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Chapter I Dopamine and the dopaminergic system 

Dopamine (DA) was identified as a neurotransmitter in brain by Arvid Clarsson about 60 

years ago. From the seminal observation that DA could revert reserpine-induced akinetic 

state, he suggested that DA may be related to Parkinson’s disease (PD). Then Oleh 

Hornykiewicz following this suggestion, found that striatal DA is deficient in PD patients and 

suggested applying L-DOPA (the direct precursor of DA) to treat PD. George Cotzias later 

showed that  L-DOPA therapy at high dose was safe and efficient to treat PD, and this has 

been applied till now.  

1. History of DA discovery 

This brief glance at the earlier DA studies is mainly based on memory reports from of 

Hornykiewicz (Hornykiewicz, 2002), Carlsson (Carlsson, 2002) and review from Fahn (Fahn, 

2008).  

In 1910, DA was first synthesized by George Barger and James Ewins (Hornykiewicz, 1986), 

and then given by Henry Dale its current name “dopamine”. In 1938, Peter Holtz et al 

discovered the enzyme aromatic-L-amino-acid decarboxylase (AADC) in mammalian tissues, 

converting L-DOPA to DA. Later, the hypothesis was proposed independently by Holtz and 

Hermann Blaschko, that L-DOPA and DA are intermediates in the biosynthetic pathway of 

catecholamines, epinephrine and norepinephrine (Blaschko, 1942). Three decades later, DA 

could be detected in many peripheral tissues (heart, kidney…) and it was found that it could 

lower blood pressure in animals (Hornykiewicz et al., 1958). In 1964, Toshiharu Nagatsu 

identified the enzyme tyrosine hydroxylase (TH) that converts L-tyrosine to L-DOPA in beef 

adrenal medulla, this catalytic process was proved to be the rate-limiting process in DA 

synthesis later on.  

Based on DA biosynthesis, further work had been carried out meanwhile to understand the 

physiological function of DA. Before 1957, DA remained to be just one kind of 

catecholamine, but the seminal observation by Arvid Carlsson that L-DOPA application to 

reserpined animals led to recovery from the akinetic state broke the consensus that reserpine 

sedative action was due to its effect on brain serotonin or noradrenaline. From this work, 

Carlsson suggested a role for DA as a neurotransmitter involved in movement control in the 

central nervous system (CNS) (Pletscher et al., 1955; Carlsson, 2002), independently of its 

role as a precursor in the synthesis of noradrenaline and adrenaline. This suggestion was 
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rejected based on the the firmly entrenched idea that synaptic transmission in the CNS was 

electrical rather than chemical at a meeting held in London in 1960 (reviewed by Iversen and 

Iversen, 2007). Inspired by the idea that parkinsonism-like symptoms produced by reserpine 

could be due to lack of DA in the striatum (Bertler and Rosengren, 1959; Carlsson, 1959), 

Hornykiewicz began to investigate the autopsied brain from PD patients, and then discovered 

a marked reduction in DA levels (Goetz, 2011). Later on, he found that L-DOPA treatment to 

PD patients resulted in a temporary improvement of akinesia (Birkmayer and Hornykiewicz, 

1961). Cotzias’s efforts introduced high dose L-DOPA therapy that has been utilized as 

clinical treatment since then (Cotzias et al., 1969). Numerous works during the following 50 

years have focused on the study of dopaminergic neurons (DANs), DA receptors and their 

role in neurophysiology, behaviour control and related diseases, as will be briefly discussed 

below. 

 

2. The DA neurotransmission system in mammals 

2.1 DA dynamics 

DA synthesis: As shown in Figure 1, DA is derived from L-tyrosine, an amino acid that is 

abundant in dietary proteins. Blood-borne tyrosine is taken up in the brain and transported 

into DANs. L-tyrosine is converted into L-DOPA by the cytosolic enzyme TH using the 

cofactor tetrahydrobiopterin and this is the rate limiting step in DA biosynthesis (Nagatsu et 

al., 1964). Cytosolic L-DOPA is then converted to DA by the enzyme aromatic amino acid 

decarboxylase (AADC), also named DOPA decarboxylase (DDC).  
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Figure 1 Overview of the DA neurotransmission system. 

Function of the DA neurotransmission system in mammals requires: 1) DA synthesis: L-tyrosine 
transported into DANs is converted by TH to L-DOPA, which is then converted to DA by DDC. 2) 
DA storage: cytosolic DA is imported into synaptic vesicles by VMAT driven by the H+-ATPase 
pump to fight against the concentration gradient. 3) DA release: responding to the action potential and 
Ca2+ ion entry through VGCC, DA is released into the synaptic cleft. 4) DA reuptake: through DAT, 
DA is captured back by DANs and recycled to vesicles or degradated. 5) DA signaling: DA could act 
on the postsynaptic DA receptors or the presynaptic DA autoreceptors. 6) DA degradation: DA is 
degraded by MAO or COMT into HVA and then excreted into urine. AAAT: aromatic amino acid 
transporter; COMT: catechol-O-methyltransferase; DA: dopamine; DANs: dopaminergic neurons; 
DAT: DA transporter; DDC: dopa decarboxylase; DOPAC: 3,4-dihydroxyphenylacetic acid; HVA: 
homovanillic acid, MAO: monoamine oxidase; TH: tyrosine hydroxylase; VMAT: vesicular 
monoamine transporter; VGCC: Voltage-gated calcium channel.  

 

DA storage: Cytosolic DA easily reacts with protein, lipids and nucleic acids, forming toxic 

oxygen radicals (Sulzer and Zecca, 2000). To avoid this toxic reaction, DANs possess 

multiple mechanisms to protect themselves from cytosolic DA stress, e.g. sequestering DA 

into synaptic vesicles through the vesicular monoamine transporter 2 (VMAT2) and so 

keeping it in very acid surroundings. Vacuolar-type H+-ATpase (V-ATPase) in synaptic 

vesicles generates a proton electrochemical force that allows vesicular accumulation of DA 

against its concentration gradient, leading to a fivefold higher concentration of vesicular DA 

compared to its cytosolic level (Nakanishi-Matsui and Futai, 2006; Sulzer, 2007; Sulzer, 

2016). 
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DA release and reuptake: Following neuronal stimulation and calcium influx, acording to 

mammalian studies, DA release takes place both from the axons and somatodendrites (Rice et 

al., 1997; Phillips and Stamford, 2000; Cheramy et al., 1981). Its signalling depends on DAN 

firing rate and patterns that vary between low frequency “tonic” firing and brief higher 

frequency (-200 ms) ‘phasic’ bursts of action potentials (Grace and Bunney, 1983; Grace 

2016). DA released into the synaptic cleft is halted by its diffusion away from the synapse 

and reuptake by the DA transporter (DAT) into the presynaptic neurons or glia (Nirenberg et 

al., 1997; Uhl et al., 2003). Several psychotherapeutic drugs, and drugs of abuse, such as 

cocaine and amphetamine, bind to DAT with high affinity. The DA taken-up into the 

presynaptic cells can be either recycled into vesicles for further use in neurotransmission or 

degraded by the action of the enzymes monoamine oxidase (MAO) and catechol-O-

methyltransferase (COMT) into homovanillic acid (Meiser et al., 2013).  

2.2 DA receptors 

DA receptors belong to the large G protein-coupled receptor (GPCR) superfamily. Based on 

structural similarity, the five mammalian DA receptor subtypes could be divided into two 

major subclasses: D1-like group (D1 and D5) and D2-like group (D2, D3 and D4) (Missale et al., 

1998; Callier et al., 2003). The D1 receptors are structurally characterized by a short third 

cytoplasmic loop and a very long C-terminal tail. They are coupled to the Gαs class of G 

proteins and, accordingly, activate adenylate cyclase to produce cyclic adenosine 

monophosphate (cAMP) as a second messenger. In contrast, the D2 receptors bear a long 

third cytoplasmic loop and a short cytoplasmic C-terminal end. They are coupled to Gαi/αo 

protein to inhibit cAMP synthesis. The D1-like receptor activation can be either excitation or 

inhibition, while the ultimate effect of D2-like activation is usually an inhibition of target 

neurons (Ayano et al., 2016). 

According to their respective location in the CNS, DA receptors are implicated in different 

physiological and pathological processes (Beaulieu and Gainetdinov, 2011; Hisahara and 

Shimohama, 2011). In the striatum, D1 and D2 are expressed by different neuronal 

populations and they act in concert to mediate DA control of locomotion. In the basal ganglia, 

D2 and D3 locate in DAN nerve terminals serving as autoreceptors that modulate locomotor 

output. In the frontal cortex, D1, D2, D4 and D5 mediate various physiological functions of 

DA, like its effect on cognition and working memory. Finally, D1 and D2 play a fundamental 

role in the rewarding mesolimbic pathway.  
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2.3 Anatomy of the neural dopaminergic system 

Anatomical organization and projection pattern of DANs in the adult rodent brain are 

displayed in Figure 2 with the majority of DAN cell bodies located in the dopaminergic areas 

A8 (retrorubral area), A9 (substantia nigra, SN) and A10 (ventral tegmental area, VTA) 

(Bentiviglio and Morelli, 2005). ‘A’ refers to aminergic (DA and noradrenaline), according to 

the nomenclature introduced by Dahlström and Fuxe (1964), in which A1-A7 neurons 

express the neurotransmitter norepinephrine, A8 to A14 DA, B is for serotonin and C for 

adrenaline.  

The brain dopaminergic system is divided into three pathways: 1) the nigrostriatal pathway 

from the SN pars compacta (SNpc) (A9) to the dorsal striatum, 2) the mesolimbic pathway 

from the VTA (A10) to the nucleus accumbens and olfactory tubercle, 3) the mesocortical 

pathway from the VTA (A10) to the prefrontal cortex (Iversen and Iversen, 2007). 

Diminished nigrostriatal pathway signalling results in dysfunctional communication in the 

basal ganglia circuitry and is responsible for the motor symptoms in PD patients. Loss of 

nigrostriatal projections was attributed to the specific susceptibility of their thin poorly 

myelinated or unmyelinated axonal fibers travelling a long distance to the striatum to 

degeneration (Sulzer, 2007). The respective function of the different dopaminergic pathway 

will be illustrated in next section. 

 

Figure 2 Dopaminergic system in the adult rodent brain.  

The DANs in the mammalian brain are localized in 9 distinct cells groups (nuclei), distributed from 
the mesencephalon to the olfactory bulb, as illustrated schematically from Björklund and Dunnett 
(2007). The principal projections of the DA cell nuclei are indicated by arrows.  
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2.4 DA function 

2.4.1 Basal ganglia structure 

In order to understand the motor control loops, it is necessary to present an overview of the 

basal ganglia components and circuits (Bentivoglio and Morelli, 2005, Lanciego et al., 2012). 

The main structure of the basal ganglia in the mammalian brain includes the striatum, the 

globus pallidus (GP), the subthalamic nucleus (STN), and the SN, shown in Figure 3. The 

globus pallidus is divided by the internal medullary lamina into a lateral or external segment 

(GPe) and a medial or internal segment (GPi). The striatum comprises the caudate nucleus, 

the putamen and the ventral striatum. The caudate nucleus, the putamen, and the nucleus 

accumbens are considered as input nuclei receiving information from the cortical and 

thalamic area. The output comprises the GPi and SN pars reticulata (SNpr) conveying to the 

thalamus, targeting in particular the ventral tier thalamic nuclei (Ventral anterior 

(VA)/Ventrolateral (VL)), which project via the thalamocortical system to frontal cortical 

areas that gives origins to cortical descending pathways. The intrinsic nuclei include GPe, 

STN and SNpc located between the input and output nuclei in the information relay. 

 

Figure 3 Basal ganglia structure in the human brain 

(A) Localization of the different components of the basal ganglia, which comprises the striatum, the 
subthalamic nucleus (STN) and the substantia nigra (SN). The striatum includes the caudate nucleus, 
putamen and ventral striatum. (B) Representation of the neuronal connections implicated in motor 
control. The different pathways are schematically depicted in Figure 4. VA nuclei: Ventral anterior 
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nuclei; VL nuclei: Ventrolateral nuclei; MD: mediodorsal (Source: https://neupsykey.com/control-of-
movement-2/). 

 

2.4.2 Function of the DA nigrostriatal pathway in basal ganglia circuitry  

The nigrostriatal pathway refers to the dopaminergic projections that connects the SNpc to 

the dorsal striatum (caudate nucleus and putamen) and are involved in movement control. 

Neuronal loss in SNpc causes enhanced inhibitory output feeding back to the cortex that leads 

to canonical Parkinsonian syndromes such as rigidity, akinesia and resting tremor. The 

pathology underlying nigrostriatal degeneration will be addressed in Chapter two.  

The basal ganglia circuitry is constituted of two major projection systems schematically 

depicted in Figure 4. The direct pathway arises from GABAergic neurons in the striatum that 

send their monosynaptical projection to the GPi/SNpr (Gpi and SNpr are grouped together 

and share a number of cyto-and chemoarchitectural characteristics and to some extent similar 

types of afferent and efferent systems). The indirect pathway includes GABAergic striatal 

neurons sending information to the GPi/SNpr via sequential interconnection with the GPe and 

STN (Bentivoglio and Morelli, 2005).  

The ganglion circuitry involved in the control of voluntary limb movements arises from the 

motor cortices (primary motor cortex, supplementary motor area and premotor cortex) that 

send glutamatergic and excitatory projections to the somatomotor territories of the basal 

ganglia. Convergence of motor projection occurs in the striatum, which also receive 

nigrostriatal inputs. DA release regulates the activity of striatal neurons involved in both the 

direct and indirect pathways. Direct pathway striatal neurons express preferentially D1 

receptors and the neuropeptide substance P, while indirect pathway neurons express D2 

receptors and enkephalin (Przedborski, 2017). Targeting their respective receptors, DA leads 

to stimulation of the direct pathway via excitatory D1-receptors, while simultaneously 

inhibiting the indirect pathway via inhibitory D2-receptor activation.  

The STN, which is the excitatory glutamatergic nucleus of the basal ganglion, also receives 

direct projections from the cortex through the corticosubthalamic pathway bypassing the 

striatum, named the hyperdirect pathway (Bentivoglio and Morelli, 2005) (Figure 4). 
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Figure 4 Standard model of basal ganglion circuitry for locomotion. 

The black arrows indicate the inhibitory connection, the white arrows correspond to excitatory 
connections, and the grey arrow represent the modulatory dopaminergic innervation of the striatum. 
The direct pathways refers to the striatum-GPi/SNpr-thalamus tract, the indirect pathway to the 
striatum-GPe-STN-Gpi/SNpr-thalamus pathway, and the hyperdirect pathway to the frontal cortex 
connections to the STN-GPi-thalamus tract that bypasses the striatum. Source: (Rubchinsky et al., 
2003).  

 

2.4.3 Other dopaminergic pathways and related functions 

The mesolimbic pathway refers to projections of DANs located in the VTA to the nucleus 

accumbens (NAc), limbic system-amygdala, and hippocampus. The NAc is considered as a 

limbic-motor interface that plays a role in motivation and reward, translating information 

about reward into proper behavioural responses (Haber and McFarland, 1999), while the 

limbic system is associated with emotion and memory formation (Ledoux et al., 1993). Given 

the nature of the cognitive sensation, the mesolimbic pathway is also involved in addiction 

and depression (Berke and Hyman, 2000; Ungless et al., 2010). Dysfunction in this system 

results in a range of psychological process and neuropsychiatric diseases, such as 

schizophrenia, addiction, attention deficit hyperactivity disorder, and depression (Alcaro et al., 

2007; Dichter et al., 2012).  

The mesocortical pathway originates from the neurons located throughout the SNpc and VTA. 

These neurons send branch axons within the cortex reaching more than one cortical area 

(Bentivoglio and Morelli, 2005). The dopaminergic innervation of the prefrontal cortex has 

been implicated in the modulation of normal cognitive processes, working memory related to 

age-related memory decline and alterations, neurodegenerative disorders including PD, as 
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well as psychiatric diseases (Manoach, 2003; Seamans and Yang, 2004; Durstewitz and 

Seamans, 2008).  

 

3. DA study in Drosophila 

Before presenting the DA system in Drosophila, a brief introduction to Drosophila 

neurobiology study should be given to highlight its prominent contribution to neuroscience 

research. As reviewed by Bellen et al. (2010), powerful impacts of fly work pioneered 

mechanisms underlying nervous system development such as Notch identification, 

characterized synaptic transmission at the larval neuromuscular junction, and initiated 

neurogenetics studies to understand the neuronal circuitry of behaviour and provide insights 

into neurodegenerative mechanisms.  

 

3.1 Advantages of the Drosophila model in neurobiology 

A combination of several key factors makes the fly a uniquely powerful animal model 

neuroscience research and better understand human neurodegenerative diseases. First, 

compared to other model organisms, flies have quite a short life cycle and produce a large 

number of descendants, and they are relatively inexpensive to maintain. Second, nearly 75% 

of human genes have functional homologues in flies (Rubin et al., 2000; Reiter et al., 2001). 

However, Drosophila has a smaller number of genes (around 14,000 protein-coding genes) 

compared to humans (around 20,000-25,000). Owing to less redundancy, this reduced 

genome complexity allows easier interpretation of loss-of-function studies. Although humans 

and flies may not look very similar, numerous developmental pathways and physiological 

process are conserved across evolution (Rubin and Lewis, 2000). Third, as to the nervous 

system, flies have a real brain with neurons and glial cells, protected by a blood-brain barrier, 

and complex neuronal networks utilizing similar neurotransmitters as in vertebrates for 

behavior modulation (memory, sleep, locomotion, mating, etc). Furthermore, defined regions 

of the vertebrate and fly brains appear to share genetic and structural homologies, like the 

vertebrate basal ganglia and Drosophila central complex (Strausfeld and Hirth, 2013; Fiore et 

al., 2015). 
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Unsurpassed advantages of Drosophila in neurobiology compared to any other organism 

result from the various genetic tools that are available. The Gal4/UAS expression system 

made from yeast (Saccharomyces cerevisiae) components, is very reliable and useful. This 

system is based on tissue-specific expression of the transcription factor Gal4 that binds to 

specific upstream activating sequences (UAS) to initiate transcription of downstream genes 

(Brand and Perrimon, 1993). Gal4 expression pattern can be refined and selectively 

suppressed in a subset of neurons by combination with a thermosensitive Gal80 repressor 

(McGuire et al., 2003). Other in vivo expression systems have been designed since then such 

as the LexA/LexAop system derived from bacterial (Escherichia coli) components, in which 

the LexA transcription factor binds to LexA operator (LexAop) sequences (Pfeiffer et al., 

2010).  

Thousands of Gal4- and LexA-transformed lines are currently available to develop 

neurobiology studies in Drosophila, in which the enhancers from different genes allow 

targeted expression of the exogenous transcription factors in selective neuronal or glial 

subtypes. UAS or LexAop sequences fused with the gene or RNA interference (RNAi) 

sequence of interest allow their Gal4-driven expresion at desired time and in specific neurons 

clusters or even in a single pair of neurons, which provide better understanding of gene 

function in specific neuronal population. Particularly for neurobiological studies, different 

effector or reporter transgenes driven by Gal4/UAS or LexA/LexAop permit neuronal 

visualization (fluorescent proteins), recording (GCaMP), silencing (temperature sensitive 

Shibire (Shits1)), or activation (thermosensitive channels dTrpA1/TRPM8, light activated 

channels ChR2-XXL (Dawydow et al., 2014) or ChR2/CsChrimson (Owald et al., 2015b). 

The use of LexA/LexAop as a complementary binary system combined with Gal4/UAS has 

many application, such as the identification of potential synaptic connections by the green 

fluorescent protein (GFP)-reconstitution across synaptic partners (GRASP) method (Feinberg 

et al., 2008; Macpherson et al., 2015) and the analysis of neuronal circuitry by monitoring 

activity in neurons of interest while activating or inhibiting the feedback or upstream neurons 

which project on them (Cohn et al., 2015).  
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3.2 Structure of the brain mushroom bodies and central complex.  

 

Figure 5 Comparison of the human and Drosophila nervous system 

The nervous systems in the fly and humans, which comprise brain, ventral nerve cord (VNC) and 
segmental nerves, appears quite similar in their organization. Source: 
https://droso4schools.wordpress.com/organs/ 

A 3D model of defined synaptic neuropils was established by Kei Ito’s group (Ito et al., 2013) 

that gives a whole view of the Drosophila brain. Among those complex neuropils, the 

mushroom body (MB) attracted overwhelming attention (Nighorn et al., 1994). The MB is 

one of the most clearly distinguishable neuropils in the insect brain (Strausfeld et al., 1998). 

This complex structure is composed of about 2,200 neurons per hemisphere that include 7 

subtypes of intrinsic neurons or Kenyon cells (KCs) representing ~2000 neurons, 20 subtypes 

of afferent DANs which modulate each MB compartment and 21 subtypes of MB output 

neurons (MBONs) conveying information outside the MB (Aso et al., 2014a) (Figure 6).  

 

Figure 6 Display of the three types of neurons in the MBs 

(A) KCs have their cell bodies and dendrites in the posterior region of the brain and send their axons 
forming the horizontal and vertical lobes of the MBs. (B) MBONs arborize on the MB lobes and send 
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their axons reaching to the SMP, SIP, SLP, and CRE regions. (C) Dendrites of MB-associated DANs 
lie in the CRE, SMP, SLP and SIP and tile the MB calyx and lobes. CRE: crepine; MB: mushroom 
body; SMP: superior medial protocerebrum; SIP: superior intermediate protocerebrum; SLP: superior 
lateral protocerebrum. Source: (Aso et al., 2014a).  

KCs form the fundamental structure of the MBs. Their cell bodies constitute a large cluster in 

the dorsal posterior brain; their dendritic branches make up the calyx and their axons bundle 

up in the peduncles. At the end of the peduncles, the axons bifurcate dorsally and medially to 

form the vertical (α and α') and horizontal (β, β' and γ) lobes, respectively. The MB contains 

three types of KCs that are named according to the lobes in which they send axonal 

projections: αβ, α'β' and γ KCs (Lee et al., 1999; Tanaka et al., 2008). The DANs are the 

most prevalent modulatory neurons in the MB (Pech et al. 2013b). They were thought to 

release DA to regulate information at the KC>MBON synapses. However, recent studies also 

identified KC>DAN and DAN>MBON synapses in the adult MB (Cervantes-Sandoval, et al., 

2017; Takemura et al., 2017). In addition to being a center for olfactory learning and memory 

formation, retrieval and consolidation, the MB has been reported to be involved in locomotor 

activity control, sleep, courtship and other functions (Martin et al., 1998; Besson and Martin, 

2005; Sitaraman et al., 2015a, b; McBride et al., 1999; Haynes et al., 2015; Bouzaiane et al., 

2015).  

In addition to the well-investigated MBs, another structure that attracted attention is the 

central complex (CC) straddling the middle of the protocerebrum in the centre of the brain 

(Wolff et al., 2015). Its four components are the protocerebral bridge (PB), fan-shaped body 

(FSB), ellipsoid body (EB) and noduli. The CC is involved in coordinating locomotor 

behaviour, including flight and walking activity, visual function and various types of memory 

in flies (Martin et al., 1999; Strauss, 2002; Kahsai et al., 2010; Liu et al., 2006).  

 

3.3 Anatomy of the dopaminergic system in the Drosophila CNS 

DANs in Drosophila are involved in the control of many behaviours (Riemensperger et 

al., 2011; Yamamoto and Seto, 2014). Comparably to DAN nuclei (A8-A16) in rodents 

(shown in Figure 2), Drosophila DAN system could be divided into 15 clusters 

consisting of around 300 TH-positive neurons (Nässel and Elekes, 1992). As shown in 

Figure 7, in the anterior brain, there are 5 protocerebral anterior lateral (PAL) neurons, a 

small group located in the lateral and medial part of the subesophageal zone (SEZ) and 
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about 100 protocerebral anterior medial (PAM) neurons (Friggi-Grelin et al., 2003a; Mao 

and Davis, 2009; Liu et al., 2012a; Niens et al., 2017). The posterior DAN clusters in the 

adult brain are protocerebral posterior lateral 1 and 2 (PPL1 and PPL2), protocerebral 

posterior medial 1/2 and 3 (PPM1/2 and PPM3), a group of small neurons located lateral 

to the SEZ and a group of large neurons in the medial part of the SEZ. In the VNC, 

dense innervation descending from the CNS projects to all three segments, together with 

giant neurons and dense clusters of DANs in the abdominal ganglia.  

 

Figure 7 DAN systems in brain and VNC 

This scheme depicts the localization of DAN clusters in the brain and VNC. In the anterior brain, 
PAM projects to the MB medial lobes, and PAL clusters mainly project to the optic lobes. Clusters 
PPLs and PPMs locate in the posterior brain with their axons reaching to the MB vertical lobes, FSB, 
EB and other neuropils in the brain. The known efferent neuropil of DANs in brain are shown in grey. 
In the VNC, around 6 giant DANs locate between the segments and groups of dense DANs lie in the 
abdominal ganglia. DAN: dopaminergic neurons, EB: ellipsoid body, FSB: fan shaped body, MB: 
mushroom body, PAL: protocerebral anterior lateral, PAM: protocerebrum anterior medial, PPL: 
protocerebrum posterior lateral, PPM: protocerebral posterior medial, VNC: ventral nerve cord. 

 

In the fly brain, as introduced in this section, the PAM together with PPL1 neurons, and one 

PPL2ab neuron send projection onto the MB lobes and calyx, respectively, while some 

neurons of PPL1 and PPM3 tiles the CC neuropil. Besides, long projections from the other 

clusters of DANs reach to the optic lobes (PAL), subesophageal ganglion (SOG) (PPM2) and 

inferior/superior/lateral/medial protocerebrum (PAL and PPL2) (Mao and Davis, 2009; Liu et 

al., 2012b). The DANs inervating the MBs and CC are described in more details below. 

PPL1. The PPL1 cluster of DANs (12 per hemisphere) are labelled by the DA driver TH-

Gal4 (Friggi-Grelin et al., 2003a) and their projections tile the MB vertical and γ lobes, as 

well as the FSB. Based on the different areas they target, three PPL1 DANs were named MB-
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MP1 (γ1 ped), MB-V1 (α2 α'2) and MB-MV1 (γ2 α'1). Other PPL1 neurons target to the 

α3α'3 compartment and the FSB (Tanaka et al., 2008, Aso et al., 2012, Liu et al., 2012b). 

Dendrites of PPL1 neurons mainly lies in the superior medial protocerebrum (SMP) and a 

minority arborize in the crepine (CRE) and superior intermediate protocerebrum (SIP), and a 

tiny bit in the superior lateral protocerebrum (SLP) (Aso et al., 2014a). A function for PPL1 

DANs has been described for learning and forgetting, sleep and locomotion control (Aso et 

al., 2010; Aso et al., 2012; Berry et al., 2012; Uneo et al., 2012; Liu et al., 2012b; Plaçais et 

al., 2012; Pathak et al. 2015; Sitaraman et al., 2015b; Vaccaro et al., 2017; Artiushin and 

Sehgal, 2017).  

PPM3. The 6-8 PPM3 DANs are all labelled by TH-Gal4 and were found to innervate the 

CC, which is described as a higher centre for locomotion control (Strauss, 2002; Mao and 

Davis, 2009; White et al., 2010). PPM3 neurons projecting to the dorsal FSB and the EB are 

involved in ethanol-stimulated locomotion, aggressive behaviour, arousal and sleep, et al. 

(Kong et al., 2010, Liu et al., 2012b; Ueno et al., 2012; Alekseyenko et al., 2013; Artiushin 

and Sehgal, 2017).  

PPL2ab. The cell bodies of PPL2ab neurons are located on the lateral edge of the 

protocerebrum near the optic lobes. The PPL2ab contain 4 to 6 cells. Two of these neurons 

were observed to target the MB calyx and tile the lateral horn and others send broad 

projections to the protocerebral area (Mao and Davis, 2009). Due to few specific drivers 

available for targeting this cluster, available recent work suggest that PPL2ab neurons may 

not affect motor activity and sensory processing, but regulate the male courtship behaviour 

(Kuo et al., 2015; Chen et al., 2017).  

PAM. PAM are the last born DANs during metamorphosis with smaller somata that form 

a dense cluster of around 100 neurons located in the anterior brain (Liu et al., 2012a; 

Riemensperger et al., 2013). These DANs send projections towards the medial lobes of 

the MBs, tile the tips of the γ lobes and the β’ and β lobes and their dendrites arborize in 

the CRE, SIP, SLP, and SMP (Pech et al., 2013a; Aso et al., 2014a). The PAM clusters is 

labelled by R58E02-Gal4 in which the enhancer is derived from the first intron of the 

Drosophila DA transporter gene (DAT) (Liu et al., 2012a). This cluster is involved in 

appetitive olfactory learning (Liu et al., 2012a; Waddell, 2013). It was also reported to have 

wake-promoting effect (Sitaraman et al., 2015b) and to be involved in caffeine-induced 

arousal (Nall et al., 2016) and the control of startle-induced climbing and air puff-stimulated 

flight (Riemensperger et al., 2013; Bou Dib et al., 2014; Agrawal and Hasan, 2015).  
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3.4 Comparison of DA dynamics in Drosophila and mammals 

DA appears to be an evolutionarily old neurotransmitter system that was recruited like most 

classical  transmitters in the common cnidarian/bilaterian ancestor (Moroz and Kohn, 2016). 

As systematically reviewed by Yamamoto and Seto, 2014, the organization of DA 

neurotransmission is highly conserved between Drosophila and mammals. The genes 

involved in DA synthesis, transport, secretion, signal transduction have their homologs in 

flies, e.g. TH, Ddc, DAT, VMAT and DA receptors. Consistent to their effects in mammals, 

flies respond similarly to pharmacological agents targeting the DA system, e.g. modafinil, 

cocaine, caffeine, amphetamines. (Hendricks et al., 2003; Birman, 2005; Andretic et al., 2005; 

Shaw et al., 2000; Chang et al., 2006).  

 

Figure 8 Schematic diagrams of DA dynamics and signalling. 

A) Drosophila hypoderm and cuticle B) Drosophila brain and C) mammalian brain. In Drosophila, 
DA synthesis takes place not only in the CNS but also in the hypoderm, and utilizes in both tissues the 
enzymes TH and Ddc encoded from alternatively spliced genes (Morgan et al, 1986; Birman et al., 
1994). DA or L-DOPA secreted from hypodermal cells are oxidized into melanin and contributes to 
pigmentation and sclerotization of the insect cuticle. Ebony, Black, Tan, and aaNAT in Drosophila 
are involved in DA metabolism. Except for DA degradation, DA synthesis, storage, release and 
reuptake share similar mechanisms between the fly and mammals, and the genes that function in 
Drosophila has homologs in mammals. aaNAT: arylalkylamine N-acetyltransferase. Source: 
(Yamamoto and Seto, 2014) 

However, discrepancies lie that, first, the major enzymes involved in DA metabolism appear 

quite different between flies and mammals. Nearly no COMT activity and a low MAO 
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activity were detected in Drosophila, while N-acetyltransferase (NAT) activity (whose 

mammalian homolog is involved in the biosynthesis of melatonin), was described to be 50-

fold greater than the MAO activity and 500-fold greater than COMT suggesting that this 

acetylation pathway is the major route for DA metabolism. The corresponding aaNAT 

enzyme was identified later in 1996 (Wright, 1987; Hintermann et al., 1996). More details of 

the comparison between the DA system in Drosophila and mammals are shown in Figure 8. 

Second, interestingly, DA synthesis, transport and secretion are not restricted to the CNS in 

Drosophila, as there are DA-expressing cells in the hypoderm. DA is indeed required for 

cuticle pigmentation and hardening (sclerotization) in insects (Wright, 1987). Genes 

regulating DA biosynthesis in the Drosophila brain, i.e. TH and Ddc, are also essential for 

cuticle formation. Null mutations in the Ddc and ple (TH) loci results in unpigmented 

Drosophila embryos that are unable to hatch in part because they have a soft cuticle (Wright 

1987; Budnik and White, 1987). Specific upstream DNA regulatory elements and 

alternatively spliced transcripts uncouple the DA function in the fly CNS and hypoderm 

(Bray et al., 1988; Morgan et al., 1986; Johnson et al., 1989; Birman et al., 1994; Vié et al., 

1999; Friggi-Grelin et al., 2003b ; Davis et al., 2007). DA also has functions in the ovary and 

in the gut in Drosophila (Neckameyer, 1996; Draper et al., 2007).  

 

3.5 DA receptor signalling in Drosophila  

3.5.1 DA receptors  

Four G-protein coupled DA receptors have been identified in Drosophila: two D1-like 

receptors (Dop1R1/dumb and Dop1R2/damb), one D2-like receptor (Dop2R/DDR2) and one 

non-canonical receptor (DopEcR) (Feng et al., 1996; Han et al., 1996; Hearn et al., 2002; 

Kim et al., 2003; Srivastava et al., 2005; Draper et al., 2007). Conserved with mammalian 

mechanisms, D1-like receptors act through activation of the cAMP pathway while the D2-like 

receptor inhibits the cAMP pathway. Importantly, the D2-like receptor Dop2R, similar to 

those of mammals, localizes both presynaptically in DANs as an autoreceptor that regulates 

DA release and postsynaptically (Vickrey and Venton, 2011; Qi and Lee, 2014). The brain 

localization of the four DA receptors and their respective function in different behaviours are 

summarized in Table 1. Summarized function of DA receptors in different neuropils reflects 
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the role of DA in different behavioural modulation in Drosophila, including sleep, learning, 

courtship and aggression.  

Table 1 Drosophila DA receptor and their respective localization and function  

 

APL: anterior paired lateral; ARM: anaesthesia-resistant memory; CA: corpus allatum; CC: central 
complex; EB: ellipsoid body; FSB: fan-shaped body; LTM: long-term memory; MB: mushroom 

Receptor locate Involved function Reference 

Dop1R1 

MB Learning, memory, 
forgetting, temperature 

preference, wake and sleep 
 

Kim et al., 2007; Andretic et al., 2008; 
Seugnet et al., 2008; Bang et al., 2011; 

Berry et al., 2012; Jiang et al., 2016 
Plaçais et al., 2017; 

MB α′β′ LTM, water reward  Lin et al., 2014 

MB gamma Learning, STM, LTM, 
courtship learning 

Qin et al., 2012; 
Keleman et al., 2012 

EB Repetitive startle-induced 
arousal; ethanol-stimulated 

locomotion 

Kong et al., 2010, Lebestky et al., 2009 

FSB Night sleep regulation; wake 
promoting; aggression 

Ueno et al., 2012; Liu et al., 2012b 
Alekseyenko et al., 2013 

PIb Sleep Jiang et al., 2016 
PDF neurons Sleep/wake arousal Lebestky et al., 2009 

TG Hind leg grooming Pitmon et al., 2016 

Dop1R2 

MB LTM, forgetting Berry et al., 2012; Musso et al., 2015; 
Placais et al., 2017 

FSB Sleep Pimentel et al., 2016 

P1 Sex drive Zhang et al., 2016 

Glutamate 
neurons 

Susceptibility to paraquat and 
DA toxicity  

Cassar et al., 2015 

DopEcR 

MB Behavioural sensitization, 
Courtship memory 

Aranda et al., 2017; Ishimoto et al., 2013 

? Ethanol-induced sedation Petruccelli et al., 2016 
? Proboscis extension reflex 

during starvation 
Inagaki et al., 2012 

 Modulation of Ca2+ dynamics 
within the MB 

Lark et al., 2017 

Dop2R 

PB+? Aggression Alekseyenko et al., 2013 
CA Juvenile hormone (JH) 

synthesis 
Gruntenko et al., 2012 

?	 Locomotor activity	 Draper et al., 2007	
MB, APL 
neurons 

ARM Scholz-Kornehl and Schwarzel, 2016 
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bodies; JH: juvenile hormone; PB: protocerebrum bridge; PIb: pars intercerebralis; TG: thoracic 
ganglion; STM: short-term memory; ?:unknown region 

 

3.5.2 DA control of locomotor behaviour 

In fly, previous studies demonstrated that DA plays a central role in the modulation of 

locomotion and stereotyped movements like grooming or stimuli-induced behaviours 

(Yellman et al., 1997; Lima and Miesenbock, 2005; Riemensperger et al., 2011; Sadaf et al., 

2015; Pitmon et al., 2016). Optogenetic stimulation of DA release led to an instant increase in 

fly walking activity (Lima and Miesenböck, 2005). Brain DA-deficient flies exhibited a 

reduction in spontaneous locomotion (walking speed and covered distance) (Riemensperger 

et al., 2011) and tetanus toxin light chain (TNT)-induced inactivation of synaptic 

transmission in a large number of DANs strongly reduced locomotion as well (Alekseyenko 

et al., 2013). In contrast, flies showing already high motor activity exerted transient arrest 

upon optogenetically-induced DA release (Lima and Miesenböck, 2005), which could be 

related to the inverted U-shaped of DA dose-effect relation on behaviour and arousal (Birman, 

2005). The identity of DANs that control spontaneous locomotion is currently unknown, but 

at least part of them could be those innervating the MBs and CC. Indeed, previous study 

showed that the MBs suppress locomotor activity (Huber, 1967; Heisenberg et al., 1985; 

Martin et al., 1998; Helfrich-Förster et al., 2002), while the CC is required for locomotor 

maintenance (Strauss and Heisenberg, 1993; Martin et al., 1999; Martin et al., 2001; Strauss, 

2002). 

In the work of Friggi-Grelin et al., expressing tetanus toxin (TNT) in DANs targeted by TH-

Gal4 caused lower performance index in the startle-induced negative geotaxis (SING) 

climbing test, paradoxically resulting from an increased excitability (arousal) that prevented 

the flies from climbing (Friggi-Grelin et al., 2003a). The role of brain DA in tempering 

exogenously-generated arousal was subsequently confirmed in another group by monitoring 

locomotor hyperactivity induced by repetitive air puffs (Lebestky et al., 2009). These authors 

demonstrated that inhibiting sigalling from DANs that innervates the EB neurons in the CC 

(R2/R4 and R3) resulted in elevated arousal indicated by increased fly velocity. Interestingly, 

the R2/R4 EB neurons and activity of one pair of PPM3 DANs that innervate them are also 

required for ethanol-induced hyperactivity (Kong et al., 2010).  

As shown in the study of White et al., 2010, walking activity increases in aged flies while the 
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startle-induced climbing ability in contrast progressively decreases with age indicating that 

these two different locomotor activities (spontaneous locomotion and locomotor reactivity) 

are regulated differently and may involve distinct neuronal circuits, in agreement with several 

anterior observations (Connolly, 1967; Meehan and Wilson, 1987; O’Dell and Burnet, 1988; 

Martin et al., 1999). Remarkably, brain DA-deficient flies also showed strong deficits in 

locomotor reactivity, as assessed by the SING test (Riemensperger et al., 2011). Recent 

results implicated the MBs and associated DANs in the control of startle-induced locomotion 

and age-related SING decline (Riemensperger et al., 2013 and further work described below 

in this PhD dissertation). The first evidence came from the observation that α-synuclein-

induced degeneration of projections from the PAM DANs to the MB medial lobes was in 

large part responsible for the accelerated loss of SING under this PD-like condition 

(Riemensperger et al., 2013). In addition to this, accelerated SING deficit was observed in 

aging ClkAR mutant flies associated with loss of MB-targeting PPL1 DANs (Vaccaro et al., 

2017). This topic will be further elaborated in the Results part.  
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Chapter 2 Parkinson’s disease (PD)  

 

1. Overview of PD pathology and treatments 

PD is one of the most common neurodegenerative disorder, affecting 1 % of the population 

over the age of 60, and nearly 5% of people over the age of 85 (Reeve et al., 2014). This 

disease was first medically described by the British physician James Parkinson as “paralysis 

agitans” in 1817. The essential criteria for the clinical diagnosis of PD is defined as 

parkinsonism, a movement disorder that is characterized by tremor at rest, bradykinesia, 

rigidity and postural instability. In addition to these features, non-motor symptoms such as 

impaired olfaction, disordered sleep, and constipation usually precede the clinical recognition 

of PD by years or even decades (Tolosa et al., 2009; Kiala and Lang, 2015). The cardinal 

neuropathological feature of PD is the degeneration or cell death of the DANs in the SNpc, 

accompanied with cytoplasmic inclusions named Lewy bodies (Lees et al., 2009). The main 

component of these aggregates is a small protein called α-synuclein (α-syn) which is thought 

to play a central part in PD. Because DANs contain neuromelanin, degeneration of DANs is 

visible by midbrain depigmentation in PD patients, as shown in Figure 9. 

 

Figure 9 Two key neuropathological feature of PD  

Schematic representation of the midbrain from healthy and PD brains. (a) The natural pigmentation of 
the SNpc caused by neuromelanin within DANs is diminished in PD patients. Lewy bodies (b) and 
Lewy neurites (c) can be immunostained by α-syn antibodies. SN: substrantia nigra, 3N: 3RD nerve 
fibres, CP: cerebral penducle, RN: red nucleus; Source: Poewe et al., 2017 
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As shown in Figure 10, excitatory signal of the nigrostriatal pathway from the SNpc onto the 

putamen (Pu) leads to an inhibition of the GPi, subsequently relieving its inhibition on the 

thalamus (Th) which then activates the motor cortex for the execution of movement. 

However, in the case of PD, a lost of signalisation from the SNpc (in purple) causes an 

increase in the inhibitory output from the GPi to the thalamus (in read), thus repressing the 

initiation of movements (in green). This disturbance in basal ganglia circuitry is believed to 

be responsible for the motor dysfunction symptoms (Shulman et al., 2011; Poewe et al., 

2017). 

 

Figure 10 Anatomy and pathophysiology of the PD brain 

Normal neuronal circuits for facilitating movement (left) and deranged circuits in PD (right). 
Excitatory nigrostriatal pathway from the SNpc to the putamen (Pu) normally inhibits the internal 
globus pallidus (GPi), subsequently relieving its inhibition of the thalamus (Th), which can then 
transfer excitatory inputs to the motor cortex for the execution of movement. Source: Shulman et al., 
2011 

Since its introduction in the 1960s, DA replacement therapy by the ingestion of L-DOPA 

(levodopa) has become the standard treatment for the different motor symptoms of PD. It is 

combined with other drugs to reduce complications induced by levodopa on the long term, 

such as motor fluctuation and dyskinesias (Jankovic and Aguilar, 2008). Deep brain 

stimulation (high frequency stimulating electrodes) targeted to the the subthalamic nucleus 

(STN) to reduce limb tremor in patients with advanced PD can be effective as well (Hamel et 

al., 2003; Herzog et al., 2003; Kalia and Lang, 2015). Although currently available PD 

therapies both delay disability and prolong life expectancy, none has been proven to 
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significantly alter the ongoing neurodegenerative process of the pathology (Kalia and Lang, 

2015; Poewe et al., 2017).  

2. Factors involved in PD onset 

PD is mostly a sporadic disorder, but about 10-15% of patients have a family history for this 

disease. The motor defects and the phosphorylated and ubiquitinated forms of α-syn fibrils 

found in Lewy bodies are present in both dominantly-inherited and sporadic PD cases (Baba 

et al., 1998; Papapetropoulos et al., 2007; Kiala and Lang et al., 2015). Moreover, PD is a 

slowly progressing disease with a high incidence in aged people. Although the Lewy bodies 

and the DAN loss are considered as the two key features of PD, there is now evidence that 

healthy aged people can also exhibit Lewy bodies and SN degeneration (Rodriguez et al., 

2015). This discovery highlights the fact that, besides the ageing factor, a combination of 

genetic susceptibility and environmental agents could be responsible for PD pathogenesis and 

caused abnormal DAN loss in the SNpc (Rodriguez et al., 2015; Malkus et al., 2009). Figure 

11 summarizes the interrelated molecular events caused by the three main PD onset insults: 

environmental toxins (green), genetic mutations (purple) and endogenous factors (blue), all 

contributing to increased oxidative stress, mitochondrial dysfunction and impaired protein 

degradation (Malkus et al., 2009), which will be more precisely described in the following 

sections.  
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Figure 11 “Bermuda Triangle” of molecular events underlying neuronal death in PD 

1. Reactive oxygen species generated by dysfunctional mitochondria. 2, 3. Protection by ROS 
scavenger systems against mitochondrial toxins. 4, 5. Disrupted protein degradation systems increase 
oxidative stress. 6-10. Oxidative modification accumulates inactivated, crosslinked and aggregated 
proteins that are not easily degraded by UPS and CMA, and on the contrary, impair the proteolytic 
system. 11. Damaged mitochondria is degraded by UPS for the outer membrane proteins, and by the 
autophagy-lysosome pathway for the rest. 12. Proteasome inhibition causes mitochondrial ROS 
accumulation and decreases the activity of Complex I and II. Source: Malkus et al., 2009.  

 

2.1. Genetic factors 

SNCA, which codes for α-syn, was the first gene found to be linked to PD (Spillantini et al., 

1997; Polymeropoulos et al., 1997). Apart from SNCA, at least 16 loci and 14 genes have 

been associated since then with inherited forms of parkinsonism. The most studied are 

summarized in Table 2 (Hewitt and Whitwhorth, 2017). Mutations in Leucine-rich repeat 

kinase 2 (LRRK2), and parkin and PTEN-induced putative kinase 1 (PINK1), are the most 

common causes of dominant and recessive familial PD, respectively (Corti et al., 2011). Even 

if PD is mostly associated with old age, a small percentage of patients present symptoms 

before 60. The majority of cases are caused by mutations affecting the protein degradation 

system or mitochondrial functions, such as Park1/SNCA, Park9/ATP13A2, Park2/parkin, 

Park6/PINK1, and Park7/DJ-1. This suggests that perturbation of these two systems, 
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associated with an unbalanced oxidative stress, is sufficient to cause PD. The following part 

will mainly decipher the mechanism of the dominant genetic factor SNCA in PD pathology.  

 

Table 2 PD associated genes 

At least 19 genes are currently associated with PD pathogenesis, of which 14 are shown in this table. 
They are mainly involved in mitochondrial regulation in response to oxidative stress, protein 
degradation and vesicle dynamics. AR: autosomal recessive; AD: autosomal dominant; GBA: 
glucocerebrosidase: SYNJ: synatojanin 1; EIF4G1: eukaryotic translation imitation factor 4 gamma 1; 
VPS35: vacuolar protein sorting-associated protein 35; FBXO7: F-box only protein 7. Source: Hewitt 
and Whitworth, 2017.  

 

2.1.1 SNCA 

2.1.1.1 α-syn structure 

α-syn was first identified in 1988 as a neuron-specific soluble protein predominantly 

localized at the presynaptic nerve terminal (Maroteaux et al., 1988). In human, α-syn is 

encoded by SNCA which maps to chromosome 4q21 (Chen et al., 1995; Lavedan, 1998) and 

was initially identified as the PARK1 locus (Nicholl et al., 2002), involved in both familial 

and sporadic PD cases. Structurally, full-length α-syn is a 140 amino acid (aa) protein that 
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show three domains with distinct structural characteristics: a basic N-terminus (aa 1-60), a 

central (‘non-amyloid genic component’) hydrophobic core (aa 61-95), and an acidic C-

terminal tail (aa 96-140) (Birman, 2000; Surguchov, 2008; Venda et al., 2010). The highly 

conserved N-terminal domain encodes for a series of 11 amino acid repeats with a consensus 

motif of KTKEGV, which in certain conditions forms amphipathic helices. This repeated 

sequences enable α-syn to form an alpha helix secondary structure or to interact with acidic 

lipid membranes (Davidson et al., 1998). The central portion of α-syn is highly hydrophobic 

and explains the aggregate-prone nature of the protein (Cho et al., 2009). The C-terminal 

domain of the protein remains unbound and available for potential interactions with other 

proteins (Eliezer et al., 2001) and it could inhibit aggregation. Hence, truncated forms are 

more prone to aggregate. 

 

Figure 12 Structure of the α-syn protein 

SNCA mRNA comprises seven exons, five of which shown above correspond to the coding region. 
The α-syn protein has 140 amino acid (aa), which are divided into three domains with distinct 
structural characteristics: N-terminus (aa 1-60), a central (non-amyloid component, NAC) 
hydrophobic core (aa 61-95), and an acidic C-terminal tail (aa 96-140). Three missense mutations that 
are linked to familial PD (A30P, E46K and A53T) lie in the amphipathic region. The NAC domain 
central hydrophobic core of these mutant proteins shows increasing propensity to form fibrils. The 
acidic C-terminal tail contains mostly negative charged residues and remains unfolded. Source: Venda 
et al., 2010.  

 

2.1.1.2 α-syn underlies PD etiology (rare familial case and sporadic) 

α-syn association with the etiology of PD was first shown in 1997 with the report describing 

a missense mutation (A53T) in SNCA causing autosomal dominant familial PD 

(Polymeropoulos et al., 1997). One month later, Lewy bodies in SNpc from PD patients were 

shown to be α-syn positive (Spillantini et al., 1997). In the next decade, more missense 
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mutations (A30P, E46K) were identified in other families (Krüger et al., 1998; Zarranz et al., 

2004). Clinically, SNCA mutations cause late-onset forms of PD. Interestingly, individuals 

carrying SNCA triplication show an early-onset form with more severe non-motor symptoms, 

more widespread neurodegeneration and a faster disease progression (Singleton et al., 2003; 

Farrer et al., 2004). Genome-wide associated study (GWAS) studies based on sporadic PD 

cases have identified mutations in the SNCA promoter but failed to identify protein coding 

variants, suggesting the risk alleles are likely to affect expression level of α-syn rather than its 

function (Michel et al., 2016). Dinucleotide repeat polymorphism (REP1) within the 5’ 

untranslated region of SNCA appears to control α-syn level of expression, an expanded REP1 

sequence in some PD patients resulting in increased SNCA expression (Cronin et al., 2009; 

Linnertz et al., 2009). 

2.1.2 α-syn aggregation 

As shown in Figure 13, α-syn has been suggested to occur as an equilibrium between 

partially helical tetramers and unfolded monomers (Bartels et al., 2011; Wang et al., 2011a), 

and this protein has the capacity to assemble into soluble oligomers and fibrils. Evidence 

suggests that it may be the oligomeric forms of α-syn, rather than the larger intracellular 

inclusions, that are the most cytotoxic, causing neuronal dysfunction and death (Kazantsev 

and Kolchinsky, 2008; Karpinar et al., 2009; Martin et al., 2012; Winner et al., 2011; Micheal 

et al., 2016). Oligomers refer to protofibrils, possessing annular structures that may form 

pores and cause membrane permeabilization (Volles and Lansbury, 2002). Kanaan and 

Manfredsson (2012) hypothesised that mutant forms of α-syn have a reduced energy barrier 

for oligomer and fibril formation. The A53T mutation promotes the formation of fibrils while 

A30P does not. The toxicity of A30P mutation is mainly due to strongly facilitated 

oligomeric formation with a slow rate of fibrils accumulation (Conway et al., 2000). 

Phosphorylation at Ser129 has been reported to enhance α-syn toxicitiy, possibly by 

increasing α-syn aggregation (Fujiwara et al., 2002), which could explain why Lewy bodies 

containing phosphorylated α-syn were also found in sporadic PD cases (Mezey et al., 1998). 

Antibodies specific to Ser129-phosphorylated α-syn also recognized LBs in other 

synucleopathies than PD, like dementia with Lewy bodies and multiple system atrophy 

(Fujiwara et al., 2002).  
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Figure 13 Scheme of α-syn aggregation 

In physiological conditions, α-syn exists as an unfolded form or aggregation-prone monomers, which 
may form stable tetramers or interact with lipids in an α-helical structure shape. Those different forms 
of α-syn are in equilibrium. In disease-associated conditions, aggregation-prone α-syn monomers 
form soluble prefibrillar oligomeric nuclei, followed by the elongation of these into mature amyloid 
fibrils. Fibrillary aggregates may then be sequestered into Lewy bodies in cell bodies and in Lewy 
neurites along the axons. Source: Cox et al., 2014.  

 
α-syn can be the target of iron and DA in DANs, which would in turn promote α-syn 

aggregation (Conway et al., 2001). Mice expressing human mutant α-syn A30P are more 

susceptible to the PD-inducing drug methyl-phenyl-tetrahydropyridin (MPTP) (Nieto et al., 

2006; Song et al., 2004), while SNCA-null mice are resistant to MPTP (Dauer et al., 2002). 

2.1.3 α-syn in DA metabolism and release 

Physiologically, α-syn is a presynaptic protein acting as a negative regulator of synaptic 

transmission. SNCA null mice showed decreased synaptic vesicle endocytosis, as well as 

decreased DA stores and increased DA release, indicating its potential function as a brake on 

dopaminergic neurotransmission (Abeliovich et al., 2000; Cabin et al., 2002; Vargas et al., 

2014). α-syn interacts with and inhibits TH and DDC, two key enzymes involved in DA 

biosynthesis (Tehranian et al., 2006; Perez et al., 2002; Bridi and Hirth, 2018). By interacting 

with DAT, α-syn modifies its transporting activity. α-syn is also able to regulate the amount 

of VMAT in synaptic vesicles (Benskey et al., 2016). Upon neuronal stimulation, α-syn 

rapidly disperses from the presynaptic terminal (Fortin et al., 2005). As proposed by Benskey 

et al., 2016, this could potentially disinhibit TH and DDC and allow de novo synthesis to 

replenish DA stores for release during synaptic transmission (Figure 14b). At the termination 

of synaptic transmission, α-syn would relocalize to the synaptic terminals to halt chemical 
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transmission by impeding the trafficking and docking of synaptic vesicles with the 

presynaptic membrane and increasing the rate of synaptic vesicles recycling (Figure 14a).  

Figure 14 Proposed function of α-syn in dopaminergic neurotransmission 

(a) In rest condition, high α-syn in the presynaptic terminal would act as a brake on chemical 
neurotransmission. 1) α-syn would reduce DA synthesis by inhibiting TH and AADC activity or 
increasing PP2A activity. 2) α-syn facilitates the sequestration of cytosolic DA by increasing VMAT 
on vesicles. 3) By interacting with synaptic vesicles and SNARE complex, α-syn would prevent the  
trafficking and docking of vesicles with presynaptic membrane, thereby inhibiting DA release. 4) α-
syn facilitate endocytosis by mediating membrane bending to recycle the vesicles. 5) α-syn helps 
maintain the number of vesicles in the reserve vesicle pool. (b) During an action potential, α-syn 
disperses from the terminal synapse. 1) With neuronal stimulation and calcium influx, α-syn rapidly 
disperses from the presynaptic terminals. 2) Without α-syn, trafficking and docking for exocytosis is 
efficient for DA release. 3) In he absence of inhibitory α-syn to TH and AADC activity, unimpeded 
DA synthesis would replenish DA release during synaptic transmission. (c) The aggregation of α-syn 
inhibits the normal function of monomeric α-syn, leading to subsequent increased cytosolic DA and 
ROS stress. 1) Aggregated α-syn loses its inhibitory function on TH and AADC and causes increased 
DA synthesis. 2-3) Loss of function of α-syn would lead to decreased VMAT level and inefficiency 
for packaging. 3) The released DA caused by upregulation of trafficking and docking is up-taken by 
DAT, which leads to the elevated DA level in cytoplasm. 4-5) Loss of α-syn function impairs 
endocytosis and decreases the size of the vesicular pool. The sustained increasing cytosolic DA auto-
oxidizes to produce ROS and DA quinones, which promote α-syn aggregation. TH: tyrosine 
hydroxylase, AADC: aromatic amino acid decarboxylase, DA: dopamine, PP2A: protein phosphatase 
2A, VMAT: vesicular monoamine transporter, DAT: dopamine transporter, VGCC: voltage gated 
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calcium channel, ROS: reactive oxygen species, DA-Q: dopamine quinone. Source: Benskey et al., 
2016. 

 

However, in pathological condition, α-syn aggregation would increase cytosolic DA due to 

the disinhibition of TH and DDC, decrease in VMAT and unregulated synaptic vesicles 

trafficking and recycling machinery (Bridi and Hirth, 2018). The sustained high level of DA 

in cytoplasm would lead to auto-oxidation, producing reactive oxygen species (ROS) and DA 

quinones which will subsequently oxidize proteins and lipids, triggering severe oxidative 

stress. This increase in  ROS and DA metabolites would promotes α-syn aggregation, thus 

entering a vicious toxic cycle leading ultimately to cell death (Lee et al., 2011b).  

2.1.4 α-syn and epigenetic modification  

Epigenetic modification refers here to gene methylation, histone modification and small 

RNA-mediated mechanisms that alter gene expression without changing the DNA sequence. 

Abnormalities in epigenetic modification are associated with dysregulation of SNCA 

expression. A DNA hypomethylation of SNCA intron 1 was reported in the SN of sporadic 

PD patients. Hypomethylation will prevent certain silencing mechanisms, suggesting its role 

in the upregulation of α-syn expression, potentially promoting α-syn aggregation (Jowaed et 

al., 2010; Matsumoto et al., 2010). Moreover, certain clusters of miRNA (miRNA-7, 

miRNA-153) have been reported to target the 3’ untranslated region (UTR) of the SNCA 

transcript (Junn et al., 2009b; Doxakis, 2010; Marchese et al., 2017). 

On the other hand, α-syn itself could interact with histones in the nucleus (Goers et al., 2003). 

It has been suggested that α-syn could exert its neurotoxicity by inhibiting histone acetylation 

(Kontopoulos et al., 2006). Attributed to α-syn-mediated histone deacetylation, peroxisome 

proliferator receptor gamma coactivator 1- α (PGC1-α) level is reduced in post-mortem PD 

SNpc, contributing to mitochondrial malfunction (Zheng et al., 2010; Siddiqui et al., 2012). 

Consistent with these discoveries, in the cell overexpressing α-syn, Sirtuin 2 (a nicotinamide 

adenine dinucleotide-dependent histone deacetylase (HDAC)) inhibitors reduced α-syn 

induced toxicity (Outeiro et al., 2007). Overexpression of histone deacetylase 6 (HDAC6) 

was however reported to protect DA neurons against α-syn toxicity in the Drosophila model 

(Du et al., 2010). Interestingly, under oxidative stress, α-syn can be translocated into the 

nucleus (Ammal Kaidery et al., 2013). Moreover, in PD patients and mice PD model, α-syn 

sequesters DNA methylation transferase 1 (Dnmt1) from the nucleus, contributing to the 

global DNA hypomethylation (Desplats et al., 2011). Transgenic Drosophila with ectopic 
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human α-syn expression showed an elevation in histone H3 lysine 9 dimethylation 

(H3K9me2) via the induction of euchromatic histone lysine N-methyltransferase 2 (EHMT2). 

This increased H3K9me2 could affect the soluble N-ethylmaleimide-sensitive factor 

attachement protein receptors (SNARE) complex assembly and hence synaptic vesicle 

functions (Sugeno et al., 2016).  

2.1.5 α-syn affects mitochondrial function 

Mitochondrial deficits have largely been described as a crucial pathogenic event underlying 

the pathogenesis of PD (Schapira, 2008; Schapira and Gegg, 2011; Winklhofer and Haass, 

2010; Gao et al., 2017). α-syn was reported to localize at or in mitochondria and connect to 

the endoplasmic reticulum (ER) through mitochondrial-associated ER membrane (Li et al., 

2007; Cole et al., 2008; Devi et al., 2008; Guardia-Laguarta et al., 2014). This mitochondrial 

localization is consistent with the fact that the accumulation of α-syn leads to mitochondrial 

dysfunction, as reported in cultured cells, transgenic animal models and sporadic and familial 

PD cases (Hsu et al., 2000; Devi et al., 2008; Chinta et al., 2010). By directly interacting with 

mitochondria, α-syn aggregation could disturb mitochondrial fusion and fission (Kamp et al., 

2010; Nakamura et al., 2011). Moreover, α-syn overexpression has been involved in complex 

I inhibition, with, as a consequence, increase in ROS production and oxidative damage to 

lipids and proteins, finally leading to increased mitophagy (Chinta et al., 2010). In addition, 

intermediate α-syn accumulation reduces mitochondrial Ca2+ retention, which alters 

mitochondrial membrane potential and nicotinamide adenine dinucleotide hydride (NADH) 

oxidation (Luth et al., 2014). Finally, overexpression of α-syn was shown to directly inhibit 

activity of the outer membrane mitochondrial import receptor subunits TOM20 and TOM40, 

impairing protein import into mitochondria (Bender et al., 2013; Di Maio et al., 2016).  

2.1.6 Proteolytic pathways of α-syn degradation 

The level of α-syn depends on a dynamic balance between its synthesis and its clearance. α-

syn can be degraded by the ubiquitin-proteasome system (UPS) or the autophagy-lysosome 

pathway (ALP) (Webb et al., 2003). The UPS mainly degrades short-lived, soluble proteins, 

while the ALP is in charge of the bulk degradation of longer-lived macromolecules, specific 

cytosolic components, and dysfunctional organelles (Goldberg, 2003; Xilouri et al., 2013b). 

The ALP pathway is categorized into three subtypes: microautophagy macroautophagy, and 

chaperone-mediated autophagy (CMA). CMA is a process that degrades cytosolic proteins 

containing a particular consensus peptide motif. Microautophagy involves the direct 
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engulfment of cytoplasm at the surface of lysosomes or late endosomes. Macroautophagy 

involves the sequestration of cytoplasm into a double-membrane cytosolic vesicle, termed 

autophagosome.  

Different studies gave partly discrepant results on the physiological degradation of α-syn. On 

the one hand, using different pharmacologic strategies in living mouse brain, a group showed 

that ALP inhibition (lysosomal acidification and autophagosome fusion blockage) had no 

effect on α-syn degradation in non-transgenic mouse while UPS inhibitor treatment yielded a 

strong increase in α-syn level (Ebrahimi-Fakhari et al., 2011). On the other hand, other 

studies showed that breakdown of α-syn was mainly done via CMA with a smaller proportion 

being degraded via the UPS (Cuervo et al., 2004; Massey et al., 2006; Martinez-Vicente et al., 

2008; Schapira and Tolosa, 2010; Vogiatzi et al., 2008; Xilouri et al., 2013b). The different 

processes that appear involved in α-syn degradation are illustrated in Figure 15.  

 

Figure 15 Overview of α-syn degradation pathways 

Wild type or mutant α-syn can be degraded by the proteasome through both ubiquitin-dependent (A) 
and ubiquitin-independent (B) pathways. In mammalian cells, chaperone-mediated autophagy (CMA) 
(C) is responsible for degradation of monomeric and dimeric wild type α-syn and macroautophagy (D) 
have been proposed to degrade various other forms of α-syn (wild type, mutant, oligomeric). 
Moreover, other proteases such as calpains (E) and neurosin (F) have been involved in the cleavage of 
wild type or aggregated α-syn inside the cell, which may promote the generation of truncated α-syn. 
In addition, neurosin and metalloproteinases could be secreted to cleave extracellular α-syn, 
potentially generating pathogenic fragments with increased tendency to aggregate. Source: Xilouri et 
al., 2013b.  
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α-syn bears a CMA-targeting motif (KFERQ-like) which is recognized by the heat shock 

cognate 70 kDa protein (Hsc70) that forms a complex with other chaperone proteins that 

unfolds and steers α-syn to the lysosome-associated membrane protein 2A receptor (LAMP-

2A), through which α-syn is translocated into the lysosomal lumen for degradation (Orenstein 

and Cuervo, 2010). The A30P and A53T α-syn mutants show high affinity for LAMP-2A, 

however, they cannot be translocated inside the lumen to be degraded and block this receptor, 

thus acting as inhibitors of the CMA pathway (Cuervo et al., 2004; Schapira and Tolosa 2010; 

Xilouri et al., 2013b). DA-modified α-syn also impairs CMA-dependent protein degradation 

(Martinez-Vicente et al., 2008). Some studies provided the evidence that macroautophagy 

activation can compensate for MA dysfunction caused by α-syn mutants (Massey et al., 2006). 

It was also shown, however, that wild-type α-syn can impair macroautophagy by interacting 

with the small GTPases Rab1a, thus preventing autophagosome formation at an early point 

(Winslow et al., 2010). Conversely, whole-brain specific loss of Atg7 (a protein required for 

autophagosome formation) resulted in α-syn accumation (Friedman et al., 2012). Mutation of 

PD-associated genes associated to the endosomal/lysosomal system, vacuolar protein sorting 

(VPS35), type 5 P-type ATPase cation metal transorter (ATP13A2) and glucocerebrosidase 

(GBA) are also involved in α-syn accumulation underlying PD pathologies (Michel et al., 

2016).  

2.1.7 Other PD-associated genes  

Ageing-related progressive mitochondrial inefficiency or mutations associated with 

mitochondrial dysfunction all result in increased oxidative stress. Three autosomal recessive 

(AR) mutations, in PARK2/parkin, PARK6/PINK1 and PARK7/DJ-1, are the most frequent 

causes of early-onset PD cases (Corti et al., 2011). These proteins are implicated in 

mitochondrial dynamics and oxidative stress control. 

The link between parkin mutation and juvenile parkinsonism was discovered in 1998 (Kitada 

et al., 1998). Parkin is an E3 ubiquitin ligase and an integral component of the UPS, 

mediating the covalent attachment of ubiquitin moieties needed for substrate protein 

clearance (Shimura et al., 2000). Because of its cysteine-rich RBR (ring between ring fingers) 

domain, Parkin is vulnerable to inactivation by severe oxidative stress (Winklhofer et al., 

2003; LaVoie et al., 2007; Wong et al., 2007; Schlehe et al., 2008). Its susceptibility to 

oxidative stress and its complex three-dimensional structure probably explain that oxidized 

and aggregated Parkin proteins were found in PD patients (Yao et al., 2004; LaVoie et al., 

2005; Wang et al., 2005). Note that familial Parkin-related neuropathology does not generally 
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present Lewy bodies, and there is no definitive evidence that α-syn directly interacts with 

Parkin (von Coelln et al., 2006; Ahlskog, 2009).  

PINK1 is a serine/threonine kinase, which appears to be crucial for mitochondria function. It 

was identified in 2004 as a gene responsible for early-onset PD (Valente et al., 2004). PINK1 

is a 581 aa protein with an N-terminal mitochondrial targeting sequence, and it is found at the 

outer and inner mitochondrial membrane and in the cytosol (Lin and Kang, 2008; Narendra et 

al., 2010; Jin et al., 2010). PINK1-dependent activation of Parkin is considered as a major 

step of mitophagy, which plays an essential role in mitochondria quality control and 

homeostasis. The integration of PINK1 into the outer mitochondrial membrane is a 

prerequisite to Parkin recruitment for mitophagy activation, when mitochondrial membrane 

potential is disrupted (Exner et al., 2012). Studies in Drosophila demonstrated that Parkin and 

PINK1 interact in a common biological pathway required for mitochondrial homeostasis and 

that Parkin functions downstream of PINK1, since phenotypes caused by Drosophila Pink1 

inactivation could be rescued by Parkin (Clark et al., 2006; Park et al., 2006; Yang et al., 

2006). Consistent with this, silencing PINK1 in Hela cells led to abnormal mitochondrial 

morphology and altered membrane potential and this dysfunction from PINK1 loss of 

function could be rescued as well with Parkin (Exner et al., 2007).  

Mechanism of mitochondrial quality control by Pink1 and Parkin are now well documented 

(Pickrell and Youle, 2015; Truban et al., 2017; Mouton-Liger et al., 2017). Upon 

mitochondrial depolarization, translocated PINK1 accumulates in the outer mitochondrial 

membrane, allowing Parkin recruitment and activation, which initiates the mitophagic 

process. Following the recruitment of dynamin-related pro-fission GTPase, Drp1, and the 

cleavage of the inner membrane dynamin-like fusion GTPase, OPA1, the damaged 

mitochondrial are removed from the healthy network. Outer membrane mitochondrial 

proteins are then ubiquitinated in a Parkin-dependent manner for proteasomal degradation. 

Finally, the autophagy receptor proteins bind to the mitochondria, engulfing it in a forming 

autophagosome which, after completion, fuse with a lysosome for degradation.  

DJ-1/PARK7 is a member of the ThiJ/Pfp1 family of molecular chaperones. It is induced by 

oxidative stress and translocated from the cytoplasm to the outer mitochondrial membrane, 

regulating the clearance of endogenous ROS through modulation of the scavenging system 

(Canet-Avilés et al., 2004; Blackinton et al., 2005; Lev et al., 2008; Junn et al., 2009a; Im et 

al., 2010). In vitro and in living cells, DJ-1 acts like a chaperone and directly interacts with α-

syn monomers and oligomers. DJ-1 overexpression attenuates α-syn dimerization while 
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mutant DJ-1 aggravates this process (Zondler et al., 2014). A recent study using SH-SY5Y 

cells showed that DJ-1 deficiency downregulated lysosomal Hsc70 and accelerated LAMP-

2A degradation in the lysosomes, thus increasing α-syn aggregation (Xu et al., 2017).  

 

2.2 Environmental factors 

As mentioned in the section above, mutations in at least 23 loci and 19 disease-causing genes 

were identified in PD cases (Deng et al., 2018; Hewitt and Whitworth, 2017). However, 

mutants in single genes only account for a few percent of PD cases (15% of PD patients have 

family history and 5–10% of PD patients suffer from a monogenic form of the disease with 

Mendelian inheritance (Deng et al., 2018), which implies that ~85% of patients have no 

family history for the disease. Similar PD concordance in monozygotic and dizygotic twins in 

large studies pointed out the importance of environmental contribution to PD etiology (Elbaz 

et al., 1999).  

2.2.1 MPTP 

The first hints of the environmental toxin hypothesis were reported in 1979 and 1983 when 

young individuals aged 26-42 years unexpectedly developed marked PD-like motor 

symptoms after being injected with an opioid drug accidentally contaminated with 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These manifest PD symptoms were 

dramatically improved by L-DOPA treatment, which implied neuronal damage from this 

compound in the striatum (Davis et al., 1979; Langston et al., 1983). 

The decipherment of MPTP toxicity mechanisms markedly improved our understanding of 

environmental impacts in PD aetiology. MPTP crosses the blood-brain barrier to be 

converted into MPP+(1-methyl-4-phenylpyridinium) by MAO-B in astrocytes and released by 

the organic cation transporter-3 (OCT3) (Dauer and Przedborski, 2003). Uptaken by DAT 

into DANs, MPP+ escapes sequestration into vesicles through VMAT2, leaving it free to 

inhibit mitochondria Complex I activity and impair oxidative phosphorylation. This 

disruption leads to reduced ATP synthesis, increased ROS generation and malfunction of the 

protein degradation system.  

The discovery of MPTP prompted a search for functional analogy in other environmental 

factors shedding light on the effect of pesticides. Afterwards, the meta-analysis of 46 
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epidemiological studies revealed the link between pesticides exposure and increased risk of 

developing PD (van der Mark et al., 2012).  

2.2.2 Paraquat 

Paraquat (PQ, 1,1’-dimethyl-4,4’-bipyridinium dichloride) is a quaternary nitrogen herbicide, 

structurally similar to MPP+, the converted pathogenic form of MPTP. This compound is 

commercially available since 1962 and was widely used for broadleaf weed control. It has 

been banned since July 2007 in the European Union, and is now under restricted use in the 

United States (Goldman et al., 2014). 

PQ can cross the brain blood barrier (BBB) via the neutral amino acid transporter (Shimizu et 

al., 2001; McCormarck and Di Monte, 2003). Unlike MPP+ or the pesticide rotenone, PQ 

showed a low affinity for mitochondrial complex I (Nicklas et al., 1985), but it can still lead 

to indirect mitochondrial toxicity. The cellular toxicity of PQ is essentially due to its redox 

cycle including a well-known cascade of reactions leading to nicotinamide adenine 

dinucleotide phosphate (NADPH) consumption, generation of ROS and impairment of 

glutathione restauration (Bus and Gibson, 1984). It has been shown that PQ-induced neuronal 

loss results from a Bak-dependent mechanism, facilitating cytochrome c release from 

mitochondria and activating caspase-3, thus triggering apoptosis (Fei et al., 2008; Huang et 

al., 2016).  
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Figure 16 Mechanisms underlying various environmental factors for PD 

Paraquat (PQ), rotenone and MPTP enter into the DANs via different mechanisms. Rotenone is highly 
lipophilic and directly cross the BBB. PQ is transported through the neutral amino acid transporter 
and was suggested to be taken up into DANs by DAT. MPTP is transported across the BBB, 
converted into MPP+ in glial cells, exported through the plasma membrane transporter Oct3, and 
finally transported into DANs by DAT. Rotenone and MPTP target the mitochondrial complex. 
Oxidative stress caused by those factors lead to disrupted mitochondrial function, oxidized cellular 
components and malfunction of proteasome activity, thereby causing neuronal dysfunction, 
degeneration and ultimately death. Source: Cicchetti et al., 2009.  

 

Animals treated with PQ mimic many features of PD syndromes. In mice, PQ selectively 

caused a loss of DANs in the SNpc and induced motor deficits (Brooks et al., 1999; 

McCormack et al., 2002). Selective DAN targeting could be attributed both to PQ uptake by 

the DAT (Rappold et al., 2011) and their already elevated oxidative level due to high 

metabolic demands, pacemaking-related calcium influx, DA oxidation and presence of 

neuromelanin (Goldman, 2014). In addition, by inactivating autophagy and proteasomal 

activity (Garcia-Garcia et al., 2013; Wills et al., 2012; Navarro-Yepes et al., 2016), PQ 

treatment markedly accelerates formation of α-syn aggregates reminiscent of Lewy bodies in 
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PD (Manning-Bog et al., 2002; Fernagut et al., 2007; Mak et al., 2010). Besides, other study 

in cell model showed that histone hyperacetylation caused by PQ via suppression of HDAC 

activity contributes to neurotoxicity as well (Song et al., 2011).  

2.2.3 Roterone  

Rotenone is a chemical that belongs to the family of isoflavones naturally found in the roots 

and stems of serveral plants, used as a broad-spectrum pesticide. As shown in Figure 16, due 

to its higly lipophilic structure, rotenone crosses the BBB easily, independent of the 

membrane transporter (Higgins and Greenamyre, 1996). Once inside the cell, rotenone targets 

and inhibits proteasome activity. Moreover, rotenone induced dysfunction of the 

mitochondrial complex I, resulting in increased ROS production (Martinez and Greenamyre, 

2012). Like the other environmental toxins mentioned above, rotenone-induced oxidative 

stress leads to the malfunction of mitochondria, with the inhibition of complex I, perturbation 

of oxidative phosphorylation, and mitochondrial membrane potential collapse (Cicchetti et al., 

2009). The combination of damaged mitochondria unable to produce enough ATP to cope 

with stress condition and the accumulation of misfolded protein aggregates, trigger cell death 

in the end.  

 

2.3 Ageing effect  

PD affects over 1% of the population over the age of 60, while this prevalence reaches 5% 

among people over 85 (Reeve et al., 2014). Prevalence of most diseases usually slightly 

increases with ageing. In comparison, the prevalence of PD is increased more than 400 times 

between mid-aged people (45-54) and the elderly (>85), highlighting ageing as the key risk 

factor for PD. 

2.3.1 ROS theory of ageing 

Half of century ago, Denham Harman presented the “free-radical theory of sgeing” 

suggesting that ageing is driven by the accumulation of oxidative damage to cellular and 

connective structures over time (Harman, 1956). The free radical compounds named 

“reactive oxygen species” refer to the superoxide anion (O2
-), the hydrogen peroxide (H2O2) 

and the hydroxyl radical (HO•), which are formed by the partial reduction of oxygen shown 

in Figure 17. The electron transport chain, a component of mitochondria is the main source of 

cellular ROS. Another major source of ROS is the membrane-bound protein NADPH oxidase, 
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which generates O2
- by NADPH consumption. This produced ROS have been shown to act as 

anti-microbial molecules (Nathan and Cunningham-Bussel, 2013) 

The control of ROS level is exerted through the regulation of mitochondrial functions and 

metabolic pathways. Besides, the generation of ROS is tightly regulated by the ROS-

scavenging systems via antioxidant enzymes. Glutathione (GSH) is one of the most abundant 

antioxidant synthesized by the cell. Oxidized proteins and H2O2 are reduced through the 

glutaredoxin (Grx)/GSH reductase  and thioredoxin (Trx)/thioredoxin reductase systems 

(Figure 17C). 

 

Figure 17 ROS generation and clearance system 

(A) ROS refers mainly to O2
•-, H2O2 and OH•, which can cause oxidative modifications to lipids, 

DNA and proteins. O2
- derives from the one electron reduction of molecular oxygen through NADPH 

oxidase or the mitochondrial complex I or III. Subsequently catalysed by superoxide dismutase (SOD), 
O2

•- is reduced to H2O2, which can be further reduced to H2O by catalase or can spontaneously oxidize 
iron to form the highly reactive OH•. (B) The electron transport chain complex I-IV are coupled to 
pumping H+ into the mitochondrial intermembrane. The proton force drives the ATP synthase. 
Aberrant reduction of O2 can happen at complex I and III with the generation of O2

•-. (C) O2
•- can be 

converted to H2O2 by the enzyme superoxide dismutase (SOD). And H2O2 by the Fenton reaction can 
be converted into OH• spontaneously. H2O2  can be detoxified via glutathione (GSH) peroxidase, 
catalase or thioredoxin (Trx) to H2O and O2. Source: Bigarella et al., 2014 (AB) and Li et al., 2013a 
(C) 

 

Mitochondria have their own DNA, named mtDNA. Under oxidative stress, the absence of 

histones and relative inefficiency of DNA repair mechanisms in these organites place them at 

high risk for mutations. mtDNA deletions in PD patients are a little higher than those 

observed in healthy aged subjects (Bender et al., 2006). Moreover, mitochondrial complex I 

is particularly sensitive to ROS. The reaction with free radial intermediates causes complex I 

protein damage and inactivation by shifting its native non-covalent polypeptide interactions 
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to covalent cross-linkings (Navarro and Boveris, 2010). This inactivation of complex I in the 

brain has been observed in PD context as well as during ageing (Navarro et al., 2009; 

Schapira, 2008; Boveris and Navarro, 2008). Brain mitochondria of old animals with 

decreased rates of electron transfer in complex I and complex IV showed decreased 

membrane potential, increased content of the oxidation products, and increased size and 

fragility (Navarro and Boveris, 2010). Mitochondria are the main source of ROS within the 

cell and, importantly, the major site of ATP production, and they are also involved in 

apoptosis regulation. Therefore, the subtle control of mitochondrial quality, regulated in 

particular by Parkin and PINK1, is crucial (Gautier et al., 2008; Mouton-Liger et al., 2017).  

2.3.2 Decline of proteolytic systems with ageing 

One of the most obvious feature of ageing is the loss of quality control in protein turnover 

with the concomitant build-up of oxidatively modified proteins (Vernace et al., 2007b). Upon 

ageing, an accumulation of ROS leads to the oxidation of multiple cellular components, 

including proteins, lipids and nucleotides (Schieber and Chandel, 2014). Those modified or 

misfolded proteins relay on the protein clearance system (UPS and ALP) to maintain their 

homeostasis. However, a decrease in proteins involved in UPS and ALP was observed in 

aged animals compared to young ones. With regard to UPS, the expression of several genes 

coding for the 26S proteasome subunits declined with age (Ly et al., 2000; Carrard et al., 

2002). For the ALP, autophagy-related genes (Atg5, Atg7 and Beclin-1) are down-regulated 

in the ageing brain (Lipinski et al., 2010). ATP concentration is tightly correlated to 26S 

proteasome activity, for ATP is essential to the functional assembly of UPS. So ATP 

production decline with ageing lead to susceptility to proteotoxic stress attributed to the 

deficit in proteasome activity (Vernace et al., 2007a). CMA activity decreases with ageing 

due to a reduction in LAMP-2A receptor, causing the decline of substrate binding to the 

lysosomal membrane and transporting into the organelle (Cuervo and Dice, 2000; Kiffin et al., 

2007). Normal ageing is reported to result in a progressive decline in the acitivity of a 

lysosomal enzyme, GBA (Rocha et al., 2015). GBA mutations are the most common genetic 

risk factor for PD, coupled to reduced activity of the ALP (Poewe et al., 2017).  

In PD patients, demise of the degradation systems with ageing lead to the failure to clear 

modified proteins upon oxidative stress, with the consequence of α-syn aggregation, which, 

in turns, blocks further proteins degradation systems. The malfunction of UPS and ALP then 

disturbs mitochondrial quality control processes and triggers more ROS. This “vicious cycle” 

ends up with apoptosis activation and neuronal death. 
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2.3.3 Epigenetic modification in ageing 

Epigenetics by definition refers to the reversible heritable alterations in gene expression that 

occur without changes in DNA sequences. It modifies genes expression through DNA 

methylation, histone modifications (e.g. acetylation, methylation, phosphorylation, 

ubiquitination) and small non-coding RNA intervention. Epigenetic modifications provide 

plasticity for cells to react to changes in the environment and are essential for normal 

differentiation and development.  

As shown in Figure 18, various changes affect the chromatin structure during the ageing 

process. First, transcriptional factors and histone modifications may be relocalized to 

different areas of the genome. For example, reduction in H3K9me3 lead to decreased 

heterochromatin domains (condensed regions of chromatin containing poorly-expressed 

genes). Second, a decline in the structure and integrity of the nucleus fails to maintain the 

heterochromatic level. Third, transposable elements (TEs) become active with age due to low 

heterochromatic condition, malfunction of the RNAi-induced silencing complex and higher 

chromatin accessibility (Wood and Helfand, 2013). Altogether, age-induced epigenetic 

abnormalities lead to misregulation of genes expression as well as the activation of TEs with 

deleterious effects. 



Introduction 

44  

 

Figure 18 Chromatin-related mechanisms of ageing  

(A) Chromatin factors localize to different genomic sites with age, leading to alteration in gene 
expression. (B) With age, aberrant histone acetylation (in yellow) and methylation (in green) affect 
gene expression. This could be due to loss of heterochromatin maintenance and changes in chromatin 
accessibility. (C) The structure and integrity and the nucleus decline with age, which affect the spatial 
chromatic organization. Heterochromatic LADs (lamin-associated domains) are marked in red, where 
they attached to the nuclear lamina on the inner nuclear membrane. With age, decline of attachment 
with age fails to maintain silent heterochromatin. (D) TEs activation in old stage. Activity of TEs (in 
red) is repressed by the RNA-induced silencing complex (RISC in green) via transcriptional gene 
silencing (TGS) and posttranscriptional gene silencing (PTGS). Malfunction or inefficiency of the 
RISC leads to the robust TE transcription, which can undergo transposition and lead to DNA damage 
or insertion in the other areas of the genome. Source: Wood and Helfand, 2013.  

 

A recent investigation proposed that epigenetic marks could act as a new source of 

biomarkers for PD, showing that ageing blood cells exhibited an increased profile of DNA 

methylation based biomarkers (Horvath and Ritz, 2015). This is consistent with previous 

studies showing that α-syn gene methylation is decreased in PD patients’ brains (Jowaed et 

al., 2010; Desplats et al., 2011), highlighting that epigenetic modifications may underlie PD 

pathology.  
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2.3.4 Ageing and immune response  

The other feature of ageing is the activation of astrocytes and microglia in the brain (Kanaan 

et al., 2010). A non-human primate study comparing ageing and PD, showed no difference in 

astrocyte activation in the midbrain but a more severe microglial activation in PD compared 

to normal ageing condition (Collier et al., 2011).  

Microglial-associated central inflammation acts as a pathological hallmark of PD (Hirsch and 

Hunot, 2009; Tansey and Goldberg, 2012) initially demonstrated by a post-mortem study 

showing activated microglial in the SNpc of PD patients (McGeer et al., 1988). Activated 

microglia exert their neurotoxic effects by releasing proinflammatory cytokines (tumor 

necrosis factor (TNF)-α, Interleukin (IL)-1b, IL-6 and (Interferon) IFN g) and ROS leading 

on the long term to cell damage and death. In rats, short-term lipopolysaccharide (LPS) 

injection on the dopaminergic system caused microgial activation whereas long-term 

injection (one year) led to a progressive DANs degeneration (Castaño et al., 1998). In PD 

models, both wild-type and mutant form of α-syn activate microglial Toll-like receptors 

(TLR), triggering the release of proinflammatory cytokines and ROS, ultimately leading to 

neuronal loss (Zhang et al., 2005; Glass et al., 2010; Fellner et al., 2013).  

 

2.4 Mechanisms of PD Propagation 

2.4.1 Braak’s model 

A large number of studies have made it possible to understand the molecular and cellular 

mechanisms underlying PD pathologies involving the different factors described above. 

However, questions remained about where PD initiates, particularly the sporadic form. To 

address this question, Braak and his colleagues proposed a six-stage model of sporadic PD 

propagation based on Lewy body distribution across brain regions (Braak et al., 2003b; Braak 

and Del Tredici, 2017). According to this model shown in Figure 19, the disease would start 

in the olfactory bulb and enteric nervous system (ENS) and then affects the peripheral 

nervous system (PNS), finally reaching the CNS. In the CNS, the disease would affect the 

lower brainstem in the dorsal motor nucleus of the vagus nerve, then goes through susceptible 

regions of the medulla, pontine, tegmentum, midbrain and basal forebrain, to eventually reach 

the cerebral cortex (Braak et al., 2003b; Visanji et al., 2013). This hypothesized model of 

non-random Lewy pathology is consistent with the progressive clinical observation of non-

motor symptoms related to the PNS in PD patients and preceding the motor symptoms. In 
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accordance to the broadly accepted theory that ageing and environmental factors contribute 

together to the onset of sporadic PD, Braak and his colleagues proposed that potential 

unidentified environmental pathogens might be first taken in the body by ingestion (Braak et 

al., 2003a). The causative pathogen from the ENS could then enter the CNS via retrograde 

axonal and transneuronal transport, along the preganglionic fibres through the visceromotor 

cholinergic projection neurons of the vagus nerve (Braak et al., 2003b; Houser and Tansey 

2017). However, this model is still under debate, because only approximately half of the 

cases fit with patterns, and some clinical pateints have no Lewy bodies at all (Jellinger, 2008; 

Jellinger, 2009; Halliday et al., 2012; Surmeier et al., 2017b). 

 

Figure 19 PD propagation model 

The Braak’s model of PD progression proposed that the pathology initiates in the enteric nervous 
system (ENS) or olfactory bulb, and then transfers via the vagus nerve to reach the CNS. Symptoms 
in each stage match with spreading of the Lewy pathology across the brain. Source: Adapted from 
Doty et al, 2012.  

 

In recent years, PD was suggested to progress in a prion-like fashion, spreading by the 

seeding of misfolded proteins. This theory derives from the discovery of Lewy bodies in 

transplanted fetal DANs in post-mortem analysis of PD patients brain (Kordower et al., 

2008a; Kordower et al., 2008b; Kurowska et al., 2011). This finding prompted a number of 

studies to elucidate how α-syn could be transmitted between neurons. In vitro studies showed 

that exogenous monomeric, oligomeric or fibrillar α-syn is able to infiltrate surrounding cells 

(Desplats et al., 2009; Hansen et al., 2011). Moreover, fibrillar α-syn can be transported via 

axonal transport (Freundt et al., 2012). Monomeric and aggregated forms of α-syn in 
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cytosolic vesicles can be released via classical ER-Golgi-dependent or non-classical 

exocytosis (Lee et al., 2005; Lee et al., 2008), or after their incorporation into exosomes 

(Soria et al., 2017), and then uptaken by surrounding neurons via conventional endocytosis, 

to be degraded by the lysosomes or released in the cytosol (Grozdanov and Danzer, 2018). 

Fibrillar α-syn can also be directly transferred from neuron to neuron through tunneling 

nanotubes inside lysosomal vesicles (Abounit et al., 2016; Valdinocci et al., 2017) (Figure 

20).  

 

 

Figure 20 α-syn transmission between neurons 

1-2) Extracellular α-syn released from the injured cells can translocate to the neighbour neurons by 
direct targeting to the membrane. 3) α-syn can be transferred between cells via exocytosis and 
endocytosis. 4) α-syn can be taken up via exosomes by neighbour cells. 5) α-syn transfers freely 
through nanotubes. 6) α-syn transmission could occur directly at the synaptic contact. From Visanji et 
al., 2013.  

 

2.4.2 Role of gut microbiota in PD initiation 

In line with the previously described Braak’s propagation theory, research groups 

investigated the brain-gut axis on the hypothesis that PD could initiate in the gut 

(Klingelhoefer and Reichmann, 2015). First, 87% of PD patients suffer from chronic 

constipation preceding the motor symptoms by over a decade. The second evidence 

supporting this theory is the discovery of aggregated and phosphorylated α-syn in the ENS 

(Braak et al., 2006; Shannon et al., 2012). This accumulation could be attributed to 

inflammation and oxidative stress in the gastrointestinal tract caused by translocated bacteria 

and proinflammatory factors (Forsyth et al., 2011; Glass et al., 2010). Recent evidence 
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suggest that PD could be triggered by unbalanced intestinal microbiota instead of a potential 

external pathogen and/or environmental toxins (Perez-Pardo et al., 2017; Sun and Shen, 

2018). The gut microbiota was found to be required for α-syn-mediated motor deficits and 

brain pathology in mice (Sampson et al., 2016). Microbiota induced-α-syn aggregates could 

be retrogradely transported from the ENS to the more susceptible SNpc region, exerting its 

influence on PD progression. Moreover, gut-derived lipopolysaccharides (LPS) can promote 

disruption of the blood brain barrier, thus facilitating neuroinflammation and injury in the 

SNpc (Banks et al., 2008; Banks and Erickson, 2010).  

2.4.3 Specifc vulnerability of SNpc DANs 

Apart from the presence of Lewy bodies in PD neurons, the other remarkable feature that 

distinguishes PD from other α-syn-related pathologies is the predominant loss of DANs in the 

SNpc (Spillantini and Goedert, 2000). But why are DANs of the SNpc especially vulnerable? 

First, DANs in SNpc have a long axon that arborizes to form a large number of synapses, 

loaded with a high density of mitochondria generating a higher basal rate of oxidative 

phosphorylation compared to other DANs (Pacelli et al., 2015). Removal of damaged 

mitochondria and transport of vesicles or autophagic vacuoles require ATP production to 

support the energetic cost of axonal transport along the microtubules (Sulzer., 2007). The vast 

number of mitochondria required to respond to such a high energy demand also results in a 

heavy ROS production.  

Second, DA metabolism is considered to be a critical part of the exacerbated susceptibility of 

the SNpc to outside insults. Under normal condition, most DA is contained in low pH 

condition inside synaptic vesicles preventing its auto-oxidation. But in case of increased 

cytosolic levels, DA can be metabolized via MAO or go through auto-oxidation generating 

DA adducts, which are a source of ROS. In the presence of relatively higher iron deposit in 

these neurons, the H2O2 produced can be converted into the highly toxic radical peroxynitrite, 

prone to oxidize cellular components (Sian-Hülsmann et al., 2011). Elevated mitochondrial 

oxidative stress could trigger a DA-dependent toxic cascade. Furthermore, DA adduct 

formation has been shown to modify the catalytic site of GBA, a lyosomal enzyme whose 

mutations result in Gaucher's disease, a lysosomal storage disorder, and to lower its actvity, 

leading to the lysosome dysfunction (Burbulla et al., 2017). Note that GBA mutations are 

also the major genetic risk factor for developing PD (Gegg and Schapira, 2018).  
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Third, DANs utilize calcium for pacemaking activity and particularly high calcium load 

renders SNpc DANs at risk. DANs in the SNpc are spontaneously active, and their tonic 

action potential firing is associated with tonic baseline DA release (Sulzer, 2007). During 

pacemaking, an oscillating calcium burden induces mitochondrial stress (Mosharov et al., 

2009; Surmeier et al., 2010; Surmeier and Schumacker, 2013; Surmeier et al., 2017a, b). 

Besides, SNpc DANs expressing the calcium-binding protein calbindin to buffer calcium, 

located mainly in the dorsal tier of the SN, are relatively spared in PD, while the melanized 

ventral DANs with low calbindin are more vulnerable (Yamada et al., 1990; Collier et al., 

2011; Dragicevic et al., 2015). Therefore, the cytosolic Ca2+ oscillation and low intrinsic Ca2+ 

buffer place DANs with more challenging calcium increase, and render them more vulnerable 

to PD triggers (Rcom-H’cheo-Gauthier et al., 2016).  

Fourth, α-syn was proposed to regulate key stages of DA homeostasis (Venda et al., 2010; 

Benskey et al., 2016; Bridi and Hirth, 2018), as described in section 2.1.3. Under the intense 

oxidative stress mentioned above, any perturbation or organelle inefficiency to cope with 

ROS clearance would allow oxidized α-syn to rapidly impede DA homeostasis, resulting in 

an increased cytosolic DA level, followed by accelerated oxidative stress and mitochondria 

dysfunction and impaired protein degradation, here again trapping the DANs in a vicious 

cycle. 

 

3. Drosophila models of PD 

Drosophila serves as a valuable model organism for studying mechanisms of PD. Two 

hallmarks of PD, the loss of DANs and the locomotor defects, have been well-recapitulated in 

transgenic model and toxin-induced models of PD (Feany and Bender 2000; Coulom and 

Birman, 2004; Chaudhuri et al., 2007). Although Drosophila possess less genes and neurons 

compared to humans, the majority of genes implicated in PD pathologies are well conserved 

and have one homolog in flies, with the notorious exception of SNCA (Hirth, 2010; 

Vanhanwaert and Verstrenken, 2015; Hewitt and Whitworth, 2017). Figure 21 shows the 

timeline of identification of PD genes and the loss or gain of function of the corresponding 

gene, or transgenic expression of the human gene, in the fly model (Vanhanwaert and 

Verstrenken, 2015).  
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Figure 21 Drosophila models of PD 

This scheme indicates the years when the PD genes were identified in human (top) and when 
Drosophila transgenic or loss/gain of function mutants were generated (bottom). Source: 
Vanhanwaert and Verstrenken, 2015 

 

3.1 Transgenic models of PD 

Various Drosophila models have been established with different approaches to mimic 

mutations of PD-genes discovered in patients in order to study their role in pathogenesis. 

Studies of PD genes gain-of-function, even the ones that do not exist in flies, can be carried 

out by ectopic expression of the human mutant form or by overexpression of the fly 

homologs. Alternatively, when the human gene has an ortholog in the fly genome, loss-of-

function or knockdown of the gene can be achieved by different genetic approaches, like 

RNAi or null mutants (Muqit and Feany, 2002; Şentürk and Bellen, 2017).  

3.1.1 α-syn model of PD 

Human SNCA has been the first gene used to establish a fly model of PD by Mel Feany and 

Welcome Bender (Feany and Bender, 2000). Due to the absence of homolog in flies, human 

wild-type and mutant forms of α-syn have been expressed in all neurons, driven by elav-Gal4 

(pan-neuronal driver), to assess the induced defects and its pathogenic pathway. As shown in 

Figure 22, flies expressing α-syn recapitulate major features of human PD, including DAN 

loss (PPM1/2) and age-related locomotor decline, as well as Lewy body-like inclusions.  



Introduction 

 51 

 

Figure 22 Two PD symptoms in the fly model 

Left panels shows DAN loss in elav>α-syn flies (in d) compared to the control (in c). Right panel 
showed accelerated age-related locomotor decline (SING test) in flies expressing wild-type or mutant 
forms of α-syn in all neurons. Source: Feany and Bender 2000.  

 

Interestingly, it was shown that co-expressing human Hsp70 protected the fly DANs from α-

syn toxicity and that the fly Lewy bodies were positively stained both for α-syn and with an 

antibody against Drosophila Hsp70 (Auluck et al., 2002). This indicated an interaction 

between the two chaperone proteins that was subsequently confirmed by finding positive 

immunostaining for Hsp70 and Hsp40 chaperones in the Lewy bodies of human patients 

(Auluck et al., 2002). These observations highlight the conservation of the α-syn-induced 

pathology between human and fly, albeit α-syn is normally absent from the fly genome.  

 

Figure 23 PAM-α-syn model of PD 

Left: Compared to control, α-syn expression driven by NP6510-Gal4 in the PAM cluster reduced 
connectivity from PAM DANs onto MB Kenyon cells in both day 3 and day 20 (visualized by 3D 
reconstruction of the dopaminergic innervation). Right: NP6510>α-synA30P flies showed age-related 
locomotor decline. Source: Riemensperger et al., 2013.  

Thirteen years later, it was shown that overexpression of mutant human α-syn (the A30P 

form) in only 15 DANs of the PAM cluster led to age-related locomotor defects preceded by 
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a rapid degeneration of descending projections from the PAM cluster onto the MB 

(Riemensperger et al., 2013) (Figure 23). This indicated that degeneration of the PAM DANs 

is for a large part responsible for the locomotor deficits induced by mutant α-syn expression 

in Drosophila neurons.  

The α-syn Drosophila model has been widely used to study the molecular mechanisms 

underlying PD and other synucleopathies (Mizuno et al., 2011). It was reported that 

overexpressing the fly homologs of other PD-associated genes, Parkin and Pink1, could 

rescue α-syn-induced DAN degeneration and motor defects (Haywood and Staveley 2004, 

2006; Yang et al., 2003). Over the years, many efficient neuroprotective genes or drugs have 

been identified using the fly α-syn-expression model that act by anti-oxidative or other 

mechanisms (Auluck and Bonini, 2002; Auluck et al., 2005; Outeiro et al., 2007; Trinh et al., 

2008; Botella et al., 2008; Jia et al., 2008; Du et al., 2010; Barone et al., 2011; Butler et al., 

2012; Shaltiel-Karyo et al., 2013; Büttner et al., 2014; Knight et al., 2014; Siddique et al., 

2014; Breda et al., 2015; Wang et al., 2015), as well as candidate effectors of α-syn pathology 

(Büttner et al., 2013; Roy and Jackson, 2014; Suzuki et al., 2015; Jansen et al., 2017; Song et 

al., 2017; Ordonez et al., 2018).  

3.1.2 Other fly genetic models and their contribution.  

Great contributions to the understanding of mitochondrial dysfunction in PD were made from 

genetic models (DJ-1, PINK1 and Parkin) established in Drosophila. The observation that 

Pink1 and Parkin double mutants exhibit the same muscle phenotype than the respective 

single mutants (Greene et al., 2003; Pesah et al., 2004; Clark et al., 2006) suggested that Pink 

and Parkin act in a common pathway for mitochondrial quality control. Parkin 

overexpression rescued the Pink1 mutant phenotype while Pink1 overexpression had no 

effect on the parkin mutant, revealing that Parkin acts downstream of Pink1 (Clark et al., 

2006; Park et al., 2006; Yang et al., 2006). These discoveries from the PINK1/Parkin models 

underscore the importance of mitochondrial dysfunction as a central mechanism of PD 

pathogenesis.  

The fly genetic models also provided important knowledge about the trafficking defects in 

PD, as well as about the connections between different PD-associated genes (LRRK2, 

Synaptojanin). Indeed, α-syn, LRRK2, Vps35, Synaptojanin, Parkin and DNAJC6/auxillin 

are all implicated in and connected to synaptic trafficking (Vanhauwaert and Verstreken, 

2015; Penney et al., 2016). Flies overexpressing the mutated gene LRRK2-G2019S showed 
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several PD symptoms such as retinal degeneration, selective loss of DANs, and locomotor 

decline (Liu et al., 2008; West et al., 2015). LRRK2 appears to phosphorylate Endophilin A, 

a central component of synaptic remodelling properties. Interestingly, Endophilin A has a 

close functional association with Synaptojanin (Verstreken et al., 2003), which was later 

confirmed in PD patients (Krebs et al., 2013; Quadri et al., 2013).  

 

3.2 Pesticide-induced models of PD 

Familial PD cases are rare, which suggests that environmental insults play a primary role for 

the onset of sporadic PD. In Drosophila several pharmacological compound have been used 

to model sporadic PD. As shown in Figure 24, chronic exposure to the pesticide rotenone, a 

mitochondrial complex I inhibitor, triggered symptoms similar to the ones of PD patients like 

DAN degeneration and locomotor defects. Flies co-treated with rotenone and L-DOPA or 

rotenone and melatonin showed ameliorated locomotor performance compared to the groups 

with rotenone only (Coulom and Birman, 2004). The fly rotenone model has been widely 

used since then to study PD-related mechanisms and search for neuroprotectants (Hosamani 

et al., 2010; Lawal et al., 2010; Bayersdorfer et al., 2010; Girish and Muralidhara, 2012; 

Islam et al., 2012; Sudati et al., 2013; St. Laurent et al., 2013; Hwang et al., 2014; Araujo et 

al., 2015).  

 

 

Figure 24 Rotenone model of PD 

Left: TH immunostaining in the brain showing apparent lack of PAM and PAL DANs (as indicated 
by the white arrows in 4) in the fly brain folllowing 7 days of exposure to 500 µM rotenone, 
compared to control flies (in 2). Right: Negative geotaxis test of adult flies with 7 days of exposure to 
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125 µM rotenone, 1 µM L-DOPA or both. L-DOPA improvede the locomotor defects induced by 
rotenone toxicity. Source: Coulom and Birman, 2004.  

Flies exposed to the herbicide and pro-oxidant PQ show decreased locomotion, selective 

DAN loss, and die in a few days (Chaudhuri et al., 2007; Shukla et al., 2014b; Cassar et al., 

2015; Shukla et al., 2016). Consistent with epidemiological studies of PD, males flies 

exposed to PQ exhibited PD-like symptoms earlier than females, as shown in Figure 25. PQ 

treated flies showed mitochondrial dysfunction and decreased superoxide dismutase (SOD) 

activity (Hosamani and Muralidhara, 2013; Mehdi and Qamar, 2013). Interestingly, PQ was 

reported to exert its neurotoxicity in Drosophila via overstimulation of the DA receptor 

Dop1R2/Damb in glutamatergic neurons (Cassar et al., 2015).  

 

Figure 25 Males are more sensitive than females upon PQ treatment 

Effect of 20 mM PQ on locomotion of wild type female and male Drosophila. Male flies showed total 
immobility after 36 h exposure to PQ. Source: Chaudhuri et al., 2007 

 

Because of its strong redox capacity yielding stable ROS via NADPH consumption, PQ has 

been useful in the Drosophila model to evaluate neuroprotective compounds able to alleviate 

oxidative stress (Park et al., 2012; Minois et al., 2012; Medina-Leendertz et al., 2014; 

Filograna et al., 2016). Combined with other genetic approaches, PQ has been extensively 

used to test the influence of different genes on the sensitivity of flies to oxidative stress (Song 

et al., 2017; Quintero-Espinosa et al., 2017; Müller et al., 2017; Shukla et al., 2014a and b). 

Furthermore, a recent extensive metabolomic study has found remarkably similar alterations 

in metabolic pathways between the Drosophila PQ model and human PD patients (Shukla et 

al., 2016).    
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Chapter 3 Transposons and Argonaute proteins  

 

1 Transposons  

In the 1940s, mobile elements of the genome, called transposons or transposable elements 

(TEs) were identified in maize (McClintock, 1950). These “selfish” genetic elements are able 

to multiply themselves, mobilize, and insert into new genomic position. They take up nearly 

half of the human genome and 20% of that of the fly (Lander et al., 2001; Hoskins et al., 

2002). TEs can be categorized into two classes according to their structure and their mobility 

manners: DNA transposon and DNA retrotransposon. DNA transposons go through “cut and 

paste” mechanisms to mobilize into an alternative position, while DNA retrotransposons 

mobilize through a “copy and paste” mechanism (Goodier and Kazazian, 2008). During this 

“copy and paste” process, an RNA intermediate transcribed from the transposon functions as 

a template for DNA synthesis. The synthesized DNA can be integrated back into the genome. 

Based on the presence or absence of long terminal repeats (LTR), retrotransposons are 

divided into LTRs and non-LTRs (Waddell et al., 2014). The non-LTR retrotransposon 

including LINE-1 (long interspersed element 1), Alu and SVA elements, are currently active 

in the human genome. In a large scale, retrotransposons impact on human genome evolution, 

local gene instability, and genomic rearrangements (Erwin et al., 2014). The epigenetic 

silencing of retrotransposon activity through DNA methylation and histone modification is an 

important defence mechanism for the cell. 

Drosophila harbours distinct types of LTR elements, for example, gypsy, and non-LTR, 

LINE-like elements, such as F-element, HeT-A, and R2-elements that are expressed in the 

brain (Li et al., 2013b; Perrat et al., 2013). HeT-A belongs to an interesting class of elements 

that have their insertion sites specifically in telomeric DNA (Pardue et al., 2005; Pardue and 

DeBaryshe, 2011).  

 

1.1 Highly repressed transposition in the germline 

TE repression is crucial in the germline. During development in mice, a subset of cells is set 

aside as germ cell precursors and migrate for future gonad formation. During migration, those 

cells begin to undergo epigenetic changes, for example, loss of DNA methylation and histone 

methylation. This reprogramming process allows germline cells to reacquire a pluripotent 
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state and to establish a blank genome for the sex-specific imprints of the embryo (Zamudio 

and Bourc’his 2010). However, this extensive epigenetic reprogramming leads to highly 

active transposition during this process. Accumulation of TE transcripts results in transposon-

induced DNA damage, defects in homologous chromosome synopsis, meiotic arrest and 

sterility (Castañeda et al., 2011). To defend the genome integrity, small RNA guided 

pathways including small interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) are 

implemented to target the active sites and enhance histone or DNA methylation, thereby 

repressing TE activity.  

 

1.2 Beneficial and deleterious effects of transposons in the CNS 

Evidence showed that engineered human LINE-1 can retrotranspose in rat neuronal 

precursors (Muotri et al., 2005). Accordingly, next-generation sequencing approaches have 

demonstrated endogenous somatic insertions in the post-mortem human brain (Baillie et al., 

2011; Evrony et al., 2012). Somatic retrotransposition increases as neural stem cells 

differentiate into neurons, contributing to genomic mosaicism in the brain (Erwin et al., 2014). 

Increased LINE-1 retrotransposition was demonstrated to occur in the neuronal genome of 

schizophrenic patients (Bundo et al., 2014). Those discoveries suggest a somatic genome 

mosaicism mechanism in the CNS by retrotransposition, which may reshape the genetic 

circuitry underlying normal and abnormal neurobiological processes. 

1.2.1 Beneficial effect of TEs 

Evolutionary conservation of neuronal somatic retrotransposition suggests that it provides 

benefits to the brain. By affecting genes proximal to their insertion sites, TE 

retrotransposition can modify the transcriptome contributing to brain cellular diversity 

(Cordaux and Batzer, 2009). Moreover, in some individuals, the rate of retrotransposition 

appears higher in the hippocampus than in the frontal cortex (Coufal et al., 2009; Baillie et al., 

2011). Consistent with this, active transposition was observed in the memory-relevant ab 

MB neurons of adult Drosophila (Perrat et al., 2013). Retrotransposition events were 

observed in genes involved in neural-specific functions like DA receptors and 

neurotransmitter-related enzymes in human and Drosophila (Perrat et al., 2013; Baillie et al., 

2011). As proposed by Erwin et al., (2014), at a single neuron level, depending on where the 

somatic retrotranspositions occurred, synaptic activity and neuronal response to stimuli or 

neuronal connections could be affected. Stochastic mobile elements insertions would bring 
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about the potential “variance” to enable the individual to cope with unforeseen environmental 

alterations.  

However, in a recent critical report, Treiber and Waddell (2017) re-evaluated the frequency 

of somatic transposition in Drosophila neurons and found it to be, on the contrary, a very rare 

event. They observed that de novo transposon insertions are actually not prevalent in ab MBs 

KCs, and they also did not find any evidence to support the model that transposon insertions 

accumulate with age in the fly brain. The mistake in their previous studies (Perrat et al., 2013) 

was attributed to a methodological problem, i.e. chimeric DNA molecule artefacts that arose 

during genomic DNA amplification. Theses authors also suggested that previous studies in 

flies, rodents, humans and plants, that use similar deep-sequencing data, are subject to the 

same amplification artefacts. Consequently, the frequency of genuine somatic tranposition in 

neurons, and its posible role in brain ageing, remain to this date an open question.  

1.2.2 Role of TEs in neurological disorders 

Increased TEs level has been shown to impact on neuronal function. Rett syndrome was the 

first discovered neurodevelopmental disorder related to an increased somatic retrotransposon 

insertion (Muotri et al., 2010). Due to the mutation in MECP2 (methyl-CpG-binding protein 

2), which repressed LINE-1 transcription in neural progenitor cells, Rett syndrome patients 

exhibit increased levels of somatic LINE-1 (Muotri et al., 2010). Schizophrenic patients also 

have a higher copy number of somatic LINE-1 retrotransposons in neurons (Bundo et al., 

2014). In Drosophila, aged flies apparently have an increased level of TEs (LINE-like and 

LTR retrotransposons) in the brain. Since siRNAs are involved in TE silencing mechanism. 

Flies mutant for Argonaute 2 (Ago2), which is required for siRNA activity, showed elevated 

TE level associated with age-related memory defects and shortened lifespan (Li et al., 2013b). 

Conversely, overexpressing Dcr-2 (the double-stranded RNase responsible for siRNA 

formation) to inhibit TE activity in neurons prolonged fly lifespan (Wood et al., 2016).  

Fragile X syndrome is a genetic disease caused by an expansion of a CGG triplet repeat 

(more than 200) within the FMR1 gene, leading to mental retardation and other symptoms in 

childhood. Between 55 and 200 CGG repeats, patients are called "premutation" carriers and, 

although they do not have Fragile X syndrome as children, they can develop after 50 years a 

late-onset neurodegenerative disorder named Fragile X-associated tremor/ataxia syndrome 

(FXTAS). In a FXTAS Drosophila model, it has been shown that rCGG repeat transcripts 

can promote neurodegeneration by activating retrotransposition. Downregulating the 



Introduction 

58  

retrotransposon gypsy was sufficient to suppress the neuronal toxicity caused by rCGG 

repeats (Tan et al., 2012). Furthermore, Fmr1, the Drosophila orthologue of Fragile mental 

retardation protein (FMRP), the protein coded by FMR1, was shown to genetically interact 

with an Argonaute protein, Aubergine (Aub), involved in the piRNA pathway (see below) 

and potentially TE silencing (Bozzetti et al., 2015).  

In association with different Argonaute proteins, siRNAs and piRNAs can target the active 

TEs. However, the piRNA pathway is much more effective than the siRNA pathway, due to 

the large genomic “library” system of piRNA, and the capacity of PIWI proteins (piRNA 

binding protein) for packing TEs back into heterochromatin (Sturm et al., 2017). 

 

2. Argonaute proteins 

The gene P-element induced wimpy testis (piwi) was the first identified Argonaute gene in a 

screen for mutants that affect the asymmetric division of germline stem cells in the 

Drosophila ovary (Lin and Spradling, 1997). Then, a study in Arabidopsis showed that 

Argonaute proteins are involved in embryogenesis and leaf development (Moussian et al., 

1998; Bohmert et al., 1998). These proteins are highly conserved, and exist in diverse 

eukaryotes, except Saccharomyces cerevisiae, which has lost the small RNA machinery 

(Drinnenberg et al., 2009). Argonaute proteins play essential roles in gene regulation 

mechanisms, chromosome maintenance and heterochromatin formation, by association with 

different classes of small non-coding RNAs (Hutvagner and Simard, 2008; Meister, 2013; 

Luteijn and Ketting, 2013).  
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Figure 26 Phylogenetic conservation of Argonaute proteins 

(a) Molecular phylogenetic analysis of Argonaute proteins was made with ClustalW and the tree was 
built with Treetop. Protein sequences applied for the alignment are from Homo sapiens (Hs), 
Drosophila melanogaster (Dm), Shizosaccharomyces pombe (Sp) and Caenorhabditis elegans (Ce). 
Two subfamilies AGO and PIWI are indicated. (b) The PAZ and Piwi domains are shown in orange 
and red, respectively. Piwi domain of slicer-active Ago proteins are in dark red; Piwi domain without 
slicer activity or not tested is presented in light red. Source: Höck and Meister, 2008 

 

According to the phylogenetic analysis shown in Figure 26, Argonaute proteins can be 

categorised into two subclades, the AGO subfamily and the PIWI subfamily. All Argonaute 

proteins share two major protein motifs: the PAZ (Piwi-Argonaute-Zwille) and Piwi domains. 

PAZ domain anchors the 3’ end of the small RNA by loading it into a specific binding pocket 

(Jinek and Doudna, 2009), while the Piwi domain is structurally similar to RNase H (non-

sequence-specific endonuclease enzymes that catalyse cleavage of the RNA moiety in an 

hybridized RNA/DNA substrate). Given these specific structures, small non-coding RNA 

could be loaded onto an Argonaute protein to target mRNAs. AGO subfamily proteins are 

ubiquitously expressed and can interact with microRNAs (miRNAs) and siRNAs, whereas 

PIWI subfamily proteins are expressed mainly in germline cells and exert their function via 

piRNAs (Iwasaki et al., 2015).  

In Drosophila, there are five Argonaute proteins. The two AGO subfamily proteins Ago1 and 

Ago2 are involved in the siRNA/miRNA pathways, whereas the PIWI subfamily proteins, 
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Piwi, Ago3 and aubergine (Aub) are responsible for piRNA biogenesis and piRNA-guided 

TE silencing mechanism (Höck and Meister, 2008). Piwi is predominatly nuclear while Aub 

and Ago3 are cytoplasmic (Brennecke et al., 2007). The PIWI-piRNA pathway will be 

presented in more details below.  

 

3. PIWI-piRNA pathway 

3.1 Study of the PIWI-piRNA pathway in ovary and testes 

PIWI proteins are abundant in ovary and testis in Drosophila, where they guard the genome 

integrity against TEs (Aravin et al., 2007; Senti and Brennecke, 2010). As shown in Figure 

27, the three PIWI proteins Piwi, Aub and Ago3 have diverse subcellular distribution in the 

ovariole. Piwi localizes mainly in the nucleus of somatic follicle cells and germline cells 

while Aubergine and Ago3 are expressed in the cytoplasm and nuage (a perinuclear electron 

dense structure) (Brennecke et al., 2007). Briefly, Ago3 and Aub slice TE transcripts in the 

cytoplasm through post-transcriptional gene silencing (PTGS) in germline cells, whereas 

Piwi acts through transcriptional gene silencing (TGS) to silence TE activity, further 

promoting histone methylation in both somatic cells and germline cells. 

 

Figure 27 PIWI protein function in Drosophila ovary 

Piwi localizes in the nucleus of germline and follicle cells (soma). Aubergine and Argonaute 3 label 
the cytoplasm of the germline cells and showed strong labelling in the nuage. In the germline cells, 
Aub and Ago3 help cleave the TE transcripts via posttranscriptional gene silencing (PTGS), whereas 
piwi targets and represses the TEs activity through transcriptional gene silencing (TGS). Source:  
https://www.imba.oeaw.ac.at/research/julius-brennecke/projects/ 
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piRNAs are slightly longer (24-31 nt) than miRNAs and siRNAs and harbour 2’-O-methyl 

modification sites at the 3’ terminal. Generated from TE-rich genomic regions called piRNA 

clusters (flamenco, traffic jam and other loci), piRNAs are mainly produced through primary 

piRNA biogenesis and amplified through a “ping-pong” pathway process (Senti and 

Brennecke, 2010).  

In Drosophila ovaries, as shown in Figure 28, primary piRNA precursors derive from dual-

stranded piRNA clusters or single-stranded transcripts in germline and surrounding somatic 

cells. The long single-stranded primary piRNA templates are exported to the cytoplasm and 

processed by subsequent maturation steps by Zucchini and Yb in Yb bodies (Huang et al., 

2017). The Aub/Ago3-mediated ping-pong pathway is responsible for amplifying secondary 

piRNAs which have 10-nt complementarity with primary piRNAs at their 5’ ends and 

possess a sense bias with adenosine at the tenth nucleotide (Brennecke et al., 2007). During 

the ping-pong process, the new secondary piRNAs are generated from the complementary 

cleavage of sense and antisense transposon transcripts by Ago3 and Aub to consume 

transposon transcripts in the cytoplasm. (Iwasaki et al., 2015).  

 

Figure 28 piRNA biogenesis 

In the primary pathway, piRNA precursors are transcribed from piRNA clusters, processed and loaded 
on Piwi or Aub. With Ago3, Aub-piRNA complex serves as a trigger to initiate the ping-pong 
amplification pathway by the consumption of TE transcripts. Guided by piRNA, Piwi-piRNA 
complex can enter into the nucleus to target the active TEs. Source: Iwasaki et al., 2015.  
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piRNAs are necessary for Piwi function in the nucleus where piwi deletion causes the loss of 

repressive histone H3 lysine 9 trimethylation (H3K9me3) marks at the TE loci, increases 

distribution of RNA polymerase II (RNA Pol II), followed by elevated level of TE transcripts 

(Huang et al., 2013; Le Thomas et al., 2013; Wang and Elgin, 2011; Sienski et al., 2012; 

Rozhkov et al., 2013). Besides, guided by piRNAs, Piwi enters the nucleus and is also 

involved in epigenetic regulation in somatic cells of the ovary by TGS and PTGS pathways 

as illustrated in Figure 29.  

 

Figure 29 Piwi represses TE activity 

(a) Transcriptional gene silencing mechanisms. Guided by piRNAs, Piwi can bind to the TEs that are 
complementary to these piRNAs. There Piwi can recruit Heterochromatin protein 1a (HP1a) and the 
methyltransferase Su(Var)3-9 to generate de novo methylation and inhibit RNA Pol II, thus silencing 
TEs. (b) At the active TE locus, Piwi-piRNA can recruit HP1a and Su(Var) 3-9 to increase 
methylation and promote heterochromatin formation. Source: Ross et al., 2014.  

 

In the Drosophila heterochromatin, Piwi directly targets genomic DNA. At piRNA target 

sites, Piwi associates with Heterochromatin protein 1a (HP1a) to recruit the major histone 

methyltransferase Su(var)3-9 and locally promotes H3K9 methylation (Brower-Toland et al., 

2007; Yin and Lin, 2007). These repressive chromatin marks inhibit RNA Pol II activity, 

thereby silencing the TE locus. In euchromatin, guided by the piRNA which is 

complementary to the nascent transcripts from the TEs, Piwi directly recruits HP1a and 

Su(var)3-9 to increase H3K9me3 of euchromatic transposon and decrease RNA Pol II 

occupancy (Rozhkov et al., 2013; Sienski et al., 2012; Le Thomas et al., 2013). With HP1a 

binding to the formed H3K9me3, Piwi can promote heterochromatin formation and maintain 

proper heterochromatin at Piwi targets (Luteijn and Ketting, 2013). 
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PIWI function in germline cell development is conserved among species. The Piwi ortholog 

in mice, Miwi2, localizes to the nucleus and possesses TGS mechanism to establish de novo 

DNA methylation of the TE loci in testes (Carmell et al., 2007; Aravin et al., 2008; 

Kuramochi-Miyagawa et al., 2008). So does the zebrafish Piwi protein, Zili, showing 

dynamic nucleocytoplasmic distribution (Houwing et al., 2008). Cytoplasmic nuage 

localization of PIWI proteins and related PTGS mechanism is well conserved among species 

as well. Mutations in murine Mili showed impaired secondary piRNA production and de-

repressed TEs (De Fazio et al., 2011). A loss of Ziwi, the other Piwi protein in zebrafish, 

caused apoptosis in germline cells. Work in mice also showed that pachytene piRNA caused 

mRNA destabilization during spermatogenesis (Gou et al., 2014).  

 

3.2 Evidence of PIWI expression and function beyond the gonad 

PIWI proteins are expressed in all animals from sponges to humans (Lim and Kai, 2015). 

Apart from the gonads, PIWI/piRNA is presumed to function in non-ageing cells to maintain 

their proliferative potential but at a lower expression level than those detected in the germline. 

As shown in Figure 30, PIWI protein expression ranges from naïve pluripotent stem cells to 

differentiated somatic cells (Ross et al., 2014). In the stem cells of metazoans from diverse 

phyla, PIWI proteins are essential in maintaining pluripotency as well as their capacity for 

partial or whole body regeneration (Alié et al., 2011; Funayama et al., 2010). Consistent with 

this, murine induced pluripotent stems cells derived from various cell types showed increased 

Mili expression during reprogramming. In the intestinal stem cells (ISCs) of the Drosophila 

posterior midgut epithelium, exposure to regenerative pressure induced Piwi expression via 

STAT dependent signal pathway for the regenerative capacity and the ISCs maintenance 

(Sousa-Victor et al., 2017). In addition, piwi knockdown in the ISCs showed elevated TEs 

activation, loss of heterochromatin maintenance and ISC apoptosis. Mouse mesenchymal 

stem cells expressed Mili, and Mili knockdown in vitro resulted in higher cell division rate, 

suggesting the broad and diverse roles for Piwi in the stem cells (Wu et al., 2010). 
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Figure 30 PIWI function across metazoans 

Source: Ross et al., 2014 
 
In addition, PIWI proteins are expressed in adult cancer stem cells. Ectopic PIWI expressions 

in various tumorous tissues could be intrinsically connected to cancer development and 

modulation of tumour cell proliferation (See the reviews by Suzuki et al., 2012; Tan et al., 

2015; Han et al., 2017). Drosophila brain tumours showed upregulation of piwi and aub, and 

inactivation of piwi and aub prevented tumour growth and metastasis (Janic et al., 2010).  

Landry et al. (2013) proposed a potential role for piRNAs in epigenetic control of memory, 

based on the discovery of their function in learning and memory in Aplysia. Upon treatment 

with serotonin, an important modulatory transmitter for memory, there was unexpectedly an 

abundant expression of piRNAs. Furthermore, piwi depletion or overexpression affects 

learning-related synaptic plasticity by a piRNA-dependent mechanism (Rajasethupathy et al., 

2012). A review by Zuo et al (2016) summarized potential expression and function of 

PIWI/piRNA in the brain of different species. In mice, piRNA-like species were identified in 

the mammalian cortex (Yan et al., 2011) and murine MIWI, a homolog of Drosophila Ago3, 

was detected in hippocampal neurons (Lee et al., 2011a). In mice, the PIWI-piRNA complex 

can modulate dendritic spine development, postsynaptic density and is involved in neuronal 

migration (Adams et al., 2002; Lee et al., 2011a).  
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Figure 31 PIWI proteins are differentially labelled in the brain 

(A-H) Immunostaining for Aub and Ago3 showed that these two PIWI protein are differentially 
expressed in the brain. A: Aub staining showed clear labelling in ellipsoid body (eb), peduncles (ped) 
and cortical cell body layer (rind). By using the driver c305a-Gal4 α' β' -B), c739-Gal4 (α β -C) and 
NP1131-Gal4 (g-D), Aub showed converged signalling with GFP expressed in the MB subdivisions 
with more in α' β' g than in α β lobes. E: Ago3 labelling had a more complex pattern with labelling in 
β core (F), no α' β' -G) and overlapping with g neurons (H). (I) Ago3, Aub and Arm mutant flies 
showed dramatically elevated TE levels in the brain. Source: Perrat et al., 2013 
 

Perrat et al (2013) have reported that the PIWI proteins Ago3 and Aub are expressed in the 

Drosophila brain. More precisely, neurons of the MBs, the integrated centre for memory 

formation, showed different Ago3 and Aub levels, with less labelling in α β than in α' β' and g 

neurons. Ago3 and aub inactivation elicited an increase in TE level in the brain (Figure 31). 

As mentioned above in Chapter 3 - 1.2.1, however, a recent work from the same laboratory 

demonstrated that genuine somatic transposition is less prevalent in Drosophila than 

previously envisaged (Treiber and Waddell, 2017). Consistent with this, in an unpublished 

recent work, van den Beek et al (2018) detected a small amount of piRNA-sized, “ping-pong” 

negative molecules in Drosophila heads. The identification of piRNA-like non-coding RNA 

in heads confirms potential expression of PIWI proteins in the fly brain.  

Finally, in a Drosophila model of Alzheimer’s disease, Tau-induced neurodegeneration was 

found to be linked to heterochromatin loss, as attested by decreased H3K9me2 level and 

downregulation of HP1a in neurons (Frost et al., 2014). Tau toxicity reduced H3K9me2 

binding to the Ago3 gene, ending up with an increased level of Ago3 protein. Interestingly, 

Ago3 knockdown in all neurons could rescue the locomotor defects induced by Tau toxicity. 
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One possible hypothesis is that Tau-induced Ago3-piRNA pathway would switch on 

proliferative activity in post-mitotic neurons, thus causing neuronal apoptosis.  
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PhD objectives 

 

PD is a neurodegenerative movement disorder that is still incurable and for which transgenic 

and pharmacological in vivo models are available in Drosophila. These Parkinsonian flies are 

generally characterized by progressive locomotor defects or shortened survival due to 

increased brain oxidative stress. The general goal of my PhD project has been to use these 

models to understand better how α-syn accumulation in DANs can induce locomotor defects 

and to find novel proteins or pathways that may confer neuroprotection in such pathological 

conditions.   

My PhD objectives have therefore focused on three topics:  

• A. To identify DA-related neuronal circuits that regulate startle-induced 

locomotion in the fly brain 

• B. To understand how α-syn expression in a few DANs can induce dramatic 

locomotor deficits in ageing flies 

• C. To identify novel endogenous proteins or pathways that can protect neurons 

against PD-like acute oxidative stress.  

A. Drosophila PD models are characterized by a progressively impaired locomotor reactivity 

that leads to reduced performance in startle-induced locomotion (SING behaviour), while 

spontaneous locomotion is not as strongly affected. This suggests that components of the 

brain circuits controlling the SING reflex are specifically targeted in PD models. Because 

these circuits had not been thoroughly studied, my first objective was to identify some of the 

neuronal components involved. This work led us to highlight the role of the MBs, associated 

DANs and output neurons in SING modulation.  

B. Previous studies from my host laboratory showed that expressing mutant human α-syn in 

as few as 15 neurons of the PAM DANs caused a progressive loss of their projections to the 

MB neurons in adult flies, followed by strongly accelerated SING decline. Here I will show 

evidence that mutant α-syn triggers mitochondrial dysfunction in these DANs that propagate 

by a non-cell autnomous mechanism, to their non-dopaminergic MB target cells, causing the 

characteristic locomotor deficits in this fly PD model.  
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C. An essential aim is to discover novel mechanisms that could delay neuronal ageing and 

disease progression, which would be helpful for the development of effective therapeutic 

strategies. During my PhD, I have contributed to the identification and/or characterization of 

different protective proteins that act by restoring mitochondrial homeostasis or enhancing the 

autophagy-lysosomal pathway in neurons. In this dissertation, I will focus on the results 

showing that the Argonaute protein Piwi is a potent neuroprotectant that is induced by 

oxidative stress in the Drosophila brain.  
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Materials and Methods 

 

1. Drosophila and culture 

Fly stocks were raised and crossed at 25°C on standard corn meal-yeast-agar Drosophila 

medium supplemented with methyl-4-hydroxybenzoate as a mold protector, under a 12h-12h 

light-dark cycle. The driver (Gal4 or LexA) were crossed with the effector (UAS or LexAop) 

strains to express genes ectopically in specific tissues. The w1118 line was used as wild-type 

for control crosses. 

Table 3 Driver strain information 
 

Driver Expression pattern  

elav-Gal4 All neurons 

elav-Gal80 Inhibits Gal4 activity in all neurons 

TH-Gal4 All TH-expressing cells including central DA neurons except a major 
part of the brain PAM cluster 

TH-LexA Similar to TH-Gal4 

R58E02-Gal4 Major part of PAM DANs 

R58E02-LexA  Same as R58E02-Gal4 

NP6510-Gal4 15 DANs including MB-MVP1 plus 3 non-DANs 

NP5272-Gal4 3 PAM DANs (MB-M3) that are also labelled by TH-Gal4  

Mz840-Gal4 PPL1 MB-V1 plus other neurons and glial cells 

NP2758-Gal4 PPL1 MB-MP1  

TH-D’-Gal4 PAL, PPM2, PPM3 and PPL1  

TH-C’-Gal4 PAL, PPM2 and PPL2ab 

TH-C1-Gal4 PAM, PAL, PPM2 and PPL2ab 

TH-LexA Similar to TH-Gal4 

Tdc2-Gal4 Octopaminergic neurons 

VGlut-Gal4 Glutamatergic neurons 

OK371-Gal4 Glutamatergic neurons 

Gad1-Gal4 GABAergic neurons 
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C316-Gal4 Dorsal paired medial (DPM) neurons 

238Y-Gal4 All MB lobes (mushroom body neurons) 

VT30559-Gal4 All MB Kenyon cells 

c305a-Gal4 MB α'β' lobes and broad expression out of the MB  

G0050-Gal4 MB α'β' lobes 

4-59-Gal4 MB α'β' lobes 

R35B12-Gal4 MB α'β' lobes 

H24-Gal4 MB γ lobes 

R16A06-Gal4 MB γ lobes 

mb247-Gal4 MB αβ and γ lobes 

R14C08-LexA MBON-M4/M6 

NP2492-Gal4 MBON-V2 

R71D08-Gal4 MBON-V2 

G0239-Gal4 MBON-V3 

c41-Gal4 EB neurons (ellipsoid body neurons) 

c105-Gal4 EB ring neurons R1 

EB1-Gal4 EB ring neurons R2 

c232-Gal4 EB ring neurons R3/R4d 

R52G12-Gal4 FSB columnar neurons (fan-shaped body neurons) 

R89F06-Gal4 FSB columnar neurons 

R94F05-Gal4 FSB layer neurons  

R84C10-Gal4 FSB layer neurons 
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Table 4 Effector strain information 
 

UAS/LexAop strain Effector function 

UAS-nSyb::GFP GFP fused to neuronal Synaptobrevin (vesicle marker) 

UAS-mCD8::GFP GFP fused to mouse CD8 (plasma membrane marker) 

UAS-msGFP UAS-mCD8::GFP, UAS-nSyb::GFP 

UAS-CD4::spGFP11 splitGFP11 fused to mouse CD4 

LexAop-CD4::spGFP11 Same as UAS-CD4::spGFP11 

UAS-nSyb::spGFP1-10 spGFP1-10 fused to neuronal Synaptobrevin 

LexAop-nsyb::spGFP1-10 Same as UAS-nSyb::spGFP1-10 

UAS-dTrpA1 Heat-activated cation channel for thermogenetic neuronal activation 

LexAop-dTrpA1 Same as UAS-dTrpA1 

UAS-shits1 Temperature-sensitive Shibire (dynamin homolog) 

UAS-ChR2-XXL Modified Channelrhodopsin 2 for optogenetic neuronal activation 

UAS-dambRNAi Dopamine 1-like receptor 2 (Dop1R2) RNAi inactivation 

UAS-dumbRNAi Dopamine 1-like receptor 1 (Dop1R1) RNAi inactivation 

UAS-piwiRNAi-31 piwi RNAi inactivation (TRiP HMS00606) 

UAS-piwiRNAi-33 piwi RNAi inactivation (TRiP JF01394) 

piwiEP1024 piwi loss-of-function mutant and overexpression (UAS-piwi) 

UAS-α-synA30P Expresses mutant human α-synuclein A30P 

LexAop-α-synA30P Same as UAS-α-synA30P 

UAS-α-synWT Expresses wild-type human α-synuclein 

UAS-mitoGFP GFP addressed to the mitochondrial matrix 

UAS-MitoTimer Fluorescent timer DsRed1-E5 addressed to the mitochondrial matrix 

UAS-mito-roGFP2-Grx1 Redox-sensitive GFP fused to glutaredoxin-1 and addressed to the 
mitochondrial matrix 

UAS-hUCP2 Expresses human Uncoupling Protein 2 

UAS-DmUCP5 Expresses Drosophila Uncoupling Protein 5 (Bmcp) 
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2.Binary expression systems  

 

Figure 32 Use of binary expression systems in Drosophila 

Adapted from St Johnston, 2002 

 

The advantage of the binary expression systems Gal4/UAS and LexA/LexAop has been 

presented in Chapter I, section 3.1. The yeast Gal4 gene can be fused to enhancer sequences 

of specific Drosophila genes and then inserted either at random (by transposase activity) or in 

targeted positions (via PhiC31 integrase-mediated cassette exchange) in the Drosophila 

genome to generate transformed lines expressing Gal4 in a tissue-specific manner. These 

Gal4-transformed flies are crossed to flies carrying the gene of interest (gene X) fused 

downstream of yeast upstream activating sequences (UAS) (UAS-gene X strain). In the 

progeny of this cross, Gal4 will bind to the UAS and switch on gene X expression in a tissue-

specific manner (Figure 32 A). The yeast Gal80 protein can bind to Gal4 and repress its 

activity. By combining tissue-specific Gal4- and Gal80, as well as UAS-gene X, transgenes in 

the same fly, gene X will be expressed only in the cells that express Gal4 and not Gal80 

(Figure 32 B). Similarly, in the bacterial LexA/LexAop system, LexA binds to LexAop 

sequence and can induce expression of the gene Y located downstream of LexAop (Figure 32 

C). Since expression systems in bacteria and yeast are independent, combining both systems 

in the same fly allows two different genes, named here X and Y, to be expressed in different 

tissues at the same time (Figure 32 D).  
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3. Startle-induced locomotion assay 

Startle-induced negative geotaxis (SING) test is commonly used in Drosophila to monitor 

performance in locomotor reactivity and climbing ability. The flies are kept inside a narrow 

column to prevent flight and the assay is initiated by a gentle mechanical shock that makes 

them fall to the bottom. As an innate response to this startle, flies climb rapidly upwards.  

Ø SING assay conditions 

Groups of 10 flies of the same genotype prepared one night before the test were placed in a 

vertical column (25 cm long, 1.5 cm diameter) with a conic bottom end. SING assays were 

carried out as previously described (Coulom and Birman, 2004; Riemensperger et al., 2013) 

at 23°C. After 1 min, flies having reached the top of the column (above 22 cm) and flies 

remaining at the bottom end (below 4 cm) were separately counted. Three rounds of test were 

performed three times in a row per column. Results are the mean ± SEM of the scores 

obtained with ten groups of flies per genotype. The performance index (PI) is defined as 

½[(ntot + ntop − nbot)/ntot], where ntot, ntop, and nbot are the total number of flies, the number of 

flies at the top, and the number of flies at the bottom, respectively.  

Ø Monitoring age-related SING decline 

Over 75 male flies of the same genotype were collected for testing the effect of ageing on 

locomotor performance. The SING test was performed as described above. The first 

experiment was carried out with 10 day-old adult flies, then the flies were kept at 25°C for 

ageing and tested again once a week until they did not climb anymore. Dead flies were 

replaced by substitutes of the same age. Two-way ANOVA with Tukey’s post-hoc tests for 

multiple comparisons was used to compare locomotor ageing between different genotypes at 

different time point.  

Ø Thermogenetic modulation of neuronal activity 

The Drosophila gene shibire (shi) codes for the homolog of Dynamin, a GTPase that is 

implicated in synaptic vesicle recycling at nerve terminals (Chen et al., 1991; Bliek and 

Meyerowitz, 1991). The temperature-sensitive mutant Shits1 has a single amino acid 

substitution in the GTPase domain that impairs its activity at restrictive temperature (>29°C), 

which results in depletion of synaptic vesicles and suppression of neurotransmission, as 

shown in Figure 33A. The Gal4/UAS-shits1 strategy was introduced in 2001 (Kitamoto, 2001); 

since then it has been widely used to analyse the behavioural consequences of 

neurotransmission blockade in specific neurons (Kasuya et al., 2009).  
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Membrane proteins of the Transient Receptor Potential (TRP) family, which were initially 

discovered in Drosophila, are ion channels that can be activated by a wide variety of stimuli 

(light, warm or cold temperature, diverse mechanical and chemical stimuli). Drosophila 

dTrpA1 encodes a heat-activated channel involved in temperature sensation. When the 

temperature increases above 26°C, the ion channel opens and can generate an action potential 

in neurons, thus promoting neurotransmitter release (Hamada et al., 2008) (Figure 33B). 

 

Figure 33 Genetic tools used for thermogenetic modulation of neuronal activity 

Adapted from Kasuya et al., 2009 

 

To perform SING assay following thermogenetic inhibition or activation of neuronal activity, 

around 100 7 to 10-day old adult flies expressing either Shits1, dTrpA1 or msGFP 

(mCD8::GFP + nSyb::GFP) as control, respectively, in neuronal subsets, were kept at 19°C 

overnight. The next day, groups of 10 flies of the same genotype were placed in the SING 

test columns and left for about 20 min at 19°C for habituation. Thermomodulation was 

performed by incubating each column for 10 min at 32°C, or at 23°C for control of heat 

effect, just before the locomotor assay. SING assays were carried out as described above. 

Two-way ANOVA with Bonferroni’s or Tukey’s tests for multiple comparisons was used to 

analyse the effects of thermogenetic activation or inhibition on locomotor performance in 

flies of various genotypes.   
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Ø Optogenetic photostimulation of neuronal activity  

To perform SING assay during optogenetic photostimulation, 7 to 10-day old flies expressing 

Channelrhodopsin-2-XXL (ChR2-XXL) (Dawydow et al., 2014) were kept in constant 

darkness, and all manipulation were done under dim red light. Groups of 10 flies per column 

were prepared one night before the test. The transparent column with 10 flies inside were 

introduced in a dark box and illuminated during the locomotion test with either blue-light 

diode (peak wavelength 468 nm) from two sides (intensity range 6-11x 103 Lux), or red light 

as control (see Figure S2 in Sun et al. (2018)). Six rounds of tests were performed in a row 

per column, 3 under red light and 3 under blue light. One minute after startle, the number of 

flies was counted as described above for PI calculation. Two-way ANOVA with Bonferroni’s 

post-hoc tests for multiple comparisons was applied to analyse the effect of optogenetic 

photostimulation on fly locomotion.  

 

4. Immunohistochemistry 

Adult brains or ventral nerve cords (VNCs) were quickly dissected in ice-cold Drosophila 

Ringer’s solution (130 mM NaCl, 4.7 mM KCl, 1.8 mM CaCl2, 0.3 mM Na2HPO4, 0.35 mM 

KH2PO4, pH 7.5). Then brains were fixed in 4% paraformaldehyde (PFA) in phosphate-

buffered saline (PBS) (130 mM NaCl, 7 mM Na2HPO4, 3 mM KH2PO4) with agitation at 

room temperature for 1 h, followed by three 20-min washes in PBS. After 2 h of 

preincubation in PBS containing 0.5% Triton X-100 (PBST) plus 2% (wt/vol) bovine serum 

albumin (BSA), brains were incubated with the primary antibodies at proper dilution in the 

same solution overnight at 4 °C. The next day, after three 20-min washes in PBST, brains 

were incubated with the secondary antibody at room temperature for 2 hours. After two 20-

min washes in PBST and one 20-min wash in PBS, the brains were mounted in ProLong 

Gold Antifade reagent (ThermoFisher Scientific). Images were acquired with a Nikon A1R 

confocal microscope and processed using the Fiji software (Schindelin et al., 2012).  

The primary antibodies used were: mouse anti-GFP (Invitrogen Molecular Probes 1:500 for 

msGFP detection or Sigma-Aldrich #G6539 1:200 for reconstituted splitGFP (rsGFP) 

detection), rabbit anti-TH (Novus Biologicals #NB300-109, 1:1000), mouse anti-TH 

(Immunostar #22941 1:1000), rabbit anti-H3K9me3 (Abcam #ab8898, 1:1000), mouse anti-

Fas II (DSHB #1D4, 1:50), and rabbit anti-α-synuclein (Abcam #ab138501, 1:1000). The 
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secondary antibodies were goat anti-mouse and anti-rabbit conjugated to Alexa fluor 488 or 

555 (Invitrogen Molecular Probes, 1:1000) 

 

5. SplitGFP reconstitution  

The GFP-reconstitution across synaptic partners (GRASP) method was used for the 

visualization of proximity and potential synaptic connectivity between neurons (Feinberg et 

al., 2008; Gordon and Scott, 2009; Pech et al., 2013a; Macpherson et al, 2015). The 

Drosophila line LexAop-n-syb�spGFP1-10, UAS-CD4�spGFP11 was crossed to the 

recombined driver line NP2492-Gal4; TH-LexA (MBON-V2 and DANs), and the line UAS-n-

syb�spGFP1-10, LexAop-CD4�spGFP11 was crossed to the recombined driver lines R14C08-

LexA; R58E02-Gal4 (MBON-M4/M6 and PAM DANs) and NP2492-Gal4; R14C08-LexA 

(MBON-V2 and MBON-M4/M6). 7-10 day-old female flies were collected for brain 

dissection followed by whole-mount brain immunostaining as described in the previous 

paragraph.  

 

6. Fluorescent probes for monitoring mitochondrial dynamics.  

The green fluorescent protein (GFP) was originally isolated from the jellyfish Aequorea 

Victoria (Shimomura et al., 1962). This soluble protein and its variants are resistant to 

common proteases and stable under physiological pH conditions, thus providing an excellent 

scaffold for the development of biosensors (Day and Davidson, 2009). MitoGFP targets GFP 

to mitochondria using a localization signal and three amino acids of cytochrome c oxidase 

VIII, and has proved to be as a valuable tool for in situ observation of organelle distribution, 

morphology and dynamics in Drosophila (Verstreken et al., 2005; Yang et al., 2008; Liu and 

Lu, 2010).  

Fluorescent Timer is a mutant (DsRed1-E5) of the red fluorescent protein DsRed (Terskikh et 

al., 2002) that was cloned from the coral Discosoma coral. The two substitutions, V105A and 

S197T are responsible for enhanced fluorescent intensity and fast maturation. During protein 

maturation, its fluorescence starts from green for the newly synthesised form (excitation 483 

nm/emission 500 nm) to red for the mature form (excitation 558 nm/emission 583 nm). This 

colour shift is independent from pH, ion and protein concentration, but is affected by 

temperature, oxygen, and light exposure (Terskikh et al., 2000; Gross et al., 2000). Timer was 
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fused to the mitochondrial targeting sequence to make the MitoTimer construction 

(Hernandez et al., 2013). The mitochondrial targeting sequence is derived from cytochrome c 

oxidase subunit VIII, which is used to deliver fusion proteins across the mitochondrial inner 

membrane. In vivo, a shift in the abundance of newly expressed vs. mature MitoTimer can be 

used to reveal changes in the rate of mitochondrial turnover (the balance between biogenesis 

and mitophagy) (Ferree et al., 2013; Gottlieb and Stotland, 2015). In Drosophila, PQ and 

rotenone-treated flies showed increased red/green ratio of MitoTimer expressed in the heart 

tube compared to the control group (Laker et al., 2014).  

Redox homeostasis (i.e. the balance between oxidants and antioxidants in cells) is closely 

related to mitochondrial function. Redox-sensitive GFP (roGFP) was generated to measure 

redox changes in cells (Meyer and Dick, 2010). The biosensor applied in our work, roGFP2, 

is derived from enhanced GFP with an engineered dithiol/disulfide switch on their surface. 

Two excitation maxima characteristic of GFP (400 nm for the A-band and 475-490 nm for 

the B-band) are altered in different redox context. Oxidation results in an increase in the A-

band and a decrease in the B-band whereas under reducing conditions, the reverse occurs as 

shown in Figure 34. Because the midpoint redox potential of roGFP2 is more negative than 

that of glutathione at physiological concentrations, roGFP2 exhibit sensitivity to glutathione 

redox potential (EGSH).  

 

Figure 34 Redox-dependent changes in the excitation spectrum of roGFP2 

Source: Meyer and Dick, 2010 
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The intracellular response of roGFP2 is not capable of interacting with the thioredoxin (Trx) 

system and is restricted by the endogenous concentration of glutaredoxins (Grx) as well. To 

solve this problem, roGFP2 was fused to Grx to enforce continuous equilibration between the 

two redox pairs of roGFP-reduced/roGFP2-oxidized and two glutathione/glutathion disulfide 

(GSH/GSSG), which ensured rapid and efficient equilibration under all circumstances 

(Meyer and Dick, 2010). In flies, targeting roGFP2-Grx1 in mitochondria, using UAS-mito-

roGPF2-Grx1, enables in vivo observation of redox alteration inside the mitochondria 

(Albrecht et al., 2011; 2014).  

Fly expressing MitoTimer or mitoGFP in brain were quickly dissected in ice-cold Ca2+-free 

Drosophila Ringer’s solution (130 mM NaCl, 4.7 mM KCl, 1.8 mM MgCl2, 0.74 mM 

KH2PO4, 0.35 mM Na2HPO4, pH 7.5), fixed for 20 min in 4% PFA in PBS and washed 3 x 

20 min in PBS with agitation at room temperature. For mito-roGFP2-Grx1, brains were 

freshly dissected in PBS and transferred immediately for confocal scanning one by one. All 

the brains were mounted in ProLong Gold Antifade reagent for confocal visualisation. 

Excitation/emission (488/515-530nm) was set for mitoGFP fluorescent detection, while green 

(excitation/emission 488/515-530 nm) and red (excitation/emission 560/570-620 nm) were 

used for MitoTimer detection. For mito-roGFP2-Grx1, biosensor was excited sequentially at 

405nm and 488 nm (line by line) and detected at 500-530 nm (Albrecht et al., 2011). Settings 

for different probes were kept constant across samples during time course studies.  

 

7. DHE staining  

ROS are very reactive and unstable molecules, so it is difficult to detect them directly in cells. 

Dihydroethidium (DHE) reacts with ROS to form 2-hydroxyethidium (2-OH-E+) and 

ethidium, which intercalate with DNA and stain the whole nucleus with a bright red 

fluorescence (Zhao et al., 2005; Dikalov et al., 2007; Zielonka and Kalyanaraman, 2010) 

(Figure 35). DHE is able to permeate cell membranes freely and it has been used extensively 

to monitor ROS production in Drosophila tissues (Chang and Min, 2005; Owusu-Ansah et al., 

2008; Bahadorani et al., 2010; Rera et al., 2011; Wang et al., 2011b; Icreverzi et al., 2015; 

Vaccaro et al., 2017). 
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Figure 35 The reaction of O2•− with DHE produces 2-hydroxyethidium (2-HE+) 

Source: Dikalov et al., 2007 

 

5-10 fly brains per genotypes were quickly dissected in Schneider’s insect medium (Sigma 

Aldrich, #S0146), and then incubated in 30 µM DHE (Thermo Fisher Scientific, #D11347) 

diluted in Schneider’s medium for 5-7 mins. After three 5-min washes in Schneider’s 

medium, brains were slightly fixed for 7 minutes in 7% formaldehyde in PBS, followed by 5 

min rinsing in PBS, then processed for mounting in Vectashield Antifade Mounting Medium 

(Vector Laboratories). Images were immediately captured on a Nikon A1R confocal 

microscope at constant gain setting. The average fluorescence intensity of Z-projected stacks 

were measured using the Fiji software.  

8. Western blotting 

20 fly heads were homogenized in 100 µl RIPA buffer (Sigma-Aldrich) containing protease 

inhibitors (cOmplete Protease Inhibitor Cocktail, Roche Diagnostics) using a Minilys 

apparatus (Bertin Instruments), or 30 dissected brains were homogenized in 50 µL RIPA 

buffer containing protease inhibitors. The lysates were incubated on ice for 30 min and 

centrifuged at 8,000 g for 10 min at 4°C. Protein samples were prepared by diluting the 

supernatant in 1 x final NuPAGE LDS Sample Buffer and Reducing Agent, followed by 10 

min denaturation at 70°C and 5 s centrifugation at 1,000 g. Proteins were separated in 4-12% 

Novex NuPAGE Bis-Tris precast polyacrylamide gels (Life Technologies), using PageRuler 

Plus Prestained Protein Ladder (ThermoFisher Scientific) as migration marker, and 

electrotransferred to Amersham Hybond P 0.45 PVDF membranes for 90 mins (GE 

Healthcare Life Sciences).  

Membranes were blocked after transfer for 2 h at room temperature in Tris-buffered saline 

(TBS) containing 0.05% (v/v) Tween 20 (TBS-T) supplemented with 5% skimmed milk. 
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Membranes were then incubated overnight at 4°C in TBS-T containing 5% (w/v) skimmed 

milk in 0.05% TBS-T with the following primary antibodies: rabbit polyclonal anti-Piwi 

(1:1000 kindly provided by Gregory J. Hannon), mouse monoclonal anti-Piwi (1:500, Santa 

Cruz Biotechnology #sc-390946) and mouse monoclonal anti-a-tubulin (DHSB 1:500, 

#12G10). Membranes were washed six times for 6 min in TBS-T and then incubated for 2 h 

at room temperature with horseradish peroxidase (HRP)-conjugated anti-rabbit (Invitrogen 

Molecular Probes) or anti-mouse (Sigma-Aldrich) secondary antibodies at 1:3,000. 

Immunolabeled bands were revealed by using ECL RevelBlOt Intense (Ozyme, France) as 

chemiluminescent HRP substrate and digitally acquired at different exposure times using 

ImageQuant TL software (GE Healthcare Life Science). Densitometry measures were made 

with the Fiji software and normalized to the tubulin measures as internal controls.  

 

9. RT-PCR  and quantitative PCR 

Reverse transcription PCR (RT-PCR) was performed to examine piwi and HeT-A expression 

in dissected tissues. The primers for RT were: for piwi, sense primer 5’-

ACGCATTCGCGACCACAATCAG, antisense primer 5’-

TGTACTTCTGTGACGTTCTTGTCCAGT; for HeT-A, sense primer 5’-

CGCAAAGACATCTGGAGGACTACC, antisense primer 5’-

TGCCGACCTGCTTGGTATTG; rp49 (reference), sense primer 5-

GACGCTTCAAGGGACAGTATC, antisense primer 5’-AAACGCGGTTCTGCATGAG). 

RT-PCR analysis was carried out and analysed as previously described (Cassar et al., 2015). 

Quantitative PCR was conducted on a Roche LightCycler 480. System with the Roche SYBR 

Green Master mix using the following primer sets: for piwi, sense primer 5’-

GACGTTGCTCACACAATCCG, antisense primer 5’-CATGGCACGCATAAGCTGAAA; 

for rp49: sense primer 5’-GACGCTTCAAGGGACAGTATC, antisense primer 5’-

AAACGCGGTTCTGCATGAG. 

 

10.Statistics 

All statistical analyses were performed with the GraphPad Prism 6 software. Data from 

locomotor assays were analysed using two-way ANOVA with Bonferroni's or Tukey's post-

hoc tests for multiple comparisons. Data for PQ test were analysed using one-way ANOVA 
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with Bonferroni's for multiple comparisons, data for fluorescence intensity with one-way or 

two-way ANOVA with Bonferroni's for multiple comparisons. Data comparing 

mitochondrial size were analysed by Frequency Distribution followed by Gaussian 

distribution analysis. All data are presented as mean ± SEM. Significant values in all figures: 

*p<0.05, **p<0.01, ***p<0.001 
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Results A - Neural network controlling locomotor reactivity  

 

Summary 

Locomotor reactivity to startling stimuli is commonly used in Drosophila research to monitor 

performance in various behaviours such as climbing, flight initiation, phototaxis and 

optomotor responses. A widely used paradigm is called startle-induced negative geotaxis 

(SING), in which flies entrapped in a narrow column respond to a gentle mechanical shock 

by climbing rapidly upward. SING progressively declines with age or under various 

neuropathological conditions, making this test valuable for various types of studies.  

Here we used thermogenetic and optogenetic tools to activate precise neuronal subsets in the 

Drosophila brain, or block their synaptic output, in order to identify components of the 

circuits underlying the modulation of this behaviour. We demonstrate that manipulating the 

activity of different clusters of DANs afferent to the MBs causes diverse effects on SING, 

and that DAN-mediated SING regulation requires expression of the DA receptor Dop1R1 

(Dumb) in the MBs. We confirm our previous observation that activating MB α'β', but not αβ, 

KCs decreased the SING response, and we identify further MB neurons implicated in SING 

control, including KCs of the γ lobe and two subtypes of MB output neurons (MBONs).  

Strikingly, we observed that co-activating the αβ KCs potently antagonizes α'β' and γ KC-

mediated SING modulation, suggesting the occurrence of fine regulatory mechanisms 

between different MB compartments in locomotion control. We also observed that the fan-

shaped body (FSB) appears to be involved in this neural network, but not the ellipsoid body 

(EB), suggesting that the FSB could serve as a relay between the MB control and the 

descending neurons involved in SING execution. Finally, splitGFP reconstitution was used to 

identify potential synaptic connections between identified neural components of the SING 

modulation network.  

Altogether, this study contributes to an emerging picture of the brain circuits controlling 

locomotor reactivity in Drosophila that appears both to overlap and differ from those 

underlying associative learning and memory, sleep/wake state and stress-induced 

hyperactivity.  

 

Personal contribution: I have carried out most of the experiments in this chapter, except for 

initial studies that were performed in collaboration with two undergraduate interns (An Qi Xu 
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and Julia Giraud), and a collaboration with André Fiala’s laboratory (Thomas Riemensperger 

and Haiko Poppinga) for the analysis of MB driver patterns and the optogenetic 

photostimulation setup.  

 

Part I  
Neural Control of Startle-Induced Locomotion by the Mushroom Bodies 

and Associated Neurons in Drosophila   

Jun Sun, An Qi Xu, Julia Giraud, Haiko Poppinga, Thomas Riemensperger, André Fiala and 

Serge Birman  

Article published on 28 March 2018 in Fontiers in Systems Neuroscience 

 

Part II 
Complementary data on the role of neurotransmitters and the fan-shaped 
body in SING control  
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Result A - Part I 

 

Neural Control of Startle-Induced Locomotion by the Mushroom Bodies 

and Associated Neurons in Drosophila   

Jun Sun, An Qi Xu, Julia Giraud, Haiko Poppinga, Thomas Riemensperger, André Fiala and 

Serge Birman  

Article published on 28 March 2018 in Fontiers in Systems Neuroscience 
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Startle-induced locomotion is commonly used in Drosophila research to monitor

locomotor reactivity and its progressive decline with age or under various

neuropathological conditions. A widely used paradigm is startle-induced negative

geotaxis (SING), in which flies entrapped in a narrow column react to a gentle

mechanical shock by climbing rapidly upwards. Here we combined in vivo manipulation

of neuronal activity and splitGFP reconstitution across cells to search for brain neurons

and putative circuits that regulate this behavior. We show that the activity of specific

clusters of dopaminergic neurons (DANs) afferent to the mushroom bodies (MBs)

modulates SING, and that DAN-mediated SING regulation requires expression of the

DA receptor Dop1R1/Dumb, but not Dop1R2/Damb, in intrinsic MB Kenyon cells (KCs).

We confirmed our previous observation that activating the MB α’β’, but not αβ, KCs

decreased the SING response, and we identified further MB neurons implicated in SING

control, including KCs of the γ lobe and two subtypes of MB output neurons (MBONs).

We also observed that co-activating the αβ KCs antagonizes α’β’ and γ KC-mediated

SING modulation, suggesting the existence of subtle regulation mechanisms between

the different MB lobes in locomotion control. Overall, this study contributes to an

emerging picture of the brain circuits modulating locomotor reactivity in Drosophila

that appear both to overlap and differ from those underlying associative learning and

memory, sleep/wake state and stress-induced hyperactivity.

Keywords: dopamine, mushroom bodies, startle-induced negative geotaxis, neural circuits, Drosophila

melanogaster

INTRODUCTION

The identification of neural circuits that modulate innate or reflex behaviors is essential to better
understand how the brain functions and adapts to a changing environment (LeBeau et al., 2005;
Dickinson, 2006; Marder, 2012; Su and Wang, 2014). Drosophila is an advantageous organism
for studying the neural basis of behavior using genetically-encoded probes that enable in vivo
control of neuronal activity (White and Peabody, 2009; Griffith, 2012; Yoshihara and Ito, 2012;
Kazama, 2015; Owald et al., 2015b; Riemensperger et al., 2016; Martín and Alcorta, 2017). In this
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organism, spontaneous locomotor activity and locomotor
reactivity have been described as two separate behavioral systems
that are regulated differently (Connolly, 1967; Meehan and
Wilson, 1987; O’Dell and Burnet, 1988; Martin et al., 1999a).
A sudden external stimulus (startle) usually triggers inhibition
or arrest of spontaneous locomotion followed by an appropriate
behavioral response, which may itself be a locomotor reaction.
Startle-induced reactivity has long been used in Drosophila to
monitor various behavioral performances, such as phototaxis
(Benzer, 1967) or negative geotaxis (Miquel et al., 1972). A
widely used paradigm relies on the fast climbing reaction initiated
by a gentle mechanical shock of flies entrapped in a vial or a
narrow column, an innate reflex called startle-induced negative
geotaxis (SING). SING performance progressively declines with
age (Ganetzky and Flanagan, 1978; Le Bourg and Lints, 1992;
Grotewiel et al., 2005; White et al., 2010; Jones and Grotewiel,
2011; Vaccaro et al., 2017), in contrast to spontaneous locomotion
that does not vary during the adult life and even increases in old
flies (White et al., 2010). The SING reflex is also progressively
altered in various mutant or under neuropathological conditions,
as is the case in Drosophila models of Parkinson disease
(Feany and Bender, 2000; Coulom and Birman, 2004; Chaudhuri
et al., 2007; Riemensperger et al., 2013; Bou Dib et al.,
2014). It is therefore of particular interest to identify precise
neural components underlying themodulation of startle-induced
locomotion, in Drosophila as in other species (Hale et al., 2016).

The mushroom body (MB) is a paired structure of the insect
brain that has important behavioral functions, including the
formation of olfactory memory (Heisenberg, 2003; Fiala, 2007;
Davis, 2011; Kahsai and Zars, 2011; Waddell, 2013) and the
control of sleep (Bushey and Cirelli, 2011; Tomita et al., 2017).
The Drosophila MB is composed of intrinsic neurons known as
Kenyon cells (KCs) and it is innervated by afferent modulatory
neurons, in particular subsets of dopaminergic neurons (DANs),
as well as efferent MB output neurons (MBONs) (Tanaka et al.,
2008; Pech et al., 2013a; Aso et al., 2014a,b). The cell bodies of
the KCs form a large cluster in the dorsal posterior brain; their
dendritic branches make up the calyx and their axons bundle up
in the peduncles. The KCs are named according to the lobes in
which they send axonal projections: αβ, α’β’, and γ (Lee et al.,
1999; Tanaka et al., 2008). At the distal end of the peduncles, the
axons of the αβ and α’β’ KCs bifurcate dorsally and medially to
form the vertical (α and α’) and horizontal (β and β’) lobes, while
the γ KCs form only the γ horizontal lobes.

Around 60 years ago, experiments carried out on crickets
provided the first evidence that the insect MB contains neurons
inhibiting locomotion (Huber, 1960, 1967; Howse, 1975). In

Abbreviations: CRE, crepine; DA, dopamine; DAN, dopaminergic neuron;
Dop1R1, Dopamine 1-like receptor 1; Dop1R2, Dopamine 1-like receptor 2; EB,
ellipsoid body; dFSB, dorsal fan-shaped body; GFP, green fluorescent protein;
GRASP, GFP reconstitution across synaptic partners; KC, Kenyon cell; MB,
mushroom body; MBON, MB output neuron; msGFP, mCD8::GFP, n-syb::GFP;
PAL, protocerebral anterior lateral; PAM, protocerebral anterior medial; PI,
performance index; PPL, protocerebral posterior lateral; PPM, protocerebral
posterior medial; RNAi, RNA interference; rsGFP, reconstituted splitGFP; SING,
startle-induced negative geotaxis; SIP, superior intermediate protocerebrum;
SLP, superior lateral protocerebrum; SMP, superior medial protocerebrum; TH,
tyrosine hydroxylase.

Drosophila, both the mushroom body miniature mutation or
chemical ablation of the MB increased walking activity when
measured over long time intervals, confirming that the MB
normally suppresses locomotor behavior (Heisenberg et al.,
1985; Martin et al., 1998; Helfrich-Förster et al., 2002),
while similar experiments suggested that, by contrast, the MB
stimulates initial stages of walking activity (Serway et al., 2009).
Neuroanatomical defects in the MB lobes were observed in
a set of mutants giving rise to changes in startle-induced
locomotion behavior, but without a clear correlation between
the two phenotypes (Yamamoto et al., 2008). Furthermore, we
previously reported that SING is controlled by the activity of the
α’β’ KCs (Riemensperger et al., 2013). Determining the precise
contributions of the various subtypes of MB neurons to startle-
induced locomotion required, therefore, further investigations.

Dopamine (DA) is an important neurotransmitter that, in
flies, was implicated in the modulation of diverse behaviors
including appetitive or aversive learning (Schwaerzel et al., 2003;
Riemensperger et al., 2005, 2011; Schroll et al., 2006; Claridge-
Chang et al., 2009; Krashes et al., 2009; Aso et al., 2010; Waddell,
2010; Berry et al., 2012; Burke et al., 2012; Plaçais et al.,
2012; Cohn et al., 2015; Musso et al., 2015; Aso and Rubin,
2016; Yamagata et al., 2016) and sleep-wake mechanisms (Van
Swinderen and Andretic, 2011; Liu et al., 2012b; Ueno et al.,
2012; Berry et al., 2015; Sitaraman et al., 2015b; Pimentel et al.,
2016). It is also well established that DA prominently controls
locomotor activity in Drosophila (Yellman et al., 1997; Bainton
et al., 2000; Friggi-Grelin et al., 2003; Kume et al., 2005; Lima
and Miesenböck, 2005; Wu et al., 2008; Lebestky et al., 2009;
Kong et al., 2010; Riemensperger et al., 2011; Van Swinderen and
Andretic, 2011) as it does in vertebrates (Beninger, 1983; Zhou
and Palmiter, 1995; Giros et al., 1996; Blum et al., 2014). We have
recently reported that the degeneration of DANs of either the
protocerebral anterior medial (PAM) or protocerebral posterior
lateral 1 (PPL1) clusters afferent to the MBs was associated
with an accelerated decline of SING performance in aging flies
(Riemensperger et al., 2013; Vaccaro et al., 2017). Further recent
studies support a function for the PAM and PPL1 clusters in
climbing or flight control (Bou Dib et al., 2014; Agrawal and
Hasan, 2015; Pathak et al., 2015). However, the role of these
and other DANs in SING modulation has not yet been precisely
investigated.

Here we used activation or silencing of synaptic transmission
in neuronal subsets targeted with selective drivers in order to
identify the MB-associated neurons (KCs, DANs, and MBONs)
that control startle-induced locomotion in Drosophila. Neuronal
activation revealed that several classes of DANs projecting
to the MBs have diverse roles in modulatory mechanisms.
We show that DANs in the PPL1 cluster act as inhibitory
neurons in the SING-modulating circuits, while the PAM cluster
appears to contain both inhibitory and excitatory DAN subsets.
We also confirm that MB α’β’ KCs are implicated in SING
control and demonstrate that γ KCs are involved in this
modulation as well. Interestingly, we find that α’β’ and γ neuron-
mediated SING modulation is antagonized by co-activating the
αβ KCs. Finally, we show that the MBONs M4/M6 and V2
are part of the network, suggesting that they convey SING
modulatory information to downstream motor circuits. Overall,
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this work provides a first picture of the brain network and
modulatory mechanisms controlling startle-induced locomotion
in Drosophila that centrally involve a subset of MB-associated
neurons.

MATERIALS AND METHODS

Drosophila Culture and Strains
Fly stocks were raised and crossed at 25◦C on the standard
corn meal/yeast/agar medium supplemented with methyl-
4-hydroxybenzoate as a mold protector, under a 12 h/12 h
light-dark cycle. The following effector lines were used:
UAS-mCD8::GFP, UAS-n-syb::GFP (here named UAS-msGFP)
(Riemensperger et al., 2013), UAS-shits1 (Kitamoto, 2001), UAS-
dTrpA1 (Hamada et al., 2008), UAS-ChR2-XXL (Dawydow et al.,
2014), LexAop-dTrpA1 (Burke et al., 2012), UAS-Dumb-RNAi
(Bloomington Drosophila Stock Center, line 62193), UAS-Damb-
RNAi (Vienna Drosophila RNAi center, line v3391) (Cassar et al.,
2015), UAS-n-syb::spGFP1−10, LexAop-CD4::spGFP11/CyO and
LexAop-n-syb::spGFP1−10, UAS-CD4::spGFP11 (Bloomington
Drosophila Stock Center, lines 64314 and 64315) (Macpherson
et al., 2015). The driver lines used and their brain expression
patterns are described in Table S1. Except for those that
were generated in our laboratories, these lines were either
obtained from the Bloomington Drosophila Stock Center or
kindly provided by: Ronald L. Davis (TH-LexA, Berry et al.,
2015), Thomas Preat and Pierre-Yves Plaçais (4-59-Gal4, 238Y-
Gal4, G0050-Gal4, NP2758-Gal4, R71D08-Gal4, NP2492-Gal4,
R27G01-Gal4, R14C08-LexA), Hiromu Tanimoto (R58E02-Gal4,
Liu et al., 2012a) and Mark Wu (TH-C1-Gal4, TH-C’-Gal4, and
TH-D’-Gal4) (Liu et al., 2012b).

Locomotion Assay Coupled With Genetic
Manipulation of Neuronal Activity
SING assays were generally carried out following thermogenetic
inhibition or activation of neuronal activity. Seven- to ten-day-
old flies expressing Shits1 or dTrpA1, respectively, or msGFP
as a control, in neuronal subsets, were kept at 19◦C overnight.
The next day, groups of 10 flies of the same genotype were
placed in a vertical column (25 cm long, 1.5 cm diameter) with
a conic bottom end, and left for about 20min at 19◦C for
habituation. Thermogenetic activation or silencing of neurons
was performed by incubating each column for 10min at 32◦C, or
at 23◦C for control of a potential temperature effect. SING assays
were carried out immediately afterwards at 23◦C as previously
described (Coulom and Birman, 2004; Riemensperger et al.,
2013). Briefly, flies were suddenly startled by gently tapping them
down. After 1min, flies having reached the top of the column
(above 22 cm) and flies remaining at the bottom end (below 4 cm)
were separately counted. Three rounds of test were performed
in a row per column. Results are the mean ± SEM of the scores
obtained with ten groups of flies per genotype. The performance
index (PI) is defined as ½[(ntot + ntop − nbot)/ntot], where ntot is
the total number of flies, and ntop and nbot the number of flies at
the top and at the bottom, respectively.

In some experiments, optogenetic photostimulation was
performed instead on 7 to 10-day-old flies expresssing the

channelrhodopsins ChR2-XXL (Dawydow et al., 2014) in
neuronal subsets. In this case, flies were kept in constant
darkness, and all manipulations before the SING assay were done
under dimm red light. The transparent columns were introduced
in a dark box and illuminated during locomotion testing with
either blue-light diodes (peak wavelength 468 nm) from two sides
(intensity range 6–11 × 103 Lux), or red light as a control. Six
rounds of tests were performed in a row per column, 3 under red
light and 3 under blue light. Further details on the SING assay
procedure under optogenetic photostimulation are provided in
the legends to Figures S2A,B.

Immunohistochemistry
Adult brains were dissected in ice-cold Drosophila Ringer’s
solution and processed for whole mount immunostaining as
previously described (Riemensperger et al., 2011). The primary
antibodies were mouse anti-GFP (ThermoFisher Scientific 33-
2600, 1:500 for msGFP detection or Sigma-Aldrich G6539, 1:200
for reconstituted splitGFP (rsGFP) detection) and rabbit anti-
TH (Novus Biologicals NB300-109, 1:1,000). The secondary
antibodies were goat anti-mouse and anti-rabbit conjugated to
Alexa fluor 488 or 555 (Invitrogen Molecular Probes, 1:1,000).
The brains were mounted in ProLong Gold Antifade reagent
(ThermoFisher Scientific). Images were acquired with a Nikon
A1R confocal microscope and processed using the Fiji software
(Schindelin et al., 2012).

For the quantification of Gal4 expression patterns in KC
subpopulations, the brains of 5–7 day-old female flies expressing
mCD8::GFP under the control of different Gal4 drivers were
dissected in ice cold Ringer’s solution, fixed for 2 h on ice in 4%
paraformaldehyde and washed 3× 20min in phosphate-buffered
saline + 0.6 % Triton X-100 (PBSTx). After a 2 h pre-incubation
in PBSTx + 2% bovine serum albumin, brains were incubated
overnight at 4◦C in the same buffer with mouse monoclonal
anti-Bruchpilot antibody (1:10, nc82, Developmental Studies
Hybridoma Bank) to visualize synaptic neuropils. After 3 ×

20min washes in PBSTx, samples were incubated for 2 h
with Cy3-conjugated anti-mouse secondary antibody (1:300,
Jackson ImmunoResearch), then washed 3 × 20min in PBSTx
and additionally overnight in PBS. Brains were mounted in
Vectashield (Vector Laboratories) and scanned using a Leica
SP8 confocal laser scanning microscope equipped with hybrid
detectors. Quantification of Gal4-expressing KC somata was
conducted by monitoring GFP autofluorescence with the Fiji Cell
Counter plugin across the focal planes.

Split-GFP Reconstitution
For the visualization of potential synaptic connectivity with the
GRASP method (Feinberg et al., 2008; Gordon and Scott, 2009;
Pech et al., 2013a; Macpherson et al., 2015), the Drosophila
line LexAop-n-syb::spGFP1−10, UAS-CD4::spGFP11 was crossed
to the recombined driver line NP2492-Gal4; TH-LexA (MBON-
V2 and DANs), and the line UAS-n-syb::spGFP1−10, LexAop-
CD4::spGFP11 was crossed to the recombined driver lines
R14C08-LexA; R58E02-Gal4 (MBON-M4/M6 and PAM DANs)
and NP2492-Gal4; R14C08-LexA (MBON-V2 and MBON-
M4/M6). 7–10 day-old female flies were collected for brain
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dissection followed by whole-mount brain immunostaining as
described in the previous paragraph.

Statistics
All statistical analyses were performed with the GraphPad Prism
6 software. Data from locomotor assays were analyzed using
two-way ANOVA with Bonferroni’s or Tukey’s post-hoc tests for
multiple comparisons. All data are presented as mean ± SEM.
Significant values in all figures: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p <

0.001.

RESULTS

Activation of TH-Gal4-Targeted DANs
Inhibits Fly Locomotor Reactivity to Startle
To determine the effect of DAN inhibition or activation on SING
response, we first usedTH-Gal4, a driver that expresses selectively
in brain DANs, except in the PAM cluster where it only labels 12
DANs out of ∼90 in total (Friggi-Grelin et al., 2003; Claridge-
Chang et al., 2009; Mao and Davis, 2009; Aso et al., 2010; White
et al., 2010; Pech et al., 2013a). We crossed TH-Gal4 with UAS-
shits1 flies to express the thermosensitive variant of Drosophila
Dynamin Shits1 (Kitamoto, 2001) that blocks neurotransmitter
release above 30◦C (Kitamoto, 2001), in DANs of the progeny.
After a 10-min incubation, these TH>shits1 flies showed no
difference in SING performance between the permissive (23◦C)
and restrictive (32◦C) temperatures, indicating that TH-Gal4-
targeted DANs are not required for the execution of this
locomotor response (Figure 1A). We checked that the UAS-shits1

transgene was active by expressing Shits1 in all neurons with elav-
Gal4, which led to fly paralysis at the restrictive temperature (data
not shown). Flies expressing amembrane-associated form of GFP
(msGFP, described in section Materials and Methods) in TH-
Gal4 DANs neither showed any difference in SING performance
between the two temperatures. This indicates that temperature
by itself had no significant effect on the test (Figure 1A). In
contrast, expressing the heat-inducible cation channel dTrpA1
(Hamada et al., 2008) in TH-Gal4-targeted DANs (TH>dTrpA1
flies) led to altered SING performance after activation at
32◦C, which was decreased to ∼20% of the 23◦C control
value (Figure 1A). After 10min of neuronal thermoactivation,
TH>dTrpA1 flies were in fact very active without any inhibition
of their spontaneous locomotion (Movie S1). After the startle,
most of these thermoactivated flies stayed at the bottom of the
column and a few climbed up to the middle and stopped (Movie
S2), while in the absence of neuronal thermoactivation, these
same flies generally climbed to the top of the column quickly like
wild-type flies (Movie S3). This indicates that DANs labeled by
TH-Gal4 inhibit the SING response i.e., locomotor reactivity, but
not spontaneous locomotion, when they are stimulated.

In order to better characterize this behavioral modulation,
we have monitored the SING performance of TH>dTrpA1 flies
after various times of incubation at 32◦C (Figure S1A). We
observed that 2min were required for the temperature inside
the column to reach above 30◦C. Nervertheless, a decrease
in SING performance could be observed after only 1min of
incubation, indicating that this modulation is actually rapid.
SING performance continued to decrease until ∼5min of

DAN thermoactivation, after what it remained stable at a low
value (Figure S1A). Next, we checked whether DAN activation
triggered during the climbing test could modulate as well
SING behavior. We used for that optogenetic photostimulation
in order to activate neurons instantly without the latency of
thermoactivation, by expressing in DANs the channelrhodopsin
ChR2-XXL (Dawydow et al., 2014; Riemensperger et al., 2016;
Figures S2A,B). We first tested the efficiency of the system
by expressing these optogenetic effectors in all GABAergic
neurons with Gad-Gal4. As expected, blue light but not red
light illumination after startle prevented Gad>ChR2-XXL flies
from climbing (data not shown). Next we tested optogenetic
stimulation of the DANs.We found that illuminating TH>ChR2-
XXL flies with blue light, but not red light, during the test,
i.e., within less than 1min, was sufficient to reduce significantly
their SING performance by ∼22% (Figure S2C). These results
indicate that DAN-mediated SING modulation is a fast and
physiologically-relevant process.

DANs in the PAM Cluster Are Also Involved
in SING Modulation
Because the TH-Gal4 pattern excludes a large part of the PAM
clusters, we used the R58E02-Gal4 driver that labels∼80% of the
PAM DANs (Liu et al., 2012a; Pech et al., 2013a) to investigate
the role of this cluster in SING modulation. Again, no effect
of temperature was detected in control R58E02>msGFP flies
expressing msGFP in the PAM neurons (Figure 1B). Stimulating
PAM DANs activity by dTrpA1 caused no inhibitory effect on
fly locomotion, whereas blocking output from these neurons
with Shits1 led to a small but statistically significant increase in
SING performance at 32◦C compared to 23◦C (Figure 1B). This
result suggests that the PAM clusters contain neurons that inhibit
locomotor reactivity. These neurons appear spontaneously active
during the test because their blockade by Shits1 increased SING
while their stimulation by dTrpA1 did not lead to any effect.
Indeed, it has recently been shown that some PAM DANs are
spontaneously active (Yamagata et al., 2016).

We then constructed a double-driver strain containing both
TH-Gal4 and R58E02-Gal4. We checked that this double driver
labeled all brain DANs, including the PAM clusters, by expressing
msGFP and comparing to the pattern of the R58E02-Gal4 strain
(Figure 1D). Like with TH-Gal4 alone, TH, R58E02>shits1 and
TH, R58E02>msGFP flies showed similar SING performance at
low and high temperatures. In contrast, TH, R58E02>dTrpA1
flies showed at 32◦C a climbing performance that was reduced
to ∼33% of the 23◦C control value (Figure 1C), an effect that
was slightly but significantly lower compared with the decrease
observed in a parallel experiment with TH-Gal4 alone (19.7 ±

4.5% vs. 33.1 ± 4.0% of the 23◦C control for TH>dTrpA1 and
TH, R58E02>dTrpA1 flies, respectively). This result suggests that
PAM neuron co-stimulation somewhat offsets the inhibition of
locomotor reactivity induced by TH-Gal4. It therefore seems that
the PAM clusters contain not only neurons that constitutively
inhibit locomotor reactivity, but also neurons that, on the other
hand, increase SING when stimulated. The PAM clusters are
known, indeed, to include functionally heterogeneous subsets of
DANs (Liu et al., 2012a; Waddell, 2013).
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FIGURE 1 | Differential modulation of Drosophila locomotor reactivity by brain DANs. (A) Thermoactivation of TH-Gal4-targeted neurons reduced SING performance

of TH>dTrpA1 flies at 32◦C compared to the 23◦C control. Expression of Shits1 or membrane-associated GFP (msGFP) had no consequence at 32◦C, indicating that

neither blocking neurotransmitter release in these neurons or temperature rise by itself alters SING. PI: performance index. (B) Thermoinhibition of PAM neurons

targeted by R58E02-Gal4 (R58E02>shits1 flies) at 32◦C increased SING performance compared to the 23◦C control, while thermoactivation of these neurons or

temperature rise by itself (R58E02>dTrpA1 and R58E02>msGFP flies, respectively) had no significant effects. (C) dTrpA1-mediated activation of all brain DANs using

the TH-Gal4, R58E02-Gal4 double driver decreased SING performance slighly less than TH-Gal4 alone (shown in A) in parallel experiments (p < 0.1). Blocking with

Shits1 synaptic output of all DANs at the restrictive temperature did not increase SING performance in contrast to the effect of R58E02-Gal4 alone (shown in B).

(D) Patterns of R58E02-Gal4 and of the double driver TH-Gal4, R58E02-Gal4 in the adult brain revealed by the expression of msGFP. The double driver labels all

DANs including the PAM clusters (arrows). Scale bars represent 100µm. (E) Thermogenetic inhibition or activation of NP6510-Gal4-targeted neurons increased and

slightly decreased SING, respectively. This driver expresses in 15 PAM DANs including MB-MVP1 that project to the β1 and β’2 compartments in the horizontal lobes

of the MBs (inset scheme) plus 3 non-DANs that target the fan-shaped body. (F) Inhibition or activation of PAM MB-M3 neurons targeted by NP5272-Gal4 that project

to the MBs in β2 and, more faintly, in β’2 (inset scheme) had no effect on SING performance. (A–C,E,F) Two-way ANOVA with Bonferroni’s multiple comparisons tests

(*p < 0.05; ***p < 0.001).

The driver NP6510-Gal4 expresses in 15 PAM DANs that are
not labeled by TH-Gal4 and that project to the MB horizontal
lobe β1 and β’2 compartments (Figure 1E; Aso et al., 2010;
Riemensperger et al., 2013). We previously showed that the
degeneration of these 15 DANs induced by mutant α-synuclein
accumulation led to progressive SING defects that were as

strong as those observed by expressing mutant α-synuclein
in all neurons of the fly (Riemensperger et al., 2013). This
suggested that NP6510-Gal4 DANs could be involved in SING
modulation. NP6510>shits1 flies showed indeed a slight increase
in SING performance at the restrictive temperature, similar to
the effect observed with R58E02-Gal4, whereas dTrpA1-induced
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thermostimulation of these neurons by contrast led to decreased
SING response (Figure 1E). No such effects were observed with
NP5272-Gal4 that expresses in three PAM cells involved in
aversive odor memory, the MB-M3 neurons, which innervate the
tip of the MB horizontal lobes (β2 and β’2 compartments) and
are labeled by TH-Gal4 (Aso et al., 2010; Figure 1F). Neither did
aNP6510-Gal4, R58E02-Gal80 recombinant driver that expresses
only in three NP6510-targeted non-DANs have any effect on
SING (data not shown). Our results suggest, therefore, that the
PAM neurons that inhibit SING correspond to the NP6510-
targeted DANs or a subset of these cells.

MB-Afferent DANs of the PPL1 Clusters
Inhibit the SING Response
We recently reported that the progressive degeneration of DANs
in the PPL1 clusters induced by a mutation of the circadian
geneClock severely accelerates age-related SING decline (Vaccaro
et al., 2017). To identify whether PPL1 plays a direct role in
SING modulation, we employed two drivers that label specific
neurons in this cluster: Mz840-Gal4 labeling the MB-V1 neuron
that projects to MB dorsal lobes α2, α’2 compartments and
NP2758-Gal4 that expresses in the MB-MP1 neuron sending
projection to the γ1 peduncle (Figures 2A,B; Aso et al., 2010,
2012). Whereas, the inhibition of the neurons targeted by each
of these drivers had no effect on SING, their thermoactivation
significantly decreased performance of the flies to around 41 and
78% of the 23◦C control value forMz840-Gal4 andNP2758-Gal4,
respectively (Figures 2A,B).We then used the driver TH-D’-Gal4
(Liu et al., 2012b) that expresses strongly in the PPL1 cluster
(Figure 2C). SING performance of TH-D’>dTrpA1 flies at 32◦C
was markedly reduced to∼16% of the 23◦C control (Figure 2C),
an effect comparable to that of TH-Gal4 itself (see Figure 1A).
However, TH-D’-Gal4 expresses in other DAN clusters than the
PPL1 such as PPM2 and PPM3 (Liu et al., 2012b) that could
contribute as well to SING modulation.

DANs Localized in Other Clusters Are Also
Implicated in SING Regulation
To determine whether other DANs modulate the SING response,
we selected two drivers, TH-C1-Gal4 and TH-C’-Gal4, both of
which do not express in the PPL1 (Liu et al., 2012b). We first
verified that the PPL1 clusters were not labeled by these drivers
(Figures 2D,E, left). The use of these drivers did not cause any
effect on SING upon synaptic blockade with Shits1 but induced
down-regulation of SING upon neuronal thermoactivation,
which was strong with TH-C1-Gal4 (18% of the 23◦C control)
(Figure 2D, right) and lower, but still significant, with TH-C’-
Gal4 (77% of the control) (Figure 2E, right). Both drivers express
similarly in the protocerebral anterior medial (PAL), PPL2 and
PPM2 DAN clusters, indicating that some of these clusters, and
possibly the PPL2ab neurons that project to the MB calyx (Mao
and Davis, 2009), could also be involved in SING modulation.
Overall, our results suggest that several brain DAN subsets have
the ability to hinder SING behavior when activated or inhibited,
indicating that DA-mediated modulation of locomotor reactivity
is an important and complex process in the insect brain.

Activation of MB α’β’ and γ Neurons
Decreases SING Performance
We previously reported that SING performance was decreased
when synaptic activity in theMB prime (α’β’) lobes, targeted with
c305a-Gal4, was either thermogenetically inhibited or stimulated,
and that the defect was stronger in the latter case (Riemensperger
et al., 2013). We confirmed those results in the present work
using either c305a-Gal4 or G0050-Gal4: both drivers did induce
SING inhibition at 32◦C either with Shits1 or with dTrpA1
(Figures 3A,B). c305a-Gal4 labels the entire MB α’β’ lobes and
the γ lobes faintly, as well as the antennal lobes, the central
complex and other neuropils (Krashes et al., 2007; Pech et al.,
2013b), while G0050-Gal4 selectively labels the α’β’ lobes in the
MB, and also the ellipsoid body and brain glial cells (Lin et al.,
2007; Chen et al., 2012). To ascertain the role of the α’β’ lobes
in SING modulation, we used two other drivers, 4-59-Gal4 and
R35B12-Gal4, that restrictedly express in the MB prime lobes
(Figures 3C,D, insets). Neuronal activation within 4-59-Gal4-
and R35B12-Gal4-labeled KCs decreased SING to around 21
and 54% of the 23◦C control value (Figures 3C,D), compared
to around 12.5% with c305a-Gal4 and 4% with G0050-Gal4
(Figures 3A,B). In contrast, Shits1 expression with 4-59-Gal4 and
R35B12-Gal4 did not cause any decrease in SING behavior at
the restrictive temperature (Figures 3C,D). This suggests that the
α’β’ KCs are rather involved in SING inhibition than activation,
and that another, still unidentified, targeted neuropile must be
responsible for the Shits1-induced decrease observed with c305a-
Gal4 and G0050-Gal4 (Figures 3A,B).

As mentioned, c305a-Gal4 expresses in the α’β’ lobes and
in the γ lobes faintly. To further investigate the role of γ

lobe KCs, we used the drivers R16A06-Gal4 and H24-Gal4
that target selectively γ neurons in the MB. Their expression
patterns are shown in Figure 3G. We obtained discrepant
results. Expressing dTrpA1 with R16A06-Gal4 nearly abolished
fly locomotor reactivity at 32◦C to around 4% of the 23◦C
control (Figure 3E), while the same experiment performed with
H24-Gal4 had no effect on SING (Figure 3F). Such a difference
prompted us to analyze more precisely the expression patterns
of these γ lobe drivers. First, H24-Gal4 also labels the αβ lobes
slightly in contrast to R16A06-Gal4 that appears selective for the
γ lobes. Second, by counting the labeled MB neurons using two-
photon microscopy, we found that R16A06-Gal4 expresses in
around 500 γ lobe KCs per hemisphere while H24-Gal4 labels
around 300 γ neurons only (Figure 3G). It is quite possible
that H24-Gal4 does not express in a specific subset of γ KCs
involved in SING control that would be in contrast targeted by
R16A06-Gal4.

The γ lobe driver R16A06-Gal4 had such a strong effect that
we looked more closely at SINGmodulation in R16A06>dTrpA1
flies. Kinetics studies showed that the inhibition was fast
with this driver indeed, decreasing SING performance to
∼10% of controls after only 3min of thermoactivation (Figure
S1B). Optogenetic photostimulation of R16A06>ChR2-XXL flies
during the climbing test was also able to reduce efficiently
SING performance by ∼30% (Figure S2D). Remarkably, at the
end of a 10-min thermoactivation period, R16A06>dTrpA1 flies
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FIGURE 2 | SING response decrease upon activation of MB-afferent PPL1 and other DANs. (A) Thermoactivation of the MB-V1 DANs in the PPL1 cluster with

Mz840-Gal4 (Mz840>dTrpA1 flies) reduced locomotor reactivity, whereas blocking neurotransmitter release in these neurons (Mz840>shits1 flies) had no effect.

MB-V1 targets the α2, α’2 compartments of the MB vertical lobes (inset scheme). (B) A decrease in SING performance was also observed with NP2758-Gal4 that

labels the PPL1 MB-MP1 neurons. MB-MP1 sends projections to the MB γ1 peduncle (γ1ped) (inset scheme). (C) Expression pattern of the TH-D’-Gal4 driver is

shown in Left. Nearly all PPL1 neurons are labeled (white arrows). SING was decreased after thermoactivation of TH-D’-Gal4-targeted neurons (Right).

(D) TH-C1-Gal4 does not label the PPL1 cluster (Left, arrows) whereas this driver expresses in the PPL2ab cluster and other DANs. Neuronal activation with

TH-C1-Gal4 markedly decreased SING performance (Right). (E) TH-C’-Gal4 that does not label the PPL1 cluster as well (Left, arrows) and gave a lower but significant

SING modulation (Right). Inhibition of the synaptic output using Shits1 had no effect with either TH-C1-Gal4 or TH-C’ -Gal4. Scale bars represent 100µm.

(A–E) Two-way ANOVA with Bonferroni’s multiple comparisons tests (**p < 0.01; ***p < 0.001).

were not paralyzed but in contrast very active in the column
(Movie S4). After being tapped down, they did not start climbing,
possibly because the startle stopped spontaneous locomotion
while thermoactivation of the γ lobe prevented their locomotor
reactivity (Movie S5). These experiments confirmed that γ lobe
activation has a stronger effect on SING than DAN activation.

αβ Lobe Co-activation Antagonizes SING
Modulation by α’β’ and γ KCs
In our previous work, we considered that the αβ lobe neurons
were not involved in SING modulation, because no effect could
be seen after synaptic blockade or activation with mb247-Gal4
that strongly targets the αβ and γ KCs (Riemensperger et al.,
2013). Again, the result with mb247-Gal4 could be confirmed
here (Figure 3H). Similarly, the use of an αβ-specific driver,
c708a-Gal4, did not induce any effect on SING (data not shown).
Neuronal thermoactivation with H24-Gal4 did not show any

difference compared to the control, while that of R16A06-Gal4-
targeted neurons led to a strong SING decrease (Figures 3E–G).
Remarkably, both mb247-Gal4 and H24-Gal4, which induce no
effect on SING, express both in the αβ and γ KCs, whereas
R16A06-Gal4 that induce strong effect on SING targets the γ KCs
selectively. This led us to the hypothesis that co-activation of αβ

neurons could potentially antagonize SING modulation caused
by γ lobe activation.

To test this possibility, a recombined R16A06-Gal4, mb247-
Gal4 double driver line was constructed. The pattern of this
driver, as characterized by msGFP expression, showed even and
strong α, β and γ lobe labeling (Figure 3I). Expressing dTrpA1
with R16A06-Gal4 confirmed the decreased fly locomotor
reactivity at 32◦C (15% of the 23◦C control, Figure 3J), while
neuronal activation of KCs targeted by the R16A06-Gal4,mb247-
Gal4 double driver in a parallel experiment showed remarkably
rescued SING response that rose up to 53% of the control in
the first round of test (Figure 3J). The response of these flies
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FIGURE 3 | MB αβ neurons counteract SING modulation induced by α’β’ and γ neuron activation. (A–D) Effect of drivers targeting α’β’ lobe KCs. (A,B)

Thermogenetic activation or synaptic inhibition of neurons labeled with c305a-Gal4 or G0050-Gal4 both decreased SING performance, with a stronger effect resulting

from their activation. (C,D) With 4-59-Gal4 or R35B12-Gal4, SING was also reduced upon activation, but not upon block of synaptic output. Note that c305a-Gal4

and G0050-Gal4 labels other brain neuropils, whereas 4-59-Gal4 and R35B12-Gal4 are very specific for the MB prime lobes. (E,H) Effect of drivers targeting γ lobe

KCs. (E) Neuronal activation with the γ driver R16A06-Gal4 strongly affected SING, while flies had normal response after inhibition of these neurons. (F) The use of

another γ lobe driver, H24-Gal4, did not cause any effect on SING performance. (G) Analysis of expressions patterns in the brain indicates that R16A06-Gal4 is very

selective and expresses stronger than H24-Gal4 in the γ lobe. Scoring the cells showed that R16A06-Gal4 labels a larger number of γ KCs cells than H24-Gal4. (H)

Neuronal activation or inhibition of MB αβ and γ lobes with mb247-Gal4 did not modulate fly locomotor reactivity. (I) Expression pattern of the recombined double

driver R16A06-Gal4, mb247-Gal4 as revealed by msGFP expression. (J) Parallel experiment were performed to compare the effects on locomotor reactivity resulting

from neuronal activation by R16A06-Gal4 and the double driver R16A06-Gal4, mb247-Gal4. The SING decrease induced by R16A06-Gal4, mb247-Gal4 in the first

round of test was significantly mitigated compared to that induced by R16A06-Gal4 alone. This suggests that γ lobe-induced SING modulation is inhibited by

simultaneous αβ lobe activation. (K) Expression pattern of the recombined double driver R35B12-Gal4, mb247-Gal4 as revealed by msGFP expression.

(Continued)
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FIGURE 3 | (L) Parallel experiment was performed to compare the effects on locomotor reactivity resulting from neuronal activation by R35B12-Gal4 and the double

driver R35B12-Gal4, mb247-Gal4. Flies with neuronal activation in both αβγ and α’β’ with R35B12-Gal4, mb247-Gal4 showed normal SING performance compared

to reduced performance in R35B12>dTrpA1 flies. This suggests that activation of αβγ KCs blocked SING modulation induced by α’β’ KCs. Scale bars represent

100µm. (A–F,H) Two-way ANOVA with Bonferroni’s multiple comparisons tests (***p < 0.001). (G) One-way ANOVA with Tukey’s multiple comparisons test (***p <

0.001). (J,L) Two-way ANOVA with Tukey’s multiple comparisons tests (*p < 0.05; **p < 0.01; ***p < 0.001).

then declined in the two subsequent tests, possibly related to
a dominant effect of R16A06-Gal4-induced neuronal activation.
This result indicates that co-activating the αβ lobes can at least
transiently inhibit SING blockade induced by activation of the γ

lobe intrinsic neurons.
We then checked if activation of the αβ KCs could similarly

interfere with SING modulation induced by α’β’ KC activation.
A recombined R35B12-Gal4, mb247-Gal4 double driver line was
constructed that strongly expresses in the αβ, γ and α’β’ KCs,
i.e., in all the MB lobes (Figure 3K). Strikingly, the significant
effect of α’β’ neuron thermoactivation by R35B12-Gal4 on SING
modulation (reduction of the response to 33% of the 23◦C
control) was nearly abolished when the double-driver R35B12-
Gal4, mb247-Gal4 was used in a parallel experiment (reduction
to 90.5% of the control only) (Figure 3L). Therefore, co-
activation of the αβ and γ neurons blocked the inhibitory effect
induced by α’β’ neuron activation. Accordingly, we observed
that thermoactivation or synaptic blockade with a driver that
expresses specifically in all MB lobes, VT30559-Gal4, only had
little effects on SINGmodulation (data not shown). Overall, these
results indicate that activity of the αβKCs potently counteracts by
an unknown mechanism the behavioral modulation induced by
the α’β’ and γ KCs.

Regulation of Locomotor Reactivity
Requires DA Receptor Signaling in the MB
We next investigated whether down-regulation of DA receptor
expression in the MB could prevent the decrease in SING
caused by thermoactivation of DANs. Two DA receptors, D1-
like Dumb/Dop1R1 and D1/5-like Damb/Dop1R2, are abundant
in the MB lobes where they play key roles in olfactory memory
(Kim et al., 2007; Seugnet et al., 2008; Selcho et al., 2009; Berry
et al., 2012; Musso et al., 2015; Plaçais et al., 2017). Dumb has
also been implicated in arousal and grooming (Andretic et al.,
2008; Lebestky et al., 2009; Pitmon et al., 2016) and Damb in
paraquat- and DA-induced neurotoxicity (Cassar et al., 2015).
Taking advantage of the LexA-LexAop and Gal4-UAS expression
systems, we expressed dTrpA1 in DANs using LexAop-dTrpA1
and the TH-LexA driver, whose expression pattern is similar
to that of TH-Gal4 (Berry et al., 2015), while inactivating by
targeted RNA interference (RNAi) the genes encoding Dumb
or Damb in all MB lobes with the 238Y-Gal4 driver. As shown
in Figure 4A, TH-LexA-controlled dTrpA1 expression in the
presence of 238Y-Gal4 alone induced a significant decrease in
SING performance at 32◦C (∼48% of the 23◦C control value).
We observed that adding theUAS-Dumb-RNAi construct to allow
Dumb inactivation in the MB fully restored SING performance
to control level despite DAN thermoactivation (Figure 4A).
In contrast, selective Damb inactivation had no such effect

(Figure 4A). This experiment suggests that DA modulation of
SING requires DA receptor expression in the MB KCs and that
this regulation specifically depends on signaling through the
Dumb receptor.

Next we investigated whether RNAi-mediated inactivation
of Dumb expression in specific MB lobes could have a similar
antagonistic effect on DA modulation of SING. We found
that targeting Dumb RNAi selectively in the α’β’ or γ lobes
using R35B12-Gal4 and R16A06-Gal4, respectively, in both
cases significantly rescued the SING response, in spite of TH-
LexA-mediated DAN activation (Figure 4B). This effect was
most prominent with the strong and specific γ driver R16A06-
Gal4 (Figure 4B). This indicates a requirement for the DA
receptor Dumb in the α’β’ and γ lobes for DAN-mediated SING
modulation.

MBON-M4/M6 and MBON-V2 Relay SING
Modulation
We then attempted to identify specific MB-output neurons
(MBONs) that could transfer MB modulatory information to
downstream motor circuits. Since the intrinsic KCs in the MB
α’β’ and γ lobes appear to play a role in SING control, we studied
the role of MBONs whose dendrites arborize on these lobes. The
glutamatergic MBON-M4β, M4β’ and M6 (also named MBON-
β2β’2 and MBON-β’2mp for M4, and MBON-γ5β’2a for M6)
arborize on the tip of the β, β’, and γ lobes, respectively (Tanaka
et al., 2008; Aso et al., 2014b; Owald et al., 2015a) (Figure 5A).
These neurons are known to be involved in sleep regulation and
the expression of appetitive and aversive memory performance
(Aso et al., 2014b; Bouzaiane et al., 2015; Owald et al., 2015a;
Sitaraman et al., 2015a). Using NP3212-Gal4 and R27G01-Gal4
that both target the MBON-M4 and M6 neurons (Tanaka et al.,
2008; Bouzaiane et al., 2015), we observed that thermogenetic
activation of these MB efferent neurons significantly reduced
locomotor reactivity, while inhibiting their synaptic output with
Shits1 had no effect (Figures 5B,C).

The cholinergic MBON-V2α and V2α’ (also named MBON-
α2sc and MBON-α’3, respectively) have their dendrites in the
MB vertical lobes (α2, α’3) and are required for retrieval of
aversive olfactory memory from the αβ lobe (Tanaka et al., 2008;
Séjourné et al., 2011; Aso et al., 2014b; Bouzaiane et al., 2015;
Figure 5D). Two specific drivers, NP2492-Gal4 and R71D08-
Gal4 (Tanaka et al., 2008; Séjourné et al., 2011) were used to
test whether V2 neurons are implicated in SING modulation.
Activating these neurons with either of these drivers greatly
reduced SING performance to around 33 and 21% of the 23◦C
control value, respectively, and again inhibition of synaptic
output had no effect (Figures 5E,F). Finally, neither activation
nor blocking of theMBON-V3 (aliasMBON-α3) output, targeted
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FIGURE 4 | DA control of SING requires expression of the DA receptor Dop1R1/Dumb in the MB. (A) SING modulation was induced by DAN activation at 32◦C in

TH-LexA>LexAop-dTRPA1 flies, but was prevented when Dumb expression was inhibited by RNAi in all MB KCs with 238Y-Gal4. In contrast, RNAi inactivation of

Dop1R2/Damb had no effect. (B) Similar experiments performed with the γ lobe driver R16A06-Gal4 and the α’β’ driver R35B12-Gal4. RNAi-mediated Dumb

inactivation in both these KC subsets partially inhibited SING modulation induced by DAN thermoactivation. (A,B) Two-way ANOVA with Tukey’s multiple comparisons

tests (**p < 0.01; ***p < 0.001).

by G0239-Gal4, had any effect on the SING response (data
not shown), indicating that specific MBONs are involved in
SING control. Hence, we propose that both MBON-M4/M6 and
MBON-V2 participate in the transmission of MB regulatory
information to the downstream SING reflex motor circuits.

The Ellipsoid Body Does Not Play a Role in
the Modulation of Startle-Induced
Locomotion
The Drosophila ellipsoid body (EB) is a region of the central
complex in the brain that controls locomotor patterns (Strauss
and Heisenberg, 1993; Martin et al., 1999b, 2001; Strauss, 2002),
as well as spatial orientation and visual patternmemories (Neuser
et al., 2008; Pan et al., 2009). Subsets of DANs labeled by TH-Gal4
heavily innervate the EB (Mao andDavis, 2009;White et al., 2010;
Ueno et al., 2012; Riemensperger et al., 2013). Due to the complex
structure of the EB, different driver lines have been used which
express in various areas of the EB: c41-Gal4 (all EB neurons),
c105-Gal4 (R1 neurons), EB1-Gal4 (R2/R4d neurons), and c232-
Gal4 (R3/R4 neurons). Neuronal activation or synaptic inhibition
with any of these drivers had no significant effect on the fly’s
locomotor reactivity, as tested by SING (Figure 6). This suggests
that the EB is not involved in the neuronal circuits modulating
startle-induced locomotion in Drosophila.

Potential Synaptic Convergence Between
DANs and MBONs Controlling SING
According to the MB neuronal architecture reported by Aso
et al. (2014a), dendrites from the PAM DANs mainly reside in
the crepine (CRE) and superior medial protocerebrum (SMP)
brain regions, and slightly also in the superior intermediate
protocerebrum (SIP) and superior lateral protocerebrum (SLP).
The PPL1 DANs have a large part of their dendrites in the SMP,

which is also where the MBON-M4/M6 and MBON-V2 send
axonal projections. In order to detect zones of potential synaptic
connections between the afferent and efferent MB neurons, we
used the technique of splitGFP reconstitution (also named GFP
reconstitution across synaptic partners, GRASP) coupled with
the LexA-LexAop and Gal4-UAS systems (Feinberg et al., 2008;
Gordon and Scott, 2009; Pech et al., 2013a; Macpherson et al.,
2015).

The PAM DAN projections mainly tile the MB horizontal
lobes where the MBON-M4/M6 dendrites arborize (Pech et al.,
2013b; Riemensperger et al., 2013; Aso et al., 2014a). Results of
splitGFP experiments indicated a potential synaptic convergence
between these two groups of neurons in the tips of the MB
horizontal lobes (γ5, β2, and β’2 compartments) (Figure 7A1–3)
and also in the CRE and SMP neuropiles (Figure 7A2–4). This
suggests, in agreement with a previous report (Owald et al.,
2015a), that the zones of convergence between PAM and M4/M6
neurons not only localize in the MB horizontal lobes but also in
the superior protocerebrumwhere theM4/M6 neurons appear to
project onto the PAM DAN dendrites.

MBON-V2 arborizes on the MB vertical lobes (Tanaka et al.,
2008; Séjourné et al., 2011; Aso et al., 2014b). Reconstituted
split GFP (rsGFP) signals between MBON-V2 and DANs
targeted by TH-LexA could be detected in the MB α and
α’ medial compartments, where the PPL1 MB-V1 neurons
send projections (Aso et al., 2010, 2014b), indicating a close
proximity between these neurons (Figure 7B1,2). A strong
rsGFP signal was only observed when the presynaptic marker
nsyb::spGFP1−10 was driven with TH-LexA and CD4::spGFP11
by the MBON-V2 driver NP2492-Gal4 (Figures 7B1,2) and
not the opposite (not shown), suggesting that DANs project
to the MBON-V2 in the MB vertical lobe compartments. The
occurrence of DAN>MBON synapses in the MB has recently
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FIGURE 5 | MB efferent neurons are part of the neuronal network for SING modulation. (A) Dendrites of the glutamatergic MBON-M4/M6 arborize on the tip of the

MB horizontal lobes (γ5β
′
2a, β

′
2mp, β

′
2mp_bilateral compartments). (B,C) Thermoactivation with either NP3212-Gal4 or R27G01-Gal4 that labels MBON-M4/M6

decreased the SING response, whereas neuronal thermoinhibition had no locomotor effect. (D) Dendrites of the cholinergic MBON-V2 arborize in the medial

compartment of the MB vertical lobes (α2, α’3). (E,F) Thermoactivation with either NP2492-Gal4 or R71D08-Gal4 that labels MBON-V2 also markedly reduced SING

performance, and again, inhibition of synaptic output had no effect. (B,C,E,F) Two-way ANOVA with Bonferroni’s multiple comparisons tests (***p < 0.001).

been demonstrated in a comprehensive electron microscopy
study (Takemura et al., 2017). Furthermore, rsGFP signals were
visible between MBON-V2 and MBON-M4/M6 in the SMP
region, which suggests that these MBONs may form axo-axonic
reciprocal synapses (Figures 7C1,2). It seems that MBON-
V2 could be presynaptic and MBON-M4/M6 postsynaptic in
these contacts because a rsGFP signal in the SMP was only
observed when the V2 driver NP2492-Gal4 expressed the
presynaptic marker nsyb::spGFP1−10 and the M4/M6 driver
CD4::spGFP11 (Figures 7C1,2) and not the opposite (not
shown). Therefore, there might be feedback signals from the
MBON-V2 to MBON-M4/M6 and DANs that could optimize
SING modulation, possibly in relation to learning and memory
processes, and thus coordinate locomotor behavior with the
environment.

DISCUSSION

In this study, we have identified MB afferent, intrinsic and
efferent neurons that underlie modulation of startle-induced
locomotion in the Drosophila brain. Using in vivo activation
or silencing of synaptic transmission in neuronal subsets, we
showed that specific compartments of the MBs are central to
this modulation. Implicated neurons include α’β’ and γ KCs,
subsets of PAM and PPL1 DANs, and the MBONs V2 and
M4/M6. We have also characterized some of the potential
synaptic connections between these elements using splitGFP
reconstitution across cells. Although the picture is not complete,
these results led us to propose a first scheme of the neuronal
circuits underlying the control of locomotor reactivity in an
insect brain.
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FIGURE 6 | Activation or silencing of EB neurons has no effect on SING modulation. (A–D) Various drivers were used to inhibit synaptic output (with Shits1) or induce

thermoactivation (with dTrpA1) in several classes of EB neurons: c41-Gal4, c105-Gal4, EB1-Gal4 and c232-Gal4, that express in all (A), R1 (B), R2/R4 (C) and R3/R4

(D) EB neurons, respectively. No effect on SING performance could be observed in all cases.

FIGURE 7 | Identification of potential synaptic connections between SING modulatory neurons by splitGFP reconstitution. (A) Reconstituted splitGFP (rsGFP) signal

between PAM DANs and glutamatergic MBON-M4/M6. n-syb::spGFP1−10 was expressed in PAM neurons with R58E02-Gal4 and CD4::spGFP11 in MBON-M4/M6

with R14C08-LexA. rsGFP fluorescence localized at the tips of the MB horizontal lobes (γ5 and β2, β’2), as well as in the crepine (CRE) and superior medial

protocerebrum (SMP) neuropiles where MBON-M4/M6 send their axonal projections. Panel A1 is a view of the whole brain. Panels 2–4 show different zoomed Z

projections of the white box area in A1. (B) rsGFP signal between TH-LexA-targeted DANs and cholinergic MBON-V2 labeled with NP2492-Gal4. rsGFP fluorescence

localized in the MB vertical lobes α2, α’3 compartments. Panel B2 is a magnification of the white box in B1. (C) rsGFP signal between MBON-M4/M6 and MBON-V2

labeled with R14C08-LexA and NP2492-Gal4, respectively. Localization of rsGFP fluorescence suggests the existence of axo-axonic synaptic connections between

MBON-M4/M6 and MBON-V2 in the SMP. Panel C2 corresponds the white box in C1. Scale bars represent 30µm.

DANs Show Diverse Functions in the
Control of Locomotor Reactivity
We previously reported that the degeneration of DANs afferent
to the MBs in the PAM and PPL1 clusters is associated
with accelerated decline of SING performance in aging flies
(Riemensperger et al., 2013; Vaccaro et al., 2017). Here we have
specifically addressed the role of these and other DANs in SING
modulation. Our initial observation was that thermoactivation of
TH-Gal4-targeted DANs consistently led to decreased locomotor
reactivity, while silencing synaptic output from these neurons

had no effect. This result was verified by rapid optogenetic
photostimulation, indicating that indeed DAN activation affects
locomotor reactivity during the execution of the behavior. In
contrast, blocking selectively synaptic output of the PAM DANs
neurons resulted in a slight increase in SING performance,
suggesting that a subset of spontaneously active neurons in the
PAM inhibits SING. It should be noted, however, that this effect
appeared small probably in part because SING performance was
already very high for the control flies in our assay condition. This
issue may have prevented us from detecting other modulatory
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neurons in the course of this study. Interestingly, our data
suggest that those PAM neurons that inhibit SING are targeted
by NP6510-Gal4, a driver that expresses in 15 PAM DANs that
project to the MB β1 and β’2 compartments. The degeneration
of these neurons also appears to be largely responsible for α-
synuclein-induced decline in SING performance in a Parkinson
disease model (Riemensperger et al., 2013). Moreover, we
provided one observation in this study, using DAN co-activation
with TH-Gal4 and R58E02-Gal4, suggesting that other subsets
of the PAM cluster may modulate locomotor reactivity with
opposite effects, i.e., increase SING when they are stimulated.

Our study further indicated that thermoactivation of two
DANs of the PPL1 cluster, either MB-MP1 that projects to
the γ1 peduncle in the MB horizontal lobes or MB-V1 that
projects to the α2 and α’2 compartments of the MB vertical lobes,
was sufficient to significantly decrease SING performance. This
suggests that the MB-afferent DANs of the PPL1 cluster are also
implicated in SINGmodulation. Other DAN subsets could play a
role and are still to be identified. However, inactivation of a DA
receptor, Dop1R1/Dumb, in MB KCs precluded DAN-mediated
SING modulation, strongly suggesting that DANs afferent to
the MBs plays a prominent role in the neuronal network
controlling fly’s locomotor reactivity. In contrast, inactivating
Dop1R2/Damb in KCs did not show any effect on DA-induced
SING control.

Therefore, these results suggest that DA input to the MBs
can inhibit or increase the reflexive locomotor response to a
mechanical startle, allowing the animal to react to an instant,
sudden stimulus. In accordance with this interpretation, previous
reports have shown that the MB is not only a site for associative
olfactory learning, but that it can also regulate innate behaviors
(Hige et al., 2015; Lewis et al., 2015; Owald et al., 2015a). By
combining synaptic imaging and electrophysiology, Cohn et al.
(2015) have demonstrated that dopaminergic inputs to the MB
intrinsic KCs play a central role in this function by exquisitely
modulating the synapses that control MB output activity, thereby
enabling the activation of different behavioral circuits according
to contextual cues.

Interactions Between MB Compartments
Contribute to SING Modulation
We previously reported a decrease in SING performance when
KCs in the α’β’ lobes, but not in the αβ and γ lobes, were
thermogenetically stimulated or their synaptic output silenced
(Riemensperger et al., 2013). Here, using a set of specific
drivers, we have more precisely studied the contribution of the
various MB lobes in the modulation of this innate reflex. We
confirmed that the α’β’ KCs down-regulate SING when they
are activated but not when their output is inhibited. Other
unidentified neurons, which are targeted by the rather non-
selective c305a-Gal4 and G0050-Gal4 drivers, trigger a decrease
in SING performance when they are inhibited by Shits1, and
are therefore potential SING-activating neurons. We further
found that the MB γ lobes contain KCs that strongly inhibit
SING when activated, both by thermogenetic and optogenetic

stimulation, as shown with the γ-lobe specific driver R16A06-
Gal4. However, thermoactivation of γ neurons with other drivers,
like mb247-Gal4, which express both in the αβ and γ lobe,
did not decrease SING (Riemensperger et al., 2013 and this
study). This could result from an inhibitory effect of αβ neuron
activation on SING modulation by γ neurons. To test this
hypothesis, we have generated a double-driver by recombining
mb247-Gal4 with R16A06-Gal4. Because both drivers express
in the γ lobes, one would expect a stronger effect on SING
modulation after thermoactivation with the double-driver than
with R16A06-Gal4 alone. We observed strikingly the opposite,
i.e., that SING was decreased to a less extent with the double-
driver than with R16A06-Gal4 alone. Activation of mb247-Gal4
αβ neurons therefore likely counterbalanced the effect of γ

neuron activation with R16A06-Gal4 on SING modulation. A
similar and evenmore obvious results was obtained whenmb247-
Gal4 was recombined with the α’β’ driver R35B12-Gal4: co-
activation of the neurons targeted by these two drivers prevented
the strong SING modulation normally induced by R35B12-
Gal4 alone. These results suggest the existence of an inter-
compartmental communication process for locomotor reactivity
control in the Drosophila MB. Comparably, it was recently
suggested, in the case of memory retrieval, that MB output
channels are ultimately pooled such that blockade (or activation)
of all the outputs from a given population of KCs may have no
apparent effect on odor-driven behavior, while such behavior can
be changed by blocking a single output (Owald et al., 2015a).
Such a transfer of information could occur, as was previously
reported, through connections involving the MBONs within
the lobes or outside the MB (Aso et al., 2014b; Owald et al.,
2015a).

Role of Specific MBONs in Innate Reflex
Suppression
Finally, the activation of two sets of MB efferent neurons,
cholinergic MBON-V2 and glutamatergic MBON-M4/M6,
consistently decreased SING performance of the flies. In
contrast, silencing these neurons had no effect on locomotor
behavior, as was previously observed (Aso et al., 2014b). The
dendrites of these MBONs arborize in the medial part of the
vertical lobes (α2, α’3) and the tips of the horizontal lobes (β’2
and γ5), respectively, as a further evidence that the prime and γ

lobes, and DANs efferent to these compartments, are involved
in SING modulation. We also show results from GRASP
observations suggesting that the PAM DANs lay very close or
make potential synaptic connections with the MBON-M4/M6
neurons in their MB compartments, as well as the M4/M6
with the PAM in the SMP, in agreement with recent evidence
from other laboratories (Lewis et al., 2015; Owald et al., 2015a;
Takemura et al., 2017). Our results also provide evidence that the
PPL1 DANs and MBON-V2 contact each other in the vertical
lobes and that axo-axonic synaptic contacts may occur between
the MBON-V2 and M4/M6 neurons in their common projection
region in the SMP.

These MBONs are known to be involved in opposite
ways in olfactory memory: DAN-induced synaptic repression
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of cholinergic or glutamatergic MBONs would result in the
expression of aversive or attractive memory, respectively (Aso
et al., 2014b). Here we find, in contrast, that the activation
of these two sets of MBONs had similar depressing effects on
SING behavior. Interestingly, it has been recently reported that
the glutamatergic MBONs and PAM neurons that project to
the MB β’2 compartment are also required for modulation of
another innate reflex, CO2 avoidance (Lewis et al., 2015). CO2
exposure, like mechanical startle, represents a potential danger
for the flies, thus triggering an avoidance behavior that can be
suppressed by silencing these MBONs in specific environmental
conditions. However, it is the activation of glutamatergic MBONs
that inhibits SING. This apparent discrepancymight be explained
if the downstream circuits were different for these two escape
behaviors (CO2 avoidance and fast climbing). Overall, our results
further support the hypothesis of a primary role of the MB as
a higher brain center for adapting innate sensory-driven reflex
to a specific behavioral context (Cohn et al., 2015; Lewis et al.,
2015).

Different Neuronal Circuits Control
Locomotor Reactivity, Sleep/Wake State
and Hyperactivity
Even though the model remains to be confirmed and elaborated,
a proposed scheme summarizing our current working hypothesis
of the neural components underlying SING control is presented
in Figure 8. Sensory information from mechanical stimulation
triggers an innate climbing reflex (negative geotaxis) that can be
regulated by signals transmitted from MB-afferent DANs (in the
PAM and PPL1 cluster) to select KCs and two sets of MBONs
(V2 and M4/M6) in specific MB compartments. Processing of
this information could occur through synergistic or antagonistic
interactions between the MB compartments and, finally, the
MBON neurons would convey the resulting modulatory signal
to downstream motor circuits controlling the climbing reflex.
We observed that the axonal projections of these MBONs make
synaptic contacts with each other and converge together to
the SMP where the dendrites of DANs lie (Aso et al., 2014a),
suggesting that they might form feedback loops to control DA
signaling in the circuits.

SING performance can be affected by a collection of factors
including the arousal threshold of the fly, the ability to sense
gravity and also climbing ability. “Arousal” is defined as a
state characterized by increased motor activity, sensitivity to
sensory stimuli, and certain patterns of brain activity (Coull,
1998; Pfaff and Banavar, 2007). A distinction can be made
between endogenous arousal (i.e., wakefulness as opposed to
sleep) and exogenous arousal (i.e., behavioral responsiveness)
(Van Swinderen and Andretic, 2011). In Drosophila, DA level
and signaling control all known forms of arousal (Friggi-Grelin
et al., 2003; Birman, 2005; Kume et al., 2005; Lebestky et al., 2009;
Van Swinderen and Andretic, 2011; Kumar et al., 2012; Liu et al.,
2012b; Ueno et al., 2012; Nall et al., 2016). Because the MB plays
an important role in sleep regulation (Sitaraman et al., 2015a;
Artiushin and Sehgal, 2017; Tomita et al., 2017), sleep- or wake-
promoting networksmight indeed in part interact or overlap with

FIGURE 8 | Schematic representation of MB-associated neural components

modulating startle-induced locomotion. DA signals for SING modulation

originate from PAM neuron subsets and neurons inside the PPL1 cluster

(MB-MP1 and MB-V1) that project to the MB lobes. Axon of MB-V1 is shown

as a dashed line because a driver specific for this neuron could not be tested

in this study. The α’β’ and γ KCs appear to be the main information integration

center in this network, while their effect on SING modulation is opposed by the

activity of αβ lobe KCs. Processed SING modulation signals are then

transferred by two subtypes of MB efferent neurons, MBON-V2 and M4/M6,

to the downstream SING reflex motor circuits. These two MBON subtypes

have their axons converging together in the SMP where they may form

axo-axonic synaptic connections, in which MBON-V2 would be presynaptic to

MBON-M4/M6. The SMP also contains dendrites of the PAM and PPL1 DANs,

thereby potentially forming instructive feedback loops on DA-mediated SING

modulation. Most neurons identified here downregulated SING performance

when they were activated, except for a subset of the PAM clusters that

appeared constitutively inhibitory (represented as darker neurons in the figure)

and the αβ lobe KCs that seem to antagonize SING modulation by other MB

neurons. The different MB lobes are shown in various shades of green as

indicated. The PAM DANs, PPL1 DANs and MBONs are drawn in magenta,

light blue and dark gray, respectively. PAM: protocerebral anterior medial;

PPL1: protocerebral posterior lateral; MBON: mushroom body output neuron;

SMP superior medial protocerebrum; ped: peduncle; pre: presynaptic; pos:

postsynaptic.

those controlling locomotor reactivity. However, we observed
that thermoactivation with various drivers had in a number
of cases opposite effects on sleep/wake state and SING. First,
neuronal thermoactivation with TH-Gal4 suppresses sleep (Liu
et al., 2012b) but decreases the SING response. Second, extensive
thermogenetic activation screen revealed that α′β′ and γm KCs
are wake-promoting and γd KCs are sleep-promoting (Sitaraman
et al., 2015a). In our experiments, neuronal activation of α′β′ or γ

KCs both led to strongly decreased locomotor reactivity. Third,
stimulating MBON-M4 and M6, which are wake-promoting
(Sitaraman et al., 2015a), decreased SING performance.

Another brain structure, the EB, plays important roles in the
control of locomotor patterns (Strauss, 2002) and is also sleep-
promoting (Liu et al., 2016). Furthermore, the EB is involved
in the dopaminergic control of stress- or ethanol-induced
hyperactivity (Lebestky et al., 2009; Kong et al., 2010), which
can be considered as forms of exogenously-generated arousal.
We used several drivers labeling diverse EB neuronal layers
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and found no noticeable effects of thermoactivation of these
neurons on the SING response. We conclude that the circuits
responsible for SINGmodulation, although they apparently share
some similarities, are globally different from those controlling
sleep/wake state and environmentally-induced hyperactivity.

Overall, this work identified elements of the neuronal
networks controlling startle-induced locomotion in Drosophila
and confirmed the central role of the MBs in this important
function. Future studies are required to complete this scheme
and explore the intriguing interactions between the different MB
compartments in SING neuromodulation.
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FIGURE S1 ½ Time course of SING behavior modulation during thermogenetic neuronal activation. 
(A) Effect of TH-Gal4-targeted DANs. The SING performance of TH>dTrpA1 flies was determined 
after various times of incubation at 32°C (red curve). The grey curve shows the kinetics of the 
temperature increase within the column measured with a thermometer during a 10-min incubation 
period. A decrease in SING PI could be observed at 1 min compared to the control (time 0) when the 
temperature of the column reached about 28°C. SING performance did not decrease significantly and 
stayed stable after 5 min of DAN thermoactivation. (B) Effect of MB γ neurons. R16A06>dTrpA1 flies 
in which γ lobe KCs were selectively thermoactivated showed a more rapid decrease in SING that was 
~90% inhibited in 3 min.  
 

 
  



 

 
 
FIGURE S2 ½ SING modulation by optogenetic photostimulation.  (A) Protocol used to assay startle-
induced locomotion during optogenetic photoactivation. Mechanical startle was applied just before the 
column was introduced in the illuminated box and a second time in the box previous to the start of the 
test (dotted vertical lines). Flies were counted to score PI after 1 min (black vertical lines) using video 
monitoring. The test was repeated 3 times in red light (control, red horizontal lines) and 3 times in 
blue light (blue horizontal lines). (B) Schematic representation of the experimental setup showing the 
illuminated dark box with the column inside. Note that the red light covered 100% of the column 
length and the blue light only 45%. (C) Expression of channelrhodopsin in DANs. Photostimulation of 
TH>ChR2-XXL flies with blue light during the test significantly decreased SING performance by 
~22% compared to controls illuminated with red light. No significant effect of blue light was observed 
with control TH>msGFP flies. (D) Expression of channelrhodopsin in MB γ lobes. Photostimulation 
of R16A06>ChR2-XXL flies with blue light during the test decreased SING performance by ~30% 
compared to controls illuminated with red light. No effect of blue light was observed with control 
R16A06-Gal4/+ flies. These experiments indicate that activation of DANs or γ KCs had signifcant 
effects on startle-induced locomotion within less than 1 min. (C,D) Two-way ANOVA with 
Bonferroni's multiple comparisons tests (ns: not significant; **p < 0.01; ***p < 0.001).   



Movie Captions 
 
MOVIE S1 ½ Spontaneous locomotion of TH>dTrpA1 flies after neuronal thermoactivation. 
Following prolonged thermoactivation of the DANs (10 min at 32°C), TH>dTrpA1 flies were very 
active with apparently normal spontaneous locomotion. Note that each column usually contained 10 
flies.  
 
MOVIE S2 ½ SING performance of TH>dTrpA1 flies after neuronal thermoactivation. Suite of 
Movie S1. After 10-min thermoactivation, flies were gently tapped down (startle), which stops 
spontaneous locomotion and normally triggers climbing as a locomotor reaction (see Movie S3). 
Thermoactivated TH>dTrpA1 flies were still active and showed no signs of paralysis after startle. 
However, most of them stayed at the bottom of the column instead of climbing up quickly like control 
flies. A few started to climb but generally stopped in the middle and sometimes fell. This suggests that 
DAN thermoactivation inhibited startle-induced locomotion.  
 
MOVIE S3 ½ SING performance of control TH>dTrpA1 flies maintained at 23°C. In the absence of 
DAN thermoactivation, most of these flies climbed rapidly to the top of the column similarly to wild-
type flies.  
 
MOVIE S4 ½ Spontaneous locomotion of R16A06>dTrpA1 flies after neuronal thermoactivation. 
After prolonged thermogenetic activation of MB γ neurons (10 min at 32°C), R16A06>dTrpA1 flies 
were very active and spontaneously walked rapidly along the column. Note that the two columns 
shown contain flies of the same genotype.  
 
MOVIE S5 ½ SING performance of R16A06>dTrpA1 flies after neuronal thermoactivation. Suite of 
Movie S3. Upon startle which stops spontaneous locomotion, R16A06>dTrpA1 flies were still active 
but their locomotor reactivity appeared to be inhibited as they did not climb efficiently. 10-min 
thermoactivation of MB γ neurons therefore fully prevented startle-induced locomotion.   
 

 

  



Table S1. Driver strains used in this study and their brain expression 
patterns.  

Drivers Expression patterns References 

TH-Gal4 
All DAN clusters except a 
major part of the PAM 

Friggi-Grelin et al., 2003; Claridge-Chang et al., 
2009; Mao and Davis, 2009; Aso et al., 2010 

R58E02-Gal4 ~80% of PAM DANs Liu et al., 2012a; Pech et al., 2013b 

NP6510-Gal4 
15 PAM DANs including 
MB-MVP1 plus 3 non-
DANs in the PAM 

Liu et al., 2006; Tanaka et al., 2008; Aso et al. 
2010; Riemensperger et al., 2013 

NP5272-Gal4 
3 PAM DANs (MB-M3) that 
are also labelled by TH-Gal4  

Tanaka et al., 2008; Aso et al., 2010; Aso et al., 
2012 

Mz840-Gal4 PPL1 MB-V1  Aso et al., 2010; Aso et al., 2012 

NP2758-Gal4 PPL1 MB-MP1  
Tanaka et al., 2008; Krashes et al., 2009; Aso et al., 
2010 

TH-D’-Gal4 
PAL, PPM2, PPM3 and 
PPL1 

Liu et al., 2012b 

TH-C’-Gal4 PAL, PPM2 and PPL2ab Liu et al., 2012b; Pathak et al., 2015 

TH-C1-Gal4 
PAM, PAL, PPM2 and 
PPL2ab 

Liu et al., 2012b, Kayser et al., 2014 

TH-LexA Similar to TH-Gal4 Berry et al., 2015 

238Y-Gal4 All MB lobes Armstrong et al., 1998; Aso et al., 2009 

c305a-Gal4 
MB α'β' lobes and broad 
expression out of the MB  

Krashes et al., 2007; Aso et al., 2009; Chen et al., 
2012; Riemensperger et al., 2013 

G0050-Gal4 MB α'β' lobes Lin et al., 2007; Pech et al., 2013b 

4-59-Gal4 MB α'β' lobes Kaun et al., 2011 



R35B12-Gal4 MB α'β' lobes 
Jenett et al., 2012; Lin et al., 2014; Cohn et al., 
2015 

H24-Gal4 MB γ lobes 
Martin et al., 1998; Zars et al., 2000; Aso et al., 
2009; Christiansen et al., 2011 

R16A06-Gal4 MB γ lobes 
Jenett et al., 2012; Issman-Zecharya and 
Schuldiner, 2014; Cohn et al., 2015 

mb247-Gal4 MB αβ and γ lobes 
Zars et al., 2000; McGuire et al., 2001; Aso et al., 
2009 

NP3212-Gal4 MBON-M4/M6 Tanaka et al., 2008; Bouzaiane et al., 2015 

R27G01-Gal4 MBON-M4/M6 Jenett et al., 2012; Bouzaiane et al., 2015 

R14C08-LexA MBON-M4/M6 Jenett et al., 2012; Lewis et al., 2015 

NP2492-Gal4 MBON-V2 Tanaka et al., 2008; Séjourné et al., 2011 

R71D08-Gal4 MBON-V2 Jenett et al., 2012; Séjourné et al., 2011 

c41-Gal4 EB neurons Sakai and Kitamoto, 2006 

c105-Gal4 EB ring neurons R1 
Renn et al., 1999; Baker et al., 2007; Martín-Peña 
et al., 2014 

EB1-Gal4 EB ring neurons R2 Young and Armstrong, 2010; Thran et al., 2013  

c232-Gal4 EB ring neurons R3/R4d Renn et al., 1999; Young and Armstrong, 2010 
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Result A - Part II 

Complementary data on the role of neurotransmitters and the fan-shaped 
body in SING control  

 

1. Role of different neurotransmitters in SING control 

According to previous studies, not only DANs project to the MBs, but axons of neurons 

utilizing other neurotransmitters like serotonin or octopamine reach the MB as well (Pech et 

al., 2013a; Yu et al., 2005; Keene et al., 2006; Han et  al., 1998; Sinakevitch and Strausfeld, 

2006; Blenau and Thamm, 2011; Giang et al., 2011; Lee et al., 2011c; Kim et al., 2013; Wu 

et al., 2013; Niens et al., 2017; Ries et al., 2017). To explore how SING modulation is 

affected by the different neurotransmitters, we used selective drivers that target each neuronal 

subtypes: Trh-Gal4 carries regulatory sequences of tryptophan hydroxylase that synthesizes 

serotonin (Cassar et al., 2015), Tdc2-Gal4 uses the promoter of the Tyrosine decarboxylase 2 

(Tdc2) gene and expresses in tyraminergic neurons (Cole et al., 2005), both OK371-Gal4 

inserted near the Drosophila Vesicular glutamate transporter (VGlut) gene (Mahr and Aberle, 

2006) and VGlut-Gal4, containing regulatory sequences of VGlut (Cassar et al., 2015) target 

glutamatergic neurons, and Gad1-Gal4 uses regulating sequence of Glutamic acid 

decarboxylase 1 (Gad1) to express in GABAergic neurons (Ng et al., 2002). 

c316-Gal4 labels the dorsal paired medial (DPM) neurons, which are critical to memory 

consolidation. This pair of serotoninergic/peptidergic neurons innervate all the MB lobes 

(Waddell et al., 2000; Yu et al., 2005; Keene et al., 2006; Haynes et al., 2015). Activation of 

c316-Gal4-targeted neurons fully inhibited the SING reflex (PI = 0,001) (Figure 1A), while 

flies were not paralysed (data not shown). However, this driver expresses in many other 

neuropils in the brain, including some of the MB KCs (Wu et al., 2011), so more specific 

drivers should be used to evaluate the role of the DPM in SING modulation. Unlike deficits 

in learning and memory resulting from neuronal inhibition with c316-Gal4, silencing with 

this driver had apparently no significant effect on the locomotor response (Figure 1A).  

Increasing octopamine and tyramine release by expressing dTrpA1 with Tdc2-Gal4 caused 

decreased startle-induced locomotion (Figure 1B). Because octopaminergic neurons 

innervate some of the MB-associated DANs (Burke et al., 2012), the observed decrease in 

SING performance observed could be explained either by direct modulation of the MBs or 
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indirect effects of octopaminergic or tyraminergic neurons on MB-associated DANs or other 

potential neuropils. Trh>dTrpA1 flies showed a decrease of SING performance at 32 °C 

(Figure 1C), suggesting that serotonin modulates the locomotor response of fly to stimuli as 

well.  

Glutamatergic neurons and GABAergic neurons are widely distributed in the nervous system, 

and the motor neurons are glutamatergic in Drosophila. Apart from VGlut>dTrpA1 flies 

showed slight response to startle. Neuronal activation or silencing driven by VGlut-Gal4 or 

OK371-Gal4 (glutamate), and by Gad1-Gal4 (GABA) caused, as expected, fly paralysis even 

without startle (Figure 1D-F).  

 

2. The fan-shaped body is involved in SING modulation 

The FSB, EB, protocerebral bridge, and noduli constitute the central complex (CC), which 

was proposed to correspond to the vertebrate basal ganglia (Strausfeld and Hirth, 2013; Fiore 

et al., 2015). CC is suggested to have a role in locomotion control (Strauss, 2002; Martin et 

al., 1999; Kahsai et al., 2010). In part I, we have ruled out the role of EB in the SING 

modulation. Therefore, we continued to test whether FSB would be implicated in neural 

network of SING control. The FSB is composed of horizontal layers and vertical columns 

(Wolff et al., 2015; Weir et al., 2015). We used R52G12-Gal4 and R89C06-Gal4 targeting 

horizontal layers and R94C05-Gal4 and R84C10-Gal4 labelling vertical columns. Neuronal 

activation driven by R52G12-Gal4 or R94C05-Gal4 caused a similar ~25% decrease in SING 

PI (Figure 2A, 2C), while R89C06-Gal4 and R84C10-Gal4 had no effect (Figure 2B, 2D). 

R52G12-Gal4 labels more posterior and anterior neurons than R89F06-Gal4 (Weir et al., 

2015). Indicated by the pattern below, R52G12-Gal4 labels the FSB more selectively and 

stronger than R89F06-Gal4, while R89F06-Gal4, not R84C10-Gal4 labels the ventral FSB. 

This suggests that the ventral FSB may play a role in SING, as a decrease in SING 

performance was observed for R52G12>dTrpA1 and R94C05-Gal4>dTrpA1 flies. Altogether, 

these data indicate that the FSB might be part of neural circuits and act as pre-motor center 

coordinating SING modulation. Because the FSB is innervated by neurons using a variety of 

neurotransmitters and neuropeptides (Kahsai and Winther, 2011), whether FSB involves in 

DA-mediated neural network need to be elucidated.  

3. Further data on SING control using MB split drivers  
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Split-Gal4 drivers were generated by the combination of an enhancer with p65ADZp and 

another enhancer with ZpGAL4DBD to drive expression in more specific brain regions that 

are targeted by both enhancers. The reconstitution�of an active GAL4 transcription factor 

requires heterodimerization of p65ADZp and ZpGAL4DBD, which only occurs in cells 

expressing both proteins (Luan et al., 2006; Pfeiffer et al., 2010) . We selected some of the 

split-Gal4 drivers that were generated previously (Aso et al., 2014a) and used them in our 

SING modulation test.  

We used Mb011B-Gal4 that labels the MBON-M4/M6. Neuronal activation with this split 

driver caused a small but significant effect on startle-induced locomotion, in agreement with 

our previous results (Figure 3A). Neuronal activation or inactivation with Mb077C-Gal4 that 

targets the MBON-γ2α'1 showed no effects (Figure 3B).  

We have shown previously that thermoactivation of MBON-V2 (MBON-α'3ap, MBON-α2sc) 

decreased SING performance. However, neuronal activation with Mb594C-Gal4 that labels 

MBON-V2 did not elicit any change in SING performance, possibly due to the low 

expression of this driver (Figure 3C). In contrast, and interestingly, neuronal activation with 

Mb082C-Gal4, which labels MBON-V3 (MBON-α'2 and MBON-α3) (Shyu et al., 2017), 

decreased SING performance (Figure 3D). We showed before that activation with G0239-

Gal4 (MBON-V3 α3) had no effect. So neuronal activation of MBON-α'2 appears selectively 

responsible for the effect on SING performance, suggesting that MBON-α'2 may be 

downstream to the PPL1 DAN MB-V1 (α'2, α2), conveying the information from DAN>KC 

to the SMP neuropil.  

Mb022B-Gal4 labels the octopamine-ventral paired medial 3 (OA-VPM3) and OA-VPM4 

which utilizes octopamine as neurotransmitter. The cell bodies of these neurons lie in the 

SEZ, but they send large projections covering the PAM cluster, crepine, FSB, MB peduncle, 

SMP, SIP, SLP and then reach to the MB calyx (according to Flylight). Unlike the slight 

effect obtained from the other split drivers, at 32°C, Mb022B>dTrpA1 flies showed nearly 40% 

decrease in SING PI compared to the control, demonstrating that octopamine is implicated in 

SING modulation (Figure 3E). On the contrary, the neuropeptide SIFamide may be not 

involved, for there is no effect resulting from neuronal activation with Mb013B-Gal4 (Figure 

3F).  
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Figure 1. Effect of neurotransmitter-specific drivers on SING modulation 

A. c316-Gal4 expresses in the DPM neurons that project to all MB lobes and in many other 
brain cells. Flies with neuronal activation in DPM were not paralysis, but did not respond to 
startle. B. Tdc2-Gal4 (octopamine and tyramine) targets the calyx of the MBs and slightly 
the MB lobes. Flies with thermoactivation driven by Tdc2-Gal4 had decreased SING 
performance. C. Trh-Gal4 (serotonin) targets the MB lobes and accessory calyx. Neuronal 
activation of serotoninergic neurons decreased SING performance. D-F. VGlut-Gal4 
(glutamate), OK371-Gal4 (glutamate) and Gad1-Gal4 (GABA). Without startle, flies with 
neuronal activation or inhibition driven by those drivers were paralysed, except 
VGlut>dTrpA1 flies, which showed slight locomotor reactivity upon startle.   
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Figure 2 Fan-shaped body may play a role in SING modulation.  

A-B. Neurons targeted by R52G12-Gal4 and R89F06-Gal4 send projections that constitute 
of the vertical columns of the FSB. R52G12-Gal4 labels 262 posterior and 38 anterior FSB 
neurons (Weir et al., 2015), strongly labelling the ventral FSB. Neuronal activation driven 
by R52G12-Gal4 led to SING inhibition. Thermoactivation or inhibition by R89F06-Gal4 
caused no effect on fly locomotion. C-D. Projections from the neurons targeted by R84C10-
Gal4 or R94C05-Gal4 form the horizontal layers of the FSB. R84C10-Gal4 only labels 31 
posterior neurons, localized near the cell bodies of PPL1 DANs. Axons of those neurons, 
whose dendrites arborized in SMP region, form the horizontal layers of the FSB. 
Thermoactivation of R94C05-Gal4-labelled neurons reduced the SING response. The 
corresponding pattern of each driver is displayed below the graphs. Scale bar: 100µM 
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Figure 3 Assay of various split-Gal4 drivers for SING modulation 

A. Mb011B-Gal4 targets MBON-M4/M6. Activating with this driver induced a slight effect 
on locomotion. B. Mb077C-Gal4 labels the MBON-MV1, neuronal activation and 
inactivation had no effect. C. Mb594-Gal4 labels the MBON-V2, thermoactivation or 
silencing in those neurons did not change SING performance. D. Mb082C targets the 
MBON-V3 (MBON-α'2 and MBON-α3). Neuronal activation with this driver caused a slight 
effect on the SING response. E. Neuronal activation by Mb011B-Gal4 that targets 
octopaminergic neurons caused a significant decrease in locomotor reactivity. F. MB013B-
Gal4 labels the SIFamide neurons and had no effects on SING.  
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Results B – Non-cell autonomous mechanism of α-synuclein toxicity  

 
Summary 

The PD pathology has been suggested to first develop in anterior olfactory structures and the 

enteric nervous system, then spread to the brainstem and other parts of the CNS in a 

stereotypical manner along interconnected anatomical pathways. Neuronal degeneration in 

PD could therefore result from a combination of cell autonomous (CA) and non-cell 

autonomous (NCA) mechanisms. Previous work done in our laboratory showed that 

expressing human α-synuclein (α-syn) in only 15 PAM DANs in the Drosophila brain led to 

accelerated age-related locomotor decline (ARLD), as monitored with the SING assay, 

associated with the loss of their projections to the horizontal lobes of the MB (Riemensperger 

et al., 2013). Blocking synaptic output of the PAM DANs did not inhibit the SING reflex but, 

on the opposite, instantly led to a small increase in SING performance, as show in the 

previous Chapter (Sun et al., 2018). This suggests that the accelerated locomotor defects 

induced by α-syn did not result from decreased synaptic activity but were an indirect 

consequence of the slow and progressive degeneration of the DANs. Here we investigated the 

mechanisms by which α-syn expression in the PAM DANs can progressively decrease fly 

locomotor reactivity. Because we knew that the MBs are involved in SING control 

(Riemensperger et al., 2013; Sun et al., 2018), we hypothesized that degeneration of the PAM 

DANs could disturb the function of their downstream target cells by a non-cell autonomous 

process and from there progressively impair the whole brain neuronal network that underlies 

the SING response. Strong evidence from the literature suggests that oxidative stress and 

mitochondrial dysfunction play a role in α-syn toxicity and PD pathogenesis. Here, we 

monitored ROS level alterations and mitochondrial dynamics in the PAM cluster and MB 

neurons in the course of the disease. We show that rescuing the mitochondria by uncoupling 

protein (UCP) expression either in the PAM DANs or their target MB cells is sufficient to 

prevent α-syn-induced acceleration of ARLD in the fly model.  

Personal contribution: Abdul-Raouf Issa has shown the protective effect of human and 

Drosophila UCP expression against α-syn in the PAM DANs during his PhD. The 

experiments to visualise mitochondrial dynamics and the effect of non-cell autonomous 

mechanisms on SING were started by Eva Islimye and Denisa Rusu as a Master 2 and 

summer internship project, respectively, under the supervision of Serge and myself. I have 
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confirmed their initial results and conducted all the other experiments that are described in 

the following manuscript.  
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Abstract 

Accumulating evidence support the hypothesis that Parkinson disease (PD) is a prion-like 

pathology that can spread from peripheral structures to the brainstem and then reach other 

parts of the CNS in a stereotypical manner along interconnected neuroanatomical pathways. 

Neuronal degeneration and the motor symptoms of PD could therefore result from a 

combination of cell autonomous and non-cell autonomous mechanisms. In Drosophila 

melanogaster, pan-neuronal expression of human α-synuclein (α-syn) induces progressive 

locomotor deficits, characterized by accelerated age-related locomotor decline (ARLD). We 

have shown that expressing mutant α-synA30P in a subset of brain dopaminergic neurons 

(DANs) of the protocerebral anterior medial (PAM) cluster in Drosophila leads to similarly 

accelerated ARLD associated with the loss of projections from the PAM DANs to the 

mushroom bodies (MBs). However, inhibition of activity of these PAM neurons failed to 

induce major locomotor defects, which suggests that the locomotor deficits are not just 

caused by a dysregulation in DA transmission. Here, we have used genetically-encoded 

fluorescent probe to monitor mitochondrial dynamics and ROS level alterations in the PAM 

and MB neurons in the course of the disease. Quite remarkably, we observed that redox 

defects can transmit non-cell autonomously from the degenerating PAM DANs to their target 

MB cells in the PAM-α-synA30P model. We show that expressing uncoupling proteins 

(UCPs), which decrease mitochondrial ROS production, either in the PAM DANs or in their 

target MB cells is sufficient to prevent α-synA30P-induced locomotor defects and fly 
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lethality. Taken together, these findings reveal a novel non-cell autonomous mechanism that 

couple defects initiated in the PAM cluster to target MBs and underlie locomotor defects 

induced by α-synA30P expression in DANs in the Drosophila PD model.  

 

Key words 

α-synuclein - mitochondria - age-related locomotor decline - non-cell autonomous 

mechanisms - intercellular propagation – Parkinson disease - Drosophila  

 

Introduction 

Parkinson disease (PD) is a slowly progressive neurodegenerative disorder affecting more 

than 5% of the population over 85 (Reeve et al., 2014; Rodriguez et al., 2015). It is 

characterised by the progressive loss of midbrain dopaminergic neurons (DANs) in the 

substantia nigra pars compacta (SNpc) accompanied by the accumulation of cytoplasmic 

inclusions composed of α-synuclein (α-syn) termed Lewy bodies in neuronal somata or Lewy 

neurites in dendrites and axons (Poewe et al., 2017). At the clinical level, PD has typically 

been considered as a motor disorder as patients show a slowness in movement (bradykinesia), 

resting tremor, muscle rigidity and postural instability. However, non-motor symptoms such 

as impaired olfaction or disordered sleep can appear prior to the clinical diagnosis of PD, 

whereas psychosis emerges in later stages (Kalia and Lang, 2015; Postuma et al., 2016; 

Schapira et al., 2017). Because the aetiology of this disease is complex and multifactorial, 

and because there are still grey areas in our understanding of the molecular pathways 

underlying its pathogenesis, neuroprotective treatments are lacking and current therapies are 

always palliative (Oertel and Schulz, 2016).  

In 2003, Braak and colleagues introduced the concept that α-syn could be transferred from 

the enteric nervous system to the central nervous system (CNS) (Braak et al., 2003a; Braak et 

al., 2003b; Rietdijk et al., 2017). However, while the prion-like property of α-syn largely 

supports the Braak hypothesis of PD propagation (Brundin and Melki, 2017), the pertinence 

of this model for the various forms of PD is still a matter of controversy (Surmeier et al., 

2017a). Neuron-to-neuron transmission of α-syn could take place via exocytosis and 

endocytosis, by exosomes or directly through synaptic contact (Visanji et al., 2013; Dehay et 
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al., 2016; Grozdano and Danzer, 2017; Wong and Krainc, 2017). In addition, evidence from 

recent studies suggest that extracellular a-syn can activate surrounding microglia and cause 

severe reactive oxygen species (ROS) production resulting in the activation of NADPH 

oxidase and the release of pro-inflammatory factors (Zhang et al., 2005; Glass et al., 2010; 

McCann et al., 2016), providing a clue that reactive oxygen and nitric oxide species would 

accelerate PD propagation via a neuroinflammatory mechanism. 

The specific loss of DANs is a key feature that distinguishes PD from other a-

synucleinopathies (Beyer and Arize et al., 2007). It has been suggested that DANs of the 

SNpc are particular vulnerable to cell death in PD due to their unique and elaborate 

physiology with their thin unmyelinated axons and numerous synaptic terminals whose 

activity requires a high energy level supplied by local mitochondria (Lotharius and Brundin 

et al., 2002; Matsuda et al., 2009; Surmeier and Schumacker, 2013; Surmeier 2017b). Highly 

active mitochondria typically generate large amounts of free radicals that can in turn build up 

in DANs and lead to oxidative stress. The sustained calcium entry into DAN cytoplasm and 

the ability of dopamine (DA) to auto-oxidise results in elevated levels of ROS (Surmeier et al, 

2010). Interestingly, the disease-causing PD protein, α-syn is susceptible to oxidative 

modification and is implicated in DA metabolism and release (Venda et al., 2010; Benskey et 

al., 2016; Bridi and Hirth, 2018). Therefore, modified or aggregated a-syn could selectively 

impair DA homeostasis. Additional perturbations in mitochondrial and proteolytic systems in 

these DANs could in turn aggravate a-syn aggregation and impaired DA homeostasis, further 

elevating ROS levels.  

Over the past decades, many lines of evidence have shown that mitochondrial dysfunction 

plays a central role in the pathogenesis of PD (Exner et al., 2012; Mullin and Schapira, 2013; 

Bose and Beal, 2016). Interestingly, while α-syn also localizes to mitochondria and its 

mitochondrial accumulation can disrupt the organelle’s dynamics - fusion and fission (Kamp 

et al., 2010; Nakamura et al., 2011). Mitochondria are the primary source of ROS that are 

produced in the process of oxidative phosphorylation, but also the main targets of ROS as 

oxidative damage of mitochondrial proteins or DNA can result in mitochondrial defects (Lin 

and Beal, 2006). To protect themselves against high ROS levels, mitochondria are however 

equipped with antioxidant defence including the presence of uncoupling proteins (UCPs) in 

the inner mitochondrial membrane that allow protons to leak into the matrix and lower ROS 

generation (Krauss et al., 2005; Wolkow and Iser, 2006). Indeed, both in vitro and in vivo 

studies showed that human UCP2 (hUCP2) upregulation can provide neuroprotection against 
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neuronal stress (Diano et al., 2003; Mattiasson et al., 2003), and mice that overexpress 

hUCP2 are resistant to 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced nigral 

DAN degeneration (Andrews et al., 2005a; Andrews et al., 2005b). In Drosophila 

melanogaster, neuronal expression of hUCP2 in adult stage extended lifespan (Fridell et al., 

2005) and protected DANs in a rotenone-induced model of PD (Islam et al., 2012; Hwang et 

al., 2014). The Drosophila uncoupling protein UCP5/Bmcp (DmUCP5) is predominantly 

expressed in the brain (Fridell et al., 2004; Sánchez-Blanco et al., 2006) and its 

overexpression rescued locomotor defects in a fly glial model of Huntington disease (Besson 

et al., 2010). 

In Drosophila, the neuronal expression of human α-syn accelerates age-related locomotor 

decline (ARLD), which was generally monitored by a startle-induced negative geotaxis 

(SING) climbing assay (Feany and Bender, 2000; Barone et al., 2011; Butler et al., 2012; 

Riemensperger et al., 2013; Breda et al., 2015; Ordonez et al., 2018). However, the cellular 

mechanisms behind this progressive locomotor defect have not been well explained to date. 

We have shown that α-syn expression (particularly its mutant pathogenic form α-synA30P) in 

a small number of DANs of the protocerebral anterior medial (PAM) cluster in the fly brain 

recapitulates key PD characteristics including premature ARLD accompanied with the loss of 

projections from the DANs onto the mushroom body (MB) (Riemensperger et al., 2013). The 

MB is a paired brain structure in insect involved in the control of essential brain functions 

such as memory, sleep and locomotion. DANs innervate all the lobes of the MBs (Tanaka et 

al., 2008; Mao and Davis, 2009; Pech et al., 2013; Aso et al., 2014) that are made up of 

projections from specific neurons, the Kenyon Cells (KC), know to be peptidergic and 

cholinergic (Knapek et al., 2013; Barnstedt et al., 2016). Recent studies from our and other 

laboratories provided evidence that synaptic projections of the DANs to the MBs, and the 

MB KCs themselves, are involved in the control of locomotion (startle-induced climbing and 

flight) (Riemensperger et al., 2013; Bou Dib et al., 2014; Agrawal and Hasan, 2015; Pathak et 

al., 2015; Vaccaro et al., 2017; Sun et al., 2018). However, we have also observed that 

activity of these DAN>MB synapses is not necessary for expression of the SING reflex (Sun 

et al., 2018). This led us to hypothesize that α-syn-induced degeneration of the PAM DANs 

could disturb the function of their downstream target cells by a non-cell autonomous (NCA) 

process that would propagate and progressively disrupt the SING neuronal network.  

One of the consequences of α-syn accumulation in neurons is an increase in oxidative stress, 

as was shown both in mammalian cells and Drosophila (Junn and Mouradiam, 2002; Parihar 
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et al., 2008; Barone et al., 2011; Wang et al., 2015). Here, we monitored ROS levels and 

mitochondrial dynamics in the PAM DA and MB neurons in the Drosophila α-syn PD model. 

Using genetically-encoded fluorescent probes to monitor mitochondrial dynamics and redox 

status in situ, we observed that α-synA30P expression in the PAM cluster disrupted 

mitochondrial turnover and increased ROS levels both in the DANs and in their MB target. 

We show that increasing mitochondrial uncoupling by co-expressing hUCP2 or DmUCP5 

together with α-synA30P in the PAM DANs fully rescued α-syn-induced locomotor defects. 

Remarkably, UCP expression selectively in the MBs also rescued premature ARLD and the 

lethality induced by α-synA30P expression in the PAM DANs. These findings support a 

model in which impaired mitochondrial function in DANs would non-cell autonomously 

induce mitochondrial perturbations in interconnected neighbouring neurons to trigger PD-like 

symptoms in Drosophila.  

 

Results 

ROS accumulation is implicated in α-synA30P-induced locomotor deficits 

The prolonged pan-neuronal expression of wild-type and mutant forms (A30P and A53T) of 

human α-syn in Drosophila established the first transgenic PD model (Feany and Bender, 

2000). It recapitulated, defining features of PD including adult-onset loss of selective DN 

clusters, Lewy body-like α-syn-positive neuronal inclusions and accelerated locomotor 

dysfunction. Interestingly, flies with α-synA30P expression exhibited more severe ARLD 

compared to flies overexpressing wild-type (WT) α-syn (Feany and Bender, 2000; 

Riemensperger et al., 2013). Here we monitored ROS levels in whole brains of flies 

expressing either α-synWT or α-synA30P in all neurons with the elav-Gal4 driver using 

dihydroethidium (DHE) staining. ROS and oxidative damage are known to accumulate in the 

mammalian and Drosophila brain during aging (Lu et al., 2004; Murali and Panneerselvam, 

2007; Hirano et al., 2012; Oka et al., 2015; Vaccaro et al., 2017). Here we confirmed that 

ROS levels increases with age as flies aged 30 days after adult eclosion (d a.E.) exhibited 

higher brain ROS signals than 2-day old flies independently of the genotype (elav>w1118 

(control), elav>α-synWT and elav>α-synA30P) (Figure 1A-B). Interestingly, elav>α-

synA30P brains showed higher oxidised DHE fluorescence compared to elav>w and elav>α-

synWT brains, both in flies aged 2 and 30 d a.E. (Figure 1A-B).  
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In order to determine if the locomotor defects caused by α-synA30P expression were related 

to ROS accumulation in DANs, we used a previously established PD model in which a-

synA30P is selectively expressed in a subset of PAM DANs with the NP6510-Gal4 driver  

(Riemensperger et al., 2013). We co-expressed with this driver human or Drosophila 

uncoupling proteins, (hUCP2 or DmUCP5, respectively), together with α-synA30P in the 

PAM DANs. Strikingly, increased mitochondrial uncoupling largely improved fly 

locomotion compared to flies expressing α-synA30P alone (Figure 1C). The ARLD profile of 

the UCP-rescued α-syn30P-expressing flies was actually similar to that of wild-type flies 

(Riemensperger et al., 2013). UCP also reduced the lower locomotor deficits of NP6510-

Gal4>α-synWT flies but this effect was only significant at week 4 (Figure 1D). This indicates 

that increasing UCP activity, and therefore decreasing ROS production by mitochondria, in 

the PAM DANs can efficiency rescue the fly locomotor deficits induced by α-synA30P 

expression in these cells.  

a-synA30P expression modifies mitochondrial structure in the PAM neurons  

We then attempted to look at mitochondrial structure when human α-synA30P is expressed in 

the fly DANs. PAM is the largest DAN cluster in the Drosophila brain that possesses around 

100 neurons mainly projecting to the horizontal lobes of the MB. We used the R58E02-Gal4 

driver, whose regulatory sequence are from the first intron of the Drosophila DA transporter 

(DAT) gene (Liu et al., 2012), to express a-synA30P in all PAM neurons with mitoGFP. 

mitoGFP is a mitochondria-targeted GFP transgene that allowed to monitor mitochondrial 

structure and dynamics in the course of the disease. mitoGFP fluorescence was found to 

increase dramatically with age between 2 and 10 d a.E. and it appeared that α-synA30P 

expression caused a further fluorescence increase that was, interestingly, more prominent at 

day 10 than at day 30 (Figure 2A and Figure S1).  

Next we selected two regions to visualize mitochondria in the PAM DANs at higher 

magnification: the crepine (CRE) that contains the axons and the tip of the horizontal lobes 

where the dopaminergic projections arborize. In the CRE region, axonal mitochondria 

showed a rather fragmented and blob-like structure in the R58E02>mitoGFP, α-synA30P 

flies, whereas mitochondria in controls without α-synA30P appeared more fibrillar in shape 

with a bit less strong fluorescence intensity (Figure 2B, top panels). Mitochondria at the tip of 

the horizontal lobes had a round morphology at day 30 a.E. with or without α-synA30P 

(Figure 2B, bottom panels). Quantification of the blob-shaped mitochondria in the PAM 
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neurons on all confocal scans showed that the presence of α-synA30P generally widened their 

size distribution profile at day 30, with a shift toward larger sizes (Figure 2C). Therefore, α-

synA30P expression in the PAM DANs modifies mitochondrial morphology from a tubular 

shape to round and more swollen structures as visualised by mitoGFP.  

a-synA30P alters the redox status of PAM DAN mitochondria 

MitoTimer is another fluorescent probe derived from a mutant of the protein DsRed 

(Terskikh et al., 2002) that is used to monitor mitochondrial dynamics (Hernandez et al., 

2013; Ferree et al., 2013; Laker et al., 2014; Gottlieb and Stotland, 2015). MitoTimer’s 

fluorescence shifts from green for the newly synthesised form to red of the mature oxidized 

form. This colour shift is independent from pH, ion and protein concentration, but is affected 

by temperature, oxygen, and light exposure (Terskikh et al., 2000; Gross et al., 2000). 

Interestingly, MitoTimer was spontaneously more oxidized in the PAM DANs than in other 

brain cells as early as 2 d a.E: indeed, MitoTimer expression driven by R58E02-Gal4 

exhibited intense red fluorescence and weak green signal, indicative of higher redox levels in 

these cells (Figure S2). Using this probe, we also observed that there was nevertheless a 

significant increase in the red/green ratio induced by α-synA30P expression in the PAM 

DANs at day 10 compared to the control (see Figure S6A). This suggests that MitoTimer is 

more rapidly oxidized in DANs in the presence of α-synA30P.   

To further validate this observation, we took advantage of a redox sensitive GFP (roGFP) 

fused to Grx1 (mito-roGFP2-Grx1, named here mito-roGFP2) (Albrecht et al., 2014). 

roGFP2 was engineered such that two excitation maxima characteristics of GFP are altered 

according to the redox context (Gutscher et al., 2008; Lukyanov and Belousov, 2014; Meyer 

and Dick, 2010): reduced roGFP2 exhibits a predominant excitation at around 488 nm, while 

the oxidized form gains excitability at 405 nm and is no more excitable at 488nm. At the 405 

nm excitation wavelength, we could detect oxidized roGFP2 signal in the brain but also some 

background endogenous fluorescence in the trachea (Figure 3A). We then compared the 

redox levels at different ages by computing the 405/488 nm oxidized/reduced signal ratio in a 

region of interest including the PAM clusters in R58E02>mito-roGFP2 and R58E02>mito-

roGFP2, α-synA30P flies. The presence of α-synA30P led to a 20% and 35% increase in the 

oxidized/reduced ratio of mito-roGFP2 at day 10 and day 30, respectively (Figure 3B). 

Together, these observations suggest that α-synA30P accumulation progressively increases 

mitochondrial ROS level in the PAM DANs.  
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PAM expression of α-synA30P induces mitochondrial dysfunction in the MBs 

Recent work from our laboratory demonstrated that the MBs are required for DA modulation 

of the SING reflex (Sun et al., 2018). Because the PAM DANs project to the MBs, we 

hypothesised that a-synA30P-induced mitochondrial defects in the PAM neurons could 

transfer to the MB lobes, leading to accelerated ARLD. We therefore monitored the 

mitochondrial status by expression fluorescent probes selectively in the MBs with the 

VT30559-Gal4 driver, while simultaneously expressing α-synA30P in the PAM cluster with 

R58E02-LexA (Figure 4A). At day 10, the expression of α-synA30P in the PAM cluster 

caused a significant 30% increase in the ratio of oxidized/reduced mito-roGFP2 fluorescence 

in the MB lobes compared to controls (Figure 4B-C), whereas no difference with controls 

was observed at day 2 and day 30 (Figure 4B and Figure S4). In contrast, mitochondrial 

morphology of the MB lobes probed by mitoGFP did not change significantly at any age 

following α-synA30P expression in the PAM cluster compared to the control genotypes 

(Figure S3). This shows, interestingly, that the expression of α-synA30P in the PAM DANs 

non-cell autonomously induces an increase in mitochondrial ROS in the MB neurons, at a 

‘pre-symptomatic’ time when locomotion is still not significantly altered in the PD-mimic 

flies.  

Due to its prion-like property of α-syn in mammals, we suspected that α-synA30P expressed 

in the PAM could be released from the DANs and enters the MB KCs, thus inducing elevated 

ROS and dysfunction of these cells. However, α-syn immunostaining failed to detect obvious 

MB accumulation of α-syn in the PAM-α-synA30P flies at day 30 (Figure S5A), though it 

cannot be excluded that a low amount of transfer occurred that would not be detectable. Then 

we assessed the fly locomotor performance after α-synA30P was directly expressed in the 

MBs. This appeared innocuous as VT30559>α-synA30P flies had a quite similar ARLD 

profile as the controls (Figure S5B). Finally, flies were constructed that express MitoTimer or 

mito-roGFP2 together with α-synA30P in the MBs. As shown in Figure S6B and D, in 10-

day old flies, there was no effect of α-synA30P on mitochondrial redox level in MB KCs, 

compared to its cell-autonomous effect in DANs (Figure S6A and C). This suggests that α-

synA30P transmission from the PAM to the MB could not by itself trigger mitochondrial 

perturbation in the KCs. 
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UCP expression in the MB neurons rescues locomotor deficits of the PAM-α-synA30P 

flies 

Finally, we tested if scavenging ROS accumulation by UCP overexpression in the MBs 

(VT30559>DmUCP5 or VT30559>hUCP2 flies) could rescue locomotor dysfunction induced 

by α-synA30P expression in the PAM. Indeed, not only did expressing DmUCP5 or hUCP2 

in the MBs dramatically ameliorate α-synA30P-accelerated ARLD (Figure 5A and B), but it 

also rescued the lethality of R58E02>α-synA30P adult flies: 1-5% mortality rate at week 5 

for flies expressing DmUCP5 or hUCP2 in the MBs and α-synA30P in the PAM, which was 

similar to the control without α-synA30P,  compared to 30% mortality in flies expressing α-

synA30P in the PAM only (Figure 5C). These results provide strong evidence that α-

synA30P-mediated defects in the PAM DANs impairs mitochondrial redox status and ROS 

levels in the target MB neurons to affect fly locomotion and, ultimately, survival.  

 

Discussion  

In this study, we aimed at investigating the hypothesis that the PD pathology propagates from 

one cell to another in the nervous system by performing studies in the Drosophila PAM-a-

synA30P model (Riemensperger et al., 2013). Advantages of this model is that the circuits 

formed by the PAM DANs and their target MB cells have been extensively characterized 

because they play a central role in the neuromodulation of many brain functions, including 

memory, arousal and locomotion. We used different fluorescent reporter probes to examine 

the consequences of α-synA30P expression on mitochondrial structure and health in the PAM 

DANs and searched for evidence of a non-cell autonomous (NCA) effect in the MBs. We did 

observe NCA propagation of mitochondrial toxicity in the MB lobes early in the pathogenesis. 

Importantly, we were able to rescue ARLD and induced lethality in PAM-a-synA30P flies by 

expressing human of Drosophila UCPs in the MBs, which suggests that a mechanism of 

propagation from the degenerating DANs to the MBs and other brain cells underlies the 

locomotor deficits in the Drosophila PD model. 

Comparison of different fluorescent probes 

In this study, we investigated the toxic effects of a mutant form of human a-syn on 

mitochondrial functions in Drosophila DANs and the MBs using three independent 

fluorescent reporter probes: mitoGFP, MitoTimer and mito-roGFP2-Grx1.  
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Several authors previously used mitoGFP to monitor mitochondrial morphology and 

dynamics under oxidative stress in Drosophila. Liao et al. (2017) reported a decrease in 

mitochondrial length upon H2O2 treatment. Ordonez et al (2018) showed mitochondrial 

enlargement in neurons of the central brain of transgenic flies expressing wild-type α-syn, 

demonstrating the failure of fission attributed to α-syn-induced lack of translocation of Drp1 

to the mitochondrial outer membrane. In another work, rotenone treatment induced a change 

in mitochondrial morphology from tubular networks and fibrillary to blob-like round 

mitochondria with strong fluorescent intensity (Ahmad et al., 2013). In the present study, we 

visualized mitochondrial morphology with mitoGFP and observed that α-synA30P expression 

in DANs of the PAM cluster led to a higher frequency of large mitochondria at a late stage of 

the pathology. Given that oxidative stress triggers Parkin/PINK1 pathway-dependent 

mitophagy (Wang et al., 2012; Xiao et al., 2017), one would expect that α-synA30P induces a 

decrease in mitoGFP fluorescence intensity. But, unlike other mutant and wild-type forms of 

α-syn that promote macroautophagy, mutant α-synA30P inhibits the autophagic flux (Koch et 

al., 2015). Therefore, the increase in mitoGFP fluorescence with α-synA30P expression we 

observed in the PAM,  could be caused by a blockade of the autophagy-lysosomal pathway 

by α-synA30P preventing mitochondrial degradation.  

In the PAM DANs, interestingly, MitoTimer showed a higher red/green ratio compared to 

other brain cells, indicating that the probe matures fatser in these cells and suggesting that 

they have a naturally higher level of oxidative stress (Figure S2). In addition, α-synA30P 

expression in the PAM cluster resulted in an even faster maturation of the probe and/or 

disturbed mitochondrial turnover, as shown by the higher red/green ratio for MitoTimer 

compared to control without α-synA30P at day 10 (Figure S6A). As another independent way 

to monitor mitochondrial dysfunction, we used mito-roGFP2-Grx1, with which the ratio of 

oxidized/reduced form is an index of the redox state of mitochondria (Meyer and Dick, 2010). 

The results obtained with mito-roGFP2 to monitor the cell-autonomous effect of α-synA30P 

either in the PAM-DANs or the MBs were consistent with those with MitoTimer (Figure S6). 

Together, these findings, in agreement with those recently published by Ordonez et al (2018), 

demonstrated that mitoGFP, MitoTimer, and mito-roGFP2 are useful tools to investigate the 

mitochondrial turnover and redox level in fly neurons under stress.  
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α-synA30P induces mitochondrial dysfunction cell autonomously in the PAM DANs but 

not in the MB cells 

Previously we reported that α-synA30P expression in PAM DANs led to locomotor defects 

and degeneration of their synaptic projections to the MB lobes (Riemensperger et al., 2013). 

We have now found that α-synA30P also disrupted mitochondrial turnover and redox status 

in the PAM DANs (Figure 2). This is consistent with a recent study showing that wild-type α-

syn expressed pan-neuronally at a high level triggers mitochondrial dysfunction through 

altered localization of the essential fission protein Drp1 (Ordonez et al., 2018). We observed 

that the PAM DANs are more oxidised than many other brain cells, which could be due to 

DA auto-oxidation (Figure S2), This highly oxidative environment could favour α-syn 

aggregation and contribute to its cell-autonomous toxicity. Aggregated α-synA30P could then 

impair the homeostasis of DA metabolism and release (Venda et al., 2007; Benskey et al., 

2016; Bridi and Hirth, 2018), thereby resulting in further elevated ROS levels. Interestingly, 

α-synA30P expression selectively in the MBs showed no effect on ARLD, suggesting that α-

synA30P is not toxic to KCs (Figure S5B). In addition, at day 10, flies expressing α-synA30P 

in the MB KCs exhibited no disturbance of mitochondrial redox status compared to controls 

(Figure S6B, D). The lack of α-synA30P-mediated neurotoxicity in cholinergic/peptidergic 

neurons of the MBs is therefore likely due to the inability of α-synA30P to aggregate and 

generate pathological ROS in these cells. 

α-syn-induced mitochondrial defects propagate from the PAM DANs to their MB target 

by a non-cell autonomous mechanism 

Here, using mito-roGPF2-Grx1, we detected alterations in mitochondrial redox status in MB 

neurons at day 10 resulting from α-synA30P overexpression in the upstream PAM DANs 

(Figure 4C). How exactly did the toxicity propagated from the DANs to their target neurons 

to induce mitochondrial perturbations in MB neurons remains to be elucidated. We could not 

detect convincing evidence that α-synA30P itself is transferred from one neuron to the other 

in this model (Figure S5A). The propagation of ROS by a NCA mechanisms has previously 

been reported in a mammalian cell PD model, in which a-syn induced O2•–  production in 

activated microglia that acted then on DANs (Zhang et al., 2005). Interestingly, the trans-

synaptic effect of α-synA30P on MB mitochondria was transient as no difference with 

controls could be detected at day 30 (Figures 3B and S4). As we showed previously, the 

number of PAM DANs>MBs synaptic projections are already strongly reduced at day 20 
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when α-synA30P is expressed in the PAM (Riemensperger et al., 2013). These synapses are 

therefore likely to be absent at day 30, which may explain why the mitochondrial 

perturbations do not transfer between the two cell types anymore at this age. We propose 

therefore that ROS accumulation induced by α-synA30P expression in the DANs could trans-

synaptically transfer to their target MN neurons to affect the latter’s cellular redox state.  

α-syn-induced locomotor deficits result from a non-cell autonomous mechanism 

Our study demonstrates that co-expressing mitochondrial UCP proteins in DANs can 

significantly ameliorate ARLD when α-synA30P is expressed in the PAM neurons (Figure 

1C). Surprisingly, UCP expression in the MB neurons also much improved ARLD and fly 

survival in the PAM-α-synA30P model (Figure 5). It appears, therefore; that in the PAM-α-

synA30P flies, degeneration of the DANs can disrupt the function of their downstream MB 

target cells by a NCA process. Our hypothesis is that mitochondrial dysfunction could 

propagate from there to other cells, thus progressively impairing the whole brain network that 

underlies the SING response and compromising in the end fly survival.  

Overall, our work provides evidence for a NCA process that links dysfunction in DANs to 

downstream defects in target MB neurons. Future studies will aim at identifying the nature of 

the toxic species that transfer from one cell type to another and the mechanisms involved.  

 

Material and methods 

Drosophila culture and strains 

Fly stocks were raised and crossed at 25°C on the standard Drosophila corn meal-yeast-agar 

medium supplemented with methyl-4-hydroxybenzoate as a mold protector, under a 12h-12hr 

light-dark cycle. The following effector lines were used: UAS-mitoGFP (Pilling et al., 2006), 

UAS-MitoTimer (Laker et al., 2014), UAS-mito-roGFP2-Grx1 (Albrecht et al., 2011), UAS-a 

-synA30P and UAS-a-syn WT (Feany and Bender, 2000), UAS-hUCP2 and UAS-DmUCP5 

(Fridell et al., 2005; Besson et al., 2010), and LexAop-a-synA30P (this study). The driver 

lines used are: R58E02-Gal4 and R58E02-LexA (Liu et al., 2012), NP6510-Gal4 (Liu et al., 

2006), elav-Gal4 (elav C155, #458), VT30559-Gal4 (gift from Thomas Preat).  
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Startle-induced negative geotaxis (SING) assay 

Over 75 male flies were collected to assay for ARLD by the SING test as previously 

described (Riemensperger et al., 2013; Vaccaro et al., 2017). Ten-day old flies were used for 

the first experimental day. Groups of 10 flies of the same genotype were collected one night 

before the test and placed in a vertical column (25 cm long, 1.5 cm diameter) with a conic 

bottom end. After startle for 1 min, flies having reached the top of the column (above 22 cm) 

and flies remaining at the bottom end (below 4 cm) were separately counted. Three rounds of 

test were performed three times in a row per column. Results are the mean ± SEM of the 

scores obtained with ten groups of flies per genotype. The performance index (PI) is defined 

as ½[(ntot + ntop − nbot)/ntot], where ntot, ntop, and nbot are the total number of flies, the number 

of flies at the top, and the number of flies at the bottom, respectively. To test the ageing effect, 

the flies were flipped back to keep ageing for the subsequent evaluation every week to detect 

the locomotor performance with age. Dead flies were replaced by flies of the same genotype 

and age. Two-way ANOVA and Tukey's post-hoc test for multiple comparisons was used to 

compare ARLD across genotypes at different time points. 

Use of genetically-encoded mitochondrial fluorescent probes 

Brains of flies expressing MitoTimer or mitoGFP were quickly dissected in ice-cold Ca2+-free 

Drosophila Ringer’s solution, fixed for 20 min in 4% PFA in PBS and washed 3x 20 min in 

PBS on an agitator at room temperature. For mito-roGFP2-Grx1, brains were freshly 

dissected in PBS and transferred immediately for confocal scanning. All the brains were 

mounted in ProLong Gold Antifade Reagent for confocal visualisation. excitation/emission 

(488/515-530 nm) was set for mitoGFP fluorescent detection, while green 

(excitation/emission 488/515-530 nm) and red (excitation/emission 560/570-620 nm) were 

used for MitoTimer detection. As to mito-roGFP2-Grx1, this biosensor was excited 

sequentially at 405 nm and 488 nm (line by line) and detected at 500-530 nm (Albrecht et al., 

2014). Settings for different probes were kept constant across samples for the comparison for 

time course studies. The image quantification (fluorescence intensity and mitochondrial 

perimeter) was done using Fiji software (Schindelin et al., 2012).  

To quantify mitochondrial morphology, and in particular “blob”-like mitochondria, the whole 

PAM cluster, including the DAN cell bodies and their projections, was imaged by confocal 

microscopy. We set the circularity of the analysed particles making sure that our analysis 

only included round mitoGFP-positive structures but not fibrillary mitochondria. The size of 

mitochondria was determined by the perimeter indicated by the round particles. Data 
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generated in Fiji were then used in Graphpad Prism to compute the Gaussian distribution of 

mitochondrial perimeters.  

To exhibit the redox status of mitochondria in situ, oxidized roGFP2 stack was directly 

divided by the reduced roGFP2 stack by the image J –> process –> Image Calculator –> 

divide. The calculated data were processed by the Image J plugin 3D surface plot (kindly 

provided by Diana Zala in Centre de Psychiatrie et Neuroscience) to get final images shown 

in Figure 4C and Figure S4. 

Immunostaining 

Adult brains were dissected in ice-cold Drosophila Ringer’s solution and processed for 

whole-mount immunostaining as previously described (Riemensperger et al., 2011). Primary 

antibodies were mouse anti-FasII (DSHB, 1:50) and rabbit anti-α-syn (Abcam, 1:1000). 

Secondary antibodies were goat anti-mouse and anti-rabbit conjugated to Alexa fluor 488 or 

555 (Invitrogen Molecular Probes, 1:1000). The brains were mounted in ProLong Gold Anti-

fade reagent (Thermo Fisher Scientific) with the anterior side facing upward. Images were 

acquired on a Nikon A1R confocal microscope and processed using the Fiji software.  

 

ROS detection and quantification 

ROS levels in brains were detected with the fluorescent dye dihydroethidium (DHE) (Life 

Technologies) following a published protocol adapted to whole-mount Drosophila brains 

(Owusu-Ansah et al., 2008; Vacarro et al., 2017). Briefly, brains of 5-10 flies from different 

genotypes were quickly dissected in Schneider’s insect medium, and incubated on an orbital 

shaker in 30 µM DHE diluted in Schneider’s medium for 5-7 mins. After 3 5-min washes 

with Schneider’s medium, brains were fixed quickly for 7 mins in 7% formaldehyde in PBS, 

rinsed 5 mins in PBS, then mounted in Vectashield (Vector Laboratories). Images were 

captured immediately after staining on a Nikon AIR confocal microscope. The average 

intensity of the stacks of Z-projections was processed by Fiji software for the whole brain.  

Statistical analysis 

All statistical analyses were performed with GraphPad Prism 6. Data were analysed using 

one-way ANOVA or two-way ANOVA with Bonferroni's or Tukey's post-hoc tests for 

multiple comparisons.  
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Figure 1 Mitochondrial UCPs prevents locomotor defects induced by α-synA30P 
expression in PAM DANs. (A) Representative images of DHE staining of adult flies aged 2-
day or 30-day after eclosion (d a.E.) expressing no or mutant (A30P) or wild type (WT) α-syn 
in all neurons. Scale bars: 50 µm. (B) Quantification of relative ROS levels in whole brains 
of different genotypes at day 2 or day 30. Compared to controls, brains with pan-neuronal α-
synA30P overexpression driven by elav-Ga4 showed increased ROS levels at day 2 and day 
30 while α-synWT expression showed no effect on brain ROS levels. Scale bar: 100 µM. (C) 
Flies co-expressing hUCP2 or DmUCP5 with α-synA30P driven by NP6510-Gal4 showed 
delayed α-synA30P-induced locomotor defects compared to its respective control NP6510>α-
synA30P. (D) Compared to control NP6510>α-synWT flies, co-expression of hUCP2 or 
DmUCP5 proteins with α-syn WT significantly  improved fly locomotion at week 4 only. 
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Figure 2 α-synA30P accelerates age-related mitochondrial alterations in the PAM 
cluster. (A) R58E02>mitoGFP flies showed increase in fluorescence intensity with age in the 
PAM cluster. α-synA30P expression in these DANs caused a significant increase in mitoGFP 
fluorescence intensity at day 10 and day 30. (B) Distribution of mitochondrial size for 
R58E02>mitoGFP and R58E02>mitoGFP, α-synA30P flies at day 30. Expression of α-
synA30P in the PAM cluster induced significant difference in mitochondrial morphology 
compared to controls, with more numerous enlarged mitochondria. (C) High magnification 
images of mitochondrial morphology. Mitochondria from axons lying in the crepine neuropil 
and at the tip of the MB medial lobes are shown. Mitochondria in PAM neurons have a 
fibrillary shape in R58E02>mitoGFP flies, whereas R58E02>mitoGFP, α-synA30P flies 
showed increased number of round mitochondria. Scale bars: 10 µM.  
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Figure 3 α-synA30P progressively impairs mitochondrial redox status in PAM neurons 
(A): Representive images of oxidized roGFP2 (405 nm) and reduced roGFP2 (488 nm) 
patterns in the fly brain with or without α-synA30P expression in PAM DANs at different age. 
Scale bars: 30 µM. (B): Quantification of mitochondrial redox status. 10-day-old flies co-
expressing mito-roGFP2-Grx1 (denoted as mito-roGFP2) with α-synA30P in PAM showed 
an increased ratio of oxidized/reduced mito-roGFP2 compared to control flies without α-
synA30P expression. 
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Figure 4 ROS levels increase in target MB neurons when α-synA30P is expressed in the 
PAM. (A) Schematic representation of the dual in vivo expression system that allows 
independent expression of α-synA30P in PAM DANs with R58E02-LexA, while 
simultaneously monitoring the mitochondrial redox status in the MB by expressing mito-
roGFP2 with VT30559-Gal4. (B) At day 10, flies with α-synA30P in the PAM DANs showed 
increased oxidized/reduced (ox/red ) ratio of mito-roGFP2 in the MB lobes. There was no 
difference in MB mito-roGFP2 ox/red ratio at day 30 compared to control. (C) 3D-
construction of mito-roGFP2 ox/re ratio in the MB lobes at day 10. False color representation. 
Scale bar: 30 µM.  



Results 

 121 

 
 

Figure 5 Expression of mitochondrial UCPs in the MBs prevents locomotor deficits and 
lethality induced by α-synA30P expression in PAM DANs. (A) MB expression of 
DmUCP5 (driven by VT30559-Gal4) significantly ameliorated the SING response in the 
PAM-α-synA30P flies. (B) hUCP2 overexpression in the MB contributed to the same extent 
to the alleviation of PAM-α-synA30P-induced locomotor deficits. (C) α-synA30P expression 
in the PAM cluster increased the fly lethality rate that was ~30% at week 5 compared to ~3% 
in controls without α-synA30P. Overexpressing DmUCP5 or hUCP2 in the MBs rescued the 
lethality of the PAM-α-synA30P flies.  
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Supplemental Figure Legend 

 

 
 

Figure S1 Representative pictures of mitoGFP fluorescence in the PAM cluster. Flies 
expressing α-synA30P in PAM DANs showed higher intensity of mitoGFP fluorescence at 
day 10 and 30 compared to controls. Scale bar : 30 µM.  

 

 
 

Figure S2 MitoTimer exhibited a rapid maturation in PAM DANs specifically. 
MitoTimer showed intense red and very faint green fluorescence at day 2 of adult flies in the 
PAM cluster (left pictures). Expressing MitoTimer in all neurons with the elav-Gal4 driver 
led to intense red MitoTimer and weak but visible green signals throughout the brain (right 
pictures). Scale bar: 100 µM. 
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Figure S3 α-synA30P expression in PAM neurons did not change mitoGFP fluorescence 
in the MBs. (A) Representive images of mitoGFP fluorescence in the MB lobes of flies 
expressing or not α-synA30P in the PAM cluster at day 2, 10 and 30. (B) mitoGFP 
quantification. There was no significant difference between the three genotypes. Scale bar: 30 
µM. 

 

 
 

Figure S4 PAM-α-synA30P impacts on the redox ratio of mito-roGFP2 in the MBs. 
Representative images of mito-roGFP2 redox ratio in MB lobes of flies expressing or not α-
synA30P in the PAM cluster at day 2, 10 and 30. False color representation. Scale bar: 30 
µM. 
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Figure S5 Lack of evidence for PAM to MB α-syn propagation (A) α-syn immunostaining 
in the brain of R58E02>α-synA30P flies labelled the PAM DANs but failed to detect 
evidence of α-synA30P spreading into the MB lobes at day 30. Scale bar: 20 µM (B) α-
synA30P expression in the MBs (driven by VT30559-Gal4) had no prominent effect on 
ARLD.  
 

 
 

Figure S6 α-synA30P induces mitochondrial redox alteration cell-autonomously in PAM 
but not in MB neurons. (A) 10-day old flies co-expressing α-synA30P and MitoTimer in the 
PAM cluster showed increased MitoTimer red/green ratio in the PAM compared to controls 
without α-synA30P. (B) There was no difference in red/green ratio at day 10 in the MBs of 
flies co-expressing α-synA30P and MitoTimer in all KCs compared to controls without α-
synA30P. (C) Same as (A) but using mito-roGFP2 instead of MitoTimer showing increased 
ratio of oxidized/reduced (405/488) mito-roGFP2 in the PAM at day 10.  (D) Same as in (B) 
but using mito-roGFP2 instead of MitoTimer, showing lack of alteration in ox/red mito-
roGFP2 ratio in the MBs.   
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Results C – Neuroprotective role of Piwi in the Drosophila brain 

 
Summary 
Epigenetic remodelling of chromatin has been involved in several neurodegenerative 

disorders and in PD mouse models. Decreased genomic DNA methylation levels associated 

with heterochromatin alterations increase TE transcription and mobility, inducing progressive 

DNA damages that contribute to aging and, possibly, to the onset of neurodegenerative 

diseases. The small RNA machinery, including the siRNA and piRNA pathways, prevents TE 

transcription and expression. The proteins involved in RNA-mediated TE silencing pathways 

belong to the Argonaute family. In Drosophila, there are five proteins of this family: Ago1 is 

responsible for miRNA function, Ago2 participates in the siRNA pathway, and the PIWI 

proteins (Ago3, Aub and Piwi) are involved in piRNA biogenesis and TE-silencing activity.  

Piwi is the only PIWI protein that enters the nucleus where it can represses transposons 

through transcriptional gene silencing (TGS). Previous reports suggested that Drosophila 

Piwi plays a role in the prevention of TE reactivation and transposition both in the germline 

and in somatic cells, including the adult fat bodies and intestinal stem cells. Initial 

experiments performed in our team suggested that inhibiting Piwi expression by RNAi in 

dopaminergic neurons decreased fly resistance to paraquat, a pro-oxidant environmental PD 

factor. Here I show that Piwi functions as an inducible neuroprotector against oxidative stress 

and other aging-related processes, and promotes histone H3K9 methylation and TE 

inactivation in adult Drosophila neurons.  

Personal contribution: Initial experiments on this project were performed in our group, 

following invaluable suggestions from Alain Prochiantz, by Marlène Cassar, Abdul-Raouf 

Issa and three undergraduate interns before I started my PhD. They found that Piwi 

inactivation in brain DA neurons increased PQ resistance in Drosophila. I then repeated and 

extended their observations by showing that Piwi is indeed expressed at very low level in the 

fly CNS, and that it is markedly induced in this tissue under oxidative stress and aging 

conditions, and by studying systematically the effect of Piwi inactivation and overexpression 

on oxidative stress resistance, ROS accumulation, transposon transcription and H3K9 

methylation in the brain.  
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Abstract 

Epigenetic remodelling of chromatin has been involved in several neurodegenerative 

disorders and in Parkinson disease (PD) mouse models. Decreased genomic DNA 

methylation levels associated with heterochromatin alterations increases transposable element 

(TE) transcription and mobility, inducing progressive DNA damages that contribute to aging 

and, possibly, to the onset of neurodegenerative diseases. The PIWI/piRNA pathway was 

demonstrated to target specifically the active TEs and pack them in heterochromatin. 

Drosophila possess three PIWI proteins, Ago3, Aub and Piwi. Previous studies indicated that 

Drosophila Piwi plays a role in the prevention of TE reactivation and transposition both in 

the germline and in somatic cells, including the adult fat bodies and intestinal stem cells. 

However, Piwi was not detected to date in the fly brain. Here we find that piwi is normally 

expressed at very low levels in the adult Drosophila brain and ventral nerve cord (VNC), 

while it is upregulated in this nervous tissue either by exposure to paraquat (PQ), a pro-

oxidant and PD-causing toxin, or during normal aging. We observed that neuronal piwi 

expression increases fly resistance to oxidative stress and reduces marks of aging in the brain. 

Our observations further provide evidence that the protective role of Piwi against aging and 
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PD-like conditions involves TE repression and the maintenance of heterochromatin state in 

Drosophila neurons. This suggests that Piwi is an essential protein in the nervous system that 

could be considered as a valuable target for aging-related neurodegenerative disorders.  

 

Key words 

Argonaute proteins - Piwi - piRNAs - transposable elements - H3K9me3 - paraquat -  

oxidative stress- aging - nervous system – Parkinson disease - Drosophila melanogaster 

 

Introduction 

Over generations, during meiosis and embryonic development, the small RNA-induced gene 

silencing complex (RISC) maintains genomic integrity against transposable elements (TEs) 

through transcriptional and post-transcriptional gene silencing processes (Aravin et al., 2007). 

In diverse organisms, these mechanisms are universally employed to silence TEs, in 

particular in germline and stem cells, where they serve as the main line of defence against TE 

transposition allowing the permanence of genome stability (Juliano et al., 2011). RISC 

assembly requires binding between small non-coding RNAs and the Argonaute proteins, that 

belong to the PIWI protein family in the case of the PIWI-interacting RNA (piRNA) pathway. 

Drosophila encodes three PIWI proteins: Piwi, Aubergine (Aub) and Ago3. The function of 

piRNAs in genome protection has been demonstrated in germline cells (Senti and Brennecke, 

2010). Piwi represses transcription of transposons that are complementary to associated 

piRNAs in the nucleus by recruiting Heterochromatin protein 1a (HP1a, also named 

Suppressor of variegation 205 (Su(var)205) in Drosophila) and increasing Histone 3 lysine 9 

trimethylation (H3K9me3) marks. This induces a repressive heterochromatin state in the 

target TE loci (Le Thomas et al., 2013; Brower-Toland et al., 2007).  

In the nervous system, it was suggested that TE mobility could contribute to cellular diversity 

during neurogenesis, and that TE misregulation is associated with certain neurological 

disorders (Erwin et al., 2014). The Piwi/piRNA complex can also have other targets than the 

TEs and participate in cell-specific gene regulations for higher brain functions such as 

memory. This was demonstrated in Aplysia (Rajasethupathy et al., 2012) and piRNAs were 

also detected in the nervous tissue, including in mouse hippocampal neurons and Drosophila 

mushroom body (MB) neurons that are essential for memory formation (Lee et al., 2011, 
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Perrat et al., 2013; Ross et al. 2014; Bozzetti et al., 2015). Clinical data demonstrate that 

transcription and retrotransposition of long interspersed nuclear elements-1 (LINE-1), which 

constitute ~20% of the human genome, increase in certain neurological disorders, including 

Rett syndrome (Muotri et al., 2010), autism (Shpyleva et al., 2018) and schizophrenia (Doyle 

et al., 2017).  

TE activation has been observed during aging in mice and Drosophila, which could be 

attributed to chromatin relaxation (De Cecco et al., 2013; Li et al., 2013; Chen et al., 2016; 

Wood and Helfand, 2013). Conversely, TE transposition would trigger aging acceleration as 

a consequence of DNA damage and mutation accumulation (Lenart et al., 2018). Promoting 

the heterochromatin state was shown to mitigate age-related increase in TE expression (Wood 

et al., 2016). Since aging is the primary factor for the onset of neurodegenerative disorders 

like Alzheimer disease and PD, the function of the Piwi/piRNA pathway in heterochromatin 

maintenance and TE silencing could be beneficial to protect against neurodegeneration. In 

line with this hypothesis, Ago2 mutant fly showed progressive and age-dependent memory 

impairments, as well as shortened lifespan, that were attributed to high TE activity in brain 

(Li et al., 2013). Moreover, the protein Tau, involved in AD, could induced loss of 

heterochromatin and led to aberrant expression of Ago3 in flies (Frost et al., 2014), 

highlighting the role of Argonaute proteins in neurodegenerative processes.  

Previous works suggested that Drosophila Piwi plays a role in the prevention of TE 

reactivation and transposition both in the germline and in somatic cells, including the adult 

fat bodies and intestinal stem cells (Brennecke et al., 2007; Le Thomas et al., 2013; Jones et 

al., 2016; Klein et al., 2016; Sousa-Victor et al., 2017; Akkouche et al., 2017). Here we show 

that Piwi functions as an inducible neuroprotector against oxidative stress and other aging-

related processes in the Drosophila nervous system. We also provide evidence that Piwi 

exerts its neuroprotection by targeting induced TEs and maintaining heterochromatin status in 

adult brain neurons.  

 

Results  

piwi is induced by oxidative stress in the Drosophila CNS 

The Piwi protein was not detected in the Drosophila brain in a previous study (Perrat et al., 

2013), suggesting that it is expressed at a very low level or not expressed at all in this tissue. 

We performed RT-PCR and western blots on dissected brains and VNCs to avoid potential 
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contamination by the eyes, fat bodies and other non-nervous tissues. To detect piwi by RT-

PCR, we designed primers that bridge the fourth intron to avoid contamination by products 

from genomic DNA. RT-PCR showed that piwi is very slightly expressed in the brain and 

VNC compared to its regular expression in the ovary (Figure 1A). On western bolts, the brain 

and VNC samples showed weak bands, at around 100 kDa. Those bands co-migrate with the 

Piwi band of the ovary sample (Figure 1B). Quantified data from those these experiments are 

shown in Figure S1A and B.  

The herbicide paraquat (PQ) is a superoxide generator that has been used extensively to 

increase oxidative stress and model PD in Drosophila. Flies exposed to PQ show decreased 

locomotion, selective DA neuron loss, and they die in a few days (Chaudhuri et al., 2007; 

Shukla et al., 2014; Cassar et al., 2015; Shukla et al., 2016). Because TE transposition and 

chromatin alterations can be increased by oxidative stress in other systems (Stoycheva et al., 

2010; Giorgi et al., 2011; Song et al., 2011), we examined Piwi expression in the CNS after 

exposing Canton-S flies to a relatively low dose of PQ (10 mM). Strikingly, we found that 

piwi mRNA level was remarkably elevated in the CNS after 24 h showing a 2-fold and 10-

fold increase in the brain and VNC, respectively. This effect was observed both by RT-PCR 

(Figure 1C) and confirmed by qPCR (Figure S1C). Then we determined Piwi protein level in 

the CNS by western blot after a similar PQ exposure. We observed that Piwi increased 3 

folds in the brain and 2 folds in the VNC (Figure 1D). This suggests that piwi expression is 

regulated both at the transcriptional and translational levels in the Drosophila nervous system.  

Neuronal expression of Piwi protects against PQ toxicity  

Because PQ ingestion induced Piwi expression in the CNS, is was quite possible that 

neuronal expression of Piwi could have an influence on PQ susceptibility. We first 

investigated the effect of a loss-of-function of Piwi in all neurons by monitoring the survival 

rate of flies exposed to 20 mM PQ as in usual assays (Cassar et al., 2015). After 24 h, the 

survival of flies with pan-neuronal piwi inactivation (elav>piwi RNAi) was 30-40% lower 

than controls (Figure 2A). Previous work showed that PQ primarily triggers DA neuron 

degeneration in the Drosophila CNS (Chaudhuri et al., 2007; Shukla et al., 2014; Cassar et al., 

2015). We therefore silenced piwi selectively in DA neurons with TH-Gal4. After 24h PQ 

treatment, we observed that the survival rate of TH>piwi RNAi flies was ~60% lower than the 

controls (Figure 2B). TH-Gal4 also targets DA-producing cells in the hypoderm and other 

non-nervous tissues (Friggi-Grelin et al., 2003). In order to eliminate the effect from these 

non-neuronal cells, we used elav-Gal80 together with TH-Gal4 to block piwi inactivation in 
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DA neurons (Figure 2B). We observed that the elav-Gal80, TH>piwi RNAi flies had a PQ 

susceptibility comparable to controls, which showed that piwi expression is required 

specifically in neurons to increase PQ resistance. Another piwi RNAi also decreased fly 

survival under PQ when expressed in DA neurons (Figure S1D), indicating that the effect 

comes from piwi inactivation and not from another gene.  

To verify the role of Piwi, we tested the PQ resistance of flies in which Piwi was, conversely, 

overexpressed. Remarkably, piwi overexpression in all neurons resulted in higher tolerance of 

flies to PQ with 80% survival rate after 30 h PQ ingestion, compared to around 50% for 

controls. In contrast, piwi overexpression with TH-Gal4 did not induce significant protection, 

which could come from the fact that DA neurons represent less than 1% of the total number 

of neurons in the Drosophila brain, or suggest that Piwi expression is tightly controlled at the 

translation level in these neurons. Altogether, these observations suggest that Piwi in induced 

by oxidative stress in the CNS and functions as a potent neuroprotective protein since its 

expression can significantly prolong the survival of flies exposed to a dangerous pro-oxidant 

neurotoxin. 

Piwi alleviates age-related ROS accumulation in the Drosophila brain. 

Aging is a major risk factor for the onset of PD (Malkus et al. 2009; Rodriguez et al., 2015). 

ROS and oxidative damage were shown to accumulate in the Drosophila brain during aging 

(Hirano et al., 2012; Oka et al., 2015; Vaccaro et al., 2017). To determine if neuronal Piwi 

can protect against aging, we quantified ROS levels in the brain by DHE staining at different 

ages and examined the effect of piwi inactivation or overexpression in all neurons (Figure 2E 

and F). At day 2 after adult eclosion, ROS levels were low in brain and piwi silencing or 

overexpression made no difference with the driver and effector controls. At day 30, brain 

ROS levels were strongly increased in all groups. Interestingly, ROS level was found to be 25% 

higher in the piwi RNAi flies (Figure 2E) and 40% lower in the piwi overexpressing flies 

(Figure 2F) compared to the two controls. These data suggest that Piwi reduces age-induced 

ROS accumulation in the fly neurons. 

Neuronal Piwi represses TE activity and increases heterochromatin formation 

Piwi belongs to the Argonaute PIWI family whose main function is to target TEs. piRNAs 

and other PIWI proteins were shown to be expressed in the Drosophila brain (Perrat et al., 

2013). We therefore looked at the effect of PQ and Piwi on transposon activity in the fly 

brain. Like LINE-1 in mammals, HeT-A is non-long terminal repeat (LTR) retrotransposon 

that is predominantly inserted in the chromosome telomeres (Pardue et al., 2005). RT-PCR 
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results demonstrated a 2-fold increase in Het-A mRNA level after 24h PQ treatment (Figure 

3A). We observed that Piwi overexpression in all neurons decreased HeT-A level compared 

to controls in PQ ingestion conditions (Figure 3B).  

Previous studies revealed that epigenetic modifications are implicated in PD pathogenesis 

(Urdinguio et al., 2009; Desplats et al., 2011; Rekaik et al., 2015). Piwi can directly target the 

genome inside the nucleus to promote heterochromatin formation, thereby silencing active 

TE loci (Le Thomas et al., 2013; Brower-Toland et al., 2007). We examined heterochromatin 

H3K9me3 marks in the fly brain by immunostaining. First, we observed decreased 

H3K93me3 levels after 24 h exposure to 10 mM PQ compared to controls without PQ 

treatment (Figure 3C). In elav>piwi flies, this effect was significantly mitigated compared to 

controls, indicating that Piwi can promote heterochromatin formation under oxidative stress 

in Drosophila neurons (Figure 3C). Overall, these results suggest that Piwi ensures better fly 

survival and neuroprotection under PQ-induced acute oxidative stress owing to its action 

against TE mobilization and H3K9 demethylation.  

Piwi impacts on TEs during aging in the fly brain 

Several TEs were reported to be highly active in the Drosophila brain during normal ageing 

(Li et al., 2013), suggesting the transposon activation may contribute to age-dependent 

neuronal dysfunction and degeneration. First, we examined the effect of aging on Piwi 

expression level in the brain. Both piwi mRNA and protein levels were found to be increased 

in old wild-type Canton-S flies (>30 days) (Figure 4A and B). Wild-type flies aged for 30 

days showed a one-fold increase in HeT-A (and R2, not shown) retrotransposons compared to 

that from 2-day old flies (Figure 4C). Similar to the effect of Piwi on HeT-A mRNA level in 

PQ condition (Figure 3B), pan-neuronal piwi overexpression decreases HeT-A mRNAs in 30-

day old flies (Figure 4D). The potential role of piwi on maintaining H3K9 methylation state 

under PQ (Figure 3C) suggested that Piwi may have a similar role during normal aging. As 

shown in Figure 4E, flies with piwi silencing in all neurons showed a slight decrease in 

H3K9me3 immunostaining in 30 day-old flies compared to the controls without neuronal 

RNAi expression. In contrast, no difference in H3K9me3 staining was observed in old flies 

when Piwi was overexpressed in all neurons, suggesting possibly that the age-related increase 

in Piwi level was enough to ensure H3K9 methylation at piRNA-complementary loci.   
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Discussion 

The mechanisms for maintenance of chromatin integrity by the PIWI/piRNA pathway has 

been well-conserved across species. Aging is a major risk factor in PD. Although no specific 

TE clusters were reported to relate to the PD pathologies, age-induced alterations in the 

epigenetic landscape, such as histone modification and active TE transposition, causing DNA 

damage or ROS accumulation, may be a potential driving force for PD onset in the aged 

individuals. Therefore, the PIWI/piRNA pathway could serve as an endogenous self-defense 

mechanism to delay PD pathologies. Here we provide evidence that Piwi is indeed induced 

by increased oxidative stress in the Drosophila CNS. Piwi overexpression in all neurons 

decreased fly susceptibility to PQ toxicity associated with lower TE mobility and higher 

H3K9me3 level, while piwi inactivation in neurons had opposite effects. Together, these data 

suggest that piwi function as an inducible protective protein against PD-like oxidative stress 

and marks of aging in the fly nervous system.  

In Drosophila, Piwi has been detected in the gonad tissue in the first place and then revealed 

to play a role in early embryogenesis (Mani et al., 2014). Piwi was then localized in the stem 

cells of the gut, in the nuclei of abdominal fat bodies, and in follicle and germline cells in 

gonad tissue by studies later on (Brennecke et al., 2007; Jones et al., 2016; Sousa-Victor et al., 

2017). Previous works did not report a neural localization and function of Piwi. The study by 

Perrat et al. (2013) showed immunostaining patterns for Ago3 and Aub in the Drosophila 

MB lobes and stated that Piwi was not detected in the brain. Moreover, Jones et al., (2016) 

showed by western blots that Piwi is less expressed in the fat body than in the ovary, and no 

signal was obtained in head and thorax samples. Here we provide evidence that Piwi is 

expressed, but normally at hardly detectable levels, in the Drosophila brain and VNC, while 

it is strongly induced in those tissues by PQ-induced oxidative stress and present at a 

significantly higher level in the brain of old flies. We ascertained the presence of Piwi in 

young flies by using two different antibodies, a rabbit polyclonal from G. Hannon and a 

commercially available mouse monoclonal antibody. We obtained identical bands in our 

brain samples with these two antibodies that co-migrated with the ovary signal, highly 

suggesting that Piwi is expressed in the fly CNS. Furthermore, the effect of piwi inactivation 

on fly resistance to PQ toxicity using neuronal drivers and two different RNAi constructs 

provided more evidence that Piwi is expressed and may function as a neuroprotective protein 

in the fly CNS. Neurons are usually considered as postmitotic cells, and in the fly brain, there 

are few adult stem cells (von Trotha et al., 2009; Herrup and Yang, 2007). Because the 
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PIWI/piRNA pathway normally functions in non-aging cells to maintain their proliferative 

activity (Sturm et al., 2017), Piwi could be expressed in those few adult neuronal stem cells, 

or, by as unconventional mechanism, Piwi may also be expressed ubiquitously and at a low 

level in the fly CNS.  

Our work indicates that Piwi in the CNS and in the gonad tissue share similar mechanisms of 

action. Overexpressing Piwi in all neuron could mitigate the elevated TE level induced by PQ 

toxicity, and maintain heterochromatin status in this context. In a fly model of Alzheimer 

disease (Frost et al., 2014), Drosophila Ago3 was found to be upregulated by Tau-toxicity, 

which is comparable to the induced Piwi level we observed upon PQ ingestion. The toxicity 

of Tau and PQ shares the similarity that both of them can induce the epigenetic abnormalities 

(Frost et al., 2014; Song et al., 2011). However, a divergence between the AD model and our 

PD model is that downregulation of Ago3 could alleviate the toxic effect from Tau whereas 

we find that piwi inactivation in contrast decreased fly resistance to PQ toxicity. Ago3 and 

Piwi are categorized as PIWI subfamily proteins, responsible for piRNA biogenesis and 

function (Brennecke et al., 2007; Lutejin and Ketting, 2013). Ago3/piRNAs target TE 

transcripts in the cytoplasm and induce their cleavage to generate new piRNAs, whereas, 

guided by piRNA, Piwi enters the nucleus, where the Piwi/piRNA complex targets TE 

transcripts and active TE locus (Iwasaki et al., 2015). Furthermore, by recruiting 

HP1a/Su(var)205, Piwi can increase H3K9me3 level, thus packing the TE site in the 

heterochromatin status (Lutejin and Ketting, 2013). Due to the diverse role of Piwi in the 

nuclei and in histone modifications, it is reasonable that piwi and ago3 inactivation elicited 

different consequences upon the toxicity induced by Tau and PQ. Tau transgenic flies 

exhibited significant loss of H3K9me2 in the Ago3 gene, leading to an increase of Ago3 

expression (Frost et al., 2014). The authors considered the consequence of increased Ago3 

expression as a loss of control of neuronal proliferation that would re-enter into an 

inappropriate cell cycle inducing subsequently apoptosis. This hypothesis could not explain 

the neuroprotective effect of Piwi overexpression, given that the PIWI/piRNA pathway is 

implicated in proliferation (Yakushev et al., 2016; Ponnusamy et al., 2017). Since we could 

not determine the exact localization of piwi or even the localization of induced Piwi upon PQ 

treatment in the brain, we cannot rule out an unconventional mechanism for Piwi function in 

differentiated neurons, in which overexpressed Piwi would target the aberrant TEs in all cells 

and maintain the heterochromatin without initiating cell cycle re-entry.  
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Exposure to environmental insults has been implicated in the pathogenesis of PD. PQ-treated 

animals exhibited loss of DA neurons with increase in ROS generation and caspase-3 

activation (Bus and Gibson, 1984; McComack et al., 2002; Chaudhuri et al., 2007; Fei et al., 

2008; Hosamani and Muralidhara, 2013; Shukla et al., 2014; Cassar et al., 2015). In a cell 

culture model of PD, PQ induced epigenetic change by promoting histone acetylation (Song 

et al., 2011). Applying a DNA methyltransferase inhibitor increased cell sensitivity to PQ 

toxicity (Kong et al., 2012). However, the effects of PQ on heterochromatic status in vivo was 

not characterized yet. Here we observed a decrease in H3K9me3 in the brain of flies treated 

10 mM PQ compared to those without treatment. This loss of H3K9me3 heterochromatin 

marks is probably related to the TE activation that is also induced by PQ exposure.  

Heterochromatin decreases with aging, leading to increased TE transcription (Wood and 

Helfand, 2013) and aging acts as a “priming” factor for the onset of PD. TE activation was 

suggested to be a major factor of ageing, because it better explained the exponentially 

increase in mortality rate during the adult life (Sturm et al., 2015). Here we showed that ROS 

accumulation,  induced TEs and decreased H3K9me3 levels in the brain of aging flies, were 

all alleviated by pan-neuronal Piwi overexpression. Altogether, our work provides the first 

evidence that Piwi is expressed in the fly CNS and identifies it as an inducible 

neuroprotective protein. The neuronal function of Piwi against PQ toxicity and aging-related 

chromatin defects in flies suggest that targeting the Piwi/piRNA pathway, which involves 

heterochromatin maintenance and repressed TE activity, could be an effective way to delay or 

protect against PD pathogenesis.  

 

Materials and Methods 

Drosophila culture and strains 

Fly stocks were raised and crossed at 25°C on standard corn meal/yeast/agar medium 

supplemented with methyl-4-hydroxybenzoate as a mold protector, under a 12h-12hr 

light/dark cycle. The following lines were used: Canton-S and w1118 as wild-type controls, 

elav-Gal4 (Lin and Goodman, 1994), TH-Gal4 (Friggi-Grelin et al., 2003), elav-Gal80 

(Rideout et al., 2010) (kindly provided by Sean Sweeney, University of York, UK), 

piwiEP1024/UAS-piwi (Cox et al., 2000) (kindly provided by Haifan Lin, Yale University, New 

Haven, CT, USA), UAS-piwiRNAi-33 and UAS-piwiRNAi-31 (Bloomington Drosophila Stock 
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Center TRiP lines #33724 and #31610, respectively). Except otherwise indicated, UAS-

piwiRNAi-33 was generally used and named in figures UAS-piwi RNAi.  

Oxidative stress resistance 

Oxidative stress resistance was assayed by exposure to paraquat (PQ) (methyl viologen, 

Sigma-Aldrich) using a previously described dietary ingestion procedure (Cassar et al., 2015). 

~100 non-virgin 8-day old female Drosophila per genotype were collected and exposed to 20 

mM PQ diluted in 2% (wt/vol) sucrose (or sucrose only for controls) in 2-inch (5.2 cm) 

diameter Petri dishes (10 flies per dish) containing two layers of Whatman filter soaked with 

the PQ solution, then incubated at 25°C in saturating humidity conditions. Fly survival was 

scored after 24 h and 30 h. In some experiments, brains from flies exposed to 10 mM PQ for 

24h were dissected and processed for PCR, Western blots and immunostaining.  

ROS detection and quantification 

Reactive oxygen species (ROS) level was determined with the fluorescent dye 

dihydroethidium (DHE) (Life Technologies) following a published protocol adapted to 

whole-mount Drosophila brains (Owusu-Ansah et al., 2008; Vacarro et al., 2017). 5-8 adult 

brains per genotype were dissected in Schneider’s insect medium and incubated on an 

orbital shaker for 5-7 min at room temperature in 30 µM DHE diluted in the same medium. 

The brains were then washed 3 times in Schneider’s medium and fixed for 7 minutes in 7% 

formaldehyde in PBS. After rinsing in PBS and mounting in Vectashield (Vector 

Laboratories), the brains were immediately scanned at constant gain setting on a Nikon 

A1R confocal microscope. Relative ROS levels were measured by quantification of whole 

brain average intensity level of the dye fluorescence using the Fiji software. 

Immunostaining 

7-10 adult brains were dissected in ice-cold Drosophila Ringer’ solution and processed for 

whole mount immunostaining as previously described (Riemensperger et al 2011). The 

primary antibodies were rabbit anti-H3K9me3 (Abcam, 1:1000) and mouse anti-TH 

(Immunostar, 1:1000). The secondary antibodies were goat anti-mouse and anti-rabbit 

conjugated to Alexa Fluor 488 or 555 (Invitrogen Molecular Probes, 1:1000). The brains 

were mounted in ProLong Gold Antifade reagent (Thermo Fisher Scientific). Images were 

acquired with a Nikon A1R confocal microscope and processed using the FIJI software to 

quantify the fluorescent intensity for H3K9 tri-methylation in the brain.  
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RT-PCR and quantitative PCR 

RT-PCR was performed to examine piwi expression in different dissected tissues as 

previously described (Cassar et al., 2015). The primers used in the RT reaction were: for piwi, 

sense 5’-ACGCATTCGCGACCACAATCAG, antisense 5’-

TGTACTTCTGTGACGTTCTTGTCCAGT; for Het-A, sense 5’- 

CGCAAAGACATCTGGAGGACTACC, antisense 5’-TGCCGACCTGCTTGGTATTG; for 

rp49, sense 5’-GACGCTTCAAGGGACAGTATC, antisense 5’- 

AAACGCGGTTCTGCATGAG. Quantitative PCR was conducted on a Roche LightCycler 

480. System with the Roche SYBR Green Master mix using the following primer sets: piwi: 

sense primer 5- GACGTTGCTCACACAATCCG, antisense primer 5- 

CATGGCACGCATAAGCTGAAA; rp49: sense primer 5- 

GACGCTTCAAGGGACAGTATC, antisense primer 5- AAACGCGGTTCTGCATGAG. 

Western Blots 

25-30 dissected brains or VNCs were lysed in RIPA buffer (Sigma-Aldrich) containing 

protease inhibitors (cOmplete Protease Inhibitor Cocktail, Roche Diagnostics). The lysates 

were incubated on ice for 30 min and centrifuged at 8,000 g for 10 min at 4°C. Protein 

samples were prepared by diluting the supernatant in 1 x final NuPAGE LDS Sample Buffer 

and Reducing Agent, followed by 10 min denaturation at 70°C and 5 s centrifugation at 1,000 

g. Proteins were separated in 4-12% Novex NuPAGE Bis-Tris precast polyacrylamide gels 

(Life Technologies), using PageRuler Plus Prestained Protein Ladder (ThermoFisher 

Scientific) as migration marker, and electrotransferred to Amersham Hybond P 0.45 PVDF 

membranes (GE Healthcare Life Sciences). Membranes were blocked after transfer for 2 h at 

room temperature in Tris-buffered saline (TBS) containing 0.05% (v/v) Tween 20 (TBS-T) 

supplemented with 5% skimmed milk. Membranes were then incubated overnight at 4°C in 

TBS-T containing 5% (w/v) skimmed milk in 0.05% TBS-T with the following primary 

antibodies: rabbit polyclonal anti-Drosophila Piwi (kindly provided by Gregory J. Hannon, 

University of Cambridge, UK), mouse monoclonal anti-Drosophila Piwi (1:500, Santa Cruz 

Biotechnology, #sc-390946) mouse monoclonal anti-a-tubulin (DHSB 1:500, #12G10). The 

horseradish peroxidase (HRP)-conjugated anti-rabbit or anti-mouse secondary antibodies 

(Invitrogen Molecular Probes) were used at 1:3000. Immunolabeled bands were revealed 

with ECL RevelBlOt Intense (Ozyme, France) and digitally acquired at different exposure 

times using Image Quant TL software (GE Healthcare Life Science). Densitometry measures 
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were made with the Fiji software and normalized to the a-tubulin measures as internal 

controls. 

Statistical analysis  

All statistical analyses were performed with the GraphPad Prism 6 software. Data were 

analysed using Mann-Whitney test or one-way ANOVA or two-way ANOVA with 

Bonferroni's or Tukey's post-hoc tests for multiple comparisons. All data are presented as 

mean ± SEM. Significant values in all figures: *p<0.05, **p<0.01, ***p<0.001 

 

References 

Akkouche A, Mugat B, Barckmann B, Varela-Chavez C, Li B, Raffel R, Pélisson A, 
Chambeyron S. 2017. Piwi is required during Drosophila embryogenesis to license dual-
strand piRNA clusters for transposon repression in adult ovaries. Mol Cell 66: 411-
419.e4. 

Aravin AA, Hannon GJ, Brennecke J. 2007. The Piwi-piRNA pathway provides an adaptive 
defense in the transposon arms race. Science 318: 761–764. 

Becker JS, Nicetto D, Zaret KS. 2016. H3K9me3-dependent heterochromatin: barrier to cell 
fate changes. Trends Genet 32: 29–41. 

Bozzetti MP, Specchia V, Cattenoz PB, Laneve P, Geusa A, Sahin HB, Tommaso SD, 
Friscini A, Massari S, Diebold C, et al. 2015. The Drosophila fragile X mental 
retardation protein participates in the piRNA pathway. J Cell Sci 128: 2070–2084. 

Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. 2007. 
Discrete small RNA-generating loci as master regulators of transposon activity in 
Drosophila. Cell 128: 1089–1103. 

Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SCR, Lin H. 
2007. Drosophila PIWI associates with chromatin and interacts directly with HP1a. 
Genes Dev 21: 2300–2311. 

Bus JS, Gibson JE. 1984. Paraquat: model for oxidant-initiated toxicity. Environ Health 
Perspect 55: 37–46. 

Cassar M, Issa A-R, Riemensperger T, Petitgas C, Rival T, Coulom H, Iché-Torres M, Han 
K-A, Birman S. 2015. A dopamine receptor contributes to paraquat-induced 
neurotoxicity in Drosophila. Hum Mol Genet 24: 197–212. 

Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O’Donnell JM. 2007. 
Interaction of Genetic and Environmental Factors in a Drosophila Parkinsonism Model. 
J Neurosci 27: 2457–2467. 

Chen H, Zheng X, Xiao D, Zheng Y. 2016. Age-associated de-repression of retrotransposons 
in the Drosophila fat body, its potential cause and consequence. Aging Cell 15: 542–552. 



Results 

 139 

Coppedè F. 2012. Genetics and epigenetics of Parkinson’s disease. ScientificWorldJournal 
2012: 489830. 

Cox DN, Chao A, Lin H. 2000. piwi encodes a nucleoplasmic factor whose activity 
modulates the number and division rate of germline stem cells. Development 127: 503–
514. 

De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA. 2013. 
Transposable elements become active and mobile in the genomes of aging mammalian 
somatic tissues. Aging (Albany NY) 5: 867–883. 

Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, 
Masliah E. 2011. α-synuclein sequesters Dnmt1 from the nucleus. J Biol Chem 286: 
9031–9037. 

Doyle GA, Crist RC, Karatas ET, Hammond MJ, Ewing AD, Ferraro TN, Hahn C-G, 
Berrettini WH. 2017. Analysis of LINE-1 Elements in DNA from postmortem brains of 
individuals with schizophrenia. Neuropsychopharmacology 42:2602-2611. 

Erwin JA, Marchetto MC, Gage FH. 2014. Mobile DNA elements in the generation of 
diversity and complexity in the brain. Nat Rev Neurosci 15: 497–506. 

Fei Q, McCormack AL, Monte DAD, Ethell DW. 2008. Paraquat neurotoxicity is mediated 
by a Bak-dependent mechanism. J Biol Chem 283: 3357–3364. 

Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S. 2003. Targeted gene 
expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine 
hydroxylase. J Neurobiol 54: 618–627. 

Frost B, Hemberg M, Lewis J, Feany MB. 2014. Tau promotes neurodegeneration through 
global chromatin relaxation. Nat Neurosci 17: 357–366. 

Giorgi G, Marcantonio P, Del Re B. 2011. LINE-1 retrotransposition in human 
neuroblastoma cells is affected by oxidative stress. Cell Tissue Res 346: 383–391. 

Herrup K, Yang Y. 2007. Cell cycle regulation in the postmitotic neuron: oxymoron or new 
biology? Nat Rev Neurosci 8: 368–378. 

Hirano Y, Kuriyama Y, Miyashita T, Horiuchi J, Saitoe M. 2012. Reactive oxygen species 
are not involved in the onset of age-related memory impairment in Drosophila. Genes 
Brain Behav 11: 79–86. 

Iwasaki YW, Siomi MC, Siomi H. 2015. PIWI-interacting RNA: its biogenesis and functions. 
Annu Rev Biochem 84: 405–433. 

Jones BC, Wood JG, Chang C, Tam AD, Franklin MJ, Siegel ER, Helfand SL. 2016. A 
somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and 
normal lifespan. Nat Commun 7: ncomms13856. 

Juliano C, Wang J, Lin H. 2011. Uniting Germline and Stem Cells: The function of Piwi 
proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 45: 447–469. 

Klein JD, Qu C, Yang X, Fan Y, Tang C, Peng JC. 2016. c-Fos Repression by Piwi regulates 
Drosophila ovarian germline formation and tissue morphogenesis. PLoS Genet 12: 
e1006281. 



Results 

 140 

Kong M, Ba M, Liang H, Ma L, Yu Q, Yu T, Wang Y. 2012. 5’-Aza-dC sensitizes paraquat 
toxic effects on PC12 cell. Neurosci Lett 524: 35–39. 

Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS. 2011. 
Identification of piRNAs in the central nervous system. RNA 17: 1090–1099. 

Lenart P, Novak J, Bienertova-Vasku J. 2018. PIWI-piRNA pathway: Setting the pace of 
aging by reducing DNA damage. Mech Ageing Dev. 

Li W, Prazak L, Chatterjee N, Grüninger S, Krug L, Theodorou D, Dubnau J. 2013. 
Activation of transposable elements during aging and neuronal decline in Drosophila. 
Nat Neurosci 16: 529–531. 

Lin DM, Goodman CS. 1994. Ectopic and increased expression of Fasciclin II alters 
motoneuron growth cone guidance. Neuron 13: 507–523. 

Luteijn MJ, Ketting RF. 2013. PIWI-interacting RNAs: from generation to transgenerational 
epigenetics. Nat Rev Genet 14: 523–534. 

Malkus KA, Tsika E, Ischiropoulos H. 2009. Oxidative modifications, mitochondrial 
dysfunction, and impaired protein degradation in Parkinson’s disease: how neurons are 
lost in the Bermuda triangle. Mol Neurodegener 4: 24. 

Mani SR, Megosh H, Lin H. 2014. PIWI proteins are essential for early Drosophila 
embryogenesis. Dev Biol 385: 340–349. 

McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S. 2004. Paraquat 
induces oxidative stress and neuronal cell death; neuroprotection by water-soluble 
Coenzyme Q10. Toxicol Appl Pharmacol 201: 21–31. 

McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-
Slechta DA, Di Monte DA. 2002. Environmental risk factors and Parkinson’s disease: 
selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. 
Neurobio Dis 10: 119–127. 

Muotri AR, Marchetto MCN, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH. 2010. 
L1 retrotransposition in neurons is modulated by MeCP2. Nature 468: 443–446. 

Oka S, Hirai J, Yasukawa T, Nakahara Y, Inoue YH. 2015. A correlation of reactive oxygen 
species accumulation by depletion of superoxide dismutases with age-dependent 
impairment in the nervous system and muscles of Drosophila adults. Biogerontology 16: 
485–501. 

Owusu-Ansah E, Yavari A, Banerjee U. 2008. A protocol for in vivo detection of reactive 
oxygen species. Protocol Exchange 

Pardue M-L, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL. 2005. 
Two retrotransposons maintain telomeres in Drosophila. Chromosome Res 13: 443–453. 

Perrat PN, DasGupta S, Wang J, Theurkauf W, Weng Z, Rosbash M, Waddell S. 2013. 
Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340: 91–95. 

Ponnusamy M, Yan K-W, Liu CY, Li PF, Wang K. 2017. PIWI family emerging as a 
decisive factor of cell fate: An overview. Eur J Cell Bio 96: 746–757. 



Results 

 141 

Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER. 2012. A 
role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. 
Cell 149: 693–707. 

Rekaik H, Blaudin de Thé F-X, Fuchs J, Massiani-Beaudoin O, Prochiantz A, Joshi RL. 2015. 
Engrailed Homeoprotein protects mesencephalic dopaminergic neurons from oxidative 
stress. .Cell Rep 13: 242–250.  

Rideout EJ, Dornan AJ, Neville MC, Eadie S, Goodwin SF. 2010. Control of sexual 
differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat 
Neurosci 13: 458–466. 

Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, Iché-Torres M, 
Cassar M, Strauss R, Preat T, et al. 2011. Behavioral consequences of dopamine 
deficiency in the Drosophila central nervous system. Proc Natl Acad Sci USA 108: 834–
839. 

Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M. 2015. Parkinson’s 
disease as a result of aging. Aging Cell 14: 293–308. 

Ross RJ, Weiner MM, Lin H. 2014. PIWI proteins and PIWI-interacting RNAs in the soma. 
Nature 505: 353–359. 

Senti KA, Brennecke J. 2010. The piRNA pathway: Guardian of the genome –A Fly’s 
Perspective. Trends Genet 26: 499–509. 

Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, Chowdhuri DK. 
2014. Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration 
by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease. 
PLoS One  9: e98886. 

Shukla AK, Ratnasekhar C, Pragya P, Chaouhan HS, Patel DK, Chowdhuri DK, Mudiam 
MKR. 2016. Metabolomic analysis provides insights on paraquat-induced parkinson-like 
symptoms in Drosophila melanogaster. Mol Neurobiol 53: 254–269. 

Shpyleva S, Melnyk S, Pavliv O, Pogribny I, Jill James S. 2018. Overexpression of LINE-1 
retrotransposons in autism brain. Mol Neurobiol 55: 1740–1749. 

Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. 2011. Paraquat induces 
epigenetic changes by promoting histone acetylation in cell culture models of 
dopaminergic degeneration. Neurotoxicology 32: 586–595. 

Sousa-Victor P, Ayyaz A, Hayashi R, Qi Y, Madden DT, Lunyak VV, Jasper H. 2017. Piwi 
is required to limit exhaustion of aging somatic stem cells. Cell Rep 20: 2527–2537. 

Stoycheva T, Pesheva M, Venkov P. 2010. The role of reactive oxygen species in the 
induction of Ty1 retrotransposition in Saccharomyces cerevisiae. Yeast 27: 259–267. 

Sturm Á, Perczel A, Ivics Z, Vellai T. 2017. The Piwi-piRNA pathway: road to immortality. 
Aging Cell 16: 906–911. 

Le Thomas AL, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin 
AA, Tóth KF. 2013. Piwi induces piRNA-guided transcriptional silencing and 
establishment of a repressive chromatin state. Genes Dev 27: 390–399. 



Results 

 142 

Urdinguio RG, Sanchez-Mut JV, Esteller M. 2009. Epigenetic mechanisms in neurological 
diseases: genes, syndromes, and therapies. Lancet Neurol 8: 1056–1072. 

Vaccaro A, Issa AR, Seugnet L, Birman S, Klarsfeld A. 2017. Drosophila clock is required in 
brain pacemaker neurons to prevent premature locomotor aging independently of its 
circadian function. PLoS Genet 13: e1006507. 

von Trotha JW, Egger B, Brand AH. 2009. Cell proliferation in the Drosophila adult brain 
revealed by clonal analysis and bromodeoxyuridine labelling. Neural Dev 4: 9. 

Waddell S, Barnstedt O, Treiber C. 2014. Neural transposition in the Drosophila brain: is it 
all bad news? Adv Genet 86: 65–92. 

Wood JG, Helfand SL. 2013. Chromatin structure and transposable elements in organismal 
aging. Front Genet 4: 274. 

Wood JG, Jones BC, Jiang N, Chang C, Hosier S, Wickremesinghe P, Garcia M, Hartnett DA, 
Burhenn L, Neretti N, et al. 2016. Chromatin-modifying genetic interventions suppress 
age-associated transposable element activation and extend life span in Drosophila. Proc 
Natl Acad Sci USA 113: 11277–11282. 

Yakushev EY, Mikhaleva EA, Abramov YA, Sokolova OA, Zyrianova IM, Gvozdev VA, 
Klenov MS. 2016. The role of Piwi nuclear localization in the differentiation and 
proliferation of germline stem cells. Mol Biol 50: 630–637. 

Zhao PP, Yao MJ, Chang SY, Gou LT, Liu MF, Qiu ZL, Yuan XB. 2015. Novel function of 
PIWIL1 in neuronal polarization and migration via regulation of microtubule-associated 
proteins. Mol Brain 8: 39. 



Results 

 143 

 
 

Figure 1. Piwi is induced by oxidative stress in the nervous system. (A, B) Piwi expression 
in normal conditions. Both piwi mRNA (A) and protein (B) were hardly detectable in the 
adult brain and ventral nerve cord (VNC) of wild-type flies in normal conditions, compared 
to much higher piwi expression in the ovary. (C, D) Piwi expression in oxidative stress 
conditions. Both piwi mRNA (C) and protein (D) levels were strongly up-regulated after 24 h 
exposure to 10 mM PQ. Ctrl: control, NC: negative control-PCR reaction without template, 
PQ: paraquat, α-tub: α-tubulin, VNC: ventral nerve cord.  
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Figure 2. Effect of piwi inactivation or overexpression in neurons on PQ resistance and 
age-related ROS accumulation. (A-D) Effect of piwi on fly PQ resistance. (A) piwi 
silencing by RNAi in all neurons (elav-Gal4 driver) decreased Drosophila survival after 24 h 
of exposure to PQ , as compared to the driver and RNAi alone controls. (B) piwi silencing in 
DA-synthesizing cells (TH-Gal4 driver) also decreased PQ resistance, while blocking this 
inactivation selectively in DA neurons with elav-Gal80 rescued fly survival. (C) piwi 
overexpression in all neurons strongly increased fly survival after 30 h exposure to PQ 
compared to both controls. (D) Flies with Piwi overexpressed in DA-synthesizing cells 
showed no significant difference in survival rate compared to controls in the same conditions 
as (C).  (E-F) Effect of piwi on ROS accumulation in the brain. piwi inactivation or 
overexpression had no effect on ROS levels in the brain of young adult flies aged 2 days a.E. 
In contrast, in the brain of aged flies (30 days a.E.) piwi inactivation in all neurons increased 
(E), while piwi overexpression decreased (F), age-induced ROS accumulation in the brain. 
Representative pictures of fluorescence levels in whole-mount dissected brains are shown on 
top of the graphs. d a. E.: day after eclosion.  
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Figure 3 Neuronal Piwi overexpression decreases PQ-induced TE transcription and 
H3K9 demethylation. (A) Transcription of HeT-A retrotransposon is increased by 10 mM 
PQ exposure for 24h. (B) RT-PCR results showed a slight decrease in HeT-A transcription in 
elav>piwi flies after 24h exposure to 10 mM PQ. (C) PQ ingestion decreased H3K9me3 level 
in the whole brain compared to untreated controls. Pan-neuronal piwi overexpression partially 
prevented PQ-induced H3K9 demethylation.  
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Figure 4 Neuronal Piwi expression increases with age and attenuates aging-related 
chromatin defects. (A,B) Effect of aging on piwi mRNA in the heads (A) and protein (B) 
levels in brain. Piwi expression increases in old flies (C) Transcription of HeT-A 
retrotransposon increases with age in adult flies, as shown by RT-PCR performed on head 
mRNAs. (D) Piwi overexpression in all neurons significantly mitigated the increase in HeT-A 
in heads of 30-day old adult flies. (E,F) piwi inactivation increased the loss of H3K9m3 
marks in brains of 30-day old adult flies (E) while piwi overexpression had no significant 
effects (F).  
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Supplemental Figure Legend 

 
 

 

 

Figure S1 (A,C) Quantification of piwi mRNA (A) and protein (B) levels in brain, VNC and 
ovary based on data shown in Figure 1A,B. (C) qPCR performed on samples used for Figure 
1C showed increase in piwi transcript after 24 h exposure to 10 mM PQ. (D) piwi inactivation 
in DA neurons with another piwi RNAi strains. TH>piwi RNAi-31 flies are more sensitive to 
PQ than the two controls.  
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1. Neural circuits modulating locomotor reactivity 

We have shown that the MBs are involved in SING modulation. The three main components 

of the MBs, afferent modulatory neurons (including DANs), intrinsic neurons (KCs) and 

efferent neurons-MBONs, participate in this neuromodulation. We have found that the DA 

receptor Dop1R1, not Dop1R2, is required in the MB lobes for DA control of startle-induced 

locomotion, particularly from the PPL1 cluster. After delineation of the role of the MBs in 

SING modulation, we completed this work in Part II of Results A to evaluate which other 

neurotransmitters could be involved in the networks controlling locomotor reactivity. We 

showed that that both serotonin and octopamine are implicated in SING modulation, which 

was not surprising because serotoninergic and octopaminergic neurons are afferent to the 

MBs (Pech et al., 2013a). Moreover, we observed an effect of neuronal activation of the FSB, 

but not of the EB, which are both part of the CC involved in the coordination of locomotor 

behaviour (Kashai et al., 2010; Wolff et al., 2015). Therefore, FSB may serve to convey 

sensorimotor representations between the SMP (projection region of the MBs) and the 

descending neurons, which carry signal from brain to the thoracic ganglia (Hsu and 

Bhandawat, 2016), to execute the SING reflex. 

1.1 Implication of the MBs in locomotion control 

The point highlighted in Result A-Part I is that the MBs not only serve as an integrated centre 

for learning and memory (Aso et al., 2014a, 2014b), but it also has an inhibitory action on 

locomotor reactivity. A role for the MBs in locomotion control has been first shown in 

Drosophila by Heisenberg et al. (1985) who reported that mushroom body miniature mutant 

flies exhibited increased locomotor activity and then it was revealed by Martin et al. that MBs 

suppressed locomotor activity (Heisenberg et al., 1985; Martin et al., 1998). The locomotor 

activity here refers to the free walking (spontaneous) activity, potentially modulated by 

different neural circuits from those controlling the SING (White et al., 2010; Sun et al., 2018). 

However, the neuronal circuits regulating these two different locomotor behaviours appear to 

have the MBs in common.  

Based on the nice correspondence of the neural assemblies of the mammalian basal ganglia 

and insect central complex the MB is reminiscent of the hippocampus and amygdala in 

mammals (Strausfeld and Hirth et al., 2013). Interestingly, in mammals, an injury to the 

hippocampus region caused disrupted locomotor circuits (López Ruiz et al., 2015) and the 

hippocampus was implicated in the control of locomotion speed (Bender et al., 2015), 
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comparably to the insect MB function in the control of locomotor behaviours. Activating 

DANs decreased the SING response while activating MB α' β' or g KCs similarly exhibited a 

marked decrease in locomotor reactivity. This confirmed that the MBs in this network are 

inhibitory for startle-induced locomotion. DA binds to excitatory Dop1R1 in the MB 

activating subtypes of the intrinsic KCs. Therefore, it is logical that both increased DA 

release or the activation of MB KCs elicited a decrease in locomotor reactivity. Activation by 

dTrpA1 of specific MBONs induced a similar decline in SING performance, which implied 

that signalling input activated those MBON to convey the “stop” message to the sensorimotor 

neuronal network. But what could be the input signal on MBONs? Probably either direct DA 

release on MBONs or integrated information from DANs through MB intrinsic neurons.  

1.2 Neuronal networks modulating startle-induced locomotion 

A scheme in Results A, Part I (Figure 8 of Sun et al., 2018) summarized the MB-associated 

neuronal components controlling startle-induced locomotion that we have identified. One 

important question is how the integrated information in the higher brain centres (MB, SMP) 

is transferred through descending neurons and connects with the motor system?  

The CC in the fly brain is considered as a pre-motor center control (Strauss, 2002; Martin et 

al., 1999; Kahsai et al., 2010; Kahsai and Winther, 2011). It comprises four neuropils: PB, 

FSB, EB, and noduli. Classified by Lin et al. (2013), neurons extending from the PB, FB and 

EB send projections to the LALs. Meanwhile, the LALs are innervated by many neurons, 

including dendrites of the descending neurons, so the LAL selects the activity of descending 

output according to received input from the CC, which coordinates the behaviour (Fiore et al., 

2015; Turner-Evans and Jayaraman, 2016). Moreover, activity of EB layers was associated to 

the LALs, encoding premotor command (Fiore et al., 2017; Namiki and Kazaki, 2016). 

However, our work showed no effect of the EB in SING modulation, which is consistent with 

a recent demonstration from Kottler et al. (deposited in BioRxiv). In contrast, the FSB 

appears to be involved in SING modulation. 

As experiments in Results A, Part II, suggest that the FSB could be responsible for the 

transmission of integrated information from the SMP region. Neuronal activation by the 

columnar neurons extending across the PB and FSB (Figure 2A, driver R52G12-Gal4) or in 

the neurons that release neuroactive peptides in different layers of the FSB (Figure 2C, driver 

R94C05-Gal4) caused a decrease in locomotor reactivity. We have evidence for an 

involvement of the FSB in SING modulation, but we cannot tell for now if the FSB acts as 
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the pre-locomotor command centre responding directly to DA modulation for SING 

modulation, as DAN terminals reach to the FSB (Mao and Davis, 2009; Kong et al., 2010, 

Alekseyenko et al., 2013; Niens et al., 2017; Kahsai and Winther, 2011; Kahsai et al., 2012). 

Work from various groups has demonstrated that DAN of the PPL1 and PPM3 clusters can 

project to different layers of the FSB. For examples, PPL1 neurons tile the dorsal FSB part 

and projection of PPM3 arborizes on the ventral FSB and noduli (Kong et al., 2010; 

Alekseyenko et al., 2013; Strausfeld and Hirth et al., 2013). These DA terminals correspond 

to Dop1R1 localization in the FSB and noduli (Kahsai et al., 2012; Alekseyenko et al., 2013). 

Localization of Dop2R in the PB has also been reported in the work of Alekseyenko et al 

(2013). This indicates that the CC, reminiscent of mammalian basal ganglion, possesses two 

types of DA receptors with excitatory and inhibitory function, respectively, underpinning 

DA-related modulation. But, because of the heavy projections from different DAN clusters 

onto the MBs (PPL1, PAM and PPL2ab) and the potential expression of Dop2R in the MBs 

(Scholz-Kornehl and Schwärzel, 2016), the MBs may also be involved in the 

excitatory/inhibitory mechanism for modulating locomotor reactivity.  

According to the pattern of the R94C05-Gal4 driver, projections of these neurons go through 

the SMP region where the dendrites of DANs and terminals of MBONs lie. In the flesh fly 

Neobellieria bullata, dendrites of neurons reaching to the FSB largely lie in the SMP 

(Phillips-Portillo and Strausfeld, 2012), suggesting that input to the FSB may come from the 

MBONs terminals after DAN>KC>MBON integration. Further work is needed to 

characterize the synaptic interactions between the DANs, MBONs and FSB in this interesting 

convergence region, the SMP, to complete an overall view of DA-mediated SING control. 
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Figure 36 Startle-induced locomotion modulatory network 

Different neuronal clusters are presented in different colour, with round solid circles cell body, 
rectangles dendrites and “V” axonal projections. The dashed line indicates neuronal connections 
based on previous studies but not verified by our work. Distribution of DA receptors is indicated in 
each neuronal compartment with Dop1R1 (DopR) in the MBs and two segments of the FSB and 
Dop2R (DDR2) in the FSB. The SMP region contains dendrites of DANs from the PPL1 (light blue), 
PAM (purple) and PPM3 (orange) clusters. FSB-layer neurons (blue), axons of MBON-M4/M6 
(yellow) and MBON-V2/V3(green) also lay in the SMP region, as well as potential dendrites and 
axons from descending neurons (DNs, brown). CRE: crepine; DN: descending neuron; DAN: 
dopaminergic neurons; FSB: fan-shaped body; LAL: lateral accessory lobes; MB: mushroom body; 
MBON: mushroom body output neuron; PAM: protocerebral anterior medial; PB: protocerebral 
bridge; PPL: protocerebral posterior lateral; PPM: protocerebral posterior medial; SMP: superior 
medial protocerebrum; VNC: ventral nerve cord.  

 

Our work has identified three subtypes of MBONs (MBON-M4/M6, V2 and V3) conveying 

information processed through DANs-MBs interactions to the SMP region for SING 

modulation. They join there with the dendrites of PPL1/PAM DANs and intriguingly a few 

dendritic projections from the descending neurons (Namiki et al., 2017, BioRxiv) placing the 

SMP region as a potential zone of convergence of DANs, MBONs, CC and the sensorimotor 

system, all underpinning startle-induced locomotion. As described in this work of Namiki, 
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both LAL, SMP, SLP exhibited smooth processes (post-synaptic), while SMP and SLP tiny 

varicose processes (pre-synapse) of descending neurons. No dendrites of descending neurons 

were observed in the CC or MB by Namiki et al., suggesting no direct descending output 

from these high-order integrative regions. However, there is scarce but existing tiny varicose 

process of descending neurons in the calyx of the MBs, FSB and PB, implying tiny input 

feedback to the higher order brain.  

1.3 Impaired SING in fly as a model of motor symptoms in PD patients  

DA can be considered as a neuromodulator involved in locomotion control, not only for 

spontaneous locomotion (walking and flying) but also for locomotor reactivity 

(Riemensperger et al., 2011, 2013; Bou Dib et al., 2014; Agrawal and Hasan, 2015; Pathak et 

al., 2015; Vaccaro et al., 2017; Sun et al., 2018). Brain DA-deficient flies showed a decrease 

in walking speed, walking distance and strongly impaired locomotor reactivity 

(Riemensperger et al., 2011). In the Results-A part I, because of the inhibitory role of MBs in 

SING control, SING performance was normal or slightly improved when DA release onto the 

MB was blocked in most of the DANs (see Fig. 2A-C in Sun et al., 2018)). However, one 

could wonder then why the DA-deficient flies showed impaired locomotor reactivity. On the 

other hand, previous work from our group showed that α-synA30P expression in 15 DANs of 

the PAM (NP6510-Gal4 driver) caused degeneration of PAM projections onto the MBs and 

to premature locomotor decline with age (Riemensperger et al., 2013). Similar progressive 

locomotor defects were observed when TH was inactivated by RNAi during the whole life of 

the fly in these 15 PAM DANs (Riemensperger et al., 2013). Even more strikingly, TH RNAi 

inactivation in a single DAN of the PPL1 cluster (MB-V1) that also projects to the MBs also 

led to accelerated SING decline (Vaccaro et al., 2017). On the other hand, short-term or long-

term blockage of DA release from the 15 PAM neurons with Shits1 (for 12 h per day during 3 

weeks), elicited no impact on the locomotor reactivity (Riemensperger et al., 2013; Sun et al., 

2018). Apparently then, accelerated SING decline can be caused either by a long-term lack of 

DA in MB-afferent DANs (as in the case of DA-deficient or TH-RNAi flies), or by long-term 

ROS accumulation in these MB-afferent DANs (as in the PAM-α-synA30P model described 

in Results B of this study, or, quite likely, in the case of ClkAR mutant flies described in our 

group (Vaccaro et al., 2017). Overall, and although we don’t understand all about it by far, a 

combination of DA deficiency and ROS accumulation appears to underpin the progressively 

impaired SING decline in flies, which suggests that studying further this effect is a good 

model to understand better what causes motor symptoms in PD patients.  
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2. Parkinson disease-like pathogenesis  

2.1 DANs as “greenhouse” for α-syn-induced defects 

As shown in the Result B part, pan-neuronal expression of mutant α-synA30P induced ROS 

accumulation in the whole fly brain, whereas no obvious difference in ROS levels could be 

seen between α-synWT and control. This could be due to the fact that prefibrillar oligomer 

form may represent the toxic among all the forms, and the A30P mutant form has a reduced 

speed of fibrillization compared to the other mutant form or the wild-type protein (Seidel et 

al., 2010; Lashuel et al., 2012). Therefore, it is possible that the relatively prolonged presence 

of α-synA30P oligomers would enhance damage to mitochondria, lysosome, and 

microtubules, elevating the ROS level (Lashuel et al., 2012). Indeed, the higher ROS 

accumulation in the fly with α-synA30P expression correlated to the more severe locomotor 

defects.  

DANs offer the best “hotbed” for α-syn-induced oxidative stress. When α-syn is expressed in 

the NP6510-Gal4-targeted DANs, the toxicity manifested with locomotor defects 

(Riemensperger et al., 2013). But, expressing α-synA30P with VT30559-Gal4 in all MB KCs, 

which are in large part cholinergic, did not trigger such locomotor deficits, indicating the 

higher vulnerability of DANs than cholinergic neurons upon α-synA30P toxicity in the fly, as 

is the case in the human brain. Please note that VT30559-Gal4 labels more than 1000 KCs, 

R58E02-Gal4 around 170 PAM DANs plus cells in the optic lobes, and NP6510-Gal4 30 

PAM DANs plus 3 non-DANs in the PAM (F neurons). VT30559-Gal4 drives gene 

expression much stronger than R58E02-Gal4 according to our observations. However, as we 

showed in Results B, only flies expressing α-synA30P in DANs and not in MB cells 

exhibited alterations in mitochondrial redox level.  

As stated in a large number of reviews, the specific vulnerability of SNpc DANs to PD 

conditions would be due to high energy demand that requires a large quantity of mitochondria, 

heavy calcium loading for autonomous pacemaking activity but less calcium buffer proteins 

(Faustini et al., 2017; Surmeier and Schumacker, 2013; Reeve et al., 2014; Surmeier et al., 

2017c). DANs that are equipped with a large quantify of mitochondria offer the best and 

more numerous engines for α-synA30P-mediated ROS production (Martin, 2006; Parihar et 

al., 2008). Mitochondria act as the powerhouse guarantying proper neuronal function, thus, 

mitochondrial equilibrium should be exquisitely regulated (Tatsuta and Langer, 2008), 

especially for DANs of the SNpc. A recent study showed that high wild-type α-syn levels in 
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fly neurons altered the localization of the mitochondiral fission protein Drp1 in the axons, 

subsequently disturbing mitochondrial quality control and enhancing α-syn toxicity. Strongly 

expressing α-syn in all neurons also led to enlarged mitochondria as visualized by mitoGFP, 

and oxidized mitochondria revealed with MitoTimer (Ordonez et al., 2018). It is known that a 

reduction in mitochondrial size is a requirement for mitochondrial clearance (Pozo Devoto 

and Falzone, 2017). What we can infer from those studies is that the enlarged mitochondria 

may slow down mitochondrial degradation, promoting aberrant mitochondria accumulation. 

On the other hand, due to the toxicity of α-synA30P, the aggregates of α-synA30P were 

reported to block the autophagic flux in the rat optic nerve (Koch et al., 2015), possibly 

undermining the autophagy-lysosomal pathway on the long term. Our own observations with 

mitoGFP in the PAM DANs are consistent therefore with previously published observations.  

It is known that human α-syn expression increases intracellular ROS and mitochondrial stress 

(Junn and Mouradian, 2002; Parihar et al., 2008; Dias et al., 2013). As proton-carrier proteins 

located in the inner membrane of mitochondria, activated by mitochondrial ROS, UCP can 

effectively uncouple substrate oxidation from ATP phosphorylation, and decrease oxidative 

stress (Andrews et al., 2005a,b). Here our work showed that ROS clearance with UCP 

proteins in the PAM DANs mitigated locomotor defects induced by α-synA30P, highlighting 

that mitochondrial homeostasis inside these DANs is pivotal for normal startle-induced 

locomotion in the fly.  

2.3 Non-cell autonomous mechanism underlying disease propagation  

PD is now considered as a prion-disorder that involves neuron-to-neuron transmission of an 

α-syn-derived pathogen (Olanow and Prusiner, 2009; Costanzo and Zurzolo, 2013; Brundin 

and Melki, 2017), though this theory is still in part under debate (McCann et al., 2016; 

Surmeier et al., 2017b). ROS and reactive nitric oxide (RNS) species produced by 

extracellular α-syn-induced microglia activation would then accelerate the neurodegeneration 

around (Zhang et al., 2005). The loss of DANs in post-mortem PD brains is indeed associated 

with microgliosis (Przedborski, 2017). A recent study has lent further support that misfolded 

preformed fibrils of α-syn can be transferred from an affected neuron to a previously healthy 

one by binding to the surface motif lymphocyte-activation gene 3 in vitro and in vivo (Mao et 

al., 2016). In addition, this study also demonstrated that the accumulation of pathological α-

syn can decrease levels of synaptic proteins, impair neuronal excitability, and finally lead to 

neuronal death. This could be the NCA mechanism caused by the preformed fibrillar form of 

α-syn.  
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Because the effects of α-synA30P we observed in the PAM DANs were a disruption of 

mitochondrial structure and an increase in mitochondrial oxidation level, we searched for 

similar alterations in the MB target cells as an evidence of a NCA process, which was not yet 

demonstrated in the Drosophila model. Using the mito-roGFP2-Grx1 fluorescent probe, we 

did observe redox alterations in the MB mitochondria in 10-day old flies when α-synA30P 

was expressed in the PAM DANs. Strikingly, alleviating mitochondrial stress by UCP 

expression in the MBs improved the locomotor performance in the PAM- α-synA30P model. 

Not restricted to the amelioration of locomotion, UCP expression in the MB could also 

significantly decrease the lethality caused by PAM-expressed α-synA30P. This indicates that 

the NCA process we detected with the mito-roGFP2 probe is neither insignificant nor 

harmless, as rescuing the mitochondria in the MB target cells was sufficient to protect against 

both faster ARLD and lethality in this model.  

Remarkably, in a proteome analysis of the α-synA30P Drosophila model (Xun et al., 2007), 

around 42% of the dysregulated proteins were found to be mitochondrion-associated at day 

10, which is exactly the pre-symptomatic time at which we detected non-cell autonomously-

induced redox alterations in the MB mitochondria. In contrast, we could not detect any 

difference with controls not expressing α-synA30P at day 30, which could be related to the 

fact that the PAM DAN synaptic projections to the MBs have probably all degenerated at this 

time (Riemensperger et al., 2013). This reinforces the hypothesis of the trans-synaptic 

transfer of a pathological agent between the degenerating DANs and their MB target.  

What could be the nature of this transferred pathological agent? The first candidate is of 

course α-synA30P itself. Therefore we attempted to mimic such a transmission by expressing 

α-synA30P directly and selectively in the MB neurons. However, this did not lead to any 

obvious defects in locomotion nor alteration in the redox status of mitochondria in 10-day old 

flies. This might be explained if the cholinergic MB neurons were able to cope with α-

synA30P toxicity by enhancing protein degradation and also maintain mitochondrial activity. 

Devoid of the ROS-producing context within DANs, α-synA30P expression in these MB 

neurons may not be sufficient to produce massive ROS accumulation and locomotor defects. 

Another hypothesis we could suggest is that α-synA30P needs to be generated in DANs to 

acquire the conformation and aggregation state of a dangerous prion protein able to induce 

dysfunction in target neurons. It is known indeed that DA itself can interact with α-syn to 

induce the formation and stabilization of toxic soluble α-syn oligomers or protofibrils 
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(Conway et al., 2001; Xu et al., 2002; Mor et al., 2017), which could then be transferred from 

the PAM DANs to the MBs as long as the contacts between these cells are maintained.  

However, the prion hypothesis does not seem to hold in the fly model for several reasons. 

First, we could not detect the presence of α-synA30P in the MB cells by immunostaining in 

symptomatic state (at day 30) while this protein was readily detectable in the close by-located 

DANs. Second, a released α-synA30P oligomer could not induce pathological propagation 

after being taken up into another neuron by converting the α-syn present in this target cell 

into a prion, for the simple reason that there is no endogenous α-syn expressed in the fly. 

Third, we have shown previously that long-term TH inactivation in MB-afferent DANs can 

induce quite similar progressive locomotor deficits as those induced by α-synA30P 

expression in these DANs (Riemensperger et al., 2013; Vaccaro et al., 2017). Clearly, α-syn 

oligomers are not necessarily required for this NCA process. Based on that, we would like to 

propose that α-synA30P expression in DANs would rather facilitate pathological propagation 

through a ROS-associated NCA mechanism. Either ROS would be directly transferred trans-

synaptically between neurons, or, perhaps, the escaping ROS would activate glia cells around, 

which would release pro-inflammatory factors and more ROS, promoting the degeneration of 

neurons in the vicinity. H2O2 permeation through aquaporin channels and O2
•− penetration 

though anion channels are possible mechanisms for ROS translocation across the plasma 

membrane (Fisher, 2009). The neuronal membrane could also be damaged directly by ROS 

or by specific “pore-like” structure formed by the α-syn oligomers (Chen et al., 2015) that 

could facilitate ROS leakage through the membrane. Our idea that ROS transmission within 

the pathological propagation process undermined locomotion in the Drosophila PD model 

fits well with the popular microbiota-gut-brain axis theory for PD propagation. This 

interesting concept proposed that bacterial proteins may trigger inflammation and glial 

activation in the enteric system, causing oxidative stress transmission, neurodegeneration and 

motor deficits (Mulak and Bonaz, 2015; Sampson et al., 2016).  

3. Piwi guards DANs against epigenetic modifications in PD 

3.1 Neuroprotective role of Piwi in a fly model of PD 

Neuronal DNA damage primarily induced by oxidative stress has been long considered as a 

potential cause of DAN loss in PD (Robison and Bradley, 1984; Sanders and Greenamyre, 

2013; Coppedè and Migliore, 2015; Li et al., 2016). Oxidative stress can indeed trigger TE 

overexpression leading to chromatin alterations and DNA breaks (Stoycheva et al., 2010; 
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Giorgi et al., 2010; Song et al., 2011). Maintaining chromatin integrity and preventing DNA 

damage could, therefore, be a trackable approach to treat or delay PD pathology. 

Heterochromatin-associated protein contributes to DNA repair in various conditions (Sansó et 

al., 2011; Dinant and Luijsterburg, 2009; Frost et al., 2014; Lemaître and Soutoglou., 2014; 

Rekaik et al., 2015). The Argonaute protein Piwi silences transcription of transposons that are 

complementary to piRNAs by increasing histone methylation and maintaining a repressive 

heterochromatin state at TE loci (Pal-Bhadra et al., 2004; Brower-Toland et al., 2007; Castel 

and Martienssen, 2013; Le Thomas et al., 2013; Tóth et al., 2016;) thereby potentially 

defending the genome against environmental insults.  

In our study, we have shown that piwi inactivation in DANs markedly increased Drosophila 

lethality after PQ ingestion, suggesting that perturbation to chromatic homeostasis impaired 

fly anti-oxidative ability. DANs is the most vulnerable neuronal clusters in the brain. 

Overexpressing Piwi in DANs only was not enough to protect the flies against the PQ 

induced oxidative stress. But, flies with pan-neuronal Piwi overexpression exhibited higher 

resistance to oxidative stress induced by PQ. One possibility is that other subset of neurons 

might uptake PQ or be sensitive to the oxidative stress generated by PQ in DANs. Or this 

could be related to a tighter regulation of Piwi translation in DANs than in other neurons. As 

visualized with a H3K9me3 antibody, we observed that Piwi overexpression in all neurons 

relatively preserved histone methylation in the fly brains after PQ ingestion. This result is 

consistent with the increased PQ sensitivity of rat PC12 cells after pre-treatment with a DNA 

methyltransferase inhibitor (Kong et al., 2012). DNA methylation and histone modification 

are involved in establishing patterns of gene repression. Although DNA methylation and 

histone methylation are carried out by different chemical reactions and require different 

enzymes, it is apparent that these two pathways can be dependent on one another (Cedar and 

Bergman, 2009). Other than the effect on histone methylation, PQ toxicity was also 

associated with histone H3 hyperacetylation in the DANs due to reduced activity of HDAC 

(Song et al., 2010, 2011).  

Convincing evidence of epigenetic abnormalities in PD has been reported by Desplats et al., 

(2011) who showed that DNA methyltransferase 1 (Dnmt1), an enzyme that maintains DNA 

methylation, was sequestered from the nucleus by α-syn, resulting in global DNA 

hypomethylation, in particular in CpG islands upstream of SNCA itself. Moreover, the 

methylation status of the gene encoding the cytokine Tumour necrosis factor α (TNFα) was 

significantly decreased in the SN compared to the cortex of both PD patients and healthy 



Discussion 

 161 

individuals, implying that increased TNFα expression may trigger an inflammatory process, 

in this brain region specifically, rendering DANs more susceptible to environmental insults 

(Pieper et al., 2008). Based on a genome-wide DNA methylation analysis of PD patients’ 

brains, Kaut et al. (2012) reported that the gene coding for cytochrome P450 2E1 (CYP2E1) 

was hypomethylated and its protein product overexpressed in the putamen and cortex of PD 

patients. Although CYP2E1 is involved in the detoxification of xenobiotics, it has been 

associated with increased generation of ROS.  

  

Figure 37 Hypothesis: protective role of Piwi in PD-like pathogenesis 

 

By assessing TE levels, we have found that HeT-A and R2 elements, two non-LTR 

retrotransposons, comparable to mammalian LINE-1, were induced during PQ treatment. 

HeT-A has a very interesting insertion site preference in telomeric DNA, and mutations in 

related genes mediating TE activity, showed increased telomere length (Pardue et al., 2005). 

In our work, the consequence of induced HeT-A during PQ exposure is unclear, but we 

considered this alteration as resulting from a general derepression of heterochromatin and 

activation of TEs. Similar to the maintenance of H3K9me3 marks by Piwi overexpression, 

PQ-induced HeT-A overexpression was partly prevented by overexpressed Piwi. From the 

data described in Results C, we proposed a potential protective role of Piwi against PD-like 

pathogenesis in flies (Figure 37). By maintaining histone methylation level, Piwi could 

preserve repressive epigenetic marks, leading to a decrease in the expression of ROS-

producing genes and silencing of TE activity.  
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3.2 PIWI functions outside the gonad 

Piwi function is crucial to maintain the heterochromatin status, repress retrotransposon 

activation and prevent DNA damage (see in 3.1 above) both in germline and somatic cells in 

Drosophila. In the intestine, for example, Piwi is required for the long-term preservation of 

intestinal stem cells (ISC) function by maintaining heterochromatin marks and preventing 

apoptosis (Sousa-Victor et al., 2017). Piwi is induced in the gut by the JAK/STAT signaling 

pathway under infection, thus supporting the high rate of proliferative activity of ISC. In our 

study, we showed that Piwi is expressed at very low level in the Drosophila CNS, but can be 

induced by PQ, and that it protects neurons against acute oxidative stress. Another PIWI 

Argonaute Drosophila protein, Ago3, was shown to play a role in neurodegeneration. Frost et 

al. (2014) have reported a loss of H3K9me2 and HP1a in a fly model of Tau pathology. More 

precisely, Tau-induced decreased occupancy of H3K9me2 of the Ago3 gene elevated Ago3 

expression, which led to aberrant cell cycle activation and subsequent neuronal apoptosis. 

This observation was reminiscent of autopsy analyses from Alzheimer’s disease patients, 

showing depleted H3K9me2 and increased PIWIL1 (mammalian homolog to Ago3). 

Surprisingly, although Ago3 and Piwi function in the same pathway to enhance piRNA 

function, they appear to have opposite effects in neurodegenerative context. In the AD model, 

elevated Ago3 induced by Tau was suggested to be associated with piRNA dysregulation and 

a loss of proliferative control. In our PD model, Piwi was induced by PQ, and, in contrast, 

Piwi overexpression protected against oxidative damage. The contrasted consequences 

between Ago3 and Piwi effects might be related to the nuclear localization of Piwi, which is 

not shared by Ago3, as increased Piwi levels could directly target the TE loci in situ, 

therefore silencing the TEs and restoring heterochromatin maintenance.  

We also observed decreased level of H3K9me3 in the brain of aged elav>piwi RNAi flies. 

Decreased H3K9 methylation suggests decline of heterochromatin-enriched histone code 

with activation of gene expression. Until now, there is no direct evidence where Piwi 

localizes in the fly brain. Is it slightly expressed in the all neurons? Or it could be expressed 

restrictedly in few neuronal stem cells (von Trotha et al., 2009), which would be involved in 

proliferative function identically to Piwi in the stem and germline cells. piRNAs were 

previously detected in the brain, including in mouse hippocampus and Drosophila MBs (Lee 

et al., 2011, Perrat et al., 2013; Ross et al. 2014; Bozzetti et al., 2015). In our study, induced 

or overexpressed Piwi in the brain could maintain the heterochromatin state, suggesting that 

its neuroprotective function depends on its activity in the nucleus. The elaborate mechanisms 
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to explain how Piwi protects against PQ toxicity and ageing will require further studies to be 

elucidated.  

3.3 Potential function of PIWI/piRNAs in PD pathology 

PIWI proteins use a group of small non-coding RNA, the piRNAs, to regulate cellular 

activity by RNA silencing. In fly, over 60% of piRNAs map to genomic locations, with 70% 

targeting to transposons, the rest mapping to non-annotated regions and protein-coding gens 

(Senti and Brennecke, 2010). Deep sequencing of extracted RNAs from the mouse 

hippocampus led to characterize a subset of piRNAs; which was followed by the discovery 

that Miwi (mouse homolog of Ago3) is expressed in the hippocampal neurons. One type of 

piRNA, DQ541777, was predicted to target genes coding Cyclin-dependent protein kinases 5 

regulatory subunit-associated protein 1 (Cdk5rap1) and microtubule affinity-regulating kinase 

1/2 (MARK1/2) (Lee et al., 2011a).  

Cdk5rap1 inhibits the activation of the kinase Cdk5 by p25 (Ching et al., 2002). Cdk5 has no 

function in cell-cycle progression, but rather in the organization of the cytoarchitecture of the 

CNS (Dhavan and Tsai, 2001). PIWI/piRNA binding to Cdk5rap1 was shown by the 

presence of Cdk5rap1 in MIWI-IP (immunoprecipitation done with mouse MIWI) products 

(Nishibu et al., 2012), suggesting that PIWI/piRNA may mediate its expression. Conceivably, 

aberrant regulation of Cdk5rap1 would lead to hyperactivated Cdk5 binding to p25. Both 

were identified as the components of Lewy bodies in the PD patients (Beyer and Ariza et al., 

2007; Wakabayashi et al., 2013) and Cdk5 is involved in the pathology of PD (Wilkaniec et 

al., 2016). The oligomers of α-syn can induce Cdk5 hyperactivity. Then, this elevated Cdk5 

activity could impact on parkin phosphorylation and lead to its aggregation, followed by the 

mitochondrial dysfunction, oxidative stress and dopaminergic neurodegeneration.  

As to the other piRNA binding gene, MARK1/2, activation of MARK proteins was observed 

to accumulate in the Lewy bodies-like inclusions as well as in the Lewy bodies of 

postmorterm synucleinopathies brains, suggesting the role of MARK in α-syn pathology 

(Henderson et al., 2017). Besides, MARKs have been associated to the PD-associated genes, 

Pink1 and Lrrk2. MARK2 and PINK1 have been reported to localize with mitochondria and 

regulate their transport. MARK2 was shown to interact and preferentially phosphorylate the 

cleaved form of PINK1, thus increasing PINK1 activity. Interestingly, the main 

phosphorylated site by MARK2 on the cleaved PINK was Thr-131, a frequent mutated site of 

familial PD (Matenia et al., 2012). MARK1 was validated as a substrate of LRRK2, 
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potentially acting as a key player in the pathway by which LRRK2 regulates cytoskeletal 

dynamics (Krumova et al., 2015). In addition, MARK1 serves as the binding partner of 14-3-

3 probably involving in cytoskeletal organization and cellular trafficking (Göransson et al., 

2006). Potentially, via employing piRNA DQ541777 and other not-yet identified piRNAs, 

dysregulation of PIWI could be directly associated with PD pathology.  

4. Ageing, environmental factors, ROS, and PD 

Ageing is the major risk factor for the onset of PD, not only because of accumulated 

mutations and misfolded proteins, but also due to alterations in the genome landscape, with 

the consequence of ROS build-up and abnormal gene expression (Reeve et al., 2014; Wood 

and Helfand, 2013). This likely leads to inefficiency in mitochondrial activity and 

malfunction of the proteolytic systems, and ultimately failure to maintain cellular 

homeostasis in DANs (Reeve et al., 2014; Surmeier et al., 2017b). 

Derepression of transposon activity is associated with ageing and some TEs in the brain are 

overexpressed upon PQ treatment as shown in our study. A causative relation between 

transposons and the PD pathology has not been established yet. However, some report 

suggested that TE activity can influence the biosynthesis of a number of neurotransmitters, 

contributing to neurodegenerative disorders, particularly in PD (Baillie et al., 2011; Abrusán, 

2012). Interestingly, the endogenous mechanisms to silence TEs mainly take place in the 

gonad tissue rather than the somatic tissue. Given that TEs accumulate in the brain with 

ageing, the relevant mechanisms perhaps emerged to defend the integrity of the genome, 

which would help understand why Piwi is induced in the PQ toxicity context, as well as in the 

ageing brain. Piwi could prevent PQ-induced DNA damage (not tested yet) and loss of 

heterochromatin marks, thus compromising the subsequent ROS production and epigenetic 

abnormalities triggered by PQ and ageing. The observation that Piwi overexpression in all 

neurons efficiently protect against acute PQ toxicity, suggests that damage to the genome 

during the PD pathology should not be neglected.  

A major difference between germline and somatic cells is that the Piwi/piRNA pathway is 

highly used in germline cells to target TEs activity and maintain their non-ageing phenotypes. 

According to Sturm et al (2015), the mortality rate rises exponentially throughout the adult 

life suggesting the primary factors for ageing might be TE activity rather than the decline in 

efficiency of cellular repair processes. In agreement with the retrotransposon theory of aging, 

the overexpression of genes involved in heterochromatin maintenance or the silencing of TEs 
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by inhibiting reverse transcriptase increased lifespan in the fly (Wood et al., 2016). Therefore, 

TE-repressive mechanisms combined with enhanced ROS clearance and cellular repair 

process could postpone the onset of PD and other ageing-associated neurodegenerative 

disorders. 
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Abstract 

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder, 

characterized at the cellular level by the loss of midbrain dopaminergic neurons (DANs) and 

the presence of cytoplasmic inclusions mainly composed of α-synuclein (α-syn) named Lewy 

bodies. A combination of multiple factors, including ageing, genetic mutations, and 

environmental insults contribute to the development of PD, making it difficult to understand 

its neuropathological pathways. Although research on PD has remarkably advanced, we still 

do not have a curable treatment. A useful Drosophila PD model showed that mutant α-

synA30P expression in a subset of DANs of the brain protocerebral anterior medial (PAM) 

cluster caused progressive locomotor deficits and loss of projections of these cells to the 

mushroom bodies (MBs). The objectives of my PD work were to characterize further this in 

vivo model to better understand how α-syn accumulation in DANs can disrupt startle-induced 

locomotion and to search for novel proteins or pathways that may confer neuroprotection in 

PD-related pathological conditions.  

In this work we first identified putative networks underlying the modulation of startle-

induced locomotion in the fly, which primarily involve subsets of DANs and MB-associated 

neurons. We then obtained evidence that α-synA30P expression in PAM DANs triggers 

mitochondrial dysfunction both in the DANs and, through a non-cell autonomous process, in 

their target MB cells. Alleviating mitochondrial stress by expressing uncoupling proteins 

(UCPs) either in DANs or, remarkably, in the MBs mitigated the locomotor deficits and 

increased fly survival in the PAM-α-synA30P model. Finally, we report that the Argonaute 

protein Piwi is induced by oxidative stress and neuroprotective in the Drosophila brain. Piwi 

can delay neuronal ageing and PD-like progression by enhancing H3K9 methylation and 

potentially silencing transposable elements. Overall, our work provides new insights on PD-

related pathological and neuroprotective mechanisms in the Drosophila model.  

Key words: Parkinson’s disease, startle-induced locomotion, mitochondrial homeostasis, non-

cell autonomous process, Piwi, epigenetic modifications, Drosophila melanogaster 

 

 

 


