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Résumé long

Nous vivons actuellement un âge d’or de l’information caractérisé par l’augmentation

drastique du volume des données produites ainsi que de leur complexité. Les principaux

vecteurs de ces augmentations sont des transferts de données toujours plus simples et

rapides, une multiplication et une amélioration des capteurs ainsi que le développement

de meilleures technologies de stockage. Nous sommes actuellement capables de traiter

tout au plus 20% des informations dont nous disposons. Mais dans le futur, l’acquisition

de données devenant de plus en plus systématique car stratégique, ce pourcentage pourrait

se réduire à seulement 2% [1]. L’analyse d’un tel volume de données ne peut se faire

qu’en étant au moins partiellement automatisé. Des algorithmes issus du domaine de

l’intelligence artificielle peuvent accélérer et simplifier le traitement de ce flux important

de données. L’intelligence artificielle suscite un intérêt grandissant grâce à des résultats

prometteurs, surpassant même parfois des experts dans leur propre domaine [2]. Ces

algorithmes font déjà partie de nos vies quotidiennes à travers les recherches web, le

filtrage de courriels, la gestion de flux d’actualités ou la recommandation de musique.

L’analyse de données concerne également les systèmes d’aide à la décision qui sont

essentiels pour simplifier les choix opérateurs, en particulier dans des situations qui exi-

gent des actions rapides ou avec des conséquences fortes. Le domaine d’application des

ces systèmes est vaste, d’un tri préalable des appels aux urgences selon leur priorité, à une

première analyse de l’environnement pour les pilotes de chasse. La demande concernant

les systèmes d’aide à la décision est forte, en particulier dans le domaine de la défense.

En effet, l’interprétation de menaces de plus en plus complexes est extrêmement difficileà

réaliser, particulièrement dans un milieu où l’anticipation des actions est essentielle. Les

algorithmes d’intelligence artificielle dans les systèmes d’aides à la décision donnent lieu
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à des défis éthiques, légaux et technologiques. Le travail présenté dans cette thèse se

concentre sur l’aspect technique.

Le travail proposé a été réalisé dans le cadre d’un projet visant à augmenter la quantité

de données générées par des autodirecteurs Radiofréquence (RF). L’objectif principal de

ce projet est de remplacer l’antenne orientable mécaniquement à l’avant de l’autodirecteur

par une antenne réseau à commande de phase 3D [3]. Ces antennes ont de multiples avan-

tages : une réduction des possibilités de pannes mécaniques ainsi qu’une réduction du vol-

ume nécessaire à l’antenne dû à l’absence de parties mobiles. La couverture du faisceau

n’est également plus limitée par l’angle de rotation du système mécanique. L’orientation

du faisceau est extrêmement rapide et peut se faire en quelques microsecondes [4]. De

plus, les zones en dehors du champ de vision de l’antenne mécanique ne peuvent pas être

analysées en même temps que la zone principale, ce qui empêche la potentielle détection

de menaces venant d’autres directions que celle actuellement examinée. Toutefois, les

antennes mécaniques ont aussi des avantages par rapport aux antennes réseaux à com-

mande de phase : la cible étant dans la ligne de visée, l’énergie envoyée vers la cible est

maximisée. De plus, tous les éléments radiants du réseau sont alignés sur une surface

2D pour laquelle les caractéristiques du faisceau sont bien connues. Le signal reçu sera

donc plus facilement et mieux traité que pour un faisceau envoyé par une antenne réseau

à commande de phase 3D, surtout si la direction d’émission n’est pas centrale.

L’avantage principal de l’antenne réseau à commande de phase 3D sur lesquels le

travail de cete thèse se base est la possibilité d’envoyer et de recevoir différents faisceaux

dans de multiples directions simultanément. Par conséquent, de multiples fonctions de

l’autodirecteur peuvent être menées en parallèle. On se focalise ici sur la classification

de cibles dans des images Radar à Synthèse d’Ouverture (RSO) qui pourrait être faite en

même temps que la localisation de la cible principale. Ces nouvelles antennes donnent

néanmoins lieu à de nouvelles difficultés, traitées par d’autres membres de ce projet.

Certaines de ces difficultés concernent entre autres la forme de l’antenne, l’émission d’un

faisceau par une antenne 3D et la différenciation des formes d’ondes pour les différents



signaux envoyés simultanément.

Un scénario potentiel mettant à profit cette technologie est décrit dans la Fig. 1.1. Un

autodirecteur RF équipé d’une antenne réseau à commande de phase 3D mène deux tâches

de front : l’autodirecteur suit la cible aérienne principale tout en envoyant des impulsions

au sol durant toute sa trajectoire et jusqu’au point d’impact. Une fois reçus, ces signaux

peuvent être traités de manière à fournir des images RSO de cibles potentielles au sol. Une

grande antenne peut en effet être simulée avec une antenne réelle en mouvement grâce à

des techniques de traitement du signal appliquées aux données radar acquises durant la

trajectoire. Des images haute résolution peuvent donc être obtenues à partir d’une antenne

réelle plus petite qui sans cette technique donnerait des résultats de résolution moindre.

Autodirecteur 
avec une 

antenne 3D

Cible au sol 
potentielle

Trajectoire 
de 

l'autodirecteur

Cible 
principale

Point 
d'impact

Impulsions

Fig. 1: Scenario de défense illustrant la classification de cible sur des images RSO.

Les images RSO présentent de multiples avantages par rapport aux données opto-

électroniques. Ces données peuvent en effet être acquises dans des conditions météorologiques

variées et durant la nuit.

Toutefois, l’interprétation des images RSO est complexe. Une formation est néces-

saire pour que les opérateurs puissent les interpréter. En effet, les opérateurs doivent anal-

yser des informations qui ne sont pas intuitives puisque les images RSO ne sont pas issues



du même phénomène physique que les images visibles, plus répandues. De manière à ré-

duire leur charge de travail et à accélerer la classification de cible, de la Reconnaissance

Automatique de Cible (RAC) peut être appliquée aux images RSO. La RAC peut aussi

être motivée par la nécessité pour des systèmes comme les systèmes embarqués d’opérer

sans intervention humaine.

Cette thèse vise à étudier et proposer l’implémentation de nouvelles techniques de

RAC sur image RSO en les comparant avec des méthodes plus traditionnelles. Après

la proposition d’une solution innovante reposant sur l’apprentissage profond, les raisons

menant aux décisions prises par le réseau de neurones sont étudiées.

Objectifs de recherche et contributions

L’objectif de cette thèse est de donner des réponses aux questions de recherche suivantes:

Comment évaluer de manière impartiale les algorithmes de RAC sur image RSO?

Une des difficultés majeures de la RAC sur image RSO est le nombre et la variabilité

limitée des images disponibles. Cela a un impact non seulement sur le dévelopement

des algorithmes de RAC sur image RSO mais aussi sur l’évaluation des performances de

ceux-ci. En effet, certaines bases de données présentent seulement des différences mini-

males entre les sets d’entraînement et de test. Une nouvelles base de donnée RSO Inverse

(RSOI) est proposée dans cette thèse. Cette base de donnée inclue 3 cibles pour un total

de 1728 images. Ces images peuvent être divisées en 24 groupes et sont séparées entre

les sets d’entrainement et de test de manière à ce que les conditions d’acquisition soient

différentes. Ces conditions d’acquisition englobent la configuration de la cible, l’angle

d’incidence et l’environement du laboratoire. L’arrière-plan est supprimé artificiellement

pour diminuer le risque de corrélation.

Pour évaluer les progrès en terme de robustesse des algorithmes proposés, des tests

sont réalisés sur des images dans lesquelles la cible est déplacée de manière aléatoire, ce

qui permet de vérifier que l’algorithme ne dépend pas d’une localisation particulière.



Dans quelle mesure les techniques de classification du domaine visible peuvent-elles

être transférées au domaine RSO?

Beaucoup de travaux ont été menés sur les images optiques car elles sont disponibles

en grand nombre et utiles pour de nombreuses applications. Il est donc intéressant de

voir si ce travail pourrait être réutilisé dans le le domaine RSO et dans quelle mesure cela

pourrait être fait.

Une méthode de segmentation innovante basée sur des Modèles de Mélange de

Gaussienne (MMG) est proposée. Les segmentations proposées précédemment repo-

saient sur des méthodes de seuils. Le score de Dice évaluant la performance de la

segmentation a été améliorée grâce à cela de 11%. A notre connaissance, la segmentation

à base de MMG n’avait pas été testée auparavant sur de la RAC d’images RSO.

Des classifications diverses reposant sur des caratéristiques visuelles sont comparées

sur les images RSO en utilisant des descripteurs habituels du domaine optique. Certains

de ces descripteurs, comme les descripteurs binaires n’avaient jamais été testés sur les

images RSO. Ces descripteurs binaires sont, selon les résultats obtenus dans cette thèse,

moins affectés par le chatoiement typique du domaine RSO et peuvent améliorer le seuil

de classification de 40% par rapport à des descripteurs de gradients.

La grande sensibilité des descripteurs aux variations de l’orientation de la cible est

également montrée et quantifiée.

La classification peut-t-elle être améliorée en prenant en comptes les spécificités des

images RSO?

Les méthodes classiques d’augmentation de données visent à produire de nouvelles

images en utilisant des transformations de l’image simples comme la translation, la sym-

métrie axiale, le recadrage ou l’ajout de bruit gaussien. Une méthode d’augmentation de

données spécifique au domaine RSO est développée. Celle-ci est basée sur l’ajout de bruit

basé sur une distribution de Weibull au profil de distance utilisé lors de la création des im-

ages RSO. Cette technique d’aumentation de données RSO permet une augmentation du

score de classification sur la base de données proposées de 86% à 91%.



Après avoir montré l’influence de l’orientation de la cible lors de la classification

par descripteurs, une nouvelle architecture d’apprentissage profond est proposée. Cette

architecture attribue la tâche de classification à un réseau de neurones spécialisé dans

la classification de cibles ayant une orientation particulière. Cette méthode dite "pose-

informed" surpasse un réseau de neurones convolutionnel standard sur 4 des 5 datasets

sur lesquels elle a été testée, avec en particulier une amélioration de 96% à 99% dans le

cas du dataset le plus utilisé dans le cadre de la RAC d’images RSO.

Cet algorithme nécessite au préalable d’avoir correctement identifié l’orientation de

la cible. La plupart des algorithmes estimant l’orientation des cibles dans le domaine

du SAR le font à seulement modulo 180◦, or la méthode précédente nécéssite également

d’avoir différencié l’avant de l’arrière de la cible. Une association entre un réseau de

neurones convolutif et une transformée de Hough est donc proposée pour accomplir cette

tâche. Les erreurs dans l’estimation de l’orientation de la cible avec cette méthodes sont

plus faibles que dans les méthodes proposées jusque là.

Peut-on appréhender les critères de classification des méthodes de RAC pour les

images RSO issues du domaine de l’apprentissage profond?

Comme le raisonnement aboutissant à la décision de classification des réseaux de

neurones ne peut être détaillé, des études sont proposées sur les explications possibles du

comportement de ces réseaux. En effet, l’explicabilité des algorithmes d’apprentissage

profond dans le domaine RSO restait limité à la visualisation des filtres des couches les

plus basses des réseaux.

Des cartes de classification sont proposées pour mettre en évidence les zones d’intérêt

communes à un groupe d’image pour le réseau. Cela apporte de nouvelles informations

sur la localisation des caractéristiques les plus importantes pour une cible spécifique ou

pour des cibles dans des orientations similaires.

L’ombre de la cible est peu utilisée selon nos expériences, du moins pour le réseau

étudié. Des travaux de recherche supplémentaires visant à un meilleure utilisation des

informations relatives à l’ombre pourraient donc améliorer les performances de classifi-



cation.

Une dernière étude montre que lors de son entraînement pour la classification de

cibles, le réseau de neurones apprend également à différencier des caractéristques liées

à l’orientation de la cible. Le réseau de neurones apprend donc des connaissances supplé-

mentaires qui ne sont pas reliées directement à sa tâche principale.

Cela pousse à l’utilisation du transfer learning d’une tâche à une autre (utilisation pour

une certaine tâche d’un réseau entraîné précédemment sur une autre tâche comme réseau

de départ) plutôt qu’un simple transfert entre différentes bases de données. De ce fait,

des images SAR auparavant ignorées pourraient être utilisées pour une première phase

d’entraînement, sachant que les données RSO exploitables directement pour la RAC sont

peu nombreuses.

Organisation de la thèse

Le thème et le contenu de chacun des 7 chapitres sont détaillés ci-dessous:

• Le chapitre 2 présente le processus d’acquisition des données RSO et RSOI. Le

manque de données diversifiées est l’un des challenges principaux de la RAC sur

images RSO. Un nouveau set de doonées RSOI est fourni dans l’objectif de per-

mettre une évaluation plus juste des algorithmes de classification. Par rapport

aux données publiques déjà disponibles, ce nouveau set d’images présente plus

de différences entre les images destinées à l’entraînement et à l’évaluation des al-

gorithmes [5, 6]. L’influence de la corrélation dû à l’arrière plan est également

évaluée.

• Le chapitre 3 aborde des travaux préliminaires essentiels à la compréhension des

algorithmes présentés dans les chapitres suivants. Ce chapitre traite essentiellement

de vision assistée par ordinateur avec une introduction aux transformées de Hough

et aux méthodes d’extraction de descripteurs d’image. Les réseaux de neurones et

leurs méthodes d’entraînement sont aussi présentés.



• Le chapitre 4 compare différents méthodes de classification par descripteurs dans le

but d’évaluer le potentiel des descripteurs conçus originellement pour des images

optiques et non RSO. Certains de ces descripteurs n’avaient jamais été appliqués au

domaine RSO. L’influence de l’orientation de la cible dans les méthodes de clas-

sification par descripteur est quantifiée [7]. Cette influence sera réutilisée dans le

chapitre 5. Une segmentation basée sur du machine learning est proposée en amont

de la classification par descripteurs. Cette segmentation consiste à modéliser le

clutter par un MMG (Modèle de Mélange de Gaussiennes). On note une améliora-

tion de la précision ainsi que du taux de rappel comparé aux méthodes par seuils

d’intensité [8].

• Le chapitre 5 se focalise dans un premier temps sur le problème du manque de

données RSO diversifiées avec la proposition d’une méthode d’augmentation de

données produisant de nouvelles images avec l’addition d’une simulation de bruit

propre aux données RSO [9]. La deuxième partie de ce chapitre montre que la déter-

mination et l’utilisation de l’orientation de la cible dans la classification par réseaux

de neurones profonds améliore la précision dans la plupart des cas. L’orientation de

la cible est prise en compte dans l’architecture pose-informed proposée dans cette

thèse [10]. L’orientation de la cible est déterminée en associant une transformée de

Hough avec un réseau de neurones convolutionnel ce qui permet une amélioration

de la précision par rapport aux algorithmes actuels de détermination de l’orientation

sur 360◦.

• Le chapitre 6 présente une analyse visant à l’explicabilité de réseaux de neurones

profonds [11]. L’objectif est de comprendre les raisons poussant le réseau de

neurones à une certaine décision de classification. Différentes analyses évaluent

l’influence de zones particulières dans l’image dans la décision finale de classifi-

cation. Ces zones peuvent être spécifiques à un certain type de cible, à son orien-

tation ou à ce qu’elles représentent dans l’image comme la cible, son ombre ou le



clutter. La distribution des intensités composant les zones essentielles à la classifi-

cation sont étudiées et comparées aux distribution de zones non nécessaires. Enfin

il est démontré que les descripteurs appris par le réseau de neurones ne sont pas

seulement spécifiques au type de cible mais également liés à d’autres variables de

l’environement d’acquisition des données, bien qu’elles ne soint pas directement

inclues dans la fonction que le réseau de neurones cherche à optimiser. Cela pour-

rait encourager l’apprentissage par transfert des réseaux de neurones sur différentes

tâches plutôt que différentes bases de données.

• Le chapitre 7 suggère de possibles travaux supplémentaires compte tenu du travail

de recherche présenté dans les chapitres précédents.
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Chapter 1

Introduction

Contents

1.1 Overview and motivations . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives and contributions . . . . . . . . . . . . . . . . . . 4

1.3 Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Overview and motivations

The information age has seen the amount of data produced explode and the information

generated become increasingly more complex. This is mainly due to the facilitation and

acceleration of data transfer, the improvement and multiplication of sensors and the de-

velopment of storage technology. On their own, humans are currently able to process at

their best 20% of the information at their disposal but in the future, with the acquisition of

data becoming ever so strategic and systematic, this percentage could drop to only 2% [1].

The processing of such amounts of data calls for at least partial automation of data anal-

ysis. Algorithms relying on artificial intelligence (AI) have the potential to reduce time

and stress strains created by the analysis of this flow of data. AI is currently gathering a

lot of interest and already providing encouraging results, sometimes even outperforming

experts in their own field [2]. Such algorithms are already partaking our everyday lives
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with web searches, e-mail filters, news feeds filtering, music recommendation and the

like.

Decision support systems are an aspect of data analysis that is gaining interest to sim-

plify decision-making for operators, especially in time sensitive or high impact situations.

This can range from the pre-sorting of emergency calls according to their priority, to an

environmental pre-analysis for fighter pilots. The demand for decision support systems is

especially high in the defence sector. Indeed, the interpretation of threats with a growing

complexity is extremely challenging in a domain for which anticipation and accuracy are

paramount. Such algorithms give rise to challenges across the ethical, legal and techno-

logical domains. The presented work will focus on the technological challenge.

The proposed work stems from a wider defence project that is going to increase the

amount of data generated for RF-seekers. The global objective is to integrate a 3D elec-

tronically steerable antenna at the front of the seeker to replace the traditional mechani-

cally steered antenna [3]. There are several advantages for a phased array antenna. There

are less possibilities of mechanical faults and a reduction of the volume needed for the

antenna as there are no moving parts. The beam coverage is not limited by the angle of

rotation of the mechanical system. The beam steering is also much faster and can occur

in a matter of microseconds [4]. For the mechanical antenna, the areas outside the field of

view cannot be investigated at the same time, preventing the detection of potential threats

in another direction than the one currently investigated. On the other hand, the target is

kept in the line of sight of the antenna which maximises the energy sent towards the tar-

get. All the radiating elements of the mechanical antennas are aligned on a 2D surface

and thus the beam characteristics are well known. The returned signal will be more easily

and accurately processed than for a more complex beam sent by a phased array, especially

in a direction that is not central.

The advantage of the 3D electronically steerable antenna that prompted this work is

the ability to send and receive multiple beams in different directions at the same time.

Multiple seeker functions can thus be achieved simultaneously. The focus here is on the

2
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target classification by Synthetic Aperture Radar (SAR) images that could be carried out

in parallel to the main target tracking. 3D electronically steerable antennas also give rise

to other challenges, addressed by other people involved in this project. Some of these

challenges concern the antenna shape, the emission of a beam with a 3D antenna or the

differentiation of waveforms for the different signals transmitted simultaneously.

A potential scenario using this technology is given in Fig. 1.1. A RF-seeker equipped

with a 3D antenna performs two tasks at the same time: The seeker can follow a primary

air target while sending pulses to the ground throughout the trajectory until the impact

point. The returns from the pulses sent to the ground can be processed to provide SAR

images of potential ground targets. A large antenna can indeed be simulated with a con-

stantly moving smaller physical antenna by using processing techniques on the radar data

acquired during the trajectory. High resolution images can be thus obtained using a small

antenna that, used on its own, would give results with a poorer resolution.

Missile
with 3D
antenna

Potential
ground
target

Missile

trajecto
ry

Primary
target

Impact
point

Pulses

Fig. 1.1: Defense scenario requiring SAR ATR.

SAR data is interesting because of its multiple advantages over electro-optical data. It

is indeed useful under a wider range of weather conditions and also during the night.

However, the interpretation of SAR data is challenging. So that operators can interpret

3
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them, they will need to be trained. Operators have to analyse extra information that is

hard to understand as SAR images are very different to interpret than usual electro-optical

images. To reduce this workload and to speed up the recognition process, automatic target

recognition (ATR) can be applied to SAR data. Another case motivating ATR would be

if the interpretation of data has to be done on-line. No operators are involved in the

understanding of the images generated by the embedded system and ATR is mandatory

as there is no possible human intervention.

The presented work aims at implementing novel techniques alongside more traditional

methods, in order to perform SAR ATR. In particular, after implementing a novel deep

learning solution for SAR ATR, the reasons behind the decisions of the deep learning

network are studied.

1.2 Research objectives and contributions

The objective of this thesis is to provide answers to the following research questions:

How to fairly evaluate SAR ATR algorithms?

A key challenge of SAR ATR is the lack of diversity and the small amount of im-

ages available. This has an impact not only on the development of SAR ATR algo-

rithms but also on the performance evaluation of such algorithms. Indeed, some databases

present only little differences between training and testing sets. In this thesis, a new ISAR

database is proposed. This database contains 3 targets for a total of 1728 images. These

images stem from 24 different group images and are dispatched between training and

testing so that the acquisition conditions are partly different. These conditions include the

target configuration, the depression angle and the lab environment. The background is

then artificially removed to undermine potential undesired correlation.

In order to evaluate the robustness improvement made by the proposed classification

algorithms, some test are performed on images that were randomly translated in order to

investigate if the algorithm is location dependant.
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To what extent can optical classification methods be transferred to the SAR domain?

A lot of work has been carried out on optical image classification as optical images

are available in large numbers for diversified applications. It is interesting to see if the

work carried out in the optical domain can be transferred to SAR ATR and, if so, to what

extent.

An innovative GMM based segmentation is proposed. Previous segmentations in the

literature were handled with threshold methods. The segmentation Dice score achieved

in this thesis is improved by 11%. To the best of our knowledge, GMM segmentation has

not been tried before on a SAR ATR database.

Various feature-based classification methods are compared on SAR data using well-

studied descriptors in the visual domain, some of which, such as binary features were

never tested on SAR data. Results show that binary features are less influenced by the

speckle and can increase the classification rate by 40% compared to gradient features. The

high sensitivity of descriptors to orientation variation of the target is shown and quantified.

Can classification be further improved by taking into account the specific character-

istics of images in the SAR domain?

Classical data augmentation methods aim at creating new images by applying simple

transformations such as translation, flipping or cropping of the image or the addition of

a Gaussian distribution. A SAR specific data augmentation is developed by adding SAR

specific noise based on a Weibull distribution to the range profiles. These range profiles

are used to create the SAR images. Using this SAR data augmentation, the classification

score relative to our database is improved from 86% to 91%.

After noticing the influence of the target orientation with the feature classification, a

different architecture that attributes the classification task to a deep neural network spe-

cialised in classifying targets from a specific orientation range is proposed. This pose-

informed deep learning method achieves better classification scores on 4 out of the 5

datasets it was tested on, with an improvement from 96% to 99% in the case of the most

used SAR ATR dataset compared to a CNN without the orientation specificity. This al-
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gorithm relies on a correct estimation of the target orientation. Most of the orientation

determination algorithms in SAR have been focused on a 180◦ precision while the pose-

informed architecture needs the full 360◦. Thus, an association between a deep learning

network and a Hough transform to perform this task is proposed. The orientation errors

achieved are lower than alternative current available methods.

Can we better understand the classification criteria of deep learning SAR ATR meth-

ods?

As deep learning methods decision making flow cannot be detailed, explanations of

the deep learning model’s behaviour are investigated. The understanding of deep learning

algorithms in the SAR domain was so far focused only on visualising low-level features of

the network. Classification maps are proposed to highlight the common zones of interest

of groups of images to the network. This provides new information on the location of the

most important features of specific target classes and targets in specific orientation range.

It is also shown, at least for the studied network, that the target shadow is little used.

Further work to better include shadow information could thus bring improvement of the

current classification rates.

It is finally shown that, while training for target classification, the deep network also

learns to discriminate features specific to the target orientation. The network learns addi-

tional knowledge that is valuable outside its main task. That encourages the possibility of

training networks using transfer learning from one task to another rather than only from

one database to another. SAR data previously ignored could be deemed useful in a first

training instance considering the lack of data available for SAR ATR.

1.3 Organisation of the thesis

The topic and content of each of the 7 chapters is detailed below.

• Chapter 2 introduces the acquisition of SAR and ISAR data. It also presents the

databases that will be used in the rest of the thesis. The lack of diverse data is one
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of the main challenges of SAR ATR. A new ISAR dataset is presented with the

objective to allow a fairer classification evaluation, alternative to what is available

with already existing data, with more differences between training and testing set

[5, 6]. The influence of background correlation of the datasets is also evaluated.

• Chapter 3 gives some introductory material necessary to understand the algorithms

used in later chapters. This chapter focuses on the computer vision with the intro-

duction of the Hough transform and feature extraction methods. It also introduces

deep neural networks and their training procedure.

• Chapter 4 provides a comparison of several feature classification methods with the

goal to assess the transferability of features originally issued from the optical do-

main (some of which have never been applied to the SAR domain). The influence of

the target orientation in feature classification and the challenge of corner detection

is quantified [7]. The fact that the target orientation influences classification scores

is used in Chapter 5. A proposition of a machine learning segmentation precedes

the feature classification. This segmentation is based on the clutter modelling us-

ing GMMs resulting in an improved standard precision and recall rate compared to

existing threshold methods [8].

• Chapter 5 firstly focuses on the limited amount of diverse data available for SAR

ATR with the proposition of a data augmentation solution that provides extra images

with realistic SAR noise [9]. The second part of the chapter shows that determin-

ing and including the target orientation in the deep learning classification method

improves the classification rates in most cases. The target orientation is taken into

account by using the proposed pose-informed architecture [10]. The target ori-

entation is determined using an association of Hough transform with a CNN and

achieves a better precision than current algorithms on 360◦.

• Chapter 6 presents an analysis to explain deep learning models [11]. The objec-

tive is to understand the reasons behind a classification decision obtained with deep
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learning. Analysis are proposed to assess the influence of particular image areas in

the final classification decision. These areas could be specific to the target class, tar-

get orientation or to what they represent in the image, i.e. shadow, target or clutter.

The distribution of the areas leading to classification is also shown to be different

than that of the other image areas. The features that are learnt by the network are

shown to not only be specific to the target class but to other environmental variables

as well, even if they were not included in the loss function. This could further the

use of transfer learning across tasks rather than only across databases.

• Chapter 7 proposes some further work based on the research presented in the pre-

vious chapters.
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2.1 Summary

Frequency range 13 GHz to 18 GHz sampled with 4001 frequency points
Resolution 3.0 cm (range)×3.3 cm (cross-range)
Target class number 3 classes (T64, T72 and BMP1)
Number of images 1728 images from 24 distinctive sequences (Training: 864. Test-

ing: 864.)

Table 2.1: Summary of MGTD (Military Ground Target Dataset) dataset

Evaluations of SAR ATR techniques are currently challenging due to the lack of pub-

licly available data in the SAR domain. Existing SAR ATR algorithms have mostly been

evaluated using the MSTAR dataset [12]. The various MSTAR dataset, acquired under

various conditions are described in details. The problem with the MSTAR databases is

that some of the proposed ATR methods have shown good classification performances

even when targets are hidden [13], suggesting the presence of a bias in the dataset. An

alternative to the standard 3 targets MSTAR dataset is proposed that minimises this bias.

In addition, a high resolution SAR dataset consisting of images of a set of ground mil-

itary target models taken at various aspect angles is proposed. The dataset can be used for

a fair evaluation and comparison of SAR ATR algorithms. The Inverse Synthetic Aperture

Radar (ISAR) technique is applied to echoes from targets rotating on a turntable and illu-

minated with a stepped frequency waveform. The targets in the database consist of three

1.5-1.7 m long models of T64, T72, BMP1 tanks. The gun, the turret position and the

depression angle are varied to form 24 different sequences of images. The emitted signal

spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz
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sampled with 4001 frequency points. The resolution obtained with respect to the size of

the model targets is comparable to typical values obtained using SAR airborne systems.

Single polarised images (Horizontal-Horizontal) are generated using the backprojection

algorithm [14]. A total of 1728 images are produced using a 20◦ integration angle. The

images in the dataset are organised in a suggested training and testing set to facilitate a

standard evaluation of SAR ATR algorithms.

2.2 Introduction

As SAR ATR algorithms are currently developed, the availability of datasets that allow a

fair evaluation of the performance is essential. If various ATR methods could be tested

on the same datasets, the results could be better compared and improvements could be

established more effectively. A dataset of this kind should represent a variety of operating

conditions, such as different target viewing angles, different target configurations, lay-

overs or occlusions induced by the surrounding environment, as well as target movements

effects. With a more realistic dataset the likelihood of overfitting is decreased because the

images are less similar with each other. The database that has been most often used to test

SAR ATR algorithms is the Moving and Stationary Target Acquisition and Recognition

(MSTAR) [12]. The problem with the MSTAR is that the independence between train-

ing and testing sets in the MSTAR has also been questioned [13], in both the 3 targets

and the 10 targets database. It is essential to achieve reliable results in any recognition

problems with independent training and testing dataset. As a result of these limitations,

ATR algorithms could have shown artificially increased results and their performance not

accurately reported. This chapter presents the commonly used MSTAR dataset and an

alternative 3 targets dataset using MSTAR images. In addition to that, a new dataset dedi-

cated to SAR ATR made with new ISAR images acquired in a laboratory is proposed [6].

A prior version of this new database has already been published [5]. The experimental

set-up and all the environmental factors are presented in Section 2.6.1. Guidelines are
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also given to correctly select the sequences to form independent and varied training and

testing sets in Section 2.6.2. Following this discussion, an evaluation method is suggested,

so that all algorithms are evaluated in the same way.

2.3 SAR and ISAR theory

The parameters used throughout this section relative to SAR and ISAR techniques are as

follow:

Parameter Description
r Range of the studied scatterer.
x Cross-range of the studied scatterer.
RC Range of the target centre.
d Distance from the scatterer to the target centre.
θ Angle relative to the polar coordinates of the scatterer as defined

in Fig. 2.4.
Ω Rotational speed of the turntable.
c Speed of light.
f Frequency of the signal.
∆ f Frequency step of the chirp.
K Number of frequency steps.
Np Number of pulses during the integration time.
λ Wavelength.
fθ Angular frequency.
ft Temporal frequency.
B Frequency bandwidth.
τ Pulse duration.
T Processing time duration.
θa is the integration angle.
∆r Range resolution.
∆x Cross-range resolution.
Wr Range dimension of the ISAR image.
Wx Cross-range dimension of the ISAR image.

2.3.1 Definitions

Resolution The resolution is the minimum distance needed between two scatterers so

that the radar is able to tell them apart. Range resolution focuses on the difference of
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(a) Transmitted signal on two scatterers. (b) Received signal from the two scatter-
ers.

Fig. 2.1: Illustration of the returned signal from two scatterers closer than the radar range
resolution.

range distance between two scatterers. The radar is able to tell the scatterers apart only if

the time to effectuate the round trip between the two scatterers is longer than the whole

signal duration as shown in Eq. (2.1). Otherwise, the signals received from both scatterers

are not separated but superimposed and the targets appear as a single target.

∆r =
c · τ

2
(2.1)

In practice, two targets are distinguishable as long as the two signals do not overlap too

much. The precise updated range resolution is obtained with the matched filter method

that is used to localise precisely the received signal. The result of the matched filter of

the chirp sent on the received signal is a sinc function with its main lobe centred on the

received chirp location. The signals can slightly overlap as long as the part of the main

lobes with a loss lower than 3dB do not overlap as they contain the main signal power.

The width of the main lobe at a 3dB loss is 1
B . By replacing the time needed between

two signals to be resolved independently previously obtained τ with 1
B , a range resolution

defined as in Eq. (2.2) is obtained.

∆r =
c

2B
(2.2)

15



CHAPTER 2. GENERATION OF SAR AND ISAR DATA FOR ATR

v v

Fig. 2.2: Illustration of the Doppler effect for a target moving from the antenna.

Doppler effect The Doppler effect consists of a frequency shift of the signal when it is

reflected on a moving target. Indeed, for a target moving at a speed v from the antenna,

the received signal will be partly delayed and can be defined as in Eq. (2.3). The range r

of the scatterer in this case depends on the time t and on the initial range r(0).

s(t) = exp

(
j2π f

(
t− 2r(0)

c
− 2vt

c

))
(2.3)

The phase related to the Doppler shift here is:

ΦD =
4π f vt

c
(2.4)

And the corresponding Doppler frequency defined as the derivative of the phase is:

fd =
1

2π

dΦD

dt
=

2 f v
c

(2.5)

The Doppler shifts gives the opportunity for the radar to resolve two scatters if they

move at different speeds. The speed difference between the scatterers must be different

enough so that the radar is able to notice the frequency difference between the two signals.

2.3.2 SAR principle

The SAR main principle is to simulate a longer antenna by transmitting several pulse

regularly to the ground, as a delayed phased array. This require to know the movement of

the plane acquiring the images, and the targets trajectories if they are moving [15]. It is

assumed in this thesis that the targets and the antenna do not move at the same time. In

the case of ISAR images, it is the target that is moving and the antenna that is still, which

is similar to the SAR image configuration after a referential change.
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Fig. 2.3: Setup to acquire SAR images.

In a classical SAR scenario, the antenna is assumed to move on a straight line at

a constant speed, while sending signal regularly to the ground at a certain depression

angle as shown in Fig. 2.3. All the measurements are stored to be compiled later on and

simulate a longer antenna. The combination of all the measurements is possible by using

some Doppler shifts measurement that give information on the location of each zone at

the time of measurement. Indeed, the Doppler shift is related to the plane location in

regards to the imaged zone with the speed contributing to the Doppler shift varying from

one extreme to another between the beginning and the end of the acquisition.

2.3.3 ISAR principle

In the ISAR model, it is the target that moves in front of a fixed antenna. The target here

rotates on a turntable as seen in Fig. 2.4. The following explanations are based on [16].

The cross-range position of scatterers are deduced from the Doppler shift of the received
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Fig. 2.4: Setup to acquire ISAR images.

signal. In order to compute the Doppler shift, the range between each scatterer composing

the target and the antenna has to be calculated throughout the movement. Starting from

the geometric configuration presented in Fig. 2.4, the range of any source point on the

target is deduced in Eq. (2.6).

r = RC−d sinθ (2.6)

The received signal by the antenna issued from the studied scatterer can be written as

the transmitted signal with a round-trip delay due to the range found in Eq. (2.6) as in

Eq. (2.7).

s(t) = exp

(
j2πω

(
t− 2r

c

))
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s(t) = exp

(
j2πωt− j2π

2Rc

λ
+ j2π

2d sinθ

λ

)
(2.7)

Using Eq. (2.7), the Doppler frequency is calculated by differentiating the phase asso-

ciated with the Doppler shift ΦD in Eq. (2.8). The frequency shift can be associated with

the cross-range location of the scatterer x.

ΦD = 2π
2d sin(Ωt)

λ

ft =
1

2π

dΦD

dt
= Ω

2d
λ

cos(Ωt) (2.8)

ft = Ω
2x
λ

(2.9)

Similarly, the angular frequency can be calculated if the phase is differentiated against

θ instead of time to obtain Eq. (2.10).

fθ =
1

2π

dΦD

dθ
= Ω

2d
λ

cosθ (2.10)

fθ =
2x
λ

=
ft
Ω

(2.11)

This particularity means that there are two options to compute the ISAR image, either

having the target rotate at a constant speed, or doing the rotation by step and transmitting

the signal when the target is still. In both cases, the cross-range cell of the scatterer can

be retrieved from the frequency shift.

Cross-range resolution

The cross-range resolution can be deduced from Eq. (2.8). The resolution of the Doppler

frequency using a matched filter can be approximated by 1
T . The cross-range resolution

can thus be deduced in Eq. (2.12).
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∆x =
λ

2Ω
∆ ft =

λ

2ΩT
(2.12)

∆x =
λ

2θa
(2.13)

Maximum alias free image dimensions

Range dimension The number of range cells is the number of frequency points K as

generated by the VNA during the acquisition. Thus, with Eq. (2.2), the range dimension

of the maximum alias free image can be deduced as in Eq. (2.14).

Wr = ∆r · (K−1) =
c
2
· K−1

B
=

c
2 ·∆ f

(2.14)

Cross-Range dimension The number of cross-range cells is the number of pulses sent

Np. Thus, with Eq. (2.12), the cross-range dimension of the maximum alias free image

can be deduced as in Eq. (2.15).

Wx = (Np−1)∆x =
λ

2
(N p−1)

θa
=

λ

2 ·∆θ
(2.15)

Backprojection algorithm

The intensity of each point in the ISAR image is retrieved with the backprojection method.

It is a method more computationally heavy that the matched filter method. However, the
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intermediary computation of the range profile is interesting to visualise some of the work

that is done on the images such as the approximated background removal in Chapter 2 or

the data augmentation in Chapter 5.

The distance d between the target centre and the scatterers is calculated firstly for each

pixel and each pulse. Each range bin of the range profile can be calculated as an inverse

Fourier transform of the received signal with the inclusion of the delays induced by d.

Ultimately, the intensity at a certain range is computed as the summation of the values of

the range profiles of all pulses at this specific range.

More details as well as an example of Matlab code can be found in [14].

2.4 Description of the MSTAR dataset

The MSTAR public dataset was developed by the U.S. Defense Advanced Research

Projects Agency (DARPA) and the U.S. Air Force Research Laboratory (AFRL) [12, 17].

This database was collected under Horizontal Horizontal (HH) polarisation in X-Band

with a 30cm×30cm resolution.

2.4.1 Targets

The database is composed of 10 different targets shown in Fig. 2.5 with their visual and

SAR representation. The various targets range from different categories with a bulldozer

(D7), a truck (ZIL), a rocket launcher (2S1), an air defence unit (ZSU), armoured person-

nel carriers (BRDM2, BTR60, BTR70, BMP2) and tanks (T62, T72). The particularity

with the BMP and T72 targets is that there are several tanks representing the same target.

Moreover, for the T72, various variants are available as seen in Fig. 2.6 with fuel barrels,

a skirt or a reactive armour.

1 Photos of the BMP2 and BTR70 from the MSTAR dataset were not found and are replaced with
alternative photos of the same tank models. These photos were taken by Vitaly Kuzmin (https:
//www.vitalykuzmin.net) and are licensed under the Creative Commons Attribution Non Commercial
No Derivatives 4.0 International License.
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(a) ZIL (b) D7 (c) BRDM2

(d) BTR60 (e) BTR70 1

Fig. 2.5: Target photos and corresponding SAR image.
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(f) BMP2 2 (g) T62 (h) T72

(i) 2S1 (j) ZSU

Fig. 2.5: Target photos and corresponding SAR image (continued).
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2.4.2 Datasets

Class Training (17◦) Testing (15◦)
Serial number image number Serial number image number
sn_c21 233 sn_c21 196

BMP2 sn_9566 232 sn_9566 196
sn_9563B 233 sn_9563B 196
sn_132B 232 sn_132B 196

T72 sn_812 231 sn_812 195
sn_s7 188 sn_s7 191

BTR70 sn_c71NA 233 sn_c71NA 196

Table 2.2: MSTAR dataset SOC - 3 targets. Referred as Dataset A in Section 4.4.

Class Training (17◦) Testing (15◦)
Serial number image number Serial number image number

BMP2 sn_9563B 233 sn_9563B 196
BTR70 sn_c71NA 233 sn_c71NA 196
T72 sn_132B 232 sn_132B 196
BTR60 sn_k10yt7532NA 256 sn_k10yt7532NA 195
2S1 sn_b01B 299 sn_b01B 274
BRDM sn_E71NA 298 sn_E-71NA 274
D7 sn_92v13015NA 299 sn_92v13015NA 274
T62 sn_A51F 299 sn_A51F 273
ZIL sn_E12NA 299 sn_E12NA 274
ZSU sn_d08B 299 sn_d08B 274

Table 2.3: MSTAR dataset SOC - 10 targets.

In the nomenclature designating the sequences, sn_X , X designates the serial num-

ber of the target [18]. The sequences produced make possible to test ATR algorithms in

standard operating conditions (SOC) with a constant target and two different depression

angles (2◦ difference) between training and testing as suggested in [18]. The standard

conditions make possible to test the ATR on 3 or 10 different targets such as in Tables 2.2

and 2.3. The MSTAR is also composed of data making the ATR algorithm deal with more

realistic changes with different target variants, target configurations or bigger change in

2 Photos of the BMP2 and BTR70 from the MSTAR dataset were not found and are replaced with
alternative photos of the same tank models. These photos were taken by Vitaly Kuzmin (https:
//www.vitalykuzmin.net) and are licensed under the Creative Commons Attribution Non Commercial
No Derivatives 4.0 International License.
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(a) Bare T72 (b) T72 with fuel drums

(c) T72 with a skirt (d) T72 with a reactive armour

Fig. 2.6: Various variants of the T72.

the depression angle (13◦ difference). These stronger changes between training and test-

ing make up the extended operating conditions (EOC) datasets as seen in Tables 2.4 to 2.6.

In all these tables, F refers to the presence of fuel drums on the target, S to the presence

of a skirt, R to the presence of a reactive armour, B means that the tank is bare, without

fuel drums, skirt or reactive armour. NA means that the presence of such variances are

not applicable and the absence of precision means that the relative information could not

be found. There are three EOC datasets available. The depression EOC or EOC 1 dataset

has a high difference in depression angle between the training and testing set (13◦). For

the variant EOC or EOC2 dataset, the targets of the same class have differences from the

manufacturer and have been built to different blueprints. Concerning the configuration

EOC or EOC3 dataset, something is removed or added to the target such as fuel barrels,

skirt [18]. These EOCs are commonly used in deep learning on the contrary to EOCs

proposed in [19] as not all data are available [20–22]. A few other EOCs have also been

proposed [23].

Proposition of an alternative MSTAR dataset for the 3-target ATR problem

An alternative partition is proposed in Table 2.7, named dataset B, to the standard one

for 3-class targets SAR ATR in Table. 2.2, named dataset A. The series chosen in dataset

B have been chosen so that the serial number is different between training and testing
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Class Training (17◦) Testing (30◦)
Serial number image number Serial number image number

2S1 sn_b01B 299 sn_b01B 288
BRDM sn_E-71NA 298 sn_E71NA 289
T72 sn_132B 232 sn_A64B 288
ZSU sn_d08B 299 sn_d08B 288

Table 2.4: MSTAR dataset EOC 1 - Depression variant

Class Training (17◦) Testing (15◦ & 17◦)
Serial number image number Serial number image number

BMP2 sn_9563B 233 sn_9566 196+232=428
sn_c21 196+233=429

BRDM sn_E-71NA 298 - -
BTR70 sn_c71NA 233 - -

sn_812NA 195+231=426
sn_A04F,S 275+299=573

T72 sn_132B 232 sn_A05S 274+299=573
sn_A07S 274+299=573
sn_A10S 271+296=567

Table 2.5: MSTAR dataset EOC 2 - Version variant

for the BMP2 and T72. The targets are thus not entirely identical in both sets and even

if not moved during the acquisition, the background will still be different between the

training and testing set. The correlation between two sets should be thus reduced and the

dataset choice is justified by applying a template based ATR method to dataset A and B

with the full images and background-only images in which the target was removed after

segmentation in Section 4.4.2 [13, 24].

2.5 Reasons for creating a new dataset

Algorithms performing ATR rely on a training set to recognise targets in a testing set. To

ensure a fair analysis of the performance of these algorithms and avoid any possible bias

in the results, training and test images should be taken from independent sets of data.

It has been shown that the MSTAR [12] contains data with a high degree of corre-

lation between images in the training and testing set due to the presence of correlated
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Class Training (17◦) Testing (15◦ & 17◦)
Serial number image number Serial number image number

BMP2 sn_9563B 233 - -
BRDM sn_E-71NA 298 - -
BTR70 sn_c71NA 233 - -

sn_s7 191+288=419
sn_A32F,S,R 274+298=572

T72 sn_132B 232 sn_A62F 274+299=573
sn_A63F 274+299=573
sn_A64B 274+299=573

Table 2.6: MSTAR dataset EOC 3 - Configuration variant

Class Training (17◦) Testing (15◦)
Serial number image number Serial number image number

BMP2 sn_c21 233 sn_9566 196
sn_9563B 196

T72 sn_132B 232 sn_812 195
sn_s7 191

BTR70 sn_c71NA 233 sn_c71NA 196

Table 2.7: MSTAR dataset - 3 targets alternative. Referred as Dataset B in Section 4.4.

background [13, 25]. Indeed, it has been demonstrated that the recognition rates of al-

gorithms tested on the MSTAR are high even when the target to recognise is artificially

hidden. Moreover, data released to the public and included in the guidelines [18] con-

tains only two targets (BMP, T72) with a complete training and testing sets, and one, the

BTR60, with only one sequence for each set. In order to evaluate the correlation on the

MSTAR datasets, a simple ATR method is applied on full SAR images as well as on SAR

images with the target hidden and compare the results.

2.5.1 Nearest neighbour classification

Nearest neighbour classification method

The training and testing set are chosen according to Section 2.4.2. The nearest neighbour

classification method consists in comparing the image to be classified in the testing set

to every image in the training set. To be able to compare all the images, they are scaled
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to the same size. The scale chosen was 64×64 pixels to have a quick matching but still

some precision to the image. This is done using a bicubic interpolation for the images

of different sizes. That means that the pixels without a proper intensity assignation get

as an intensity a weighted average of the 4×4 neighbouring pixels with assigned values.

Once both images are the same size, the global intensity distance is computed between

both images as in Eq. (2.16).

D(I1, I2) =
n

∑
x=1

m

∑
y=1
|I1(x,y)− I2(x,y)| (2.16)

where Ik is one of the image to compare.
Ik(x,y) is the intensity of Ik at row x and column y.

This distance is computed for each test image with all the available training images.

Out of all these distances, the class of the test image is chosen to be the same as the class

of the target in the training image with the lowest distance to the test image.

The full images are classified as well as images with the central area covering the

target hidden as in Fig. 2.7 so that the target representation does not interfere in the classi-

fication. The target is hidden using a mask which is a black square of 34×34 pixels added

in the middle of the image. The partially hidden images are classified using training im-

ages with the central area covered as well. Thus, two classification scores are computed

for each dataset with SOC (3 and 10 targets) and EOC (4 targets with different depression

angles, variants, configurations): one for the full images and one for the masked image.

Results of the nearest neighbour method on full SAR images and partially masked

SAR images

The classification scores are already high, especially for the SOC datasets, with a very

basic classification method as seen in Table 2.8. Even when the target is hidden, the

NN method still manages to classify well up to 6 times the score attained by a random

classifier. The scores are lower for the EOC datasets which means the correlation affects
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Fig. 2.7: SAR image with the target masked.

SOC 3 SOC 10 EOC 1 EOC 2 EOC 3
targets targets (Depression) (Variants) (Configuration)

Full image 99,89% 87,30% 70,90% 75,04% 72,18%
Target hidden 83,32% 61.01% 30,50% 49,99% 59,63%
image
Random 33,33% 10,00% 25,00% 25,00% 25,00%
classification

Table 2.8: Classification results using the NN method on full SAR images and SAR
images with a hidden target.

less the dataset with bigger environmental changes between the training and testing.
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2.6 Description of the Military Ground Target Dataset

(MGTD)

2.6.1 Data acquisition

Experimental setup

(a) Gun
elevation

(b) Turret
orientation

(c) Depression
angle

Fig. 2.8: Experimental setup. The antenna emits a signal towards the target placed on a
turntable at each rotation step. For each sequence of measurements, at least one of the
following factor is changed: the position of the gun (up/down), the orientation of the turret
and the depression angle between the antenna and the target.

Configuration of the experiment The antenna is placed around 5 m away from the tar-

get on an adjustable height tripod to allow measurements or depression angles between

11◦ and 13◦. The detailed range for each sequence of measurement can be found in

Appendix A. The target is on a rotating turntable and high range resolution profiles are

measured every predefined angular step. A single Horizontal-Horizontal polarisation is

used. To avoid any ring due to unwanted movements of the setup, a latency period is in-

troduced after each rotation step to ensure the target is still before each measurement. The

emitted signal is a stepped frequency waveform spanning a bandwidth of 5 GHz between

13 GHz and 18 GHz, with 4001 frequency points. The signal is generated and acquired

using an Anritsu Vector Network Analyzer (VNA). A piece of Radiation Absorbent Ma-
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Fig. 2.9: Experimental setup. Some RAM is placed in front of the turntable to limit the
unwanted returns from the turntable.

terial (RAM) is laid in front of the turntable (as shown in Fig. 2.9) in order to prevent

unwanted multipath effects from the turntable.

Targets The presented database includes 3 classes. Their image representation of the

target depends on the targets signature, i.e., the way it backscatters the energy sent by the

radar. The various classes are characterised by major signature changes. The first class is

the T64 tank shown in Fig. 2.10 (b). The second class is the T72 tank shown in Fig. 2.10

(c). The third class is the BMP1 tank shown in Fig. 2.10 (a). All three targets are model

targets made mainly in plastic with some metallic parts. The BMP1 model is 1.5 m long

and the T64 and T72 models are 1.7 m long.

Environmental variables To avoid correlation between the training and testing set in

the MGTD, the images belonging to the training and testing set are separated so that the

sets of environmental conditions are different between training and test images. Each

target has also training images with varied environmental conditions so that the algorithm

can be more resilient. A sequence is defined as a group of images obtained from one

single experiment. Images from a single sequence have thus identical environment factors
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(a) BMP1

(b) T64

(c) T72

Fig. 2.10: The different target classes.

except from the target orientation. Environmental details on the sequences chosen for the

training and testing sets are in Sections 2.6.2 and 2.6.2. A detailed description of all the

sequences created can be found in Appendix A.

Orientation The MGTD dataset consists of target images taken every 5◦ starting

from 0◦ for which the radar faces the front of the target. The training and testing sets

are formed using independent image sequences collected under different environmental

conditions.
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Depression Angle The depression angles used to generate the dataset are for train-

ing from 21.8◦ to 23.4◦ and for testing from 17.5◦ to 20.3◦. The depression angle is

changed by adjusting the height of the antenna mount relative to the distance between

the antenna and the target. When the depression angle is changed, the reflecting surfaces

of the target have virtually a new orientation which will impact the way the signal is

backscattered. A change in the depression angle thus affects the target signature.

Configuration changes The configuration change is defined as the displacement

of an element of the target. In practice, it is the turret or gun direction change that is

considered as a configuration change. All orientations of the turret against its central

position are included in the following sets of angles for the training: {-90; -45; 45; 90}

and for the testing: {-30; 0; 30}. The gun had only two discrete positions which are up

and down.

Lab environment Not all the sequences were taken at the lab at the same period. It

is not possible to remove entirely the background from the images as it was not possible

to take measurements of the background alone as the targets were too heavy to be moved

easily. Thus, the surrounding objects in the background can have an incidence on the re-

sulting image. To make sure to limit correlation relative to the background, the sequences

chosen for the training and testing set are not taken at the same time period and have thus

a different laboratory background. All the data were taken over 3 different time periods

in time labelled 1, 2 and 3 in Section 2.6.2.

Experiment parameters

The choice of the bandwidth determines the range resolution of the image. With a band-

width of 5 GHz, the range resolution of 3.0 cm is obtained through Eq. (2.17).

∆r =
c

2B
= 3.0cm , (2.17)
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where c is the speed of light and B is the bandwidth of the signal.

An integration angle of 20◦ seemed realistic as it represents a 350 m synthetic antenna

for an altitude of 1 km. To have a similar resolution in the cross-range given this integra-

tion angle, the start frequency chosen is 13 GHz. Consequently, the cross-range resolution

is of 3.3 cm using Eq. (2.18).

∆x =
c

2θa fmin
= 3.3cm , (2.18)

where ∆x is the cross-range resolution, c is the speed of light, θa is the full integration

angle and fmin is the start frequency of the signal.

This resolution is equivalent to a 17 cm resolution on a real-size tank (9.53 m T72)

which is a value achievable with existing airborne SAR. For comparison, the resolution

of the MSTAR is of 30 cm.

Knowing that the model-tanks described in Section 2.6.1 are maximum 1.7 m long, an

estimation of 3.3 m with ∆θ = 0.2◦ for the size of the total rotating scene seems adequate.

Indeed, a bigger step angle of 0.4◦ leads to a 1.7 m rotating scene which is too close to

the maximum target size. The maximum range size of the scene is calculated.

Wr =
c

2∆ f
= 120m , (2.19)

where Wr is the maximum range size of the scene, c is the speed of light, ∆ f is the

frequency step.

The maximum cross-range size of the scene is calculated and must satisfy the same

criteria as the range size of the scene.

Wx =
c

2∆θ fmin
= 3.3m , (2.20)
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where Wx is the maximum cross-range size of the scene, c is the speed of light, ∆θ is the

step angle and fmin is the start frequency of the signal.

Reflecting the equipment constraints and the previous estimation, a rotation step of

0.2◦ is chosen to allow a 3.3 m maximum scene size as seen in Eq. (2.20), which is large

enough to contain the tank model.

Image generation

Range profile
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Fig. 2.11: Amplitude for each orientation of the target per range cell.

The target range profiles in Fig. 2.11 are obtained by taking the IFFT of the VNA

output. For each target aspect angle, the backscattered signal amplitude is plotted for

every range cell to obtain the sinogram of the main target scatterers. The range cells that

contain the target are thus selected. Results show that the strongest echoes from the target

are found between 4.25 m and 6.25 m.

Artificial background removal

As taking measures of the background alone was not possible due to the targets heavy

weight and the duration of the acquisition, the background is present and affects the range
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Range profile after artificial 
background removal
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Fig. 2.12: Effect of the artificial removal of the background on the amplitude.

profile of the target. To improve the target image, an approximation of the background

is done by calculating a sliding average over 8◦ of the whole range profile. The removal

of the sliding average to the initial range profile makes possible to have an image that is

less corrupted by the background . The effect of the sliding average removal on the range

profile can be seen in Fig. 2.12.

Offset of the orientation starting angle The target is not always perfectly aligned with

the radar at the start of the measurements. The angle correction needed is expressed as

α in Fig. 2.13 and is listed in the Appendix A. This can be compensated at the image

formation stage in which the measurements used for creating the image are shifted to

simulate having the target at 0◦ from the start.
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Target orientation at
the start of the
measurement.

g

g:

Antenna

+

Fig. 2.13: Orientation correction for the misalignment of the target at the start of mea-
surement.

Targets ISAR representation To illustrate the signature changes between classes, the

full 360◦ SAR images from each target generated with the backprojection algorithm are

shown in Fig. 2.14. It can be seen that the T64 is more similar to the T72 than the BMP1.

This is seen in particular in the turret, front and sides of the hull areas.
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Fig. 2.14: ISAR images of the different target classes with a 360◦ integration angle.

Influence of the environmental variables on the ISAR images Various variables in-

fluence the representation of the target in the ISAR image. In this section, the influence

of the orientation, depression angle and configuration of the target are shown. The ISAR

images shown are images with an amplitude restricted to the [-50;0] dB range.

Orientation One of the limitations of SAR images is that small changes in the orien-

tation of the target can result in vastly different signatures [26]. Fig. 2.15 shows different

images from one unique sequence. The target is the T64 and apart from the orientation,
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(a) 0◦ (b) 125◦

(c) 180◦ (d) 280◦

Fig. 2.15: Impact of the target’s orientation on the SAR images.

all the environmental parameters are constant. For each aspect angle, only the scatterers

visible to the radar with a high enough amplitude will be included in the SAR image.

Fig. 2.15 (b) shows the ISAR image of the T64 target relative to an aspect angle of 125◦

obtained by processing the echo signals from 115◦ to 135◦ aspect angle. Results show

that the gun is only visible around 125◦ when the gun is nearly perpendicular to the radar

and disappears in Figs.2.15 (a), 2.15 (c) and 2.15 (d) even though all the environmental

conditions remained the same.

Depression angle The representation of scatterers in the produced ISAR image can

be different with various depression angle. In the most extreme cases, it can be seen at a

certain depression angle and disappear at another. Fig. 2.16 shows the ISAR images of

the T64 with the same orientation (135◦) and the same target configuration (turret at−45◦

and gun up) at different depression angles. The location of most of the brightest scatterers

is changed with the various depression angles as the reflection direction of the scatterers

changes and can stop being in the direction of the radar.
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(a) 19◦ (b) 23◦

Fig. 2.16: Impact of the depression angle on the SAR images.

(a) −45◦ (b) 90◦

Fig. 2.17: Impact of the target’s configuration on the SAR images. The turret orientation
is varied while the other parameters remained the same.

Target configuration changes Fig. 2.17 images from the T64 at the same aspect

angle but with a different turret position. Results show that the signature changes as a

function of the position of turret, and this should be taken into account when ATR is

performed.

2.6.2 Setting up the database for SAR ATR

Image sequences description

The total dataset consists of 24 different sequences, of which 12 are used for training

and 12 for the testing. These are made out of 3 different targets with different depression

angles and configurations. Each sequence is composed of 72 images of the target obtained

with a 20◦ integration angle every 5◦ to cover 360◦ of possible orientations for a total of

864 (72 ∗ 12) images. Each sequence represents thus one unique target with different
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aspect angle but the same depression angle and target configuration. There are 1728

images in total in this dataset. Tables 2.9 and 2.10 summarise the training and testing set

separation. It can be noted that the targets have different turret angles, different laboratory

backgrounds and different radar heights and ranges (depression angle of 21.8◦ to 23.4◦

for training and 17.5◦ to 20.3◦ for testing) between the training and testing in order to

have the maximal variety in terms of environmental variables and the most challenging

dataset to classify. Details on all sequences can be found in Appendix A.

Sequence Target Radar Radar Turret Gun Laboratory
nb height range Orien- Orien- Background

tation tation
49 BMP1 1.72 m 4.45 m 45◦ down 3
50 BMP1 1.72 m 4.45 m −45◦ up 3
51 BMP1 1.72 m 4.45 m −90◦ down 3
52 BMP1 1.72 m 4.45 m 90◦ up 3
53 T72 1.72 m 4.39 m −90◦ down 3
54 T72 1.72 m 4.39 m 90◦ up 3
55 T72 1.72 m 4.39 m 45◦ down 3
56 T72 1.72 m 4.39 m −45◦ up 3
63 T64 1.72 m 4.33 m −90◦ down 3
64 T64 1.72 m 4.33 m −45◦ up 3
65 T64 1.72 m 4.33 m 90◦ up 3
66 T64 1.72 m 4.33 m 45◦ down 3

Table 2.9: Sequences of images used for training.

Separation between the training and testing sets

Extended operating conditions have been used to produce a diverse dataset in terms of

target types, orientation, configuration and depression angle. This variety of conditions

will be used to minimise the degree of correlation between the training set and the testing

set. The sequences used for training and testing must be acquired differently to introduce

some environmental variability to test ATR method against realistic changes in SAR data.

The variation between training and testing are summarised in Table 2.11.
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Sequence Target Radar Radar Turret Gun Laboratory
nb height range Orien- Orien- Background

tation tation
27 BMP1 1.54 m 4.65 m −30◦ down 2
28 BMP1 1.54 m 4.65 m 30◦ up 2
29 BMP1 1.63 m 4.7 m −30◦ up 2
30 BMP1 1.63 m 4.7 m −45◦ down 2
21 T72 1.54 m 5.08 m 30◦ up 1
22 T72 1.54 m 5.08 m 0◦ down 1
23 T72 1.63 m 5.09 m −30◦ down 1
24 T72 1.63 m 5.09 m 0◦ up 1
9 T64 1.54 m 5.10 m 30◦ up 1

10 T64 1.54 m 5.10 m 0◦ down 1
15 T64 1.63 m 5.12 m 30◦ up 1
16 T64 1.63 m 5.12 m 0◦ down 1

Table 2.10: Sequences of images used for testing.

Variable Training Testing
Depression angle 21.8◦-23.4◦ 17.5◦-20.3◦

Laboratory background {3} {1;2}
Turret orientation {-90;-45;45;90} {-30;0;30}, One testing se-

quence has a −45◦ turret
orientation.

Table 2.11: Environmental variable differences between the training and testing set.

2.6.3 Nearest neighbour classification

Nearest neighbour classification method

The same NN method as in Section 2.5.1 is applied to the MGTD. The same parameters

as for the MSTAR are chosen. However, as the target occupies a larger portion of the

image than in MSTAR images, the size of the mask is increased from 34×34 to 44×44

so that the target is effectively hidden.

Results of the NN method on full SAR images and partially masked SAR images

The classification scores obtained seems to have less correlation than the MSTAR SOC

dataset. It is closer to that of the EOC datasets. However, this is just an indication and is

42



CHAPTER 2. GENERATION OF SAR AND ISAR DATA FOR ATR

Fig. 2.18: SAR image with the target masked.

Full image 71,80%
Target hidden image 56,50%
Random classification 33,33%

Table 2.12: Classification results using the NN method on full SAR images and SAR
images with a hidden target on the MGTD with targets in a fixed orientation, so that he
target is hidden by the black area at all times (facing the right of the image).

not an objective way to measure correlation as many other parameters are different from

the MSTAR database to the MGTD and could interfere with those scores. The number of

target is different and the measurement conditions are extremely different as the MSTAR

dataset is composed of SAR images taken from a field with a plane whereas the MGTD

is composed of ISAR images acquired in a laboratory.

2.7 Guidelines for the performance quantification of a

SAR ATR method on the MGTD

2.7.1 Correct classification rate

The performance evaluation only deals with target recognition. The recognition step con-

sists in correctly labelling targets as defined in 2.6.1. Detection is out of the scope as the

images are already focused on the targets in both the MSTAR dataset and the MGTD.
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ATR methods performance are measured using the probability of correct classification

Pcc. This is the ratio between the number of correctly labelled targets over the total num-

ber of targets. If a rejection class is used when the ATR is not able to label the target, the

probability of false positive Pf p is also analysed. This represents the number of wrongly

labelled targets over the total number of target tested. If the target is labelled as the rejec-

tion class, it is neither correctly, nor wrongly classified. The presence of a rejection class

allows a reduction of false positives. These scores should be given when using the dataset

separation presented in Section 2.6.2.

2.8 Conclusion

In this chapter, the MSTAR datasets are presented and the background correlation that is

present between the training and testing sets is quantified. A new dataset of ISAR images

is presented that can facilitate the evaluation and comparison of SAR ATR algorithms.

The choice of parameters and the process leading to the acquisition of the images are

explained. The operating conditions changed throughout the whole dataset to introduce

variability in the dataset are also described. For each target type, different orientations,

configurations and depression angles are used for each sequence as well as different lab-

oratory background between the training and testing set. Guidelines are also provided

to test fairly SAR ATR algorithms. A suggestion of separation between the training and

testing set is given. Standard indicators are recommended for a baseline evaluation that

should help for future comparisons of ATR methods.
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SAR image classification theory
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The approach to the SAR ATR problem in the following work is essentially centred on

methods issued from the computer vision and machine learning domains. In this Chapter,

the principle of classification is explained with background on feature-based and deep

learning classification methods. Some background theory is also given on the Hough

transform for line detection that will be used to determine the target orientation.

3.1 Classification

Classification or target recognition in computer vision consists in the task of assigning a

label to the corresponding object present in an image. In this thesis, the focus is on the

classification task of targets in SAR database. For the currently used SAR ATR databases,

a loose localisation of the target has already been done by a pre screener [19]. The target
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Fig. 3.1: Full SAR image prior any analysis with the targets highlighted [12].

has a probability of detectionPD to be noticed. The original SAR image seen in Fig. 3.1 is

thus reduced to several images centred around a single target detected by the pre-screener.

A successful classification is defined when the correct label is associated with the target.

The target is classified with a certain probability of correct classification PCC by the eval-

uated method. It is assumed that the detection step was carried out successfully for the

classification to happen. Otherwise, if a target is not detected, it cannot be fed to the clas-

sifier. A false positive, or empty image, could be handled by some classifiers if they are

trained for this particular case, but that is not taken into account for the PCC computation.

Only the first most probable guess is taken into account on the contrary to other databases

having much more possible classes and thus assuming the object correctly classified if its

class is in the top 5 label suggestions. In addition to the probability of correct classifi-

cation, a confusion matrix is provided that is able to clarify which targets are the most

easily confused with another target for the tested classification algorithm. This matrix is

a summary of the assigned class regarding to the true class of the target classified. In case

of a perfect score, the confusion matrix will be a diagonal matrix as all assigned classes

correspond to the true classes.
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3.1.1 Feature classification

Features description

Features are used to characterise points of interests. They are specific to a location and

each has a specific way to describe the surroundings of this particular location. By com-

paring features, it is possible to know if two areas look similar in different images. In this

section, specific features will be described in detail. Gradient based features computes

intensity gradients to describe the area of interest: The Scale Invariant Feature Transform

(SIFT) [27] and Speeded Up Robust Features (SURF) [28] are gradient based features.

Binary features that compare intensities between pairs of points are also presented: Ori-

ented FAST and Rotated BRIEF (ORB) [29], Fast REtina Keypoint (FREAK) [30] and

Binary Robust Invariant Scalable Keypoints (BRISK) [31].

Gradient based descriptors

SIFT Scale Invariant Feature Transform (SIFT) is a feature which is both scale and

rotation invariant [27, 32]. The scale adaptability is achieved through analysing features

of the image at various scale as shown in Fig. 3.2 (a). Each octave contains the image

scaled at a unique size. SIFT uses an approximation of the Laplacian of Gaussians (LoG)

which is sensitive to intensity gradients but computationally costly because it requires

differentiating. The approximation consists in Differences of Gaussians (DoG) which

only require the application of a Gaussian filter and a subtraction of the most blurred

image to the least blurred image. Inside an octave corresponding to a unique image size,

the same image is blurred using a Gaussian filter with an increasing standard deviation

σ . In each octave, slow and fast change of gradients can be evaluated using the DoG

on images more or less blurred. The various octaves serve to detect features of various

size with the smallest images, detecting the biggest features. The researched keypoints

are the ones located on extrema of the DoG image obtained even though not all extrema

are kept after investigation. The final keypoint descriptor consists in the description of
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Scale
(first
octave)

Scale
(next
octave)

Gaussian
Differenceof
Gaussian(DOG)

(a) DoG computation [27].

Scale

(b) Keypoint neighbours [27].

Fig. 3.2: Comparison of the segmentation with and without the evolution of the GMM
background model [27].

the keypoint’s neighbourhood as seen in Fig. 3.2 (b) represented by a vector. Once the

keypoint located, the neighbourhood of the keypoint is divided in 16 sub-areas of size

4×4. Each of these zones are described by concatenating a description of the gradient of

the sub-area in 8 directions.

SIFT also achieves rotation invariance. It starts by determining the orientation of

the gradient found by the DoG. For each keypoint, an histogram containing bins of 10◦

registers the intensity of the gradient in the keypoint neighbourhood for each bin direction.

Once the histogram acquired, the vector descriptor is shifted to begin its description in the

direction of the steepest gradients.

where G(x,y,σ) is a Gaussian kernel, s represent the scale space, k is a multiplicative
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Algorithm 1: Detection of SIFT features
1 for n=1 to 4 do
2 Computation of the image in the nth octave: resize the original image by 1

n .
3 for s=1 to 5 do
4 Exploration of the scale space with the convolution of a Gaussian kernel

with the image from the nth octave: L(x,y,kσ) = G(x,y,σ)∗ I(x,y)
5 end
6 for s=2 to 5 do
7 Computation of the difference of Gaussians:

D(x,y,σ) = L(x,y,kσ)−L(x,y,σ)
8 Detection of the stable keypoints in the image at different scales with the

localisation of local extrema by comparing points to their 8 current
neighbours and 9 neighbours in the previous and next scale as in Fig. 3.2
(b). The point is selected if all neighbours have either a bigger or smaller
value.

9 Evaluation of the detected points and removal of the points with a too low
contrast. The scale-space function D is expanded using a Taylor
expansion to the order 2. The position of the real extremum X̂ = ˆ(x,y,σ)
is obtained by setting to 0 the derivative of D. Points that do not respect
the inequality | D(X̂) |> 0.03 are removed.

10 Points poorly localised along an edge are removed. To do so, the Hessian
matrix H of D is computed at the location of the keypoint. Points that do

not respect the inequality Tr(H)2

det(H) <
(r+1)2

r are removed.
11 end
12 end

constant to go from one scale s to the next with a value of 2
1
s , r is a real number set to 10

in the original paper.
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Algorithm 2: Description of SIFT features
1 for each remaining detected keypoint do
2 The keypoint is located at (x,y). The smoothed image with the closest scale

as during detection will be used for the rest of the algorithm.
3 The gradient magnitude m and orientation θ are computed for sample points

within a region of the keypoint.

m(x,y) =
√

(L(x+1,y)−L(x−1,y))2 +(L(x,y+1)−L(x,y−1))2 and

θ(x,y) = arctan L(x,y+1)−L(x,y−1)
(L(x+1,y)−L(x−1,y)

4 Add the various gradients in an orientation histogram with 36 bins (for 360◦).
The weight of each gradient contribution in the histogram depends on the
gradient magnitude and a Gaussian circular window with a standard
deviation of 1.5kσ .

5 The highest peak in the histogram and all peaks over 80% of the highest peak
are all selected to be separate final keypoints. Their orientations are retained.

6 end
7 for each final oriented keypoint do
8 Rotate the descriptor’s coordinates and the gradient orientations relatively to

the main orientation of the keypoint.
9 The gradients magnitudes and orientations of sample points surrounding the

keypoint are accumulated in several histograms, with only 8 bins this time.
Gradients are still weighed using magnitude and the Gaussian window. Each
histogram corresponds to a part of the surroundings relative to the keypoint.

10 Concatenate the histograms in a 4×4 descriptor matrix.
11 Use trilinear interpolation to smooth the descriptor.
12 Reindex the matrix in a vector.
13 Threshold high contributing gradients and normalise the vector to

compensate for brightness changes.
14 end

SURF The SURF feature is based on the same principle as SIFT but simplifies and

accelerates the process greatly at the expense of a loss in precision [28]. The DoG from

SIFT are replaced by simpler Box Filters (BF). BF consist in a linear combination of sums

of the intensity of pixels in diverse areas. One example is the Fig. 3.3 (b) in which the sum

of intensities in the black area in the original image is subtracted two times to the sum

of intensities in the white areas. BF have the advantage of being quickly computed with

integral images. Integral images are images in which the intensity of each pixel consists

in the sum of all pixels in the original image that have a smaller abscissa or ordinate. BF

consist then in a linear combination of few intensities of two intensity maps. The LoG
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equivalent is shown in Fig. 3.3 (a) and requires a much more costly differentiation. The

DoG is less computationally expensive than the LoG but still require the application of a

Gaussian filter on the image. By using BF, points of interest having strong gradients are

quickly found and can be further investigated.

(a) LoGyy. (b) BFyy.

(c) LoGxy. (d) BFxy.

Fig. 3.3: Comparison of the LoG and BF complexity in the computation of the SURF
descriptor [28].

The orientation of the feature is computed by combining the strength of responses

of the keypoint’s neighbourhood to both a vertical and a horizontal wavelet. The vector

describing the keypoints founds consist in the response of several regions around the

keypoint to the wavelets. This vector is shifted according to the orientation previously

found to be rotation invariant.

Binary descriptors

In order to be even faster, binary descriptors that do not use gradients but only the com-

parison of intensities of several pixels around a keypoint have been created. The result of
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these comparisons gives a binary vector. Each binary number is the result of comparisons

between two pixel intensities. These binary vectors can be compared one with each other

quickly using the Hamming distance.
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(a) FAST corner detection [33].

(b) FREAK retina pattern [30]. (c) Comparison of pixel pairs.

Fig. 3.4: FREAK Principle [30].

FREAK FREAK as SIFT use images from different octaves, to be scale invariant [30].

The detection in FREAK is a more complex version of the detection in Features from

Accelerated Segment Test (FAST) [33]. In FAST, the points of interest are corners defined

by a certain amount of consecutive surrounding pixels brighter than the centre pixel as in

Fig. 3.4 (a). The FAST was improved in Adaptive and Generic Accelerated Segment Test

(AGAST). The corner detection does not have to be trained to fit some specific images

as the number of consecutive pixels are image dependant [34]. AGAST consists in a

decision tree to find the points that qualify as corners. AGAST is adapted in FREAK

to a multi-scale detection using octaves as SIFT did in Section 3.1.1. Once the keypoint
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located, pairs of pixels around the keypoints are chosen relatively to a pattern based on the

human retina as shown in Fig. 3.4 (b). The intensities of the pairs or pixels are compared

two-by-two as shown in Fig. 3.4 (c). 512 pairs are compared and result in a binary vector

dependant on which pixel was the brightest in each comparison. The choice of the pairs

results from a learning phase which goal was to maximise the variance between the points

compared.

As for the previous descriptors, the orientation is compensated by shifting the descrip-

tor after determining the strongest orientation of the feature. The orientation is computed

using the local gradients over long pairs specially selected in the pool of all pairs. The in-

novation in FREAK is in the retina pattern and the imitation of the saccadic search during

the matching phase of the features. The saccadic search is the eye movements that happen

when the eye compares two objects to see if they are the same. The eye moves a lot during

the process in order to compare the objects not in its entirety but bits by bits. The adapta-

tion of the saccadic search in this algorithm replaces the more classical feature matching

seen in Section 15. The algorithm consists in a cascade search in which the first 16 bytes

of the FREAK descriptors are compared. According to the result of this first comparison,

the rest of the descriptors are compared or the match is directly rejected. This saves time

during the comparison as if the beginnings of the descriptors are not similar, the rest of

the descriptor will not be compared.

BRISK Binary Robust Invariant Scalable Keypoints (BRISK) use a different pattern

than FREAK as shown in Fig. 3.5[31]. The detection is however the same as for FREAK.

BRISK features are close to FREAK features except in the choice of the pairs compared

that are shorter and on a different pattern. The feature matching is standard and does not

use saccadic search.

53



CHAPTER 3. SAR IMAGE CLASSIFICATION THEORY

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

Fig. 3.5: BRISK pattern [31].

Algorithm 3: Detection of BRISK features
1 for n=1 to 4 do
2 Computation of the image cn specific to the nth octave. Resize the original

image by 1
n .

3 for s=0 to 3 do
4 Down sampling of the image cn in an image ds by sub-sampling it by a

factor 2s ·1.5
5 Apply the FAST 9-16 detector to the image of scale s. In a circle of 16

points around the studied point, at least 9 contiguous points must have
an intensity higher than I + t or lower than I− t with I the intensity of
the studied point and t a selected threshold. The maximum threshold for
which this is true is retained as the FAST score.

6 Verify that the 8 neighbours of the point have a lower intensity.
7 end
8 end
9 for each detected keypoint do

10 Verify that the neighbouring points of the detected keypoint in the current,
higher and lower scale have all a lower intensity than the keypoint.

11 The 3 FAST scores obtained on the 3 scales studied are considered continuous
in the scale-space. These scores are refined across scale by fitting a 2D
quadratic function on the FAST scores. A 1D parabola is then fitted to the
quadratic function with its maximum giving the true scale of the keypoint.

12 The former coordinates of the image ds are interpolated to be the closest to
the sub-sampling corresponding to the true scale of the keypoint.

13 end
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Algorithm 4: Description of BRISK features
1 for each keypoint do
2 for each point pi, in the pattern in Fig. 3.5 surrounding the keypoint do
3 Apply Gaussian smoothing at a radius σi corresponding to distance from

the red dashes to the sampled point at the centre of the blue point.
4 The intensity of the sampled point is then I(pi,σi).
5 end
6 for each long pair of points pi, pj ∈ L do
7 Estimate the local gradient g(pi,pj) = (pj−pi) ·

I(pi,σi)−I(pj,σ j)

‖pj−pi‖2

8 end
9 Estimate the overall pattern direction of the studied keypoint:

g =

(
gx
gy

)
= 1

L · ∑
pi,pj∈L

g(pi,pj)

10 Rotate the sampling pattern by α = arctan2(gy,gx)
11 for each short pair of points pi, pj ∈ S do

12 Perform an intensity comparison: b =

{
1 if I(pα

j ,σ j)> I(pα
i ,σi)

0 otherwise.
13 end
14 Concatenate the result of all comparisons.
15 end
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ORB The keypoint detection in the Oriented FAST and Rotated BRIEF (ORB) key-

points is an improved FAST, with the introduction of an orientation detection in addition

to the keypoint detection. The direction of the keypoint is determined by computing the

centroid of the area around the keypoint. The descriptor consists in a rotated Binary Ro-

bust Independent Elementary Features (BRIEF). BRIEF results of the training of decision

trees that compares the brightness between pairs of pixels. The principle is similar to the

other binary descriptors but the choice of pairs results from training. The direction in

which the BRIEF descriptor is calculated is the direction found by the improved FAST

detection.

Description of a standard feature classification method based on matching

In the previous sections, the detection and the description of keypoints for various model

are explained. The resulting keypoint consists of a location in an image (x,y) and a de-

scriptor summed up in a vector. The objective during feature matching is to be able to

see what keypoints are similar enough so that they could describe the same part of the

object in different images. Classification is determined according to the result of fea-

ture matching. A basic workflow for feature-based classification an object can be seen in

Fig. 3.6.

Once the keypoints are computed, the first step is to match the keypoints found in

the studied image with some previously computed keypoints from training images. The

Compute
keypoints in the
test image.

Compute
keypoints in one
training image.

Match keypoints
pairs that have the
lowest distance for
each feature.
(Options of a
resemblance

threshold, unique
match for each
keypoint)

Force the
matches to be
coherent

together in terms
of location.
(RANSAC or

else)

Evaluate the
matching between
the two images
through the

distances between
the keypoints, the

number of
matches...

Choose the
training image
the most

similar to the
test image.

Fig. 3.6: Standard pipeline of classification based on feature matching.
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bruteforce method consists in calculating the distance between each keypoint descriptor

of the test image with all the keypoint descriptors in the training image. The keypoint

studied in the test image is matched is with the keypoint of the training image that result

in the lowest distance. Several conditions can be added to prevent wrong matches. The

matches can be forced to be unique and the training keypoints can be associated with only

one keypoint of the test image. The quality of the match can also be forced to be of a

high standard as in Lowe method in which the distance for validating a match should be

at most a defined fraction of the distance of a second possible match [27]. The second

step is not mandatory but helps having better results. It consists in using Random Sample

Consensus (RANSAC) which forces the matches to be coherent with the target movement

between two images [35]. To find the most probable homography, RANSAC compares

the number of outliers for the possible homographies issued from the feature matching

between the keypoints location in the studied image and their matched keypoints in the

training images. Outliers that are not in line with the homography are removed from

the match list. The resulting match between the testing and training image can then be

evaluated. Several criteria can be used such as the number of keypoints matched or the

average distance between the testing and training keypoints. The target in the test image

is then associated with the class of the training image deemed as best overall match.

Feature matching is not the only way to use features for classification. More advanced

classification tools can be used such as machine learning methods such as Support Vector

Machine (SVM). In any case, if a technique is based on a certain feature, the quality the

target description by this feature is essential to avoid misclassification. In Section 4.4.1 a

comparison is proposed between the various features presented in this section applied to

SAR ATR.
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3.1.2 Supervised learning

Problem formulation

The classification problem with specific labels falls under the category of supervised

learning problems and can be summed up to the need to learn the function f mapping

the input image space X to the label space Y such as f : X →Y .

Objective and loss function Classification datasets provide several examples corre-

sponding to the expected mapping {(xi,yi) ⊂ X ×Y,∀i ∈ J1,nK}. These n examples

should be independent. Instead of trying to construct directly f , supervised methods

use the provided examples to make the mapping function f learn the X → Y mapping.

The goal is to find the mapping function f ∗ among the hypothesis space F making the

least mistakes. The effectiveness of the mapping function is quantified with an objective

function. The objective function is constituted by expected losses of f over the training

samples, as it cannot be measured over the whole X space. The loss for each example i is

expressed according to the difference between the true output yi and the estimated output

f (xi) such as L( f (xi),yi). Thus, the search of the best suited mapping function f ∗ can

be expressed as an optimisation problem as in Eq. (3.1). In this case, it is assumed that a

higher loss meant more errors, hence the argmin.

f ∗ = argmin
f∈F

1
n

n

∑
i=1
L( f (xi),yi) (3.1)

In the case of classification deep neural network, the most common loss function is the

cross-entropy loss function. The result of the deep neural network for each input is, using

a soft-max layer, a 1×k vector representing the probability of the input belonging to each

class, k being the number of possible classes. The objective being to have a probability of

1 for the correct class and 0 for all other classes. The cross-entropy function is expressed
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as in Eq. (3.2) for a sample xi of class c. The yi output element is defined as the reference

1× k vector of class probability defined as yi( j) = δ j,c,∀ j ∈ J1,kK. ŷi is the estimation of

yi by f .

L(ŷi,yi) =
k

∑
j=1
−yi( j) log(ŷi( j)) =− log(ŷi(c)) (3.2)

Overfitting and regularisation However, the function f ∗ in Eq. (3.1) could very well

map correctly only the training samples and get all other input of the X space wrong

whereas another f function would have made more mistakes on the training samples but

less in the overall X space. In that case, the function f ∗ would still be chosen even though

it clearly overfitted to the training samples because the result of its objective function

would be lower. For target recognition, overfitting would mean that the algorithm can

achieve high scores in the training set but is not able to generalise the learned information

and performs a lot worse on the testing set. Overfitting can be seen for example when

a training set is not diverse enough. In order for the mapping function chosen to be

better generalised, the objective function is altered with the addition of a regularisation

term R( f ) independent from the samples to prioritise simpler functions, regardless of

their performances to prevent overfitting. Indeed, it will then be harder for the model to

adapt to the specifics of the training samples over generic X samples. The new objective

function can be expressed as in Eq. (3.3).

f ∗ = argmin
f∈F

1
n

n

∑
i=1
L( f (xi),yi) +R( f ) (3.3)

In the case of deep neural network, the regularisation is often a weight decay which
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is a shrinkage method. The goal of this method is to penalise the networks with big

weights. If the network representing f has m layers with weights, the regularisation term

can be expressed as in Eq. (3.4) with λ chosen by the user. The weights vectors for each

concerned layer is expressed as Wi,∀i ∈ J1,mK.

R( f ) =
λ

2

m

∑
i=1

Wᵀ
i Wi =

λ

2

m

∑
i=1
‖Wi‖2

2 (3.4)

Optimisation problem Once the structure of the classifier fixed, the search for its op-

timal version in function of its parameters can be expressed in Eq. (3.5). The vector of

parameters to optimise Ψ gathers all the alterable parameters of the fixed function f . That

corresponds to the weights and biases in the case of a neural network.


Ψ∗ = argming(Ψ)

g(Ψ) = 1
n ∑

n
i=1L( fΨ(xi),yi) +R( fΨ)

(3.5)

Organised search for the best vector of parameters Ψ : the Stochastic Gradient

Descent with Momentum (SGDM) The values of the objective function are unknown

for all possible parameters as parameters are numerous (especially in the case of deep

learning methods, for which the number of parameters can reach millions or even billions)

and the needed values of the objective function have to be computed for each case. A

random search of the parameters is thus very unlikely to provide a good solution.

There are several optimisation methods to try to approach the best values of Ψ but the

focus will be on the most commonly used method for deep learning for images which is

the SGDM. In order to search better for an optimal solution, the functions investigated g

60



CHAPTER 3. SAR IMAGE CLASSIFICATION THEORY

are restricted to only the differentiable functions. This allows the study of the objective

function trends according to changes in the vector Ψ.

The principle of the Stochastic Gradient Descent (SGD) is to firstly compute an ap-

proximation of the gradient of the objective function in function of the parameter vector

Ψ. Using this estimated derivative, it is possible to update Ψ in order to go in the direc-

tion of a minimisation of the objective function. The computation of the approximated

objective function differenciation using backpropagation is explained in the next section.

The update of the internal parameters of the network is done after a certain number of

images have been through the network. This number of images is called the batch size.

This is done usually several times until all images present in the training set have been

through the network once. This is called an epoch of training. The process is repeated for

a number of epochs until either the network is deemed satisfactory or a chosen number of

maximum epochs has been reached.

The SGD is based on the Taylor expansion of the objective function as seen in Eq. (3.6)

with h being a small variation added to the parameter vector Ψ.

g(Ψ+h) =
∞

∑
n=0

hn g(n)(Ψ)

n!
(3.6)

g(Ψ+h)≈ g(Ψ)+h ·g′(Ψ) (3.7)

The goal is to choose h to update Ψ so that the value of the objective function is

lowered. The search direction h is chosen to be equal to −λ .g′(Ψ). The reason of the

negative sign is that the objective function has to be minimised. g′(Ψ) gives the correct

update direction for each parameter composing the vector Ψ. λ is a constant called the

learning rate and should be carefully chosen. If lambda is too big, the optimisation will not

be able to converge and could even diverge. However, if it is too small, the convergence

could take very long and the optimisation could even fall in a local minimum. The updated
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objective function using the SGD can thus be written as in Eq. (3.8).

h =−λ ·g′(Ψ) (3.8)

g(Ψ+h)≈ g(Ψ)−λg′(Ψ)ᵀ ·g′(Ψ) (3.9)

An improvement on this algorithm is to include a momentum term mimicking New-

ton’s second law F = ma where F is the sum of forces applied to the object, m is the

object weight and a is its acceleration. The change of speed represented by the acceler-

ation is not only dependant on the forces exerted but also the object mass. The higher

the mass, the lower will be the acceleration and the least the velocity of the object will

be affected. In the case of the SGDM, the position of the object is the parameter vector

Ψ and the position update h, is changed so that it takes into account the previous search

direction. This converges faster in practice. An intermediary variable v is introduced that

keeps a decaying history of the previous search directions. The influence of the earlier

search directions is less influential than the recent one. The new parameter update h can

be expressed as in Eq. (3.10). v is initialised at 0 and updated at each iteration.

v = αv+g′(Ψ) α ∈ [0,1[ (3.10)

h =−λv (3.11)

The whole SGDM method is summed up in the following algorithm:

Backpropagation The update of the weights of the neural network with the SGDM

method requires an estimation of the differentiation of the objective function against the

inputs of the neural network. The backpropagation is based on the differentiation chain
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Algorithm 5: SGDM
1 Initialise g with Ψ0;
2 Initialise the system’s update speed v = 0;
3 Choose λ , α;
4 for N iterations do
5 Choose m samples from the training data;
6 Compute the objective function’s result g(Ψ);
7 Compute the gradient g′(Ψ) with backpropagation;
8 Compute the new velocity v := αv+g′(Ψ);
9 Compute the parameter step h =−λv;

10 Update the parameter vector Ψ := Ψ+h;
11 end

rule. Each layer has a function for the forward pass. A function for the backward pass

is then defined as the differentiation of the forward pass function. Using the backward

passes, the result of the objective function is cascaded backwards the network, computing

gradually the contribution of each input. This is done using each differentiable terms

issued from the chain rule and the activation terms computed during the forward pass.

Forward pass (Computation of the activation maps)

Backward pass (Computation of the gradients)

Error (Loss and
regularisation)

Fig. 3.7: Backpropagation principle using the chain rule.

The neural network is composed of several layers, corresponding to functions that

are applied on after the other on the input. In the forward pass, the original input is

transformed by the layers’ functions to activations, the intermediary stages, until the last

layer. The final result of the neural network is compared to the groundtruth and an error is

computed. This error is the result of the objective function detailed in the previous section

with a loss and regularisation term. The role of the backpropagation is to determine which

parameters of the neural network had the biggest influence on the error so that these

parameters can be updated and the result of the objective function reduced. In practice,
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the objective function is partially differentiated according to each parameter of the neural

network. X, Y, Z are defined in Fig. 3.7 as some activations of the neural network with an

illustration of the forward and backward pass.

The computation of these activations requires to know the activations of the previous

layer, the parameters of the neural network involved and the function applied in this layer.

A common activation a can be written as in Eq. (3.12) using activations a j from the

previous layer, and the appropriate neural network’s weights {w j, j ∈ [1,n]}.

a =
n

∑
j=1

w j ·a j (3.12)

Using the chain rule, it is possible to differentiate the objective function against the

activations investigated as in Fig. 3.7 and get the appropriate ∂e
∂a . Using once more the

chain rule, the individual influence of each weight w j to the result of the objective function

e is determined in Eq. (3.13) from the previously obtained partial differentiation of the

error against the activation.

∂e
∂w j

=
∂e
∂a
· ∂a

∂w j
(3.13)

∂e
∂w j

=
∂e
∂a
·a j (3.14)

If the interest is broaden from a specific weight to the global problem of the influence

of all parameters, it is the Jacobian matrix that is calculated for each activation against

each parameter to get all the intermediary partial differentiations ( ∂Z
∂Y or ∂Y

∂X represented in

Fig. 3.7). The partial differentiation of the objective function against the neural network

parameters can then be calculated using the element wise Hadamard product.
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Neural network

b
a1

a2

a3

w2

w3

aactivation
function

o

a1

Fig. 3.8: Computation of the activation resulting from several inputs of one neuron.

The mapping function f investigated through the optimisation of the objective func-

tion in the previous section was not detailed. In this thesis it will be a Convolutional Neu-

ral Network (CNN), which is a specific case of a neural network structure. The increase

of the computational capacities of the computers made possible the training of neural net-

works using the computationally expensive backpropagation and SGDM method. Neural

networks have been efficient in several field as they are able to model data non linearly

and in a complex way. They have been inspired by the biological neurons. The artificial

version of the neuron is shown in Fig. 3.8. Several inputs are combined to some parame-

ters specific to the network. The result is then passed through an activation function. The

resulting activation is then passed to the concerned next neurons. The activation function

introduces the capability of the neural network to produce non-linear models. Several

activations functions have been proposed such as the tanh a = tanh(o), the sigmoid func-

tion a = 1
1+e−o and the Rectified Linear Unit (ReLu) a = max(0,o). The complete neural

network seen in Fig. 3.9 is composed of layers of neurons stacked on top and besides each

other. The intermediary neuron layers are the hidden layers. A simple linear model can

be deduced with a neural network with no hidden layers, and thus no activation function.

The more complex the function to model, the deeper will be the neural network by stack-

ing additional hidden layers. Some other solutions that do not rely solely on the stacking

of layers exist but will not be investigated throughout this thesis.
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Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Fig. 3.9: A neural network is composed of layers of neurons where the more complex
interpretation of the input is done in the hidden layers.

Convolutional Neural Networks (CNNs)

The particularity of CNNs is their ability to interpret localisation information from data

[36]. When the input is a matrix, the CNN does not treat each pixel independently but

the pixels that are close to each other are combined, resulting in an image interpretation

taking into account the spatiality of the potential objects.

Activation
map

Input (e.g.
RGB image)

Filter

Convolution

3
227

227
55

55

3
1

11

11

Fig. 3.10: Example of the first convolution in AlexNet.

Instead of applying the weights independently to each pixel of the input as for a stan-

dard neural network, a filter is created and is slided over and convolved with the whole
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image as seen in Fig. 3.10 for the first convolution in the AlexNet network. The convolu-

tion consists in an element-wise multiplication of the intensities in the area of the image

studied followed by their summation. The filter is then slided to study the neighbouring

area in the image. This is done until the full input image is convolved by the filter. In the

specific case represented in Fig. 3.10, the input image is 227×227×3. There are in fact

96 filters (only one is represented) of size 11×11×3. The results of the convolution of

the 96 filters with the input image are 96 activation maps of size 55×55. Each filter will

be sensitive to different type of inputs such as a gradient of colour in a certain direction

but are not always interpretable. The size of the resulting activity map can be computed

as in Eq. (3.15). In this equation, WO represents the width of the output, i.e. activation

map, WI represents the width of the input and WF is the width of the filter. P is the amount

of padding done on the input image and S is the stride, i.e. the number of pixels skipped

when the filter is slided.

WO =
WI−WF +2P

S
+1 (3.15)

The filters contain all the parameters Ψ that will be optimised during the training. The

number of weights each filter contains is WF ×WF ×DF with DF the depth of the filter

which is the same as the depth of the input. It contains also 1 bias. For a full layer, the

total number of parameters is obtained by multiplying the number of parameters for one

filter by the total number of filters, e.g. 96 in the first layer of the AlexNet.

Other functions are present in a typical CNN structure and will be discussed in the

following sections.

Pooling Pooling layers are layers without any parameters to optimise. Areas of each

activation map, e.g. 2× 2 square area from a specific channel, are searched for their

maximum or mean. This 2×2 area is then down sampled to a unique number representing

its maximum. This is a way to down sample the activation maps and hence reduce the
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probability of over-fitting the data. With the provided example size, the final size of the

activation map is cut by 4.

Activation - ReLU The ReLU is defined as in Eq. (3.16). This is a good alternative

for the tanh and sigmoid function that suffers from the vanishing gradient problem. This

problem happens when the function does not differentiate enough between different high

values as it follows an asymptote. Thus, when computed, the gradient appears very low

and the parameters are not updated as much as they should or even stay constant. The

ReLu does not have this problem for positive activations.

f (x) =


0 x < 0

x x≥ 0
(3.16)

Fully connected Fully connected layers are the same as in standard neural networks.

They link all the activations, or cells of the activation maps to the next layer. They are

computed with an element wise multiplication of the intensities with the weights and the

addition of a bias. These layers are found near the end of the CNN. This is equivalent to

having filters of the same size as their input.

Softmax - classification layer The softmax classifier constitutes the last layer of the

CNN. For a CNN dedicated to classification the fully connected layer just before the

Softmax layer gives scores under the form of a vector of the size of the number of classes.

The softmax layer introduces the probability of the target X of belonging to each class Yi

by computing Eq. (3.17). a j,{ j ∈ J1,nK} representing the activation corresponding to the

class j out of the n possible classes.
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P(X ∈ Yi) =
eai

∑
n
j=1 ea j

(3.17)

Dropout Dropout [37] is a layer that limits the over-fitting of the network. It prevents a

certain percentage randomly chosen of the activations, e.g. 50%, to go through the next

layer by setting them to 0. That prevents the network to rely on the same filters providing

the same information and thus counter over-fitting.

Overall structure The CNN structure is composed of the functions presented stacked

together. A common structure is represented in Fig. 3.11. It can be seen that the group of

layers composed of the convolutional, activation and pooling layers are at the core of the

CNN. To model more complex information, this core can be repeated to achieve deeper

networks.

Convolution

Input

Activation

Pooling

Fully connected

Fully connected

Activation

Classification

Dropout

M

Fig. 3.11: Typical struture of a CNN with the group of 3 layers repeated multiple times to
create a deeper network.
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3.2 Target orientation determination

3.2.1 Hough transform
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(a) Parameters describing the investigated
lines.
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(b) Resulting 2D matrix of the Hough trans-
form.

Fig. 3.12: Principle of the Hough transform.

The Hough transform is an interesting tool to detect simple shapes and particularly

straight lines. It is applied traditionally to a binary image. Each line in an image can be

represented using the two parameters ρ and θ as seen in Fig. 3.12 (a). These parameters

characterise the unique vector starting from the origin and perpendicular to the line. This

vector can be expressed as:

ρ ·uρ =

ρ cos(θ) ·ux

ρ sin(θ) ·uy

 (3.18)

The line corresponds to the point with the coordinates (ρ , θ ) in the 2D matrix resulting

from the Hough transform in Fig. 3.12 (b). The value of this point is the accumulated

intensities of all points confirming the existence of the line in the original image. Thus,

the higher intensity of the point in the ρ , θ matrix, the more probable that a visible line

exists in the original image on the corresponding line in the original image. More details

on the computation of the accumulator 2D matrix is given in Algo.6.

A real example of the accumulator computed with the Hough transform on a single
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bold line can be seen in Fig. 3.13.

(a) Original binary
image.

�
-90 -60 -30 00 30 60 90

�

-200

-100

0

100

200

(b) Accumulator representing lines in a 2D parameter space accord-
ing to the orientation and the distance to the origin of the line.

Fig. 3.13: Real simple example of the Hough transform.

Algorithm 6: Hough transform

1 List all white points in the binary image I of size n×m such as Fig. 3.13 (a).

These points’ coordinates are defined as:

[x,y] ∈ N2, 0 < x < n, 0 < y < m, I(x,y) = 1

2 Initialise the accumulator representing all lines to a null 2D matrix H:

H(θ ,ρ) = 0, ∀θ ∈ [−90,90], ∀ρ ∈ [−D,D]. D is chosen according to the

resolution wanted.

3 for each white point (xp,yp) do

4 for θ from −90 to 90 do

5 Compute the corresponding ρ of the line with a θ orientation passing

through the studied point: ρ =| xp cos(θ)+ yp sin(θ) |

6 Cast a vote for the line (θ ,ρ) by increasing its value in the accumulator:

H(θ ,ρ)++;

7 end

8 end

9 Find the local maximums in the 2D accumulator H(θ ,ρ) such as Fig. 3.13 (b);
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Feature-based classification
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4.1 Summary

In this chapter, an ATR method that consists of a machine learning segmentation fol-

lowed by a feature-based classification is proposed. The use of segmentation results in
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a reduction of clutter correlation and computational time. GMMs were already used to

segment images in the visual field and are here adapted to work with single channel SAR

images. Indeed, segmenting SAR images can be challenging because of the blurry edges

and the high speckle. The GMMs are used to create a model of the background present

in the SAR image. This model evolves with time to include new distributions represent-

ing variations of the background and removes obsolete distributions at the same time.

As the segmentation is seen in this case as a first step towards classification, the recall

rate is deemed the most important score to evaluate. A high recall rate of 88%, higher

than for the popular threshold method, was obtained. After the SAR image segmentation,

the target goes through the feature-based classification process. The choice of feature is

made after comparing the performance between different descriptors with a special em-

phasis on binary features, such as BRISK. The features computed in the tested image are

matched with features found in training images with a target in a comparable orientation.

The matches retained are geometrically coherent with a unique homography between the

tested and trained target obtained with RANSAC. The resulting class for the tested target

is the class of the training target that had the most matches. Results show the proposed

method achieves a 93.40% probability of correct classification when the MSTAR SOC

dataset with 3 targets is tested. Results also show this approach to be less sensitive to

clutter than methods employing gradient features, such as SIFT or SURF, and template

methods.

The presented feature-based classification is evaluated on two different datasets. In-

deed, recent studies have reported very high ATR rates of SAR images based on the

MSTAR database and one of the limitations of the MSTAR database is known correlation

between clutter contribution in the training and testing sets. The method is thus evaluated

on both the standard MSTAR SOC dataset for 3 targets and a proposed different partition

for 3 targets with less correlation described in Section 2.4.
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4.2 Introduction

In this chapter, feature-based classification methods that have been studied extensively in

the visual band are investigated. The advantage of feature methods over template methods

such as the one presented in Section 2.5.1 is an improvement of the computational and

memory load because targets are represented only by a group of features and not the full

image[38–40]. Feature methods also benefit from being totally humanely crafted over the

better performing deep learning algorithms. There are thus no black boxes and it is possi-

ble to understand and eventually correct mistakes more easily. In order to focus the search

for targets features, a segmentation of the image is carried out prior to classification.

The purpose of segmentation is to give meaning to an image and facilitate further

analysis. It is challenging to segment SAR images, as there are no sharp edges to de-

limit the target or the shadow from the background. Segmentation methods have been

extensively studied in the visible band, as well as in other domains with poorer resolu-

tion such as X-ray images or SAR images [41–44]. For SAR images, the presence of

noise with a high standard deviation makes the choice of a simple segmentation method

by fixed thresholds prone to errors as in some cases parts of the target remain undetected,

or some background is falsely detected as a target. GMMs (Gaussian Mixture Models)

have been successfully employed for segmentation in the visible domain and for sea-ice

satellite SAR images classification in C-Band [45, 46]. GMMs enable a finer segmenta-

tion as, rather than using an intensity threshold, a description of the background is stored.

The algorithm proposed in this chapter is such that the GMMs describing the background

adapt automatically overtime along with the background evolution.

The segmentation unburdens the classification task from a significant amount of back-

ground processing that can lead to a large computational time and result in feature mis-

matches. Features are used to characterise specific areas of the target once they are iso-

lated from the image. Examples of such feature methods are Principal Component Anal-

ysis (PCA) [38], Zernike moments [47] and Scale Invariant Feature Transform (SIFT)

descriptors [48]. Nevertheless, some of these features present some disadvantages too.
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Fig. 4.1: Overview of the proposed feature classification with GMM segmentation and
classification with binary features.

The PCA method may result in features that describe the high variable SAR speckle at

the expense of valuable information about the target. SIFT performs particularly well in

the visible band [49, 50] but has not been tested on the standard 3-target MSTAR dataset

[48]. Feature crafting [27–31] has been extensively investigated in the visible band and

could be applied to the SAR domain. Feature classification relies primarily on an accurate

description of the target keypoints. However, as SAR images have poorer resolution than

optical images, the detailed descriptors that perform the best in the visual band, such as

SURF and SIFT, could be more affected by the SAR speckle than less detailed descrip-

tors, such as binary features. Some methods achieving feature-based classification have

been investigated in the SAR domain but their descriptive capability for SAR images have

not been compared [38–40].

An overview of the whole method can be seen in Fig. 4.1.

4.3 Segmentation

4.3.1 Segmentation baseline: SARBake

Evaluating and comparing segmentation methods remains a true research challenge as

there is no publicly available official groundtruth data. A manual segmentation method

was proposed as a segmentation reference. It includes manual segmentation by an an-

alyst followed by a quality control check by a supervisor [51]. However, the result of
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Fig. 4.2: SAR setup geometry with r the distance between surface of the model and the
antenna and α the depression angle. The antenna goes at a speed~v along the x-axis.

this segmentation is not publicly available and reproducing it would be labour intensive.

An alternative baseline, called SARBake, is based on an orthographic projection of a

Computer-Aided Design (CAD) target model according to the direction of the radar illu-

mination [44]. In this method, far-field conditions are assumed, CAD representations of

the target are assumed identical to the targets in the MSTAR and any multi-path effects

are discarded.

For each image in the MSTAR database, the orientation of the target and the de-

pression angle at which the image was taken are known. The geometry of the scene is

reproduced using a CAD model of the target as shown in Fig. 4.2 so that the location of

the target reflecting points are known. So that one axis can represent the range, a change

of coordinates for which the y and z are rotated by an angle α is applied.

(x,y,z)−→ (x,r,
z

cos(α)
) (4.1)
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Following the change of coordinates, both the plane representing the ground and the

CAD model of the target are rendered into a depth map viewed from the airplane. To that

effect, all the rays illuminating the target are assumed parallel and the intensities of the

resulting 2D image account for the target distance r from the antenna. An example of a

depth map in a different context is given in Fig. 4.3. This example is acquired from a car in

traffic using a Light Detection And Ranging (LiDAR). The ground and target are treated

separately and each one has its own depth map that will be used to deduce the position

of the shadow. The method could be improved when the profile of the ground is known

instead of being assumed to be planar. The depth map is a 2D image. The depth map

abscissa represents the x-axis and is thus aligned with the antenna movement in Fig. 4.2.

The ordinates of the depth map represents a scaled z-axis
(

z
cos(α)

)
, proportional to the

airplane height from the ground and target.

(a) Photo of an urban scene.

80

5
Undefined

Range (m)

(b) Groundtruth depth map associated with the urban scene.

Fig. 4.3: Example of a depth map in the Kitti dataset representing vehicles and scene flow
[52, 53].

Using a depth map for the target and a depth map for the ground, the location of the

target, shadow and background is determined. As shown in Fig. 4.4, for each column,

representing one step for a platform moving at~v along the x-axis, the shortest r represents
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Fig. 4.4: Target, shadow, background area according to the SAR setup geometry.

the beginning of the target. The zones without any points belonging to the target or the

ground belong to the shadow. The rest is designated as background. The depth map

showing the set of distances from the antenna to the target or ground is transformed so

that the intensity reflects the zone described with 0 for the background, 1 for the target

and 2 for the shadow.

The location of the target in a SAR image is unknown and therefore it needs to be

estimated to correctly superimpose the resulting segmentation on the SAR image. The

precise location of the segmented image over the SAR image is given by the 2D cross-

correlation between the two images defined as:

C(k, l) =
m

∑
x=1

n

∑
y=1

I1(x,y).I2(x− k,y− l),

{
k ≤| m−1 |
l ≤| n−1 |

(4.2)

where Ix ∈ R(m×n) is one of the images to be cross correlated. Ix is zero padded so that
Ix(x− k,y− l) is always defined. Thus when k or l is respectively larger than x or
y, Ix(x− k,y− l) = 0.

The highest value of the cross-correlation gives the proper localisation of the seg-

mented image over the SAR image.
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The SARBake baseline for segmentation has been applied to all the images in the

MSTAR SOC 10 targets described in Section 2.4.2. However, it could not be done for the

EOC as the exact CAD models for the other target variants were not found. SARBake

results are often well localised as seen in Fig. 4.5 (a) with only a few instances where the

cross-correlation was affected by strong changes in the background as seen in Fig. 4.5 (b).

(a) Correct result of the
SARBake segmentation.

(b) Result of the SARBake
with strong background
changes.

Fig. 4.5: Results of the SARBake segmentation on images from the MSTAR SOC 10 as
seen in [54].

4.3.2 Segmentation reference method: Threshold method

In order to compare the proposed GMM segmentation method, the threshold method pro-

posed in [55] is also implemented. In this method, to have similar images across se-

quences, the intensities of each image pixels are normalised between 0 and 1. A histogram

equalisation is also applied.

The objective of histogram equalisation is to obtain the histogram the closest to a

histogram with equiprobable intensities. The new intensities after histogram equalisation

of the image are computed following this transformation.

The result of the normalisation and the histogram equalisation can be seen in Fig. 4.6.

The image is then processed through a mean filter before a fixed threshold found

experimentally is applied as seen in Fig. 4.7 (a). A second threshold equal to the median
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I′(x,y) =
cd f I(I(x,y))

cd f I(1)
(4.3)

where I is the image to be transformed with intensities ranging from 0 to 1,
I′ is the image resulting from the histogram equalisation,

cd f I is the cumulative distribution of the image I.

of the intensities of the pixels remaining after the first segmentation is applied. This

second threshold gives the final result of the segmentation as seen in Fig. 4.7 (b).

The full threshold segmentation can be expressed with the following pseudo-code.
Algorithm 7: Threshold segmentation

1 Normalise the intensities.

2 Do a histogram equalisation.

3 Apply a mean filter.

4 Apply the threshold found experimentally.

5 Find the median of the remaining pixels.

6 Use this median as a second threshold.

4.3.3 Segmentation with GMMs

Existing segmentation methods isolate the target in SAR images [47, 48]. After some

pre-processing, segmentation is usually achieved by relying on thresholds. Some meth-

ods enhance the precision by applying an adapted threshold based on the contour of the

previous segmentation results [56].

Previous methods are evaluated using scores that value above the rest the precision of

the segmentation as with a Dice score [44]. In this case, the segmentation is used as a first

step towards classification. The objective is to retain all possible target features while dis-

carding most of the background. It is preferred in this case that some background is taken

wrongly as a part of the target rather than missing a part of the target. The segmentation

reduces the number of features to be analysed and matched as features in the background
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(a) Histogram of the original image.
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(b) Histogram of the image after his-
togram equalisation.

(c) Original image. (d) Image after histogram
equalisation.

Fig. 4.6: Result of histogram equalisation on the MSTAR SAR image.

will be mostly discarded. The segmentation can improve other classification methods as

well. Indeed, template methods are focused on the target and have a minimal representa-

tion of clutter, and model based methods can be helped by the segmentation information

stating which part of the image belongs to each class [57, 58]. The segmentation can also

prevent mismatches between features of the target and the clutter as it will be suppressed

through segmentation [59, 60]. The drawback is that part of multipath information could

be removed during this process.

The main evaluation of our segmentation method will be through the recall rate, while

providing the other classical rates, to assess the retention of the target area. However, the

area surrounding the target can be misclassified as a target zone because of the recall rate

focus at the expense of precision. This is balanced by the additional information on the

target the multipath in the background can give.
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(a) First rough
segmentation from a
fixed threshold.

(b) Second segmenta-
tion with the median of
the remaining pixels.

Fig. 4.7: Result of the threshold segmentation.
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Fig. 4.8: Pipeline of the evolutive GMM segmentation proposed.

GMM method

The presented segmentation method relies on the GMM machine learning technique [8].

The major steps of the method can be seen in Fig. 4.8. Firstly, the initialisation creates an

initial model of the background. To initialise the background GMM model, a few target

images are chosen and processed to extract a GMM characterisation of the background.

Then, the actual segmentation is carried out by comparing the background model to the

image under test. This gives a distance image representing the area likelihood to belong

to the background. The final image is obtained after thresholding the distance image and

some further morphological processing. The remaining areas are the ones the least likely

to be part of the background, namely the target in the foreground. The algorithm can

work without evolution, however adding a learning phase makes it more accurate as the

background is not the same throughout each sequence. The background model integrates

new types of background as well as discarding the GMMs that no longer represent the

current background along the sequence of images.
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Choice of the initialising target images The first step consists in choosing the images

that will be used to initialise the background. Few images from the beginning of the se-

quence are chosen rather than along each sequence. Indeed, It can be noticed that because

of the evolution of the background, the background model leads to better segmentation

at first if the initialising images are taken from a limited time period at the sequence be-

ginning. The variety of GMMs fitting the background at each stage is achieved along the

sequence by making the model evolve.

Data pre-processing Different pre-processing methods are tested in order to obtain the

highest recall rates. The objective of the pre-processing (see Fig. 4.8 (a)), is to reduce

the noise without blurring the contour of the target. The GMM segmentation is applied

after the pre-processing stages. The pre-processing steps are chosen empirically. It led to

the most accurate segmentation on challenging images for threshold segmentation with

strong background changes. Two bilateral filters and a median filter is the combination

that is retained. This pre-processing was compared with other pre-processing methods

such as mean filtering, contrast stretching or histogram equalisation.

Adaptation of the GMM to the single channel SAR image The GMM is a distribution

model obtained as a linear combination of Gaussian distribution functions to model data

that could be subdivided in different subsets. It has already been used to segment visual

images [45]. In our case, the GMMs represent the probability distribution of different

areas of the images and follows Eq. (4.4). The data publicly available for SAR ATR are

taken in similar backgrounds, thus the background is modelled instead of the target as

it has less variance and is more predictable in the databases investigated. The proposed

method is tested in the case of sequences of images taken one after the other, in which the

background slowly evolves.


B(θ1, ...,θn) = {GMM1(θ1), ...,GMMn(θn)}

GMMi(θi) =
K
∑
j=1

φ j ∗N j
(4.4)
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where B is the background model, GMMi is the ith GMM composing the background

model. Each GMM is the contribution of K Gaussian distributions with each N j Gaus-

sian distribution having a weight φ j. The objective is to model the intensity probability

distribution θi.

Images in the coloured visual spectrum have usually three channels (red, green and

blue). Multi-polarised images could be an equivalent for SAR images but different po-

larisations were not available in the MSTAR dataset. The image is separated in several

different patches. The intensities in each patch are assumed to belong to the same kind

of background and will be modelled by a GMM. In practice, these local patches are each

a 10×10 square group of pixels. As a group, the intensities balance the lack of infor-

mation due to the single channel and limit the impact of the noise. The initialisation of

the background model (see Fig. 4.8 (b)) begins by estimating the GMM parameters using

a K-Mean algorithm. This algorithm is quick and gives a first idea of the clustering of

the data in different Gaussian functions. The expectation-maximisation (EM) algorithm

is used to provide an accurate estimation of the GMM parameters. As the background

occupies the most space in the images, the GMMs related to the background are the most

frequent ones. The most similar GMMs are grouped together to determine their preva-

lence. The similarity is established using the Kullback-Leibler (K-L) divergence based on

a Gaussian approximation [61] written in Eq. (4.5).


dist(GMMi,GMM j) = min

∀m∈Si,∀n∈S j
KL(Nm,Nn)

KL(Nm,Nn) = ln
(

σn
σm

)
+

(µm−µn)
2+σ2

m−σ2
n

2σn

(4.5)

where each GMM GMMi is the contribution of Si Gaussian distributions. The Gaus-

sian distribution Nm is the mth contribution to the GMM. This Gaussian distribution has a

mean µm and a standard deviation σm.

If the divergence is below a threshold, the GMMs are considered similar and the
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weight representing the occurrence of these GMMs is updated as the sum of the two

GMMs weights. The GMMs selected to model the background are the 80% GMMs with

the heaviest weight. They are likely to represent the background as one target only occu-

pies around 2% of the image space in the MSTAR dataset.

Segmentation based on the similarity of the image to the background model. Seg-

mentation is a two phases process. The distance image (see Fig. 4.8 (c)), is computed

using the background model previously obtained and the image under test. It is then

thresholded (see Fig. 4.8 (d)), to obtain the binary segmented image.

(a) Original image. (b) KL distance image be-
tween the image background
and background model.

Fig. 4.9: Distance image between the extracted GMMs and background model.

Distance image The image is divided in 10×10 square patches and GMM param-

eters are estimated for each patch. The distance image in Fig. 4.9 links the intensity of

the pixels to the KL divergence as in Eq. (4.5) between the GMMs from the background

model and the GMMs found in the image to segment. The new intensity of each patch

is the minimum divergence found between the new GMM and the background model

GMMs. A logarithmic filter applied to the distance image stretches the lower intensities

and makes the choice of the threshold more accurate.

Thresholding The choice of the threshold (see Fig. 4.8 (d)) relies on the assumption

that the target covers a small part of the image. The threshold is chosen so that only the
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brightest part of the image is retained. A lower threshold could be used to select a larger

potential target areas knowing that the post morphological processing would suppress

the majority of false alarms. However, some false alarms could still remain while the

segmentation would select more background areas.

Morphological filtering Morphological filtering (see in Fig. 4.8 (e)), is essential to cor-

rect the first results of the segmentation. The target can be split up after the segmentation

process in different parts and the dilation helps reconnecting them. However, the dilation

makes the detected target larger and swells the misclassified background parts. The dila-

tion is thus followed by an erosion. At this stage, the target is detected and its shape is

well approximated but there are still false positives. Most are removed while areas below

a specific surface are suppressed. An optional step is to add a dilation boosting the recall

rate. As the target is now the only positive area, a dilation adds to the detection areas

surrounding or on the target.

The standard GMM segmentation can be expressed with the following pseudo-code.
Algorithm 8: GMM segmentation

1 Pre-process the image with 2 bilateral filters and 1 median filter.

2 Compute GMMs over the image separated in 10×10 patches with a K-Mean and

EM.

3 Compute which are the most present distribution using the KL distance to

evaluate the GMM similarity. This provides the background model.

4 Use the KL distance to compute an image showing the distance of distributions to

the background model.

5 Apply a logarithm function to the distance image.

6 Threshold the logarithmic distance image.

Evolution of the background model Along the sequence, the background can change

and if the background model keeps only the original GMMs, the new background types

will not be represented by the model and lead to false positives as shown in Fig. 4.10 (b).
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(a) Original image. (b) Segmentation result
without evolution of the
GMM background model.

(c) Location of the GMM
candidates for the integration
in the background model.

(d) Segmentation result with
the evolution of the GMM
background model.

Fig. 4.10: Comparison of the segmentation with and without the evolution of the GMM
background model.

To take into account this problem, the set of background GMMs fitting the background

at the beginning of the sequence evolves (see Fig. 4.8 (f)). The evolution consists in

the removal of the out of date GMMs and the introduction of the GMMs fitting the new

background types. The evolution step works for the images when they are following each

other in a sequence.

GMM individual parameters are computed in the same way as during the initiali-

sation. In addition, as expressed in Section 4.3.3, the weight of types of backgrounds

is computed by computing the number of GMMs representing similar backgrounds to-

gether. The higher this number, or background weight, the more the modelled background

is present in the image under test. Only types of GMMs representing backgrounds in the

top 80% of most present distributions are kept.
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The GMMs surrounding or located on the found target are removed as they can be

related to the target. To do so, the location of the new GMMs in Fig. 4.10 (c) is compared

to the dilated segmented image shown in Fig. 4.10 (d). The GMMs in the positive area

will not be considered for background modelling. An additional criteria for a GMM to be

kept or added to the background model for the next image is consistency across several

images. If the GMM satisfies these criteria on 5 following images, it is included in the

background model, otherwise the GMM is removed from the model. One can see the

improved result of the segmentation by comparing Fig. 4.10 (b) and Fig. 4.10 (d) to the

original image shown in Fig. 4.10 (a).

The GMM segmentation with an evolutive background and extra morphological fil-

tering can be expressed with the following pseudo-code.
Algorithm 9: Evolutive GMM segmentation

1 Initialisation

2 Get a starting background model with Algo.8 on a set of images at the beginning

of the sequence.

3 for each image of the sequence do

4 Compute the background model with Algo.8. Update the previous

background model by adding new GMMs that are often present outside the

target area in the current and the previous images. Remove the unused

GMMs. Use the KL distance to compute an image showing the distance of

distributions to the background model.

5 Apply a logarithm function to the distance image.

6 Threshold the logarithmic distance image.

7 Apply dilation and erosion to the segmented image (Morphological filtering).

8 end
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Segmentation Precision Recall Dice Score
method
Technique 1 17 % 71 % 28 %
Technique 2 63 % 78 % 69 %
Technique 3 47 % 88 % 61 %
Technique 4 62 % 55 % 58 %

Table 4.1: Segmentation results. Technique 1: Basic GMMs. Technique 2: GMMs with
evolution. Technique 3: GMMs with evolution and morphological processing.
Technique 4: Pre-processing and thresholding explained in Section 4.3.2[55].

Results of the various tested segmentation methods

Scores definitions Several scores can be applied to evaluate the segmentation. The

precision rewards the detection of the target and is sensitive to the false detection of clutter.

As expressed in Section 4.3.3, the recall rate is the score that is the most interesting as

its focus is the detection of the area of interest, even if this implies the false detection of

surrounding background. The Dice score shows the trade-off between those two scores.

The detail of the calculation of those scores is explained thereafter.

Precision =
True positives

True positives+False positives
(4.6)

Recall =
True positives

True positives+False negatives
(4.7)

Dice = 2 · Precision ·Recall
Precision+Recall

(4.8)

Results The main objective of this segmentation is to detect the target as a whole even

if the precision decreases. False negatives are more damaging for further processing and

classification than false positives. Indeed, the clutter having none of the target features

will be discarded at the classification stage whereas a part of target missing could mean

the loss of a crucial feature. This is why the recall rate is used as the most important

criterion to evaluate the performance of our segmentation method.
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GMM technique A summary of the segmentation methods can be found in

Algo.7, 8 and 9.

The very low rate of 17% of precision of technique 1 (Section 4.3.3 up to Sec-

tion 4.3.3) in Table 4.1 shows that the basic GMMs technique is prone to false alarms.

This endorses the overall change of the background throughout the sequences and that

the background model should be updated accordingly. This hypothesis is confirmed look-

ing at the 63% precision rate achieved once the evolution process is introduced as per

technique 2 (Section 4.3.3 up to Section 6 but no morphological processing as in Sec-

tion 4.3.3). The number of true positives increases with the recall rate. There can be more

true positives because of the dilation only if the previously detected area is already on or

near the target. The difference between the recalls of techniques 2 and 3 from 78% to

88% in Table 4.1 confirms the previous detection was correctly located. As can be seen in

Table 4.1 from the precision and recall rate of techniques 2 and 3, the last morphological

step is a trade-off between precision and recall. With the highest recall rate, technique

3 (Section 4.3.3 up to Section 6 and morphological processing as in Section 4.3.3) is

favoured.

Comparison with other techniques Technique 4 (Section 4.3.2) in Table 4.1 is

used as a preliminary step to several classification methods [48, 55]. This method con-

sists of a histogram equalisation followed by a mean filter as preprocessing. A constant

intensity threshold is then used to remove the pixels with a low intensity. The median of

the intensity of the pixels remaining is used as a second threshold. Usually the target is

well detected even if it is in several pieces. However, the background is detected as well.

These results are shown by a comparable precision of the GMM technique 2 of 62% seen

in Table 4.1 but a much lower recall rate of 55%.

91



CHAPTER 4. FEATURE-BASED CLASSIFICATION

Conclusion

The presented technique has a high recall rate of 88% satisfying the objective of a loose

segmentation keeping most of the target and its features while removing the background to

ease further analysis of the image. A higher recall rate was observed for this segmentation

method than for other techniques that were tested. This can be interesting for feature or

model based classification methods with a heavy computation load but that requires a

detailed description of the target.

4.4 Classification with features

Once the segmentation is achieved, feature-based classification is carried out. In order

to achieve this classification, features describing a specific part of the target have to be

computed and compared to features from the training images. After the comparison, the

most resemblant features are matched together and the correct target is determined. This

feature-based classification is thus highly dependent of the describing ability of the cho-

sen features. Several features used in the visual band are applied to the SAR domain

independently to evaluate each in their ability to describe SAR features. A performance

comparison between gradient descriptor and binary descriptor based classification method

is presented. The gradient based descriptors compared are the Scale Invariant Feature

Transform (SIFT) [27] and Speeded Up Robust Features (SURF) [28]. The binary de-

scriptors compared are the ORB [29], Fast REtina Keypoint (FREAK) [30] and Binary

Robust Invariant Scalable Keypoints (BRISK) [31]. Results show that binary features

perform better on SAR than the gradient based features SURF and SIFT. Out of all the

features compared, the BRISK based method achieved the highest score. The method is

tested both on the standard MSTAR SOC 3-target dataset defined in Section 2.4.2 and on

an alternative 3-target dataset with a different partition between training and testing sets

defined in Section 2.4.2.
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Fig. 4.11: Pipeline of the classification.

4.4.1 Methodology of the feature-based classification method pro-

posed

The classification step associates a label to each detected target. The feature descriptors

are chosen so to differentiate the best between different targets while being the most sta-

ble possible against changes of other factors such as noise or environmental changes. A

detailed comparison of the various combinations of detector, descriptors and matching

methods is presented in Section 4.4.1. After the segmentation step with GMMs presented

in Section 4.3.3, the classification consists in matching the descriptors between the train-

ing and test images as shown in Fig. 4.11.
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Features compared

Several types of features including detectors, descriptors and matching methods were

tested and compared [7]. These were tuned to achieve the best classification rate and

only those providing the best performance were employed in the classification task. The

detector finds the location of a relevant keypoint in the image. Its surroundings are char-

acterised in a vector by a descriptor. The keypoints are defined by their location and

the vector characterising the corresponding local area. The resulting keypoints will be

compared and associated with one another using a matching method. The detectors anal-

ysed in this work included the Difference of Gaussian (DoG) [27], the Box Filter (BF)

[28], Harris corners [62], Adaptive and Generic Accelerated Segment Test (AGAST) [31,

34], Features from Accelerated Segment Test (FAST) [33] and fixed points on a grid laid

over the target. The descriptors were selected based on previous research between those

providing the highest performance in the visible domain. These include the Scale Invari-

ant Feature Transform (SIFT) [27] and speeded up robust features (SURF) [28]. Binary

features are also included such as Fast REtina Keypoint (FREAK) [30], Binary Robust In-

variant Scalable Keypoints (BRISK) [31] and Oriented FAST and Rotated BRIEF (ORB)

[29]. The acquisition of these descriptors is further explained in Section 3.1.1. Feature

matching is based on two matching methods: Lowe’s Nearest Neighbour Distance Ratio

(NNDR) [27], or a brute-force method. The brute-force method used in this work retained

only the best match for each feature of the tested target. The distance used to implement

these was either the Hamming distance or the Euclidean distance for binary descriptors

and non-binary descriptors respectively.

Determination of the orientation of the target

The target orientation is computed using a Hough transform [56, 63]. The image is seg-

mented using the GMM models as in Section 4.3.3. Dilation and erosion operations with

a small kernel are applied to the segmented binary image to smooth the edges of the tar-

get. The biggest shape is retained and the rest is considered as noise and is deleted. The
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Fig. 4.12: Determination of the target orientation with Hough transform.

image of the contour is used to compute the Hough transform. Only the brightest peak

in the Hough transform matrix is selected, giving the longest visible line in the image as

shown in Fig. 4.12. This line is superposed to the longest edge of the target which gives

the target orientation. As the final estimation of the target orientation is done by fitting

a line to the target contour, the front of the target is not distinguishable from the back.

Thus, the orientation is known modulo 180◦.

Selection of images to model the target

The classification relies on the feature matching between images of the target under test

and all training targets. In order to facilitate the matching, the target in the training image

should look the most alike to the test image. The training images are chosen so that the

targets they contained have a close orientation to the target to be recognised. The targets in

the training images have an orientation within a range of 80◦ to the target to be recognised

as shown in Eq. (4.9).

θtraining ∈[θtesting−ψ;θtesting +ψ]∪ (4.9)
[θtesting +180−ψ;θtesting +180+ψ],

where ψ is the orientation tolerance set to 20,
θtesting is the orientation of the unclassified target,

θtraining is the orientation of one target from the training image set.
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25 training images are chosen within the set of compatible training images to provide

the features forming the target model. The value of the orientation tolerance ψ must be

small enough so that the training and test images are similar and big enough to ensure that

there are enough training images within this range to form the target model. The choice

of ψ is justified in Section 4.4.2.

Feature description of the target

The features represent the pixel intensities over an area and must be standardised so that

feature matching is effective. After the segmentation with the GMMs, the images are thus

pre-processed. A median and bilateral filter are applied to reduce the noise followed by

a contrast stretch aimed at thresholding the 5% highest and lowest intensities. The vari-

ous descriptors are computed either with their built-in detector as in Section 4.4.1 or on

equally spaced locations (intersections of a grid) on the target area found by the segmen-

tation. The grid method performed better as the usual detectors were perturbed by the

speckle and did not find enough robust features. The grid will thus be used as a detector

to choose the location where the descriptors will be computed in the results. For each de-

scriptor, the relevant parameters (octave number, pattern scale, peak and edge threshold)

were tuned until the best performing combination was found. BRISK performed the best

as shown in Section 3.1.1 and will be used thus in the final method.

Matching

The resulting descriptors were matched using either the Lowe’s ratio method, or a brute-

force method [27]. The Hamming norm was used for binary descriptors and the Euclidean

norm for gradient descriptors. This brute-force matching assigns the best match, i.e.

the match with the lowest distance for each point, while excluding the possibility for

points to have more than one match. Both methods are used for matching as reported in

Section 4.4.2. Many false matches were observed in the results. To limit the number of

false matches, RANSAC was employed to mitigate the geometrical differences caused by
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different viewing conditions and obtain results of the type of those shown in Fig. 4.13

[35]. In Fig. 4.13 (a), features found on the training target are assigned to similar features

on the testing target. The only matches retained in Fig. 4.13 (b) are all the all black lines.

Those matches are compatible geometrically with RANSAC and that is shown as the lines

representing the matches are parallel. Indeed, if one match is at the front of the target,

another match just next to it can’t be on the target rear. If the targets are indeed similar,

most of the matches should be retained. If most matches are lost between Fig. 4.13 (a)

and Fig. 4.13 (b), it is unlikely that the target tested is of the same type as this training

target. The type of the target with the greatest average number of remaining matches is

assigned to the target under test.

4.4.2 Results

Results were obtained with an alternative partition between training and testing for 3-class

targets SAR ATR problem. This partition, referred as dataset B in Section 2.4.2, was se-

lected as it was deemed less affected by background correlation as shown in Section 4.4.2.

Section 4.4.2 shows the precision of the standard Hough transform determining target ori-

entations. It ensures that the training images picked for the target model have a similar

orientation to the tested target. In Section 4.4.2, the choice of BRISK as the feature de-

scriptor is justified by a comparative study with other descriptors. The relevance of the

target model generated depending on the restriction of the orientations of the training tar-

gets and the number of computed features per target is described in 4.4.2. Lastly, the full

ATR method is evaluated in Section 4.4.2.

Correlation between training and testing sets in both dataset A and proposed dataset

B

To justify the use of another partition than the usual one for 3-class targets SAR ATR

problem, a NN based ATR method [13, 24] is applied to dataset A and B from Sec-

tion 4.4.2 with the full images and background-only images (target removed). Table 4.2
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Training image Testing image
(a) Original matches.

Training image Testing image
(b) Matches after RANSAC.

Keypoint location
Match between the feature on 
the training and testing target

Fig. 4.13: Matches refinement with RANSAC.

shows correlation between the training and test images in dataset A as the algorithm still

achieves a 90.88% rate without most of the target information. The same method only

reached 57.88% in dataset B and was thus less influenced by correlation.

Orientation determination

The Hough transform is evaluated using the errors between the orientation found by the

Hough transform and the supplied target azimuth. This method is however not capable of

distinguishing the front from the back of the target and thus all errors are given modulo
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Original Background only image
images (target removed)

Dataset A 99.25% 90.88%
Dataset B 82.75% 57.88%

Table 4.2: Nearest neighbour recognition rates between Dataset A and B.

180◦. The evaluation is made on the same dataset as in [64] with 6874 images from the

10 targets belonging to the Standard Operating Condition (SOC) at both depression angle

15◦ and 17◦. This is the MSTAR SOC dataset for 10 targets that is described in Table 2.3.

The mean error and standard deviation of the error are given as it has already been done

but the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) are also

provided as these indicators can give some additional information [56, 64, 65]. MAE and

RMSE are defined in Eq. (4.10).

MAE =
∑

n
i=1 |a− â|

n
, (4.10)

RMSE =

√
∑

n
i=1(a− â)2

n
.

where a is the correct angle given by the MSTAR database,
â is the angle found by the Hough Transform.

The RMSE is more affected by the bigger errors because of the square applied to the

error. Some high RMSE in Table 4.3 can be explained because the Hough transform could

mistake the short side of the target for the longer side, adding an error close to 90◦. Condi-

tionally Gaussian Model (CGM) is more accurate but requires the target type beforehand

[66]. This accuracy is comparable to the continuous wavelet transform without slant plane

adjustment [64] but could be improved by taking the average angle of a cluster of lines

instead of using a single line [56]. These results are shown to complete the results on the

robustness of the feature classification method against change in the target orientation in

the training and the tested image.
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Target Image num-
ber

Mean σ MAE RMSE

2S1 573 -0.75 20.97 8.31 20.96
BMP2 1285 -0.10 13.79 5.85 13.78
BRDM 572 -0.47 24.99 11.84 24.97
BTR60 451 -0.33 9.96 4.41 9.96
BTR70 429 -0.31 12.96 5.01 12.95
D7 573 -1.32 19.27 9.25 19.30
T62 572 -2.15 13.42 6.48 13.58
T72 1273 -1.64 14.13 6.77 14.22
ZIL 573 -2.14 15.22 8.38 15.36
ZSU 573 0.73 21.57 10.60 21.57
Total 6874 -0.87 16.81 7.52 16.88

Table 4.3: Statistics of the errors in the target orientation determination.

Comparison of the possible descriptors for the target characterisation

25 images are used to build the target model with an orientation tolerance ψ of 20◦.

The best scores on dataset B for each combination of detectors, descriptors and matching

methods are shown in Table 4.4. SIFT [27] and SURF [28] features perform well in

the visible band, but binary descriptors, such as FREAK [30], BRISK [31] and ORB [29],

outperformed them largely in the SAR domain on the MSTAR. BRISK performed the best

as seen in Table 4.4 with a classification rate of 91.57%. FREAK and BRISK performed

more than 10% better than ORB.

Gradient descriptor Binary descriptor
Detector Grid Grid Grid Grid Grid
Descriptor SIFT SURF ORB FREAK BRISK
Matcher NNDR Brut. L2 Brut.H. Brut.H. Brut.H.
Result 56.94% 51.34% 78.93% 89.00% 91.57%
NNDR is the nearest neighbour distance ratio, brut. is the brute-force matching
method used with H., the hamming distance or L2, the Euclidean distance.

Table 4.4: Comparison of performance for gradient based and binary descriptors.
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Optimal description of the target model

The construction of the target model is a trade-off between the precision of the model and

the computational load to build it. The following results show the effect of varying the

keypoint detection method and the amount of keypoints used on the target. In addition to

that, the impact of selecting training images with a target in a similar orientation to the

tested target is shown.

Evolution of the classification accuracy with the number of keypoints evaluated

SAR images do not have a resolution as high as that of optical images. In addition,

the detection of robust features can be difficult because of the high speckle and the small

size of the working area. Indeed, the target in the MSTAR occupies on average 2-4%

of the total image. The grid is not a detector per se but it enables the evaluation of de-

scriptors by bypassing the challenging detection task in SAR. The score achieved with the

AGAST detector is also given. The results are for the BRISK based classification method

on dataset B using 25 training images for the target model creation and a 20◦ orientation

tolerance.

Space between each intersection AGAST
Detector on the grid (px) detector [31]

1 2 5 8
Classification 91.57% 89.83% 79.03% 75.74% 81.40%
rate

Table 4.5: Impact of the detection and number of keypoints.

Optimal orientation range for selecting the training images used for matching The

training and testing targets look the most alike for similar orientations. The results of

the BRISK based classification are shown with 25 training images and a 20◦ orientation

tolerance for the choice of the training targets. As shown in Table 4.6, comparing the

test target with training targets with similar orientation improves the score from 79.86%

to 91.57%. It shows that the feature themselves are changed, and not only rotated as
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BRISK is rotation invariant. Finding the orientation with the Hough transform is not

computationally intensive in this case because images were already segmented for the

feature classification.

Viewing angle
20◦ 30◦ 40◦

No orientation
tolerance ψ selection
Classification

91.57% 88.18% 85.41% 79.86%
rate

Table 4.6: Impact of orientation resemblance between the training targets and the tested
target.

BRISK classification on GMM segmented and processed images

The classification rate on the background-only images represents the combined influence

of the target shadow, multipath and the correlation between the training and test images

backgrounds. The NN method achieves a recognition rate of 90% using the background-

only images in dataset A as shown in Table 2.4.2, whereas our method scored 41.76% as

shown in Table 4.7 showing a lesser influence of background correlation. Indeed, key-

points detected in the background, are removed by the matching and RANSAC steps.

Clutter is also largely ignored by the BRISK features because intensities comparison and

not intensities themselves are registered, thus reducing the influence of most small inten-

sity changes caused by noise.

The importance of the segmentation for the feature classification, in addition to reduce

the feature computation and matching time, is shown in the score drop from the segmented

target to the full original image (from 93.40% to 67.10% in dataset A and from 91.57% to

61.66% in dataset B). The segmentation avoids mismatches and makes it possible to reach

much higher scores. The proposed method achieves a score of 91.57% in the proposed

partition, dataset B, and 93.40% in the 3-class SAR ATR problem usual partition.
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Original Segmented images: Segmented images:
images Target only, back- Background only,

ground removed target removed
Dataset A 67.10% 93.40% 41.76%
Dataset B 61.66% 91.57% 38.64%

Table 4.7: Classification rates achieved using the proposed method.

4.4.3 Conclusion

Target recognition in the MSTAR dataset based on binary local features has not yet been

reported in the literature. Binary features, in addition to being faster than SIFT and SURF,

are less influenced by clutter and give more robust features. The proposed BRISK feature-

based classification ATR method achieves a 93.40% classification rate on the MSTAR

SOC with 3 targets, describing better keypoints than usual visual features while still ig-

noring clutter. The choice of extracting features from training targets with a similar orien-

tation to the target under test proved efficient raising the classification score from 79.86%

to 91.57% on the MSTAR dataset B with 3 targets described in Section 2.4.2 but required

segmentation of the image.
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5.1 Summary

This chapter consists in the implementation of deep learning methods in order to perform

SAR ATR. The main architecture used is an AlexNet to which the number of classes in

the last layer is adapted to the number of targets in the SAR dataset. Transfer learning

is applied to the CNN trained initially on ImageNet in the visual domain to adapt to the

various SAR dataset. The learning rate is chosen after a review of the scores reached after

5 training epochs using randomly chosen learning rates inside a reasonable range.

To compensate for the low number of training images, data augmentation is used to

improve the scores obtained. A traditional translation data augmentation is included with

a random X-Y translation applied to the original training data. There is no improvement

in the MSTAR dataset and the result was even worsened on the MSTAR EOC 1 with an

average classification delta of -0.81%. However, the CNN becomes much more robust to

target translation with an average classification improvement of 28.89% compared to the

CNN trained on the original data only. This does not happen in the MSTAR dataset but

could happen realistically in SAR images. The translation data augmentation improves by

10% the classification score of the AlexNet on the MGTD. The translation data augmen-

tation is thus kept for the rest of the chapter. The translation data augmentation makes the

classification rate reach 97.77%, 74.72%, 92.57%, 85.46%, respectively on the MSTAR

SOC 10, MSTAR EOC 1, MSTAR EOC 2, MSTAR EOC 3.

In addition to the traditional translation data augmentation method, a noise-based data

augmentation specific to SAR data is proposed. The objective is to simulate a noisier

acquisition. The range profiles are modified with the addition of noise following a Weibull

distribution before computing the SAR images. This data augmentation is only applied to

the MGTD images for which the range profiles are available. The results are presented in

Section 5.3.3. The combination of the translation and noise data augmentation makes the

classification rate reach 91.20% on the MGTD.

The second part of the chapter is focused on the implementation of the pose-informed

architecture. The objective is to take better into account the impact on the target appear-
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ance in SAR images produced by a target orientation change. The target recognition is

handled in two stages in the pose-informed method. First, the orientation of the target has

to be determined. The image is then analysed by the CNN specifically trained on images

of targets with similar orientations as the target to be recognised. In order to determine

the target orientation, a Hough transform is first applied to the contour of the target. 90◦

errors are prevented by comparing the amount of illumination of the target in rectangles

superimposed on the target with a horizontal or vertical direction. This gives an accurate

orientation between 0◦ and 180◦. The full orientation of the target is determined using a

CNN to compute the direction uncertainty of the target. The CNN is trained to distinguish

the front from the back of the target. The pose-informed architecture consists in n spe-

cialised CNNs, each trained on 360
n degree range of orientation, with n between 2 and 8.

A parent CNN is firstly trained using transfer learning from the visual to the SAR domain.

Then, for each specialised CNN, this parent CNN is retrained using transfer learning from

the full SAR database to the SAR images containing a target with orientations from the

appropriate range. The issue for such architecture is the very scarce data that can be used

for training. As only a small percentage of the training data is used for validation of

the model, very few images are left for validation. It is thus more probable for different

models to achieve an identical validation score. In order to measure fairly the results,

it is proposed to provide not one unique result but a range of results achieved with the

same best validation score. The complete results are given in Section 5.4.5. Apart from

the MSTAR EOC 3, the proposed pose-informed model performs better than the standard

CNN on all dataset tested. The classification scores are improved by 2-6%.

5.2 Introduction

Machine learning algorithms are able to use input training data provided to them to adjust

their parameters in order to achieve better scores. Algorithms stemming from the Ma-

chine learning domain have already been implemented on the MSTAR dataset to perform
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ATR. They have been relying on the following algorithms: Boosting algorithms such

as Adaboost, are trained by adapting a combination of weak classifiers to create a strong

classifier. Support Vector Machine (SVM) relies on finding the hyperplane maximising its

distance with groups of data points of different classes. K-Nearest Neighbour (KNN) finds

the points representing the best each class. Each point should gather the highest number

of neighbouring data points from the same class. MInimum Noise and Correlation En-

ergy (MINACE) aims at finding a class specific filter minimising the correlation between

training samples of a single class. All these algorithms use either the full image as pri-

mary data or a lower dimensionality representation of the image achieved by processing

the image with a function such as a 2D Fourier transform, elliptical Fourier descriptors

or a PCA (Principle Component Analysis). Classification can be obtain by supplying the

target images to a single algorithm such as SVM or improved SVM, boosting algorithm or

MINACE filter [55, 67–69]. Classification can also be obtain by interpreting information

from the training images with several algorithms such as KNN, MINACE and a SVM, or

a boosting algorithm with a SVM [70, 71]. Methods relying on machine learning achieve

better results than other direct classification methods, comprising of a direct comparison

between training and test images as those presented in Chapter 4. All of these algorithms

have however mainly only been tested on small MSTAR datasets, i.e. 3 to 8 targets,

with no extensive conditions, i.e. no change of depression angle bigger than 2◦, no target

variants or different target configurations. The SVM method, when applied to a sparse

representations of images belonging to a more complex dataset such as the MSTAR SOC

10, only achieved 80% of correct classification [72]. It seems thus that the SAR ATR

problem requires more complex algorithms in order to accurately differentiate between

the target classes. Fusion of features given by some of these machine learning algorithms

(MINACE, KNN, SVM) achieves only slightly better results [70]. Thus, another approach

is required.

The current state of the art SAR ATR methods rely heavily on CNNs issued from

deep learning and also commonly used in the visual domain. Some neural networks have
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been specifically developed for SAR ATR which are shallower than CNN solutions used

in the visual domain as the image resolution in the visual domain is much higher than

that of SAR, providing very detailed features [21, 73, 74]. CNNs can be used directly

but also as a feature extractor. Complex features can be extracted from the images in the

activation maps after the activation layers and the multiple stacked convolutional layers.

These features can be directly used by a SVM for classification. This method provides

improved results with respect to former feature-based solutions such as applying a feature

dictionary on the sparse representation of the target (up to 99.5% compared to 80% on

the MSTAR SOC 10) [75–77]. CNNs used directly or as a feature extractors have in any

case to be trained to fit the SAR data. They can be either trained entirely on SAR data

or benefit from transfer learning with a pre-training in the visual domain on ImageNet

to allow a greater amount of data preceding SAR training [76, 77]. CNNs can achieve

extremely high recognition rates on the MSTAR with scores reaching 99.1%, 96.12%,

98.93% and 98.60% on respectively the MSTAR SOC 10, MSTAR EOC 1, MSTAR EOC

2 and MSTAR EOC 3 or even higher on the MSTAR SOC 10 [21]. These scores were

achieved with A-ConvNet in which the fully connected layers at the end of the network

are replaced by convolutional layers to reduce the number of free parameters to train and

try to hinder over-fitting.

Correct classification rates of deep learning methods essentially rely on their training

capabilities and an essential variable of the training process is the training data. Ideally,

the data should be abundant and diverse to avoid overfitting. In the ideal case, the images

should also be independent, however, this is not often the case of SAR dataset due to the

acquisition constraints. The image acquisition procedure is more complex in the SAR

domain than in the visual domain and, as a result, overfitting becomes a key challenge in

SAR ATR. Several methods are investigated in order to optimise the usage of SAR data.

The network can be modified itself with the use of shallower CNNs and less parameters

to train, or with the addition of dropout layers to randomly silence activations and prevent

the usage of only a few features [21, 37, 73]. Training of the CNN can also be improved
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to include unlabelled data as with a Contractive Auto Encoder (CAE) [78]. The network

has to extract relevant features of an unlabelled image and summarise it into a compact

representation. This constitutes the encoder part of the CAE. The network then has in

the decoder part to recreate the original image from the compact representation. The

loss function of the CAE is related to the similitude between the original image and the

image created by the CAE. The encoder part has thus to learn the relevant features that

could be further used for recognition purposes. After this first training, the encoder is

used as the first part of the CNN with a regression softmax layer added at the end [79,

80]. Alternatively, another classification method can replace the classification layer [81].

The addition of unlabelled SAR data to the training from other database than SAR ATR

specific databases could increase the classification score and the robustness of such a

network.

Another unsupervised approach is to use a Generative Adversarial Network (GAN) to

learn the features. The GAN method consists of two distinct entities: a generator and a

discriminator. The generator creates images while the discriminator, that is a CNN, has

to differentiate between real images and synthetic images created by the generator. Once

the discriminator is well trained, it is able to produce what looks like realistic synthetic

images. This method produces very convincing images in the visual field and has lately

also been implemented in SAR [82–85]. If this method can help directly with the train-

ing of the classifier, as the discriminator needs to learn the images features to produce

new images beforehand, the direct usage of the synthetic image to increase the training

set could become a problem. Indeed, previous research in different domains has shown

that GAN can introduce some artefacts in the image [86, 87]. These can be sometimes

corrected if first identified [87].

In some instances, the system had also to be guided to represent both the target and

clutter. Because of the tendency of CNNs to overfit SAR data, it is not known to what

extent the produced images are realistic, as the background in training images is often

similar within a whole sequence and the multi-path effects are also different from one
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target to another. SAR images are more difficult to totally interpret than visual images,

which makes the detection of the potential artefacts a challenging task itself. In practice,

previous work shows the addition of realistic simulated images to the training set can

improve the classification scores [88]. Residual networks have also been used to refine

images generated without artificial intelligence but using point scatterer models on 3D

target models [89].

In this chapter, data augmentation solutions which might provide improved perfor-

mance in conjunction with other method creating artificial images are investigated. Data

augmentation has the disadvantage of producing images that can be less varied than the

more computationally expensive simulated images obtained with 3D models. Data aug-

mentation can produce however more realistic images compared to artificial images gen-

erated with GAN as these could be corrupted with artefacts [86, 87]. Images with targets

with new aspect angles respectively to the aspect angles present in the training set have

been simulated by averaging images of targets in close orientations [20]. However, this

successfully works only for very close orientations because the scattering properties of

target components change with the aspect angle. For example, the barrel is only dis-

cernible when perpendicular to the incoming signal.

Data augmentation solutions have already been implemented in SAR [77, 90, 91].

Several types of data augmentation are implemented in this chapter. A translation data

augmentation is implemented and the robustness of the resulting trained CNN is evaluated

against translation on the MSTAR EOCs dataset. A data augmentation simulating realistic

SAR noise amplitude to add to the range profile and affecting thus the produced final

image is also proposed. This is done by adding noise following a Weibull distribution to

the High Range Resolution Profiles before SAR processing. This shows an improvement

in the classification scores on the MGTD.

Improvement in classification performances can also be achieved by providing extra

information to a classifier. Some methods rely on information fusion using additional

features on top of the learnt deep learning features, such as a GMM representation of the
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SAR image or some texture information [92, 93]. Other methods introduce time in the

SAR ATR model by using several images from each SAR image sequence, rather than

performing classification on a single image and assume that all images are from the same

target. Classification of a group of images (2 to 4 images) is carried out using a multiview

deep learning network or a Long Short-Term Memory (LSTM) architecture [20, 94, 95].

The LSTM is a recurrent neural network that has several inputs. The processing is such

that the information given by the first images is retained and used to process later images.

With this architecture, a score of 99.90% can be achieved on the MSTAR SOC 10 database

[94]. However, these results were obtained with group of images with quite different

target orientations and that is an unrealistic scenario for a straight and short flight. These

scores cannot be directly compared to traditional classification methods which have less

information and are based only on a single image of the target.

In Section 2.6.1, it has been shown that the target orientation has a strong influence

on the target appearance [19, 96]. An improvement in feature-based classification perfor-

mances has been shown when a precise target orientation is included in the algorithm in

Section 4.4.2. In this chapter, performances are assessed with the inclusion of information

about the target orientation. Improvement in classification performances has already been

shown in previous work by including orientation knowledge. For example, the orientation

was included previously in the loss function for the training of a CNN. In addition to the

main objective to optimise in the loss function regarding the target class, a secondary ob-

jective is added for the CNN consisting in determining the correct target orientation [97].

Chapter 6 shows that the orientation of the target is learned to a certain extent anyway by

the CNN, even without including it specifically in the CNN’s loss. In order to take into

account the orientation differently, it is proposed to train CNNs that will be specialised

in the recognition of targets in a specific range of orientation. This system, called the

pose-informed method, assigns the image to be recognised to a CNN trained specifically

on images with a target orientation in a similar range once the target orientation has been

determined in the test image. It can be imagined that this method could be extended so
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that each CNN is trained to handle specific environmental conditions as these can affect

deeply the SAR image appearance. The determination of the target orientation required

for the pose-informed method is achieved over 360◦. 360◦ orientation determination has

been rarely done before [98, 99]. Most methods give an approximation of the orientation

modulo 180◦ [56] or ranges of possible orientation [100]. Some methods are also based

on prior class information to obtain a precise target orientation whilst this is not a require-

ment of the orientation determination proposed in this thesis [101, 102]. An alteration to

the traditional Hough transform method is proposed that reduces the number of 90◦ errors

by studying the direction of the target intensity, giving a 180◦ angle information. Train-

ing is then required in order to determine the final orientation of the target with a CNN

that determines the front from the back of the target. The proposed method improves the

precision of orientation determination compared to former methods.

In order to evaluate the pose-informed method, a fairer result representation is pro-

posed for classification results on small datasets. Indeed, in a small training dataset and

with an even smaller set of images used for validation of the model, it is possible that

several models reach the same best validation score. However, their results on the testing

set can vary substantially. For example, the random initialisation made on the last layers

of the CNNs can impact the performance. With this in mind, the results of several trained

model achieving the same high validation score are presented. The worst and best results

on the testing set are given for the networks achieving the highest score on the validation

set.

Firstly, this chapter introduces a classical AlexNet trained using transfer learning on

the MSTAR database and MGTD to have a comparison baseline. Then, the benefit of a

classical translation data augmentation as well as an innovative Weibull noise based data

augmentation is shown. This is followed by the presentation of the orientation determi-

nation combining a Hough transform, simple checking for 90◦ error and a CNN. The

pose-informed model is then investigated and it is shown to provide better results than the

standard CNN on 4 of the 5 datasets it is tested on.
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5.3 Deep learning approach with classical architecture

5.3.1 CNN used

The CNN used as a baseline for comparison, in this thesis is an AlexNet [103]. The net-

work architecture list of layers is presented in Table. 5.1 and the role of each layer has been

presented in more detail in Chapter 3. This architecture was chosen as it has been adapted

with success for a variety of other applications already such as human pose estimation,

video classification or semantic segmentation [104–106]. The architecture of AlexNet

is straightforward compared to more recent networks, such as ResNet, GoogleNet [107,

108]. The number of weights is lower than for deeper models such as VGGNet [109]. A

simple architecture was selected for ease of implementation and to benefit from the avail-

ability of pre-trained models. Other pre-trained models have more recently been added in

Matlab version R2019a. The effectiveness of the architecture on its own is not the prime

focus of this study as the main goal is to investigate if performances of a chosen network

can be improved using the pose-informed solution proposed and evaluated in the end of

this chapter. Thus the AlexNet is deemed a good candidate with its relative simplicity and

contained number of weight.

5.3.2 Training

In order to reduce training time and compensate for the low number of images available

compared to usual deep learning training needs, a transfer learning from a pre-trained

AlexNet on the ImageNet [110] to the appropriate SAR or ISAR database presented in

Chapter 2. The training method used is the stochastic gradient descent with momentum

method described in Chapter 3. The network is firstly trained on a visual database and it,

and especially the later layers, is retrained on the SAR data.
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Layer Type Channel
number

Activation size

1 Input 3 227×227
2 Convolution 96 11×11×3
3 ReLu - -
4 MaxPooling - 3×3
5 Convolution 256 5×5×96
6 ReLu - -
7 Maxpooling - 3×3
8 Convolution 384 3×3×256
9 ReLu - -
10 Convolution 384 3×3×384
11 ReLu - -
12 Convolution 256 3×3×384
13 ReLu - -
14 Maxpooling - 3×3
15 Fully connected 9216 4096
16 ReLu - -
17 Dropout 34% - -
18 Fully connected 4096 4096
19 ReLu - -
20 Dropout 30% - -
21 Fully connected 4096 Number of classes (3, 4, 10)
22 Softmax - -
23 Output class - -

Table 5.1: Layers of the AlexNet inspired CNN for image classification.

Parameter Value
Learning rate (up to layer 9) 1·λ0
Learning rate (after layer 9) 6·λ0
Learning rate (last layer) 12·λ0
Initial learning rate λ0 MSTAR: 8.10−5, MGTD: 1.2.10−5

Epochs number 75
Learning rate dropping rate 0.75
Number of periods before dropping the
learning rate

7

Batch size 15

Table 5.2: AlexNet training parameters.

Choice of the parameters

The majority of the parameters were first initialised with probable values and then refined

with a human-guided search. As the learning rate is one of the most sensitive training

115



CHAPTER 5. DEEP LEARNING CLASSIFICATION

parameters for a CNN, it was extensively researched with a study of the classification rate

achieved after 5 epochs in a grid search. If the learning rate is too low, the CNN is not able

to learn the correct weights but if the learning rate is too high, the weights cannot settle

in the minimum and the loss can increase. A decaying learning rate is chosen so that the

learning rate diminishes as the loss becomes closer to the optimum. The learning rate is

different for the various layers of the network. Indeed, for transfer learning, the training

is mainly focused on the deepest layers. As the network is from a different modality, the

lower layers still needed light training. Layers higher than layer 9 have a higher learning

rate with the highest learning rate being for the last layer. The learning rate λ0 from which

stem the learning rates in each layer is researched extensively using a random grid search

[111]. The classification score on the training, validation and testing set are drawn after

5 epochs according to the changing learning rate to choose the most appropriate learning

rate. An epoch consists of a period of training during which all the training images have

been through the network once as seen in Section 3.1.2. These scores are represented in a

graph using a logarithmic scale as the learning rate varied greatly between several cases.

The initialisation of the weights in the untrained last fully connected layer of the net-

work is a Gaussian with a 0 mean and a 0.01 standard deviation. A Xavier initialisation

was also tested without improving the classification score [112].

The values of the training parameters are summed up in Table 5.2.

Investigation of the learning rate The learning rate λ0 for the AlexNet for the MSTAR

database is chosen to maximise the accuracy of the validation set obtained after 5 epochs

as shown in Fig. 5.1. Similar plots for the EOCs introduced in Section 2.4.2 are repre-

sented in Figs. B.1 to B.3 can be found in Appendix B. The retained value is λ0 = 8.10−5.

The accuracy drops for smaller values as it would require too many epochs before reach-

ing the optimum. The weights could also settle in a local minimum. For higher values,

the updates of the weights can become divergent, unable to stabilise for an optimal loss.

The same process is done on the MGTD introduced in Section 2.6. The learning rate
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Fig. 5.1: Learning rate study for the SOC 10 MSTAR dataset.

is chosen so that the classification performance is the highest on the validation set after 5

epochs as shown in Fig.5.2. The retained learning rate is λ0 = 1.2.10−5.

In addition, it can be seen by looking at the score difference between the validation

set and the training set in Figs. 5.1 and 5.2 that the MGTD has a more challenging testing

set than the MSTAR SOC 10 dataset. The EOC 1 dataset has also a drop between the

validation and testing set but to a lesser extent in Fig.B.1. Figs. B.2 and B.3 are less

interpretable as the results in the testing set seem to be less representative of the results in

the training and validation sets.
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Fig. 5.2: Learning rate study for the MGTD.
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Transfer learning

Once the AlexNet was trained on ImageNet, the last fully connected layer (layer 21) is

replaced to bring down the 1000 output classes to the number of classes in the studied

dataset [103, 110]. Using the parameters shown in Table 5.2, the CNN is retrained and a

smoothed evolution of the loss can be seen in Fig.5.3. Similar losses can be seen for the

other datasets.

Epochs

Training loss

L
os
s

0 10 20 30 40 50 60 70
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0

Fig. 5.3: Evolution of the training loss during SAR training on the MSTAR SOC 10
dataset with a turning target.

Data augmentation

Deep learning performance is significantly dependant on the number and variety of the

training images. An extensive dataset with a more diverse representation of the object

will reduce the chances of overfitting to the data and provide better classification rates

[113]. As SAR images require more time and means to be obtained, there are far fewer

images and datasets in the SAR domain than in the visual domain. This problem can be

partially tackled with data augmentation which consists in adding new images to the train-

ing set created by deforming original images from the training set and thus provides more

training examples. This approach is commonly used in the visual domain and little inves-

tigated in the SAR domain. The data augmentation solutions investigated in SAR include
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mainly classical data augmentations used in the visual domain such as cropping images,

translating the image so that the target appear at a different location, or rotating targets so

their orientation change [77, 90, 91, 114, 115]. Some data augmentations are also specific

to the SAR domain and provide an improvement of performance. For example, the colour

jitter approach consisting in adding Gaussian noise to an image in the visual domain, is

transposed to SAR with the addition of multiplicative noise following an exponential dis-

tribution to the image [91]. Another method consists in rescaling the images to distort the

target and simulate variations in depression angle and target configuration [116].

This section investigates a classical data augmentation but also proposes a method that

simulates close to realistic noise during the acquisition of the signal to provide additional

noisier images than original SAR images. This is achieved by adding noise amplitude

following a Weibull distribution to the range profiles before image formation. The Weibull

distribution has been shown to be a good fit to model the multiplicative speckle noise in

the MSTAR images [57]. Similar parameters are chosen. The range profiles used show

the amplitude of the signal and not the complex IQ form. The resulting images with

noise supplement the training set and thus may improve the robustness of the trained deep

learning architecture.

(a) Original image of a T72. (b) Translated image.

Fig. 5.4: Classical data augmentation in the visual domain.

Classical data augmentation Translation has been used as a classical data augmenta-

tion method. The input images are firstly resized to 227× 227 pixels and repeated on

3 channels as it is the required input size of the Alexnet. Each image is then translated
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of a vector [x,y] ∈ R2, [x,y] ∈
[
[−100;100], [−100;100]

]
. In practice, this means that the

target is always entirely in the image even if the target was not exactly centred to begin

with. The areas of the images that are not assigned to a value are zero-padded to retain

the original size of the image as can be seen in Fig.5.4. The translated images are added

to the original training set.

Range profile data augmentation on the MGTD

Range profile data augmentation requirements The proposed method requires

access to the range profiles used to generate the image which are not given in the MSTAR

dataset, which only provides the amplitude of the image samples. Because it remained

impossible to retrieve the complete range profile, the proposed noise based data augmen-

tation is only applied to the MGTD.

Noise based data augmentation In addition to the traditional data augmentation, a

SAR specific data augmentation is proposed. This technique relies on the artificial addi-

tion of noise to the radar returns before processing the ISAR images to replicate a noisier

acquisition [9]. The objective of choosing realistic noise for data augmentation is to make

the deep learning method less sensitive to perturbations inherent to the SAR data such as

speckle noise. The noise that will be added to the signal requires thus to follow a distri-

bution close to that of the speckle found in SAR images. Various probability distributions

have been studied to represent the amplitude of speckle noise such as the Rayleigh distri-

bution, K-distribution and Weibull distribution [57, 117–119]. In this chapter, a Weibull

distribution with a shape parameter of ∼ 2 close to a Rayleigh distribution to provide a

representation of SAR speckle is selected [57, 120]. The associated probability density
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function of the Weibull distribution is shown in Eq. (5.1).


p(x,β ,η) =U(x) · β

η
·
(

x
η

)β−1
· e−(

x
η
)β

β ≈ 2

η > 0

(5.1)

where U is the step function, β is the shape parameter, and η is the scale parameter.

If β = 2, the distribution is a Rayleigh.

Data Parameters
augmentation type Shape β Scale η Weighting a Weighting b

Noise 1 2.15 0.75 8e-8 1.01
Noise 2 2.15 0.75 1e-7 1.007
Noise 3 2.15 0.75 5e-7 1.01
Noise 4 2.15 0.75 7e-1 1.008

Parameters are chosen empirically.

Table 5.3: Weibull based noise parameters

The range profiles of the target are obtained with an inverse Fourier transform of the

Vector Network Analyzer (VNA) returned frequency signal. The noise is then added to

the range profiles. Multiplicative and additive noise following a Weibull distribution are

applied to each range profile for each orientation of the target as in Eq. (5.2).

| s′(m,τn) |= a ·X(m)+(1+b ·Y (m)) | s(m,τn) | (5.2)

where s′ and s are respectively the modified and original range profile, m is the range

bin, τn is the nth pulse, X(m) and Y (m) are random variables following a Weibull distri-

bution, a and b are weighting constants. All the parameters used to create the 4 additional

sets of images are summarised in Table 5.3.

An example of a modified range profile with noise in Fig.5.5 (b) with the lowest

additive Signal to Noise Ratio (SNRAdditive) (Noise 4 in Table 5.4) can be compared
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(a) Original range profile.
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(b) Range profile after the noise addition.

Fig. 5.5: Effect on the range profile of the Weibull based data augmentation on the MGTD.
SNR details associated with noise 4 in Table 5.4

to the clean original range profile in Fig.5.5 (a). The computation of SNRAdditive and

SNRMultiplicative is detailed in Section 5.3.2. Once the range profile is updated, the stan-

dard backprojection algorithm is resumed to create the target images [14].

The parameters chosen for the Weibull distributions of the noise are summed up in

Table 5.3 and change the impact of the noise on the SAR image. The choice for the

parameters of the noise distribution is made to transform the original image while still

keeping the target image interpretable. The effect of the noise data augmentation on
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the final target image can be seen in Fig.5.6 in which both the original image and the

image issued from data augmentation with the noise associated with the lowest additive

SNRAdditive (Noise 4 in Table 5.3) are shown.

(a) Original target image. (b) Target image after the noise
addition.

Fig. 5.6: Effect on the target image of the Weibull based data augmentation.

Impact measurement of the artificial noise on the original images In order to

evaluate the noise already present in the original data and compare the different noise

based data augmentations, the SNR is calculated in each case. The SNR of the unmodified

data is estimated on the range profiles. The strongest peak in the range profile represents

the power of the signal while the average range profile value between 3.5m and 4.3m

where no target is present is used to determine the mean noise power. The signal and

noise power issued from the range profile gives a SNR of 57 dB for the original signal.

The SNR relative to the artificial noise does not account for the noise already present

in the original signal. Each noise power is calculated independently for the multiplicative

and the additional noise following Eq. (5.3).

[h]



PSignal =
1
m ∑

7.5
m=3.5|s(m,τn)|2

PAdditive =
1
m ∑

7.5
m=3.5 (a.X(m))2

PMultiplicative =
1
m ∑

7.5
m=3.5|b ·Y (m) · s(m,τn)|2

SNRAdditive(dB) = 10 · log( PSignal
PAdditive

)

SNRMultiplicative(dB) = 10 · log( PSignal
PMultiplicative

)

(5.3)
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where PSignal , PAdditive, PMultiplicative are respectively the signal, additive noise and

multiplicative noise power, m is the range bin, τn is the nth pulse, a and b are weighting

constants, and X and Y are Weibull distributions. SNRAdditive and SNRMultiplicative refers

to the SNR related to respectively the additive and multiplicative noise.

Table 5.4: SNR for the additive and multiplicative noise augmentations relative to the
original signal.

Data Additive Multiplicative
augmentation type noise SNRAdditive (dB) noise SNRMultiplicative (dB)

Noise 1 18 2
Noise 2 16 2
Noise 3 2 2
Noise 4 -1 2

The resulting SNR for the various parameter combinations are given in Table 5.4.

Typical SNR for target detection in SAR ranges from 10 dB to 20 dB [121–123]. The

SNR in images in the MSTAR is in this range with an average value of 16 dB for all

images in the MSTAR SOC 10. This SNR value was calculated with the signal power

being the maximum intensity on the target while the average intensity in a wide zone in

the background further from the target was taken as the noise power. Some chosen SNR

values for the data augmentation are in this range and there are also lower values so that

the image classification is more challenging. Indeed, lower classification scores have been

reported for a SNR below 5dB [60].

Impact of data augmentation on the classification results

Data augmentation on the MSTAR datasets The influence of the classical trans-

lation data augmentation is not clear on the MSTAR datasets. The results achieved on

the various MSTAR datasets for the CNN trained on the plain training set are compared

to the results achieved with the CNN trained with additional images created with transla-

tion data augmentation as seen in Table 5.5. The results are close but different than the
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results obtained in Section 5.4.5 because of the random initialisation used and the param-

eters tuning that was less refined when these results were obtained than in Table. 5.2, and

achieved slightly lower scores. The translation data augmentation improves by 1.07% for

the MSTAR SOC 10 and by 5.36% for the MSTAR EOC 2, however, the classification

scores lowers by 8.77% or by 0.14% respectively on the MSTAR EOC 1 and EOC 3. If

the improvement due to robustness is understandable, the deterioration of the score shows

that it could also appear beneficial to let the network overfit the data, showing the resem-

blance of the testing and training set. After some investigation, targets were found to be

slightly better centred in the MSTAR SOC 10 and EOC 2 than in the MSTAR EOC 1 and

EOC 3 in the testing set.

To show the importance of robustness, the scores of a network trained on plain data

are compared to the scores of the network trained with additional translated data (the same

presented in Table 5.5 on an altered testing set). The target is moved by a random distance

of -6 m to 6 m, equivalent in the image to a -20 to 20 pixels translation in both x and y

directions. The influence of overfitting is shown in Table 5.5. The results show a very

sharp drop in the accuracy of the networks trained without translation data augmentation

apart in the MSTAR EOC 1 dataset. This drop in accuracy goes from 5% in the best

case up to 43% in the worst case. The networks trained without the translation data

augmentation rely thus heavily on the precision of the target detection.

For the cases studied in this thesis, the added translation data augmentation during

training provides more robust results for real applications. It indeed improves the results

over the majority of the MSTAR dataset, MSTAR SOC 10, EOC 2 and EOC 3, with the

exception of the MSTAR EOC 1 dataset. It is thus kept for further investigation in the rest

of the thesis. These results also show that choosing a network solely on one classification

score could be harmful, especially in the SAR domain for which the datasets are small and

less representative of the possible wide variety of images acquired in different scenarios.

Indeed, images in SAR testing sets are less diverse than in visual testing dataset because

of the acquisition difficulty. In the case of ImageNet, the 40 million images can be from
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Dataset Testing data Classification score
of the CNN trained

on plain training

Classification score
of the CNN trained
with translation data

augmentation
MSTAR SOC 10 Plain data 96.70% 97.77%
MSTAR SOC 10 Data with a target 53.86% 97.07%

randomly translated
MSTAR EOC 1 Plain data 83.49% 74.72%
MSTAR EOC 1 Data with a target 78.02% 74.63%

randomly translated
MSTAR EOC 2 Plain data 87.95% 92.57%
MSTAR EOC 2 Data with a target 51.81% 92.34%

randomly translated
MSTAR EOC 3 Plain data 85.61% 85.46%
MSTAR EOC 3 Data with a target 51.73% 86.94%

randomly translated

Table 5.5: Robustness test of the trained AlexNet against the translation of the target in
the testing set.

various sources as they are directly drawn from internet searches using chosen keywords,

from different locations, from different angles [110]. . . On the other hand, SAR and ISAR

dataset were taken with a single system for each dataset with less environmental changes.

Moreover, they are composed of images in sequences that are not independent as the are

taken over a short period of time in a scene with little change. Thus, robustness is not to-

tally taken into account even in the more complicated MSTAR EOCs dataset. Robustness

of the CNNs is not a standard test on the MSTAR dataset even if algorithms perform less

when confronted to occlusion, noise or translation [91, 92, 124, 125]. Standard robustness

testing would thus be interesting for SAR ATR methods.

Results of the range profile data augmentation on the MGTD The classification

scores benefit greatly from both the translation and noise based data augmentation as seen

in Table 5.6. This sharp increase (between 10% and 15%) shows that data augmentation

can tackle the low number of training images and their lack of diversity which weakens

the CNN training. In the MGTD with a rotating target, there is little target translation, or

overlay. Thus, using data augmentation dedicated to these changes has a limited impact.
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However, all SAR images suffer from noise and speckle to a certain extent. Noise is thus

a compelling variable to take into account during training. The simulation of speckle

for data augmentation resulted in more resilient CNNs and improved by 5% the total

classification score over the CNN trained with translation data augmentation alone.

Training set Classification rate
No data augmentation 76,85%
Training set with translation data augmentation 86,34%
Training set with translation and Weibull noise data
augmentation

91,20%

Table 5.6: Influence of the data augmentation to the CNN classification rate on the MGTD

Further work related to data augmentation Further work with the Weibull noise

based data augmentation could lead to new denoising methods. Denoising SAR images

is currently achieved with filters relying on statistical assumptions on speckle [126, 127].

Denoising has now been approached in other domains such as pre-processing for image

recognition or voice recognition with decoders [128, 129]. The decoders are networks

that are trained using purposefully noisy data in input to reconstruct the original clear

data. The noisy inputs are created using real or synthetic noise.

Once trained, they are able to denoise data with real noise as long as this noise is

similar to the simulated noise during training. This process could also be applied to

SAR images using the images created with the Weibull noise data augmentation as it is

a realistic noise for SAR data. In this work, the noise is added to the amplitude of the

range profile which makes it less realistic, but a good first approach. The result could

be a decoder neural network able to denoise SAR images. This system could be then

compared to more standard filters.

5.3.3 Classification results for the classical CNN architecture

The AlexNet is trained with the parameters described in Section 5.3.2. The networks

trained on MSTAR datasets benefit from translation data augmentation while the net-
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Image set Classification rate
Training set 99.71%
Validation set 99.27%
Testing set 97.77%

Table 5.7: Classification scores on the MSTAR SOC 10 for the AlexNet.

2S1 BMP BRDM BTR60 BTR70 D7 T62 T72 ZIL ZSU Score
(%)

2S1 255 0 0 0 0 0 19 0 0 0 93.07
BMP 0 185 1 0 0 0 0 9 0 0 94.87
BRDM 1 3 267 0 0 0 0 3 0 0 97.44
BTR60 0 0 1 192 2 0 0 0 0 0 98.46
BTR70 0 0 2 1 193 0 0 0 0 0 98.47
D7 0 0 0 0 0 273 1 0 0 0 99.64
T62 0 0 0 0 0 3 269 0 1 0 98.53
T72 0 1 0 2 0 0 0 193 0 0 98.47
ZIL 0 0 0 0 0 0 0 0 274 0 100
ZSU 0 0 0 0 0 4 0 0 0 270 98.54

Table 5.8: Confusion matrix on the MSTAR SOC 10 for the AlexNet.

Image set Classification rate
Training set 100%
Validation set 100%
Testing set 74.72%

Table 5.9: Classification scores on the MSTAR EOC 1 for the AlexNet.

2S1 BRDM T72 ZSU Score
2S1 288 0 0 0 100%
BRDM 0 285 0 2 99.30%
T72 195 12 50 31 17.36%
ZSU 51 0 0 237 82.29%

Table 5.10: Confusion matrix on the MSTAR EOC 1 for the AlexNet.

Image set Classification rate
Training set 99.8%
Validation set 100%
Testing set 92.32%

Table 5.11: Classification scores on the MSTAR EOC 2 for the AlexNet.
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BMP T72 BRDM BTR70 Score
BMP 680 102 17 58 79.35%
T72 62 2624 11 15 96.76%

Table 5.12: Confusion matrix on the MSTAR EOC 2 for the AlexNet.

Image set Classification rate
Training set 99.55%
Validation set 98.99%
Testing set 85.46%

Table 5.13: Classification scores on the MSTAR EOC 3 for the AlexNet.

T72 BMP BRDM BTR70 Score
T72 2316 322 51 21 85.46%

Table 5.14: Confusion matrix on the MSTAR EOC 3 for the AlexNet.

work trained on the MGTD benefits from both the translation data augmentation and the

Weibull noise data augmentation presented in Section 5.3.2. Each of these networks are

trained using 90% of the training sets presented in Chapter 2, while the remaining 10%

is used for validation to evaluate the various networks and choose those performing best.

The network with the highest score on the validation set is retained and the final classi-

fication score given in the tables is the classification rate achieved on the testing set. A

sum up of the various scores attained is given in Tables 5.7, 5.9, 5.11, 5.13 and 5.15 for

each dataset. The details of the classification rates achieved on the testing set can be seen

in the respective confusion matrices shown in Tables 5.8, 5.10, 5.12, 5.14 and 5.16. The

AlexNet network achieves only 97.77% on the MSTAR SOC 10 dataset, which is lower

than the state-of-the art algorithms achieving scores over 99% [21, 92, 95, 97, 116]. How-

ever, it still achieves scores comparable with simpler CNNs architectures on unprocessed

images [73, 130] and even compares to some network using multiple views of the same

target to achieve classification on the MSTAR SOC 10 [20]. The performance on the

EOCs is poorer than what has been reported with scores reaching over 94%, 95%, 98%

respectively for the EOC 1, EOC 2 and EOC 3 [20, 21]. However, the scores reported on

the EOC datasets were obtained with more complex architectures or used several images

129



CHAPTER 5. DEEP LEARNING CLASSIFICATION

for classification. This could be due to the network having a less effective training on

the smaller set of image (4 sequences compared to 10 sequences for the SOC alternative

dataset.). Because the validation set is made of images from the same sequence as the

training images, the overfitting of the network to the training data with a deterioration of

the accuracy on validation was not significant but still had an impact on the scores related

to the testing set. Some networks with lower validation scores achieved higher scores on

the testing set than the CNNs with the highest scores on validation, which supports the

above hypothesis. They are though not retained, because there is no mean to discern them

before testing.

There is not yet any literature on the MGTD. A simple NN method was tested in

Section 2.6.3 with a classification score of 71.80%. Using a CNN improves this score

significantly as seen in Table 5.15.

Image set Classification rate
Training set 100%
Validation set 100%
Testing set 81.20%

Table 5.15: Classification scores on the MGTD for the AlexNet.

BMP1 T64 T72 Score
BMP1 259 10 23 88.69%
T64 14 257 21 88.01%
T72 10 14 268 91.78%

Table 5.16: Confusion matrix on the MGTD for the AlexNet.

5.4 Deep learning approach with pose informed architec-

ture

Sensitivity of SAR images to environmental changes is a key challenge for SAR ATR

algorithms. Changes of the acquisition scenario can modify the SAR image substantially
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and lead to a drop of the classification rate [21, 26, 131]. It is therefore important to

adapt the ATR solution so that changes in viewing conditions are taken into account. One

option is to optimise, during training, the loss caused by target orientation in addition to

the loss related to the target class, so that the CNN is forced to account for the influence

of the target aspect angle [97]. Alternatively, artificial images that are particularly prone

to misclassification by the CNN can be introduced to improve its robustness against mis-

takes [116]. This approach is sufficient for few variables, but a high number of variables

cannot be addressed effectively in this manner. Our approach relies on the determina-

tion of the viewing conditions before choosing the most adequate trained CNN for target

classification. The technique presented here focuses on the orientation of the target but

could be extended to more diverse conditions as long as enough examples with similar

conditions are present and referenced in the training set. Several other parameters, e.g.

the depression angle or layover [26] could be chosen over the orientation for the neural

network to focus on. However, it has already been seen that the orientation has a great

impact on the classification rate in Chapter 4. The orientation is well distributed and its

value is known in the various dataset. Thus, orientation is chosen as the main influence of

the pose-informed architecture.

5.4.1 Pose informed architecture

In this chapter, the pose-informed deep learning architecture summarised in Fig.5.7 is pro-

posed to handle target classification [10]. The first step consists in the determination of

the target orientation using a Hough transform and a CNN, as described in Section.5.4.2.

Once the orientation CNN is found, the appropriate pose-informed CNN is used to deter-

mine the target class, as explained in Section 5.4.3. This pose-informed CNN is specifi-

cally trained on an orientation range that includes the predicted orientation. There are n

pose-informed CNNs, each trained on 360
n degree range of orientation, with n between 2

and 8.
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Fig. 5.7: Overview of the pose-informed architecture.

5.4.2 Processing of the image set prior the pose informed deep learn-

ing method

Determination of the orientation of the target

The determination of the target orientation is the first-step of the pose-informed method.

To determine the orientation modulo 180◦ of the target, several methods can be used.

Statistical methods are precise, however they require training which introduces additional

randomness to the process, for example the initialisation of an expectation-maximisation

algorithm [99, 101, 102]. Moreover, the values of the estimated distributions are target

specific. This approach requires the target classification task to be carried out before the

orientation determination. For these reasons, a direct pose estimator was selected, at the

expense of a small precision loss. Methods not relying on the evaluation of a statistical

distribution have already been investigated, for example by estimating a bounding box or

a Hough transform considering several poses [56]. Here, a CNN is used to differentiate

the front from the back of the target.

An alternative solution could be a CNN that handles completely the orientation deter-

mination. A CNN on the AlexNet model was created with a regression layer to that end,

but without success. As the discontinuity at 0◦ and 360◦ complicated the loss, another

CNN was tested with two outputs representing the cosine and sine of the orientation an-

gle so that the loss could be continuous. This solution did not give good results either. It
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could be because each output independently could be associated with two target orienta-

tions. Some deep learning methods have though some success retrieving the orientation

of text in images in the visible domain [132]. The proposed CNN gives an orientation

modulo 180◦. This methods relies however on the determination of an encapsulating box

on the zone of interest that works well for text but has been shown to be a rather poor

SAR target orientation determination (standard deviation of 14.02◦ against 8.12◦ for the

Hough transform in [56]).

The orientation is found in two steps. Firstly, the orientation is determined modulo

180◦ with a Hough transform by relying on the rectangular shape of the target. Once

the image is rotated with the determined angle, the image contains a horizontal target.

This rotated image is fed to the CNN which determines the direction of the target by

recognising the front from the back of the target. With these two steps, the full 360◦

orientation of the target can be determined. The image of the target can then be analysed

by the appropriate pose-informed CNN in Figure 5.7 (b).

As the CNN uses the full images and not the segmented image, it is not worth invest-

ing in a computer expensive method such as the GMMs (Section 4.4.1) if the precision is

only slightly degraded by using a simpler segmentation method. In this section, the pose

estimation is investigated using a simpler segmentation method and improving the orien-

tation determined with a Hough transform by using prior knowledge that targets have a

rectangular shape.

Method for pose estimation

Simple segmentation The objective of the segmentation for pose estimation con-

sists in extracting a precise contour of the target so that the target orientation can be

accurately estimated. In SAR images, one or two edges of the target are usually well

defined. Once detected with the Hough transform, the longest straight edge sets the target

orientation. The segmentation process starts by applying a Gaussian filter to smooth the

picture and obtain a simpler target shape to segment. The impact of the Gaussian filter
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(a) Original image. (b) Image after the
Gaussian filter.

(c) Image after the ap-
plication of a threshold.

(d) Image after morpho-
logical filtering and hole
filling.

(e) Selection of the
biggest blob
representing the
potential target.

(f) Contour of the po-
tential target.

Fig. 5.8: Contour acquisition of the target via segmentation.

on a sample original image (Fig.5.8 (a)) can be seen in Fig.5.8 (b). After that, the image

is binarised using a threshold. This threshold is chosen to keep only 65% of the bright-

est pixels by computing the intensity cumulative distribution in images from the MSTAR

database. This is moved up to 88% in the MGTD as the target occupies more space.

These percentages were determined empirically and are dependant on the size of the tar-

get regarding its total SAR image area occupancy. The resulting binary image can be seen

in Fig.5.8 (c). To smooth the edges of the target, morphological filtering is applied. Two

steps of dilation and one of erosion give the result shown in Fig.5.8 (d). Lastly, the smaller

blobs are suppressed to keep only the biggest as shown in Fig.5.8 (e) before extracting its

contour as shown in Fig.5.8.

Hough transform applied to the SAR images Once the image is segmented, a

Hough transform is applied to the target contour. Only one peak, the brightest of the

resulting matrix is kept (Fig.5.9 (a)). It corresponds to the longest line that can be su-
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where
α is the orientation tolerance to choose the contributing peaks,
θ0 is from the polar representation ρ0,θ0 of the main orientation line.
Pi(ρi,θi) is one of the considered extra peak points whose intensity is over

an experimentally determined threshold T. This line has a polar
representation of ρi,θi,

θ0,‖,θ0,⊥ are the orientations of the lines coherent with the orientation esti-
mation θ0. These lines are either on the same or parallel edge of
the target or on the perpendicular edges.

perimposed on the target contour in Fig.5.9 (b). The orientation of the line is kept as the

orientation of the target.
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(a) Matrix resulting from the Hough transform on the contour
Fig.5.8 (f) and selection of the brightest peak.

(b) Resulting longest line on
the target contour.

Fig. 5.9: Direct application of the Hough transform to find the target orientation.

Averaged Hough transform The proposed averaged Hough transform takes into

account the rectangular shape of the target. The Hough transform is firstly applied to the

image in order to obtain the ρ , θ matrix. All peaks beyond a certain threshold are consid-

ered. This intensity threshold on the Hough transform map was obtained by experience

after testing of the orientation determination algorithms. This threshold is the same for all

images in all databases and is equal to 0.0005 ·max(H), with H being the Hough trans-

form map. Between these peaks, only those with a θ in accordance with the estimated

target orientation are kept. These peaks correspond to lines on one of the 4 edges of the

target. To be considered as agreeing with the line orientation of the main peak, θ has
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(a) Peak selection to compute the averaged target orientation. (b) Corresponding lines
compatible with the
rough orientation
estimation.

Fig. 5.10: Determination of the lines compatible with a unique target orientation estima-
tion.

to be 4◦ degrees from the main orientation, or perpendicular of the main orientation. A

representation of the peaks considered is summarised in Fig.5.10 (a). All the possible

points representing lines that are compatible with the main study point are expressed in

Eq. (5.4). The lines corresponding to these peaks in the contour image can be seen in

Fig.5.10 (b). The details on the choice of these peaks is expressed in Eq. (5.4).

The rough orientation estimation θ0 is then refined, using the input of all the peaks in

agreement with the rough estimation. The precise estimation is the result of the weighted

α = 4,
θi ∈ {θ0,‖;θ0,⊥} (5.4)

θ0,‖ ∈


[−90;θ0−180+α]∪ [θ0−α;90], if θ0 > 90−α

[θ0−α;θ0 +α], if θ0 ∈ [−90+α;90−α]

[−90;θ0 +α]∪ [θ0 +180−α;90], if θ0 <−90+α

θ0,⊥ ∈


[θ0−90−α;θ0−90+α], if θ0 > α

[−90;θ0−90+α]∪ [θ0 +90−α;90], if θ0 ∈ [−α;α]

[θ0 +90−α;θ0 +90+α], if θ0 <−α

136



CHAPTER 5. DEEP LEARNING CLASSIFICATION

for θi ∈ θ0,‖

−90 6 di 6 90, di ≡ θ0−θi (mod 180) (5.5)
for θi ∈ θ0,⊥
−90 6 di 6 90, di ≡ θ0−θi−90 (mod 180) (5.6)

θ̂0 = θ0 +
∑

n
i=1 Li.di

∑
n
i=1 Li

(mod 180) (5.7)

where
Li is the length of the line associated with the peak point i. This line

supports the hypothesis of an estimated target orientation θ0,
θ0,‖, θ0,⊥ are the orientations of the lines coherent with the orientation esti-

mation θ0. These lines are either on the same or parallel edge of
the target or on the perpendicular edges,

di is the distance between the orientation of the main orientation θ0
and the orientation of the contributing line i,

θ̂0 is the refined orientation estimate of the target deduced from all n
contributing lines.

average of all the orientations of the contributing peaks according to the length of the

lines they represent. The peak intensity represents the validity of the line comprising of

its length and the number of pixels contributing to it. This weighed average is expressed

in Eq. (5.7).

(a) Location of the integral
images to compute the
vertical ratio for the MSTAR
dataset images.

(b) Location of the integral images to com-
pute the vertical ratio for the MGTD images.

Fig. 5.11: Location of the integral images to compute the vertical ratio for both dataset.
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H(Iθ ) =
∑

c1+l
i=c1−l ∑

c2+s
j=c2−s Iθ (i, j)

∑
c2+s
i=c1−s ∑

c2+l
j=c2−l Iθ (i, j)

(5.8)

where
θ is the estimation of the orientation of the target,
Iθ is the result of the rotation of the original image of an angle −θ ,
H(Iθ ) is the vertical ratio computed for the image Iθ ,
c1,c2 are the abscissa and ordinate defining the centre of the image (once

the target centred),
s, l are half the length of respectively the short and long side of the

rectangle,

Vertical ratio Because of the difficulty to segment the target with not clearly defined

edges and a varying illumination, the long edges are sometimes not detected as lines.

These lines can be broken in several parts or not being detected at all if the illumination

is focused on one of the small edges. If the small edge is the only edge determined as

a line by the Hough transform, the estimated orientation will be off by roughly 90◦. In

order to limit these errors, the rectangular shape of the target and the prior knowledge

that the intensity of the target is higher on average than that of the noise and clutter in

all databases. Once the orientation of the target is computed by the Hough transform, the

image is rotated to compensate the target orientation. If the orientation is off by 90◦, the

target will be vertical instead of horizontal. A vertical ratio of the sum of intensities of

the pixels contained respectively in two rectangles of fixed size is computed, with either

a 0◦ or 180◦ direction as seen in Fig.5.11. This ratio is expressed in Eq. (5.8).

After some testing on the training sets, the cut-off value of the vertical ratio is deter-

mined to be 1.2 in the MGTD and 1.09 in the MSTAR database. If the vertical threshold

is higher than that threshold, it is assumed that the estimated orientation is off by 90◦ and

this value is added to the original orientation estimation.

Results of the pose estimation For both dataset, the absolute error determining the

orientation modulo 180◦ is calculated. In order to better visualise the repartition of errors,

the cumulative distribution of these errors is shown in Fig.5.12. For comparison, the same
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scores as in Section 4.4.2 are given (i.e. the mean error, the standard deviation, the mean

absolute error and the root mean square error). The direct and averaged Hough transform

orientation determination are compared with the optional usage of the vertical ratio to

discriminate 90◦ errors.

The averaged Hough transform seems not to have significant advantages with the us-

age of a vertical ratio. It worked better on the MGTD than on the MSTAR dataset. The

orientation estimation in the rest of the chapter will be carried out using the direct Hough

transform associated with the vertical ratio.
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Fig. 5.12: Error distribution of the orientation estimation in the MSTAR dataset.

Pose estimation on the MSTAR dataset The distribution of the absolute error on a

compilation of all testing sets in the MSTAR SOC 10, EOC 1, 2, 3 is shown in Fig.5.12.

The averaged Hough transform reduces the errors of over 45◦. When strong errors

occur, the long edge has not been correctly detected. For example, if a small edge of the

target is detected instead of the long edge as it can happens for certain illumination con-

figurations, this adds a 90◦ error. Specific illumination configuration indeed sometimes

makes the longer edges less noticeable and the segmentation can result in a shape closer

to a square than a rectangle. In these cases, contributing lines have a higher weight as the

main line on the long edge is not very well defined and thus shorter. Averaging reduces

the possible errors. For errors in the 0◦-45◦ range, the averaging is found to actually
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Fig. 5.13: Potential drawback of the averaged Hough transform using the wrong edge of
the target.

damage the orientation estimation with a difference between both curves of a maximum

of 10◦. Contributing lines in the averaged Hough transform can focus on the less illumi-

nated edge of the target, as in Fig.5.13. Because of the segmentation threshold, this edge

passes slightly inside the target and is not parallel to the target orientation. This would in-

crease the orientation error. Overall, the averaged Hough transform is only interesting for

the biggest errors. Further work could be done in order for the averaged Hough transform

to focus on the best illuminated edge using the shadow position. Another option could be

to improve the contouring by adapting the segmentation threshold to the various areas of

the target.

It can be seen indeed that the vertical ratio diminishes especially the number of bigger

errors. The higher the error, the most likely the ratio will be over the set threshold as

described in Section 5.4.2.

These observations are confirmed by Table 5.17 with the best scores attained for the

direct Hough transform with a vertical ratio. The Hough transform achieves better re-

sults than what was already reported (7.52◦ against 11.7◦) for its first application on the

MSTAR SOC data which shows the importance of proper segmentation for this method

[133]. The Hough transform could perform better if the best pose out of the several po-

tential poses was considered as in [56]. It achieves similar results to various geometrical

pose estimation methods (MAE of 6.70◦ against 5.91◦) [133]. It performs however worse

than methods based on wavelets or entropy. These methods require training beforehand

[64, 101].
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Method to estimate the target orientation Mean σ MAE RMSE
Direct Hough transform on the GMM seg-
mented target

-0.87 16.81 7.52 16.88

Direct Hough transform on the threshold seg-
mented target

4.78 16.62 7.80 17.30

Direct Hough transform on the threshold seg-
mented target with vertical ratio

3.88 13.81 6.76 14.34

Averaged Hough transform on the threshold
segmented target

4.63 17.54 9.71 18.14

Averaged Hough transform on the threshold
segmented target with vertical ratio

4.26 15.56 8.94 16.13

Table 5.17: Error statistics of the errors in the target orientation determination in the
MSTAR SOC 10 database.

Rotation evaluation error

Hough transform Hough transform and vertical ratio

Averaged Hough Averaged Hough transform and 
vertical ratio
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Fig. 5.14: Error distribution of the orientation estimation in the MGTD.

Pose estimation on the MGTD 90◦ errors occur often in the MGTD because of

a segmentation error, such as in Fig.5.15, due to the illumination of the target being es-

sentially localised on a small side of the target. Part of the target does not reach the

segmentation threshold and the contour of the target resemble more a square than a rect-

angle. However, the vertical ratio corrects these mistakes, using the original images that

take into account even the lower intensities of the target. The introduction of the vertical

ratio improves more the orientation error on the MGTD than on the MSTAR data. This

important error drop is reported in Fig.5.14.

The errors in the 0◦-40◦ range are as in the MSTAR due do the difference of illumi-
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nation inside the target. Some areas are not included in the segmentation because of a too

low intensity. This new edge is picked up by the Hough transform as the line is longer

than the real edge, more or less on the target diagonal as seen in Fig.5.15 (c). This worsen

the first estimation of the target orientation.

(a) Original image leading to
a potential 90◦ error.

(b) Corresponding seg-
mented image and Hough
transform lines.

(c) Error due to the illumi-
nation from a specific aspect
angle.

Fig. 5.15: Causes of the main biggest errors.

The best performing algorithm in Table. 5.18 is the direct Hough transform with the

vertical ratio. However, it should be noted that without the vertical ratio, the averaged

Hough transform performs better than the direct Hough transform.

Method to estimate the target orientation Mean σ MAE RMSE
Direct Hough transform on the threshold seg-
mented target

2.98 16.59 6.79 16.85

Direct Hough transform on the threshold seg-
mented target with vertical ratio

2.31 7.86 4.37 8.14

Averaged Hough transform on the threshold
segmented target

2.74 14.83 6.49 15.08

Averaged Hough transform on the threshold
segmented target with vertical ratio

2.12 8.43 4.80 8.43

Table 5.18: Error statistics of the target orientation determination in the MGTD.

Target direction

The Hough transform gives an estimation of the orientation of the target modulo 180◦.

However, features are different for the front and the back of the target. Very few methods

address the determination of the exact pose of the target on the full 360◦ [98, 99]. The

pose-informed classification method requires prior knowledge on the 360◦ orientation as
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the image will be distributed to a CNN trained on targets with similar orientation. In order

to determine the direction of the target, a CNN similar to the one proposed in Section 5.3.1

is used. This CNN, given a rotated input image with a horizontal target, determines if the

final target orientation should be θ or θ + 180 with θ the target orientation given by the

Hough transform.

CNN The CNN used for this analysis is the same AlexNet as presented in Section 5.3.1.

The only difference is that the last fully connected layer provides only two classes, i.e.

Front or Back of the target facing the right side of the image. The two classes are labelled

0◦ or 180◦. The training parameters are the same as in Section 5.3.1 and, similarly, only

the learning rate is adapted to each database.

(a) Image with a 180◦ ori-
entation rotated by the given
groundtruth angle.

(b) Image with an assumed
180◦ direction after image ro-
tation with a Hough trans-
form estimation off by 20◦.

Fig. 5.16: Example of images with a 180◦ direction label.

Training For training, rotated images with a horizontal target are supplied to the net-

work from the appropriate training dataset. In order to maximise the training data, two

types of images are supplied:

• Images rotated with the groundtruth orientations: Each image is rotated using the

groundtruth angle to produce two new images with two different target orientations

consisting of a 0◦ or 180◦ direction. An example of a groundtruth 180◦ direction is

given in Fig.5.16 (a).

• Images rotated with the orientation found with Hough transform: The image is

143



CHAPTER 5. DEEP LEARNING CLASSIFICATION

rotated according to the found orientation with the Hough transform. The 0◦ or 180◦

labels are assigned according to the closest label orientation to the found Hough

transform orientation, as per Eq. (5.9). An example of a 180◦ direction label from

the Hough transform estimation with an error is shown in Fig.5.16 (b).

Rotation data augmentation is also included with a random rotation between −15◦

and 15◦ of the training data in order to make the CNN robust against potential orientation

estimation errors made by the Hough transform.

Direction label ∈

{
{0◦} if | θ − θ̂ |< 90 or || θ − θ̂ | −360 |< 90
{180◦} else.

(5.9)

where
θ is the groundruth full orientation of the target,
θ̂ is the estimated orientation of the target found from the Hough

transform.
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Results In order to have a realistic evaluation, the CNN was evaluated on the real testing

data consisting of images rotated using the Hough transform estimation and thus with

potential orientation errors.

When the difference between the final orientation and the groundtruth angle was less

than 90◦, the CNN determined the correct target direction (Front or Back). Indeed, if the

error is more than 90◦, the error could have been minimised by adding 180◦ to the target

orientation. Results are represented in Table 5.19 for the MSTAR databases and in Ta-

ble 5.21 for the MGTD. In addition, metrics to evaluate the 360◦ orientation determination

are given in Table 5.20 for the MSTAR databases and in Table 5.22 for the MGTD.

Dataset 0◦ 180◦ Direction
classification score

Training SOC 10 98.24% 98.69% 98.46%
Testing SOC 10 96.21% 95.89% 96.04%
Training EOC 1 100% 100% 100%
Testing EOC 1 98.69% 98.61% 98.65%
Training EOC 2 100% 99.89% 99.94%
Testing EOC 2 92.54% 89.94% 91.24%
Training EOC 3 100% 100% 100%
Testing EOC 3 88.22% 89.59% 88.91%

Table 5.19: Error statistics of the target orientation determination of targets in the MSTAR
database.

Database Mean σ MAE RMSE
MSTAR SOC 10 -0.51 33.56 11.84 33.55
MSTAR EOC 1 -0.08 24.71 11.23 24.70
MSTAR EOC 2 -4.13 52.44 19.58 52.603
MSTAR EOC 3 -5.84 60.97 24.51 61.25

Table 5.20: Error statistics of the full target orientation determination in the MSTAR
database.

In both databases, the RMSE increased compared to the RMSE in the previous section

as the highest errors can now attain 180◦ instead of only 90◦. Comparably to the AlexNet

classification scores, the direction of the target was harder to determine in the MGTD im-

ages. The full 360◦ orientation has rarely been investigated on the MSTAR data and, when

it has been, it was often not on the standard datasets defined in Chapter 2. A statistical
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method has been tested on the MSTAR EOC 2 and EOC 3 [99]. Results are given with the

Hilbert-Schmidt distance given in Eq. (5.10) with an equivalent error in degree. However,

as the cosine is not linear, the MAE cannot be obtained by directly inverting the cosine as

it is done in [99], thus the squared Hilbert-Schmidt distance obtained with our method is

calculated in order to be able to compare the results with this statistical method. A value

of 0 corresponds to a perfect estimation of the orientation, 8 corresponds to a 180◦ error.

An average distance of 0.8 was achieved on the MSTAR EOC 2 and 1.0 on the MSTAR

EOC 3 dataset, while the statistical method reported a distance of 1.7 on the MSTAR EOC

2 and 2.0 on the MSTAR EOC 3 dataset. The statistical method also assumed knowledge

of the target type to achieve those results. The proposed method is thus more precise and

requires less prior information.

d2
HS = 4−4cos(θ − θ̂) (5.10)

where
θ is the groundruth orientation of the target,
θ̂ is the estimated orientation of the target found from the association

of a direct Hough transform and the direction CNN.

Dataset 0◦ 180◦ Direction
classification score

Training 99.56% 99.91% 99.76%
Validation 99.77% 100% 99.89%
Testing 93.28% 93.75% 93.51%

Table 5.21: Error statistics of the target orientation determination of targets in the MGTD.

Mean σ MAE RMSE
-1.46 45.29 14.34 45.28

Table 5.22: Error statistics of the full target orientation determination in the MGTD.
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5.4.3 Training of the pose-informed CNNs

Once the orientation of the target is estimated, the image is analysed by the appropriate

CNN from the pose-informed architecture. An example of the separation of the pose-

informed CNNs, each focusing on a specific orientation range, is given in Fig.5.17.

0-60°

60-120°

240-300°

300-360°

120-180°

180-240°

Fig. 5.17: Orientation ranges for an architecture with 6 pose-informed CNNs.

Two image pre-processing options are possible once the target orientation is deter-

mined. The aspect angle of the target has an important impact on the target appearance

[19, 96]. It can be thus interesting to minimise its influence by rotating targets so that they

always face the same direction. The location of the most prominent features should then

remain constant. The change of illumination with the rotation will still affect the features

but their locations will ease physical interpretation and be related to a specific part of the

target. However, the rotation of images could also hinder the classification as the classifi-

cation method will have to handle the hard task of distinguishing between the change of

backscattering related to the change of target orientation and target class. The orientation

can only be seen from the change of illumination in the rotated image as the target retains

the same location and direction. Both the possibilities of supplying the original image and

the image rotated so that the target appears at a 0◦ orientation to the pose-informed CNN

are investigated in this chapter.

Instead of training each pose-informed CNN directly, a parent CNN is trained on the

full SAR training set with all possible target orientations. The evolution of the training
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loss reflecting the modality transfer learning is shown in Fig.5.18 (a). This parent CNN

is re-trained later on a specific orientation range to become the pose-informed CNN spe-

cialised on this orientation range. The operation is repeated to obtain the n pose-informed

CNNs composing the full architecture. Transfer learning is achieved with the parent CNN

by supplying SAR images with targets in a specific orientation range. A second transfer

learning step is the orientation-speciality transfer learning shown in Fig.5.18 (b). This

transfer learning by stage is a training strategy comprising of a modality transfer learning

followed by an environmental specific transfer learning, in this case orientation-specific,

to make the pose-informed CNNs fully aware of the feature changes in a specific orien-

tation. Transfer learning by stage optimises the number of images the pose-aware CNNs

have at their disposal for training because the more common SAR features are learned by

the parent CNN, while the pose-informed CNNs focus on finer and more specific features

during the orientation-speciality transfer learning.

CNN
for 

RGB 
visual 
images

CNN for 
ISAR

images:
Parent
CNN

 

Modality 
transfer 
learning

Orientation
speciality 
transfer 
learning

 

CNN for 
ISAR 
images 

specifically
oriented:

Pose-informed
CNNs

 

(a) (b)

Fig. 5.18: Training by stage of the pose-informed CNN. A modality transfer learning
followed by an orientation transfer learning.

The same AlexNet presented in Section 5.3.1 was used. A random search was used

to find the hyper parameters for the modality and orientation-speciality transfer learning.

The data augmentations described in Section 5.3.2 are included to increase the number of

images for training.

With traditional transfer learning, the pose-aware CNN would be trained directly on

the ISAR images in a specific orientation range. With transfer learning by stage, the

pose-informed CNN is trained on the full ISAR training set before training on the ISAR

images in a specific orientation range. The evolution of the loss during transfer learning

148



CHAPTER 5. DEEP LEARNING CLASSIFICATION

by stage with the first traditional transfer learning (from the visual to SAR domain) and

the orientation-speciality transfer learning is shown in Figs. 5.19 (a) and 5.19 (b). The loss

corresponding to the orientation-speciality training has a lower starting value than for the

modality transfer learning as the network to be trained already underwent a number of

training epochs in the SAR domain. At the end of the second training, the validation loss

is lower than at the end of the modality transfer learning (Less than 0.01 against 0.05).

The first stage of transfer learning makes the pose-informed CNNs learn standard

SAR features. The second stage facilitates their specialisation in a particular orientation

range. This method optimises the use of all training samples and promotes the learning

of a specialised CNN. It becomes possible to learn features that are present in the overall

training set but are sparse in the specialisation areas.

5.4.4 Computation of the result range

It is not possible to have a proper separation between the training and the validation set in

the MSTAR database, because for example, the MSTAR SOC 10 and EOCs provide only

one sequence of images for each target in the training set. Thus even if part of the training

set is dedicated to validation only, a high validation score does not prevent overfitting

as the images are taken with the same target, in the same configuration, with the same

depression angle and at the same time period. The MGTD instead provides four series of

images, for each target with different configurations at different time period, of which one

can be dedicated to validation purposes. However, the same procedure was applied to all

datasets to guarantee a uniform testing method and 10% of the training set was randomly

allocated as validation set. As a result, CNNs with the same validation score could have

different testing results. This is mainly due to the initialisation of the last layers. This

applies even more for datasets with a small number of images in the validation set, such as

the EOCs datasets. In an attempt to report the results fairly, a range of the scores achieved

on the testing set is given rather than a single percentage. The assumed best performing

CNNs selected are those with the highest classification score on the validation set. The
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(a) Evolution of the validation loss during the modality
transfer learning of the network.

Epochs

Evolution of the validation loss during training on SAR
images with targets in a specific orientation range
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(b) Evolution of the validation loss during the orientation-
speciality transfer learning of the network.

Fig. 5.19: Evolution of the validation loss during transfer learning.

lowest and highest scores achieved on the testing set are then reported. The range result

of the pose informed architecture has to take into account the different networks involved.

For each orientation range, the best and worst performing CNN with the highest validation

score are saved. The combination of the worst CNNs in each orientation range into one
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pose-informed model gives the minimum of the classification rate achievable. The same

process is adopted for the best CNNs in each orientation range.

5.4.5 Classification results for the pose informed CNN architecture

Classi-
Standard

CNN
Number of pose-informed CNN

fication
rate 2 3 4 5 6 7 8

Target free Max.
96.87

98.80 99.13 98.85 98.97 98.97 98.60 99.01
rotating Min. 98.06 97.53 97.16 97.11 96.25 96.70 96.45

Fixed target Max.
97.56

98.10 98.43 98.19 98.47 98.30 98.39 98.47
orientation Min. 97.60 97.32 96.95 97.20 96.74 96.33 96.66

Table 5.23: Range results (%) of the pose-informed classification method compared to a
standard CNN on the MSTAR SOC 10. The 3 best scores are highlighted in each category.

Classi-
Standard

CNN
Number of pose-informed CNN

fication
rate 2 3 4 5 6 7 8

Target free Max. 77.32 78.54 81.84 81.92 83.40 82.88 85.58 83.58
rotating Min. 66.81 69.85 71.85 70.72 71.24 71.07 70.37 69.68

Fixed target Max. 85.06 85.31 86.19 88.10 88.27 88.97 87.92 86.79
orientation Min. 70.29 73.76 73.06 73.32 72.98 73.85 73.24 71.33

Table 5.24: Range results (%) of the pose-informed classification method compared to a
standard CNN on the MSTAR EOC 1. The 3 best scores are highlighted in each category.

Classi-
Standard

CNN
Number of pose-informed CNN

fication
rate 2 3 4 5 6 7 8

Target free Max. 92.32 93.30 93.50 93.64 94.09 94.00 93.89 94.03
rotating Min. 87.53 88.68 87.58 87.28 85.34 86.97 85.68 83.61

Fixed target Max. 91.71 93.22 92.55 93.33 92.71 92.60 93.39 93.22
orientation Min. 87.76 88.56 86.52 84.76 84.45 83.80 83.25 82.90

Table 5.25: Range results (%) of the pose-informed classification method compared to a
standard CNN on the MSTAR EOC 2. The 3 best scores are highlighted in each category.

Each table relates the scores achieved for both the standard CNN and the proposed

pose-informed architecture. Both methods have been tested on the original images and
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Classi-
Standard

CNN
Number of pose-informed CNN

fication
rate 2 3 4 5 6 7 8

Target free Max. 95.24 89.37 89.78 91.07 92.51 93.54 93.10 92.91
rotating Min. 85.46 79.37 78.67 77.60 72.99 72.21 74.95 71.62

Fixed target Max. 88.34 90.19 90.92 90.81 91.51 90.66 91.00 91.33
orientation Min. 76.75 75.68 79.08 78.52 74.02 73.54 75.09 71.73

Table 5.26: Range results (%) of the pose-informed classification method compared to a
standard CNN on the MSTAR EOC 3. The 3 best scores are highlighted in each category.

Classi-
Standard

CNN
Number of pose-informed CNN

fication
rate 2 3 4 5 6 7 8

Target free Max. 91.20 91.43 91.89 92.12 94.29 92.35 89.95 91.43
rotating Min. 82.19 89.38 88.35 84.02 86.07 84.36 82.42 85.84

Fixed target Max. 88.24 90.30 90.64 92.58 93.04 92.69 91.67 90.98
orientation Min. 83.79 87.75 85.05 85.39 86.99 86.07 84.93 82.64

Table 5.27: Range results (%) of the pose-informed classification method compared to a
standard CNN on the MGTD. The 3 best scores are highlighted in each category.

on rotated images with targets in a fixed orientation. Results are reported for the MSTAR

SOC 10 (Table 5.23), MSTAR EOC 1 (Table 5.24), MSTAR EOC 2 (Table 5.25), MSTAR

EOC 3 (Table 5.26) and the MGTD (Table 5.27). Only Table 5.23 has no range for

the standard CNN as the larger number of images in the validation set enabled a finer

distinction between scores and only one CNN achieved the highest validation score.

The best rates for both methods on all datasets are: 97.56% for the standard CNN

against 99.13% for the pose-informed on the MSTAR SOC 10, 85.06% against 88.97%

on the MSTAR EOC 1, 92.32% against 94.09% on the MSTAR EOC 2, 95.24% against

93.54% on the MSTAR EOC 3, 91.20% against 94.29% on the MGTD. Overall, the pose-

informed architecture outperforms the standard method, even though the amount of train-

ing data for the orientation-speciality transfer learning was very limited. Concerning the

MSTAR EOC 3, the pose-informed architecture performs less than the standard CNN

with a drop of 6% in the worst case scenario with 2 pose-informed CNNs, and 3% for 5

pose-informed CNNs.
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The scores of the 5 CNNs pose-informed method are also compared with a 2 CNNs

pose-informed method on the free rotating target images to evaluate the importance of a

higher number of CNNs and thus orientation ranges. In the MSTAR SOC 10, the pose-

informed method with 5 CNNs performs equivalently to the pose-informed method with

only 2 CNNs with an improvement of only 0.17%. Similarly, it performs 4.86% better

in the MSTAR EOC 1, 0.79% better in the MSTAR EOC 2, 3.14% better in the MSTAR

EOC 3, 3.09% better in the MGTD. The 5 CNNs pose-informed achieves thus better

results than the 2 CNNs pose-informed with an average improvement of 2.41% which is

not negligeable for scores over 90%. The 2 CNNs pose-informed has less possibility to

adapt to a specific aspect angle as the images provided for training are less orientation

specific. It would seem that the proposed method has indeed been able to learn extra

information about specific orientations even without additional data by applying transfer

learning in two stages. The pose-informed method would probably deeply benefit from

additional data because of the low number of images in the second training set resulting

from the aspect angle partition of the training data.

It seems that the pose-informed architecture with 5 CNNs performed the best overall.

It can be noted that the maximum of the pose-informed architecture performed better than

the standard CNN with the exception of the MSTAR EOC 3 dataset while the minimum

achieved better or similar in the MGTD, MSTAR SOC 10, MSTAR EOC 1 with lower

scores in the MSTAR EOC 2 and MSTAR EOC 3. That means that even if the worst

performing CNNs from the pose-informed CNNs set are selected out of the CNNs with

the best validation score, the method still often achieves higher scores than the standard

CNN method. The poor results on the MSTAR EOC 3 could be caused by the orientation

determination results which achieved the worst results on this database in Section 5.4.2.

If the target in one orientation is analysed by the CNN from another orientation range, the

results could be worse than those of a standard CNN trained on the whole SAR training

set.

The standard CNN achieves better results on images with a free rotating target than

153



CHAPTER 5. DEEP LEARNING CLASSIFICATION

on images with a fixed target orientation except for the MSTAR SOC 10 and EOC 1.

Both those datasets are the only datasets with the same target variants and configurations

between training and testing. It is thus possible that the back scattering process is more

similar between training and testing. In that case, the algorithms working on images

with a target in a fixed orientation could overfit better the data, as CNNs are not rotation

invariant, and improve the classification rate on the testing set.

5.5 Conclusion

In this chapter, a new realistic noise based data augmentation is proposed to make up

for the small amount of data available to train deep networks for SAR ATR. It is directly

applied to the range profile before the image computation. Combined with classical trans-

lation data augmentation, the score of the AlexNet on the MGTD improves from 77% to

91%.

A pose-informed architecture is also proposed, taking into account the target orienta-

tion in the classification process. The target orientation is determined first, followed by

the target classification using a CNN specialised in a certain target orientation range.

The orientation determination is handled over 360◦ with a proposed association be-

tween a Hough transform, a study of the image intensity over specific zones and a CNN

recognising the target direction. This orientation determination performs better and does

not require prior knowledge on the target type, on the contrary to former statistically based

method.

The proposed pose-informed architecture performs better than the standard CNN on

its own, except on the MSTAR EOC 3 which has the poorest precision for orientation

determination. It achieves respectively 99.01%, 85.58%, 94.09%, 93.54% and 94.29%

on the MSTAR SOC 10, EOC 1, EOC 2, EOC 3 and MGTD, so an improvement over

the standard CNN of respectively 2.14%, 8.26%, 1.77%, -1.7% and 3.09% for an average

improvement of 2,71% overall. This architecture is a trade-off between extra precision
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and storage needed for the various CNNs composing the model. Shallower networks

have been proved to also work for SAR ATR and could replace the AlexNet in the pose-

informed architecture [73, 134].
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6.1 Summary

This chapter presents analyses of a multitude of factors that have an influence in the

decision process of a deep learning ATR method. Three ways to analyse the data are

presented [11].

Firstly, an analysis on the individual contribution to the classification of the target,

shadow and background area is carried out. The respective influence of the target, shadow

and background area appears to be target dependant. The CNN bases its classification,
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depending on the target class, on one or a combination of those areas. Even so, over the

10 targets in the MSTAR, the shadow area appears to influence deeply the classification

(a drop in classification rate higher than 50% when the corresponding area is hidden) for

only 3 targets, compared to 9 targets for the background area and 9 targets for the target

area over a total of 10 targets. These scores are confirmed when looking at how critical

the features are in each of these zones. However, if the shadow appears to be the less

used area of the image, the removal of the shadow area still causes a drop of at least 20%

in the classification score for 7 target types. This would require some further study but

indicate that target-only segmentation before attempting classification could be harmful

as significant information could be lost.

Secondly, an analysis of the most influential features, defined as the features without

which the classification process is deeply weakened, is undertaken by looking at their

location and the intensity distribution of the areas in which such features are present.

The location of such features are determined using occlusion maps and the proposed

classification map, which made it possible to see the evolution of the classification rate

when specific areas of the image are hidden as the target is always located and oriented

in the same way. It appears that for most of the targets that have a higher part such

as a turret or elevated cabin, it is one of their critical feature. For other targets, areas

with critical features can be in the front or sides of the target. Location of the critical

features is diverse and target specific. The same work is carried out for the orientation

of the target. The areas that reflected the most the signal are the closest to the radar as

they are facing the radar, on the contrary to the side areas or even the back area that is

not directly illuminated. These areas are the most critical areas to determine the target

orientation as seen in the classification maps. The central-back area of the target is also

often an important area regardless of the orientation. It could be due to the fact that it

often contains an elevated turret or cabin and this area is often less occluded. Another

reason if that the geometry of the turret makes it likely to reflect the illumination towards

the receiver. It also appears that the CNN trained with data augmentation performs better
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and its classification process is more easily understood than a CNN trained without it.

The average and standard deviation of the intensities distribution of the pixels containing

critical features is compared to areas containing less important features. The distribution

of critical features has a higher mean (difference of 17.17 bins) as well as a higher standard

deviation (difference of 9.35 bins). The high variance could be related to surfaces with

varied RCS such as the turret as it is composed of multiple plans not reflecting the signal

evenly and thus carrying more specific features.

Lastly, a study on the feature specialisation along the CNN depth relative to a specific

target type or orientation of target is presented to investigate the rate of differentiation be-

tween such groups. When applied to groups gathered by target type, which is exactly what

the CNN has been trained to differentiate, it can be seen that the differentiation between

target specific feature increases at a quite steady rate with CNN depth and feature com-

plexity. This increase was expected. The same study is carried out on groups gathered by

orientation range. Even without having a loss specific to this environmental variable, the

CNN still learns to differentiate between the various orientations of the target. That en-

courages the possibility of training networks using transfer learning in different contexts,

such as from one task to another rather than only from one database to another.

6.2 Introduction

Previous research has shown that deep learning often outperforms classical feature meth-

ods on several modalities such as in the visual domain on ImageNet and in the SAR do-

main on the MSTAR database [12, 110]. As shown in this thesis, classical feature-based

models for SAR ATR are now giving a way to deep learning based methods. Unlike the

feature-based models, for which features were man-made, features used by neural net-

works are created using artificial intelligence concepts. Deep learning features are quite

complex, as they are the result of stacked convolutions and activations and this makes it

very difficult to understand which information triggers a CNN decision. Unlike classical
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features such as SIFT or SURF, deep learning features, in general, cannot be easily im-

proved or even understood by humans, especially those generated by the deepest layers.

Knowing the origin of CNN decisions and explaining them is a very important problem,

that, if solved, would make it possible to choose the most rational network among several

solutions. Artificial intelligence algorithms would be more trustworthy and also could

take advantage of the impressive human visual understanding [135]. The understanding

of the internal work of deep learning solutions is a recent research area and is essential

to further improve deep learning methods, to validate them over former techniques, and

to trust them enough to adopt them in real scenarios. Several approaches have been pro-

posed in the visual domain with deconvolutional networks enabling the visualisation of

high level features [136, 137], the analysis of the role of features for each class respec-

tively [138], or the influence of choice of training data over specific misclassifications

[139]. Deep learning network understanding in the SAR domain currently remains lim-

ited to the visualisation of the deep learning low level features [80, 81, 91]. As SAR

images are totally different from visual images, their respective features are likely to be

different and contribute differently to the network decisions. Indeed, SAR images have

additional phase information, no colours and have a lower resolution than visual images.

This chapter presents three streams of analysis of one deep learning algorithm after

training. Firstly, the individual contribution to classification performance of the different

part of the image, respectively the target, the shadow and the background is assessed.

Target classification relying only on the target shadow has been investigated and shows

that the addition of features from the shadow can improve classification rates [140, 141].

Current SAR ATR algorithms are fed with full images as well as segmented target im-

ages. Thus, it would be interesting to see the extent of the information lost through the

segmentation. This is achieved by classifying images with specific segmentations and by

studying the presence of critical features in each image part as presented in Section 6.4.

Secondly, the location and distribution of intensities composing the areas containing

features critical to achieve correct classification are investigated and compared to that of
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unessential features in Section 6.5. To do so, occlusion maps are created to highlight the

location of SAR features essential for correct classification by the deep learning method

tested [136]. Another option for more precise results is the use of guided backpropa-

gation to visualise the patterns, or common elements such as shapes, lines and colours

characterising an object, learned by the CNN [142, 143]. However, visualising patterns is

useful only if it is possible to interpret them according to previous knowledge of the tar-

get appearance that leads to reasonable CNN classification. In the optical domain, with a

specific training set for example, it could be seen that the CNN classified between wolves

and huskies according to the presence of respectively snow and grass [144]. Recognizing

specific patterns is already challenging in the visual band even if humans use visual im-

ages everyday, and it is even more difficult for SAR images. Indeed, an untrained person

may not be able to distinguish different targets in SAR images. The occlusion maps are

also extended in this chapter to classification maps to analyse a group of images rather

than a single image. Applying this method on a group of images with common environ-

mental factors clarifies their role on the choice of the features learned by the CNN. The

generating process of occlusion maps and classification maps is described in Section 6.3.

Classification maps will be used in Section 6.6 and 6.7 to determine the location of fea-

tures critical for classification for targets of a specific class or with a specific orientation.

Results achieved are compared for a well-trained network and a less performing network,

which did not benefit from data augmentation during training.

Lastly, Section 6.8 investigates the specificity of features, that is how much distinct are

patterns that activate different features. The network tends to develop features to be sen-

sitive to a specific target class. A feature specific to a target class would not be activated

by patterns issued from other target classes. On the contrary, a non-specific feature could

be activated with any target image analysed. In Sections 6.6 and 6.7, the specificity of

features to the target class and to the target orientation is investigated. The features inves-

tigated for specificity are those that are most activated when the network is presented with

images of a target with a certain target type or orientation. The objective is to evaluate the
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power of discrimination of the network against target classes and target orientations along

the network depth as the computed features grow more complex. The specificity of the

features is shown for both a high-performing network and one that performs less because

it did not benefit from a data augmented training.

6.3 Computation of occlusion maps and classification

maps

An occlusion map shows the contribution of each location of an image to the classification

performance of a deep network algorithm, and as such, it is specific to a trained CNN and

the image to be classified. An occlusion map is obtained by hiding specific parts of the

image and observing the impact on the correct class score. By collecting score variations

by hiding alternatively various image parts, the location of the features that are critical for

the CNN can be highlighted [136]. Gradient-weighted Class Activation Mapping (Grad-

CAM) images have the same goal but are more precise [135]. Several methods have been

investigated in the visual domain to locate the focus of attention of CNNs [144, 145].

They either block specifically chosen forward propagations or use the backpropagation

of the gradient from the correct class. Grad-CAM images have already been computed

on SAR images [25]. The gradient is however specific to one image and has not been

extended to a full group of images. Grad-CAM method would be complex to adapt to

an image group. As the analysis of features for a group of images is one objective of

this section, Grad-CAM images will not be investigated further. Instead, in this thesis,

occlusion maps are further extended to be applied to several images and are referred to

as classification maps thereafter. Classification maps computed with a specifically chosen

group of images highlight features related to environmental variables such as the target

orientation or the target class. Using a group of images rather than a single image attenuate

the influence of different other factors such as speckle, change of background, changes of

the acquisition geometry on a single image. Different analyses are proposed and carried
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out using the occlusion and classification maps in Sections 6.4–6.8 by studying the critical

features of the images. The critical zones are defined as the areas in the occlusion maps

or classification maps with a low intensity. This low intensity means that the absence of

features from these areas impacted significantly the classification.

6.3.1 Methods to produce occlusion and classification maps

Dataset

The analysis proposed in this chapter is conducted on the MSTAR SOC 10 database and

the MGTD presented in Chapter 2. Two different pre-processing techniques can be ap-

plied according to the parameter that is investigated with the occlusion maps. Either the

target rotates, as it is the case of the standard databases presented in Chapter 2, or the ro-

tation is compensated with the groundtruth orientation angle so that the target appears not

to rotate. When the latter is used, the targets are in the same position in several images.

This enables the creation of classification maps in which each part can be attributed to a

specific target location.

Plain dataset The segmentation groundtruth is only available for the MSTAR, and is

used to determine the centre of the target. The targets in the MSTAR dataset are centred.

The targets in the MGTD are not centred because no segmentation groundtruth is avail-

able. Due to acquisition conditions, the target translation is in any case minimal. In the

Fig. 6.1: MSTAR target centre of mass in blue and image centre in red.

plain dataset, the images used to compute occlusion maps are firstly centred if possible.
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The centring makes it possible to analyse classification maps as the location of the target

remains consistent. Centring is achieved by using the SARbake segmentation of the target

[44]. The location of the centre of mass of the target area is calculated on the segmented

binary image with Eq. (6.1).

{Cx,Cy}=

{
∑

n
i=1 ∑

m
j=1 i.x(i, j)

∑
n
i=1 ∑

m
j=1 x(i, j)

,
∑

n
i=1 ∑

m
j=1 j.x(i, j)

∑
n
i=1 ∑

m
j=1 x(i, j)

}
(6.1)

where {Cx,Cy} are the coordinates of the centre of mass, x(i, j) is the image intensity

at point (i, j) of the binary image (0 or 1).

The image is then translated so that the target centre of mass is at the same location as

the image centre as shown in Fig. 6.1.

Rotated dataset The MSTAR targets are first centred as for the plain dataset in Sec-

tion 6.3.1. The image is then rotated using the real orientation of the target given by the

groundtruth. An estimation of the orientation is not developed here as the objective is not

to evaluate the classification algorithm but to precisely superimpose the targets to be able

to measure the influence of the various environmental factor and target features.

CNN used to produce the maps

The evaluated CNNs are the same as the parent CNN presented in Chapter 5. They are

an updated version of the AlexNet network with a new last fully connected layer to fit the

number of classes considered in the studied database. A simpler architecture is chosen

over the pose-informed architecture for this analysis for clarity and to limit the interac-

tions of the various elements composing the pose-informed method. For example, after

occluding parts of the image as it will be done in this analysis, the determined target ori-

entation could change. It would be both fair, in this case, to take into account each of the

two pose-informed CNNs corresponding either to the former or new target orientation.

However, these networks could react differently. Another solution would consist of eval-
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uating each network separately but would undermine the advantages of the pose-informed

complete solution. These networks are trained using transfer learning from the visual do-

main to the appropriate SAR database as specified in Section 5.3.2. The images used for

training are rotated and centred images of the target, thus maintaining the target in a fixed

position. In order to evaluate what makes good features, the results of two CNNs are go-

ing to be compared for each database: The first is a CNN trained with data augmentation

(translation for the MSTAR SOC 10, translation and Weibull noise based for the MGTD),

performing at respectively 98.26% on the MSTAR SOC 10 and 91.32% on the MGTD.

The second is a CNN trained without any data augmentation, which is less robust and

only achieves 95.12% on the MSTAR SOC 10 and 67.00% on the MGTD. The selected

networks must have a score on the validation set within 3% of their score on the training

set. The results are slightly higher than what is achieved in Chapter 5, as the groundtruth

target orientation is used rather than an estimated target orientation to rotate the images,

and also because the CNNs are selected for their good testing scores rather than their va-

lidity scores. In the previous chapter, the selection could only be done according to the

CNN score on the validation set to be sure not to compromise testing. In this chapter, it

is not the robustness of the network itself that is evaluated but rather the decisive features

that makes the network reach the highest classification scores on these datasets. that

Computation of the occlusion map

CNN

Correct class
probability

Original image
partly hidden Occlusion map

Fig. 6.2: Creation of the occlusion map.

Occlusion maps are already used in the visual field [135, 136]. The objective of such
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maps is to study the location of the features that contribute the most to correct classifica-

tion. Our implementation of the occlusion map starts by hiding the top left corner of the

original image by applying a 11×11 black square mask. This partly masked image is fed

to the CNN. The resulting score of the correct class is the new intensity of the 5×5 pixels

in the centre of the 11×11 mask. The new intensity is thus between 0 (black or dark blue

with the Matlab jet scale in Fig.6.3) if the score of the correct class drop to 0 and 1 (white

or red with the Matlab jet scale in Fig.6.3) if the CNN is so confident that the score of the

correct class is 1. The same process is repeated by masking another part of the image: the

11×11 mask is moved by 5 pixels to the right and this new partially masked image is fed

to the evaluated algorithm to obtain the new score of the correct class and thus the inten-

sity of the occlusion map in this specific location. The mask is shifted by 5 pixels step

horizontally and vertically until all the intensities in the occlusion map are determined as

shown in Fig. 6.2. The final map areas with a high intensity are the areas for which the

score of the correct class was not severely degraded when this area and its surroundings

were hidden. That means that no feature at this location was critical to achieve correct

classification. On the contrary, if the intensity in the occlusion map is low in an area, this

means that this area contains some features critical for the algorithm to correctly classify

the target. Occlusion maps can be obtained on both the plain and the rotated images using

the appropriately trained CNN. Fig. 6.3 is an example of an occlusion map obtained on

one image from the rotated MSTAR SOC 10 dataset. The target is facing the right side

of the image. The middle larger blue area corresponds to the target turret. The blue area

on the right side of the target corresponds to the very front panel of the target that is more

tilted than the rest of the front target area.

Computation of the classification map

The classification map is an extension of the occlusion map applied to a group of images

containing a target with a fixed location. Having a group of images rather than a single

image highlights the role of environmental variables shared by a group of images. Many
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Fig. 6.3: Occlusion map of a rotated image of a 2S1.

variables can be presumed to have an influence on the activation of specific deep learning

features such as, for example, the target class, target orientation, depression angle. The

influence of these variables in the image over the location of the most activated deep

learning features is studied with a classification map obtained with images sharing the

same value for this variable. These groups of images in this section will be images with

the same target class or with similar target orientation.

After the optional centring and translation are applied to the images, as explained in

Section 6.3.1, all targets are in the same location in each test image. Images with the

same target or orientation are then grouped together to evaluate respectively the influence

of the target class or orientation on the location of the critical features learnt by the CNN.

A 11×11 black square mask is applied to the top left part of all the images belonging

to the studied group. The percentage of correctly classified images is used as the new

intensity of the 5×5 pixels located in the centre of the black square in the classification

map. The black square is shifted on all the images by 5 pixels vertically and horizontally

until the classification map is fully completed as shown in Fig. 6.4.

The results obtained with a well-trained CNN and a CNN trained without data aug-

mentation are compared to highlight better the location of features leading to good clas-

sification rates.
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Fig. 6.4: Creation of the classification map.

6.4 Role of the target, shadow and clutter in the classifi-

cation

The shadow of a target in SAR images contains information, for example, the target shape

and height can be determined as the geometrical configuration of acquisition is known.

This additional information could improve target detection and classification performance

[140, 146]. Previous work in the literature investigated sharpening the shadow and the tar-

get parts of the image to improve the quality of information extracted from SAR images

[147]. The goal of this section is to evaluate the amount of information present in the

pixels that contain the target, its shadow and the clutter exploited by the neural network.

The clutter area is also investigated for target classification as in the MSTAR images, the

clutter area includes areas that could give information about the target through multipath.

Additionally, because of the background correlation, the clutter area has an influence on

the classification as the background area is sometimes the same in the training and testing

set of a target. Firstly, two methods to evaluate both globally and in a detailed way the

influence of each area are presented in Section 6.4.1. To evaluate the global contribution

of each of these areas, Section 6.4.1 investigate the change in the classification scores

following the occlusion of each and combination of these areas. The association of oc-

clusion maps with segmentation information gives more details about the areas in which

the critical features are present and this is investigated in Section 6.4.1. Then, the results
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obtained from both of these methods are shown in Section 6.4.2.

6.4.1 Methods to evaluate the contribution of the target, shadow and

clutter to the classification

Method to evaluate the global information loss in regards of partly segmented images

classification

The classification scores achieved on segmented images, and thus with only partial infor-

mation, are compared according to the segmented zone chosen. The impact of the loss

of information from a specific zone of the image gives information about the importance

of the features in that specific zone. The classification method used in this analysis is

the same CNN presented in Section 6.3.1 trained on the plain MSTAR SOC 10 dataset

presented in Section 6.3.1. The MSTAR SOC dataset was used for this study as it is the

only dataset with a groundtruth segmentation [44].

The method is detailed to investigate the role of the target in the classification but

the process is the same for the shadow and clutter. The SARbake segmentation detailed

in Section 4.3.1 is used to get the location of the target, shadow and clutter area. All

images in the testing dataset of the MSTAR SOC 10 dataset have the target area set to

black, so that information from the target is removed. The CNN is then run on the in-

complete images. The result is a classification score for which the CNN could not rely on

features from the target area. This process is repeated to obtain the classification scores

corresponding to all possible segmentation combinations of the three areas as shown in

Fig. 6.5.

Criticity of features found in the occlusion maps for the target, shadow and clutter

area for a detailed analysis

The previous method allows a global evaluation of the influence of image areas used by

the CNN for classification. The method presented in this section is set on a finer level: The
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Target
Shadow
Clutter

X X X
X X X
X X X

Fig. 6.5: Images with segmented area(s) hidden.

association of the occlusion maps and the SARbake segmentation is used to determine the

presence of critical features in each area for each image.

To begin with, the occlusion maps are computed with the CNN from Section 6.3.1

on the MSTAR plain SOC 10 from Section 6.3.1. The lowest intensity of respectively

the target, shadow and clutter area in each occlusion map is saved. The intensity in the

occlusion map corresponds to the classification score of the correct class when a particular

area is hidden. The lowest intensity is chosen to represent the criticality of the shadow,

target or clutter area in a particular image for the classification. If a small part of the area

is critical to the classification, the lowest intensity of this area in the occlusion map will

represent the importance of the area. If the average was taken instead, the saved intensity

would depend on the intensity of the rest of the area as well. The criticality of the small

area would be undermined by the potentially predominant higher intensities. Thus, the

average intensity would not reflect that without this small critical zone, the classification

could result in a misclassification. This results in a list of the lowest intensities for each

area in all images. A histogram of these lowest intensities is drawn to see the repartition

of the critical features for each zone across all SAR images provided.
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6.4.2 Results showing the individual contribution of the target,

shadow and clutter to the classification

Results on the global information loss in regards of partly segmented images classi-

fication

Visible areas in the images fed to the CNN
Target area X X X X
Shadow area X X X X
Clutter area X X X X

Target Classification scores achieved
2S1 97% 5% 97% 4% 3% 1% 8%
BMP 96% 29% 60% 11% 7% 3% 9%
BRDM 99% 88% 13% 9% 3% 3% 37%
BTR60 97% 5% 44% 23% 30% 2% 2%
BTR70 100% 29% 98% 5% 6% 2% 70%
D7 100% 0% 15% 87% 88% 80% 0%
T62 99% 1% 60% 18% 26% 8% 0%
T72 97% 0% 94% 17% 16% 0% 0%
ZIL 97% 97% 74% 34% 36% 48% 97%
ZSU 99% 4% 72% 99% 99% 4% 4%
Total 98% 27% 65% 33% 34% 16% 23%

Table 6.1: Classification scores attained with partly hidden images.

The implementation of the method to evaluate the shadow, target and clutter contribu-

tion, described in Section 6.4.1, results in the classification scores obtained with partially

masked images with a well-trained CNN in Table. 6.1. The results are target dependant

as relative contributions of the various areas change greatly from one target to another. A

higher level analysis of the detailed results is shown in Table 6.2.

Results suggest that the shadow is rarely used by the CNN despite contributing signif-

icantly to the classification of the BRDM, D7 and ZIL. Most of the time, the target and the

clutter areas contain most of the information required for classification. In this case, the .

The fact that the clutter area contains a lot of information for the CNN could either mean

that multipath information is used or that the CNN learned the background correlation

of the MSTAR SOC 10 dataset as seen in Section 2. This could be investigated further
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with images of a segmented SAR dataset without background correlation. However, the

SARBake segmentation is not supplied for the MSTAR EOCs.

Target Most influential areas
2S1 Target and clutter (97%).
BMP Target and clutter (60%).
BRDM Shadow and clutter (88%).
BTR60 Target and clutter (44%).
BTR70 Target and clutter (98%), but mainly clutter (70%).
D7 Target and shadow (87%), no extra information from the clutter (0%).
T62 Target and clutter (60%).
T72 Target and clutter (94%).
ZIL Clutter (97%). Also learnt independently target (36%) and shadow (48%).
ZSU Target (99%).

Table 6.2: Analysis target per target of the most influential areas.

Results on the criticality of features found in the occlusion maps for the target,

shadow and clutter area for a detailed analysis

The implementation of the method to evaluate the shadow, target and clutter contribution

in more details, described in Section 6.4.1, results in the histograms in Fig. 6.6 obtained

by associating the occlusion maps produced by a well-trained CNN with the image seg-

mentation. The full analysis of all histograms of all targets can be found in Fig. C.1 of the

appendix. Only the most significant histograms associated with the BMP, T62, ZIL are

shown in Fig. 6.6.

Fig. 6.6 shows that each classified target contains in the large majority of cases at

least one critical feature, apart from the ZIL and to a lesser extent the BTR70 and BRDM.

These results confirm a stronger influence of the target area compared to the shadow

area for classification (Section 6.4.2). ZIL appears the easiest target to recognise perhaps

because it is only truck in the database (Chapter 2). A unique target in the dataset present

distinctive features that are easier to spot even partly hidden. The shadow and clutter

areas contain a lot less critical features than the target area, although the shadow is used

consistently for the BMP and the D7. Clutter information is mainly used for the BMP and
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Fig. 6.6: Histograms of the most critical features (minimal intensity in the occlusion map)
in each image per target per area of interest. The totality of the histograms for each target
can be seen in annex in Fig. C.1

to a lesser extent to classify the 2S1 and the BRDM. It is still not possible, however, to

conclude if the clutter area can be deemed critical because of the background correlation

or other genuine reasons as target information from multipath effects.
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6.5 Study of the intensities of the pixels composing the

critical features

In this section, the intensity repartition of the pixels that belong to the critical zones of

the occlusion maps are compared to those in the less important zones. The objective is

to assess if the network relies on parts of images with a specific intensity distribution

compared to the rest of the image. If differences can be identified, they could be used

by a pre-screener, after detection of the target, to focus the classification method on the

potentially critical areas of the image. This would facilitate a better understanding of the

deep learning classification process as well as enabling the more classical classification

methods, such a feature-based classification methods, to compute descriptors directly on

the potentially more interesting areas of the image.

The intensity distribution is however also influenced by the area the studied pixels be-

long to as can be seen in Fig. 6.7 The target area is in the MSTAR databases the brightest

zone of the SAR images as shown by the success of threshold based segmentations pre-

sented in Section 8. To avoid biasing the results, the analysis of the critical areas original

pixel intensities will be focused on the target area only, discarding the other areas. The

target area also contains the highest number of critical zones as seen in Section 6.4.2.
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(a) Intensity repartition of the target area.
The mean intensity is 30.6 and the standard
deviation is 35.4.
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(b) Intensity repartition of the shadow area.
The mean intensity is 6.0 and the standard
deviation is 10.8.
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(c) Intensity repartition of the clutter area.
The mean intensity is 6.4 and the standard
deviation is 5.4.

Fig. 6.7: Probability density function of the intensity of the target, shadow, clutter area
determined by the SARBake segmentation on all test images of the MSTAR SOC 10.

6.5.1 Method to characterise the intensity repartition of the pixels in

the critical zones for classification

Choice of the pixels whose intensities will be investigated

For this analysis, the plain MSTAR SOC 10 dataset from Section 6.3.1 will be used. The

first step consists in determining which pixels of the original image correspond to the

critical and unimportant zones in the occlusion map. When occlusion maps are computed

in Section 6.3.1, 11×11 squares of the original image are hidden to determine the intensity

of the 5×5 occlusion map central square. As explained previously, the objective is to
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investigate the intensity repartition of the critical and non-critical areas in the target area.

However, squares do not follow exactly the border of a target and therefore it is important

to determine if the square belongs or not to the target area. If the 11×11 square in the

original image overlaps with the target area determined by the SARbake segmentation for

more than 50%, the intensities inside the square will be investigated to draw an intensity

repartition of critical features. Fig. 6.8 (a) shows the proper target segmentation in red, and

all the intensities in squares that will be potentially be investigated to draw the intensity

repartition of critical areas in black.

(a) SARbake proper target
segmentation in red compared
to the pixels inside the target
masked squares leading to the
occlusion map on the right.
These pixels will potentially be
investigated for the intensity
repartition of critical areas.

1

0.8

0.6

0.4
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0
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0.8

0.6

0.4

0.2

0

(b) 5×5 occlusion map obtained when
the appropriate squares in the target
area as seen in the left image are
masked. The colour represents the
probability of correct classification
with the corresponding area masked.

Fig. 6.8: Comparison of the proper segmentation of the target and the target segmentation
using the masked squares leading to the target occlusion map.

The corresponding central 5×5 occlusion map squares are also considered to belong

to the target as shown in Fig. 6.8 (b). The whole target zone of the occlusion map will be

investigated for critical and unimportant feature zones.

The values of the occlusion map are thresholded to isolate the two most extreme zones.

Unimportant zones are the areas with a correct class probability over 90% in the occlu-

sion map. Critical zones are the areas with a correct class probability under 60% in the

occlusion map. Both of these zones are shown in Fig. 6.9 (a).
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If the 5×5 block belongs to either zones in the occlusion map, the associated 11×11

pixels in the original image are retained. Fig. 6.9 (a) is an example of the pixels allocation

to the critical and unimportant zone. Pixels in the original image can be assigned to both

zones if they are at the border between both zones or to neither if the occlusion map

correct class probability is in between the two thresholds.

(a) Pixels hidden while
computing parts of the critical
feature zone (blue) and parts of
the unimportant feature zone
(red). The green area consists
of pixels hidden while
computing both zones.

(b) Occlusion map target zone
separated into the critical, in
blue, and unimportant, in red,
feature zone.

Fig. 6.9: Allocation of the pixels in the original image to the critical feature zone or the
unimportant feature zone.

At the end, two pools of intensities of pixels are obtained in the target area, corre-

sponding to the area that the CNN considered respectively as critical or unimportant, to

achieve correct classification of the target for each input image as seen in Fig. 6.9 (b).

Computation of the histograms characterising the intensities of pixels in the critical

and unimportant zones

Detailed histograms on the individual pixels intensities in the critical and unimpor-

tant zones Two histograms are drawn for all intensities of the pixels in the original

image belonging respectively to the critical or the unimportant feature zones. Each test

image will provide the original intensities of the pixels belonging to the critical and unim-

portant areas to the appropriate histogram. The comparison of the two intensity repar-
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titions is used to assess differences between the critical and unimportant zones intensity

repartition.

Global histograms on the statistics of pixels intensities in the critical and unimpor-

tant zones in each image This section presents a method based on statistics descriptors

per image that complements the detailed intensity repartition presented earlier. The ob-

jective is to investigate if there are strong variations of intensity of the various areas from

one image to another. The mean and standard deviation of the pixels intensities in the

critical feature zone and the unimportant feature zone are extracted for each image. His-

tograms are drawn focusing either on the mean or the standard deviation of the critical

and unimportant areas. One image will contribute with a unique value to each of these

four histograms: the mean and standard deviation of the critical and unimportant area

respectively. This is studied to investigate if the pixels in the critical feature zones have

higher but also more spread intensities than pixels in the unimportant zones.

6.5.2 Results characterising the intensity repartition of the pixels in

the critical zones for classification

Detailed histograms on the individual intensities of pixels in the critical and unim-

portant zones Fig. 6.10 shows that the distinction between the intensities of pixels in

the critical and unimportant zone in the target cannot be achieved with a simple threshold,

because most of the two histograms are superimposed. However, the two intensity repar-

titions in the critical and unimportant zones are different. The intensities of the pixels of

the critical feature zone covers a wider and higher range of intensities than the pixels in

the unimportant zones.

Global histograms on the statistics of pixels intensities in the critical and unimpor-

tant zones in each image Higher and wider range intensities in the critical zone is

further shown in Fig. 6.11. Indeed, the average difference between the intensity mean
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Fig. 6.10: Histograms of the pixel intensity repartition for pixels in the target area in the
critical and unimportant feature zone across all test images.

distributions is 17.2 in Fig. 6.11 (a) and the average difference between the intensity stan-

dard deviation distributions is 9.4 in Fig. 6.11 (b) Pixels that provide crucial information

have a higher mean, suggesting that the radar returns from these specific locations have

more power than that from other areas. The standard deviation is also higher on average

which means that, in critical areas, the range of intensities is larger than zones resulting

in less interesting classification features. A high standard deviation area provides more

diverse information that could be interpreted with complex kernels if this diverse intensity

repartition is not due to a low SNR. The resulting convolution will span a wider range of

values suitable for a finer activation and eventually more specific features for higher clas-

sification rates as long as the diversity of the features relates to the target specific rather

than noise or speckle. Specificity of the feature is defined as the potential of a feature

to be activated in only a few relevant occurrences, for example, only if the target is of a

certain type.
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(a) Histograms of the mean for intensities in the target area in the critical and unimpor-
tant feature zone per image.
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(b) Histograms of the standard deviation for intensities in the target area in the critical
and unimportant feature zone per image.

Fig. 6.11: Histograms of the statistics for intensities in pixels in the target area in the
crucial and unimportant feature zone per image.
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6.6 Influence of the target in the location of the critical

features

In order to achieve good classification, CNNs have to learn differences between targets.

The specific targets characteristics in terms of location of critical features is studied for

all targets. The objective is to determine which zone, for each target, is important for

classification. These features are expected to vary especially between targets of a different

type (tank, truck...).

6.6.1 Method using classification maps to see the location of the crit-

ical features for classification according to the target type

The classification maps are computed the same way as in Section 6.3.1. The images used

are from the rotated MSAR SOC 10 dataset or the MGTD (Section 6.3.1) so that targets

are aligned. The images are grouped to produce classification maps according to the target

they represent. Thus, 10 classification maps are produced for the MSTAR dataset and 3

classification maps are produced for the MGTD. In all classification maps, all targets

after being rotated are looking to the right. Fig. 6.3 shows the approximate position of the

rotated target in both the MSTAR dataset and the MGTD.

(a) Approximate position of the target in an
image of the MSTAR dataset.

(b) Approximate position of the target in an
image of the MGTD.

Fig. 6.12: Approximate position of the target after rotation in the SAR images.
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6.6.2 Results showing the classification maps and the critical zones

for classification for each target type.

MSTAR dataset

Results obtained with a well-trained CNN Figs. 6.13 (a), 6.13 (b), 6.13 (h) and 6.13

(j) representing respectively the 2S1, BMP2, T72, ZSU show that the back-centre area of

the target (centre left of the image) is the darkest area for tanks and armoured personnel

carriers with the exception of Fig. 6.13 (g) representing a T62. It is the most critical area

of the classification map and represents the highest and usually the most distinctive part

of the target which corresponds to the turrets for the tanks. It is also true for the cabin of

the D7 bulldozer in Fig. 6.13 (f). However, it is not noticeable on some of the other target

types that do not have such prominent features. The central darker spot is then absent as

can be seen in Figs. 6.13 (c) to 6.13 (e) representing respectively the BRDM, BTR60 and

BTR70.

Some targets are also recognised with the very front of the target, and this is somehow

expected for the bulldozer blade of the D7 as seen at the front of the target in Fig. 6.13

(f). The same occurs for the 2S1, BTR60, T62 and ZSU as seen respectively in Figs. 6.13

(a), 6.13 (d), 6.13 (g) and 6.13 (j).

The darker areas around the angles at the front of some targets in Figs. 6.13 (f) to 6.13

(h) could highlight the corners present in the targets.

The darker background in Figs. 6.13 (b) and 6.13 (c) for the BMP2 and BRDM shows

that the CNN is less confident in the classification of these targets in general.

The fact that the target appears lighter than the rest of the image in Figs. 6.13 (c)

and 6.13 (e), representing the BRDM and BTR70, shows the background correlation

identified in Chapter 2. The background plays in this case a bigger role in the target

classification than the target itself, which shows potential limit of ATR methods evalua-

1Photos of the BMP2 and BTR70 from the MSTAR dataset were not found and are replaced with
alternative photos of the same tank models. These photos were taken by Vitaly Kuzmin (https:
//www.vitalykuzmin.net) and are licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
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(a) 2S1 (b) BMP2 1 (c) BRDM (d) BTR60

(e) BTR70 1 (f) D7 (g) T62 (h) T72

(i) ZIL (j) ZSU
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(k) Classification
rate.

Fig. 6.13: Target classification maps with the original target image.

tion using the MSTAR SOC 10.

It seems that the ZIL in Fig. 6.13 (i) has no critical features. As the ZIL falls in the
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longest targets of the database, the absence of critical features could be linked to one of

the shortcomings of the classification map computation: the impossibility to take into

account combinations of several features. Indeed, only a part of the target is hidden and,

if features in different locations enable the classification, hiding only one of these critical

features could leave the score of the correct target unchanged. Another possibility is that

the CNN chooses the ZIL in case of a very uncertain prediction. In this case, the ZIL

would be chosen whenever features related to specific target are not present.

(a) 2S1 (b) BMP2 (c) BRDM (d) BTR60

(e) BTR70 (f) D7 (g) T62 (h) T72

(i) ZIL (j) ZSU
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(k) Classification
rate.

Fig. 6.14: Target classification maps with the original target image using a CNN trained
without data augmentation.

Results obtained with a CNN trained without data augmentation In order to better

understand what areas are essential for classification, the location of the features critical
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for classification for a well-trained network are compared to the location deemed critical

by a network trained without data augmentation and less performing. The same process

is applied to obtain the classification map but with the CNN trained without data aug-

mentation and the results can be seen in Fig. 6.14. The images are overall darker as the

probability of correct classification is lower. The CNN trained without data augmentation

seems to rely, in some cases, more on the background than the target itself as it can be seen

with the lighter shade in the 2S1, BRDM, BTR70 and ZIL. It is also noticed that the CNN

did not narrow down the areas of importance as the CNN trained with data augmentation.

The darker areas on the targets are larger and blurry. They are not focused on specific

areas of the target as it could be seen for the CNN trained with data augmentation. Less

explanations can be given for the classification choices of the CNN without data aug-

mented training. The augmented training not only improves the classification score of

the network but also improves its understandability. This is key, as the understandability

of classification decisions is at least equally important to performances for implementing

classification solutions under real conditions.

MGTD

Results obtained with a well-trained CNN The previous experiments are also con-

ducted on the MGTD and give different results as shown in Fig. 6.15. The CNN focused

on different areas for each target on the contrary to what happened in the MSTAR database

where, for example, the higher turret central area seemed to be a focus point for the CNN.

For the BMP1, it is the top and bottom parts of the Fig. 6.15 (a) which are darker and

those correspond to the sides of the target. Fig. 6.15 (b) that represents the T64 target

shows that the the CNN is focused on central part. The CNN highlights the front and

back of the T72 target represented in Fig. 6.15 (c) as the right and left part of the image.

The darker classification maps for Figs. 6.15 (b) and 6.15 (c) representing the T64

and the T72, indicate that the confidence of the network in classifying these targets drops

and that they are harder to classify. The CNN indeed is less likely to mistake the BMP1
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(a) BMP1 (b) T64

(c) T72
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(d) Classification rate.

Fig. 6.15: Target classification maps with the original target image from the MGTD.

for another target than the T64 or the T72 because the latters are very similar and differ

largely from the BMP1. This explains the higher confidence of the network in the BMP1

classification. The darker shade for the T64 confirms, with the confusion matrices shown

in Chapter 5, that in case of a confusion between the T64 and the T72, the network will

likely classify it as a T72.

Results obtained with a CNN trained without data augmentation To better under-

stand the reasons of the location of the critical features, the location of critical areas found

by a well-trained network is compared to those of a CNN trained without data augmen-

tation. The results can be seen in Fig. 6.16. The darker images overall are due to the

lower classification rate on the testing set achieved by the CNN trained without data aug-
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(a) BMP1 (b) T64 (c) T72
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Fig. 6.16: Target classification maps with the original target image from the MGTD with
a CNN trained without data augmentation.

mentation. The two CNNs, one trained with and the other without data augmentation,

concentrate on different areas for each target. However, the reasons behind the difference

of location of the critical area seem more uncertain than for the MSTAR database. The

first difference with the results achieved on the MSTAR is that the critical areas for each

target are different (i.e. if the critical area of the T72 is its front, the front of other targets

will not be their most critical area). This strategy could be because only 3 targets are

present in the MGTD but this cannot be reproduced in the MSTAR which contains 10

targets. It would be interesting to see the evolution of the critical areas with the intro-

duction of more target classes. The CNN without data augmentation focuses only on the

front of the T72, the rear of the BMP1 and the sides and centre of the T64 whereas the

well-trained CNN focuses respectively on the sides of the BMP1, the centre of the T64

and on both the front and the rear of the T72.

6.7 Influence of the orientation in the location of the crit-

ical features

The orientation or aspect angle of the target has an important impact on the appearance

of the target in the image [19, 96]. This criteria is thus isolated to see its influence on the

zones the CNN considers as important.
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6.7.1 Method using classification maps to see the location of the criti-

cal features for classification according to the orientation of the

target

(a) Target with a 0◦ orientation.

342°-54°

54°-126°

270°-342°

126°-198°

198°-270°

(b) Orientation ranges used to compute the 5 classification
maps.

Fig. 6.17: Definition of the orientation ranges used to compute the orientation classifica-
tion maps.

The classification maps are computed the same way as in Section 6.3.1. The images

used are from both the rotated MSTAR SOC 10 dataset or the MGTD as in Section 6.3.1

so that the targets are aligned. The images are grouped to produce classification maps

according to the orientation of the target it represents.

Five bins are chosen to represent the target azimuth groundtruth provided with each
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image starting from 0◦ and equally distributed up to 360◦. The target looking to the right

defines the new 0◦ arbitrarily in the rotated dataset. An example of the new 0◦ orientation

is Fig. 6.17 (a). In this new frame of reference, the five groups of target orientations are

as seen in Fig. 6.17 (b). Each group of images represent all the images with a target

orientation belonging to one range bin. One classification map is computed for all these

images. The result is 5 classification maps representing the 5 different orientation bins.

6.7.2 Results showing classification maps to see the influence of the

target orientation on the location of the critical features for

classification

In order to help the interpretation of these maps, a blue contour on the classification map

around the lowest intensities and a red dot in the middle of the target are added. The blue

arrow represents the direction of the main illumination, or centre of the orientation range

bin, from the radar to the target.

MSTAR dataset

Results obtained with a well-trained CNN The classification maps obtained are sum-

marised in Fig. 6.18 with and without the graphical help showing the critical features, the

main illumination direction for each illumination range and the target centre. Fig. 6.18

(a) shows that the bottom right of the target is the most critical for a radar placed between

270◦ and 342◦. This corresponds to the area with the best signal reflection. Because of

the shape of tanks, the parts of the target facing the radar are likely to produce a specular

reflection and therefore likely to reflect more the illumination than the sides perpendicular

to the radar. The back side of the target is not directly illuminated at all but can be slightly

highlighted through diffraction effects. Thus, the area surrounding the surface facing the

radar, and the closest to the radar, is brighter in the SAR images. This area is also the

critical area in most of classification maps with respectively Fig. 6.18 (c) highlighting the
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(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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(f) Classification rate.

Fig. 6.18: Illumination direction and contour of the most critical areas in each orientation
range classification map with the original classification map for the MSTAR SOC 10
targets.

top of the map, Fig. 6.18 (d) focusing on the left of the map and Fig. 6.18 (e) highlighting

the bottom left of the map. It is however less clear for Fig. 6.18 (b) that the most critical

area is the front of the target on the right of the map, even though this part is still critical.

The areas reflecting the best the signal, usually in the area the closest to the radar as the

front side faces the receiver, appear to be more critical.

It can also be noticed that the target rear, in the left part of the classification maps is
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always highlighted. It is indeed always inside the blue contour, which shows the darkest

parts of the classification maps. This higher area corresponds to the turret for the tanks

and the cabin for the bulldozer. The rear part of the target was also highlighted as a critical

area in Section 6.6.

(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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(f) Classification
rate.

Fig. 6.19: Illumination direction and contour of the most critical areas in each orientation
range classification map with the original classification map for the MSTAR SOC 10
targets obtained with a CNN trained without data augmentation.

Results obtained with a CNN trained without data augmentation In order to better

understand what areas are essential for classification, the location of the features critical

for classification for a well-trained network are compared to the location deemed critical

by a network trained without data augmentation and less performing. The resulting clas-

sification maps can be seen in Fig. 6.19. The first thing that can be noticed is that the

classification maps are overall darker, meaning that this CNN does not achieve the same

quality of classification as the CNN with data augmented training. Moreover, the intensity

on the target is not a lot darker compared to the intensity seen in the background area. The

network seems to optimise less the information present in the target even though it is still
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the most important area. It can be also seen that the darkest areas are not always on the

area that is facing and the closest to the radar as previously such as in Fig. 6.19 (c). The

critical zone is smaller and the rear of the target is not used in all orientations as it is the

case in the CNN trained with data augmentation.

MGTD

(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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(f) Classification rate.

Fig. 6.20: Illumination direction and contour of the most critical areas in each orientation
range classification map with the original classification map for the MGTD.
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Results obtained with a well-trained CNN As for the MSTAR, classification maps

relative to orientation ranges are produced using the data from the MGTD. As what was

deduced on the MSTAR in Section 6.7.2, the critical areas are mostly located in the ar-

eas facing the radar as shown in Fig. 6.20. Indeed, Figs. 6.20 (a) to 6.20 (e) highlight

respectively the bottom right, the right, the top, the left, the bottom-left of the map.

The results in Fig. 6.20 (a) show that, in this case, the classification relies on both the

bottom-right but also the right and top-right of the map, that corresponds to the front of

the target. The whole front of the target is used, even the further points that could be less

illuminated. These further points are located around the same areas containing corners,

that are likely to return signals directly in the direction of the emitter, and thus the receiver

just next to it, because of their geometry. Corners are visible are present in the T72 and

the T64 on the target front.

However, unlike for the MSTAR, the highest part of the target, on the left of the map

is not always a critical area. Indeed, it is not always included in the blue contour which

shows the most critical areas. This could be due to the different depression angle used

to acquire both databases, or the turret material which is plastic in the MGTD and metal

in the real targets in the MSTAR. Only the tracks of the model tank are in metal. Also,

all targets in the MGTD have a round turret which minimise returns of the signal in the

receiver direction compared to a planar area.

Results obtained with a CNN trained without data augmentation As for the

MSTAR, classification maps related to orientation ranges in the MGTD are both cre-

ated with a well-trained CNN and, here, with a CNN trained without data augmentation.

The resulting classification maps can be seen in Fig. 6.21 (e). Results show that the

classification maps are overall darker, as it was for the MSTAR, suggesting that the

classification quality dropped over the whole testing set.

The location of the most important parts of the classification maps are relatively com-

parable for the first 3 ranges in Figs. 6.21 (a) to 6.21 (c). However, they are quite different
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(a) 270◦-342◦ (b) 342◦-54◦ (c) 54◦-126◦

(d) 126◦-198◦ (e) 198◦-270◦
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Fig. 6.21: Illumination direction and contour of the most critical areas in each orientation
range classification map with the original classification map for the MGTD.

for the last 2 ranges in Figs. 6.21 (d) and 6.21 (e). Indeed, the CNN, in this case, does not

seem to use the most illuminated area which should contain most of the information on

the target. In Fig. 6.21 (e), parts of the background are also used. It is not known if the

background is used because of correlation or a multipath effect. The well-trained CNN

focuses on the target unlike the CNN trained without data augmentation.

As stated for the MSTAR, the features of the CNN trained with data augmentation

seem better learnt. Besides achieving higher classification scores, the CNN trained with

data augmentation can also be better understood. Indeed, its critical areas are focused on

the target and especially on the target area surrounding the surface facing the radar, thus

reflecting well the signal because of the geometry of the target. Indeed, the front surface

facing the radar is more likely to reflect the signal towards the radar than the perpendicular

or back surfaces. Having a better explainable network is essential if deep learning is to be

implemented to operate in real scenarios.
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6.8 Evolution of the features along the CNN depth

The previous sections investigate the location of the critical features. In this section,

the specificity of the CNN features to a class and to a target orientation are examined.

Specificity of the feature is defined as the potential of a feature to be activated in only a

few relevant occurrences, for example only if the target is of a certain type. This will be

conducted at different depth levels of the CNN as the complexity of features increases.

Histograms summarising the most used features for specific targets or orientations are

computed and compared. The histogram comparison shows the growing specificity of

these features along the depth of the network as they become more complex.

6.8.1 Method to characterise the specificity of features along the net-

work’s depth

The images used are from the testing set of the MSTAR 10 SOC and MGTD plain dataset

(the original images without centring or rotation) presented in Section 6.3.1. The CNNs

are the same as those in Section 6.3.1, however they are trained on the plain training

set. The CNN trained with data augmentation achieves 98.17% on the MSTAR SOC 10

and 92.47% MGTD while, without data augmentation, it only achieves 95.51% on the

MSTAR SOC 10 and 78.53% on the MGTD. These scores are slightly higher than what

was achieved in Chapter 5. Indeed, these networks are selected based on performances on

the testing set rather than on the validation set as the focus of this work are the features

that enable the network to achieve the best scores. In any case, the networks chosen must

have a score on the validation set within 3% of their score on the training set.

The same steps will be carried out after each convolutional layer of the CNN to eval-

uate the evolution of the feature differentiation along the depth of the network as features

become more complex.
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Fig. 6.22: Diagram of how the most influential kernels are determined for each image.
*Image of AlexNet from [103].

Determination of the kernels associated with the strongest activations

The complete images are fed to the CNN. The intermediary activations or activations maps

are extracted after the studied convolutional layer as seen in Fig. 6.22. The activation maps

are the result of the convolution between the input (input image or previous activation

map) and the kernels in the current convolutional layer. The maximum intensity of each

activation map is then isolated. The kernels are then ranked according to the maximal

intensity in their corresponding activation map. The kernel with the resulting highest

intensity in its activation map will be the first in the vector of most activated kernels K in

Fig. 6.22. Each image results in a vector K containing the number of each kernel from

the most activated to the least activated activation map. That means that the first kernel

leads to the strongest activation while the last kernel could result in a black map without

any potential activation.
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Histogram of the most used features

After the computation of the ordered vector K of the kernels leading to the strongest

activations, the vector K is truncated to keep only the 20 best kernels as in Eq. (6.2).

where K(1 : n) =



k1

k2

...

kn


(6.2)

Once the kernel lists have been produced for a group of images, a histogram of the

frequency at which kernels are strongly activated by the network for a specific group of

images is built as shown in Fig. 6.23. This histogram presents which kernel is mostly used

in a group of images. These images can be grouped by target or orientation.

Truncated
most activated

kernels

K1(1:n)

K2(1:n)

K3(1:n) Kernel number

P
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lit
y
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Most activated kernels histogram
in a group of images

Fig. 6.23: Diagram representing the computation of the histogram of the most influential
kernels for a group of images.
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Comparison of the features mostly used by the CNN for a specific class (target class

or target orientation)

The last step consists in an evaluation of the similarity or difference between the his-

tograms produced with different groups of images. To that end, a normalised Chi-Square

distance is introduced in Eq. (6.3).

D(H1,20,H2,20) =
100
2 ·m

m

∑
j=1

(H1,20( j)−H2,20( j))2

H1,20( j)+H2,20( j)
(6.3)

where Hi,20 is the histogram of the lists of top kernels K(1 : 20) for the images in the ith group, and
m is the number of kernels of this convolutional layer (ex: 96 for the first convolu-

-tional layer). It is also the number of bins of the histograms H1 and H2.

The Chi-Square distance is a common measure to evaluate the resemblance between

histograms, and it is here normalised over the number of bins, so that this distance could

be compared for histograms of different length as the number of kernels increases with

the network depth. The average distance express the difference of feature representation

by the network for a specific class or for a specific orientation. For example, 3 histograms

using the method represented in Fig. 6.23 are computed using all the test images in the

MGTD respectively specific to the T64, the T72 and the BMP1. These histograms are

produced by investigating the activation maps generated after the first convolutional layer.

The average of all normalised Chi-Square distances between the histograms (T64 with

T72, T64 with BMP1, BMP1 with T72) gives an insight of the specificity of the kernels

in the first layer to the target class. The bigger the distance, the more specific the features

for the concerned target.

This distance will be computed after each convolutional network between all his-

tograms generated by images with a specific target class or orientation. For the orientation

"classes", 5 orientation categories are used as in Section 6.7. The distance evolution along

the network depth is used to evaluate the state of differentiation of features specific to a
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certain class.

Distances are not only computed for specifically chosen groups of images but also

with random groups of images of the same size to provide a control distance and ensure

that the evolution of the distance is not only due to the feature complexification but really

dependant of the common factor in the image group. This is also done to quantify how

different the features are. Indeed, the lowest distance can never be null as long as the

images are different in each group.

6.8.2 Results showing the differentiation of the features along the

network depth

Histogram specificity to the orientation compared to target specific histograms

The first layer in the visually trained CNN provides very basic information such as inten-

sity variation and direction, or the colours used in the initial image. Low-level features

are not yet specific to a variable which explains the histogram similarity between a group

of images focused on either the target class or orientation as seen in Fig. 6.24. However,

with the depth of the network, the features become more complex and variable specific.

The feature specialisation at the 5th convolutional layer can be seen in Fig. 6.25 as the tar-

get specific histogram greatly differs from the orientation specific histogram as opposed

as both histograms after the 1st layer.

This shows that the features relative to the orientation are learnt on their own and are

not only a by-product of the features learned for target classification. The CNN learned

features specific to some orientations even if the training loss is dependant only on the

target type. The orientation is thus key in the classification of SAR images. The fea-

tures become overall more specific to each orientation group with the depth of the CNN.

Following these observations, a network trained for target classification could easily be

retrained to evaluate the orientation of a target.
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(a) Distribution of most active kernels
after the first layer for 0◦-72◦ images.
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(b) Distribution of most active kernels
after the first layer for BTR60 images.

Fig. 6.24: Histogram of the features specific to one target and one orientation range at the
1st convolutional layer.
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(a) Distribution of most active kernels
after the fifth layer for 0◦-72◦ images.
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Fig. 6.25: Histogram of the features specific to one target and one orientation range at the
5th convolutional layer.

Differentiation of features specific to a target orientation

Results obtained with a well-trained CNN It can be seen in Fig. 6.26 that both for

the MSTAR dataset and the MGTD, the average distance between specific orientation

groups is a lot higher than that between random groups of images (between 3 and 8 times

higher). Images represent targets of different classes as well as different orientations.

Thus, this high distance cannot be only a side effect of the network learning to recognise

targets, which could be the case if some target classes were more represented with a

specific orientation than others. The CNN specifically learned the orientation features.

The network is able to learn environmental variable even when they are not included

directly in the loss computation. The fact that the network is able to independently learn

related environmental variables linked to the classification task is probably part of the
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(b) MGTD.

Fig. 6.26: Average distance along the network’s depth between histograms of kernels
activated the most for 5 different orientation bins.

success of neural networks on SAR images which are affected by many variables. It puts

into perspective the inclusion of external variables in the loss to force the network to learn

about the target environment, as the network already carry this task to a certain extent on

its own [97].

The creation of features specific to environmental variables without specific training

also indicates that transfer learning could potentiality be pushed further. Instead of retrain-

ing a CNN to fit another database or different targets, the network could be re-purposed

with entirely different output classes related to any environmental variable present in the

dataset. Indeed, the network has probably already partly learned the appropriate features

in addition to the features directly related to the initial task. In this case, a network finding
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the target orientations could be quickly learned from a network dedicated to target type

classification.
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Fig. 6.27: Average distance along the network’s depth between histograms of kernels
activated the most for 5 different orientation bins with networks trained without data aug-
mentation.

Results obtained with a CNN trained without data augmentation All of the above

is conducted again with a CNN trained without data augmentation as can be seen in

Fig. 6.27. The same conclusion can be drawn looking at the distance between orientation

specific features learned by this CNN. The distance grows as the complexity increases

with the depth of the network. It can be noticed, however, that the distance between

features is lower at all depths for the CNN without data augmentation than for the well-

trained CNN. There is a ratio between 1.6 and 2 between the distances generated using the
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two CNNs with different training methods. The data augmentation created a more chal-

lenging training set which means more specific features had to be found in order to still

be able to tell the target classes apart. The features learnt by the CNN trained with data

augmentation, because they are more specific to each target, enable better classification as

the targets can be more precisely described. Some of the learnt features relate also to the

target orientation, hence the higher distances that can be seen not only in the distance of

features specific to targets but also features specific to certain orientation ranges as seen

in Fig. 6.26.

Differentiation of features specific to a target class
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Fig. 6.28: Average distance along the depth of the CNN between groups of images of
different targets.
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Results obtained with a well-trained CNN The average distance between histograms

representing the most active kernels specific to each target class grows constantly as

shown in Fig. 6.28 and goes from 9 to 37 times the control distance in the MSTAR dataset

and from 2 to 6 times the control distance in the MGTD. The CNN manages to increase

the distance between targets class with features whose complexity reflects specificities of

each target. The distance is four times higher in the MSTAR compared to the MGTD even

though it contains 10 targets, whereas the MGTD contains only 3 targets, and thus should

have been harder to differentiate the targets. The CNN trained on the MGTD is less able

to tell the targets apart than the CNN trained on the MSTAR. Various hypothesis can be

made on the reasons of a greater distance between targets on the MSTAR trained CNN.

An uncompleted training could be argued for the CNN trained on the MGTD because

of a lack of diverse training data. Indeed, both training and validation scores are more

than 99% and the incentive to update the network weights is very low. Thus, the features

will not be improved unless the training set is extended. Another possibility concerns the

data itself. The data from the MGTD could be harder to classify as it is less correlated as

shown in Chapter 2. It is also composed of model targets that are mainly made of hard

plastic and not of metal, reflecting less clearly the emitted radar signal. Features seen on

the SAR images could be thus less precise and lower the distance between targets. As

the distance continues to increase even at the deepest layer, increasing the depth of the

network could lead to better scores.

Results obtained with a CNN trained without data augmentation This process is

repeated with CNNs trained without data augmentation and the specialisation of the fea-

tures can be seen in Fig. 6.29. Similarly to the more robust CNN, the distance between

features dedicated to a specific target class grows larger in the network. However, it can

be noticed that those features could be even more specific as there is a ratio of 1.4 to 3.3

between the highest distance achieved between specific features with the CNN trained

without data augmentation and the CNN trained with it. Data augmentation enhanced the
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Fig. 6.29: Average distance along the depth of the CNN between groups of images of
different targets for the network trained without data augmentation.

specificity of features to the target class.
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6.9 Limitations of the feature analysis carried out

This chapter provides some tools to better understand deep learning algorithms trained

on SAR images and attempts a series of possible explanations and interpretations of the

achieved results. However, the understanding and explanation of deep learning algorithms

decisions remain difficult and the hypothesis remain mainly conjectures. In this section,

the limitations of this work are pointed out in order for the reader to have a clear perspec-

tive on the results.

All of the above results are based on a single type of CNN for each database (MSTAR

or MGTD, plain or rotated). Even though this CNN is well trained as it was selected for

its high classification rate on the validation and testing set, it is only a single type of CNN

and the results cannot be generalised to all CNNs before being tested on other CNNs with

other various architectures.

Regarding the occlusion and classification maps, the choice of the mask size (11×

11 in Section 6.3.1) is problematic as it will hide only features smaller than 3.3 m

(30 cm×11). Bigger features than that and only partly hidden are partially immune from

the mask and the score obtained for the correct class will still take them into account.

However, having a bigger mask would provoke a precision loss as it would become dif-

ficult to pinpoint the location of the features having an impact on the score. Moreover,

features present over multiple locations are never totally hidden. One part only is hidden

and the other parts can still influence the score of the correct target.

6.10 Conclusion

In this chapter, some insights are given on the decision process of one trained CNN on

both the MSTAR dataset and the MGTD. The analyses are carried out on a single type

of CNN. Other types of CNNs with a different training method or a different architecture

could react differently.

The analysis begins by differentiating the influence of the target, shadow and back-
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ground zone in the deep learning classification process. It appears that the shadow is

mainly ignored by the CNN with an essential role in only 2 cases out of 10. The informa-

tion important for classification is mainly taken from the target zone and completed by the

clutter zone. However, the results do not make possible to globally assess the contribution

of the shadow in terms of information relevant for the classification. Indeed, the impact of

the shadow, target and background area can be very different from one target to another.

The areas that are the most critical for the classification have an intensity distribution

with a higher average and a bigger standard deviation than the areas contributing little to

the classification. The higher average confirms that the most important areas are those

that reflected the most the signal due to the target geometry. The higher standard devia-

tion would point out to specific surfaces of the target which reflect the signal in diverse

directions improving the specificity of the features. The frequent focus of the CNN for

the turret area would confirm this hypothesis as the turret is more specific to a target than

the planar surfaces.

Classification maps showed that the most important areas for the CNN are often lo-

cated on specific parts of the target. The location of these areas are also influenced by

the orientation of the target during the measurements with the areas facing the radar mat-

tering more. The important features are located on zones specific to each target but the

higher parts of the target such as the cabin or turret were often a focus point. A network

that benefits from data augmentation during training not only performed better but also

its classification process can be better explained. This makes the usage of such networks

more acceptable for real solutions from a safety and acceptability point of view.

It was expected and shown that the features become specific to a precise target as they

increase in complexity with the network depth. Classes become more easily distinguish-

able which is anticipated with the trend to design always deeper networks. It is shown that

without adapting the loss, only related to the targets class, the CNN still learns to build

features specific to some environmental variables and in particular specific to the target

orientation.
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The main objective of this work is to develop novel techniques to perform SAR ATR.

In order to be able to evaluate the performance of SAR ATR algorithms properly, datasets

for evaluation are presented in Chapter 2. Then, various SAR ATR methods are tested

with the implementation of feature-based classification in Chapter 4 followed by the im-

plementation of a deep learning method taking into account the target orientation issue of

SAR in Chapter 5. Chapter 6 focuses on the analysis of the decisions of the deep neural

network with a main interest in the location of the areas motivating the classification.
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In this chapter, the main findings will be summarised, the limitations of the approaches

taken will be addressed and further possible work will be suggested.

7.1 Research summary

There are multiple advantages to perform SAR ATR. Indeed, SAR data is robust against a

wide range of weather conditions and can even be taken during the night. However, SAR

data is challenging to analyse, even for experts. In addition to that, with the number of

sensor increasing, humans have to handle more and more information. Thus, automation

or even simplification of the decision process using ATR is important. Many challenges

are faced while performing SAR ATR such as for example data changes when a change

in the environment occurs, the impact of speckle, and the lack of varied training data due

to the acquisition constraints.

Without a sufficient amount of varied SAR data, it is difficult to have robust clas-

sification methods, which will tend to overfit to the training data, especially for deep

learning methods. A new ISAR dataset called the MGTD and acquired in a laboratory

is thus proposed. It contains 3 different targets and images sequences obtained in dif-

ferent environments with different target configuration, depression angle and laboratory

backgrounds between the training and testing set for a total of 1728 images.

As the amount of data is much higher and the applications for algorithms working

in the optical domain are numerous, much more research has been carried out in this

domain than in the SAR domain. One of our objective was to see to what extent the

work carried out for the optical domain could be transferred to the SAR domain. A

GMM segmentation adapted for SAR images with a single polarisation is proposed. The

objective is to model the image background along the image sequence and thus isolate

the target. Compared to a simpler threshold method, the recall rate increases from 55%

to 88%. In addition, various features issued from the optical domain are compared in

order to perform target classification by matching the most similar areas of the targets
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between the training and testing set. Both gradient and binary features are tested and

on the contrary to the optical domain, it is the binary features such as BRISK (92%)

that perform the best and not the gradient features such as SIFT (57%) as they may be

more affected by speckle. The influence of the target orientation is also shown with the

matching of the target to recognise reduced to only the targets in the training set that share

a similar orientation. The classification score is improved from 80% to 92%, showing the

influence of the target orientation on its appearance.

Deep learning has improved the classification scores in the optical and SAR domain.

Indeed, the features are more numerous and fit the training data better than the features

developed by humans. Improvements to deep learning classification solutions are pro-

posed in this work by taking into account SAR specificities. One of the main constraint

for deep learning methods is the lack of massive and varied databases, especially in the

SAR domain. Data augmentation increases artificially the number of images for the algo-

rithm training by providing altered versions of the original images. A data augmentation

is proposed that reproduces speckle noise in the images. A simple AlexNet achieves clas-

sification rates of 77%, 86% and 91% respectively without any data augmentation, with

translation data augmentation only and with both the translation and noise based data aug-

mentation on the MGTD. A deep learning architecture, named Pose-informed, that takes

into account the target pose in its classification is proposed. The target orientation is first

determined using a Hough transform and a CNN. This target orientation determination

performs better than the former Rician model and does not need the target class before-

hand. Once the target orientation determined, the target classification is assigned to a

CNN specialised in the appropriate target orientation range. This method achieves higher

classification rates on the MGTD, MSTAR SOC 10, MSTAR EOC 1, MSTAR EOC 2

and is outperformed only on the MSTAR EOC 3 by an AlexNet with respective deltas

of 3.09%, 2.14%, 8.26%, 1.77% and -1.7%. A classification rate of 99% is achieved

compared to 97% for the AlexNet on the MSTAR SOC 10.

If the main current focus point of SAR ATR research is the classification performances
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using artificial intelligence, there is the emergence of questions relative to the lack of

understanding of deep learning solutions decisions. Indeed, the implementation of deep

learning methods in real scenarios is directly linked to the trust that can be had in such

algorithms. The lack of understanding means that the reasoning leading to a decision

could lack robustness and that the correction of errors is not straightforward. Several

tools are proposed in order to explain the classifications made by an AlexNet.

• It is shown that the relative role of the shadow, target and background is relative to

the target. However, overall, the shadow area is not exploited as much as expected,

given its information on the target structure used by the operators.

• The distribution of the intensities of pixels in areas essential for the CNN to handle

classification is different from other areas. However, it is difficult to distinguish

those areas beforehand.

• The location of the zones essential for classification by the CNN are studied per

target. For the MSTAR, the most important role in the classification is played by

the higher areas such as the target turret or cabin and the front area such as the

bulldozer blade. In the MGTD, the important zones are specific to each of the three

targets. These important zones are not only studied for each target, but also for each

target orientation range. It can be seen that it is the areas directly facing the radar

and not occluded that gather most of the CNN attention.

• The specialisation of the features to the target class and target orientation along the

CNN depth is also studied. It appears that not only do the features get specific to

the target class, but also to the target orientation, even though it is not included

directly in the loss which is optimised during the CNN training. As CNNs learn en-

vironmental conditions during training in addition to their main objective, transfer

learning could be extended to benefit from bigger datasets from the same domain

but intended for other uses.

212



CHAPTER 7. DISCUSSION AND FUTURE WORK

7.2 Evaluation of SAR ATR methods

It is essential to ensure that the algorithm tested for SAR ATR are evaluated and compared

fairly. However, the complex acquisition process of SAR and ISAR images makes the

creation of an optimal dataset difficult. Currently, SAR ATR methods are evaluated on

the MSTAR dataset. In Chapter 2, an alternative is proposed in the MGTD.

7.2.1 Lack of variety in the SAR ATR dataset

Overfitting generated by the lack of image diversity

In Chapter 2, it was shown that there is correlation between the training and testing sets

of the MSTAR for standard conditions. This correlation can be in part attributed to the

multipath, but the correlation extent shows that this is probably not the only cause. For

the standard conditions, without the target present in the image, still 61% of the image

were correctly classified using a simple method on the background only for the MSTAR

SOC 10 containing 10 targets. On the MGTD, this score reached only 56% compared to

83% on the MSTAR SOC 3 dataset which has the same number of targets.

In addition, there is a lack of diversity in the training set as only one image sequence

describes each target in the training set for the MSTAR SOC 10, EOC 1, EOC 2 and

EOC 3. Thus only one specific version of the target, with one unique configuration and

depression angle is present in training. Images in a sequence are taken one after the other

and are thus not independent. As a result, choosing a good performing model is difficult

as the validation set is a random subset of images taken from the same sequences present

in training. Overfitting can be in this case not detected or even rewarded. The lack of

diversity during training encourages the model to overfit. Few parameters vary between

training and testing sets, especially for the MSTAR SOC.

In Chapter 2, an alternative dataset is thus proposed, with different target configura-

tions and depression angles during training. There are thus 4 sequences of image for each

target in the training set, with one of which that can be used independently for validation
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of the model.

Difficulty to evaluate the performance of SAR ATR in real conditions

The tolerance to overfitting and homogeneity of the training and testing data leads to

extremely high scores in the MSTAR. The classification scores saturate, with scores over

99% in the MSTAR SOC 10 and scores over 96-98% in the MSTAR EOCs, leaving little

room for testing and comparing different methods. Possible over-fitting also makes the

results of existing models questionable in real conditions. Thus, further work could be

done in the direction of a generalisation of robustness tests.

7.2.2 Propositions concerning the dataset on which SAR ATR meth-

ods are evaluated

A robustness test against target translation has been carried out in Chapter 5. Even though

the model trained in a standard way and the model trained with translation data augmen-

tation perform equivalently on the standard testing set, the results are different on the

testing set with randomly translated images. That shows the limitations of the current

testing method that does not prepare for the robustness needed for a system to work un-

der real conditions. Even though the MGTD provides new configurations and depression

angles in the testing set, several other improvements could be made.

It would be interesting to have a publicly released improved testing set, to have a

more challenging, but still standard way or evaluating the SAR ATR algorithms. As the

acquisition of new real data is expensive in terms of time and means, some alternatives

are proposed. Several transformations, even if synthetically produced, could be applied to

the images in the testing sets in order to evaluate the robustness of the models proposed.

These transformations could include translation but also occlusion by masking part of the

target, or noise addition. The noise addition proposed initially for data augmentation in

Chapter 5 could be applied to produce highly noisy test images. GAN can also be used to

provide advanced simulations of realistic SAR images taken under diverse environmental
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conditions with, for example, a variety of backgrounds [89].

7.3 Application of classification methods from the optical

to the SAR domain

Chapters 4 and 5 show methods currently applied to the visual domain and investigate

how these can be transferred to SAR. The specific properties of SAR images can make

the transfer of such techniques from the visual domain difficult.

7.3.1 Visual feature classification

Speckle has a strong influence on detection and feature classification. It makes the de-

tection of corners harder than in optical images and also corrupts the feature description.

Binary features, that have less description capabilities, end up performing better than gra-

dient features as seen in Chapter 4. The speckle is less described to the advantage of target

characterisation. The proposed classification comparison for different features is limited

by the number of features compared. Other features could be included to further the study

such as features issued from wavelets [148, 149], or features issued from trained CNNs

[75–77]. In addition, detectors specific to the SAR image and more robust against speckle

could be designed. Indeed, the accurate description of the features cannot be achieved if

the areas with important information are not located first. In Chapter 4, a grid is used

as a detector to compute features at a constant distance. Out of the detection algorithms,

AGAST performed the best. Even though the detection adapts to the environment and

should not require additional training, it could be interesting to see if the performance of

the whole classification method could be improved by training the decision trees of the

AGAST on SAR images rather than on visual images.

Standard feature classification, and especially with a higher number of targets, is cur-

rently outperformed by deep learning methods. It can be thus interesting to use features

determined by a trained CNN instead of standard features. Further work could also be
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carried out on the input given to CNNs. Indeed, this work has shown that even with less

information, binary features still achieve higher scores. Thus, to undermine the influence

of speckle, images with less intensities could be supplied to the network. An option could

also be to include a layer comparing intensities, rather than going through convolutional

layers only.

7.3.2 Deep learning

Chapter 4 shows that the target orientation affects deeply the features leading to classifica-

tion. Target features with a different orientation are not simply rotated and classification

scores drop severely when trying to match targets with different orientations. Thus, a

deep learning method is implemented which takes target orientation into account for clas-

sification. The classification is handled after the orientation determination by assigning

the image classification to a neural network trained on targets with a similar orienta-

tion. Overall, the CNNs trained on a specific orientation range performed better than a

standard CNN with the same architecture trained on images with all target orientations

altogether. As the worst results occurred on the dataset on which the orientation determi-

nation was the poorest, it would be interesting to evaluate to what extent the classification

score was damaged by attributing the image to the wrong pose-informed CNN (usually

in the next range if the Hough transform failed or in the opposite range if the orientation

CNN failed). A simpler method to determine the target orientation without requiring deep

learning could be investigated according to the results on the damage on the classification

score done by misattributing the image to the wrong pose-aware CNN.

The main limitation of the proposed architecture is the additional storage needs. An-

other aspect to investigate is thus the extension of the architecture proposed to other type

of networks and particularly to shallower networks. The increase of performance could

also be studied for more complex networks to see if the classification score can be in-

creased even more.

Orientation is not the only environmental variable that can affect the target image.
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This architecture could also be extended to adapt to other environmental changes, such as

different depression angles or background types.

7.4 Influence of the acquisition environment on the clas-

sification scores

In Chapter 6, the features enabling target classification with the CNN are analysed. The

parts of the image that are the most used to achieve classification for the various target

classes and for the various target orientations are investigated. The feature adherence

to specific areas of the image is studied to understand the extent of the contribution of

the target, shadow and clutter. An analysis of the distributions of the features deemed

of interest by the network compared to other parts of the image is also carried out. The

strongest limitation of this analysis is that it is carried out on a single well-trained AlexNet

network. The results were reproduced only for other AlexNet with similar training. How-

ever, in order to be able to generalise those results, similar analysis should be carried out

on networks with other architectures or at least different training parameters.

If these results can be generalised, more robust results could be achieved by encour-

aging the CNN during training to better use the information contained in the image by

focusing more on the target shadow, for example. Faster methods could also be imple-

mented by focusing the feature analysis to specific parts of the target critical for target

classification such as the most illuminated and highest areas of the target.

In Chapter 6, the specialisation of the features learnt by the CNN along its depth is

shown. This specialisation is specific to the target classes learned, as choosing the wrong

target will impact the loss function during training. The specialisation is also specific to

other parameters that are not included in the loss function such as the target orientation.

This is particularly interesting considering the lack of data for SAR ATR. If features in-

fluencing the environment without a direct link to the main objective of the network are

partly learnt anyway, an option could be to do task transfer learning. The CNN would be
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firstly trained to perform another task on data close to the data available for SAR ATR

and then be trained with transfer learning to perform ATR on SAR dataset. An example

could be to train a semantic pixel segmentation method such as an encoder-decoder on

SAR satellite images in a first instance. Some data is available on that subject with the

potential of intersecting satellite data with Google Earth optical images [150]. The en-

coder could serve as an already trained base to perform SAR ATR on the MSTAR, with a

less challenging transfer learning, as the features learnt by the encoder would already be

specific to SAR data. No further SAR data designed for ATR would be necessary while

the classification performance of the network could be improved with a complete SAR

training on more diverse data.
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Appendix A

Generation of SAR and ISAR data for

ATR

A.1 MGTD

A.1.1 Nomenclature

Each sequence is labelled with an identifier following this nomenclature : x-vd where x is

the number of the sequence (1-66), v is the variant of the target (T64n, T64s, T64f, T72n,

BMP1n) and d is the height of the antenna, linked to the depression angle of the sequence

(l for the 1.54 m radar, m for the 1.63 m radar, h for the 1.72 m radar). An example of a

sequence name could be 1-T64sh. In this case, the sequence number is 1, the target used

is the T64s and the radar height is 1.72 m.

A.1.2 Sequence details

No improvement was noticed by including the extra training in the training for the classi-

fication algorithms but still included it for potential further work.
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Appendix B

Deep learning classification

As presented in Section 5.3.2, these graphs shows the investigation to achieve the best

learning rates on the MSTAR EOCs. In the end, the same learning rate as in the MSTAR

SOC 10 is used. The accuracy achieved is achieved after 5 epochs and the choice of the

learning rate is random inside a pre-defined range.
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Fig. B.1: Learning rate study for the EOC 1 MSTAR dataset.
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Fig. B.2: Learning rate study for the EOC 2 MSTAR dataset.
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Fig. B.3: Learning rate study for the EOC 3 MSTAR dataset.
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Appendix C

Deep learning network explainability

through feature analysis

Here are presented the the full results partially described in Section 6.4.2. The histograms

represent for each area of the image, i.e. the target, shadow of clutter area of the image,

the criticality of the features present for the deep network. Low intensities means that the

probability of correct classification is low for the target and that this feature is deemed

essential to the network. High intensities show that those features are not critical. The

histograms are diverse for each target but it appears that the main concentration of critical

features is in the target area followed by the clutter area.
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Fig. C.1: Histograms of the most critical features (minimal intensity in the occlusion map)
in each image per target per area of interest
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Fig. C.1: Histograms of the most critical features (minimal intensity in the occlusion map)
in each image per target per area of interest
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Titre : Techniques de Classification par Deep Learning et Descripteurs pour l’Imagerie Radar 

Mots clés : RSO, RAC, Deep learning, Classification, Segmentation, Computer vision. 

Résumé : Une plateforme autonome en mouvement dotée d'un système radar peut générer des 
images Radar à Synthèse d'Ouverture (RSO ou SAR). Ces images fournissent des informations 
stratégiques pour des applications civiles et militaires. Elles peuvent être acquises de jour comme 
de nuit dans des conditions météorologiques variées. Des algorithmes visant à la Reconnaissance 
Automatique de Cible (RAC ou ATR) sont alors utiles pour assister voire automatiser la prise de 
décision. En effet, l’interprétation de ces images peut être complexe, y compris pour un opérateur 
expérimenté. 
 
La classification d'images du domaine visible génère un intérêt important des chercheurs, en 
partie grâce à la profusion des données. Par conséquent, des méthodes robustes de classification 
par descripteurs et deep learning ont été développées pour les images visibles. A l’inverse, une 
problématique essentielle rencontrée lors du développement d'algorithmes pour la RAC RSO est 
la rareté des données accessibles au public. Une difficulté supplémentaire est la variabilité des 
phénomènes physiques lors de l’acquisition radar.  Les méthodes de classification des images 
optiques pourraient être adaptées pour les images RSO. 
 
Une nouvelle base de données d'images RSO Inverse (RSOI ou ISAR) est proposée dans cette 
thèse. Elle contient des images d'entraînement et de test obtenues dans des configurations 
variées. Une technique visant à générer des images artificielles supplémentaires est aussi 
développée. L’objectif est d’améliorer l’efficacité de l’apprentissage des algorithmes de 
classification nécessitant de nombreuses images d'entraînement, tels que les réseaux de 
neurones. Cette technique consiste à simuler un bruit SAR réaliste sur les images initiales. 
 
Une segmentation basée sur des Modèles de Mélange de Gaussiennes (MMG ou GMM) est 
adaptée à des images RSO à polarisation simple. Des descripteurs conçus pour caractériser des 
images optiques sont utilisés dans le domaine RSO afin de classifier des cibles après 
segmentation et leurs performances respectives sont comparées.  
 
Une nouvelle architecture de réseau de neurones, appelée pose-informed, est développée. Elle 
prend en compte les effets de l’orientation de la cible sur son apparence dans les images RSO. 
Les résultats présentés montrent que cette architecture permet une amélioration significative de la 
classification par rapport à une architecture standard. Au-delà des performances, un enjeu clé 
réside dans l’explicativité des méthodes issues du deep learning. Un ensemble d’outils analytiques 
sont présentés afin faciliter la compréhension du processus de décision du réseau de neurones. 
Ils permettent, entre autres, l’identification des zones vues comme essentielles à la classification 
par le réseau de neurones. 
 

 



 

 

 
 
 
 
 
 
 

 
  

Title : Deep Learning and Feature-Based Classification Techniques for Radar Imagery 

Keywords : SAR, ATR, Deep learning, Classification, Segmentation, Computer vision. 

Abstract : Autonomous moving platforms carrying radar systems can synthesise long antenna 
apertures and generate Synthetic Aperture Radar (SAR) images. SAR images provide strategic 
information for military and civilian applications and they can be acquired day and night under a 
wide range of weather conditions. Because the interpretation of SAR images is a common 
challenge, Automatic Target Recognition (ATR) algorithms can help assist with decision-making 
when the operator is in the loop or when the platforms are fully autonomous. 
 
One of the main limitations of developing SAR ATR algorithms is the lack of suitable and publicly 
available data. Optical images classification, instead, has recently attracted significantly more 
research interest because of the number of potential applications and the profusion of data. As a 
result, robust feature-based and deep learning classification methods have been developed for 
optical imaging that could be applied to the SAR domain. 
 
In this thesis, a new Inverse SAR (ISAR) dataset consisting of test and training images acquired 
under a range of geometrical conditions is presented. In addition, a method is proposed to 
generate extra synthetic images, by simulating realistic SAR noise on the original images, and 
increase the training efficiency of classification algorithms that require a wealth of data, such as 
deep neural networks. 
 
A Gaussian Mixture Model (GMM) segmentation approach is adapted to segment single-polarised 
SAR images of targets. Features proposed to characterise optical images are transferred to the 
SAR domain to carry out target classification after segmentation and their respective performance 
is compared.  
 
A new pose-informed deep learning network architecture, that takes into account the effects of 
target orientation on target appearance in a SAR image, is proposed. The results presented in this 
thesis show that the use of this architecture provides a significant performance improvement for 
almost all datasets used in this work over a baseline network. Understanding the decision-making 
process of deep networks is another key challenge of deep learning. To address this issue, a new 
set of analytical tools is proposed that enables the identification, amongst other things, of the 
location of the algorithm focus points that lead to high level classification performance. 
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