheduler, client can make its own filters and specify with which

type of resource calculate the score. Thus, we can say that this scheduler is flex-

ible and can be adapted to the user needs. But, this single metric calculated for

different resources is not aware about the availability of each type of resource.

We can imagine a very loaded host in terms of memory capacity will be chosen

for the placement because of its large number of available cores. Hence, we can
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say that resources all over the cluster are non used in a balanced manner, and

even after this placement, the situation will be worst.

b) Volume approach : Sandpiper

Another metric, referred to as sandvolume is defined in [34] as:

sandvolume =
1

1− wcpu
.

1

1− wmem
.

1

1− wnet
,

φt = α.n+ (1− α).φt−1, α = 0.14

Cv =
σ

ρ̄
,

wres represents the corresponding normalized utilization ratio of the resource res.

Let’s consider a 3D unit cube where each dimension represents the normalized

capacity of each type of resource offered by the PM. The total capacity of the

server is then obtained with the volume of the unit cube, this metric provides

informations about the exploitable volume of a PM.

If the problem were constrained by one dimension, then comparing PMs by

using the above metric is the natural choice for the FFD algorithm since its

value is inversely proportional to the amount of available resources. However, in

the case of multidimensional resource allocation, this algorithm may have some

shortcomings. In fact, the volume does not completely reflect the amount of

resources on each dimension.

As an illustration, consider two PMs with three types of resources (RAM, CPU

and Disk). Respective normalized utilization ratio as illustrated in Figure 2.4 :

• PM1 has (0.4CPU, 0.45RAM, 0.5Disk)

• PM2 has (0.2CPU, 0.7RAM, 0.2Disk)

The sandvolume metrics of the two PMS are :

• sandvolume(PM1) = 6.06

• sandvolume(PM2) = 5.20
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Figure 2.4: Server state before the placement

With sandpiper approach, PM2 which has the highest exploitable volume (the

lowest metric) will be chosen as a target for placing any VM request regardless

of its resources requirements.

Figure 2.5: Server state after the placement

If we consider a VM requiring (0.1CPU, 0.2RAM, 0.1Disk), the remaining ca-

pacities of both PM after the placement of this VM are illustrated in Figure 2.5

and given by :

• PM1 = (0.5CPU, 0.35RAM, 0.4Disk)

• PM2 = (0.7CPU, 0.1RAM, 0.7Disk)

It is clear as illustrated in Figure 2.5 that after the placement of the VM on

PM2 which is recommended by the sandpiper approach, resources of PM2 are

not utilized in a balanced manner and the exploitable volume left is less than

that when it is placed on PM1. This may lead to blocking of further requests.

2.5.2.2.2 Multidimensional aware heuristics We just proved that in-

formation about resource utilization may be lost with a single metric. Another

set of heuristics was proposed in the existing literature to achieve a better host
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utilization. These heuristics are called multidimensional-aware heuristics. The

basic idea is to represent various resources as a d-dimensional vector. As each

VM demand is a combination of different type of resources for example CPU,

memory and disk, it is represented by a 3-dimensional vector where each dimen-

sion represents a single type of resources. Let’ s call this vector ~Ri which is the

Figure 2.6: Normalized Resource Cube

vector of normalized resources required by the VMi.

The same representation is adopted to represent the PM resources capacities.

A 3-dimensional vector ~Cj of normalized resources capacities is generated for

each PMj . Finally, resource utilization of a PMj is also represented by a three-

dimensional resources vector ~Lj . Thus, all resources are normalized and all

information are defined as vectors. The typical approach proposed in many re-

lated works [35][36] consists on representing all these information vectors within

a unit cube called Normalized Resource Cube (NRC) as shown in Figure 2.6.

a) Imbalance heuristic

Imbalance is a metric that calculates how much the utilization of resources of a

single PM is imbalanced. This metric is calculating by defining a new vector ~I

which is the vector difference between the projection of the resource utilization

vector ~L and on the resource capacities vector ~C and ~L.

If ~C of a PM is exactly aligned with the imbalance vector ~I, thus we can say

that resources of this PM are utilized in a balanced manner.

Admit that the resource capacities vector ~C is defined by ~C = ~i + ~j + ~k where

~i,~j,~k are the unit vectors along the three resources CPU, memory and disk.

The resource utilization of a PM is given by : ~L = c ∗~i+m ∗~j+ d ∗~k where c,m

and d are the normalized values of CPU, memory and disk utilized in this PM.

Hence, the projection of the utilization vector ~L on the principal diagonal of the

NRC is given by:
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( 1√
3
c+ 1√

3
m+ 1√

3
d)∗ ( 1√

3
∗~i+ 1√

3
∗~j+ 1√

3
∗~k) = c+m+d

3 ∗~i+ c+m+d
3 ∗~j+ c+m+d

3 ∗~k

Therefore, imbalance vector ~I is given by:

~I = (c− c+m+d
3 )∗~i+(m− c+m+d

3 )∗~j+(d− c+m+d
3 )∗~k The ~I vector appears in the

NRC like shown in Figure 2.7. Every time we have a VM to place, we simulate a

Figure 2.7: Imbalance degree vector

placement on each PM in order to calculate the new values of imbalance degree

of each server and choose the server which minimizes this value.

Although this approach takes into account the multidimensional aspect of the

problem, it does not consider the resource requirements of the VM when schedul-

ing an instance, it just considers resource utilization of the PM regardless to what

it is required by the instance.

To rectify this, authors in [35], used the imbalance heuristic combined with an-

other approach that takes into account the complementary aspect when placing

a VM. The idea is to find a VM which is more utilized in CPU compared to

memory to place in a PM that has more resource utilization along the memory

axis the imbalanced degree is minimized. To achieve this goal, PMs are grouping

into d! groups according to the resource utilization if each PM and where d is

the dimension of the problem.

Let’s illustrate this approach with an example of a 3-dimensional problem with

3 types of resources(CPU, memory and disk); we then have 3! = 6 groups.

For the group CMD, the CPU is the most utilized resource and the disk is the

least utilized one. The memory is between both(CPU ≥ Memory ≥ Disk).

Its complementary group in terms of resource utilization will be DMC(Disk ≥
Memory ≥ CPU).
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When scheduling a VM, we identify into each group it will fall. Hence, the target

PM will be the one that minimize the degree of imbalance the most from the

complementary group for the VM. The mechanism is illustrated in figure 2.8.

Figure 2.8: Grouping PMs for scheduling

b) Dot-product heuristic

In this approach like adopted in [36], we take the dot product of resource re-

quirements vector ~R of the VM to be placed and the resource utilization vector

~L of each PM. The PM who gives lower dot product is chosen. The idea behind

is to place the VM in a complementary PM. The intuition is that a small dot

product means a large angle between the VM vector and the resource utilization

vector of the PM, and a large angle means that VM and PM are complementary.

In 2-dimensional space and as illustrated in Figure 2.9, it is clear that the lower

dot product is given by PM1 which is a better choice to balance the resource

utilization where the VM to place is asking for more CPU than RAM and PM1

has more resource utilization in terms of RAM than CPU.

The dot approach recommends to choose PM1 as a target. It is clear that PM1

is the better choice because in this case, both of PMs have almost the same uti-

lization vector ~L. Hence, the dot product value gives a correct information about

the angle. In fact, as the dot-product is defined by :

‖~R‖*‖~L‖ * cos(~R, ~L) and this will be calculated for each PMi, the length of ~L

plays a role in deciding the target PM. Thus, this approach does not really take

into account the angle by calculating the dot product.
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Figure 2.9: Dot product approach

2.6 Testbed Platform

Generally speaking, the orchestrator, also called the scheduler is the entity in

charge of taking placement decision. To this end, the orchestrator has to maintain

an updated view of the underlying infrastructure, notably the amount of available

resources.

In the following, we describe some experimentations that we did in a real cases

scenarios to validate a major hypothesis of this work, notably that the orches-

trator can have a global vision and be aware about the resource occupation in

the infrastructure.

Figure 2.10: Integrated IT and Network test-bed Platform.
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We present in this section an integrated IT and network test-bed platform. This

platform consists on :

1. A distributed infrastructure composed of 4 data centers represented by 4

deployments of different instances of Openstack. We used the 11th release

of the open source software, namely the Openstack Kilo8. For the end-to-

end inter data centers connectivity, we use an SDN network emulated by

the Mininet Emulator. On any laptop, Mininet can create a realistic vir-

tual network based on the Openflow protocol [37]. As the SDN controller,

we choose the Opendaylight Controller. Opendaylight is a platform en-

suring the network programmability and the interaction with the network

resources through the APIs that it exposes9.

2. A bottom layer for the orchestration that is interacting with the openstack

and the opendaylight controller. To this end, we implement an orchestra-

tion platform consisting on several python scripts that consumes the APIs

exposed by opnetsack as well as opendaylight through http request calls.

The considered platform is illustrated in Figure 2.10.

Through interaction with infrastructure controllers, the Orchestrator is able to

collect information and keep a global vision of the state of the infrastructure.

Thanks to these relevant information, the orchestrator can be aware of the state

of the infrastructure when allocating resources.

As a proof of concept, the orchestrator in our implementation rely on Openstack

and Opendaylight to collect informations and to have a global view of the in-

frastructure by performing some actions. These actions are described in Figure

2.11.

2.6.1 Network Topology Discovery

The orchestrator fetches first informations about the network topology by calling

the function getTopology which interacts with the topology discovery module

within the network controller Opendaylight. OpenDaylight Controller uses the

LLDP messages to discover the topology of the connected OpenFlow Devices and

provides a view of the physical network topology. An example of informations

provided about a 3 nodes topology is illustrated in Figure 2.12. This topology

under consideration in this example is composed of:

8https://www.openstack.org/software/kilo/
9https://www.opendaylight.org/
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Figure 2.11: Network topology informations.

Figure 2.12: Network topology informations.
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1. 3 nodes identified by physical addresses which represents an OpenFlow

device as well as 2 data centers.

2. 4 logical links which represents 2 physical links connecting data centers to

the virtual switch.

2.6.2 Resource Utilization Level Collector

With regard to the resource utilization level in the data centers, the orches-

trator interacts with the openstack instances managing the cloud infrastructure

to collect informations by calling the function getResources. Openstack pro-

vides informations about the amount of the used resources in the data centers.

These provided informations are about the several types of resources, notably

the memory, compute and storage resources. An example of these informations

of a specific data center returned by openstack to the controller is illustrated in

the Figure 2.13.

Figure 2.13: Resources utilization level.

Thanks to our test-bed platform and the orchestration platform implementa-

tion, we have shown that the orchestrator is able to have a global view of the

underlying infrastructure comprising the network topology as well as the re-

source utilization level. We have proven that with the right monitoring tools,

the orchestrator can collect all the necessary informations and metrics. These

informations can ameliorate the scheduling decisions taken by the orchestrator.
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2.7 Summary

Given the transformation of network towards virtualization, cloud computing

and resource allocation continue to draw immense attention from researchers in

both industry and academia, and from cloud as well as network fields.

This chapter discussed first motivations driving network operators to accelerate

the transformation towards NFV. Second, we focused on virtualization aspects

and it included an overview of resource allocation in cloud computing, notably

concerning placement algorithms.
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3.1 Introduction

In recent years, cloud and virtualization have enabled the emergence of new ap-

plications and services by significantly reducing costs and, above all, providing

unprecedented agility. These advantages contributed to the convergence between

Information Technology and telecommunications networks with notably the de-

velopment of NFV, which clearly makes it possible to overcome the ossification

of traditional networking techniques based on hardware [38].

The virtualization of network functions is certainly a major revolution that will

impact not only the architecture of networks but also the Network Operators

(NO) infrastructures. In fact, to meet stringent real-time constraints of some

VNFs [39], some network functions have to be hosted close to end users (e.g.

Radio Access Network (RAN) functions, firewalls, deep packet inspection). This

has led to the development of geographically distributed mini data center, also

referred to as cloudlets [40], at the edge of the network (i.e. typically at Points

of Presence (PoPs) level). See for instance [41] where authors describe Edge

Network examples.

Capacities in terms of storage, compute and networking resources provided by

edge data centers are considered as infinite when compared to the infinite capac-

ity assumption of huge centralized data centers deployed for instance by Google.

Therefore, the network operator infrastructure is evolving towards a distributed

architecture of edge data centers with limited capacities deployed close to the

end users.

All these radical changes in network operators’ infrastructures raise new issues,

specifically in terms of resource allocation, which have so far not been considered

in the cloud literature. Traditionally, resources in cloud platforms are considered

as to be infinite and request blocking is most of the time ignored when evaluating

resources’ allocation algorithms, because of this infinite capacity assumption [42].

However, if we assume that the NO’s infrastructure will be very likely composed

of small data centers with limited capacities, and deployed at the edge of network,

the congestion of such a system may occur specifically if the demand is sufficiently

high and exceeds what the infrastructure can handle at a given time.

Generally speaking, VNFs will be implemented in both big centralized data cen-

ters and smaller one distributed at network edge to improve response time. There

is hence a clear need for analyzing blocking of requests for such infrastructure

and for finding algorithms to allocate resources to requests.
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In this Chapter, we evaluate resource allocation algorithms by paying special

attention to request blocking which has so far not been considered in the cloud

literature and presents a key metric in the context of telco cloud.

We start by giving some background and review existing work on blocking anal-

ysis in cloud literature in Section 3.2.

In section 3.3, we first propose an analytical model for the blocking analysis in a

centralized cloud system, which was validated using discrete events’ simulations.

Second, we conducted a comparative analysis of the most popular placement’s

strategies. The proposed model, as well as the comparative study, reveal practi-

cal insights into the performance evaluation of resource allocation and capacity

planning for distributed edge cloud with limited capacities.

In section 3.4, we investigate placement and offloading strategies of constrained

services in distributed cloud. We set design principles of future distributed edge

clouds in order to meet application requirements. We precisely introduce a cost-

less distributed resource allocation algorithm, named CLOSE. We compare via

simulations performances of CLOSE against those obtained by using mechanisms

proposed in the literature, notably the Tricircle project within OpenStack.

Section 3.5 concludes this chapter.

3.2 Background

3.2.1 Virtual Network Function Placement

According to the NFV group specification [43], End-to-End (E2E) network ser-

vices can be mapped into a forwarding graph composed of several VNFs.

Each VNF is composed of one or more virtual machines performing a set of

specific functional tasks. Based on VNF requirements, the VNF descriptor is

a package that describes a list of needed resources (e.g. storage, computation,

etc.) mapped to VMs. This descriptor is considered as a template of a service

specifying the resource infrastructure to allocate in order to instantiate the VNF

[44].

The E2E network service placement consists of the instantiation of the set of

VNFs corresponding to its forwarding graph in the different geographical lo-

cations. This can be expressed by allocating the resources required by virtual
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machines in different points of presence from the underlying infrastructure. This

constraint is referred to as the Multi-Site constraint.

Generally speaking, each VM requested to instantiate a VNF has its own com-

bination of resource requirement (for example CPU, memory and disk) that can

be represented by a multidimensional vector where each dimension represents

the desired amount of a single type of resources. Group of VMs with the same

vector requirements can be mapped into class. Let this constraint be referred to

as the Multi-Class constraint apart from the Multi-Dimension one constraining

the resource allocation problem in this context.

The shortage of one or more of the resource types required may cause the request

to be blocked. However, VNFs has to perform as expected when the network

service is requested. This gives rise to new issues for network operators, which

now have to characterize service availability that may be affected by request

blocking when allocating resources.

There is hence a clear need for finding an appropriate model considering both

the Multi-dimension and the Multi-class constraints that can quantify blocking

in cloud infrastructure where capacities are limited. This model can reveal prac-

tical insights into performance evaluation of resource allocation algorithms and

capacity planning so that edge data centers constrained by finite capacities will

be correctly dimensioned.

3.2.2 Analysis of Blocking in Cloud Computing

Performance evaluation of resource allocation strategies has been studied in the

cloud literature, but only few works have addressed cloud performance problems

in terms of blocking probability since cloud resources have always been considered

to be infinite. See for instance [45] [46] [47] [48].

An analytical model to estimate blocking probability as well as the waiting time

of requests was introduced in [49]. Although this model takes into account

multiple critical cloud features such as batch arrival of requests, only the memory

resource was considered in the model. Several blocking estimation models from

the existing literature are subject to the same limitation; notably the single-

resource case. See for instance [50] [51].

In [52], two policies of resource allocation to handle both data center and net-

work resources were proposed. Based on those policies, authors evaluate several
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allocation strategies in terms of blocking probability but no analytical model was

proposed.

In [53], a topology-aware virtual machine placement is proposed. The algorithm

proposed handling several types of arrival requests is then compared to two

other algorithms based on blocking rate and energy consumption. However, the

placement decision of the introduced policy is made only based on computational

resource requirements. It is worth noting also that no theoretical modeling was

introduced in this work.

In [54], a queuing model is employed to optimize resource allocation for multi-

media cloud based on two metrics namely response time and resource allocation

cost. However, blocking was not quantified and the analysis was limited to a

single-resource case.

A general analytical model for evaluating task blocking probability in cloud com-

puting system is proposed in [55]. The proposed model considers the concept of

virtualization as well as heterogeneous server pools but this study is also limited

to single-resource dimension.

Analysis of blocking in cloud data centers requires relevant modeling counting

a large number of parameters such as several types of advent request at the

cloud system and heterogeneous resources of the system. To the best of our

knowledge, these features all together are not available in any of the existing

models of blocking analysis in cloud systems.

3.3 Resource Allocation Algorithms In Centralized

Cloud Platforms

We propose in this section an analytical model for the blocking analysis in a

multidimensional centralized cloud system. We assume in the following that a

request cannot be split in the sense that either a request can be hosted by a PM

or else the request is rejected. Splitting requests offers an additional degree of

freedom for the placement algorithm but induces additional traffic inside the data

center. Contrary to previous studies on resource allocation in cloud platforms,

we analyze in this thesis system performance in a probabilistic context and we

pay special attention to blocking of requests.
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3.3.1 Model Settings

We consider a data center composed of N servers. Each server comprises J types

of resources (CPU, RAM , disk, bandwidth , etc.). We assume that all servers

are identical. The capacity of a server is denoted by cj for resource j. The data

center capacity is then Ncj in resource j.

The data center accommodates resource requests of K classes. The demand in

resource j of a class k request is denoted by Ak
j . We assume that requests of

class k arrive according to a Poisson process with rate λk. The mean holding

time of resources by a request of class k is denoted by 1/µk. To simplify the

analysis we assume that the nominal request Ak
j has integer values. Moreover,

we assume that the greatest common divisor of Ak
j for k = 1, . . . ,K and fixed j

is equal to 1.

The load of the system in resource j is

ρj =
1

Ncj

K∑
k=1

ρkA
k
j ,

where ρk = λk/µk.

The model under consideration is illustrated in Figure 3.1

Figure 3.1: Model settings

In practice, upon the arrival of a request, the scheduler, aware of the occupation

of different servers in the data center, forwards the request to one of the available

servers that can accommodate the request. The selection of the server is made

according to a given algorithm. If the requested amount of resources is not

available in all servers, the request is then blocked.
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Due to the fragmentation of the resources among servers, there is a potential

loss of efficiency. For a given request, the claimed amount of resources may be

globally available but since the resources are fragmented it may happen that

none of the server can accommodate the request.

The routing algorithm may have a major impact on the performance of the

system. To study the impact of the routing algorithm on the global blocking of

the system, we consider that the N servers are grouped into a unique big server,

since there is no loss. Then we analyze the blocking for this system in order to

evaluate subsequently the efficiency of different routing algorithms by comparing

global blocking rates.

3.3.2 Blocking in a grouped data center: One Big Server

Figure 3.2: One Big Server Model settings

If we assume that the N servers can be grouped into a unique big Server, with

capacity Ncj for resource j as shown in Figure 3.2, then we obtain a classical

blocking system with heterogeneous resources.

If we consider the system in equilibrium, let n = (n1, . . . , nK) denotes the occu-

pation of the server when there are nk customers of class k in the system.

The resource constraints translate into

K∑
k=1

nkA
k
j ≤ Ncj

for j = 1, . . . , J .
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The probability of being in state n is

P(n) =
1

G

K∏
k=1

ρnk
k

nk!
,

where G is the normalizing constant given by

G =
∑
n∈S

K∏
k=1

ρnk
k

nk!
,

the state space S being defined by

S =

{
n ∈ NK :

K∑
k=1

nkA
k
j ≤ Ncj , j = 1, . . . , J

}
.

The state space S is delimited by J hyper-planes. We easily note that if Aj
k ≤ A

j′

k

and Cj ≥ Cj′ then the condition
∑K

k=1 nnA
k
j is dummy. In the following we

assume that this situation does not occur. Otherwise, we have to consider smaller

number of resources J ′ < J but the analysis is similar.

In the following we assume that N is large and we take N as a scaling factor. In

other words, we replace λk by Nλk for the arrival rate of class k customers.

The classical asymptotic methods developed in the context of circuit-switched

for large networks (see for instance [56]) is a way of looking at our model.,The

aims of the study conducted in [56] is to estimate the blocking probability that

an arriving request will not find enough bandwidth on a route to its destination.

On the basis of this study, we deduce the following estimates for the blocking

probability βk for class k customers under 3 different load conditions:

• Underload conditions If
∑

k=1 ρkA
k
j < cj , for large N

βk =

1√
2πN

∑
j,Ak

j 6=0

e−N.Ij√
Γj

1− e−yjA
k
j

1− e1−e−yj

[
1 +O

(
1√
N

)]

with

Ij =
∑
k

ρk

(
1− e−A

k
j yj
)
− Cjyj ,

Γj =
∑
k

ρkA
k
j
2
e−A

k
j yj
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and yj < 0, j = 1, . . . , J being the solution to the linear system

K∑
k=1

ρkA
k
j e
−Ak

j yj = Cj , j = 1, . . . , J ; (3.1)

• Critical conditions: If
∑

k=1 ρkA
k
j = cj ,

βk =
1√

2πN

∑
j,Ak

j 6=0

Ak
j√
Γj

[
1 +O

(
1√
N

)]
;

• Overload conditions: When
∑

k=1 ρkA
k
j > cj and the linear system (3.1)

has positive solutions,

lim
N→∞

βk = 1−
∏

j,Ak
j 6=0

e−yjA
k
j .

3.3.3 Numerical Validation of the proposed model

We propose in this section a quantitative evaluation of the blocking probability

estimation obtained with our model. For comparison, results are provided via

simulation where we consider 2 scenarios:

• a two-dimensional system (RAM and CPU resources) and two classes of

requests (Mice and Elephant)

• a three-dimensional system (RAM, CPU and Disk resources) and two

classes of requests (Mice and Elephant)

Two-dimensional system We consider in this scheme a two-dimensional sys-

tem offering 2 types of resources (RAM and CPU) and two classes of requests.

One class is composed of requests with small requirements in terms of CPU and

RAM (referred to as mice). The requests of the second class (referred to as

elephants) have high requirements in terms of CPU and RAM.

The arrival process of class 1 requests is assumed to be Poisson with rate λ1. A

class 1 customer requires c1 = 2 units of CPU and r1 = 3 units of RAM. The

holding time of resources is assumed to be exponential with mean 1/µ1 = 1.

Similarly, class 2 requests arrive according to a Poisson process with rate λ2,

require c2 = 17 units of CPU and r2 = 65 units of RAM, and hold the resources

for exponentially distributed duration with mean 1/µ2 = 1.
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We consider a data center with two identical servers with capacity C in terms of

CPU and R in terms of RAM. We assume that the two servers are grouped into

a unique big server with capacity 2R in terms of RAM and 2C in terms of CPU.

The load of the system is then

ρCPU
def
=

c1ρ1 + c2ρ2
2C

in terms of CPU and

ρRAM
def
=

r1ρ1 + r2ρ2
2R

in terms of RAM, where ρ1 = λ1/µ1 and ρ2 = λ2/µ2.

We obtain via simulation blocking probabilities for both mice and elephant

classes. Simulation results are averaged to obtain confidence intervals with a

95% confidence level.

Figure 3.3 displays the blocking probability versus traffic intensity under three

different regimes: underload, critical and overload. This figure shows that the

Mices have quite different blocking probabilities when compared to Elephants

but in both cases, the blocking probability given by our model is comprised

between the upper and lower value given by simulations.

Results illustrate the good accuracy of the proposed analytical model through

blocking probability estimation for both classes especially under the critical

regime.

Figure 3.3: Numerical Validation Of the Model with two-dimensional system
.

Three-dimensional system We consider in this section that the system offers

3 types of resources (namely CPU, RAM and Disk). As in the previous scenario,
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requests arrive according to a Poisson process with different rates; λ1 for the

first class and λ2 for the second class. The Mice class requires c1 = 4 units of

CPU, r1 = 1 units of RAM and d1 = 30. Similarly; the Elephant class requires

c2 = 16 units of CPU, r2 = 64 units of RAM and d2 = 70. The holding time of

resources is assumed to be the same for both classes (1/µ1 = 1/µ2 = 1).

We consider a data center with two identical servers with capacity C in terms of

CPU, R in terms of RAM and D in terms of Disk storage. We assume that the

two servers are grouped into a unique big server with capacity 2R in terms of

RAM, 2C in terms of CPU and 2D in terms of storage. We obtain via simulation

blocking probabilities for both mice and elephant classes.

The load of the system is then

ρCPU
def
=

c1ρ1 + c2ρ2
2C

in terms of CPU,

ρDisk
def
=

d1ρ1 + d2ρ2
2D

in terms of storage and

ρRAM
def
=

r1ρ1 + r2ρ2
2R

in terms of RAM, where ρ1 = λ1/µ1 and ρ2 = λ2/µ2.

Simulation results obtained with a 95% confidence level.

Box plots in the Figure 3.4 displays the blocking probability obtained via simu-

lations for both classes under two different regimes: underload conditions (where

ρRAM = 0.80, ρCPU = 0.80 and ρDISK = 0.85) and overload conditions (where

ρRAMA = 1.10, ρCPU = 1.45 and ρDISK = 1.247). Analytically estimated val-

ues of blocking probabilities are marked with a red star. Results illustrate the

good accuracy of the proposed analytical model through blocking probability es-

timation for both classes especially under the underload as well as the overload

regime.
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Figure 3.4: Numerical Validation Of the Model with three-dimensional sys-
tem .

3.3.4 Evaluation of resource allocation algorithms

In this section, we evaluate via simulation the efficiency of some placement al-

gorithms presented in Chapter 2 by comparing the blocking probabilities values

to those obtained in the case where we consider servers grouped into one big

server where there is no efficiency loss due to the fragmentation. Depending on

the number of arrival classes, we have studied two scenarios.

3.3.4.1 Two-Class System

Performed Simulations The system we have first considered is a data cen-

ter composed of 2 servers with identical capacities offering two types of re-

sources(RAM and CPU) and intercepting 2 arrival classes of requests; one class

is composed of requests with small requirements in terms of resources referred to

as Mice and the second class Elephants has hight requirements as in the previous

section.

To study the performance of the system, we have considered three regimes:

• Underloaded system: ρCPU < 1 and ρRAM < 1;

• Critical load conditions: ρCPU = 1 and ρRAM = 1.

• Overloaded system: ρCPU > 1 and ρRAM > 1.

a) Underloaded System

Simulations Settings To study the performance of the system, we have con-

sidered first the underloaded conditions. Parameter values for underloaded con-

ditions are given in Table 3.1. The loads are ρCPU = 0.81 and ρRAM = 0.88.
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Table 3.1: Parameter values for underloaded conditions.

parameter value

(λ1, µ1, c1, r1) (70,1,2,4)
(λ2, µ2, c2, r2) (30,1,17,32)

(C,R) (400,700)

Simulations Results The blocking probabilities for the two classes of requests

and the various algorithms are given in Figure 3.5. We can verify that there is

no significant difference between the various algorithms for both classes; mice as

well as elephant.

Figure 3.5: Blocking Rates in an Underloaded System .

b) Critical load conditions

Simulations Settings We consider in this scenario critical load conditions

with parameters given in Table 3.2. The loads are ρCPU = 0.99 and ρRAM = 1.

Table 3.2: Parameter values for critical load conditions.

parameter value

(λ1, µ1, c1, r1) (70,1,2,4)
(λ2, µ2, c2, r2) (30,1,17,32)

(C,R) (328,620)

Simulations Results The blocking probabilities given by the different algo-

rithms and for both classes are given in Figure 3.5. We verify that the blocking

rates for elephants are greater than those for mice but the blocking rates are

not significantly different from one algorithm to the other; there are variations

but not by an order of magnitude. To go further in the analysis of the system
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in terms of blocking, we compare the system with two servers against a unique

big server with capacity equal to the sum of the capacities of the two servers.

We observe that the blocking rate are quite similar and in the same order of

magnitude.

Figure 3.6: Blocking Rates under critical load conditions .

c) Overloaded System

Simulations Settings In this section, we confirm the results by considering

an overloaded system. Parameter values for overloaded conditions are given in

Table 3.3. The loads are ρCPU = 1.16 and ρRAM = 1.26.

Table 3.3: Parameter values for overloaded conditions.

parameter value

(λ1, µ1, c1, r1) (70,1,2,3)
(λ2, µ2, c2, r2) (30,1,17,35)

(C,R) (280,500)

Simulations Results The blocking probabilities for the two classes of requests

and the various algorithms are given in Figure 3.7. As in the other cases, we

can verify that the blocking rates are slightly different but on the same order

of magnitude especially when compared to values given by the case of one big

server.

Results Interpretation We compared the system with two servers against

one big server with capacity equal to the sum of the capacities of the two servers.

We observed that the blocking rates are sightly different but of the same order of

magnitude. These observations hold for all the simulation experiments we have

performed for this kind of system. Hence, to qualitatively analyze the system
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Figure 3.7: Blocking Rates in an Overloaded System .

with two servers of capacity C, it suffices to consider a system with a unique

server of capacity 2C. This means that the fragmentation of resources into

various servers has no impact as long as individual requests are small when com-

pared to server capacities. This is a key fact for qualitatively estimate blocking

in cloud platforms because the analysis of large multidimensional systems can

be analyzed by using classical methods used in the context of circuit switched

networks as we proposed in Section 3.3.1.

3.3.4.2 Four-Class System

Figure 3.8: Resource requirements of VM classes .

Simulations Settings Based on class specification of a popular cloud plat-

form, we have defined 4 arrival types of requests with different resource require-

ments. Resource requirements of each class are shown in Figure 3.8.

Arrival rate as well as holding times are obtained from the proportion of each

class in the system. Figure 3.9 illustrates these proportions on our system.

We have performed extensive simulations under different load conditions. We

have varied the number of servers composing the system (N = 2, ..., 10) while

conserving the same load conditions; the system is first underloaded with load

values ρCPU = 0.9444 and ρRAM = 0.8897. Then, we considered an overloaded

system with load values ρCPU = 1.37 and ρRAM = 1.15.
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Figure 3.9: Cloud load per VM class .

Figure 3.10: Blocking Rates in an Underloaded System .

Simulations Results Figure 3.10 displays the blocking probabilities for each

class under the underloaded conditions. In Figure 3.11, we show the blocking

rates under an overloaded regime. Results are qualitatively the same for both

regimes. As in the previous scenarios, we can verify that there is no significant

difference between the various algorithms. We also note that as before, com-

paring these values against those obtained via simulation of a big unique server

validates our proposed model in the sense that the blocking rates are similar.

This opens the door to the analysis of a system composed of many servers by

considering a unique big server whatever be the resource allocation algorithm in

the multi-server system. Such an analysis is sufficient for dimensioning purposes;

in practice only a rough estimates of blocking rates are sufficient.
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Figure 3.11: Blocking Rates in an Overloaded System .

3.4 Resource Allocation Algorithms In Distributed

Cloud Platforms

We present in this section an overview of resource allocation in distributed cloud

from the existing literature. We then investigate placement and offloading strate-

gies of constrained services in distributed cloud. We finally propose for this

context a costless distributed resource allocation algorithm for, named CLOSE.

3.4.1 Related Work on resource allocation in Distributed Cloud

In the recent few years, many research works have addressed the problem of

resource allocation in distributed cloud environments [57]. However, most con-

tributions have considered configurations in which the placement decision runs

in a centralized platform. In such a context, a popular approach is to adopt an

optimization formulation: Given a demand for resources in terms of storage and

computing, the problem is to find the optimal request placement. This leads in

general to Mixed Integer Linear Programming (MILP) problems. In addition to

the classically considered resources such as CPU, RAM and disk, bandwidth can

also be included for virtual machines placement inside a single data center [58].

In [59], an optimization problem is proposed for the placement of VNFs across

a distributed cloud. It can be observed from that paper that MILP takes less

than one second to run for an infrastructure comprising 5 data centers, while

it needs several tens of minutes for only 20 data centers. Hence, this approach

will hardly scale with the size of a distributed data center system, in particular,

for systems composed of hundreds of data centers, as it might be the case for

network operators who plan to deploy a data center at PoP of their network.
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Indeed, depending on the geographical span of a network, several hundreds of

PoPs could be deployed by a medium-size network operator.

To achieve optimal resource placement, an exact formulation that aims at find-

ing the best placement of resources by maximizing the revenue and minimizing

the corresponding cost is proposed in [60]. The authors have also noted that the

ILP formulation suffers from scalability problems. They then proposed an al-

ternative approach via dynamic resource placement by representing the resource

allocation problem by a directed graph and by using a minimum cost maximum

flow algorithm for resource placement. To compute the minimum cost maximum

flow in the graph, the Edmonds-Karp algorithm is used. This approach does not

consider, however, the latency constraints of requests.

Since optimization approaches can be very time-consuming and may suffer from

scaling issues, several works propose alternative approaches. In [61], an algorithm

for network-aware allocation of virtual machines in distributed cloud systems is

studied. By representing the distributed cloud system as a complete graph, where

vertices represent data centers, weights represent the number of available virtual

machines or data center capacities, edges represent links between data centers

and labels represent the number of hops or distance, the proposed algorithm

selects first the relevant data centers to serve a user request and then the physical

machines to run the virtual machines. Even if this selection aims at minimizing

the maximum distance among virtual machines running the request and therefore

the bandwidth usage, this algorithm applies only if the total amount of network

traffic between virtual machine is known.

A set of greedy algorithms for VNFs scheduling was proposed in [62]. Network

mapping was also taken into account but physical links were not considered,

which means that latency constraints were not handled by the proposed algo-

rithms.

In [34], a cloud management middle-ware is proposed in order to reduce web

application response time by migrating virtual machines closer to end users.

In [63] a high locality scheduling for an edge cloud environment that reduces

the networking costs is presented. In [64] a resource allocation algorithm for

distributed cloud system is proposed with the primary objective of minimizing

the overall operating cost, which is a trade-off between energy cost and WAN

cost, when energy price is not the same across different geographical locations.
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Authors in [65] enumerates required steps to build a massively distributed OpenStack-

based architecture. Multiple challenges are addressed to adapt Openstack to the

new Telco context.

Last but not least, the Openstack community has created the Tricircle project,

the new edition to cope with distributed cloud architecture1. The main objective

of the project is:

• to allow cloud capacity expansion, by adding new instances

• to improve reliability and availability through supporting a geo-distributed

cloud architecture

• to reduce bandwidth usage by allocating resources close to end users on

each site

Figure 3.12 illustrates the Tricircle architecture where we have 3 nodes for 2-

regions Openstack deployment: The Tricircle central as a controller and 2 regions

representing 2 datacenters. The Tricircle Central provides networking automa-

tion across Neutron in the two regions and each region includes its own Nova

and Cinder. Compute and storage resources are exposed to end user through

an exposed service endpoint from Nova and Cinder of each region. With regard

to resource allocation, the data center with the maximum amount of available

resources from a user’s availability zone (sub-list of data centers) is selected to

accommodate a request. The selection of the most appropriate physical ma-

chines to place the request, within a data center, is made locally by the Nova

and Cinder schedulers managing the data center. Since one availability zone

could include several groups of data centers, if one data center reaches the limit

of the resource utilization, the request will be rerouted to another data center

but in the same zone.

It should be emphasized that most of the above-mentioned works consider a

global knowledge about resource utilization. Additionally, some of the contri-

butions cannot be applied in realistic use cases with a dynamical arrival of user

requests. Finding a strategy, which is based only on local knowledge with no

signaling overhead, represents the main focus of the next section.

1https://wiki.openstack.org/wiki/Tricircle
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Figure 3.12: Tricircle Architecture .

3.4.2 CLOSE: A Services’ Offloading Algorithm for Distributed

Edge Cloud

3.4.2.1 Preliminary considerations

Network function placement is a complex problem depending on several param-

eters. This problem is all the more difficult when one considers the dynamics of

the allocation of resources. In this context, it is natural to consider geographical

aspects related to the origin of requests, especially for constrained functions (i.e.,

latency, overhead, bandwidth, security . . . ). Indeed, some functions such as fire-

wall, deep packet inspection, etc. have to be placed close to end users (e.g., to

prevent users from sending confidential data through the Internet). Some others

such as authentication, IP address allocation, etc. with looser time constraints

can be placed in a distant data center [66].

Generally speaking, requests may be made of components (i.e., sub-functions)

having various requirements in terms of latency. Some of them may have strin-

gent requirements, for instance a response time of the order of a few milliseconds,

while some others may be more tolerant with regard to delay. The placement

of sub-functions could be in principle distributed over several data centers as

long as the global response time requirements are met. In this work, we assume,

however, that a function with strict latency requirements, possibly composed of

several sub-functions, shall be instantiated on the same edge data center or be

rejected. This leads us to claim our first design statement.

Design principle 1. Instantiate a function with latency constraints on

the same edge data center instead of spreading it on many data cen-

ters.
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Generally speaking there is a design choice between optimization and dimen-

sioning. This latter task consists of assessing the amount of resources needed

to accommodate a resource demand with a prescribed very small rejection rate.

Optimization may lead to better acceptance rate of requests but also to send

traffic to a sub-function hosted by an edge data center and then back for further

treatment. To avoid this traffic “tromboning” effect, we state that a complete

function shall be hosted by an edge data center or rejected.

Design principle 2. Avoid traffic “tromboning” in the network due to

function splitting.

To achieve a request acceptance rate objective, edge data centers have to be

dimensioned according to the demand in terms of resources (compute, storage,

bandwidth). We thus transform an optimization problem into a dimensioning

problem.

Design principle 3. Dimension edge data centers instead of optimizing

function placement.

Dimensioning edge data centers differ from the traditional transmission link di-

mensioning problem in telecommunications networks. On the one hand, we have

to take into account more parameters beyond the sole bandwidth resource. A

multidimensional Erlang formula can, nevertheless, be expected [67]. On the

other hand, a request can be displaced as long as response time requirements

are met. This introduces some flexibility in the acceptance of a request. An

Erlang loss formula taking into account potential migration of requests among a

possible set of servers, capable of meeting request requirements, is still an open

problem.

3.4.2.2 Algorithm principles

To allocate resources in a distributed data center system by taking into account

the location of requests, we clearly have two possibilities. In the first one, there is

a centralized entity which has a view of the resources available in the various data

centers and depending upon the location a request is issued from, this central

dispatcher can select those data centers, which can accommodate the request

while respecting the constraint on the maximum displacement of the request;

once this set of data centers is known, the dispatcher can pick up a data center

at random or one among those with the maximum amount of available resources

or with the better score [68]. If all data centers able to respect the displacement

constraint are occupied, then the request is simply rejected. It is worth noting
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that this approach is in line with the current Tricircle approach of OpenStack,

which in addition uses the concept of area. This approach is refereed to as

the centralized approach. We assume in this thesis that edge data centers are

operated up to a certain overbooking limit of resources. If an edge data center

is too loaded, a request is blocked.

For the second possibility, a user request can be intercepted by the first data

center on the data path. The Distributed resource allocation algorithm that we

propose is as follows:

1. When a request arrives in the system, the request is intercepted by the

first data center along the data path.

2. If the request cannot be accommodated by this edge data center (i.e., when

the function IsAvailable returns False), then, it is forwarded to one of its

neighbors, which may respect the time constraints of the service. A Time

To Live (TTL) field can, also, be considered to limit the displacement of

the request.

3. To forward the request, the edge data center takes into account the number

of redirections from its neighbors and the time constraints2. Specifically,

an edge data center maintains a counter, which records the moving average

number of redirections (deflected requests) from its neighboring edge data

centers. The edge data center with the smaller number of deflected requests

is chosen. The request is forwarded with the label of the deflecting data

center in order to avoid loops.

4. The redirected request is examined by the edge data center, the request is

forwarded to, and the TTL value is decreased accordingly. If the request

can still not be accommodated and if the TTL field is non null and time

constraint can be met, then the previous step is repeated otherwise the

request is discarded using the Discard function.

The pseudo-code of the proposed mechanism is illustrated in Algorithm 1 by

using the notation summarized in Table 3.4.

The major difference between the proposed algorithm and the centralized one

is the amount of information to be exchanged between the various edge data

centers and the central dispatcher. For the centralized algorithm, each time a

request is accepted by or leaves an edge data center, then this data center has

2The current data center selects a sub-list of data centers respecting the request criterion
using the GetNeighborsIdx, which returns the set of possible data centers.
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Table 3.4: Notation used in the distributed algorithm.

Variable Description

N Number of requests
DCi Data center i
li,j Latency between DCiandDCj

di,j Number of deflected requests from DCi to DCj

Rq A request including: the amount of requested
resources, the maximal hops in terms of TTL
and latency lmax, and the cumulative latency

Algorithm 1 CLOSE algorithm for services’ offloading

1: procedure forward(DCcur,DCori,Rq)
2: if IsAvailable(DCcur,Rq) then
3: Allocate(DCcur,Rq)
4: else
5: Rq.latency← Rq.latency + lcur,ori
6: Rq.TTL← Rq.TTL− 1
7: J ← GetNeighborsIdx(DCcur,Rq) \ {DCori}
8: if J 6= {} then
9: dst← arg minj∈J{dj,cur}

10: forward(DCdst,DCcur,Rq)
11: else
12: Discard(Rq)
13: end if
14: end if
15: end procedure
16:

17: while True do
18: Rq← getRequest()
19: DCcur ← getClosestDC(Rq)
20: forward(DCcur,DCcur,Rq)
21: end while

to send an update of available resources to the central dispatcher so that this

latter maintains accurate information about the occupancy of the system. In big

systems, with several hundreds of distributed data centers, this may represent a

significant overhead. For the distributed algorithm, such information has not to

be exchanged between edge data centers since only local information is used. The

counterpart is that the forwarding of a request is performed with less information.

This algorithm is hence less accurate but more efficient in terms of overhead.

There is clearly a trade-off between the accuracy of the placement of requests and

the cost to maintain accurate information. This is a classical issue in telecom-

munications networks and has been so far solved by using monitoring tools and
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regular upgrade of network capacities. In the present case, we use an additional

degree of freedom by allowing the displacement of requests up to a certain limit;

this is impossible with bandwidth in classical networks, even for elastic traffic,

which can severely suffer from congestion (e.g., flows with very small bit rates

leading to very poor quality of experience). In the following, we shall see that

displacement allows local congestion to be absorbed by the system.

3.4.3 Performance Evaluation of the CLOSE Algorithm

To assess the performance of our proposal, we have different strategies. In a first

one, we do not consider any offloading. In other words, edge data centers does

not collaborate, which means that a request is rejected if there is not enough

resources to accommodate it. We refer to this algorithm as “Isolation” since an

overloaded edge data center cannot take benefit of the possible available capacity

in the global system.

A second strategy relies on a central dispatcher which is aware of the occupation

of all edge data centers and selects the one with the most available capacity and

respecting the constraints of the service (without considering latency), even if the

latter data center is not the closest to the origin of the request. This algorithm

is referred to as “Full Sharing”.

We have, also, considered the algorithm used by Openstack, where the centralized

dispatcher has to maintain an updated view of the infrastructure topology as

well as the resource utilization level. Respecting the maximum displacement

constraint of a request, the dispatcher has to select those data centers, which

are eligible to accommodate it. Those candidate data centers are mapped onto

a geographically area from which the request can be serviced. This area can

be mapped to an “Availability Zone” according to the Openstack terminology.

Technically, each Openstack project implements it differently – with regard to

resource allocation – in a manner to enable logical subdivision of resources.

Furthermore, we have considered requests with two types of latency require-

ments. The first class has stringent latency requirements (namely, a response

time less than 4 ms) while the other class is more delay tolerant (10 ms). Data

centers take local decisions and we evaluate the global blocking rate.

To highlight how these strategies perform, we have devised several simulations,

in which arrival requests are created using a probability distribution.
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3.4.3.1 Simulation settings

To study the performance of a distributed cloud system, we have considered a

realistic network of N = 21 data centers with different capacities located at the

edge of an Autonomous System, as illustrated in Figure 3.13. We have consid-

ered the structure of the network of Orange, in which the distance between small

data centers, located at Main Central Offices (MCO), is 100 km from Core Cen-

tral Offices (CCOs), equipped with bigger data centers. CCOs are connected to

a big centralized data center at a distance of 300 km3. Latencies are computed

by using the speed of light in fiber.

Figure 3.13: Network topology under consideration.

Request arrivals are assumed originating from one of the considered regions ac-

cording to a Poisson process, which has proven realistic for a number of real

traffic arrival processes [69]. For the sake of clarity, only one type of resource is

considered , typically the CPU. Similar results can be obtained using multiple

resources as we demonstrated in Section ??. As mentioned above, we have con-

sidered two profiles of requests. Profile 1 is assumed to have strong requirements

in terms of latency (4ms), while Profile 2 is more delay tolerant (10 ms).

The global load of the system (data centers) is defined as:

ρ
def
=

N∑
j=1

ρj
NCj

where ρj
def
= λj/µj is the load of Data Center j (for short, DCj) with λj and

1/µj representing the arrival rate and the mean holding time of resources at

DCj, respectively and where Cj is the capacity of DCj. Data centers (DCs) are

3For the sake of confidentiality, the DC locations and real distances used in the simulations
are not given in this work
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unevenly loaded; we only consider the global load ρ of the system given that

some DCs are overloaded while some others are underloaded.

In order to compare the various allocation schemes, we introduce the average

blocking rate defined as the fraction of requests, which are eventually rejected

by the system:

β =
1

Λ

N∑
j=1

λjβj

where Λ =
∑N

j=1 λj is the global arrival rate and βj is the blocking rate of

requests originally arriving at DCj. More precisely, βj is the fraction of requests

which are originally arriving at DCj but eventually not accepted by the system.

3.4.3.2 Simulation Results

Blocking Probabilities The average blocking rates of the system under the

various allocation strategies are given in Figure 3.14. This figure displays the

blocking probability versus traffic intensity under three different regimes: un-

derload (ρ < 1), critical (ρ = 1) and overload (ρ > 1). Simulation results are

averaged to obtain confidence intervals with a 95% confidence level.
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Figure 3.14: Blocking rates under different load conditions.

Results show that collaboration between data centers significantly reduces block-

ing of requests. We verify that the Isolation scheme yields the worst performance

in terms of rejection. Blocking is obviously minimal with the Full Sharing algo-

rithm when the global dispatcher has a full view of the occupancy of the system,

but this strategy does not take into account the latency constraints.
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It is worth noting that the proposed policy CLOSE, which counts the aver-

age number of deflections of each neighboring data center, significantly reduces

blocking when compared against the Isolation allocation and yields a perfor-

mance comparable to that obtained with the Full Sharing strategy. We clearly

see that deflecting requests can significantly reduce blocking and share load on

data centers. Moreover, the proposed scheme with no exchange of information

between data centers performs well and even better than the Tricircle approach

of OpenStack, where load is shared only within a geographical area.

Latency To further evaluate the performance of the CLOSE algorithm, let

us emphasize another key difference when compared to the Full Sharing strat-

egy. The displacement of requests for the Full Sharing algorithm may be larger

than that for the distributed one, since the centralized algorithm only takes into

account resources and not displacement constraints.

To illustrate this latter point, we have studied the Latency Distribution of ac-

cepted requests for both algorithms. In Figure 3.15, we have plotted the la-

tency Cumulative distribution for an overloaded System where the system load

is ρ = 1.2592. We see that CLOSE leads to the lowest latency distribution since

most of requests are serviced from the edge data center closest to the end user.

Hence, the proposed algorithm performs better with regard to displacement than

the Full Sharing algorithm while offering comparable blocking.
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Figure 3.15: CDFs of Latency: CLOSE vs Full Sharing.

For the same experiment, we have also plotted in Figure 3.16 the latency distri-

bution function for both profiles introduced in the previous section to show how

the CLOSE algorithm respects request constraints in terms of latency.
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Figure 3.16: Per-profile CDFs of Latency for the CLOSE algorithm.

Fairness: Load Balancing Another key metric for evaluating the perfor-

mance of the proposed algorithm is the load balancing index calculated on the

basis of the Jain’s fairness index. Figure 3.17 illustrates the fairness index for

load balancing under the different strategies. Except the Isolation scenario,

which leads to a totally unfair system, results are slightly different and compa-

rable to that obtained with the Full sharing strategy considered as the most fair

strategy.
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Figure 3.17: Jain’s index for resource utilization level.

The impact of load In Figure 3.18, we have evaluated how the squared coef-

ficient of variation (CV2) of the loads of data centers. The coefficient of variation

CV indicates the extent of variability in relation to the mean of the distribution.

This can reflects how the degree of homogeneity of the loads between the DCs
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Figure 3.18: Algorithm Behavior under different load conditions.

can impact the blocking probability. The bigger is the coefficient, the more het-

erogeneous is the load between DCs. As the Openstack strategy is based on load

sharing within the same zone (area), the performance of this strategy strongly

depends on how the system is loaded, as it can be seen in Figure 3.18. In other

words, if the zones are homogeneously loaded, this strategy ensures good load

balancing in each zone by choosing the less loaded edge data center, which leads

to a fair system and yields to good performance. In contrast with this latter,

the CLOSE algorithm, which is able in some cases to distribute loads far from

the origin request, yields to performance comparable to that obtained with Full

Sharing.

3.5 Summary

In this chapter, we have described an overview regarding resource allocation

performance in cloud systems with finite capacity.

First, we provided under the centralized approach an analytical model to analyze

the blocking in such system. We have evaluated resource allocation performance

in cloud systems with finite capacity by paying special attention to blocking of

requests in a probabilistic context. The key observation is that with regard to

request blocking there is no noticeable difference between the various placement

algorithms so far considered in the literature. In fact, we show that blocking

rates are similar to that obtained when considering a global data center with a

capacity equal to the sum of servers capacities. This model is able to accurately

estimate the blocking probability in multidimensional cloud systems. It turns

out that if we have several data centers disseminated in the network and if it is
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possible to know their occupancy upon each request, then everything happens as

if the network had a unique big data center with a unique server with capacity

equal to the sum of all capacities. This gives a means of estimating request

blocking at a network scale and eventually a simple method of dimensioning a

system of data centers for a given demand.

Second, we have presented the specific requirements of VNF placement in geo-

graphically distributed cloud system. We have devised basic design principles for

handling requests with displacement constraints in a large system of distributed

edge data centers. Our claim is that traffic “tromboning” and request splitting

(especially for applications or virtualized network functions with stringent re-

sponse time requirements) should be avoided. Moreover, adequately dimension-

ing edge data centers is preferable to optimizing request placement. Furthermore,

we have proposed an algorithm for placing requests in a large distributed cloud

platform with minimal exchange of information. Contrary to the OpenStack ap-

proach, notably the Tricircle project, this algorithm is based on local information

only. In spite of minimal information, this algorithm can mitigate overload at

some data centers by using a simple redirection principle by exploiting deflection

information between data centers. This is a very promising result as the pro-

posed algorithm allows a network operator to easily manage a large distributed

infrastructure.
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4.1 Introduction

Moving towards virtualized network functions (VNFs) allows the introduction

of more flexibility and scalability in the network’s infrastructure, while reducing

capital and operational expenditures (CAPEX and OPEX) [70]. However, many

challenges remain as the NFV paradigm aims at delivering end-to-end network
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services by instantiating VNFs, within the virtualized infrastructure, whilst tak-

ing into account their specific requirements.

To cope with these challenges, there is a need to have a global orchestration plat-

form, including instantiation logic, life-cycle management, as well as monitoring

features.

In this Chapter, we give some background on orchestration platforms for NFV

and review some NFV orchestration projects. We investigate in particular two

of the most important features of an orchestrator, notably the monitoring and

the scheduling features.

In section 4.2, We introduce first the Orchestration and Management Framework

(MANO) delivered by ETSI NFV from an architectural perspective. Second, we

present an overview of some orchestration projects compliant with the MANO

architecture.

Section 4.3 we present the monitoring feature; essential for infrastructure man-

agement.

In Section 4.4, we investigate the scheduling feature by studying a use case,

notably the most popular orchestration platform named ONAP.

Section 4.5 presents concluding remarks.

4.2 Background

4.2.1 MANO: Management and Orchestration for NFV

The ETSI NFV is the group in charge of the development of standards for NFV.

To this end, they have defined reference architectures in particular for manage-

ment and orchestration [71].

The reference architecture for Management and Orchestration (MANO) illus-

trated in figure 4.1 is delivered by ETSI NFV.

The Mano architecture consists of three functional blocks [72]:

1. Virtualized Infrastructure Manager (VIM): The main role of this compo-

nent is to control the compute, storage and network resources within the

operator’s infrastructure. The VIM is also responsible of collecting and

forwarding performance measures such as the level of resource utilization.
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Figure 4.1: NFV Management and Orchestration Architecture

2. Virtual Network Function Manager (VNFM): VNFM manages life cycle of

VNFs. This component creates, maintains and terminates VNF instances

deployed on the Virtual Machines (VMs) created by the VIM.

3. NFV Orchestrator (NFVO): The NFVO is in charge of the network service

life-cycle management from the top level. This component is in charge of

the global resource management and the resource coordination from dif-

ferent VIMs especially when there are multiple VIMs from different PoPs.

This is precisely the challenge that the network operator faces in adopting

the distributed multi-site cloud.

4.2.2 Related Work on Orchestration Platforms

Several NFV orchestration projects have been initiated with the idea of being

compliant with the MANO (Management And Orchestration) reference archi-

tecture delivered by ETSI NFV [73].

The main objective of the CORD (Central Office Re-architected as a Data Cen-

ter) orchestration solution for NFV environment is to bring elasticity and cloud

agility to the telco Central Office [74]. From an architectural point of view,

CORD has defined its own architecture but most of the architectural blocks

might be mapped to the MANO reference architecture. CORD is based on the

ONOS SDN controller to manage network resources [75]. With regard to resource

allocation, the CORD platform delegates VNF placement to the infrastructure

controller, the so-called VIM (Virtual Infrastructure Manager), notably based

on the Openstack platform.

Gigaspaces Cloudify project1 was originally introduced to orchestrate application

1https://www.gigaspaces.com/cloudify-overview
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deployment in a cloud similarly to the Openstack’s Heat orchestrator. Later,

with the emergence of NVF, a Telecom Edition was delivered including NFV-

related use cases.

Inspired by ETSI MANO, OpenMANO [76] is an opensource platform led by

the network operator Telfonica and based on opensource ecosystems such as

Openstack as a VIM. One of the selling points of NFV is the ability to scale

resources dynamically which is a very limited functionality within the current

implementation of OpenMANO.

4.3 Monitoring feature

4.3.1 What is Monitoring ?

With Virtualization being a key driver to the new digital transformation of telcos,

the need for managing virtualized infrastructure is consistently increasing. The

critical requirements of NFV raise potential issues as it became necessary to

implement a more robust orchestration platform able to anticipate and resolve

issues before any user impact. A key requirement throughout this orchestration

platform is the infrastructure monitoring feature.

A monitoring system enable the network operator to identify and detect any

potential issues before they become critical and affect the high availability of

VNFs.Having a monitoring system in place also means gain visibility on the

integrity of resource within the infrastructure as well as the occupation level

which is critical to fulfill intelligent placement decisions.

For the virtualized infrastructure, there are several monitoring approaches based

on different design patterns but the ambition is the same: evolve to collect,

analyze and have a global supervision of the infrastructure.

Figure 4.2 illustrates the Agent-Based Monitoring architecture which can be

described as follow:
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• A monitoring agent present in different VMs deployed for applications.

The role of this agent is to collect different data within the operating sys-

tem(CPU usage, RAM usage, bandwidth usage) or within the application

(number of queries for examples) every slot of time.

• A Monitoring platform which role is to receive these informations via var-

ious protocols (SNMP, MQ,etc ), process and store them2.

The size of traffic occasioned by this data exchange basically depends on the

number of information to be collected, the predefined monitoring period and

especially the number of agent present in the infrastructure.

This architecture has been adopted by the orchestration platform Cloudify which

is, as we have said, an NFV orchestrator implementing the management and or-

chestration component within the ETSI standard [77]. The monitoring platform

is a module directly integrated in the orchestrator which installs en each de-

ployed VM a plugin called diamond, this latter is the agent responsible for the

monitoring [78].

Figure 4.2: Agent-Based Monitoring .

VM-based Monitoring Solution Figure 4.3 illustrates the VM-based Mon-

itoring architecture which can be described as follow:

• A dedicated VM for monitoring which can be realized by simple port mir-

roring which can inject some traffic into this dedicated VM performing

some monitoring tasks such as performance, or by using an external mon-

itoring software like Nagios [79] for supervision and Cacti for metrology

[80].

2https://wiki.monitoring-fr.org/supervision/snmp
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• A Monitoring platform which role is the same of the first solution, notably

to collect and store informations.

In this case, the size of traffic generated by this data exchange depends on the

number of information to be collected and the predefined monitoring period, and

especially the number of monitoring VMs present in the infrastructure.

Figure 4.3: VM-Based Monitoring .

Under the second approach, we describe in the following the impact of monitoring

VMs on the peering link connecting the server to the network, in particular on

the perturbation experienced by other VMs.

4.3.2 The impact of monitoring traffic:

The motivation for studying the impact of monitoring traffic elaborated in [81]

stems from the important role of monitoring in NFV dedicated infrastructure.

If we assume that a data center hosts monitoring probes embedded in virtual

machines or containers, these probes will very likely permanently send traffic

(e.g., analytics or traffic reports to supervision platforms). Monitoring traffic will

in turn impact traffic generated by applications. We assume that the bandwidth

of the link connecting the data center to the network is shared by flows generated

by applications according to the processor sharing discipline. This is a classical

hypothesis, when information is transmitted by using TCP. We then obtain a

processor sharing system, where permanent customers correspond to monitoring

flows and jobs are application (regular) flows.

Processor Sharing (PS) is a classical queuing discipline introduced by Kleinrock

in the 60’ [82] (see also the standard book [83]) to model resource sharing in

computer networks. The M/G/1-PS queue has subsequently been extensively
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studied in the queuing system literature, notably by Ott [84], Schassberger [85]

and Yashkov [86], who derived the distribution of the sojourn time conditioned

on the service time request of a tagged customer.

In the analysis driven in [81], we consider an M/M/1-PS system with permanent

customers, denoted, for short, by M/M/1-PS-K.

A classical modeling assumption consists of stating that regular flows appear

according to a Poisson process. To simplify the system, we further assume that

the volume of data to transmit per regular flow is exponentially distributed.

These assumptions lead us to consider an M/M/1-PS-K queue, where K is the

number of monitoring flows in the system. The problem investigated in this

study is to understand the impact of permanent flows on the duration of regular

flows, notably the potential degradation in terms of quality due to monitoring.

The M/M/1-PS-K exhibits the remarkable fact that the decay rate of the sojourn

time of a customer in the system depends on the number K of the permanent

customers up to a certain threshold and then becomes identical to that of the

sojourn time of a customer in a regular M/M/1-PS queue. From a practical point

of view, we have noticed that the presence of permanent customers is especially

sensitive for moderate loads; their presence has a lesser impact for high loads.

4.4 Scheduling feature: use case ONAP

We presented in Section 4.2 several orchestration solutions for NFV. Each or-

chestration solution has defined its own architecture and objectives, but the main

technical challenge is the same: Provisioning an end-to end network service that

involves the creation of an IT infrastructure followed by the instantiation of all

its necessary components. Hence, there is a clear need for finding algorithms

for resource allocation to be encapsulated within the scheduler engine of the or-

chestration platform. In the following, we focus on the scheduling feature or,

in other words and from orchestration point of view, on resource allocation and

algorithms within orchestration framework.

The scheduling functionality is the core component of an orchestrator in charge

of the scheduling of requests to instantiate VNFs. To better understand this fea-

ture, we propose to study a use case in this section, notably the Open Network

Automation Platform (ONAP). Under the Linux Foundation, the newly formed

project ONAP was created by merging two of the largest open source network-

ing initiatives: ECOMP and Open Orchestrator project (Open-O). By taking
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benefits of both projects, ONAP is based on a unified architecture and imple-

mentation to deliver an open platform enabling end users to create their own

VNFs. The platform aims at automating, orchestrating and managing VNFs

and network services.

4.4.1 Architecture of ONAP

The ONAP project has defined its own unified architecture and communication

logic across components. The main visible advantage of the ONAP platform

is the flexible and extendable architecture which supports the addition of new

components. From a general point of view, the complete ONAP architecture can

be split into two basic groups.

The main role of the design time environment is to describe the design func-

tions through a graphical studio, the so-called the ONAP Portal. Basically, this

component defines recipes for instantiating, monitoring and managing VNFs and

services. It is also responsible of the distribution of these specific design rules into

the execution time component. The execution time framework contains meta-

data driven modules enabling VNF configuration and instantiation and delivers

real-time view of available resources and services.

To further analyze the ONAP architecture, we take a closer look at the two com-

ponents described above. The design time framework consists of the following

subcomponents:

1. Service Design and Creation (SDC): The SDC is considered as the ONAP

design tool. Based on meta data description, SDC is an environment that

entirely describes how VNFs or services are managed. It also describes mul-

tiple levels of assets, including resources such as cloud or network resources

(compute, storage, network connectivity functions, etc.) and services de-

scribed by means of resource requirements.

2. Policy Creation: This subsystem of ONAP contains a set of rules defining

control, orchestration and management policies. VNF placement rule is

the policy that specifies where VNFs should be placed respecting some

constraints such as affinity rules.

Concerning the execution time framework, the core subsystems are:

1. Active and Available Inventory (AAI): The main role of this component is

to provide an updated global view of inventory and network topology. As
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changes are made within the cloud, AAI is continually updated to provide

a real-time view of the topology and the underlying available resources.

2. Controllers: A controller is an entity in charge of managing the state of a

single resource that can be network, application or cloud resource. ONAP

uses multiple controllers to execute resource’s configuration and instan-

tiation such as the Network Controller for configuration of the network

and management of VNFs or the Application Controller for management

of more complicated VNFs and services. Both controllers are based on

the Opendaylight platform. An additional controller is used for infrastruc-

ture’s orchestration, in particular, to manage resources within the cloud’s

infrastructure (compute, storage, etc.). The latter orchestration is based

on the orchestration engine of the cloud provider’s management platform,

namely the Openstack platform.

3. Master Service Orchestrator (MSO): From the top level, the MSO handles

capabilities of end-to-end service provisioning. This master orchestrator is

based on the underlying controllers described above.

4. Data Collection, Analytics and Events (DCAE): The primary role of the

DCAE is to collect telemetry from VNFs and deliver a framework for an-

alytic applications to detect network anomalies and publishes corrective

actions.

Figure 4.4 illustrates the simplified architecture of the ONAP project with the

main core components described above.

Figure 4.4: ONAP Simplified Architecture.
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4.4.2 Resource allocation principle under ONAP

Resource allocation consists in making placement decisions, in particular, deter-

mining where VNFs should be placed. In the current ONAP architecture design,

placement decisions are made by the single infrastructure controller, namely

Openstack. Based on a heuristic algorithm, Openstack scheduler favors those

servers with the largest amount of available resources. To perform a placement

request, the Openstack controller first collects informations stored in the AAI

component in order to take the appropriate placement decision. Once this de-

cision is made, the placement execution is also done by the same subsystem,

notably the execution time component.

It is worth noting that the ONAP architecture handles the VNF placement and

the resource allocation in a centralized fashion. The current implementation

does not support any multi-site features, since resource allocation is made with-

out taking geographical location into account. Furthermore, Multi-VIM is not

supported; this means that no constraints on which cloud and which site the

elements of a VNF should be placed can be specified.

The ONAP community is aware of the fact that both multi-site and multi-VIM

are fundamental requirements of service provisioning. To cope with these chal-

lenges, the community propose an optimization framework to replace resource

allocation functions. The optimization framework will allow designers to specify

placement constraint considering VNF’s needs such as geographical constraint

meeting latency requirements or level of reliability that only some cloud providers

can meet. The objective function linked to the service model can be also stated

aiming for example to minimize costs or latency.

Once constraints and objective function specified, an optimization problem char-

acterizing the placement demand would be generated, and then automatically

solved by the execution time module. Optaplanner3 is considered as a likely

candidate for a pluggable solver by the ONAP community; it could be used to

implement the last step of the above procedure.

We believe that ILP system may be very time consuming to solve even for a very

small network which does not correspond to the reactivity and agility aspects of

NFV.

3https://www.optaplanner.org/
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To revisit the scheduling logic, the present work proposes a solution to allowing

each placement demand to be characterized with geographical and administrative

constraints to support multi-site and multi-VIM frameworks.

4.4.3 Proposal: Dynamic Adaptive Placement for ONAP

4.4.3.1 Preliminary considerations

A VNF is in general composed of several components (also called sub-functions

or microservices), which execute tasks located at different functional levels of the

network, some being part of the data plane (i.e., manipulate user’s packet data

streams), while some others are part of the control plane of the network. This can

be illustrated for a virtual Evolved Packet Core (vEPC): Mobility Management

Entity (MME) and Home Subscriber Server (HSS) are in the control plane while

Servicing/Packet Gateway (S/PGW) are part of the data plane [87] .

Considering all these requirements and the future “in network” cloud computing

infrastructure, we propose in this Section a potential solution for dynamic place-

ment of VNFs, which can be directly used in the context of ONAP without any

adjustment. We begin in the following with the considerations that have been

taken into account when developing our solution.

Taking into account the performance requirements Data plane compo-

nents may present stringent requirements in terms of latency in order not to

introduce unacceptable delays in the delivery of data. These components should

preferably be instantiated along the data path, which is fixed by the routing al-

gorithm. This is typically the case for RAN functions, which could be placed at

different data centers but definitely along the data path (say, in a BBU hostel for

encoding/decoding functions) and in a regional data centers for RLC and PDCP

functions. Components with similar goals (e.g., firewalls) could be co-located to

prevent unnecessarily delays by placing them at geographically distant locations;

this could be required in order to meet global latency objectives.

Control plane components may be more tolerant to delays and could be placed

in more centralized cloud platforms. This is notably the case of some functions

of the mobile core (e.g., HSS, AAA, etc.).

Taking into account the network architecture The distributed data cen-

ters deployed by network operators could be organized into three levels. The
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first level (edge level) is close to end-users, typically providing the IP edge of the

network. This level could be installed within MCOs in order to host data plane

functions, such as Deep Packet Inspection, Firewalls, S/P Gateways, some RAN

functions, etc.

Note that the most recent advances in optical technology enables the migration

of the current Central Offices (COs), notably hosting Optical Line Terminations,

higher in the network, namely in MCOs. The same also applies for radio access,

via the separation of Remote Radio Head and Base band Unit functions. Higher

concentration levels enable better coordination of resources between access ar-

eas and are made possible by the ever growing capacities of High Performance

Computing (HPC) platforms.

The second level (regional level) could be installed within the CCOs and would

be equipped with important storage and computing capacities in order to host

service platforms, CDN servers and some control plane VNF components that

would benefit from being distributed (e.g. mobility support). The CCOs are

already the current location of the regional PoPs that are deployed at the current

edge of a nationwide IP network used by fixed access end-users.

The third level (nationwide level) would be centralized very high in the backbone

IP network. Its data centers could host non delay-sensitive applications, regular

cloud applications and control plane VNF components that would benefit from

being centralized (e.g., HSS).

The distributed data centers architecture under consideration is illustrated in

Figure 4.5.

Figure 4.5: Three levels network architecture
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As mentioned above, MCOs will host data plane VNFs but are also good can-

didates for hosting MEC(Mobile Edge Computing) applications. Note that it

is also possible to envisage the implementation of MEC capacities even closer

to end users, say in COs or even in eNodeBs but at a much higher cost [88].

Another trend regarding the future architecture of 5G networks is the so-called

Cloud RAN or Centralized RAN (C-RAN). In this architecture, the fronthaul

links BroadBand Units (BBUs) and the Radio Units co-located with the an-

tennas. BBUs would be grouped within “BBU hostels” located deeper in the

network than the antennas, typically at MCOs. These elements are, thus, to be

considered as likely candidates to host BBU hostels, MEC host platforms and

edge level data centers.

As long as the end-user does not move from the area controlled by a given MCO,

a data plane VNF component should not be displaced as it would increase the

consumed bandwidth in the network and increase the latency of the global VNF.

MEC applications on the the contrary could be displaced up to a certain limit

depending on the application’s latency requirements. Displacement could also

be applied to control plane VNF components, which could also be hosted either

in CCOs or central data centers.

4.4.3.2 Resource allocation scheme

In view of the previous section, we can reasonably suppose that at the scale of a

nationwide network (typically an Autonomous System of a Tier 2 IP network),

we have a system with three hierarchical levels of data centers: MCOs, CCOs

and centralized data centers. While it is natural to suppose that centralized data

centers have huge capacity, CCOs and MCOs may have more limited capacities

(because of their number) and will certainly have to implement resource alloca-

tion schemes. Moreover, as discussed above MCOs and CCOs will have to cope

with two kinds of requests:

• VNFs, which can be split between MCOs (for data plane functions) and

CCOs or even centralized data centers (for control plane functions);

• MEC applications, which can be displaced while respecting possibly tight

time constraints.

We then propose a resource allocation algorithm, which favors the placement of

data plane VNF, while possibly offloading MEC applications (by exploiting the
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fact that they can be displaced up some certain limits). For this purpose, we

introduce a target threshold, which is automatically adjusted according to the

arrival rates of the different type of requests. When the occupancy of an MCO or

a CCO is above a given threshold, a request is deflected to neighbors as specified

in Algorithm 2.

The Distributed resource allocation algorithm that we propose is as follows:

1. When a request arrives in the system using the getRequest function, the

central dispatcher selects and redirects it to the edge data center, which is

the closest to the origin of the request, using the getClosestDC function.

2. If the request cannot be accommodated by this edge data center (i.e., when

the average resources obtained with getResources exceeds the target),

then it is forwarded to one of its neighbors, which may respect the services’

time constraints.

3. To forward the request, the edge data center takes into account the num-

ber of redirections received from its neighbors and the time constraints of

the request4. Specifically, an edge data center maintains a counter, which

records the moving average number of deflected requests from its neigh-

boring edge data centers and its own requests’ deflection. The edge data

center with the smaller number of deflected requests is chosen. If the data

center selects itself, it handles the request (using the Allocate function).

4. The redirected request is examined by the edge data center, the request is

forwarded to. If the request can still not be accommodated, then the pre-

vious step is repeated otherwise the request is discarded using the Discard

function.

The target threshold is continuously adjusted by using a classical hysteresis prin-

ciple between a maximum and a minimum value.

Indeed, whenever the average load of the data center exceeds the maximal thresh-

old, the target is reduced to augment deflections. Similarly, when the average

load is below the minimal threshold, the target is increased to reduce deflections.

Algorithm2 describes the offloading strategy that we propose.

4The current data center selects a sub-list of data centers respecting the request criterion
using the GetNeighborsIdx.
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Algorithm 2 Dynamic Services’ Offloading

1: procedure forward(DCcur,DCori,Rq)
2: if getResources(DCcur) < target then
3: if isAvailable(DCcur,Rq) then
4: Allocate(DCcur,Rq), return
5: end if
6: end if
7: Rq.latency← Rq.latency + lcur,ori
8: Rq.TTL← Rq.TTL− 1
9: J ← GetNeighborsIdx(DCcur,Rq) ∪ {cur}

10: dst← arg minj∈J{dj,cur}
11: if dst = cur then
12: if isAvailable(DCcur,Rq) then
13: Allocate(DCcur,Rq)
14: else
15: Discard(Rq)
16: end if
17: else
18: forward(DCdst,DCcur,Rq)
19: end if
20: end procedure
21:

22: while True do
23: DCcur ← getClosestDC(getRequest())
24: forward(DCcur,DCcur,Rq)
25: end while

4.4.4 Performance Evaluation

The performance evaluation of our strategy has been done via simulations using

a discrete event simulator implemented in MATLAB. We compared results ob-

tained from our strategy to those obtained from the Openstack strategy currently

adopted by the ONAP platform.

4.4.4.1 Simulation settings

To simulate the decentralized cloud, we have considered the realistic network of

Orange that we described in Chapter3. The infrastructure under consideration

consists of three level: Edge level (MCO), regional level (CCO) and nationwide

level (Centralized Cloud Platform). MCO is about 100 km from CCO that is

connected to a big centralized data center at a distance of 300 km. We have

considered N = 21 data centers with different capacities deployed into the three

levels described above. The system under consideration as well as Availability

Zones defined for the Openstack strategy are illustrated in Fig. 3.13.
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We have considered 3 types of requests, which arrive according to Poisson pro-

cesses and require to be executed at different functional levels of the network.

Data centers hosted at the MCO level might intercept the 3 different types of

requests: (1) Data plane functions that must be installed only within MCOs; (2)

Control plane functions and MEC applications that are more delay tolerant and

might be displaced if needed.

Apart from the data plane functions, centralized cloud platform and data centers

deployed at the CCO level intercept control plane functions and MEC applica-

tions considered very volatile when compared with VNF, with larger arrival

rates of requests and shorter holding times of resources. Requests are expressed

in terms of CPU only. Results can be generalized to multiple resources scenario

as we demonstrated in our previous work [67].

The global load of the system (data centers) is defined as

ρ
def
=

1

N

N∑
j=1

ρj
Cj

where ρj
def
= λj/µj is the load of Data Center j (for short, DCj) with capacity

Cj and λj and 1/µj represent the arrival rate and the exponentially distributed

holding time of resources at DCj, respectively. Data centers (DCs) are unevenly

loaded; we only consider the global load ρ of the system given that some DCs

are overloaded while some others are underloaded. In the simulations, we have

taken the capacities of MCOs equal to 200 CPU units, that of CCOs to 500 CPU

units and that of the centralized data center equal to 800 CPU units.

In order to compare our strategy against that currently used in ONAP, basi-

cally the Openstack strategy, we introduce the average blocking rate of requests

defined as the fraction of requests, which are eventually rejected by the system:

β =
1

Λ

N∑
j=1

λjβj

where Λ =
∑N

j=1 λj is the global arrival rate and βj is the blocking rate of

requests originally arriving at DCj. More precisely, βj is the fraction of requests,

which are originally arriving at DCj but eventually not accepted by the system

(even after deflection).

4.4.4.2 Results and Discussion
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Figure 4.6: Blocking rates For Control Plane Functions.

Blocking probabilities of Control Application Figure 4.6 compares the

average blocking rates for control plane functions under our strategy while setting

static and dynamic adaptive threshold against those obtained with the Open-

stack strategy. Static thresholds are set equal to 90 % of the capacity of the data

center. This figure displays the blocking probability versus traffic intensity and

simulation results are averaged to obtain confidence intervals with a 95% confi-

dence level. The results show that our strategy significantly reduces blocking of

requests when compared to the Openstack one specifically when the system is

overloaded. The more the system is loaded, the better performance is obtained.

Blocking probabilities of MEC Application Figure 4.7 shows that results

are qualitatively the same for MEC applications. Static threshold setting yields

a performance comparable to that obtained with the dynamic threshold. It is

noteworthy that both strategies do not take into account informations about the

occupancy of the system when placing requests which requires less overhead.

Blocking probabilities of Data plane functions To further evaluate the

system in terms of blocking, we compare the average blocking rates for data

plane functions under the different strategies.

Figure 4.8 shows that our strategy with dynamic threshold yields the best perfor-

mance for data plane functions. This is explained by the fact that thresholds are

limiting the acceptance of MEC and control plane applications in data centers

hosted at the CCO level and favors the placement of data plane functions at this

level. We can also verify the impact of the adaptive threshold when compared
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Figure 4.7: Blocking rates For Mec Applications.
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Figure 4.8: Blocking rates For Data Plane Functions.

to static settings which confirms that thresholds must be set according to the

system load.

Adaptive threshold variation Figure 4.9 shows the variation of the load

within a data center as well as the variation of the corresponding target threshold

under our dynamic adaptive offloading strategy. We verify that the threshold

value is adapting dynamically as a function of the load conditions during the

simulation time. Furthermore, We verify that the threshold tends to decrease

as soon as we have a maximum load and vice versa. Hence, we can say that

thresholds limiting the acceptance of requests are dynamic in this variant of

algorithm.

In the next section, we investigate another way to use thresholds. We prove that

thresholds based on optimization criteria, namely the global blocking rate of the
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algorithm ameliorate the collaboration between data centers. Furthermore, We

use Genetic Algorithm (GA) to get over this threshold problem.

Figure 4.9: Adaptive threshold variation according to the current load

4.4.5 Threshold Optimization by Genetic Algorithm

We present in this section another way to use thresholds under the offloading

approach that we introduced in the previous section. We propose to set an

adjustable threshold for each data center limiting the acceptance of the originally

arrived requests in order to better collaborate with the neighbors. We use the

GA approach to set optimal offloading threshold.

4.4.5.1 Genetic Algorithm

Genetic algorithms are optimization strategies based on techniques which are

derived from genetics and evolution mechanisms of nature such as crosses, mu-

tations, selections, etc ... These algorithms belong to the larger class of evolu-

tionary algorithms (EA)[89].

GA is a good approach to resolve the VM placement problem which enables

the optimization of several behaviors. Authors in [90] proposed a genetic algo-

rithm to resolve the VM placement while minimizing the energy consumption in

physical machines as well as the communication network in a data center.

A multi-objective genetic algorithm is proposed and compared to other ap-

proaches in [91]. Contrary to the majority of research works, this work focuses

on minimizing two criteria, notably the total resource wastage and power con-

sumption.
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In [92] Parallel Genetic Algorithm was proven more efficient and faster than the

simple GA to resolve the VM placement problem. The discussed optimization

criterion is the utilization rate of the resource which has to achieve the maximum

value.

Generally speaking, the GA aims at optimizing a given function based on the

evolution of a population of solutions. Each candidate solution is represented by

a chromosome formed by a set a genes and evaluated based on a score given by

the fitness function.

By applying one of the following genetic operatorsselection, mutation or crossover,

the GA creates a new population of solutions based on the previous one.

• The Selection is a key operator for the GA. According to the scores ob-

tained by each individual of the population, the most pertinent candidates

are selected for the next generation.

• The Mutation operators aims at introducing random changes in several

genes in a chromosome in order to create a new individual.

• The Crossover operators creates 2 new individuals from 2 old ones. These

old chromosomes ares referred to as the parents.

The population created in the previous step based on the genetic operators is

next evaluated based on the given fitness function. Parents are then selected

based on the fitness in order to create the new population.

The principle of a basic genetic algorithm are illustrated in Figure 4.10.

Figure 4.10: Principle of a basic GA.
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4.4.5.2 Optimal Offloading Threshold by Genetic Algorithm

Methodology The resource allocation strategy that we proposed in the Sec-

tion 4.4.3.2 is based on collaboration between small data centers. This collab-

oration is ensured by the offloading strategy between neighbors which relies on

deflexion informations.

By limiting the acceptance of the originally arrived requests at each data center,

collaboration can be ameliorated which is reflected by the global blocking rate

that we will evaluate later. To this end, we set a threshold for each data center

which, based on the local load conditions, accept or forward the originally arrived

requests to its neighbors even if there is enough resources to accommodate it.

This scenario is illustrated in Figure 4.11 where each color represents a flow of

requests arriving initially at a given data center, and forwarded or not based on

the corresponding threshold.

Figure 4.11: Methodology of Threshold Optimization by GA .

In order to set optimal offloading thresholds, we propose to use the GA method.

The same approach was discussed in [93] which aims to fix optimal interference

threshold setting in cognitive radios based on GA implementation.

The goal of the algorithm that we propose is to select the optimal threshold

among all of the possible thresholds T ∈ ]0, 1] for each data center. A similar

strategy for Image segmentation threshold was introduced in [94].

We describe in the following the basis of our GA proposal; notably the score and

how it is calculated.
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a) Fitness Let β be the global blocking rate of our collaboration strategy, the

proposed fitness function is defined as:

F = 1− β

The optimization criterion is hence to maximize the fitness function F .

b) Evaluation Function

To evaluate a potential solution of thresholds, we conduct a simulation of our

offloading strategy with these threshold as parameters in order to calculate the

global blocking rate and evaluate the score of this candidate solution, namely

the fitness. The simulation is performed for one million arrival requests at each

data center.

This evaluation function allows the GA to create a new generation that will be

evaluated in the next iteration.

Steps of our proposed GA are described in the Figure 4.12.

Figure 4.12: GA for Optimizing Thresholds.

Implementation The implementation of our approach involves two steps:

1. GA

For the GA implementation, we used the TCL programming language

which is a scripting language suitable for testing in many fields such as

networking, administration...etc.5 In addition to this language, we used an

extension that enables the GA processing in TCL. This extension consists

on the Genetic Algorithm Utility Library (GAUL) which is a library ded-

icated to ease the GA development6. This library implements the most

5https://www.tcl.tk/
6http://tcl-gaul.sourceforge.net/
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common of the genetic operators, notably Crossover, Mutation and Evalu-

ation. Our GA implementation calls these operators from the TCL GAUL

:

• Seed: This procedure is called before the evolution starts in order to

initialize all the members of the population. In our case, the popu-

lation is the set of thresholds which are randomly initialized (values

generated are between 0 and 1).

• Generate: This procedure is executed at the end of each generation.

• Evaluate: This procedure determines the fitness of each member of

the population. In our case, the simulation that we will describe later

is performed to evaluate the fitness.

• Mutate: This procedure is executed to mutate a single member.

• Crossover: This procedure is invoked to breed two members.

2. Simulation

The scenario of simulation consists of a mesh network composed of N data

centers located at the edge of an Autonomous System. We assume that

clients request only one type of resource and data centers are with identical

capacity C. The analysis of blocking could easily be extended to multiple

resources. We focus only on one resource (typically CPU resources).

The jth data center DCj receives a flow of requests for a fixed amount

of resources, taken as unity. Requests at data center DCj are assumed to

arrive according to a Poisson process with rate λj and the holding time of

resources is with mean 1/µj . The system under consideration is illustrated

in Figure 4.13

Figure 4.13: Simulation Model.
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The global load of the system is defined as

ρ
def
=

N∑
i=1

ρi
NC

where ρj
def
= λj/µj is the load of data center DCj.

In order to evaluate each potential solution while iterating the GA, we

introduce the average blocking rate defined as the fraction of requests which

are eventually rejected by the system and given by

β =
1

Λ

N∑
j=1

λjβj ,

where Λ =
∑N

j=1 λj is the global arrival rate and βj is the blocking rate of

requests originally arriving at data center DCj.

We implement our simulation based on the C programming language.

4.4.5.3 Results and Discussion

To evaluate the performance of our proposed strategy, we performed multiple

steps:

1. We fix load conditions of the data centers and perform simulation without

considering the threshold (T = 1 for each data center) in order to obtain

the global blocking rate that we will compare to the one we obtain with

the optimal threshold given by the GA.

2. We perform the GA which calls the simulation with the same load condi-

tions of the previous step. We obtain then optimal threshold for these load

conditions.

3. We finally perform the simulation with the threshold given by the GA as

parameters in order to compare the blocking rate with the one given by

the first step, notably where there is no threshold.

Results In order to compare blocking rates, we considered a system composed

of N = 4 data centers under several scenarios where we changed the load condi-

tions.
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1. Scenario 1 : We consider in this scenario mixed load conditions(underload

and overload load conditions) which are given in Table 4.1. Optimal thresh-

olds given by the GA for these load conditions are given in the same Table.

Table 4.1: Load Conditions and Optimal Thresholds.

parameter value

(ρ1, T1) (2,1)
(ρ2, T2) (0.9,0.72)
(ρ3, T3) (0.8,1)
(ρ4, T4) (0.75,0.34)

We compare the global blocking rate given by simulation where considering

thresholds given by the GA against those given where we do not consider

threshold. Simulation with optimal thresholds is referred to as Optimal

Offloading. Results are given in Table 4.2.

Table 4.2: Blocking Rates.

Offloading Optimal Offloading

0.107118 0.072961

2. Scenario 2 : Load conditions for this scenario and the optimal thresholds,

results of the GA, are given in Table 4.3.

Table 4.3: Load Conditions and Optimal Thresholds.

parameter value

(ρ1, T1) (0.88,0.97)
(ρ2, T2) (1.37,0.66)
(ρ3, T3) (0.83,0.96)
(ρ4, T4) (0.12,0.12)

The comparison of blocking rates is given in Table 4.4.

Table 4.4: Blocking Rates.

Offloading Optimal Offloading

0.000588 0.000216

3. Scenario 3 : For this scenario, we consider load conditions that are given

in Table 4.5, in addition to the optimal thresholds obtained with the GA.
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Table 4.5: Load Conditions and Optimal Thresholds.

parameter value

(ρ1, T1) (2,1)
(ρ2, T2) (0.9,0.53)
(ρ3, T3) (2.5,1)
(ρ4, T4) (0.75,0.69)

As in the previous scenarios, we compare blocking rates given with the

optimal thresholds against the classical offloading strategy. Results are

given in Table 4.6.

Table 4.6: Blocking Rates.

Offloading Optimal Offloading

0.202098 0.165314

4. Scenario 4 : For this last scenario, we also consider mixed load conditions

with parameters given in Table 4.7. Optimal thresholds are given in the

same Table.

Table 4.7: Load Conditions and Optimal Thresholds.

parameter value

(ρ1, T1) (2.5,1)
(ρ2, T2) (1.37,0.24)
(ρ3, T3) (0.8,1)
(ρ4, T4) (0.75,0.88)

As in the previous scenarios, we perform simulation first without consid-

ering threshold in order to compare blocking rates to those given with

optimal thresholds set by the GA. Results are given in Table 4.8.

Table 4.8: Blocking Rates.

Offloading Optimal Offloading

0.167588 0.122392
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Discussion In the previous section, we compared global blocking rates of our

offloading strategy with optimal thresholds given by the GA against the simple

offloading strategy with no thresholds under 4 settings for load conditions.

As expected, the policy with optimal thresholds is much better than that with-

out considering limitation and reduce the blocking significantly. This can be

noticed for the several load conditions that we have considered. In fact, with the

combination of thresholds given by the GA, our offloading strategy yields better

performance.

We observe that the adjustment of thresholds has a real impact on the blocking

rates and significantly ameliorate the collaboration between neighbors. We also

conclude that the GA approach presents a good technique revealing practical in-

sights into parameterizing distributed cloud infrastructure for network operators

as it gives solutions to reduce global blocking of the system in a reasonable time.

4.5 Summary

To accelerate the transition to NFV, several projects have recently emerged to

orchestrate the deployment of VNFs inside a network. In this Chapter, we

presented an overview of the NFV MANO framework delivered by ETSI as well

as several orchestration projects compliant with this framework.

We then investigated two of the core functionalities that have to be encapsu-

lated within the orchestration framework notably the monitoring as well as the

scheduling feature.

To explore the monitoring feature, we presents an overview of a theoretical anal-

ysis conducted to study the impact of the monitoring on the network traffic.

Finally, we presented the ONAP software, a solution dedicated to manage NFV

infrastructure, as a use case to explore the scheduling feature in the context of

NFV. We highlighted resource allocation’s issues within the current release of

this platform. It turns out that the way VNFs’s placement is handled does not

fit with critical requirements of NFV environments, notably, geographical loca-

tion and latency constraints. Hence, we proposed a VNF’s placement strategy

that can be used in the context of ONAP. Contrary to the current approach

of VNF’s placement within ONAP, our solution takes into account latency and

geographical constraints. This makes it possible to manage distributed cloud in-

frastructures with ONAP. Our results show that the proposed scheme improves
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the performance in terms of VNFs acceptance while requiring less overhead when

compared to the Openstack-based approach adopted in the current version of

ONAP.
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5.1 Main Contributions

The aim of this thesis was to study resource allocation in the future telco infras-

tructure.

First of all, we have identified the new challenges of resource allocation raised

by the transformation of the network operator infrastructure driving by virtual-

ization.

After reviewing the state of the art, that covered virtualization paradigm as well

as resource allocation strategies in traditional cloud, we proposed an analytical

model to estimate blocking of cloud requests since that we claim that blocking

is a key metric in the telco cloud context. We then evaluate under a centralized

approach the most popular strategies of resource allocation based on our model.

The second proposal consists of the proposal of an offloading strategy for NFV

service in the context of distributed cloud.

In the second part of this thesis, we presented an overview of orchestration plat-

forms for NFV dedicated infrastructure. We reviewed some critical features such

as monitoring and scheduling. Furthermore, we proposed a resource allocation

strategy to adopt in the context of the most popular orchestrator, namely ONAP.
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These resulted in the following contributions.

1. Blocking Estimator for limited-capacity cloud data centers.

We provided an analytical model to estimate blocking probabilities of VNFs

requests under Multiple constraints, notably the Mutli-dimension and the

multi-class constraint.

The strength of our model is the ability to consider multiple parameters

as it can be generalized to handle multiple resources that may include

computing, storage and networking resources. Our model is also able to

consider several types of requests which is line with NFV requirements.

Our proposed model reveals practical insights into capacity planning of

cloud infrastructure and allows network operators to well dimension edge

data centers that will be deployed for NFV needs.

2. Performance analysis of the most used strategies in the technical

literature.

Thanks to our blocking analysis model, we provided in this thesis a per-

formance evaluation of the most popular strategies of resource allocation

adopted in the cloud literature as well as strategies used in the context of

VNFs placement.

3. The proposal of a Costless Resource Allocation strategy for dis-

tributed Edge cloud.

In the context of telco cloud, we have shown that new challenges raise

when compared to traditional cloud platforms, especially with regard to

the critical requirements of NFV. Hence, there is a clear need to adapt re-

source allocation algorithms to this new context constrained by latency and

geographical constraints. We propose in this context a well adapted strat-

egy of resource allocation for NFVs deployment which takes into account

multiple aspects of the new network infrastructure, notably the massive

distribution of data centers as well as its limited resource capacities.

4. Setting up a testbed platform for exploring monitoring and schedul-

ing features.

We have set a test environment for cloud infrastructure involving cloud data

centers as well as network topology. This environment enabled verifying

hypothesis that we made to study resource allocation, notably the ability

of the orchestrator to be aware of the level of the utilization of resource

within the underlying infrastructure.
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5. Technical study of resource allocation under the platform ONAP

and the proposal of a dynamic Adaptive placement in this con-

text.

The technical study of the resource allocation strategy under the orches-

tration platform ONAP enabled us to identify issues that may affect VNFs

performance as this strategy does not take into account critical require-

ments such as latency. Hence, we proposed an adapted strategy that we

prove more efficient when compared to the adopted one. It is noteworthy

that our proposed strategy can be used in the context of ONAP without

further modification. Furthermore, we propose another way to use optimal

threshold within our strategy. We described steps to set optimal thresholds

based on the Genetic Algorithm Approach.

5.2 Research perspectives

The study done in the context of this thesis is a good starting point for research

concerning optimized resource allocation for telco cloud infrastructure. In this

Section, we highlight some open questions and perspectives for future work.

1. Performance evaluation of resource allocation under another ap-

proach of Virtualization: containerization (container-based vir-

tualization).

Container virtualization has many benefits when compared to virtual ma-

chine virtualization that we only consider in this work [95]. To further val-

idate our contributions, more tests should be performed under a container-

based approach.

2. Implementation of a dimensioning tool for capacity planning of

data centers.

Based on our blocking analysis theoretical model, a dimensioning tool that

can be very useful to dimension massively distributed cloud infrastructure

can be implemented.

3. Test the integration of the proposed resource allocation strategy

into ONAP.

The performance evaluation of the strategy that we proposed in the context

of ONAP can be also conducted by testing its integration in this platform.
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5.3 Publications

1. International conferences and workshops (3)

• Farah Slim, Fabrice Guillemin, and Yassine Hadjadj Aoul,”On Virtual

Network Functions’ Placement in Future Distributed Edge Cloud”,

CloudNet , Prague Czech Republic, September 2017

• Farah Slim, Fabrice Guillemin, Annie Gravey and Yassine Hadjadj

Aoul, ”Towards a Dynamic Adaptive Placement of Virtual Network

Functions under ONAP”, SDN/NFV, Berlin Germany, November 2017

• Farah Slim, Fabrice Guillemin, and Yassine Hadjadj Aoul, ”CLOSE:

A Costless Service Offloading Strategy for Distributed Edge Cloud”,

CCNC, Las Vegas United States, January 2018

2. Journals (1)

• Fabrice Guillemin and Farah Slim, ”Sojourn time in an M/M/1 pro-

cessor sharing queue with permanent customers”,STOCHASTIC MOD-

ELS
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