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Abstract

Ponderomotive laser self-focusing poses a threat to the success of the inertial confinement fusion (ICF) program

given that it locally enhances the laser intensity. This intensity amplification has two detrimental effects:

i) undermining the uniformity of the shock wave launched into the target, and ii) increasing the probability

of exciting laser-plasma instabilities. Despite several optical techniques have been implemented to smooth

ponderomotive effects, they still remain a concern in case of crossing beams or in spike pulse-plasma interaction

as in shock ignition.

In order to ameliorate the interpretation of experimental campaigns by means of radiation-hydrodynamics

simulations, the Paraxial Complex Geometrical Optics (PCGO) module has been implemented in the hydrody-

namics code CHIC in two-dimensional planar geometry: such a method is an improved version of the standard

Ray-Tracing technique. PCGO accounts for nonlinear laser-plasma interaction such as ponderomotive force and

hot electrons generation and propagation, usually neglected in hydrodynamic simulations. This approach is also

used for creating spatially modulated laser beams by superposing Gaussian PCGO beamlets in the far-field.

Their intensity envelope generates the intensity fluctuations. Although this PCGO-based method has improved

the accuracy of CHIC simulations, the superposition of PCGO beamlets produces larger and longer speckles

than real ones, and their self-focusing may be overestimated.

In this thesis, we develop a method for describing and controlling the excessive ponderomotive self-focusing

developing in PCGO speckles while performing CHIC simulations. This study has been conducted in stationary

plasmas. First, we investigate self-focusing of a single Gaussian PCGO beamlet in a homogeneous nonabsorbing

plasma by comparing its behavior to a Gaussian-shaped beam modeled with the paraxial electromagnetic code

HARMONY. This comparison allows to define the domain of beam power where the PCGO approximation

is valid. We found that within 4 times the critical power, PCGO correctly reproduces HARMONY results.

Afterwards, we consider the self-focusing of a PCGO speckle created by superposition of several beamlets,

referred to as a multi-beamlet speckle. This speckle stands for a reference for any PCGO speckle created

in CHIC. The reduction of the speckle intensity enhancement is quantified as a function of the number of

superposed beamlets and by considering two strategies for multi-beamlet speckle shaping: random and regular.

The latter configuration demonstrates better performances in controlling and reducing ponderomotive effects

for a number of beamlets equal to three: our results show that the critical power of a three-beamlet speckle

is twice higher compared to the critical power of a Gaussian beam with same characteristics. This novel

speckle configuration has been implemented in CHIC and employed to generate multi-speckle beams whose

speckle intensity distribution obeys to an exponential law. We then studied the self-focusing of a spatially
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modulated beam (multi-speckle beam) in a homogeneous nonabsorbing plasma and show that our configuration

allows to properly treat ponderomotive effects for different laser intensities: this method describes the speckle

intensity statistics modification induced by speckle self-focusing and inter-speckle interaction as observed in

electromagnetic simulations. The last part of the thesis is devoted to establish a baseline towards modelling of

laser self-focusing in real ICF conditions. For this purpose, our results are extended to absorbing plasmas with

a linear density profile. Speckle self-focusing is investigated here for different plasma lengths, and the effect

of laser absorption is discussed. It is demonstrated that the proposed method of creation of a multi-beamlet

speckle pattern operates in the conditions relevant to the direct-drive ICF. It allows to control efficiently the

speckle self-focusing and its effect on the speckle intensity distribution in plasma.
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Résumé de la thèse

L’auto-focalisation laser due à la force pondéromotrice constitue un obstacle au succès du programme de fusion

par confinement inertiel (FCI) étant donné qu’elle augmente localement l’intensité laser. Cette amplification

d’intensité a deux effets néfastes: i) diminuer l’uniformité de l’onde de choc lancée dans la cible, et ii) accrôıtre la

probabilité d’excitation des instabilités paramétriques. Bien que plusieurs techniques optiques aient été mises en

œuvre pour atténuer les effets pondéromoteurs, ils restent une préoccupation en cas de croisement de faisceaux

ou d’interaction avec une intensité laser élevée comme dans l’allumage par choc.

Afin d’améliorer l’interprétation des campagnes expérimentales au moyen de simulations hydrodynamiques,

un module appelé Paraxial Complex Geometrical Optics (PCGO) a été implémenté dans le code hydrody-

namique CHIC en géométrie plane bidimensionnelle : une telle méthode est une version améliorée de la tech-

nique standard du Ray-Tracing (RT). PCGO tient compte de l’interaction non linéaire laser-plasma telle que

la force pondéromotrice et la génération et la propagation d’électrons chauds, généralement négligés dans les

simulations hydrodynamiques. Cette approche est également utilisée pour créer des faisceaux laser spatialement

modulés par superposition de faisceaux gaussiens PCGO : l’enveloppe d’intensité de ces faisceaux génère des

fluctuations d’intensité (“ speckles ”) en champ lointain. Bien que cette méthode basée sur PCGO ait amélioré

la précision des simulations CHIC, la superposition de faisceaux PCGO produit des speckles laser plus grands

et plus longs que dans les expériences, et leur auto-focalisation peut être surestimée.

Dans cette thèse, nous développons une méthode pour décrire et contrôler l’auto-focalisation pondéromotrice

des speckles dans un plasma stationnaire en utilisant CHIC dans le contexte de l’approche PCGO. Dans un

premier temps, nous étudions l’auto-focalisation d’un faisceau PCGO gaussien dans un plasma homogène non

absorbant en comparant son comportement à un faisceau de forme gaussienne modélisé avec le code HARMONY

qui est basé sur une résolution paraxiale de l’équation d’Helmholtz. Cette comparaison permet de définir le

domaine de la puissance du faisceau où l’approximation PCGO est valide. Nous montrons que jusqu’à 4 fois la

puissance critique, PCGO reproduit correctement les résultats d’HARMONY. Ensuite, nous considérons l’auto-

focalisation d’un speckle PCGO créé par superposition de plusieurs sous-faisceaux, appelé “ multi-beamlet

speckle ”. Ce speckle représente une référence pour tout speckle PCGO créé dans CHIC. La réduction de

l’augmentation de l’intensité du speckle est quantifiée en fonction du nombre de faisceaux superposés et en

considérant deux stratégies pour la mise en forme du speckle à faisceaux multiples: aléatoire et régulière.

Cette dernière configuration permet d’obtenir de meilleures performances pour contrôler et réduire les effets

pondéromoteurs pour un nombre de faisceaux égal à trois: nos résultats montrent que la puissance critique d’un

speckle à trois faisceaux est deux fois plus élevée que la puissance critique d’un faisceau gaussien de mêmes
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caractéristiques. Cette nouvelle configuration de speckle a été implémentée dans CHIC et utilisée pour générer

des faisceaux multi-speckle dont la distribution des intensités des speckles obéit à une loi exponentielle. Nous

avons ensuite étudié l’auto-focalisation d’un faisceau modulé spatialement (faisceau multi-speckle) dans un

plasma homogène non absorbant et montré que notre configuration de speckles permet de traiter correctement

les effets pondéromoteurs pour différentes intensités laser: cette méthode décrit la modification des statistiques

d’intensité de speckle induite par auto-focalisation du speckle et l’interaction entre speckles comme c’est observé

dans des simulations électromagnétiques de référence. La dernière partie de la thèse est consacrée à établir une

base pour la modélisation de l’autofocalisation laser dans des conditions FCI réelles. A cet effet, nos résultats

sont étendus aux plasmas absorbants dont la densité présente un profile linéaire. L’auto-focalisation est étudiée

ici pour différentes longueurs de plasma, et l’effet de l’absorption laser est discuté. Il est démontré que la

méthode proposée pour la création d’une distribution de speckles aux faisceaux multiples fonctionne dans les

conditions pertinentes pour la FCI an attaque directe. Elle permet de contrôler efficacement l’auto-focalisation

du speckle et son effet sur la distribution de l’intensité des speckles dans le plasma.
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années: Dimitri Batani, Philippe Nicoläı, Jean-Luc Feaugas, Jean-Luc deBois, Xavier Ribeyre, Edouard LeBel.
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Introduction

Promise of a new energy source from nuclear fusion

The increasing of the world population and the negative impact of the conventional oil- and carbon-based

energy sources on the environment push the research on finding new ways to produce energy. The major part

of world power plants uses oil and coal as fuel, which poses several issues. On one hand, both oil and coal

have limited supplies on Earth, and the growing of the world population makes them an insufficient resource for

satisfying the whole energy needs on long time-scales. On the other hand, it is clear that the next generation of

power plants should be more environmentally friendly in order to limit pollution and stop the global warming.

Earth temperature increasing may lead to various negative scenarios not only for the mankind, but also for

animals and plants: thinning of pole glaciers, expansion of the deserts and seasons perturbation are few of the

inauspicious effects of global warming which threat all the living beings on Earth. Therefore the new forms

of energy production must be oil- and carbon-free, provide as much electrical power as oil- and carbon-based

power plants, and be built with the most up-to-date security technology in order to avoid power plant collapse

due to potential catastrophes such as explosions, terrorist attacks, earthquakes, tsunami, etc.

From a scientific point of view, the characteristic of a power plant mostly depends on the fuel used. The

energy sources can be divided in three macro-categories [1]:

� Fossil (gas, oil, carbon): sources in depletion and highly polluting;

� Renewable (solar, wind, bio-mass): sources which are naturally produced on human time-scale. They are

the cleanest energy sources, but even the most optimistic previsions forecast that they will not be able to

satisfy the entire world energy needs.

� Nuclear: fission and fusion. The former is very efficient, but it has many disadvantages, first of all the

security and the treatment of radioactive waste. The latter represents a clean path to achieve energy

production but still presents various scientific and technical issues [2].

Because of the continuous increase of the world population, we must develop the knowledge to make all the clean

energy sources economically convenient and technologically efficient as much as possible. In fact, a single energy

source would not suffice to satisfy the whole world energy needs. Nuclear fusion falls among the cleanest energy

sources. Despite it was born and developed for military purposes [3], in the next we refer to nuclear fusion as

conceived for civilian purposes, i.e. as energy source. In order to use fusion reactions for civilian needs, a reactor
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should operate in a controlled environment at high temperatures, and we refer to nuclear fusion in the civilian

context as thermonuclear controlled fusion. Many reasons support the development and the improvement of

thermonuclear fusion-based power plants [4]:

� it is clean: the quantity of radioactive waste is minimal;

� the fusion fuel, constituted by Deuterium (D) and Tritium (T), is largely abundant in nature: Deuterium

can be find in the seawater, while tritium is extracted through Lithium reactions;

� the fusion-based power plant is safer than fission-based power plant given that the fusion process is

limited to a small amount of fuel and it can be stopped by switching off the mechanism which confines

the environment where fusion occurs;

� it can produce a very high amount of energy with a small amount of fuel;

� it is easily replenished from seawater, which represents a very huge reservoir of deuterium.

In spite of these advantages and all the optimistic evaluations, the current technology does not allow to reach

the desired energy gain from fusion reactions yet. In the following, we briefly describe nuclear fusion concepts

and how they are related to energy production.

Nuclear fusion

Nuclear fusion consists of a reaction where two light nuclei inelastically interact and produce heavier nuclei

with a positive energy yield, provided that they have enough energy to overcome the Coulomb repulsion [5]. In

nuclear physics, a fusion reaction is characterized by its Q-value defined as:

Q =

(∑
r

mr −
∑
p

mp

)
c2, (1)

where the index r refers to reagents and p to products. The Q-value represents the energy released due to the

mass change between reactors and products. The sign of Q indicates if the reaction is exothermic (Q > 0) or

endothermic (Q < 0), respectively. In the first case, the reaction releases energy, in the second case it needs

energy to occur. The Q-value can be expressed in terms of nucleons binding energy B

Q =
∑
p

Bp −
∑
r

Br (2)

where B is negative for all the isotopes. A semi-empirical mass formula, or Weizsaecker formula allows to

express B in terms of empirical parameters [5].

Figure 1 shows the binding energy per nucleon as a function of the atomic mass A. The curve increases for

light nuclei (A < 56), then slightly decreases for heavier nuclei. It follows from Eq. (2) that nuclear reactions

are exothermic if lighter nuclei fuse to produce an heavier nucleus or when two heavy nuclei split in lighter

fragments. The first case refers to nuclear fusion, the second case refers to nuclear fission. Fusing light nuclei

is the source of stellar energy production: the star gravity confines the nuclei in the stellar interior. This
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Figure 1: Binding energy per nucleon as a function of mass number. Exothermic reactions occur when two

light nuclei (A < 56) fuse (nuclear fusion), or when a heavy nucleus (A > 56) breaks up in two lighter nuclides

(nuclear fission). Reprinted from [6].

confinement creates very energetic, high temperature projectiles (the nuclei) such that the Coulomb barrier is

overcome when they collide.

Besides the Q-value, other fusion parameters are:

� cross section σ: it stands for the probability to produce a fusion reaction when two nuclei collide. The

cross section depends on the relative velocity of the particles. In case where we have two colliding beams

of particles with a fixed relative velocity and denoted by the index 1 and 2 respectively, the probability

that a particle in the beam 1 fuses with in a particle in beam 2 per unit length of interaction is n2σ, where

n2 is the particle density of beam 2. The cross section unit is cm2.

� averaged reactivity 〈σv〉: the cross section σ accounts for two-particle interaction. When the number of

interacting particles is large and the particles have a certain range of velocities, it is more convenient to

define another quantity, called reactivity σv. The reactivity stands for the probability of reaction per unit

of time and unit of density. Considering two beams of particles with a broad particle velocity range, the

averaged reactivity reads

< σv >=

∫
σ(v)vf(v)dv, (3)

where f(v) stands for the distribution function of particles and depends on the relative velocity. The

distribution function in the integral accounts for the fact that the particle of one beam can collide with a

particle of the other beam within a large range of relative velocities.

� reaction rate R1,2: it measures the number of reactions per unit of time and unit of volume occuring

between the species i and j. It is defined as follows

R1,2 =
n1n2

1 + δi,j
< σv > (4)
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Figure 2: Reaction rate as a function of the temperature of the system for different fusion reactions. Here it is

assumed that all the particles are in thermal equilibrium. Reprinted from [4].

where i = 1 and j = 2, δi,j is the Kronecker symbol which accounts for the symmetry of binary collisions:

δi,j = 1 if i = j, δi,j = 0 otherwise.

Figure 2 displayes the fusion reaction rate as a function of the temperature of the system for different fusion

reactions when all the particles are in thermal equilibrium. The Deuterium-Tritium reaction shows the highest

reaction rate at the lowest temperatures (T < 100 keV), which makes the DT reaction the most suitable to

harness thermonuclear fusion on Earth. Such a reaction has the following form

D2
1 + T3

1 → He4
2 + n (5)

and it represents one of the most important reaction in thermonuclear fusion research. The energy released is

Q = 17.6 MeV, and it is carried out by the neutrons and alpha-particles in form of kinetic energy.

Confinement of the fuel under extreme pressure and temperature is the only way to recreate the stellar

interior on Earth and activate fusion reaction. From Fig. 2, it is clear that the system must reach temperatures

above 10 keV in order to have a high reactivity. At such temperatures, the gas is completely ionized, becoming

a plasma.

In the following, we describe how plasma can be created and confined on Earth, giving rise to thermonuclear

controlled fusion. In particular, we describe one of the method used to plasma confinement: the inertial

confinement fusion (ICF).

Inertial Confinement Fusion (ICF)

As previously seen, fusion reactions must occur in matter in plasma state. One of the most challenging issues

dwells in confining such an ionized gas to densities and for times such that fusion reaction holds long enough to

burn all the fusion fuel. Two main methods of plasma confinement have been pursued: a magnetic confinement
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Figure 3: Example of a target and a laser pulse shape used in ICF direct-drive. Reprinted from [7].

(MCF) and an inertial confinement (ICF). In the next, we describe only the latter confinement technique given

that this doctoral thesis is inspired by issues encountered in ICF.

In ICF [7–10], a capsule composed by a low-Z material called ablator covers the core of a DT fuel. The latter

is turn divided in a cryogenic (solid) outer part and an inner DT gas. A high-power, nanosecond laser driver

uniformly illuminates the target, in order to ablate the outer shell. The ablated material presents in form of

plasma due to its high temperature. As a reaction to the ablation, the so-called rocket effect occurs: a shock

wave propagates inward and implodes the capsule up to temperatures and densities necessary to ignite the fuel.

Several configurations of ICF have been investigated. They can be divided in two main categories: indirect-

drive approach, in which the target is placed inside a cylindrical metallic hohlraum and it is compressed by the

x-rays produced by laser-hohlraum interaction, and direct-drive approach, where the lasers directly irradiate a

spherical capsule. In the following sections, we describe in more details some characteristics of direct-drive ICF

given that it represents the framework of this thesis.

ICF targets, laser pulse design and stages in ICF

The success of ICF program depends on the quality of beam-target coupling: higher energy gain requires to

maximize absorption and minimize indesired instabilities that jeopardize all the fusion process. The target

design has evolved from the dawn of ICF to nowadays in parallel to the progress of laser technology in order

to conceive the most favorable beam-target scheme. At these days, the ICF target has a radius between 1.5-

2.5 mm and presents two concentric layers [7]: a plastic (CH) layer of a thickness of 30-50 µm that serves as

ablator and a cryogenic layer of DT ice with a thickness varying from 150 to 600 µm which covers the inner

DT gas. The ablator and the cryogenic layer are referred to as target shell. The ablator interfaces with the

laser, and its composition (CH plastic) aims to increase the rate of laser absorption and the ablation pressure.

Figure 3 shows an example of an ICF target. The time-shape of the pulses currently used in the largest ICF

facilities such as NIF [11] is schematically illustrated in the same picture: the laser pulse lasts around 10 ns,

and three low-intensity, sharp pickets are launched before the main pulse in the first 4 ns. After 4 ns, the
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laser intensity abruptly increases in two steps, and the power peak of 300 TW is reached at 6 ns, lasting until

10 ns. This constant part represents the main part of the laser pulse, responsible for the most laser-plasma

interaction processes. This three-picket scheme allows to build the drive pressure needed for target compression

in subsequent steps in order to avoid a steep rising of the shell entropy. The NIF laser operates at a wavelength

of 0.35 µm, delivering an energy up to 2.1 MJ in this time interval. The peak laser intensity is above 1015

W/cm2. Although this target and beam design predicts to achieve a 1-D gain of 48 [7], several processes may

preclude the realization of such high gains in multi-dimensional geometry.

In the following, we briefly present the four stages of the laser-target interaction and the ICF process.

1. Early stage and plasma corona formation

As soon as the laser pulse interacts with the capsule surface, a plasma is created by material ablation.

Such a plasma moves outward and forms the target corona. Each one of the three pickets launches a

shock wave traveling up to the inner part of the shell. At this stage, two regions can be identified: the

interaction region and the transport region. In the first one, the laser interacts with the plasma corona.

The laser propagates up to the critical surface, characterized by a certain value of the plasma density

called critical density. The critical surface delimits the interaction region. Near this surface, laser energy

is in part reflected and in part absorbed by inverse bremsstrahlung. About 10% of the absorbed laser

energy is converted in x-ray radiation, whereas the main part is transferred to thermal electrons. Thanks

to these electrons, the deposited laser energy is transported to the ablation surface, maintaining the target

ablation. This process is called thermal transport characterized by the electron thermal conductivity. This

last one stands for a coefficient which links the heat flux to the electron temperature gradient.

2. Acceleration phase

The main part of the laser pulse is timed in such a way to launch a fourth shock wave that joins the previous

shocks at the rear side of the shell and create a strong inwards propagating shock. This process initiates

the compression of the internal fuel. The shock wave travels ahead of the ablation front. The efficiency of

the compression depends on many factors: for instance, laser-plasma instabilities produced by nonlinear

phenomena may degrade the compression efficiency. Plasma and laser conditions reached at this phase

represent the environment of interest of this thesis. Among all the nonlinear processes, we concentrate

on the ponderomotive laser self-focusing, which leads to a local intensity enhancement and filamentation

instability. These nonlinear effects have a harmful consequence on the compression efficiency because:

i) they break the laser uniformity by locally enhancing the laser intensity, and ii) they may support the

excitation of three-wave instabilities, which may be a source of suprathermal electrons. These electrons

enter the shell with an energy one-two orders of magnitude larger than the thermal electrons, thus they

can penetrate the ablation front and preheat the fuel. Preheating the fuel is undesirable because it reduces

its compressibility.

Linear and nonlinear laser-plasma coupling are presented in Chapter 1. Non-linear ponderomotive force

effects on laser-plasma dynamics are extensively treated in this thesis (see Chapters 2-3-4).
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3. Deceleration phase

When the shock wave arrives at the core, it bounces back and encounters the inward moving solid shell,

causing its deceleration. In this way, the kinetic energy of the laser-accelerated shell is converted into

internal energy. The fuel is then assembled: now it consists of a hot (∼ 3 − 8 keV), moderate density

(∼ 30 − 100 g/cm3) central hot spot surrounded by a colder (∼ 200 − 400 eV) but dense plasma layer

(∼ 300− 1000 g/cm3). At this stage, fusion reactions take place.

4. Ignition and burn phase

Fusion reaction takes place initially in the central hot spot. Ignition occurs if the energy gain in the hot

spot overcomes the energy losses. The α-particles created in fusion reactions deposit their energy in the

hot spot, supporting the reaction. Radiation, neutrons and electrons transport the energy outside the hot

spot, cooling it. If the temperature of the hot spot increases, the fusion reactions propagate outside into

the cold fuel. This process leads to the propagation of a burn wave, which is supposed to consume all

the remaining fuel. About 80% of the fusion energy leaves the target in form of neutron kinetic energy.

The α-particles and neutrons are absorbed by the reactor walls and their energy converted into thermal

energy. Neutrons are used also to produce tritium in reactions with lithium placed in a blanket behind

the chamber wall. Then the heat is used in turbines to generate electric energy. When all the capsule fuel

is consumed, a new capsule would be introduced and irradiated by lasers, and the process restarts.

This procedure is repeated several times per second in order to produce the desired electric power and supply to

the energy needed to maintain the power plant active (drivers, target fabrication and injection, debris removal).

Lawson’s criterion and need for using high intensity lasers

In order to ignite the reactions in the hot spot, certain conditions must be attained: by definition, fuel ignites

when the reaction self-sustains, which occurs when the energy released by the α-particles exceeds the loss due

to the thermal transport outside the hot spot. The ignition conditions are expressed in terms of plasma density

n and plasma confinement time τ : let us consider the plasma kinetic energy EK = 3nTV , where T is plasma

temperature in energy units, V is the hot spot volume and the factor three account for the three degrees of

freedom that particles have. We also assume an equal number of deuterons and tritons, i.e. nD = nT = n/2.

The energy produced during the plasma confinement time τ is Ef = WHτV , where W = n2 < σv > /4 is

the rate of fusion process. However, only the energy carried by alpha-particles has to be considered, which is

20%Ef . The remaining 80% carried by neutrons is lost because they leave the hot spot. In order to obtain an

energy gain, we must have that 0.2Ef > EK , which rewritten in terms of nτ gives the Lawson’s criterion:

nτ >
60T

< σv > QDT
. (6)

For DT reactions, QDT = 17.6 MeV, and, with the temperature of the system in the range T ∼ 5− 10 keV in

order to have a consistent fusion rate (see Fig. 2), the Lawson’s criterion requires that:

nτ ≈ 1014 − 1015 s/cm3. (7)
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In ICF context, Eq. (7) is usually rewritten in terms of the hot spot areal density [8]:

ρRhs > 0.3 g/cm2, (8)

where ρ is the hot spot density, whereas Rhs is the hot spot radius. Once multiplied the areal density by the hot

spot temperature, which is around 5 keV, one obtains the minimum pressure that needs to be attained in the hot

spot to trigger the ignition, which is around 150 Gbar [7]. Since this pressure depends on the shell implosion

velocity, one finds that the minimum implosion velocity vim needed to generate a such hot-spot pressure is

vim = 3 × 107 cm/s. On the other hand, hydrodynamic model of implosion [10] allows to relate the implosion

velocity to laser and target parameters:

vim = 1.63× 106α
3/10
if A

1/2
if (I15/λµm)

2/15
cm/s (9)

where αif is the in-flight adiabat parameter, Aif is the in-flight aspect ratio, I15 is the laser intensity in PW/cm2

units and λµm is the laser wavelength in micron units. The adiabat αif is defined as the ratio between the

shell internal pressure and the pressure of a cold degenerate electron gas at the moment when the shell is

accelerated to the velocity vim. Such a parameter characterizes the fuel compressibility. The in-flight aspect

ratio Aif is defined as the ratio of the capsule radius to the thickness at the same time. From theory and

numerical simulations [10], one obtains typical values of Aif around 25-40, whereas αif values lie in the range

1.5-4. Injecting those values of αif and Aif into Eq. (9), we obtain that the laser intensity needed to create

the correct implosion conditions ranges between 0.35 PW/cm2 to 6 PW/cm2 considering a laser wavelength

λ = 0.35 µm. Despite this estimation is rather approximate, it gives an idea of the intensity range one must

employ to accomplish ICF.

Alternative ICF schemes: shock ignition

Besides the conventional direct-drive scheme above presented, several other schemes have been developed in

order to generate energy gains as high as possible: for example, magneto-inertial fusion [12] aims to improve the

energy confinement by imposing an external magnetic field, or fast ignition [13], where the ignition is triggered

by relativistic electrons generated by an ultraintense laser which is fired into a small gold cone imbedded the

spherical fuel capsule. Among others, the shock ignition (SI) approach [14,15] promises ignition at a lower laser

energy than conventional hot-spot schemes: in the first step, a 10-ns laser of intensities around 1014 W/cm2

drives an implosion slower than in conventional direct-drive ICF, which reduces the occurrence of hydrodynamic

instabilities. In the second step, a spike pulse of a few-hundred of picoseconds and of intensity above 5× 1015

W/cm2 launches a strong shock of hundreds of Mbar towards the target core. This shock wave must be strong

enough to ignite the hot spot, and it is usually two, three times stronger than the shock wave launched by

lasers in standard ICF approaches. Numerous studies have demonstrated very promising results [16–18]. One

of the biggest concerns in SI is the generation of laser-plasma instabilities (LPIs) during the spike pulse-plasma

interaction. These instabilities may have two main detrimental effects: i) scattering off of the laser light which

weakens the strength and the symmetry of the shock wave, and ii) excitation of suprathermal electrons, which

propagate towards the hot spot. These hot electrons might pose a serious preheat threat to the capsule or
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rather contribute to increase the shock pressure, depending on their energy. The best scenario would involve

hot electrons with a temperature in the range of 40-70 keV which depose their energy downstream the shock

wave front, enhancing its strength [16, 19–21]. However, it is still not clear what are the best laser and target

configurations for such electrons to deposit all their energy in that region. In this context, understanding the role

of ponderomotive self-focusing may be crucial for the success of SI, even more relevant than in conventional ICF:

it may decisively contribute to hot electrons creation. The level of its contribution is still under investigation.

Importance of modelling of ponderomotive self-focusing in radiation-

hydrodynamics codes

As explained in the previous sections, high laser intensities are needed to compress the fuel to very high

temperatures and densities in order to ignite the fusion reactions. At these intensities, laser-matter interaction

has been widely studied in the literature, and several related phenomena have been identified [22]. Variation of

dielectric proprieties of plasma due to laser electric field propagation constitutes one of the most notable process:

under certain conditions, the refractive index of the plasma is modified and becomes laser intensity-dependent.

Such a modification affects the laser propagation, and produces a self-consistent feedback on the whole laser-

matter coupling. For instance, the medium refractive index may change such that to induce an enhancement of

the laser intensity. In dielectrics, this effect is called Optical Kerr effect [23], whereas in plasmas it is referred

to as ponderomotive laser self-focusing [24]. In this latter case, laser self-focusing occurs if the laser power (or

intensity) overcomes a threshold value. In inertial confinement fusion conditions, laser intensities are above 1014

W/cm2, and laser-induced ponderomotive force is expected to influence the laser propagation and the plasma

dynamics: the beam ponderomotive pressure transversely pushes the plasma particles away from the beam axis,

leading to a reduction of the laser traverse width because of the refractive index variation. The net effect is a local

laser intensity enhancement, which i) reduces the uniformity of the shock wave launched into the target, and ii)

enhances the probability of exciting laser-plasma instabilities, such as stimulated Raman scattering (SRS), two

plasmon decay (TPD), stimulated Brillouin scattering (SBS). These instabilities may jeopardize the fuel ignition.

It appears crucial to mitigate laser self-focusing in order for the ICF program to succeed. To do so, optical

smoothing techniques have been introduced in laser facilities. One of them creates small-scale modulations of

the laser intensity profile, known as speckle pattern. Spatial modulations in laser intensity are achieved by

phase plates such as random phase plate (RPP) [25] or kinoform phase plates (KPP) [26], placed behind the

focal lens: independently of the technique, the phase plate breaks the laser coherence, and small-scale spatial

fluctuations in the far-field appears. Usually, the beam transverse profile is shaped as a flat-top with an average

intensity imposed by the beam focal parameters. An exponential law characterize the probability distribution

of the speckle intensity. According to such a statistics, a fraction of them carries an intensity several times

higher than the average beam intensity. Instead, the smoothing by spectral dispersion (SSD) [27] introduces a

temporal smoothing of the beam fluctuations by inducing a temporal variation of the speckles location on time-

scales shorter than the hydrodynamic plasma response. Although all these techniques have improved the quality

of laser-plasma coupling in the corona [7, 28], undesired nonlinear effects may still occur in the high-intensity

27



speckles, which represent the tail of the probability distribution: even though the average laser intensity is below

the parametric instability threshold, the intensity of those speckle may overcome such thresholds. Furthermore,

ponderomotive effects may be important when two or more beams cross each other because multi-beam-plasma

interaction such as crossed beam energy transfer (CBET) [29–31] may occur: ponderomotive effects may induce

an energy transfer between beams especially in flowing plasmas. Also, the spike laser-plasma coupling in the

shock ignition context may be conditioned by ponderomotive self-focusing [32]. It is clear that any description

of nonlinear laser-plasma coupling cannot exclude ponderomotive-related processes.

Nonlinear laser-plasma coupling involves different spatial- and time-scales. From a numerical point of view,

these effects are studied with interaction codes, where propagation of a smoothed laser beam can be described

within the paraxial [33–35] or nonparaxial [36] approximation. Despite their success in treating nonlinear laser-

plasma coupling, these codes are limited to consider only the interaction between the laser and the target

corona, neglecting other ICF processes such as target implosion and capsule ignition for instance. A full

treatment of ICF demands macroscopic scales, multi-material laser-matter coupling, physics of the implosion,

and other phenomena incompatible with the electromagnetic microscopic description due to computational

costs and model limitations. Radiation-hydrodynamics codes instead accomplish those requirements because

they operate at a macroscopic spatial-scale and at a long time-scale as needed for ICF. Thus, the majority of

ICF physics can be included, and these codes represent the main numerical tool for describing the fusion process.

Concerning the laser interaction with the corona, laser energy deposition is often modeled in a simplified way by

using Ray-Tracing (RT) techniques [37]. Within the RT framework, the laser beams are represented by a bunch

of infinitely thin rays, each of them carrying a fraction of the laser power and propagating in plasma according

to Geometrical Optics (GO) laws. Despite the ray tracing is adopted in many hydrodynamics codes used in ICF

research, it cannot straightforwardly account for i) laser speckle structure, ii) collisionless laser energy absorption

and iii) nonlinear laser-plasma coupling processes, such as SRS, TPD and hot electrons generation and transport.

The main challenge in improving hydrodynamics code efficiency is in-line evaluation of multi-scale effects along

with an adequate implementation of laser smoothing techniques. In order to fulfill these goals, new modules have

been implemented in the hydrocode CHIC [38]: they rely on the Paraxial Complex Geometrical Optics (PCGO)

equations [39] and have been implemented in two-dimensional (2D) planar geometry [40]. The beamlets represent

the basic elements of the PCGO description: they consist in rays with a defined Gaussian intensity profile, so

they can be considered “thick” in contrast to the “thin” rays described within RT. This novel description has

opened the possibilities for modelling of different laser-plasma coupling phenomena in CHIC, such as cross beam

energy transfer, ponderomotive force and hot electrons generation and propagation [41]. Furthermore, it has

allowed to develop methods to model of optical smoothing techniques in CHIC, as for instance the creation of

spatially modulated beams. Laser intensity fluctuations are retrieved by randomly distributing the focal spots

of the beamlets in the focal volume, where they propagate following their optical path. Combination of the

beamlets allows to create a speckle pattern in the far-field, where a plasma (or a solid target) is placed. To be

computationally efficient and compatible with the hydrodynamics spatial resolution, the PCGO model has to

use a limited number of beamlets and speckles, at least an order of magnitude less than in reality. A typical
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transverse size of a laser speckle is of a few microns, while the spatial resolution of hydrodynamic codes is

about one order of magnitude larger than the laser wavelength. Thus, each PCGO speckle represents several

real speckles in terms of dimension, and it is not clear how PCGO speckles behave under the influence of the

ponderomotive force. The 2D planar geometry may introduce another shortcoming: scaling the real 3D speckle

intensity profile (or 2D axisymmetric) to a 2D planar configuration with larger speckles overestimates the PCGO

speckle power, while the intensity is preserved. Since the critical power in 3D and in 2D does not scale with the

same factor, bigger PCGO speckles could be more prone to self-focus than real ones: analytic estimation gives

that intensity enhancement in PCGO Gaussian speckles is twice higher than in smaller-scale real speckles of

equivalent intensity. Consequently, ponderomotively-driven local intensity enhancement may be miscalculated

in CHIC simulations, reducing the capability to interpret experimental results with CHIC. It is then necessary

to develop a method which permits to assess the ponderomotively-induced intensity enhancement of a PCGO

speckle to the same level as in real speckles.

Goals of this thesis

The goals of this thesis are i) to characterize the ponderomotive laser self-focusing in the radiation-hydrodynamics

code CHIC within PCGO in two-dimensional planar geometry, ii) to find a method to reduce PCGO speckle

ponderomotive intensity enhancement to a level compatible with the reality, and iii) to employ such a method in

some relevant ICF situations. These objectives are achieved by studying ponderomotive self-focusing of different

PCGO beams: a single Gaussian beam, referred to as a beamlet, a Gaussian speckle generated by superposing

a few beamlets, called multi-beamlet speckle, and a multi-speckle beam, which stands for the PCGO version of

spatially modulated beams.

First we have considered the self-focusing of a single beamlet. We have compared the beamlet self-focusing

to simulations performed with the paraxial wave-based code HARMONY. We have found that PCGO model

correctly describes the beamlet self-focusing in a homogeneous nonabsorbing plasma in the power regime ex-

plored and independently of the initial plasma density. In the same range of plasma density and beam power,

we have then studied the self-focusing of a Gaussian speckle modelled as a multi-beamlet speckle. This speckle

represents a prototype of any PCGO-generated speckles. Ponderomotively-induced intensity enhancement is

decreased compared to the single beamlet case. This reduction can be quantified as a function of the number

of superposed beamlets and by considering two strategies for multi-beamlet speckle shaping: random and de-

terministic. The latter configuration allows to better control the ponderomotive effects when three beamlets

compose the speckle. The deterministic method has been used for creating a multi-speckle beam and we have

then studied the self-focusing of such a beam in a homogeneous nonabsorbing plasma. We show that this

method describes the speckle intensity statistics modification induced by speckle self-focusing and inter-speckle

interaction as observed in electromagnetic simulations. At the end, all these results are extended to absorbing

plasmas whose density exhibits a linear profile. Self-focusing of PCGO beams is investigated here for differ-

ent plasma lengths, and the effect of laser absorption is discussed. This study demonstrated a validity of the

multi-beamlet speckle approach and its efficiency for controlling the self-focusing.
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Manuscript outline

This manuscript is organized as follows:

� Chapter 1: State-of-the-art:

The first chapter provides guiding theoretical considerations on i) laser models, ii) plasma physics, iii)

laser-plasma interaction and iv) the numerical tools employed to carry out this work: the electromagnetic

code HARMONY and the radiation-hydrodynamics code CHIC. In this context, the Paraxial Complex

Geometrical Optics theory and its implementation in CHIC are described. Illustration of laser pondero-

motive effects constitutes a big part of the section concerning the laser-plasma interaction: a quantitative

estimation of the error committed by approximating real speckles with larger PCGO speckles of same

intensity is recovered.

� Chapter 2: Self-focusing of a beamlet and a multi-beamlet speckle in homogeneous nonab-

sorbing plasmas:

This chapter addresses the issue of self-focusing of a beamlet and a multi-beamlet speckle in a homogeneous

nonabsorbing plasma. First, we investigate self-focusing of a PCGO beamlet by comparing its behavior to a

Gaussian-shaped beam modeled with the paraxial wave-based code HARMONY. This comparison provides

a range of parameters where the PCGO approximation correctly describes the self-focusing of Gaussian

beams. Then, we consider self-focusing of a PCGO multi-beamlet speckle, created by superposition of

several beamlets. This speckle stands for a prototype for any PCGO speckle created in CHIC. The

reduction of the speckle intensity enhancement is quantified as a function of the number of superposed

beamlets and by considering two strategies for multi-beamlet speckle shaping: random and regular. We

compare the two configurations in terms of controlling and reducing ponderomotive effects.

� Chapter 3: Self-focusing of a spatially modulated beam within the PCGO framework in

homogeneous nonabsorbing plasmas:

We adapt the PCGO-based method to create a multi-speckle beam by employing the best beamlets ini-

tialization scheme found in Chapter 2. We then study the self-focusing of a spatially modulated beam

(multi-speckle beam) in a homogeneous nonabsorbing plasma and compare our results to former publica-

tions on speckles self-focusing.

� Chapter 4: Laser self-focusing in plasmas with a linear density profile:

The last chapter is devoted to establish a baseline towards modelling of laser self-focusing in real ICF

conditions. For this purpose, our results are extended to absorbing plasmas with density linearly increasing

in space. PCGO beams self-focusing is investigated here for different plasma lengths, and the effect of

laser absorption is discussed.
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Conclusion summarizes the main results obtained in this work, identifying the potential perspectives.
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Chapter 1

State-of-the-art

In this Chapter, we present the state-of-the-art of laser propagation modelling, plasma theory and laser-plasma

interaction. In addition, we briefly describe the numerical tools employed in ICF studies. In Section 1.1, the

main models for laser radiation dynamics are summarized: starting from the Maxwell’s equations, we illustrate

the features of simplified models implemented in radiation-hydrodynamics codes to describe laser propagation

and absorption. Moreover, some features of spatially modulated beams are introduced. In Section 1.2, the

kinetic and fluid plasma theories are reviewed, comprising linear plasma waves. Section 1.3 is devoted to the

main laser-plasma coupling phenomena occurring in the ICF context. In Section 1.4, the codes used in this

thesis are described.

1.1 Modeling of laser propagation

An important aspect of laser-plasma model in ICF is the accuracy of the description of light propagation and

absorption. An accurate characterization of laser dynamics requires solving the Maxwell’s equations coupled

to the electric and magnetic fields sources. Finding such a solution is too demanding in terms of CPU time,

especially while simulating realistic ICF long spatial- and time-scales. ICF-related phenomena occur over hydro-

dynamic scales, which are characterized by spatial lengths of a few hundreds of micrometers and time duration

of many nanoseconds. Simplified models for laser propagation and laser-plasma interaction, which are consistent

with such spatial and temporal scales, are seeked. In this sense, geometrical optics-based theories provide the

fundamental mathematical background for a computationally efficient description of laser-plasma coupling. On

the other hand, those theories stand for an oversimplified model, which neglect wave properties of the laser

radiation and all the short spatial- and time-scales phenomena. Conversely, it has been demonstrated [42] that

effects occurring on a scale of a few micrometers and a few picoseconds, the so-called kinetic scale, can be cru-

cial for a correct interpretation of experimental results in realistic laser-plasma conditions. In order to include

kinetic-like phenomena into hydrodynamics codes by using standard geometrical optics, novel multi-scale laser

models, which account for reduced diffraction-like and kinetic-like effects, must be considered.

In the next subsections, we present various theories of laser light propagation. We start from the vecto-

rial form of the Maxwell’s equations [43] in Sec. 1.1.1, where we review some important properties of laser
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propagation within the wave theory, where the electomagnetic radiation is approximated as a scalar field [44].

Within this approximation, the vectorial light properties, for instance wave polarization, are not accounted for.

However, such a model describes several features of laser-plasma coupling, as illustrated in Section 1.3 [45,46].

In Sec. 1.1.2 we present the paraxial approximation of the Helmholtz equation [39, 44], which holds for the

majority of the cases encountered in ICF given that ICF pulses present high frequency and short wavelength

compared to the scales of the system. Gaussian beams stand for the most useful solution of the paraxial equa-

tion: a presentation of their properties is given. Geometrical Optics (GO), which is the simplest approach

to study linear laser-matter interaction, is then introduced [37, 39, 44, 47] in Sec. 1.1.3. Considering complex

value of wave phase and amplitude allows to extend the GO to the Complex Geometrical Optics (CGO). The

paraxial approximation of CGO gives rise to the Paraxial Complex Geometrical Optics (PCGO), presented in

Sec. 1.1.4. This model combines some aspects of GO to wave optics, accounting for a reduced modelling of

beam diffraction and in particular imposing a description of beam intensity. The PCGO implementation in

radiation-hydrodynamics code CHIC has allowed to introduce nonlinear intensity-dependent multi-scale effects

in laser plasma coupling [41], as illustrated at the end of this chapter.

1.1.1 From the Maxwell’s equations to the Helmholtz equation

As the laser light consists of electromagnetic waves, its behavior can be described by solving the Maxwell’s

equations for the electric field vector E and the magnetic field vector B. Considering a plasma electron and ion

density ne and ni, respectively, the Maxwell’s equations in the plasma write [43,48]:

∇ ·E = 4πe (ni − ne) , (1.1)

∇ ·B = 0, (1.2)

∇×E = −1

c

∂B

∂t
, (1.3)

∇×B =
1

c

∂E

∂t
+

4π

c
j, (1.4)

where c ≈ 3× 108 m/s is light speed in the vacuum, e is the unitary electric charge and j stands for the density

current. Equation (1.1) is referred to as Gauss’s law for the electric field, Eq. (1.2) is referred to as Gauss’s law

for the magnetic field, Eq. (1.3) is referred to as Faraday’s law and Eq. (1.4) is referred to as Ampere’s law.

Although coupling the field sources related to the Maxwell’s equations provides an accurate description of

the electromagnetic radiation dynamics, one is able to find an analytic solution only in a very few cases. To

gain some first insights on the radiation behaviour, it is useful to consider light propagation in vacuum. Then

Eqs. (1.1)-(1.4) become [43]:

∇ ·E = 0, (1.5)
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∇ ·B = 0, (1.6)

∇×E = −1

c

∂B

∂t
, (1.7)

∇×B =
1

c

∂E

∂t
, (1.8)

In order to find an equation for the electric field solely, one takes the curl of Eq. (1.7), and the time derivative

of Eq. (1.8). Merging them and accounting for Eqs. (1.5)-(1.6), one obtains an equation for the electric field E

in vacuum:

∇2E− 1

c2
∂2E

∂t2
= 0 (1.9)

Equation (1.9) is known as wave equation because it describes the propagation of a wave. A similar equation is

retrieved for the magnetic field. Equation (1.9) means that each component of the electric (and magnetic) field

obeys to a wave equation.

As both electric and magnetic fields are perpendicular to the wave propagation direction and neglecting

fields polarization variation, it is possible to describe the light as a scalar wave. Let us consider the electric field

amplitude as a real part of a complex scalar quantity: E = A0(r) exp [i(φ(r)− ωt)] = A(r) exp (−iωt), where

φ(r) represents the wave phase, A(r) = A0(r) exp iφ(r) is the complex amplitude, A0(r) is the real amplitude

such that |E| = A0(r), and ω is the wave frequency. The wavefronts are defined as surfaces perpendicular to

the wavevector and are retrieved by imposing φ(r) = const. Hereinafter, the wave frequency is constant, and

the wave is referred to as monochromatic wave. Injecting E = A(r) exp(−iωt) into the wave equation (1.9),

taking into account that ω/c = k, we find the scalar version of the Helmholtz equation for the complex wave

amplitude A(r):

∇2A(r) + k2A(r) = 0. (1.10)

Such an equation describes the spatial variation of the complex amplitude of a monochromatic wave with a

frequency ω. The simplest solutions of the Helmholtz equation are:

� plane waves: A(r) = A0e
ik·r,

where the vector k defines the direction of the wave propagation, A0 is a constant and φ(r) = ik · r. The

wavefronts are planes perpendicular to the wavevector k. Plane waves are characterized by a wavelength

λ = 2π/|k|. The wave intensity is I0 = cA2
0/(8π). The intensity is thus constant everywhere in space and

in time. As a consequence, plane waves carry an infinite amount of energy, which does not represent any

realistic situation. Despite that, they stand for an useful approximation of the light wave, and they are

employed to describe light propagation in electromagnetic codes as illustrated in Sec. 1.4.

� spherical waves: A(r) = A0

r e
ikr.
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They stand for waves generated from a point source, where the vector r =
√
x2 + y2 + z2 stands for the

distance from the source, supposed place at r0 = 0. The intensity I0 = c|A0|2/(8πr2) decreases with the

distance from the source, and the wavefronts are concentric spheres centred at it. If the observation point

is placed at large distance from the wave source along the x-axis for example, the spherical wavefront can

be locally approximated as a plane wave given that kr ≈ kx.

� paraboloidal waves: A(r) = A0(r)
r eikxei

z2+y2

2x

At large distances from the source but where the plane approximation is still not applicable, the wavefront

of a spherical wave assumes a paraboloid-like form: for an observer placed along the x-axis, if x >>

(y2 + z2)1/2, the radius r can be approximated as follows

r =
√
x2 + y2 + z2 = x

√
1 +

y2 + z2

x2
≈ x+

y2 + z2

2x
(1.11)

The wavefront of the paraboloidal wave can be seen as a planar front modulated by a small curvature

due to the transverse factor exp (iy
2+z2

2x ). The paraboloidal wave represents a simplified expression of a

Gaussian beam, which will be described in the next subsections.

1.1.2 Paraxial solutions of Helmholtz equation: Beam optics and Gaussian beams

The paraxial approximation is one of the most common assumptions made for modelling of ICF long pulses. A

pulse can be considered paraxial when the wave propagation direction forms a small angle with the wavefront

normal vector. One class of paraxial solutions has a cylindrical symmetry, which gives rise to optical beams.

Study of such solutions has opened an optical domain, called beam optics. In general, beams are composed by

a spatially confined wave energy with a narrow angular spreading. Gaussian beams are beams of a cylindrical

shape, i.e. the wave energy is transversely “confined” within a cylinder. Even though Gaussian beams are

an approximation of the Maxwell’s equations solution, their behaviour well describes the evolution of different

beams, such as collimated beams, cylindrical-shaped beams for instance. In the following, we describe the

paraxial approximation and the Gaussian beam description of the light.

Paraxial solutions can be constructed directly by imposing a longitudinal spatially slowly variation of the

wave amplitude along the propagation direction: A(r) = Ap(r)eikx, where x is the propagation direction. The

amplitude Ap(r) varies slowly over distances of the order of λ. Mathematically, this reads

∣∣∣∣∂2Ap
∂x2

∣∣∣∣ << k2 | Ap |2 . (1.12)

The paraxial approximation of the Helmholtz equation is found by injecting A(r) = Ap(r)eikx in Eq. (1.10)

and neglecting the second derivative in x:

∂2Ap
∂y2

+
∂2Ap
∂z2

+ 2ik
∂Ap
∂x

= 0. (1.13)

The expression for a Gaussian beam is retrieved once noticing that the paraxial equation Eq. (1.13) can be

rewritten in cylindrical coordinates as:
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1

r⊥

∂

∂r⊥

(
r⊥
∂Ap
∂r

)
+ 2ik

∂Ap
∂x

= 0. (1.14)

where r⊥ =
√
y2 + z2 stands for the dimension transverse to the propagation direction x. The amplitude Ap

can be presented in the following form [49]

Ap = e
i

(
P (x)+

kr2⊥
2q(x)

)
(1.15)

Such a function accounts for the cylindrical symmetry of the Helmholtz equation. The goal then is to find the

expression for P (x) and q(x) such that Ap satisfies Eq. (1.14) in the subsequent orders of the paraxial parameter

considering kr⊥ >> 1. Plugging Eq. (1.15) into Eq. (1.14), one obtains

− k2r2
⊥

q2
+ i

2k

q
− 2k

dP

dx
+
k2r2
⊥

q2

dq

dx
= 0. (1.16)

Isolating terms at zero-th and second order in r⊥, one obtains the equations for q and P :

dP

dx
=
i

q
. (1.17)

dq

dx
= 1; (1.18)

The first equation gives q(x) = q0 + x. In order to represent a beam solution, q0 must be complex, otherwise

no amplitude modulations would happen. So, we impose q0 = ixR, where xR is a real number. The quantity P

then writes

iP = ln

(
1− i x

xR

)
. (1.19)

Manipulating the expressions of P and q, and injecting them into Eq. (1.15), the electric field amplitude in

Cartesian coordinates reads

A(x, y, z) = A0
e
− kxRr

2

2(x2+x2
R

)√
1 +

(
x
xR

)2
e
i kxr2

2(x2+x2
R

) e
i tan−1

(
x
xR

)
eikx (1.20)

where A0 is the amplitude of the electric field in the focal plane. Defining the minimum beam width called

beam waist as

w2
0 =

2xR
k

; (1.21)

the curvature radius R(x) as

R(x) = x

[
1 +

(xR
x

)2
]

(1.22)

and the Gouy phase shift as
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Figure 1.1: Illustration of Gaussian beam parameters in two dimensions. Adaptated from [49].

φG(x) = tan−1

(
x

xR

)
; (1.23)

the electric field amplitude assumes the well-known Gaussian form

A(x, y, z) = A0
w0

w(x)
e
− r2⊥
w2(x) ei

kr2⊥
2R(z) ei(kx+φG(x)), (1.24)

where

w(x) = w0

√
1 +

(
x

xR

)2

(1.25)

is the spatially dependent beam width. With our definitions, the minimum width occurs at x = 0, and xR is

redefined as:

xR =
kw2

0

2
. (1.26)

Such a distance is called Rayleigh length, and it is the distance at which the beam radius increases by a factor

of
√

2. Figure 1.1 shows a relation between the waist w0 and the Rayleigh length, displaying how the wavefront

curves far away from the focus spot placed at x =0. The Gaussian beam intensity is

I(r, x) = I0
w2

0

w2(x)
e
− 2r2⊥
w2(x) . (1.27)

where I0 = c|A0|2/(8π) The beam power P is defined as the energy flowing over a surface per unit of time.

Thus, in cylindrical coordinates it reads

P3D =

∫ ∞
0

2πI(r⊥, x)r⊥dr⊥. (1.28)

The index 3D refers to the three-dimensional geometry where the integral is performed in the (y, z) plane

perpendicular to the propagation direction. Plugging Eq. (1.27) in Eq. (1.28), and solving the Gaussian

integrals, one obtains that the expression of beam power in 3D reads
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P3D =
π

2
I0w

2
0. (1.29)

It is useful to recover the Gaussian beam quantities in two dimensions, which stand for the geometry of

the cases investigated in this thesis. Supposing that y is the transverse dimension, once adapted the Laplacian

operator ∇2 to the 2D case, the equation for P assumes the form

i
P

2
= ln

(
1− i x

xR

)
, (1.30)

whereas the equation for q remains the same as well Eqs. (1.22)-(1.25). The only exception is the Gouy phase,

which becomes φ2D
G (x) = tan−1

√
x
xR

. Finding the expression of P from Eq. (1.30), the electric field amplitude

rewrites:

A(x, y, z) = A0

√
w0

w(x)
e
− y2

w2(x) ei
ky2

2R(x) ei(kx+φ2D
G (x)). (1.31)

Then, the intensity reads

I(x, y) = I0
w0

w(x)
e
− 2y2

w2(x) , (1.32)

and the beam power becomes

P2D =

∫ +∞

−∞
I(y, x)hdy =

√
π

2
I0w0h (1.33)

where h is the unitary length in the third (z) dimension and it is a constant added in order to preserve the

correct units for the beam power.

In nonabsorbing medium, the beam power is conserved. Given the same maximum beam intensity I0, in 3D

geometry the power conservation gives that the on-axis intensity varies as

I(x)w2(x) = I0w
2
0, (1.34)

whereas in the 2D geometry the same expression rewrites as

I(x)w(x) = I0w0. (1.35)

Due to these differences in 2D and 3D dimensions, ponderomotive effects evolve in a distinctive way, as described

in Sec. 1.3.2.1.

Besides beam optics, the slowly varying approximation is the base of the ray theories: for real values

of the amplitude and phase, the Helmholtz equation gives rise to the Geometrical Optics (GO). The Complex

Geometrical Optics (CGO) is an extension of the GO which includes diffraction effects, whereas the GO accounts

only for ray propagation and refraction if the refraction index depends on spatial coordinates.
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1.1.3 Ray optics

In this subsection, we review the eikonal approach for solving the Helmholtz equation starting from a nonab-

sorbing medium: we assume that the slowly varying approximation holds but we do not suppose a rectilinear

propagation. Unlike the Gaussian beam description presented above, where the beam is not supposed to vary

its direction, within this approach the wave is described by a ray defined by three vectors (or two in case of

two-dimensional geometry): a vector parallel to the wave propagation direction, and two transverse vectors

(or one transverse vector in two-dimension) which allow to account for propagation direction variation due to

refraction in the medium. In a medium in fact, the Helmholtz equation (1.10) rewrites

∇2A(r) + k2N2A(r) = 0, (1.36)

Injecting where N =
√
ε is the medium refractive index, being ε the permittivity. To find the ray equations,

the wave field amplitude A is decomposed in a series of terms by performing the so-called Debye expansion

A =

∞∑
m=0

Am(r)

ikm
eikφ(r). (1.37)

Injecting Eq. (1.37) in Eq. (1.36), considering real values of Am(r) and φ(r), one obtains

(
N2 − |∇φ|2

)
A0 +

∇2A0

k2
+

1

ik

[
2∇φ · ∇A0 +A0∇2φ

]
= 0. (1.38)

Considering the zero-th order of k−1 in Eq. (1.38), one obtains

|∇φ|2 = N2. (1.39)

This equation is referred to as eikonal equation since φ(r) = const gives a surface perpendicular to the propa-

gation direction. The equation for the ray coordinates comes from Eq. (1.39) by invoking arguments from the

differential geometry: considering that Eq. (1.39) generates a variety into the Hamilton-Jacobi space [50], it is

known that Hamiltonian of the system is conserved along the ray trajectory:

H =
1

2

(
p2 −N2

)
, (1.40)

where we have defined p = ∇φ. Introducing the ray coordinate τ , the position and the moment are related to

the Hamiltonian by the canonical equations for the coordinate ri and moment pi

dri
dτ

=
∂H

∂pi
(1.41)

dpi
dτ

= −∂H
∂ri

(1.42)

whereas the equation for the eikonal φ rewrites

dφ

dτ
= N. (1.43)

Equations (1.41)-(1.42) can be rewritten as [39]
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Figure 1.2: Illustration of rays (blue arrows) divergence due to refraction while propagating from a surface Σ0

to a surface Σ.

dr

dτ
= p (1.44)

dp

dτ
= c2

∇N2

2
. (1.45)

The equation for the ray trajectory is found by combining Eq. (1.44) and Eq. (1.45):

d2r

dτ2
= c2

∇N2

2
. (1.46)

Equation (1.46) defines the ray trajectory dynamics through its position r depending on the refractive index N ,

thus describing the ray path associated to the wave. Rays direction coincides with the propagation direction in

isotropic media, and it is perpendicular to the surfaces defined by the equation φ(r) = const. From Eq. (1.43),

one obtains the expression for the eikonal:

φ = φ0 +

∫ τ

τ0

Ndτ. (1.47)

The ray amplitude is obtained by solving Eq. (1.38) for terms of the first order in k−1:

2∇φ · ∇A0 +A0∇2φ = 0 (1.48)

Such an equation is solved by noting that the first term is the projection of ∇A0 over the trajectory: ∇φ ·∇A0 =

dA0/dΥ|∇φ|, where Υ is the arc length defined as Υ = Nτ , and that |p| = N , one obtains

dA2
0

dτ
+A2

0∇2φ = 0. (1.49)

The solution for the wave amplitude can be rewritten in the form

A2
0(τ) =

A2
0(τ0)√
J

(1.50)

where J is the ratio of the Jacobians of the transformation from the transverse coordinates (q1, q2) at the initial

ray position τ0 to the ray transverse coordinates at current ray position τ . Geometrically, the Jacobian J is

the beam divergence when the ray propagates from a surface Σ0 to a surface Σ. This feature can be seen in

Fig. 1.2. It can be demonstrated that along the ray path in nonabsorbing plasmas the beam power IdΣ is
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conserved, where I = (E∗∇E − E∇E∗)/(2ik) is the ray intensity [39, 47]. As a consequence, since the beam

intensity is proportional to the square of the amplitude, one obtains that
√
J =

√
(NΣ)/(N0Σ0), where N and

N0 are the refractive index at Σ and Σ0, respectively. This property links the refractive index variation to the

ray divergence describing the refraction of the rays.

Ray optics stands for the simplest approximation of light propagation: it considers laser beam evolution

through the dynamics of thin rays, which interact with media through the refractive index. In weakly dissipative

media, the power associated with the ray changes along the propagation direction. This fact is described by a

complex permittivity ε with the imaginary part smaller than the real part:

ε = ε′ + iε
′′

(1.51)

where ε
′′
<< ε′. As a consequence, N = N ′ + iN

′′
, with N

′′
<< N ′. Because of dissipation, the ray amplitude

varies as

A2
0(τ) =

A2
0(τ0)√
J

exp

(
−k
∫ τ

τ0

N
′′
dτ

)
, (1.52)

where the exponential term accounts for absorption. Equations (1.46) and (1.52) are the basic equations of

the Ray-Tracing techniques implemented in hydrodynamics codes for describing laser propagation and absorp-

tion [37]: in these codes, lasers are modelled as a bundle of thin rays, obeying to those equations.

1.1.4 Paraxial Complex Geometrical Optics (PCGO)

The GO formulation can be extended to the next order to the paraxial parameter 1/kr, which allows to account

for the beam diffraction and for the amplitude variation along the ray. Assuming the paraxial approximation,

where the system scale length is much longer than the laser wavelength, the beam dynamics can be described by

a bunch of rays weakly divergent or convergent around a central ray hereinafter called rc. Therefore, instead of

solving Eq.(1.46) for all rays as in RT, it is convenient working within a frame along the central ray and rewrite

Eq. (1.39) in it. Let this frame be (τc, q1, q2), where τc central ray tangent, q1 and q2 are the coordinates in

the plane perpendicular to τc. The position of a neighboring ray r around the central ray can be written as

r = rc + q, where q = q1e1(τc) + q2e2(τc), and ei(τc) perpendicular to the central ray tangent. Authors in [51]

have demonstrated that a reference system (τc, q1, q2) where the unitary vector e1 is parallel to the ray normal

and e2 is perpendicular to the plan τc and e1 can be always defined. In this particular frame, the eikonal

equation Eq. (1.39) reads

1

h2

(
∂φ

∂τc

)2

+

(
∂φ

∂q1

)2

+

(
∂φ

∂q2

)2

= ε(rc) + (q · ∇)ε(rc) +
1

2
(q · ∇)2ε(rc) +O(|ε(rc)|2), (1.53)

where h = N − (q · ∇)N is the Lamé coefficient. Here the permittivity ε has been expanded around the central

ray q = r− rc. In the next, we assume a 2D geometry defined by the coordinates (τc, q). The eikonal φ can be

expanded around the central ray too, assuming the form

φ = φc(τc) + φ̂(q, τc) (1.54)
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where φc(τc) =
∫ τc N ′(rc)dτ ′c is the central ray eikonal, and φ̂ complex value representing a small deviation

with respect to the eikonal on the central ray. Let us assume that such a deviation has a quadratic form

S̃(τc, q1) =
1

2
Bq, (1.55)

with B is the complex curvature wavefront. Injecting Eq. (1.55) into Eq. (1.53), one obtains a system of

Riccati-like equations for B. In the two-dimensional geometry, the tensor B has only one component:

∂B

∂τc
+B2(τc) =

1

2

∂ε(rc)

∂q2
− 3

4ε(rc)

(
∂ε(rc)

∂q

)2

, (1.56)

which can be further reduced to an ODEs system numerically solvable once presented the the curvature B as a

product of two factors, B = PQ−1. The electric field amplitude can be retrieved once considering the transport

equation in the (τc,q) frame [41], for which an expression for A0 is recovered:

2

c2h2

∂φ

∂τc

∂A0

∂τc
+

[
1

ch

∂

∂τc

(
1

ch

∂φ

∂τc
+
∂2φ

∂q2

)]
A0 = 0, (1.57)

Combining the solution of Eq. (1.57) with the solution of Eq. (1.56), imposing that w(τc) =
√

2/(kImB) as

beam width and R(τc) = ReB/
√
ε′c as wavefront curvature, one obtains:

A0(τc) =
A0

4
√
ε′c

√
w

w0
e
−k
∫ τ′c
τ0c
N2′′dτ ′ce

− q2

w2
0 (1.58)

where weakly absorption has been accounted for through the exponential integral. The intensity along the beam

propagation direction reads

I0(τc) =
I0√
ε′c

w

w0
e
−k
∫ τ′c
τ0
′
c

N2′′dτ ′c
(1.59)

PCGO works for a weakly dissipative medium within the validity of the paraxial approximation. The limits

of the PCGO model are the following:

1. THE GO CONDITION
λ

L
<< 1 (1.60)

where λ is the laser beam wavelength and L is the characteristic length of the system. That is the

standard condition where a geometrical optics-based theory applies. In the ICF context, λ = 0.35− 1.05

µm, whereas L = 10− 1000 µm, so this condition is satisfied;

2. THE PARAXIAL CONDITION
λ

w0
<< 1 (1.61)

where w0 is the beam waist. Equation (1.61) ensures that the paraxial approximation holds all along the

ray trajectory. In the ICF context, w0 = 500 µm, which is modulated on the scale of 2-3 µm representing

the laser speckles. When modelling of Gaussian beams, such an approximation holds, whereas it may fail

in describing small scale fluctuations of spatially modulated beams;
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3. THE GAUSSIAN CONDITION

w0

L
<< 1 (1.62)

it states that a Gaussian beam-like profile holds all along the propagation.

From these conditions, it is clear that despite standard PCGO allows to describe Gaussian beams, its direct

application to model of spatially modulated ICF beams may be inaccurate. However, the implementation of a

reduced PCGO model in hydrodynamics codes has opened the possibility to introduce spatial fluctuations in

the far-field by employing PCGO-like Gaussian beamlets, as described in Sec. 1.4.2.

Besides laser beams, hot electron generation, propagation and energy deposition have been included in

hydrodynamics codes thanks to PCGO-related algorithms. Such a development has allowed to add kinetic

effects in CHIC in a reduced formulation [41].

1.1.5 Optical smoothing techniques for ICF

Before going into the laser-plasma coupling, we briefly recall the principles of optical smoothing techniques

introduced in ICF facilities, and describe in more details the spatial modulation techniques. Without any

phase plate, although the beam profile appears smoothed in the near-field, aberrations accumulated along the

beamline chain can produce distorsion and amplitude modulation in the far-field [52]. Such modulations expose

the target to an uncontrolled nonuniform and non-symmetrical illumination, which seed hydrodynamic insta-

bilities occurring during the acceleration and deceleration phase. The inhomogeneities can occur at short or

long wavelengths. In the first case, they are due to imperfection of the target surface or single-beam intensity

modulations. Long wavelength nonuniformities are mainly due to beams misalignment or beam energy redi-

rection due to laser-plasma instabilities. The short wavelength nonuniformities can be naturally self-smoothed

by plasma thermal conduction, which is not the case for the long wavelength ones. Several techniques for

laser-induced spatial and temporal smoothing have been developed in order to achieve a high degree of tar-

get illumination uniformity and so minimize the seeding of hydrodynamic instabilities such as Rayleigh-Taylor

and Richtmyer-Meshkov instabilities [53] and diminishing the occurrence of nonlinear laser-plasma interaction.

Spatially modulated laser beams have been introduced in ICF from late 80s. Such methods consist in breaking

the global coherent beam profile in a pattern of small-scale modulations called speckles. These fluctuations are

generated by placing a phase plate behind the beam focal lens: this plate presents a regular element pattern

which induces a random phase variation to each part of the beam passing through a given element. The phase

variation depends on the type of the phase plate: for instance, a random discrete phase variation of 0 or π is

induced by a Random Phase Plate (RPP) [25], whereas a random continuous phase variation is assigned to

each part of the beam in case of Kinoform Phase Plates (KPP) [26] and Continuous Phase Plates (CPP) [54].

The main difference in these techniques is the level of the laser energy diffracted out of the focal spot, which is

20% in the RPP case, 5% in the KPP case and ∼ 1% in the CPP case. After passing through the phase plate,

the beam is then broken in several small beamlets, each carrying a different phase. The interference of all the

beamlets in the far-field generates a modulated intensity profile known as speckle pattern. The speckles size
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and the number of speckles are related to the laser wavelength and the focal length: in vacuum, in the far-field,

the speckles have a transverse coherent size of [55,56]

ws =
fλ

D
, (1.63)

where f is the focal length and D is the lens diameter, and a longitudinal coherent size of

xs = kwBws, (1.64)

where wB is the waist of the beam. This method allows to redistribute the long wavelength energy non-

uniformity to shorter wavelengths. Since the characteristic size of speckles is of the same order as the short

wavelength non-uniformity of laser energy deposition, these non-uniformities can be rapidly smoothed by thermal

conduction. Geometrical and optical considerations allow to estimate how the number of speckles in the far-field

M scales with the number of phase plate elements q: in case of RPP for example, it can be demonstrated [55]

that at a given RPP width D, the volume where the beamlets overlap scales as f4λ3q3/2/D4. By considering

Guassian speckles, the speckle volume can be approximated as xRw
2
s . Since M can be considered as the ratio

of the overlapping volume and the volume of a speckle, from Eqs. (1.63) and (1.64), one finds that M scales as

q3/2. Then, M is of the order of 103-104 [55].

Two important parameters characterize spatially modulated beams: the beam contrast and the probability

distribution of the speckle intensity. At a given position, the contrast of a nonuniform beam is defined as [56]

C2 =
〈I2〉⊥ − 〈I〉2⊥
〈I〉2⊥

, (1.65)

where the 〈〉⊥ stands for the spatial average performed in the transverse directions. Such a parameter quantifies

the amplitude of the laser intensity fluctuations over an area comparable to the transverse beam size. In case

of KPP or RPP beams, in the far-field C=100 %, which means that the amplitude of intensity fluctuations are

comparable to the average intensity.

Since M is a large number, it is convenient to characterize the speckles intensity by using a statistical

approach: it has been found that the probability P (Is) of finding a speckle of intensity Is with respect the

average beam intensity < I > follows an exponential law [55,56]:

P (Is) ∝ exp

(
− Is
< I >

)
. (1.66)

Consequently, there is a consistent part of the speckles which have an intensity smaller than < I >, whereas

a fraction of them presents an intensity larger than < I >. These high-intensity speckles may be a source of

nonlinear laser-plasma coupling effects. The role of ponderomotive force in a speckle pattern and its influence

on speckle statistics and beam dynamics is investigated in Chapter 3.

1.2 Plasma physics

In this section, we review the essential features of plasma physics in order to be able to understand ICF coronal

phenomena. In Section 1.2.1, plasma relevant parameters are presented. Section 1.2.2 concerns plasma theories,

44



Figure 1.3: Ionization degree χ for an hydrogen gas (red line), a carbon gas (blue line) and a C2H2 gas (green

line) as a function of the temperature of the system T .

starting from the plasma kinetic theory. Then fluid theory of plasmas is revised, along with the dispersion

relations for longitudinal and transverse plasma waves.

1.2.1 Relevant parameters

As soon as ICF high power lasers irradiate a solid target, a gas generated by mass ablation propagates out-wards,

opposite to the laser direction. Such a gas is quickly ionized by the laser, and the ionization degree χ = nj/n
g
0

of the species j composing the gas can be evaluated according to statistical mechanics considerations [10], ng0

the neutral gas density and nj the density of the ionized gas of species j. In case of ideal gas and first ionization

of neutral atoms, the ionization degree is found by solving the Saha equation, which links χ, ng0 and the gas

temperature Tg [57–60]

χ2

1− χ
=

2

ng0

(
2πmeTg
h2

)3/2

e
− Ii
Tg , (1.67)

where me is the electron mass, h is the Planck constant, Ii is the first ionization energy of atoms, and Tg is in

energy units. The ionization level according to Eq. (1.67) for an hydrogen gas (red line), a carbon gas (blue

line) and a C2H2 gas (green line) is shown in Fig. 1.3 as a function of the gas temperature. In the fusion

environment, the coronal temperature Te is above 0.5 keV. Such a value is evidenced in the figure by the solid

black line: above this temperature, the ionization degree is around 100% independently of the gas. In such

conditions, the completely ionized gas is referred to as plasma. The plasma state represents the environment in

which the laser propagates while ablating and compressing the target. The plasma corona size varies in time,

since the laser ablates the material during its interaction with the target. The corona size depends also on the

geometry of the experiment, on the ICF configuration (direct-drive or indirect-drive) and on the laser intensity.

Typical plasma sizes range from 200-300 µm in case of OMEGA experiments [61] to 600-800 µm for NIF [11]

and LMJ [62] experiments.

The most relevant parameters that characterize the plasma are the Debye length and the plasma frequency.
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The Debye length λD refers to the length at which the standard Coulomb potential decreases by a factor of 1/e.

This parameter can be measured by introducing a test particle qt into the plasma. Supposing this test particle

at rest, the plasma particles of charge −qt surround the charge qt because of the Coulomb attraction. Such a

cloud shields the electric field generated by the test particle qt and, according to the Poisson’s equation (1.1),

the Coulomb potential generated by qt is reduced by a factor proportional to exp (−r/λD) [48, 63]. Assuming

the quasi-neutrality condition, for which the plasma density reads ne = Zni, where ne and ni are electron and

ion densities respectively, Z the average ion charge, and with an electron temperature Te and ion temperature

Ti such that Te 6= Ti, the Debye length for electrons λDe and ions λDi read

λDe =

√
Te

4πe2ne
λDi =

√
Ti

4πZ2e2ni
, (1.68)

where e stands for the unitary electric charge, and the temperatures are in energy units. The total Debye length

λ−1
D = λ−1

De + λ−1
Di reads

λD =

√
Te

4πe2ne

1

1 +
√

ZTe
Ti

. (1.69)

For high Z or for high ion temperatures, Ti >> ZTe and the ion term in Eq. (1.69) can be neglected.

The plasma frequency ωp stands for the characteristic frequency of a periodic plasma collective motion. Let

us suppose that an ion slab and an electron slab are displaced by a certain length the one from the other in a

collisionless plasma. The ion slab is supposed at rest. The charge displacement induces a violation of the local

charge neutrality, which generates an electric field between the two slabs. Under the influence of this field, the

electron slab oscillates with a frequency:

ωpe =

√
4πnee2

me
. (1.70)

An analogous frequency can be defined for ions in case they can oscillate:

ωpi =

√
4πniZ2e2

mi
, (1.71)

where mi is the ion mass. So, the total plasma frequency reads ω2
p = ω2

pe + ω2
pi. Since mi >> me, the ions give

a small contribution to the plasma frequency, which rewrites

ωp ≈ ωpe. (1.72)

In the following, we refer to ωpe as the plasma frequency.

In a plasma, particles collectively interact via the Coulomb force. Due to the long-range nature of this

force, collisions are most likely to deviate particles at small angles rather than large angles. The collision

frequency measures the cumulative effect of a large amount of small angle collisions. Averaging over the particle

distribution (which will be introduced in the next section), one can calculate the average collision frequency for

particle-particle collision [48], recovering thus the electron-ion, electron-electron and ion-ion collision frequencies:
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νei =
4
√

2πniZ
2e4 ln Λ

3
√
meT

3/2
e

. (1.73)

νee =
νei
Z
, (1.74)

νii =

(
me

mi

)1/2(
Te
Ti

)3/2

Z2νei, (1.75)

where ln Λ is the Coulomb logarithm, and Λ is the ratio of the maximum and minimum distances at which the

two particles can collide. From Eqs. (1.73)-(1.75), it is clear that νei > νee > νii.

Starting from the parameters presented above, one can define the properties that a system must satisfy such

that it can be considered as a plasma [63,64]:

� λD << L;

where L stands for the characteristic plasma length. This relation implies that the plasma size is larger

than a Debye sphere. Furthermore, this condition allows to maintain plasma quasi-neutrality, avoiding

particle recombination and keep the ionization rate constant;

� µn >> 1;

where µn = nλ3
D measures the number of particles in the Debye sphere. As long as this condition holds,

the plasma can be treated with statistical methods;

� νei/ωpe ∼ 1/µn << 1.

Since collisions are single particle effects, whereas plasma oscillations stand for collective effects, from

such an inequality follows that the plasma is a system where collective phenomena dominates over single

particle processes. However, collisions play an important role in particles energy exchange and temperature

relaxation.

In the following, we illustrate the two main plasma theories: the kinetic theory and the fluid theory.

1.2.2 Plasma models

Plasma description depends on the phenomenon under investigation, and in particular on their temporal- and

spatial-scales. Considering the plasma as a many body system, methods from statistical physics appear natural

tools for plasma modelling. The kinetic theory of plasma is presented in Section 1.2.2.1. In Section 1.2.2.2 we

show how few assumptions on kinetic parameters allows to retrieve the fluid plasma equations.
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1.2.2.1 Kinetic theory of plasmas

For µn >> 1, and when the strength of collective effects overcome short-range particles interaction, the descrip-

tion of the plasma by kinetic models is quite accurate [48, 65]. Introducing a six-dimension space spanned by

spatial r = (x, y, z) and velocity v = (vx, vy, vz) coordinates, the dynamical state of a particle is represented

by a point P in this space, which determines the spatial position and the velocity of the particle. In case of a

system with a large number of particles on the Debye scale, the ensemble of dynamical states of all particles

forms a continuous distribution in the 6-dimensional (r,v)-space. For a two-component plasma, i.e. composed

by electrons and one ion species, we define a single-particle distribution function fs = fs(r,v, t) for every species

s, where s = i for ions, and s = e for electrons, such that

dµn,s = fs(r,v, t)dV, (1.76)

where dµn,s stands for the number of particles of the species s contained in the infinitesimal volume dV = drdv.

The distribution function fs stands for the probability density to find dµn,s particles in the infinitesimal volume

drdv if normalized as follows

∫
V

fs(r,v, t)drdv = µn,s, (1.77)

where the integral is intended to be calculated over the whole six-dimension volume V. With this definition,

the particle changing rate dµn,s/(dtdV) = ∂fs/∂t in the volume dV reads

∂fs
∂t

=

(
∂fs
∂t

)
stream

+

(
∂fs
∂t

)
coll

. (1.78)

The first term in the right-hand is called streaming term, whose variation is due to the total force acting on the

particles, whereas the second term in the right hand-side stands for the contribution due to collisions among

particles. The streaming term can be expressed in terms of the spatial and velocity derivatives [64]

(
∂fs
∂t

)
stream

= − (v · ∇r) fs −
1

ms
(Fs · ∇v) fs, (1.79)

where ∇r = (∂x, ∂y, ∂z) and ∇v = (∂vx , ∂vy , ∂vz ) are the derivative operators in the spatial and velocity space

respectively, and Fs stands for the total force acting on every species s. Injecting Eq. (1.79) into Eq. (1.78),

this last one rewrites

∂fs
∂t

+ (v · ∇r) fs +
1

ms
(Fs · ∇v) fs =

(
∂fs
∂t

)
coll

. (1.80)

Equation (1.80) is called Boltzmann equation and describes the plasma dynamics far from the equilibrium. The

third term in the left hand-side and the term in the right hand-side represent the total force and collisions,

respectively. They govern the evolution of the plasma system. The particular form of the collision term depends

on what kind of collisions are taken into account [48].

In collisionless plasmas, Eq. (1.80) becomes the Vlasov equation [66]
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∂fs
∂t

+ (v · ∇r) fs +
1

ms
(Fs · ∇v) fs = 0. (1.81)

In fusion plasmas, only the Lorentz force is supposed to act on plasma particle: Fs = qs [E + (1/c)v ×B], where

qs stands for electric charge of the species s and Eq. (1.81) reduces to

∂fs
∂t

+ (v · ∇r) fs +
qs
ms

[
E +

v ×B

c

]
· ∇vfs = 0. (1.82)

The fields are generated by superposition of external and averaged fields. For electric field E = Eext
s +Emean

s ,

and for magnetic field B = Bext
s + Bmean

s , where Emean
s and Bmean

s are respectively the averaged electric field

and magnetic field acting on a single particle produced by the other µn,s − 1 charges. Specifically, the internal

electric field Emean
s and magnetic field Bmean

s acting on a particle are generated by the other µn,s − 1 charges

for electric field, and by the average density current due to µn,s − 1 charges motion for the magnetic field.

We refer to all the average fields as self-consistent fields. The self-consistency arises from the fact that their

sources are strictly related to the distribution function, whose evolution strongly depends on the fields. In

this picture, particles motion is thoroughly connected to the fields, and plasma processes are essentially due to

this self-consistent coupling between charged particles and fields. This propriety makes the plasma an unique

state of matter. In order to solve the problem of self-consistent fields and particles interaction, the Maxwell’s

equations (1.1)-(1.4) need to be coupled to the Vlasov equation Eq. (1.82), giving rise to the Vlasov-Maxwell

system [63]. The field sources are calculated from the Vlasov equation, so the terms n and j in Eq. (1.1) and

Eq. (1.4) stand for the particle density and the density current defined as follows:

n(r, t) = next + nint = next +
∑
s

ns, (1.83)

j(r, t) = jext + jint = jext +
∑
s

qsnsus, (1.84)

where

ns = ns(r, t) =

∫
fs(r,v, t)dv (1.85)

and

us = us(r, t) =
1

ns

∫
vfs(r,v, t)dv (1.86)

are the particle density and the average velocity of particles of s-species, respectively. The Vlasov-Maxwell

system along with Eqs. (1.83)-(1.86) describe the spatial-temporal self-consistent evolution of a collisionless

plasma in the kinetic framework. Both particles and fields compose the entire state of plasma, which is defined

by E(r, t), B(r, t) and fs(r, t).

In absence of external fields, the equilibrium distribution function tends to assume Maxwellian-like distri-

bution, which in three dimensions reads [48]:
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fs0 = ns

(
ms

2πTs

)3/2

exp

(
−msv

2

2Ts

)
. (1.87)

where v2
ts = Ts/ms is the thermal velocity of particles of the species s, and the index 0 indicates the equilibrium

state.

1.2.2.2 Fluid theory of plasmas

Despite its accuracy in describing plasma phenomena, implementation and running numerical codes based

on kinetic description is too computationally expensive for ICF modelling. The distribution function can be

calculated only in small plasma volumes and for short time-scales. This limits the application of the plasma

kinetic theory to ICF, since the latter involves millimetre spatial-scales over nanosecond time-scales. The fluid

plasma theory corresponds to an approximate version of the kinetic theory that: i) allows to retrieve the

measurable macroscopic plasma quantities, such as pressure, temperature and density, ii) is less costly in terms

of CPU time since the space where the equations are discretised is three-dimensional rather than six-dimensional,

and iii) kinetic phenomena are approximated at hydrodynamic scales assuming that the distribution function

of each speciesis close to the equilibrium. To summarize, the conditions under which plasmas can be described

as a fluid are [65]

1. the characteristic time-scale is much longer than the plasma period and larger than the collision time

tmacro >> 1/νe >> 1/ωpe;

2. the spatial-scale of a significant change in macroscopic quantities is larger than the free mean path of the

particles;

Under these assumptions, a plasma can be considered to be close to a local thermal equilibrium: each plasma

species has a defined temperature if the condition of a local quasi-neutrality holds. Despite that, temperatures of

electrons and ions can be different, because electron-ion temperature relaxation proceeds on hydrodynamic time-

scales. In this case, plasma can be described as a single fluid with two temperatures. If the hydrodynamic time

is larger than the time needed for the temperature to reach an equilibrium, tmacro > (mi/me)/νei equilibrium

between the two species is established, and plasma can be described as a single fluid with a single temperature.

Some authors have introduced the fluid equations from euristical considerations [64, 68], but they can be

obtained by integrating the Vlasov equation (1.81) [63] as well. To do so, we define the function Ψl
s, which is

the general moment of order l related to the distribution function fs, as:

Ψl
s = 〈Ψ(v)〉s =

∫
Ψl(v)fsdv

ns(r, t)
, (1.88)

where the average is performed over the s-species distribution function. Once defined a particular form of the

function Ψl(v), one finds the expression of the moment of order l:

� The moment of 0-th order Ψ0
s is defined by Ψ0(v) = 1. It follows from Eq. (1.88) that Ψ0

s = 1, which

means that the moment of 0-th order is related to the particle density ns;
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� The moment of 1-th order Ψ1
s is defined by Ψ1(v) = v. Thus, from Eq. (1.88) one obtains nsΨ

1
s = us.

The first-order moment is related to the average particle velocity us;

� The moment of 2-nd order Ψ2
s is defined by Ψ2(v) = msv:v

2 , where : refers to the tensor product. The

second-order moment can be related to the plasma pressure Ps = Ψ2
s −msus : us. The diagonal terms of

P iis is proportional to the plasma temperature Ts: Ts = P iis /ns, thus Ts = ps/ns where ps = 1/3
∑y
i=x P

ii
s

is the average of the diagonal terms and denotes the isotropic pressure.

All along this thesis, we consider weakly dissipative plasmas, so collisions do not play an important role.

In this context, the Vlasov equation represents our starting point for recovering the fluid equations. Thus,

multiplying the Eq. (1.82) by Ψl and then integrating over the velocity distribution, one obtains the equation

for the moment of order l related to the distribution function fs:

∂

∂t

(
ns〈Ψl〉s

)
+∇r

(
ns〈Ψlv〉s

)
− nsqs

ms

[
E〈∇vΨl〉s − 〈∇vΨl · v

c
×B〉s

]
= 0. (1.89)

Solving Eq. (1.89) for l = 0 allows to retrieve the continuity equation:

∂ns
∂t

+∇ (nsus) = 0. (1.90)

From now on, ∇ ≡ ∇r. This equation states that the total number of particles s does not change during the

plasma evolution.

For l = 1, Eq. (1.89) describes the moment transferred to the species s for unit of volume by external and

internal forces:

msns

[
∂us
∂t

+ (us · ∇r) us

]
= −∇ps −∇ : Π̂s + qsns

[
E +

1

c
us ×B

]
, (1.91)

where Π̂s stands for off-diagonal terms in the tensor of plasma pressure Ps, responsible for internal friction. The

first two terms of the right hand-side are the gradient of the plasma pressure decomposed into its diagonal and

off-diagonal part respectively, the third term is related to the Lorentz force.

The equation for the energy transfer is found once integrating Eq. (1.89) for l = 2

∂(nsK)

∂t
= −∇ ·G + j ·E. (1.92)

Here, the plasma energy is written in terms of its total kinetic energy K = 3/2nsTs + 1/2msnsu
2
s due to

microscopic thermal motion of the particles and average kinetic energy respectively. The term G = qs +

Ps : us + 3/2nsTsus + 1/2nsmsu
2
sus represents the enegy flux composed by the density of thermal flux qs =

ms〈(v − us)
2

(v − us)〉s, the work due to pressure Ps : us, the energy transport due to fluid motion and the

energy transport due to convection respectively. The second term at the right hand-side stands for the energy

dissipation due internal current js, the so-called Joule heating [43].

Equations (1.90)-(1.92) correspond to a hierarchical system where the equation of order l contains terms

of the moment of order l + 1. Since the energy flux qs corresponds to the moment of third order, and it

appears in the moment equation of the second order, another equation is needed to close the system. One may
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consider that at zero approximation, qs = 0, and so the system (1.90)-(1.92) is automatically satisfied. More

accurate description of the plasma requires the knowledge of the energy flux, thus different approximations of

the energy flux term have been developed. One of the most commun approximation dwells on the Spitzer-Härm

theory, which derives the transport coefficients from the kinetic theory with the Landau collision integral [69].

Equations (1.90)-(1.92) are coupled to the Maxwell’s equations and to an equation of state which relates the

plasma pressure to the density and temperature.

In the next, we consider isotropic plasmas without external magnetic fields, so the plasma pressure tensor is

diagonal. For the sake of clarity, here we rewrite the continuity and the moment equation, which are extensively

used in the following to study plasma waves:

∂ns
∂t

+∇ (nsus) = 0, (1.93)

msns

[
∂us
∂t

+ (us · ∇) us

]
= −∇Ps + qsns

[
E +

1

c
us ×B

]
. (1.94)

These two equations must be coupled to an equation of state which links the density, pressure and temperature.

1.2.2.3 Waves in unmagnetized plasma

We describe here waves in an unmagnetized plasma within the fluid theory, retrieving the dispersion relation

for longitudinal and transverse modes. In particular, we consider small perturbation from the equilibrium term,

for which a linear theory can be developed. For these small amplitude waves, the hydrodynamic quantities

can be split into an equilibrium and perturbation term: ne = ns0 + ns1, us = us0 + us1, E = E0 + E1 and

B = B0 + B1. At the equilibrium, we assume ns0 = const, us0 = 0, E0 = 0 and B0 = 0.

Longitudinal electrostatic waves: Electron plasma waves Let us suppose Te 6= 0 and ions at rest. In

order to find electron plasma waves, we start from the fluid equations (1.93)-(1.94) for electrons only. The

equation of state needed for closing the plasma system reads:

Pe = Tene. (1.95)

Accounting for the fact that the electron temperature is related to the density by the condition of adiabaticity,

the plasma pressure gradient reads

∇Pe = γTe∇ne. (1.96)

where γ = (g + 2/g) is the ratio of specific heats, depending on degree of freedom g for the electron motion.

Injecting the expressions for small amplitude waves into Eq. (1.93)-Eq. (1.94) and neglecting all the quantities

higher than the first order, we obtain linearized equations for the electron plasma wave. Performing then Fourier

transform in space and time we have:

− iωne1 + ikne0ue1 = 0 (1.97)
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− iωne0meue1 = −3iTekne1 − ene0E1 (1.98)

ikE1 = −4πene1 (1.99)

The condition of non-zero solution for this system of three linear equations gives the dispersion relation for an

electron plasma wave:

ω2 = ω2
pe + 3v2

tek
2. (1.100)

Such a dispersion relation can be rewritten in terms of the Debye length as:

ω = ωpe

√
1 + 3k2λ2

D. (1.101)

It could be shown [48,63,64] that weakly damped electron plasma waves exist only if the thermal correction

3k2λ2
D is small, and consequently, ω ≈ ωpe. From Eq. (1.100), the electron waves, called also Langmuir waves,

exist in plasma at a frequency approximately equal to the electron plasma frequency, with a small correction

due to the thermal motion. When the thermal correction increases, the phase velocity of Langmuir waves

approaches closer to the electron thermal velocity, and the wave may undergo Landau damping. This effect is

not accounted for within the fluid description because it stands for a kinetic effect. Therefore, the linear fluid

wave description applies when Landau damping is negligible, kλD << 1, otherwise the waves must be described

within the kinetic approach.

Longitudinal electrostatic waves: ion acoustic waves As for electron plasma waves, we retrieve here

the dispersion relation for ion acoustic waves in one-dimensional linear approximation by assuming that:

� electrons inertia is negligible, since me << mi: the electrons move instantaneously along with ions;

� electrons are considered isothermal because their temperature is equilibrated on ion time-scale;

� ion equation of state is adiabatic, similar to the electron equation of state in the electron plasma wave.

With these hypotheses, the equations governing the plasma dynamics are

eneE = −dPe
dx

= −Te
∂ne
∂x

; (1.102)

∂ni
∂t

+
∂ (niui)

∂x
= 0; (1.103)

mini

[
∂ui
∂t

+ vi
∂u

∂x i

]
= −∂Pi

∂x
+ ZeniE. (1.104)

Linearizing such equations one obtains

ene0E1 = −Te
dne1
dx

, (1.105)
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∂ni1
∂t

+ ni0
∂ui1
∂x

= 0, (1.106)

mini0
∂ui1
∂t

= −3Ti
∂ni1
∂x

+ Zeni0E1 (1.107)

where γi = 3. Combining the time derivative of Eq. (1.106), the spatial derivative of Eq. (1.107), accounting

for Eq. (1.105) and the quasi-neutrality condition Zni = ne, one has:

∂2ni1
∂t2

− c2s
∂2ni1
∂x2

= 0, (1.108)

where c2s = (3Ti + ZTe)/mi is the sound speed. This equation describes the propagation of ion acoustic waves

(IAWs), and provides the dispersion relation of IAWs in the Fourier space:

ω2 = c2sk
2. (1.109)

If the quasi-neutrality condition is not satisfied, the dispersion relation Eq. (1.109) is corrected as follows [63]

ω2 = k2

(
3Ti
mi

+
ZTe/mi

1 + k2λ2
D

)
. (1.110)

So, for small value of k2λ2
D, one retrieves the Eq. (1.109). In cases where k2λ2

D >> 1, one finds pure low

frequency ion plasma oscillations at frequency ωpi. In this range of wavelengths, the ion kinetic effects become

important leading to Landau damping of ion plasma waves.

Transverse electromagnetic waves Transverse perturbation may propagate as an electromagnetic wave in

plasmas. Since the electric field is perpendicular to the propagation direction, one has ∇ ·E = 0 and ∇ ·B = 0.

In order to find the dispersion relation, one can consider ions to be at rest due to the large difference between

ion and the electron mass. Furthermore, transverse wave does not produce plasma density perturbation, and

ne1 = 0. The dispersion relation is found by linearizing the moment electron plasma equation and the Maxwell’s

equations:

me
∂ue1
∂t

= −eE1, (1.111)

je1 = −ene0ue1. (1.112)

∇×E1 = −1

c

∂B1

∂t
, (1.113)

∇×B1 =
4π

c
je1 +

1

c

∂E1

∂t
, (1.114)

A relation between the electric field and the density current is found by taking the time derivative of Eq. (1.112)

and combining it with Eq. (1.111), giving
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∂je1
∂t

=
e2ne0
me

E1. (1.115)

The relation dispersion of electromagnetic waves in plasmas is retrieved once combining the curl of Eq. (1.113)

and the time derivative of Eq. (1.114), considering the one-dimensional problem and considering Eq. (1.115):

ω2 = ω2
pe + c2k2. (1.116)

From this relation, the maximum density at which an electromagnetic wave can propagate can be evaluated.

Defining the refraction index N = ck/ω, Eq. (1.116) reads

N(x) =

√
1−

ω2
pe(x)

ω2
. (1.117)

For ωpe > ω, the refractive index becomes imaginary, and the light cannot further penetrate the plasma being

reflected. The density at which it occurs is called “critical density” nc and it writes

nc =
meω

2

4πe2
. (1.118)

The critical density expression can be rewritten as a function of the laser wavelength:

nc = 1.1× 1021

(
λ

µm

)−2

, (1.119)

where nc is in units of cm−3. Accounting for Eq. (1.70) and Eq. (1.119), the refractive index can be also written

in terms of the critical density and local plasma density:

N(x) =

√
1− ne(x)

nc
. (1.120)

The plasma permittivity then reads

ε = N2(x) = 1− ne(x)

nc
. (1.121)

The dispersion relation for the the longitudinal and transverse plasma waves present the same frequency

cut-off ωpe which is proportional to the square root of the local plasma density. This is not the case for ion

waves, which have much lower frequency. Figure 1.4 shows the dispersion relations for all the three waves. The

green curve corresponds to the electron plasma wave Eq. (1.101), the blue curve refers to the ion acoustic wave

Eq. (1.109), and the gray curve to the electromagnetic wave Eq. (1.116). The dashed line refers to the cut-off

ω = ωpe. The electron plasma dispersion curve a slightly diverges from the cut-off because the thermal term of

Eq. (1.101) represents a small correction. The same frequency cut-off is evidenced also in the electromagnetic

wave dispersion relation, whose frequency increases as a function of the wavevector k.
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Figure 1.4: Dispersion relation of plasma waves. The gray curve corresponds to the electromagnetic wave, the

green curve corresponds to the electron wave and the blue curve corresponds to the ion wave. The dashed line

refers to the cut-off ω = ωpe.

1.3 Laser-plasma coupling in ICF and SI

Depending on the laser intensity I0 and the laser wavelength λ, laser-plasma interaction can be divided into

three different regimes [60]: the low, the moderate and high intensity regime. The low intensity regime is

characterized by I0λ
2 <1014 W/cm2 µm2, and the laser-plasma coupling consists mainly of laser absorption due

to collisional or resonance mechanisms. The moderate intensity regime, where 1014 W/cm2 µm2 < I0λ
2 < 1018

W/cm2 µm2, comprises low intensity effects competing with laser ponderomotive self-focusing and laser-plasma

instabilities, as beam filamentation and parametric instabilities. For I0λ
2 > 1018 W/cm2 µm2, referred to as

high intensity regime, the plasma electrons undergo relativistic motion, and relativistic effects take place. The

regime explored in this thesis pertains to the second case, being the framework where ICF and SI laser-plasma

coupling occurs.

In the following sections, we recall several laser-plasma interaction physics occurring at low and moderate

regime.

1.3.1 Low intensity regime: linear laser-plasma coupling

1.3.1.1 Collisionless plasma: light reflection

Let us consider a monochromatic electric field E(r, t) = E0(r, t)e−iωt propagating in a plasma, with a frequency

ω higher than the electron plasma frequency. Ions are then considered at rest, and the fluid electron equations

govern the plasma dynamics. Due to the low intensity assumption, second order effects can be disregarded.

Also, for the nonrelativistic assumption, the term u×B does not play a role in the electron dynamics. According

to these considerations, at the first order, the linearized density current rewrites je = je1, and Eq. (1.115) reads
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je1 = −
iω2
pe

4πω
E0(r, t)e−iωt, (1.122)

where we have assumed je0 = 0. Substituting Eq. (1.122) into Eq. (1.4), taking the curl of Eq. (1.3), combining

them and considering standard vector identities, the electric field equation in the frequency domain writes [45]

∇2E−∇(∇ ·E) +
ω2

c2
εE = 0, (1.123)

where ε is the plasma permittivity defined in Eq. (1.121).

Plasma properties influence the solution of Eq. (1.123), and so the fields dynamics. If the plasma is

homogeneous, then ∇(∇ ·E) = 0 and ∇ε = 0. If the wave amplitude is a plane wave such as E0(r, t) = E0e
ik·r

and ne0 < nc, one retrieves the dispersion relation of electromagnetic waves in plasma as in Eq. (1.116). If

ne0 > nc, the radiation cannot enter the plasma and it is reflected at the plasma surface.

In case of inhomogeneous plasmas, if the plasma density at the plasma surface is smaller than nc and

then increases, the light propagates up to the critical density, being then reflected since it cannot propagate

further. In order to analyse the light reflection neglecting energy loss, let us consider the propagation of a

monochromatic wave in a collisionless plasma slab. We suppose that the plasma slab lies into the (x, y)-plane,

and that an s-polarized planar wave entering the plasma with an angle of incidence θ with respect the plasma

slab normal. The electric field amplitude rewrites E0 = E0z(x, y)ẑ. Considering that the plasma density ne0 is

inhomogeneous along the x-axis ne0 = ne0(x), and letting θ be the inclination of the wave vector with respect

the plasma density gradient, Eq. (1.123) for the electric field amplitude rewrites

d2E0z

dx2
+
d2E0z

dy2
+
ω2

c2
ε(x)E0z = 0. (1.124)

Since the density gradient is orientated along x, the solution of Eq. (1.124) can be factorized as follows:

E0z = E0z(x)E0z(y), and the term E0z(y) is retrieved once observed that the y component of the wavevector k

must be conserved: E0z(y) = exp (ikyy), where ky = ω sin θ/c. Injecting E0z(y) in Eq. (1.124), one obtains

d2E0z

dx2
+
ω2

c2
(
ε(x)− sin2 θ

)
E0z = 0. (1.125)

According to Eq. (1.125), the light propagates up to the point where ε(x) = sin2 θ, and then it is reflected. If

the plasma density varies linearly along x, i.e. ne0 = ncx/L, where L is the position of the critical density, and

supposing that the light enters the slab at x = 0, the turning point appears for x = L cos2 θ, so for densities less

than the critical density. Figure 1.5 illustrates the light reflection for an s-polarized electric field propagating

into a plasma slab. The dashed black line refers to the trajectory of the light. For θ = 0, the turning point

becomes x = L, and the wave trajectory resembles a straight line.

If the light is p-polarized, as displayed in the Figure 1.5 by the electric field vector E in blue, the wave

undergoes resonant absorption. This effect can create energetic electrons and plays an important role in ICF

even at low intensities, however the resonant absorption is not considered in this thesis.
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Figure 1.5: Light reflection in a plasma slab. The red electric field vector E refers to an s-polarized wave, the

blue vector to a p-polarized wave.

1.3.1.2 Collisional effects: light absorption

We now review the effect of electron-ion collisions on the wave propagation. In order to describe this process, we

solve Eq. (1.124) by using Wentzel-Kramers-Brillouin (WKB) approximation [45]. This method considers the

slowly varying approximation used in Sec. 1.1, and allows to solve a system of linear differential equations with

spatially varying coefficients. If the plasma permittivity slowly depends on the spatial coordinates, considering

an electric field in the WKB approximation propagates along the x-axis, the electric field reads

E0z(x) = Ẽ0(x)ei
ω
c

∫ x
0

Φ(x′)dx′ (1.126)

where the integral is taken along the wave trajectory. This expression supposes that the wave enters the plasma

at x = 0. Plugging Eq. (1.126) into Eq. (1.124), we obtain an equation containing terms of different orders in

derivatives with respect to x. At zero order, we find an equation for the phase (see Sec. 1.1)

Φ(x′) =
√
ε. (1.127)

At first order, we obtain an equation for the wave amplitude. Posing at x = 0 the plasma-vacuum interface,

and combining the first order solution to Eq. (1.127), the electric field reads

E0x =
Ev
4
√
ε
ei
ω
c

∫ x
0

√
ε(x′)dx′ (1.128)

where Ev is the electric field amplitude in the vacuum. From Eq. (1.128), it follows that the electric field

amplitude decreases along the propagation direction if there is a positive imaginary part of plasma permittivity

ε, which physically means that electron-ion collisions are accounted for. Let us consider electrons at thermal

equilibrium, and ions acting as a fixed background which simply neutralizes the electron charge. For an electron

fluid, the rate of electrons moment changes due to collisions with ions is(
∂neue
∂t

)
i

= −νeineue (1.129)

Adding this term to Eq. (1.115), the density current reads
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j = −ı e2neE

me(ω + ıνei)
. (1.130)

and the permittivity ε becomes a complex value: in fact, solving the dispersion equation for electromagnetic

modes propagating as in Sec. 1.2.2.2, considering a complex density current, and supposing that νei << ω,

accounting for ne/nc = ω2
pe/ω

2, the plasma permittivity from Eq. (1.121) can be rewritten as

ε = 1−
ω2
pe

ω(ω + ıνei)
. (1.131)

Consequently, the dispersion relation for electromagnetic waves becomes

ω2 = c2k2 + ω2
pe

(
1− ıνei

ω

)
. (1.132)

Substituting Eq. (1.131) in Eq. (1.128) allows to find a solution for electric field in an absorbing plasma in the

WKB approximation.

In an inhomogeneous plasma, the most of light absorption occurs around the critical density. However, it is

useful to evaluate the rate of the power absorption along the whole spatial density profile. The spatial rate of

intensity variation reads

dI

dx
= −κI, (1.133)

where κ is the spatial collisional damping rate which is equal to two times the imaginary part of the k-vector.

To evaluate κ, one may consider that the collision frequency depends on plasma density through Eq. (1.73),

and solving Eq. (1.132) to find an expression for the wavevector k. In a plasma of spatial-varying density the

spatial damping rate can be rewritten as follows [60]

κ =

(
νei(ne(x))

c

)(
ne(x)

nc

)(
1− ne(x)

nc

)−1/2

, (1.134)

from which it implies that if the wave goes through a slab of plasma of a length L, the fraction of power absorbed

reads

fA = 1− exp

(
−
∫ L

0

κdx

)
, (1.135)

where f = (Iinc − Iout)/Iinc, and Iout and Iinc are the outgoing and incident intensity, respectively. Equation

(1.135) is valid for any plasma profile, and its integral depends on the plasma density profile. In Chapter 4, we

solve this equation for a linear plasma density profile.

1.3.2 Moderate intensity regime: Nonlinear laser-plasma coupling

In this section, nonlinear effects for 1014 W/cm2 µm2 < I0λ
2 < 1018 W/cm2 µm2 are reviewed, especially the

ones treated in this thesis: laser beam self-focusing and filamentation instability, with a short excursion into

parametric instabilities.
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1.3.2.1 Ponderomotive force in laser-plasma coupling

High intensity laser beams exert on the plasma electrons a ponderomotive force, which acts transversally to the

laser propagation direction in case of long laser pulses. In order to recover the expression for the ponderomotive

force, we consider a high frequency laser which does not directly perturb the ion dynamics on laser oscillation

time-scales. The ions provide a background of positive charge and their behavior will be retrieved from the

feedback of the electron motion on longer time-scales. We start by determing an expression for the ponderomo-

tive force acting on one electron [60]. After that, we extend the problem to a plasma with an electron density

ne0, and eventually we see how ions are influenced by electron motion.

When the laser beam interacts with an electron, the particle experiences the Lorentz force, and its velocity

dynamics changes accordingly to the moment equation:

me
due
dt

= −e
[
E +

ue
c
×B

]
. (1.136)

The electric and magnetic fields are described as components of a monochromatic wave, which we present as

E(r, t) = E0(r) cosωt, and B(r, t) = −c/ω∇×E0(r) sinωt = B0(r) sinωt. We note that the two fields affect the

electron motion at different orders since relativistic effects are weak in this intensity regime. Thus, eu × B/c

is of the second order compared to than eE. So, considering that at the equilibrium ue0 = 0, linearizing Eq.

(1.136), the electron velocity evaluated at position r0 reads

ue1(r0) = −eE0(r0) sinωt

meω
. (1.137)

The expression for r1 is obtained once integrating Eq. (1.137) from Newton’s law ue1(r0) = dr1/dt:

r1 =
eE0(r0) cosωt

meω2
. (1.138)

The electron oscillates in the light field at a frequency ω. In order to evaluate the complete dynamics, we

must account for the second order effects induced by the magnetic field, i.e. modification of the electron

dynamics at the position r1. Here, a Taylor’s expansion of the electric field around the position r1 gives:

E0 = E0(r0) + (r1 · ∇)E0(r0). Consequently, the moment equation at the second order reads

me
due2
dt

= −e
[
(r1 · ∇)E0(r0) +

ue1
c
×B0(r0)

]
. (1.139)

Substituting Eq. (1.138) in Eq. (1.139), averaging over the oscillation period T = 2π/ω and recalling some

vectorial algebra relations, we obtain the average force feP acting over an electron:

feP = me〈
due2
dt
〉T = − e2

4meω2
∇E2

0. (1.140)

The ponderomotive potential φP is defined from Eq. (1.140):

φP = − e

4meω2
E2

0. (1.141)

For a plasma of electron density ne0, the ponderomotive force acting on a unit of volume writes
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FP = ne0f
e
P = −

ω2
pe

16πω2
∇E2

0. (1.142)

Equation (1.142) describes a plasma perturbation over a time-scale longer than the electron oscillation period

due to the laser intensity gradient: the electrons are transversely pushed in the direction where the intensity

decreases. Such a displacement creates an electric charge separation that induces a Coulomb potential φc

tending to restore the charge neutrality between electrons and ions. The total force acting on the electron fluid

Ftote is

Ftote = FeP − ne0eEcs, (1.143)

where Ecs = −∇φc is the electrostatic restoring field. The ion motion is influenced by such a charge separation

through the potential φc, and the force acting on the ions reads Ftoti

Ftoti = ni0ZeEcs. (1.144)

where Ze ion charge. Combining Eqs. (1.143) and (1.144), when the quasi-neutrality is re-established, the total

force acting on the plasma reads

Ftote + Ftoti = FeP . (1.145)

From these considerations, it is clear that the ponderomotive force changes the ion dynamics as well, and it

must be included into the ion equation (1.108). To do so, let us consider that the electrons constitute an

isothermal fluid, the electron pressure gradient reads ∇Pe = Te∇ne. The ion fluid can be described by an

adiabatic equation of state: ∇Pi = 3Ti∇ni. In order to find the ion dynamics, let us consider the equations for

the electron and ion momenta including the ponderomotive force. They read respectively

mene
∂ue
∂t

+ neme(ue · ∇)ue = −Te∇ne + ene∇φc + ene∇φP , (1.146)

mini
∂ui
∂t

+ nimi(ui · ∇)ui = −3Ti∇ni − Zeni∇φc, (1.147)

In the low frequency limit, the electron inertia can be disregarded. Considering then a decomposition into

an unperturbed term denoted with index “0” and small perturbation contribution with index “1”, and plugging

the electron pressure expression into Eq. (1.146), the Coulomb potential from Eq. (1.146) reads:

ene∇φc = Te∇ne1 − ene∇φp (1.148)

Injecting this expression into Eq. (1.147), accounting for ion density conservation equation at first order, and

expanding also the ion response into an equilibrium and small perturbation terms, one obtains

mini0
dui1
dt

= −3Ti∇ni1 − ZTe∇ni1 + Zeni∇φp. (1.149)

Taking the gradient of Eq. (1.149), and considering Eq. (1.141), the equation of the ion dynamics becomes
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(
∂2
t − c2s∇2

) ni1
ni0

= −c2s
ω2
pe

16πω2
∇2E2

0. (1.150)

From Eq. (1.150), at a stationary state, the ion density locally depends on the laser intensity

δn

ni0
= −βE2

0 . (1.151)

where δn = ni(x)/ni0−1 is the amplitude of the plasma density perturbation and β = e2/[4meω
2(Te+3Ti/Z)].

However, to include strong density nonlinearity and reproduce the Boltzmann density depletion as described

in [70,71], the term ni1/ni0 is usually replaced by log(1− ni1/ni0), and the plasma response reads

δn

ni0
= e−βE

2
0 − 1. (1.152)

As a consequence, in the moderate intensity regime, the plasma density can be strongly modified by the laser

ponderomotive force. The density modification induces an increase of the refraction index near the laser beam

axis. The field then experiences a refractive index gradient which makes the plasma acting as a convergent lens.

Such a behaviour can be better illustrated when considering the laser described as a Gaussian beam.

Self-focusing of a Gaussian beam. Let us review the effect of ponderomotive force when a beam has a

Gaussian profile [24]. We consider a nonlinear stationary solution Eq. (1.152) for a plasma response to the laser

propagation. With this assumption and supposing a monochromatic field E = Re[E0 exp (−iωt)], the electric

field as in Eq. (1.123) rewrites

− ω2E0 + c2∇2E0 = −ω2
pee
−βE2

0E0. (1.153)

Supposing a spatially slowing varying electromagnetic field, the wave reads E0(r, t) = A(r) exp(ıkx), where A(r)

stands for the slowing varying amplitude in space. Equation (1.153) becomes

−2ıkc2
∂A

∂x
+ c2∇2

⊥A− Γ2A+ ω2
peA[1− exp(−β |A|2)] = 0, (1.154)

where k2c2 + ω2
pe − ω2 = Γ2 corresponds to dispersion relation shift due to electron density perturbation, ∇⊥

is the transverse gradient.

Assuming the geometrical optics framework, A(r) can be decomposed in an amplitude and phase:

A(r) = A0(r) exp(ıkφ),

Assuming axially symmetric beams, introducing the transverse coordinate r⊥, Eq.(1.154) can be split into two

equations for the real and imaginary part, respectively:

− c2k2A0

[
2
∂φ

∂x
+

(
∂φ

∂r⊥

)2
]

+ c2
(

1

r⊥

∂A0

∂r⊥
+
∂2A0

∂r2
⊥

)
+ ω2

peA0[1− exp(−β |A0|2)]− Γ2A0 = 0, (1.155)
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2

(
∂A0

∂x
+
∂φ

∂r

∂A0

∂r⊥

)
+A0

(
1

r⊥

∂φ

∂r⊥
+
∂2φ

∂r2
⊥

)
= 0, (1.156)

At this point, we assume that the amplitude A0 has a Gaussian profile:

A2
0 =

E2
0

f1+m
exp
(
− 2r2

⊥
w2

0f
2

)
, (1.157)

where f = w(x)/w0 dimensionless beam width, and m = 0 or 1 depending if the problem is two- or three-

dimensional, respectively. In order to reproduce a Gaussian beam profile, the phase φ writes (see Sec. 1.1.2)

φ(x, r) =
r2
⊥

2f

df

dx
+ φ̃(x), (1.158)

which depends on r⊥ and x. Here we have also added a term φ̃(x) which accounts for a nonlinear perturbation

of the phase.

Since we are considering paraxial beams, r2
⊥ << (w2

0f
2), Eq. (1.155) is split in two equations of the 0-th and

2-nd order in r⊥. At the 0-th order in r⊥, accounting for Eqs. (1.157) and (1.158), Eq.(1.156) produces the

equation for the phase Φ̃:

dφ̃

dx
= − 2

w2
0k

2f2
+
ω2
pe − Γ2

2c2k2
−

ω2
pe

2c2k2
exp

(
− βE2

0

fm+1

)
. (1.159)

Hence, Φ̃ takes into account the contribution of nonlinear effects to the eikonal. At 2-nd order in r⊥, we retrieve

the equation for f

d2f

dx2
=

4

k2w4
0f

3
− 2βE2

0

k2w2
0f

m+2

ω2
pe

c2
exp(−βE2

0/f
m+1). (1.160)

The first term in the right hand-side describes the beam diffraction, whereas the second term is responsible for

the ponderomotive effects.

The difference between the 2D and 3D geometry in Eq. (1.160) dwells in the power of f in the ponderomotive

term: while in 3D, the ponderomotive term scales as exp(−βE2
0/f

2)/f3, in 2D it scales as exp(−βE2
0/f)/f2.

This is explained by energy conservation arguments: in 3D the power of a Gaussian beam is proportional to

1/f2, where in 2D to 1/f , according to Eqs. (1.33) and (1.28). As a consequence, ponderomotive effects are

expected to be stronger in 3D than in 2D.

An important parameter for ponderomotive effects evaluation is the critical power. Early studies of critical

power started in the 60s were related to the Kerr effect induced by lasers propagating in dielectrics [72–74], and

then in plasmas [24, 75–79]. From [24], the threshold condition at which the ponderomotive effects equilibrate

the diffraction requires that the beam propagates in the density channel without changing its width when it

enters the plasma region with a planar wavefront, i.e. the beam is focused at the vacuum-plasma interface. As

a consequence of diffraction and ponderomotive effects equilibrium, the beam remains self-trapped inside the

plasma channel with no width modification. In the 3D case (m=1), this is recovered by imposing in Eq. (1.160)

that the second time derivative of f is zero, giving

63



E2
0c =

Re
[
W
(
−2c2

w2
0ω

2
pe

)]
β

, (1.161)

where E0c is the critical electric field amplitude to obtain a steady state and Re [W] stands for the real-value

of the Lambert function W [80]. This function W(a) is the solution of equation W exp(W) = α, with α being

a real number. Once supposing w0 >> c/ωpe, the condition Eq. (1.161) can be expressed in terms of laser

intensity:

Ic0 = 8
n2
c(Te + 3Ti/Z)c3

ne0w2
0ω

2

√
1− ne0

nc
, (1.162)

where Ic0 is called critical intensity, and it gives the characteristic laser intensity at which ponderomotive effects

begin to affect the beam dynamics when the beam is focused on the plasma-vacuum interface. In 3D, the total

power P carried out by the laser beam is calculated from Eq. (1.28). Then, the critical power of a Gaussian

beam propagating into an underdense plasma (corresponding to the limit w0 >> c/ωpe) in cylindrical symmetry

reads [81,82]:

P 3D
c = 1.86× 4π

n2
c(Te + 3Ti/Z)c3

ne0ω2

√
1− ne0

nc
, (1.163)

where the coefficient 1.86 was calculated numerically in Ref. [83].

The critical power depends on the dimension of the problem. In 2D, the power depends on the beam waist

because of a lower dimension. Accounting for Eq. (1.33) and Eq. (1.28), the conversion from the 3D critical

power to 2D critical power while keeping the same critical intensity Eq. (1.162) (in the limit w0 >> c/ωpe) and

the same beam width reads

P 2D
c =

hP 3D
c√
πw0

, (1.164)

where h is the unit length in the third dimension. When the power of a Gaussian beam overcomes the critical

power, whether in 2D or 3D geometry, the beam width decreases and the laser intensity increases. Figure 1.6a

illustrates a solution of Eq. (1.160) for I0/I
c
0 = 3 and for the initial condition f0 = 1, which corresponds to a

beam entering the plasma with a plane wavefront in 2D (m=0). The intensity enhancement according to Eq.

(1.35) Imax/I0 = 1/f (green line) and the dimensionless beam width f (red line) are plotted as a function of

x in Fig. 1.6a. The ponderomotive force induces a density depletion according to Eq. (1.152) or Eq. (1.151).

In such a density channel, the laser intensity increases and beam width decreases. After reaching the first

maximum, diffraction prevails over the ponderomotive force, and the beam begins to diverge, until the initial

conditions are restored, so the beam converges again. The beam is then trapped inside the density cavity,

undergoing oscillations. The beam width reduction stage is called beam ponderomotive self-focusing because it

is due to ponderomotive effects. In this stationary solution, laser self-focusing is characterized by the intensity

enhancement Imax/I0: the stronger the beam power is, the higher the intensity enhancement appears. However,

the intensity enhancement depends on the geometry, as displayed in Fig. 1.6b: here, Imax/I0 evaluated in 3D

(orange line) and in 2D (blue line) from Eq. (1.160) for m=1 and m=0, respectively. It is compared for different

values of the initial beam intensity I0/I
c
0 . In 3D, Imax/I0 = 1/f2 according to Eq. (1.34). In both cases,
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the ponderomotive force induces beam self-focusing for I0/I
c
0 > 1, but in 3D ponderomotive effects are more

important than in 2D given that plasma depletion takes place in two transverse dimensions. This scenario

concerns the situation where a speckle is described as a Gaussian beam with the same width w0 in 2D and 3D

geometry. In cases where the beam intensity is the same, but the width of the beam is different in 2D and 3D

geometry, Eq. (1.164) writes:

P 2D
c =

hP 3D
c√
π

w2D

w2
3D

, (1.165)

where w2D and w3D are the speckle width in 2D and 3D, and h = 1 cm is an artificial length introduced

to have the right intensity and power units. Notably this case occurs when modelling of ICF experiments

with hydrodynamic codes, and in particular in this work, where we study two-dimensional self-focusing with

the hydrodynamic code CHIC within the PCGO framework: all along this thesis, we consider 2D speckles

several times larger than real far-field speckles as encountered when performing full hydrodynamic simulations

of ICF-like laser-target interaction.

Another quantity used to understand the strength of ponderomotive effects is the self-focusing length Lsf .

This stands for the distance at which the beam reaches its maximum intensity due to ponderomotively-induced

focusing. Independently on the dimension, a semi-empirical relation between Lsf and the Rayleigh length of a

Gaussian beam xR has been found [84,85]:

Lsf =
0.367xR√(

p1/2 − 0.852
)2 − 0.0219

, (1.166)

where p stands for the ratio between the speckle power and its critical power in 3D or 2D geometry. Pon-

deromotive effects are relevant if plasma length is larger than Lsf , otherwise the beam dynamics is unaffected

by self-focusing. In Chapter 4, we apply Eq. (1.166) to compare this analytic estimation to PCGO-CHIC

simulations for plasmas with a linear density profile.

As mentioned above, ponderomotive self-focusing theory has been considered in the stationary state. This

approximation is accurate for low powers. Since the beam width reduces and the intensity increases, the self-

focusing can trigger other laser-plasma instabilities, such as filamentation instability [71,86]. In these cases, the

steady state solution is no longer valid, and the beam can break in filaments behind the self-focusing position.

The conditions for filamentation instability are summarized in Section 1.3.4.1.

1.3.3 Self-focusing in the PCGO framework

In this section, we evaluate the intensity enhancement in speckles described within the PCGO model. Two

aspects must be considered: first, the PCGO speckles are of a larger size, contain more power and, consequently,

stronger self-focused. Second, PCGO model is considered in two dimensions, and self-focusing is weaker than

in the real 3D world. We demonstrate here that competition of these two factors leads to an overestimation

of the speckle intensity enhancement by modelling of realistic speckles by larger 2D speckles for conditions

relevant to NIF-scale experiments. Let us consider a NIF-size laser with a 400 TW power distributed over

200 beams and equipped with phase plates producing 104 speckles. The single beam power is 2 TW, whereas
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(a) (b)

Figure 1.6: (a) Laser intensity enhancement Imax/I0 (green line) and dimensionless width f (red line) as a

function of the coordinate x along the beam propagation direction for I0/I
c
0 = 3 from solution of Eq. (1.160)

with m=0 (2D). (b) Comparison Imax/I0 for 2D (blue line) and 3D (orange line) as function of I0/I
c
0 .

the average speckle power p̂s is computed by dividing the beam power to 104, giving p̂3D
s = 200 MW. For

speckles with a width of 2 µm, from Eq. (1.163) considering a laser wavelength λ = 0.35 µm, plasma density

ne0/nc = 0.1 and temperature Te = 3 keV, the critical power P 3D
c is around P c3D = 430 MW, thus the ratio

p3D = p̂3D
s /P 3D

c ∼ 0.46. In a 2D planar geometry as in CHIC, the speckles can be several times to one order

of magnitude larger than optical speckles: in this example we consider w2D = 20λ, as it is typical in ICF

hydrodynamics simulations. Calculating the power for a single 2D speckle from Eq. (1.33) by conserving the

same intensity as evaluated for the three-dimensional geometry, computing the equivalent 2D critical power

P 2D
c for a larger 2D speckle from Eq. (1.165), one finds that the power ratio is p2D = P2D/P

2D
c ∼ 2. Therefore,

converting the power of a small 3D speckle to a larger 2D speckles leads to an overestimation of the speckle

power compared to its critical power of p2D/p3D ∼ 2.6. As a consequence, for the same beam average intensity,

the intensity enhancements retrieved in 2D are systematically overestimated compared to 3D, as observed from

Fig. 1.6b as well: supposing that in 3D one has p3D = 1, no relevant intensity enhancement takes place. In

2D, the power ratio reads p2D = 2.6, and an intensity enhancement 2-3 times larger than in 3D case is found.

In order to account for this overestimation and decrease the PCGO speckle intensity enhancement at the same

level of a real 3D speckle, in Chapter 2 we propose a method for controlling and reduce the PCGO speckle

intensity enhancement by combining several Gaussian beamlets in a single speckle.

1.3.4 Laser-plasma instabilities

The most important laser-plasma instabilities (LPIs) in ICF can be divided in two categories: modulation

instabilities and parametric instabilities [45, 87]. In the next subsections, we briefly recall the main feature

of filamentation instability. Then we describes some properties of parametric instabilities relevant to ICF.

Examples of three-wave instabilities are illustrated in Appendix.
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1.3.4.1 Filamentation instability

The filamentation instability [71, 88] is a process similar to laser self-focusing: the ponderomotive self-focusing

produces a global enhancement of a laser beam intensity, while filamentation corresponds to small-scale spatial

modulations of the laser intensity profile, which can turn into an instability if such modulations are amplified.

Following Refs. [71, 86], the ponderomotive filamentation is evaluated by considering the spatial amplification

of initial laser intensity modulations once neglected all the thermal effects. Considering a perturbation, with

a wavenumber κfil in the direction perpendicular to the laser propagation direction, the growth rate κfil as a

function of the wavevector modulation k reads:

κ2
fil =

k2

4N

(
ne0
2nc

Z

Z + 1

u2
osc

v2
te

− k2c2

ω2

)
. (1.167)

where uosc = eE0/meω. The maximum wavenumber at which the instability develops is found by equating the

term in the parenthesis of Eq. (1.167) to zero:

kmax =
ω

c

√
ne0
2nc

√
Z

Z + 1

uosc
vte

. (1.168)

This means that the filamentation takes place for the modulations of laser intensity with k < kmax. In Chap-

ter 2 we discuss ponderomotive filamentation instability for a Gaussian beam, showing that the filamentation

instability takes place under the condition kmaxw0 > 1 and when the inverse of the spatial growth rate κfil

is smaller than the plasma length. This brings to a larger threshold power than the critical power for the

ponderomotive self-focusing. More details on filamentation instabity and on the growth rate as a function of

modes are given in Chapter 2.

1.3.4.2 Parametric instabilities

High intensity lasers of frequency ω and wavenumber k can act as a pump and resonantly amplify the plasma

modes described in Sec. 1.2.2.3 [45,46,87]: the longitudinal modes such as electron plasma waves or Langmuir

Waves (LW) and Ion Acoustic Waves (IAW), and transverse mode such as electromagnetic waves (EM). Invoking

energy and moment conservation laws from quantum mechanics, the resonant conditions for excitation of a pair

of daughter waves are

ω = ωd1 + ωd2, (1.169)

k = kd1 + kd2, (1.170)

where ωd1 and ωd2 are the frequencies of the daughter waves 1 and 2 respectively, and kd1 and kd2 are their

wavenumber. The instabilities develop from amplification of the electron oscillation in the pump wave field,

which enhances the amplitude of the daughter waves. Let us suppose that one of daughter wave is an electro-

magnetic wave of amplitude EEM . Its amplification from a small seed Eseed can be of convective- or absolute-

type: in case of convective instability, it locally grows and spreads out along the direction of wave propagation

EEM = Eseed expκxx, where κx is the spatial gain. In case of absolute instability, the instability is spatially
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localized, and the daughter wave amplitude grows in time as EEM = Eseed exp γtt, where γt is the temporal

growth rate. Once established the nature of the instability, the spatial gain determines whether its amplifica-

tion takes place. The growth rate depends on the plasma conditions: in a homogeneous plasma [87,89–92], the

instability develops if the intrinsic growth rate γ0 is larger than γconvth = (νd1νd2)1/2, where νd1 and νd2 stand

for the dissipation rates of the daughter waves 1 and 2 respectively. The absolute instability develops in case of

oppositely propagating daughter waves, that is, Vd1Vd2 < 0, where Vd1 and Vd2 are the group velocities of the

two daughter waves. The instability develops if γ0 > γabsth = |Vd1Vd2|/2 [νd1/|Vd1|+ νd2/|Vd2|]. The instability

is convective if Vd1Vd2 > 0 or γconvth < γ0 < γabsth when Vd1Vd2 < 0.

The most important instabilities in ICF are stimulated Raman scattering (SRS), stimulated Brillouin scatter-

ing (SBS) and the two-plasmons decay (TPD): SRS and SBS consist in excitation of a scattered electromagnetic

and electron plasma in case of SRS or an ion acoustic wave in case of SBS. In TPD, the pump decays in two

electron plasma waves. In Appendix, we describe in more details SRS and SBS, which may compete with

ponderomotive self-focusing in an underdense plasma.

1.3.5 Competition of laser-plasma phenomena in ICF plasmas. Plasma-induced

incoherence

The success of the ICF strongly depends on the quality of the laser-plasma coupling: the most favorable scenario

consists in laser absorption occurring near the critical density by inverse bremsstrahlung. The absorbed laser

energy is transformed into the electron internal energy, and increased plasma pressure launches the compres-

sion waves that converge to the target center, generating the required conditions for ignition (see Introduction).

Laser-plasma instabilities degrade the compression efficiency by accelerating suprathermal electrons and by scat-

tering the light energy away from plasma. SRS and TPD contribute to the former process [93–99], whereas SBS

and SRS cause laser scattering [29, 100]. SRS- and TPD-generated hot electrons can penetrate the overdense

plasma region up to the target core, where they deposit their energy. The preheated target is harder to com-

press, making fuel ignition less likely to occur. Laser scattering decreases the absorbed energy and compromises

the uniformity of illumination, reducing the compression symmetry to the point where the ignition conditions

no longer hold. In this scenario, laser self-focusing plays a role by inducing a local laser intensity enhancement,

which reduces the illumination uniformity and increases the possibility to excite parametric instabilities. In

addition, the laser self-focusing may amplify filamentation instability, further degrading the laser-plasma cou-

pling. An overview on laser absorption, laser-plasma instabilities and self-focusing occurring in the underdense

plasma corona as a function of the plasma density is presented in Fig. 1.7. This picture allows to identify the

regions where each instability operates and where they compete.

Laser self-focusing, filamentation instability [101–103] and SBS are serious concerns for all ICF schemes since

they can occur all along the underdense plasma profile. Moreover, a process similar to SBS called cross-beam

energy transfer (CBET) can be produced by resonant excitation of IAWs when two laser beams of the same

frequency cross each other in a plasma flowing with a near sonic velocity, thus, enabling an energy exchange

between them [29,30]. It was estimated that in the OMEGA experiments CBET is responsible for reduction of

absorption and drive pressure by 30-40% [104]. Ponderomotively-driven nonlinear plasma response may create a
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Figure 1.7: Occurrence of laser-plasma instabilities in an underdense ICF plasma profile.

favorable environment for CBET, worsening the situation [31]. Another process which leads to a local intensity

amplification and can influence the laser-plasma coupling all along the underdense collisional plasma is the

thermal self-focusing [105]. Similarly to the ponderomotive counterpart, plasma changes its local properties

under the influence of the laser: whereas in case of ponderomotively-driven intensity enhancement such an

effect is due to the expulsion of the fluid from the laser axis, in the thermal self-focusing the collisional-induced

plasma heating provokes an hydrodynamics expansion which changes the index of refraction in the same way as

in ponderomotive self-focusing. Thus, the thermal self-focusing influences the laser dynamics only in conjunction

with laser absorption. Assuming ne << nc, the critical intensity Ic,th0 for the thermal self-focusing to occur

reads [106,107]

Ic,th0

cncTe
=
nc
ne

κ0

k2w4
0νei

, (1.171)

where κ0 is the Spitzer thermal conductivity κ0 = (128/3π)(Z + 0.24)/(Z + 4.2)v2
te/νei. Equation (1.171) is

obtained within the classical theory of electron collisional transport, and has to be compared to the threshold

of the ponderomotive. The latter can be rewritten as follows:

Ic,pond0

cncTe
=
nc
ne

8

k2w2
0

. (1.172)

As a consequence, the difference between thermal and ponderomotive self-focusing is given by the factor

Ic,th0

Ic,pond0

=
κ0

8w2
0νei

. (1.173)

In Chapter 4 we study how thermal self-focusing influence the laser-plasma coupling along with laser absorption

and ponderomotive self-focusing.

Absolute SRS and TPD can be excited near the quarter critical density. In ICF experiments, TPD dominates

at laser intensities below 1 PW/cm2, while the absolute SRS becomes more important at higher laser intensities
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where longer density profiles and hotter plasmas are produced. In these latter cases, the convective back- and

side-scattering SRS at lower densities ne/nc < 0.25 becomes important.

In case of the shock ignition scheme, the implosion laser pulse has a lower intensity than standard ICF

pulses, so instabilities are not expected to take place. The instabilities instead highly concerns the spike pulse-

plasma interaction [16, 17, 32]: the experimental results have shown a strong convective backward SRS, and a

weaker absolute SRS [108, 109]. However, since the absolute SRS is generated deeper inside the plasma, the

scattered light could be partially absorbed while travelling outwards. TPD seems to be less important than

SRS [110]. Simulations and experiments evaluate the relative importance of SRS and TPD in terms of hot

electron production. It has been proved that moderate suprathermal electrons with temperature of 60 keV

produced by SRS could be beneficial by increasing the amplitude of the shock wave launched by the spike

pulse [20]. TPD produces more energetic electrons with temperatures around 100 keV, which are undesirable

for the shock ignition scheme [112,113].

The laser beam spatial smoothing techniques described in Sec. 1.1.5 along with temporal [27] and polariza-

tion [114] smoothing have demonstrated capabilities to mitigate the filamentation instability in the standard

ICF approach [115–117]: the target preheat has been reduced thanks to the reduced amount of hot electrons and

laser self-focusing suppression. In the shock ignition approach, since the spike pulse has an intensity one order

of magnitude higher than ICF standard pulses, filamentation may develop in the speckles at small-scales [32].

Therefore, the filamentation and ponderomotive self-focusing may dominate the laser-plasma coupling in this

case, thus enabling onset of the parametric instabilities. In addition, backscattered light generated in small-scale

hot spots has been evidenced [32, 118, 119]. Several other techniques have been considered in order to control

the parametric instabilities, such as broadband pulses [120] or Spike Trains of Uneven Duration and Delay

pulses [121]. Their efficiency have been demonstrated both numerically and analytically and they need to be

tested on a real ICF/SI platforms.

The compression efficiency may also benefit from the plasma induced laser incoherence which relaxes speckles

self-focusing and suppresses backward SBS. This phenomenon consists in a reduction of the degree of spatial

and temporal coherence of a spatially modulated beam due to small-scale plasma density fluctuations generated

by a combination of ponderomotive self-focusing, filamentation instability and forward SBS [122–125]. A typical

signature of this process is angular and spectral broadening of the forward scattered light, which corresponds

to an increasing of the spatial and temporal incoherence. At high intensities, plasma-induced incoherence is

generated by interference of ion acoustic waves produced inside a self-focused speckle which interacts with

IAWs excited in other speckles. These multiple interactions may lead to a stabilization of speckle self-focusing

because of spreading plasma density fluctuations between the speckles. In Chapter 3, we extensively study

plasma smoothing by means of PCGO-CHIC simulations.

1.4 Numerical tools

In this section, we describe numerical tools which are used for modelling of laser-plasma coupling at intermediate

and long spatial- and temporal-scales: the electromagnetic code HARMONY and the hydrodynamics code
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CHIC. HARMONY solves the electromagnetic wave equation in a quasi-monochromatic approximation for

the electric field along with the nonlinear fluid equations for the plasma response and is dedicated to study

filamentation, laser self-focusing and SBS in 2D paraxial approximation. Then we illustrate the radiation-

hydrodynamics code CHIC and the modules based on PCGO allowing to account for nonlinear laser-plasma

interaction and, in particular, laser self-focusing.

1.4.1 The electromagnetic code Harmony

HARMONY [34] is a 2D electromagnetic code describing backward SBS, laser self-focusing and filamentation

in a plasma with density smaller than the critical density. The ion density perturbation and the plasma fluid

velocity are decomposed in a slowly varying part describing processes like self-focusing and near-forward SBS,

and a fast varying part describing harmonics IAWs driven by backward SBS:

n = n0 +
∑
m=1

nme
2imkx + c.c. (1.174)

u = u0 +
∑
m=1

ume
2imkx + c.c., (1.175)

where the terms with the index 0 refer to the initial large scale profiles, the terms with m = 1 stand for the

fundamental IAW driven by backward SBS and the terms with m > 1 describe the harmonics of the principal

IAW. The plasma fluid equations at the large scale are similar to Eqs. (1.93) and (1.94) where source terms

due to nonlinear IAW harmonics are added:

∂n0

∂t
+∇ (n0u0) =

(
∂nm
∂t

)
IAW

(1.176)

d(n0u0)

dt
+ c2s∇n0 =

en0

mi
∇φP +

(
∂nmum
∂t

)
IAW

(1.177)

where the first term at right hand-side of Eq. (1.177) contains the ponderomotive potential as defined in

Eq. (1.141). Correspondingly, the electric field is retrieved by solving the paraxial wave equations for the

forward-propagating component E+ and backward-propagating component E−:

[
∂

∂t
+ Vg+

d

dx
+ νd − i

c2

2ω

∂2

∂y2

]
E+ = −i ω

2nc
[n1E− + δnE+] (1.178)

[
∂

∂t
+ Vg−

∂

∂x
+ νd − i

c2

2ω

∂2

∂y2

]
E− = −i ω

2nc
[n∗1E+ + δnE−] (1.179)

where δn is the slow density perturbation, whose coupling to the electric wave gives rise to the beam self-focusing,

Vg+ and Vg− stand for the group velocities of the forward- and backward-propagating light respectively, and νd

denotes the damping of these two waves.

In this thesis, HARMONY is run in a simplified mode without the backscattered wave E− = 0 and without

right hand-side terms in Eqs. (1.176)-(1.177). Consequently, the hydrodynamic response is described by two

equations in a 2D geometry, assuming an isothermal plasma at a constant temperature. The boundary electric
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field E(x = 0, y, t) = E0(y, t) is defined by setting E0 as a Gaussian profile. Such a shape can change during

the wave propagation due to laser-plasma interactions.

Since in HARMONY beams are described by an electric field having amplitude and phase, it provides

an accurate description of the ponderomotive self-focusing, standing as a reference for validation of nonlinear

self-focusing of PCGO beams described in Chapter 2.

1.4.2 Radiation-hydrodynamics code CHIC

Inertial fusion-related phenomena involve longer spatial and time-scales than the ones accessible with electromag-

netic codes. To satisfy the need of simulating numerically the physical processes on such scales, hydrodynamics

codes have been developed. The CHIC code stands for one of them: it is based on the Lagrangian formulation of

single fluid equations, supposing a plasma composed by electrons and ions with two different temperatures [38]:

∂ρ

∂t
+∇(ρU) = 0 (1.180)

ρ

[
∂U

∂t
+ (U · ∇)U

]
= −∇P + Fext (1.181)

where ρ = mene + mini is the plasma mass density, P = Pe + Pi is the total plasma pressure and ρU =

meneue + miniui is the hydrodynamic plasma flow. These equations assume that at any time electrons and

ions are separately thermalized and they respect the quasi-neutrality condition ne = Zni. The term Fext stands

for the forces acting on the plasma besides thermal pressure, as for example the ponderomotive force. Further

two equations accounting for energy evolution of ions and electrons respectively are included:

ρ

[
∂

∂t
+ (U · ∇)

]
εe +∇ · qe = −Pe∇ ·U− 2α

me

mi
neνei(Te − Ti) + εext (1.182)

ρ

[
∂

∂t
+ (U · ∇)

]
εi +∇ · qi = −Pi∇ ·U + 2α

me

mi
neνei(Te − Ti) (1.183)

where εe and εi are the electron and ion specific internal energy respectively, qe and qi are the electrons and

ions energy flux, εext refers to other energy sources (or sinks), and α is a free parameter varying between [1,

1.5] accounting for non-ideal effects in the electron-ion coupling. The electron and ion heat fluxes are calculated

from the Spitzer-Härm theory [69] with a flux limiter for electrons. The code uses tables for the equation of

state. Built on a Lagrangian non-structured mesh, the CHIC code includes an Artibrary Lagrangian-Eulerian

(ALE), option which improves the code robustness in case of strong mesh distortions [38].

Concerning the laser description, the code includes a laser beam propagation and energy deposition modelled

with the standard Ray-Tracing. The incident laser beam is split into an ensemble of thin rays each of them

carrying a fraction of laser power and obeying to laws of geometrical optics described in Sec. 1.1.3. The

refraction of the ray in an inhomogeneous plasma is due to the variation of the refraction index in inside the

cells. However, ray tracing does not consider beam diffraction, and laser intensity in plasma is not efficiently

evaluated, providing only the values of laser power deposited in each cell at each time step. As a consequence,

Fext is usually neglected. Thus it is desirable to replace the standard ray tracing technique with a laser
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propagation model which computes the laser intensity and then accounts for intensity-dependent phenomena

and for diffraction effects.

To improve laser descripion and laser-plasma coupling in CHIC, a simplified version of PCGO has been

implemented in two-dimensional planar geometry: such a model is referred to as thick-ray model [40]. In this

approach, a ray is represented by a beamlet with a Gaussian intensity profile, characterized by initial power P0,

spatial width w0 and central coordinate r0. The beamlet trajectory r0(τc) along the curvilinear ray coordinate

τc obeys to the geometrical optics equation (1.46). The intensity profile is related to the complex wavefront

curvature B as described in Sec. 1.1.4. In Cartesian coordinates and for nonabsorbing plasma for instance, the

intensity profile of the thick beamlet projected into the hydrodynamics grid from Eq. (1.59) reads

I(x, y) = I0(x)e
−2 y2

w2(x) , (1.184)

where x is the longitudinal coordinate and y the transverse coordinate. By solving Eq. (1.46), one retrieves

the propagation path of thick ray centroid, whereas Eq. (1.184) gives the beam intensity. The beam deposes

its energy in each cell along its trajectory according to Eq. (1.133), which accounts for electron-ion collisions

(inverse Bremsstrahlung). As the laser intensity is known everywhere in the plasma, the ponderomotive force

has been implemented as an external force acting on plasma through the term Fext = −ene∇φp (see Sec. 1.3),

by projecting the ponderomotive potential φp into each cell. At each time step than, this external force induces

a transverse motion of the plasma, with the subsequent variation of local plasma density as described by the

stationary linear (Eq. (1.151)) or nonlinear (Eq. (1.152)) plasma response.

Implementation of the PCGO model has allowed to describe energy transfer between crossing laser beams [126].

Furthermore, the knowledge of laser intensity has lead to inline models for generation and propagation of hot

electrons [127]: when the laser intensity exceeds the value of SRS- or TPD- thresholds in a cell, an electron beam

is generated from this cell. Such an electron beam has a kinetic energy related to the laser intensity by scaling

laws [128], and it propagates in plasmas following a straight trajectory with a defined aperture. Definition of

such scaling laws is still subject of several studies. Moreover, in its current status, only transfer of the laser

energy to hot electrons is considered, neglecting scattering light processes. Despite that, the PCGO-related

hot-electron algorithm has demonstrated several successes in analysing experimental results [21,41,111,129].

The PCGO implementation in CHIC has provided the possibility to create beams of different spatial shapes

and with spatial-scale modulations [130]. In particular, PCGO allows to mimic the spatial fluctuations in-

troduced by phase plates by superposition of Gaussian beamlets: each PCGO beamlet propagates according

to Eq. (1.46), and with an intensity profile defined by Eq.(1.184), while the plasma density and temperature

profiles are provided by the hydrodynamic equations (1.180)-(1.183) updated at each time step. The phase

variation along the beamlet trajectory is not considered when thick beamlets are used to create a speckle pat-

tern. Thus, the local laser intensity in plasma I(x, y) is calculated as a sum of Nb neighbor beamlets intensities

Ij(x(τj), y(τj)) [40,130]:

I(x, y) =

Nb∑
j=1

Ij(x(τj), y(τj)), (1.185)
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where (x(τj), y(τj)) is the closest position on the trajectory of the beamlet from the observation point (x, y)

where the total beam intensity is evaluated: only a limited number of beamlets passing at a distance of the

order of the beamlet width contribute to the local intensity. The laser presents local intensity maxima in area

where two or more beamlets cross each others. Each local maximum represents a speckle. Knowing the local

intensity, one can calculate for example the ponderomotive pressure in plasma as a sum of all ponderomotive

pressures locally induced by the nearby beamlets: Up = ne0/(2cnc)
∑Nb
j=1 Ij(τj , qj).

As already mentioned, the PCGO model used in CHIC does not account for beamlets interference when

modelling of spatially modulated beams, and the number of speckles is at least one order of magnitude less

than in reality. Moreover, diffraction limits the PCGO resolution to a few laser wavelengths, and the speckles

must be several times larger than the real ones, which is compatible with the spatial resolution required in

hydrodynamics simulations, restrained to values of 5-10 laser wavelengths. These dimensions are larger than

the typical width of laser speckles of 2-3 laser wavelengths. As a first consequence, a realistic contrast of 100%

(see Sec. 1.1.5) cannot be achieved within the current PCGO-CHIC approximation, where the contrast reaches

a few tens of percent and depends on the number of beamlets. Another consequence of neglecting the beamlet

phase concerns the probabiltiy distribution of speckles intensity: in the current PCGO algorithm used to create

KPP beams, the statistics of speckle intensity is retrieved only if PCGO simulations are averaged over several

realizations [130].

Two-dimensional speckles larger than real ones overestimate the effects of the ponderomotive force as dis-

cussed in Sec. 1.3.2.1. In order to apply the 2D planar PCGO-CHIC model to realistic situations, a modification

of speckles initialization is required. A novel algorithm to create a PCGO spatially modulated beam which al-

lows to relax speckle intensity enhancement by a factor of 2-3 is needed. In this way, 2D large speckle reproduces

the intensity enhancement compatible to what is observed for real speckles. In Chapter 2 we study in details the

self-focusing of a PCGO beamlet comparing our results to HARMONY simulations. Afterwards we introduce

an algorithm that allows to decrease the ponderomotive force of the speckle by a factor of 2 while creating Gaus-

sian speckles by superposing PCGO beamlets. This procedure is then extended to spatially modulated beams

in Chapter 3, where self-focusing of a spatially modulated beam is described, showing how the new algorithm

permits to account for other speckle characteristics such as the variation of the probability distribution of the

speckle intensity. Whereas in Chapters 2 and 3 we consider homogeneous nonabsorbing plasmas, in Chapter 4

we investigate PCGO beams propagation in absorbing plasma with a linear density profile in order to approach

ICF situations.
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Chapter 2

Self-focusing of a beamlet and a

multi-beamlet speckle in homogeneous

nonabsorbing plasmas

2.1 Introduction

Unlike Ray-Tracing, the thick-ray approach describes the propagation of beams with a prescribed Gaussian

intensity profile, which we call beamlets. Intensity-profile-related effects, such as ponderomotive force, previously

not modelled in radiation-hydrodynamics codes, are now computed in CHIC since the implementation of the

PCGO model. Moreover, this version of PCGO is used to create spatially modulated laser beams by superposing

several beamlets to create the intensity fluctuations in the far-field (see Sec 1.4.2). Although this approach has

improved the CHIC accuracy in interpreting ICF experiments and in designing ICF targets, the PCGO multi-

beamlet speckle structure cannot accurately account for small spatial fluctuations: superposition of PCGO

beamlets produces larger and longer speckles than in real cases, carrying then more power than real speckles.

As a consequence ponderomotive-induced PCGO speckle self-focusing may be overestimated compared to the

same effect occurring at smaller scales in spatially modulated beams. A method that makes the ponderomotive-

driven PCGO speckle intensity enhancement comparable to what obtained with in 3D speckles (see Sec. 1.3.3)

needs to be assessed.

In this chapter, we discuss the accuracy of the thick-ray model in describing the ponderomotive self-focusing

of a Gaussian-shaped beam in homogeneous nonabsorbing plasmas. First, we investigate ponderomotive self-

focusing of a PCGO beamlet by comparing its dynamics to a Gaussian-shaped beam modelled with the paraxial

wave-based code HARMONY [34]. We vary plasma and beam conditions in order to define the domain of

plasma density and beam power where the thick-ray approximation is valid. Then, in the second part we study

the self-focusing of a PCGO speckle created by superposition of several beamlets, referred to as multi-beamlet

speckle. This speckle stands for a reference of any PCGO speckle created in CHIC while modelling of spatially
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modulated beams. In our study, we quantify the reduction of the speckle intensity enhancement as a function

of the number Nb of superposed beamlets and by considering two strategies for multi-beamlet speckle shaping:

random and regular. In the first one, at each realization the focal spot and the inclination of each thick beamlet

are chosen randomly. This method does not impose an initial shape to the multi-beamlet speckle. The regular

shaping method consists in configuring a priori the beamlets parameters such that the multi-beamlet speckle

has a defined Gaussian intensity profile.

2.2 Self-focusing of a single beamlet

Propagation of a single beamlet by means of PCGO-CHIC in an underdense plasma with an ionization charge

Z = 3.5 and atomic mass A = 6.5 corresponding to a plastic CH plasma is considered here. The thick-ray results

are compared to numerical results obtained via HARMONY simulations for the same initial plasma conditions

and beam profile. Laser absorption, plasma heating and hot-electron-source packages have been switched

off. In this way, parametric instabilities, hot electron generation and thermal self-focusing are excluded and

plasma dynamics is solely dominated by the ponderomotive force. The ponderomotive effects are evaluated by

measuring the laser intensity enhancement in plasma, which is the main quantity to analyze for discriminating

ponderomotive-induced consequences.

The input parameters set for CHIC and HARMONY are such as to generate a Gaussian beam with initial

waist w0 ≈ 21 µm, and wavelength λ = 1.05µm. The Gaussian beam enters the plasma with a negative

curvature wavefront given that the focal plane (xf , yf ) is placed at ≈ (1100λ, 100λ) inside a plasma of size

(2500λ × 200λ). The plasma temperature is Teff = 1 keV, where Teff = Te (1 + 3Ti/ZTe), with Te = 3Ti.

In order to explore different regimes, two parameters have been varied: the plasma density ne0 and the laser

power P 2D. We have chosen: ne0/nc=0.01; 0.05; 0.1 and p2c = P 2D/P 2D
c = 1; 2; 4; 6, where the value of

the beam power and the critical power P 2D
c are recalculated for each plasma density according to Eqs. (1.163)

and (1.164). The laser pulse has a step-like temporal shape lasting tf = 250 ps, long enough to attain a quasi-

stationary state for t > tcs where tcs = w0/cs ≈ 70 − 80 ps. This state is systematically achieved in case of

thick-ray simulations at around ts = 2.5 tcs ≈ 200 ps. Before that, the beam intensity oscillates in position

and amplitude. Quasi-stationary states were not fully attained in HARMONY simulations for large powers

because of filamentation instability, whereas at low powers the situation is very similar to the PCGO solution.

We proceed to analyse CHIC results in Section 2.2.1, and then compare them to HARMONY simulations and

theoretical estimations in Sec. 2.2.2.

2.2.1 Analysis of PCGO-CHIC results

For p2c ≥ 2 and at any density, an increase of beam intensity as a function of the initial beam power occurs, with

a consequent beam width reduction. This is illustrated in Figs. 2.1a-2.1b: Figure 2.1a shows the initial beam

condition common to all the cases and displays the initial laser intensity distribution I(x, y) normalized to the

initial intensity peak I0 = Imax(xf , yf , t = 0). Figure 2.1b refers to the normalized intensity I(x, y)/I0 at t = 210

ps and for ne0/nc = 0.1 and p2c = 2. Since collisions are neglected, and since the thick-ray model conserves the
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(a) (b)

(c) (d)

Figure 2.1: Normalized laser intensity distribution in plasma I(x, y)/I0 for p2c = 2 and for a) t = 0 and b) t = 210

ps. c) Amplitude of the density perturbation δn(x, y)/ne0 (%), represented by the gray bar, superimposed to

the contour lines of the laser intensity for ne0/nc = 0.1 and p2c = 2 at t = 210 ps. d) Laser intensity contour

lines. The black lines refer to the initial beam intensity, the red and blue contour lines refer to t = 210 ps and

for a power of p2c = 2 and p2c = 4, respectively. The spatial coordinates are in units of the laser wavelength λ.

In all the figures, the laser enters from the left side.

energy, the laser power must not vary during the simulation. Thus, whilst the beam width is reduced around

the self-focusing position as consequence of self-focusing, the on-axis laser intensity must increase according to

the relation

I(x, 0, t) =
w0

w(x, t)
I0. (2.1)

Figure 2.1b qualitatively shows this width reduction if compared to Figure 2.1a.

As described in Sec. 1.3.2.1, self-focusing derives from on-axis ponderomotively-induced density depletion,

as displayed Fig. 2.1c: here the red lines are the contour plots of the beam intensity for ne0/nc = 0.1 and
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(a) (b)

Figure 2.2: Transverse line-outs of the normalized intensity I(xsf , y)/I0 (black lines) and density variation

δn(xsf , y)/ne0 (gray lines) profiles for a) p2c = 2 and b) p2c = 4 at self-focusing position xsf for t = 210 ps.

The solid lines refer to the case ne0/nc = 0.1, the dashed lines to the case ne0/nc = 0.05, the dotted lines to

the case ne0/nc = 0.01. The transverse spatial coordinate is in units of the laser wavelength λ.

p2c = 2 at t = 210 ps, superposed to the amplitude of the density perturbation δn(x, y)/ne0 (%) represented by

a gray color bar for the same laser and plasma conditions. As expected, the contours reproduce the shape of the

density channel, demonstrating that the laser intensity dynamics and the evolution of the density perturbation

are strictly connected. More information on the laser intensity contours and beam shape variation due to self-

focusing can be found in Fig. 2.1d. Here the black contour lines refer to the initial beam intensity, the red and

blue contour lines refer to a beam power of p2c = 2 and p2c = 4 respectively and taken at t = 210 ps. As shown

in this picture, the beam width is reduced for a higher beam power, with a consequent beam-shape modification:

especially for p2c = 4 (blue lines), the beamlet width is strongly reduced. Before a stationary state is set in,

a transient stage during which the beam intensity undergoes a fluctuated evolution in time. The amplitude of

such fluctuations increases with beamlet power and is independent of the initial plasma conditions. Eventually,

at around ts = 210 ps, the PCGO simulations attain a stationary state where the Gaussian-like structure of

the beamlet is retrieved. In fact, for t > ts and for any plasma condition and beam power, all the self-focused

PCGO beamlets obey to the Gaussian-related relation Eq. (2.1).

In Fig. 2.2, transverse line-outs of the normalized intensity I(xsf , y)/I0 (black lines) and the amplitude of

the density perturbation n(xsf , y)/n0 − 1 at the self-focusing position xsf and for t > ts are presented. We

consider the density perturbation and the beam intensity in the same plot in order to evidence a correlation

between the density decrease inside the plasma channels and the beam intensity enhancement. The solid lines

refer to the case ne0/nc = 0.1, the dashed lines refer to the case ne0/nc = 0.05, the dotted lines refer to the

case ne0/nc = 0.01. Figure 2.2a displays the case p2c = 2, whereas Fig. 2.2b refers to the case p2c = 4.
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Figure 2.3: Laser intensity enhancement Imax/I0 when a steady state is attained. The solid lines refer to the

case ne0/nc = 0.1, the dashed lines to the case ne0/nc = 0.05, the dotted lines to the case ne0/nc = 0.01.

The transverse gradient of the laser intensity is the origin of the ponderomotive force-induced plasma density

channeling. The width of the density channel coincides with the beam waist independently of p2c and ne0/nc.

The beam intensity enhancement weakly varies as a function of plasma density. On the other hand, the depth

of the density channel depends on the initial beam power and initial plasma density, in agreement with the

stationary theory presented in Sec. 1.3.2.1: at a given power, the density depletion is inversely proportional

to the initial density, thus changing density from ne0/nc = 0.1 to ne0/nc = 0.01 amplifies the depth of density

channel by a factor of 10, as also illustrated in the figures once comparing the solid and dotted gray lines. At

a given density ne0/nc, instead, increasing the initial beam power enhances the effects of the ponderomotive

force-induced plasma expulsion, resulting in an almost-linear dependence of plasma density response to the

beam intensity enhancement, which in turn depends on the beam power: an intensity enhancement of two-

times corresponds to a depth of the density channel two times larger, as evidenced in Fig. 2.2 if comparing for

instance black dotted lines for the intensity enhancements and the gray dotted lines for the amplitude of the

density cavities.

Figure 2.3 shows the beam intensity enhancement as a function of the beam power when the stationary state

is reached, i.e. for t > ts. For p2c ≤ 2, the intensity enhancement does not depend on ne0/nc. In the panel,

the solid lines refer to the case ne0/nc = 0.1, the dashed lines to the case ne0/nc = 0.05, the dotted lines to the

case ne0/nc = 0.01. The intensity enhancement quasi-linearly increases as a function of the beam power up to

p2c ≈ 4, exhibiting a slight saturation above such a power and especially at lower densities. At so high power,

the plasma density affects the beam self-focusing, since the intensity enhancement decreases at lower densities.

This is due to the nonlinear density response to the laser intensity according to Eq. (1.152). This phenomenon

is investigated in more details in the next section.

The density amplitude peak [|δn|/nc]max as a function of the beam power is shown in Fig. 2.4. The solid

lines refer to the case ne0/nc = 0.1, the dashed lines to the case ne0/nc = 0.05, the dotted lines to the case

ne0/nc = 0.01. As previously anticipated, the density response strongly depends on the initial plasma density,

whereas a weaker but still important dependence on beam power can be also noted. This is especially true

at lower densities, where highly nonlinear density perturbation and nonlinear stage of self-focusing occur. A
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Figure 2.4: Amplitude of density perturbation δn/ne0 (%) when a steady state is attained. The solid lines refer

to the case ne0/nc = 0.1, the dashed lines to the case ne0/nc = 0.05, the dotted lines to the case ne0/nc = 0.01.

strong plasma nonlinearity may correspond to a less accurate solution of hydrodynamics equations (1.180)-

(1.182), leading to a less pronounced beam intensity enhancement. This is probably the case for ne0/nc = 0.01

(dotted curve) at powers above 4 times the critical power.

Figure 2.5 depicts the displacement ∆xsf of the intensity peak position xsf at t = 210 ps with respect to

the initial longitudinal focus position of the beamlet xf : ∆xsf = (xsf − xf )/λ. This parameter measures the

self-focusing length. For ∆xsf > 0, the beam self-focuses behind its initial focus spot, whereas for ∆xsf < 0

it self-focuses ahead, which is observed only for p2c > 4 and for δne0/nc ≥ 0.05. For p2c = 1 the intensity

maximum is shifted by around 600λ independently of the plasma density. For p2c > 1 instead, at a given power

the intensity peak moves deeper into the plasma as plasma density decreases. In contrast with the results on the

intensity enhancement, the self-focusing position strongly depends on the initial laser power but very weakly

Figure 2.5: Displacement of intensity peak ∆xsf as a function of the beamlet power p2c when a steady state is

attained. The solid lines refer to the case ne0/nc = 0.1, the dashed lines to the case ne0/nc = 0.05, the dotted

lines to the case ne0/nc = 0.01. The longitudinal spatial coordinate is in units of the laser wavelength λ.
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(a) (b) (c)

Figure 2.6: On-axis intensity normalized to the initial intensity maximum I(x)/I0 as a function of the longi-

tudinal coordinate x at t ≈ 200 ps. The solid blue line and the dashed green curve correspond to thick-ray

and HARMONY simulations respectively: (a) ne0/nc = 0.1 and p2c = 1, (b) ne0/nc = 0.05 and p2c = 2, (c)

ne0/nc = 0.01 and p2c = 6. The longitudinal spatial coordinate is in units of the laser wavelength λ. In all the

figures, the laser enters from the left side.

on plasma density. At any densities, ∆xsf decreases as the beam power increases, i.e. when the beam power

increases xsf approaches to xf . The cases p2c = 6 stand for exceptions to this tendency: the beamlet self-focus

before to the initial focus spot position highlighting the strength of ponderomotive force at this power: the

displacement of the self-focusing position with respect to the initial focus spot linerly depends on the beam

power, consistently with the analytic formula Eq. (1.166).

A more detailed discussion about the accuracy of solutions described in this section is presented in the next

section, where we compare the PCGO results to HARMONY simulations and analytic evaluation for similar

conditions.

2.2.2 Comparison to Harmony results

In this section, we compare the thick-beamlet results presented in the previous section to simulations performed

with the HARMONY code. As above noted, the thick-ray simulations achieve a steady state for t ∼ ts = 210 ps,

which corresponds to about 2.5tcs. Quasi-stationary states were not fully reached in HARMONY simulations

for large powers because of filamentation instability, which stands for the only difference between PCGO-CHIC

and HARMONY simulations from the laser-plasma interaction point of view. Nevertheless, the beam intensity

dynamics stabilizes and can be compared to the CHIC results.

Figure 2.6 displays the on-axis intensity profile normalized to the initial maximum intensity I(x)/I0 as a

function of the longitudinal normalized coordinate for thick-ray (solid blue line) and HARMONY (dashed green

line) simulations at t = 200 ps. Figures 2.6a and 2.6b refer to the case p2c = 1 and ne0/nc = 0.1, and p2c = 2

and ne0/nc = 0.05 respectively, and show a good agreement between thick-ray and HARMONY results, with a

difference of less than 10% in the peak intensity and self-focusing position.

In contrast, for the case of p2c = 6 and ne0/nc = 0.01 shown in Fig. 2.6c, the beam does not keep a Gaussian

profile in HARMONY simulations: a second peak appears after the first main peak. The on-axis intensity then
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(a) (b) (c)

Figure 2.7: Intensity enhancement Imax/I0 evaluated after the self-focusing as a function of the normalized

laser beam power p2c for various plasma densities: (a) ne0/nc = 0.1, (b) ne0/nc = 0.05, (c) ne0/nc = 0.01. The

error bars represent the standard deviation of the time-averaged intensity enhancement. Blue and dashed green

lines correspond to the thick-ray and HARMONY results respectively.

is influenced by the filamentation instability in case of HARMONY simulations. The latter cannot be described

within the thick-ray approach, and hence the on-axis profiles look considerably different. Despite that, the

intensity enhancement observed in PCGO simulations recovers within a difference of 20% the first peak position

and the related intensity amplification evidenced in HARMONY runs.

Figure 2.7 summarizes the main results of the simulations performed: the intensity enhancement Imax/I0

is shown as a function of the beam power and for various densities. The dashed green lines represent the

HARMONY results, whereas the blue lines the thick-ray results. The error bars represent the standard deviation

of intensity enhancement for times t > tcs , due to intensity oscillations in time. Large error bars for the thick-ray

curves at high powers are due to the fact that the beamlet waist attains small value close to the limit of validity

of the paraxial approximation. For p2c ≥ 4 and at any density, HARMONY simulations follow the theory

prediction for filamentation instability [86]: strong self-focusing leads the laser intensity to concentrate in a first

peak, which afterwards breaks in filaments. The main filament carries more than 90% of the initial beam power

and propagates along the same initial beam direction, whereas side filaments carry the remaining beam energy.

Dashed green lines for p2c ≥ 4 in Fig. 2.7 represent the intensity enhancement of the main filament. As shown

in Fig. 2.7a, PCGO and HARMONY predictions are in good agreement for ne0/nc = 0.1. At lower density, the

smaller the initial plasma density is, the larger divergence between the PCGO and HARMONY curves is, as

one can see in Figs. 2.7b-2.7c for ne0/nc = 0.05 and ne0/nc = 0.01, with a larger difference for ne0/nc = 0.01

at higher powers because of filamentation instability. However, the difference remains within 15%-20%, which

is still satisfactory.

Figure 2.8 presents the steady-state spatial gain for ponderomotive filamentation κfil multiplied by the

plasma length L = 0.2 cm as a function of the wave number of laser modulations that can be developed in

the plasma for ne0/nc = 0.1, Z = 3.5, Teff = 1 keV and laser wavelength λ = 1.05 µm according to Eq.

(1.167). The green line corresponds to the case p2c = 6, the red line corresponds to the case p2c = 2.5, the
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Figure 2.8: Spatial growth rate of filamentation instability κfil as a function of wave numbers that can develop

in plasma k for ne0/nc = 0.1, Z = 3.5 and Teff = 1 keV from Eq. (1.167). The green line corresponds to the

case p2c = 6, the red line corresponds to the case p2c = 2.5, the blue line corresponds to the case p2c = 1,

whereas the vertical dashed black line displays the the wavevector cut-off ksim. The horizontal dashed black

line corresponds to the threshold condition Lκfil = 1.

blue line corresponds to the case p2c = 1, whereas the vertical dashed black line displays the wavevector cut-off

ksim evaluated by considering that the beamlet modulations occur over a scale of a length comparable to the

beamlet diameter, approximated as 2w0, thus ksim = π/w0. The horizontal dashed black line corresponds to

the threshold condition Lκfil = 1.

Filamentation instability occurs for Lκfil > 1 and if ksim < kmax, where kmax is the value of k for which

κfil = 0, and it is given by Eq. (1.168). The first inequality stands for the condition where the perturbation

can be spatially amplified inside the plasma of length L. From these curves, it is evident that the modulations

become unstable for p2c > 2.5, confirming the previous predictions from HARMONY simulations: filamentation

instability does not influence the Gaussian beam-plasma coupling for p2c ≤ 2. Comparing these analytic results

to the plane wave solution with the same plasma conditions, the latter undergoes filamentation instability as

soon as p2c ∼ 1. This difference is due to the fact that for a plane wave a broader range of wavenumbers can

be amplified. As a result, the filamentation instability affects the plane wave propagation as soon as its power

overcomes the critical power.

The nature of plasma response may explain the difference at lower densities. Figure 2.9 shows the amplitude

of density perturbations at the self-focusing position xsf : the blue lines refer to CHIC simulations, the green

lines refer to HARMONY simulations. The red and purple dashed lines stand for the theoretical estimation

of the amplitude of the density response according to Eqs. (1.151) and (1.152) respectively: Imax is replaced

by the intensity enhancement observed in CHIC simulation (see Fig. 2.7, blue curves). Agreement between

theoretical predictions, thick-ray and HARMONY results is excellent for ne0/nc=0.1, as shown in Fig. 2.9a.

The case ne0/nc = 0.05 is illustrated in Fig. 2.9b: for p2c ≤ 2 the agreement is still good, whereas for p2c > 2, a

difference between HARMONY and CHIC curves suggests that the laser-plasma coupling in thick-ray model fails
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Figure 2.9: Amplitude of the density perturbation [|δn|/ne0]max (%) as a function of laser intensity enhancement

Imax/I0 for various densities: (a) ne0/nc = 0.1, (b) ne0/nc = 0.05, (c) ne0/nc = 0.01. The green and the

blue lines refer to HARMONY and PCGO-CHIC results respectively, the red and purple dashed lines to the

amplitude of density perturbation estimated with the thick-ray intensity amplification according to linear theory,

Eq. (1.151), and nonlinear theory, Eq. (1.152), respectively.

to correctly describe the laser and plasma dynamics: the density perturbation, exceeding 10%, becomes strongly

nonlinear. Despite the filamention instability affects the laser beam evolution in the HARMONY simulations,

a difference between the CHIC and HARMONY solutions remains less than 5-10%. At ne0/nc = 0.01 (see Fig.

2.9c) the nonlinearity in the plasma response appears at smaller power, p2c ≈ 2: the theoretical predictions for

CHIC density response and intensity enhancement are better approximated by the nonlinear relation (purple

dashed curve), but the simulations still underestimate the density response for higher beam powers. Thus,

the density response in CHIC simulations results less accurate, leading to differences compared to theoretical

predictions and HARMONY results. However, the difference remains lower than 20%, which is still satisfactory.

For pc > 2, the above theoretical considerations do not apply to HARMONY results due to filamentation

instability, thus any relation between intensity enhancement and density perturbation no longer holds.

2.2.3 Conclusion on single-beamlet self-focusing

In this section, we summarize the main results on single-beamlet self-focusing. For p2c ≥ 2, the Gaussian thick-

ray beamlet undergoes self-focusing for any plasma condition: the on-axis beam intensity increases, leading to

a reduced beam width. The laser intensity enhancement weakly depends on the plasma density. Instead, higher

initial beam powers correspond to larger intensity enhancements. The displacement of the beam peak intensity

due to self-focusing follows the same tendency as the intensity enhancement, i.e. it is greatly reduced while

increasing the beam power, whereas dependence on the plasma density is less important. However, only for

p2c = 6 and ne0/nc ≥ 0.05 the self-focusing position is placed ahead the initial focal spot, otherwise it occurs

behind it at distances that decrease with the beam power. The density response depends strongly on the initial

plasma density: a strong nonlinear density perturbation with [|δn|/n0]max > 10% is excited for p2c ≥ 2 and

ne0/nc = 0.01, whereas for higher densities, the response does not exceed the 10% for any power. One can
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test the reliability of the PCGO-based thick-ray approach in describing beam self-focusing by comparing these

results to electromagnetic code outcomes and theoretical estimations. Thick beamlets cannot break in filaments

because the filamentation instability is not compatible with the assumption that PCGO beamlets must keep a

Gaussian shape all along their propagation. Therefore, filamentation instability sets an upper limit for accurate

description of Gaussian beam dynamics within the thick-ray approximation. The full-wave description predicts

filamentation instability for p2c ≥ 4. Independently of the plasma density, more accurate theoretical evaluations

set the threshold power for filamentation instability in case of Gaussian beams at p2c = 2.5. In fact, in agreement

with HARMONY simulations and differently from the plane wave results, the self-focusing of a Gaussian beam

takes place at powers lower than the threshold of a filamentation instability because only perturbations with

the wavelength smaller than the beam diameter can be excited. The simulations show that for p2c < 2.5,

Gaussian beam undergoes intensity amplification, whereas for p2c > 2.5, filamentation instability develops.

Despite filamentation instability is excited and it cannot be described with PCGO, one can safely extend the

thick-ray model validity to p2c ≤ 6 as only one of the instability-induced filaments carries the dominant part

of beam energy, and PCGO reproduces the most important self-focusing characteristics of such a filament. We

also found that at low densities, the coupling between the hydrodynamic response in CHIC and the intensity

enhancement predicted by the thick-ray model becomes less accurate because of the nonlinear plasma response.

However, this issue is less important when considering a realistic density profile as encountered in ICF. Since

the critical power is inversely proportional to the density, beam self-focusing is most likely to occur at high

densities.

2.3 Self-focusing of a multi-beamlet speckle

In this section, we consider the propagation of a multi-beamlet speckle and its intensity enhancement is compared

to the intensity amplification in a single thick beamlet. This is done in order to define the method that allows

to better control ponderomotive effects in a multi-beamlet speckle. The plasma conditions are the same as in

Sec. 2.2.2, keeping the density fixed at ne0/nc = 0.1 and with a plasma temperature Teff = 1 keV. With these

conditions, the thick-ray approximation is as accurate as possible in describing single-beamlet self-focusing.

Therefore, the results shown in Section 2.2.2 represent the reference case for the multi-beamlet speckle study.

Two methods of multi-beamlet speckle formation are compared: a random beamlets configuration and a regular

beamlets configuration. In the random configuration, several thick beamlets are arbitrarily focused in a limited

area, so the speckle shape is varied in each realization. Conversely, in the regular shaping, the beamlets are

focused in a way to form a speckle with a prescribed Gaussian shape. In both cases, the initial multi-beamlet

speckle power is equally split over the Nb beamlets: Pb = Ps/Nb, where Ps is the whole speckle power, whereas

Pb is the beamlet power. Four different values of beam power are considered: p2c = Ps/P
2D
c = 1; 2; 4; 6, where

P 2D
c is evaluated according to Eq. (1.164). The number of beamlets Nb is varied from 3 to 5. The total power

is equally split over the thick beamlets. Then, for Nb = 3, each thick beamlet carries 33% of Ps, for Nb = 4

it carries 25% of Ps and for Nb = 5 it carries the 20% of Ps. Such a power splitting recreates the speckles as

conceived in the standard thick-ray-based approach for designing spatially modulated beams: there, the most
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Figure 2.10: Beam intensity in plasma normalized to the maximum intensity in plasma (color bar) in two

different runs within the random speckle shaping method for Nb = 3 in a) and b), for Nb = 4 in c) and d) and

Nb = 5 in e) and f). The black curves show the beamlet trajectories. The yellow and green points stand for

beamlet focal position. The spatial coordinates are in units of the laser wavelength λ. The laser enters from

the left side.
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intense speckles are composed by beamlets having approximately the same power, which facilitates occurrence

of ponderomotive effects.

We remark that in this chapter only self-focusing of an isolated multi-beamlet speckle is analyzed, whereas

in Chapter 3 we consider multi-speckle beams.

2.3.1 Multi-beamlet speckle: random speckle shaping

Evolution of a multi-beamlet speckle created with the method of random shaping is studied here. Thick

beamlets having a waist of 20λ are randomly focused in plasma in a focal zone of size (40λ × 20λ), giving a

multi-beamlet speckle focusing point located around (1000λ, 100λ). The angles of incidence of the beamlets

have been changed in each simulation, being randomly chosen in the interval between θ̂ and −θ̂, where θ̂ = 0.2°

is the averaged multi-beamlet speckle divergence. The values of beamlets angles of incidence and the size of

the focusing box have been chosen to reproduce a not too distorted multi-beamlet speckle, with an intensity

envelope sufficiently close to a Gaussian-shaped beam. For each realization, the simulation time is tf = 250 ps.

In order to accumulate statistics and investigate average behavior of such a multi-beamlet speckle, we performed

5 simulations for each case for a given speckle power Ps. Figure 2.10 presents an example of a random beamlet

configuration and related multi-beamlet speckle intensity distribution for Nb = 3 in a) and b), for Nb = 4 in

c) and d), and for Nb = 5 in e) and f) with two different initial focusing parameters. The black curves show

the thick beamlets trajectories, the yellow points stand for beamlet focusing spots, whereas the green points

for the multi-beamlet speckle focus position. This set of pictures illustrates the randomness of the beamlets

configuration inside the speckle and its influence on the multi-beamlet speckle shape. In the following, we show

how such a random beamlets configuration affects the speckle self-focusing. Figure 2.11 shows the laser intensity

enhancement averaged over 5 simulations (Imax/I0)aver. The solid blue line refers to the single-beamlet intensity

Figure 2.11: Laser intensity enhancement averaged over 5 simulations (Imax/I0)aver when a stationary state

as reached in function of the beam power for ne0/nc=0.1. The solid blue line refers to the single-beamlet case

(see Fig. 2.7a), the red dashed dotted line to Nb = 3, the dashed cyan line to Nb = 4 and the dotted gray line

Nb = 5. The error bars refer to the standard deviation of the average.
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amplification described in Sec. 2.2.2 (see Fig. 2.7a), other lines refer to multi-beamlet cases: the red dashed

dotted line refers to the case Nb = 3; the dashed cyan line to the case Nb = 4 and the gray dotted line to the case

Nb = 5. The intensity enhancement in a multi-beamlet speckle is reduced with respect to the single-beamlet

case: the maximum reduction is 15% for high power (p2c = 6), with a weak dependence on Nb only for p2c ≥2.

Since the thick beamlets carry a fraction of the total speckle power, the speckle-plasma dynamics is modified: the

local plasma density perturbation is less deep and broader along the density channel compared to the single-

beamlet case presented in Sec. 2.2.2. Due to the aleatory location of the beamlet focus positions in a very

small area, their overlap reproduces almost the same ponderomotive force as in the single-beamlet case. Thus,

randomly superposed thick beamlets just slightly reduce the intensity amplification compared to a single-beamlet

with the same power. The reduction however cannot be deterministically quantified from the initial beamlets

configuration, since the multi-beamlet speckle profile is not a priori defined. Other simulations performed but

not not reported here show that increasing the number of beamlets beyond Nb = 5, the intensity enhancement

for such multi-beamlet speckles follows the same tendency as for Nb ≤ 5, demonstrating that ponderomotive

effects weakly depend on Nb in case of the random configuration method. Also, simulations performed with

different power splitting show that if one beamlet carries more than 50% of the total power, it governs the

multi-beamlet speckle self-focusing similarly to the single-beamlet case. Therefore, unequal distribution of the

speckle power over the beamlets is not considered for implementation in the PCGO algorithm developed for

multi-speckle beams.

2.3.2 Multi-beamlet speckle: regular speckle shaping

In this section we study a multi-beamlet speckle containing 3 and 4 regularly focused beamlets. This choice is

motivated by the results of the previous section: the self-focusing depends weakly on the number of beamlets.

We present two relevant cases of multi-beamlet speckles composed by three superposed beamlets in Fig. 2.12a

and four superposed beamlets in Fig. 2.12b. In case of Nb = 3, the focus point of the speckle represented

by the green spot is located at (1000λ, 100λ): the outer beamlets enter the plasma with angles of incidence

of ± 0.02° with respect to the central beamlet which propagates parallel to the x axis, i.e. the speckle axis.

The positions of the beamlets focusing spots (yellow points) are placed at: (900λ, 110λ), (1100λ, 100λ) and

(1300λ, 90λ) respectively. For Nb = 4, in Fig. 2.12b, the two central thick beamlets are focused at (800λ, 100λ)

with an angle of incidence of ± 0.01° respectively, whilst the outer beamlets are focused at (1200λ, 110λ) and

(1200λ, 90λ) with an angle of incidence of ± 0.02°. The transverse and longitudinal speckle intensity profiles

for each case are shown in Figs 2.12c-2.12d, respectively. The solid blue lines stand for a reference Gaussian

profile, whereas the dashed dotted red line and the dashed cyan line stand for Nb = 3 and Nb = 4, respectively.

Figure 2.12c refers to the transverse profiles at the focus position, whereas Fig. 2.12d refers to the longitudinal

profiles. The matching with the Gaussian longitudinal and transverse profiles is correct in all cases.

Figure 2.13b shows the intensity enhancement in a speckle formed with three beamlets compared to single-

beamlet simulations presented in Sec. 2.2.2 (solid blue line in Fig. 2.7a). The intensity enhancement Imax/I0 is

taken when a quasi-stationary state is established. The error bars refer to the standard deviation of the time-

averaged intensity enhancement since the maximum peak intensity varies slightly in position and amplitude.
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Figure 2.12: Example of regular multi-beamlet speckle shaping for Nb = 3 (a) and Nb = 4 (b). The beamlet

power is P/Nb, where P is the speckle power. The blue dashed curves show the beamlets trajectories. Addition

of all beamlet intensities gives rise to multi-beamlet speckle intensity indicated by the color bar. The intensity

is normalized to the maximum speckle intensity. The green points stand for the multi-beamlet speckle focus

position, whereas the red points stand for the beamlet focusing points. c) Laser intensity transverse cut in

the focal plane and d) longitudinal laser intensity distribution along the beam propagation direction for the

single-beamlet (solid blue line) and a regularly shaped multi-beamlet speckle for Nb = 3 (red dashed dotted

line) and Nb = 4 (dashed cyan line) in case p2c = 1. The total intensity profile is given by the sum of beamlet

intensities inizialised in the far-field as shown in 2.12a for Nb = 3 and in 2.12b for Nb = 4. In panels a, b and

d, the laser enters from the left. The spatial coordinates are in units of the laser wavelength λ.

The dashed red line refers to the case where the multi-beamlet speckle power is set equal to single-beamlet

cases (see Sec. 2.2.2), so p2d = Ps/P
2D
c = P2D/P

2D
c , where P2D is the power of a single beamlet as described

in Sec. 2.2.2. The laser intensity enhancement is reduced in a multi-beamlet speckle. Similarly to the case of a

random multi-beamlet, since the thick beamlets do not fully overlap, they create a longer density channel along

the speckle axis than in the single-beamlet case. Such a density channel is shallower compared to the case of a
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Figure 2.13: a) Amplitude of the density perturbation δn(x, y)/n0 (%) induced by a three-beamlet regularly

shaped speckle for ne0/nc = 0.1 and p2c = 2 at t = 210 ps. b) Laser intensity enhancement Imax/I0 as a

function of the beam power. Comparison between the single-beamlet and speckle with regular shaping for

Nb = 3. The plasma density is ne0/nc = 0.1. The solid blue curves refer to single-beamlet results (solid blue

curve in Fig. 2.7a). The red dashed lines refer to the case where the multi-beamlet speckle critical power is

defined according to Eq. (1.164), the orange dashed dotted lines show the intensity enhancement assuming that

the speckle critical power is twice the value defined by Eq. (1.164).

single-beamlet, leading to a weaker self-focusing. This feature can be seen by comparing the density channels

produced by a single-beamlet as in Fig. 2.1c to the three-beamlet speckle. The latter one is shown in Fig.

2.13a for the same plasma conditions and at the same time: the density channel in the second case is larger

and longer than in the single-beamlet case, and the amplitude of the density perturbation in the three-beamlet

case is 75% smaller than in the single-beamlet case. Despite that, the density channel is sufficiently deep to

refract the beamlets trajectories and guide them along the channel axis, resulting in spraying of beamlets and

breaking of the initial speckle shape. All these effects contribute to self-focusing suppression compared to the

case of a single beamlet carrying the same power.

Self-focusing of a speckle can be characterized by the ratio of the effective speckle length xs to the speckle

width w0. In analogy to Gaussian beams, the longitudinal length of regularly shaped multi-beamlet speckle xs

is defined as a distance from the speckle intensity maximum to where the intensity decreases by a factor of
√

2.

At early time, before self-focusing develops, the multi-beamlet speckle has a quasi-Gaussian profile (see Fig.

2.12a and Figs. 2.12c-2.12d), and [xsλ/(w
2
0π)]t=0 ≈ 1. For a single beamlet, xs ≡ xR, and [xRλ/(w

2
0π)] = 1

independently of the time, given that Eq. (1.26) must be satisfied due to PCGO ansatz. For a multi-beamlet

speckle, this aspect ratio changes in time because each beamlet produces the ponderomotive force independently.

Consequently, the aspect ratio increases with time by a factor varying between 1.5 and 2.6. Thus, the self-

focusing zone is in average around 2 times longer than in the single-beamlet case. This modification of the

speckle shape explains reduction of the intensity enhancement in the speckle. Increase of the aspect ratio in a

self-focused speckle is illustrated in Fig. 2.14. The intensity contours with black lines correspond to the single-
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Figure 2.14: Laser intensity contour plot in plasma at time 200 ps. In both panels, the solid black lines refer

to the case of a single-beamlet with p2c = 4 at t = 200 ps. The red dashed lines in (a) refer to the speckle

with Nb = 3 having the same power as the single-beamlet. The green dashed lines in (b) corresponds to a

three-beamlet speckle with power η = 2 times bigger. The intensity is normalized to the initial maximum

intensity in plasma. The spatial coordinates are in units of the laser wavelength λ. In all the figures, the laser

enters from the left side.

beamlet self-focusing with p2c = 4. The red and green dashed lines correspond to the three-beamlet speckle

self-focusing having the same power as the single-beamlet in Fig. 2.14a, and a power twice bigger in Fig. 2.14b

respectively. The aspect ratio of single-beamlet remains constant, equal to the initial value, i.e. approximately

one. Considering for the black lines that the beam width is 5λ and that the beamlet intensity enhancement

is 4.5 (see Fig. 2.7a), the longitudinal length where intensity decreases by a factor
√

2 is ≈ 100λ, which gives

an aspect ratio ∼ 1.12. Calculating the aspect ratio for the three-beamlet speckle in Fig. 2.14a, one obtains a

number around 1.7.

Evaluating the aspect ratio for a speckle with a power twice higher (Fig. 2.14b), one finds it is around

1.3. Consequently, in order to obtain approximately the same aspect ratio as of a single-beamlet, we redefine

the power of the multi-beamlet speckle as twice larger than the single-beamlet power. One can account for

this by redefining the critical power for such a three-beamlet speckle P̃c,speckle as P̃c,speckle = ηP 2D
c , where

η = 2 corresponds to the aspect ratio of the multi-beamlet speckle having the same power as the single-beamlet.

Rerunning the simulations for a three-beamlet speckle of same characteristics as earlier but with a power

p2c = Ps/P̃c,speckle, one obtains the dashed orange line in Fig. 2.13b, where the intensity enhancement of the

multi-beamlet speckle becomes comparable to the single-beamlet case. Thus multiplying the speckle critical

power by η allows to retrieve the single-beamlet results in terms of intensity amplification. Or, from a different

point of view, one can state that superposing three beamlets in the configuration shown in Fig. 2.12a leads

to a reduction of self-focusing effects roughly quantified by the increasing of the critical power by a factor of

η = 2. Besides the intensity amplification in plasma, also the speckle shape around the self-focusing position

is very similar to the single-beamlet, as one can see in Fig. 2.14b. However, despite rescaling the critical
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Figure 2.15: Laser intensity enhancement Imax/I0 as a function of the beam power. Comparison between the

single-beamlet and speckle with regular shaping for Nb = 4 (b). The plasma density is ne0/nc = 0.1. The solid

blue curves refer to single-beamlet results (solid blue curve in Fig. 2.7a). The red dashed lines refer to the case

where the multi-beamlet speckle critical power is defined according to Eq. (1.164), the orange dashed dotted

lines show the intensity enhancement assuming that the speckle critical power is twice the value defined by Eq.

(1.164), the dotted green line refers to the case where the critical power is multiplied by a factor of 3.

power of a three-beamlet speckle allows to retrieve the intensity enhancement in plasma, several features of the

standard Gaussian beam propagation are lost. This is evidenced in Fig. 2.14b: the self-focusing position of the

three-beamlet speckle, located around (900λ, 100λ), is shifted from the position of the single-beamlet case, and

deviated from the initial multi-beamlet speckle propagation axis. The three-beamlet speckle shape is modified

behind the focus because of beamlets refraction in the density channel. The beamlets trajectories are deviated,

creating other local intensity maxima, as the one at the position (1200λ, 112λ). Although this process resembles

beam spraying with a prescribed number of filaments equal to the number of beamlets, this phenomenon is a

consequence of neglecting the field phases while combining the beamlets intensities, and it stands as an artifact

of the model.

The results for a four-beamlet speckle self-focusing with an initial beamlet configuration as in Fig. 2.12b are

displayed in Fig. 2.15. Here the intensity enhancement Imax/I0 is shown as a function of a four-beamlet speckle

power defined as p2c = Ps/P
2D
c (red dashed line), and a single-beamlet power (solid blue line). Superposition of

four beamlets decreases the intensity enhancement by 50% in average. These results, similarly to the previous

case Nb = 3 could be reduced to the single-beamlet case by introducing a multiplicative factor η ≈ 2− 3 in the

critical speckle power. In Fig. 2.15, the orange dashed dotted line and the green dotted line correspond to the

case for which p2c = Ps/P̃c,speckle, with η = 2 and η = 3 respectively. However, the agreement is satisfactory

for η = 2 for p2d < 4. Instead, a larger discrepancy occurs for η=3 at p2d > 4. This simplified reduction is

not as accurate as in the case of three beamlets. It means that the considerations made for the three beamlets

speckle does not completely hold for the case Nb = 4, showing that the process is strongly related to the initial

beamlet configuration.

92



2.3.3 Conclusion on multi-beamlet speckle self-focusing

We conclude this section by commenting the results obtained in cases of randomly and regularly shaped multi-

beamlet speckles. The random method allows to decrease the ponderomotive effects, but the effect is weak: an

average decreasing of 10-15% is not enough to approach the intensity enhancement theoretically predicted in 3D

speckles. Moreover, although here we used a very small focusing box in order to keep the speckle shape close to

a Gaussian beam, the control of speckle characteristics is still difficult: in the standard thick-ray method used to

create spatially modulated beams, the focusing box is at least one order of magnitude larger, thus the speckles

loss the Gaussian symmetry. This may lead to an uncontrolled self-focusing, which would strongly depend on

the random superposition of the beamlets inside the speckle.

In the case of regularly-shaped speckles, the ponderomotive effects are better controlled. The reduction of

self-focusing is better attained through superposition of three and four thick beamlets, and it is quantified by

introducing a scaling factor in the multi-beamlet speckle power. In the case Nb = 3 such a reduction can be

accounted for by rescaling the three-beamlet speckle critical power by a factor η = 2. The value of this factor

is justified by increase of the speckle aspect ratio. For Nb = 4, ponderomotive effects are also suppressed, but

relation to the aspect ratio is more complicated. This is due to the fact that the control of self-focusing depends

on several parameters, such as the initial beamlet focusing positions and angles of incidence. Moreover, the

whole speckle dynamics is affected by the interaction of beamlets when ponderomotive effects occur. The factor

η stands as a rough description of all such effects, which gives an acceptable agreement in a limited number

of cases. Notably, the redefinition of the critical power of a three-beamlet speckle allows to reduce the PCGO

speckle intensity enhancement of the desired factor as estimated in Sec. 1.3.3.

2.4 Conclusion

We have studied ponderomotive self-focusing of a laser beam in plasma within the PCGO-based approach

implemented in the hydrodynamic code CHIC, the thick-ray model. The validity domain of the thick-ray

approximation is defined by comparison to the paraxial wave-based code HARMONY while simulating self-

focusing of a Gaussian beam. A good agreement is found for beam powers less than four times the critical

power. From p2c > 2, Gaussian beams undergo filamentation instability and then break in filaments. Such a

phenomenon cannot occur within the thick-ray approximation due to the geometrical optics limitation. However,

thick-ray simulations retrieve the laser intensity enhancement up to six times the critical power when comparing

to the intensity enhancement of the main filament in the HARMONY simulations. This assessment is confirmed

for plasma density in the range ne0/nc = 0.01− 0.1 and temperature 1 keV pertinent to ICF conditions in the

target corona. A better agreement between the thick-ray approximation and HARMONY results has been found

for ne0/nc = 0.1− 0.05 where the density depletion is less important.

In order to model the situation of multiple speckles in an optically smoothed laser beam, a superposition of

a limited number Nb of thick beamlets created within the thick-ray model has been considered. The goal was

to overcome the fact that beamlets and multi-beamlet speckles are larger than real speckles. So they carry a

higher power than real laser speckles, and therefore self-focusing is overestimated. To correct the unrealistic self-
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focusing in a multi-beamlet speckle, two methods of speckle shaping have been presented: random and regular

with Nb = 3 − 5 beamlets. Their superposition in intensity, with a weight (here of 1/Nb) for each of them, is

considered. We found that this approach results in a reduced self-focusing with respect to a single thick beamlet

carrying the same power. In both cases of random and regular, a reduction of intensity enhancement has been

evidenced. For the case of a regular multi-beamlet shaping, this reduction can be quantitatively accounted for

by considering an effective increase of the critical power by a factor of η compared to the critical power of a

Gaussian beam of the same width. This factor is approximately equal to the aspect ratio of the self-focused

multi-beamlet speckle. In case of Nb = 3, η ' 2, and for Nb = 4, η ' 2− 3. The validity of this approximation

is limited to the case where the initial multi-beamlet speckle power is limited to a few times the critical power,

and, furthermore, where the initial multi-beamlet configuration corresponds to a Gaussian shape as illustrated

in Sec. 2.3.2.

Employing the method of regularly overlapping three beamlets to build PCGO speckles, one is able to reduce

the intensity amplification by a factor of 2. This feature is demonstrated in a 2D planar geometry, where the

PCGO formalism has been implemented. Therefore, with this method, one can systematically account for the

3D speckle intensity amplification overestimation of around 2 as seen in Sec. 1.3.3. This represents a step

forward to correctly account three-dimensional nonlinear effects in a reduced geometry with simplified models.

In Chapter 3, self-focusing of spatially modulated beams configured by adapting the regular beamlet initial-

ization is investigated.
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Chapter 3

Self-focusing of a spatially modulated

beam within the PCGO framework in

homogeneous nonabsorbing plasmas

Although numerical [115,131] and experimental [132,133] investigations have evidenced that optical smoothing

techniques reduce the occurrence of laser-plasma instabilities by decreasing speckle ponderomotive self-focusing,

the latter can still affect the laser-plasma coupling especially in regions where beams cross each others or

within the shock ignition context. Despite its importance, ponderomotive effects have been always neglected in

hydrodynamic simulations because the standard ray-tracing method used in these codes cannot straightforwardly

account for nonlinear laser-plasma coupling. The advent of PCGO-based algorithm provides an opportunity to

approximate the beamlet diffraction along with some intensity-related features of laser-plasma interaction. In

addition, beams with spatial intensity modulations can be designed by superposing several beamlets: within

the PCGO algorithm implemented in the hydrodynamic code CHIC, a set of randomly generated beamlets

propagate inside the plasma to form an arbitrary spatial configuration of speckles. In this scheme, the intensity

probability distribution is not controlled. In Chapter 2 we showed that controlling of self-focusing effects can

be achieved by regularly distributing the beamlets inside the speckles.

In this chapter, we describe a new method for generating a speckle pattern within PCGO-CHIC based on

results obtained in Chapter 2. In this novel approach, the speckles are created by regular superposition of

three Gaussian beamlets with intensities chosen such that speckle intensity probability distribution obeys to

Eq. (1.66). Such a method is referred to as semi-deterministic algorithm, in contrast to the standard PCGO

method called random algorithm. In both PCGO approaches, in contrast with real interference of optical

beamlets, the number of speckles in the far-field is not linked to number of phase plate elements given that

the speckles are directly defined in the far-field (semi-deterministic algorithm) or on the simulation boundary

(random algorithm). Both schemes neglect the beamlet phases while computing the intensity envelope. In this

context then, the number of speckle is related to the number of beamlets and can be controlled in the input.
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We show here that the semi-deterministic approach improves the description of laser-plasma coupling in

regimes where ponderomotive effects develop. In fact, the PCGO speckle pattern conserves some aspects of

real self-focused speckles after re-normalization of PCGO speckle power by the factor introduced in Chapter 2.

This re-normalization has been proved by comparing our results to simulations performed with electromagnetic

codes. We are then confident that the novel algorithm permits to better describe intensity amplification of

PCGO speckles when compared to real speckles.

The chapter is organized as follows: the algorithm for creating the PCGO speckle pattern is illustrated in

Sec. 3.1. A detailed study of the plasma response, speckle self-focusing on short- and long-time scales and the

overall beam evolution are presented in Sec. 3.2. A comparison to results obtained in previous publications is

discussed in Sec. 3.3, whereas the advantages of such a method compared to the random algorithm for creating

speckle patterns are discussed in Sec. 3.4. A summary of our results is presented in Sec. 3.5.

3.1 Creation of spatially modulated beams with PCGO in CHIC

In this section, we describe the two PCGO-based algorithms implemented in the hydrodynamics code CHIC

and dedicated to generation of spatially modulated beams: in Sec. 3.1.1, the random approach is reviewed.

In 3.1.2, the new semi-deterministic method, which is built on the results obtained in Chapter 2, is presented.

In both cases, the speckle pattern is intended stationary all along the simulation, i.e. the coherence time of

the speckles is longer than any simulation time. This is because we are not considering temporal smoothing

techniques.

3.1.1 Random speckle pattern

In the PCGO standard approach, the speckle pattern is created by randomly projecting several Gaussian

beamlets from the simulation boundaries to the far-field in three steps: the first step concerns the definition of

the flat-top profile, by inserting value of the beam width in the far-field wB , the beam power PB , the order of

the Super-Gaussian profile n and the beam focus spot (xB , yB). The average beam intensity < I > is a-posterior

computed through the relation

< I >=
PB∫ ly

−ly e
−2
∣∣∣ y
wB

∣∣∣n
dy

, (3.1)

where ly is few times larger than wB . Once defined the spatial intensity distribution inside the simulation region,

i.e. in the far-field, a Fast Fourier Transform back-propagates such an intensity distribution to the simulation

boundaries, called virtual sphere in the following, in order to recreate at this position the corresponding intensity

profile. At the same position, a sphere called virtual sphere is defined. The second step, named beam-splitting,

consists in definition of Nb thick beamlets on the virtual sphere, with the intensity envelope reproducing the

incident laser beam profile. The beamlets are initialized equidistantly with width wb0. The final stage consists

in projecting the beamlets from their origin to their focus spot positions, which are randomly chosen inside a

focusing box designed in the input. The dimension of the focusing box is related to the longitudinal speckle
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(a) (b)

Figure 3.1: Random algorithm: (a) scheme of the thick-ray algorithm implemented in the hydrodynamic code

CHIC and generating a random speckle pattern. b) Laser intensity in the plasma normalized to the average

intensity realized with the random algorithm. The laser comes from the left side. The spatial coordinates are

in laser wavelength units.

size xs, defined by Eq. (1.64), the speckle waist ws, defined by Eq. (1.63), and the total beam width wB .

Eventually, the beamlets superposition in the simulation domain creates spatial modulations in the far-field.

Figure 3.1a schematically presents all the process: the intensity of the incoming flat-top beam (purple curve)

is distributed over Nb equidistant beamlets (dotted purple curves) on the virtual sphere (dashed black circle).

The beamlets focus positions (purple crosses) are randomly chosen inside a box around the beam focus spot

(green spot). The angle of incidence θjb of the beamlet j is automatically evaluated by the algorithm once

fixed the position where the beamlet is generated on the virtual sphere and the focused spot position randomly

determined. Figure 3.1b shows the results of one realization by employing the random algorithm: it depicts the

initial laser intensity distribution normalized to the beam average intensity < I > in the far-field. The beam

focus spot is located around (500λ, 500λ). Local intensity maxima arise in areas where beamlets cross each

others. These maxima represent the speckle pattern, which is localized within the focusing box defined by the

input parameters. For each realization, the speckle intensity distribution does not reproduce the probability

law Eq. (1.66) because the algorithm does not account for it. In order to reproduce the speckle statistics, one

may repeat the same simulation for several times: for example, to obtain the speckle intensity statistics for 1000

speckles, one may perform 50 runs when considering a number of PCGO speckles equal to 20 for each run. Such

method of speckle initialization limits the applicability of PCGO for investigating the ponderomotive effects in

spatially modulated beam because the speckle intensity statistics cannot be controlled in a single realization.

For more details on the random algorithm and application to ICF see Ref. [41].

3.1.2 Semi-deterministic speckle pattern

In the random approach, the speckle pattern is produced by superposition of randomly distributed beamlets

generated from a given beam intensity profile. This method gives rise to random intensity fluctuations, with
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speckle characteristics not a priori determined. Despite it was successfully applied for modeling some ICF-related

phenomena, introduction of speckle statistical properties is needed in order to account for high intensity speckles

especially when self-focusing effects are comprised. In Chapter 2 we demonstrated that a regular distribution of

the beamlets inside a speckle provides a better control the individual speckle self-focusing. In order to extend

these results to a spatially modulated beam, we developed an algorithm which regularly distributes the beamlets

inside each speckle. In addition, this method assigns to each beamlet an intensity such that the probability

distribution of the speckle statistics obeys to an exponential law. The algorithm operates as follows: first, the

number of speckles Ns and the beam width wB are fixed in the input. Then, the speckle width ws is computed:

ws =
wB
Ns

. (3.2)

From this equation, in order to remain within both PCGO and hydrodynamics limitations, it follows that

ws = 15λ− 60λ, depending on the laser wavelength. That sets an upper limit to the number of speckles, which

spans between 15-50. Once defined the optical characteristics of speckles, the algorithm confers to each speckle a

random intensity value within a range such that the ensemble of speckle intensities obey to Eq. (1.66). Despite

the number of speckles created within the PCGO algorithm is smaller than the number of optical speckles, we

choose the speckle intensities such that the intensity interval ranges from one tenth to three/four times the

average beam intensity as in real speckle patterns.

By varying the spatial proprieties of the beamlet configuration, different spatial speckle distributions can

be explored: patterns where inter-speckle distance is randomly varied, or speckles with arbitrary inclinations

with respect to the laser beam axis. In the design used throughout this chapter, the beamlets are initialized to

form parallel speckles with a constant transverse distance between them: considering that the beam focus spot

is located at (xfB , y
f
B), the transverse focus spot coordinate yjs of the jth speckle is:

yjs = yfB + (Ns − 2j)ywws, (3.3)

where yw is a numerical factor introduced from the input permitting to increase or decrease the focusing box area.

The longitudinal spot coordinate xjs of the jth speckle is randomly chosen in the interval
[
xfB − xs;x

f
B + xs

]
.

Then, the speckle-splitting process takes place: around each speckle focus spot position, three beamlets are

initialized by starting with their focus spot positions. These beamlets are geometrically placed such that the

central one has the same focus spot coordinates as the relative speckle, whereas the two outer beamlets are

shifted to (xjs ± 0.15xs, y
j
s ± ws/2), respectively. The beamlets have the same width, equal to the speckles

width. We note that only one degree of freedom on the longitudinal spatial positions of beamlets focus spots is

considered in this version of semi-deterministic method, whereas in the random algorithm there are two spatial

degrees of freedom, longitudinal and transverse. At the next step, the speckle-splitting method equally divides

the speckle intensity Is over the three beamlets, thus Ib = Is/3, where Ib refers to the beamlets intensity.

Similarly to the random method, the last step consists in a back-propagating Fast Fourier Transform, which

evaluates the beamlet properties over the virtual sphere, where they are initialized. The virtual sphere must

be close enough to the simulation boundaries such that the beamlet wave vectors are approximately parallel

to the beam axis. At the end of the initialization, the beam presents a small-scale modulations in form of
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Figure 3.2: Semi-deterministic speckle pattern: laser intensity normalized to the average intensity in the far-

field. The yellow points stand for the beamlet focus spots. The laser comes from the left side. The spatial

coordinates are in laser wavelength units.

Gaussian-like three-beamlet speckles, each of them having a transverse and longitudinal intensity profile similar

to the profiles studied in Chapter 2 for the regularly-focused three-beamlet speckle.

This semi-regular beamlets distribution produces the intensity distribution pattern as displayed in Fig. 3.2:

here the color bar represents the beam intensity normalized to the average beam intensity < I >. The speckle

pattern is clearly recognizable: each speckle consists of three-regularly focused beamlets with prescribed focusing

spots (yellow dots) parallel to the beam axis. The beam parameters are similar to the ones in Fig. 3.1b: the

beam focus spot position is (500λ, 500λ), and its width is wB ≈ 350λ.

It is interesting to compare some features of spatially modulated beams produced by the random and semi-

deterministic algorithm: Figure 3.3a shows transverse line-outs in the intensity profile of Fig. 3.1b (green line)

and Fig. 3.2 (red line) at the beam focus spot position. The beam width created with both algorithms is

comparable. Since the number of beamlets, speckles and speckle size are similar, the beam presents the same

contrast independently of the algorithm, i.e. around 30%. In both cases, the order n of the Super-Gaussian

envelope is 10. In Fig. 3.3b, the speckle abundance M as a function of speckle intensity normalized to the

average beam intensity is shown. The dashed blue line refers to the exponential speckle abundance described by

Eq. (1.66), the solid red line refers to one run realized with the semi-deterministic approach, the green lines refer

to two different realizations by using the random algorithm. Since the semi-deterministic method is principally

built by assigning a certain intensity to the speckles such that their intensities obey to Eq. (1.66), the speckle

abundance reproduces quite well the analytic formula. Instead, two different realizations with the random

algorithm correspond to two different intensity probability distributions: the speckle statistics arbitrarily varies

at each run.
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(a) (b)

Figure 3.3: a) Transverse line-outs of laser intensity at (500λ, 500λ) in case of random (green line) and semi-

deterministic (red line) speckle pattern. b) Initial speckles abundance M : analytic results from Eq. (1.66)

(blue dashed line), results from semi-deterministic pattern for a single realization (red line) and results for two

realizations with a random pattern (dashed and dotted green line).

3.2 Self-focusing of a spatially modulated beam

In this section, we present the results of self-focusing of spatially modulated beam generated with the semi-

deterministic algorithm. The plasma conditions are the same as in Chapter 2: the beam propagates into a

homogeneous CH plasma (Z = 3.5) with density ne0/nc = 0.1 and temperature Te = 3Ti = 1 keV. The plasma

< I > /Isc Imaxs /Isc Imins /Isc

0.2 0.5 0.016

0.35 0.9 0.3

0.5 1.2 0.07

0.85 2.1 0.1

1.25 3 0.15

2 5 0.5

2.5 6.2 0.65

Table 3.1: Parameters of set of simulations conducted with semi-deterministic PCGO model: First column:

laser beam average intensity considered in the simulations. Second column: intensity of the most intense

speckle normalized to the Gaussian beam critical intensity. Third column: intensity of the most intense speckle

normalized to the three-beamlet beam critical intensity.
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(a) (b)

(c) (d)

Figure 3.4: Density perturbation δn/ne0 (%) for the case < I > /Isc = 0.85 at (a) t=10 ps, b) t=100 ps c)

t=210 ps. Panel d) shows the case < I > /Isc = 2 and t=210 ps.

box has a longitudinal dimension of 2000λ, and a transverse dimension of 1000λ. The speckle pattern is shown

in Fig. 3.2, with a speckle width of ws ≈ 20λ equal to beamlets waist wjb . The beam is composed by 15

equidistant speckles, whose distance is larger than ws, as displayed in the figure. With these parameters, the

Gaussian beam critical intensity is Ic0 = 1.5× 1013 W/cm2 for the laser wavelength of 1.05 µm and coincides to

the value given in Chapter 2. Hence, comparison between a single three-beamlet speckle from Chapter 2 and a

three-beamlet speckle as in a speckle pattern can be assessed. The red line in Fig. 3.3b represents the speckles

intensity statistics for all the cases considered.

The speckle pattern behavior is explored by considering different average laser intensities: we have performed

7 simulations lasting tf = 550 ps, which is several times longer than the transit time of IAWs through a speckle.

The goal here is to investigate individual speckle self-focusing at short time-scales along with inter-speckle

interaction due to interference of IAWs for long time-scales. Table 3.1 shows the list of the average beam

intensities considered: the first column in Table 3.1 refers to the average beam intensity normalized to the

speckle critical intensity. Such a quantity is defined as following:
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Ics =
2P c2D∫ ly

−ly e
−2
∣∣∣ y
wB

∣∣∣n
dy

. (3.4)

where P c2D stands for the critical power of a Gaussian beam with the order n = 10. Here we accounted for the

fact that the three-beamlet speckle has a critical power twice higher than a Gaussian beamlet, as discovered

in Chapter 2. The second column refers to the intensity of the most intense speckle normalized to the three-

beamlet critical intensity, and the third column refers to the intensity of the less intense speckle normalized to

the three-beamlet critical intensity. These cases range from the one where only one speckle has an intensity

able to trigger self-focusing effects, i.e. < I > /Isc = 0.2 to the one where more than 60% of the speckles have

an intensity at least equal to the three-beamlet critical intensity, as for the case < I > /Isc = 2.5. In Section

3.2.1 we study how the plasma perturbation forms inside the speckle area, whereas in Section 3.2.2 we relate

the plasma perturbation to the ponderomotive effects in speckles at short and long time. As in the previous

chapter, laser-plasma coupling consists in only ponderomotive force, then the modules which account for laser

absorption and other nonlinear laser-plasma phenomena are switched off.

3.2.1 Plasma dynamics

In this section, we analyze the plasma response caused by the ponderomotive force induced by the regular

speckle pattern. Figure 3.4 shows the plasma perturbation δn/ne0 for < I > /Isc = 0.85 as a function of the

normalized spatial coordinates for (a) t = 10 ps, (b) t = 100 ps and (c) t = 280 ps. The gray bar stands for

the amplitude of the density perturbation δn/ne0 (%). Figure 3.4a illustrates how the regular speckle pattern

imprints its structure onto the plasma for times when self-focusing is not yet established but the plasma density

modulation due to the ponderomotive force has already started. For longer times, the IAWs generated inside

the speckles area transversely propagate outside it: Fig. 3.4b refers to a time when the IAWs have not left

yet the speckles, whereas Fig. 3.4c displays the effect of IAWs interference, which occurs when IAWs cover a

distance greater than 2ws/cs ∼ 180 ps. Reduction of the maximum amplitude when comparing Fig. 3.4c to

Fig. 3.4b is due to decrease of ponderomotive effects induced by plasma smoothing.

By analyzing the evolution of plasma response with time and laser intensity, we find out that density

perturbations with amplitude above 1% lead to strong modification of the intensity distribution in plasma, which

occurs for < I > /Isc > 0.5. For beam intensities < I > /Isc > 1, the plasma density appears strongly modified

behind the speckles self-focusing positions, as shown in Fig. 3.4d for < I > /Isc = 2 at t = 210 ps. Behind the

main self-focusing area placed at x > 1250λ, the density channels are distorted, and the overall plasma density

profile appears strongly perturbated. This behavior is due to two phenomena: firstly, the amplitude of IAWs

is sufficiently large to create high-amplitude density perturbations, inducing a strong plasma perturbation even

in low-intensity speckles which self-focus. As a side effect, a larger amount of speckles is deformed, they lose

their Gaussian symmetry because beamlets significantly deviate from their initial direction of propagation due

to refraction in deep density channels. Both effects are analyzed in more details in the forthcoming sections.

Figure 3.5a shows line-outs of the density perturbation δn/ne0 as a function of the transverse coordinate

at x = 1700λ and t = 75 ps for: < I > /Isc = 0.2 (solid black curve), < I > /Isc = 0.5 (dashed red curve),
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(a) (b)

Figure 3.5: Transverse line-outs of density perturbation δn/ne0 a) at x = 1700λ and t = 75 ps for < I >

/Isc = 0.2 (solid black curve), < I > /Isc = 0.5 (dashed red curve), < I > /Isc = 0.85 (dotted green curve) and

< I > /Isc = 2 (dashed-dotted gray curve); b) for < I > /Isc = 1 at around x=1700λ for t = 1 ps (solid green

line), t = 150 ps (dashed green line) and t = 300 ps (dotted green line).

< I > /Isc = 0.85 (dotted green curve) and < I > /Isc = 2 (dashed-dotted gray curve). The amplitude of density

perturbation depends on the speckle intensity: according to Eq. (1.152), higher initial intensity corresponds to

a higher intensity enhancement, which leads to a density response of higher amplitude. In this panels, one notes

that nonlinear density response occurs for < I > /Isc > 0.5. Generation and propagation of IAWs at x = 1700λ

for < I > /Isc = 0.5 is shown in Figure 3.5b: the solid green line refers to time t = 1 ps, the dotted green line

to t = 150 ps and the dashed green line to t = 300 ps. At t = 1 ps, the density is not perturbed, thus the IAWs

amplitude is zero. At t = 150 ps, peaks in the density transverse profile related to the occurrence of IAWs

clearly appear. Such waves propagate in transverse direction, and interfere with others waves for times larger

than 2wc/cs: the double peak at around y = 650λ for the dashed line illustrates this feature. This double peak

structure stabilizes at t = 300 ps, as evidenced by the dotted line.

Figure 3.6a displayes the spatial Fourier transform of the data presented in Fig. 3.5: the solid black curve

refers to < I > /Isc = 0.2, the dashed red curve refers to < I > /Isc = 0.5, the dotted green curve to

< I > /Isc = 0.85, and the dashed-dotted gray curve to < I > /Isc = 2. As expected, at larger powers,

different modes with several wave vectors ky are produced since self-focusing develops in more speckles. Thus,

the wave vector cut-off moves towards larger |ky|. Furthermore, the amplitude of such density perturbations

increases with the beam average intensity. It is interesting to note that modes with smaller ky are produced

for any beam average intensity, whereas, when the beam intensity increases, modes with larger |ky| are excited

too. Figure 3.6b shows evolution of density perturbation spectrum for t = 1 ps (solid green line), t = 150 ps

(dashed green curve) and t = 300 ps (dotted green line) for < I > /Isc = 0.85. The case t = 150 ps refers

to independent speckle self-focusing, i.e. when IAWs interference has not occurred yet, whereas at t = 300

ps, IAWs have already propagated a distance larger than inter-speckle distance. As a consequence of IAWs
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(a) (b)

(c)

Figure 3.6: Spatial Fourier Transform of the transverse line-outs of density perturbation δn/ne0 at x = 1700λ

and t=75 ps a) for < I > /Isc = 0.2 (solid black curve), < I > /Isc = 0.5 (dashed red curve), < I > /Isc = 0.85

(dotted green curve) and < I > /Isc = 2 (dashed-dotted gray curve); b) for < I > /Isc = 0.85 at x = 1700λ

for t = 1 ps (solid green line), t = 150 ps (dashed green curve) and t = 300 ps (dotted green line); c) for

< I > /Isc = 2 at x = 1700λ for t = 150 ps (dashed gray curve) and t = 300 ps (dotted gray line). In all panels,

the wave vectors ky are normalized to the laser wave vector k = ω/c.

interference, the amplitude of density perturbation is reduced in average for t = 300 ps because of mode mixing.

Figure 3.6c displays spectrum of density perturbations for t = 150 ps (dashed gray curve) and t = 300 ps

(dotted gray curve) for the case < I > /Isc = 2. Comparing density perturbations for < I > /Isc = 0.85 and

for < I > /Isc = 2 at t = 300 ps (dotted lines), one can note that whereas for < I > /Isc = 0.85 the density

amplitude in the range of small wave numbers 0 < |ky| < 0.1 is approximately constant, for < I > /Isc = 2 it has

a maximum at ky ∼ 0.03k0 and decreases with increasing |ky|. This is explained by the fact that the wavenumber

ky = 0.03k0 corresponds to the speckle width ws = 20λ. IAWs with this wavenumber are excited directly by the

ponderomotive force in speckles. By contrast, the larger wave numbers are generated by nonlinear interaction

of IAWs which increases with their amplitude and therefore can be observed at higher intensities. Consequently,
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(c) (d)

Figure 3.7: Intensity enhancement Imax/I0 in a) and c) and amplitude of plasma perturbation δn/ne0 in b)

and d) as a function of time for selected speckles and for < I > /Is = 0.85 (upper figures) and < I > /Is = 2

(bottom figures). The black solid lines refer to speckle intensity Is/I
s
c <0.5, the dashed red lines to Is/I

s
c ≈1,

the dotted green lines to Is/I
s
c ≈ 2, the dashed-dotted blue lines to Is/I

s
c ≈3.

for the case < I > /Isc = 2 the less intense speckles can also undergo self-focusing even if at short time scale

they do not present any noticeable intensity enhancement. This example demonstrates a reduction of plasma

smoothing effect on the speckles self-focusing due to strong density perturbation.

3.2.2 Speckle dynamics and relation to the plasma perturbation

A relation between density amplitude and intensity enhancement is illustrated in Fig. 3.7, which displays

the intensity enhancement Imax/I0 (panels on the left) and the amplitude of the density perturbation δn/ne0

(panels on the right) for selected speckles. The average beam intensity is < I > /Isc = 0.85 (upper panels)

and < I > /Isc = 2 (bottom panels). The black solid lines refer to a speckle with intensity Is/I
s
c <0.5, the

dashed red lines refer to a speckle with intensity Is/I
s
c ≈ 1, the dotted green lines refer to a speckle with

intensity Is/I
s
c ≈ 2, the dashed-dotted blue lines refer to a speckle with intensity Is/I

s
c ≈ 3. In Figs. 3.7a-3.7c,

speckles with intensity smaller than Isc do not undergo self-focusing. This is in agreement with results found
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in Chapter 2. On the other hand, for speckles with intensity larger than Isc , an increase of the intensity occurs

for 0 < t < 150 ps. At times longer than ∼ 150 ps, IAWs generated inside one speckle reach the edge of the

neighbor speckle, interacting with the counter-propagating IAW excited over there.

At the beginning, for times 150 < t < 180 ps, the IAWs interference changes the amplitude of the density

perturbation, and the speckle dynamics is perturbed as observed in panels on the right. Then, when the IAWs

reach the core of the density cavity for times t ∼ 200 − 240 ps, the density depletion varies depending on the

IAW amplitude, and the speckle dynamics is modified accordingly. This can be seen in Fig. 3.7, but some

differences emerge between the upper (< I > /Is = 0.85) and bottom (< I > /Is = 2) plots after the IAW

interference at t ≈ 150 ps. In case of < I > /Is = 0.85 only one speckle has Is/I
s
c > 1 (dotted green lines), its

intensity decreases for 150 < t < 200 ps. This is due to the fact that the neighbors of this speckle have a very

low intensity (< Isc ), and they do not generate a density perturbation strong enough to fill the density channel

created by the most intense speckle. Thus, interference of the IAWs proceeds in a linear regime so speckle

self-focusing reaches a stationary state for t = 3ws/cs > 250 ps, i.e. after the passage of the first IAW across the

density channels. This linear plasma density perturbation saturates the intensity enhancement and to lead the

system in a quasi-stationary state. The dynamics of speckles having Is/I
s
c = 1 (red curve) and Is/I

s
c < 0.5 in

the upper panel presents the same structure. Small oscillations are due IAWs traveling across density channels,

which occurs for times t = (2m+ 1)ws/cs, being m an integer number.

For < I > /Is = 2 (bottom panels in Fig. 3.7), where at least 6 speckles have Is/I
s
c >1, the scenario

is very different: IAWs interference drastically change the amplitude of density perturbations, the intensity

enhancement and the relation between them over long times. For the most intense speckles, the intensity

enhancement at short time is saturated already due to breaking of the speckle symmetry. The dashed-dotted

blue lines in Figs. 3.7c-3.7d illustrate respectively the behavior of the intensity enhancement and the density

amplitude as a function of time for this speckle. Both the density amplitude and intensity enhancement are

strongly affected by the IAWs interference for t > 150 ps: this is due to the fact that its neighbor speckle has an

intensity Is/I
s
c > 2, its density perturbation amplitude and intensity enhancement are displayed by green lines

in Fig. 3.7b and Fig. 3.7c, respectively. At longer times, more IAWs interact, penetrate the speckles and fill the

density depletion caused by the ponderomotive force, but strong self-focused speckles are less sensitive to the

plasma smoothing. On the other hand instead, high-amplitude IAWs boost an important intensity amplification

in the less intense speckles too, as shown in Fig. 3.7c for t > 250 ps. However, in all cases, when the intensity

enhancement increases more than 3-4 times, the speckle breaks down, and its intensity enhancement saturate.

The combined effects of speckle breaking, plasma smoothing and strong self-focusing induce high-amplitude

oscillations in the speckle dynamics, and no steady state is attained.

In the next sections, the results at short time, when the independent speckle self-focusing is expected to

coincide to the results obtained in Chapter 2, and the consequence of plasma smoothing and high-amplitude

plasma perturbations for longer times are studied separately.
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Figure 3.8: Comparison of the speckle intensity enhancement for a short time to the results obtained in Chapter

2. The blue line refers to the time-averaged intensity enhancement for a single beamlet, the red dashed line

refers to the time-averaged intensity enhancement for a single three-beamlet case, the orange dashed-dotted line

refers to the time-averaged intensity enhancement for a single three-beamlet case as a function of p2c = Ps/2Pc,

and the yellow dots stand for the intensity enhancement of several three-beamlet speckles composing the multi-

speckle pattern as a function of p2c = Ps/2Pc. The error bars refer to the standard deviation of the time

average. The new results are presented without error bars for the sake of clarity.

3.2.3 Speckle self-focusing at short times: comparison to the single speckle case

Assuming the dynamics of each speckle can be considered independent before that IAWs excited in different

speckles interact between each other, the individual speckle self-focusing can be studied by evaluating short

time dynamics, i.e. for time up to t ∼ 150 ps. This is very long time compared to other instabilities time-scales,

which grow on a few picoseconds. However, since the packages modelling of those phenomena are turned off,

other nonlinear laser-plasma instabilities do not affect our simulations. More details on the importance of other

instabilities on ponderomotive self-focusing are presented in Chapter 4.

The individual speckle self-focusing time evolution can be compared to the long time dynamics, when the

IAWs interfere and the speckle self-focusing is affected by the collective dynamics. At a short time-scale indeed,

one expects to retrieve the single speckle behavior as described in Chapter 2. Figure 3.8 presents the results of

Chapter 2 where the intensity enhancements of several three-beamlet speckles from the current study have been

added: the blue line refers to the time-averaged intensity enhancement for a single beamlet, the red dashed line

refers to the time-averaged intensity enhancement for a single three-beamlet speckle, the orange dashed-dotted

line refers to the time-averaged intensity enhancement for a single three-beamlet case as a function of normalized

power p2c = Ps/2Pc. The yellow dots stand for the intensity enhancement of three-beamlet speckles composing

a multi-speckle pattern as a function of p2c = Ps/2Pc averaged over a time interval of 50 ps around t = 150 ps.

These points are recovered from different cases we have studied. The error bars refer to the standard deviation
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of the time average. The dots do not present any error bars for the sake of clarity of the plot. The panel

shows that in the multi-speckle pattern the single speckle behavior at a short time is very close to the single

three-beamlet speckle for speckle powers less than 4, and that this feature does not depend on a particular

multi-speckle case. Furthermore, the factor η = 2 introduced in Chapter 2 in order to account for self-focusing

effects in three-beamlet speckles correctly describes the intensity enhancement in the multi-speckle case for

a short time speckle self-focusing. When the speckle power exceeds 5-6 times the normalized critical power

p2c = Ps/2Pc, the power of all beamlets exceeds at least 4 times their critical power, so individual beamlet

dynamics overcomes the collective behavior: the beamlets strongly refract, spreading out from the speckle area

and breaking the speckle symmetry. This phenomenon leads to a saturation of the intensity enhancement, and

at this speckle power the multi-beamlet PCGO solution underestimates the ponderomotive effects with respect

to the single beamlet case, as already observed in Chapter 2.

3.2.4 Long time dynamics

As demonstrated in Sec. 3.2.2, plasma density perturbations excited inside the speckles at short time affect

self-focusing at longer times. Depending on the IAWs amplitude, the speckle self-focusing can reach a steady

state or strongly oscillate at long times. In particular, when IAWs develop in nonlinear regime, their interaction

with the less intense speckles leads to value of intensity enhancement comparable to the most intense speckle.

In order to measure a correlation within the speckle pattern, one may calculate a ratio between the intensity

enhancement of the most and less intense speckle for a given case, denoted by i. The dependence of this ratio

on the multi-speckle beam intensity is presented in Fig. 3.9a: the blue line refers to the value of i at around

t = 150 ps, where the hydrodynamic inter-speckle coupling has not occurred yet. The black line refers to i

(a) (b)

Figure 3.9: a) Ratio between the intensity enhancement of the most intense and less intense speckle i as a

function of the beam intensity. The blue curve refers to the intensity enhancement at t = 120 ps, whereas the

black line to the time-average for t > 120 ps. b) Time-average of the beamlets average divergence 〈θ̂〉t as a

function of the average beam intensity.
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averaged over the rest of the simulation (150 < t < 550 ps). The error bars stand for the standard deviation.

For < I > /Is = 0.5, a difference between the most and less intense speckle in terms of intensity enhancement

is very small; this is due to the fact that the amplitude of plasma perturbation is very weak, and there is no

intensity enhancement in the weakest speckle. On the contrary, a strong difference between the short time and

long time behavior is observed for < I > /Is = 0.85: the most intense speckle experiences the effect of mixing

of density perturbations: a combination of linear density perturbations smooths the intensity enhancement of

the most intense speckle. Consequently, the ratio i decreases over a long time. For < I > /Is > 0.85 instead,

we observe that at a long time, the ratio i decreases similarly to the case of < I > /Is = 0.5. However, unlike

the < I > /Is = 0.5 case, this reduction is explained by strong self-focusing effects which overcome plasma

smoothing: at a short time, the intensity enhancement of the most intense speckles is saturated given that the

speckle breaks due to beamlets divergence. On the other hand, the less intense speckles have an initial power

sufficient to develop self-focusing, although weaker than the most intense speckles. These two processes going in

opposite directions explain the fact that the ratio i does not exceed 2-3. This argument applies also to the long

time evolution, since nonlinear plasma perturbation induces strong oscillations of the intensity enhancement in

all speckles. The larger error bars for < I > /Is > 0.85 highlight this point. Thus, increasing the beam intensity

up to < I > /Is = 2.5, both speckle breaking and self-focusing of less intense speckles reduce the importance

of the plasma smoothing since more speckles enter in the self-focusing regime and IAWs amplitude non-linearly

develops.

Figure 3.9b shows the time-averaged total beamlets deviation with respect to the initial straight beamlet

trajectories for several cases. The angle 〈θ̂〉t measures the beamlets divergence, and it characterizes the beamlet

spreading behind the speckle self-focusing position. The divergence increases with the average laser intensity,

which explains why the speckles deviate from their initial Gaussian profile. This is particularly true for < I >

/Isc > 1, where the average beamlets divergence above one degree is measured. As described already in Chapter

2, this effect is due to the fact that the speckle envelope emerges from an uncorrelated sum of Gaussian beamlets

intensities.

3.2.5 Overall beam dynamics

In this section, we analyze the overall beam dynamics by considering the evolution of the beam contrast and the

time-averaged speckle statistics. Figure 3.10a presents time dependence of the contrast variation ∆C/Cen(t),

where ∆C = Cexit − Cen is the difference between the beam contrast evaluated at the exit Cexit and the entry

Cen of the plasma box, respectively for < I > /Is = 0.2 (solid black line), < I > /Is = 0.85 (dashed blue line)

and < I > /Is = 2 (dotted green line). The value of the contrast at the entry is Cen = 30% and does not vary

in time. The value of Cexit is around 30% as well, but it changes in time because of speckles self-focusing.

In case of a very low laser beam intensity, i.e. for < I > /Is = 0.2, the contrast variation increases for times

less the IAWs transit time (t = 150 ps), then it oscillates around ≈ 5% with a period of around 200 ps and with

a small amplitude. This is due to the fact that speckles do not appreciably self-focus, and the speckle pattern

is slightly perturbed by the ponderomotively-induced density modulations. Increasing the beam intensity by

four times leads to an enhancement of the contrast variation by about 6 times, as evidenced by the case of

109



(a) (b)

Figure 3.10: a) Contrast variation dynamics ∆C/Cen(t) for < I > /Is = 0.2 (solid black line), < I > /Is = 0.85

(dashed blue line) and < I > /Is = 2 (dotted green line). b) Time-averaged contrast variation 〈∆C/Cen〉t for

different cases.

< I > /Is = 0.85. A stationary state giving a 30% of contrast variation sets at about the same time interval

as for the lower intensity case. In this case, there are no periodic oscillations, whereas the steady state value

of 30% indicates that speckles are self-focused and reduced in their transverse size. This is due to the fact

that an equilibrium between the plasma smoothing and the beamlets divergence is established, and the contrast

saturates given that the intensity enhancement of the speckles is saturated (see also Fig. 3.7a).

In case of beam intensity < I > /Is = 2 (green line), the scenario drastically changes: the time dependence

of the contrast variation presents the same periodic structure as the < I > /Is = 0.2 case but shifted in time

for around 80 ps. The contrast variation reaches its maximum at 80 ps, then falls, before rising again at the

same maximum and oscillates until the end of the simulation. These strong oscillations of the contrast variation

are due to combination of two effects already discussed, but here evidenced at two different time scales: after

the first 80 ps, the most intense speckles break, and the beamlets spread behind the main self-focus position.

This leads to reduction of the beam fluctuations between 80 and 160 ps. Then, IAW interference takes place

(for t ≈ 150 ps), which smooths the speckles symmetry breaking by redistributing the intensity enhancement

over all the speckles. This feature repeats periodically since the nonlinear plasma response induces strong

intensity enhancements also in less intense speckles. As a result, the contrast variation strongly oscillates at an

average value of 20% with an oscillation amplitude of around 15%. Figure 3.10b shows time-averaged contrast

variation 〈∆C/Cen〉t as a function of the overall beam intensity and summarizes all the results concerning the

contrast. The error bars stand for the standard deviation. As already pointed out, the time-averaged contrast

variation increases with the beam intensity up to < I > /Is = 0.85, then, it decreases presenting high amplitude

oscillations, illustrated here with larger error bars for < I > /Is = 1.25 and < I > /Is = 2. This is in agreement

with the results shown in Fig. 3.9a.

Another important parameter that characterizes the beam dynamics is the probability distribution of the
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(a) (b)

(c) (d)

Figure 3.11: Abundance of speckles M as a function of speckle intensity normalized to the average beam intensity

for a) < I > /Is = 0.2, b) < I > /Is = 0.85, c) < I > /Is = 1.25 and d) < I > /Is = 2. The green lines with

error bars correspond to the time-averaged simulations data, the red lines refer to the reference initial statistics,

the dashed blue and solid gray lines correspond to an exponential and power fit of the data, respectively.

speckle intensities. As already mentioned, all the cases considered are initialized with an exponential speckle

statistics. But ponderomotive self-focusing can substantially change the relation between the speckles abundance

and their intensity, as shown in Fig. 3.11. In this set of figures, the solid red lines refer to the reference initial

speckle intensity distribution, the solid green lines refer to the time-averaged speckle abundance, the blue

lines refer to the the exponential fit of the simulations data, whereas the solid gray lines refer to the fit by
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< I > /Isc a b α β γ

initial statistics 9.8 1.13

0.2 10 1.1

0.85 3 1.2

1.25 6.3 0.5

2 5.2 0.3 -2.8 -3.1 5.3

Table 3.2: Coefficients for the exponential fit M = aeb<I>/Is+c and the power fit M = α (< I > /Is)
β

+ γ of

the speckle probability distribution.

a power function. Figure 3.11a shows the case < I > /Is = 0.2, where only the most intense speckle has a

power comparable to the speckle critical power. In this case, no appreciable change of the speckle statistics is

evidenced, and the exponential fit gives an exponential factor of 1.1, very close to the initial exponential factor

1.13 as reported in Table 3.2. Figure 3.11b displays the case < I > /Is = 0.85, where around 20% of speckles

have a power above the multi-beamlet critical power. Here, self-focusing effect and plasma smoothing play

an important role in the beam dynamics, and the abundance profile presents a bump in the tail of intensity

distribution. Thus, the exponential fit still holds closely to the initial shape. The abundance modifies for

< I > /Is = 1.25 as illustrated in Fig. 3.11c, where the number of speckles having intensity above the multi-

beamlet critical intensity is around 40%-50%. Here, the speckle-plasma interaction and beamlets divergence

play an important role. The speckle statistics is strongly affected in both low- and high-intensity domains,

but an exponential fit is preserved, with an exponential coefficient two times smaller as evidenced in Table

3.2. Increasing the power at the point where 80% of speckles have intensity above the multi-beamlet critical

intensity leads to deviation from the exponential fit towards a power fit, as shown in Fig. 3.11d for the case

< I > /Is = 2: here, the data can be interpolated with an exponential coefficient of 0.3, or more accurately

by a power function with a power index −3.1. In this case, more than two speckles have an intensity 4-6

times higher than the average beam intensity < I > which implies a complicate interplay between nonlinear

hydrodynamics and beamlets spreading. As a consequence, the speckle statistics substantially changes from the

initial exponential shape and a larger probability for intense speckles is observed. A summary of the coefficients

used for the fits is displayed in Table 3.2.

In conclusion, we can identify two regimes of multi-speckle beam self-focusing: a low and high intensity

regime. The first one concerns beam intensity < I > /Is below 0.85-1.25: here the time-averaged speckle

intensity statistics can be approximated as an exponential. In these cases, plasma-induced smoothing domi-

nates and speckles do not reach a large intensity enhancement over all the simulation duration. The speckle

intensity statistics modifies by increasing the average beam intensity, until ponderomotive effects overcome the

plasma smoothing: in this situation, the speckle statistics show more high intensity speckles and the intensity

distribution tends to a power law. These phenomena are observed as the average beam intensity overcomes

< I > /Is ≈ 0.85− 1. We observe a gradual transition between the low to the high intensity regimes.
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Figure 3.12: Fraction of the spatially modulated beam power which has intensity five times the average beam

intensity < I > as a function of the running time described here in terms of the longitudinal spatial coordinate

z. The solid line a) refers to an RPP-produced beam and stands for our reference. Reprinted from Ref. [131].

3.3 Comparison to other works

In this section, we benchmark the results obtained with the semi-deterministic method against previous works,

notably from Refs. [131] and [123]. In particular, we are interested in testing the tendency of intensity enhance-

ment and modification of speckle intensity statistics obtained in our simulations.

In Ref. [131], the authors performed 3D electromagnetic simulations of speckles self-focusing and ponderomo-

tive force-induced plasma density perturbations, while neglecting parametric instabilities. In this work, a laser

with a wavelength λ = 0.35 µm is focused with a lens of f/8, giving rise to speckles of width ws ∼3 µm in the

transverse dimension. Plasma parameters correspond to a plastic CH, with a homogeneous electron density of

ne0 = 0.1nc and an electron temperature Te three times larger than ion temperature Ti, i.e. Te = 3Ti = 3 keV.

The average laser intensity is I0 = 2× 1015 W/cm2. The simulation lasts 100 ps. Although the authors consid-

ered different smoothing techniques such as RPP, temporal smoothing and polarization smoothing, we discuss

only the results concerning the RPP impact on laser self-focusing, illustrated by the curve a) in Fig. 3.12. This

curve describes the fraction of the spatially modulated beam power which has intensity five times larger than

the average beam intensity < I > as a function of time defined in terms of the longitudinal spatial coordinate z.

Different stages of laser self-focusing can be recognized: initially, only 4% of the beam carries such an amount

of intensity. Then, speckles self-focus and the power fraction carried with high intensity speckles increases up

to 20% at 200λ. Between 200λ and 400λ, generation of IAWs perturbs the dynamics, and the power fraction

oscillates. After 400λ, plasma smoothing sets in and the power fraction is reduced to 7%, saturating at this value

with slight fluctuations due to the IAW interference. The time-history of the power fraction is qualitatively

retrieved in the dynamics of intensity enhancement of the most intense PCGO speckles: as displayed in Figs.

3.7a-3.7c, after an initial increase of the speckle intensity enhancement, this quantity falls down and then it

reaches a steady state with small oscillations due to competition between plasma smoothing and single speckle

self-focusing. The differences between Ref. [131] results and PCGO simulations mainly dwell on the time-scales

at which density depletion and speckle contraction take place and on the dimension of the problem: the plasma
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(a) (b)

Figure 3.13: a) Tail of speckle intensity distribution function obtained in HARMONY simulations as a function

of the speckles intensity Is/ < I > (reprinted from Ref. [123]). b) Speckle intensity distribution obtained in

PCGO simulations for < I > /Ics = 2 as a function of speckles intensity normalized to the same intensity as in

the HARMONY simulations.

conditions are different, the time-scale of IAWs generation and propagation change, and the intensity oscillations

occurs on times of the order of 100 laser periods. A further difference emerges from the regular distribution in

space of PCGO speckles against the random speckle distribution in the electromagnetic simulations: this feature

affects the smoothing effects, introducing larger oscillations in the intensity enhancement of PCGO speckles.

Eventually, the dimension of the problem is different, and a more explosive self-focusing is expected in 3D than

than in two-dimensions. However, despite such differences, the dynamics of the most intense PCGO speckles

shows the same tendency as 3D real speckles.

Modification of speckle statistics due to both ponderomotive self-focusing and forward stimulated Brillouin

scattering (FSBS) excited by plasma density perturbations has been numerically investigated in Ref. [123],

in the particular case where strong self-focusing develops. In this work, the authors used 2D HARMONY

simulations to study the variation of the speckle statistics in a homogeneous plasma. Since HARMONY solves

a time-enveloped equation for the electric field in the paraxial approximation, speckle sizes are approximately

equal to the size of real speckles, that is, a few times the laser wavelength. In this simulation, the number of

speckles is around 2000, with an intensity ranging from 0.01 to 5 times the average beam intensity < I > and

the average beam intensity corresponds to a half of the speckles critical intensity.

In order to evaluate the effect of ion waves interference on the speckle dynamics as in PCGO simulations, we

discuss here the case of weak IAW damping: νIAW/ω0 = 0.01. The plasma was weakly collisional and absorption

did not affect the laser propagation. These conditions are in agreement with the plasma conditions as in our

simulations. Furthermore, by considering that PCGO speckles are 10 times larger than HARMONY speckles

and due to different normalization on the computation of the speckles power between CHIC and HARMONY,

the HARMONY simulation under investigation corresponds to the PCGO-CHIC case where < I > /Ics = 2.

Figure 3.13a shows the tail of of the speckle intensity distribution obtained in HARMONY simulations as a

function of the speckles intensity Is/ < I >. The dotted blue line corresponds to the case of weak IAW
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damping νIAW/ω0 = 0.01. The tail of the distribution of HARMONY speckles can be qualitatively compared to

the tail of the speckle abundance obtained in semi-deterministic PCGO simulations displayed in Fig. 3.11d for

< I > /Ics = 2. In Ref. [123], the speckle intensity distribution is characterized by a power law with an exponent

of −3.5. This behavior qualitatively agrees with PCGO simulations for < I > /Ics = 2, where the distribution

function best fit correspond to a power law with an exponent of −3.1 (see Table 3.2). Then, it follows from a

comparison of the blue curves in Fig. 3.13a and Fig.3.13b that the HARMONY and PCGO speckle distributions

give the same percentage of speckle abundance for 4 < (< I > /Is) < 6 and for (< I > /Is) > 8, whereas they

differ in the central part, where PCGO overestimates the occurrences by a factor of 2. This is due to the fact

that we are comparing the tail of a speckle pattern for 2000 speckles with an intensity distribution of only 15

PCGO speckles. Thus, one realization of PCGO statistics cannot quantitatively reproduce the entire speckle

distribution. Despite that, at high intensities, the PCGO semi-deterministic algorithm presents the same trend

of a 2D speckle distribution observed in electromagnetic simulations.

3.4 Comparison to the random speckle pattern

In this section, the self-focusing of a spatially modulated beam generated with the random algorithm is compared

to results obtained with the semi-deterministic method for the same plasma conditions and by preserving the

same number of beamlets and equal speckle size. To do so, simulations with the random beamlets initialization

have been performed for an incident beam of wB ≈ 350λ split in 45 beamlets near the plasma boundary. These

beamlets are then focused inside the plasma in a box of comparable size as in the semi-deterministic case and

placed at around (500λ, 500λ). In this way, a pattern similar to the semi-deterministic case is created: the

number of speckles is in average 12-15, with 3-4 beamlets per speckle. Also the average transverse speckle

size is approximately the same as in the semi-deterministic pattern (compare Figs. 3.1b-3.2 and see Fig. 3.3a),

whereas the longitudinal average size is smaller as a consequence of random inclination of beamlets. This breaks

the speckles symmetry and reduces their self-focusing, as it is discussed below. The beam intensity considered

is < I > /Isc = 2. As already seen in Sec. 3.3, the probability distribution of speckles for this beam intensity

corresponds to the tail of a 2D speckle intensity distribution, and modification of the initial speckle statistics

towards a power-dependence law due to strong speckle self-focusing is expected.

Figure 3.14a illustrates the transverse line-outs of the laser intensity for t = 150 ps and at around x = 150λ

for simulations performed with semi-deterministic algorithm (red line) and random algorithm (green line).

The intensity is normalized to the initial beam intensity distribution in order to easily identify the intensity

amplification of the speckles: for instance, a peak value of six means an intensity amplification of six times

the initial speckle intensity. Weaker intensity enhancements are observed in speckles built while using the

random method. As already pointed out in Sec. 2.3.1 when studying a single multi-beamlet speckle, such a

reduction is due to beamlets crossing at uncontrolled random angles and consequently, short interaction length.

Furthermore, the speckle-plasma coupling arising from collective effects is inhibited because the probability of

beamlets overlapping around their maximum intensities is low. Then each beamlet affects the plasma dynamics

almost independently, around its peak intensity. This suppresses the collective beamlets self-focusing and
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reduces the overall speckle intensity enhancement. Therefore, with the random algorithm, one cannot retrieve

the results on speckle statistics variation as in Ref. [123]: the probability of intensity distribution is shown

in Fig. 3.14b by the solid green line, which refers to the time-averaged speckle abundance M evaluated from

the random-initialized simulation. The dashed green line stands for the initial speckle intensity distribution

while employing the random method, the dashed red line stands for initial statistics in case of deterministic

algorithm as discussed in previous sections, the solid red line refers to time-average speckle abundance in case

of deterministic algorithm (see green line in Fig. 3.11d), whereas the dashed blue line refers to the analytic

exponential law Eq. (1.66), presented here as a reference. In case of random algorithm, the initial speckle

distribution (dashed green line) displayes an approximately linearly decaying intensity distribution over all the

speckles up to Is/ < I >= 3, then drops to zero. Due to single beamlets self-focusing, speckles are modified,

and new local maxima are formed (solid green line). The time-averaged intensity abundance of these maxima

corresponds to an almost constant speckle distribution up to Is/ < I >= 3. This is in contrast to what

observed in deterministic (solid red line) and in two-dimensional electromagnetic simulations as in Ref [123]:

the abundance of speckle intensities follows a power-dependence law as a consequence of strong speckles intensity

enhancement. In conclusion, the semi-deterministic algorithm is a more appropriate method for describing of

ponderomotive effects in Gaussian-like speckles unlike the random approach.

(a) (b)

Figure 3.14: a) Transverse line-outs of laser intensity in plasma normalized to the initial beam intensity distri-

bution at t = 150 ps for simulations performed with the semi-deterministic algorithm (red line) and random

algorithm (green line). b) Time-averaged speckle abundance M evaluated from the random-inizialized simu-

lation and represented by the solid green line. The dashed green line stands for the initial speckle intensity

distribution, the dashed red line stands for the statistics in case of deterministic algorithm, the solid red line

refers to time-average speckle abundance in case of deterministic algorithm (see green line in Fig. 3.11d),

whereas the dashed blue line refers to the analytic exponential law Eq. (1.66).
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3.5 Conclusion

In this Chapter, we studied ponderomotive self-focusing of a uniformly distributed speckle pattern within the

PCGO-CHIC. A new approach consisting in predetermining the Gaussian-shaped speckle pattern geometry

and the speckle intensity statistics has been developed: this consists in dividing the speckle intensity over

three Gaussian beamlets while preserving the overall Gaussian shape. This approach provides the desired

intensity enhancement reduction of PCGO speckles compared to the real speckles as discussed in Chapter

2. Ponderomotive self-focusing of speckles in a homogeneous plasma for average laser intensity ranging from

< I > /Isc =0.2-2.5 is studied. In this way, different regimes of plasma-speckles coupling and hydrodynamic-like

inter-speckle interaction has been explored at short- and long-time scales.

At a short time-scale, independent speckle self-focusing is observed in agreement with the results obtained in

Chapter 2: the three-beamlet speckles behave as Gaussian beamlets having a critical intensity two-times higher

than the Gaussian beam critical intensity. For speckles with higher intensity, strong density perturbations induce

a large beamlet divergence and the uncorrelated beamlets self-focusing independently. As a consequence, the

speckle symmetry breaks behind the main self-focus position. Both effects result in a saturation of intensity

enhancement of very intense speckles.

At longer time-scales, density perturbations produced in neighbor speckles interfere. That reduces the

intensity enhancement in already self-focused speckles, and it triggers self-focusing in less intense speckles.

This effect, coupled to the fact that intensity enhancement is saturated in the most intense speckles, produces

oscillations of the intensity on a long time scale.

We define two regimes of multi-speckle beam self-focusing: for a low average intensity (< I > /Is) < 0.85−

1.25, no appreciable changing in speckle self-focusing is induced since the amplitude of plasma perturbations

remains linear and the plasma-induced smoothing reduces the strong speckle intensity amplification. Thus

the intensity statistics presents the exponential shape typical of the Gaussian statistics. For (< I > /Is) >

0.85 − 1.25, speckle self-focusing dominates in the most intense speckles, whereas the highly nonlinear plasma

perturbation prompts an intensity enhancement in less intensity speckles too. As a consequence, the speckle

statistics shape changes because the number of intense speckles increases and the relation between the speckle

abundance and the speckle intensity transforms into a power-dependence law. Therefore, by increasing the

beam intensity of one order of magnitude from < I > /Is = 0.2, the speckle-plasma coupling gradually becomes

nonlinear, with the intensity interval (< I > /Is) = 0.85 − 1.25 representing an indicative threshold between

the linear and nonlinear regime.

For very intense speckles, such a departure from the standard exponential statistics, has been already

reported in the literature in numerical simulations with an electromagnetic code. Our CHIC simulations qual-

itatively reproduce the modification of the speckle distribution tail observed in electromagnetic simulations.

This confirms that our novel method can be used for in-line modelling of nonlinear laser plasma interaction

with hydrodynamics codes when ponderomotive force becomes relevant.

Imposing a speckle statistics distribution and configuring a spatially regular speckle pattern leads to a more

adequate description of ponderomotive phenomena. When these characteristics are not controlled, speckle self-

focusing is less accurately described. This is the case of speckle initialization with the random algorithm, where
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the speckle statistics is not controlled: the beamlets overlap area is small and the overall intensity enhancement

is weak. Therefore, to correctly reproduce the collective beamlets action, it is preferable to resort to the

semi-deterministic approach.
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Chapter 4

Laser self-focusing in plasmas with a

linear density profile

So far, we have considered ponderomotive laser self-focusing at moderate irradiances I0λ
2 < 1015 W/cm2 µm2

in homogeneous nonabsorbing plasmas. More realistic situations in ICF involve spatially-varying plasma density

profiles where absorption takes place due to inverse bremsstrahlung. In these conditions, speckle self-focusing

may drastically change because its critical power depends on the local plasma density. Furthermore, one needs

to account for the ratio of a speckle length to the density scale length: in realistic cases, the longitudinal size

of the speckle measures a few tens of microns, whereas in the PCGO algorithm speckle longitudinal size is a

few hundreds of microns: longitudinal size of real optical speckles is one order of magnitude shorter than the

characteristic plasma length, whereas PCGO speckles span over such a size. As a consequence, ponderomotive

effects in longer PCGO speckles may be overestimated in inhomogeneous plasmas.

In this chapter, laser self-focusing in an inhomogeneous plasma and for intensities of interest for ICF are

studied by means of hydrodynamic PCGO-CHIC simulations. The aim of this study is to extend the results ob-

tained in the previous chapters to more realistic conditions for ICF. In particular, we investigate ponderomotive

effects in plasmas with a linear density profile by varying the plasma longitudinal sizes and for several speckle

powers aiming to understand the role of plasma absorption and to discuss the dependence of ponderomotive

effects on plasma size. Values of plasma lengths and beam intensities are consistent with ICF and shock ignition

conditions.

Following the structure of this thesis, we consider laser-plasma coupling for different PCGO beams. First, we

treat self-focusing of a PCGO beamlet in order to analyze the consequences of laser absorption and plasma length

on ponderomotively-induced beamlet intensity enhancement. The effect of thermal self-focusing is discussed as

well. Then, self-focusing of a regularly-focused three-beamlet speckle is considered. Within this approach, the

goal is to show that this speckle structure allows to mitigate ponderomotive effects in larger PCGO speckles. This

is done by evaluating the reduction of speckle intensity enhancement for different plasma lengths and comparing

it to the single-beamlet case. We show here that the three-beamlet configuration introduced in Chapter 2 allows

to reduce the speckle intensity enhancement as it was demonstrated in a homogeneous plasma. At the end of
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(a) (b)

Figure 4.1: a) Plasma density normalized to critical density nc and b) initial laser intensity distribution nor-

malized to the maximum laser intensity I0 as a function of spatial coordinates: the transverse coordinate is

normalized to the laser wavelength λ, whereas the longitudinal coordinate is normalized to the Rayleigh length

xR. Here, the plasma length L is 1500λ. In panel a) the laser propagates from the left.

this Chapter, we discuss the speckle statistics evolution of a multi-speckle beam initialized according to the

algorithm introduced in Chapter 3.

4.1 Self-focusing of a Gaussian speckle: simulation conditions and

results

In this section, we consider the self-focusing of beams having a Gaussian profile. In Sec. 4.1.1, we study the

case of a PCGO Gaussian beamlet propagating in inhomogeneous plasma, whereas is Sec. 4.1.2 a regularly

three-beamlet initialization of a PCGO speckle is considered with characteristics similar to a Gaussian beamlet.

In both cases, to approach real ICF conditions, the laser wavelength λ is set to 0.35 µm, and the beam waist is

w0 = 20λ ≈ 7 µm, which gives a Rayleigh length xR of around 500 µm. PCGO-created speckle with the three-

beamlet initialization of Sec. 4.1.2 has the same waist and longitudinal size. Thanks to the modular structure

of PCGO laser-plasma coupling, modules which account for laser-plasma interaction can be easily switched on

and off. This allows to clearly isolate and identify the importance of one phenomenon with respect to the others.

Therefore, for all the laser configurations, three sets of runs are considered: the first set of runs concerns laser

self-focusing only, then laser absorption is neglected and ponderomotive force module is on. In the second set

of runs, laser absorption is turned on and the ponderomotive force is switched off, whereas the third set of runs

includes ponderomotive force and laser absorption in collisional plasma. Plasma conditions are chosen as follows:

a plastic CH fully ionized plasma (Z = 3.5), with a constant initial temperature and an electron temperature Te

three times the ion temperature Ti, Te = 3Ti = 3 keV. The density in all the simulations varies from 0.25%nc

to 25%nc, where laser self-focusing may have repercussions on excitation of three-wave instabilities such as

120



SRS, TPD and SBS. However, in this preliminary study, competition between beam self-focusing and those

instabilities is ignored. In all the simulations, the laser enters the plasma profile from the lowest density region.

The spatial grid reproduces the typical resolutions considered in ICF hydrodynamics simulations, i.e. around

10λ. Duration of simulations is set to 100 ps, which is 6 times longer than the characteristic ion-acoustic time

tcs = w0/cs =17 ps.

An example of plasma density distribution ne0 normalized to the critical density nc is illustrated in Fig. 4.1a.

Figure 4.1b stands for a reference of how the laser intensity distribution looks like for all cases considered: the

initial intensity peak I0 is placed in the middle of plasma, i.e around ne0/nc = 0.125. The beam propagates from

the left to the right. In both pictures, the transverse spatial coordinate is normalized to the laser wavelength

λ, whereas the longitudinal coordinate is normalized to the Rayleigh length xR. These figures refer to the

case where the plasma size is equal to the beamlet Rayleigh length and stand for a reference for any other

simulations.

4.1.1 Self-focusing of a PCGO beamlet: effects of absorption and dependence on

the plasma length

We perform two-dimensional CHIC simulations for studying self-focusing of a PCGO beamlet in an inhomoge-

neous plasma in 2D planar geometry. Beamlet power P 2D and plasma sizes L are varied: P 2D = 0.5 TW; 1

TW; 5 TW, and L/xR = 0.2; 0.5; 1, where we have expressed the plasma length in xR units for convenience.

The on-axis intensity I0 related to the three powers can be recovered from Eq. (1.33) and from the value of

beamlet waist w0 = 7 µm: I0 = 0.5 PW/cm2; 1 PW/cm2 and 5 PW/cm2, respectively.

As mentioned above, the beamlet is always focused in the middle of the plasma simulation area, i.e. at

(x,y)=(0.1xR,25λ) for L/xR = 0.2, at (x,y)=(0.25xR,25λ) for L/xR = 0.5, and (x,y)=(0.5xR,25λ) for L/xR = 1,

generating the intensity distribution similar to the one displayed in Fig. 4.1b.

The Gaussian beamlet critical power for ponderomotive self-focusing P 2D
c is evaluated by using these plasma

and laser conditions in Eqs. (1.163) and (1.164): Figure 4.2a presents P 2D
c as a function of the plasma density

(solid black line). The red, blue the green lines refer to P 2D = 0.5 TW; 1 TW; 5 TW, respectively. As already

observed in Chapter 2, self-focusing threshold sensibly changes with respect to the density. For a low beam

power, the critical power is almost one order of magnitude larger than the beam power across almost the whole

density profile, and weak ponderomotive effects are expected. For a larger laser power, a ponderomotively-

driven intensity enhancement plays an important role in the beamlet-plasma coupling. The dashed black line

refers to the the critical power of thermal self-focusing P 2D
c,th =

√
π/2Ic,th0 w0h, being Ic,th0 computed from Eq.

(1.171). Thermal self-focusing arises from plasma heating when laser absorption is included in simulations:

in case of inhomogeneous plasma, the beamlet intensity absorption occurs near the beamlet intensity profile,

and especially along the beamlet axis. As a consequence, a local plasma heating develops in such a region. A

transverse temperature gradient then establishes, which stands for the source of beamlet thermal self-focusing.

Comparing ponderomotive and thermal self-focusing thresholds, it can be predicted that thermal self-focusing

would play a secondary role in the laser-plasma dynamics. Figure 4.2b shows the same thresholds for the

conditions corresponding to a 2 µm speckle in a 3D geometry for the same plasma conditions. The solid black
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lines refer to the critical power of ponderomotive self-focusing, whereas the dashed black lines refer to the critical

power of thermal self-focusing. By keeping the same intensity I0, the speckle powers in 3D reads P 3D = 300

MW (green line); 500 MW (blue line) and 3000 MW (red line). As already discussed in previous chapters and

as evident from comparing Fig. 4.2a to Fig. 4.2b, the ratio between PCGO speckle power and beamlet power

in 2D planar geometry is greater than the ratio between the real speckle power and its critical power. Therefore

stronger intensity enhancement than in optical speckles may occur in PCGO-CHIC runs. Moreover, also in the

3D case, ponderomotive effects are expected to dominate.

From analytic considerations presented in Sec. 1.3.2.1, the importance of plasma length on laser self-focusing

in collisionsless plasma can be estimated. Figure 4.3 presents the laser self-focusing length Lsf normalized to

the Rayleigh length as a function of the laser power p2c = P 2D/P 2D
c (bottom axis) and plasma density (upper

axis) in case of P 2D = 0.5 TW (green line) in panel a; P 2D = 1 TW (blue line) in panel b and P 2D = 5

TW (red line) in panel c and according to Eq. (1.166). The horizontal black lines refer to the plasma length

L/xR = 0.2; 0.5; 1. Ponderomotive force leads to laser self-focusing in plasma regions where Lsf/xR < L/xR

and for p2c > 1. According to Fig. 4.3a, for P 2D = 0.5 TW self-focusing develops only in long plasmas, and is

inducing a very weak intensity enhancement given that for Lsf/xR < 1, p2c ∼ 1. Laser power of P 2D = 1 TW

may induce laser self-focusing also at medium plasma length L/xR ∼ 0.5 as displayed by the blue line in Fig.

4.3b. At P 2D = 5 TW, the laser power is such that that the beamlet undergoes self-focusing for any plasma

length.

(a) (b)

Figure 4.2: Gaussian beam critical power in logarithmic scale as a function of plasma density for laser wavelength

λ = 0.35 µm in 2D (panel a) and 3D (panel b). In both panels, the solid black lines refer to the critical power of

ponderomotive self-focusing, whereas the dashed black lines refer to the critical power of thermal self-focusing.

The green, blue and red lines correspond to single-beamlet speckle power used in CHIC-PCGO simulations:

P 2D=0.5 TW; 1 TW and 5 TW, respectively, in panel a), and P 3D=300 MW; 500 MW and 3000 MW,

respectively, in panel b).
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(a) (b) (c)

Figure 4.3: Self-focusing length normalized to beam Rayleigh length as a function of Gaussian beam power

p2c = P 2D/P 2D
c (below x-axis) and as a function of the plasma density (upper x-axis) and in case of P 2D = 0.5

TW (green line) in panel a; P 2D = 1 TW (blue line) in panel b and P 2D = 5 TW (red line) in panel c and

according to Eq. (1.166).

PCGO simulations of beamlet propagation in an inhomogeneous nonbasorbing plasma qualitatively confirm

the theoretical estimations. This is shown in Fig. 4.4, which presents the beamlet intensity enhancement

Imax/I0 as a function of the plasma length L/xR. Since the beamlet dynamics does not reach a stationary

state and oscillations of the intensity appear, the values in the plots stand for the time-averaged intensity

enhancement. The dashed green line refers to P 2D = 0.5 TW, the dashed blue line refers to P 2D = 1 TW

whilst the dashed red line refers to P 2D = 5 TW. The error bars have been omitted for the sake of clarity.

For L/xR = 0.2, important intensity enhancement occurs only at a very high power, P 2D = 5 TW. For a

medium and long plasma length, the time-averaged intensity enhancement increases almost proportionally with

Figure 4.4: Time-averaged beamlet intensity enhancement Imax/I0 as a function of the plasma lengths L/xR.

The green line refers to P 2D = 0.5 TW, the blue line refers to P 2D = 1 TW, and the red line refers to P 2D = 5

TW. Ponderomotive self-focusing in a collisionless plasma.
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L/xR IB absorption (PCGO-CHIC) IB absorption (analytic)

0.2 5.5% 6%

0.5 13% 14%

1 23% 25%

Table 4.1: Fraction of power absorbed due to collisional damping. First column: plasma length L normalized

to Rayleigh range xR; second column: time-averaged absorption evaluated from CHIC; Third column: inverse

bremsstrahlung absorption calculated from Eq. (1.134)

the power, starting from around 2 for P 2D = 0.5 TW (green line) and reaching the highest values of 8-9 for

P 2D = 5 TW (red line). Consequently, in a collisionless plasma the beamlet intensity enhancement strongly

depends on the beamlet power but weakly varies with plasma length for L ≥ 0.5xR.

When considering beamlet propagation in inhomogeneous absorbing plasmas, another phenomenon may

influence the laser-plasma interaction: the thermal self-focusing, which is expected to be a second order effect

compared to the ponderomotive force (see Sec. 1.3.5 and Fig. 4.2a). To understand how thermal self-focusing

competes with laser absorption, we performed the same set of simulations by switching off the ponderomotive

force and allowing collisional absorption. The first quantity to consider is the fraction of laser power absorbed

due to inverse Bremsstrahlung, outlined in Table 4.1: the first column refers to the plasma length, the second

column refers to the time-averaged absorbed power evaluated from CHIC simulations, the third column refers to

the absorbed fraction of laser power calculated from the analytic expression Eq. (1.135). For PCGO evaluation,

the absorbed power has been time-averaged. As expected, at given density range, the larger is the plasma, the

higher is the energy loss by the beamlet. CHIC computations are in good agreement with analytic calculations,

differences come from the fact that the theoretical estimation considers a steady state beam, whereas in CHIC

Figure 4.5: Time-averaged beamlet intensity enhancement Imax/I0 as a function of the plasma lengths L/xR.

The green line refers to P 2D = 0.5 TW, the blue line refers to P 2D = 1 TW, and the red line refers to P 2D = 5

TW. Laser absorption is switched on and ponderomotive force is switched off.
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the absorbed power is time-integrated. Laser absorption quasi-linearly increases with the plasma length: this

brings to higher plasma heating and stronger temperature gradients in longer plasmas, inducing a greater

feedback on the beamlet propagation due to the thermal self-focusing.

Figure 4.5 shows the time-averaged intensity enhancement Imax/I0 when absorption is switched on and

ponderomotive force is switched off. The dotted green line refers to P 2D = 0.5 TW, the dotted blue line refers

to P 2D = 1 TW whilst the dotted red line refers to P 2D = 5 TW. The beamlet shows a less pronounced intensity

enhancement than in nonbasorbing plasmas where only ponderomotive effects are activated (see Fig. 4.4). A

weak influence on laser propagation only occurs in medium and long plasmas at moderate powers P 2D >1

TW, whereas it is practically absent at a short plasma. This confirms the fact that a higher absorption rate

corresponds to larger spatial gains of the thermal self-focusing. At moderate and high powers, the intensity

enhancement is very similar, and it reaches a maximum of 2 for P 2D ≥ 1 TW and L/xR ≥ 0.5, i.e. thermal

gradients become independent on plasma length and beamlet power. Above those values, the thermal-induced

intensity amplification and the intensity loss due to laser absorption balance themselves, and no important

variations are observable. Comparing to Figs. 4.4 and 4.6, we can notice that thermal self-focusing leads to

an intensity enhancement between three and four times less important than ponderomotive-driven intensity

enhancement, which means that thermal-induced effects play a secondary role in the beamlet dynamics.

This is confirmed in the last set of simulations, where we aim to highlight the role of thermal effects on

beamlet self-focusing for the same plasma and laser parameters. For this purpose, collisional absorption is

now allowed together with the ponderomotive force. Figure 4.6 shows the time-averaged beamlet intensity

enhancement Imax/I0 as a function of the speckle power for different plasma lengths. Overall, the nonlinear

effects introduced by the ponderomotive force stand for the dominant phenomenon, whereas the laser absorption

makes a small contribution to the beamlet dynamics given that it represents a linear process. As a consequence,

the intensity enhancement preserves the same tendency observed when absorption effects were neglected. More

Figure 4.6: Time-averaged beamlet intensity enhancement Imax/I0 as a function of plasma length L/xR. The

green lines refer to P 2D = 0.5 TW, the blue lines refer to P 2D = 1 TW, and the red lines refer to P 2D = 5

TW. Ponderomotive force is activated along with laser absorption.
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in details, at short plasma length, collisions do not introduce any additional effect to laser-plasma interaction.

This is due to the fact that the absorption is very low (see Table 4.1), and so is plasma heating. For medium and

long plasmas the beamlet intensity reaches a value 7 times larger than the initial intensity for P 2D = 5 TW in a

long plasma, which is around 25% less than in collisionless plasmas. This stands for a general trend in a collision

plasma: interplay between the laser absorption, thermal and ponderomotive self-focusing still lead to large

intensity amplifications, but reduced by a factor 15%-25% compared to the collisionless case in most situations.

The case of L/xR = 1 and P 2D = 0.5 TW represents the only exception: the intensity enhancement increases

by 30% with respect the collisionless case. Only in this case in fact, the thermal-induced beamlet self-focusing

overcomes the energy damped by inverse Bremsstrahlung and enforces the beamlet intensity amplification.

In conclusion, we have found that a relevant modification on beamlet propagation occurs only when the

plasma size is greater than half of the beamlet Rayleigh range. At a given plasma length, intensity enhancement

increases linearly with the beamlet power. Competition between collisional absorption and thermal self-focusing

leads to a net mitigation of ponderomotive effects by a factor 0.85-0.75 compared to the collisionless case

approximately. Such a behavior suggests that laser absorption is most important than thermal self-focusing in

the regime studied. Despite that, at the highest power, the beamlet intensity still attains values 7-8 times larger

than the initial intensity. These values are still two-times higher than the intensity amplification observed in a

homogeneous plasma because the critical power depends on the plasma density.

4.1.2 Self-focusing of a three-beamlet speckle: relaxation of self-focusing effects

We demonstrated that in a homogeneous plasma (ne0/nc = 0.1) the dynamics of a three-beamlet speckle retraces

the behavior of a Gaussian beam with a power twice lower. In order to confirm this observation in case of an

inhomogeneous absorbing plasma, we performed simulations of a three-beamlet speckle evolution under the

conditions similar to the single beamlet investigated in Sec. 4.1.1. Since in a short plasma and for a low power

the single beamlet study has evidenced weak ponderomotive effects, we consider here only cases of three-beamlet

speckle with powers P 2D = 1 TW and P 2D = 5 TW and for the plasma lengths L/xR = 0.5; 1. Laser-plasma

coupling conditions are varied by switching on and off the ponderomotive force and the collisional absorption

modules, as previously done for a single beamlet. The beamlets have the same width as the speckle, carry a third

of the speckle power each, and are focused in the plasma in such a way that the speckle has a shape similar to

the single beamlet intensity distribution shown in Fig. 4.1b: the longitudinal distance among the beamlets focal

points is 0.15xR, whereas the transverse distance is 0.5w0, similarly to the configuration studied in Chapter 2.

The beamlet focal spots are placed such that the speckle is focused in the middle of the plasma density range,

i.e. around 0.125nc. In case of L/xR = 0.5, the speckle focus spot is located at (x,y)=(0.125xR,25λ), whereas

for L/xR = 1, the speckle focus spot is located at (x,y)=(0.5xR,25λ).

In an inhomogeneous plasma, and especially when both PCGO modules operate, the three-beamlet speckle

dynamics is due to an entangled interplay among absorption, single beamlet ponderomotive effects, local plasma

response, shared plasma density perturbation and overall hydrodynamic evolution due to local beamlet-plasma

coupling. Leaving aside a detailed description of all these effects, we discuss the outcomes related to the intensity

enhancement only. The main goal is to prove that in a three-beamlet speckle, the ponderomotive effects relax
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Figure 4.7: Time-averaged beamlet intensity enhancement Imax/I0 as a function of plasma length L/xR for

P 2D = 5 TW. The red markers refer to the single beamlet, whereas the gray markers refer to the three-beamlet

speckle. Circles correspond to the case where the ponderomotive force is switched off and collisional absorption

is switched on, crosses refer to cases where only ponderomotive force module is switched on, whereas diamonds

refer to collisional absorption and ponderomotive force modules both switched on.

the intensity amplification with respect a single beamlet. We present the results concerning only for P 2D = 5

TW because at moderate powers the intensity enhancement presents a similar trend.

Figure 4.7 displayes the time-averaged three-beamlet speckle intensity enhancement Imax/I0 as a function

of plasma length L/xR for P 2D = 5 TW. The red markers refer to the single-beamlet, whereas the gray markers

refer to the three-beamlet speckle. Circles corresponds to the case where the ponderomotive force is switched

off and collisional absorption is switched on, crosses refer to cases where only ponderomotive force module is

switched on, whereas diamonds refer to cases were collisional absorption and ponderomotive force modules are

both switched on. When only absorption is activated, the fraction of power absorbed is close to the single

beamlet measurements (see Table 4.1) when considering the whole speckle. However, thermal self-focusing

appears mostly suppressed: similarly to the ponderomotive force, since the beamlets carry only a fraction of the

total speckle power, their power is below of thermal self-focusing threshold, and the overall self-focusing effect

is highly reduced.

When ponderomotive force operates, independently if laser absorption is considered or not, the three-beamlet

speckle exhibits an intensity enhancement weaker than in the single beamlet case: such a decrease ranges between

22% for the case L/xR = 1 and 53% for the case L/xR = 0.5. Averaging over all the simulations, self-focusing

effects are generally weaken of about 33% in the three-beamlet configuration with respect a single-beamlet

speckle. Compared to the homogeneous plasma case, the three-beamlet configuration seems less efficient in

decreasing intensity enhancement. This reduced efficiency in an inhomogeneous plasma is due to the fact that

the longitudinal positions of the beamlets focus spots are shifted, and that the strength of ponderomotive effects

depend on the plasma length. Therefore, they induce a ponderomotive pressure in different regions of the plasma

density profile: the amplitude of the pressure depends on the local plasma density, and each beamlet undergoes
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a self-focusing process of a different strength with respect the others. Then, as already discussed in Sec. 4.1.1 in

Fig. 4.3, at a given beamlet power, a larger intensity enhancement is observed in longer plasmas, and the overall

speckle intensity enhancement reduction is less important than in the single-beamlet case. For these reasons,

when both ponderomotive forces and absorption act on the speckle for L/xR = 0.5 the intensity enhancement

of the three-beamlet speckle is reduced by 44% compared to the a single-beamlet case, whereas this reduction

is less substantial in longer plasmas (L/xR = 1), where it is only 30%. Nevertheless, this decreasing is still

important when considering smoothing of self-focusing effects in two-dimensional PCGO speckles.

In summary, although the dynamics of three-beamlet speckle propagation in an inhomogeneous absorbing

plasma is more complicated than in a homogeneous plasma, regular beamlets initialization allows to control and

reduce the speckle intensity enhancement by a factor varying between 1/3 and 1/2 depending on the plasma

and speckle conditions. This corresponds to an increasing of the critical power of a three-beamlet speckle of

around 2-3, very close to the value of η = 2 found in Chapter 2 for homogeneous plasma and to the value desired

to attain the reduction of ponderomotive effects in 2D (see Sec. 1.3.2.1).

4.1.3 Self-focusing time-scales and comparison to parametric instabilities time-

scales

Before considering a multi-speckle beam and inter-speckle interaction, we discuss the potential impact of pon-

deromotive self-focusing on speckle-plasma coupling. Ponderomotive intensity enhancement has been considered

for long time-scales while neglecting laser-plasma instabilities (LPIs). In integrated situations, excitation of para-

metric instabilities at short time-scales would introduce further laser energy loss besides collisional absorption

because of light scattering or instability-induced pump depletion. These processes may occur on time-scales

one order of magnitude shorter than the time-scales considered all along this chapter, or similarly at intervals

several times smaller than the ion-acoustic transit time. This means that such instabilities generated before

ponderomotive force can strongly influence laser-plasma coupling, and then laser intensity depletion due to

saturation of LPIs may weaken the ponderomotive drive. Consequently, further reduction of the intensity en-

hancement can occur. One will account for all these phenomena when PCGO modules which account for LPIs

are added. Here, we perform a preliminary analysis which is related to the development of self-focusing effects

at time-scales comparable to LPIs time-scales, i.e for times around tsf/4, in order to understand how they may

influence LPIs at early time of laser-plasma interaction. In particular, our goal is to evidence a difference in

ponderomotive intensity enhancement for a single-beamlet and a three-beamlet configuration.

Figure 4.8 shows the intensity enhancement Imax/I0 as a function of plasma length L/xR for P 2D = 1 TW

(blue markers) and P 2D = 5 TW (red markers) at t = tsf/4. The circles refer to a single-beamlet, whereas the

crosses refer to a three-beamlet speckle. Here collisional absorption and ponderomotive force modules are both

turned on. For P 2D = 1 TW (blue markers), passing from a single-beamlet (circles) to a the three-beamlet

configuration (crosses) reduces the speckle intensity enhancement by a factor of 1.5-2, which is, consistent with

what is observed at longer time-scales. Considering a three-beamlet speckle as a valid model of realistic speckles

for what concerns ponderomotive effects, within this power interval the ponderomotive force is not expected to

have a role in LPIs excitation. For P 2D = 5 TW instead (red markers), the PCGO beamlet (circles) exhibits a
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Figure 4.8: Intensity enhancement Imax/I0 as a function of plasma length L/xR at t = tsf/4 for P 2D = 5 TW

(red markers) and P 2D = 1 TW (blue markers). The circles refer to single-beamlet, whereas the crosses refer

to three-beamlet speckle. Here collisional absorption and ponderomotive force modules are switched on.

very strong intensity enhancement, which may induce an overestimation of three-wave parametric instabilities

in the time-interval considered. In this case, the three-beamlet speckle initialization (crosses) significantly

moderates the development of ponderomotive self-focusing, which may influence LPIs excitation only in a long

plasma. The speckle intensity is amplified by a factor 2 only. This strong intensity enhancement suppression is

due to the increase of the speckle aspect ratio xRλ/πw
2
0 as already discussed in Chapter 2.

In summary, at a short time-scale, i.e. a few picoseconds, the three-beamlet configuration predicts an

increment of intensity enhancement only in a long plasma and for a high power. Concerning the conventional

ICF conditions, long scales are attained at the end of laser pulse-target interaction. Then one may expect that

self-focusing may appear later than other LPI processes thanks to the intensity speckle pattern which spatially

modulates the beam intensity. It has been proved that with such a technique, nonlinear effects induced by the

ponderomotive force can be avoided [115]. On the other hand, in the shock ignition scenario, the spike pulse

irradiates a capsule surrounded by a long plasma corona. In this context, understanding of competition between

the ponderomotive self-focusing development and excitation of parametric instabilities is very important. Indeed,

considering a full-scale laser-plasma simulations with LPIs modules switched on, one needs to take into account

that, since the ponderomotive self-focusing time-scale depends on the speckle width, in larger PCGO speckles

ponderomotive force develops over a time ten times larger than in realistic speckles.

4.2 Self-focusing of a multi-speckle beam: statistics modification in

inhomogeneous plasma and effects of absorption

In this section, we discuss self-focusing of a spatially modulated beam generated with the semi-deterministic

algorithm. The speckle pattern extends over a transverse width as in Chapter 3, i.e. wB = 350 µm. Preserving

also the same ratio between the speckle waist and laser wavelength, i.e. ws = 20λ = 7 µm, the algorithm
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(a) (b)

Figure 4.9: a) Initial laser intensity distribution in plasma normalized to the average beam intensity < I >.

b) Initial speckle abundance M as a function of speckle intensity Is normalized to the average beam intensity

< I > (solid line). The dashed line refers to the analytic expression (1.66). In panel a) laser propagates from

the left to the right.

produces around 40 speckles, each composed by three beamlets of the same width. As in the previous sections,

the plasma density spans in the interval [0.025nc,0.25nc]. Here we consider only long plasmas, i.e. L/xR = 1,

of a transverse size 3wB . The beam is focused in the middle of the plasma profile.

We consider two average beam intensities < I >: < I >= 1015 W/cm2 and < I >= 2.5× 1015 W/cm2. In

two-dimensional planar geometry, these values of beam intensity correspond to a beam power PB = 50 TW and

PB = 120 TW respectively. Spatial configuration of the speckle pattern along with the intensity distribution

normalized to the average beam intensity is shown in Fig. 4.9a. The solid black line in Fig. 4.9b represents

the initial speckles intensity abundance calculated in PCGO runs, and the analytic exponential distribution

(dashed line). As follows from the abundance function, the speckle intensities stretch from Is ≈ 1014 W/cm2 to

Is ≈ 3.5×1015 W/cm2 for the case < I >= 1015 W/cm2, and from Is ≈ 2.5×1014 W/cm2 to Is ≈ 1016 W/cm2

for the case < I >= 2.5×1015 W/cm2. The simulations last 100 ps, long enough to observe several inter-speckle

interactions.

Considering plasma temperature Te = 3Ti = 3 keV, and the critical power for a three-beamlet speckle twice

higher than for a Gaussian beam, one can evaluate variation of the critical power of a three-beamlet speckle as

a function of the plasma density: Figure 4.10a shows the speckle critical power as a function of plasma density

for < I >= 1015 W/cm2, whereas Fig. 4.10b displayes the same quantity for < I >= 2.5 × 1015 W/cm2. The

red, blue, green and gray lines correspond to speckles with an intensity Is = 0.5; 1; 2 and 5 times the average

beam intensity < I > (dotted lines in panel a, dashed lines in panel b). For < I >= 1015 W/cm2, considering

that the speckles have the intensity abundance distribution shown in Fig. 4.9b, around 60% of the speckles

have a power below the beam average intensity (dotted green line), whereas for the remaining 40% have a

higher power. By considering the results obtained in Secs. 4.1.1-4.1.2, self-focusing effects are expected to be
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Figure 4.10: Speckle critical power as a function of plasma density for a) < I >= 1015 W/cm2 and b) < I >=

2.5 × 1015 W/cm2. The red, blue, green and gray lines correspond to speckles with an intensity Is = 0.5; 1; 2

and 5 times the average beam intensity < I > (dotted lines in panel a, dashed lines in panel b).

important for the 40% of speckles at the most. Instead, for < I >= 2.5× 1015 W/cm2, both the distribution of

the speckle statistics displayed in Fig. 4.10b and Fig. 4.10b allow to predict that almost all the speckles have

power at least comparable to the speckle critical power, and a strong modification of speckle intensity statistics

due to ponderomotive effects may be expected.

A simulation set at each average laser intensity includes a run where only the ponderomotive force module

is activated, a run where only the collisional absorption operates and a run where both the ponderomotive force

and the collisional absorption modules are turned on. We characterize the strength of speckle self-focusing and

the importance of absorption and thermal effects by analyzing the modification of the initial speckle intensity

statistics. We have found out that when pondermotive effects are neglected, the intensity abundance of the

speckle for any power is weakly modified, underlining a weak contribution of thermal self-focusing to speckle

intensity enhancement. This is in agreement with the conclusion of Sec. 4.1.2 and for ICF direct-drive and shock

ignition conditions. Therefore, in the following we investigate the time-averaged speckle intensity abundance

of the speckles when only the ponderomotive force module operates and when collisional absorption module is

added.

Figure 4.11 illustrates the speckle intensity abundance M as a function of speckle intensity bins averaged

over all the simulation time: panel a shows the case where < I >= 1015 W/cm2, whereas panel b shows the

case where < I >= 2.5× 1015 W/cm2. In both panels, the black lines stand for the initial speckle abundance,

the green lines stand for time-averaged abundance in cases where laser absorption is disregarded, whereas the

red lines refer to the time-averaged abundance in cases where absorption is taken into account. In the first case

and for < I >= 1015 W/cm2 (green line in Fig. 4.11a), the abundance statistics may be fitted by two straight

lines: a line with a steep slope up to Is ∼ 2 − 3 < I > followed by a flat distribution up to Is ∼ 6 − 7 < I >,

which is the upper limit of the speckle intensity enhancement. This evidences a strong self-focusing which affects

speckles with intensity above 2< I >. When laser absorption is considered (red line in Fig. 4.11a), the first part
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Figure 4.11: Speckle intensity abundance M as a function of speckle intensity averaged over all the simulation

time for (a) < I >= 1015 W/cm2 and (b) < I >= 2.5 × 1015 W/cm2. In both panels, the black lines stand

for the initial speckle abundance, the green lines stand for time-averaged abundance in a collisionless plasma,

whereas the red lines refer to the time-averaged abundance in a collisional plasma.

of the distribution can be still represented by a steep straight line, but up to lower intensity compared to the

collisionless case, i.e. up to Is ∼ 1− 2 < I >. At higher intensities the probability distribution decreases much

slower but steeper than in case without absorption. Moreover, the upper cut-off has a lower value compared to

the case where absorption is neglected, reducing from 7 to 5 < I >, i.e. around 30%. Such a steeper probability

distribution and a smaller upper cut-off in the collisional case is consistent with the results obtained in Sec.

4.1.2.

For < I >= 2.5 × 1015 W/cm2, a stronger self-focusing develops in all speckles in case where the laser

absorption module is switched off (green line in Fig. 4.11b) and the situation very similar to what observed

in case of a homogeneous plasma: the speckle abundance can be interpolated by a power function with an

exponent of -3.1. In case when laser absorption operates, the abundance in the central part of the distribution

is slightly reduced, and the results may be approximated by a power law with an exponent of -3.3, with no

influence on the cut-off intensity compared to the situation where absorption is neglected.

In general then, in all cases and for such high intensities, the initial exponential shape of the speckle intensity

abundance is no longer preserved, as observed in homogeneous plasmas. Laser absorption slightly influences the

ponderomotive self-focusing, the probability distribution of speckles is modified for intensities above 1-2 < I >,

but its influence on speckles self-focusing reduces with the increase of the average beam intensity.

4.3 Conclusion

Laser propagation and self-focusing in an inhomogeneous and collisional plasma with different values of plasma

scale length and laser intensity have been explored. Three types of PCGO beams have been considered: first we
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investigated self-focusing of a single PCGO Gaussian beamlet in order to understand the role of plasma scale

length and plasma heating on beamlet intensity enhancement. In agreement with theoretical considerations, it

has been found that, at any beamlet intensity, beamlet self-focusing is more likely to develop when the plasma

length is at least half of the speckle Rayleigh length for intensity above 0.5×1015 W/cm2: below that, intensity

enhancement is at maximum 2. In case of a large scale length plasmas, beamlet intensity enhancement is

stronger. This means that for L/xR ≥ 0.5, ponderomotive effects no longer depend on plasma length. For

L/xR ≥ 0.5, the intensity enhancement increases proportionally to the beamlet power. In cases when laser

absorption is included, the same tendency as for the nonabsorbing case is observed. However, in this case a

competition between thermal self-focusing and absorption contributes in different way to the beamlet evolution:

temperature gradients tend to boost the intensity amplification, whereas inverse Bremsstrahlung decreases the

beamlet intensity. Overall, absorption dominates over thermal self-focusing, and the net effect is a decreasing

of intensity enhancement compared to the nonabsorbing case by 20% approximately.

Secondly, we have considered a three-beamlet regular initialization as studied in Chapter 2 to test if the

intensity enhancement reduction works in inhomogeneous absorbing plasmas similarly as in a homogeneous

plasma. Although the beamlet-plasma interaction presents a more complicate physics than in homogeneous

plasmas, the intensity enhancement of a three-beamlet speckle diminishes by 30%-50% for all cases when

compared to a single PCGO beamlet. This confirms the utility of modelling of real speckles by superposition of

three beamlets: in this sense, the self-focusing of a real few-microns speckle can be more correctly reproduced

by a PCGO three-beamlet speckle in plasmas with a linear density profile and for high intensity lasers. This

effect corresponds to the critical power of a three-beamlet speckle multiplied by a factor 2-3 compared to a

single Gaussian beamlet.

Third, we have studied how the plasma density ramp and absorption modify the speckle intensity distribution

of a multi-speckle pattern. Similarly to single speckle cases, collisions decrease the ponderomotive speckle self-

focusing, and the speckle abundance departs from its initial exponential shape: collisional absorption affects the

speckles self-focusing, by increasing the steepness of the probability distribution and introducing an intensity

cut-off about 30% smaller than in the collisionless case when < I >= 1015 W/cm2. At higher intensities, the

effect of collisions on the speckle intensity statistics is weaker, and the intensity cut-off at about 6-7 times the

beam average intensity does not depend on plasma conditions.
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Conclusion

The implementation of Paraxial Complex Geometrical Optics (PCGO)-based methods in radiation-hydrodynamics

codes may represent the key for describing in-line laser-plasma processes involved in inertial confinement fusion.

Although this approach has been validated for several laser-plasma interaction experiments, a comprehensive

treatment of ponderomotive effects has been left out so far. In a two-dimensional planar geometry, PCGO

speckles are larger than real speckles and the intensity amplification in PCGO speckles may be overestimated

by a factor 2 compared to the intensity enhancement of real speckles as it is demonstrated in Sec. 1.3.3. This

PhD thesis aimed to solve this shortcoming by:

1. Benchmarking the PCGO-based method in describing laser self-focusing in the most representative case: a

single PCGO Gaussian ray, called beamlet. This goal has been pursued by comparing PCGO-CHIC simu-

lations to results obtained with the paraxial wave-based code HARMONY in a homogeneous nonabsorbing

plasma.

2. Formulating a method which allows to control ponderomotive effects in large PCGO speckles in 2D planar

geometry. This was achieved by studying different configurations of superposed Gaussian beamlets. This

PCGO-like speckle configuration is referred to as multi-beamlet speckle. We identified the best beamlet

initial configuration which fulfills the purpose of speckle intensity enhancement reduction in a homogeneous

nonabsorbing plasma.

3. Adapting the best beamlets initialization geometry to a PCGO speckle pattern which mimics spatially

modulated laser beams. Such PCGO-like spatially modulated beams are called multi-speckle beams. We

have investigated the self-focusing of a multi-speckle beam in a homogeneous nonabsorbing plasma.

4. Extending to more realistic ICF situations all results described above by studying the self-focusing of

PCGO-like beams in a plasma with a linear density ramp and accounting for laser absorption and induced

thermal self-focusing. Three types of beams are considered: a single beamlet, a three-beamlet speckle and

a multi-speckle beam.

The conclusions of this thesis are presented below:
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1. Ponderomotive self-focusing of a single PCGO beamlet in a homogeneous non-

absorbing plasma

Self-focusing of a Gaussian beamlet in a homogeneous nonabsorbing plasma within the PCGO framework has

been investigated in the first part of Chapter 2. The accuracy in describing beamlet ponderomotive effects

is benchmarked against ponderomotive self-focusing of a Gaussian-shaped beam modelled with the paraxial

electromagnetic code HARMONY. This study is conducted for plasma density in the range ne0/nc = 0.01− 0.1

and beamlet power in the range p2d = P 2D/P 2D
c = 1 − 6 to explore different regimes of beamlet self-focusing.

We found that at any density and at a low power, i.e. p2d ≤ 2, PCGO beamlet dynamics retrieves the behavior

of a Gaussian beam as described by the electromagnetic code. Independently of the plasma density, analytic

theory and full-wave simulations predict filamentation instability for p2c ≥ 2.5 which cannot be observed in

PCGO-CHIC simulations. Despite that, PCGO reproduces the most important self-focusing characteristics of

the dominant filament. The beamlet intensity enhancement due to ponderomotive self-focusing weakly depends

on plasma density, however larger density perturbations are excited in a low density plasma, and their the

coupling to the intensity enhancement is described less accurately by the PCGO model. This strongly nonlinear

regime weakly influences the laser propagation in a realistic density profile as encountered in ICF corona: the

beamlet critical power is inversely proportional to the density, and ponderomotive self-focusing is most likely

to occur at higher densities.

2. Ponderomotive self-focusing of a PCGO multi-beamlet speckle in a homogeneous

nonabsorbing plasma

In the second part of Chapter 2, two different beamlets configurations have been considered in order to create

a PCGO speckle where ponderomotive effects are reduced compared to a single PCGO beamlet. The number

of superposed beamlets Nb is chosen between three and five. The first approach consists in a random beamlets

initialization. It was found that the ponderomotive drive is weakly affected and the speckle shape strongly

depends on the number of beamlets and initial conditions. It is concluded that this initialization does not

provide a control on the speckle self-focusing. The second configuration consists in a regularly-shaped speckle

with a predefined Gaussian intensity profile. With this deterministic method, the ponderomotive effects are

better controlled and the reduction of speckle self-focusing is attained by superposition of three and four PCGO

beamlets. The case Nb = 3 shows a suppression of ponderomotive effects, accounted for by rescaling the

three-beamlet speckle critical power by a factor η = 2. This suppression is explained by an increase of the

speckle aspect ratio by the same factor. Since larger PCGO speckles overestimate real speckles self-focusing

by approximately the same factor, the regular beamlets configuration represents the key to control intensity

amplification in PCGO-CHIC simulations: as found by theoretical evaluation, 2D PCGO speckles present an

intensity amplification twice larger than realistic speckles. The three-beamlet structure corrects this discrepancy,

given that it behaves as its critical power would be twice as higher as the 2D single-beamlet critical power.

In this way, the intensity enhancement of the three-beamlet speckles is two times weaker than the intensity

enhancement of a 2D Gaussian beamlet, and thus recovering the same behavior of a real speckle.
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3. Ponderomotive self-focusing of a PCGO multi-speckle in a homogeneous non-

absorbing plasma

Based on results obtained in Chapter 2, in Chapter 3 the semi-deterministic algorithm of speckles generation

has been introduced in PCGO-CHIC. It includes Gaussian-shaped speckles obtained by superposition of three

beamlets. This novel algorithm generates a speckle pattern with two main properties: i) Gaussian speckles

are regularly arranged at the far-field parallel to the beam propagation direction, and ii) the speckle intensity

probability obeys to a Gaussian statistics. Self-focusing of spatially modulated beams in a homogeneous plasma

is studied for average beam intensity < I > ranging from 0.2Isc to 5Isc , where Isc is the critical intensity of

a three-beamlet speckle. At a short time-scale, self-focusing proceeds independently in each speckle. Three-

beamlet speckles behave as Gaussian beamlets having a critical intensity twice higher than the Gaussian beam

critical intensity and a saturation of speckle intensity enhancement of very intense speckles is observed. For

long time-scales, interference of ion acoustic waves excited in neighbor speckles influences the speckle-plasma

coupling leading to plasma smoothing effects.

Two regimes of multi-speckle beam self-focusing can be identified: the first one concerns low average intensity

(< I > /Is) < 0.85−1.25, where weak ponderomotive effects develop and plasma smoothing dominates, leading

to a speckle statistics shape to the initial exponential form. Increasing the beam intensity induces an increase

of nonlinear effects, which gradually become dominant: for (< I > /Is) > 0.85 − 1.25, speckle self-focusing

dominates, plasma behaves chaotically suppressing plasma smoothing and the speckles intensity enhancement

is similar in all speckles. The intensity interval (< I > /Is) = 0.85 − 1.25 represents an indicative threshold

between the linear and nonlinear regime. At the highest intensity, the speckle abundance is better interpolated

by a power law. Such a feature qualitatively agrees with simulations performed with a paraxial code Harmony.

4. Laser self-focusing in an inhomogeneous plasma with PCGO-CHIC

In Chapter 4, ponderomotively-induced self-focusing and its interplay with plasma heating are analyzed in

an inhomogeneous and absorbing plasma with a linear density profile. We have considered different physical

laser-plasma situations by switching on and off the modules modelling of the ponderomotive force and laser

absorption, and by varying the plasma length. Beamlet self-focusing develops when plasma length is at least

half of the speckle Rayleigh length, for intensity above 0.5 × 1015 W/cm2. For plasma longer than half of the

Rayleigh length the beamlet self-focusing depends essentially on the laser intensity. A competition between

energy absorption and beamlet thermal self-focusing decreases a beamlet intensity enhancement by 20% in

collisional plasmas.

Considering the three-beamlet speckle configuration, we have shown that the intensity enhancement of a

three-beamlet speckle decreases by 30%-50% when compared to a single PCGO beamlet independently of plasma

conditions and speckle intensity, as already observed in homogeneous plasmas. This feature confirms the utility

of the three-beamlet speckle configuration for setting PCGO ponderomotive self-focusing at the same level of

real speckles even in inhomogeneous plasmas.

Analyzing the statistics of multi-speckle beams, we have found that also in linear plasma density profiles
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the speckle intensity statistics strongly is modified. Moreover, our simulations showed that laser absorption no

longer affects the speckle statistics at a very high beam intensity.

General conclusion and perspectives

The general conclusion can be summarized as following:

� PCGO-CHIC accuracy in modelling of ponderomotive self-focusing of Gaussian beams has been tested in

a homogeneous plasma for different plasma densities and beamlet powers. Good accuracy is obtained at

low powers and high densities. In other regimes, difference with wave-based simulations are within the

20%, which is still satisfactory;

� A method for controlling and reducing ponderomotive effects in PCGO speckles has been developed: a

superposition of three beamlets allows to reduce the PCGO speckle intensity enhancement by a factor

2. This is comparable with the factor needed for modelling of optical speckles with PCGO. This feature

leads to a better reproduction in our 2D planar geometry of nonlinear ponderomotive effects developing

in 3D geometry.

� The speckle pattern created within PCGO-CHIC has been modified in order to generate a speckle pattern

with a controlled intensity probability distribution and intensity enhancement. We found that speckle

self-focusing changes the intensity statistics to a power law at a high beam intensity in agreement with

the results obtained with paraxial codes. These results are extended to more realistic ICF conditions of

an inhomogeneous collisional plasma at laser intensities above 1015 W/cm2 at the wavelength of 0.35 µm..

The semi-deterministic method has shown its utility in controlling and reducing ponderomotively-driven

self-focusing in 2D PCGO speckles, improving the modelling of 3D effects in this simplified geometry. Further

developments may comprise the following steps:

1. The semi-deterministic method can be improved by imposing additional constraints on the designing of

spatially modulated beams such as a prescribed average intensity profile, a controlled beam contrast and

a random inter-speckle distance. These features allow more control on the speckle intensity enhancement

and may better describe temporal evolution of beam self-focusing.

2. The semi-deterministic method of initialization of speckle configuration and statistics may be extended

to the temporal domain: the beamlet initialization could be changed at the end of a certain interval,

corresponding to the speckle coherence time.

3. The PCGO approach can be applied to more realistic situations with non-stationary flowing plasmas:

coupling multi-beamlet speckle self-focusing with transverse plasma flows may induce a deformation of

the density channel and speckle bending.

4. Understanding the inter-play between multi-beamlet speckle self-focusing with other parametric instabil-

ities and nonlinear laser-plasma coupling is necessary to model of realistic ICF conditions. Among all
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issues, one can correlate the time-scale of speckle self-focusing to the reduced multi-scale model of SRS-

and TPD-induced hot electrons generation. These modifications will improve the laser-plasma coupling,

benefiting the overall predictability of PCGO-CHIC in analyzing full ICF processes.
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Appendix: Three-wave parametric

instabilities

In this appendix, we present the three-wave parametric instabilities occurring in ICF, notably stimulated Raman

and Brillouin scattering. Both instabilities compete with the speckle self-focusing all along the plasma profile

(SBS) or in certain part of it (SRS), and they are responsible for nonlinear effects in laser spike pulse-plasma

coupling in the shock ignition context.

Stimulated Raman scattering (SRS)

The stimulated Raman scattering (SRS) consists in an excitation and amplification of a high frequency electron

plasma wave, i.e. Langmuir wave (LW), along with a scattered electromagnetic wave. The three-wave matching

conditions read

ω = ωLW + ωR (1)

k = kLW + kR (2)

where the subscript R refers to the electromagnetic scattered wave. Equations (1)-(2) are coupled to the LW

and EM dispersion relations:

ω2
LW = ω2

pe + 3v2
Te|kLW |2; (3)

ω2
0 = ω2

pe + c2|k0|2; (4)

ω2
R = ω2

pe + c2|kR|2. (5)

Dependence on the plasma density through the term ωpe introduces a cut-off on the density at which the

instability can occur. We can find this cut-off by neglecting the thermal correction to the Langmuir wave, thus

assuming ωLW ∼ ωpe. Rewriting Eq. (5) as
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ω2
R

ω2
LW

= 1 +
c2|kR|2

ω2
LW

. (6)

one obtains that ωR ≥ ωLW . Thus, the minimum Raman frequency corresponds to ωR = ωLW , which implies

that ωR = ω/2. In terms of plasma densities, this last relation rewrites as nRc = nc/4, where we have used the

fact that ω2
0 ∝ nc. In inhomogeneous plasmas, the Raman instability can be excited for ne ≤ nc/4. The lower

density cut-off is determinated by the Landau damping of the Langmuir wave, measured by kLWλD. Since

λD ∝
√
ne
−1, the lower cut-off is typically around 10%-1%nc, depending on the plasma conditions.

In nonlinear regime, the saturation of the instability can be divided into two main categories [134–137]:

� fluid-like saturation: it consists in saturation of the Langmuir wave amplification due to wave-wave cou-

pling. One of the most common process is the Langmuir decay instability (LDI): increasing of the Lang-

muir wave amplitude induces a secondary parametric instability corresponding to excitation of a secondary

Langmuir wave and an ion acoustic wave. This process may generate a cascade of LW decays [138], so the

first LW loses its energy to the other daughter waves and the SRS process is saturated.

� kinetic-like saturation: it consists in saturation of the Langmuir wave amplification because of wave-

particle coupling. For example, an electron can be trapped inside the Langmuir wave potential, causing

a LW frequency detuning and thus destroying the three-wave resonance. The Langmuir wave frequency

shift ∆ωLW is proportional to the number of trapped electrons and the square root of the Langmuir wave

potential.

The fluid-like saturation mechanism takes place in the long wavelength limit when the Landau damping is

weak and the number of trapped particles is small, otherwise kinetic-like saturation prevails. It is considered

that fluid-like saturation occurs for kLWλD < 0.29, whereas kinetic-like saturation is more important above

that, when the Langmuir wave is affected by the Landau damping [139, 140]. Another important aspect of the

instability is its nature: as a three-wave instability, SRS can have an absolute or convective feature. The growth

rates and the thresholds for the both modes have been investigated in several publications. The main results of

the linear theory in inhomogeneous plasmas are:

� The absolute Raman instability is generated near the quarter critical density [141–143]. The growth rate

γabsSRS and instability excitation conditions evaluated with the linear theory [144, 145] in inhomogeneous

plasmas for a backscattered light read

γabsSRS =
uosc
c
ω

(uosc
c

)2 (
k0Lnc/4

)4/3
> 1 (7)

From the right expression in Eq. (7), one obtains the intensity threshold IabsSRS in PW/cm2

IabsSRS ≈
1000(

L2
nc/4

λ
)2/3

, (8)

where Lnc/4 is the density scale length at the quarter critical density in microns.
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� The convective Raman instability is excited below the quarter critical density [143] Despite backscattered

SRS often dominates, recent experiments have found a non negligible amount of side-scattered light having

a convective feature [87]. As an example, the growth rate γconvSRS and the intensity threshold Ithrconv evaluated

with the linear theory [87,144] in inhomogenoeus plasmas for convective backscattered light read:

γconvSRS =
uosc
c

(ωωpe)
1/2

(uosc
c

)2

k0L > 1, (9)

It is convenient to express the intensity threshold in terms of practical units:

IconvSRS ≈
400

Lλ
, (10)

where the intensity threshold IconvSRS is in PW/cm2, and L is the density scale length in microns at the

corresponding point of the density profile where the instability is excited.

Scattered Raman light is detected by measuring the electromagnetic spectrum of the light coming out from

the target. The SRS wavelength is related to the plasma density where the scattered wave has been generated

by the relation [87]

λSRS = λ

[
1−

√
ne
nc

(1 + 3k2
LWλ

2
D)

]−1

. (11)

Stimulated Brillouin scattering (SBS)

The stimulated Brillouin scattering (SBS) involves excitation and amplification of scattered electromagnetic

waves coupled to a low-frequency ion acoustic wave (IAW). The three-wave matching conditions read

ω = ωIAW + ωB (12)

k = kIAW + kB (13)

where the subscript B refers to the electromagnetic scattered wave usually called “Brillouin” wave. Since

ωIAW << ωB , ω ≈ ωB . The previous system must be coupled to Eq. (4) plus the following dispersion relations

for the Brillouin and IAWs:

ω2
B = ω2

pe + c2|kB |2; (14)

ω2
IAW = k2

sc
2
s

(
1

1 + k2
sλ

2
D

+
3Ti
ZTe

)
− kS ·U (15)

where the IAW frequency has been evaluated in the laboratory frame, and the term kS ·U is related to the

plasma flow with macroscopic fluid velocity U. As a consequence of this last term, the SBS wave may be

Doppler-shifted due to the hydrodynamic flow. Another consequence of Eqs. (12)-(15) is that the SBS cut-off is
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at the critical density nc, while the lower cut-off is related to the Landau damping by the condition 2k0λDi > 1.

Thus the instability can occur all along the plasma profile where IAWs are not strongly affected by the Landau

damping.

One can distringuish two main categories of SBS saturation [34]:

� fluid-like saturation: as in the SRS case, they are due to wave-wave interaction: a series of IAW harmonics

are generated from the fundamental frequency ωIAW . This harmonics generation dissipates the energy of

the fundamental harmonic, saturating the instability;

� kinetic-like saturation: as in SRS kinetic-like saturation, the ions can be trapped inside the IAW potential.

Thus, the IAW frequency is detuned destroying the SBS three-wave resonance.

Similarly to SRS, the fluid-like saturation mechanisms operates when the Landau damping is not so strong,

otherwise kinetic-like saturation prevails. In terms of growth rate and intensity threshold in inhomogeneous

plasmas, we consider here a backscattered SBS in range of laser intensities smaller than the ion acoustic fre-

quency, the so-called weak coupling regime. In this regime, the SBS has a convective behavior, and its the

growth rate γconSBS evaluated from the linear theory [87] and in inhomogeneous plasmas reads

γconvSBS =
uosc

(2ccs)1/2
ωpi (16)

The intensity threshold depends on the spatial density scale length of the region where the instability develops

and on the scale length of the velocity gradient LV = cs|dv/dx| and reads

(
uosc
vte

)2

>
16

kLV

nc
ne

+
8

kL
(17)

Since the effects of the flow dominates the SBS threshold, the first term on the right hand side is more important.

Expressing Eq. (17) in practical units, one obtains:

IconvSBS ≈ 7
TkeV
LV λ

nc
ne
, (18)

where the intensity threshold IconvSBS is in PW/cm2.

SBS is detected by measuring the spectrum of the light coming out from the target and with frequency close

to ω, a shift in the spectrum of around 10−3 ω represents the SBS signature.
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Résumé de la thèse en français: Modélisation de l’auto-focalisation

pondéromotrice d’une impulsion laser dans un plasma avec un code

hydrodynamique dans le cadre de la fusion par confinement inertiel

en attaque directe

L’auto-focalisation laser due à la force pondéromotrice constitue un obstacle au succès du programme de fusion

par confinement inertiel (FCI) étant donné qu’elle augmente localement l’intensité laser. Cette amplification

d’intensité a deux effets néfastes: i) dégradation de l’uniformité de l’onde de choc lancée dans la cible, et

ii) augmentation de la probabilité d’excitation des instabilités paramétriques. Bien que plusieurs techniques

optiques aient été mises en œuvre pour atténuer les effets pondéromoteurs, elles restent une préoccupation

en cas de croisement de faisceaux ou de l’utilisation des faisceaux laser avec une intensité élevée comme dans

l’allumage par choc. Un module basé sur le Paraxial Complex Geometrical Optics (PCGO) a été implémenté

dans le code hydrodynamique CHIC en géométrie plane bidimensionnelle : une telle méthode est une version

améliorée de la technique standard du Ray-Tracing. PCGO tient compte de l’interaction non linéaire laser-

plasma telle que la force pondéromotrice et la génération et la propagation d’électrons chauds, généralement

négligés dans les simulations hydrodynamiques. Cette approche est également utilisée pour créer des faisceaux

laser spatialement modulés par superposition de faisceaux gaussiens : l’enveloppe d’intensité de ces faisceaux

génère des fluctuations d’intensité (“ speckles ”) dans le champ lointain. Bien que cette méthode basée sur PCGO

ait amélioré la précision des simulations CHIC, la superposition de faisceaux PCGO produit des speckles laser

plus grands et plus longs que les speckles réelles, et par conséquent leur auto-focalisation peut être surestimée.

Dans cette thèse, nous développons une méthode pour décrire et contrôler l’auto-focalisation pondéromotrice

des speckles dans un plasma stationnaire en utilisant CHIC dans le formalisme PCGO. Dans le chapitre 1, nous

présentons l’état de l’art de la modélisation de la propagation laser, de la théorie du plasma et de l’interaction

laser-plasma. De plus, nous décrivons brièvement les outils numériques utilisés dans les études ICF.

Dans le chapitre 2, nous considérons l’auto-focalisation d’un seul faisceau gaussien, appelé beamlet, en le

comparant aux résultats obtenus par le code électromagnétique Harmony. Nous avons constaté que le modèle

PCGO décrit correctement l’autofocalisation des faisceaux dans un plasma homogène non absorbant pour des

puissances allant jusqu’à quatre fois la puissance critique. Dans la même gamme de densité de plasma et

de puissance de faisceau, nous étudions l’autofocalisation d’un speckle gaussien généré par la superposition de

quelques beamlets, appelés speckle multi-beamlet. Ce speckle représente le prototype de tous les speckles générés

par PCGO. L’augmentation de l’intensité induite par la force pondéromotrice est diminuée par rapport au cas

du beamlet unique. Cette réduction peut être quantifiée en fonction du nombre de faisceaux superposés et en

considérant deux stratégies pour la mise en forme de speckle multi-faisceaux: aléatoire et déterministe. Cette

dernière configuration permet de mieux contrôler les effets pondéromoteurs lorsque trois beamlets composent le

speckle.

Dans le chapitre 3, la méthode déterministe a été utilisée pour créer un faisceau multi-speckle, qui représente

la version PCGO d’un faisceau modulé spatialement. Nous étudions l’auto-focalisation d’un tel faisceau dans
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un plasma homogène non absorbant et nous montrons que les PCGO multi-beamlet speckle tiennent en compte

des effets pondéromoteurs pour différentes intensités laser: cette méthode décrit la modification des statistiques

d’intensité de speckle induite par l’auto-focalisation d’un speckle et l’interaction inter-speckle en accord avec ce

qui a été observé dans des simulations électromagnétiques.

Dans le chapitre 4, tous ces résultats sont étendus aux plasmas absorbants dont la densité présente un

profil linéaire. L’autofocalisation de différents faisceaux PCGO est étudiée ici pour des différentes longueurs de

plasma, et l’effet de l’absorption laser est discuté.

Nous reprenons ici les principaux résultats obtenus dans cette thèse, illustrés dans les chapitres 2, 3 et 4.

� Chapitre 2

L’absorption laser et le chauffage plasma ont été désactivés. De cette façon, les instabilités paramétriques,

la génération d’électrons chauds et l’autofocalisation thermique sont exclus et la dynamique du plasma

est uniquement dominée par la force pondéromotrice. Les paramètres d’entrée définis pour CHIC et

HARMONY sont tels qu’ils génèrent un faisceau gaussien avec une taille initiale w0 ∼ 20λ.

Nous avons trouvé qu’à n’importe quelle densité et à faible puissance la dynamique PCGO reproduit

le comportement d’un faisceau gaussien tel que décrit par Harmony, surtout en terme de surintensité.

Indépendamment de la densité du plasma, le modèle theorique prédit une instabilité de filamentation

pour p2c ≥ 2, 5 qui ne peut pas être observée dans les simulations PCGO-CHIC. Malgré cela, PCGO

reproduit les caractéristiques d’autofocalisation les plus importantes du filament dominant.

Dans la deuxième partie du chapitre 2, deux configurations différentes ont été envisagées afin de créer un

speckle PCGO où les effets pondéromoteurs sont réduits par rapport à un seul beamlet PCGO. Le nombre

de faisceaux superposés Nb est choisi entre trois et cinq. La première approche consiste en une initialisation

aléatoire des beamlets. Nous avons constaté que les effets pondéromoteurs sont faiblement affecté dans

ce cadre car la forme du speckle ne peut être controllée. En effet, elle dépend fortement du nombre de

faisceaux et des conditions initiales. On conclut que cette initialisation ne fournit pas de contrôle sur

l’auto-focalisation du speckle. La deuxième configuration consiste en un speckle de forme régulière avec

un profil d’intensité gaussien prédéfini. Avec cette méthode déterministe, les effets pondéromoteurs sont

mieux contrôlés et la réduction de l’autofocalisation du speckle est atteinte par superposition de trois et

quatre faisceaux PCGO. Le cas Nb = 3 montre que la suppression des effets pondéromoteurs est diminuée,

ce qui est expliqué par le redimensionnement de la puissance critique du speckle à trois faisceaux par un

facteur 2. Cette suppression s’explique par l’augmentation du rapport d’aspect ratio du même facteur.

Étant donné que les plus gros speckle de PCGO surestiment les taches réelles d’environ le même facteur, la

configuration déterministe représente la clé pour contrôler l’amplification de l’intensité des speckles réels

dans PCGO-CHIC.

� Chapitre 3

Dans ce chapitre, nous décrivons une nouvelle méthode pour générer un distribution de speckles dans

PCGO-CHIC sur la base des résultats obtenus dans le chapitre 2. Dans cette nouvelle approche, les

speckles sont créées par superposition régulière de trois faisceaux gaussiens dont l’intensité est choisie de
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telle sorte que la distribution d’intensité des speckles obéit à une loi exponentielle. Une telle méthode est

appelée algorithme semi-déterministe, contrairement à la méthode PCGO standard appelée algorithme

aléatoire. Nous montrons ici que l’approche semi-déterministe améliore la description du couplage laser-

plasma dans les régimes où se développent des effets pondéromoteurs, permettant de traiter correctement

l’amplification des effets pondéromoteurs dans de plus grands speckles 2D par rapport aux vrais speck-

les. Le nouvel algorithme de création d’un speckle composé de trois faisceaux fonctionne comme suit:

premièrement, le nombre de speckles Ns et la largeur de faisceau wB sont fixés en entrée. Ensuite, la

largeur du speckle ws est calculée. En règle générale, le nombre de speckles PCGO est compris entre 15

et 60 en fonction de la longuer d’onde.

Le comportement de la distribution des speckles est exploré en considérant différentes intensités laser

moyennes. Pour les speckles très intenses, un tel écart par rapport aux statistiques exponentielles stan-

dard, qui caractérise les speckles gaussiens, a déjà été rapporté dans la littérature, où des simulations

HARMONY d’interaction plasma-speckles ont été effectuées. Ces simulations ont montré que la queue

de distribution des speckles, c’est-à-dire la distribution d’intensité des speckles les plus intenses, s’écarte

de la forme exponentielle initiale, et une loi de puissance décrit mieux la relation entre l’abondance et

l’intensité des speckles. Étant donné que les speckles PCGO semi-déterministes sont conçues comme des

faisceaux gaussiens avec une distribution d’intensité prescrite, nos résultats reproduisent qualitativement

la modification de la queue de distribution de speckle observée dans les simulations électromagnétiques

HARMONY.

� Chapitre 4

Dans ce chapitre, l’autofocalisation laser dans un plasma inhomogène et les intensités d’intérêt pour l’ICF

sont étudiées par es simulations hydrodynamiques PCGO-CHIC. Le but de cette étude est d’étendre les

résultats obtenus dans les chapitres précédents à des conditions plus pertinentes pour l’ICF. En particulier,

nous étudions les effets pondéromoteurs dans les plasmas avec des profils linéaires de densité et pour

des puissances lasers qui sont relèvent de celles utilisées en FCI. Nous cherchons à comprendre le rôle

de l’absorption du plasma sur l’autofocalisation du faisceau et à discuter de la dépendance des effets

pondéromoteurs avec la taille du plasma. Les valeurs des longueurs de plasma et des intensités de faisceau

sont cohérentes avec les longueurs d’échelle de plasma et les intensités laser des schémas conventionnels de

FCI et d’allumage par choc. Grâce à la structure modulaire du couplage laser-plasma PCGO, les modules

qui prennent en compte l’interaction laser-plasma peuvent être facilement allumés et éteints. Cela permet

d’isoler et d’identifier clairement l’importance d’un phénomène par rapport aux autres, notamment les

effets ponderomoteur et d’absorption laser. L’intervalle de densité fixé dans toutes les simulations est

compris entre 0,25%nc et 25%nc. Nous considerons l’autofocalisation d’un beamlet unique, d’un speckle

composé de 3 faisceaux et d’un multi-speckle beam. Pour le premier type de faisceau PCGO, en accord

avec les considérations théoriques, nous constatons que son auto-focalisation est plus susceptible de se

développer lorsque la longueur du plasma est au moins la moitié de la longueur de Rayleigh du speckle

et pour une intensité supérieure à 0,5 ×1015 W/cm2. Lorsque nous considérons l’autofocalisation d’un
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speckle à trois beamlets, la sur-intensité d’un speckle est plus basse d’un facteur entre 1.5 et 2 par rapport

à la surintensité d’un beamlet unique. Cela montre que la puissance critique est à-peu-prés 1.5-2 fois plus

élevé que la puissance critique d’un beamlet, ce qui confirme les conclusions trouvées dans le chapitre 2

pour un plasma homogène.

� Conclusions et perspectives

La conclusion générale peut être résumée comme suit:

– La précision PCGO-CHIC pour la modélisation de l’autofocalisation pondéromotrice des faisceaux

gaussiens a été testée dans un plasma homogène pour différentes densités de plasma et différentes

puissances de faisceaux. Des résultats très satisfaisants sont obtenus à faibles puissances et hautes

densités. Dans les autres régimes, la différence avec les simulations electromagnetiques se situe dans

les 20%, ce qui est satisfaisant pour notre objectif;

– Une méthode pour contrôler et réduire les effets pondéromoteurs dans les plus speckles PCGO qui

sont plus grands par rapport aux speckles réelles: la superposition de trois beamlets permet de

réduire l’augmentation d’intensité de la speckle PCGO d’un facteur 2, ce qui est comparable à la

surestimation constatée lors de la modélisation des speckles optiques en utilisant speckles PCGO;

– La distribution de speckles créée dans PCGO-CHIC a été modifiéée afin de générer une nouvelle

configuration où que la statistique d’intensité de speckle satisfait a priori à la loi theorique expo-

nentielle. Plusieurs effets liés à la pondération sont étudiés au sein de cette méthode dans des

plasmas homogènes: nous avons notamment constaté que les statistiques d’intensité tendent vers des

statistiques d’intensité de speckle non exponentielles pour une intensité de faisceau très élevée. Les

résultats trouvés dans la littérature confirment également cette tendance.

– Tous les résultats précédents sont généralisés et confirmés dans des conditions de plasma plus réalistes,

c’est-à-dire dans des profils de plasma linéaires absorbants, et des intensités laser plus élevées, c’est-

à-dire au-dessus de 1015 W/cm2. Dans cette dernière partie, nous avons également considéré l’effet

de l’absorption laser: comme prévu, ce phénomène a tendance à réduire l’amplification d’intensité

induite par la pondéromotrice.

Une amélioration supplémentaire comprendrait les étapes suivantes:

1. La méthode semi-déterministe peut être améliorée en imposant d’autres contraintes à la conception

de faisceaux modulés spatialement. Les exigences de configuration spatiale peuvent inclure le profil

d’intensité transversale, un certain nombre de faisceaux par speckles, un contraste de faisceau contrôlé

et modifier la distance inter-speckle de façon aléatoire.

2. La méthode d’initialisation de la configuration et des statistiques du speckle peut être étendue au

domaine temporel. afin de reproduire la méthode de lissage temporelle.

3. L’approche PCGO peut être appliqué à des situations plus réalistes avec des plasmas non station-

naires, et le bending du faisceau et sa connexion aux effets pondéromoteurs peut être étudiées au

sein de PCGO.
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4. Finalement, on devrait coupler tous les effets précédemment étudiés ici aux instabilités paramétriques

pour se rapprocher des conditions réalistes de la FCI.

147



Bibliography

[1] Statistical Review of World Energy, Workbook (xlsx), London, (2016), https://www.eia.gov/

[2] https://www.euronuclear.org/glossary/fuel-comparison/;

https://www.ocean.washington.edu/courses/envir215/energynumbers.pdf

[3] D. Meade, “50 years of fusion research”, Nucl. Fusion 50 014004 (2010) . doi:

doi10.1088/0029-5515/50/1/014004;

[4] S. Pfalzner, “An Introduction to Inertial Confinement Fusion”, CRC Press (2006).

[5] K. S. Krane, “Introductory Nuclear Physics”, John Wiley and Sons (1955).
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