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Figure 1 : The plant cell division cycle.  

The Gap1 phase (G1) prepares entry of the cell in S phase during which the DNA is replicated. S 
phase is then followed by the Gap2 (G2) phase in which the cell is repairing DNA replication errors 
before the Mitosis (M). In mitosis, the nuclear envelop breaks down and the two genomic copies are 
separated. In late mitosis the two nuclear envelop reform and the cellular compartment is split by 
cytokinesis. 
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Introduction 
 

A. The cell cycle in eukaryotes 

 

1. General principles of cell cycle 

 

The cell cycle is a biological process in which a mother cell gives rise to two 

genetically identical daughter cells. During this process, the cellular components, including 

the genome, are first duplicated and then equally distributed in the two newly formed cells. 

The cell cycle is fundamental, as it is involved in vegetative reproduction of unicellular 

organisms, but also in organ growth and sexual reproduction of more complex eukaryotes. 

Cell cycle research started during the 19th century. In 1855, The German Rudolf 

Virchow was the first to claim that “a cell arises from another cell”. Subsequently, different 

researchers described in detail the cytological aspect of cell division (Nurse et al., 1998). 

However, our mechanistic understanding of cell cycle regulation was only exploding in the 

80s, with the development of molecular biology. The work of Paul Nurse and others (Leland 

Hartwell and Tim Hunt) on core cell cycle genes in yeast and human was awarded by a Nobel 

prize in Medicine and Physiology in 2001. 

The cell cycle consists of the progression through four successive phases in a 

unidirectional way (Figure 1). The genome is first duplicated during the DNA synthesis phase 

(S). The two copies of the genome are then separated during mitosis (M), reaching the 

opposite sides of the cell before cytokinesis. In between these two main events, there are two 

latency phases called gap 1 and 2 (G1 and G2) where cells are checking the proper 

completion of the previous phase and preparing all the components that are required for the 

transition to the next phase. The M-phase of the cell cycle can itself also be subdivided into 

four steps: the prophase, metaphase, anaphase and telophase (Figure 2). During the prophase, 

the DNA is condensed into highly coiled chromosomes, the nuclear envelop breaks down and 

the mitotic spindle starts to form in the cytoplasm. In metaphase, the chromosomes reach the 

virtual plane of division (or metaphase plane) and attach to the mitotic spindle though specific 

regions on the chromatids, called kinetochores. Once paired to the microtubule fibers of the 

mitotic spindle, sister chromatids are separated and migrate in opposite directions during the 



 

 

Figure 2 : Confocal imaging of mitosis in tobacco BY-2 cell suspension (adapted from Kurita et al., 
2017).  

DNA staining is realized using DAPI and microtubules were immunolabelled with anti-α-tubulin. 
During prophase DNA is condensed and MTs start to invade the nuclear compartment. In metaphase, 
the nuclear envelope has already disappeared, chromosomes reach the equatorial plan and the mitotic 
spindle attaches kinetochores. During anaphase, sister chromatids are separated and reach the opposite 
sides of the cell. The last step is the telophase, where the nuclear envelop reforms, DNA decondenses 
and the phragmoplast assembles the new cell plate. DAPI: 4',6-diamidino-2-phenylindole, MT: 
microtubules, MS: mitotic spindle, Phr: phragmoplast, Inter: interphase, Pro: prophase, Meta: 
metaphase, Ana: anaphase, Telo: telophase, scale bar: 50µm. 
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anaphase. Finally, the telophase consists of the reformation of the nuclear envelope and 

nuclear organelles, and the decondensation of the chromatin. The telophase occurs at the same 

time as scission of the cellular compartment, or cytokinesis. In animal cells, cytokinesis 

involves a contractile ring of actin filaments. In contrast, plant cells are coated with a cell wall 

conferring rigidity and preventing division in a similar matter. Instead, cytokinesis in plants 

requires active transport of material to the equatorial plate. This is achieved by a structure 

composed of microtubules, the phragmoplast, that is in charge of guiding the cell wall 

components through Golgian vesicular trafficking towards the division plane (Figure 1). 

The sequential control of interconnected processes that constitute the cell cycle is 

critical for all organisms. In animals, the misregulation of cell division leads to abnormal cell 

proliferation and may cause tumorigenesis. Plants differ from animals by the fact that their 

organ development mainly occurs post-embryonically. Moreover, plants are sessile 

organisms. By consequence, they must adapt their developmental rate to face the resource 

availability, the environmental conditions and attack by pathogens. The cell cycle needs to be 

tightly regulated during the whole lifespan of the plant and this is accomplished by a set of 

essential “core cell cycle” genes. The following part of this thesis aims to give an overview of 

the cell cycle regulatory pathways in eukaryotes, with a particular emphasis on plants.  

 

2. Cell cycle regulation  

 

The evidence for molecular regulation of cell proliferation was provided in frog 

oocytes (Masui and Markert, 1971). Injection of progesterone-treated oocyte extracts was 

shown to stimulate mitosis and meiosis, suggesting the existence of a cytosolic 

“maturation/mitosis-promoting factor” (MPF). This MPF was then further discovered in 

Schizosaccharomyces pombe and characterized as a protein dimer containing the kinase 

CDC2 (CELL CYCLE CONTROL 2) and its cyclin partner (Gautier et al., 1988, 1990), two 

crucial players in the cell cycle further described below. 

 

 

 



 

 

 

Figure 3 : Phylogenic comparison of yeast, human and plant CDKs based on protein sequences.  

The orange group refers to CDKs involved in cell cycle regulation and the light blue group to 
transcription-related CDKs. The CDK2/CDKA subgroup (indicated in blue) includes CDKs with the 
canonical PSTAIRE motif in the cyclin-binding domain. Plants have gained a specific class of CDK, 
CDKBs with a PPTALRE and PS/PTTLRE motif (CDKB1 and CDKB2, respectively). The 
CDK4/CDK6 subgroup has no clear homologs in plants. The CDK7/CDKD subgroup corresponds to 
CDK-activating kinases (CAKs). Interestingly, the plant CAK CDKF is not related to this subgroup. 
YEAST: Saccharomyces cerevisiae, SCHPO: Schizosaccharomyces pombe, ARATH: Arabidopsis 
thaliana. Alignment was performed using MUSCLE multiple sequence alignment algorithm. The tree 
was build using Geneious program (Neighbour-joining method). 
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a. CDKs drive progression through the cell cycle 

 

Cyclin-dependent kinases (CDKs) are serine-threonine kinases that require association 

with activating subunits called cyclins (CYCs) for their enzymatic activity (Malumbres, 

2014). CDKs are found in all eukaryotes, including Saccharomyces cerevisiae (CDC28, 

PHO85, KIN28, SRB10, BUR1, CTK1), Schizosaccharomyces pombe (CDC2), Human 

(CDK1-20) and plants (CDKA-G). CDKs are classified in two groups: they are either 

involved in cell cycle regulation or transcriptional regulation (Malumbres, 2014; Joubès et al., 

2000). Although the steady state level of cell cycle-related CDKs remains overall constant in 

proliferative tissues, their activity needs to be modulated during progression through the 

different cell cycle phases. This modulation is brought by interaction with cyclins that are, 

unlike CDKs, expressed and degraded at specific time periods during the cell cycle. Thus, 

different CDK/CYC complexes are formed during the cell cycle, which possess affinity for a 

wide variety of substrates, orchestrating the sequential activation of molecular processes such 

as transcription of cell cycle genes, DNA replication, DNA repair, chromatin packaging, 

cytoskeleton rearrangement and mitotic spindle assembly (Chi et al., 2008; Holt et al., 2010; 

Anders et al., 2011).  

 

b. Diversity and functions of eukaryotic CDK/Cyclins complexes 

 

The eukaryotic CDKs  

 

Among the twenty human CDKs, only CDK1, 2, 3, 4 and 6 are promoting cell cycle 

transitions (Malumbres, 2014). These CDKs are classified in two subfamilies: the CDK1-2-3 

and CDK4-6 groups (Figure 3). CDK1 is able to bind to all cyclins in the absence of other 

CDKs and is sufficient to drive a minimal cell cycle activity at early stages of embryogenesis 

(Santamaría et al., 2007). In addition, cdk1-/- knockdown or genetic substitution of CDK1 by 

CDK2 leads to embryo lethality, indicating that CDK1 is essential for cell division 

(Santamaría et al., 2007; Satyanarayana et al., 2008). Interestingly, cdk2, 3, 4 and 6 mutations 

show genetic interactions. Mice cdk2-/-, cdk4-/- and cdk6-/- single mutants develop normally 

(Berthet et al., 2003; Ye, 2001; Tsutsui et al., 1999; Malumbres et al., 2004) and exhibit only 

phenotypes in highly specialized cell types. However, cdk2-/-; cdk4-/- and cdk4-/-; cdk6-/- 
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double mutants are embryonic lethal, suggesting at least a partial redundancy of CDK 

functions (Berthet et al., 2006; Malumbres et al., 2004).  

Plant CDKs are divided in eight classes: CDKA to G (Figure 3). The Arabidopsis 

thaliana genome encodes a unique CDKA (CDKA1;1), four CDKBs (CDKB1;1-2 and 

CDKB2;1-2) , two CDKC (CDKC;1-2), three CDKD (CDKD;1-3), three CDKE (CDKE;1-3), 

one CDKF (CDKF;1) and two CDKG (CDKG;1-2) (Gutierrez, 2009; Van Leene et al., 2010). 

A-type CDKs share a conserved PSTAIRE cyclin-binding also found in yeast CDC2/CDC28 

and in human CDK1,2 and 3 kinases (De Veylder et al., 2003, 2007). CDKBs are plant-

specific CDKs that possess PPTALRE and PS/PTTLRE motifs (for CDKB1s and CDKB2s, 

respectively) (De Veylder et al., 2003, 2007). CDKA is absolutely required for the plant cell 

cycle. Indeed, loss of Arabidopsis CDKA affects pollen development and induces embryonic 

lethality (Iwakawa et al., 2006; Nowack et al., 2006). In addition, CKDA;1 but not CDKB is 

able to complement both S. cerevisiae cdc28-/- and S. pombe cdc2-/- mutants, indicating that 

CDKA;1 shares common functions with its yeast homologs (Ferreira et al., 1991; Porceddua 

et al., 1999). In contrast to CDKA, lack of CDKB1;1 function does not affect the overall cell 

cycle progression and mutants manage to develop normally. However, cdkb1;1 mutant shows 

a fewer number of cells that are larger in size, which correlates with an increased ploidy level 

compared to control plants (Boudolf et al., 2016). This mutant is also impaired in stomatal 

division (Boudolf et al., 2016). Moreover, Arabidopsis cdkb2;1 mutant plants show alteration 

of the shoot apical meristem organization (Andersen et al., 2008). This suggests that, although 

B-type CDKs functions are still unclear, they are involved in plant-specific processes. To a 

lesser extent, CDKDs and CDKF;1 are also playing a role in the cell cycle by activating 

others CDKs (Shimotohno, 2004; Umeda et al., 2005). This function will be discussed later in 

a dedicated chapter. 

 

Cyclins  

 

The term “cyclin” refers to the instability of these proteins. The discovery of the first 

cyclins was done in sea urchins eggs, where researchers highlighted the degradation of this 

protein during cell division (Evans et al., 1983). Cyclins are characterized by the presence of 

two common domains: the cyclin box that is necessary for CDK activation and that 

determines the substrate specificity, and the destruction box (D-box), required for their 



 

 

Figure 4 : Accumulation of cyclins and CDK activation through the mammalian cell cycle. 

The steady state level of cyclins changes during cell cycle. Cyclins D is expressed upon mitogenic 
stimuli and remains constant during cell cycle. Cyclin E is expressed at G1/S transition. Cyclin A 
accumulates in S phase and G2, whereas Cyclin B in G2/M. The sharp decline observed for cyclins 
depends on their rapid destruction by the 26S proteasome. Cyclin concentration modulates CDK 
activity to coordinate specific cell cycle events, such as transcriptional burst, chromatin compaction 
and mitotic spindle dynamics. 
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proteolysis (Glotzer et al., 1991; Horton and Templeton, 1997). Eukaryotic cyclins are 

classified in two groups: the mitotic cyclins, that include A and B-type cyclins, and interphase 

cyclins, comprising the C, D and E-type cyclins. Different cyclins show specific accumulation 

patterns during cell cycle, that are related to their functions (Figure 4). CYCDs accumulate in 

early G1 and CYCEs during G1-S transition. Mitotic cyclins start to accumulate during G2 

and reach a peak in mitosis. However, CYCA are degraded in prophase while CYCB are 

degraded later to exit mitosis(reviewed in Genschik et al., 2014). 

In plants, a large family of cyclins is present, including more than 50 cyclins 

distributed in nine classes. Arabidopsis counts 10 CYCA (CYCA1;1-2 , CYCA2;1-4 and 

CYCA3;1-4), 11 CYCB (CYCB1;1-5, CYCB2;1-5 and CYCB3;1) and 10 CYCD (CYCD1;1, 

CYCD2, CYCD3;1-3, CYCD4;1, CYCD4;2, CYCD5;1, CYCD6;1 and CYCD7;1) 

(Nieuwland et al., 2007). As their human homologs, some of these plant cyclins have been 

well characterized. However other classes of plant cyclins have also been identified, including 

CYCC, CYCH, CYCL, CYCP , CYCT and SDS (SOLO DANCERS) (Nieuwland et al., 

2007; Van Leene et al., 2011), but for most of them, their functions still need to be further 

investigated. 

 

c. Regulation of CDK activity 

 

CDK activation by cyclins 

 

The ATP-binding pocket of CDKs is localized in a cleft in between the N-terminal and 

the C-terminal lobes. In absence of cyclins, a helix-loop called activation-loop or “T-loop” 

interferes with this domain (De Bondt et al., 1993; Morgan, 1997) (Figure 5). This results in 

the inability to bind to the substrates and in the mispositioning of the ATP molecule, 

preventing the transfer of the phosphate group. Upon CDK/CYC interaction, the T-loop is 

translocated and CDK activity is promoted. Cyclins not only activate CDKs, but also provide 

additional motifs required for relocalization of CDKs in the nucleus (Brown et al., 1999; 

Pines and Hunter, 1991) or for substrate recognition, thereby determining the CDK 

specificity.  

 



 

 

Figure 5 : Modulation of CDK activity. 

When a CDK is not associated with cyclins, the T-loop (in red) interferes with the ATP-binding 
pocket, resulting in the inability to transfer a phosphate group. In addition, it also prevents interaction 
with the substrate. When bound to a cyclin, the T-loop is translocated. Cyclins also provide additional 
motifs that are required to bind specific substrates. Phosphorylation of the Thr160/Thr161 residues 
within the T-loop by CDK-activating kinases (CAKs) also participates to enhance CDK activity. Note 
that the WEE1 kinase and the CDC25 phosphatase play antagonistic roles on CDK activity by 
respectively adding and removing inhibitory phosphorylation marks on Thr14/Tyr15 residues. 
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Post-translational modifications of CDKs 

 

While binding with cyclins is sufficient to activate CDKs, they require 

phosphorylation to be fully functional. Phosphorylation of the Thr160 residue of the human 

CDK2 or Thr161 of yeast CDC2, that is inside the T-loop, has been shown to enhance affinity 

of some CDK/CYC pairs (Ducommun et al., 1991; Desai et al., 1995; Russo et al., 1996) 

(Figure 5). Enzymes that catalyze this phosphorylation are named CDK-activating kinases 

(CAKs). CAKs have been identified as CDK/CYC-related dimers: MOP1/MCS2 and 

CDK7/CYC-H, respectively in fission yeast and human (Fesquet et al., 1993; Fisher and 

Morgan, 1994; Damagnez et al., 1995). In Arabidopsis thaliana, four CAKs have been 

identified: CDKF;1CAK1At, CDKD;3CAK2At, CDKD;1CAK3At et CDKD;2CAK4At (Shimotohno, 

2004; Umeda et al., 2005). While CDKDs are related to the human CDK7, CDKF function is 

not dependent of CYC-H binding and is specific to plants. 

Besides activation, CDKs can be post-translationally inhibited. Phosphorylation of 

Thr14/Tyr15 residues of the human CDK1 by the kinases WEE1 and MYT1 inhibits both 

ATP fixation and substrate binding to CDK, thus preventing entry into mitosis (Berry and 

Gould, 1996; Booher et al., 1997) (Figure 5). Arabidopsis WEE1, as well as the human 

WEE1/MYT1 kinases have been described to control the G2/M checkpoint and induce cell 

cycle arrest upon DNA damage sensing (De Schutter et al., 2007) (Figure 5). 

Dephosphorylation of these residues is required for the entry in mitosis. This process is 

performed by CDC25A, B and C phosphatases in human (Strausfeld et al., 1991; Morgan, 

1997). Interestingly, plants seem to lack CDC25 function and it is still unclear and debated 

how WEE1 inhibition is released in mitosis (Boudolf et al., 2006). 

 

CDK/Cyclins inhibitors (CKIs) 

 

Besides phosphorylation, inhibition of CDK activity is also mediated by CDK-binding 

proteins that are the CDK inhibitors (CKIs). In human, two distinct families of CKIs exist: the 

KIP/CIP (KINASE INHIBITORY PROTEIN / CDK INHIBITORY PROTREIN) proteins 

and INK4 (INHIBITOR OF CDK4/6) (Besson et al., 2008). CKIs that belong to the INK4 

(p16INK4a, p15 INK4b, p18 INK4c, p19 INK4d) family bind only to CDK4 and 6 and prevent binding 

to D-type cyclins (Serrano et al., 1993; Hirai et al., 1995) (Figure 6). CKIs from the KIP/CIP 



 

 

 

Figure 6 : Mode of action of CDK inhibitors. 

Mammalian INK4 proteins are specifically binding CDK4 and CDK6 and interfere with cyclin 
association. In contrast, CIP/KIPs are able to bind to any CDK or CDK/cyclin complexes and inhibit 
substrate recognition.  
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family (p21CIP1, p27KIP1, p57KIP2) inhibit the activity of cyclin -D, A, E and B-dependent 

kinases by binding to CDK/CYC complexes (Besson et al., 2008) (Figure 6). While the 

modes of action CKIs are similar, their function is specific to certain biological contexts 

(Cánepa et al., 2007). As such, INK4 proteins are involved in cellular senescence, apoptosis 

and DNA repair (Cánepa et al., 2007). p21 is expressed in response to DNA damage and 

induces cell cycle arrest during gap phases. p27 is involved in cell cycle exit in normal 

conditions. In addition to p27, p57 is also an essential gene during mouse embryogenesis, as it 

is required for proper cell differentiation (Tateishi et al., 2012). 

In Arabidopsis, 21 CKIs are present, divided into two groups. The KRP/ ICK (KIP-

related protein/ inhibitor of CDC2 kinase) family is composed of seven members that are 

orthologs of the human KIP/CIPs (Kumar and Larkin, 2017), and that show a high level of 

functional redundancy. The other family, the SIM/SMR (SIAMESE/SIAMESE-RELATED) 

counts 14 members (SIM and SMR1-13) (Kumar and Larkin, 2017). They are specific to 

plants and share no homology with any other eukaryotic CKIs. Like in animals, plant CKIs 

play distinct functions on plant growth and development mainly because of differences in 

their expression patternsF (Kumar et al., 2015). KRPs have been shown to stimulate 

endoreduplication by blocking mitosis (Verkest et al., 2005), and even promote cell cycle 

arrest and cell death at high expression level (Schnittger et al., 2003) . Interestingly, several 

members of the SIM/SMRs family were found to be transcriptionally induced in response to 

stress, leading to the hypothesis that SMRs may be involved in integrating environmental 

signals with cell cycle control (Peres et al., 2007; Yi et al., 2014; Kumar and Larkin, 2017). 

For instance, oxidative stress, or hydroxyurea, induces reactive oxygen species (ROS) 

production and SMR4, SMR5, and SMR7 transcript levels, and smr5 and smr7 mutants are 

more tolerant to hydroxyurea treatments (Yi et al., 2014). More recently it was shown that 

under moderate drought, both the SMR1 transcript and SMR1 protein accumulate and that 

smr1 mutants show less growth inhibition of young leaves under drought (Dubois et al., 

2018). 

 

d. Selective degradation of cell cycle components 

 

To orchestrate cell cycle progression, cells not only require the synthesis of cell cycle 

specific regulators but also need their quick and selective degradation with a specific timing. 



 

 

Figure 7 : Principles of the ubiquitin proteasome system (UPS). 

(1) Ubiquitin is first activated by a ubiquitin activating (E1) enzyme by a process that is ATP-
dependent. (2) The E1 transfers the ubiquitin peptide to the ubiquitin conjugating enzyme (E2). (3) 
Then, the E2 associates with the ubiquitin ligating (E3) enzyme. Either the E2 directly transfers 
ubiquitin to the substrate, or ubiquitin is first transferred to the E3 that is subsequently in charge of 
substrate ubiquitination. Ubiquitin is attached to the ε-amine of lysine residues of target proteins. The 
polyubiquitination of the substrate often triggers its degradation by the 26S proteasome. Prior to 
substrate degradation the ubiquitin chain is depolymerized and ubiquitin can further be reused by an 
E1. Ubi: ubiquitin, ATP: Adenosine triphosphate, AMP: Adenosine monophosphate, PP: 
Pyrophosphate. 
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This process involves the ubiquitin proteasome system (UPS) (Mocciaro and Rape, 2012; 

Genschik et al., 2014) that is based on enzymes called E3 ubiquitin protein ligases (E3s). E3 

ligases act as monomer or protein complexes to catalyze covalent attachment and/or 

polymerization of a small 76-amino acids peptide called ubiquitin on Lysine residues. 

Ubiquitination is a post-translational modification that, depending on the topology of the 

ubiquitin chain, is involved in either DNA repair, chromatin remodeling, signaling, cellular 

trafficking or 26S proteasome-dependent degradation (Ciechanover et al., 2000; Kwon and 

Ciechanover, 2017). The mechanism of ubiquitin transfer to a substrate requires three 

different steps (Figure 7) (Ciechanover et al., 2000; Vierstra, 2009; Callis, 2014). Ubiquitin is 

first adenylated on the C-terminal position by the “activating enzyme” E1 and transferred on a 

E1 cysteine residue. It is subsequently transferred to a cysteine residue of a “conjugating” E2 

enzyme. Depending on the type E3, ubiquitin-coupled E2 can either bind to the E3 and 

directly be conjugated the substrate or can first be transferred to a cysteine residue on the E3, 

that will further be in charge of substrate ubiquitination, resulting in its degradation by the 

26S proteasome. Cell cycle-specific proteolysis involves four classes of E3: the SCF 

(SKP1/Cullin1/F-box) E3s, the APC/C (Anaphase promoting complex/cyclosome) complex, 

the monomeric RING-proteins and CRL4-CDT2 (Mocciaro and Rape, 2012; Genschik et al., 

2014) (Figure 8).  

 

SCF complexes 

 

 SCF complexes are assembled around the CUL1 (CULLIN 1) scaffolding protein 

(Petroski and Deshaies, 2005). The CUL1 is forming a bridge to bring together the catalytic 

module composed of RBX1 (RING-BOX 1) and the E2, and the substrate recognition module, 

including both SKP1 (called ASK1-2 in Arabidopsis, for ARABIDOPSIS SKP1 

HOMOLOGUE 1/2) and an F-box protein. F-box proteins are adaptor proteins that provide 

the specificity for the substrate (Kipreos and Pagano, 2000; Lechner et al., 2006; Reitsma et 

al., 2017). In animals, the SCFSKP2 (S- PHASE KINASE ASSOCIATED PROTEIN 2) is 

playing a role from the G1/S transition to the exit from the S phase (Figure 9). It triggers 

ubiquitination of CKIs such as p21CIP1 and p27KIP1 (Nakayama, 2000; Starostina and Kipreos, 

2012), thus promoting re-entry into the cell cycle, but also ubiquitination of S phase-specific 

components like cyclin E, E2Fs transcription factors and CDT1 (Nakayama, 2000; Marti et 

al., 1999; Li et al., 2003), leading to the transcriptional repression of S-phase genes and 



 

 

Figure 8 : Different classes of ubiquitin E3 ligases involved in cell cycle regulation. 

Grey corresponds to the scaffolding proteins (and most of the subunits for the APC/C). Proteins in 
light green are required for substrate recognition. The E2 conjugating enzymes are represented in 
yellow. Dark green and blue proteins bridge respectively the substrate recognition modules and the 
E2s to the scaffold. Orange in background refers to animal specific E3s, whereas the blue refers to 
plant E3s. SCF and CRL4 are both cullin-based E3s and contain the RING-finger protein RBX1 that 
interacts with the E2. They possess a different substrate recognition module: SKP1 or ASK1 (in 
plants)/Fbox proteins for the SCF and DDB1/DCAF proteins for the CRL4 complex. The APC/C is 
the largest E3, which is composed of core subunits (APC1-15) and several coactivators (CDC20 and 
CDH1/CCS52). APC10 and coactivator proteins are required for substrate recognition, while APC11 
binds to the E2 enzyme. The last class represents monomeric RING finger E3 ubiquitin ligases that 
bind directly to their substrates and to the E2s though their RING domain. 
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replication shutdown. Homozygous skp2 mice are smaller but still viable (Nakayama, 2000). 

However, cells show a lower growth rate, higher level of polyploidy and increased apoptosis, 

suggesting that, even though SKP2 is not crucial for cell cycle progression, it is involved in 

controlling chromosome duplication. Two homologs of SKP2, SKP2a and SKP2b, have been 

identified in Arabidopsis (del Pozo et al., 2002). While SKP2a has been shown to mediate 

degradation of E2Fc/DPb, SKP2b was proposed to target KRPs to the proteasome (Ren et al., 

2008). Double knockout mutants of SKP2a and SKP2b do not alter plant growth and 

development, suggesting the existence of other E3s that control the entry and the proper 

completion of the S phase. Another Arabidopsis F-box protein, FBL17, has also been 

identified as a master regulator of cell cycle during male gametogenesis, and more recently, of 

cell proliferation and endoreduplication (Kim et al., 2008; Gusti et al., 2009; Noir et al., 

2015). fbl17 mutants show a significantly reduced growth rate together with defects in 

chromosome separation. At the molecular level, the KRP2 protein level increased in fbl17 

mutants, affecting the activity of CDKA;1 (Noir et al., 2015). 

 

Anaphase-promoting complex/Cyclosome 

 

The Anaphase Promoting Complex/Cyclosome (APC/C) is a large E3 ubiquitin ligase 

complex including at least 12 subunits and necessary coactivators that are CDC20 (CELL 

CYCLE CONTROL 20) and CDH1 (CDC20 HOMOLOG 1) in human or CCS52 in plants 

(Peters, 2006; Genschik et al., 2014). Among these proteins, DOC1APC10 is also in charge of 

binding the substrate, APC11 binds to the E2 conjugating enzyme and APC2, that shares 

homology with the CULLINs, is docking both DOC1APC10 and APC11. CDC20 and CDH1 

together with DOC1APC10 are required for the specificity of the substrate (Chang and Barford, 

2014). The role of the APC/C is crucial for mitosis and its activity is highly regulated during 

cell cycle progression (Figure 10). During S phase and G2, the APC/C is inactivated by EMI1 

(EARLY MITOTIC INHIBITOR 1) to allow accumulation of CYCLIN A and B, thus 

promoting DNA replication and progression through G2. At the onset of mitosis EMI1 

degradation is mediated by another E3: SCFβ-TrCP (Margottin-Goguet et al., 2003), triggering 

the destruction of CYCLIN A by the APC/CCDC20.However, the main feature of APC/CCDC20 

is the polyubiquitination of the SECURIN in metaphase. Once the SECURIN is degraded, the 

SEPARASE is released and then cleaves the COHESIN rings that maintain the sister 



 

 

Figure 9 : Progression through cell cycle is controlled by different E3 ubiquitin ligases. 

The G1/S transition requires the degradation of CDK inhibitors. Mammalian KPC and SCFSKP2 E3s 
ubiquitinylate p21CIP1 and p27KIP1 allowing cell cycle re-entry. In S phase, E2F1 level is tightly 
controlled by the SCFSKP2 to finely modulate S phase gene expression. In addition, CRL4CDT2 targets 
p21 and CDT1 to prevent DNA overreplication during S phase. Note that SCFSKP2 and CRL4CDT2 
target specifically proteins that are phosphorylated by CDK2/CYCE complex. Lastly, the APC/C 
activity is mostly required to orchestrate Mitosis. 
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chromatids together (Zur and Brandeis, 2001). This mechanism is also controlled negatively 

by three SAC (Spindle Assembly Checkpoint) proteins, MAD2 (MITOTIC ARREST-

DEFICIENT 2), BUB3 (BUDDING UNINHIBITED BY BENZYMIDAZOL 3), and 

BUBR1(BUB1-RELATED) that form the MCC (Mitotic Checkpoint Complex) and sequester 

CDC20 in order to check the proper attachment of the sister chromatids before enabling 

chromatids segregation (London and Biggins, 2014; Komaki and Schnittger, 2017). During 

telophase, APC/CCDH1 mediates CYCLIN B degradation and allow exit from mitosis. During 

mitosis, AURORA-A kinase phosphorylates the GEMININ to protect it from being 

recognized by the APC/C. GEMININ binds to CDT1 (CDC10-DEPENDENT TRANSCRIPT 

1), thus preventing the assembly of the replication complex (Tsunematsu et al., 2015). During 

G1, AURORA-A is ubiquitinated by APCCDH1 and degraded, allowing the subsequent 

degradation of the non-phosphorylated form of the GEMININ by the 26S proteasome. 

 

Monomeric RING E3 ligases 

 

In human, a monomeric RING E3 called KPC1 (KIP1 ubiquitination-promoting 

complex 1) promotes the degradation of p27KIP1 during G1 (Figure 9) (Liu et al., 2008; 

Morgan, 1997; Kamura et al., 2004). In contrast to SCFSKP2 activity, KPC1-mediated p27KIP1 

ubiquitination does not depend on its phosphorylation by CDK2. In addition, KCP1 has also a 

role in limiting tumour development (Kravtsova-Ivantsiv et al., 2015). NF-κB1 is a 

transcriptional regulator that is involved in several cellular processes including cell 

proliferation. However, the NF-κB1precursor (p105) needs to be processed by the 26S 

proteasome to form an active p50 dimer. Hence, it was shown that accumulation of KPC1 

triggers p105 polyubiquitination and its subsequent processing (Kravtsova-Ivantsiv et al., 

2015).  

A possible plant ortholog of KPC1, called RKP (RELATED TO KPC1) has been 

identified in Arabidopsis(Liu et al., 2008). Loss of RKP leads to accumulation of KRP1, but 

does not affect plant growth (Ren et al., 2008). Notably, two additional RING E3 ligases, 

RHF1a and RHF2a (RING-H2 GROUP F1A/2A), that are required for plant gametogenesis, 

have also been identified (Liu et al., 2008). Indeed, rhf1a rhf2a double mutant shows an 

increased level of KRP6 protein that correlates with cell division defect in both male and 

female gametophyte. 



 

 

Figure 10 : APC/C activity during Mitosis. 

In S and G2, APC/C activity is inhibited by EMI1 that binds to it through its dBox motif. The APC/C 
becomes then activated from prophase to telophase by binding coactivators CDC20 and CDH1 (or 
CDC20 and CCS52 in plants). In metaphase, the APC/C activity is temporally blocked by the MCC 
(mitotic checkpoint complex) composed of MAD2, BUB3 and BUBR1. When the mitotic spindle 
attachment to kinetochores is complete and all chromosomes are aligned on the equatorial plate, 
APC/C activity is released and can trigger SECURIN degradation. Consequently, SEPARASE is 
activated and degrades the COHESIN ring, thus initiating chromatids segregation. In telophase, 
APC/C also polyubiquitinylates B-type cyclins allowing exit from mitosis. 
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The mammalian CRL4CDT2 complex 

 

Cullin–RING ligase 4 (CRL4) are structurally and functionally related to the SCF. 

CRL4 ubiquitin ligases are composed of a CULLIN 4 scaffold that binds the E2 and a 

substrate recognition module including an adaptor protein called DDB1 (DNA DAMAGE-

BINDING PROTEIN 1) and a DCAF protein (DDB1-CULLIN4 ASSOCIATED FACTOR) 

(Havens and Walter, 2011; Jackson and Xiong, 2009). One of these complexes, CRL4CDT2, 

contains the DCAF CDT2 (CDC10-DEPENDENT TRANSCRIPT 2) and is involved in the 

control DNA replication and DNA repair. CDT1 protein is required for the recruitment of the 

MCM2-7 (MINICHROMOSOME MAINTENANCE 2-7) helicase at origin of replication 

(Nishitani et al., 2004). This process occurs during G1 and CDT1 is immediately destroyed in 

S phase to prevent any reinitiation and overreplication (Figure 9) (Nishitani et al., 2004). 

Chromatin-associated CDT1 degradation was shown to be dependent of CRL4-type E3, and 

particularly CRL4CDT2 (Higa et al., 2006; Jin et al., 2006; Ralph et al., 2006; Sansam et al., 

2006) . In addition, CRL4CDT2-dependent degradation of CDT1 has also been observed in 

response to DNA damage (Higa et al., 2006; Ralph et al., 2006). 

 

e. Transcriptional regulation of cell cycle genes 

 

During cell cycle progression, cells are going through several waves of intensive gene 

transcription, especially during G1/S and G2/M transitions. This transcriptional regulatory 

process is driven by the activity of CDK/CYC complexes. 

 

Control of G1/S transition 

 

 In animals and plants, the G1/S transition is mainly governed by the RB/E2F pathway. 

E2Fs (ADENOVIRUS EARLY GENE 2 BINDING FACTOR) proteins are transcription 

factors that promote the transcription of genes required in S phase, especially core cell cycle 

genes (CDC6, CDC25, CYCE,…) and components for replication (ORCs, CDT1, MCM3, 

PCNA, POLα, …) (Stevens and La Thangue, 2003; Gutierrez, 2009). In non-proliferating 

cells, E2Fs are bound to the transcriptional inhibitor called RETIBLASTOMA (RB) (Dick 



 

 

 

Figure 11 : Transcriptional control of G1/S and G2/M transitions in plants. 

CDK/Cyclin complexes are negatively controlled by CDK inhibitors (not represented). Once the 
CDKA/cyclin D complexes are active at G1/S, they phosphorylate RBR, thus releasing E2Fs 
transactivating activity. E2Fs and their coactivators DPs transcriptionally control genes that are 
required for entry in S phase and DNA replication. Note that E2Fc and DEL proteins are 
transcriptional inhibitors. The G2/M transition requires the accumulation of B-type cyclins. 
CDKB/CYCB complex both represses APC/C and the CDK inhibitors such as KRP2, allowing the 
CDKA/CYCB to further activate M phase specific MYBs transcription factors.  
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and Rubin, 2013). Upon mitogenic stimuli, RB is phosphorylated by CYCD-E/CDK2 

complexes leading to the activation of transcription by E2Fs. In human, the E2F family 

comprises six E2Fs (E2F1-6) and two more distant DP members (DIMERIZATION 

PARTNER, DP1 and DP2), whereas the pocket protein family is composed of 3 members: 

RB, p107RBL1 and p130RBL2 (RETINOBLASTOMA LIKE 1-2). E2Fs can be classified in 

three subgroups, E2F1-3, E2F4-5 and E2F6. They all possess the common E2F-binding site 

that targets the consensus promoter sequence (TTTSSCGS) and the DP dimerization binding 

sequence. However, the E2F4-5 subgroup lacks the CYCA-binding site and the nuclear 

localization signal (NLS) present in the E2F1-3 subgroup but acquired a nuclear export signal 

(NES) instead. E2F6 is even more distant, as it also lacks the transactivation domain and 

therefore acts as a transcriptional repressor most likely by titrating E2F-promoter sequences 

(reviewed in Stevens and La Thangue, 2003). The transcriptional inhibition by RB proteins 

works through different mechanisms. Binding to E2F is sufficient to hide the transactivating 

domain and repress the recruitment of the transcriptional machinery. In addition, RB can also 

bind chromatin-remodelling proteins, such as histone deacetylases (HDACs) and the 

Polycomb complex (Luo et al., 1998; Dahiya et al., 2001). Note that in mammals, the 

retinoblastoma-E2F pathway is also regulated by the ubiquitin-proteasome system (Sengupta 

and Henry, 2015). 

 The E2F pathway is also highly conserved in worms, flies and plants (Shen, 2002; Van 

Den Heuvel and Dyson, 2008; Berckmans and De Veylder, 2009). The Arabidopsis genome 

encodes three E2Fs (E2Fa, b and c), two DPs (DPa and DPb) and one RB-related protein 

(RBR1) (Figure 11). In parallel, three other non-canonical E2F proteins are also present. 

Conversely to E2F and DP, E2FdDEL1, E2FeDEL2 and E2FfDEL3 (DP AND E2F LIKE) do not 

need to form a E2F/DP dimer to bind to DNA. Plant E2Fs are not only regulated through the 

binding with RBR1 but are also subjected to transcriptional and post-translational regulatory 

mechanisms (Ramirez-parra et al., 2008). For instance, E2Fa, E2Fb, E2Fc and E2FfDEL3are 

strongly enriched in proliferating cells and E2fb and c show a cell cycle regulated expression 

pattern, peaking in S phase (Menges et al., 2005). Moreover, E2Fs and DPs can be 

phosphorylated by CDK/CYC complexes. Although the role of E2F/DP phosphorylation is 

not fully understood, phosphorylated forms of E2Fc and DPb are targeted to 26S proteasomal 

degradation by the SCFSKP2A (del Pozo et al., 2002). 
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Control of G2/M transition 

 

 In human, transcriptional activation of G2/M-related genes requires two transcription 

factors that are B-MYB (B-MYELOBLASTOSIS) and FOXM1 (FORKHEAD BOX M1). B-

MYB belongs to the MYB family, that is composed of 3 members: A-MYB, B-MYB, C-

MYB (or MYBL2, MYBL1 and MYB, respectively) (Musa et al., 2017). While A-MYB and 

C-MYB are expressed in specific cell types, B-MYB is highly enriched in proliferative cells 

(Ness, 2003). The essential nature of B-MYB transactivation activity is illustrated by the early 

embryonic lethality of B-MYB knockout mutation in mice (Tanaka et al., 1999). In parallel, 

the foxm1 -/- mutation shows also an embryonic lethal phenotype in mice, delays G2 phase 

and strongly impairs chromosome segregation and cytokinesis in cultured cells (Kalin et al., 

2011; Laoukili et al., 2005). Both B-MYB and FOXM1 interact with specific binding sites 

present in the promoter region of G2/M expressed genes. Among B-MYB/FOXM1-

responsive genes, one can find components of the core cell cycle machinery (CYCA/Bs, 

CDK1/2, CDC25B, PLK1) and genes involved in mitotic spindle assembly and cytokinesis 

(Musa et al., 2017; Costa, 2005). The timing of B-MYB and FOXM1 activity is however 

different, which can be partly explained by their activation through CDK/CYC complexes. B-

MYB and FOXM1 are activated by phosphorylation in G1/S and G2/M by CDK2/CYCA and 

CDK1/CYCB complexes, subsequently promoting the recruitment of a p300CBP coactivator 

(Schubert et al., 2004; Major et al., 2004). 

Plants also possess MYB-related proteins. Arabidopsis genome encodes more than 

hundred MYB proteins. Among them, MYB3R1,2,3,4,5 are involved in the regulation of 

G2/M genes by activating or repressing their expression (Haga et al., 2007, 2011). Like 

human MYBs, MYB3Rs bind to a MYB-specific activation (MSA) cis-element that is 

sufficient to drive or inhibit gene expression (Ito, 1998). Consistent with their function in the 

regulation of mitotic-related genes, loss of both MYB3R1 and 4 induces defects during 

cytokinesis but do not lead to embryonic lethality, suggesting that other factors might be 

involved in this process (Haga et al., 2007, 2011). Studies on a synchronized BY-2 tobacco 

cell suspension revealed that transcription of NtMYBs genes occur during G2/M (Figure 11) 

(Ito et al., 2001). In addition, phosphorylation by CDKA/CYCA and B complexes has been 

shown to activate NtMYBs transactivation capability (Araki et al., 2004). 

 



 

 

Figure 12 : Plant MUVB complex oscillates between transcriptional activation and repression. 

In proliferative cells, MUVB complex is regulating both early and late gene expression. (1) During 
G1, S and G2, the MUVB core associates with RBR and repressor MYBs, to repress expression of M 
phase related genes. This process is acting synchronously with the activation of S phase gene by the 
E2F/DP pathway. (2) In late G2, repressor MYBs are repressed, presumably by proteasomal 
degradation. (3) At the start of mitosis, MUVB binds with activator MYBs to activate expression of M 
phase genes. CDKA is also a part of the complex and contributes to enhance MYBs transactivation 
activity by phosphorylation. In parallel, it also binds to the E2F/DP/RBR module to repress expression 
of S phase gene. (4) In quiescent cells, MUVB complex integrates both RBR/E2F/DP module and 
repressor MYBs to repress both S and M phase gene expression. 
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The DREAM and MMB complexes  

 

More recent studies highlighted the existence of a larger MUVB-containing complex 

that control cell cycle transitions by activating and repressing transcription of cell cycle-

specific genes (Fischer and Müller, 2017). The human core MUVB complex (MULTI 

VULVA-B) is composed of five proteins that are LIN9, LIN37, LIN52, LIN54 and p55RBBP4 

(RETINOBLASTOMA-BINDING PROTEIN 4). LIN9 was proposed to bring all the 

components of the MUVB complex together. LIN52 and LIN54 bind p107/p130 and CHR 

DNA motif (cell cycle gene homology region), respectively. p55 interacts with histones H3 

and H4 by a WD40 motif and possibly participates in gene repression by interacting with 

chromatin remodelling complexes. Positive or negative control of gene expression is 

depending on additional proteins that are bound to MUVB. For instance, E2F1-3/DP/p107 or 

p130/MUVB, also called DREAM (DP, RB-like, E2Fs and MUVB), repress G1/S genes 

expression while B-MYB/FOXM1/MUVB or MUVB-MMB (MYB-MUVB) activates the 

expression of G2/M genes. 

In Arabidopsis, components of the DREAM-like complex have also been identified 

(Magyar et al., 2016). The plant MUVB-like core complex includes the LIN54 ortholog 

TCX5 (TSO1-LIKE CxC 5) and the LIN9 orthologs ALY2/3 (ALWAYS EARLY 2 and 3) 

(Magyar et al., 2016; Fischer and Müller, 2017). RBR1, CDKA, E2Fs, DPs and MYB3Rs 

proteins can also be part of the DREAM. The plant DREAM complex functions are less 

documented than its mammalian counterpart. However, recent studies showed that, it can 

activate or repress expression of G2/M gene in a phase-specific fashion (Figure 12) 

(Kobayashi et al., 2015a, 2015b). 

 

f. Cell cycle regulation by non-coding RNAs 

 

As we discussed it in the previous part, cell cycle gene expression is timely controlled 

by specific transcription factors. However, transcription is not sufficient to explain the rapid 

turnover of the transcripts from one phase to the other. Recent researches revealed that other 

transcriptional and post-transcriptional pathways involving non-coding RNAs are playing a 

role in silencing these genes.  



 

Figure 13 : Long non-coding RNAs trigger cell cycle arrest upon DNA damage and control CKI 
expression. 

Upon genotoxic stresses, several long non-coding RNAs (lncRNAs) are expressed to inhibit cell 
proliferation. (1) lncRNA CCND1 binds to the promoter region of cyclin D1 gene and recruits TLS. 
TLS further inhibits histone acetyltransferase activity of p300, leading to the transcriptional silencing 
of CYCD1. (2) Under normal condition TDP-53 binds o the 3’ UTR of the CDK6 mRNA to enhance 
its stability. Upon DNA damage, the gadd7 lncRNA is expressed and titrates TDP-53, resulting in the 
degradation of unprotected CDK6 transcripts. (3) INK4 locus code for 4 genes: the CKIs INK4a and 
INK4b, the ARF tumor suppressor and ANRIL lncRNA. ANRIL is transcribed by the RNA POLII and 
locally recruits the polycomb complexes PCR1 and PCR2 to perform chromatin silencing. 
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Long non-coding RNAs (LncRNAs) 

 

LncRNAs are 200 or more nucleotides (nt)-long RNAs that are not translated into 

proteins. This class of RNA has been described to regulate a wide spectrum of biological 

processes, such as genomic imprinting, cell differentiation and cell cycle, and therefore 

contributes to cancer initiation when misregulated or mutated (Kitagawa et al., 2013; 

Wapinski and Chang, 2011; Li et al., 2016). LncRNAs are able to control gene expression by 

several mechanisms, including epigenetic silencing, transcription, translational inhibition, 

splicing and RNA degradation. 

 Thus, several lncRNAs have been shown to directly repress core cell cycle genes 

expression, like cyclins, CDKs, CKIs or RBs (Figure 13). For example, expression of CYCD1 

is repressed by lncRNACCND1 upon DNA damage, leading to cell cycle arrest. lncRNACCND1 

binds to a specific sequence on the CYCD1 promoter and recruits the RNA-binding protein 

TLS (TRANSLOCATED IN LIPOSARCOMA) that further inhibits CREB-binding protein 

(CBP) and p300 histone acetyltransferase activities on the repressed target gene (Wang et al., 

2008). Another lncRNA, gadd7 (growth-arrested DNA damage-inducible gene 7) participates 

to prevent cell division by destabilizing the CDK6 transcript. CDK6 mRNA is protected from 

being degraded by TDP-43 that bind to its 3’ untranslated region. Exposure to genotoxic 

stresses induces the transcription of gadd7 that will titrate TDP-43, and by consequence 

release the protection of CDK6 mRNA (Liu et al., 2012). A last remarkable example of cell 

cycle-related lncRNA function is the transcriptional repression of the CDK inhibitors 

p15INK4b, p16INK4a and ARF (alternative reading frame gene) by ANRIL (antisense lncRNA of 

the INK4 locus). The INK4/ARF locus encodes for three strong tumor suppressor genes and 

must therefore be highly controlled. ANRIL binds to this specific locus and recruits PRC1 and 

2 (POLYCOMB REPRESSIVE COMPLEX 1/2) for transcriptional repression by histone 

modifications (mostly histone H3 lysine K27 methylation) (Kotake et al., 2009; Yap et al., 

2011; Achour and Aguilo, 2018). 

In the plant field, the knowledge of lncRNAs is still very limited. Some functional 

examples of plant lncRNAs have been reported such as in the control of flowering time, 

photomorphogenesis, or hormone signaling (Liu et al., 2015; Ariel et al., 2015). However, 

their role in the regulation of the cell cycle has not yet been demonstrated. 
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Small RNAs (sRNAs) 

 

 Small RNAs are 20 to 24 nt-long non-coding RNAs that are involved in several 

cellular mechanisms including antiviral defense, control of transposable elements, and 

particularly control of gene expression (Ghildiyal and Zamore, 2009). Among these, micro 

RNAs (miRNA) represents a specific class of endogenously-encoded small RNAs. Through 

base pair complementarity with the target transcript, they guide the effector complex RISC 

(RNA-induced silencing complex) to trigger repression of gene expression either by 

endonucleolytic cleavage or translational inhibition (Krol et al., 2010; Meister, 2013). It has 

been predicted that more than 50% of the genes are post-transcriptionally controlled by 

miRNAs in human (Leung and Sharp, 2010). In human, it has been demonstrated that 

miRNAs are involved in almost every biological process, including the control of the cell 

cycle and cell fate, and that they play a pivotal role in cell proliferation. By consequence, it is 

not surprising that misregulation or mutations of miRNAs in mammals are frequently 

observed in a wide spectrum of cancers (reviewed in Bueno and Malumbres, 2011; Leva et 

al., 2014). In the following chapter, I will develop the role of small RNAs in regulating gene 

expression in human as well as in plants. 

 

B. Mechanisms and functions of RNA interference in eukaryotes 

 

1. General principles 

 

RNA silencing (or RNAi) is a cellular process that consists in the inhibition of gene 

expression in an RNA-dependent manner. RNAi has been observed very early on in Petunia 

hybrida by Napoli and Jorgensen, where the introduction of a transgenic copy of the chalcone 

synthase gene resulted in the silencing of the endogenous one (Napoli, 1990). Andrew Fire 

and Craig C. Mello were later awarded by a Nobel Prize in physiology and medicine in 2006 

for their work on RNAi in the worm Caenorhabditis elegans and especially on the role of 

small RNA controlling the expression of developmental genes (Fire et al., 1998). Several 

specialized pathways exist, triggering either transcriptional gene silencing (TGS) or post-

transcriptional gene silencing (PTGS). Although they act at different levels, TGS and PTGS 

RNAi share common features such as formation of double-stranded RNA (dsRNA), small 
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RNA production by type III RNase activity, and inhibition of gene expression by the RISC 

complex, that is notably composed of an ARGONAUTE (AGO) effector protein associated to 

a small RNA. Small RNAs have been classified in different groups in function of their 

origins, their functions and size. Thus, composition of the RISC and particularly the nature of 

the small RNA and the AGO protein will condition the mode of action of the complex. 

In human, DROSHA and DICER RNases III are involved in a stepwise process for 

maturation of small RNAs that is initiated in the nucleus and ends up in the cytosol. Plants 

however have evolved a family of DICER-LIKE proteins (DCL1-4), of which the activity can 

be redundant, or exclusive to some dsRNA species (Bologna and Voinnet, 2014; Borges and 

Martienssen, 2015). As mentioned previously, AGO proteins are the central proteins of the 

RISC complex. Human and Arabidopsis genomes encode respectively 8 and 10 AGOs 

(Meister, 2013; Poulsen et al., 2013). Some AGOs possess an endonucleolytic activity (or 

slicer activity) and direct transcript cleavage on sequences that are complementary to the 

associated small RNA. Other AGOs act as a cargo: they associate with the target and bring 

additional cofactors that direct either translational inhibition or RNA-dependent DNA 

methylation (RdDM). Thus, a newly-formed RISC can play a role in endogenous gene 

expression control if associated with a miRNA, or when associated with a tasiRNA (trans-

acting small interfering RNA) in plants, or a phasiRNA (phased small interfering RNA). 

RISC can also be loaded with transgene or virus-derived exogenous small interfering RNA 

and therefore act on transgene silencing and anti-viral immunity (Ding, 2010; Martínez de 

Alba et al., 2013). Finally, a last class of RISC complexes is related to maintenance of 

heterochromatin and participates to the transcriptional control of genomic repeated regions 

(Borges and Martienssen, 2015). Below, I will describe some, but not all, classes of known 

sRNAs.  

 

2.  Biogenesis and functions of micro-RNAs  

 

miRNAs originate from genomic DNA and most commonly from intergenic regions. 

They are transcribed by RNA polymerase II in long capped and polyadenylated transcripts 

called pri-miRNAs (Lee et al., 2004; Cai et al., 2004; Kim et al., 2011) (Figure 14). In human, 

pri-miRNA are mostly polycistronic transcripts, forming miRNA clusters (Kim, 2005). For 

instance, the miR17-92 encodes for six distinct miRNAs (miR-17, miR-18a, miR-19a, miR-



 

Figure 14 : microRNAs biogenesis in animals and plants. 

(1A and 1B) miRNA precursors (pri-miRNA) are first transcribed by the RNA POL II from MIR 
genes in capped and polyadenylated transcripts. (2A) animal pri-miRNAs are processed in pre-miRNA 
by the microprocessor complex, composed of DROSHA and DGCR8. (3A) The excised step-loop pre-
miRNA is exported in the cytosol by the exportin EXPO5 were the DICER/TRBP complex cleaves it 
in small RNA duplex (4A). The guide stand of the duplex is further incorporated in AGO proteins to 
form a mature RISC (6A). (2B and 4B) Plant pri-to pre- and pre- to small RNA duplexes processing is 
a stepwise mechanism that is performed by the same complex composed of the dicer protein DCL1, 
supported by the double-stranded RNA-binding protein HYL1 and the zinc-finger protein SE. (5B) 
The small RNA duplexes are then 2’-O-methylated by HEN1 to enhance their stability. (6B) It has 
recently been shown that AGO1 reaches the nucleus to load miRNAs. TRBP: TAR RNA-BINDING 
PROTEIN 
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20a, miR-19b-1, and miR-92a) (reviewed in Mogilyansky and Rigoutsos, 2013). These pri-

miRNA are then processed by type III endoribonucleases. In human, pri-miRNAs are loaded 

in the nuclear microprocessor complex, composed of the DROSHA RNase and its double-

stranded RNA binding cofactor DGCR8 (DIGEORGE SYNDROME CHROMOSOMAL 

REGION 8) (Lee et al., 2003; Han et al., 2004). Microprocessor activity releases a 60 to 100 

nucleotides hairpin-shaped pre-miRNA (Lee et al., 2003; Han et al., 2004). It has been 

proposed that DGCR8 is required to anchor the microprocessor complex and therefore 

participate to the correct unbranching of the stem-loop (Han et al., 2004; Gregory et al., 

2004). Pre-miRNAs are exported outside the nucleus by EXPO-5 (EXPORTIN-5) (Yi et al., 

2003) and processed a second time by DICER RNase III in 21 nt-long miRNA/miRNA* 

duplex (* stands for passenger strand) (Hutvagner et al., 2010). A non-canonical pathway also 

exists for miRNAs that are transcribed from coding genes (also called mirtron, for intronic-

miRNAs). Excision of the mirtron by the splicing machinery therefore bypasses the activity of 

the microprocessor complex and is directly processed by DICER (reviewed in Westholm and 

Lai, 2011). 

In contrast to human, only a few polycistronic MIR genes have been described in 

plants (reviewed in Voinnet, 2009; Rogers and Chen, 2013). Plant MIR genes mostly encode a 

unique miRNA. Pri-miRNA are processed by a plant microprocessor-like complex that first 

releases the stem-loop structure and then cleaves it to form a 21 nt-long miRNA/miRNA* 

duplex (Figure 14). This process has been proposed to happen in the nucleus and particularly 

in discrete foci called “dicing bodies” (Fang and Spector, 2007). The plant microprocessor 

complex is composed of the RNase III DCL1 (DICER-LIKE 1) and two cofactors: the zinc 

finger protein SE (SERRATE) (Yang et al., 2006) and the double-stranded RNA binding 

protein HYL1/DRB1 (HYPONASTIC LEAVES 1 or DOUBLE-STRANDED RNA 

BINDING PROTEIN 1)(Dong et al., 2008; Hiraguri et al., 2005; Han et al., 2004). Plants 

however lack the DROSHA-like enzymes from metazoans and DCL1 is in charge of both pri-

to-pre and pre-to-mature miRNA processing (Kurihara et al., 2006). While, DCL1 alone is 

able to generate 21 nt miRNA duplexes in vitro, it has been shown that SE and HYL1 greatly 

enhance their production and their correct processing (Kurihara et al., 2006; Dong et al., 

2008). Accordingly, mature miRNA abundance is strongly reduced in Arabidopsis hyl1-/- 

mutants and miRNA precursors are accumulating (Kurihara et al., 2006). Before being loaded 

into AGO proteins, miRNA/miRNA* duplexes are subjected to 2’-O methylation by HEN1 

(HUA ENHANCER 1) on their 3’ protruding ends that has been generated by DCL1 cleavage 
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(Li et al., 2005; Ren et al., 2014) This post-transcriptional modification enhances the stability 

of the miRNA by preventing polyuridylation by the terminal-uridyltransferase (TUTase) 

HESO1 (HEN1 SUPPRESSOR 1) (Zhao et al., 2012) and its subsequent degradation by the 

3’-5’ endoribonuclease SDN1 (SMALL RNA DEGRADING NUCLEASE 1) (Ramachandran 

and Chen, 2008). Once methylated, the miRNA duplex is loaded into the AGO protein that 

removes the passenger strand (reviewed in Kobayashi and Tomari, 2016). A recent study in 

Arabidopsis suggests that the slicer protein AGO1 (ARGONAUTE1) reaches the nucleus to 

associates with miRNAs, and forms a functional RISC and is then exported by EXPO1 

(EXPORTIN 1) to the cytosol to regulate gene expression (Bologna et al., 2018).  

Notably, in human and in plants, base pair complementarity was suggested to 

condition the preference for either slicing or translational inhibition by AGO proteins. Indeed, 

perfect matches between small RNAs and their target transcripts mainly leads to slicing, while 

imperfect matches rather trigger translational inhibition. However, the choice between the two 

activities may also depend on the RISC composition (Ding and Han, 2007). Human AGO2 is 

the main effector of miRNA-dependent PTGS pathway (Meister, 2013). After the removal of 

the passenger strand, AGO2 mainly directs translational inhibition, but is also able to slice 

some target mRNAs. In plants, AGO1 is the main effector protein for miRNAs, though 

AGO2, 7 and 10 can also associate with miRNAs but are involved in specific cellular 

processes. Arabidopsis AGO1 loaded with miRNAs mediates both endonucleolytic cleavage 

(Baumberger and Baulcombe, 2005) and translational repression of target transcripts 

(Brodersen et al., 2008; Li et al., 2013). AGO proteins and their modes of action will be 

described in more detail in another section below. 

 

3. Biogenesis and functions of small interfering RNAs (siRNAs) 

 

While miRNAs are processed from imperfect stem-loop precursors transcribed from 

MIR genes, siRNA are excised from endogenous or exogenous, fully complementary, double-

stranded RNAs (Borges and Martienssen, 2015). Plant endogenous siRNAs are distributed in 

two groups: secondary siRNAs and hetsiRNA/rasiRNA (heterochromatic siRNAs or repeat-

associated siRNA). Secondary siRNAs include tasiRNAs (trans-acting siRNAs), easiRNAs 

(epigenetically-activated siRNAs) and natsiRNA (natural antisense siRNAs) (reviewed in 

Voinnet, 2009; Borges and Martienssen, 2015).  



 

Figure 15 : Biogenesis of secondary trans-acting siRNA (tasiRNAs). 

(1) Generation of secondary tasiRNA starts with the cleavage of a precursor transcript by a RISC 
complex that contain a miRNA bound to AGO1 or AGO7 (miRISCs). (2) The cleaved precursor is 
stabilized by SGS3 that binds directly to the complex and recruits the RNA-dependent RNA 
polymerase RDR6 to generate the double-stranded RNA molecule (dsRNA) (3). (4) The dsRNA is 
then imported in the nucleus to be processed by the DCL4/DRB4 complex. Small RNA duplexes are 
generated in phase with the first miRISC-directed cleavage. (5 and 6) Like miRNAs, phased small 
RNA duplexes are subsequently 2’O-methylated and loaded in AGOs. 
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a. Trans-acting RNAs (tasiRNAs) 

 

In Arabidopsis, four TAS genes have been identified (Vazquez et al., 2004; Peragine 

et al., 2004; Allen et al., 2005). TAS genes are transcribed by the RNA pol II in 7-methyl 

guanosine-capped and 3’ polyadenylated transcripts. Conversely to pri-miRNAs, tasiRNAs do 

not harbour any specific foldback structures that can be processed by DCLs. They need a 

specific processing pathway that involves a primary cleavage by a miRISC and the generation 

of a double strand RNA molecule by an RNA-dependent RNA polymerase (Figure 15). TAS1, 

TAS2 and TAS4 precursors are first cleaved by a RISC composed of AGO1 and miR173 for 

TAS1 and 2, and miR828 for TAS4 (Rajagopalan et al., 2006; reviewed in Yoshikawa, 2013). 

While most of plant miRNAs are 21 nt in size, miRNAs triggering secondary siRNAs are 

however 22 nt-long. Interestingly, 21 nt-long forms of these miRNAs are not able to generate 

secondary siRNAs in vivo (Cuperus et al., 2010; Chen et al., 2010). A proposed model for 

generation of tasiRNA is that, upon miRISC cleavage, SGS3 (SUPPRESSOR OF GENE 

SILENCING 3) associates with AGO1 to protect the 5’ phosphate of the generated 3’ TAS 

fragment from exoribonucleases and subsequently, contributes to the recruitment of the RdRP 

RDR6 to generate the double stranded RNA (Yoshikawa et al., 2013). Generation of 

tasiRNAs from TAS1,2 and 4 precursors is commonly called a “one hit” system, since it 

requires only one cleavage. The case of the TAS3 precursor is qualified of a “two hits” system 

(Axtell et al., 2006). Indeed, in this case miR390 is complementary to two different target 

sites along TAS3 that are absolutely required for generation of secondary siRNAs. TAS3 is 

also unique since it requires the specialized ARGONAUTE protein, AGO7 (Axtell et al., 

2006; Montgomery et al., 2008). The final step in this pathway consists in the processing of 

the double-stranded RNA, in a phase determined by the initial miRNA cleavage site, by 

DICER-LIKE 4 and DRB4 (DOUBLE-SRANDED RNA BINDING PROTEIN 4) to generate 

a 21nt tasiRNA population (Gasciolli et al., 2005; Xie et al., 2005; Adenot et al., 2006; Fei et 

al., 2013). 

 

 

 



 

Figure 16 : Heterochromatic siRNAs (hetsiRNAs) biogenesis. 

(1) SSH1 is associating with epigenetically silenced regions on the chromatin and recruits the CLSY1 
helicase. (2) CLSY1 uncoil the condensed chromatin and recruits the RNA POLIV and the RNA-
dependent RNA polymerase RDR2 to this specific locus. (3) RNA POLIV and RDR2 act jointly to 
generate the dsRNA molecule that is then processed by DCL3 into 24 nucleotides-long siRNAs 
duplexes (4). (5) Small RNA duplexes are 2’-O methylated by HEN1 prior to be loaded in AGOs. 
SHH1: SAWADEE HOMEODOMAIN HOMOLOG 1. 
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b. Heterochromatic siRNAs (hetsiRNAs) 

 

hetsiRNAs represent the most abundant class of small RNAs in the cell (Mi et al., 

2008). They are 24 nt-long small RNAs that trigger transcriptional gene silencing (TGS) 

through RNA-dependent DNA methylation (RdDM) and participate to the maintenance of 

heterochomatin and silencing of transposable elements (Borges and Martienssen, 2015; Fultz 

et al., 2015). In plants, hetsiRNA precursors are first transcribed by the plant-specific RNA 

pol IV (Figure 16). Loss of one of the two main subunits of pol IV, NRPD1 or NRPD2 

(NUCLEAR RNA POLYMERASE D1 or 2), abolishes the production of hetsiRNAs resulting 

in the hypomethylation of loci that are normally silenced (Herr, 2005; Onodera et al., 2005; 

Kanno et al., 2005). In addition to POLIV, RDR2 (RNA-DEPENDENT RNA 

POLYMERASE 2) is also essential for hetsiRNA biogenesis (Pontes et al., 2006). Other 

members of the complex have also been identified, like the CLSY1 helicase (CLASSY1), 

which mutation affects hetsiRNA biogenesis and the localization of RDR2 (Smith et al., 2007; 

Law et al., 2011). These observations suggest that the helicase activity of CLSY1 might 

provide accessibility for the complex to the chromatin. The dsRNA molecule generated by the 

activity of the pol IV/RDR2 complex is then processed in 24nt-long siRNAs by DCL3 and 

those small RNAs are then 2’-O-methylated by HEN1 (Xie et al., 2004; Yang et al., 2006b). 

Finally, hetsiRNAs are loaded in specialized AGOs, mainly AGO4, but also 6 and 9, to 

perform DNA methylation. Moreover, the 24 nt-associated AGO4 is recruited to DNA and 

required for methylation through RNA POL V activity (Kanno et al., 2005; Pontier et al., 

2005; Lahmy et al., 2009), though this mechanism is not fully understood. 

 

4. tRNA-derived fragments 

 

Transfer RNAs (tRNAs) are housekeeping RNAs that are essential components of the 

translation machinery (reviewed in Giegé, 2008) (Figure 17A). As many other non-coding 

RNAs, tRNAs are transcribed as precursor RNAs that undergo several steps of maturation, 

including 5’ leader and 3’ trailer cleavage by RNase P and RNase Z, respectively. They are 

also subjected to several base modifications, such as methylation and pseudo-uridylation that 

are required for the folding and the recognition of other maturation enzymes. Addition of the 

CCA motif by a tRNA nucleotidyl-transferase and the loading of the amino acid by aminoacyl 



 

 

 

 

 

Figure 17 : Secondary structure of transfer RNAs (tRNAs) and tRNA-derived fragments (tRFs). 

(A) tRNAs are composed of an acceptor stem that ends with the 3’ CCA motif required for 
aminoacylation, the D and T-loop, the anticodon loop and a variable loop. the D and T-loop are 
responsible of the ternary structure of the tRNA. (B) tRFs can be generated by endonucleolytic 
cleavage in the A, D and T loops. Cleavage in the anticodon results in generation of tRNA 
approximately 33 nucleotides-long tRNA halves, while cleavage in the D or T loop generate around 20 
nucleotides tRFs. 
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tRNA synthetase in 3’ are then sequentially performed, leading to the formation of the mature 

tRNA. 

 tRNA-derived fragments (tRFs) have been recently identified by high-throughput 

sequencing approaches in a wide spectrum of eukaryotes, ranging from fission yeast to plants 

and human (reviewed in Keam and Hutvagner, 2015; Schimmel, 2018). tRFs are generated 

through endonucleolytic cleavage and are classified in two groups: 30 to 35 nt tRNA-halves, 

that are the results of cleavage in the anticodon loop, and approximately 20 nt-long small 

tRFs, generated by cleavage in the T or D loop (Figure 17B). How these cleavages are 

performed, and what are the enzymes involved in tRFs production is still a matter of debate, 

but published results support the role of animal DICER and ANGIOGENIN in the generation 

of at least some tRF species. To assess the question of the biological functions of tRFs, 

identification of tRF-associated proteins is one of the main concerns in the field. 

Immunoprecipitations of AGO-bound small RNAs followed by small RNA sequencing 

highlighted that several AGO, including human AGO1 to 4 and Arabidopsis AGO1, 2, 4 and 

7, are able to load tRFs, suggesting a role in transcriptional and post-transcriptional gene 

silencing (Haussecker et al., 2010; Loss-Morais et al., 2013; Cognat et al., 2017). Indeed, the 

ability of tRFs to specifically target 3’UTR of mRNAs and repress their translation was 

demonstrated in multiple cases (Gebetsberger et al., 2012; Sobala and Hutvagner, 2013). 

Interestingly, some tRFs have been linked to developmental processes including cell 

proliferation and viability. As an example, the tRF-1001 was found highly accumulated in 

several types of cancer and siRNA-directed silencing of tRF-1001 prevented proper cell cycle 

progression by blocking cells in G2 (Lee et al., 2009). By contrast, plant tRFs accumulation is 

mainly observed in stress conditions, and particularly oxidative stresses, heat and phosphate 

starvation, suggesting that they might be involved in rapid reprogramming of gene expression 

in response to diverse external stimuli (Thompson et al., 2008; Hsieh et al., 2010; Wang et al., 

2011b; Pandey et al., 2014; Cognat et al., 2017). Interestingly, tRNAs have also been recently 

connected to genome protection against retrotransposons (reviewed in Martinez, 2018). 

 

 

 

 



 

Figure 18 : Plant and human ARGONAUTES features (adapted from Baumberger and Baulcombe, 
2005; Vaucheret, 2008; Poulsen et al., 2013). 

(A and B) Characteristic phenotypes of Arabidopsis ago1 mutants. (C) Schematic representation of 
ARGONAUTE domains and position of Arabidopsis ARGONAUTEs missense mutations. (D) 
Diagram representing the spatial organization of human AGO2. Arabidopsis mutations are represented 
by red stars. AGOs are formed of two lobes that are respectively composed of the N-terminal 
domain/DUF1785/Paz and MID/PIWI. They are linked by the L2 domain. The small RNA binding 
pocket is located in-between these two lobes.  
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5. ARGONAUTE proteins 

 

a. Structural features of ARGONAUTE proteins 

 

Historically, the ARGONAUTE gene was first identified in plant, as ago1-1 to -6 

Arabidopsis mutants were isolated from a EMS (ethyl methanesulfonate)-mutagenized 

population due to their severe alterations in leaf morphology resembling the tentacles of the 

little Argonaute squid (Bohmert et al., 1998) (Figure 18B). The structural hallmark of 

ARGONAUTE (AGO) proteins are three distinct domains: PAZ 

(PIWI/ARGONAUTE/ZWILLE), MID (MIDDLE) and PIWI (P ELEMENT-INDUCED 

WIMPY TESTIS) (Figure 18C) (reviewed in Vaucheret, 2008; Poulsen et al., 2013; Meister, 

2013). Resolution of the human AGO2 structure revealed that the protein is composed of two 

lobes (Elkayam et al., 2012; Schirle and MacRae, 2012). These lobes correspond to the N-

terminal and C-terminal part of AGO that are respectively composed of N/DUF1785/PAZ 

domains and the MID/PIWI domains (Figure 18D). Notably, most of Arabidopsis 

ARGONAUTE mutations recovered from genetic screens are located in the PAZ, MID and 

PIWI domains, highlighting their importance for AGO function (Figure 18C and D). The PAZ 

and MID domains confer small RNA-binding properties to AGOs. Structural studies report 

that the PAZ domain is composed of two subdomains that specifically bind the two 

nucleotides protruding 3’ end of small RNA duplexes (Lingel et al., 2004; Ma et al., 2004), 

whereas human AGO2 MID domain was shown to interact with the 5’ phosphate end of the 

guide RNA with a specificity for AMP or UMP (adenosine/uridine monophosphate) (Frank et 

al., 2010; Boland et al., 2011). The PIWI domain resembles the RNase H enzymes and 

supports the endonucleolytic activity (or slicing) that has been demonstrated for several 

AGOs (Baumberger and Baulcombe, 2005). The PIWI domain activity is carried out by a 

conserved catalytic core Asp-Asp-His (DDH) or Asp-Asp-Lys (DDK) (Vaucheret, 2008; 

Poulsen et al., 2013).  

The N-terminal domain is composed of a long non-folded region terminated by a coiled 

structure followed by a domain of unknown function called DUF1785 (Poulsen et al., 2013). 

In metazoans, the N-terminal part of the AGO protein seems to be the main driving force for 

ejection of the passenger strand also called “unwinding” (Kwak and Tomari, 2012). So far, 

the function of the N-domain and the DUF1785 is still not well understood in plants, partly 

due to the fact that only few point mutations are available in this region for functional 
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analysis. Recent work from our laboratory showed that the DUF1785 is required for 

unwinding perfectly matched siRNA duplexes (Derrien et al., 2018). Moreover, a mutation in 

the coil domain was identified which affects Arabidopsis AGO1 association to membranes, 

suggesting a role of the N-terminal coil as membrane-bound protein interaction interface 

(Brodersen et al, 2012).  

Recently, Bologna and colleagues validated the presence of a nuclear export signal 

(NES) and a nuclear localization signal (NLS) in the N-terminal part of Arabidopsis AGO1 

that are involved in the nucleo-cytoplasmic shuttling of the protein (Bologna et al., 2018). 

They proposed that in the non-loaded form of AGO1, the N-domain is translocated in the 

small RNA binding cleft, masking the NES and thus allowing the nuclear import of AGO1, 

presumably for miRNA loading. Once the miRNA is associated to AGO1, the N-terminal 

domain is released, and the NES is exposed, forcing AGO1 to reach the cytoplasm to perform 

PTGS.  

 

b. Assembly of mature RISC complexes 

 

In the last decade, many efforts have been put on dissecting the molecular mechanisms 

behind small RNA loading and small RNA duplexes unwinding in several models, namely 

human, fruit fly and plants. Typically, the loading of perfectly-matched siRNAs or bulge-

containing miRNAs occurs in a similar way. Small RNA loading is an ATP-dependent 

process that requires intervention of at least two chaperoning proteins: HSC70 

(HEATSCHOCK COGNATE 70) and HSP90 (HEATSCHOCK PROTEIN 90) (Kawamata et 

al., 2009; Iwasaki et al., 2010; Iki et al., 2010). Thus, it was proposed that this process induces 

conformational changes and therefore provides access to the binding cleft for the small RNA 

duplex.  

Then, passenger strand removal is required prior to repression of target mRNA. The 

strand selection rule has been deciphered in animal systems, where the strand with the less 

thermodynamically stable 5’ end is favoured as the guide stand (Khvorova et al., 2003; 

Schwarz et al., 2003). Slicer activity has been shown to participate to ejection of the 

passenger strand, though, mutations of the PIWI core catalytic residues do not abolish the 

production of mature RISC complexes (Kawamata et al., 2009). Thus, slicer-dependent and -

independent unwinding processes coexist, consistent with the fact that some AGO proteins 
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lack the slicer activity. As indicated above, the N-terminal part of the human AGO was shown 

to be required to initiate strand separation or “wedging” (Kwak and Tomari, 2012). In 

addition, it was recently shown that a mutation in the DUF1785 domain of Arabidopsis 

AGO1 impairs passenger strand removal of perfectly matched siRNA, severely affecting the 

production of secondary siRNAs (Derrien et al., 2018). 

 Overall, our current understanding of the loading process can be summarized as a 

three-step model: (1) ATP-dependent opening of AGO and small RNA duplex binding, (2) 

active wedging initiating the opening of the dsRNA of the duplex at the 5’ end or the 

passenger strand, (3) slicer-dependent or -independent unwinding, depending on the slicing 

activity of the AGO protein and complementarity of the two strands. 

 

c. Plants and Human ARGONAUTEs 

 

The Arabidopsis genome encodes 10 AGO proteins that are distributed in 3 distinct 

clades: namely AGO1/5/10, the AGO2/3/7 and AGO4/6/8/9 (Vaucheret, 2008). As discussed 

previously, AGO1 was firstly identified due to its strong developmental phenotype (Figure 

18A and B). Indeed mutations in the PAZ, MID or PIWI domain abolished or at least partly 

reduced AGO1 activity and led to pleiotropic defects, including dwarfism, abnormal leaf and 

root shapes, and even sterility and lethality in the worst cases (Vaucheret, 2008). Thus, AGO1 

is a major regulator of gene expression and it has been shown that it is the principal effector 

of the miRNA pathway in plant. The closest homolog of AGO1 is 

AGO10/ZWILLE/PINHEAD. In contrast to AGO1, AGO10 lacks the slicer activity despite 

the presence of the DDH motif in the PIWI domain (Mallory and Vaucheret, 2009), but is 

able to perform translational inhibition (Brodersen et al., 2008). AGO10 has been reported to 

be involved in several processes, including AGO1 post-transcriptional control (Mallory et al., 

2009; Zhu et al., 2011). Thus, AGO10 plays a role in the meristem formation and 

development by sequestering and inducing degradation of miR165/166, hence preventing 

them to being loaded in AGO1 and perform PTGS (Roodbarkelari et al., 2015; Zhu et al., 

2011b; Yu et al., 2017). AGO2 and AGO5 have been both linked to antiviral defense, they 

were shown to bind to virus-derived small RNAs and AGO2- and AGO5-silenced plants are 

more susceptible to virus infection than wild-type plants (reviewed in Alvarado and 

Scholthof, 2012; Brosseau and Moffett, 2015). In addition, recent studies demonstrated also 
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the capability of AGO2 to participate to the regulation of gene expression in response to 

diverse stresses such as virus and bacterial infection and double-strand break DNA damage 

(Zhang et al., 2011a; Wei et al., 2012; Cao et al., 2014; Fátyol et al., 2016). As we detailed in 

the section dedicated to small interfering RNAs, AGO7 is a highly specialized ARGONAUTE 

involved in the generation of Tas3 secondary RNAs and participates to a wide spectrum of 

auxin-related responses (Allen et al., 2005; Fahlgren et al., 2006; Montgomery et al., 2008; 

Hobecker et al., 2017). Finally, AGO4, 6 and 9 functions are related to transcriptional gene 

silencing (reviewed in Mallory and Vaucheret, 2010; Poulsen et al., 2013). Though, they 

exhibit different expression patterns: while AGO4 is expressed rather ubiquitously, AGO6 

and AGO9 are mostly expressed in flowers and seeds and are most likely involved in germ 

line-specific functions (reviewed in Mallory and Vaucheret, 2010). AGO4, 6 and 9 

specifically interact with 24-nt RNAs and AGO4 was shown to bind directly to NRPD1, a 

subunit of the RNA POL IV, and performs chromatin silencing by RNA-dependent DNA 

methylation (El-Shami et al., 2007). 

 In mammals, AGO was initially characterized as EIF2C (EUKARYOTIC INTIATION 

FACTOR C), as it linked to translation initiation in rabbit reticulocyte lysate (Roy et al., 

1988; Zou et al., 1998). Investigating the role of a genomic region that is frequently involved 

in proliferative diseases, Koesters and colleagues cloned and sequenced the human 

EIF2C1/AGO1 (Koesters et al., 1999). In human, eight members belonging to the 

ARGONAUTE family were later discovered (Sasaki et al., 2003). ARGONAUTE proteins are 

distributed in two groups: AGO proteins, AGO1EIF2C1, AGO2 EIF2C2, AGO3 EIF2C31 and AGO4 

EIF2C4, that are related to plant AGOs, and PIWI proteins, PIWIL1HIWI1, PIWIL2HIWI2, 

PIWIL3HIWI3 and PIWIL4HIWI4, that share similarity with Drosophila melanogaster PIWI 

proteins. In contrast to AGOs, PIWI are exclusively restricted to the germ lines and were 

proposed to be responsible of stem cells maintenance and differentiation, as well as 

transcriptional silencing of transposable elements (Sasaki et al., 2003; Mani and Juliano, 

2013). AGO2 is the only catalytically active AGO protein in animals. Slicing activity is 

required for the processing of miR451 that is not dependent of the canonical DICER pathways 

and mutation of the catalytic triad DDH leads to post-embryonic lethality, highlighting the 

essential role of the AGO2 slicing activity (Cheloufi et al., 2010). In addition to its slicer 

activity, AGO2 shares at least partly redundant functions with AGO1, 3 and 4 by binding 

miRNAs and performing translational inhibition (Burroughs et al., 2011). Human AGOs also 
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function in specific nuclear pathways such as double-strand break repair mechanisms and 

alternative splicing (reviewed in Meister, 2013) 

 

d. Regulation of Argonaute proteins  

 

In plants, prediction of miRNA targets pointed out that AGO1 might be itself 

regulated in a PTGS-dependent manner (Rhoades et al., 2002; Axtell and Bartel, 2005) and 

was indeed later validated through 5’-RACE (rapid amplification of cDNA ends) experiments 

(Vazquez et al., 2004). Expression of a miR168-resistant version of AGO1 causes 

developmental defects, and even lethality in the most severe cases (Vaucheret et al., 2004). In 

addition, miR168 accumulation was also found correlated with AGO1 mRNA level 

(Vaucheret, 2006). These observations suggest a deleterious effect of AGO1 overexpression 

and support the essential role to regulate AGO1 homeostasis in plants. Another example of 

such a miRNA-mediated AGO regulation has also been described for AGO2 by the miR403 

(Allen et al., 2005). Although the function of the miR403 has not yet been fully investigated 

in Arabidopsis, overexpression of miR403 was shown to delay flowering, affect leaf 

morphogenesis and response to abscisic acid treatment in tomato (Zhang et al., 2015). 

Although it has been reported that AGO1 alone is able to cleave target RNA in vitro 

(Baumberger and Baulcombe, 2005), it is likely that additional proteins might modulate its 

activity. For instance, the RNA helicase SDE3, a glycine-tryptophan (GW)-repeat-containing 

protein interacts with AGO1 and is a facilitator of the sense transgene post-transcriptional 

gene silencing (S-PTGS) amplification step (Garcia et al., 2012). Moreover a genetic screen 

based on the suppression of the sqn (SQUINT) phenotype, SQUINT being a co-chaperone 

interacting with HSP90 that is a putative AGO1 regulator (Earley and Poethig, 2011), allowed 

the identification of the F-box protein FBW2 (Earley et al., 2010). Loss of FBW2 in several 

hypomorphic alleles of AGO1 partially restored a wild-type phenotype, whereas 

overexpression of FBW2 was shown to induce phenotypes similar to AGO1 mutants. 

Moreover, loss of FBW2 enhances AGO1 protein accumulation, suggesting that FBW2 is an 

endogenous F-BOX that controls AGO1 homeostasis. This remains however to be formally 

demonstrated. Interestingly, an example of an F-BOX protein that triggers AGO1 degradation 

has been already reported in viral context. Thus, the viral protein P0 from poleroviruses 

interacts with ASK1 (Pazhouhandeh et al., 2006) to highjack an SCF complex and further 
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triggers AGO1 degradation through the autophagy pathway (Baumberger et al., 2007; 

Bortolamiol et al., 2007; Derrien et al., 2012). AGO1 P0-targeted degron has recently been 

identified in the DUF1785 domain (Derrien et al., 2018) and its mutation abolishes AGO1 

degradation upon P0 expression. The fact that the mutated AGO1 protein in the DUF1785 

domain does not overaccumulate in plants suggests that endogenous ubiquitin ligases might 

target another motif. 

 We still know very little about post-translational modifications regulating AGO 

proteins in plants. In animals, however, this became an expending topic (reviewed in Johnston 

and Hutvagner, 2011; Meister, 2013). Spectrometry analysis of human AGOs revealed that 

they are subjected to hydroxylation, and in particular AGO2 and AGO4, (Qi et al., 2008). 

Furthermore, both the mutation of the enzyme responsible of AGO2 hydroxylation and 

mutation of the targeted residue led to decreased amount of AGO2, linking hydroxylation to 

AGO stability. In parallel, several phosphorylation sites have been identified in human AGO2 

(Zeng et al., 2008; Rüdel and Meister, 2008). Phosphorylation of AGO2 was shown to 

participate to localization in processing bodies (P-bodies) (Zeng et al., 2008) and to interfere 

with small RNA binding (Rüdel et al., 2011). Interestingly, these modifications appear to be 

induced under stress, suggesting a potential role in the reprogramming of the RISC complex 

to quickly modulate gene expression. Finally, two recent reports indicate that human AGO2 

phosphorylation by CSNK1A1 casein kinase 1 on a cluster of conserved residues (S824-

S834) impairs mRNA target association (Golden et al., 2017; Quévillon Huberdeau et al., 

2017). The negatively charged phosphates would remove the mRNA from AGO2, and mRNA 

target is released. Thus, after dephosphorylation, AGO2 could thus be recycled and guided to 

a new target mRNA or would be degraded. 

 

6. The fate of RISC-targeted transcripts: slicing or translational inhibition 

 

Both plant and animal ARGONAUTEs are able to perform endonucleolytic cleavage 

or translational inhibition. However, while the slicing activity appears to be the main mode of 

action in plants, this process happens much more occasionally in animal cells. Whether the 

RISC is performing slicing or translational repression depends, at least in part, on the base 

pair complementarity within the miRNA and the target RNA. Perfect or nearly-perfect 

complementarity leads to slicing, which is in general the case for siRNAs (Figure 19A). Note 



 

Figure 19 : RISC-mediated slicing and translational repression. 

(A) To accomplish post-transcriptional gene silencing, RISC complex must first prime to a target 
sequence (1). (2) Perfect or near-perfect complementarity between small RNA and the target sequence 
results in endonucleolytic cleave of the target RNA between the position 10 and 11 of the small RNA. 
Slicing activity leads to the generation of 3’-OH and 5’-monophosphate unprotected end that are 
subjected by exonucleolytic degradation by the exosome and XRN1/XRN4, respectively (4). (3) Note 
that 3’ polyuridylation by terminal-uridyltransferases (TUTases) can accelerate the degradation of the 
5’ fragment. (B) Imperfect small RNA/target RNA hybrids lead to translational repression rather than 
slicing. In animals, translational repression required the GW-containing protein GW182. Translational 
repression relies on several mechanisms including (1) inhibition of translation initiation, (2) inhibition 
of translation elongation and premature termination and even deadenylation and decapping in animals 
(3). 
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that plant mRNA cleavage by AGO1-loaded miRNAs occurs essentially in the open reading 

frame of target mRNAs (Rhoades et al., 2002). Conversely, bulge-containing miRNAs are 

preferentially involved in translational repression (Figure 19B). In mammals, the minimal 

sequence complementarity needed for target recognition comprises six to seven nucleotides in 

position 2 to 7-8, also called seed sequence (Lewis et al., 2003; Bartel, 2009).  

In animals, the GW182 protein is essential for translational inhibition (reviewed in 

Iwakawa and Tomari, 2015). GW182 and miRNA-associated RISC were shown to 

colocalized in P-bodies, cytosolic foci where it is though that untranslated mRNAs are stored 

and eventually degraded. A model of translation inhibition suggests a 3 steps process: (1) 

Inhibition of translation initiation, (2) Inhibition of translation elongation and (3) premature 

termination (Figure 19B). In such a model, GW182 recruits deadenylase complexes, CCR4-

NOT (CARBON CATABOLITE REPRESSOR 4- NEGATIVE ON TATA) and PAN2-

PAN3 (POLY (A) NUCLEASE 2-3), to initiate mRNA decay. In parallel, GW182 was shown 

to provide accessibility of the poly(A) tail to deadenylases by promoting dissociation of 

PABP (POLY (A)-BINDING PROTEIN). Deadenylation is immediately followed by the 

removal of the 7-methylguanosine 5’ cap by the decapping complex, composed of the 

catalytic subunit DCP2 (DECAPPING PROTEIN 2) and its cofactor DCP1 and DDX6. 

Shortened poly(A) tails also allow the recruitment of terminal-uridyltransferases (or TUTase) 

at the 3’ end of RNA. Polyuridylation by TUTases consist in the untemplated adding of 

uracils in 3’ that facilitate the recruitment of 5’-3’ degrading enzymes (Aphasizhev et al., 

2016; Scheer et al., 2016). In parallel, the decapping complex releases an unprotected 5’ 

monophosphate end that is required to initiate 5’ to 3’ degradation by the exoribonuclease 

XRN1 (EXORIBONUCLEASE 1). 

First evidences of translational repression mechanisms in plants were highlighted by 

the work of Brodersen and colleagues (Brodersen et al., 2008) demonstrating that a 

component of the decapping complex, VCS (VARICOSE), is indeed essential for RNA 

silencing but does not affect the target mRNA level. In addition, they also showed that the 

microtubule-severing enzyme KTN1 (KATANIN 1) is required in this process, suggesting 

that spatial reorganization of the microtubule network may play a role in translational 

inhibition. In contrast to animals, plants have no GW182 homolog. However, a GW motif-

containing protein SUO was identified in a genetic screen based on the accumulation of SPL3 

(SQUAMOSA PROMOTER-LIKE 3), a miR156-targeted transcript known to be repressed by 

translational inhibition (Yang et al., 2012). Besides understanding of structural discrepancies 
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between GW182 and SUO, whether they are functional homologs is a question that still needs 

to be investigated. Although VCS and SUO are localized in P-bodies, animal and plant 

translational repression seem to act, at least partially, in a different way. Thus, the plant RISC 

is not able to trigger either deadenylation nor mRNA decay (Iwakawa and Tomari, 2013). It 

was shown that the position of the targeted mRNA sequence influences the mode of action of 

the plant RISC and that the 5’ UTR- and ORF-directed RISC might block the assembly of the 

initiation complex and translation elongation, presumably by steric hindrance, while the 

3’UTR-directed RISC might act like in animal cells (Iwakawa and Tomari, 2013).  

 Nevertheless, phenotypes of Arabidopsis mutants impaired in translational repression 

are much less severe than catalytically dead AGO1 mutants, supporting that slicing activity is 

predominant in plants (Vaucheret, 2008; Baumberger and Baulcombe, 2005; Brodersen et al., 

2008; Yang et al., 2012). RISC-mediated cleavage results in the formation of two RNA 

fragments: the 5’ fragment exhibit a 3’-OH extremity and the 3’ fragment a 5’ 

monophosphate end that are respectively degraded by the exosome and 5’-3’ exoribonuclease 

XRN4 (Siwaszek et al., 2014; Scheer et al., 2016) (Figure 19A).  

 

7. Human miRNAs functions in cell cycle and cancer 

 

In human, one of the first evidences that miRNAs are involved in cancer emerged with 

the development of high-throughput sequencing of small RNAs. By analyzing chronic 

lymphocyte leukemia (CLL) and other tumor samples, Croce and colleagues identified a 

deletion in the 13q14 locus encoding two miRNAs (miR15 and miR16) that are 

downregulated or deleted in the majority of CLL (~70%), suggesting that these miRNAs have 

a potent tumor suppressor activity (Calin et al., 2002). The role of the miR15/miR16 cluster in 

regulating the expression of cell cycle genes was subsequently demonstrated (reviewed in 

Bueno and Malumbres, 2011; Leva et al., 2014). Indeed, miR15a and miR16-1 were shown to 

target a plethora of core cell cycle genes responsible of the G1/S transition including CDK6 

and D-type cyclins (Liu et al., 2008b; Wang et al., 2009), and therefore may induce cell cycle 

arrest. In addition, overexpression of miR16 or introduction of mature miR16 in cell culture is 

sufficient to abolish cell proliferation (Linsley et al., 2007). 

 Cell cycle-regulating miRNAs have been extensively studied, notably to develop 

diagnostic and curative tools in cancer therapy. A large number of miRNA families have been 



 

Figure 20 : Human miRNA-mediated cell cycle regulatory network (from Bueno and Malumbres, 
2011). 

This skim represents an overview of interactions between miRNAs and core cell cycle genes 
expression. Note that not all indicated miRNAs targets have been validated in vivo. miRNAs 
represented in blue correspond to tumor suppressor miRNAs and thus trigger cell cycle arrest. Red-
tagged miRNAs correspond to miRNAs that have oncogenic properties and could promote cell 
proliferation. 
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identified as well as their targets. These miRNAs can be categorized in two classes: 

Oncogenic miRNAs (or OncomiRs) that promote cell proliferation and tumor development, 

and tumor suppressor miRNAs (or anti-proliferative miRNAs) that induce cell cycle arrest 

and even apoptosis for some of them (reviewed in Bueno and Malumbres, 2011; Leva et al., 

2014). Interestingly, most of miRNA-dependent cell cycle regulation occurs at the G1/S 

transition. D-type cyclins, that are accumulated upon mitogenic stimuli and, associated with 

CDK4 and 6, promote cell cycle entry, are not only targeted by miR15 and 16, but also by at 

least five other miRNAs (reviewed in Bueno and Malumbres, 2011). Overall, a wide spectrum 

of core cell cycle genes is post-transcriptionally controlled by miRNAs (Figure 20). This 

includes positive cell cycle regulators, such as CDK2/4 and 6, E2F transcription factors and 

CDC25 phosphatases, but also inhibitory proteins like RB, p107RBL1, p130RBL2, CDK 

inhibitors (p21CIP1, p27KIP1 and p57KIP2) and the tumor suppressor p53. Some miRNAs target 

genes are also required for progression through mitosis. Among them, B-type cyclins and 

CDK1, but also the kinase AURORA-B, that plays a crucial role in mitotic spindle attachment 

to the kinetochore, seem all repressed by miR24 (Lal et al., 2009) (Figure 20). The striking 

diversity of miRNA targets illustrates a high redundancy of miRNA function, as well as the 

fact that one miRNA is able to directly repress several functional related transcripts. 

 While the steady state level of most of the miRNA species remains stable in time, cell 

cycle-regulating miRNAs are subjected to a rapid turnover in proliferative cells to achieve 

their function on cell cycle progression. Thus, they are transcriptionally controlled by a set of 

cell cycle- specific transcription factors such as the proto-oncogene C-MYC, which is a 

crucial regulator of cell growth, proliferation, differentiation and other associated metabolic 

processes (Eilers and Eisenman, 2008; reviewed in Miller et al., 2012). C-MYC positively or 

negatively regulates the expression of a great variety of genes, including core cell cycle genes 

(S-phase cyclins, p21CIP1,p57INK4B), but also non-coding RNAs, like ribosomal RNAs, transfer 

RNAs and miRNAs (reviewed in Krol et al., 2010; Bui and Mendell, 2010; Kenneth and 

White, 2009). As an example, C-MYC induces the expression of the miR17-92, which 

inhibits expression of RB and RB-like proteins, and therefore allows expression of G1/S 

genes (Figure 21A). In addition, some E2Fs transcription factors also activate expression of 

OncomiRs, while the tumor suppressor p53 induces expression of anti-proliferative miRNAs 

and particularly miR34a and miR145, that inhibit E2Fs and c-MYC expression, respectively 

(Figure 20) (Bao et al., 2012; Sachdeva et al., 2009). 



 

Figure 21 : Cell cycle regulatory miRNAs are highly dynamic. 

(A) Upon mitogenic stimuli, proliferative miRNAs levels increase to lower the expression of CDK 
inhibitors and other inhibitory cell cycle proteins such as pRB. Their levels remain constant as long as 
proliferative signals are maintained. Some miRNAs are accumulated in a phase specific manner to 
decrease the expression of regulatory genes and therefore might contribute to trigger cell cycle 
transitions. Differential accumulation of some miRNAs can be partly explained by the fact that they 
are under transcriptional control of cell cycle specific transcription factors, including c-MYC, E2Fs 
and P53. (B) miRNAs are subjected to post-transcriptional modifications that affect their stability. 
Mono or polyadenylation has been observed in animals and plants and stabilizes the miRNA. GLD-2 
is the enzyme responsible of miRNA adenylation in human. miRNAs can also be stabilized by HEN1-
mediated 2’-O methylation that prevents their uridylation by the human TUT4 and plant HESO1 
terminal uridyl-transferases (TUTases). (C) miRNA polyuridylation destabilize miRNA accumulation 
by promoting their degradation by exoribonucleases. The human TSN and Arabidopsis SDN1/2 
nucleases can degrade uridylated miRNAs that are loaded in AGO proteins and consequently may 
contribute to RISC reprogramming. 
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 Transcriptional control is however not sufficient to explain the differential 

accumulation along the cell cycle of some miRNAs and miRNA turnover is also an active 

process allowing quick miRNA decay (Figure 21B and C) (reviewed in Krol et al., 2010; 

Rüegger and Großhans, 2012). For instance, miR29s are tumor suppressors miRNAs that act 

by upstream relieving p53 inhibition (reviewed in Kriegel et al., 2012). miR29a and miR29b 

form a cluster and thereby are transcribed and processed the same way. However, miR29b 

half-life is shorter compared to miR29b (Hwang et al., 2008). In addition, miR29b half-life 

was shown to be significantly increased in mitotic cells (Hwang et al., 2008), and mutations 

of two uracil in position 9 and 11 almost totally abolished its degradation (Zhang et al., 2011), 

highlighting the existence of a cell cycle-specific miRNA decay pathway. Other miRNAs are 

also continuously accumulated or repressed during cell proliferation, like miR503 (Bueno and 

Malumbres, 2011). miR503 promotes cell cycle arrest in G1 and differentiation by targeting 

the CDK-activating phosphatase CDC25A (Sarkar et al., 2010; Llobet-Navas et al., 2014). It 

has been shown that miR503 accumulation is strongly reduced at G0/G1 transition and is 

almost not anymore detectable in proliferative cells (Rissland et al., 2011). Unlike miR29b, it 

is not degraded with a specific timing but it is constitutively unstable, suggesting that 

variations in miR503 levels are principally the consequences of transcriptional changes 

(Rissland et al., 2011). 

Although cell cycle-regulating miRNAs decay is not fully understood, a recent study 

showed that the endonuclease TSN (TUDOR STAPHYLOCOCCAL/MICROCOCCAL-

LIKE NUCLEASE), that initiates miRNA degradation on loaded AGO2-RISC, promotes 

G1/S transition, illustrating the fundamental role of miRNA turnover in cell cycle regulation 

(Elbarbary et al., 2017) (Figure 21C). 

 

8. Small RNA functions in plant development 

 

Nowadays, 428 mature miRNAs have been referenced in miRbase for Arabidopsis 

(www.miRbase.org). Common experimental strategies used to study miRNA functions and 

particularly identify their targets rely on several tools: (1) Bioinformatics prediction of 

miRNA targets (2) genome-wide and/or gene specific transcript analysis, (3) identification of 

miRNA cleavage products by 5’-RACE and (4) in vivo target validation by dominant negative 

approaches, like miRNA mutations or expression miRNA-resistant versions of the putative 

http://www.mirbase.org/


 

Figure 22 : Small RNAs contribute to the regulation of the auxin signalling pathway. 

TIR1 is the F-box protein that associates with the SCF to trigger AUX/IAA polyubiquitination. 
AUX/IAA are transcriptional repressors that inhibit ARFs transactivation activity. Upon auxin binding 
to TIR1, the SCFTIR1 interacts with AUX/IAAs and triggers their degradation though the 26S 
proteasome, resulting in the expression of ARF-responsive genes. NAC1 is another transcription factor 
acting downstream TIR1. In addition to post-translational regulations, auxin signalling is also 
subjected to post-transcriptional regulations mediated by small RNAs. This process involves both 
miRNAs and siRNAs. siRNAs are generated through TAS3 targeting ARFs transcription factors and 
by miR393 induced RDR6 mediated-secondary siRNA generation to repress TIR1. 
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targets. During the last decade, target predictions in plants were based on nearly perfect 

complementarity of miRNA/mRNA duplexes, since it was thought that, unlike animals, plant 

RISC essentially perform slicing rather than translation inhibition (Rhoades et al., 2002; 

Axtell and Bartel, 2005; Axtell and Meyers, 2018). Most of the plant miRNAs functions are 

related to plant development, hormone signaling and stress responses (reviewed in Chen, 

2005; Voinnet, 2009). In the following section, I will focus on some examples of miRNA 

functions related to cell proliferation.  

 

a. Post-transcriptional control of auxin signaling  

 

Auxin signaling is essential for plant development and adaptation to stresses. It is 

involved in both embryogenesis and post-embryonic organ formation and participates to the 

establishment of polarity and to tropic responses (reviewed in Lavy and Estelle, 2016). At a 

cellular level, auxin plays a pivotal role in the balance between cell division and cell 

expansion (reviewed in Perrot-rechenmann, 2010). The first link between RNA silencing and 

the auxin signaling pathway was highlighted by Sorin and colleagues, showing that 

Arabidopsis ago1 null mutants are affected in auxin responses and were insensitive to auxin 

treatment (Sorin et al., 2005). In addition, loss of AGO1 was correlated with the 

overaccumulation of ARF17 (AUXIN-RESPONSE FACTOR 17), a transcription factor 

involved in activation and repression of auxin-responsive genes. Several ARFs were predicted 

as putative miRNA targets: miR160 binding sites were identified in ARF10, ARF16 and 

ARF17 while miR167 was thought to target ARF6 and ARF8 (Rhoades et al., 2002; Axtell 

and Bartel, 2005) (Figure 22). These miRNAs targets were later validated in vivo through 

genetic approaches (Mallory et al., 2005; Wang et al., 2005; Liu et al., 2007; Wu et al., 2006; 

Ru et al., 2006).  

 Other components of the auxin-signaling pathway are also targeted by miRNAs. 

ARFs transactivation activity is negatively regulated by AUX/IAA transcriptional repressors 

(reviewed in Lavy and Estelle, 2016) (Figure 22). Activation of auxin-induced genes therefore 

requires 26S proteasomal degradation of AUX/IAA that is mediated by TIR1/AFB1-3 F-box 

proteins (TRANSPORT INHIBITOR RESPONSE 1/ AUXIN-RELATED F-BOX PROTEIN 

1-3). Thus, miR393 was shown to accumulate in response to auxin treatment and to trigger the 

inhibition of TIR1/AFBs (Parry et al., 2009; Sunkar and Zhu, 2004; Chen et al., 2011). In 



 

Figure 23 : Control of cell proliferation by miR319 and miR396 in Arabidopsis thaliana. 

miR319 and miR396 play antagonistic functions in regulating cell proliferation in plants. miR396 
targets the transcripts of GRF transcription factors that promote cell proliferation. miR319 is acting 
upstream of miR396 and represses its accumulation. miR319 also represses the expression of TCP4, a 
transcription factor that inhibits cell proliferation, and of the CDK inhibitor KRP1. (A) In young 
leaves miR319 is highly expressed to promote cell division. Conversely in older leaves, miR396 is 
gradually accumulated to repress cell division and promote cell expansion and differentiation. (B) In 
the root apical meristem, the accumulation of miR396 contributes to maintain stem cell niche (SCN) 
identity. To achieve this, PLETHORA (PLT) promotes miR396 expression, thus lowering GRF 
accumulation in the SCN. In contrast in the meristematic zone, GRF transcription factors promote 
intensive cell division activity. 
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addition, expression of miR393-insensitive mutant of TIR1 induces strong pleiotropic 

phenotype, suggesting that miR393 plays a key role in a feedback loop to regulate auxin 

signaling (Figure 22). Interestingly, secondary RNAs are also controlling the auxin pathway, 

as two members of the ARF family, ARF3 and ARF4, are subjected to post-transcriptional 

regulation by the TAS3 locus (Figure 22) (Allen et al., 2005). It has also been shown that 

miR393-mediated cleavage of TIR1/AFB2 transcripts initiates generation of secondary 

siRNAs that further target other mRNAs, including all of the four members of the TIR1/AFB 

clade.   

The transcription factor NAC1 (NAC DOMAIN-CONTAINING PROTEIN 1), acting 

downstream of TIR1 and involved in shoot apical meristem and lateral root formation, is 

targeted by miR164 (Rhoades et al., 2002; Guo et al., 2005), whereas the IAA28 transcript, 

encoding a transcriptional repressor belonging to the AUX/IAA family, is degraded by 

miR847, regulating both cell proliferation in the aerial part and lateral root branching (Wang 

and Guo, 2015) (Figure 22). In conclusion, small RNA-mediated post-transcriptional 

regulation of auxin signaling pathways constitutes a complex network responding to diverse 

stimuli and contributing to plant phenotypic plasticity (reviewed in De-la-Pena et al., 2017). 

 

b. Control of cell proliferation by miR319 and miR396 

 

Despite the fact that no plant miRNA has yet been found to directly target components 

of the core cell cycle machinery, two miRNAs, miR319 (jaw) and miR396 modulate cell 

proliferation through the control of two classes of transcription factors: TCPs (TEOSINTE 

BRANCHED 1, CYCLOIDEA, AND PCNA-BINDING FACTOR) and GRFs (GROWTH-

REGULATING FACTOR) (Figure 23). Four jaw mutant alleles were initially isolated from 

an enhancer screen due to their developmental alterations, such as serrated abnormal leaf 

shape and curvature (Weigel et al., 2000). Since no open reading frame was identified near 

the T-DNA insertion, it was proposed that the mutation might affect a non-protein coding 

gene (Weigel et al., 2000). Genome-wide transcriptomics analysis revealed that ectopic 

activation of the JAW locus led to a substantial reduction of TCP2, 3, 4, 10 and 24 expression 

(Palatnik et al., 2003a). RNA blot analysis further demonstrated that the mature product of 

JAW expression is indeed a 21 nt miRNA (later called miR319) and the expected miR319-

targeted TCPs were further validated (Palatnik et al., 2003a, 2007; Ori et al., 2007) . The TCP 
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family is constituted by 24 members and is divided in two classes based on their affinity for 

different consensus DNA binding sites (Kosugi and Ohashi, 2002). Class I and Class II TCPs 

are thought to play antagonistic functions in post-embryonic development. TCP4, as well as 

four other miR319-regulated TCPs, belongs to the Class II. Interestingly, microarray analysis 

of miR319-resistant TCP4 mutants highlighted the down regulation of more than 1300 genes 

and many of those were related to cell division and the progression of the cell cycle, including 

MYBR1R2and R3 transcription factors (Schommer et al., 2014). In parallel, TCP4 was shown 

to bind directly to the promoter of the CDK inhibitor ICK/KRP1 by chromatin 

immunoprecipitation and thereby stimulate its expression (Schommer et al., 2014).  

TCP4 also activate the expression of miR396, that specifically target seven GRF 

proteins: GRF1, 2, 3, 4, 7, 8 and 9 (Jones-Rhoades and Bartel, 2004; Rodriguez et al., 2010b). 

GRF are regulating several plant developmental processes that are linked to cell growth and 

proliferation, including leaves and root growth, stem elongation, flowering, lipid metabolism 

in seeds and maintenance of the shoot (SAM) and root apical meristem (RAM) (reviewed in 

Omidbakhshfard et al., 2015). Rodriguez et al., 2010 showed that GRF2 accumulation pattern, 

that is normally restricted to proliferating leaves and to the SAM, is extended to the entire 

aerial part of the plant when a miR396-resistant version of GRF2 (rGRF) is expressed (Figure 

23A). In parallel, miR396 overexpression significantly decreases rosette area and cell number, 

suggesting that cell proliferation is impaired. miR396 is also involved in the maintenance of 

the RAM (Figure 23B). The RAM is composed of the meristematic zone, that carries most of 

the cell division activity and provides cells for proper root development, and the stem cell 

niche (SCN), that includes the quiescent center (QC) and the initials. While the principal 

function of the QC is to maintain the stem cell identity of the neighbouring cells, initials are 

essential for root patterning, as they give rise to the different root cell layers (reviewed in 

Petricka et al., 2012). Hence, maintenance of the SCN is crucial for root development. Three 

major transcription factors have been involved in SCN identity: SHORTROOT (SHR), 

SCARECROW (SCR) and PLETHORA (PLT). Interestingly, miR396 expression is restricted 

to the SCN and depends on PLT (Rodriguez et al., 2015). in contrast, GRFs are strongly 

accumulated in the meristematic zone but absent from the SCN and both miR396 

overexpression and expression of the miR396-resistant (rGRF) affects meristem organization, 

size, and mitotic activity. Based on these observations, the authors proposed that miR396 

contributes to maintain low division rate of the SCN in the root meristem and thereby 





40 
 

controlling the transition between the SCN and the meristematic zone (Rodriguez et al., 

2015). 

 

 

 

 

 

  







 

 

Figure 24: Loss of AGO1 affects root development. 

(A) Root length measurement of wild type plants compared to ago1 mutant plants indicated in mm. 
Roots were measured at 6 and 10 days after stratification (DAS) for >30 seedlings. ANOVA test were 
performed for each genotype compared to WT, indicating significant differences (p<0.05). The (***) 
symbol highlights comparison for which p<0.001. (B) Phenotype of wild type plants compared to 
ago1 mutants on 10 DAS seedlings. Seedlings were grown on vertical plates and 4 of each genotype 
were randomly selected for more clarity. #1 and #2 correspond to different seed stock. Bar: 10 mm. 
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Results 
 

A. AGO1 depletion affects Arabidopsis cell division and root meristem activity 
 

1. Arabidopsis ago1 mutants are impaired in root developments 

 

In Arabidopsis, ago1 null mutants exhibit a severe morphological phenotype affecting 

leaf shape and polarity, along with defects in meristem identity and function (Bohmert et al., 

1998; Morel et al., 2002; Kidner and Martienssen, 2004, 2005). To better characterize these 

defects in plant development, I first analyzed the primary root growth of two different mutant 

alleles of AGO1. The Arabidopsis ago1-27 mutant has been isolated from a genetic 

suppressor screen (Morel et al., 2002). ago1-27 mutation is located is the PIWI domain and 

results in a reduced activity of the protein. I also tested the strong ago1-36 allele that 

correspond to a T-DNA insertion (salk_087076) in the PAZ domain, leading to the expression 

of a truncated protein (Baumberger and Baulcombe, 2005) and therefore can be considered as 

a null allele. I already found a slight reduction in the root length of the hypomorphic ago1-27 

allele, while this phenotype was severely compromised in the strong ago1-36 mutant (Figure 

24). Because root development largely relies on the function of the root meristem, I 

investigated its structural organization by confocal microscopy using propidium iodide (PI) 

cell wall staining. In wild type Arabidopsis root meristem, cells are well organized in a 

characteristic pattern. The quiescent center is surrounded by the initials, forming the SCN that 

give rise to the different cell layers of the meristematic zone (Figure 25).  

In the ago1-27 background, only a subset of the observed roots exhibit defects in 

meristem organization. In addition, those defects seem to be restricted to the SCN and do not 

affect the upper layers. Conversely, the root patterning is completely lost in ago1-36 (Figure 

25). We conclude that AGO1 is required for proper root development. These observations are 

consistent with the published data that have already linked the miRNA pathway to the 

maintenance of stem cell identity in the root meristem. However, the QC and the initials have 

low cell division rate and most of the cell division activity is carried out by upper cells. 

Interestingly, both hypomorphic and strong ago1 mutants are affected in the SCN 

organization, while phenotypes that are related to cell cycle defects, such as a decrease in cell 

number coupled to an increase of cell size, are only present in the strong ago1-36 mutants. 



 

 

 

 

 

Figure 25: ago1 mutants exhibit altered root meristem patterning (The figure illustrating the different 
cell types in the RAM is from Stahl et al., 2005). 

 Representative wild type and mutant root tips of 6-days old seedlings. The skim represents the 
different cell layers that constitute the root apical meristem (RAM) in Arabidopsis (adapted from Stahl 
and Simon, 2005). The middle column represents close-up views of the quiescent center (QC). The n 
value represents the number of plant observed. Roots were counterstained with propidium iodide (red 
signal). Bars = 50 μm. 

 



42 
 

 

2. AGO1 is required for the maintenance of the root meristem 

 

It is possible that the defects in root meristem activity described above might find their 

origin already during the embryo development. Indeed, mutations in genes encoding miRNA 

pathway components, like DCL1, cause pattern formation defects leading, in the worse cases, 

to embryonic lethality (Nodine and Bartel, 2010; Vashisht and Nodine, 2014). To confirm that 

AGO1 is essential to maintain the root meristem activity post-embryonically, I took advantage 

of an Arabidopsis transgenic line engineered in the lab, in which it is possible to induce 

AGO1 degradation upon chemical induction of P0 with β-estradiol (XVE:P0-myc). In this 

line, β-estradiol treatment induces the expression of the viral protein P0 from Turnip yellows 

virus (TuYV), which is a potent viral suppressor of silencing. P0 carries an F-box motif and is 

able to highjack a SCF complex to form a fully functional E3 ligase (Figure 26A). By 

interacting with AGO1, it triggers its degradation in the vacuole, presumably though AGO1 

polyubiquitinylation (Derrien et al., 2018 and references therein).  

Thus, I germinated the P0-inducible line on MS medium supplemented with or 

without β-estradiol in order to induce P0 expression. Upon P0 induction, the root length was 

significantly reduced compared to the untreated seedling (Figure 26B and C). Because P0 

triggers the degradation of several, if not all plant AGOs (Baumberger et al., 2007; Derrien et 

al., 2018), the phenotypes we observed might not be exclusively due to the loss of AGO1. To 

evaluate the contribution of only AGO1, I also induced P0 expression in the ago1-57 genetic 

background. The ago1-57 mutation is located in the DUF1785 domain of AGO1 and 

abolishes its interaction with P0 (Derrien et al., 2018). By inducing P0 in ago1-57, we are 

then able to uncouple the effects of AGO1 depletion from the loss of other AGO proteins. The 

strong effect of P0 on root growth was significantly suppressed in ago1-57 (Figure 26B and 

C), indicating that this phenotype is largely dependent on AGO1 (and thus likely on miRNAs) 

and not on other AGO proteins.  

 To further dissect the phenotype caused by loss of AGO1, I analyzed the length of the 

root meristem of P0-induced compared to untreated seedlings. To do so, I imaged at least 20 

root tips for each genotype using PI staining. I then measured the distance between the QC 

and the first cell of the cortex that undergoes cell expansion (Figure 27). I was able to detect a 

decrease of the root meristem length in XVE:P0-myc after six days of β-estradiol treatment, 



 

Figure 26: Post-embryonic depletion of AGO1 affects root development. 

 (A) Mechanism for P0-depedent AGO1 degradation in XVE:P0-myc and XVE:P0/ago1-57 transgenic 
Arabidopsis lines. Upon %-estradiol treatment, P0 is induced and highjacks an SCF complex. P0 then 
interact with AGO1 to trigger its polyubiquitination and its subsequent degradation through a vacuolar 
process. In the ago1-57 genetic background, a residue essential for P0 interaction is mutated 
abolishing AGO1-57 degradation. (B) Root length measurements in mm of wild type plants compared 
to P0-inducible line and P0-insensitive ago1-57 mutants. Seedling were germinated with (+) or 
without (-) β-estradiol (10 μM) to induce P0 expression. Measurement were done at 6 and 12 days 
after stratification (DAS) on >30 seedlings. ANOVA tests were performed, indicating significant 
differences (p<0.05). The (***) symbol highlight comparison for which p<0.001. (C) Phenotype of 
wild type plants compared to XVE:P0-myc and XVE:P0/ago1-57 on 10 DAS seedlings with or 
without %-estradiol induction. Seedlings were grown on vertical plates and 4 of each genotype were 
randomly selected for illustration. Bar: 10mm. 
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while XVE:P0 in ago1-57 background showed no obvious differences between induced and 

non-induced conditions. In addition, root meristem measurements were no more possible after 

12 days of induction, as induced the XVE:P0-myc lines recapitulate the phenotype of strong 

ago1-36 mutants. From these experiments, we conclude that AGO1 is indeed required for 

proper root development and contributes to the maintenance of the root meristem. An overall 

decrease of the cell division activity might explain that the root meristem is gradually 

consumed upon AGO1 degradation. We next wondered whether cells arrest at a specific cell 

cycle stage. 

 

3. Loss of AGO1 affects cell proliferation in the root apical meristem 

 

To confirm that loss of AGO1 indeed affects cell cycle activity in the root tip and 

investigate whether it would block cell division at a specific cell cycle phase, I transformed 

both XVE:P0-myc and XVE: P0 (ago1-57) lines with two lines expressing fluorescent cell 

cycle markers: pHTR2:CDT1a(C3)-GFP and pCYCB1.2::CYCB1.2 (dBox)-GFP (Figure 

28A). The pHTR2:CDT1a(C3)-GFP construct consists of an S phase specific promoter from a 

histone 3 gene that drives the expression of the C-terminal part of the replication factor 

CDT1a, that is subjected to 26S proteasome-mediated degradation in late G2 (Yin et al., 

2014). By fusing it to GFP, it is possible to identify cell that are in S/G2. On the other end, the 

CYCB1.2 is known to accumulate starting from G2 and be quickly degraded later by the 

APC/C at the exit of mitosis (Donnelly et al., 1999). By consequence, expression of the 

unstable motif (DBox) of CYCB1.2 under the control of its own promoter is sufficient to 

highlight cells that undergo mitosis.  

I then performed confocal imaging of root tips of doubly homozygous seedlings to 

compare cell cycle marker distribution with or without P0 induction. In untreated conditions, 

S/G2 marker is widely expressed in the root meristem and particularly in adjacent cells 

belonging to the same cell layer (referred as S phase synchronized cells) (Hayashi et al., 

2013). As mitosis is a highly transient event, G2/M marker expression is only restricted to 

only few cells. Upon P0 induction, the number of cells expressing both S/G2 and G2/M 

markers dramatically decreased (Figure 28B) and correlates with a progressive 

disorganization of the root tip. Inversely, cell cycle activity was maintained when expressing 

P0 in ago1-57 mutant background even after 10 days of induction. At this point, I conclude 



 

 

 

Figure 27: Post-embryonic depletion of AGO1 affects root meristem length and organization. 

Root-meristem size indicated in μm of wild-type plants compared to the indicated genotypes. Cortex 
meristematic cells showing no sign of differentiation were counted. Values are meristem length of 6 
DAS seedlings germinated with (+) or without (-) β-estradiol (10 μM). Anova test were performed, 
indicating significant differences (p<0.05). The (*) symbol highlights comparison for which 
0.01<p<0.05. Right panels are primary root tips of XVE:P0-myc and XVE:P0-myc (ago1-57) after 12 
days of P0 induction. Roots were counterstained with propidium iodide (red signal). Arrows indicate 
the length of the meristematic zone (from the QC to the first elongating cell of the cortex). Bars = 50 
μm. 
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that AGO1 activity is required to maintain normal cell proliferation in the Arabidopsis root 

meristem, but, as both cell cycle markers were repressed similarly, AGO1 depletion does not 

seem to distinctly lead to a specific cell cycle phase arrest. 

  



 

Figure 28: AGO1 is required for the maintenance of cell cycle activity in the root meristem. 

(A) To evaluate the cell cycle activity upon AGO1 depletion, two fluorescent cell cycle markers were 
transformed in XVE:P0-myc and XVE:P0/ago1-57 transgenic lines. pHTR2:CDT1a(C)-GFP construct 
is expressed from G1/S transition to early G2 while pCYCB1.2:CYCB1.2-GFP is expressed in late G2 
and then degraded in telophase. (B) Confocal laser scanning images of primary root tips of XVE:P0-
myc and XVE:P0-myc (ago1-57) lines expressing the indicated cell cycle markers without and after 6 
and 10 days of P0 induction with β-estradiol (10 μM). Bars=50 µM. 





 

 

Figure 29: Protocol to optimize AGO1 immunodetection from BY-2 cell suspension. 

(A) Attempt to detect endogenous AGO1 from BY-2 tobacco cells on wester-blot using a commercial 
rabbit polyclonal antibody raised against Arabidopsis AGO1. Proteins were extracted from 
Arabidopsis seedling and BY2 cells using the same buffer (Laemmli 1X) (B) Optimization of the 
protein extraction protocol in order to detect GFP-AGO1 from transgenic BY-2 cell suspension. 
Classical Laemmli 1X extraction and Phenol/methanol precipitation were challenged by SDS-PAGE. 
30µg of total protein were loaded on a 7% Tris-Glycine acrylamide gel. WT and H2B-tdTomato 
expressing BY2 cells were used as negative control. #1, #2, #3 and #4 correspond to 4 different BY2 
clonal cell suspension cultures. Three commercial anti-GFP antibodies were tested. The concentration 
and time of exposure are indicated. Coomassie blue (CB) staining was used as a loading control.  
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B. AGO1 regulation in synchronized BY-2 cells 

 

To address more specifically the question of the regulation and function of AGO1 

during the cell cycle, it is essential to adopt an experimental setup where cells can be 

sufficiently enriched in the specific cell cycle phases. Synchronizable systems have already 

been extensively used in the past for cell cycle studies. This generally requires 

undifferentiated, highly proliferative cell suspensions. Hence, yeast and human HeLa cells are 

well suited for these experiments. In the plant field, Chlamidomonas reinhardtii, Arabidopsis 

and Tobacco BY-2 cell suspensions have been commonly used for cell cycle synchronization. 

While Arabidopsis is the best characterized plant model organisms, the tobacco BY-2 cell 

suspension is offering a much better synchronization efficiency and the possibility to 

biochemically monitor AGO1 steady state level at all cell cycle phases. Note that Nicotiana 

tabacum (tobacco) is an allotetraploid organism that originates from the hybridization of 

Nicotiana sylvestris and Nicotiana tomentosiformis about 200,000 years ago. Until recently, 

its genome was poorly annotated due to its size (4.5Gb) and its high complexity (70% of 

repeats), but more recent efforts have significantly improved this issue (Sierro et al., 2014; 

Edwards et al., 2017). Thus, I decided to move to BY-2 cells to study AGO1 regulation and 

function over the cell cycle in this system.  

 

1. Generation of transgenic GFP-AGO1 BY-2 cell suspension and detection optimization 

 

I first checked whether it was possible to detect endogenous AGO1 in BY-2 cells 

using the commercially available anti-AGO1 antibody from Arabidopsis. Unfortunately, this 

was not the case (Figure 29A). Thus, to be able to detect and later purify AGO1 from BY-2 

cells, I transformed the cell suspension with a construct allowing expression of a GFP-fused 

Arabidopsis AGO1 under the control of its own promoter (pAGO1:GFP-AGO1). This 

construct encodes a functional AGO1 protein that was shown to complement several ago1 

mutant alleles in Arabidopsis (Derrien et al., 2012). Such a functional AGO1 fluorescent 

protein will also permit to study its subcellular localization during the cell cycle. 

Among the different transgenic clonal cell suspension generated, I was unable to find 

some with high GFP-AGO1 expression levels, thus the optimization of the protein extraction 

protocol for GFP-AGO1 immunodetection was critical. Therefore, I compared the quick 



 

Figure 30: Too high GFP-AGO1 expression affects cell cycle progression in synchronized clonal BY-
2 cell suspensions. 

(A) DNA content measurements of synchronized cell nuclei by flow cytometry at the indicated time 
points after aphidicolin removal. Arrows represents 2C and 4C DNA contents. (B) The graph 
represents the mitotic index of a wild type and two GFP-AGO1 expressing cell lines, indicating the 
percentage of observed dividing cells at a given time point. (C) Western blot showing the 
accumulation level of GFP-AGO1 protein in the two indicated cell lines compared to the non-
transformed wild type cell line. Coomassie blue (CB) staining was used as a loading control. 
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protein extraction protocol (Laemmli method) usually used in our laboratory for Arabidopsis 

protein extracts with a phenol extraction followed by methanol precipitation protocol. By 

using the phenol extraction method, I could observe a significant increase of GFP-AGO1 

detection on SDS-PAGE (polyacrylamide gel electrophoresis) for the same amount of total 

protein loaded on the gel (Figure 29B).  

 

2. Lines selection for synchronization experiments 

 

 Next, I then synchronized different GFP-AGO1 expressing BY-2 clonal cell lines 

following a protocol previously published by Nagata and Kumagai and further adapted in our 

laboratory (Nagata and Kumagai, 1999; Criqui et al., 2000). It consists in chemically blocking 

dividing cells in S phase using aphidicolin, which is a DNA polymerase inhibitor produced by 

the fungus Nigrospora sphaerica. Briefly, stationary phase cells are subcultured in a fresh 

medium supplemented with aphidicolin and treated for 24 hours. I then performed extensive 

washes to remove aphidicolin and allow S-phase synchronized cells to undergo cell cycle 

progression. Every hour, cell samples were harvested for protein and RNA extraction, and 

also to monitor the ploidy level by flow cytometry and to determine the percentage of cells in 

mitosis by microscopy (indicated as mitotic index). 

 By comparing different GFP-AGO1 expressing BY-2 cell lines to a wild type (non-

transformed) cell line, I observed that at high expression level of the GFP-AGO1 transgene, 

cell cycle progression was significantly delayed (Figure 30). In addition, high expression of 

GFP-AGO1 affects also the synchrony level, precluding the possibility to assess high quality 

synchronization experiments. Thus, I selected a clonal BY-2 cell line with a moderate GFP-

AGO1 expression level (referred as line #131) for biochemical analysis and kept a high GFP-

AGO1 expression line (referred as line # 304) for microscopy imaging experiments, where 

high synchronization efficiency is less crucial but however requires a sufficient amount of 

protein for detection.  

 

 

 



 

Figure 31: Accumulation pattern of AGO1 mRNA and protein in synchronized BY2 cells. 

(A) DNA content measurements of synchronized cell nuclei by flow cytometry at different time 
points. (B) Transcript analysis of gene expression by q-RT PCR. The left panel represents the 
transcript accumulation of the cell cycle regulated genes histone H4 and Cyclin B1 used to monitor S-
phase and G2/M, respectively. The dashed line represents the mitotic index determined by the 
counting of dividing cells. The right panel show the transcript level of both endogenous AGO1 and 
GFP-AGO1. qRT-PCR values represent the mean +/- the standard error of 3 technical replicates. (C) 
Accumulation of endogenous AGO1 and GFP-AGO1 protein levels at different time points of the 
synchronization experiment. 30 µg of total proteins were separated by 4-16% gradient SDS-PAGE for 
GFP-AGO1 (Coomassie Blue stain CB1) and for endogenous AGO1 (Coomassie Blue stain CB2). 
Antibodies against cyclin B1 and actin were respectively used as G2/M phase marker and loading 
control. (D) Northern blot showing the steady state accumulation of the micro-RNA miR168a-h. A 
probe against U6 snRNA was used as loading control. Total RNA samples were separated on a 15% 
0.5X TBE 8 M urea gel. 
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3. AGO1 steady state level remains constant during cell cycle progression  

 

Using the line with a moderate GFP-AGO1, I was able to reach synchrony levels up to 

57 percent in mitosis (Figure 31). Based on qRT-PCR analysis of cell cycle regulated genes 

and on ploidy level, I determined the time points of the different cell cycle phases (Figure 

31A and B). S phase starts from 1 hour after aphidicolin removal to 3 hours, where almost all 

cells already reached the 4C DNA content. G2 is following and ends at 5-6 hours with the 

mitotic index that is suddenly increasing to reach a peak at 7 hours. G1 spreads from 10 hours 

to 12 hours before a second S-phase starts. Note that at 10h and 12h most of the cells have a 

2C DNA content but a non-negligible number of cells, representing around 25% of the total 

counts, are in 4C indicating that the synchrony level drops significantly after mitosis.  

During cell cycle progression, the GFP-AGO1 protein was detected at all time points 

of the cell cycle without important fluctuations (Figure 31C). Only a slight, but reproducible 

increase of the protein steady state level was observed during mitosis. Interestingly, we could 

obtain from the laboratory of Professor József Burgyán (Agricultural Biotechnology Institute, 

Hungary) an aliquot of an antibody raised against the N. benthamiana AGO1 (Csorba et al., 

2010). Blotting my protein samples with this antibody revealed a pattern of AGO1 

accumulation similar to the GFP-AGO1 (Figure 31C). By contrast, as expected, cyclin B1 

protein level only accumulated during G2/M, rapidly decreased at the time of the peak in the 

mitotic index (6h) and reached background levels at the exit of mitosis (9 h). Similarly to the 

level of AGO1 protein, the accumulation of its transcript (Figure 31B) or of miRNA168, that 

negatively regulates its expression (Vaucheret et al., 2004), did also not significantly change 

during the cell cycle (Figure 31D). Thus, we can conclude that AGO1 expression level 

remains overall constant along the cell cycle. 

Since I was able to detect slight and reproducible increase in AGO1 protein level 

during mitosis, I wanted to test whether a higher level of synchrony would strengthen this 

effect. To do so, I performed a dual-step synchronization as described by Kumagai and 

colleagues (Kumagai-Sano et al., 2007) . Dual-step synchronization consists in first blocking 

cells in S phase with aphidicolin. After the release of this inhibition, the cell cycle is followed 

until first prophases can be observed under the microscope, corresponding to approximately 

5% of the mitotic index. At this point, the medium is supplemented with propyzamide, which 

is a microtubule assembly inhibitor, thus preventing mitotic spindle assembly and triggering a 

mitotic checkpoint. Cells are treated so during four hours before we perform washings with 



 

Figure 32: Analysis of AGO1 steady state level from dual-step synchronization experiment. 

(A) DNA content measurements of synchronized cell nuclei by flow cytometry at different time 
points. (B) Transcript analysis of gene expression by q-RT PCR. The left panel represents the 
transcript accumulation of the cell cycle regulated genes histone H4 and Cyclin B1 used to monitor S-
phase and G2/M, respectively. The dashed line represents the mitotic index determined by the 
counting of dividing cells. The right panel show the transcript level of endogenous AGO1. qRT-PCR 
values represent the mean +/- the standard error of 3 technical replicates. (C) Accumulation of 
endogenous AGO1 and GFP-AGO1 protein levels at different time points of the synchronization 
experiment. 30 micrograms of total proteins were separated by 4-16% gradient SDS-PAGE for GFP-
AGO1 (Coomassie Blue stain CB1) and for endogenous AGO1 (Coomassie Blue stain CB2). 
Antibodies against cyclin B1 and actin were respectively used as G2/M phase marker and loading 
control. (D) Northern blot showing the steady state accumulation of the micro-RNA miR168a-h. A 
probe against U6 snRNA was used as loading control. Total RNA samples were separated on a 15% 
0.5X TBE 8 M urea gel. 
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fresh medium to counteract drug effects and by consequence allowing cells to complete 

mitosis. By performing dual-step synchronization assays, I was able to reach about 83% of 

mitotic index (Figure 32B). Interestingly, the accumulation level of the cyclin B1 transcript is 

not really affected by propyzamide treatment and is only delayed of 1 hour compared to the 

aphidicolin-only treatment. The cyclin B1 protein level however is detected up to 1 hour after 

the release of the propyzamide inhibition, illustrating that mitotic checkpoint was activated 

and that APC/C was most likely not able to trigger mitotic exit.  

When checking the steady state level of both GFP-AGO1 and endogenous AGO1 on 

western blot, I was able to detect variations during cell cycle progression (Figure 32C). 

However, I never succeed to reproduce exactly the same pattern of accumulation in the three 

different dual-step synchronization experiments I have performed. While dual-step 

synchronization allows very high synchrony level, several points can be criticized concerning 

the reproducibility of the experiment and might explain why these experiments were not 

conclusive. As propyzamide inhibit microtubule polymerization, it might affect a wide 

spectrum of cellular processes in addition to mitotic spindle assembly. Moreover, I observed 

that, even though more than 80% of the cells were able to go through mitosis after 

propyzamide removal, a significant number of cells exhibited chromatin defect such as 

lagging chromosomes and formation of micronuclei. From this experiment, I was also initially 

expecting to reach a better synchrony level in the last S phase compared to aphidicolin 

synchronization, to see whether GFP-AGO1 protein level is fluctuating in a cell cycle 

periodic manner. Despite a much higher mitotic index, entry in the S phase was greatly 

delayed and the synchrony level was even lower to what I usually obtained with aphidicolin 

synchronization.  

  



 

 

Figure 33: Subcellular localization of GFP-AGO1 in BY-2 tobacco cell suspension. 

(A) Confocal laser imaging of GFP-AGO1 and non-transformed wild BY2 cell lines. GFP detection 
represented in green was acquired in the 500-550 nm band (excitation: 480 nm). The DIC panel 
corresponds to the bright field imaging. (B-G) Subcellular localization of GFP-AGO1 in synchronized 
cell culture. (B) Graph representing the mitotic index (MI) of the synchronization experiment used for 
imaging. The green line represents the percentage of cells exhibiting GFP-AGO1 nuclear foci. (C-G) 
Panels showing different confocal acquisitions of the synchronization experiment at the indicated time 
points (after aphidicolin removal). Arrows highlight the presence of nuclear foci.  
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4. AGO1 localizes to different cellular bodies in synchronized BY-2 cells 

   

I then assessed the question of the subcellular localization of GFP-AGO1. Due to the 

low expression level of GFP-AGO1 in BY-2 cells, its detection was a challenging part of the 

project. For me, the main issue of BY-2 cells was the presence of plastids in the periphery of 

the nucleus that exhibit high autofluorescence level and therefore made the identification of 

cytosolic GFP-AGO1 foci difficult (Figure 32A). A method for diminishing the signal-to-

noise ratio might be the use of spectral imaging and linear unmixing techniques that consists 

in establishing the emission spectrum of plastids in non-transformed cells and subtracting it 

from the signal of GFP-AGO1 expressing lines. This process is commonly used to split 

emission spectrum from two overlapping fluorescent markers but can be applied to 

background fluorescence. However, compared to conventional confocal imaging, spectral 

acquisition requires high fluorescent and by consequence, might be the limiting factor to 

image GFP-AGO1 expressing cells.  

Despite these difficulties, I was able to determine the localization of GFP-AGO1 at the 

sub-cellular level at the different time points of the cell cycle. Thus, the GFP-AGO1 fusion 

protein was found predominantly in the cytosol of asynchronous cells, as previously reported 

in Arabidopsis root cells (Derrien et al., 2012), but was also present, in the nuclear 

compartment (Figure 33A). The background signal in non-transformed BY-2 cells using the 

same confocal settings is also shown (middle panel; the right panel showing the 

corresponding DIC image). 

I next synchronized BY-2 cells and imaged GFP-AGO1 at different cell cycle phases 

(Figure 33B-H). During S-phase the GFP-AGO1 signal was mainly enriched in the cytosol 

(Figure 33C-D). Interestingly during G2, I observed the GFP-AGO1 signal also in larger 

nuclear bodies (of ~2-6 μm) distinct from nucleoli (Figure 33E). Further quantifications 

showed that the number of cells that contain these bodies is increasing during S and G2 and 

drop significantly when the mitotic index starts to increase, suggesting a cell cycle-dependent 

periodic accumulation of GFP-AGO1 nuclear foci (Figure 33B).  

In mitotic cells, despite a slightly higher accumulation of GFP-AGO1 protein level 

(Figure 31C), the fluorescence signal was clearly excluded from condensed chromosomes of 

mitotic cells (Figure 33F-G). To confirm this observation, I transformed the GFP-AGO1 

clonal cell suspension with a construct expressing histone H2B fused to tdTomato, which 



 

 

Figure 34: Identification of GFP-AGO1 containing bodies. 

(A) Confocal laser imaging of cells expressing GFP-AGO1 and the chromatin marker pRPS5:H2B-
tdTomato. The panels below are close-up views of the area delimited by the dashed squares on the 
upper panels. No colocalization was observe between GFP-AGO1 and pRPS5:H2B-tdTomato on 
condensed chromatin. Both proteins also do not seem to co-localize in nuclear foci. (B) Constructs that 
are currently engineered to be transformed in GFP-AGO1 expressing lines in order to identify the 
nature of GFP-AGO1 nuclear and cytosolic bodies. 
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once incorporated into chromatin allows visualization of nuclear events. Hence, the dual 

localization of both fluorescent proteins in mitotic cells indicates no substantial overlap 

between them on condensed chromatin and GFP-AGO1 nuclear bodies (Figure 34). Finally, 

after mitotic exit, cells in G1 show again a predominant cytosolic distribution of the GFP-

AGO1 protein (Figure 33H). From these observations, I conclude that GFP-AGO1 exhibits a 

complex subcellular localization pattern with foci in both the nucleus and cytosol, supporting 

the existence of pools of RISCs that may play distinct functions along the cell cycle.  

In order to address the question of the identity of both nuclear and cytosolic GFP-

AGO1 foci, I plan to transform GFP-AGO1 expressing BY-2 cells with fluorescent nuclear 

and cytosolic compartment markers. Thus, I am currently engineering a series of constructs to 

image cellular structures of interest (Figure 34B), which I will describe below. For instance, 

the double-stranded RNA binding protein HYL1 is a component of the plant microprocessor 

complex, and together with the zinc finger protein SE and DCL1 contribute to the biogenesis 

of miRNAs in discrete nuclear foci called dicing bodies. Using bimolecular fluorescent 

complementation assays, Fang and colleagues already demonstrated that AGO1 interacts with 

HYL1 in Arabidopsis dicing bodies (Fang and Spector, 2007), presumably to load the 

processed small RNA duplex in the RISC. Hence, HYL-RFP marker is undoubtedly a 

priority. Nuclear localization was also shown for AGO4. Immunolocalization experiments 

already revealed that a pool of AGO4 is located in specific nuclear bodies called Cajal bodies 

(Li et al., 2006, 2008). Cajal bodies have been linked to RNA metabolism and are involved in 

biogenesis and maturation of small nuclear ribonucleoproteins but also to the replication-

dependent transcription of histone mRNAs (Ma, 2000). In addition, the size and number of 

Cajal bodies is highly dynamic during cell cycle and they reach their maximum size and 

number during Gap phases. Given that, I will also generate the U2B”-RFP construct that will 

localize in the plant Cajal bodies.  

Finally, I wish also to investigate the presence of AGO1 in cytosolic bodies that are 

related to the RNA metabolism (Figure 34B). The decapping protein DCP1 is a component of 

a type of cytosolic ribonucleoprotein (RNP) bodies called P-Bodies. Purification and 

proteomic analysis of P-bodies in human cell cultures showed that proteins involved in RNA 

decay, decapping and also AGO proteins are present in P-bodies to repress gene expression, 

presumably by storing RNAs and consequently preventing their translation (reviewed in 

Maldonado-Bonilla, 2014). Like P-bodies, stress granules are RNP bodies also constituted by 

pools of untranslated mRNAs (reviewed in Protter and Parker, 2016). However, P-bodies and 
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stress granules differ by their protein composition. Stress granules are composed of RNA 

binding proteins, polyA-binding proteins (including PAB2) and other translation initiation 

factors. Because the overall gene expression is known to be highly dynamic during the cell 

cycle, it will be interesting to see whether these bodies have a dynamic pattern during the 

plant cell cycle progression and whether they colocalize with a pool of AGO1. 

 

  



 

 

Figure 35: Quality control of the synchronization experiments used for high-throughput sequencing.  

(A) DNA content measurements of synchronized cell nuclei by flow cytometry at the indicated time 
points after aphidicolin removal. Arrows represents 2C and 4C DNA contents. (B) The graph 
represents the mitotic index for the five synchronization replicates, indicating the percentage of 
dividing cells at a given time point 
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C. Differential gene expression in synchronized BY-2 cells 

 

I the following chapter, I address the question of the function of AGO1 related to gene 

expression during cell cycle. To reach a global view of total RNA, total small RNAs and 

AGO1-associated small RNAs at key points of the cell cycle, I performed five independent 

synchronization experiments (hereafter called replicate 1 to 5) using a clonal BY-2 cell 

suspension with a moderate expression level of GFP-AGO1. Flow cytometry measurements 

of DNA contents and monitoring mitotic indexes, revealed that all five synchronization 

experiments were highly reproducible in the timing of the different cell cycle phases and their 

level of synchrony (Figure 35). For each experiment, I collected RNA and protein samples for 

S, G2, M and G1 phases (at 1, 3, 7 and 10 hours after aphidicolin removal, respectively).  

 

1. Transcriptomic analysis of synchronized BY-2  

 

Focus on genes regulated specifically in relation to the cell cycle requires 

transcriptomic data from synchronized cells. While deep RNA sequencing of synchronized 

animal cells is routine, this is not the case for higher plants. A microarray dataset of 

synchronized Arabidopsis cell suspension has been previously published by Menges and 

colleagues (Menges et al., 2005). In this article, they reported the differential expression of 

many cell cycle regulated genes for both aphidicolin treated and carbon starved synchronized 

cell suspensions. However, the synchrony level of Arabidopsis cell suspension is well below 

what can be achieved with BY-2 cells. Thus, we performed RNA sequencing on synchronized 

BY-2 samples to get a better transcriptome data set and be able to detect even subtle changes 

in gene expression during cell cycle. We performed RNA-seq (Fasteris, Switzerland) of three 

biological replicates to identify differentially expressed genes, comparing S, G2, M and G1 

phases (Supplemental Table 1). From this sequencing experiment, we were able to get more 

than 20 million reads per libraries where about 75% were matching the last version of the 

tobacco genome published by Edwards and colleagues (Edwards et al., 2017). In addition, 

only less 5% of reads matched on abundant non-coding RNAs, such as ribosomal or transfer 

RNAs, underlying the high sequencing depth of our dataset. I then checked whether our 3 

different biological replicates were reproducible. To do so, I performed principal component 

analysis (PCA). PCA revealed that the libraries were indeed well separated and were clustered 



 

 

 

 

 

 

 

Figure 36: Variability of RNA seq libraries. 

Principal component analysis (PCA) of 12 RNA-libraries composed of 3 biological replicates and 4 
cell cycle phase time points (S, G2, M, G1). All libraries are well clustered by cell cycle phases, 
underlying the high reproducibly of the three biological replicates. PC1 and PC2: Principal component 
1 and 2.  
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by cell cycle phases (Figure 36). Given that, we conclude that our replicates were highly 

reproducible and therefore we expected to get a high number of differentially expressed genes 

between different cell cycle phases.  

Out of the 69500 genes identified in the tobacco genome (Edwards et al., 2017), we 

were able to detect 66753 (96%). Among those, we identified a total of 23060 differentially 

expressed (DE) transcripts corresponding to 13623 genes with a functional annotation (see 

RNaseq.xls file). The number of DE genes is variable depending on the comparison, going 

from 6737 to 14771 DE genes in M/G1 and S/M comparisons respectively (Figure 37A-B). 

However, the ratio of down- and up-regulated genes seems to be maintained in each cell cycle 

phase, always around a 50%. For instance, by comparing S-phase and M-phase, 7295 genes 

were upregulated and 7476 downregulated (Figure 37A-B). However, if we consider only the 

DE genes with a fold change of 5 or higher, we can observe a change in the expression trend, 

where a high percentage of the DE genes are upregulated in M and G1 phases, and 

downregulated in S and G2 (Figure 37B) 

For a better understanding of the RNA-seq data structure, we performed a soft 

clustering analysis using Mfuzz package. Soft clustering groups together genes that have a 

similar expression pattern, providing insights in gene function and networks. Here we divided 

our DE dataset, containing more than 23000 genes, into 16 different clusters (Figure 37C and 

Figure 38). We were able to observe very distinct expression patterns, mostly due to the 

highly dynamic transcription. The two most abundant clusters where cluster 11 and cluster 6, 

which present a single peak of expression during phases M and S, respectively. Genes 

included in cluster 6 are involved in chromatin assembly and organization, receptor mediated 

endocytosis, and phosphorylation. Among these genes, those with the highest expression in S 

phase are not surprisingly histones. Genes included in cluster 11 are enriched in cellular 

component movement, cytoskeleton organization and intercellular protein transport. I checked 

also whether component of the RNA silencing pathways, from small RNA biogenesis 

(including DCLs) to effectors AGOs, are differentially expressed. However, no significant 

difference was found, indicating that the transcriptional control of the RNA silencing 

machinery is not subjected to important variations over the cell cycle.  

Next, we conducted a Gene Ontology (GO) analysis on the DE genes by using the 

Panther software. As expected, gene categories related to cell cycle functions such as DNA 

replication, chromosome segregation and mitotic processes including cytokinesis are well 

represented (Figure 37D). In addition, a significant number of DNA repair and DNA damage 



 

Figure 37: RNA-seq analysis on synchronized BY-2 cells.  

(A) Summary of differentially expressed genes, down- and up-regulated genes are represented in 
purple and orange, respectively. (B) Heatmap representation of differentially regulated genes with a 
fold change bigger or equal to 5. (C) Representation of the two most abundant clusters. (D) GO Slim 
categories representing the biological function of differentially expressed genes. Here are only 
represented GO categories with more than 1.5x representation fold change.   
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signaling genes were also induced. These genes might be expressed during replication to 

prevent and repair replication errors. However, aphidicolin treatment is already known to 

induce replicative stresses, thus, expression of some factors of the DNA repair machinery 

might actually be a consequence of the aphidicolin treatment rather than be related to cell 

cycle. Note that homologs for all core cell cycle genes established in Arabidopsis have been 

identified and most of them are DE along the cell cycle regulation (see cell_cycle.xls file). To 

the best of our knowledge, this dataset provides the most exhaustive analysis of cell cycle 

regulated genes in eudicots. 

 

2. Expression and targets of miRNAs in synchronized BY-2 cells 

 

As hundreds of different transcripts show highly dynamic accumulation and decay 

patterns, I questioned whether some small RNAs might be involved in their regulation. Thus, 

I performed deep-sequencing analyses on total small RNAs and GFP-AGO1-associated small 

RNAs on the different cell cycle phases. In the following section, I will detail the protocol 

that I developed to purify AGO1-associated small RNAs and how I tried to optimize its 

purity. 

 

a. RNA immunoprecipitation of GFP-AGO1 associated small RNA 

 

As discussed previously, the necessary low GFP-AGO1 expression in BY-2 cells (as 

high expression affects the cell cycle) and the weak solubility of the AGO1 protein in 

denaturing extraction buffers were already technical locks for GFP-AGO1 detection. This was 

also a limit for GFP-AGO1 immunoprecipitation (IP) as GFP-AGO1 solubility was even 

lower in non-denaturing IP buffer. Thus, I adapted a protocol used in the lab and published in 

Derrien et al., 2012, that was designed for anti-AGO1 co-immunoprecipitation of small RNA 

from Arabidopsis crude extracts. I choose to use anti-GFP nanobodies coupled to magnetic 

beads instead of anti-AGO1 polyclonal rabbit antibodies in order to minimize non-specific 

binding. In a protocol developed for purification of AGO1 and AGO4 -associated small RNA 

prior to deep sequencing, Wang and colleagues (Wang et al., 2011) were using higher salt and 



 

 

Figure 38: Clustering of differentially expressed genes from RNA-seq libraries. 

(A) Soft clustering of the 23060 DE expressed genes using the Mfuzz package form R program. The 
number of cluster was manually chosen to get the best fit. The n value indicates the number of gene 
belonging to the corresponding cluster. (B) Heatmap representing the average gene expression by 
clusters for each cell cycle phases. Clusters ae organized in subgroups with similar expression 
patterns.  
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detergent concentration (300 mM NaCl, 0.2% triton-X100) and adding reducing agents (5 

mM DTT), underlying the robust interaction between AGO1 and small RNAs. 

 By changing these three parameters, I was able to efficiently purify both GFP-AGO1 

and control GFP from BY-2 cell crude extracts (Figure 39A). As a first quality control, I 

checked the efficiency of small RNA recovery by blotting a probe designed against the 

tobacco miR168a-h. The miR168 was enriched in the GFP-AGO1 fraction whereas it was 

absent from the control GFP IP fraction (Figure 39A), thus validating the experimental setup. 

To go further, I also analyzed the profile of immunoprecipitated RNAs using capillary 

electrophoresis. By doing this, I obtained a precise view of the purified small RNAs separated 

by size (Figure 39B). RNA recovered from GFP and GFP-AGO1 IPs exhibit similar profiles 

and 20-24 nt small RNAs but as aimed their quantities were significantly enriched in the GFP-

AGO1 IPs. Surprisingly however, 20-24 nt small RNAs represent only a small fraction of the 

purified pools of RNA. By contrast, a high proportion of about 40 to 150 nt-long RNAs were 

detected in both IPs, representing a contamination by abundant non-coding RNAs that could 

affect the quality of the libraries. 

 With this in mind, I wished to improve the purity of immunoprecipitated RNAs using 

a dual-step technique described by Wang and colleagues (Wang et al., 2011). They performed 

a first round of purification by size exclusion chromatography, followed by 

immunoprecipitation on pooled fractions that contain the RISC complex. With the same 

extraction conditions that have been used for single-step IPs, I extracted and separated total 

protein from BY-2 extract on gel filtration column. GFP-AGO1 was mainly detected in the 

fraction 13 to 17 (Figure 40A). This column was previously calibrated using standards with 

known molecular weight. Thus, I estimated that fraction 13 to 17 correspond to a size of 

approximately 150 kDa corresponding to the monomeric GFP-AGO1. I checked whether 

small RNAs were present is AGO1-containing fractions. RNA blot using the anti-miR168 

probe revealed that a pool of miRNAs was still associated to AGO1, while a significant 

amount (about the half) was most likely unbound small RNAs.  

I then performed anti-GFP immunoprecipitation on pooled 13 to 17 fractions and 

analyzed it by Western-blot. GFP-AGO1 was successfully enriched in the IP fraction but to a 

lesser extent than what has been achieved using the singe-step IP protocol (Figure 40B). 

Capillary electrophoresis profiles showed that RNA purified from dual-step IP were ranged 

from about 10 to 60 nt, meaning than most of the contaminating RNAs has been removed 

during the process. However, even though the input volume has been significantly increased 



 

 

Figure 39: RNA-immunoprecipitation (RIP) of GFP-AGO1 loaded small RNAs in BY-2 tobacco cell 
suspension. 

(A) Anti-GFP nanobodies coupled to magnetic beads were used for immunoprecipitation from 
asynchronous BY2 cells expressing GFP-AGO1 or as a control GFP alone (a dexamethasone-
inducible GFP line) at 3 days of culture. GFP-AGO1 and GFP proteins were separated on a 4-16% 
gradient SDS-PAGE. Total RNA and Immunoprecipitated RNA were separated on a 15% 0.5X TBE 
8M urea gel. A probe against miR168 was used to detect miRNAs enrichment in IP fractions. (B) 
Analysis of copurified small RNAs. Half of IP fraction was used for capillary electrophoresis. Samples 
are loaded 2 times each on the chip to minimize technical variations. 4 nucleotides spikes are added as 
a standard for estimating the sample RNA quantity. 
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compared to single-step IP, I was not able to get an acceptable quantity of purified RNA to 

generate small RNA libraries (Figure 40C). Given that, we finally decided to validate the 

single-step IP protocol to purify small RNAs from synchronized BY-2 samples. 

 

b. Identification of differentially expressed small RNAs from synchronized BY-2 cells 

 

Next, I performed total and AGO1-associated (with the single-step IP protocol) small 

RNA sequencing (Fasteris, Switzerland) of five biological replicates at S, G2, M and G1 

phases of the cell cycle (Supplemental Table 1). As expected, we observed a typical 

Solanaceae size distribution of small RNAs in total RNA samples (Figure 41A), where 24-

mers are the most abundant class of sRNA, followed by 22- and 21-mers. In contrast, the 

AGO1-associated small RNAs were strongly enriched in 21 and 22 nt sRNAs (Mallory and 

Vaucheret, 2010) (Figure 41B). To further investigate the distribution of sRNAs, we 

quantified along the cell cycle the accumulation of their different classes, including miRNAs, 

tasiRNAs, hetsiRNAs and tRFs (Figure 42A). hetsiRNAs represented the most abundant 

category in total RNA samples, while miRNAs represented the most abundant category in 

AGO1-IP samples. Overall, there were no significant differences between the cell cycle 

phases for small RNAs distributions. 

For miRNA identification we used the workflow presented in Supplemental Figure 1. 

A total of 312 different mature miRNAs, belonging to 103 different miRNA families (see 

smallRNA.xls file), were identified in this study, including the already annotated miRNAs 

deposited in miRBase and also newly predicted miRNAs. These represent a total of 221 

distinct sequences. Most of them (215/221) were present in both, total RNA and AGO1-IP 

samples. 

Among those, we found 10 and 3 miRNAs DE in total RNA and AGO1-IP samples, 

respectively (Figure 42B). Most of the DE microRNAs had a cell cycle phase-specific 

accumulation. Thus, six miRNAs show a higher expression during the G2 phase, while only a 

single miRNA, miR168a-5p, was specific to M phase (Figure 42C). Two newly identified 

miRNAs (miR-33-3p and miR-12-5p) and two others (miR6147a-3p and miR479) were more 

abundant in the G1 phase. Additionally, miR390-3p and miR482-5p are accumulating at 

higher level during S phase (Figure 42C). Note that in the AGO1-IP samples, we only found 

DE miRNAs when comparing opposite phases of the cell cycle (S/M and G2/G1). Overall, 



 

 

 

Figure 40: Attempt to improve RNA immunoprecipitation (RIP) specificity by two-step purification.  

(A) GFP-AGO1 was extracted from asynchronous BY-2 cell suspension using the RIP buffer used 
previously for the single-step IP protocol. Total proteins were then separated by size exclusion 
chromatography on a gel filtration column. 1/4th of each fraction was precipitated and loaded on a 7% 
Tris-Glycine acrylamide gel. GFP-AGO1 was detected using anti-GFP rabbit polyclonal primary 
antibody. To check whether small RNAs are still associated to AGO1, RNAs were extracted from 1/4th 
of each fraction and were separated on a 15% 0.5XTBE 8M urea gel. A probe against miR168 was 
used as a representative miRNA to detect small RNAs. (B) Control RIP experiment on pooled 13 to 17 
fractions containing the monomeric form of GFP-AGO1. Anti-GFP nanobodies coupled to magnetic 
beads were used for immunoprecipitation on GFP-AGO1. Proteins were separated on a 7% Tris-
Glycine SDS-PAGE. (C) Analysis of copurified small RNAs. 1/2 of IP fraction was used for capillary 
electrophoresis and the 4 nucleotides spike was added as a standard for estimating sample RNA 
quantity. 
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this data indicates that only a few miRNAs show a DE pattern when comparing contiguous 

cell cycle phases and therefore might gradually damper gene expression rather than quickly 

shut it down.  

 

c. miRNA target identification 

 

We next asked what are the targets of the abundant miRNAs identified in our analysis 

and even more interestingly, whether some targets are cell cycle-regulated transcripts. To 

address this question, we generated PARE (parallel analysis of RNA ends) libraries for three 

biological replicates of each phase of the cell cycle (Supplemental Table 3). PARE-seq 

consists in sequencing uncapped 5’ monophosphate RNA fragments that results of 

endonucleolytic cleavage by AGO proteins (German et al., 2008; Zhai et al., 2014). The 

procedure to generate PARE libraries can be briefly summarized as following: (1) 3’ mRNA 

fragment purification using polyT oligonucleotides coupled to magnetic beads. (2) 5’ adapter 

ligation on uncapped RNAs. (3) Reverse transcription. (4) To minimize the number of 

sequencing cycles, cDNAs are digested with Mme1, generating 20 bp signature fragments. (5) 

3’ adapter ligation. (6) libraries amplification by PCR prior to sequencing. In contrast to the 

previous sequencing that has been outsourced (Fasteris, Switzerland), PARE-seq has been 

performed by our collaborator P. Baldrich of the team of Blake C. Meyers (Danforth plant 

science center/ Washington university in St-Louis, USA). PARE-seq was performed on the 

same three biological replicates as used for RNA-seq (Supplemental Table 3). 

To minimize sample variability, we focused on miRNA-target pairs present in all 

biological replicates and supported with robust evidence of cleavage (i.e. a sPARTA-defined 

class ≤ 3) (see PARE_libraries.xls file). Thus, we found 571 unique miRNA-target pairs 

considering all samples, corresponding to 88 different miRNAs and 123 different genes 

(Figure 43A). Among those, we found a core subset of miRNAs and their respective target 

genes that appears to be present in all phases of the cell cycle. This includes 197 miRNA-

target pairs, involving 63 miRNAs from 19 families, and 42 target genes (Figure 43A). The 

majority of these targets encode transcription factors (TFs) such as AP2/ERF (APETALA 

2/ETHYLEN RESPONSE FACTOR) , MYB, Scarecrow and GRF. The elevated number of 

TFs targeted by miRNAs in all phases of the cell cycle supports the idea of a miRNA-

mediated second layer of fine control of transcription during the cell cycle. The second 



 

 

 

 

Figure 41: Size distribution of small RNAs. 

 Percentage of each small RNA size category is represented for each library corresponding to different 
phases of the cell cycle. In each graph, five replicates are represented in different greys and the 
average is represented in color. The x-axis indicates the small RNA nucleotide size and the y-axis 
indicates its proportion. (A) Size distribution for total small RNA libraries. (B) Size distribution for 
AGO1 IP small RNA libraries. 
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biggest group of target genes are disease resistance proteins. Several studies have already 

pointed to surprising connections between the cell cycle and some disease resistance genes, 

which are still poorly understood (reviewed in Eichmann and Schäfer, 2015). Our results 

suggest that miRNAs may damper their expression in proliferating cells. Finally, there were 

also a few miRNAs that target F-box domain containing transcripts, including AUXIN 

SIGNALING F-BOX 2.  

We also observed several phase specific miRNA-target pairs, miRNA-target pairs that 

were only found in one phase of the cell cycle (Figure 43A; see PARE_libraries.xls file). For 

example, the miR6019 family targets DUF688 only in G2 Phase, miRC-13 targeting RNA-

DIRECTED DNA METHYLATION 3 was only present in M phase, and miR530 and 

miR6145a targeting NOB1 (NIN1 BINDING PROTEIN) Zn-ribbon-like (D-site 20S pre-

rRNA nuclease) and DUF1985 respectively, were only present in G1 phase.  

In contrast to the situation in mammals, plant miRNAs do not target any of the core 

cell cycle gene. They may however indirectly contribute to cell proliferation by targeting 

some important regulators such as transcription factors that might act upstream to modulate 

transcription of core cell cycle genes. For instance, we found that miR164, targeting the NAC 

TF CUC2 (Cup Shaped Cotyledon 2), and miR160, targeting ARFs (Auxin response factors), 

are not present in G2 phase. CUC2 promotes the generation of auxin response maxima and 

therefore could release ARF repression, triggering downstream auxin signaling components 

such as CYCA and CDKB. These genes are known to be involved in the control of G2/S and 

S/G1 transitions. 

 

3. Differential accumulation of tRFs in synchronized BY-2 cells 

 

Beside miRNAs, we did not identify any DE tasiRNAs or hetsiRNAs in these datasets. It 

has been shown that tRNA-derived Fragments (tRFs) can form a complex with Ago proteins 

and may play important cellular functions (Shigematsu and Kirino, 2015; Martinez, 2018). 

With that in mind, we investigated if there were any DE tRFs in our samples. None of the 

tRFs derived from the 1,529 tRNAs analyzed show any DE in total sRNA samples. However, 

we found tRFs originating from 67 different tRNAs that are DE in the AGO1-IP samples 

(Supplemental Figure 2). These tRFs come from 14 different types of tRNAs (Figure 44A). 

Interestingly, each DE tRF-producing tRNA was associated with a different phase of the cell 



 

 

Figure 42: Small RNAs distribution and differentially accumulating miRNAs along the cell cycle.  

(A) small RNA abundance per category. The left and right panels represent the five biological 
replicates of total small RNA samples and three biological replicates of AGO1 IP small RNA samples, 
respectively. The x-axis represents the different small RNA categories included in this study and the y-
axis represents the abundance (RPM) (B) microRNA fold change accumulation (in log2 scale) for the 
differentially expressed microRNAs (*q-value≤0.05 **q-value≤0.01). (C) High abundant miRNAs in 
each phase of the cell cycle phases. In Black are miRNAs identified in total RNA samples and in blue, 
those identified in AGO1 IP samples. 
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cycle, with the exception of G1 phase, which did not accumulate high levels of DE tRFs 

(Figure 44B). To further characterize the role of the DE tRFs during the cell cycle, we 

analyzed their size and sequence. These DE tRFs had a size distribution pattern different from 

all tRFs (Figure 44C), with a higher abundance at 19 nt. These DE 19-mers share a conserved 

sequence (Figure 44D) and lacked the CCA or polyU signatures typical of the 3’ end of the 

tRNA, and thus are classified as 5’-end tRFs (“tRFs-5”). At present it is still unclear what are 

the targets of these tRFs, if any.  

 



 

 

Figure 43: Analysis of PARE libraries from Synchronized BY-2 cells. 

(A) Vein diagram of identified PARE signatures and miRNA present in the different cell cycle phases. 
While most of the miRNA and PARE signatures are found in all libraries, some are exclusively 
restricted to specific cell cycle phases. (B) Vein diagram showing the overlap between identified 
PARE signatures and the 13574 DE genes with a functional annotation found in RNA-seq data. Only a 
small subset of DE genes is detected in PARE libraries suggesting that other mechanisms than slicing 
are responsible of cell cycle dependent RNA turnover in plants. 

 

 

 

 

 

 

 

 

 

 

 





 

 

Figure 44: tRFs and cell cycle. 

(A) tRF fold change accumulation (in log2 scale) for the differentially expressed tRNA-derived small 
RNAs (*q-value≤0.05 **q-value≤0.01). (B) Highly abundant tRNAs with DE fragments in each phase 
of the cell cycle. (C) Size distribution of tRFs abundance in different samples. In black are total RNA 
samples, in red are represented all AGO1 IP samples and in grey only the DE tRFs from AGO1 IP 
samples. (D) Logo representation of the most abundant size category (19mers) of the DE tRFs of 
AGO1 IP samples. 
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Discussion and some perspectives 
 

In mammalian cells, the role of AGO proteins and miRNAs in the regulation of core 

cell cycle genes mRNAs is already well established (Bueno and Malumbres, 2011). This has 

been extensively described in the Introduction. However, in plants, the situation was unclear 

despite the fact that defects in miRNA biogenesis or in PTGS impact on cell proliferation. 

The objectives of my thesis were to investigate the regulation and function of AGO1, the 

major effector of the Arabidopsis miRNA pathway, in the cell cycle control and to identify 

small RNAs that could regulate cell cycle progression. During my thesis, I demonstrated that 

AGO1 is essential for the maintenance of cell division in proliferative tissues. I could also 

show that in contrast to mammals AGO1 does not seem to control the expression of the core 

cell cycle genes. I also established the repertoire of small RNAs during the cell cycle and I 

will discuss how some associated to AGO1 may participate in gene expression during the cell 

cycle. Finally, in a last chapter, I will present some perspectives of my work that deserve 

attention to be studied in the future.  

 

A. Plant miRNAs control only a small set of DE cell cycle gene in plants 

 

In plants, miRNAs inhibit gene expression by guiding AGO1, likely as part of a RISC 

complex, to complementary mRNA targets to promote their degradation or represses their 

translation. The genome of Arabidopsis thaliana contains more than 300 miRNA genes, 

which have been grouped into families, and some of them play crucial roles during 

development (Jones-Rhoades et al., 2006). Whether plant miRNAs control directly cell 

division was at present unclear, but mutations affecting miRNA biogenesis and action can 

lead to altered cell divisions and cell proliferation at different developmental stages and 

organs in Arabidopsis. 

For instance, it has been shown that miR159 targets DUO1 (DUO POLLEN 1), a 

transcription factor that induces CYCB1;1 expression during male gametophyte development 

(Zheng et al., 2011). Interestingly, the APC/C, a E3 ubiquitin ligase involved in the turnover 

of mitotic Cyclins by the proteasome, plays also a role in miR159 biogenesis and could thus 

contribute to DUO1 repression leading to reduced CYCB1;1 transcription at least in the male 
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gametophyte. Several other reports have also highlighted the essential role of miRNAs at 

different stages of embryogenesis. Thus, mutation of DICER-LIKE 1 (DCL1) alters 

embryogenesis at the globular stage showing abnormal cell divisions throughout the 

suspensor and hypophysis (Schwartz et al., 1994; Nodine and Bartel, 2010). Moreover, dcl1 

mutation fails to establish vascular primordia and ground tissue initials, implying miRNAs in 

the majority of early embryonic cell differentiation events (Nodine and Bartel, 2010). 

Similarly, aberrant patterns of cell division and cell expansion during embryogenesis have 

also been identified in mutants of Arabidopsis SERRATE (SE) and HYPONASTIC LEAVES 1 

(HYL1), that both cooperate with DCL1 for miRNA biogenesis (Grigg et al., 2009; Armenta-

Medina et al., 2017). Accordingly, loss of function of AGO1 and its closely related AGO10, 

also lead to aberrant cellular divisions during early embryogenesis and defects in polarity 

(Lynn et al., 1999; Moussian et al., 1998). The molecular basis of altered embryogenesis, 

pattern formation and abnormal cell divisions is however not yet well understood. Although, 

dcl1 mutant exhibit altered auxin responses (Grigg et al., 2009; Nodine and Bartel, 2010; 

Seefried et al., 2014) and several miRNAs target AUXIN RESPONSE FACTORs (ARFs) 

(Jones-Rhoades and Bartel, 2004; discussed in Armenta-Medina et al., 2017), a causal link 

between auxin signaling and defects of embryogenesis in these mutants has not been 

established. At present, only miR156-mediated repression of the two redundant SQUAMOSA 

PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors (SPL10 and SPL11) 

could explain at least partially the dcl1 embryo patterning defects (Nodine and Bartel, 2010). 

Indeed, this work proposed that miR156 might repress the precocious expression of SPLs to 

avoid a too premature differentiation of the embryo. 

Besides embryogenesis, miRNAs have also been shown to control cell proliferation in 

leaf and root tissues. One of these miRNAs is miR847 that positively regulates meristematic 

competence and cell proliferation by targeting the mRNA of the auxin/indole acetic acid 

(Aux/IAA) repressor-encoding gene IAA28 for cleavage (Wang and Guo, 2015). Interestingly 

ectopic expression of miR847 increases the expression of cell cycle genes as well as the 

neoplastic activity of leaf cells. It was proposed that the auxin-dependent induction of miR847 

may upregulate auxin signaling by clearing the IAA28 mRNA and thus contribute to 

determine the duration of cell proliferation and lateral organ growth in Arabidopsis. Another 

important miRNA during leaf morphogenesis is miR319 that targets several Arabidopsis 

TCPs (TCP2, 3, 4, 10 and 24), belonging to class II TCPs, and is proposed to promote the 

arrest of the cell cycle (Palatnik et al., 2003b; Nicolas and Cubas, 2016). Thus, it was shown 
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that increased expression of miR319 causes the degradation of these TCPs and a crinkled leaf 

phenotype due to excess cell proliferation at the leaf margin similar of tcp loss-of-function 

mutants ((Palatnik et al., 2003; Schommer et al., 2008). These studies revealed that even a 

slight increase in TCP4 significantly reduces cell proliferation, while a high TCP4 level 

strongly reduces the expression of G2-M phase cell cycle genes (Schommer et al., 2014). 

TCP4 could act in at least two ways (Schommer et al., 2014). First, it could directly act on the 

cell cycle by activating the Cyclin-Dependent Kinase Inhibitor 1 (ICK1)/KIP RELATED 

PROTEIN1 (KRP1). Second, TCP4 also activates MIR396b that represses cell proliferation. 

The miR396 family is encoded by two genes, MIR396a and MIR396b, and regulates the 

expression of transcription factors belonging to the GROWTH-REGULATING FACTOR 

(GRF) class (Rodriguez et al., 2010; Debernardi et al., 2012). GRF activity is required for cell 

proliferation in developing leaves, and its repression by miR396 attenuates cell proliferation 

and lead to a decrease in the expression of cell cycle genes such as CYCLIN B1 (Rodriguez et 

al., 2010). miR396 plays also important function in the determination of the architecture of 

the root meristem. There it was shown that PLETHORA (PLT) activates MIR396 in the stem 

cells to repress GRFs and thus inhibit cell division in the SCN (Rodriguez et al., 2015). 

Conversely, GRFs repress PLT and putative other stem cell-promoting genes in proliferating 

transit-amplifying cells, which is essential for the progression of the cell cycle and the 

orientation of cell division. Recently, another study reported that mutants of MIR159 genes 

developed a larger root meristem, likely by enhanced activity of one of its targets, MYB65, 

which promotes cell cycle progression (Xue et al., 2017). 

In all those reported cases, none of these miRNAs directly target core cell cycle genes. 

In all these cases, the cell cycle is indirectly controlled in a developmental context by 

miRNAs targeting transcription factors, which positively or negatively impact on cell 

proliferation in various tissues. Our analysis of miRNAs expression at different stages of the 

cell cycle and their identified targets further support this assumption, as only a small 

proportion of the cell cycle DE genes showed miRNA-target pairs and none of them 

correspond to core cell cycle genes (Figure 42 B; see PARE_libraries.xls file). Moreover, P0-

mediated depletion of AGO1 in the root apical meristem impairs meristem size and cell 

division activity but does not block cells at a specific stage of the cell cycle (Figure27). This 

situation is very different from metazoans (see Introduction) for which the transcription of 

some miRNAs is cell cycle regulated and miRNAs target numerous cell cycle transcripts at 

different cell cycle stages. A possible explanation of such a difference is that the mode of 
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action of RISC in gene silencing differs between plant and animals. Even though plant AGO1 

is also able to perform translational repression, most of its gene silencing activity consists in 

slicing the target transcript. As this process requires a perfect or near-perfect complementarity 

between a miRNA and its mRNA target, it might preclude the possibility that a unique 

miRNA targets a wide spectrum of genes (i.e. CYCs, CDKs,..), as it is the case in mammals 

(Bueno and Malumbres, 2011). Nevertheless, plant miRNAs might actually control indirectly 

core cell cycle genes activation by modulating the expression of specific transcription factors. 

Even though two miRNAs among the 13 DE expressed miRNA were predicted to target 

transcription factors (Figure 42 B, see PARE_libraries.xls file), further analysis are needed to 

determine whether they are involved in the transcriptional control of cell cycle genes.  

In animals, the large majority of cell cycle miRNAs are particularly targeting G1/S 

transition but also the G0/G1 transition, corresponding to cell cycle re-entry (Bueno and 

Malumbres, 2011). Using aphidicolin synchronization we are not able to study this G0/G1 

transition. To address this issue additional experiments would be required. For example, it 

would be interesting to compare the level of the abundant and/or DE miRNAs identified in 

synchronized cells to BY-2 cells at the saturation phase of the culture or even cells that have 

been depleted in sugar and hormone-depleted cells. 

At the cellular level, the presence of large GFP-AGO1 nuclear bodies in the nucleus 

during cell cycle suggests that AGO1 is somehow involved in a cellular process during cell 

division. As the interaction between AGO1 and HYL1 have already been shown in the 

nucleus (Fang and Spector, 2007), the most evident explanation is that AGO1 might 

associates with the plant microprocessor complex to load nascent miRNAs and thus 

contributes to RISC reprogramming. This activity might be particularly strong during the G2 

phase of the cell cycle where these bodies are the most prominent. However, we cannot 

exclude that these bodies might contain correspond to other functional domains of AGO1 and 

other types of AGO1-associated small RNAs. To further address the question of the function 

of the nuclear pool of AGO1 and particularly during cell cycle, AGO1 immunoprecipitation 

on purified nuclei from synchronized samples might be helpful to identify proteins and RNAs 

associated to these nuclear AGO1 foci. 

While the role of AGO1 on cell cycle control needs further investigation, l also 

observed that a high GFP-AGO1 expression in the BY-2 cell suspension was affecting cell 

cycle progression in synchronized samples (Figure 30). Interestingly, delay in the G2/M 

transition has also been observed in S. pombe that overexpress the amino-terminal part of 
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S.pombe AGO1. In fission yeast, AGO1 has also been linked to cell cycle (Carmichael et al., 

2004; Stoica et al., 2006). Indeed, yeast ago1 mutants are impaired in chromatin maintenance 

and fail to properly segregate sister chromatids during mitosis (Provost et al., 2002; Hall et al., 

2003; Volpe, 2002). Yeast AGO1 has been shown to directly interact with 14-3-3 proteins 

involved in cell cycle regulation (Stoica et al., 2006). In addition, overexpression of yeast 

AGO1 results in the inhibition of CDC25 nuclear import, leading to the accumulation of 

Tyr15 phosphorylated form of CDC2 (Stoica et al., 2006). However, S. pombe AGO1 mode 

of action largely differs from human AGO2 and Arabidopsis AGO1, as it is essentially 

involved in chromatin maintenance and only contributes to transcriptional gene silencing of a 

subset of genes. Whether Arabidopsis ago1 mutants exhibit chromatin-related defects would 

be interesting to further examine. For instance, analyzing the chromatin integrity in 

Arabidopsis ago1 mutant backgrounds and looking more particularly for chromatids 

missegregation in dividing cells represent some possible perspectives.  

 

B. Plant miRNAs repress defense genes during the cell cycle 
 

By contrast with animals, plant do not possess adaptive immune system but evolved an 

innate immunity system and a systemic defense against pathogens (reviewed in Jones and 

Dangl, 2006). This immunity system is subdivided in two mechanisms. One uses PRRs 

(pattern recognition receptors) transmembrane proteins to detect microbial or pathogen-

associated molecular patterns (MAMPS or PAMPS) and induces PTI (PAMPS-triggered 

immunity) responses aiming to stop pathogens before they infect the cells. The other involves 

NB-LRR (nucleotide-binding leucine-rich repeat protein) that senses pathogen effectors in the 

cells and usually induces HR (Hypersensitive cells death response). Upon pathogen infection, 

plants also activate SAR (systemic acquired resistance) through the diffusion of signal 

molecules, such as salicylic acid, from the site of infection to the whole plant (Durrant and 

Dong, 2004). 

The molecular links between the cell cycle and defense responses in plants are still not 

well understood. Microarray data from synchronized Arabidopsis cell suspension revealed 

that some resistance genes are differentially expressed during the cell cycle with a peak of 

expression either in S or M phase (Menges et al., 2005), and we identified also 100 of those 

DE resistance genes from our RNA-seq libraries. More recently, it has been shown that cell 
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cycle mis-regulation can lead to the activation of disease resistance genes (Bao et al., 2013). 

For instance, overexpression of OSD1 (OMISSION OF SECOND DIVISION 1) or UVI4 

(UV-B-INSENSITIVE 4), two negative regulators of the APC/C, results in the expression of 

the defense marker gene PR1 and confers resistance to virulent pathogens. Conversely, loss of 

these two proteins, as well as the APC10 subunit or the CCS52 APC/C coactivator, lead to 

enhanced susceptibility to bacterial infection. In addition, the cdkb1;1 mutant suppresses osd1 

phenotype and loss of the resistance gene SNC1 (SUPPRESSOR OF npr1-1 

CONSTITUTIVE 1) abolishing pathogen resistance conferred by osd1 mutation. On the other 

hand, plant pathogens and beneficial symbionts can also modulate the cell cycle activity by 

inducing or suppressing cell cycle gene expression. For example, infection by the root-

nematode Meloidogyne incognita induces expression of the early nodulin ENOD40 and the 

APC/C subunit CCS52a and promote galls formation in Medicago trunculata (Favery et al., 

2002). In addition, overexpression of NOD40 results in activation a wide range of genes, 

including cyclin D3, that might enhance cell proliferation in galls.  

Taken together, these data suggest that the balance between cell proliferation and 

defense against pathogens might, a least partly, involves regulation of core cell cycle genes. In 

our total small RNA libraries, we identify three miRNAs, among the 13 DE miRNAs, that 

target NB-LRR genes (Figure 42 B and see PARE_libraries.xls file). For now, the biological 

significance of this cell cycle-dependent regulation of resistance genes is still unclear. 

However, one could speculate that these genes are repressed upon mitogenic stimuli to 

promote cell proliferation. Thus, the cell cycle and defense gene expression programs may 

antagonize each other and small RNAs could be involved in this regulation.  

 

C. A novel class of tRNA-derived fragments  
 

By contrast to other small RNAs, tRFs abundance was surprisingly different between 

total small RNAs and AGO1 associated small RNAs libraries. This suggest that tRFs 

biogenesis is most likely constant during cell cycle, while loading in AGO of at least some 

tRFs must somehow be cell cycle-regulated. It is already known that some plant tRFs 

accumulate in a wide range of stresses including oxidative stresses (Thompson et al., 2008) 

and UV stresses (Gebetsberger et al., 2012) that induce deleterious effects such as DNA 

damage. Interestingly some tRFs that are differentially accumulated in our libraries originate 
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from the tRNAs that are also processed upon oxidative stresses, and particularly the tRNA-

Arg (CCT) and the tRNA-Glu (CTC) (Figure 43 A). In addition, 11 tRFs among the 14 DE 

tRFs appear to be enriched in S and G2, suggesting that they might be involved in DNA 

replication processes. However, whether this accumulation is related to the cell cycle or 

caused by aphidicolin-induced replicative stress remains to be determined.  

Interestingly, almost all of the 19-mer tRFs associated to AGO1 have a G or a C in 5’ 

(Figure 43D) while it has been already reported that AGO1 has a preference for a U or a A in 

5’ (Wang et al., 2011). This might explain why tRFs represent such a small subset of AGO1-

associated small RNAs. Moreover, the presence of G/C in tRFs 5’ end might also affect the 

stability of the RISC complex and therefore explain why we have detected high fold changes 

for AGO1-associated tRFs while other small RNAs remains overall unchanged during cell 

cycle. However, the biological significance of these DE tRFs, as well as their mode of action 

remain to be determined. To further examine whether tRFs are able to trigger mRNA slicing 

while associated with RISC complex, we will look for PARE signatures that can match with 

tRFs sequences. However, available data are more in favor of a slicing-independent 

mechanism. Indeed, some tRFs have already been shown to induce translational inhibition 

(Gebetsberger et al., 2012; Sobala and Hutvagner, 2013). For example, Val-tRF from the 

archaea Haloferax volcanii associates to the small ribosomal subunit and is able to inhibit 

protein synthesis by interfering with peptide bond formation, presumably to fine tune overall 

protein synthesis in response to several stresses. In addition, Sobala and Hutvagner described 

a similar tRF-mediated translational inhibition mechanism in HeLa cells (Sobala and 

Hutvagner, 2013). They also showed that the 3’ “GG” dinucleotide is essential for this 

function. Interestingly, this motif was highly represented in our AGO1-associated tRFs 

sequences (Figure 43D), suggesting that, at least of a subset of these tRFs might act in a 

similar way. To determine whether DE tRFs are indeed involved in translational repression, 

looking for tRFs enrichment in polysomal fraction could be an interesting experiment to 

perform. 

Finally, we did not detect any 3’- end TRFs in our libraries. However, tRNAs, as other 

housekeeping non-coding RNAs, undergo several steps of base modifications to ensure proper 

folding. Among these modifications, the N-1-methyladenosine in the T-arm is misread by 

reverse transcriptase, resulting in the incorporation of mismatched dNTPs. Thus, as we 

mapped the small RNA libraries on the tobacco genome without allowing any mismatch, we 
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would certainly have missed this class of tRFs and we will further need to remap the libraries 

allowing at least one mismatch. 

 

D. How cell cycle genes could be post-transcriptionally controlled in plants?  

 

From my results, I concluded that PTGS is not responsible of the highly dynamic 

changes of core cell cycle transcript abundance during cell division. While transcriptional 

control has been already well characterized in eukaryotes, it is however not enough to explain 

why some transcripts quickly disappear at cell cycle phase transitions. In S. cerevisiae, a 

specific RNase has been shown to be involved in cell cycle regulation. The MRP 

(MITOCHONDRIAL RNA PROCESSING) endoribonuclease is a ribonucleoproteic RNase 

composed of an RNA coded by NME1 (NUCLEAR MITOCHONDRIAL ENDONUCLEASE 

1) and at least nine proteins, with height of those that are shared with the yeast nuclear RNase 

P. Interestingly, mutations in the NME1 gene or in SNM1, that encodes a RNA-binding 

subunit, both result in a delay of the exit from mitosis, characterized by cells blocked in 

telophase (Cai et al., 2002). These defects were not associated to misfunction of the APC/C 

directly, but to overaccumulation of the cyclin CLB2 transcript. Thus, in addition to APC/C 

mediated degradation of the CLB2 protein, CLB2 mRNA degradation by a specific 

ribonuclease is required to ensure the correct timing of exit from mitosis. In vitro experiments 

further demonstrated that MRP directly affects the CLB2 transcripts by cleaving its 5’ UTR 

(Gill et al., 2004). These researchers proposed a hypothetical model where CLB2 mRNAs are 

subjected to MRP cleavage in late mitosis, releasing an unprotected 5’ monophosphate and 

are then degraded by the 5’-3’ exoribonuclease XRN1. More recently, Trcek and colleagues 

showed that yeast CLB2 mRNA and SWI5 mRNA, that codes for M phase specific 

transcription factors, are bound to the cell cycle regulatory kinase DBF2 (DUMPBELL 

FORMER 2) (Trcek et al., 2011), whose activity is promoted in anaphase by its 

dephosphorylation (Toyn and Johnston, 1994). Following their model, DFB2 is recruited to 

the promoter region of these genes and transcriptionally associates with the newly synthetized 

transcript. Then, depending on the phosphorylation state of DFB2, DFB2 might itself 

participate to the stability of the messenger or recruit deadenylating complexes to trigger 3’-

>5’ degradation by the exosome. In the animal field, poly (A) tails have been shown to be 

important for RNA stability and also for cap-dependent translation (reviewed in Weill et al., 
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2012). Interestingly polyadenylation and deadenylation are also regulating expression of core 

cell cycle genes during cell cycle. For example, B1 cyclin from Xenopus oocytes is strongly 

deadenylated in S phase, leading to its translational silencing, whereas it is polyadenylated in 

M phase (Groisman et al., 2002). This process involves CPEB (CPE-BINDING PROTEIN) 

and MASKIN proteins that prevents recruitment of poly (A) polymerases in S phase and 

inhibits formation of the pre-initiation complex. In M phase, Aurora kinase phosphorylates 

CPEB, and thus allows polyadenylation and assembly of the pre-initiation complex, 

presumably by inactivating CPEB/MASKIN. Interestingly, genome wide analysis of poly(A) 

tail length on synchronized human cells highlighted that even though the overall poly (A) 

length remains constant during cell cycle, a subset of genes exhibit dramatic poly(A) tail 

length changes between S and M phases (Park et al., 2016). Gene ontology revealed that these 

genes are mainly involved in cell cycle regulation, microtubules cytoskeleton, ubiquitin ligase 

activity and DNA binding. The most striking example is CDK1, for which the mean poly (A) 

tail length is ranging from 80 nt in M phase to 3 nt in S phase. In addition, ribosome profiling 

confirmed that transcript with short poly (A) tails of less than 20 nt (that correspond to the 

minimal length for PABP binding) are depleted from polysomal fractions, supporting that 

these genes are translationally silenced in a cell cycle phase-specific fashion. Note that this 

study also pointed out the bias created during generation of RNA-seq libraries. Indeed, 

mRNA are first purified using poly(T) oligonucleotides coupled to magnetic beads, excluding 

purification of deadenylated mRNA. However, studies already demonstrated that 

deadenylated mRNAs do not systematically undergo RNA degradation but can be stored as 

translationally silenced RNA. Thus, we have to keep in mind that our RNA-seq libraries do 

not reflect the overall mRNA abundance but only the pool of mRNA that can be translated. 

Other strategies have been also developed to control translation of core cell cycle 

genes, for example, the yeast cyclin CLN3 mRNA, possess a upstream open reading frame in 

its 5’ UTR that interferes with its translation (Kronja and Orr-Weaver, 2011) and require the 

eIF4E homologue CDC33 protein to promote G1/S transition. In human, Cyclin E1 mRNA 

exhibit a long 5’ UTR with GC-rich sequence that are supposed to alter ribosome scanning 

during translation initiation. Proper Cyclin E1 translation during G1/S transition is facilitated 

by the action of the human DEAD-box helicase DDX3 that might be required to unwind 5’ 

UTR secondary structures (Kronja and Orr-Weaver, 2011).  

To our knowledge, none of those mechanisms have been described in plants so far. 

But, among the 23000 DE genes found in our RNA seq libraries, I identified more than 70 
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DEAD-box helicases with respectively 2 and 1 that peak in S and M phases, as well as 4 DE 

eIF4E-like proteins. I-might be interesting to determine whether these proteins play important 

functions in the regulation of the cell cycle in plants. First, one would need to examine their 

promoter sequences for E2F-binding or MSA binding elements. Moreover, our efficient 

synchronizable BY-2 cell suspension could be also useful for identification of RNA-

associated proteins by gene candidate approach. For example, it is possible to incubate in 

vitro transcribed-biotinylated core cell cycle mRNAs with synchronized cell extract and then 

identify copurified proteins in mass spectrometry. Finally, a recent study described a method 

to purify GFP-labelled P-bodies from human cell cultures using fluorescence-activated 

particle sorting (Hubstenberger et al., 2017). These researchers performed proteomics and 

RNA-seq analysis on these purified P-bodies (containing translational silenced transcripts), 

providing insights on their composition. Moreover, gene ontology revealed that a significant 

number of genes enriched in P-bodies are involved in cell division, suggesting that this 

method is robust enough to investigate cell cycle-related events. Thus, it might be possible to 

use this technique on synchronized BY-2 samples to identify the proteins that are involved in 

post-transcriptional regulation of core cell cycle gene expression.  
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Material and methods 
 

A. Material 

 

1. Bacterial strains 

 

a. Escherichia coli 

 

E.coli, TOP10 (Invitrogen) were used for plasmid amplification. This strain carries a mutated 

recA recombinase to minimize recombination events between plasmids and bacterial DNA. 

Genotype: F- mcrA Δ( mrr-hsdRMS-mcrBC) Φ80lacZΔM15 Δ lacX74 recA1 araD139 Δ( 

araleu)7697 galU galK rpsL (StrR) endA1 nupG 

 

E.coli, DB3.1 (Invitrogen) were used for propagating empty Gateway vectors containing the 

ccdB gene. ccdB gene encodes a protein that interferes with the bacterial gyrase. DB3.1 strain 

carries the gyrA462 allele that confers the resistance to the ccdB gene. 

Genotype: gyrA462 endA1 ∆(sr1-recA) mcrB mrr hsdS20 glnV44 (=supE44) ara14 galK2 

lacY1 proA2 rpsL20 xyl5 leuB6 mtl1 

 

b. Agrobacterium tumefaciens 

 

A.tumefaciens, GV3101 (PMP90) were used for Arabidopsis transformation. It carries 

chromosomal resistance to rifampicin. Gentamycin resistance is conferred by the disarmed Ti 

(Tumor inducing) plasmid PMP90 that encodes vir genes required for T-DNA transfer. 

A.tumefaciens LBA4404 were used for efficient transformation of tobacco BY-2 cell 

suspension. This strain harbors the disarmed Ti plasmid pAL 4404 that contains the vir genes, 

required for T-DNA transfer. 
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2. Plant material  

 

All Arabidopsis thaliana plants are in Columbia-0 accession genetic background (Col-0). 

Arabidopsis thaliana mutant allele ago1-36 was previously described in Baumberger and 

Baulcombe, 2005. The T-DNA insertion line originates from the salk collection (salk_087076 

line) and results in expression of a truncated protein missing PAZ and PIWI domains. ago1-

27 mutant allele was isolated from a EMS-mutagenized population (Morel et al., 2002). ago1-

27 mutation consists in glycine to serine substitution at position 758 in the PIWI domain. 

ago1-57 was described in Derrien et al., 2018. ago1-57 allele was isolated in the lab of Pascal 

Genschik (IBMP, France) from an EMS suppressor genetic screen based on the stabilization 

of AGO1 protein level upon P0 induction with β-estradiol. The point mutation induced by 

EMS leads to a glycine to aspartic acid substitution in position 371, located in the DUF1785 

domain. ago1-57 mutant line carries the XVE:P0 construct that allows induction of P0 

expression upon β-estradiol treatment (Derrien et al., 2018). 

Col-0 and ago1 mutants lines were transformed with the pHTR2:CDT1a (C3)-GFP (Yin et al., 

2014) and pCYCB1;2::CYCB1.2(DBox)-eGFP constructs and double homozygous transgenic 

plants for both transgenes were selected and used for further experiments. 

 

3. Tobacco BY-2 cell suspension 

 

Tobacco BY-2 cells suspension has been established in 1972 by Japan Tobacco, Inc from 

callus induced on Nicotiana tabacum cultivar Bright Yellow-2 seedlings (reviewed in Nagata 

et al., 1992). This line has been selected among 40 other cell suspensions of Nicotiana species 

for their high proliferative rate, providing a good plant model to study cell cycle, comparable 

to human HeLa cells. 

 

4. Plasmids 

 

The pGREENII pAGO1: GFP-AGO1 construct is described in Derrien et al., 2012. This 

binary vector encodes a functional GFP-AtAGO1 protein that complements ago1-11 and 

ago1-27 arabidopsis mutants. Promoter and 5’UTR sequences were amplified from 1654 bp 
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upstream the ATG and AGO1 cDNA (including the 3’UTR) was fused in 5’ to eGFP coding 

sequence. pGREENII confers resistance to Basta for plant selection. As this selection cannot 

be efficiently used for BY-2 cells transformation, pAGO1: GFP-AGO1 DNA sequence was 

transferred to a binary vector with kanamycin resistance using gateway cloning. Thus, 

pAGO1:GFP-AGO1 construct was first clone in a pDONRTM 221 and then recombined with 

pKGW. Vector maps are shown in supplemental figure 3. 

All vectors and primers used for cloning are listed in supplemental table 4 and 5, respectively. 

 

5. Chemicals and antibiotics used for bacterial and plant selection 

 

Chemicals and antibiotics used for bacterial and plant selection are listed below with their 

corresponding working concentrations:  

      Final concentration (µg/ml) 

  Soluble in 
Stock solution 

(mg/ml) Bacteria Plants/ BY-2 cells 
Cefotaxime  Water 250 500   

Carbenicillin Water 200 100-500   
Kanamycin Water 100 50 50 
Tetracyclin Ethanol 12,5 12,5   
Gentamycin Water 100 50   

Spectinomycin Water 100 100   
Streptomycin Water 30 30   

Chloroamphenicol Ethanol 30 30   
Rifampicin DMSO 100 50   

Hygromycin Water 500   30 
Basta/glufosinate Water 10   10 

 

Note that cefotaxime and carbenicillin have been used at a concentration of 500 µg/ml only to 

kill Agrobacteria after BY-2 cells transformation. 
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B. Methods 

 

1. Protocols related to cloning and bacterial transformation 

 

a. Genomic DNA extraction (Doyle and Doyle, 1987) 

 

CTAB buffer: 2% cetyl trimethylammonium bromide, 1% polyvinyl pyrrolidone, 100 mM 

Tris-HCl, 1.4 M NaCl, 20 mM EDTA 

CAI solution: chloroform:24 volumes, Isoamyl alcohol 1volume 

About 100 mg of liquid nitrogen-frozen plant tissue are grinded with 1.7-2.1 mm glass beads 

and resuspended in 500 µl CTAB buffer by vortexing thoroughly. Lysates are then incubated 

at 60°C for 30 minutes. Following incubation, samples are clarified by centrifugation at 

maximum speed for 15 minutes. Supernatant is then collected and mixed with 1 volume of 

CAI and vortexed. Samples are centrifuged, and aqueous phase is collected. DNA is 

precipitated by adding 1 volume of cold isopropanol and incubating at -20°C for 20 minutes. 

DNA is pelleted by centrifugation at maximum speed for 20 minutes. Pellets are washed twice 

with cold 70% Ethanol and air dried until pellets became colorless. They are finally 

resuspended in PCR-grade water or 10 mM Tris pH 8. Pellets may need warming to dissolve. 

DNA concentration is measured on a Nanodrop spectrometer (ThermoFisher Scientific). 

 

b. DNA amplification by PCR 

 

Polymerase chain reaction (PCR) is performed for DNA amplification for cloning purpose 

and bacterial colony screening. Taq Phusion master mix (FinnZymes) is used for high-fidelity 

DNA amplification while Gotaq DNA polymerase (Promega) and Phire 2 DNA polymerase 

(ThermoFisher Scientific) was used for other applications. 
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PCR conditions are listed below: 

  Phusion 2X mix Phire 2 Gotaq 

Total volume 50 µl 20 µl 25 µl 

Foward primer (10µM) 1 µl 1 µl 0.5 µl 

Reverse primer (10µM) 1 µl 1 µl  0.5 µl  

dNTP (10mM) 

  

0,4 µl 0.5 µl 

Buffer 5X: 4 µl 
5X: 5µl+2µl 

MgCl2 (10 mM) 

DNA polymerase 0,1 µl 0.125 µl 

Master mix 2X: 25 µl     

DNA matrix 10 ng vector/up to 200 ng genomic DNA 
 

PCR programs are listed below: 

 
Phusion Phire 2 Gotaq 

Initial Denaturation 2 min 98 °C 30 sec 98°C 2 min 95°C 
Denaturation 15 sec  5 sec 98°C 30 sec 95°C 

Priming 15-30 sec  5 sec  30 sec 
Elongation 30 sec/kb 72°C 15 sec/kb 72°C 1 min/kb 72°C 

Final elongation 5 min 72°C 1 min 72°C 5 min 72°C 
 

The number of PCR cycle is generally comprised between 30 and 35. 

 

c. DNA analysis 

 

TAE (Tris-Acetate EDTA) : 40 mM Tris-Acetate, 0.1 mM EDTA 

Amplified PCR fragment and vectors are analyzed by agarose gel electrophoresis on 1X TAE 

agarose gel (0.8% to 2% Agarose). DNA is stained with ethidium bromide and revealed on a 

UV transilluminator. Amplified vectors are then sequenced at the IBMP sequencing platform 

by the sanger method. 
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d. Gateway cloning (Invitrogen) 

 

PEG solution: 30% PEG 8000, 30 mM MgCl2 

Tris-EDTA buffer (TE) : 10 mM Tris HCl pH 8, 1 mM EDTA 

All the constructs were generated using Gateway technology. PCR products are purified by 

PEG precipitation as followed. Water is added to the PCR reaction up to a volume of 200 µl. 

100 µl of PEG solution is added to a final concentration of 10% PEG, 10 mM MgCl2 and 

vortexed thoroughly. The sample is then centrifuged at maximum speed for 20 minutes at 

room temperature. The supernatant is discarded (pellets might not be visible). Pellet is 

resuspended in 20 µl. 5 µl of purified PCR fragment are loaded on agarose gel to verify its 

presence and concentration.  

BP clonase and LR clonase reaction are incubated overnight at 25°C. Reaction conditions are 

listed below: 

 

BP clonase reaction LR clonase reaction 
Purified PCR product 5 µl Entry vector 150 ng 
pDONR221 150 ng Destination vector 150 ng 
BP clonase 1 µl LR clonase 1 µl 
TE buffer up to 10 µl TE buffer up to 10µl 

 

BP clonase and LR clonase reactions are treated with 1µl Proteinase K (Invitrogen) for 10 

minutes at 37°C prior to bacterial transformation. 

 

e. Plasmid purification 

 

GTE buffer: 50 mM glucose, 25 mM Tris HCl pH8, 10 mM EDTA, 0.1 mg/ml RNase A 

(stored at 4°C) 

Lysis buffer: 0.2 N NaOH, 2% SDS (freshly prepared) 

Neutralization buffer: 3 M CH3CO2K, 1.8 M formic acid 

CAI solution : Chloroform : 24 volumes, Isoamyl alcohol : 1volume 
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2.5 ml of overnight E. coli culture is pelleted by centrifugation at 3500 rpm for 10 minutes 

and resuspended in 250 µl of GTE buffer. 250 µl of lysis buffer are added, tubes are gently 

mixed by hand and incubated at room temperature for 5 minutes maximum. Lysis is 

immediately stopped by adding 250 µl of neutralization buffer and gently mixing tubes again. 

Debris are pelleted at maximum speed for 10 minutes and the supernatant is mixed with 1 

volume of CAI solution. Phases are separated by centrifugation at maximum speed for 15 

minutes and aqueous phase is precipitated at -20°C with 1 volume of cold isopropanol for 20 

minutes. Plasmid DNA is then pelleted by centrifugation at maximum speed for 20 minutes 

and washed 2 times with 70% ethanol. Pellets are air dried and resuspended in 50 µl 

bidistilled water or 25 mM Tris HCl pH8. Nucleic acid dosage is performed using NanoDrop 

spectrophotometer (ThermoFisher Scientific). 

 

f. Bacterial transformation 

 

LB (Luria Bertini) medium: 10 g/L bacto-tryptone, 5 g/L yeast extract, 5 g/L NaCL, pH 7.2 

YEB medium: 5 g/L beef extract, 1 g/L yeast extract, 5 g/L peptone, 5 g/L sucrose, 20 mM 

MgSO4 (added after autoclaving) pH 7.4 

Preparation of thermocompetent E. coli cells 

A 5 ml preculture is inoculated with E. coli cells and grown overnight at 37°C in liquid LB 

medium. 250 ml of LB medium in one-liter Erlenmeyer is then inoculated with the entire 

preculture and grown at 37°C until the optical density at 600 nm reaches 0.7. The following 

steps are then done at 4°C in sterile conditions. Cells are centrifuged at 5000xg for 15 minutes 

and washed two times with cold 0.1 M CaCl2. They are resuspended in 50ml of 0.1 M CaCl2 

and incubated at 4°C overnight. Cells are then centrifuged as previously and resuspended in 3 

ml of cold 0.1 M CaCl2, 15% glycerol solution before being divided in 50 µl aliquots. 

Aliquots can be directly used for high efficiency transformation or are frozen in liquid 

nitrogen and stored at -80°C. 

Preparation of electrocompetent A.tumefaciens cells 

10 ml of YEB supplemented with necessary antibiotics are inoculated with GV3101 (PMP90) 

or LBA 4404 agrobacterium strain and grown overnight at 28°C in dark on a shaker (180 

rpm). 250 ml of YEB medium supplemented with antibiotics in one-liter Erlenmeyer are 
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inoculated with the preculture and grown at 28°C until the optical density at 600 nm reaches 

0.6. The following steps are then done at 4°C in sterile conditions. Cells are centrifuged at 

5000xg for 15 minutes and washed 3 times with cold sterile water and resuspended in 10% 

glycerol before being divided in 50µl aliquots. Aliquots can be directly used for high 

efficiency transformation or are frozen in liquid nitrogen and stored at -80°C. 

E.coli heat shock transformation 

Competent E.coli cells, stored at -80°C, are thawed on ice. DNA that needs to be amplified 

(10 ng of vector or 5 µl of BR/LR clonase reaction) is gently mixed with the cells and 

incubated on ice for 20 minutes. Cells are then transferred to a heated bath at 42°C for 45 

seconds and immediately chilled on ice for 2 minutes. 500 µl of LB medium are added and 

cells are incubated 20 minutes at 37°C. 250 µl of cells are finally plated on solid LB medium 

(1,5 % agar) supplemented with the appropriate antibiotics and incubated for overnight at 

37°C. List of used antibiotics and concentration for bacterial selection is described above in 

material section. 

A.tumefaciens transformation by electroporation 

Competent A.tumefaciens cells, stored at -80°C, are thawed on ice. 10 ng of vector are gently 

mixed in a microtube and then transferred in an ice-chilled electroporation cuvette and 

electroporated at 2500 V, 400 Ohm resistance, 0.25 µF, τ±3.8 ms on a Gene pulser (BioRad) 

apparatus. Cells are transferred in 500 µl of LB medium and incubated for 1 hour at 28°C. 

Finally, 250 µl of cells are plated on solid LB medium with antibiotics and incubated at 28°C 

for 36 to 48 hours. List of used antibiotics and concentration for bacterial selection is 

described above in material section. 

 

2. Protocols related to Arabidopsis thaliana 

 

a. Culture conditions 

 

Plants were cultivated in growth chambers following two conditions:  

- 16h light/8h dark photoperiod, temperature: 21/18°C, 80% humidity for long-day 

culture  
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- 8h light /16h dark photoperiod, temperature: 21/18°C, 80% humidity for short-day 

culture 

For in vitro culture, seeds are sterilized as followed: 

- 2X 70% Ethanol, 0.05%TWEEN 20 (Sigma-Aldrich); 3minutes each (can be extended 

to 10 minutes) 

- 1X 96% Ethanol; 1 minute 

 

Murashige and Skoog (MS) medium: MS with micro and macro elements M0255 

(KALYS), 10 g/L sucrose, pH 5.8  

Sterilized seeds are sawn of MS medium (0.8% or 1% agar) and stratified 2 days at 4°C in 

dark conditions. Seeds are then germinated in growth chambers with the following culture 

conditions: 

- 16h light/8h dark photoperiod, temperature: 21/18°C, 80% humidity  

 

b. Agrotransformation of Arabidopsis plants 

 

T-DNA plant transformation are performed with “floral dip” method as described in Clough 

and Bent, 1998. Transgenic plants were obtained by transformation of XVE:P0-myc and 

XVE:P0/ago1-57 lines with the following constructs: 

- pGWB650 pCYCB1.2:CYCB1.2(dBox)-eGFP 

- pGWB650 pHTR2:CDT1a(C3)-eGFP 

Heterozygous T1 transformants were selected on soil using glufosinate/Basta selection. 

Mono-insertion homozygous lines (representing 75% resistance in T2, 100% resistance in T3) 

were selected in vitro and used for analyses.  

 

c. Root length analysis 

 

Sterilized seeds are sawn of solid MS medium (1% agar) without sucrose and stratified 2 days 

at 4°C. Seeds are then germinated on vertical plates in growth chambers with the classical in 



79 
 

vitro culture conditions described above. Seedlings are imaged at 6 and 10 days after 

stratification (DAS), and root length is measured using ImageJ software. Anova statistical 

tests are performed using R software. 

 

d. Imaging of Arabidopsis root tips 

 

Propidium iodide (PI) staining solution: 80 µg/ml propidium iodide (Sigma-Aldrich), 

solubilized in water (stored at 4°C in dark) 

Primary roots of 6, 10 or 12 DAS Arabidopsis seedlings grown on vertical plates are mounted 

on microscopy slides with PI staining solution. Settings that has been used for imaging root 

tips are described below in the section related to microscopy. 

 

e. Induction of gene expression with β-estradiol 

 

β-estradiol stock solution: 10 mM β-estradiol in DMSO (Stored at -20°C in dark) 

For β-estradiol treatment, sterilized seeds are sawn on solid MS medium (0.8 or 1% Agarose) 

without sucrose supplemented with 10 µM β-estradiol and grown as described in the section 

related to culture conditions. 

 

3. Protocols related to BY-2 cell suspension 

 

a. Growth conditions (see Nagata et al., 1992) 

 

BY-2 medium: Murashige and Skoog MO222 (KALYS), 30 g/L sucrose, 1 mg/L Thyamine, 

200 mg/L 2,4D, 200 mg/ml KH2PO4, 100 mg/L Myoinositol, pH 5.8  

BY-2 cells are grown in the dark at 23-25°C under agitation (120 rpm). BY-2 cell suspension 

must be subcultured weekly. 1.5 ml of 7-day-old saturated BY-2 culture are inoculated in 80 

ml of fresh sterile BY-2 liquid medium.  
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b. Transient expression in BY-2 cell 

 

Before stable transformation, constructs are transitory expressed by biolistic for validation. 

1mg of tungsten beads is sterilized in ethanol and centrifuged. Supernatant is discarded, and 

beads are resuspended in 17 µl of 50% glycerol. 4 µg of vector are added to the mix, and 

tubes are vortexed. 16.5 µl of 2 M CaCl2 and 7.5 µl of 1 M spermidine are added while still 

vortexing. Tubes are incubated 20 minutes a room temperature. Beads are then washed 2 

times with ethanol and air dried for 5 minutes. Beads are finally resuspended in 12 µl of 

ethanol. 5 ml of 3 to 4-day-old BY-2 cell suspension are vacuum-filtered on filter paper and 

transferred on solid BY-2 medium. Cells are then bombarded with a homemade helium 

particle inflow gun with 12 µl of coated beads at -0.7 bar of pressure. Cells are kept in 

classical growth conditions until observation on a microscope. 

 

c. Transformation with A.tumefaciens 

 

YEB medium: 5 g/L beef extract, 1 g/L yeast extract, 5 g/L peptone, 5 g/L sucrose, 20 mM 

MgSO4 (added after autoclaving) pH 7.4 

Bacterial resuspension solution: 10 mM MgSO4, 10 µM acetosyringone (sterile, freshly 

prepared) 

Previously transformed LBA4404 agrobacterium strains are cultured overnight in YEB 

medium at 28°C supplemented with antibiotics required for selection. Bacteria are then 

pelleted and resuspended in sterile 10 mM MgSO4. Bacterial suspension is supplemented with 

10 µM acetosyringone for 1 hour to activate virulence. 80 ml of 3 to 4-day-old BY-2 cells are 

then divided in 3 ml aliquots in sterile 24 well plates and inoculated with 100 µl of bacterial 

solution in each well. Cells are cocultured at 23-25°C in dark for 36 hours under mild 

agitation (50 rpm). Cells are then pooled in 50 ml tubes and centrifuged at 800 rpm for 3 

minutes. Supernatant is discarded, and cells are gently resuspended in fresh medium. This 

step is repeated 3 times. Cells are then supplemented with appropriate antibiotics for selection 

of transformants and 10 ml aliquots are plated on Petri dishes containing solid selective solid 

BY-2 medium (0.8% agar). Petri dishes are sealed with Micropore adhesive and kept in dark 
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at 23-25°C. 3 to 4-week-old calli are put in 20 ml of liquid BY-2 medium and then cocultured 

weekly in 80 ml. Selection pressure is maintained for at least 2 weeks. List of used antibiotics 

and concentration for plant selection is mentioned above in the material section. 

 

d. Cell cycle synchronization 

 

Aphidicolin stock solution: 10 mg/ml aphidicolin (Sigma-Aldrich, Santa Cruz) in DMSO, 

stored at -80°C for 6 months maximum (or freshly prepared) 

Propyzamide stock solution: 6 mM propyzamide (Sigma-Aldrich) in DMSO, stored at -

20°C 

BY-2 medium: described above 

Washing solution: 40 g/L sucrose, freshly prepared and tempered to 25°C 

Single step synchronization (see Nagata and Kumagai, 1999; Criqui et al., 2000) 

10 ml of an 8-day-old saturated BY-2 cell suspension are inoculated in 90 ml of fresh BY-2 

liquid medium supplemented with aphidicolin (Sigma-Aldrich, Santa Cruz) to a final 

concentration of 5 mg/L and kept at 25°C in the dark in shaking incubator (120 rpm). To 

release aphidicolin inhibition, cells are washed 10 times on 48 µm nylon mesh with tempered 

washing solution for 10 minutes and then washed at least 1 time with 100ml of BY-2 

medium. Cell are then resuspended in 100 ml of BY-2 medium. The whole procedure should 

not exceed 15 minutes. Cells are then kept under classical culture and aliquots are harvested 

every hour for protein and RNA extraction, flow cytometry, mitotic index measurement after 

DAPI staining (see below) or GFP fluorescence confocal imaging (detailed later in the 

microscopy section).  

Dual-step synchronization (see Kumagai-Sano et al., 2007) 

Dual-step synchronization is performed as the single step synchronization procedure until 

cells reach 5% of mitotic index. Propyzamide is then added to a final concentration of 3 µM. 

After 4 hours of propyzamide treatment, cells are washed thoroughly for 15 minutes as 

described previously to remove aphidicolin. 
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Flow cytometry measurement 

Ploidy measurement by flow cytometry was performed using Cystain UV precise P kit 

(PARTEC). 1 ml of vacuum-filtered synchronized BY-2 culture is frozen on liquid nitrogen 

and chopped in 200 µl of nuclei extraction buffer with a razor blade for approximately 2 

minutes. 800 µl of nuclei staining solution is added and samples are gently homogenized and 

filtered on a CellTrics 30 µM disposable filter (PARTEC). Prepared samples are analyzed on 

Attune flow cytometer (Applied Biosciences) using the following parameters:  

 

Acquisition volume 500 µl 
Flow 100 µl/min 
Laser 405 nm 50 mW 

Detection wavelength 410-450 nm 
PMT gain VL1 1350 mv 
PMT gain SSC 4500 mv 
PMT gain FSC 2400 mv 

 

Flow cytometry data are exported from Attune software in FCS format and analyzed using the 

following R packages: FlowCore, FlowViz, ggPlot2 and cowPlot. 

Mitotic index measurements 

 

DAPI solution: 0.2 mg/L 2,4-Dichlorophenoxyacetic acid (DAPI), 2% Triton X-100 (Sigma-

Aldrich) 

50 µl of DAPI solution are added to 500 µl of synchronized BY-2 cells, homogenized and put 

on ice for 5 minutes. Mitotic and interphasic cells are counted on a Nikon E800 microscope 

using x400 magnification (x40/0.75 Nikon Plan Fluor, x10 ocular) and Nikon UV-2A filter; 

excitation wavelength: 330-380 nm (band-pass); dichromatic mirror cut-on wavelength 400 

nm (long-pass); barrier filter wavelength: 420 nm cut-on (long-pass). A minimum of 500 cells 

are counted. The mitotic index represents the percentage of cells in M phase (pro-meta-ana- 

and telophase) in the analyzed population. 
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4. Protocols related to RNA analysis 

 

a. RNA extraction from BY-2 cell suspension 

 

2 ml of BY-2 cell suspension are vacuum filtered and frozen in liquid nitrogen. Cell 

are first grinded with 1.7-2.1 mm glass beads using a Silamat grinding apparatus (Ivoclar 

Vivadent) and resuspended in 800 µl of Tri-reagent (Sigma-Aldrich). Microtubes are 

incubated 3 minutes under strong agitation. 200 µl of Chloroform (Sigma-Aldrich) are added 

and microtubes are again vortexed for 3 minutes. Phases are separated by centrifugation at 

maximum speed for 15 minutes. Aqueous phase is recovered and incubated for 1 hour at -

20°C with 1 volume of cold Isopropanol. RNA is then precipitated by centrifugation at 

maximum speed for 20 minutes at 4°C. Pellet are washed twice with 1 ml of 70% ethanol and 

air dried until they became colorless. RNA pellets are finally resuspended in 50 µl of RNase-

free water and dosed using Nanodrop spectrophotometer (ThermoFisher Scientific). 

 

b. Northern blot for small RNA detection 

 

Loading buffer: 99.9% deionized formamide, 0.01% bromophenol blue (Sigma-Aldrich), 

0.05% Xylene Cyanol blue (Sigma-Aldrich) 

10X TBE buffer (Tris Borate EDTA): 89 mM Tris, 89 mM boric acid, 2 mM EDTA, pH 

7.5 

20X SSC buffer (Saline sodium citrate): 3M NaCl, 300mM C6H5Na3O; 2H20, pH 7.2 

EDC crosslinking buffer: 0.16 M l-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) 

(Sigma-Aldrich), 0.13 M 1-methylimidazole, pH 8 

Methylene blue staining buffer: 0.04% methylene blue (Sigma-Aldrich), 0.5 M NaCH₃COO 

pH 5.2 

Mild stringency washing buffer: 2X SSC, 2% SDS 

High stringency washing buffer: 1X SSC 1% SDS 
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Sample preparation 

20 µg of total RNA are first standardized to identical volumes to minimize migration 

variation. Loading buffer is then added to reach a final concentration of 60% formamide. 

Samples are denatured at 95°C for 5 minutes and immediately chilled on ice before loading 

on gel. 

Electrophoresis and transfer of RNA 

RNA samples are separated on a 15% acrylamide, 0.5X TBE, 8 M urea gel prior 

samples loading, acrylamide gels are preheated for 30 minutes at 15 W. Gel is then run at 3 W 

for 30 minutes followed by approximately 4 hours at 15 W in 0.5X TBE. After 

electrophoresis, RNA loading is checked by ethidium bromide coloration. Separated RNAs 

are transferred on Amersham Hybond-NX nylon membrane (GE Healthcare-Life Sciences) 

for 1h30 at 400 mA in 0.5X TBE. 

Chemical crosslinking (see Pall et al., 2007) 

 Membranes are put on a Whatman paper imbibed with freshly prepared EDC-

crosslinking buffer, sealed in a bag (the transferred face must be upside) and incubated 1 hour 

at 60°C. membranes can be rinsed with demineralized water and RNA quality can be verified 

with methylene blue staining buffer. 

5’ radio-labelling of oligonucleotides 

DNA oligonucleotides complementary to miR168 and U6 RNA were 5’ end-labelled with [γ-

32P]ATP using T4 polynucleotide kinase (PNK) (Promega). Reaction conditions are listed 

below: 

 

Total volume 20 µl 
Buffer A 2 µl 

DNA oligonucleotide (10µM) 1 µl 
[γ-P32]ATP 25 µCi (2,5 µl) 

T4 PNK 1,5 µl 
H20  13 µl 

 

PNK reaction is incubated at 37°C for 1 hour. 
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Radio-labelled probes were then purified from non-incorporated γ-32P using Microspin G-25 

column (GE Healthcare-Life Sciences). 

Hybridization 

Crosslinked membranes are incubated 2 hours in 15ml of PerfectHyb hybridization buffer 

(Sigma-Aldrich) at 42°C and then incubated overnight with the radio-labelled probes. 

Membranes are finally washed 2 times with mild stringency buffer and high stringency buffer 

for 15 minutes at 50°C before exposure. 

 

c. Quantitative real-time PCR (qRT-PCR) 

 

2 µg of total RNAs samples are frist treated with DNase I (ThermoFisher Scientific). cDNAs 

are reverse transcribed using High-capacity cDNA Reverse Transcription Kit (Applied 

Bioscience). cDNAs are further diluted 10 times prior to qRT-PCR. qRT-PCR is performed 

using LigthCycler 480 SYBR Green I Master mix (Roche) on a LigthCycler 480 apparatus 

(Roche) following constructor recommendations. 

Primers used for qRT-PCR on BY-2 tobacco cell suspension cDNAs are listed below:  

 

Gene Forward primer (5’->3’) Reverse primer (5’->3’) Type 
Ubiquitin-conjugating 
enzyme E2 (Ntubc2) CTGGACAGCAGACTGACATC CAGGATAATTTGCTGTAACAGATTA Reference  
Protein phosphatase 2A 
(PP2A) GTGAAGCTGTAGGGCCTGAGC CATAGGCAGGCACCAAATCC Reference  
L25 ribosomal protein CCCCTCACCACAGAGTCTGC AAGGGTGTTGTTGTCCTCAATCTT Reference  
Histone H4 GAAAGGGAGGCAAGGGATTA CACGTAATACCTTACGGTGTCG Target  
CYCB1 (NtaCyc29) TGGGCTCCTGAGGTCAAT ATTCATCAACCCCAGCTC Target g 
Arabidopsis AGO1 CGGTGGACAGAAGTGGGAAT GGTCGAGAAGTGCCCTGAAT Target  
AGO1 CATTTGGCAGCTTTCCGTGCTC TGCGCTTGTGACTGATCCACTG Target  
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5. Protocols related to protein analysis 

 

a. Protein extraction from BY-2 cell suspension 

 

Rapid protein extraction 

4X Laemmli buffer: 200 mM Tris HCl pH 6.8, 8% SDS, 40% glycerol 0.04% bromophenol 

blue, 3% β-mercaptoethanol (freshly added) 

Approximately 100 mg of frozen plant tissue (or vaccum-filtered BY-2 cells) are 

grinded with glass beads and immediately resuspended in 300 µl of hot 1X Laemmli buffer. 

Samples are then denatured at 95°C for 2 minutes. Debris are eliminated by centrifugation at 

maximum speed for 15 minutes. 

Phenol extraction 

Extraction buffer (EB): 0.7 M saccharose, 500 mM Tris HCl pH 8, 5 mM EDTA pH 8, 100 

mM NaCl, 2% β-mercaptoethanol and complete mini protease inhibitor (Roche) must be 

added extemporaneously. 

Resuspension buffer (RS): 10% glycerol, 3% SDS, 62.3 mM Tris HCl pH8 

4X Loading buffer (WB): 40%, 16% SDS, 250 mM Tris HCl pH 8, 20% β-mercaptoethanol 

(must be added extemporaneously) 

  

2 ml of BY-2 cell suspension are vaccum-filtered and frozen in liquid nitrogen. Cell are first 

grinded with glass beads, resuspended in 600 µl EB buffer and vortexed. 600 µl of biophenol 

pH8 are added and vortexed again. Samples are then centrifuged at maximum speed for 5 

minutes and aqueous phase is precipitated overnight with 5 volumes of methanol/100 mM 

ammonium acetate at -20°C. Microtubes are centrifuged at maximum speed for 20 minutes in 

order to pellet proteins. Pellets are washed 2 times with chilled methanol and air dried for 30 

seconds maximum. Pellet are resuspended in 75 µl of RB buffer by vortexing. When pellets 

are completely dissolved, 25 µl of WB buffer are added and samples are heated 2 minutes at 

60°C (usually 95°C, but 60°C is best suited for GFP-AGO1 detection). 
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b. Protein quantification 

 

Amidoblack solution: 10% acetic acid, 90% methanol, 0.05% naphtol blue (Sigma-Aldrich) 

Washing solution: 10% acetic acid, 90% ethanol 

190 µl of bidistilled water are added to 10µl of total protein extracts and vortexed. 1 

ml of Amidoblack solution is then added and mixed by hand. Tubes are centrifuged at 

maximum speed for 15 minutes and the supernatant is discarded. Pellets are rinsed with 

washing solution and centrifuged again at maximum speed for 15 minutes. When the 

supernatant has been removed and the pellets are dry, they are resuspended in 1 ml of 0,2 N 

Sodium hydroxide solution (NaOH). 200 µl are used for measuring optical density at 630 nm. 

Protein concentration is calculated according to a BSA (bovine serum albumin) standard 

curve. 

 

c. Immunodetection by Western blot 

 

Tris-Glycine electrophoresis buffer: 25 mM Tris Base, 250 mM glycine, 0.1% SDS 

Transfer buffer: 25 mM Tris base, 192 mM glycine, 15% ethanol 

TBST-T (Tris-buffered saline-Tween) buffer: 20 mM Tris base, 150 mM NaCl, 0.1% 

Tween20 (Sigma-Aldrich) pH 7.4 

Staining solution: 89.9% ethanol, 10% acetic acid, 0.05% Coomassie blue (Sigma-Aldrich) 

Destaining solution: 30% ethanol, 10% acetic acid 

 

Total protein extract and immunoprecipitated proteins were separated by SDS-PAGE. 

Acrylamide gels are prepared as described in Sambrook et al., 1989 (book) using Mini-

Protean III (BioRad) casting system. Frozen protein samples are thawed at 40°C for 2 minutes 

and loaded on 7% Tris-glycine gels or gradient 4-16% Tris-glycine Criterion TGX precast 

gels (BIORAD). Protein are first migrated at 50 V until the migration front reaches the 

resolving gel and are then migrated at 100 V. For Criterion TGX gels, migration was done at 

200 V for 20 minutes. Protein separated on gel are then transferred on previously activated 
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Immobilon-P PVDF membrane (GE Healthcare-Life Sciences) at 400 mA for 1h15. 

Transferred membranes are rinsed with TBS-T and incubated with 5% milk TBS-T for 20 

minutes at room temperature. Membranes are incubated in 5% milk TBS-T with primary 

antibody for 2 hours at room temperature or overnight at 4°C. Membranes are rinsed 3 times 

with TBS-T, 5 minutes each and incubated for 1 hour in 5% milk TBS-T with secondary 

antibody at room temperature. Membrane is washed 3 times, as done previously and revealed 

using Clarity chemoluminescent substrate (BIORAD). Total proteins can be stained with 

Coomassie blue solution. To enhance contrast, membranes are washed with destaining 

solution 

Antibodies and dilutions are listed below:  

 

Primary antibodies 
Reference Immunogen Clonality Host Dilution Company/reference 
 JL-8  GFP Monoclonal Mouse 1/2000 Takara Bio Clontech 

A11122 GFP Polyclonal Rabbit 1/5000 
ThermoFisher 
Scientific 

ab290 GFP Polyclonal Rabbit 1/5000 Abcam 

AS09 527 
Arabidopsis 
AGO1 Polyclonal Rabbit 1/10000 Agrisera 

AS16 
3141 Actin  Monoclonal Mouse 1/20000 Agrisera 
  Tobacco CYCB1 Polyclonal  Rabbit 1/1000 Criqui et al., 2000 

  Tobacco AGO1 Polyclonal  Rabbit 1/10000 
J. Burgyan’s lab, 
Hungary 

Secondary antibodies 
Reference Reactivity Host Label Dilution Company 

A16104 Rabbit Goat 
HRP (horseradish 
peroxydase) 1/10000 

ThermoFisher 
Scientific 

A16072 Mouse Goat 
HRP (horseradish 
peroxydase) 1/10000 

ThermoFisher 
Scientific 

 

d. RNA immunoprecipitation of AGO1-associated small RNAs 

 

Extraction buffer (EB): 50 mM Tris HCl 7.5, 300 mM NaCl, 10% glycerol, 5 mM MgCl2, 

0.5% Triton X-100 (Sigma-Aldrich), 5 mM DTT, complete mini protease inhibitors (Roche)  

Washing buffer (WB): same as EB but without DTT and protease inhibitors  

4X Loading buffer: 40%, 16% SDS, 250 mM Tris HCl pH 8, 20% β-mercaptoethanol (must 

be added extemporaneously) 
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The whole procedure must be done at 4°C, except for RNA and protein elution.  

Sample preparation 

At least 1.25 g of frozen BY-2 cells are grinded in a nitrogen chilled mortar. 3 volumes of 

cold EB buffer are added to the frozen powder and mixed gently until it is thawed completely. 

Crude extracts are incubated for 30 minutes on a rotary shaker (5 rpm) and debris are 

eliminated by centrifugation at maximum speed for 15 minutes in a pre-chilled rotor. 

Magnetic beads preparation 

50 µl GFP-trap (Chromotek) magnetic beads are used for each sample. Microtubes are place 

on a magnetic stand and supernatant is discarded when beads are completely sedimented. 

Beads are then rinsed with 1 ml of cold WB and incubated at 4°C on a rotary shaker for 5 

minutes. This step is repeated 3 times. Finally, the beads are resuspended in 50 µl of WB 

buffer. 

Incubation and Washings 

3 ml of cleared crude extracts are incubated in a 15 ml tube with 50 µl of washed magnetic 

beads. Tubes are placed on a rotary shaker for 1 hour. 15 ml tubes are then centrifuged 2 

minutes at 3000 rpm. Beads are resuspended in 1 ml of EB and transferred in microtubes. 

Samples are then washed 4 times as described for magnetic beads preparation. In parallel, 150 

µl of input fraction and unbound fraction are kept as control and denatured 2 minutes at 95°C 

with 50 µl of 4X loading buffer. 

RNA and protein elution 

Supernatant is discarded on a magnetic rack and beads are resuspended in 50 µl of WB. 800 

µl of TriReagent (Sigma-Aldrich) are added to 45 µl of beads. Microtubes are incubated 1 

minutes under strong agitation. 200 µl of Chloroform (Sigma-Aldrich) are added and 

microtubes are again vortexed for 3 minutes. Phases are separated by centrifugation at 

maximum speed for 15 minutes. Aqueous phase is recovered and incubated for 12 hours at -

20°C with 1 volume of cold isopropanol. RNAs are then precipitated by centrifugation at 

maximum speed for 20 minutes at 4°C. Pellet are washed 2 times with 1 ml of 70% ethanol 

and air dried until they became colorless. RNA pellets are finally resuspended in 50 µl of 

ultrapure water (Sigma-Aldrich). For protein extraction, 15 µl of WB buffer are added to the 

remaining 5 µl of beads and 4X loading buffer was added to a final concentration of 1X. 

Samples are then denatured for 2 minutes at 95°C. 
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e. Size exclusion chromatography 

 

Extraction Buffer (EB): 50 mM Tris HCl 7.5, 300 mM NaCl, 10% glycerol, 5 mM MgCl2, 

0.5% Triton X-100 (Sigma-Aldrich), 5 mM DTT, complete mini protease inhibitors (Roche)  

Chromatography buffer (CB): same as EB but without Glycerol, DTT and protease 

inhibitors 

Sample preparation 

5 g of frozen BY-2 cell are grinded in a nitrogen chilled mortar. 3 volumes of cold EB buffer 

are added to the frozen powder and mixed gently until it is thawed completely. Crude extracts 

are incubated for 30 minutes on a rotary shaker (5 rpm) and debris are eliminated by 

centrifugation at maximum speed for 15 minutes in a pre-chilled rotor. Lysate is then filtered 

on a 0.22 µM filter.  

Gel filtration 

The entire procedure is done at 4°C. 

Gel filtration was performed on AKTA PURE (GE Healthcare-Life Sciences) FPLC (Fast 

protein liquid chromatography apparatus) equipped with Superdex 200 16/60 HiLoad gel 

filtration column (GE Healthcare-Life Sciences). The column is preliminary equilibrated with 

240 ml (2X column volume) of CB buffer. Cleared crude BY-2 extract is entirely injected and 

separated with 200 ml of CB (more than 1.5X column volume) at 0.2 ml/min. 2 ml fractions 

were collected and processed for RNA and protein extraction as described previously. 

 

6. Confocal Microscopy 

 

Confocal microscopy was performed on a LEICA TCS SP8 laser scanning microscope (Leica 

Microsystem) using the following objectives: 
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Designation Magnification Numeric aperture Immersion 
HCX APO CS 20X X20 0,7 AIR 

HC PL APO CS2 40X X40 1,1 WATER 
HC PL APO CS2 63X X63 1,4 OIL 

 

Microscopy settings for Arabidopsis thaliana and BY-2 samples are listed below: 

Plant material BY-2 Arabidopsis thaliana 

Protein GFP-AGO1 H2B-tdTomato 
GFP-tagged 
proteins Propidium Iodide 

Laser Argon DSSP Argon DSSP 

Excitation  
480 nm-approx. 
20% 

561 nm-approx. 
1% 

480 nm-approx. 
2% 

561 nm-approx. 
1% 

Emission  500-550 nm 575-650 nm 500-550 nm 600-630 nm 
Pinhole  1,5-2 1,5-2 1 1 
PMT-HYD gain 340% 100% 100% 50-100% 
 

Microscopy images are processed using the FigureJ software. 

 

7. Libraries preparation and high-throughput sequencing 

 

Libraries were prepared from total and AGO1 immunoprecipitated RNAs for each key 

step of the cell cycle. Cells in S, G2, M and G1 phases were harvested from synchronized 

BY-2 samples at 1,3,7 and 10 hours after aphidicolin removal, respectively. RNA libraries 

and small RNA libraries were prepared by Fasteris company (Swiss). RNA quality was 

assessed using Bioanalyzer (Agilent) capillary electrophoresis and Qubit (ThermoFisher 

Scientific) fluorometer. For mRNA libraries, 1µg of total RNA was used following TruSeq 

stranded mRNA kit (Illumina) instructions. Libraries were sequenced (2X75bp) on a HiSeq 

4000 (Illumina) apparatus. For small RNA libraries, 1µg of total RNA of the whole 

immunopurified RNA samples was used following protocol of the TruSeq Small RNA library 

preparation kit (Illumina). Libraires were sequenced (1x50bp) on a HiSeq 2500 (Illumina) 

apparatus. PARE libraries were prepared in collaboration with the laboratory of professor 

Blake C. Meyers (Danforth plant science center, St Louis, USA) following the protocol 

described in (Zhai et al., 2014). PARE libraries were sequenced (1x50bp) on a HiSeq2500 

(Illumina) apparatus by Delaware Biotechnology Institute (DE, USA). All the small RNA, 
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RNA and PARE sequences will be deposited in the National Centre for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO). 

 

8. Bioinformatic analysis 

 

Sequencing data quality was assed using FastQC. Reads were processed by removing the 

adaptor sequences using Trimmomatic (Bolger et al., 2014) and mapped to the Nicotiana 

tabacum genome version 4 (Edwards et al., 2017), 

(https://solgenomics.net/organism/Nicotiana_tabacum/genome), using Bowtie (Langmead and 

Salzberg, 2012).  

 For sRNAs, a modified version of miREAP was used as described in (Arikit et al., 2014) 

for miRNA prediction. Only miRNA precursors with reads present in both arms and mature 

miRNAs 21nt or 22nt-long were selected. New miRNA candidates were then used for 

homology search using miRBase v22 (Kozomara and Griffiths-Jones, 2014), with a maximum 

of 4 nucleotides difference. To analyse heterochromatic siRNAs, we first ran RepeatMasker 

(http://www.repeatmasker.org) using the Viridiplantae RepBase database 

(http://www.girinst.org/repbase) as library. For RNa-seq, analyses were performed using the 

HISAT2 and StringTie as described in (Pertea et al., 2016). Clustering analysis was done 

using MFuzz v3.6 and gene ontology analysis was performed by using the Arabidopsis 

orthologs and PANTHER v11 (Mi et al., 2017). PARE libraries were analyzed using sPARTA 

(Kakrana et al., 2014). Three biological replicates of each cell cycle phase were used as 

starting material. Only miRNA-target pairs present in all biological replicates, with a score of 

3 or lower, were considered for further analysis. All statistical analysis were performed using 

DESeq2 (Love et al., 2014).  

https://solgenomics.net/organism/Nicotiana_tabacum/genome
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Supplemental figures 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplemental Figure 1 : Workflow for small RNA identification from BY-2 libraries 



 

 

Supplemental Figure 2 : Heatmap of differentially expressed tRFs in AGO1 IP libraries 

(*q-value≤0.05 ; **q-value≤0.01) 



 

Supplemental Figure 3: Maps of vector carrying pAGO1:GFP-AGO1 construct. 

pAGO1:GFP-AGO1 construct was amplified from the pGREEN II binary vector  that carries the Basta 
resistance in plant. The construct was cloned in a pDONR221 vector and transferred to a pKGW 
(conferring kanamycin resistance in plant) binary vector using Gateway cloning. pKGW-
pAGO1:GFP-AGO1 was then used to express GFP-AGO1 in tobacco BY-2 cell suspension). 
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Supplemental tables 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplemental Table 1 : Counts of total reads and mapped reads per RNA seq libraries. 

  



 

 

Supplemental Table 2 : Counts of total reads and mapped reads per small-RNA seq libraries. 

 

 

 



 

 

 

Supplemental Table 3 : Counts of total reads and mapped reads per PARE seq libraries.

Supplemental table XX: 

Total sequences Distinct genome 
matched reads

t/r/sn/snoRNA 
matched reads

Rep 1 14,647,205 9,738,524 (66.49%) 4,269,658 21573
Rep 2 14,718,547 9,667,797 (65.68%) 4,510,998 31490
Rep 3 13,837,696 9,308,550 (67.27%) 3,704,141 86109
Rep 1 26,025,903 16,815,427 (64.61%) 6,409,021 23117
Rep 2 16,053,096 10,714,399 (66.74%) 4,800,217 43213
Rep 3 14,764,149 9,888,052 (66.97%) 4,019,360 65528
Rep 1 14,548,786 9,872,981 (67.86%) 4,347,503 29512
Rep 2 14,711,219 9,857,899 (67.01%) 4,637,904 49753
Rep 3 19,993,156 13,635,670 (68.2%) 5,652,963 53843
Rep 1 27,916,891 18,493,549 (66.24%) 6,761,313 46671
Rep 2 19,015,537 12,736,768 66.98%) 5,603,500 51656
Rep 3 16,967,175 11,555,300 68.1%) 5,184,845 43230
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Vector name Accession Vector backbone In bacteria In plant Designation Used for Primers Provenance/reference 

pENTRY pAGO1:GFP-AGO1 AT1G48410 pDONR221 Kanamycin 
 

Entry clone/ AGO1 promoter;AGO1 cDNA; 3'UTR, N-ter fusion to eGFP cloning 3,4 designed in the lab 

pCYCB1.2:CYCB1.2 AT5G06150 pDONR221 Kanamycin 
 

Entry clone/cell cycle marker C-ter fusion cloning 
 

designed in the lab 

pHTR2:CDT1a(C3) AT2G31270 pDONR221 Kanamycin 
 

Entry clone/cell cycle marker C-ter fusion cloning 
 

designed in the lab 

pENtry U2B" AT2G30260 pDONR221 Kanamycin 
 

Entry clone/U2B" CDS for C-ter fusion cloning 25,26 designed in the lab 

pENTRY DCP1 AT1G08370 pDONR207 Gentamycin 
 

Entry clone/DCP1 CDS for N-ter fusion cloning 
 

D.Gagliardi lab, IBMP 

pENTRY PAB2 AT4G34110 pDONR207 Gentamycin 
 

Entry clone/ PAB2 CDS for C-ter fusion cloning 
 

D.Gagliardi lab, IBMP 

pENTRY HYL1 AT1G09700 pDONR221 Kanamycin 
 

Entry clone/HYL1 genomic sequence for C-ter fusion cloning 27,28 designed in the lab 

pGREENII pAGO1:GFP-AGO1 AT1G48410 pGREENII Kanamycin Basta Binary vector/ GFP-AGO1 expression cloning 
 

Derrien et al., 2012 

pKGW pAGO1:GFP-AGO1 AT1G48410 pKGW Spectinomycin Kanamycin Binary vector/ GFP-AGO1 expression BY-2 transformation 
 

designed in the lab 

pRPS5a:H2B-tdTomato At1G07790 pMDC99 Kanamycin Hygromycin Binary vector/histone H2B chromatin marker; C-ter fusion to tdTomato BY-2 transformation 
 

Adachi et al., 2011 

pGWB pCYCB1.2:CYCB.2-eGFP AT5G06150 pGWB650 Spectinomycin Basta Binary vector/ M-phase cell cycle marker; C-ter fusion to eGFP Arabidopsis transformation 
 

designed in the lab 

pGWB pHTR2:CDT1a(C3)-eGFP AT2G31270 pGWB650 Spectinomycin Basta Binary vector/S-phase cell cycle marker; C-ter fusion to eGFP Arabidopsis transformation 
 

designed in the lab 

pH7 U2B"-RFP AT2G30260 pH7RWG2 Spectinomycin Hygromycin Binary vector/Cajal bodies marker; C-ter fusion to RFP BY-2 transformation 
 

designed in the lab 

pH7 RFP-DCP1 AT1G08370 pH7WGR2 Spectinomycin Hygromycin Binary vector/Dicing bodies marker; N-ter fusion to RFP BY-2 transformation 
 

designed in the lab 

pH7 PAB2-RFP AT4G34110 pH7RWG2 Spectinomycin Hygromycin Binary vector/Stress granules marker; C-ter fusion to RFP BY-2 transformation 
 

designed in the lab 

pH7 HYL1-RFP AT4G34110 pH7RWG2 Spectinomycin Hygromycin Binary vector/Dicing bodies marker; C-ter fusion to RFP BY-2 transformation 
 

designed in the lab 

Empty vectors 

pDONR221 
  

Kanamycin 
 

Empty donor vector cloning 
 

Invitrogen 

pH7WGR2 
  

Spectinomycin Hygromycin Empty binary vector/35S promoter, N-ter fusion to RFP cloning 
 

VIB, Belgium 

pH7RWG2 
  

Spectinomycin Hygromycin Empty binary vector/35S promoter, C-ter fusion to RFP cloning 
 

VIB, Belgium 

pGWB650 
  

Spectinomycin Basta Empty binary vector/No promoter, C-ter fusion to eGFP cloning 
 

RIKEN, Japan 

pKGW 
  

Spectinomycin Kanamycin Empty binary vector/No promoter cloning 
 

VIB, Belgium 

 

Supplemental Table 4 : List of vectors used for cloning and gene expression in Arabidopsis and BY-2 cells. 



Primer number Designation Sequence (5’->3’) Used for 
1 M13-fw TGTAAAACGACGGCCAGT sequencing/cloning 
2 M13-rv CATGGTCATAGCTGTTTCCTG sequencing/cloning 
3 AttB1-AGO1-fw GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACGACGGCCAGTGAATTGTAATACGA Gateway cloning pAGO1:GFP-AGO1 
4 AttB2-AGO1-rv GGGGACCACTTTGTACAAGAAAGCTGGGTAGCTATGACCATGATTACGCCAAGCT Gateway cloning pAGO1:GFP-AGO2 
5 AGO1-seq-fw1 ACCAAGGAAGAGGAAGAGGA AGO1 sequencing 
6 AGO1-seq-fw2 TTACCTGACCAACTGTGTTC AGO1 sequencing 
7 AGO1-seq-fw3 CTTGTAAGTCTCAGCTGGTT AGO1 sequencing 
8 AGO1-seq-fw4 AAGTGACTCATCGAGGAAAC AGO1 sequencing 
9 AGO1-seq-fw5 ATGCTCAAGAGTTTGGCATC AGO1 sequencing 

10 AGO1-seq-fw6 ATGCTCTATCTAGGCGGAT AGO1 sequencing 
11 AGO1-seq-fw7 CCGTAGATCAACTGGGCAT AGO1 sequencing 
12 AGO1-seq-fw8 TGTAGGCACTGTTGTGGACTCT AGO1 sequencing 
13 AGO1-seq-fw9 AGGGCTCGATTCTACATGGA AGO1 sequencing 
14 AGO1-seq-rv1 TCCTCTTCCTCTTCCTTGGT AGO1 sequencing 
15 AGO1-seq-rv2 GAACACAGTTGGTCAGGTAA AGO1 sequencing 
16 AGO1-seq-rv3 AACCAGCTGAGACTTACAAG AGO1 sequencing 
17 AGO1-seq-rv4 GTTTCCTCGATGAGTCACTT AGO1 sequencing 
18 AGO1-seq-rv5 GATGCCAAACTCTTGAGCAT AGO1 sequencing 
19 AGO1-seq-rv6 ATCCGCCTAGATAGAGCAT AGO1 sequencing 
20 AGO1-seq-rv7 ATGCCCAGTTGATCTACGG AGO1 sequencing 
21 AGO1-seq-rv8 AGAGTCCACAACAGTGCCTACA AGO1 sequencing 
22 AGO1-seq-rv9 TCCATGTAGAATCGAGCCCT AGO1 sequencing 
23 AttB1-CYCB1.2-fw GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAGACTTACTCTGATCTTCAACGCCAA Gateway cloning pCYCB1:CYCB1.2 (dBox) 
24 AttB2-CYCB1.2-rv GGGGACCACTTTGTACAAGAAAGCTGGGTACTTAGGTGACATCGCTACTTCCTT Gateway cloning pCYCB1:CYCB1.2 (dBox) 
25 AttB1-U2B"-fw GGGACAAGTTTGTACAAAAAAGCAGGCTATGTTAACGGCAGATATACCACC Gateway cloning U2B" CDS 
26 AttB2-U2B"-rv GGGGACCACTTTGTACAAGAAAGCTGGGTTTTCTTGGCGAAAGAGATGAC Gateway cloning U2B" CDS 
27 AttB1-HYL1-fw GGGACAAGTTTGTACAAAAAAGCAGGCTTAATGACCTCCACTGATGTTTCCTC Gateway cloning HYL1 genomic sequence 
28 AttB2-HYL1-rv GGGGACCACTTTGTACAAGAAAGCTGGGTATGCGTGGCTTGCTTCTGTCT Gateway cloning HYL1 genomic sequence 

Supplemental Table 5 : Primers used for cloning and sequencing. 
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La première partie de l’introduction traitant des différentes voies de régulation du cycle 

cellulaires chez les eucaryotes est traduite en français dans la section suivante  

 

Introduction 

 

A. Le cycle cellulaire chez les eucaryotes 

 

1. Principes généraux du cycle cellulaire 

 

Le cycle cellulaire est un processus biologique au cours duquel une cellule mère donne 

naissance à deux cellules filles génétiquement identiques. Au cours de ce processus, les 

composants cellulaires, y compris le génome, sont d'abord dupliqués, puis répartis dans les deux 

cellules nouvellement formées. Le cycle cellulaire est fondamental, car il est impliqué dans la 

reproduction végétative des organismes unicellulaires, mais aussi dans l'organogenèse et la 

reproduction sexuée chez les eucaryotes supérieurs. 

La recherche sur le cycle cellulaire a débuté au cours du 19e siècle. En 1855, l'Allemand Rudolf 

Virchow fut le premier à affirmer "qu’une cellule provient d'une autre cellule". Par la suite, les 

chercheurs ont décrit en détail l'aspect cytologique de la division cellulaire (Nurse et al., 1998). 

Cependant, notre compréhension mécanistique de la régulation du cycle cellulaire n'a explosé 

que dans les années 80, avec le développement de la biologie moléculaire. Les travaux de Paul 

Nurse, Leland Hartwell et Tim Hunt sur les gènes du cycle cellulaire chez la levure et l'humain 

ont été récompensés par un prix Nobel en médecine et physiologie en 2001. 

Le cycle cellulaire consiste en quatre phase successives (Figure 1). Le génome est d'abord 

dupliqué pendant la phase de synthèse de l'ADN (S). Les deux copies du génome sont ensuite 

séparées pendant la mitose (M). Entre ces deux événements principaux, il y a deux phases de 

latence appelées gap 1 et 2 (G1 et G2) où les cellules contrôlent le bon déroulement de la phase 

précédente et préparent l’ensemble des composants nécessaires pour la transition vers la phase 

suivante. La phase M du cycle cellulaire peut elle-même être subdivisée en quatre étapes : la 

prophase, la métaphase, l'anaphase et la télophase (Figure 2). Pendant la prophase, l'ADN est 

condensé en chromosomes fortement enroulés, l'enveloppe nucléaire se désintègre et le fuseau 



mitotique commence à se former dans le cytoplasme. En métaphase, les chromosomes 

atteignent le plan de division (ou plan équatorial) et s'attachent au fuseau mitotique par des 

régions spécifiques des chromatides, appelées kinétochores. Une fois appariées aux fibres des 

microtubules du fuseau mitotique, les chromatides sœurs sont séparées et migrent dans des 

directions opposées pendant l'anaphase. Enfin, la télophase consiste en la réformation de 

l'enveloppe nucléaire et des organites nucléaires, et en la décondensation de la chromatine. La 

télophase se produit en même temps que la scission du compartiment cellulaire, ou cytocinèse. 

Dans les cellules animales, la cytocinèse implique un anneau contractile de filaments d'actine. 

En revanche, les cellules végétales sont recouvertes d'une paroi cellulaire, leur conférant de la 

rigidité et, par conséquent, empêche la division d'une manière similaire. En lieu et place, la 

cytocinèse chez les plantes nécessite un transport actif de composants cellulaires vers la plaque 

équatoriale. Ceci est réalisé par une structure composée de microtubules, le phragmoplaste, qui 

est chargé de guider les composants de la paroi cellulaire vers le plan de division par le biais de 

vésicules Golgiennes (Figure 1). 

Le contrôle et la synchronisation des processus qui constituent le cycle cellulaire est essentiel 

pour tous les organismes. Chez l'animal, la mauvaise régulation de la division cellulaire entraîne 

une prolifération cellulaire anormale et peut induire le développement de tumeurs. Les plantes 

se distinguent des animaux par le fait que l’embryogenèse se produit principalement de manière 

post-embryonnaire. De plus, les plantes sont des organismes sessiles. Par conséquent, ils 

doivent adapter leur croissance pour faire face à de nombreuses contraintes, telles que la 

disponibilité des ressources, les conditions environnementales et les attaques de pathogènes.  

En ce sens, le cycle cellulaire doit être étroitement régulé pendant toute la durée de vie de la 

plante, et ceci est accompli par un ensemble de gènes essentiels appelés «core cell cycle genes» 

Le chapitre suivant vise à donner un aperçu des voies de régulation du cycle cellulaire chez les 

eucaryotes, et en particulier sur les plantes.  

 

2. Régulation du cycle cellulaire  

 

Les preuves de l’existence d’une régulation moléculaire de la prolifération cellulaire ont été 

découvertes pour la première fois dans oocytes de Xenopes (Masui et Markert, 1971). En effet, 

le traitement d’oocytes avec un extrait cellulaire d’oocytes traités à la progestérone est suffisant 

pour stimuler l’entrée en méiose, suggérant l'existence d'un "facteur cytosolique de 



maturation/de promotion de la mitose" (MPF). Ce MPF a ensuite été identifié chez 

Schizosaccharomyces pombe et caractérisé comme un hétérodimère contenant la kinase CDC2 

(CELL CYCLE CONTROL 2) et une cycline associée (Gautier et al., 1988, 1990), deux acteurs 

essentiels du cycle cellulaire qui seront décrit plus loin dans ce manuscrit. 

a. Les CDK pilotent la progression dans le cycle cellulaire 

 

Les kinases cycline-dépendantes (CDK) sont des kinases à sérine-thréonine qui nécessitent une 

association avec des sous-unités activatrices appelées cyclines (CYCs) pour leur activité 

enzymatique (Malumbres, 2014). On trouve des CDK chez tous les eucaryotes, y compris 

Saccharomyces cerevisiae (CDC28, PHO85, KIN28, SRB10, BUR1, CTK1), 

Schizosaccharomyces pombe (CDC2), Human (CDK1-20) et plantes (CDKA-G). Les CDK 

sont classés en deux groupes : ils participent à la régulation du cycle cellulaire ou à la régulation 

transcriptionnelle (Malumbres, 2014 ; Joubès et al., 2000). Bien que le niveau d'accumulation 

des CDK reste globalement constant dans les tissus prolifératifs, leur activité doit être modulée 

au cours des différentes phases du cycle cellulaire. Cette modulation est apportée par 

l'interaction avec des cyclines qui, contrairement aux CDK, sont exprimées et dégradées à des 

moments précis du cycle cellulaire. Ainsi, différents complexes CDK/CYC se forment au cours 

du cycle cellulaire, et ont une affinité pour une grande variété de substrats. Ceci permet donc 

l'activation séquentielle de processus moléculaires tels que la transcription des gènes du cycle 

cellulaire, la réplication de l'ADN, la réparation de l'ADN, la compaction de la chromatine, le 

réarrangement cytosquelette et le montage du fuseau mitotique (Chi et al, 2008 ; Holt et al, 

2010 ; Anders et al, 2011).  

 

b. Diversité et fonctions des complexes eucaryotes CDK/Cyclines 

 

Les CDK eucaryotiques  

 

Parmi les vingt CDK humaines, seuls les CDK1, 2, 3, 4 et 6 favorisent les transitions du cycle 

cellulaire (Malumbres, 2014). Ces CDK sont classés en deux sous-familles : les groupes CDK1-

2-3 et CDK4-6 (figure 3). CDK1 est capable de se lier à tous les cyclines en l'absence d'autres 



CDK et est suffisant pour conduire une activité minimale du cycle cellulaire aux premiers stades 

de l'embryogenèse (Santamaría et al., 2007). De plus, la mutation cdk1-/- ou la substitution de 

CDK1 par CDK2 entraîne une létalité embryonnaire, indiquant que le CDK1 est essentiel à la 

division cellulaire (Santamaría et al., 2007 ; Satyanarayana et al., 2008). Il est intéressant de 

noter que les mutations cdk2, 3, 4 et 6 montrent des interactions génétiques. Les souris cdk2-/-

-, cdk4-/- et cdk6-/- se développent normalement (Berthet et al., 2003 ; Ye, 2001 ; Tsutsui et al., 

1999 ; Malumbres et al., 2004) et présentent seulement des phénotypes dans certains types 

cellulaires hautement spécialisés. Cependant, les doubles mutants cdk2-/- ; cdk4-/- et cdk4-/- ; 

cdk6-/- sont des mutants embryo-létaux, ce qui suggère une redondance, au moins partielle, des 

fonctions des CDK (Berthet et al., 2006 ; Malumbres et al., 2004).  

Les CDK de plantes sont divisés en huit classes : CDKA à G (figure 3). Le génome 

d'Arabidopsis thaliana code une CDKA unique (CDKA1;1), quatre CDKB (CDKB1;1-2 et 

CDKB2;1-2), deux CDKC (CDKC;1-2), trois CDKD (CDKD;1-3), trois CDKE (CDKE;1-3), 

un CDKF (CDKF;1) et deux CDKG (CDKG;1-2) (Gutierrez, 2009 ; Van Leene et al., 2010). 

Les CDK de type A ont en commun un motif conservé PSTAIRE de liaison aux cyclines que 

l'on trouve également chez les CDK de levures CDC2/CDC28 et dans les CDK1, 2 et 3 

humaines (De Veylder et al., 2003, 2007). Les CDKB sont des CDK spécifiques à la plante qui 

possèdent des motifs PPTALRE et PS/PTTLRE (pour les CDKB1 et CDKB2, respectivement) 

(De Veylder et al., 2003, 2007). CDKA est nécessaire pour le cycle cellulaire chez les plantes. 

En effet, la perte de CDKA affecte le développement du pollen et induit une létalité 

embryonnaire (Iwakawa et al., 2006 ; Nowack et al., 2006). De plus, CKDA1 ; mais pas CDKB 

est capable de complémenter les mutants de S. cerevisiae cdc28-/- et S. pombe cdc2-/-, 

indiquant que CDKA1 partage des fonctions communes avec ses homologues de levure 

(Ferreira et al., 1991 ; Porceddua et al., 1999). Contrairement aux CDKA, la perte de la fonction 

de CDKB1;1 n'affecte pas la progression au cours du cycle cellulaire et les mutants parviennent 

à se développer normalement. Cependant, le mutant cdkb1;1 montre un nombre de cellules plus 

important et ces dernieres sont  de plus grande taille, indiquant une augmentation du niveau de 

ploïdie comparativement aux plantes sauvages (Boudolf et al., 2016). Ce mutant est également 

affecté dans la division des cellules stomatales (Boudolf et al., 2016). De plus, les mutants 

cdkb2;1 d'.Arabidopsis présentent une altération de l'organisation du méristème apical 

(Andersen et al., 2008). Bien que les fonctions des CDK de type B ne soient pas encore claires, 

ces résultats suggèrent qu'elles sont impliquées dans des processus spécifiques aux 

développement des plantes. Dans une moindre mesure, les CDKD et les CDKF1 jouent 



également un rôle dans le cycle cellulaire en activant d'autres CDK (Shimotohno, 2004 ; Umeda 

et al., 2005). Cette fonction sera abordée plus loin dans un chapitre dédié. 

 

Les cyclines  

 

Le terme "cycline" désigne l'instabilité de ces protéines. La découverte des premières cyclines 

a été faite dans des œufs d'oursins, où les chercheurs ont mis en évidence la dégradation de cette 

protéine pendant la division cellulaire (Evans et al., 1983). Les cyclines se caractérisent par la 

présence de deux domaines communs : la cyclin box qui est nécessaire à l'activation CDK et 

qui détermine la spécificité du substrat, et la destruction box (D-box), nécessaire à leur 

protéolyse (Glotzer et al., 1991 ; Horton et Templeton, 1997). Les cyclines eucaryotiques sont 

classées en deux groupes : les cyclines mitotiques, qui comprennent les cyclines de type A et 

B, et les cyclines interphasiques, comprenant les cyclines de type C, D et E. Ces différentes 

cyclines présentent des profils d'accumulation spécifiques au cours du cycle cellulaire, 

inhérents à leurs fonctions (Figure 4). Les CYCD s'accumulent dès le début de la phase G1 puis 

les CYCE pendant la transition G1-S. Les cyclines mitotiques commencent à s'accumuler 

pendant G2 et atteignent un pic durant la mitose. Cependant, les CYCA sont dégradées en 

prophase tandis que les CYCB sont dégradées plus tard lors de la sortie de mitose (examiné 

dans Genschik et al., 2014). 

Chez les plantes, les cyclines constituent une grande famille de proteines, composée de plus de 

50 membres, réparties en neuf classes. Arabidopsis compte 10 CYCA (CYCA1;1-2, CYCA2;1-

4 et CYCA3;1-4), 11 CYCB (CYCB1;1-5, CYCB2;1-5 et CYCB3 ;1) et 10 CYCD (CYCD1;1, 

CYCD2, CYCD3;1-3, CYCD4;1, CYCD4;2, CYCD5;1, CYCD6;1 et CYCD7;1) (Nieuwland 

et al., 2007). Comme leurs homologues humains, la fonction de ces cyclines de plantes a été en 

grande partie caractérisés. D’autres classes de cyclines ont également été identifiées, 

notamment CYCC, CYCH, CYCL, CYCP, CYCT, CYCT et SDS (SOLO DANCERS) 

(Nieuwland et al., 2007 ; Van Leene et al., 2011). Cependant, leurs fonctions doivent encore 

faire l'objet d'une étude plus approfondie pour la plupart d'entre eux. 

 

 

 



c. Régulation de l'activité du CDK 

 

Activation des CDK par les cyclines 

 

D’un point de vue structurel, la poche de liaison à l' ATP des CDK est localisée dans un sillon 

entre les lobes N-terminal et C-terminal. En l'absence de cyclines, un motif « helix-loop » 

appelée boucle d'activation ou « T-loop » interfère avec ce domaine (De Bondt et al., 1993 ; 

Morgan, 1997) (Figure 5). Dans cette configuration, la CDK ne peux pas se lier aux substrats 

et un mauvais positionnement de la molécule d'ATP empêche le transfert du groupe phosphate, 

conduisant a une CDK inactive. Lors de l'interaction CDK/CYC, la T-loop est transloquée et 

l'activité CDK est promue. Non seulement les cyclines activent les CDK, mais elles fournissent 

aussi des motifs supplémentaires nécessaires à la relocalisation des CDK dans le noyau (Brown 

et al., 1999 ; Pines et Hunter, 1991) ou à la reconnaissance du substrat, conditionnant ainsi la 

spécificité des CDK, du moins en partie.  

 

Modifications post-traductionnelles des CDK 

 

Bien que la liaison avec les cyclines soit suffisante pour activer les CDK, elles nécessitent 

toutefois d'être phosphorylées pour être pleinement fonctionnelles. Il a été démontré que la 

phosphorylation du résidu Thr160 de la CDK2 humaine ou Thr161 de CDC2 de levure, qui se 

trouve à l'intérieur de la T-loop, améliore l'affinité de certaines paires CDK/CYC (Ducommun 

et al., 1991 ; Desai et al., 1995 ; Russo et al., 1996) (Figure 5). Les enzymes qui catalysent cette 

phosphorylation sont appelées "CDK-activating kinases" (CAK). Les CAK ont été identifiés 

comme étant des dimères liés aux CDK/CYC : MOP1/MCS2 et CDK7/CYC-H, respectivement 

chez la levure et chez l'homme (Fesquet et al., 1993 ; Fisher et Morgan, 1994 ; Damagnez et 

al., 1995). Chez Arabidopsis thaliana, quatre CAK ont été identifiés : CDKF;1CAK1At, 

CDKD;3CAK2At, CDKD;1CAK3At et CDKD;2CAK4At (Shimotohno, 2004 ; Umeda et al., 2005). 

Bien que les CDKD soient apparentés à la CDK7 humaine, la fonction CDKF, quant à elle, ne 

dépend pas de la liaison avec CYC-H et est spécifique aux plantes. 



Outre le rôle de la phosphorylation dans l'activation des CDK, les CDK peuvent être inhibées 

par des modifications post-traductionnelles. La phosphorylation des résidus Thr14/Tyr15 de 

CDK1 humaine par les kinases WEE1 et MYT1 inhibe à la fois la fixation de l'ATP et la liaison 

du substrat à la kinase, empêchant ainsi l'entrée en mitose (Berry et Gould, 1996 ; Booher et al., 

1997) (Figure 5). La kinase WEE1 d’Arabidopsis, ainsi que les kinases humaines WEE1/MYT1 

ont été décrites comme contrôlant la transition G2/M et sont chargées d’induire l'arrêt du cycle 

cellulaire lors de la détection de dommages à l'ADN (De Schutter et al., 2007) (Figure 5). La 

déphosphorylation de ces résidus est nécessaire pour l'entrée dans la mitose. Ce processus est 

réalisé par les phosphatases CDC25A, B et C chez l'homme (Strausfeld et al., 1991 ; Morgan, 

1997). Il est intéressant de noter que les plantes semblent ne pas avoir de fonction CDC25 et 

que la façon dont l'inhibition par WEE1 est libérée pendant la mitose est encore matière à débats 

(Boudolf et al., 2006). 

 

Les Inhibiteurs de CDK/Cyclines (CKI) 

 

Outre la phosphorylation, l'inhibition de l'activité CDK est également médiée par les protéines 

de liaison au CDK que sont les inhibiteurs CDK (CKI). Chez l'homme, deux familles distinctes 

de CKI existent : les protéines KIP/CIP (KINASE INHIBITORY PROTEIN / CDK 

INHIBITORY PROTREIN) et INK4 (INHIBITOR OF CDK4/6) (Besson et al., 2008). Les CKI 

appartenant à la famille des INK4 (p16INK4a, p15INK4b, p18INK4c, p19INK4d) se lient uniquement 

aux CDK4 et 6 et bloquent l’interaction avec les cyclines de type D (Serrano et al., 1993 ; Hirai 

et al., 1995) (Figure 6). Les CKI de la famille KIP/CIP (p21CIP1, p27KIP1, p57KIP2) inhibent 

l'activité des CDK-D, A, E et B en se liant aux complexes CDK/CYC (Besson et al., 2008) 

(Figure 6). Bien que les modes d'action des CKI soient similaires, leur fonction est spécifique 

à certains contextes biologiques (Cánepa et al., 2007). Ainsi, les protéines INK4 sont 

impliquées dans la sénescence cellulaire, l'apoptose et la réparation de l'ADN (Cánepa et al., 

2007). p21 est exprimé en réponse aux dommages à l'ADN et induit l'arrêt du cycle cellulaire 

pendant les phases de gap. p27 est impliqué dans l'arrêt du cycle cellulaire  en conditions 

normales. En plus de p27, p57 est également un gène essentiel pendant l'embryogenèse chez la 

souris, et est requis pour le bon déroulement de la différentiation cellulaire de l'embryon 

(Tateishi et al., 2012). 



Chez Arabidopsis, 21 CKI sont présents, et sont répartis en deux groupes. La famille KRP/ICK 

(KIP-RELATED PROTEIN/INHIBITOR OF CDC2 KINASE) est composée de sept membres.  

Ce sont des orthologues de KIP/CIP humaines (Kumar et Larkin, 2017), et ils présentent un 

niveau élevé de redondance fonctionnelle avec ces derniers. L'autre famille, la SIM/SMR 

(SIAMESE/SIAMESE-RELATED) compte 14 membres (SIM et SMR1-13) (Kumar et Larkin, 

2017). Ils sont spécifiques aux plantes et ne partagent aucune homologie avec les autres CKI 

eucaryotiques. Comme chez les animaux, les CKI de plantes jouent des fonctions distinctes sur 

la croissance et le développement des plantes, principalement en raison des différences dans 

leurs modes d'expression (Kumar et al., 2015).Par exemples, il a été démontré que les KRP 

stimulent l'endoreduplication en bloquant la mitose (Verkest et al., 2005), et induisent même 

l'arrêt du cycle cellulaire et la mort cellulaire lorsqu'ils sont fortement exprimés (Schnittger et 

al., 2003). Il est intéressant de noter que plusieurs membres de la famille des SIM/SMR sont 

transcriptionnellement activés en réponse au stress, ce qui conduit à l'hypothèse que les SMR 

pourraient être impliqués dans l'intégration des signaux environnementaux pour le contrôle du 

cycle cellulaire (Peres et al, 2007 ; Yi et al, 2014 ; Kumar et Larkin, 2017). Par exemple, les 

stress oxydatif, ou les traitements à l'hydroxyurée, provoquant la production d'espèces réactives 

d’oxygène (ROS), induisent la transcription SMR4, SMR5 et SMR7. De plus, les mutants smr5 

et smr7 sont plus tolérants aux traitements à l'hydroxyurée (Yi et al., 2014). Plus récemment, il 

a été démontré que, sous une sécheresse modérée, la transcription SMR1est activée, que la 

protéine SMR1 s'accumule et que les mutants smr1 sont moins sensibles à l'inhibition de la 

croissance des jeunes feuilles (Dubois et al., 2018). 

 

d. La dégradation sélective des composants du cycle cellulaire 

 

Pour orchestrer la progression a travers les differentes phases du cycle cellulaire, les cellules 

ont besoin non seulement de synthétiser des régulateurs spécifiques du cycle cellulaire, mais 

aussi de les dégrader de manière rapide et sélective à un moment précis. Ce processus nécessite 

l'activité de l’ « ubiquitin proteasome system » (UPS) (Mocciaro et Rape, 2012 ; Genschik et 

al., 2014) qui est basé sur des enzymes appelées E3 ubiquitine-ligases (E3s). Les ligases E3, 

pouvant être sois monomérique, sois un complexe, catalyse la fixation covalente et/ou la 

polymérisation d'un petit peptide de 76 acides aminés appelé ubiquitine sur les résidus lysine 

du substrat. L'ubiquitination est une modification post-traductionnelle qui, selon la topologie 



de la chaîne de l'ubiquitine, intervient dans la réparation de l'ADN, le remodelage de la 

chromatine, la signalisation, le trafic cellulaire ou la protéolyse ubiquitine-dépendante 

(Ciechanover et al., 2000 ; Kwon et Ciechanover, 2017). Le mécanisme de transfert de 

l'ubiquitine à un substrat nécessite trois étapes différentes (Figure 7) (Ciechanover et al., 2000 

; Vierstra, 2009 ; Callis, 2014). L'ubiquitine est d'abord adénylée en position C-terminale par 

l'enzyme activatrice E1 et transférée sur un résidu cystéine de E1. Il est ensuite transféré dans 

un résidu cystéine d'une enzyme E2 dite de « conjugaison ». Selon le type de E3, l'E2 couplée 

à l'ubiquitine peut soit se lier à l'E3 et l'ubiquitine être directement conjuguée au substrat, soit 

être d'abord transférée à un résidu cystéine sur l'E3, qui sera ensuite chargé de l'ubiquitination 

du substrat, entraînant sa dégradation par le protéasome 26S. La protéolyse au cours du cycle 

cellulaire implique quatre classes d'E3 ligases : les SCF (SKP1/Cullin1/F-box), le complexe 

APC/C (Anaphase promoting complex/cyclosome), les RING monomériques et CRL4-CDT2 

(Mocciaro et Rape, 2012 ; Genschik et al, 2014) (Figure 8). 

 

Les complexes SCF 

 

 Les complexes SCF sont assemblés autour de la protéine CUL1 (CULLIN 1) (Petroski et 

Deshaies, 2005). CUL1 ancre le module catalytique, composé de RBX1 (RING-BOX 1) et de 

E2, et le module de reconnaissance de substrat, comprenant à la fois SKP1 (appelé ASK1-2 

chez Arabidopsis, pour ARABIDOPSIS SKP1 HOMOLOGUE 1/2) et une protéine F-box. Les 

protéines F-box sont des protéines adaptatrices qui assurent la spécificité du substrat (Kipreos 

et Pagano, 2000 ; Lechner et al, 2006 ; Reitsma et al, 2017). Chez l'animal, le SCFSKP2 (S- 

PHASE KINASE ASSOCIATED PROTEIN 2) joue un rôle dans le contrôle de la transition 

G1/S et la sortie de la phase S (Figure 9). Il participe notamment à l'ubiquitination des CKI tels 

que p21CIP1 et p27KIP1 (Nakayama, 2000 ; Starostina et Kipreos, 2012), favorisant ainsi la ré-

entrée dans le cycle cellulaire, mais aussi à l'ubiquitination des composants spécifiques de la 

phase S, tels que les cyclines E, les facteurs de transcription E2Fs, et CDT1 (Nakayama, 2000 

; Marti et al., 1999 ; Li et al., 2003. La dégradation de ces proteins conduit à la répression 

transcriptionnelle des gènes en phase S et à l'arrêt de la réplication. Les souris mutantes skp2 

homozygotes sont plus petites mais toujours viables (Nakayama, 2000). Cependant, les cellules 

prolifèrent à un rythme plus faible. Un niveau plus élevé de polyploïdie et une augmentation de 

la mort cellulaire sont également observables chez ces mutants, suggérant que, même si SKP2 



n'est pas crucial pour la progression du cycle cellulaire, il est impliqué dans le contrôle de la 

duplication chromosomique. Deux homologues de SKP2, SKP2a et SKP2b, ont été identifiés 

chez Arabidopsis (del Pozo et al., 2002). Bien qu'il ait été démontré que le SKP2a est impliqué 

dans la dégradation de E2Fc/DPb, il a été proposé que SKP2b cible les KRP (Ren et al., 2008). 

La double mutation skp2a/skp2b n'altère pas la croissance et le développement de la plante, ce 

qui suggère l'existence d'autres E3s qui contrôlent l'entrée et le bon déroulement de la phase S. 

Chez Arabidopsis, une autre protéine F-box, FBL17, a également été identifiée comme un 

régulateur clef du cycle cellulaire au cours de la gamétogenèse male et, plus récemment, de la 

prolifération cellulaire et de l'endoreduplication (Kim et al., 2008 ; Gusti et al., 2009 ; Noir et 

al., 2015). Les mutants fbl17 présentent un taux de croissance considérablement réduit avec des 

défauts de séparation des chromosomes. Au niveau moléculaire, le taux de protéine KRP2 est 

accrue chez les mutants fbl17, affectant l'activité de l'ACDK1 (Noir et al., 2015). 

 

L'Anaphase-promoting complex/Cyclosome 

 

L’Anaphase-promoting complex/Cyclosome (APC/C) est une E3 ubiquitine ligase comprenant 

au moins 12 sous-unités, et de coactivateurs, qui sont CDC20 (CELL CYCLE CONTROL 20) 

et CDH1 (CDC20 HOMOLOG 1) chez les humains ou CCS52 chez les plantes (Peters, 2006 ; 

Genschik et al., 2014). Parmi ces protéines, DOC1APC10 est également responsable de la liaison 

au substrat, APC11 se lie à l'enzyme E2 et APC2, qui s'apparente aux Cullines, se lie à 

DOC1APC10 et APC11. CDC20 et CDH1 ainsi que DOC1APC10 sont nécessaires pour la 

spécificité du substrat (Chang et Barford, 2014). Le rôle de l'APC/C est crucial pour la mitose 

et son activité est fortement régulée au cours du cycle cellulaire (Figure 10). Pendant les phases 

S et G2, l'APC/C est inactivé par EMI1 (EARLY MITOTIC INHIBITOR 1) pour permettre 

l'accumulation des cyclines A et B, favorisant ainsi la réplication et la progression de l'ADN 

par G2. Au début de la mitose, la dégradation de EMI1 est médiée par une autre E3 ligase : 

SCFβ-TrCP (Margottin-Goguet et al., 2003), provoquant ainsi la destruction de la cycline A par 

l'APC/CCDC20. Mais la caractéristique principale d'APC/CCDC20 est la polyubiquitination de la 

SECURINE en métaphase. Une fois que la SECURINE est dégradée, la SEPARASE est libérée, 

ce qui a pour conséquence le clivage des anneaux de COHESIN qui maintiennent ensemble les 

chromatides soeurs (Zur et Brandeis, 2001). Ce mécanisme est également contrôlé 

négativement par trois protéines du SAC (Spindle Assembly Checkpoint), MAD2 (MITOTIC 



ARREST-DEFICIENT 2), BUB3 (BUDDING UNINHIBITED BY BENZYMIDAZOL 3) et 

BUBR1(BUB1-RELATED) qui forment le MCC (Mitotic Checkpoint Complex) et séquestrent 

CDC20 afin de vérifier la fixation correcte des chromatides soeurs avant de permettre la 

séparation de chromatides (London and Biggins, 2014 ; Komaki et Schnittger, 2017). Pendant 

la télophase, APC/CCDH1 intervient dans la dégradation des cyclines B et permet la sortie de la 

mitose. Pendant la mitose, la kinase AURORA-A phosphoryle la GEMININE et empêche sa 

reconnaissance par l'APC/C. La GEMININE se lie à CDT1 (CDC10-DEPENDENT 

TRANSCRIPT 1), empêchant ainsi l'assemblage du complexe de réplication (Tsunematsu et 

al., 2015). Au cours de la phase G1, AURORA-A est ubiquitinylée par APCCDH1 et dégradée, 

permettant ainsi la dégradation de la forme non phosphorylée de la GEMININE par le 

protéasome 26S. 

 

Les E3 ligases monomériques de type RING 

 

Chez l'homme, une E3 ligase monomérique de type RING appelé KPC1 (KIP1 ubiquitination-

promoting complex 1) favorise la dégradation de p27KIP1 pendant la phase G1 (Figure 9) (Liu 

et al., 2008 ; Morgan, 1997 ; Kamura et al., 2004). Contrairement à l'activité de SCFSKP2, 

l'ubiquitination de p27KIP1 médiée par KPC1 ne dépend pas de sa phosphorylation par CDK2. 

De plus, le KCP1 joue également un rôle dans la limitation du développement des tumeurs 

(Kravtsova-Ivantsiv. NF-κB es et al., 2015) est un régulateur de transcription qui intervient dans 

plusieurs processus cellulaires dont la prolifération cellulaire. Cependant, le précurseur NF-κB 

(p105) doit être maturer par le protéasome 26S pour former un dimère p50 actif. Il a été 

démontré que l'accumulation de KPC1 déclenche la polyubiquitination de p105, et par 

conséquent, sa maturation (Kravtsova-Ivantsiv et al., 2015).  

Un possible orthologue de KPC1 chez les plantes, appelée RKP (RELATED TO KPC1) a été 

identifiée chez Arabidopsis (Liu et al., 2008). La perte de RKP entraîne l'accumulation de 

KRP1, mais n'affecte pas la croissance des plantes (Ren et al., 2008). Deux E3 ligases de type 

RING supplémentaires, RHF1a et RHF2a (RING-H2 GROUPE F1A/2A), qui sont nécessaires 

pour la gamétogenèse chez Arabidopsis, ont également été identifiées (Liu et al., 2008). En 

effet, le double mutant rhf1a/rhf2a montre un niveau accru de protéine KRP6 qui est en 

corrélation avec un défaut de division cellulaire chez les gamétophytes mâles et femelles. 



Le complexe CRL4CDT2 chez les mammifères 

 

La Cullin-RING ligase 4 (CRL4) est structurellement et fonctionnellement similaire au SCF. 

Les ubiquitine ligases de type CRL4 sont composées de la CULLINE 4 qui se lie à l'E2 et au 

module de reconnaissance de substrat comprenant une protéine adaptatrice appelée DDB1 

(DNA DAMAGE-BINDING PROTEIN 1) et une protéine DCAF (DDB1-CULLIN4 

ASSOCIATED FACTOR) (Havens and Walter, 2011 ; Jackson and Xiong, 2009). L'un de ces 

complexes, CRL4CDT2, contient la DCAF CDT2 (CDC10-DEPENDENT TRANSCRIPT 2) et 

est impliqué dans la réplication et la réparation de l'ADN. La protéine CDT1 est nécessaire au 

recrutement de l'hélicase MCM2-7 (MINICHROMOSOME MAINTENANCE 2-7) aux 

origines de réplication (Nishitani et al., 2004). Ce processus se produit pendant la phase G1 et 

CDT1 est immédiatement détruit en phase S pour éviter toute réinitiation de la replication 

(Figure 9) (Nishitani et al., 2004). Il a été démontré que la dégradation des proteines CDT1 

associées à la chromatine est dépendante d’E3 ligases de type CRL4, et particulièrement du 

CRL4CDT2 (Higa et al., 2006 ; Jin et al., 2006 ; Ralph et al., 2006 ; Sansam et al., 2006). De 

plus, la dégradation de CDT1 médiée par CRL4CDT2 a également été observée en réponse aux 

dommages à l'ADN (Higa et al., 2006 ; Ralph et al., 2006). 

 

e. Régulation transcriptionnelle des gènes du cycle cellulaire 

 

Au cours du cycle cellulaire, les cellules subissent plusieurs vagues de transcription intensive, 

en particulier pendant les transitions G1/S et G2/M. Ce processus de régulation 

transcriptionnelle est déterminé par l'activité des complexes CDK/CYC. 

 

Contrôle de la transition G1/S 

 

 Chez les animaux et les plantes, la transition G1/S est principalement régie par la voie RB/E2F. 

Les protéines E2F (ADENOVIRUS EARLY GENE 2 BINDING FACTOR) sont des facteurs 

de transcription qui favorisent la transcription des gènes nécessaires à la phase S, notamment 

les « core cell cycle genes » (CDC6, CDC25, CYCE, ...) et des composants du complexe de 



réplication (ORCs, CDT1, MCM3, PCNA, POLα, ...) (Stevens and La Thangue, 2003 ; 

Gutierrez, 2009). Dans les cellules quiescentes, les E2F sont associées à un inhibiteur 

transcriptionnel appelé RETIBLASTOMA (RB) (Dick et Rubin, 2013). Lors de stimuli 

mitogènes, RB est phosphorylé par les complexes CYCD-E/CDK2 conduisant à l'activation de 

la transcription par les E2Fs. Chez l'homme, la famille E2F comprend six E2F (E2F1-6) et deux 

autres membres plus éloignés appelés DP (DIMERIZATION PARTNER, DP1 et DP2), tandis 

que la famille des « pocket proteins » est composée de 3 membres : RB, p107RBL1 et p130RBL2 

(RETINOBLASTOMA LIKE 1-2). Les E2F peuvent être classés en trois sous-groupes, E2F1-

3, E2F4-5 et E2F6. Ils possèdent tous un site commun de liaison E2F qui cible la séquence 

promotrice consensus (TTTSSCGS), et un motif de liaison de à DP. Cependant, le sous-groupe 

E2F4-5 ne possède ni le site de liaison à CYCA, ni le signal de localisation nucléaire (NLS) 

présents dans le sous-groupe E2F1-3, mais a plutôt acquis un signal d'exportation nucléaire 

(NES). E2F6 est encore plus distant, car il ne porte pas le domaine de transactivation et agit 

donc comme un répresseur transcriptionnel, très probablement en titrant les séquences du 

promoteur E2F (examiné dans Stevens et La Thangue, 2003). L'inhibition transcriptionnelle par 

les protéines RB fonctionne par différents mécanismes. La liaison à E2F est suffisante pour 

cacher le domaine de transactivation et réprimer le recrutement de la machinerie 

transcriptionnelle. De plus, le RB peut également se lier aux protéines de remodelage de la 

chromatine, telles que les histone-désacétylases (HDAC) et le complexe Polycomb (Luo et al., 

1998 ; Dahiya et al., 2001). Notons que chez les mammifères, la voie RB/E2F est également 

régulée par le UPS (Sengupta et Henry, 2015). 

 La voie RB/E2F est également très conservée chez le nématode, la drosophile et les 

plantes (Shen, 2002 ; Van Den Heuvel et Dyson, 2008 ; Berckmans et De Veylder, 2009). Le 

génome d'Arabidopsis code trois E2F (E2Fa, b et c), deux DP (DPa et DPb) et une 

RETINOBLASTOMA-RELATED PROTEIN (RBR1) (Figure 11). Parallèlement, trois autres 

protéines E2F non canoniques sont également présentes. Contrairement à E2F et DP, E2FdDEL1, 

E2FdDEL2 et E2FfDEL3 (DP ET E2F LIKE) n'ont pas besoin de former un dimère E2F/DP pour 

se fixer à l'ADN. Les E2F végétales ne sont pas seulement régulées par la liaison avec RBR1, 

mais sont également soumises à des mécanismes de régulation transcriptionnelle et post-

traductionnelle (Ramirez-parra et al., 2008). Par exemple, E2Fa, E2Fb, E2Fb, E2Fc et E2FfDEL3 

sont fortement enrichis dans les cellules en proliferation et E2fb et c présentent un profil 

d'expression cycle-dependant, atteignant un pic en phase S (Menges et al., 2005). De plus, les 

E2F et les DP peuvent être phosphorylés par des complexes CDK/CYC. Bien que le rôle de la 



phosphorylation de E2F/DP ne soit pas entièrement compris, les formes phosphorylées de E2Fc 

et DPb sont ciblées par le SCFSKP2A et degradées par le protéasome 26S (del Pozo et al., 2002). 

 

Contrôle de la transition G2/M 

 

 Chez l'homme, l'activation transcriptionnelle des gènes de G2/M nécessite deux facteurs 

de transcription : B-MYB (B-MYELOBLASTOSE) et FOXM1 (FORKHEAD BOX M1). B-

MYB appartient à la famille MYB, qui est composée de 3 membres : A-MYB, B-MYB, C-

MYB (ou MYBL2, MYBL1 et MYB, respectivement) (Musa et al., 2017). Alors que A-MYB 

et C-MYB sont exprimés dans des types cellulaires spécifiques, B-MYB est fortement enrichi 

dans les cellules en prolifération (Ness, 2003). La nature essentielle de l'activité de 

transactivation du B-MYB est illustrée par la létalité embryonnaire précoce de la mutation KO 

de B-MYB chez la souris (Tanaka et al., 1999). Parallèlement, la mutation foxm1 -/- montre 

également un phénotype embryolétal chez la souris, retarde la phase G2 et altère fortement la 

ségrégation chromosomique et la cytocinèse en culture cellulaire (Kalin et al., 2011 ; Laoukili 

et al., 2005). B-MYB et FOXM1 interagissent avec des sites de liaison spécifiques présents 

dans la région promotrice des gènes exprimés G2/M. Parmi les gènes activés par B-

MYB/FOXM1, on peut trouver des composants de la machinerie du « core cell cycle » 

(CYCA/Bs, CDK1/2, CDC25B, PLK1) et des gènes impliqués dans l'assemblage du fuseau 

mitotique et la cytocinèse (Musa et al., 2017 ; Costa, 2005). Le timing de l'activité de B-MYB 

et de FOXM1 est cependant différent, ce qui peut s'expliquer en partie par leur activation par 

les complexes CDK/CYC. B-MYB et FOXM1 sont activés par phosphorylation en G1/S et 

G2/M par les complexes CDK2/CYCA et CDK1/CYCB, favorisant ainsi le recrutement d'un 

coactivateur p300CBP (Schubert et al, 2004 ; Major et al., 2004). 

Les plantes possèdent également des protéines apparentées aux MYB. Le génome 

d'Arabidopsis code pour plus d'une centaine de protéines MYB. Parmi eux, MYB3R1,2,3,4,5 

sont impliqués dans la régulation des gènes en G2/M en activant ou réprimant leur expression 

(Haga et al., 2007, 2011). Comme les MYB humains, les MYB3R se lient à un élément cis 

d'activation spécifique du MYB (MSA) qui est suffisant pour stimuler ou inhiber l'expression 

génique (Ito, 1998). Conformément à leur fonction dans la régulation des gènes impliqué dans 

la mitose, la perte de MYB3R1 et de MYB3R1 et de MYB4 induit des anomalies pendant la 

cytocinèse mais n'entraîne pas de létalité embryonnaire, ce qui suggère que d'autres facteurs 



pourraient intervenir dans ce processus (Haga et al., 2007, 2011). Des études sur une suspension 

de cellules de tabac BY-2 synchronisée ont révélé que la transcription des gènes NtMYBs se 

produit pendant G2/M (Figure 11) (Ito et al., 2001). En outre, il a été démontré que la 

phosphorylation par les complexes CDKA/CYCA et B active la fonction de transactivation des 

NtMYBs (Araki et al., 2004). 

 

Les complexes DREAM et MMB  

 

Des études plus récentes ont mis en évidence l'existence d'un complexe de taille plus importante 

contrôlant les transitions entre les phases du cycle via l’activation et la répression de la 

transcription de gènes spécifiques (Fischer et Müller, 2017). Le complexe MUVB (MULTI 

VULVA-B) est composé de cinq protéines : LIN9, LIN37, LIN52, LIN54 et p55RBBP4 

(RETINOBLASTOMA-BINDING PROTEIN 4). Il a été proposé que l’ensemble des 

composants du complexe MUVB sont assemblées autour de la protéine LIN9. LIN52 et LIN54 

se lient respectivement à p107/p130 et au motif ADN CHR (cell cycle homology region). p55 

interagit avec les histones H3 et H4 par le biais d’un motif WD40 et participe éventuellement 

à la répression transcriptionnelle en interagissant avec les complexes de remodelage de la 

chromatine. Le contrôle positif ou négatif de l'expression des gènes dépend de protéines 

supplémentaires qui s’associent aux MUVB. Par exemple, E2F1-3/DP/p107 ou p130/MUVB, 

aussi appelé DREAM (DP, RB-like, E2Fs et MUVB), répriment l'expression des gènes G1/S 

tandis que B-MYB/FOXM1/MUVB ou MUVB-MMB (MYB-MUVB) active l'expression des 

gènes G2/M. 

Chez Arabidopsis, des composants du complexe de type DREAM ont également été identifiés 

(Magyar et al., 2016). Le complexe MUVB de plante comprend l'orthologue à LIN54 TCX5 

(TSO1-LIKE CxC 5) et les orthologues à LIN9 ALY2/3 (ALWAYS EARLY 2 et 3) (Magyar 

et al, 2016 ; Fischer et Müller, 2017). Les protéines RBR1, CDKA, E2Fs, DPs et MYB3Rs 

peuvent également faire partie du DREAM. Les fonctions complexes de la plante DREAM sont 

moins bien documentées que celles de son équivalent chez les animaux. Cependant, des études 

récentes ont montré qu'il peut activer ou réprimer l'expression des gènes spécifique de G2/M 

de manière phase-dépendante (Figure 12) (Kobayashi et al., 2015a, 2015b). 
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Chez tous les eucaryotes, la régulation de l’expression génique est primordiale pour le contrôle du cycle 
cellulaire. Un large éventail de gènes, incluant non seulement des régulateurs essentiels du cycle, mais également d’autre 
gènes impliqués dans la transduction du signal, la régulation hormonale et le métabolisme est ainsi exprimé durant 
certaines étapes clefs du cycle cellulaire. Ces changements sont contrôlés à de multiples niveaux, notamment de façon 
transcriptionnelle et post-traductionnelle. Chez les mammifères, il est aujourd’hui évident que les microARNs 
contribuent également à cette régulation en ciblant spécifiquement les transcrits d’un grand nombre de gènes régulés au 
cours du cycle. Cependant, nous n’avons que très peu d’informations à ce jour concernant le rôle des petits ARNs sur le 
contrôle de la prolifération cellulaire chez les plantes. Mes travaux de thèse ont permis de démontrer que la perte 
d’AGO1, le principal effecteur du PTGS chez Arabidopsis, affecte la prolifération cellulaire et l’activité du méristème 
racinaire. Afin de déterminer le répertoire et la fonction des petits ARNs liés la régulation du cycle cellulaire, j’ai 
également utilisé des suspensions cellulaires de tabac BY-2, qui présentent l’intérêt d’être hautement synchronisables. En 
collaboration avec P. Baldrich du laboratoire du Professeur Blake C. Meyers (St-Louis, USA), nous avons séquencé les 
transcrits, les petits ARNs et le dégradome à partir de cellules BY-2 synchronisées en phase S, G2, M et G1. Cette 
analyse a révélé que peu de microARNs sont différentiellement exprimés au cours du cycle chez les plantes. Cependant, 
nous avons identifié quelques microARNs qui pourraient réguler l’expression de facteurs de transcription et de gènes de 
résistances dans les cellules en prolifération. Finalement, nous avons également mis en évidence qu’un ensemble de 
petits ARNs de 19 nucléotides dérivés d’ARNs de transfert sont différentiellement chargés dans AGO1 au cours du cycle 
cellulaire. Cependant, leurs fonctions restent à déterminer. 

Mots-clefs : AGO1, Cycle cellulaire, PTGS, petits ARNs, microARNs, tRFs, Arabidopsis, cellules BY-2 

 

 
In all eukaryotes, regulated gene expression is key to orchestrate cell cycle progression. Not only genes encoding 

important core cell cycle regulators, but also genes of a variety of other factors involved in signal transduction, hormonal 
regulation and metabolic control are expressed at specific time points of the cell cycle. These changes in gene expression 
are controlled at multiple levels, including transcriptional and post-translational controls. In mammals, it became evident 
that microRNAs also contribute to this regulation by targeting the transcripts of numerous cell cycle-regulated genes. 
However, in plants we still know little about the regulatory roles of small RNAs in the control of cell proliferation. 
During my thesis, I showed that depletion of Arabidopsis AGO1, the main effector of plant microRNAs, impairs cell 
proliferation and root meristem activity. To further determine the repertoire and role of sRNAs in cell cycle regulation, I 
took advantage of the highly synchronizable tobacco BY2 cell suspension. In collaboration with P. Baldrich from Pr. 
Blake C. Meyers laboratory (St-Louis, USA), we thus sequenced total RNAs and small RNAs, AGO1-associated small 
RNAs and the RNA degradome of synchronized BY2 cells at S-, G2-, M- and G1-phases of the cell cycle. This analysis 
revealed that in plants, only a few microRNAs show differential cell cycle expression and microRNA-target pairs were 
only identified for a small proportion of the more than 23 000 differentially expressed genes during the cell cycle. 
However, we identified a set of unique miRNA-target pairs at all phases of the cell cycle that may damper the expression 
of a set of transcription factors and disease resistance genes in proliferating cells. Finally, we also found that AGO1 binds 
differentially during the cell cycle to a set of 19-mers tRNA-derived fragments. However, their functions and their 
targets, if any, remain still to be determined. 
 

Keywords: AGO1, cell cycle, PTGS, small RNAs, miRNAs, tRFs, Arabidopsis, BY-2 cells 
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