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Abstract

Current data and forecasts show that the global population is ageing. As this elderly pop-
ulation is prone to frailty and potentially fatal falls, the growing demand for robust moni-
toring systems has led to a vast research upon the topic. This thesis addresses the subject
of event detection in temporal signals for elderly monitoring by the use of an innova-
tive pressure sensor installed directly under the flooring. The objective of this work is to
present contributions that aim at building a reliable monitoring system in the context of
an industrial application, which brings several challenges.
As many proposed systems are looking for the highest performances, pragmatic criteria
are often overlooked. We first show that most systems do not meet main practical issues
and that floor systems constitute promising candidates for monitoring tasks.
Since complex signals require sophisticated models, we propose a random-forest-based
approach that detects falls with state-of-the-art accuracy and meets hardware constraints
with a feature selection procedure. Themodel performance is improved with data augmen-
tation and time aggregation of the random forest outputs.
Then, we address the issue of confronting our model to the real world with transfer learn-
ingmethods that act on the coremodel of random forests, i.e. decision trees. Thesemethods
are adaptations of seminal work and are designed to tackle the class imbalance problem.
Methods are tested on several data sets, showing interesting potential continuation, and a
Python implementation is made available for reproducibility.
Finally, motivated by the issue of elderly monitoring while dealing with a single one-
dimensional signal for a large area, we propose to distinguish elderly persons fromyounger
individuals with a classification model that uses a neural network and convolutional dic-
tionary learning. Since signals are mainly made of walks and that labelled data is scarce,
we develop custom training procedures so that the first part of the model focuses attention
on walk signals, and the last part of the model is trained with all previous layers frozen.
This novel approach to gait classification allows to isolate elderly-generated signals with
very high accuracy.
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1 Contexte de la thèse

Cette thèse de doctorat s’inscrit dans le cadre de la détection d’événement pour des sys-
tèmes de suivi de personnes. Ce travail a été réalisé dans le cadre du dispositif CIFRE
(Convention Individuelle de Formation par la Recherche) de l’ANRT (Agence Nationale
de la Recherche et de la Technologie) et a été sponsorisé par l’entreprise Tarkett, qui est
une entreprise française multinationale dont l’activité principale est la production de re-
vêtements de sol. En quelques mots, Tarkett regroupe dans le monde 12 500 salariés, 33
sites industriels et vend environ 1,3 million de mètres carrés de revêtement par jour, et
ce pour divers secteurs comme les hôpitaux, écoles, logements, hôtels, bureaux, magasins
et complexes sportifs. Tarkett a lancé en 2015 un projet innovant appelé Floor In Motion,
dont le but premier est de concevoir un système de suivi de personnes âgées basé sur un
capteur au sol. Ce système est conçu en premier lieu pour être installé dans des maisons
de retraites, avec un potentiel développement vers l’utilisation dans les foyers particuliers.
Avant de proposer du suivi général d’activité, la première application visée fut la détection
de chute. Dans ce contexte, l’objectif principal de cette thèse est d’étudier et de propo-
ser des solutions de détection d’événements pour le suivi de personnes âgées à partir de
signaux temporels issus de capteurs au sol.
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(a) Pyramide des âges mondiale (b) Taux de mortalité dû à la chute aux
États-Unis en 2018

Figure 0.1 : Prévisions de l’âge de la population mondial (a) et taux de mortalité des chutes
selon l’âge aux États-Unis. Sources : (a) United Nations, Department of Economic and So-
cial Affairs, Population Division [182], (b) Centers for Disease Control and Prevention,
Injury Center, Injury Prevention & Control [36].

2 Motivations

2.1 Le suivi de personnes fragiles

Fragilité et chutes dans une population vieillissante. Selon l’Organisation Mon-
diale de la Santé, la part de population mondiale dont l’âge dépasse 60 ans est celle qui
grossit le plus vite [196]. Si l’on se penche sur les prévisions (Figure 0.1-a), on constate
que la pyramide des âges voit sa forme actuellement triangulaire évoluer vers une forme
cloche, montrant ainsi l’augmentation significative de la population âgée dans le monde.
Cette population vieillissante est sujette à la fragilité, une notion qui ses dernières années
a reçu une attention accrue de la part de la communauté médicale [124]. La fragilité est
généralement définie comme l’accumulation de signaux de détérioration significative de la
santé chez les personnes âgées, et Fried et al. [60] la définissent plus précisément comme
un syndrome clinique, dans lequel au moins trois critères sont présents parmi les suivants :
la perte de poids involontaire, l’épuisement, la faible force de préhension, une vitesse de
marche lente et une faible activité physique. Parmi d’autres facteurs, la fragilité contribue
à augmenter le risque de chute. La fragilité augmentant avec l’âge, les personnes âgées
deviennent alors particulièrement sujettes aux chutes – plus de 30% des personnes de plus
de 60 ans chutent au moins une fois par an [196]. Bien que peu dangereuse pour une jeune
personne en bonne santé, une chute peut en revanche entraîner de sérieuses blessures à
une personne âgée, et peut parfois même être fatale. Les chiffres montrent en effet que le
nombre de chutes fatales croît de manière exponentielle avec l’âge (Figure 0.1-b).

Conséquences de la chute. Les répercussions de la chute chez les personnes âgées
sont multiples [36]. En premier lieu, une chute peut évidemment avoir des conséquences
physiques directes, la plupart d’entre elles étant des fractures, le plus souvent du poignet
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et de la hanche, ou des blessures à la tête, ces dernières pouvant entraîner des lésions
cérébrales. Outre la douleur et l’inconfort, les blessures physiques réduisent la mobilité,
parfois pendant longtemps ou même de façon irréversible, ce qui entraîne une plus grande
dépendance.
En outre, une chute, même sans blessure physique grave, peut déclencher chez la personne
une peur de tomber à nouveau. Cette peur entraîne alors une réduction des interactions et
des activités sociales, ce qui augmente considérablement le niveau de fragilité, et donc les
chances de tomber à nouveau. Le manque d’exercice est particulièrement préjudiciable, car
il a été démontré que l’activité physique réduit la faiblesse musculaire, augmente la mobi-
lité, améliore la santé neuronale, limite la fragilité et réduit le risque global de décès [117].
Enfin, les chutes ont également un impact économique. Ces répercussions, qu’elles soient
directes (médicaments, rééducation…) ou indirectes (pertes de productivité de la société),
augmentent dans le monde entier [196].

Le suivi de personne fragile. Un système de surveillance peut être défini comme un
dispositif d’assistance dont l’objectif principal est de donner un aperçu de l’activité d’une
personne à des fins de santé, soit sous forme de tâches générales telles que des indicateurs
d’activité, soit sous forme de tâches plus spécifiques telles que les alertes en cas de situa-
tions dangereuses. Les systèmes de surveillance des soins aux personnes âgées peuvent
servir deux objectifs principaux, à savoir estimer le niveau de fragilité et alerter lorsque la
personne est en danger, notamment en cas de chute.
La détection précoce de la fragilité est considérée comme étant d’un intérêt majeur par
la communauté médicale à des fins de prévention, et il a été démontré que les stratégies
thérapeutiques ciblées réduisent considérablement les conséquences de la fragilité [185].
En outre, il a été démontré que la peur de tomber est susceptible d’être diminuée par la
conscience d’être surveillé par un détecteur de chute robuste [33]. Pour ces raisons, la
surveillance de l’activité physique des personnes âgées dans les maisons de retraite est
essentielle, et d’autant plus car cela permet de concentrer les ressources sur les personnes
particulièrement vulnérables à la fragilité et aux chutes.
L’autre élément clé des systèmes de surveillance est le temps de réaction de l’aide exté-
rieure (soignants ou entourage) après une chute. Non seulement un détecteur de chute
efficace peut empêcher que des blessures graves ne conduisent à la mort, mais il limite éga-
lement le temps qu’une personne peut passer sur le sol après une chute. En effet, même
non blessée, environ une personne âgée sur deux est incapable de se relever sans assis-
tance [112]. Il a été démontré qu’une longue période au sol (définie par Lord et al. [112]
comme plus d’une heure passée sur le sol après une chute) peut entraîner de graves com-
plications telles que l’hypothermie ou la déshydratation, mais est également associée à une
fragilité accrue puisqu’en effet, la moitié de ceux qui subissent une longue période au sol
meurent dans les six mois qui suivent l’accident.

Mise en place d’un système de suivi fiable. Au cours des vingt dernières années, on
constate un intérêt croissant pour le développement de systèmes intelligents permettant de
suivre les personnes fragiles dans leur vie quotidienne, les systèmes de détection des chutes
représentant à eux seuls une littérature vaste et variée. Dans ce contexte, Tarkett vise à
proposer un système basé sur un capteur sol pouvant répondre à plusieurs contraintes
pratiques lorsqu’il s’agit d’une utilisation en conditions réelles [161]. Ces contraintes com-
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prennent notamment le caractère intrusif de ces systèmes de surveillance, qui est défini à
la fois comme la capacité à être caché au patient et le respect de sa vie privée. Plusieurs
autres critères peuvent être définis en ce qui concerne les utilisations à grande échelle et
les aspects pratiques. Cela soulève une première question qui est de savoir comment situer
le système de Tarkett dans cette offre pléthorique de systèmes de surveillance. La Figure
0.2 présente une illustration d’un système de surveillance au sol.

Figure 0.2 : Schéma d’un système de suivi de personne fragile basé sur un capteur sol.

2.2 Traitement des séries temporelles pour des applications terrain

Comprendre les séries temporelles. L’utilisation de systèmes de surveillance entraîne
le traitement d’une grande quantité de signaux temporels. Demanière générale, on constate
ces dernières années une prolifération de systèmes basés sur des capteurs à des fins médi-
cales, ce qui amène la problématique de savoir comment extraire le meilleur de ces données.
Qu’ils soient unidimensionnels ou multivariés, ces signaux sont généralement temporels.
Il peut s’agir par exemple d’électrocardiogrammes, d’électroencéphalogrammes, d’accélé-
rations des parties du corps, d’enregistrements vidéo, de sons, etc.
Selon la tâche à accomplir, le traitement des signaux temporels peut soulever plusieurs
enjeux. Tout d’abord, les signaux peuvent être très redondants ou de grande dimension.
Par exemple, la détection d’événements à partir d’une vidéo peut être facile car les images
contiennent beaucoup d’informations, mais se révèle être coûteuse en termes de calcul
et exige donc certaines étapes de pré-traitement permettant de se ramener à des signaux
utilisables pour les modèles de détection. Deuxièmement, les signaux peuvent être bien

(a) Accéléromètres attachés aux pieds (b) Capteur sol

Figure 0.3 : Exemples de signaux de marche issus de deux types de capteur. La figure
(a) montre un signal de marche d’une personne en bonne santé, enregistrée avec deux
accéléromètres attachés aux pieds. Chaque accéléromètre enregistre l’accélération et la
vitesse angulaire sur quatre axes (X, Y, Z et l’axe vertical), ce qui donne une série temporelle
de 16 dimensions. L’accélération affichée est celle le long de l’axe de lamarche, pour chacun
des pieds. La figure (b) contient une marche d’une membre du personnel soignant d’une
maison de retraite, enregistrée avec le capteur sol.
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adaptés à la tâche (par exemple, électroencéphalogramme pour la surveillance de l’anes-
thésie, accélération du corps pour l’analyse de la marche) ou beaucoup plus difficiles à
interpréter. C’est le cas par exemple de l’utilisation des radars pour la surveillance des per-
sonnes, ou du son pour la détection des chutes. En conséquence, alors que certains modèles
reposent sur de simples heuristiques pour accomplir leurs tâches prédictives, exécuter les
mêmes tâches avec des modèles similaires et des signaux issus de capteurs différents peut
échouer. Le système de Tarkett basé sur le sol est destiné à la surveillance des personnes,
mais en raison de la nature du signal et de contraintes matérielles, il produit des signaux
assez délicats à traiter. La Figure 0.3 présente un exemple illustrant les signaux de marche
enregistrés par deux différents types de capteur : le capteur de pression au sol de Tarkett
et un accéléromètre fixé au pied (le signal est tiré d’une base de données publique destinée
à l’analyse de la marche [177]). Dans ce contexte, la question générale de la classification
à partir de séries temporelles devient centrale pour notre problème.

Applications terrain. Un autre aspect important de notre cadre de travail est la confron-
tation de modèles étudiés en environnement contrôlé avec les applications sur le terrain.
Cela peut s’exprimer de différentes manières.
Premièrement, de nombreuses applications exigent de travailler en temps réel ou au moins
en temps court. C’est évidemment le cas des systèmes de détection des chutes mais aussi
de toute tâche de surveillance ayant une valeur essentielle dans la détection précoce des
événements, par exemple lors du contrôle de l’anesthésie pendant une intervention chi-
rurgicale, ou qui nécessite une réponse rapide pour une utilisation pratique, ce qui est la
cas de méthodes de diagnostic médical. Bien que de nombreuses applications puissent bé-
néficier de processeurs puissants capables de traiter facilement les tâches visées, d’autres
sont intégrées dans des appareils qui imposent des limitations matérielles. C’est le cas par
exemple des véhicules qui intègrent de plus en plus de capteurs et qui nécessitent l’exécu-
tion de tâches complexes (comme la conduite autonome) en temps réel et avec un matériel
limité. Notre cas n’est pas si différent dans le sens où le système se présente comme un
ensemble constitué du capteur et de son unité de traitement associée, ce qui entraîne des
contraintes matérielles, tant en termes d’espace mémoire que de puissance de traitement.
Deuxièmement, la plupart des méthodes traditionnelles d’apprentissage machine tiennent
généralement compte d’hypothèses commodes, la première étant que la procédure d’en-
traînement ait accès à un ensemble de données étiquetées suffisamment important, ce
qui, dans les applications réelles, est déjà discutable. Lorsque des systèmes innovants sont
conçus, la collecte de données est la plupart du temps coûteuse, que ce soit en temps ou en
argent. Les données peut être fastidieuses à étiqueter pour plusieurs raisons. La difficulté
d’étiquetage peut être due à la complexité des signaux à interpréter, certains requérant un
regard expert (par exemple les donnéesmédicales), ou à la grande variété de signaux qui né-
cessitent d’être étiquetés afin d’englober la plus large diversité possible de signaux d’entrée
(par exemple les signaux d’activité de la vie quotidienne pour la détection de chute). Cette
limitation peut conduire à une petite quantité de données étiquetées, ou à une distribution
déséquilibrée des classes, c’est-à-dire lorsqu’une classe est sous-représentée par rapport
aux autres. Par conséquent, la rareté des données et le déséquilibre des classes peuvent de-
venir un problèmemajeur lorsque l’on souhaite mettre en place unmodèle d’apprentissage
fiable.
Enfin, pour pallier les problèmes de pénurie de données ou de coûts, les données peuvent



16

être collectées dans un environnement contrôlé ou même synthétisées, ce qui induit alors
une dissemblance avec les données dites opérationnelles, à savoir les données que l’on
vise à traiter avec le modèle final. Ce phénomène pouvant se produire dans un très large
éventail de sujets, le problème général du traitement des différences entre l’environnement
de création des modèles ou des données et la tâche finale souhaitée fait l’objet d’un inté-
rêt croissant, et relève d’un domaine de l’apprentissage machine appelé apprentissage par
transfert. Dans notre cadre, nous rencontrons une situation de transfert typique avec deux
ensembles de données similaires, l’un étant construit dans un environnement contrôlé et
l’autre étant collecté dans sur le terrain.

3 Contributions

3.1 Chapitre 2 : Suivi de personne : revue des systèmes et méthodes de
détection

La première contribution de cette thèse consiste en un aperçu des systèmes de surveillance
existants conçus pour la détection des chutes. Cet examen est mené tout au long de la
chaîne de traitement, depuis la génération du signal jusqu’à la décision finale. Cette re-
vue bibliographique permet d’abord de situer le système Tarkett parmi cette vaste gamme
de systèmes et, à l’aide d’un ensemble de critères établis pour d’utilisation pratique de
tels système, elle met en évidence les avantages des systèmes au sol. Une partie de cette
étude est consacrée à la classification des séries temporelles, soulignant l’utilisation plus
fréquente de méthodes de classification supervisée avancées là où les méthodes basées sur
des mesures de distances ne sont pas assez efficaces.

3.2 Chapitre 3 : Capteur sol et détection de chute

Ce chapitre décrit plus précisément le capteur utilisé, et propose un modèle basé sur l’algo-
rithme de la forêt aléatoire, et appris à l’aide d’un jeu de données acquis en environnement
contrôlé.
Les capteurs sols peuvent se diviser en quatre familles : les capacitifs, qui se basent sur la
modification d’un champ électrique par le corps humain ; les capteurs de contacts, qui sont
des capteurs de pression délivrant des valeurs binaires sur des grilles à la résolution plus ou
moins élevée ; les piézorésistifs, détectant les variations de pression par modification de la
résistance électrique du matériau ; les piézoélectriques, qui émettent un courant lors qu’il
subissent une pression. Pour plusieurs raisons pratiques (humidité, alimentation électrique,
installation matérielle), le capteur Tarkett se base sur la technologie piézoélectrique, et
s’installe comme des bandes de largeur fixe (60 cm) et de longueur variable, permettant
ainsi de couvrir assez facilement différentes surfaces (voir Figure 0.4).
Le signal subit un pré-traitement simple consistant à filtrer et sommer sur tous les canaux
d’entrée de l’unité de traitement, ce qui donne un signal uni-dimensionnel représentant
toute la surface de surveillance. Afin de mettre en place un modèle de détection de chute,
une base de donnée a été constituée en environnement contrôlé. Pour cela, un site pilote
a été installé et des volontaires ont suivi un protocole permettant de générer des signaux
de chutes et d’activité de la vie quotidienne. Cette base de donnée dite expérimentale nous
permet ainsi d’entraîner un modèle de classification.
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(a) Installation du capteur (b) Chambre équipée du sytème de détection

Figure 0.4 : Exemple schématique du capteur de pression en pratique. Le capteur est posé
directement sur le béton et recouvert du sol (a). Dans cet exemple (b), il y a trois zones
distinctes, dont la chambre qui dans ce cas est équipée de quatre bandes interconnectées,
qui génèrent donc un seul signal pour cette zone. Ce signal est ici une des trois entrées qui
alimentent l’unité de traitement locale.

Comme la plupart des modèles de classification traitent une entrée comme un vecteur
de variables de longueur fixée, le signal n’est pas traité tel quel par le classifieur, mais
est d’abord transformé en un vecteur de caractéristiques. Ces variables sont des mesures
statistiques classiques inspirées de la littérature sur le traitement des séries temporelles,
et calculées sur une fenêtre de taille fixe du signal, de sa dérivée, et de sa transformée de
Fourier.
Le modèle étant destiné à fonctionner en temps réel, nous proposons une agrégation tem-
porelle des sorties de la forêt aléatoire afin de réduire le nombre de fausses détections. Les
sorties successives de la forêt aléatoire sont prises en compte par un tampon (buffer) de
taille Bs et un seuil (threshold), noté Th, est alors utilisé sur la sortie. Ainsi, les fausses
alarmes susceptibles d’être provoquées par des événements courts et de grande énergie
peuvent être écartées (voir Figure 0.5).

(a) Chute – vrai positif (b) Marche avec une canne – vrai négatif

Figure 0.5 : Exemples de détection avec et sans l’agrégation temporelle (caractérisée par
le tampon Bs et le seuil Th). Avec l’agrégation, une chute peut être toujours détectée (a)
mais un signal pouvant déclencher une fausse alarme est alors écarté (b).

Afin d’augmenter les performances, une procédure d’augmentation des données est éga-
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lement proposée et améliore considérablement la précision du modèle. Cette procédure
se base sur une sélection aléatoire de fenêtres dans le signal initial. De plus, comme nous
visons à produire un modèle destiné à une application embarquée et donc limitée en terme
de capacité de calcul, nous étudions une méthode permettant de réduire le coût du calcul
des caractéristiques tout en conservant la majeure partie du pouvoir discriminant. Cette
méthode se base sur de la réduction récursive de variables et nous montrons que combiné
à l’augmentation des données d’entraînement, le modèle donne alors de bons résultats.

3.3 Chapitre 4 : Apprentissage par transfert sur arbre de décision

Dans ce chapitre, nous proposons des méthodes d’apprentissage par transfert sur des
arbres de décision, en prenant en compte le déséquilibre de classes.
Le premier modèle de détection des chutes proposé au chapitre précédent nous amène à
explorer ses performances sur des données réelles, c’est-à-dire des données enregistrées
dans des maisons de retraite, et nous nous interrogeons ainsi sur les pistes d’améliora-
tion. En effet, dans le cadre classique de l’apprentissage, on considère que les données qui
servent à l’apprentissage du modèle sont issues de la même distribution que les données
qui seront considérées par la tâche finale. Or, cette hypothèse ne se vérifie pas toujours,
qui plus est dans des domaines d’application industriels, où la récupération de données
terrains étiquetées est complexe. Ce problème est plus généralement formulé par le cadre
du l’apprentissage par transfert, où l’on désigne par DS le domaine source, c’est à dire le
domaine d’apprentissage du modèle, et par DT le domaine cible (target en anglais), celui
sur lequel on souhaite appliquer notre modèle.

(a) Chute simulée (b) Chute réelle

Figure 0.6 : Signaux de chute provenant de la base de données expérimentale (a) et de la
base de données opérationnelle (b).

Nous souhaitons utiliser la connaissance de DS où nous disposons d’un jeu de données
fiable et équilibré – la classe Chute y est en effet autant représentée que la class Non-chute,
et DT où nous disposons d’un jeu de données à la fois de petite taille et déséquilibré, la
chute étant un événement rare. Pour se faire, nous explorons les procédures d’apprentis-
sage par transfert sur le classifieur qui constitue le modèle de base de la forêt aléatoire, à
savoir l’arbre de décision. Notre travail se base sur des travaux antérieurs aux nôtres qui
proposent deux méthodes de transfert sur les arbres de décision. Ces procédures agissent
sur des arbres préalablement appris avec DS en les modifiant à l’aide des données nouvel-
lement étiquetées venant de DT .
Nous proposons plusieurs variantes en tentant de répondre au problème de déséquilibre
des classes. Pour cela, nous nous plaçons dans le cadre d’un déséquilibre de classe ho-
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mogène. Nous montrons qu’il existe un risque de perte de noeuds pour laquelle la classe
minoritaire est toujours significative selon DT , et nous tentons soit de limiter l’élagage
de ces noeuds, soit de prendre en compte ce déséquilibre homogène de classe dans les
transformations des arbres. Les algorithmes proposés montrent des résultats prometteurs
sur les données déséquilibrées et nous suggérons des améliorations pour une plus grande
généralisation.

3.4 Chapitre 5 : Suivi de personne fragile avec réseaux de neurones

Le dernier chapitre explore les perspectives d’un suivi plus général de l’activité à l’aide du
capteur sol. Rappelons que le système délivre un signal unidimensionnel pour toute une
zone prédéfinie, par exemple une chambre, un couloir etc. Ainsi, le principal inconvénient
de ce type de capteur est son incapacité à distinguer les utilisateurs. Nous proposons une
méthode qui vise à faire la distinction entre les personnes âgées et les soignants ou les
visiteurs. Pour ce faire, nous utilisons un réseau de neurones convolutifs qui contient deux
parties.
Les premières couches du modèle sont entraînées à la reconnaissance de pas dans les si-
gnaux, en s’inspirant de la littérature portant sur la détection d’objets dans les images.
Cette initiative est motivée par le fait que la plupart des signaux rencontrés sont des
marches des aides soignants. Le caractère convolutif du modèle est renforcé par l’entraîne-
ment séparé de la première couche à l’aide d’un dictionnaire sous contrainte de parcimonie,
et ce sur des signaux demarches, portant ainsi l’attention dumodèle sur ce type de signaux.
La deuxième partie du modèle est finalement entraînée sur la tâche de classification finale.

Figure 0.7 : Installation du système dans la maison de retraite.

Le jeu de données est constitué de signaux d’activités variées se déroulant dans un couloir
et une salle commune d’un établissement partenaire (voir installation en Figure 0.7).
L’évaluation du modèle de détection des pas montre la bonne performance des réseaux
de neurones convolutifs pour la détection d’objet et pourrait être considéré à plus long
terme pour traiter des séries temporelles. Un exemple de détection est donné en Figure
0.8. Le modèle de classification final est comparé à un modèle de forêt aléatoire utilisant
des caractéristiques décrites au 3, montrant ainsi l’intérêt d’une telle architecture. Nous
analysons l’influence des différentes parties du modèle à l’aide des résultats obtenus par
ablations successives de chaque partie, concluant ainsi sur la pertinence des apprentissages
séparés. En outre, le modèle parvient aussi à reconnaître les signaux de personnes âgées
sur des signaux plus complexes que de simples marches, ce qui ouvre la voie au développe-
ment de tâches plus complexes telles que la classification des activités ou éventuellement
l’identification des individus.
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Figure 0.8 : Détection de pas à l’aide d’un réseau de neurones convolutifs.
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1 Context

This doctoral thesis falls within the framework of event detection for activity monitoring
systems, and was carried out thanks to CIFRE (Convention Individuelle de Formation par
la Recherche) and commissioned by the ANRT (Agence Nationale de la Recherche et de
la Technologie). It was sponsored by Tarkett, which is a French multinational company
whosemain activity is the production of flooring. To give a glimpse at the company’s activ-
ity, Tarkett has 12,500 employees, 33 industrial sites, and sells 1.3 million square meters of
flooring every day, for hospitals, schools, housing, hotels, offices, stores and sports fields.
The company launched in 2015 an innovative project named Floor In Motion, whose goal
is to put up a floor-sensor-based monitoring system for elderly. This system is designed for
nursing homes with a potential development for individual use at home, and its first main
application was decided to be a fall detector as a first step towards general monitoring. In
this context, the main objective of this thesis is to study and propose solutions for event
detection for elderly out of floor sensor temporal signals.

2 Motivations

2.1 A need for monitoring

Frailty and falls in an ageing population. According to the World Health Organiza-
tion, the worldwide population of people above 60 years is growing faster than any other
age group [196]. In fact, when looking at prospects, (Figure 1.1-a), the age pyramid tends
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(a) Worldwide population pyramid (b) Death rate due to falls in USA, year 2018

Figure 1.1: Prospect over the global population age (a) and death rate according to age
in USA (b). Data source: (a) United Nations, Department of Economic and Social Affairs,
Population Division [182], (b) Centers for Disease Control and Prevention, Injury Center,
Injury Prevention & Control [36].

towards a “bell” shape instead of its present “triangle” shape, thus showing the growing
ratio of elderly in the global population. This ageing population is prone to frailty, a notion
that has received increased attention from themedical community in the recent years [124].
Frailty is commonly defined as the early signs of significant health deterioration in the el-
derly population, and Fried et al. [60] define it more specifically as a clinical syndrome
in which at least three criteria are present among unintentional weight loss, self-reported
exhaustion, weak grip strength, slow walking speed, and low physical activity.
Along with other external factors, frailty contributes to a higher risk of fall. Since frailty
level is rising with age, this makes elderly all the more vulnerable to falls, with more than
30% of elderly above 60 falling at least once a year [196]. A fall, while not dangerous for a
young healthy person, may lead to serious injury to an elderly person, and sometimes even
death. Data shows that the fatal falls rate increases exponentially with age (Figure 1.1-b).

Consequences of a fall. The repercussions of falls among elderly are multiple [36].
First, there are obvious direct physical consequences, most of them being fractures (wrist,
hip) or head injuries (that can lead to brain damage). Aside from pain and discomfort,
physical injuries reduce mobility, sometimes for a long time or even irreversibly, which
leads to higher dependency.
In addition, a fall, even without any serious physical injury, can trigger a fear of falling
again. This effect leads to a reduction of social interactions and activities which signifi-
cantly increases the frailty level, and hence the chances to fall again. The lack of exercise
is particularly damaging, as it has been shown that physical activity reduces muscle weak-
ness, increases mobility, improves neuronal health, limits frailty, and reduces overall risk
of death [117].
Finally, falls also have a critical economic impact. These economic repercussions whether
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direct (medication, rehabilitation…) or indirect (societal productivity losses), are raising
all over the world [196].

How monitoring can help. A monitoring system can be defined as an assistive device
whose main purpose is to give insight over one person’s activity for health purpose, either
as general tasks such as indicators of activity, or more crucial tasks such as alerts in dan-
gerous situations. Monitoring systems for elderly care can serve two main objectives, that
are, following frailty levels and alerting when the person is endangered, in particular falls.
The early detection of frailty is considered of major interest by the medical community
for prevention purposes, and targeted therapy strategies have been shown to significantly
reduce the consequences of frailty [185]. Besides, it has been shown that fear of falling
is likely to be diminished by the patient’s perception of being monitored by a robust fall
detector [33]. Consequently, the monitoring physical activity of the elderly in nursing
homes is key, particularly as it allows focusing resources on people who are particularly
vulnerable to frailty and falls.
The other key element to monitoring systems is the external help (caregivers or family)
reaction time after a fall. Not only an accurate fall detector may prevent severe injuries
from leading to death, but it also limits the time a person can pass on the ground after a
fall. Indeed, even uninjured, nearly one elderly out of two is unable to get up without as-
sistance [112]. It has been shown that a “long lie” (defined by Lord et al. [112] as more than
one hour spent on the floor after a fall) can lead to serious complications (hypothermia,
dehydration…) but is also associated with increased frailty (half of those who go through
a long lie die within six months).

Setting up a reliablemonitoring system. During the last twenty years, there has been
an increasing interest in the development of smart systems to monitor individuals in their
daily life, with fall detection systems alone representing a vast and varied literature. In
that context, Tarkett aims at proposing a floor-based system that can meet several prac-
tical constraints when it comes to a daily use in real conditions [161]. These important
constraints include in particular the intrusiveness, which is defined as both the capacity to
be hidden from the patient and the respect of her/his privacy. There are several other crite-
ria that could be defined when it comes to industrial purposes and practical use. This raises
the first question of how to locate Tarkett’s system in this plethoric offer of monitoring
systems. Figure 1.2 displays an illustration of a floor-based monitoring system.

Figure 1.2: Schematics of a floor-based monitoring system.
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2.2 Processing time series for real world application

Understanding time series. The use of monitoring systems leads to the processing of
a large amount of temporal signals. In fact, the past few years have witnessed a prolifer-
ation of sensor-based systems for health or medical purposes, hence raising the question
of how to extract the best from data. Whether one-dimensional or multivariate, these sig-
nals are usually temporal. It can be for example electrocardiogram, electroencephalogram,
acceleration of the body parts, video recordings, microphone, etc.
Depending on the task, dealing with temporal signals may raise several issues. First, sig-
nals may be very redundant or high-dimensional. For example, detecting events out of
video might be easy since images contain a lot of information, but reveals to be compu-
tationally expensive and therefore demands some preprocessing steps that reduce signals
into usable inputs for detection models. Secondly, the signals may be well fit for the task
(e.g. electroencephalogram for anaesthesia monitoring, body acceleration for gait analysis)
or much harder to interpret (e.g. radar for person monitoring, sound for fall detection). As
a consequence, some tasks rely on simple heuristics to achieve their goal, and attempts
to perform the same task with similar models with different signals may fail. Tarkett’s
floor-based system is intended for person monitoring but due to the nature of the signal
and to hardware constraints, yields rather complex signals. An illustrative example is dis-
played in Figure 1.3, where walk signals are shown recorded with different sensors: the
Tarkett’s pressure sensor and a foot-fixed accelerometer (signal is taken from a public data
set intended for gait analysis [177]). In that context, the general question of classification
over time series becomes key to our problem.

Real-world applications. Another important aspect of this framework is the confronta-
tion of controlled environment with real-world applications. This can be expressed in dif-
ferent ways.
First, many applications require to work in real time or at least in short time. This is ob-
viously the case for fall detection systems but also any monitoring task that has crucial
value in the early detection of events (e.g. anaesthesia control) or that need a short time re-
sponse for practical use (e.g. medical diagnosis). Although many applications may benefit
from powerful computers that can easily process the intended tasks, others are embedded

(a) Foot-attached accelerometer (b) Tarkett’s floor sensor

Figure 1.3: Example of walk signals from different sensors. (a) displays a walk from a
healthy subject recorded with two accelerometers attached on both feet. Each accelerome-
ter records acceleration and angular velocity along four axes (X, Y, Z and the vertical axe),
hence yielding 16-dimensional time series in total. We show the acceleration along the
direction of the walk for both feet. (b) shows a walk from a healthy medical staff member
of a nursing home, recorded with the floor sensor.
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in much lower powered devices, hence introducing computational constraints. This is the
case for example with cars that embed more and more sensors, and necessitate complex
tasks (such as autonomous driving) to be performed at real-time and with limited hard-
ware. Our case is not so different in the sense that the system comes as a whole i.e. the
sensor and a processing unit, thus imposing hardware constraints, both in memory space
and processing power.
Secondly, most traditional machine learning methods usually account for convenient hy-
potheses, a first one being that the learning procedure has access to a sufficiently large
labeled data set which, in real applications, is already a crucial issue. When innovative
systems are built, data collection is most of the time costly, whether in time or financially.
Indeed, data may be fastidious to label due to complex signals to interpret that need expert
eyes (e.g. medical data), or the large variety of signals that need to be labelled in order to
encompass all possible unknown input signals (e.g. activities of daily living). This may
lead to small amount of labeled data, or imbalanced class distributions (i.e. when a class
is under-represented with respect to the others). Hence, data scarcity and class imbalance
can become a key issue when one wants to build a reliable learning model.
Finally, to alleviate data scarcity or cost issues, data might be collected in a controlled envi-
ronment or even synthesized, which is likely to induce a dissimilarity with the operational
data, i.e. data one wishes to process with the final application. Since it may occur in a very
wide range of topics, the general problem of dealing with differences between the train-
ing environment and the desired task has received an increased attention, and falls into
a field of machine learning called transfer learning. In our framework, we come across a
typical transfer situation with two similar (yet different) data sets, one being built in a con-
trolled environment and the other being collected in real-life. For this reason, this work
also intends to address the transfer learning problem.

3 Contributions

• Chapter 2 : Person monitoring: a review on systems and detection methods
The first contribution of this thesis consists in an overview of existing monitoring
systems designed for fall detection. This review is conducted along the processing
chain from the signal generation to the final decision algorithm. It allows first to
place Tarkett’s system amid this vast range of systems, and, with the help of a set of
criteria built for daily use systems, it highlights the benefits of floor-based systems.
A part of this review is dedicated to time series classification, outlining the more
frequent use of sophisticated supervised classifying methods over distance-based
when signals are challenging.

• Chapter 3 : From floor sensor to fall detection
This chapter explores a model based on the well-known random forest algorithm.
The model is trained with an experimental fall data set built specifically for the fall
detection task, in which events were performed by volunteers over a pilot site. As
the model is intended to work in real-time, we propose a temporal aggregation of
the random forest outputs so that the number of false detection is reduced. A data
augmentation procedure is also proposed and significantly enhances the accuracy
of the model. As we aim to produce a model intended for an embedded application,
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we study a method to reduce the cost of feature computation while retaining most
of the discriminative power and show that the model still performs well under this
constraint.

• Chapter 4 : Transfer learning on decision tree
After having set a first model for fall detection, we explore its performance over
real data, i.e. data recorded in nursing homes, thus showing room for improvement.
To that end, transfer learning procedures over decision trees are explored. These
procedures adapt already learnt models to newly labeled data that may differ from
training data. We propose several variants over seminal works that proposed two
transfer algorithms. These variants address the previously mentioned class imbal-
ance problem that we came across when designing our fall detector. The proposed
algorithms show promising results over imbalanced data and we suggest improve-
ments for more generalization.

• Chapter 5 : Elderly activity monitoring with neural nets
The last chapter explores the perspectives of performing general monitoring with
Tarkett’s floor sensor. As the main drawback of this type of sensor is its inability
to distinguish between users (the system delivers a one-dimensional signal for a
whole area), we propose a method that aims at discriminating between elderly and
caregivers. For that purpose we use a convolutional neural network, that we train to
focus its attention on gait signals (since this is the most common recorded activity).
Due to a limited amount of data, our method involves a pre-learning procedure that
includes convolutional dictionary learning and a step detecting convolutional neural
network. The model is well performing even over more complex signals than simple
walks, thus potentially leading the way into the development of more complex tasks
such as activity classification or individuals identification.

4 Publications

Chapters 3, 4 and 5 of this thesis each resulted in a publication.

• L.Minvielle, M. Atiq, R. Serra,M.Mougeot, andN. Vayatis. Fall detection using smart
floor sensor and supervised learning. In 2017 39th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3445–3448, July
2017
https://ieeexplore.ieee.org/document/8037597

• L. Minvielle, M. Atiq, S. Peignier, and M. Mougeot. Transfer learning on decision
tree with class imbalance. In 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI), pages 1003–1010, Nov 2019
https://ieeexplore.ieee.org/document/8995296

• L. Minvielle and J. Audiffren. Nursenet: Monitoring elderly levels of activity with a
piezoelectric floor. Sensors, 19(18), 2019
https://www.mdpi.com/1424-8220/19/18/3851

https://ieeexplore.ieee.org/document/8037597
https://ieeexplore.ieee.org/document/8995296
https://www.mdpi.com/1424-8220/19/18/3851


2
Person monitoring: a review on systems

and detection methods
Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2 A sensor-oriented tour of monitoring systems . . . . . . . . . . . . . . . . 37

2.1 Camera-based systems . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Wearable sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Ambient sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Event detection in temporal signals . . . . . . . . . . . . . . . . . . . . . . 42
3.1 Time series as sequences . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Time series as feature vectors . . . . . . . . . . . . . . . . . . . . . 44

4 Features for monitoring systems . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Vision-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 One-dimensional signals characterisation . . . . . . . . . . . . . . 48

5 Detection strategy in fall systems . . . . . . . . . . . . . . . . . . . . . . . 49
5.1 Threshold-based methods . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Abstract

This chapter provides a general review over works that are related to the problematic
previously described, that is to build a reliable fall detection system using time series
derived from a floor sensor. To this end, the chapter is organised through the prism of
fall detection systems, hence encompassing several ways of acquiring usable signals
to perform monitoring. Systems are described according to the processing chain,
from signal acquisition to final decision, and we focus on the matter of detection in
temporal signals.
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1 Introduction

Several surveys are available on fall detectionmethods, some of them being sensor-specific
[7, 139, 210], giving short overviews [49, 130, 141, 199] or trying to encompass a great num-
ber of contributions [56, 86, 125, 183, 206]. In terms of fall detection system classification,
most reviews use a division over the type of sensor that is used. However, they do not
all use the same categorisation. The most common way to separate fall detection systems
was given by Yu [206] in 2008 and taken up later by others [79, 125, 183], dividing them
into three categories: wearable devices, ambience sensors and camera-based systems.
Among all explored surveys, we give a description of some that drew our attention in the
way they tackle the subject. While first attempts are rather brief overviews of a field that
was not as developed as it is today [141, 206], more extensive reviews were proposed in
recent years. One of themost exhaustive was proposed in 2013 by Igual et al. [86], in which
systems are grouped into context-aware (i.e. sensors deployed in the environment such as
cameras, floor sensors and microphones) and wearable ones, this latter category being
divided into external devices and smartphone-embedded sensors. Authors give extended
summaries of all cited methods, and show the recent general trend in the field along with
a list of main drawbacks a fall detection system can face.
El-Bendary et al. [56] explore in more depth the main causes and consequences of falls
and describe systems developed for commercial purposes. To our knowledge it is the only
survey that describes systems that are actually available for sale. However, they rather
focus on prevention than fall detection systems, including for example systems built for
wheelchairs.
On the matter of wearable systems, Pannurat et al. [139] proposed a thorough review
where they classify systems according to the body location on which they are placed.
They also indicate for each paper the level of variety of signals used for training, which
is a valuable piece of information since the natural high diversity of events in real-world
applications is challenging.
More recently, Khan and Hoey [91] proposed an original taxonomy based on the availabil-
ity of data. They separate contributions between sufficient training data and insufficient
and no training data, each category being divided according to the type of sensor, most
often between wearable and video systems. This is the only encountered review that tack-
les the subject of data availability, which is crucial in such applications where the core
objective is to detect a rare event among a wide variety of them.
Vallabh and Malekian [183] proposed in 2018 a rather exhaustive review in which they
describe most used algorithmic methods, i.e. threshold-based and machine learning ap-
proaches, and propose a large tour of fall detection systems (wearable, ambient, and vision-
based). One advantage of this review is that each category is accompanied with a compre-
hensive list of disadvantages, and they finally discuss personalized models.
Less exhaustive and rather focused on recent advances, the survey proposed by Xu et al.
[199] gives a selection of the most cited papers before and after 2014 and highlights current
trends along three key areas: sensors, algorithms, and performances. Although willingly
not comprehensive, this survey gives a good view of recent evolution of fall detection
systems, even introducing a new area for Wi-Fi and radar-based systems.
Figure 2.1 gives a schematic overview of fall detection systems along the three main axes
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Figure 2.1: Summary schematic over fall detection systems.

that are described in further details through the rest of the chapter: signal acquisition, fea-
ture extraction and the decision making. In the following, we first present contributions
in fall detection systems from a sensor point of view. Then, we expose the main used
methodologies for the detection problem, from the variable extraction to the decision pro-
cess, andwe finally give summary tables of main contributions. We also consider literature
that deals with the subject of event detection in time series (regardless of the fall detection
problematic).

2 A sensor-oriented tour of monitoring systems

Fall detection systems are generally evaluated along the following criteria:

• coverage (Is the device covering the whole concerned area?) and occlusion (Can the
patient be hidden by an object?)

• intrusiveness (Is the device hidden from the patient? In what extent does it respect
of her/his privacy?)
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• signal quality / information (Is the signal easy to exploit to perform the detection
task?)

• robustness (Is the system effective under external perturbations? Does the system
still work when the environment changes?)

• ease of installation / use

• scalability (Is it adaptable to any area?)

Based on the categorization system from Yu [206], which is the most used and actually fit
to the current literature on the subject, systems are divided in vision-based, wearable, and
ambient sensors.

2.1 Camera-based systems

Cameras have been widely used for fall detection systems. Image sequences provide a
lot of exploitable information making detection or even recognition an easier task with
than one-dimensional data. They allow users to detect multiple events simultaneously,
the labelling is easy and with recorded data, it is possible to perform post verifications
of the system outputs. Zhang et al. [210] dedicated a survey on vision-based methods,
separating systems according to the devices that are used: single RGB camera, multiple
RGB cameras, and depth cameras.

RGB cameras. Single RGB camera systems are inexpensive and easy to install. They can
use regular field of view cameras [39, 100], which limits the coverage of the area. This can
be solved using wide angle cameras, or even omnidirectional cameras [119]. These latter
have a field of view of 360 degrees and a single narrow blind spot. They are usually made
with shaped mirrors placed in front of and behind the lens. Compared to classical field of
view cameras (e.g. usually less than 100 degrees), wide angle and omnidirectional cameras
are more challenging in the fall detection process due to the distortion they imply [186]
but offer the obvious advantage of having less blind spots. Using multiple cameras allows
users to benefit from the additional depth information thus yielding better results in the
detection process. Auvinet et al. [13] for example use visual hull, i.e. back-projection of the
silhouette into space using camera parameters. However, such systems require calibration
that leads to more difficult and expensive implementation. Besides, the processing steps
such as background subtraction and tracking rely on RGB information that can highly vary
under different lighting conditions.

Depth cameras. Depth cameras have also been used for fall detection systems since
they provide additional valuable information. Most depth camera systems use stereo vi-
sion, Time of Flight (ToF) or structured light. Stereo vision uses two regular RGB cameras
placed on the same plane to mimic the binocular vision. Like other multi-camera systems,
stereo vision requires calibration, is computationally expensive and performs poorly un-
der low-light conditions [154]. Non-RGB depth cameras on the other hand do not suffer
from varying lighting conditions since they output the same image whatever the external
light quantity. ToF cameras measure distance of objects by sending light pulses (usually
infrared) that illuminate the scene. Distance is measured based on the time the light takes
to travel from the camera to an object and back to the image sensor. Although accurate,
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ToF cameras are expensive and are limited to low resolution images [154]. Structured light
consists of emitting a known pattern over the scene, and computing depth of objects ac-
cording to the pattern deformation. This principle is used by the Microsoft Kinect whose
camera uses a sea of infrared dots to measure depth. Kinect also embeds a RGB camera
and a built-in SDK for skeletal tracking with a 20-joints skeletal reconstruction. However,
it seems that this latter feature is rarely used although being an interesting approach [162].
Since Kinect has become a cheap solution, it has been increasingly used for fall detection
systems [55, 65, 154, 165]. Besides being way cheaper than ToF, it can acquire bigger res-
olution, however edges and far objects’ depth is not well estimated.
Camera-based systems are well-performing solutions for fall detection when the moni-
tored individual is in the system’s field of view. They provide a large amount of informa-
tion on the controlled area, making it relatively easy to detect a fall. However, this amount
of information in the signal comes at high cost: these systems are indeed very intrusive,
whether they are based on RGB or depth cameras, and can face occlusion or coverage
issues depending on the area’s organization.

2.2 Wearable sensors

Wearable-sensor-based systems are nowadays the most popular solution to detect falls
and there is a vast literature over the subject, some surveys being entirely dedicated to the
field [139]. Based on different technologies, they come as bands that one can tie to the
concerned body part or in already equipped devices such as mobile phones and connected
watches. These systems are affordable, easy to install, and give reliable signals.

Accelerometers and gyroscopes. In the context of fall detection, the most used sensors
are accelerometers. They are inexpensive sensors that record the acceleration along one
or three orthogonal axes of the body part on which they are placed. They make use of
any body part location, but they are usually placed on the waist [26, 38], the chest [25, 88],
the thigh [43, 111] and the wrist [48, 92]. Measuring orientation and angular velocity,
gyroscopes are proposed as well but they are rarely used as the only sensor [23, 131] and
instead are mostly seen as additional sensors to accelerometers [103].

Other wearables. Barometric pressure sensors [20, 175] measure the air pressure to
estimate the height of the body part on which it is fixed. Pressure sensors seem to be
used only as a support of accelerometer-based system, and not as a sole sensor, since they
give less usable information than a tri-axial accelerometer. Doukas and Maglogiannis [52]
make use of a microphone along an accelerometer, both attached to the user’s foot.
Depending on the systems there may be only one sensor or several placed simultaneously
on different body locations. Pannurat et al. [139] give an extensive review of wearable fall
detection systems according to the body location. Research has been done into finding
the location yielding the best results [24, 43] however it seems that there is no particular
consensus on that matter.
Wearable systems are cheap, give good results and are quite easy to set up. However when
dealing with elderly daily activity monitoring, they may suffer from one main drawback:
patients may forget to wear those devices or even refuse to wear them, as they can be
regarded as intrusive. In fact, when dealing with elderly, this risk is likely to increase and
the very fact that systems are wearable makes them also easy to lose or avoid, which raises
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the need for more reliable systems.

2.3 Ambient sensors

Although defined as non-wearable systems in Pannurat et al. [139], ambient sensing is
most of the time a category defined to encompass the rest of sensing systems, i.e. all sen-
sors except wearable and vision-based [125]. Their main purpose is to alleviate the intru-
siveness problem. This field regroups the greatest variety of sensors: acoustic, vibrational,
radar, Wi-Fi, and floor-based technologies.

Acoustic. Acoustic systems are based on one or multiple microphones (the sensing unit
is called a microphone array in this latter case). For example, Xiaodan Zhuang et al. [198]
use a single far-field microphone while Li et al. [104] use eight microphones arranged in a
circular array and Li et al. [105] use the integrated array of four microphones of a Kinect.
Acoustic systems are easy to install and require few processing power. However, these
systems suffer from the variation due to distance between the device and the user, which
may require additional calibration from one installation to another. Moreover, they are
subject to unwanted noise and interference (e.g. environment, TV).

Vibration. Systems based on vibrational data make use of fall patterns collected by a vi-
bration device placed in the room. For example, Alwan et al. [6] use a single piezoelectric
sensor to record vibrations, and Werner et al. [193] use three to four accelerometer-based
sensors placed on the floor at the middle of the room’s edges. Vibration sensors are also
used as additional sensors, as proposed by Zigel et al. [215] where authors use one ac-
celerometer as a vibration sensor and a microphone, both placed on the floor near the
wall. The vibration data is used for detecting and segmenting an event. When an event is
detected, the sound data is added to determine if a fall occurred. These systems are cheap,
easy to install and less obtrusive than acoustic. However, like acoustic systems, the output
signal is subject to variation according to the device’s location. Moreover, it also depends
on the floor characteristics, and the size of the sensing area, which may require significant
additional training for each new installation.

Radar. Now visible in the most recent studies [183, 199], radar-based systems are also
proposed. These systems use a continuous-wave radar, which is based on the Doppler
effect. When reflected by a moving object, the frequency of an emitted wave differs from
the received one, hence allowing the detection of events such as falls. Liu et al. [110] use
two radars placed at the edges of the room and Su et al. [166] use one radar located on the
ceiling. Amin et al. [7] present a short review of radar-based methods and propose their
own application with one radar placed on the ceiling of bathrooms in senior residence
apartments. Radar systems are low-price and present promising results. However, like
cameras, they suffer from occlusions and the difficulty to perform well when there are
multiple persons in the room. Besides, this type of sensing raises the question of scalability
since it depends on the distance between the sensor and the subject.

Wi-Fi. Wi-Fi systems also appear in one recent survey as a new trend in the fall detection
domain [199]. The principle of Wi-Fi systems relies on the fact that given a Wi-Fi emitter
and receiving antenna (which can be a simple laptop), the power is received via the direct
path emitter-receiver, but also via reflection onto surrounding walls and any other objects.
For a static environment, the received power is supposed to be constant, however when
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there is movement (e.g. a walking person), then the power variates. Wi-Fi systems use
the Channel State Information (CSI), which is an estimate of the relation between the
transmitted and the received Wi-Fi signal, that comes as multiple one-dimensional signals.
Recently, Wang et al. [189] proposed a system tested with three different experimental
settings: a chamber equipped so that no reflection is possible on the walls, a large room
(laboratory) and a smaller room (student’s dormitory). The dormitory is equipped with
one pair of emitter-receiver. In Wang et al. [187], authors use two receiving antennas and
compute the difference of their CSI streams’ phase. According to authors, compared to
amplitude, phase difference is more sensitive and can better discriminate between similar
activities. Although interesting, this technology seems to be in its early stages and suffers
from issues such as the difficult availability of the needed metric to perform the sensing,
external interferences, and a high dependency to the configuration in which it is installed,
which limits its practical use [89].

Floor. Floor systems are based on sensors placed under the flooring. Current research
shows that most floor systems are designed for gait analysis or activity of daily living [161].
There are however a few propositions specifically designed for fall detection. Tzeng et al.
[179] use a pressure sensor as a trigger for an infrared camera system which performs
the fall detection. Klack et al. [95] propose a pressure sensor based on piezoelectric effect,
which comes as tiles. Although designed for monitoring and fall detection, authors do not
present their fall detection system, most likely due to confidentiality issues. Rimminen
et al. [149] propose a system called near field imaging (NFI), which consists of a matrix
of 300 x 300 mm squares, one of them being fed by a low voltage signal, and the others
used to measure the returning current [80]. Floor-sensor systems are not intrusive, do not
suffer from occlusion and also have the advantage to be consistent since the sensing is
equivalent at any location (unlike acoustic, vibration, and to some extent Wi-Fi and radar
systems).
Among ambient-based systems, some may suffer from occlusion issues and lack of prac-
tical use (Wi-FI, radar) while others can face coverage issue, or at least calibration needs
due to the distance between the sensing device and the patient (vibrational and acoustic
systems). However floor sensors can deal with any area size without any coverage nor
occlusion issues, which makes them good candidates for monitoring systems.

2.4 Conclusion

Fall detection systems rely on a very large variety of sensors, some of them being used
since very recently. This vast variety, the great literature and the constant technical in-
novation over the subject may be explained by two reasons, the first being the growing
demand for these systems and the second being the still on-going competition towards the
design of ideal systems. Indeed, as of today, all systems present limitations to the imple-
mentation for real applications, where the sole purpose of good detection is not the only
criterion. It should be noted that cost is not part our selected criteria. As far as we know
there is no existent literature that proposes accurate data over system costs, apart from
rare qualitative assessment. Besides, this matter is very relative to scale effect (when one
produces at large volumes) and time (technology costs may vary rapidly).
The selected criteria rely on systems applicability, which is determinant. In that regard,
there are significant differences between sensing methods, that are summarized in Table
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Table 2.1: Sensors evaluation over key criteria for patient monitoring systems.

2.1. Wearable, vibration and floor sensors seem to best fit these requirements. However, if
one considers the intrusiveness being key for daily patient monitoring, this rejects wear-
able sensors and leaves two families of sensors that are floor-related. While vibration
sensors are easy to install but suffer calibration issues and show some issues with the area
size, floor sensors are perfectly scalable and cover any area, although at a greater cost of
installation, which makes them a good choice for long-term use.

3 Event detection in temporal signals

This section treats the subject of event detection in time series, which is a key element
in activity monitoring from any sensing system. We focus on one-dimensional signals
(or time series), which fits our scope for two reasons: our system is based on time se-
ries, and as we show in next section, vision-based methods tend to sum up image streams
into one-dimensional signals thanks to simple descriptive features (e.g. body angle, veloc-
ity…). In the literature, event detection in time series has been used for a large variety
of applications: pattern matching in financial data [197], seismic forecasting [123], detec-
tion of power quality disturbances [113], physiological data analysis [164], speech recog-
nition [144], and many others. There are various ways of considering event detection
depending on the type of data and the available knowledge on it. According to Abanda
et al. [2], there are three main groups of time series classification methods: distance-based,
model-based and feature-based. We briefly present the two first categories, i.e. non feature-
based methods, in which we also include change point detection methods, and then we
describe feature-based methods which are, according to us, the best fit to our problem.

3.1 Time series as sequences

There is a large part of literature that uses time series as raw instances and builds detection
models directly on them. Depending on the prior knowledge, an event can be defined in
different ways: an unexpected change in the signal, or a known pattern to retrieve, or a
generation by a stochastic model.

Change point detection. Change point detection is a field generally related to the sig-
nal processing community. The main task of change point detection methods is to find
changes in a signal, this latter being most of the time considered as multivariate time se-
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ries. When given an unknown signal, the goal is to find the best segmentation according
to a cost function that will evaluate the homogeneity within each segmented signals. This
can be done through various ways, from maximum likelihood estimation to kernel-based
detection [178]. These methods are mostly designed for detecting changes of regime in
time series, without any specific a priori knowledge in general (aside from the number
of change points). This reveals to be useful in unsupervised situations when one expect
various types of signal but has no particular idea of what these signals look like. In our
case, it could be applied to general activity monitoring when one wants to detect changes
on which to perform further processing, however this is beyond our scope since we deal
with annotated signals. For further details, the reader can refer to Truong et al. [178] who
give a selective and technical survey over offline change point detection methods.

Distance-based methods. Distance methods compare a new instance with a set of la-
beled instances based on a similarity measure. Once a distance measure is chosen, it is
generally exploited using the k-Nearest-Neighbour algorithm (k-NN). However the k-NN
accuracy highly depends on the distance, which is a key element in the success of event
detection [40]. There is a great variety of works over distances for time series and this is in
fact the subject of entire reviews [2]. Themost known (and used) distances are the classical
Euclidian distance and the dynamic timewarping distance, this latter allowing a non-linear
mapping between time series [19]. More sophisticated ways are also introduced to define
similaritymeasures over time series, such as the shapeletswhich are subsequences of series
that are chosen as representatives of their class [202]. Work has also been carried out in
the discovery of kernels for similarity measure, with a concern on kernels that are positive
semi-definite or not, and the influence over classification results [2]. Although straightfor-
ward, distance-based k-NN methods are sensitive to noise in training data, and the main
difficulty in this framework lies in the choice of the distance which determines the final
task’s performance. Recent work shows that time series classification methods tend to use
distance to build feature vectors to be used in conventional classification schemes [2].

Model-based methods. Model-based classification relies on the assumption that series
of the same class are generated by an underlying model. Hence, when an unknown series
comes to the classifier’s attention, it is tagged along the class of the best fitting model. In
this field, the two best known families of methods are Hidden Markov Models (HMM) and
Auto-Regressive Models (ARM). HMM are used to model randomly changing states. These
states are hidden and the user has only access to observations. HMM are generally used to
find the model parameters given observations, and then, given a sequence of observations
(and model parameters) determine the most probable sequence of hidden states or the
likelihood of observations. This can be used considering time series as the observation
sequences. For example, Asadi et al. [11] propose a classification procedurewhere themain
idea is to train a HMM for each class using ensemble method over all training sequences.
Then, for any incoming series the likelihood over eachHMM is computed, and the labelling
is done according to the highest probability of generating the sequence. Auto-regressive
models are stochastic models where a time series is explained by its past values and noise.
They have been used for clustering as well as classification [41].
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3.2 Time series as feature vectors

Other methods seek to transform time series into vectors of meaningful values, or at least
measurements that allow a good representation for classification tasks.

Feature extraction. There is quite a huge number of possible features that one can
compute over the signal. Fulcher et al. [62] propose a general analysis over about 900
time series and 9000 “operations” (i.e. features). Among other things, authors show that
from the vast literature, they can cluster groups of features and even propose a list of
200 features which are supposed to be a summary of all feature extraction methods. In
this summary we find a wide variety of features: autocorrelation, mutual information,
stationary, long-range scaling, correlation dimension, wavelet transforms, linear and non-
linear model fits, and measures from the power spectrum.
Fulcher and Jones [61] show later that when using the pool of features and a forward
feature selection procedure, they can beat the traditional Euclidian-based 1-NN on most
of the twenty data sets they tested, with a simple linear discriminant classifier. However,
results of the linear classifier are more mixed when the comparison is done with the 1-NN
associated with an enhanced dynamic time warping distance. Performances are indeed
very data-dependant and authors suggest improvements can be made through the use of
more sophisticated classifiers.
Given feature vectors, one can then use a large set of classification models. However, in
the case of rare or unknown events, one may use other strategies.

Anomaly detection. When one class is scarce or missing in training, we usually refer
to anomaly detection [142]. Sometimes associated with change point detection, this field
includes methods that aim at detecting “abnormal” data which is generally rare or missing
in training. In fact, there appears to be two main sets of methods. When no labels are
available (unsupervised), the objective is to detect abnormal data without any previous
knowledge, considering that the data set already contains “rogue” instances. This gen-
erally refers to outlier detection. The second set of methods, known as novelty detection
encompasses approaches that seek to characterize “normal” data by training a model ac-
cording to the only available class, and treat any unknown data as normal or abnormal
depending on the model’s output. This is considered as supervised learning since all train-
ing data is drawn from the “normal” class. We give here a few illustrative examples.
One of the most used algorithm in this field is the One-Class Support Vector Machine
(OCSVM), which is an adaptation of the original SVM algorithm. A first approach was
proposed by Schölkopf et al. [158]. The main idea is to map data into a feature space (cor-
responding to a selected kernel) and maximize the margin with the origin. The resulting
hyperplane separates the space into two regions, the first one built around training data
and the other one being its complementary.
Isolation Forest [109] consists of building a forest of isolation trees and determine a sam-
ple’s degree of abnormality using the average path length needed to reach it. An isolation
tree is built by successive binary splits with random choice in the feature and split value.
Splits are done until the tree reaches a fixed depth or each training sample is isolated in
a terminal node. The main idea is that abnormal instances are likely to be separated from
others after fewer splits since they are different and less numerous. This method is de-
signed for outlier detection since there is no “normal” model but rather an outlier-ness



3. EVENT DETECTION IN TEMPORAL SIGNALS 37

measurement.
Breunig et al. [31] proposed an outlier detector based on a measure called Local Outlier
Factor (LOF). Given a data point, the LOF gives a degree of how much this instance can
be considered as an outlier. For that purpose, authors define a local reachability density
and compute the LOF as the ratio between the density around the measured point and the
densities around its neighbours. The neighbourhood is a fixed parameter and defined as
the number of nearest points. Finally, one can use a threshold over the LOF to obtain an
outlier detector.
There also has been a great deal of work with neural networks. Most of them are based
on a reconstruction error, with a simple idea: train a neural network whose sole purpose
is just to reconstruct data as it is given in input. Hence, when fed with “normal” data, the
model is trained to reconstruct this type of data. When confronted to a new point, the
reconstruction error becomes then a novelty score. It is usually done with hidden layers
that contain few units so that the model has to learn a compressed representation of data.
These models are called either Replicator Neural Networks (RNN) [75] or Autoencoder
(AE) [174], the difference between them being the activation function of one hidden layer
– a traditional sigmoid in the AE and a staircase-like in the RNN.
More recently, there has been an interest in anomaly detection using generative models.
A Variational Autoencoder (VAE) is a probabilistic adaptation of autoencoder whose main
goal is to learn a latent space that is sufficiently regular so that data generation (from the la-
tent space) is possible. As VAEs learn distribution parameters, a reconstruction probability
can be computed, i.e. the probability for a given unknown data that it has been generated
from the latent variables learned with “normal” data [8]. Generative Adversarial Networks
(GANs) are deep learning frameworks that are based on adversarial training. The general
idea is to train two neural networks that will compete against one another. The first one –
the generator (G), is trained to generate data that follows a “true” distribution (from which
training data is sampled). The second one – the discriminator (D), is trained to discrim-
inate between generated data and the true distribution. GAN-based anomaly detection
methods make use of both networks by mixing the output of D and G to build an anomaly
error [101].
Anomaly detection is a vast field of machine learning methods with many applications
and still on-going challenges. Among these methods, novelty detection approaches are
the most interesting to our framework since we aim to detect rare events (falls) among
events that are easier to collect (any activity of daily living). These methods are inherently
based on the a priori absence of abnormal data (fall events in our case), and the strength
of these techniques resides not only on the model itself, whose choice among the large
literature is not obvious, but also on a training set as representative as possible of the
normal class. In the case of fall detection systems, as evidenced by the literature (more
details in next section), the final purpose is rather to characterize falls than build a model
of activity of daily living (ADL) and label as fall any “different” event. It is our belief that
even if it implies to learn from very few fall events or simulated ones, it is still worth
building from them than seeking to achieve a better ADL model, since ADL events may be
a lot more varied than expected, combined with the fact that detecting a fall wrongly may
be considered a higher error than missing one when it comes to industrial purposes 1.

1When implemented in a nursing home, a fall detection system sets off an alarm for each suspected fall



38
CHAPTER 2. PERSON MONITORING: A REVIEW ON SYSTEMS AND DETECTION

METHODS

Supervised classifier. When one has at his disposal a reliable labeled set of data, a
straightforward way to exploit it is to use classical supervised methods. Literature shows
a use of the wide variety of available models to perform pattern recognition over time
series. One can use, as distance-based methods do, the k-NN model, however it seems
that time series classification methods rely on more sophisticated methods. In fact even
distance-based times series classification methods tend to use distance for feature engi-
neering and use more advanced supervised learning methods [2]. A widely used method
is the Support Vector Machine (SVM), whose principle lies in the separation of data points
with a hyperplane. Themost interesting part is that this separation can be done not only in
the original space but also in higher dimension spaces thanks to the use of kernels. Hence,
the algorithmmay find a linear separation in the new space, corresponding to a non-linear
separation in the original space. It is used for example in gait classification by Begg et al.
[16], who analyse performances with three kernels, showing that mapping data in higher
dimension improve their results. Neural networks are also of use, with the example of
Sternickel [164] who develop a model to recognize patterns in ECG time series. For this
purpose authors use a neural network with a single hidden layer whose number of units
is lead by the number of wavelets bands they use. As long as times series are transformed
into a usable feature vectors, any classifier can be used. To prove the benefits of their work,
Lines et al. [108] tested for example seven classifiers over 26 data sets. Results show that
best performances are obtained among the most sophisticated classifiers of their selection,
e.g. random forest and SVM, over simpler methods, e.g. 1-NN and decision tree. However
among the most complex models results are mixed, showing that there is no particular
best performing model and performances are rather data-related.
As we show in next section, fall detection systems also make a great use of classical super-
vised methods, but many other areas of applications seem to use such methods. Bolton
and Hand [22] give a review on fraud detection methods, showing a large variety of used
approaches and especially neural networks. Mahela et al. [113] present a comprehensive
survey over power quality disturbances detection, in which numerous classifiers have been
pointed out, among them the SVM and neural networks.
In the end, in the case of supervised learning for time series classification, it seems that
there is no universal rule over the choice of the classifier, apart from general machine
learning considerations, such as the complexity of the model, the size of the training set,
the ease of implementation, the model’s interpretability, the execution time etc.

4 Features for monitoring systems

In order to perform the classification task, one may feed directly the decision model with
the signal. This can be done when this latter is considered to be sufficiently representative
of human movements and the model is specifically designed for time series. In this case a
few processing steps are sufficient to perform the detection. When regarding fall detection
literature, since signals to be processed are rather complex, methods tend to use feature
extraction, or at least a few transformations of the output signal. This turns out to be quite
sensor-dependant since monitoring systems include a wide variety of signals. For this
reason we distinguish here between image-based systems and the rest, which are mostly

of each connected room. With potentially dozens of residents, even the lightest false alarm rate can become
unmanageable for caregivers.
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one-dimensional-signal-based systems.

4.1 Vision-based approaches

When using image streams as input, the temporal nature of the event we look for makes
the signal hard to use as a direct input for a detection model. Indeed, using for example
distance-based methods would lead to measure similarity between whole images (or even
sequences) hence using models over a huge number of dimensions. Therefore, most vision
systems use several processing steps to reduce image stream into usable and understand-
able signals.

Silhouette extraction. Systems built on video recording rely on a first step called back-
ground subtraction. This process consists of removing what are called background pixels
from the successive images in order to keep the relevant ones, i.e. foreground, which in
this case are supposed to be the monitored persons. This first step is key before being able
to compute any features. The idea is, for each pixel to determine whether it belongs to the
background or not. Most methods use an estimate of a background image, and at each time
t, for each pixel of the image, depending on the form of the background estimate, a test is
done to classify the pixel as background or foreground. The easiest method for background
estimation is to take the mean value over several successive images. Then each pixel that
falls within a threshold of its corresponding background value is set as background [154].
There are several other methods such as median, or Gaussian average filtering. Since these
latter do not handle well the time variation of background changes, finer methods such
as mixture models can be used [165]. Once the foreground is extracted, most methods
use morphological operations to homogenize the silhouette, such as the opening opera-
tion [13, 118], which consists of an erosion and a dilation of the image. Some systems
rather use tracking procedure and notably particle filtering [152], that consists of estimat-
ing the position given the successive observationswith the use of a succession of prediction
and corrections steps.

Silhouette into features. Once the silhouette is extracted for each time t, it is reduced
into features that will feed the final the decision rule. The simplest ones are the silhouette’s
position and its velocity, which are computed by reducing the silhouette into a single cen-
troid. However, to improve the level of information, one can extract shape and orientation
features. Shape features are obtained through various methods. A first approach is to draw
a geometrical object around the silhouette and extract the object’s parameters as features.
It can be done using a bounding box around the target, hence extracting the height and
width [118], or using the parameters of an ellipse, i.e. center, orientation and semi-axes
lengths [153]. Others use custom form parameters, such as three-point representation that
estimates the position of the head, trunk, and legs of the monitored person [39]. A finer
shape representation called a skeleton is also proposed in order to estimate a more com-
plex body form. It is done for example using triangulation of the silhouette, which consists
of filling the shape with triangles under some constraints, and connecting the centroids of
the resulting triangles. The connected centroids form the final skeleton [205]. The Kinect
comes with its own embedded skeletal reconstruction that can be used for feature compu-
tation [129]. Once the shape is summarized into a bounding box, an ellipse or a skeleton,
one can compute its orientation, which adds relevant information [39, 100, 186]. Systems
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(a) Original image (b) Background subtraction (c) Bounding box

(d) Bounding ellipse (e) Three-point (f) Skeleton

Figure 2.2: Example of preprocessing methods for feature extraction in video-based moni-
toring systems. From the original image (a), the background is subtracted, hence leaving
the area of interest (silhouette) (b). The silhouette can then be reduced to various interme-
diate models (c, d, e and f) so that interpretable shape features can be extracted.

that dispose of depth information, whether by using multiple cameras or depth camera,
use reconstruction methods to get the coordinates in the camera coordinate system [13].
To characterize the shape, histograms can also be used. The idea is, given the silhouette’s
centroid, to construct a polar coordinate system and divide it in a fixed number of areas,
each area corresponding to a bin [205]. Figure 2.2 gives illustrations of cited methods from
original image to shape or orientation features.
When regarding vision-based feature extraction, methodologies may vary a lot from one
system to another, however the aim is generally to characterize the position, the velocity
and the shape of the silhouette. In the end, most methods finally operate on a few variables
that change over time.

4.2 One-dimensional signals characterisation

One-dimensional signals are generated by various types of sensor. Depending on the na-
ture of the signal (e.g. acceleration, sound, Doppler frequency…), specific features may be
computed. However, we can find many similarities across fields.

Features for accelerometers. Themost straightforward features are found within wear-
able sensor systems. It can be explained by the fact that among one-dimensional signal
systems, accelerometers and gyroscopes deliver the most explanatory signals to character-
ize human activity. In fact some systems do not even compute a single feature over output
signals and use a light preprocessing as the only treatment before performing the decision
rule [52, 131]. However most methods use basic computation of the signals, such as over-
all acceleration over the three axis, which is the two-norm of the acceleration signal [48].
It is called either root sum of squares [25, 26], total sum vector [90] or signal magnitude
vector [88]. Methods also use estimation of the body angle [26], or its velocity by integrat-
ing the acceleration [26, 90]. Custom features may be found, such as the total sum vector
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over the signals filtered by a high pass filter. Called the dynamic sum-vector, it is used to
compute the vertical acceleration [90]. Authors also investigate fast acceleration changes
by computing the difference of maximum and minimum acceleration values over a sliding
window, and this for each axis. To characterize the intensity of the acceleration, some
methods use the integration of acceleration over a fixed window called signal magnitude
area [20].

More complex features. When it comes to other sensors, i.e. acoustic, vibration, radar,
and Wi-Fi, more elaborate features are explored. These sensors are a lot more subject to
external perturbations since they record any object or person in the covered area, and not
just the monitored person (as wearable sensors do). To extract more information from
the signals, some systems use time-frequency representations. This is usually done us-
ing spectrograms, which represent the signal in two dimensions (time and frequency), the
most popular method being the Short-Time Fourier Transform (STFT), which is a Fourier
transform using a window over the signal [52, 105, 110]. This technique implies a trade-
off between the frequency and time resolutions, that depends on the chosen window size.
Other methods, especially radar-based, use wavelet transform [7, 166]. This representa-
tion allows the user to tune the feature extraction process. Indeed, wavelet functions are
derived from a mother function which is translated and dilated. Since there are multi-
ple wavelet families and scales, the wavelet choosing procedure requires more actions
than with STFT. Audio-based systems rely on acoustic-specific descriptors that are widely
used for automatic speech recognition [46], such as the Mel Frequency Cepstral Coeffi-
cients (MFCC) [104, 110, 215] and Perceptual Linear Prediction Coefficients (PLPC) [198].
Both MFCC and PLPC are based on the cepstrum which is a Fourier-based representation
that was initially designed to better fit the human auditive system. With vibrational data,
physics-related features can be computed such as Shock Response Spectrum (SRS) which
is a representation of the response of a mass-spring system to an input (using here the
vibrational signal as the input) [215].
Unlike vision-based systems that rely on the same main descriptors, features used for one-
dimensional signals are a lot more diverse. It is obviously explained by the great variety
of one-dimensional signal sensors used for fall detection. Indeed, some fields have their
own set of descriptors based on the nature of the signal and the difficulty to interpret
it. However they all tend to describe the signal either using straightforward statistical
measurements or frequency-related descriptors.

5 Detection strategy in fall systems

Once features are extracted from the signals, the decision rule can be constructed. Litera-
ture shows that fall detection systems are based either on threshold techniques or super-
vised machine learning methods.

5.1 Threshold-based methods

When descriptors possess an acceptable level of separability over data, a simple and fast
way to construct the decision rule is to use thresholding methods over them. Most wear-
able methods rely on this type of decision rule. The simplest methods use directly thresh-
olds over their whole pool of features [26, 88, 131] while others use multiple thresholding
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stages with rules between them. For example, Bourke and Lyons [23] use a two-level
method: they first evaluate angular velocity with a threshold to decide if there is a sus-
picion of a fall, and in the latter case, angle value and angular acceleration are computed
before being compared to thresholds tomake the final decision. This is equivalent to thresh-
olding over all features but it is done in away that critical features are computed onlywhen
needed.
One can also use thresholds combined with time, for example Bourke et al. [25] use the
following rule: if the body angle does not exceed a certain value during N seconds after a
suspected fall, then a fall is suspected to have occurred. Thresholds may also be used over
activity measurement after a potential fall and according to its value, confirm or reject
a suspected fall [193]. More sophisticated methods also use operations between features
over a fixed time length, for example [90] use the difference between the maximum and
minimum value of the total sum vector, and [43] also compute min-max thresholds, how-
ever on two time windows, intended for respectively event detection and fall confirmation.
Finally, a mix of these approaches has been proposed by Degen et al. [48], who perform
it in three steps: they first detect a high velocity with a simple thresholding, then the im-
pact with a min-max threshold, and finally a long enough inactivity so that the system can
confirm a fall has occurred.
According to literature, in most cases thresholds seem to be manually learnt, i.e. besides
human observation, there is no particular metric on which the threshold selection relies
on. In the other case, they are based on metrics such as the extrema of the features in
the data base of a given class [26]. Threshold methods are easily set up and seem to give
good result. However, they are a lot more suited to vision-based and wearable systems
since they give very interpretable signals. When confronted with more difficult signals,
machine learning methods seem more adapted.

5.2 Statistical models

When it comes to statistical models, there is no particular learning method that emerges
from fall detection systems literature. Like previously mentioned for time series classi-
fication, the choice of a method is done over more general considerations such as data
availability, computation etc. Since they lack fall events (and yet dispose of numerous
non-fall events), some systems rely on anomaly detection, and others, due to the nature of
the signal, use very specific methods. However, most methods rely on classical supervised
learning models.

Audio-related models. As seen in previous section, audio systems use specific methods.
For example, Li et al. [105] improve their previous fall detection system [104] by adding
blind source separation (BSS) in the process. BSS is achieved with Non-negative Matrix
Factorization (NMF) over the short-time Fourier transform of the signal, which allows to
identify and isolate the contribution of a suspected fall in the audio signal. The isolated sig-
nal is finally classified with MFCCs features and a k-NN. Works have also been proposed
inspired by speaker recognition methods [198]. Traditional speaker recognition methods
transform acoustic signals into feature vectors according to classical audio features (MFCC,
PLPC), and the most standard approach consists of fitting a Gaussian Mixture Model for
each type of event and using themaximum likelihood to determine in which GaussianMix-
ture an unlabeled event falls into. More advanced approaches use a Universal Background
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Model (GMM UBM), which is a single GMM trained with all data. Then, for each new
audio entry, UBM parameters are adapted using maximum a posteriori [35]. These new
parameters are called supervectors. Out of an upper bound of the Kullback-Leibler diver-
gence, one can define a kernel for these supervectors that satisfies the Mercer’s condition
and then use a SVM to perform the final classification [35].

Anomaly detection. Among used statistical methods for fall detection, a few approaches
use anomaly detection techniques in which models are trained over activity of daily living
events. For example, Wang et al. [189] use two stages to detect fall events from Wi-Fi
signals. The first one is an unsupervised anomaly detector (i.e. outlier detector): it uses a
metric called Local Outlier Factor (LOF) which is, for each data point, the ratio between
the average local density of its neighbours to its own local density. This step detects any
human behaviour that differs from staying still. The second stage consists of passing a
Gaussian-kernel-based One-Class SVM (OCSVM) on the extracted anomaly. This whole
method (LOF + OCSVM) is in fact a double anomaly detection, the first being unsupervised
and the second being supervised. Another similar approach is proposed by Yu et al. [205],
who use a combination of two thresholding procedures and the output of a OCSVM. The
thresholding rules are respectively intended to detect a large human movement and the
duration of an abnormal position, which is detected by the OCSVM. The OCSVM is not
learnt with a full training batch but rather in an online fashion (Online OCSVM). They
do so not only to speed up the training but more importantly to adapt the model to new
labeled events.

Classical supervised learning. Aside frommethods that are either domain-specific (au-
dio) or designed for a lack of labelled fall events (anomaly detection), the rest of statistical-
based methods rely on traditional supervised learning. Although familiar with threshold
methods, some wearable systems use supervised learning, for example Doukas and Ma-
glogiannis [52] use a SVM over the raw signal and simple features. They compare three
kernels, finally choosing the Radial Basis Function. Several methods use a mix of a light
thresholding procedure followed by an evaluation with a supervised model. The first is
often intended to detect an event and the second to classify it as fall or non-fall. For ex-
ample, Zigel et al. [215] (vibration sensor) use a threshold over the energy of the vibration
signal as a first step to detect an event, and a Quadratic Discriminant Analysis (QDA)
over additional features (MFCC, SRS…) for the fall detection procedure. Similarly, Stone
and Skubic [165] (Kinect) use a threshold over the vertical state to detect a suspected fall,
which is then confirmed (or not) with a decision tree over different features. Liu et al. [110]
(radar) filter events with a quantity called “energy burst”, which is the sum of Short-Time
Fourier Transform values over a predefined frequency range. Events are then classified
with a supervised algorithm. Authors compare performances with a Support Vector Ma-
chine (SVM) and a k-Nearest-Neighbour (k-NN), the latter giving better results. Su et al.
[166] (radar) also use a prescreening stage which consists of thresholding the output of
one preselected wavelet transform. The wavelet function and scale are chosen according
to fall / non-fall discriminating power. Then, they compute additional wavelet-related fea-
tures and use them as a feature vector for a k-NN. Finally, Wang et al. [187] (Wi-Fi) use as
well a double detection technique: they first detect a fall-type event through thresholds of
the phase of the CSI signal, and then apply a kernel-SVM on the selected signals.
It appears that when the signal is more challenging, fall detection methods tend to use
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more sophisticated algorithms. Indeed, we note that almost all wearable-sensor systems
are based on simple thresholding. This is mainly due to the fact that the signal is very
interpretable and not subject to external perturbations nor occlusions. However, when
using other sensing methods that deliver more complex signals (radar, Wi-Fi, vibration,
pressure…), then using machine learning becomes a necessity. In their survey, Xu et al.
[199] show that machine learning tends to be increasingly used among fall detection sys-
tems. They show at the same time that the part of wearable systems is decreasing, which
is obviously correlated since there is then a growing part of more complex signals to deal
with.

6 Conclusion

From the literature, we observe that there are many ways of acquiring a relevant signal
to detect falls in a monitored area. However, when dealing with real applications such as
elderly monitoring in nursing homes, a fall detection system must meet specific criteria.
We showed (see Table 2.1) that from a sensor point of view, proposed systems are very
unequal when evaluated through this set of criteria.
Methods mentioned in this chapter are regrouped in three tables: Table 2.2 for camera
systems, Table 2.3 for wearable sensors, and Table 2.4 for ambient systems. Within each
table, systems are ordered by year. Whenever available and necessary, we also indicate the
number of sensors and their position. Performance results are also shown (when available)
but are present as mere indications and not as the main comparison argument. As pointed
out there are more decisive criteria than performance, and, furthermore, results are very
data-dependant. As a matter of fact, most studies use their own data collection protocol
and a system may perform differently from one to another. Pannurat et al. [139] give a
comprehensive table that shows the variety of events in each class (i.e. fall or activity of
daily living) for each reviewed fall detection method, showing the great variety of proto-
cols across all proposed systems. In addition, these protocols are conducted in controlled
environment, which gives little clue about how well systems perform in real situation.
From these tables we observe the clear distinction of methods from one sensor family to
another, notably feature extraction procedures which are very dependant on the signal’s
nature. Concerning the classification task, likewise, there is not one particular approach
that addresses the fall detection issue, but rather a whole set of methods that depend on
the type of signal that has to be processed. However, whenever possible, i.e. when the
assumption is made that one has a reliable labeled data set of each class (falls and activity
of daily living), time series classification methods tends to use supervised algorithms over
statistical feature vectors. This is even more the case when more complex signals are used,
where simple thresholding methods would fail.
In this context, the Tarkett’s floor sensor seems to meet the main criteria for a daily use in
nursing homes, and this fall detection systems overview leads us to consider an approach
based on statistical features associated with a supervised model, whose details are given
in next chapter.
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Study Year Sensor Features Detection Results

Lee and Mihailidis [100] 2005 RGB camera (ceiling) Position, spatial orientation and
velocity

Threshold Sens 94% Spec 81%

Miaou et al. [118] 2006 Omni-camera (ceiling) Height, width and weight Threshold Sens 90% Spec 86%
Rougier et al. [153] 2007 RGB camera (wall) Shape and motion (ellipse) Threshold Sens 88% Spec 87.5%
Vishwakarma et al. [186] 2007 Omni-camera Shape and motion (Angle, gradi-

ents)
Threshold Acc 74% Sens 62%

Spe 84% (indoor and
multiple persons)

Hazelhoff et al. [76] 2008 Multiple RGB cameras (2) PCA-based feature extraction Multi-frame
Gaussian classi-
fier

Sens 91-100% (realis-
tic activity)

Auvinet et al. [13] 2011 Multiple RGB cameras
(2-6) with high FOV

Shape (Vertical volume distribution
ratio)

Threshold Sens 80.6% Spec
100% (3 cameras, no
occlusion)

Rougier et al. [154] 2011 Kinect Position and motion Threshold Acc 98.7%
Yu et al. [205] 2013 RGB camera (wall) Shape and position (ellipse, his-

togram)
Online One-
Class SVM

Sens 100% Spec 97%

Gasparrini et al. [65] 2014 Kinect Position (Height) Threshold N/A
Chua et al. [39] 2015 RGB camera (wall) Shape (three-point representation) Threshold Acc 90.5%
Stone and Skubic [165] 2015 Kinect Shape and motion (Vertical state,

Min vertical velocity…)
Threshold and
Decision Tree

Sens 71-98%
(far & not occluded)

Nizam et al. [129] 2017 Kinect Velocity and position (Kinect joints) Decision Tree Acc 93%

Table 2.2: Summary table of literature review: camera systems.
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Study Year Sensor Features Detection Results

Degen et al. [48] 2003 Accelerometer
(Wrist)

Acceleration (norm), velocity (two
estimations)

Threshold Sens 65%

Nyan et al. [131] 2006 Gyroscope
(3, Trunk)

None (direct use of the signal) Threshold Sens 100% Spec 92.5 - 97.5%

Jeon et al. [88] 2007 Accelerometer
(Chest)

Acceleration (norm) and velocity Threshold Acc 96.52%

Bourke and Lyons [23] 2008 Gyroscope
(1, Trunk)

Acceleration (norm) angle, angu-
lar velocity

Threshold Sens 100%

Doukas and Maglogiannis [52] 2008 Accelerometer
+ Microphone
(Foot)

Acceleration (raw), sound peak
frequency, sound relative ampli-
tude

SVM N/A

Bourke et al. [25] 2008 Accelerometer
(Chest)

Acceleration (norm) Threshold Sens 90% Spec 99%

Kangas et al. [90] 2009 Accelerometer
(Waist)

Acceleration (norm), dynamic
sum vector, vertical acceleration,
velocity

Threshold Sens 97.5% Spec 100%

Dai et al. [43] 2010 Accelerometer
(Thigh)

Acceleration (norm) and vertical
acceleration

Threshold Sens 97.33% Spec 92.3%

Bourke et al. [26] 2010 Accelerometer
(1, Waist)

Acceleration (norm), velocity, an-
gle

Threshold Sens 100% Spec 100%

Bianchi et al. [20] 2010 Accelerometer
+ Barometric
(Waist)

Acceleration (norm), signal mag-
nitude area, angle, differential
pressure

Threshold Sens 97.5% Spec 96.5%

Table 2.3: Summary table of literature review: wearable sensors.
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Study Year Sensor Features Detection Results

Zigel et al. [215] 2009 Vibration and sound Length, energy, duration, SRS,
MFCC

Threshold and
QDA

Sens 97.5% Spec 98.6%

Xiaodan Zhuang et al. [198] 2009 Microphone PLPC and energy GMM and SVM Sens 70% Recall 64%
Rimminen et al. [149] 2010 Electric Near Field Number of activated tiles,

longest dimension on ground,
and sum of magnitudes

Markov Chain Sens 90.7% Spec 90.6%

Werner et al. [193] 2011 Vibration (3-4 sen-
sors)

Peak-to-peak, average, wieghted
average, duration

Threshold Sens 87.7% Spec 97.7%

Liu et al. [110] 2011 Radar (2, ground) Energy burst (with STFT) and
MFCC

k-NN (k=3) AUC 0.96

Li et al. [104] 2012 Array of 8 micro-
phones (circle)

MFCC k-NN Sens 76% Spec 69%
(SNR 6dB, SIR 4dB)

Li et al. [105] 2014 Array of 4 micro-
phones (Kinect)

Energy ratio (using blind source
separation and STFT)

k-NN Sens 93% Spec 78%
(SNR and SIR at 0dB)

Su et al. [166] 2014 Radar (ceiling) Wavelet transform k-NN (k=1) Sens 97.1% Spec 92.2%
Amin et al. [7] 2016 Radar (ceiling) Wavelet transform k-NN (k=1) N/A
Wang et al. [189] 2017 Wi-Fi Standard deviation, derivative… One-Class SVM Prec 78% Spec 79% (dor-

mitory)
Wang et al. [187] 2017 Wi-Fi (two links) Same as [189] + 2 customs SVM Sens 91% Spec 92%

Table 2.4: Summary table of literature review: ambient systems.
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Abstract

This chapter describes a fall detection system based on the combination of a floor
sensor and a predictive model. The sensing device, which is a piezoelectric sensor
placed directly under the flooring of the monitored area, outputs a one-dimensional
signal to the fall detection algorithm. This latter includes feature extraction and a
decision rule built on temporal aggregation of the outputs of a random forest model.
For industrial optimization reasons, we propose a simple feature selection procedure
and observe its impact on performance, along with a model improvement through
data augmentation. This system has clear benefits when regarding main fall detection
system issues, and provides good results on an experimental data set. Parts of this
work have been published in Minvielle et al. [121].
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Tarkett’s objective is to propose a high performing system based on a floor sensor. To
that end, the company developed a sensor that comes as a thin layer that is invisible to
the user since it is installed under the flooring. The sensor configuration is such that it
can cover any area and shows valuable implementation advantages. The resulting fall
detection system is meant to be independent for each installation. This means that in a
nursing home, each room has its own processing unit that is connected to a central alarm
system. The processing unit is made as small as possible so that it can be easily installed in
any configuration. Therefore, some computing constraints are at stake, whether in terms
memory or processing power. In that context, we aim at proposing a simple yet performing
detection model.
First, we describe the floor sensor on which the Tarkett system is based on, with its advan-
tages and limitations, from the core sensing material to the final output signal. The exper-
imental data set that was acquired for the fall detection task is then described, followed
the main contribution of this chapter. A predictive model based on data augmentation and
time aggregation of a supervised model is proposed, along with a feature selection method
that addresses the hardware constraint, and performance results are finally given.

1 From floor sensor to signal processing

1.1 Floor sensors

Many floor sensor technologies have been proposed, most of them for gait analysis pur-
poses. More details on gait analysis are given in Section 1.2 on page 113 , and we give here
a short overview of main floor technologies. Floor technologies here encompass systems
that are integrated in the flooring. It means that vibration devices for example, are out
of this field. They are usually placed directly under the flooring and are invisible to the
patient. One can create a floor sensor through different means. In literature, we identify
four main different technologies: capacitive sensors, contact sensors, piezoresistive, and
piezoelectric sensors.

Capacitive. The capacitive effect is the property of certain material to retain electric
charges. Between two electrodes, a capacity depends on the distance and the permittivity
between these electrodes. Hence one can use these two factors to create a sensor. A first
way to create a capacitive sensor is to put an insulating material between two electrodes
parallel with the ground. Then, when a force is applied on the sensor, the distance be-
tween the two electrodes decreases and the capacity increases. However, to the best of
our knowledge there is no particular floor technology that uses this approach.
All capacitive floor technologies seem to use the second approach, which consists of setting
up the electrodes on the same horizontal plane (see Figure 3.1). The idea is that when
current is fed to one of the electrodes, an electric field is created between the two electrodes.
This electric field depends on the current intensity but also on the dieletric properties of
the medium between electrodes. Hence, the capacity is constant when there is just air
above the measuring electrode. However, when a charged object (such as a human foot)
is approaching the field, the capacity changes. Capacitive sensors are used as matrices of
tiles, these latter being of various size. Each tile measures the capacity of what lies above,
hence allowing the patient’s monitoring through an array of binary values [80, 184].
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These systems have the advantage of detecting motionless persons since it uses the field
deformation. Besides, it allows users to detect a human presence even if one does not
touch the measuring tile, since being in the tile’s neighbourhood is sufficient. However
capacitive sensors need a constant power supply. Besides, they are sensitive to humidity,
making them unsuitable for elderly care as a great part of fall happen in the bathroom [196].

Figure 3.1: Principle of capacitive sensor. An electrode is used to receive current while the
others will serve as presence detectors.

Contact sensors. Some works proposed the use of load cells, which are cylindrical de-
vices that are usually placed at the four corners of each tile. Working as pressure sensor,
they use various technologies to measure the applied force, the most used being the strain
gauge [3, 132]. Binary switch sensors are simple sensors that output a two-value signal
depending if a weight is sensed or not. Installed as matrices under the floor, since there is
just a spatial information and no pressure signal, the higher the resolution the better. For
example Yun et al. [207] use a large resolution of more than 700 sensors per square meter,
while Suutala et al. [171] use 100 sensors per square meter. Figure 3.2 shows schematics
of contact sensors.
Load cells floors seem to be designed for clinical purposes. They require a heavy hardware
since the floor is divided in tiles of several cells, hence making them a poor choice for large
areas. As of today they seem to be better suited for small-scale systems such as connected
shoe soles [83]. Binary switches are cheap sensors but have the obvious disadvantage to
require a high resolution to perform monitoring tasks, hence posing a hardware issue.

(a) Load cell (b) Binary switch output

Figure 3.2: Contact sensors. Load cells (a) are usually installed under each corner of tile and
work as pressure sensors. On the other hand, binary switches require a high resolution to
perform well. Figure (b) shows examples of outputs of a foot on low (left) and high (right)
resolution systems.
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Figure 3.3: Example of a piezoresistive floor system. When a force stresses the material,
its resistance decreases.

Piezoresistive. The piezoresistive effect is for a material to have its electric resistance
modified depending on the mechanical constraint that it receives. More precisely, the
piezoelectric sensor is fed with a current that is constantly measured at the output. When a
force is applied to thematerial, its resistance is lowered and themeasured current increases,
hence acting as a pressure sensor. For example, Tanaka et al. [173] use several 40 x 40 cm2

mats, each of them containing a piezoelectric sensor (see Figure 3.3). However, they use a
threshold over the mats output, hence processing an array of binary signals (4x4 in their
experiment).
Piezoresistive sensors can be adapted to various resolutions, however, like capacitive sen-
sors, they need a constant power supply.

Piezoelectric. A piezoelectric material emits charges when stressed or squeezed. Pres-
sure sensor can be obtained in a variety of ways, using for example crystals such as
quartz, or dieletric materials called electrets. For example Suutala and Röning [170] use a
polypropylene film coated with metallic electrodes, resulting in a very thin film (less than
100 μm) than can be installed directly between the concrete and whatever flooring [135].
The main difference with piezoresistive material is that when stressed by a constant force,
this latter will see its resistance increase as long as the force is present. However in the
same situation, when using a piezoelectric material, the output voltage increases then re-
turns to its initial value. Hence, while the piezoresistive material measures a pressure, the
piezoelectric material measures pressure variations. Figure 3.4 shows a schematic view of
a piezoelectric floor sensor.

Figure 3.4: Piezoelectric sensor principle. When deformed, the piezoelectric material emits
charges, hence a current can be measured in output.

Film sensors are the most interesting in terms of application. They are flexible and since
they come as bands, they can be easily manufactured for large scales. Besides, they are in-
sensitive to humidity and do not require power supply. For theses reasons, this technology
was adopted. The film is the same as the one proposed by Paajanen et al. [135], however
the installation is different. The following section describes the sensor in more details.
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1.2 Tarkett’s technology

In this subsection we present the floor sensor that is used for the installation in nursing
homes. The piezoelectric principle (on which the device is based) is outlined, then the unit
is described in more depth.

1.2.1 The piezoelectric sensor

Thepiezoelectric principle, when simplified, can be explained by the relation d = Q
F , with d

being the piezoelectric coefficient, Q the charge andF the force received by thematerial. A
piezoelectric material will emit charges under deformation but can also shrink (or expand)
when submitted to an electric field. Hence, such a material can fit multiple purposes such
as speakers or motors when using its deformation under a electric field, to microphones
and sensors when using the electric charge emitted when submitted to a force. Tarkett’s
system is based on the latter use, and the piezoelectric material acts as a pressure sensor.
It is done using an electret, which is a dieletric material in a quasi permanent polarization
state. An electret can be obtained by applying an electric field to a polymer. Indeed when a
polymer comes as a foam, its cavities can be electrically charged, and the polymer becomes
piezoelectric. Tarkett’s sensor is composed of several insulating layers of polyethylene
terephthalate (PET) and aluminum, and the piezoelectric layer is made of a polypropylene
foam (PP) (see Figure 3.5) resulting in a total width of about 0.3 mm.

Figure 3.5: Section of Tarkett’s piezoelectric sensor. The PP foam is coated with aluminium
layers that serve as measurement and mass for the sensor and the PET is used as insulator.

1.2.2 Set up

(a) Roll of sensor (b) Connector

Figure 3.6: Roll of sensor (a) and connector (b).
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(a) Sensor set up (b) Room equipped with the fall detection system

Figure 3.7: Pressure sensor installation. The sensor can be installed directly onto the con-
crete and covered by the flooring (a). Figure (b) shows an example of installation in a room.
In this example, there are three areas. The bedroom area is composed of four connected
bands that output a single signal. This signal constitutes one of the three inputs that feed
the processing unit.

The sensor comes in bands of 60 cm wide and is placed directly under the flooring. The
bands are initially rolls of about 100 meters that can be cut every 30 centimeters. Once cut,
bands can be connected together without limitation in their number before the signal is
recovered by the processing unit. This is done with small flat connectors that link bands
together to form an area before passing the resulting signal to the unit. Pictures of the
sensor and connectors are given in Figure 3.6, and schematic installation is displayed on
Figure 3.7. The processing unit has 8 entry channels, allowing each unit to process a large
surface by connecting bands. This allows a great flexibility of the system to any scale while
keeping a certain ease of installation.
The processing unit is designed to process the signal from end to end (from basic filtering to
event detection) and to communicate with servers (sending signal recordings) and the nurs-
ing home (sending information such as activity reports or alarms). When conveyed to the
unit, the signal is first passed through an analog charge amplifier that convert the charge
signal into voltage, and is then converted into numerical values. The unit is equipped
with a 32-bit 500 MHz processor, accompanied with 256 MB of RAM, and 500 MB of local
storage.

1.2.3 Limitations

It should be noted that compared to the theoretical piezoelectric principle law, the sensor
presents some variability in the piezoelectric coefficient d. Indeed, although d seems to re-
main constant when put under humidity or high temperature (less than 40◦ Celsius), it can
variate depending on where the impact is located on the floor. A difference of 9% between
max and min value of d has been observed in controlled experiments [160]. Besides, when
implemented the system can suffer perturbations due to the way sensor, electrodes and
upper layers have been installed. These elements that come with the implementation in
real conditions can result in alterations to the resulting signals when compared to similar
devices used in laboratory conditions [161].
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1.3 Signal processing

The preprocessing of data is done as follows. Let Ck(t) denotes the signal produced by the
channel k (k ∈ [1, . . . , K]), where t = 1, . . . , T represent the data points recorded with a
frequency of 100 Hz.

1. The linear trend of each channel is removed using a least-squares model.

2. Each channel Ck(t) is filtered with a low-pass Butterworth filter with a 10 Hz cutoff
frequency, fifth order, and zero lag. This step aims to limit the amount of electronic
noise present in the signal, as the 10 Hz cutoff frequency is the reference in gait
related signals [9].

3. Each channel whose signal maximum amplitude is small is then set to zero, as the
channel is assumed to only accounts for noise.

4. The resulting signal s is obtained as the sum of all the channels:

s = −
K∑

k=1
Ck(t)

The minus sign here has no influence on any further processing but comes from
internal aspect of the system. Indeed, as the processing unit contains an inverting
amplifier, to better reflect the physical aspect of the pressure sensor the final pro-
cessed signal is inverted back.

Figure 3.8 shows an example of a raw signal and its resulting preprocessing.

(a) Raw signal (b) Preprocessed signal

Figure 3.8: Example of raw (a) and preprocessed (b) signal resulting from a person walking
on the equipped pilot site.

2 Experimental data set

2.1 Protocol

A pilot site was equipped with the sensor and a data set was created using 28 volunteers.
Following a protocol, people were falling starting from specific positions towards differ-
ent directions. The non-fall events were made as varied as possible, recording walks (with
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one or more persons), some with a cane, movements with a chair, sitting, jumping, run-
ning, picking objects. 742 acquisitions were made, including 409 falls (i.e. 55% of the
acquisitions). Recorded signals last about 20 seconds in average. All acquisitions were
simultaneously video-recorded for labelling.

2.2 Data

Figure 3.9: Experimental database events

Figure 3.9 shows the variety of events for each class (fall and non-fall). Among fall events,
volunteers performed falls from a standing position and falls from a chair. Falls from a
chair were all performed in a similar way, however falls from a standing position were
done with various beginning and ending positions. Table 3.1 shows the variety of fall
events amongst falls that started in standing position.
The signal coming from the processing unit is sampled at fs = 100 Hz. As an example, a
fall acquisition signal is shown on Figure 3.10. In our database, we observe that the falls
last 1.2 seconds in average (i.e. 120 samples at 100 Hz).

Figure 3.10: Example of a fall acquisition signal. The volunteer arrives onto the smart floor,
walks a few steps, falls, stays put for a while, gets up and leave the floor. The orange part
is the ground truth of the fall location.
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Beginning posture
Ending posture Forward Lateral Backward Vertical

Forward 65 7 0 7
Lateral 30 62 0 5
Backward 27 44 102 32

Table 3.1: Experimental data set: diversity of falls events. The column indicates the begin-
ning posture of the volunteer while the row indicates the ending position.

3 A predictive model for fall detection

This section describes the proposed model for fall detection from floor signals. As previ-
ously shown (see Chapter 2), supervised model trained with feature vectors have proven to
be efficient when it comes to complex signals. In light of this, the adopted solution is pro-
vided by a combination of a statistical feature vector computed over the one-dimensional
signal and a random forest algorithm, which is a high-performing model, easy to handle,
train, and implement. The model is enhanced with data augmentation and in order to limit
the false alarm rate, we use time aggregation of the classifier outputs. We also question
the feature space for implementation in the embedded monitoring system.
Supervised learning models seek to estimate a function f whose goal is to predict from
an unknown input x ∈ X a corresponding output y ∈ Y , X being the feature space
and Y the label space. For a binary classification over real-value feature vectors we have
X = Rn and Y = {−1, 1}. The estimation of f is usually done through the minimiza-
tion of a loss function L that measures the error between the prediction and its expected
value. With a labeled set {(xi, yi), i = 1, . . . , n} we can then obtain a model f̂ such that
f̂ = arg minf

∑n
i=1 L(f(xi), yi). This framework is the most used for regression and

classification tasks, however random forests are trained differently.

3.1 The random forest model

A random forest (RF) is a powerful model proposed by Breiman [29] and based on the
aggregation of multiple decision trees. It can be used for both regression and classification
problems. Due to its good performances and the ease of use and implementation, the RF
model became quite popular and is now implemented in various packages. Before defining
a RF, we must first describe what a decision tree is.

3.1.1 Definition of a decision tree

Decision trees as they were defined by Breiman et al. [30] do not use a global optimization
scheme but rather greedy heuristics all along the training. Given a feature space X of Q
dimensions (X = RQ), a decision tree (DT) is the division of X into J non-overlapping
regions R1, R2, ..., RJ , also called terminal nodes or leaves. Figure 3.11 displays these two
representations of a DT.The most used methodology to build a tree is the CART algorithm
(Classification and Regression Tree) which operates as follows [30]. The tree is created by
recursive binary splits, meaning that we successively split the feature space into two parts.
At each split (or node), the algorithm chooses a feature and a corresponding threshold.
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(a) Tree (b) Regions

Figure 3.11: Example of a decision tree (a) and the corresponding regions in a two-
dimensional feature space (b) with two classes. Crosses and circles represent the training
samples.

This part is done according to the minimization of an impurity measure of the split. For
each node n, the algorithm works greedily by considering all features {Xq, q = 1 . . . Q}
and splitting values τ to maximize the information gain (IG). For a couple (Xq, τ), IG is
the difference between the impurity (denoted I) at node n and the weighted impurity of
the children nodes (denoted l and r for left and right):

IG(Xq, τ) = I(n)− Nl

Nn
I(l)− Nr

Nn
I(r) , (3.1)

with Nn the number of training sample in the node n, Nl and Nr the number of training
samples in left and right child nodes. There are several impurity measures, however the
most commonly used is the Gini index, which is defined as follows. Let pnk be the class
proportion of the class k in node n, the Gini index is

G(n) =
∑

k

pnk(1− pnk) . (3.2)

Hence defined, the Gini index gives a level of how much the split isolates a class from
others. It is preferred to the classical misclassification error (i.e. proportion of misclassified
examples in the node) since it tends to make pure nodes. An illustrative example is given
in Figure 3.12.
Splits are done repeatedly until a node is pure (i.e. G(n) = 0) and it becomes then a leaf.
One can also specify a maximum depth to reach. The depth of a tree is the longest path
between the tree root (i.e. the first node) and the leaves. Once the tree is trained, for every
unknown observation x that falls into the region Rj , we predict the output corresponding
to the majority class in Rj . The decision function of a DT is then defined as

f(x) =
J∑

j=1
cj1(x ∈ Rj) , (3.3)
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(a) Two possible splits
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(b) Gini and misclassification measures as a
function of the proportion in one of the classes

Figure 3.12: Example of two possible splits (A and B) in binary classification. We show
the possible outcomes (a) and Gini index and misclassification error are displayed for the
two-class problem (b). When using the misclassification error, IG(A) = IG(B) = 0.25.
However if we use the Gini index, then IG(A) = 0.125 and IG(B) ≈ 0.17. While the
misclassification error considers A and B with the same interest, the Gini index makes
the algorithm chose the split B. In fact, we remark that the Gini curve, compared to the
misclassification error, tends to have values reaching the upper left and right corners. The
more the impurity tends to reach these corners, the more it will penalize “impure” nodes.

with
cj = arg max

k
pk . (3.4)

3.1.2 Definition of a random forest

A random forest (RF) is an aggregation of several decision trees with two major princi-
ples [29].
First, each tree is grown from a dataset obtained by bootstrap of the initial training dataset.
Given a set of data, performing a bootstrap on it consists of sampling the same number of el-
ements with replacement. If done several times, say NT , then one obtains as much training
data sets and hence trains NT decision trees. This process is called bagging (for bootstrap
aggregation) and aims at reducing the variance of the final prediction function [74].
Second, when growing a tree, each split is done on a random subset of m features rather
than the whole pool of features. This aims at decorrelating the trees. The m value is
commonly set at

√
Q, where Q is the total number of features [74]. The final decision

function is then defined as the majority vote over all trees. As each tree represents a vote
for a class k, the output of a RF can be seen as an estimate of the probability for x to be of
class k. This estimate is defined as:

fk(x) = 1
NT

NT∑
i=1

1(di(x) = k) , (3.5)
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where di is the decision function of decision tree number i and NT the total number of
trees. The final decision function is then:

f(x) = arg max
k

fk(x) . (3.6)

The RF model presents some advantages considering our issues, the first point concerning
overfitting. Overfitting happens when a model “sticks” too closely to training data (i.e. it
has a high variance) and hence has trouble generalizing. High variance may come from
the model complexity (a more complex model leads to higher variance) and the feature
space size (the more variables, the higher the variance) [74]. For example, Begg et al. [16]
use SVM for gait signals classification and note a significant decline in test performances
when addingmore features into the model. However, a RF reduces its variance through the
averaging of multiple decision trees, but also with the inherent feature selection process
which decreases correlation between trees.
Besides, assuming that one has access to a large number of features (without taking com-
putational cost into account), a RF model makes an additional feature selection procedure
less necessary. Indeed, as the model chooses the most separating dimensions along the
training (subject to the random pool of

√
Q features), this means that even when given

a large amount of features, a RF may still perform well since non-relevant variables are
likely to be ignored. In fact it would take a significantly low ratio between relevant and
“useless” features to see a deterioration in results [74].
Finally, this type of model is quite easy to use and tune, and once trained, implementa-
tion is quite straightforward with a possible parallelization (each tree can be traversed
independently of all others), hence making it an interesting choice for industrial purposes.

3.2 Temporal signal into augmented feature vectors

3.2.1 Feature extraction

For the classification problem, we consider a window of size T over the signal, with T
previously set to 250 (i.e. 2.5 seconds at 100 Hz). Instead of dealing with the signal itself,
we chose to represent instances in a feature space. Indeed, the signal itself contains a lot
of information (here it would have been represented in a T -dimension space), and part of
it is not relevant for the classification. Besides, using each sample as a dimension would
lead to both redundancy between dimensions, and great variance within them. Therefore,
we compute 29 features over three views of the signal:

• the signal itself

• the first derivative of the signal, as not only the pressure variations but also their
speed may matter in discriminating such events

• the absolute value of its Fourier transform, assuming that frequency response be-
tween a fall and other events are different

It creates then a 87-dimension feature space. These features are statistical measures over
the selected window. They come as simple metrics (e.g. minimum, maximum, average,
variance…), to more elaborate (e.g. normalised momentum, Shannon energy…), inspired
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from previously cited works. All features are detailed in Appendix A. It should be noted
that some of them are by definition computed over the derived signal (one of them allows
us to derive n times). Hence, when the input for feature calculation is an already derived
signal, it means that the feature in fact computes a measure over the second order (or n+1
order) derivative of the original signal.

3.2.2 Data augmentation in time series

As we select a window position on which we calculate the features, we use an additional
step in the training process in order to improve our model robustness. This is done in a
way that also extends the database. This process can be referred to as data augmentation.
Data augmentation is used notably to address class imbalance problems with over sam-
pling technique, the most popular being SMOTE [37]. It has also been used to enlarge
the training data set for neural networks, for example with image warping in the context
of handwriting character classification [200]. However, unlike augmentation techniques
that create new data points from real ones, our process consists of selecting more.
Indeed, extracting awindow out of a fall acquisitionmakes us naturally choose thewindow
in which the sub-signal of the fall is centred. However, doing so may introduce a bias
in the training data hence leading the algorithm to detect centred falls in the window.
Therefore, in order to improve robustness of our solution, we select r windows randomly
chosen over time, making sure that if we are dealing with a fall acquisition, the fall signal
is encompassed in the different windows. By definition, this process adds data points
that are not generated from already existing points (as previously described methods do).
However it outputs events that are viewed at different times which inherently creates some
redundancy, this is why it can be viewed as a data augmentation procedure.
When r = 1 then there is no augmentation at all and it is a classical training procedure.
Choosing r was done by training and testing our classifier over varying values of r. In
our experiments, we also vary the number of features as well to evaluate the influence of
r when less features are available. Results are shown in Section 4 (Figure 3.18).

3.3 Macro-decision construction

As said before, our signal is sampled at frequency fs = 100 Hz and we selected a T -sample
long window as the instance to be classified. Every 1/fs = 0.1 second, the 87 features are
computed over the window. The feature vector is passed through the RF giving as an
output a number NT of votes (we can consider a tree output as a vote for the class fall).
Let Nf (t) denote the number of trees voting for the fall class at time step t. If divided by
the number of trees, Nf (t) is the previously mentioned fk(t) with k corresponding to the
fall class (see Equation 3.6). Considering solely this output over time may be unsuccessful
in terms of false alarms as a raise of Nf (t) can trigger an alarm, as short as the raise
duration may be. For that reason, we use a buffer to encompass successive micro-decisions
(i.e. Nf (t)) into a macro-decision. The results of the RF are gathered over time and we
construct our decision as following. We introduce two new parameters: a buffer size Bs

and a threshold Th, with 0 < Th < 1. We collect the RF votes during Bs samples, meaning
that we have now Bs × NT votes at each time step t. Let us denote the function g as
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following:

g(t) =

t∑
u=t−Bs+1

Nf (u)

Bs ×NT
. (3.7)

Then we define our new binary classification function:

d(t) =
{

1, if g(t) > Th

0, otherwise
. (3.8)

A remark to be made is that when using a classification model over temporal signals (or
any time series), one could build a model with “on-the-fly” decision. In our case, it would
mean trigger a fall alarm at any time t such that Nf (t)

NT
exceeds a preset threshold, which

is equivalent to the use of a buffer of size 1. Hence, extending this buffer size with cor-
responding threshold gives us control over the required detection duration and prevents
short peaks in Nf (e.g. falling objects or rapid movements) from being detected as falls.
Figure 3.13 shows the responses of a classical model and a model with outputs aggregation.
The influence of the parameters Bs and Th over the classification performance is tested in
Section 4 (Figure 3.19).

3.4 Feature selection for operational design

To this day, the algorithm is implemented in an embedded system with a specific archi-
tecture, hence bringing limitations in terms of both memory and computing power. A
first solution may be to reduce the frequency of the decision. However, time step be-
tween each diagnosis was not to be modified, hence bringing another proposition based
on feature space reduction. Reducing the number of features decreases both the need for
computational power and memory when performing the decision process.
The decision tree algorithm comeswith an interestingmeasure called variable importance [29].
Given a variable (or feature) Xq , the importance is defined as the sum of the weighted im-
purity decreases for all nodes in which Xq is used. For a tree T , it is defined as follows:

I(T, Xq) =
∑
t∈T

p(t)∆i(t)1(v(t) = Xq) ,

where p(t) is the proportion of samples reaching the node t, v(t) is the variable used at
node t and ∆i(t) is the decrease of impurity i(t). ∆i(t) is the difference between the
impurity in node t and its two children nodes. Hence defined, the feature importance for
a random forest consists of averaging over all trees:

I(Xq) = 1
NT

NT∑
n=1

I(Tn, Xq) ,

with NT the number of trees. Therefore, ranking features according to their importance
highlights those that are the most used and efficient for separating our data.
It is then possible to build a selection procedure based on the variable importance. In-
spired by the recursive feature elimination proposed for SVMs Guyon et al. [73], we use
the same scheme with however several trainings to retrieve the importances (steps 1 and



3. A PREDICTIVE MODEL FOR FALL DETECTION 63

(a) Processed fall signal

(b) Original response of a RF

(c) New response using a buffer

Figure 3.13: Decision responses to a signal in function of time (in seconds). Figure (b)
shows a response of a classical RF algorithm to a fall signal (a), while Figure (c) displays the
response using a buffer. The orange line is an example of a threshold at 0.5. In this example,
the threshold would have detected two falls while the buffer alleviates this problem.

2 in the below description). Indeed, as the RF training mechanism use random subsets of
variables to optimize the splits, two trainings with the exact same input data will lead to
differences between the final variable importances. Hence, averaging importances over
several trainings insures a representative ranking of variables. The variable reduction is
done as following:

1. Using the pool of Q features, several trainings are done while recording the variable
importances.

2. The average of importances over trainings is computed and we select the variable
Xq∗ such that I(Xq∗) is minimum.

3. Xq∗ is removed from the pool of features and we go back to step 1.

The features importances of a RFmodel trained with the biggest pool of features are shown
on Figure 3.15. Derivative and Fourier transform of the signal seem to be the most respon-
sible of the data classification. It should be noted that the ranked-2 feature (i.e. S-Max-n-
derivative) is computed over the raw signal, however it intrinsically uses the derivative
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Figure 3.14: Area under ROC curve of a RF model trained with reduced number of features
using the recursive feature eliminationmethod. Themodel is trained and tested using k-fold
cross validation. It seems that in this context, the first 20 “best” features (orange vertical
line) allow to reach the maximum performance. The orange horizontal line is displayed
for visual help (the value is arbitrarily chosen).

of order n (see Appendix A), with n = 3 here. To observe the influence of features avail-
ability on the model performances, RFs were trained with a diminishing pool of features
following the selection process and results are shown on Figure 3.14.
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5

5

5

Figure 3.15: Mean feature importance for a RF trained 100 times. Each feature is noted
as “S/D/F -Name” with S, D, F referring to either the signal, the derivative or the Fourier
transform, and Name to one of the 29 described functions (see Appendix A).
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4 Performance results

4.1 Evaluation

Let us first briefly describe the performance indicators we use throughout this work. When
developing binary classification models, we use various evaluation metrics that are com-
puted from the confusion matrix, which contains the account of tested instances, with
four possible outcomes: true positive (TP), true negative (TN), false positive (FP) and
false negative (FN). We then can compute the accuracy, true positive rate (TPR) and the
false positive rate (FPR) as follows:

Accuracy = Correct predictions
Total predictions = TP + TN

TP + TN + FP + FN

TPR = True positives
Total positives = TP

TP + FN

FPR = False positives
Total negatives = FP

FP + TN

While the accuracy measures the proportion of well classified instances, TPR and FPR
give ratios that depends on the type of error that we investigate.
A well used indicator for a binary classifier is the receiver operating characteristic (ROC)
curve which is the plot of TPR values in function of FPR values when a prediction thresh-
old is varied. The area under the ROC curve (AUC) is a usable value that allows us to
compare different classifying models.

4.2 Parameters investigation

Random forest hyper-parameters. We investigate two parameters: the number of DT
in the RF and the maximum tree depth. Using k-folds, RFs are trained for varying number
of DT and maximum allowed depth, and we measure the FPR, TPR and AUC. These
results are visible at Figure 3.16.

(a) True positive rate (b) False positive rate (c) Area under ROC curve

Figure 3.16: Investigating tree depth and number of trees in a RF. RFs are trained with
different number of trees (from 2 to 50) and maximum allowed depth (from 1 to 15) and
we computed the mean TPR (a), FPR (b) and AUC (c). In this case it seems that 30 trees
and a maximum depth of 10 are sufficient to achieve the maximum performance.
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We remark that maximum performance is reached from a maximum allowed depth of 10.
In fact, this is the maximum depth at which decision trees will train on this data set. This
means that with no limitation on their depth, in average decision trees will have maximum
depth of 10. Figure 3.17 illustrates this by displaying the actual depth of DT as function of
the maximum allowed depth.
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Figure 3.17: Actual mean depth over 50 trees according to maximum allowed depth. Mean
depth reaches a limit of 9.5 (orange line).

Data augmentation. RFs are trained over augmented data sets and tested over the reg-
ular data set (i.e. not augmented). Tests are performed over signals that are not used for
the data augmentation process. We also test the model with restricted number of features.
Figure 3.18 shows the results. When using a limited number of features, we observe that
augmenting the training data set along the proposed method allows the model to reach
performances that were previously obtained (i.e. with a larger feature space). Besides, the
main improvement it brings is that the model outputs less false positives. This can mean
that augmenting the training set with our proposed method brings significant additional
information over non-fall events. A possible explanation to it is that in our experimental
data set, despite the variety of falls that were performed, non-fall events may be more di-
verse in terms of signal pattern and as well in the feature space. Hence, augmenting the
non-fall class rather than the fall class may bemore effective in the resulting performances.

Macro decision. The time aggregation parameters were also tested. Using k-folds, RFs
were trained and tested with varying Bs and Th. Figure 3.19 shows the results. A first
observation to be made is that we directly see the benefit of using a buffer of size greater
than one over our signals. Secondly, as expected, a low threshold or a high buffer size
decreases TPR and FPR. Indeed, when considering a fall event, the higher the buffer,
the more the macro-decision encompasses negative (i.e. non-fall) micro-decisions, hence
lowering the output of g(t). There is hence a trade-off between Bs and Th. In fact we
can “see” this trade-off when looking at the accuracy of the model – it seems to reach its
highest values on an affine relation between the two parameters (see Figure 3.20). Finally,
we may find various couples of (Bs, Th) that result with nearly the same TPR (or FPR)
but a lower FPR (or a higher TPR). This means that the buffer may bring improvement
to the model performances. This part is addressed in more details in next section.
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(a) True positive rate (b) False positive rate (c) Accuracy

(d) True positive rate (e) False positive rate (f) Accuracy

Figure 3.18: Data augmentation. We show TPR, FPR and accuracy over two varying
parameters: the augmentation coefficient r (ranging from 1 to 10) and the number of fea-
tures Q (ranging from 2 to 87). Top row figures (a, b and c) show the global behaviour of
these scores while the second row (d, e and f) shows an insight over five selected number
of features. When r increases, the TPR seems to be either stable or slightly decreasing
(for high number of features). However the FPR is significantly decreasing when training
data is augmented, hence increasing the accuracy of the model.

(a) True positive rate (b) False positive rate (c) Accuracy

Figure 3.19: Macro-decision. We display TPR (a), FPR (b) and Accuracy (c) on a grid of
varied Bs (5 to 250) and Th (0.5 to 1). Increasing the buffer size or the threshold lowers
both TPR and FPR. Hence, there is a trade-off between detection rate and false alarm
rate that can be controlled by those two parameters. When looking at the accuracy, we
find that the best values are obtained with what seem to be an affine relation between Bs

and Th.
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Figure 3.20: Linear fit over maximum accuracy points for (Bs, Th). These points are the
10% with highest accuracy. On this set of points, the mean Accuracy is 87.8% (± 0.2), mean
TPR is 92.4% (± 1.1) and mean FPR is 17.9% (± 1.6).

4.3 Comparison and final results.

The RF algorithm was compared to other state-of-the-art methods. The classifiers are:
Logistic Regression (LR), Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM), k-Nearest Neighbours (k-NN) and Multi-Layer Perceptron (MLP). The SVM was
used with a Gaussian kernel, the k-NN with k=5, and the MLP with two hidden layers of
respectively 5 and 2 neurons. The RF was set with 50 trees of full depth. Classifiers were
trained and tested using k-fold cross-validation and feature scaling, and we used various
values of Bs and Th. Figure 3.21 shows the results of time aggregation over all models,
including RF, with varying buffer size. Figure 3.22 shows detailed results for a fixed buffer
size.
Macro-decision function reveals to be useful for any model since it is designed to address
classification over temporal signals. The maximum scores for each model over the grid of
Bs and Th are given in the left side of Table 3.2.
We observe that while all methods have close results, parametric statistical methods (LR,
LDA, k-NN) perform slightly worse than non-parametric methods that contain variable
selection (RF), feature space modification (SVM) or feature construction (MLP). To show in
more details the result of time aggregation of classifier outputs, we select for each method
the set of (TPR, FPR) such that FPR < 10% and give the maximum and minimum TPR
over the set (see right side of Table 3.2). Results show that when tuning properly Bs and Th,
one can maintain a reasonable FPR while improving the TPR. Hence, this combination
proved to be useful for eliminating false alarms that would have been physically too short
to be falls.
Figure 3.23 shows example of well classified and ill classified signals and the “real-time”
response of the model (compared with the unprocessed RF output). The first examples
illustrate the good accuracy of the model while signals are a bit challenging. However, as
shown, the ideal fall event is in fact one of the possible fall type that can happen. Indeed,
since they have various causes [112], falls represent a varied set of events, from the brutal
fall (caused for example by slipping) to the “softer” fall (caused by for example by muscle
weakness) where the subject tries to cushion the fall. As a consequence, others activity of
daily living events may look like falls. This illustrates the ambiguity that can happen when
observing signals with the naked eye, thus showing the non-easy task that fall detection
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(a) RF (b) k-NN (c) LDA

(d) LR (e) SVM (f) MLP

Figure 3.21: Fall classification performances of various state-of-the-art models using data
augmentation and time aggregation. The displayed score is the accuracy. Parameter r is
set to 5, Q is set to 20. Parameters Bs is ranging from 5 to 250 and Th from 0.5 to 1. We
observe that all models have same behaviour to time aggregation of their outputs, but the
highest accuracy is obtained with the RF. It is reached with Bs = 127 and Th = 0.93.
With this parameters, RF scores are: Accuracy = 88.2%, TPR = 91.7%, FPR = 16.2%.

(a) True positive rate (b) False positive rate (c) Accuracy

Figure 3.22: Comparing state-of-the-art algorithms with TPR (a), FPR (b) and Accuracy
(c). Models are trained and tested with k-folds, using r = 5. Tests are done with Bs = 127
and varyingTh (0.5 to 1). RF can outperform othermodels in accuracy due to a significantly
lower FPR.

can be.
To conclude, the algorithm designed for this application gives very good results on our data
considering standard supervised methods. Besides, it comes with a certain ease of imple-
mentation and to some extent, a rather good interpretation of the outputs (which is limited
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(a) Fall – true positive (b) Fall – true positive

(c) Walk with a cane – true negative (d) Jumps – true negative

(e) Sitting on a chair – false positive (f) Walk (two persons) – false positive

(g) Fall – false negative (h) Fall – false negative

Figure 3.23: Examples of events classification over the experimental fall data set.
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Model Accuracy TPR FPR TPRFPR<10
min TPRFPR<10

max

r = 5, Q = 20
LR 86.8 ± 1.5 90.5 ± 2.4 17.7 ± 4.9 67.0 ± 10.8 80.4 ± 6.4
LDA 85.5 ± 1.2 91.0 ± 2.1 21.7 ± 3.7 56.9 ± 7.0 78.7 ± 3.8
k-NN 87.0 ± 1.9 89.2 ± 1.4 16.0 ± 4.7 63.1 ± 4.2 83.1 ± 2.5
SVM 87.6 ± 3.2 90.0 ± 4.5 15.5 ± 6.8 69.2 ± 2.1 82.9 ± 3.2
MLP 88.2 ± 1.5 92.4 ± 1.2 17.3 ± 4.1 71.4 ± 4.5 85.1 ± 2.1
RF 88.2 ± 1.5 91.7 ± 3.5 16.2 ± 6.2 63.8 ± 6.8 84.3 ± 7.9

r = 10, Q = 30
LR 87.5 ± 2.5 93.4 ± 2.3 20.0 ± 4.2 66.5 ± 2.4 83.1 ± 1.9
LDA 86.4 ± 1.3 89.5 ± 2.3 17.5 ± 2.6 56.7 ± 4.2 76.8 ± 3.7
k-NN 87.8 ± 4.1 90.7 ± 4.3 16.0 ± 4.7 63.8 ± 5.3 80.7 ± 4.5
SVM 88.3 ± 3.4 88.0 ± 4.2 11.3 ± 4.0 68.7 ± 5.7 85.3 ± 4.7
MLP 89.8 ± 1.8 95.4 ± 1.2 17.2 ± 3.6 72.1 ± 4.8 88.3 ± 1.6
RF 89.9 ± 2.5 93.6 ± 2.5 15.0 ± 3.0 62.6 ± 3.8 85.1 ± 2.9

Table 3.2: Performance results of state-of-the-art models over varying Bs (1 to 250) and Th

(0.5 to 1). Left side: highest Accuracy over thewhole set parameters, and its corresponding
TPR and FPR. For each score type, the two best models are stressed with bold font. Right
side: minimum and maximum TPR for FPR lower than 10%. We note that maximum
TPRs are significantly greater than their correspondingminimum. We also tested varying
r and Q and display two configurations (upper part and lower part of the Table). Results
show a slight improvement between the two configurations.

when regarding MLPs). To finish, the feature reduction analysis allowed operational team
to make the algorithm fit into the embedded system. Our algorithm is embedded in a
system with 16 kB RAM, 256 kB program memory and a CPU speed of 40 MIPS (million
instruction per second).

5 Conclusion

This chapter presented a fall detection system based on a pressure floor sensor. It comes
with many advantages when regarding fall detection requirements. From this system an
experimental data set could be extracted in a controlled environment, and this was done
trying to encompass a large variety of events. Motivated by operational grounds (hardware
limitations), we proposed a feature space reduction procedure that may be compensated
by a data augmentation method, this latter aiming at making the model more robust and
performing. We also put up a macro-decision framework that reduces the number of false
positives, and relies on two parameters that can be easily tuned. In light of these results, a
model was implemented in the embedded processing unit. This model relies on all the pre-
sented facets of the proposed solution, i.e. , the feature extraction procedure, the proposed
data augmentation scheme and the time aggregation of the RF outputs. The feature space
used in the implemented model was finally reduced following the proposed procedure.
There are however some points that need to be noted. First, as a remark, in the context
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of real-time embedded algorithms, feature selection regarding computational resources
(and not only their separability power) may be useful. Though we did not explored it
in this thesis, budget learning is precisely addressing this subject and may be of interest
to the reader. Second, this model relies on an experimental data set, hence bringing out
some concerns. Indeed, real-world data may differ from the experimental one. It is highly
possible in this case that the original algorithm performs poorly when used in its final
environment. Besides, as falls are rare events, adding data to the training process raises
the question of dealing with an imbalanced data set.
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Abstract

This chapter presents work on model-based transfer learning adapted to imbalanced
data. From existing transfer methods over decision trees, we express a risk in the case
of class imbalance, and propose several extensions that address this problem. Perfor-
mances are evaluated with several data sets, including synthetic data. These latter
are generated so that we control at the same time the source-to-target transforma-
tion and the imbalance level. Finally, models are evaluated with fall data and public
data sets. Results show the benefits of our approach and suggest several perspectives
for further research. Part of this work has been published in Minvielle et al. [122].

1 Introduction

1.1 Training set vs. operational data

Previous chapter presented a fall detection system trained on data that was acquired with
a group of volunteers performing various activities on a pilot site, which is a room instal-
lation in the company’s facilities. However, signals taken from a real-world application,
in our case nursing homes, may differ from the ones used for training the learning mod-
els. First, users are very different. While volunteers are aged from 25 to 45 years old, the
targeted users are elderly. Hence, they behave differently in their various daily activities
and most of all their falls are very likely to be different from younger persons. They might
also have weights ranging differently, whether being lighter or heavier. Besides, when
willingly performed, a fall cannot be as representative as a real one for the simple reason
that the risk makes the volunteer behave differently. This situation tends to result in a
dissimilarity between the data used for the training, and the “real” data. As an illustra-
tive example, Figure 4.1 shows signals of experimental and real-world falls recorded with
similar sensing systems.

(a) Faked fall (b) Real fall

Figure 4.1: Fall signals from experimental (a) and real-life (b) data sets. While the faked
fall signal (a) seems to be easily recognizable, the real one (b) is more challenging.

This dissimilarity in the original representation of the signal is likely to have repercussions
in the feature space. As an illustrative example, Figure 4.2 compares boxplots of experi-
mental and real-life data sets along the most important features given in previous chapter,
and Figure 4.3 displays data projection with Principal Component Analysis. We observe
from Figure 4.2 that on most dimensions, data points have undergone transformations,
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either drifted along the dimension or spanned and shrinked, which results in complex
transformation when observing principal components projection (Figure 4.3).
Besides, we note that since experimental fall data was obtained in a controlled environ-
ment, it allowed to build a balanced set. That is, there are nearly as much fall events than
non-fall ones, the data set containing 45% falls. This situation is quite ideal for learning
supervised classifiers, however real data is a lot more challenging to acquire. Fall detection
systems based on the experimental data set were installed in nursing homes and data was
labelled with either confirmation of caregivers or expert analysis of signals. Real falls are
both rare and hard-to-label events for practical reasons, whereas activity of daily living
events are easy to record.
For all the aforementioned reasons, the resulting real fall data set presents dissimilarities
with the experimental set and it appears to be largely imbalanced.

Figure 4.2: Boxplots of experimental and real-world fall data sets. Data is displayed along
the first 3 features according to our feature selection procedure over a RF trained with the
experimental data set (see Figure 3.15). Experimental data is referred to as XS (source) and
real-world data as XT (target). The box extends from the lower to upper quartile values of
the data (Q1 and Q3), with a line at the median value. Minimum and maximum values are
set to Q1 − 1.5(Q3 −Q1) and Q3 + 1.5(Q3 −Q1) and plotted as the tips of the whiskers,
while the rest (dots) is considered outliers. For source and target we display the boxes for
both classes Fall and Non-fall (Fall in the legend).

Figure 4.3: Principal component analysis (PCA) is run over a data set made of experimen-
tal (source XS) and real-world (target XT ) fall data samples. For visualization purposes,
subsets of data are shown since they are a lot more numerous in the original data sets.
Data is projected onto the three first eigen vectors and we display two-dimensional views.
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1.2 Knowledge from different domains

This situation is actually a known issue in machine learning. Indeed, in the context of
classical supervised learning, one usually assumes that training data and data on which
the model is intended to perform its task come from the same distribution and share the
same feature space. However, especially in industrial applications, it often happens to be
a strong assumption, and the performance of a trained model tends to degrade on real-
world data. In order to cope with this problem, a possibility is to collect supplementary
real-world data to re-train the model. Nevertheless, this may be difficult and/or expensive,
thus leading to few available data on which re-training a model would give poor results.
There is however a set of methods referred to as transfer learning that aims at building
a model using knowledge from different domains. This growing field of interest covers
methods that adapt data, features or models coming from the training domain – referred
to as source domain, to the operational domain – referred to as target domain [190]. As a
motivating example, Figure 4.4 shows a model trained on source and target data (which
are here our experimental and real-world fall data sets). This is the typical framework that
illustrates the need for transfer methods. While the source model (Source) obtains fairly
good results on source data, it fails to give similar performance on target data. When the
model is trained with target data instead (Target), it outperforms Source but suffers from
lack of data for a efficient training. There is then a significant “gap” between performances
on target data and performances on source data. Transfer methods aim at reducing this
gap.
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(a) Source tested on source
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(b) Source tested on target
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(c) Target tested on target

Figure 4.4: Transfer learningmotivationwith ROC curves (and correspondingAUC) of two
reference models. A decision tree model, denoted Source, is trained with source data. This
model is then tested over source data (a) and target data (b). Another decision tree model,
denoted Target is trained with target data and also tested with target data (c). Training
and testing procedures were performed using k-fold cross validation with k = 10. Note
that the feature spaces are the same for source and target data, i.e. , experimental signals
and real signals went through the same feature extraction procedure.

Among changes that can occur between source and target distributions is the class imbal-
ance, i.e. when classification labels are not represented equally in the data set [77]. Indeed,
when the source data set is acquired in optimal conditions, either by synthetic procedure
or data collection in a very controlled environment, it usually results in a balanced data
set. On the other hand, target data is likely to be collected as it comes and its labelling
may be costly, hence resulting in an imbalanced data set. This may be the case for ex-
ample in fraud detection, spam classification, and obviously fall detection in time series.
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In fact, Tarkett’s experimental fall data set is well balanced (55% falls) while the data set
made of events collected in nursing homes is highly imbalanced (7% falls). Unfortunately
in all these cases, the classification task focuses on a specific label that is simultaneously
valuable and rare.
Recently, Segev et al. [159] proposed two novel transfer learning methods for decision
tree. However, both approaches have not been designed nor tested in the context of class
imbalance problems. In fact, they present some limitations when a class is scarce in the
target domain. After a review of related works, we describe these two seminal transfer
methods. Then, limitations to these models are given and we propose several adaptations
to them in the context of imbalanced data. These variants are tested on synthetic and real
data sets, including Tarkett’s fall data. Finally, for the sake of reproducibility, in a joint
work with Mounir Atiq and Sergio Peignier, the data generator [140] and all algorithms
(original methods and our variants) [12] are made available (Python language).

2 Related works

2.1 Transfer learning

Transfer learning has been a growing field of interest over the past few years. In fact, meth-
ods that fall into that field were not initially called that way (sample selection bias, covari-
ate shift, domain adaptation…) and existed before they were grouped into this field, hence
making a history hard to achieve. The term transfer learning appears in the 2000s with an
increase of approaches, and a first comprehensive survey is proposed in 2010 [138], fol-
lowed later by equally exhaustive updates that encompass the large variety of approaches
[190, 214].
Before giving a definition of transfer learning, we need first to define a domain and a task.

Definition 4.1 (Domain). A domain D is defined by two parts, a feature space denoted X
and a marginal probability distribution P (X) where X ∈ X . We denote D = {X , P (X)}.

Definition 4.2 (Task). A task T is defined by two parts, a label space denoted Y and a
prediction function f learnt from samples {(xi, yi), i = 1...n} where (xi, yi) ∈ X × Y . We
denote T = {Y, f}.

We are now able to define the general framework of transfer learning.

Definition 4.3 (Transfer learning). Let DS = {X S , P S(XS)} be a source domain, T S =
{YS , fS} a source task, DT = {X T , P T (XT )} a target domain, and T T = {YT , fT } a
target task. In the case where X S ̸= X T or T S ̸= T T , transfer learning uses the knowledge
from DS , T S and DT to improve the task T T .

In other words, transfer learning aims at building a model that benefits from knowledge
of different domains. There are two main taxonomies of transfer learning approaches. The
first one, defined by Pan and Yang [138], is based on the availability of labeled data in
the source or target domain. When labeled data is available in the target domain, it is
referred to as inductive transfer. Otherwise (i.e. when no labels are available in target), it
is called transductive transfer. A second taxonomy is proposed by Weiss et al. [190] where
authors use a simpler categorization based on the equality (or not) between feature spaces,
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namely homogeneous transfer learning whenX S = X T and heterogeneous transfer learning
otherwise (the interested reader can refer to Day and Khoshgoftaar [47] for a review over
heterogeneous transfer). Although different, those taxonomies are compatible and we can
label all methods according to both. In the literature, approaches that address the transfer
learning problem are usually divided in three categories, whether it focuses on the training
instances, the features or the model itself 1.
In the case of our fall detection problematic, both experimental and real-word data sets
share the same feature space (X S = X T ), hence placing ourselves in the homogeneous
transfer learning framework. Note that label spaces are also equal (YS = YT ). Besides, we
have access to labelled instances from the target domain. As we aim to take advantage of
these labels, we are in an inductive transfer learning framework. We shortly describe the
three main categories aforementioned, restricting ourselves to the homogeneous transfer
framework. Note that methods used for transductive transfer (no labels available in target)
are also applicable to the inductive case.

Transferwith instances. Instance-based techniques basically rely on reweightingmeth-
ods, that is, using weights over training instances so that the discrepancy between the two
domains is reduced. These tasks are originally referred to as sample selection bias or covari-
ate shift, and target instances are usually unlabeled. The general idea is to estimate weights
as the ratios between marginals of the two domains, i.e. w(xS

i ) = P T (xS
i )/P S(xS

i ). The
weights ŵ(xS

i ) are then used in the learning objective function to retrain the final model.
Various methods propose solutions to this estimation problem. For example, Huang et al.
[84] propose to estimate these weights with Kernel Mean Matching, which consists on
minimizing the distance between the two domains in a reproducing kernel Hilbert space,
with source instances being weighted.
Weights can also be adjusted iteratively. For example, Dai et al. [44] propose an extension
of the original AdaBoost algorithm [59]. Considering that some part of the source data is
usable because similar to target data, authors put up a framework in which weak learners
are trained over the mixed data (source and target) and tested over target. As each weak
learner is tested, instance weights are updated according to their predicted value. Hence
source instances that are less similar to target have their weight decreased. Since some
target data need to be labeled, this methods falls in the field of inductive transfer learning.
Most instance-based methods use the covariate shift hypothesis, that is, P S(X) ̸= P T (X)
and P S(Y |X) = P T (Y |X) which is a strong assumption since the target domain, even if
similar to source, is likely to have a different conditional distributions as well as a different
marginal distributions.

Transfer with features. Feature-based methods transform feature space into new rep-
resentations where source and target are close. These methods usually consider the hy-
pothesis of transductive transfer. Often referred to as domain adaptation, there have been
different approaches in this field. For example, Daumé III [45] perform feature augmen-
tation. Authors put up a feature space of dimension three times bigger than the original
where the original vectors are stacked with 0-value vectors placed differently depending
if the instance comes from source or target. This redundant method allows the model to

1Benchmark codes have been proposed by Zhuang [212] over various transfer learning techniques (with
documentation [213]) and domain adaptation codes have been proposed by Zhao [211].
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use shared (or not) features for the intended task.
Other methods use feature alignment, such as Fernando et al. [58] who propose to extract
subspaces from source and target using principal component analysis, and then use a linear
function to project source data onto the target subspace.
More recently, works using optimal transport have been proposed. The main idea is to
formulate domain adaptation as a transport problem between source and target distribu-
tions [42]. Using a relaxation of the original transport problem, authors are able to find a
transportation plan T between source and target that preserves conditional distributions
(P S(y|x) = P T (y|T (x))) and use it to transport labeled source samples to finally retrain
a model.
There have also beenworks over theoretical guarantees in domain adaptation, in particular
on the question of bounding the risk over the target domain. This risk is usually bounded
by the sum of the risk over the source domain, a divergence measure between source and
target domain, and a term that measures the quality of the hypothesis space [18, 116].
More recent studies propose bounds adapted to the PAC-Bayesian theory [66]. Feature-
based methods usually make no use of labelled target data, and instead try to find the best
representation for labelled source instances and retrain from there.

Transfer onmodel. The last type of approachmakes use of the model trained on source
to learn a new model over target data. This set of methods is also known as parameter-
based or model-based transfer learning, and generally require labeled data in the target
distribution (inductive transfer). There are different strategies that tackle this problem. A
well-known idea is to learn the target model while including in the objective function a
pre-learnt model over source, so that knowledge from source domain can be transferred
to the target model. For example, Yang et al. [201] proposed the adaptive-SVM which uses
target data to regularize a SVM model already trained on source data. For this purpose,
authors add a delta function to the previously trained decision function and solve the cor-
responding minimization problem along target data. In the optimization procedure, the
source function is left untouched while the delta function is learnt. As a consequence,
the final prediction function is close to the original one while fitting the new data. Since
the objective function can be easily tuned, there are several variants of this framework in
the literature [214]. Instead of using the the whole source decision function in the target
function, some “subtler” methods insure the proximity between source and target models
with direct use of the models’ parameters. For example, Tommasi et al. [176] include in
the target objective function the ℓ2 distance between source and target model parameters.
The learning process consists then of joint minimization of this distance and the error of
the target model along labelled target data.
Usually, model-basedmethods require only target data, which is whymodel-based transfer
learning is particularly useful when source data is not available. This may be the case with
privacy issues or data storage limitations.

Negative transfer. Although transfer learning can be very effective with different but
related domains, if source and target domains do not share enough similarities, the new
model can be badly impacted. In this case, models trained with only source data or only
with target data may outperform the one derived from the transfer procedure. This sit-



82 CHAPTER 4. TRANSFER LEARNING ON DECISION TREE

uation is referred to as negative transfer. Hence, when performing inductive transfer, it
is highly recommended to compare any performance to models trained with source data
only, and target data only.

Transfer for event detection in nursing homes. In the Tarkett’s case, the main mo-
tivation is to build a model that can adapt to real-world data but also, when possible, to
more precise situations such as a specific nursing home or even individual rooms. This
process was decided to be done without any access to the experimental data (source), but
rather with a fixed model that is known to perform well on source data and newly labeled
data from the real world. Since the adopted model is a random forest, this motivated the
use for decision trees transfer methods.
This chapter focuses on two model-based transfer procedures on decision trees, with no
available source data and a few labeled target data, with the hypothesis of same feature
spaces. This setting can be referred to as model-based inductive and homogeneous transfer
learning.

2.2 Class imbalance learning

In classification applications, the imbalance problem may arise in different situations [77].
First, class distributions may be unequal, i.e. one class is largely under-represented com-
pared to others. This may be due to a difficulty in the acquisition of a certain class in the
data set (e.g. fraud detection, or rare event in time series). Second, error costs may be
different depending on the class. This is the case when one aims at recognizing (or not)
a class that has an arbitrary high importance, as for example in medical diagnosis. Those
two situations may also happen at the same time, i.e. we may have a rare event in the
training data set and at the same time it may be crucial to detect it.
To overcome these biases, most methods use either sampling techniques or training pro-
cedures that include the cost matrix. Most popular sampling methods use training data
to build a balanced set to avoid the learning procedure to be biased. In this framework,
the most straightforward approaches are oversampling and undersampling [77]. Sam-
pling methods can also perform data augmentation through the creation of synthetic in-
stances [37]. They have yet some limitations such as discarding potential useful data, high
variance, or greater learning time. Cost-sensitive methods aim at integrating costs of dif-
ferent errors into the model. This can be done through boosting [168], or directly within
the learning procedure for example with neural networks [98]. According to Weiss and
Khoshgoftaar [191], transfer learning under class imbalanced domain is a challenging task
that may lead to negative transfer. Authors define domain class imbalance, which differs
from classical class imbalance in the fact that there is a variation in class probability be-
tween source and target data. It gathers situations where source data might be balanced
whereas target is imbalanced or the other way around. In this work, we focus on the case
where source data is balanced. It is our belief that in most practical cases, one may have ac-
cess to a balanced data set for training a model that will perform on data that is potentially
imbalanced.
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2.3 Decision tree for data stream

In the context of model-based transfer learning, some methods have been designed for
various kinds of model including decision trees (DTs), and by extension random forests
(RFs). Regarding DTs, research has been done in the context of evolving data especially
for data streams. First works were introduced using Hoeffding trees, originally designed to
learn from “regular” stream and later improved for drifting data [21, 85] or for imbalanced
drifting data [96]. These works use the term concept drift, which is a change in data distri-
bution when performing learning and can be viewed as inductive transfer within streams.
Concerning RFs, Gomes et al. [69] proposed an adaptive RF (ARF), which includes sam-
pling methods and specific operators to cope with potential drifts. In practice, the ARF
trains a “background tree” as soon as a concept drift is detected, and it replaces its current
model when the drift effectively occurs. Concept drift techniques can be effectively used
to update random forests once they are already adapted to the target domain. However, it
might not be possible to gather enough data to build representative background trees.
Broadly speaking, data stream methods are not dedicated to the adaptation of a model
from a source to a target domain but rather to keep up with continuous changes in data,
hence deviating from the transfer learning hypothesis (the target domain is not supposed
to change and we have access to a certain fixed batch of data).
The problem of adapting a RF trained on a source domain to a target domain has been
investigated recently by Segev et al. [159] who propose two functions (called STRUT and
SER) that aim at adapting each tree from the original RF to improve its performance with
respect to target data.

3 Transfer learning on decision tree

In our application framework (i.e. fall detection in nursing homes), we use a random forest
model trained over an experimental data set. However, since neither this source model or
the target model yields good performance over target data, transfer on decision tree is
a well-adapted approach to our problem. Besides, the fact that there is no use of source
data for model-based transfer procedures makes them even more interesting for privacy
or storage limitations. In this section, we recall the SER and STRUT methods introduced
by Segev et al. [159] in order to highlight our transfer learning contribution on decision
tree with imbalanced data.

Decision tree parameters. As described in Section 3.1 on page 65, a decision tree (DT)
is defined by the division of the feature space into non-overlapping regions. Once the DT
is trained, a new sample is then evaluated according to the region it falls in, or, from the
tree point-of-view, through a path of successive thresholds. The parameters of a DT can
be summarized as the set of splits (or nodes), each split being a couple (Xq, τ) of a feature
and a threshold value. As model-based transfer methods aim at modifying a model’s pa-
rameters according to new available labelled data, it raises the question of how to modify
a DT. Given a set of splits, one straightforward approach is to add or remove some of them,
hence either sub-dividing the feature space into smaller regions or merging regions. These
operations respectively consist of growing a subtree from an existing leaf and pruning a
node (hence removing the current node and all its children). Another approach would be



84 CHAPTER 4. TRANSFER LEARNING ON DECISION TREE

to act on the splits themselves and modify their parameters.
These two approaches are proposed by Segev et al. [159] in the form of two algorithms.
Structure Expansion-Reduction (SER) modifies the tree structure in order to create finer
or coarser representations, while Structure Transfer (STRUT) adapts the threshold values
in order to cope with shifts.

Framework and notations. Given a source domain DS and a target domain DT , we
assume that we have access to the DTmodel trained overDS , and to a few labeled samples
from DT , however we do not have access to source data. The target set is denoted ST .
Given the DT trained on source data and one of its node v, ST

v denotes the subset of ST

that reaches v. In the following, we also denote by source tree the decision tree that is
trained on source data and that we aim to adapt to target data.

3.1 Expansion and reduction of the tree (SER)

Structure Expansion-Reduction (SER) is a recursive algorithm that applies two transfor-
mations relatively to target data, in two successive steps: an expansion step followed by a
reduction step.

• The expansion step consists of expanding any terminal node (or leaf) v that is reached
by target data into a subtree. This subtree is computed by growing a full binary
decision tree using CART algorithm from ST

v .

• The second transformation, the reduction, relies on the computation of the leaf error
which, for any node v and its corresponding set ST

v , is defined as the misclassifica-
tion error at the current node:

εleaf(v, Sv) = 1
|ST

v |

|ST
v |∑

k=1
1(yk ̸= yv) ,

with yk the label of the k-th element of Sv and yv prediction label in v. It cuts
any node that has a leaf error lower to the subtree error. The “cutting” procedure
is called pruning. The subtree error relative to a subset ST

v is the sum of all leaves
errors weighted by proportion of ST

v that reaches each leaf. In other words it is the
error of the tree whose root is the node v:

εsubtree(v, ST
v ) = 1

|L|
∑
l∈L

εleaf(l, Sl) ,

where L is the set of leaves of the subtree that starts at node v.

When does pruning occur ? In the original paper, these errors are described as the
empirical errors of the subtree (whose root is v) and the leaf (considering v as a leaf). We
remark that as the expansion step grows a full tree, this results in the creation of pure
leaves (when regarding target data). Therefore, εsubtree is in fact always zero, and this step
becomes a pruning procedure that conserves the tree coherence for target data. Indeed,
if a node v is not reached by target data, then εleaf = 0 and the pruning condition is
respected. This is according to us the only case where pruning occurs, and it leads to the
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Target 

data

(a) Original decision tree

1. Expansion

2. Reduction

(b) SER procedure

Figure 4.5: Schematics of SER. Target training data is first passed trough the original tree
(a). Then, the algorithm expands all reached leaves into new trees and prunes nodes ac-
cording to εleaf and εsubtree (b). Classes are pictured with green and red leaves.

same condition developed in STRUT algorithm (see next section), which is motivated by
the willing to obtain a tree that fits new data by removing unreachable parts of the tree.

Summarizing schematics of SER are displayed on Figure 4.5, and its pseudo-code is pre-
sented in Algorithm 3.1.

Algorithm 4.1 SER
1: procedure SER(v, Sv)
2: % Expansion
3: if v is a leaf then
4: v ← BuildTree(Sv)
5: return v
6: end if
7: % Recursive calls
8: SER(vr, Sv,r)
9: SER(vl, Sv,l)

10: % Reduction
11: if εleaf(v, Sv) ≤ εsubtree(v, Sv) then
12: v ← Prune(v)
13: end if
14: return v
15: end procedure
Notations: BuildTree denotes the procedure that grows a full tree from a terminal node,
following the CART algorithm.

3.2 Transfer on the tree structure (STRUT)

The Structure Transfer (STRUT) algorithm goes through the decision tree from the top
to the bottom. Given a node v, if v is unreachable by target data, it is pruned into a
leaf. Otherwise, there are two possible situations. Either it is a leaf and its output is then
updated, or it is a regular node and the algorithm recomputes its threshold according to
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the set ST
v that falls into it. Unlike a classical split procedure, here the measure that is

optimized is different and there is no choosing in the feature (the algorithm updates the
threshold while keeping the same variable).
The threshold selection procedure is done as follows. Given a node v, QS

l and QS
r denote

respectively the class proportions of source data in left child node and right child node after
the original split. QT

l (τ) and QT
r (τ) denote respectively the class proportions of target

data in left child node and right child node after the new split τ . As authors [159] aim
at finding a new threshold while keeping similar label distributions between source and
target, they define a divergence gain (denoted DG) that measures the similarity between
the original label distributions (QS

l , QS
r ) and the new ones (QT

l , QT
r ). DG is defined as:

DG(ST
v , τ, QS

l , QS
r ) = 1−

|ST
v,l|
|ST

v |
JSD(QS

l , QT
l )−

|ST
v,r|
|ST

v |
JSD(QS

r , QT
r ) .

ST
v,r and ST

v,l are the subsets of ST
v that falls respectively into the right and left child node

of v, and JSD is the Jensen-Shannon divergence, defined as:

JSD(P, Q) = 1
2

(KL(P, M) + KL(Q, M)) ,

with KL denoting the Kullback-Leibler divergence:

KL(P1, P2) =
∑

k

P1(k) log
(

P1(k)
P2(k)

)
,

and M the mean distribution, defined as M = 1
2(P +Q). The Jensen-Shannon divergence

is a symmetrized version of KL that measures the dissimilarity between the two distribu-
tions P and Q. Note that while KL can have infinite value (when the two distributions
do not share the same support), JSD is positive and bounded by 1 (with log being the
base 2 logarithm) [107]. Hence defined, DG measures for a node v the similarity between
previously learned source distribution and the newly set target distribution. We note that
in practice, QS

l , QS
r , QT

l and QT
r are vectors that contain the proportions of each class at

a given node. Hence we can write them QS
l =

[
QS

l,1, . . . , QS
l,K

]
, K being the number of

classes.
The threshold selection procedure relies on an optimization problem that can be summa-
rized as follows: the goal is to maximize DG while insuring a local maximum of the in-
formation gain (IG), defined here as the Gini gain (definition given by Equation (3.2)). At
node v, we denote Φv = {ϕ1, . . . , ϕN} the set of all ordered distinct feature values of
instances of ST

v . Then, Tv = {τ1, . . . , τN−1} = {ϕ1+ϕ2
2 , . . . ,

ϕN−1+ϕN

2 } represents the set
of all possible thresholds considered by the threshold selection.
The selected τ denoted τm is then defined as:

τm = arg max
τ∈Tv

DG(ST
v , τ, QS

l , QS
r ) s.t.

{
IG(τm−1) < IG(τm)
IG(τm) > IG(τm+1)

As pointed out by authors, between source and target, different labels can also swap rela-
tively to the node threshold. To take into account this possible event during the threshold
selection, the optimization problem has to be solved a second time swapping left and right
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Target 

data

(a) Original decision tree (b) STRUT procedure

Figure 4.6: Schematics of STRUT. Like SER, target data is first passed through the original
tree (a). Then, the algorithm prunes unreachable node and updates thresholds of reached
nodes according to new data (b). Classes are pictured with green and red leaves.

for QS and QT which gives another threshold τm. Finally, the threshold selection proce-
dure ends by taking the threshold maximizing DG between the two optimal thresholds :
τm and τm. Schematics of the STRUT algorithm are displayed in Figure 4.6 and its pseudo-
code is presented in Algorithm 4.2.

Algorithm 4.2 STRUT
1: procedure STRUT(v, Sv)
2: if |Sv| = 0 then
3: % Prune unreachable node
4: v ← Prune(v)
5: return v
6: else if v is a leaf then
7: v ← UpdateLeafValue(Sv)
8: return v
9: else

10: % Recompute threshold
11: v ←ThresholdSelection(Sv, QS

l , QS
r )

12: STRUT(vr, Sv,r)
13: STRUT(vl, Sv,l)
14: end if
15: end procedure

To sum up, SER seems to be well adapted when decision tree partitioning needs to be
refined (expansion step) or on the contrary to bemore coarse (reduction step). On the other
hand, STRUT is especially designed for drifts and label swaps. Together, both procedures
capture pretty well the possible transformations a decision tree may need to be transferred
along target data. However, when exposed to class imbalance, these methods can suffer
undesirable effects.
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4 Transfer learning on decision tree with class imbalance

In this section, we present the main issues of using SER and STRUT in the case of im-
balanced data and propose an adaptation for each one of them. For that we first define
a framework that we named homogeneous class imbalance in order to get an idea of the
misbehaviour that we may encounter with the pruning procedure in SER and STRUT.

4.1 Leaf loss risk under homogeneous class imbalance

Indeed, as SER and STRUT both use pruning procedure, it is likely that classes that are the
least represented in the target set will have their corresponding leaves being pruned in the
DT.

Homogeneous class imbalance. The underlying object while transferring models is the
relation between the two distributions P S(x, y) and P T (x, y). Let P S(y) =

∫
P S(x, y)dx

and P T (y) =
∫

P T (x, y)dx denote respectively the source and target marginal distribu-
tions over Y .
Considering imbalanced data, we study the specific effect of class proportion changes be-
tween source and target. To this end, we consider a simple case when it comes to label
distribution changes.

Definition 4.4 (Homogeneous class imbalance). Given a source domainDS = {X , P S(XS)}
and a target domain DT = {X , P T (XT )}, homogeneous class imbalance occurs when:

P T (x|y) = P S(x|y) (4.1)

P T (y|x) = λyP S(y|x)∫
λyP S(y|x)dy

, (4.2)

with λy = P T (y)
P S(y) being the ratio between target and source proportion class for each class y.

Here, the term homogeneous is not in any way related to homogeneous transfer learning
but rather means that the class proportion change is homogeneous throughout the feature
space since it depends only on λy . This framework is simple in the fact that conditionals of
x given y between source and target are considered to be the same, which is generally not
the case in transfer learning situations. However we show later that this gives interesting
insights over transfer procedures on DTs.

Leaf loss risk. We formulate the pruning risk as the significant minority class leaf loss
risk, i.e. the risk for a minority class leaf to be pruned even if it is still representative for
the target domain.

Definition 4.5 (Significant leaf). Let fS be a decision tree learnt over a training set sampled
from the source domain DS , and kmin the minority class in the target domain DT . Let l be a
leaf of fS of class kmin. l is still significant for DT if:

∀k ̸= kmin, P T (y = kmin |x ∈ l) > P T (y = k |x ∈ l) . (4.3)

Definition 4.6 (Leaf loss risk). Let ST = {(xi, yi), i = 1 . . . n} denote the target training
set, where (xi, yi) ∈ X × Y are independent and identically distributed. nk denotes the



4. TRANSFER LEARNING ON DECISION TREE WITH CLASS IMBALANCE 89

number of instances of class k. Let consider l, a minority class leaf still significant for the
target domain. When using an algorithm that prunes leaves that are not reached by target
data, the risk of losing l is then quantified by:

RL(l) = P T (x /∈ l | y = kmin)nkmin . (4.4)

RL(l) is obtained as follows. The risk for l to be pruned is expressed as the probability of
not having a single sample falling in l:

RL(l) = P T

nkmin∩
i=1

(xi /∈ l | y = kmin)

 .

Since the (xi, yi) are independent, then the xi are conditionally independents given yi,
which gives:

RL(l) =
nkmin∏

i=1
P T (xi /∈ l | y = kmin) ,

and, given that the (xi, yi) are identically distributed:

RL(l) = P T (x /∈ l | y = kmin)nkmin .

In balanced conditions, nkmin
is large enough so the probability tends to 0 and the pruning

risk becomes negligible. However when nkmin
decreases, it leads to higher quantity of

pruned leaves. Let us now consider the case where the only transformation that occurs
between source and target is an homogeneous class imbalance. Under this assumption and
simply using (4.1), (4.3) and (4.4) can be reformulated as follows:

∀k ̸= kmin, λkmin
P S(y = kmin |x ∈ l) > λkP S(y = k |x ∈ l) (4.5)

RL(l) = P S(x /∈ l | y = kmin)nkmin (4.6)

Although this result relies on a theoretical assumption that is not necessarily verified in
practice, computing this value gives us valuable information about the impact of using
pruning algorithms such as SER and STRUT on minority class leaves. Figure 4.7 shows
examples of leaf loss risk computation using (4.5) and (4.6) under various conditions.

4.2 Divergence gain

The divergence gain (DG) defined for the STRUT procedure measures the similarity be-
tween previous class distributions (QS

l , QS
r ) and the new ones (QT

l , QT
r ). As previously

said, STRUT algorithm recomputes thresholds from the top to the bottom of the tree using
DG (and IG). Hence at a given node, when the threshold is recomputed, label distribu-
tions according to source data (QS

l and QS
r ) change. However, as we consider that we do

not have access to the source data during the transfer procedure, it means that we can-
not recompute QS

l and QS
r according to the new threshold. As a consequence, when we

go deeper into the tree while performing STRUT, QS
l and QS

r that are used in the opti-
mization problem are obsolete (they correspond to old threshold values) and are therefore
more likely to mislead the algorithm, especially if distributions were swapped as described
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(a) Balanced data with 200 instances (b) Balanced data with 100 instances

(c) Imbalanced data (10% ratio) with 200
instances

(d) Imbalanced data (10% ratio) with 100
instances

Figure 4.7: Leaf loss risk for one DT under different target data conditions, with two classes.
Leaves are in abscissa. Blue ones are majority class leaves and orange ones correspond
to minority class. With balanced target data (a), the risk of losing minority leaves is
similar to the risk of losing majority class leaves. When decreasing the number of target
data (b), the risk increases equally regardless of the leaf class. However when dealing with
imbalanced data (c), the leaf loss risk on minority leaves is significantly higher, and in the
same imbalance conditions while decreasing the number of target data (d), the risk is even
worse.

previously. This is due to the fact that at current node v, computing QS
l and QS

r implies
to know where source data falls according to all thresholds that lead to this node (i.e. the
thresholds of all parents nodes of v).
Besides, more broadly speaking, the optimization procedure prompts the model to choose
a threshold so that new class distributions do no differ too much from the old ones. This
implies the assumption that at each node, class distributions have not much evolved be-
tween source and target. However in the case of domain class imbalance the situation
is quite the opposite: we need to transfer a source model built on balanced data with a
target distribution that is imbalanced, hence we expect different distributions in the end.
To show the influence of DG in the performances, a version of STRUT without using DG
is proposed and tested along with all other algorithms.
These two issues, i.e. the leaf loss risk and the optimization procedure in STRUT, lead us
to adapt the initial SER and STRUT algorithms to target data class imbalance.
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4.3 Expansion and reduction for class imbalance

As previously pointed out, the main concern comes from the representative leaf loss risk
of these transfer algorithms when there are too few target data of a class. In fact, for a
given leaf l in the source tree, there are three possible events relatively to target training
data:

1. l is reached by target training data and keeps the same majority class as source;

2. l is reached by target training data and the majority class changes (i.e. it differs from
the source majority class);

3. l is not reached by any target training data.

In case 1, the minority class leaf is conserved. We focus our attention on the two other
situations. Considering SER algorithm, these two possibilities match the two transfer steps.
Case 2 corresponds to an expansion of the tree and case 3 to a reduction. Therefore, in order
to limit minority leaf loss events, we set up a version of SER that applies the reduction step
conditionally to the class. For this purpose, we propose two configurations:

1. The algorithm avoids automatically to prune any source leaf of theminority class but
allows the expansion phase on them. This version is named SERR (for “SER without
reduction over minority class leaves”).

2. The algorithm does not prune theminority class leaf if it is still significant (as defined
above) and its leaf loss risk (as defined previously) is above a given threshold set to
0.5. This version is named SERLL (LL refers to the leaf loss risk).

The SERR approachmay seem harsh since it conserves leaves that were definedwith source
data and not target. However if we consider that doing transfer with imbalanced data
biases the model towards the majority class, this method aims to compensate this bias
with another one towards the minority class. The SERLL approach is more refined since
the pruning is still allowed on some conditions.
Since they differ by just one condition, both methods are gathered in one algorithm whose
pseudo-code is given in Algorithm 4.3.

4.4 Structure transfer with a generalized divergence

As explained previously, class ratio changes are not directly compatible with the use of
the divergence in the STRUT algorithm. The original algorithm without this criteria is
proposed as an alternative. In this configuration, it simply consists of updating thresholds
by recomputing the maximum Gini gain over target data while keeping the same feature.
Throughout the rest of the paper, this version is referred to as STRUTIG (for information
gain).
Another concern is that our transfer methods need to be able to handle at the very least
the homogeneous class imbalance transformations. Equation (4.2) in a discrete formulation
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Algorithm 4.3 SERR, SERLL
1: procedure SER∗(v, Sv, opt)
2: % Expansion
3: if v is a leaf then
4: v ← BuildTree(Sv)
5: return v
6: end if
7: % Recursive calls
8: SER∗(vr, Sv,r, opt)
9: SER∗(vl, Sv,l, opt)

10: % Reduction
11: if LeafError(v, Sv) ≤ TreeError(v, Sv) then
12: % Controlled pruning
13: if c(v) == cm then
14: % Majority class in node v is the minority class
15: if opt == ’LL’ then
16: % Check for leaf loss conditions
17: if leaf is significant and RL > 0.5 then
18: % No pruning
19: else
20: v ← Prune(v)
21: end if
22: end if
23: if opt == ’R’ then
24: % No pruning
25: end if
26: else
27: v ← Prune(v)
28: end if
29: end if
30: return v
31: end procedure

Notations: cm is the overall minority class, c(v) is the majority class in node v

becomes:

P T (y = k |x) = λkP S(y = k |x)∑
i

λiP S(y = i |x)
(4.7)

The idea of our STRUT extension is to use Equation (4.7) in the divergence optimization
and replacing QS

l and QS
r as if the homogeneous class imbalance condition was satisfied.

For each class k, the class proportions according to source data become:

QS
l,k =

λkQS
l,k∑

i
λiQS

l,i

QS
r,k =

λkQS
r,k∑

i
λiQS

r,i

(4.8)
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Algorithm 4.4 STRUTIG, STRUTHI
1: procedure STRUT∗(v, Sv, λ, opt)
2: if v = root then
3: % Compute λk

4: for each class k do:
5: λk = pk(ST )

pk(SS)
6: end for
7: end if
8: if |Sv| = 0 then
9: % Prune unreachable node

10: v ← Prune(v)
11: return v
12: else if v is a leaf then
13: v ← UpdateLeafValue(Sv)
14: return v
15: else
16: % Recompute threshold
17: if opt == ’IG’ then
18: % Selecting threshold according to max IG only
19: v ←ThresholdSelectionIG(Sv)
20: end if
21: if opt == ’HI’ then
22: % Selecting threshold with modified source proportions
23: (QS

l , QS
r )← HomogeneousImb(QS

l , QS
r )

24: v ←ThresholdSelection(Sv, QS
l , QS

r )
25: end if
26: STRUT∗(vr, Sv,r, λ, opt)
27: STRUT∗(vl, Sv,l, λ, opt)
28: end if
29: return v
30: end procedure

Notations: HomogeneousImb is the function that uses Equation (4.8) to adapt the source
distributions

This extension of STRUT is referred to as STRUTHI (for homogeneous imbalance). We note
that in this configuration, if we consider a transfer procedure in which class proportions
are conserved between source and target, then for each class k we have λk ≈ 1. This leads
to QS

l,k
∗ ≈ QS

l,k and QS
l,k

∗ ≈ QS
l,k which goes back to the original STRUT algorithm. Like

SERR and SERLL, STRUTIG and STRUTHI are presented within the same pseudo-code given
by Algorithm 4.4.
A Python implementation of SER, STRUT and all the proposed variants is available here [12]
(joint work with Mounir Atiq and Sergio Peignier).
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5 Data and experimental setup

This section presents the data sets on which algorithms are tested (synthetic data, public
data and fall data), as well as the experimental framework. Note that since we aim to de-
scribe decision tree transfer procedures, all experiments are run on a decision tree model,
knowing that these results may be extrapolated to tree ensemble models such as random
forests. However, since our work is initially motivated by the use of random forests, addi-
tional tests with a RF model are included in the experiments with Tarkett’s fall data sets.

5.1 Synthetic data

In order to easily control data transformations between source and target, we generate sev-
eral data sets with three-dimensional binary labeled clusters in a bounded space. Each syn-
thetic source data set consists of a mixture of several multivariate Gaussian clusters, each
one being assigned to a single class. For simplicity the clusters have diagonal covariance
matrices, meaning that for each cluster dimensions are not correlated. The initial parame-
ters µi and σi of all Gaussian distributions are randomly drawn from Uniform distribution:
µi ∈ [−70, 70] and σi ∈ [5, 15] for i = 1, 2, 3. Source data consists of Nsource = 200 sam-
ples, with balanced class distribution (i.e. 50% of each class) and drawn out of Nclust = 10
clusters. Note that to obtain “mixed” clusters and a complex separation between classes,
one has to tune at the same time the Uniform bounds and Nclust. Hence, these parameters
were arbitrarily set so that the classification task is achievable although not to easy.
After drawing source samples, we apply imbalance conditions and transformations to the
generator and redraw target samples. Data imbalance is controlled with weights over
clusters. Indeed, each cluster is assigned a weight that determines the probability of data
to be drawn from that cluster, hence allowing us to control the class distributions and
therefore create homogeneous class imbalance conditions. The imbalance ratio is ranging
from 2% to 50% and is combined with transformations of tree kinds:

1. Drift: change in Gaussian clusters means, resulting in “drifts” in the feature space.

2. Squeeze / Stretch: change inGaussian clusters variances, resulting in either “stretch-
ing” or “squeezing” data.

3. Add / Remove: mix between adding and removing clusters to the generator.

Figure 4.8 shows a simplified example of synthetic data generation.
These synthetic Gaussian controlled scenarios have the advantage of generating as much
data as needed for the evaluation process to ensure good performance measure. In our
experiments we use Ntarget = 1000 samples. A Python implementation of the generator
(joint work with Sergio Peignier and Mounir Atiq) is available at [140].

5.2 Real-world public data sets

5.2.1 Public data

Two public data sets are used to analyse the performances of these procedures.
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(a) Source data… (b) …after a drift… (c) …and homogeneous
imbalance

Figure 4.8: Example of synthetic data generation in two dimensions, with Nclust = 4. Data
is first generated with µ ∈ [−20, 20], σ ∈ [20, 50] (a), then undergoes a drifting procedure
(b) and finally an homogeneous class imbalance (c). Note that after each transformation,
data is resampled from the generator.

Magic Gamma Telescope (MGT). This data set comes from simulated registrations of
high energy gamma particles in a Cherenkov gamma telescope. Photons are collected in
patterns as “shower image” and the goal is to separate images formed by gamma signals
from images created by other types of rays. There are 19,020 instances described by 10
features. Those features are real numbers that give characteristics of the shower image.
The data set is available on UCI repository [53]. Used byWeiss and Khoshgoftaar [191, 192],
it is not a dedicated data set to test transfer learning methods, however it has a natural
imbalance (35% positive class) and a large amount of data so that it can be tested under
great imbalance conditions. To separate source data from target data, we chose to divide
along the feature that has the greatest variance. Source and target data are each set to 500
instances.

Office-Caltech (OC). TheOffice-Caltech data set contains images fromAmazonwebsite
and office environment images taken under different conditions (with awebcamor a higher
quality camera). There are in all 10 classes available in four domains: amazon, caltech
dslr, webcam. Features are generated by SURF algorithm categorized in 800 dimensions
available from [1]. We use the first two domains as source and webcam as target. This
reflects the general framework where one can have access to data acquired in a controlled
environment (here images for sales purposes) but faces challenging data when it comes
to real environment (here low quality images taken in different conditions of exposition
etc.) The amazon set contains 958 instances (≈ 100 instances per class), the caltech set
has 1123 instances (≈ 100 instances per class) and the webcam one has 295 instances (≈
30 instances per class). We use a one-versus-all classification scheme and average results
over all classification tasks.

For public data sets, the imbalance ratio is controlled with downsampling. Source training
data set is always made balanced (50% of each class), and target training set is made imbal-
anced with ratios going from 5% to 50% of minority class. All experiments were conducted
through k-fold cross-validation with k = 5.
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5.3 Fall data

The transfer methods are finally tested over Tarkett’s fall data sets, one for each domain.
The experimental data set (described in previous chapter) is used as source and the target
set is built with real fall data (described in the introduction of this chapter). We recall that
the experimental data set contains 742 events with 45% falls.
Real fall events were recorded using our fall detection system installed in nursing homes,
hence gathering a significant amount of data. However for previously mentioned reasons
fall labels are hard to obtain, hence resulting in a data set containing 174 fall events and
2619 non-fall events (falls represent about 6% of the total). In these experiments, we do not
seek to manipulate the imbalance ratio but rather investigate the number of available data,
which is an important concern as real data acquisition is expensive in several respects. For
this purpose, when using k-fold validation, instead of using the largest set for training (and
the smallest for testing), the opposite is done, hence allowing to observe the effects of data
scarcity. The number of folds k is set to different values ranging from 5 to 40, resulting in
respectively 35 and 4 fall events in the training target data set.
For this data set, additional experiments are run with a random forest model of 10 deci-
sion trees. In this case, the procedure is exactly the same as for the decision tree model
experiments, the only difference being that when the Source model (i.e. the RF trained
over source data) is transferred with one of the algorithms (SER, STRUT, or a variant), the
algorithm is run over all its trees, hence transferring the whole RF.

5.4 Performance measures

These experiments on synthetic and real data compare the original SER and STRUT algo-
rithms with their proposed variants under class imbalance and rarity of the minority class
in target data set. While dealing with these two conditions, choosing a performance mea-
sure that does not penalize the minority class, unlike accuracy for example, is a known
issue [17]. As ROC curves consider all the trade-offs between false positive rate and true
positive rate, they are commonly computed to extract performance assessment metrics
in class imbalance situations [77]. Hence, the area under the ROC (ROC AUC) curve is
generally used as a reference metric in the context of transfer learning with imbalanced
conditions [5]. For these reasons, in this work, performance results of different presented
models are also compared using the ROC AUC measure.
In all experiments, models trained only with source data or trained with only target data
are also tested so they can be used as reference. Indeed, when performing transfer learn-
ing, one should make sure the transferred model outperforms the original one (trained on
source data) and the model trained with the few available target data. In all results those
models are respectively referred to as Source and Target.
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I C Source Target SER SERR SERLL STRUT STRUTIG STRUTHI

I. Drift

5% 0 17 ± 5 5 ± 2 14 ± 5 18 ± 6 15 ± 5 5 ± 2 4 ± 2 8 ± 3
1 17 ± 5 4 ± 2 6 ± 2 12 ± 3 6 ± 2 2 ± 1 2 ± 1 4 ± 2

50% 0 16 ± 4 13 ± 3 21 ± 6 23 ± 7 21 ± 6 12 ± 3 8 ± 2 12 ± 3
1 16 ± 5 13 ± 4 22 ± 5 25 ± 6 22 ± 5 11 ± 3 7 ± 2 11 ± 3

II. Squeeze / Stretch

5% 0 22 ± 3 6 ± 2 19 ± 5 24 ± 4 19 ± 5 5 ± 2 4 ± 2 9 ± 3
1 23 ± 3 4 ± 2 6 ± 2 13 ± 3 7 ± 2 2 ± 1 2 ± 1 4 ± 2

50% 0 22 ± 3 16 ± 3 29 ± 3 32 ± 5 29 ± 3 15 ± 3 8 ± 3 15 ± 3
1 23 ± 3 16 ± 3 30 ± 4 33 ± 5 29 ± 4 14 ± 3 8 ± 3 14 ± 3

III. Add / Remove

5% 0 19 ± 3 5 ± 2 15 ± 5 19 ± 5 15 ± 5 5 ± 2 5 ± 2 8 ± 2
1 18 ± 2 4 ± 2 6 ± 2 11 ± 3 6 ± 2 2 ± 1 2 ± 1 4 ± 1

50% 0 19 ± 3 14 ± 3 24 ± 5 26 ± 5 24 ± 5 13 ± 3 8 ± 3 13 ± 3
1 18 ± 3 13 ± 3 24 ± 5 27 ± 5 24 ± 5 11 ± 3 7 ± 2 11 ± 3

Table 4.1: Mean number of leaves for each class with different algorithms tested on syn-
thetic data. First column indicates the imbalance ratio in target, while the second gives
the class. When the imbalance ratio is 5%, the minority class is class 1.

.

6 Results

6.1 Synthetic data

6.1.1 Leaf loss risk evaluation

To verify our assumption about the leaf loss risk in original STRUT and SER, we measure
the mean number of minority class leaves on resulting trees of both algorithms and com-
pare it with Source model, Target model and our proposed variants. Results are given in
Table 4.1.
For comparison purpose, we also give the results over a balanced target set. We note that
in this case, for all transformations the resulting number of leaves is balanced between
the two classes, whatever the algorithm. However STRUT and their variants significantly
reduce the overall number of leaves. This is a consequence of SER’s ability to grow new
trees and create new partitions while STRUT cannot.
When confronted with imbalanced target set, the number of minority class leaves for SER
and STRUT decision trees is always lower than in the Source decision trees, thus illustrating
the risk we defined. Considering SER variants, SERR significantly compensates the loss
of minority class leaves, whereas SERLL has practically no impact on this loss. Indeed,
SERR has a strict rule concerning minority class leaves while SERLL is based on a risk
estimation. The alternate algorithms of STRUT do not limit the minority leaf loss, which
is expected since they are not designed for this purpose. However we notice that STRUTIG
particularly decreases the overall number of leaves, which is due to the fact that unlike
other algorithms, it has no restriction to conserve previous proportions, hence leading to
higher pruning in the tree.
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I Source Target SER SERR SERLL STRUT STRUTIG STRUTHI

I. Drift
2% 0.66 ± 0.09 0.54 ± 0.05 0.56 ± 0.06 0.59 ± 0.07 0.57 ± 0.06 0.55 ± 0.08 0.55 ± 0.06 0.57 ± 0.08
5% 0.66 ± 0.09 0.58 ± 0.07 0.61 ± 0.07 0.63 ± 0.08 0.61 ± 0.07 0.6 ± 0.1 0.62 ± 0.09 0.61 ± 0.08
10% 0.66 ± 0.09 0.63 ± 0.08 0.66 ± 0.08 0.67 ± 0.08 0.66 ± 0.08 0.64 ± 0.11 0.67 ± 0.1 0.67 ± 0.09

II. Squeeze / Stretch
2% 0.6 ± 0.04 0.52 ± 0.02 0.52 ± 0.02 0.54 ± 0.03 0.53 ± 0.03 0.53 ± 0.05 0.53 ± 0.04 0.52 ± 0.04
5% 0.6 ± 0.04 0.54 ± 0.03 0.55 ± 0.03 0.56 ± 0.04 0.55 ± 0.04 0.56 ± 0.05 0.56 ± 0.05 0.55 ± 0.05
10 % 0.6 ± 0.04 0.56 ± 0.04 0.57 ± 0.04 0.58 ± 0.04 0.58 ± 0.04 0.57 ± 0.06 0.59 ± 0.06 0.58 ± 0.05

III. Add / Remove
2% 0.57 ± 0.12 0.54 ± 0.07 0.57 ± 0.08 0.6 ± 0.09 0.58 ± 0.08 0.56 ± 0.1 0.57 ± 0.1 0.57 ± 0.09
5% 0.57 ± 0.12 0.59 ± 0.09 0.62 ± 0.09 0.64 ± 0.09 0.62 ± 0.09 0.61 ± 0.12 0.63 ± 0.12 0.62 ± 0.1
10% 0.57 ± 0.12 0.64 ± 0.1 0.67 ± 0.09 0.68 ± 0.09 0.67 ± 0.09 0.65 ± 0.12 0.68 ± 0.12 0.67 ± 0.1

Table 4.2: Mean ROC AUC over synthetic data tests. Best results within the STRUT and
SER family methods are highlighted with bold font.

.

6.1.2 Performance results

Each of the three transformations (described in Section 5.1) is appliedwith various “strength”
to data, to simulate various levels of change between source and target domain. For each
level of transformation, several repetitions are conducted and results are averaged. Table
4.2 gives for each transformation the mean ROC AUC over all levels and focuses on three
imbalance ratios (2%, 5% and 10%). Figure 4.9 shows the average ROC AUC for one level
of each transformation. More results are given in Appendix B showing several levels of
transformation between source and target domain.
First of all, we notice that when the class imbalance is strong (i.e. when ratio decreases),
transfer methods are exposed to negative transfer since they are outperformed by Source.
However all methods give better results than Target. In fact – and this is illustrated in
Appendix B, when transformations get stronger, then Source is also outperformed, hence
suggesting that transfer is a good choice.
Concerning SER and its variants, a first remark is that SERLL does not improve transfer
and is generally very close to SER in scores. However, when there is class imbalance,
SERR gives better results than SER, and as the imbalance worsens, it gets even better, thus
showing the importance of conserving the minority class leaves that were destined to be
pruned. These results suggest that even if SERLL is a more subtle adaptation than SERR, a
more radical method is worth considering.
Regarding STRUT variants, STRUTIG and STRUTHI outperform the original STRUT algo-
rithm for all transformation types. STRUTHI is in general slightly better, thus indicating
here that taking into account the class proportion change instead of simply reusing the
classical information gain may be a better choice.

6.2 Real public data

Figure 4.10 provides ROCAUC scores over public data sets (MGT andOC) . Here the results
are more mixed.
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(b) Stretch / Squeeze

0.0 0.1 0.2 0.3 0.4 0.5
Minority class ratio

0.55

0.60

0.65

0.70

0.75

RO
C 

AU
C

Source
Target
SER
SERR

SERLL

0.0 0.1 0.2 0.3 0.4 0.5
Minority class ratio

0.55

0.60

0.65

0.70

0.75

RO
C 

AU
C

Source
Target
STRUT
STRUTHI

STRUTIG

(c) Add / Remove

Figure 4.9: ROC AUC over synthetic data. Results are given with varying minority class
ratio.

SERR performs better than SER onMGT especially with high imbalance and insures a valid
transfer (i.e. it yields better results than Source and Target), but is less performing over OC
data when the imbalance ratio is above 15%. For both data sets, SERLL is either giving same
performance as SER or slightly better. Concerning STRUT variants, both STRUTIG and
STRUTHI either outperform or give similar result as STRUT on both data sets. However
while STRUTIG gives the best scores over MGT, it is STRUTHI that is the more performing
over OC.
Giving a general conclusion over real data is more delicate, since results are in fact data-
dependant. What we can say however is that given our proposed methods, there is at least
one of them that outperforms the original one.
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(a) Magic Gamma Telescope
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(b) Office-Caltech: amazon→ webcam
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(c) Office-Caltech: caltech→ webcam

Figure 4.10: ROC AUC over public data sets. Performance is measured with varying mi-
nority class ratio.

6.3 Fall data

Figure 4.11 displays ROC AUC on our fall data framework (experimental vs. real-world
data).
Let us first focus our attention on the decision tree model results. The first important re-
mark to be made is that when the target training set gets smaller (i.e. when k increases),
Target score significantly decreases toward Source score. It clearly illustrates the key role
that real-data gathering has in real-world applications. We point out that whatever k,
transfer is always valid, highlighting that in the case of our fall data sets, using knowl-
edge from both experimental and real-world data has value in terms of final performance.
Concerning proposed algorithms, SERR outperforms SER along all k values, while SERLL
gives similar or slightly better results. As for STRUT variants, STRUTIG outperforms the
original STRUT when given enough data (i.e. low values of k) and gives similar results
otherwise. STRUTHI is also outperforming with low k, however when target training set
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(a) Decision tree model
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(b) Random forest model with 10 decision trees

Figure 4.11: ROC AUC over the real-world fall data set (experimental → real-world) for a
decision tree (a) and a random forest of 10 decision tree (b). We recall that the imbalance
ratio in target is left unchanged (6%) and we make the number of folds k vary. The higher
k, the less data is available in the target training set.

gets scarce it yields lower results than the original algorithm.
Results over the RF model are similar in terms of performance of the original STRUT and
SER compared with their variants. However, scores are all higher than with a DT model,
which is expected, but we also notice that Source is more competitive with the other algo-
rithms, since it beats Target (and even the STRUT algorithms family) when data is scarce.
This suggests that a random forest is more robust to changes in data than a decision tree.

6.4 Conclusion over performances

SER. While SERLL is quite close to the original SER, SERR, which is more drastic in its
behaviour, can give significantly better results but also worse, notably in one real data
example. It may be explained by the fact that unlike synthetic data that is generated with
simple transformations, real data is likely to involve more complex transformations, hence
suggesting that a choice has to be made depending on the data one deals with.

STRUT. STRUT variants outperform the original algorithm on all data sets under all
conditions. The only exception to that is STRUTHI on the fall data set, when data is scarce
in training. Similarly to SER variants, no particular STRUT variant is the overall best
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through all experiments, also showing a certain dependency of the algorithms on the data
transformations.

Finally, results with the fall data framework suggests that performance on decision trees
can extrapolate to random forests.

7 Conclusion

In this chapter, we propose adaptations of two transfer learning methods on decision trees
to address the imbalance class problem. The key intuition of our adaptations consists of
taking into account imbalanced target data by defining the minority class leaf loss risk in
the context of homogeneous class imbalance. Results show that proposed variants perfor-
mance are data-dependant but, as a group, can outperform the original algorithms, i.e. , at
least one of them beats the original. This suggests several areas for improvement.
Since SERR is more a rough alternative to SER than SERLL (that can be viewed as an ex-
tension), future work can consider refining this latter alternative. For example, all exper-
iments were conducted with a fixed threshold, although it may possible to learn it from
data and adjust it accordingly.
Besides, as these methods are designed for decision trees, they are applicable to tree ensem-
bles such as random forests. Since methods are quite data-dependant and there is no clear
“winner”, an interesting continuation of this work would be to build a meta-model that in-
corporates different variants and uses a selection method (according to performances over
target data) to finally transfer a whole tree ensemble. This point is of great interest in order
not only to maximize performance with selection but also to adapt any tree ensemble to a
target domain without prior knowledge on this latter.
Finally, one can face situations where source and target feature spaces are different. This
is particularly the case in industrial applications where there is a continuous need for
feature engineering. Thus, future work could investigate an adaptation of these methods
to heterogeneous transfer learning.
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Abstract

In this chapter, we propose a classification method motivated by the person moni-
toring in nursing homes, that discriminates between signals generated by medical
staff and those generated by elderly. For that purpose, we have developed a model
that includes several steps of learning procedure trained over a challenging data set
of activity signals. Based on neural networks, the model first uses signal embedding
based on atoms of a pre-learned dictionary and focuses the network’s attention on
step-related signals. We show that it is able to avoid the main limitation of floor sen-
sors by recognizing relevant signals and ignoring events related to the medical staff.
This work has been published in Minvielle and Audiffren [120].

As mentioned in the beginning of this thesis, the elderly population is prone to frailty, and
maintaining a minimum level of activity is profitable to restrain frailty level from increas-
ing [117, 185]. In this context, what may be required from a “good” monitoring system is
not only to detect falls but also to monitor the general activity of elderly so that preven-
tive actions can be taken. Floor-sensor-based systems resolve several issues concerning
patient daily monitoring by being unobtrusive while providing exploitable signals. How-
ever, the main drawback of this type of sensor is its a priori inability to distinguish between
individuals, unlike wearable devices for example that are unique to each wearer. This is
particularly problematic in nursing homes, where most of the activity is generated by med-
ical staff, especially in common areas with high traffic. Besides, even individual rooms,
where identifying patients would be easier, are also subject to regular visits of caregivers
or external persons (families etc.), hence making monitoring tasks more delicate.
To solve this problem, we introduce a system named Non-invasive Unit Recognition Sys-
tem for the Elderly (NurseNet), which combines Tarkett’s piezoelectric floor sensor and a
deep learning-based algorithm to distinguish elderly from staff activity. The system relies
on a data set that is mainly composed of gait signals, but not restricted to that type which
makes it particularly challenging.

1 Related work

1.1 Gait sensing

A large variety of sensors has been used to record walks and the quantification of gait is
hardly new [10, 126, 172]. These systems are quite similar to those used for fall detection
(see Chapter 2). The most popular systems lie within the wearable family, as evidenced
by the large literature on the subject [10, 50], with accelerometers largely dominating
the field, though there are also gait-dedicated sensors such as foot switches or pressure
soles. These latter are rather designed for “one-off” diagnoses than for daily monitoring.
In fact, gait sensing literature mainly covers clinical applications and most systems are
not particularly suited for daily monitoring. This is the case for several wearable systems
but also video-based systems [54] and some of the ambient sensing system field, such as
radar [133] or Wi-Fi [89, 188], which are usually not designed for daily use. Among ambi-
ent systems, vibration sensors are less obtrusive and easier to use [57, 137] but suffer the
implementation problems mentioned earlier in this thesis. Compared with fall detection,
gait sensing systems make a greater use of floor-covering solutions [161], by using binary
switch sensors [171, 207], capacitive sensors [78, 148, 184], and either piezoresistive [173]



1. RELATED WORK 105

or piezoelectric [151, 170] pressure sensors. When implemented, these systems have dif-
ferent resolutions, from only one sensor that covers a whole area to a grid of 1 cm × 1 cm
tiles. However, high resolution leads to implementation issues and higher costs. Depend-
ing on the sensor and the resolution, the emitted signals can provide sufficient information
for complex tasks, but can also suffer from external perturbations [161].

1.2 Gait analysis

The main families of analyses developed in previous works include: (A) the use of biome-
chanical features, such as single/double stance time [157]; (B) the use of descriptors derived
from mathematical models [51]; and more recently, (C) the use of machine learning-based
algorithms that perform end-to-end learning on gait signals [208]. Several walk detection
systems rely on gait decomposition into several phases, trying to detect two to eight phases
depending on the sensor and the precision level needed for their application [172]. These
methods can be based on heuristic rules (e.g. thresholds [70]), signal processing techniques
(e.g. Pan–Tompkins peak detection [203]), or probabilistic approaches (e.g. HMM-based al-
gorithms [14]).
However, most methods are designed to characterize gait in a controlled environment
where no challenging type of signal can infer (i.e. , signals that may look like what we
want to detect). Hence, when dealing with daily activities, walk detection becomes a
harder task [15, 28]. Another segment of step detection aims at recognizing a step sig-
nal as a whole (i.e. , without considering any phase in it) in order to perform walk detec-
tion within more challenging environments or to use walk signals for patient monitoring.
These methods are generally based on machine learning techniques and seem more suited
to such tasks [102, 209], but to the best of our knowledge, no previous work has classified
activities using a floor piezoelectric sensor combined with machine learning techniques.

1.3 Convolutional dictionary learning

In recent years, dictionary learning and sparse coding techniques have been successfully
applied in awide range of topics, including image classification [114], image restoration [4],
and signal processing [115]. The main idea of this representation is to linearly decompose
a signal into few atoms (sparse coding) and, instead of using an already existing dictionary
(wavelets for example), the dictionary is learnt along with the signal decomposition. More
recently, its convolutional counterpart, known as convolutional dictionary learning (CDL)
and convolutional sparse coding (CSC), gained a renewed interest with the emergence of
efficient solving methods [64]. In the convolutional setting, atoms can then be seen as
shift-invariant filters or patterns and the sparse activations encode the temporal or spatial
locations where these patterns occur.
Previous works have applied classical dictionary learning to walk-related problems. For
example, Poschadel et al. [143] used the accelerometer signal reconstructed from sparse
coding to perform gait classification between healthy and movement-impaired individuals.
Zhang et al. [209] also aimed at gait classification by applying specific techniques to pro-
duce a dictionary that is both representative and discriminative. Following the same idea,
we use convolutional dictionary learning to build the first layer of NurseNet in order to
construct a relevant representation. To the best of our knowledge, no previous work has
used CDL for gait recognition analysis.
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1.4 Region proposal network

Recently, convolutional neural networks (CNN) have been successfully used to detect
objects in images [34, 68, 134], hence superseding previously existing techniques [99].
Among them, recent networks such as YOLO [145] and Faster R-CNN [146] have been
shown to find and classify multiple objects in images with both high accuracy and small
time cost. However, significantly less attention has been given to the application of CNN
on one-dimensional signals, despite such signals being widely represented, especially in
medical recordings [167]. Previous works generally transformed one-dimensional signals
into two 2D representation (seen as images) using spectrograms [155] or directly used
CNN without transforming the data [94].
In this work, we use the principle of the region proposal network proposed in Faster R-
CNN [146] to train the intermediate layers of our model and draw its attention onto rel-
evant parts of the signal. To our knowledge, this is the first work to combine dictionary
learning, pre-training, and final training of a CNN to classify activities from time series.
As shown in next sections, the combination of these three steps appears to be necessary
due to the irregular nature of the signal.

2 Data set

2.1 Material

The objective of this work is to provide a tool to monitor the physical activity of elderly
individuals in nursing homes. To this end, a partner retirement house was chosen to col-
lect the signals using the following setting. A corridor and a nearby common room were
equipped with the floor sensor (see Figure 5.1), and signals were recorded and labeled
(event types and footsteps beginnings and ends for some of the walk signals) by an expert
with the help of two cameras. The areas, a corridor and a common room, were chosen
for their accessibility (i.e. ease of installation of the system and event labelling) and the
great frequency of people passing through. Indeed, the corridor is surrounded by the din-
ing room, a caregiver office, and another corridor to another aisle of the nursing home,
making it an important crossing point. Signals were labeled according to the type of event
(walking, rolling a cart, pushing a chair, etc.), the status of the person (elderly patient or
caregiver), and the number of persons activating the sensor area.

Figure 5.1: System installation in the nursing home.
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2.2 Activity signals

The final data set contains 146 labeled signals with a labelling resolution of one second
for event labels (e.g walk, rolling a cart, etc.) and ten milliseconds for the footsteps of the
concerned signals. Table 5.1 shows the number of events of each main class. It should be
noted that themajority of signals are generated by caregivers. Consequently, it is crucial to
identify them as accurately as possible in order not to alter a potential elderly activity mon-
itoring system. Figure 5.2 shows two examples of signals recorded in the nursing home,
one of a staff member, the other from a resident.

Event Number of instances

Walking, 1 person, staff 43
Walking, 1 person, elderly 31
Walking, multiple persons 30
Wheelchair (manual) 16
Wheelchair (pushed by another) 15
Wheelchair (electric) 2
Walking with a cart 7
Other events 2

Table 5.1: Number of instances in the dataset. Signals have an average duration of 10 s.
Note that in the walking, multiple persons category, all the walkers were either all elderly
or all medical staff.
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Figure 5.2: Example of signal of a young healthy person from the staff (a) and an elderly
individual (b). The first observation is that the signal generated by the elderly footsteps has
a significantly smaller amplitude, leading to a lower signal-to-noise ratio. We recognize
some similarities between these signals as step patterns, as can be seen in (b). However as
a whole, the (b) signal seems less repeatable than (a). This is probably due to the fact that
the walking of an elderly person can be less regular and less pronounced than a young
healthy person whose feet leave and hit the floor at a regular pace.

2.3 Laboratory conditions vs. reality

Previous works conducted within Tarkett research team using the piezoelectric floor sen-
sor showed examples of footstep recordings that proved to be very reliable in their in-
terpretability [161]. For instance, different phases of a footstep could be seen: heel, toe,
weight transfer, and foot removal. Moreover, these footsteps were recorded multiple times
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with different persons, showing that the generated signal was repeatable, illustrating it
with a superimposition of several footsteps of one person (see Figure 5.3). However, when
implemented, the output was of significantly lower quality. Multiple factors may account
for this difference. Serra et al. [161] recorded their signals in a controlled environment: a
single band was directly linked to an acquisition unit dedicated to laboratory prototyping.
Hence, the signal was not altered by any additional component that might be present in a
processing system, and the acquisition unit has a specific amplifier that provides a highly
accurate signal. These laboratory conditions lead to high-quality outputs, and events such
as walks could be easily decomposed.
In real conditions, due to scale and cost issues, the signal is collected on multiple large
surfaces and sent through a processing unit designed to perform multiple tasks including
the amplification of the signal, which may alter the quality of the data. Besides, with
electronic components comes a noise that is constantly active. Moreover, in addition to
previously-acknowledged limitations (i.e. , non-homogeneousness piezoelectric coefficient
across space), the system appeared to be sensitive to humidity. Indeed, in this setting,
the signal was collected through crimps hooked to the sensor and linked to a printed circuit.
This connection was vulnerable to humidity that may be in the surfaces in contact with
the system (e.g., adjacent walls), which may even lead to corrosion. Besides, this humidity
may enter in contact with the edges of the sensor, thus creating an additional resistance
between the two sides of the device. Depending on the characteristics of the humidity,
these two phenomenonsmay significantly alter the output of the unit. Figure 5.3 illustrates
the difference between signals acquired in laboratory conditions and in real environment
(nursing home).

(a) Example of footsteps
recording in the laboratory
environment. Experiments

were done such that each event
is only one step on the sensor

(b) Superimposition of 100
steps from the same person
recorded in the laboratory

environment
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(c) Example of a signal of a
walk of a young healthy

person recorded in the nursing
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Figure 5.3: When considering signals recorded in laboratory conditions (a and b), we no-
tice a regularity and good repeatability of events that are not of the same quality when
looking at signals taken in the nursing home (c). Figure (a) and (b) were taken with au-
thor’s agreement [161].

Following sections present our proposed neural network named NurseNet, which is used
to identify and characterize activity signals between medical staff and elderly individuals.
We first describe the general structure of NurseNet and its main training (Section 3).
Then, we describe the data embedding that is used to encode the signals (Section 4), and
finally, the subnetwork used as the intermediate layers of NurseNet is explained (Section
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5). Most of the strategies developed in the training process aim at circumventing our main
issues, which are the challenging signals that aim to classify, and the alterations of the
signal due to the real conditions.

3 Classification model

3.1 General classifier

This section details the architecture of NurseNet and its inner workings. The main as-
sumption that guided our work is that regardless of the type of activity recorded on the
floor sensor, it is very likely to be mostly made of walks. A significant part of the training
process aims at training the network to recognize gait-related signals and in particular
gait of the medical staff. The structure of NurseNet is presented in Figure 5.4. It is a
convolutional neural network composed of:

• One 1D convolutional layer with 32 filters of size 60, with a stride of 10, followed
by batch normalization (BatchNorm), with the activation function hyperbolic tangent
(tanh).

• One 1D convolutional layer with 16 filters of size 1, with a stride of 1, followed by
BatchNorm, with the activation function tanh.

• One 1D convolutional layer with 8 filters of size 1, with a stride of 1, followed by
BatchNorm, with the activation function tanh.

• One 1D convolutional layer with 1 filter of size 5, with a stride of 1, with the activation
function Rectified Linear Unit (ReLU) [127]. It is followed by a Maxpool layer of size
5.

• One fully-connected layer, with an output of dimension 64, with activation function
ReLU.

• One fully-connected layer, with an output of dimension 16, with activation function
ReLU.

• One fully-connected layer, with an output of dimension 1, with activation function
sigmoid.

The output of the network is the probability for a signal to be generated from staff activity.
Note that the input of NurseNet is not the raw signal, but instead a transformation of it
(see Section 4).

3.2 Sub-networks

NurseNet can be seen as the combination of two sub-networks. The first one, named
the step proposal network (SPN), is made of the first three convolutional layers. SPN is a
full CNN inspired by the region proposal network, which is the first part of the Faster R-
CNN algorithm [146]. At the end of this sub-network, the output is constituted of features
computed on each window of the signal embedding.
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Figure 5.4: Architecture of the overall network.

The second part of the network is made of a convolutional layer, a Max Pooling operation
and three classical fully-connected layers. The role of this last part of the network is to
use the previously extracted features to classify signals as staff or elderly.

3.3 Training

As mentioned before, the training of NurseNet is rather complex and involves multiple
stages. This is due to the small signal-to-noise ratio, the perturbations discussed earlier,
and the limited size of the data set. The first phase of the training is to learn the embedding
of the data. This is detailed in Section 4. Then, SPN is trained separately on a different task,
in order to take advantage of the gait structure (see Section 5). The resulting weights are
used to initialize the first three layers of NurseNet, and these layers are frozen during the
rest of the training process to limit the number of free parameters, henceforth reducing
overfitting [204]. Finally, the rest of the network is initialized using i.i.d. centered Gaussian
variables with a standard deviation of 0.2. For the training phase, regularization is done
using dropout (with p = 0.5) after each fully-connected layer, except the last one [163].
Given an input signal si ∈ RT , let ŷi denote the output of si through the embedding
procedure followed by the classification network, and yi the corresponding label (yi = 0
if and only if si is generated by elderly activity). The associated loss function we used is
the binary cross entropy (or log loss):

L(si, ŷi) = −
(
1yi=1 log(ŷi) + 1yi=0 log(1− ŷi)

)
. (5.1)

Theweights of NurseNet are optimized using backpropagation and gradient descent with
a learning rate of 10−5, decreasing geometrically (×0.9) every 10 epochs, and the momen-
tum strategy proposed by Nesterov [128]. More details on the training of neural nets are
given in Appendix C.

4 Signal embedding

The first step of our classification algorithm is the data embedding, which consists suc-
cessively of preprocessing the data and encoding the resulting signal using convolution
with atoms of a pre-learned dictionary. The preprocessing phase is made of a classical tool
that aims at denoising and cleaning the data. However, our approach of data embedding
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is rather new: while we use convolutional sparse coding to learn the custom dictionary,
which is a standard approach since sparsity produces relevant atoms (see [156] and the ref-
erences therein), the actual embedding of the data is done with simple convolution with
the atoms, which yields non-sparse signals.
The reasoning behind this approach is as follows. It has been shown that the first layers of
a CNN tend to learn general feature extractors: for example, in image processing, the first
layers usually exhibit features similar to Gabor filters and color blobs [97]. The aim of our
data embedding phase is to replace the first layers of the CNN with some already trained
filters, here the atoms of the dictionary. Since the training is done on a small data set,
reducing the number of layers in the network may improve the results. Hence, in order to
mimic the behavior of the first layers of the CNN, regular convolution is used instead of
convolutional sparse coding. All data embedding details are given below.

Preprocessing. It is known that preprocessing improves the performance of CNN net-
works [136], particularly when dealing with a small labeled data set. The preprocessing
of data is done exactly the same as described in Section 1.3 on page 63, with the only dif-
ference being that we do not recover the opposite of sum but the sum, since the signal
was already inverted in the processing unit used for data collection. Figure 5.5 shows an
example of the resulting signal.

(a) Raw signal (b) Preprocessed signal

Figure 5.5: Example of raw (a) and preprocessed (b) signals resulting from medical staff
walking on the sensor. The person is crossing the corridor from one end to the other,
hence activating the channels one after the other. The walk signal is fairly regular with
recognizable patterns (steps), however, each beginning / ending contact with a channel
results in particular responses of the sensor which alters the regularity of the final signal.

Signal embedding. Data augmentation is a key part of training complex neural net-
works, particularly when only small labeled datasets are available [181]. However, these
techniques are difficult to apply in our setting, as it is unclear that commonly-used trans-
formations would preserve the nature and structure of the data. For instance, a re-scaled
step signal may be confused with a fall signal, as the amplitude of the applied force is the
main difference between the two signals. In our case, we are dealing with a small data set,
which is composed of complex signals, thus making end-to-end learning a difficult task.
To circumvent this difficulty and for the aforementioned reasons, data is first transformed
using convolution with atoms learned from convolutional dictionary learning in order to
extract key elements and features of the signal. This first phase is intended to improve the
quality of the CNN input to balance out the limited amount of available data.
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4.1 Sparse convolutional dictionary learning

4.1.1 General framework

In order to learn relevant atoms to our step description process, we use a convolutional
dictionary learning (CDL) approach on a subset of walk signals. CDL is defined as the
learning of a set of atoms to best input signals (e.g. images or one-dimensional signals) in
a shift-invariant waywhile insuring a sparse representation. Given a vector s that contains
data to be represented, the objective is to find M atoms dm and activation signals xm such
that the reconstruction is accurate, i.e. s ≈

∑
m xm ∗dm, with ∗ denoting the convolution.

CDL general problem is formalized as:

arg min
xm,dm

1
2

∥∥∥∥∥
M∑

m=1
xm ∗ dm − s

∥∥∥∥∥
2

2
+ λ

M∑
m=1
∥xm∥1 (5.2)

s.t. ∥dm∥2 ≤ 1 ∀m .

While the ℓ1-norm over the activations xm insures sparsity, the norm constraint over the
atoms prevents them from “attracting” all the energy of the signal. Indeed, scaling atoms
dm by α > 1 and activations by 1/α do not change the reconstruction error (first term
of (5.2)) but multiply the regularization term (second term of (5.2)) by 1/α. Therefore,
without the unit constraint, xm tend towards 0 and the norm of dm explodes.
The standard procedure of dictionary learning is to use Alternate Minimization, that is,
alternating between a sparse coding step (i.e. , updating the sparse representation of the
data according to the current dictionary) and a dictionary update (i.e. , updating the dic-
tionary according to the current sparse representation). This means that (5.2) is solved
successively with dm fixed (sparse coding) or xm fixed (dictionary update). We used the
method of Bristow et al. [32], which is derived from the Alternating Direction Method of
Multipliers (ADMM) [27]. Adapted to sparse coding and dictionary update, this method
proved to be efficient among the existing ones [64]. We briefly recall their resolution of the
two CDL subproblems that are the convolutional sparse coding and the dictionary update.

4.1.2 Solving CDL with ADMM.

Convolutional sparse coding. The convolutional sparse coding problem is expressed
as:

arg min
xm

1
2

∥∥∥∥∥
M∑

m=1
xm ∗ dm − s

∥∥∥∥∥
2

2
+ λ

M∑
m=1
∥xm∥1 , (5.3)

where dm are fixed and the objective is to find activations xm.
In their method, Bristow et al. [32] use the ADMM, which solves problems of the form:

arg min
x,y

f(x) + g(y) s.t. Ax + By = c (5.4)

by using the augmented Lagrangian multipliers. Following ADMM framework (5.4), the
CSC problem (5.3) can be rewritten:

arg min
xm,tm

f(xm) + g(tm) s.t. xm = tm ,
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with

f(xm) = 1
2

∥∥∥∥∥
M∑

m=1
xm ∗ dm − s

∥∥∥∥∥
2

2
and g(tm) = λ

M∑
m=1
∥tm∥1 .

ADMM solution is obtained by iterating over the steps:

x(i+1)
m = arg min

xm

f(xm) + ρ

2

M∑
m=1
∥xm − t(i)

m + u(i)
m ∥22 (5.5)

t(i+1)
m = arg min

tm

g(tm) + ρ

2

M∑
m=1
∥x(i+1)

m − tm + u(i)
m ∥22 (5.6)

u(i+1)
m = u(i)

m + x(i+1)
m + t(i+1)

m . (5.7)

While step (5.7) is straightforward, step (5.6) admits the closed-form solution:

t(i+1)
m = Sλ/ρ

(
x(i+1)

m + u(i)
m

)
,

where Sγ denotes the soft-thresholding function:

Sγ(x) = sign(x)⊙max(0, |x| − γ) ,

with ⊙ denoting the element-wise multiplication (sign(·) and | · | are applied element-
wise) [32, 194].
The solution of (5.5) is less straightforward. Bristow et al. [32] propose to use two conve-
nient properties: the Parseval theorem and the convolution in Fourier’s domain. Step (5.5)
is rewritten in Fourier’s domain:

x̂(i+1)
m = arg min

x̂m

1
2

∥∥∥∥∥
M∑

m=1
x̂m ⊙ d̂m − ŝ

∥∥∥∥∥
2

2
+ ρ

2

M∑
m=1
∥x̂m − t̂(i)

m + û(i)
m ∥22 , (5.8)

and the element-wise product x̂m⊙ d̂m can be rewritten as the matrix product D̂x̂, where
D̂ = [diag(d̂1), . . . , diag(d̂M )]. The solution of (5.8) is then:

x̂(i+1)
m =

(
D̂T D̂ + ρI

)−1 (
D̂T s + ρ

(
t̂(i)

m + û(i)
m

))
,

and x(i+1)
m is finally retrieved using the inverse Fourier transform over x̂(i+1)

m .

Dictionary update. The second step of the main framework of CDL is the dictionary
update, which consists of learning the dictionary. The problem is formalized as:

arg min
dm

1
2

∥∥∥∥∥
M∑

m=1
xm ∗ dm − s

∥∥∥∥∥
2

2
(5.9)

s.t. ∥dm∥2 ≤ 1 ∀m .
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This problem can also be solved with ADMM [32]. For that purpose, the method uses an
indicator function IC where C is the constraint set {x : ∥x∥2 ≤ 1}. The dictionary update
problem can be rewritten:

arg min
dm

1
2

∥∥∥∥∥
M∑

m=1
xm ∗ dm − s

∥∥∥∥∥
2

2
+ IC(dm) ,

and, following the ADMM framework, it becomes:

arg min
dm,tm

f(dm) + g(tm) s.t. dm = tm ,

with

f(dm) = 1
2

∥∥∥∥∥
M∑

m=1
xm ∗ dm − s

∥∥∥∥∥
2

2
and g(tm) = IC(tm) .

Then, similarly to the CSC problem, ADMM iterates over three steps, (minimizing the
augmented Lagrangian with dm and tm and maximizing it with the dual um).

4.2 Learning step atoms

Previous works have shown that many walk alterations can be detected and quantified
by studying the characteristics and variety of steps [150]. Following this idea, dictionary
learning (DL) has been successfully used to quantify and evaluate gait [143, 209]. How-
ever, it is worth noting that DL is generally used on signals derived from accelerometers,
which have been proven to be a robust and reliable way to record walks. In our setting, the
recording is of lower quality, and nearly-identical steps, such as the ones produced by the
walking of young healthy individual [63], are recorded with significant variations between
them (see Figure 5.5). Besides, a large number of signals in the data set contains elements
that are not related to steps (e.g., pushing a wheelchair or a cart). Finding a suitable dic-
tionary is therefore significantly more challenging, and this is why atoms were created by
selecting signals that are almost entirely walk-related.
We used the implementation of Wohlberg [195] of the algorithm, available in a Python
package named SPORCO (SParse Optimization Research COde). The number of atoms
M was considered a hyperparameter of our CDL problem. Our experiments showed that
M = 3 achieved the best trade-off between the quality of the reconstruction while main-
taining the sparsity of the representation. Using less atoms led to either poor reconstruc-
tion or non-sparse representation, whereas using more atoms significantly decreased the
reconstruction quality. These three atoms are 0.7 second long, which corresponds to an
upper bound of the duration of a step in the walking of a healthy young individual [81].
Figure 5.6 shows the resulting dictionary.

4.3 Signal encoding

As discussed above, while we use a sparsity constraint on the dictionary learning process,
the actual embedding of the input data s into S is done with standard convolution:

S .=
(
s ∗ dm

)
1≤m≤3

, (5.10)

resulting in a three-channel encoding of the signal (S ∈ RT ×3, where T is the size of the
input signal s). Figure 5.7 shows an example of the data encoding process.
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Figure 5.6: Dictionary learned using Equation (5.2). Note that the amplitude of the atoms
is small compared to the signal due to the fact that they are normalized in the training
process.

(a) Original signal and its reconstruction

(b) Signal activations

(c) Embedding

Figure 5.7: Signal embedding. A signal and its reconstruction by convolutional sparse
coding are displayed (a). The activations (b) show the “presence” of each atom in the
original signal. As the embedding step, we use the convolution of the signal with each
atom (c). It is interesting to note that since atom 1 is mildly similar to a Gaussian kernel,
the result of the convolution of the signal with atom 1 is close to a smoothed version of
the original signal.
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5 Step detection with region proposal network

This section discusses the idea behind the first sub-network of NurseNet and presents its
dedicated training process.

5.1 Region proposal network

As discussed before, this sub-network is inspired by the region proposal network (RPN).
RPN’s role is to help the main network of Faster R-CNN [146] focus only on interesting
parts of an image. To this end, a sliding window is passed on a feature map of the input
image. On this sliding window, boxes of different scales and ratios (in total K) are used
as region proposals, and these regions are evaluated through two layers. The first one out-
puts the probability of a box to be an object and the other one gives corrected coordinates
of the box. This method reduces the number of false examples that may mislead the train-
ing process and greatly accelerates the item search. In our case, since we are dealing with
one-dimensional signals (hence significantly smaller than images), we were not especially
seeking high speed execution. However in this approach, steps are considered as a key
element to distinguish between medical staff and elderly activities. Therefore, by training
a network to identify and characterize steps, the idea is to ensure that most of the informa-
tion that is passed to the second sub-network of NurseNet is relevant. Moreover, as this
step recognition part brings a separate training, it adds a constraint to the overall model,
hence reducing the chances of overfitting (see [147] for a discussion related to constraints
and overfitting).
The architecture of the CNN that is used to train the first sub-network of NurseNet is
presented in Figure 5.8. This CNN is made of:

• One 1D convolutional layer with 32 filters of size 60, with a stride of 10, followed by
BatchNorm, with the activation function hyperbolic tangent (tanh).

• One 1D convolutional layer with 16 filters of size 1, with a stride of 1, followed by
BatchNorm, with the activation function tanh.

• One 1D convolutional layer with 8 filters of size 1, with a stride of 1, followed by
BatchNorm, with the activation function tanh.

• One 1D convolutional layer with 3 filters of size 1, with a stride of 1, with the activa-
tion function sigmoid.

5.2 Training a neural net to detect steps

Step boxes and the associated loss function. The training of this CNN was done as
follows. For this task, we selected a subset of signals that only included easily-identifiable
walks of the medical staff. Each of these signals was manually segmented by an expert us-
ing external sensor information, such as the video recordings of the equipped area. More
precisely, boxes (denoted bj) were manually labeled for each step of each embedded sig-
nal. Figure 5.9 gives an example of a step signal and delimiting boxes after labelling. The
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Figure 5.8: Architecture of the first part of the network, the SPN. Note that the last layer,
which gives the output, is not present in the general NurseNet algorithm (Figure 5.4).

(a) Step signal (b) Step labels over a walk signal

Figure 5.9: Example of a typical step (a) and true steps delimiting boxes in a walk signal
(b). In this example of a step signal (a), we can separate the different phases of the step
from heel strike to toe off. However, signals are in fact subject to variations, making the
step detection task challenging (b). During labelling, only parts of the signal that can be
undoubtedly connected to a step are selected.

purpose of the SPN is to produce boxes b̂ with a large Intersection over Union (IoU) score,
which is defined as following:

IoU(b̂) .= max
j

|bj ∩ b̂|
|bj ∪ b̂|

, (5.11)

meaning that SPN is trained to output a set of boxes in which each box is nearly equal
to at least one of the ground-truth boxes. More precisely, the output of the network is a
matrix W ∈ RT ×K , with T being the signal length and K the number of different box
sizes. Here, Wt,k is interpreted as the probability that the box bk

t starting at time t and
of size 40, 50, or 60 (for respectively k = 1, 2, or 3) has a large IoU score. Theses sizes
are chosen according to typical step durations of young healthy individuals. In line with
Ren et al. [146], we define positive instances of boxes, i.e. , bk

t such that IoU(bk
t ) >

√
0.7,

and negative instances, i.e. , bk
t such that IoU(bk

t ) <
√

0.3. It should be noted that in
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the original paper, authors used 0.7 (resp. 0.3) for the upper threshold (resp. the lower
threshold). However, in their case, IoU was computed between 2D boxes, instead of 1D
in our case. All other boxes were considered neutral boxes and did not participate in the
training process. The loss function L over a signal s is then defined as:

L(s, W) =
∑

t

∑
k∈[1,2,3]

1IoU(bk
t )>

√
0.7 log(Wt,k) + 1IoU(bk

t )<
√

0.3 log(1−Wt,k). (5.12)

Training process. The weights of each layer were initialized using i.i.d. centered Gaus-
sian variables with a standard deviation of 0.2. Regularization was done using dropout
(with p = 0.5) after each BatchNorm layer. Equation (5.12) was optimized using gradient
descent with a learning rate of 10−3, decreasing geometrically (×0.9) every 10 epochs,
and the Nesterov momentum strategy. The learning was monitored and stopped before
over-fitting.

Figure 5.10: Test of SPN over a walk signal, with top figure showing the true labels. Re-
sults are displayed after applying a threshold over the output score of SPN and removing
overlapping boxes (middle and bottom figures). With th = 0.3 results are satisfying, with
only two steps more than the true labels.

Results of step detection. Once SPN is run over a signal, there are multiple stages
towards the final detection of steps. First, a threshold th is passed over scores Wt,k. From
the remaining set of boxes, overlapping boxes are removed, making sure that the ones
with the highest scores are kept. The average precision (AP) can then be computed in
function of a threshold over the IoU (see Appendix C for more details). Figure 5.10 shows
an example of the result of SPN over a test signal. The step detector achieved good results:
for an IoU threshold of 0.7 (resp 0.9), it achieved an AP of 85.2% (resp. 55.3%).
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6 Results

In this section, we thoroughly evaluate the performance and behavior of NurseNet on
multiple types of signals. First, the accuracy of NurseNet is studied over each subgroup of
our database, and we take a closer look at misclassified signals. Then, a complete ablation
analysis is done to show the relative improvement added by each part of the algorithm, and
our approach is compared to a random forest model trained with different feature vectors.
The algorithm is tested and run with a Python implementation on a laptop with a 2.4-GHz
Intel Core i7 processor. The training of the several stages (i.e. , CDL, SPN, and NurseNet)
takes about an hour, however, the complete inference process is fast (nearly instantaneous
for a 10-s signal).

6.1 Performance evaluation

The algorithm is evaluated by performing stratified random splits of the dataset into train-
ing and testing sets using 5 folds, resulting in similar distributions of labels in all sets.
These splits are done with similar distributions of the three following sublabels: single
walk – where one individual is walking on the sensor, multiple walks – where strictly
more than one individual is walking at the same time on the sensor, and others – where
one non-walk-related event occurs (e.g., pushing a wheelchair or a cart). The demograph-
ics are detailed in Table 5.2.

Sublabel Staff Elderly

Single walk 43 31
Multiple walks 19 11
Other 19 23

Table 5.2: Repartition of signals across main labels (staff / elderly) and sublabels.

NurseNet achieves a global AUC of 0.93 for the classification between staff and non-staff
activities. This high performance is evenly distributed on all labels, as shown by Figure 5.11.
Table 5.3 presents two examples of confusion matrices obtained by NurseNet for different
thresholds, and Figure 5.12 shows examples of misclassified signals. These signals are all
hard to discriminate, which is primarily due to the variety of events that we aim to classify
– guessing the age group of multiple persons walking or persons pushing wheelchairs is by
nature a difficult task, and secondly to the event itself – contrary to the previous example of
a walk signal generated by an elderly person (Figure 5.2), the signal of 5.12(b) was recorded
from a healthier individual, hence a lot more challenging for the classification task.

6.2 Ablation Analysis

This subsection aims to perform an ablation analysis on NurseNet and compare it to other
versions of itself (in which some parts are “deactivated”). To achieve this result, three other
versions of NurseNet are trained.

1. No embedding. A versionwithout the embedding of the input signal, i.e. themodel
is fed directly with the raw signal (instead of its convolution with step atoms).
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Figure 5.11: ROC obtained when classifying staff /elderly for different activities (single
individual walk, multiple individuals walks, other) using NurseNet over stratified folds.
Mean AUCs over the folds are displayed in the legends.

Staff Elderly

Single walk Multiple walks Other Single walk Multiple walks Other

τ = 0.5
Classified Staff 41 15 14 4 1 7
Classified Elderly 2 4 5 27 10 16

τ = 0.7
Classified Staff 38 13 13 3 1 5
Classified Elderly 5 6 6 28 10 18

Table 5.3: Confusion matrix for different thresholds τ , i.e. , activity is classified as staff
if the network produces an output greater than or equal to τ . Among staff activities, we
note that the staff vs. elderly classification is the hardest for the multiple walks and other
groups.

2. No SPN. A version without the SPN pre-training part (but embedding is still used),
meaning that the network is trained without “freezing” the first layers.

3. No embedding & No SPN. A version in which no SPN is used nor embedding, i.e.
the whole network is trained from scratch on the final classification task.

Finally, NurseNet is compared to three models based on the random forest (RF) algorithm.
All three models are RF made of 30 fully grown decision trees trained with CART. These
models differ in the way the signal is processed before a vector is passed to the RF.

1. RF + raw. The signal is passed directly as the input vector for the RF (with a 10-
second padding for homogeneity), thus resulting in a vector of 10 × 100 = 1000
dimensions.

2. RF + embedding. The 10-s padded signal is decomposed using the embedding with
the atoms learned in Section 4, thus resulting in a vector of 10 × 100 × 3 = 3000
dimensions.
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(a) Medical staff walking (b) Elderly walking

(c) Medical staff walking (two persons) (d) Elderly walking (two persons)

(e) Medical staff pushing a wheelchair (f) Elderly using an electric wheelchair

Figure 5.12: Examples of signals misclassified by NurseNet with their output score (the
score can be seen as the probability, according to the model, that the signal belongs to the
staff class). Left column (resp. right column) shows signals generated by medical staff
(resp. elderly) and each row corresponds to a sublabel (i.e. single walk,multiple walks, and
other). We note that misclassified staff signals present irregularities, while misclassified
elderly signals have unusually high amplitudes.

3. RF + stat. features. The 10-s padded signal is transformed into a vector of statistical
features, following the procedure described in section 3.2 on page 68, hence resulting
in a vector of 87 dimensions.

ROC curves and corresponding AUCs of all the described models are presented in Fig-
ure 5.13. Regarding the ablation analysis, results show that while the embedding part
slightly improves results of the complete model, the SPN brings a larger improvement,
hence illustrating the advantages of our training method. We note that NurseNet with-
out embedding nor SPN, which is a CNN directly applied to the raw signal, achieves the
surprisingly high AUC of 0.84. When compared to random forests, NurseNet significantly
outperforms all RF-based models, the most performing of these latter being the one trained
with our set of statistical features, which is quite expected since a supervised model such
as a RF is meant to work on “relevant” variables and not on the raw signal. We note that
not only NurseNet but also its ablation versions achieve higher AUCs than RF + stat. fea-
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(a) NurseNet ablation analysis (b) NurseNet and several RF-based models

Figure 5.13: Classifying staff /elderly with ablation over NurseNet model (a) and compar-
ing it with random-forest-based models (b). The corresponding AUCs are displayed in the
legends. Note that NurseNet outperforms all the other algorithms.

tures, thus suggesting that the features learnt by the first layers are well adapted to the
classifying task.

7 Discussion

Classification across all labels. It is interesting to note that NurseNet performs well
across all sublabels. This might seem counter-intuitive at first as the algorithm is pre-
trained towards detecting steps and some signals contain non-gait-related activities (e.g.
pushing a cart). A possible explanation comes from the fact that all signals contain some
elements of walks. In the example where a staff member is pushing a cart, while not obvi-
ous to the untrained eye, it is possible that some characteristics of the medical staff walk
are encoded in the signal. Therefore, the features learned by the SPN can be relevant to
correctly assess the floor signals.
Multiple training. Interestingly, the CNN without the dictionary encoding nor SPN pre-
trainings gives same performances as the CNNwith the sole dictionary encoding. Thismay
be explained as follows. Both the dictionary encoding and the SPN are two complementary
stages of step detection: the dictionary extracts features linked to step characteristics, and
the SPN is trained to use these features to segment the signal into steps. On the one hand,
when the CNN is used with only dictionary embedding, the training task becomes more
complex as the network has to learn how to use these features to recognize steps while
trying to classify these signals. On the other hand, the regular CNN algorithm can use any
non-step-related features to perform the classification. Consequently, its objective func-
tion is significantly less constrained and has a larger number of reasonable local minima,
making it easier to train. However, it should be noted that when properly guided toward
a step-related solution (NurseNet), the CNN appears to perform even better, which em-
phasizes the interest of our approach.
NurseNet vs. shallow. On this classification task, the random forest model trained
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over the raw or embedded signals gives low performance (AUC 0.77 and 0.76). This may
be explained by the complex nature of the signal: while NurseNet (as well as other deep
network algorithms) can learn relevant features to describe the signal, shallow algorithms
tackle a significantly harder task. We observe that with properly designed features, the RF
achieves better results (AUC 0.85). However, it is still outperformed by NurseNet (AUC
0.93).
In-depth classification. As seen in Section 6, NurseNet is able to separate medical staff
and elderly activities with very high accuracy (AUC 0.93). Future work may focus on
separating different categories of activity as each one of them entails different indicators
regarding elderly activity monitoring. However, this task requires a significantly larger
data set, and therefore, the manual labelling of far more numerous sequences of data.
Individual identification. While NurseNet achieves very high accuracy for classifying
elderly versus medical staff, it is not able at the moment to recognize individuals. This
is due to the fact that the data set only includes a handful of signals for each individual.
However, we believe that with significantly more data, this method can be improved to
distinguish between individuals, although at a lower accuracy than the staff /elderly sepa-
ration. Future work may aim at improving NurseNet in that regard.





Conclusion and perspectives

This thesis explores contributions to a floor-based system in the context of elderly moni-
toring. To this end, we have first recalled the existent literature over fall detection systems
and time series classification, thus reflecting the great variety of sensors and methods, and
the difficulties of choosing one from another. We proposed a set of criteria that allows to
have a grasp at the implementability of fall detection systems, hence showing some lim-
itations among this abundant offer, and the benefits of floor systems when considering
practical use. Moreover, this study highlighted the more frequent use of supervised classi-
fiers for time series classification. Motivated by the interesting properties of Tarkett’s floor
sensor and the fall detection application, we put up a simple yet practical supervised model
that achieves state-of-the-art performances over an experimental data set. This model is
based on the well known random forest and we proposed improvements through time-
aggregation and data augmentation. A feature reduction procedure was also proposed to
answer hardware constraints, thus allowing the integration of the model into an embed-
dable version. It was finally implemented in the processing unit in nursing homes and
allowed to collect a few real data that were used for the study of a new model. These
new data being somehow different from the experimental data and the fall being a rare
event, we proposed class-imbalance adapted transfer learning procedures over decision
trees. These methods showed promising results, hence highlighting the importance of pre-
serving the minority class when transferring decision trees. Along with these findings
we made available a Python implementation of the seminal transfer algorithms and their
proposed variants. Finally, still motivated by elderly monitoring in nursing homes, we
proposed a method that allows the floor-based system to distinguish elderly persons from
others. We showed that even with a small data set, using a convolutional neural network
with constrained pre-learning steps can achieve state-of-the-art performances.
These contributions all led to interesting perspectives. First, the monitoring system was
designed with embedded processing, hence imposing hardware constraints that were ad-
dressed with a simple feature selection procedure. Although effective in terms of perfor-
mance, this procedure only takes as input the variable importance, without any consider-
ation over the variable computational complexity. This kind of method lies in a currently
rarely explored field that is referred to as budget learning, and might lead to interesting im-
provements for hardware-limited applications or under power consumption constraints.
Moreover, as feature engineering can always enhance learning models, the feature spaces
may change from a model’s version to another, thus suggesting the exploration of het-
erogeneous transfer learning with decision trees. We also noted that one of the proposed
transfer methods could be improved and more importantly, that although these methods
are easily applicable to any tree ensemble (by simply applying the procedure to all trees),
future work may consider building a selective meta-method that can automatically build
the “best” tree ensemble for target data. Finally, our work on deep-learning based model
suggested natural continuations such as detecting activity types (from all possible activi-
ties of daily living), and even identifying individuals.





A
Features for time series classification

In this appendix, we give the details of statistical features used for the floor signals, and
give a short correlation analysis.

1 Signal into feature vector

As described in Section 3.2 on page 68, in order to transform the preprocessed signal into
a feature vector, we compute statistical features over a fixed window. Let s denote a pre-
processed signal, and we denote by s[t] ∈ R its value at time t. The signal extracted over
a window of size T is then denoted {s[t]}Tt=1.
We first denote by µ the mean over s, which for a discrete signal is defined as

µ = 1
T

T∑
t=1

s[t] .

The central moment at order n of a random variable X is defined as E[(X − µ)n]. We
denote by µn its discrete version, expressed as

µn = 1
T

T∑
t=1

(s[t]− µ)n .

Numerically, the derivative of s is computed with the discrete difference

s′[t] = s[t + 1]− s[t] ∀t ∈ [[1, T − 1]] ,

and the derivative at order n is obtained in the same manner:

s(n)[t] = s(n−1)[t + 1]− s(n−1)[t] ,

with s(1) = s′.
We also use the time stamps of minimum and maximum values of s:

tmin = arg min
t

s and tmax = arg max
t

s .

We denote by C the set of segments (or sub-signals) ck of s that are above a threshold over
the absolute value of s:

C = {ck}Kk=1 =
{
{s[t]}bk

t=ak
| |s[t]| > α, 1 ≤ ak < bk ≤ T

}
, (A.1)
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Name Formula

Maximum max
t

s

Minimum min
t

s

Delta-min-max max
t

(s)−min
t

(s)

Median median(s)

Mean µ = 1
T

T∑
t=1

s[t]

Variance σ2 = µ2 = 1
T

T∑
t=1

(s[t]− µ)2

Standard deviation σ

Normalised momentum µn

σn

Energy 1
T

T∑
t=1

s2[t]

Log-energy 1
T

T∑
t=1

log
(
1 + s2[t]

)
Shannon-energy 1

T

T∑
t=1

s2[t] log
(
1 + s2[t]

)
Max-n-derivative max

t

(
s(n)

)
Energy-derivative Energy(s′)

N-greater-threshold
T∑

t=1
1{t | s[t] > α}

Peak-count
T∑

t=1
1{t | s[t] > α , s′[t] > β , −s′[t− 1] < −β}

Derivative-before-max s′[tmax − 1]
Derivative-after-max s′[tmax]
Derivative-before-min s′[tmin − 1]
Derivative-after-min s′[tmin]

Proportion-abs-lower 1
T

T∑
t=1

1 {t | |s[t]| < α}

Mean-segment-lower 1
K

K∑
k=1

(bk − ak) cf. (A.1)

Percentile percentile(s, α) (with α the percentage)
Interpercentile percentile(s, α)− percentile(s, 1− α)

Log-mean-Peak log

(
1 + 1

N

N∑
k=1

{|s[t]| | |s[t]| > percentile(|s|, α)}

)

Log-mean-Valley log

(
1 + 1

N

N∑
k=1

{|s[t]| | |s[t]| < percentile(|s|, α)}

)
Log-mean-Diff Log-meanPeak(s)− Log-meanValley(s)

Table A.1: Features
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and the length of a segment ck is then bk − ak.
The normalised momentum is computed with n ∈ {3, 4, 5, 10} which results in total in 29
features. These features are computed over the preprocessed signal s, its first derivative s’,
and the absolute value of its Fourier transform (computed with the FFT algorithm). In the
following figures, the features are denoted X -Name with X denoting the signal, derivative
or Fourier transform (resp. S, D, F ), andName denoting one of the 29 previously described
functions. For example, the feature “Maximum function computed over the absolute value
of Fourier transform of the signal” is denoted F -Maximum.

2 Correlation

We compute the correlation over our set variables using the standard Pearson correlation,
which, between two feature vectors x and y in RN , is expressed as

ρ(x, y) =
∑N

i=1(xi − µx)(yi − µy)
σxσy

,

with µx, µy, σx, σy the empirical means and standard deviations of x and y. Values of ρ
range from −1 to 1. As we do not care about either positive or negative correlation but
rather its absolute value, we compute |ρ(x, y)|, hence ranging from 0 to 1, 1 meaning
total correlation (positive or negative), 0 meaning no linear correlation. Figure A.1 dis-
plays the correlation matrix of all variables, showing that generally speaking the variables
are rather decorrelated. In this case, the variable importance is still usable (the more we
have correlated variables, the less variable importance is meaningful) for interpretation. In
general, even with numerous correlated features the recursive feature elimination is still
pertinent [72].
A remark to be made is that two features – Delta-min-max and Log-mean-Diff, are built
as the difference of other features. This does not imply multicollinearity nor correlation
between variables, but rather adds potentially usable variables to the pool of features, that
can have a physical sense in terms of signal interpretation. Correlation matrices of these
features (and the ones they rely on) are displayed in Figure A.2, showing that despite being
built from difference of other variables, a variable is not necessarily correlated to them.
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Figure A.1: Correlation matrix with the whole set of 87 variables, ordered along the three
groups: signal, derivative and Fourier transform (each group contains the 29 variables
previously described)
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Figure A.2: Correlation matrices for the variables built with existing ones, along the three
representation (signal, derivative, Fourier transform).



B
Transfer learning: results over synthetic

data
This appendix gives additional results to the transfer methods described in Section 6 on
page 105. These results are taken from the experiments over synthetic data with varied
“levels” of transformation between source and target domain. We first give some more de-
tails about how we simulate these transformation levels. We recall that data are generated
with points drawn from multivariate Gaussian distributions. We generated Nclust = 10
clusters in three dimensions, and sampled Nsource = Ntarget = 200 samples to generate
the training source and target sets. In source, all 10 clusters have random mean and vari-
ances drawn from Uniform distributions with values respectively in [−70, 70] and [5, 15].
The transformation towards target is done as follow: the clusters parameters are changed
and data points are sampled from these new clusters. The most straightforward modifi-
cations that can be done to a multivariate Gaussian distribution consist in slightly chang-
ing its inner parameters (mean and variance), hence leading to “drifts”, or “squeezes” and
“stretches” of the clusters in the feature space. Secondly, another method to change data
is to remove or add clusters to the initial pool (and redrawing means and variances from
the Uniform distributions for the new ones).

1. Drifts: Given a cluster, a drift is applied as an additive value to each of the clus-
ter’s means {µi}i=1,2,3, meaning that each µi is modified. The additive value (i.e.
the drift) is randomly sampled from a Gaussian distribution with mean µD and a
fixed variance σD = 2. The parameter µD hence guides the “degree” of transforma-
tion applied from source to target. When performing a drift, all clusters means are
modified.

2. Squeeze / Stretch: The concept for Squeeze / Streches
is very similar as Drifts since we apply a multiplicative
value to each of the cluster’s variances {σ}i=1,2,3. The
multiplicative value is drawn from a Gamma distribu-
tion (parameters k and θ). Parameter θ is fixed to 1

1−k
so that themode (themost represented value) is always
1. The lower k, the higher the variance, hence guiding
the “degree” of transformation.

3. Add / Remove: The last transformation consists of choosing numbers NR and NA

of clusters to remove and add. These numbers are drawn from a Gaussian distribu-
tion centred on µAR×Nclust with fixed variance σAR = 0.5. The parameter µAR is
then the mean proportion of clusters that will be removed and added, hence guiding
the “dregree” of transformation.
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As previously described, these transformations are all combined with imbalance in the
target set. These transformations are performed independently, i.e. there is no combination
between them. Figure B.1, B.2 and B.3 display the results over various degree for each
transformation. The general conclusion is the same as in the chapter, that is, the proposed
methods outperform the original ones under class imbalance.
However, some additional remarks can be made. First, we note that as the transformation
degree increases, Source performance drastically drops, hence illustrating the dissimilarity
between domains. It shows that the source domain is no longer sufficient to explain the
target domain to the learning model. With sufficient balance (and data) in the target train-
ing set, it becomes then more interesting to learn a new model to classify data. Secondly,
it seems that the performance gap between the original algorithms and our proposed vari-
ants does not depend on the transformation degree but only on the class imbalance ratio.
Indeed, these methods were not thought as general improvements but as adaptations to
the imbalance case.
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(c) µD = 10

Figure B.1: Drift. ROC AUC over synthetic data depending on the minority class ratio
(ratio given on the scale 0-1).
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Figure B.2: Squeeze / Stretch. ROC AUC over synthetic data depending on the minority
class ratio (ratio given on the scale 0-1).
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Figure B.3: Add / Remove. ROC AUC over synthetic data depending on the minority class
ratio (the ratio is given on the scale 0-1).



C
Deep learning models

This appendix gives more details on the neural network described in Section 3 on page 117,
in particular through a short description of convolutional neural networks and the tools
used for their training.

1 Feedforward neural networks

Framework. The coremodel of deep learningmodels is the feedforward neural network.
The principle of this model is to learn a predictive function Φ that will apply successive
transformations to the input vector x to finally output y as the estimate of the class of x.
In multiclass classification with K classes, y is generally a vector in RK in which each
element yk ∈ R is the probability estimate of belonging to class k). In its basic form, the
model is organised in layers of neurons (or units), and each neuron applies to an input
vector z ∈ RN the following transformation:

f(z) = a(w⊺z + b) ,

with a denoting the activation function, w ∈ RN being aweight vector, and b ∈ R denoting
the bias. Each layer l has an activation function al that is the same for all neurons, and the
output of a whole layer can then be written

zl = ϕl(zl−1) = al(Wlzl−1 + bl) ,

with Wl ∈ Rnl−1×nl denoting the weight matrix of the layer l, and nl the number of
neurons in layer l. This form of neural network is called fully-connected, in the sense that
each neuron of the layer l is connected to all neurons of its two surrounding layers (see
Figure C.1).
In a more general view, for a given input x, the final output y of a L-layer neural network
is the composition of all layers applied to x:

y = Φ(x) = ϕL

(
ϕL−1

(
. . . ϕ1(x)

))
,

with each layer l having its own parameters: number of neurons, activation function,
weights and biases.

Activation function. In this setting, each layer applies a linear transformation on the
input vector by multiplying it with the weight vector (and adding the bias), followed by a
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Figure C.1: Schematics of a fully-connected feedforward neural network with two hidden
layers and a one-dimensional output vector (e.g. for a binary classification).

non-linear transformation performed by the activation function a. There are several types
of activation functions, themost common ones being the sigmoid (denoted σ), the Rectified
Linear Unit (denoted ReLU), and the hyperbolic tangent (denoted tanh):

σ(x) = 1
1 + e−x

ReLU(x) = max(0, x)

tanh(x) = ex − e−x

ex + e−x
.

These functions are displayed on Figure C.2. Originally, the first activations functions were
designed to mimic the neuron behaviour, that is, a binary response depending on the level
of the input. While this is easily done with a step function (0 if under a threshold, and
1 otherwise), this function does not allow complex representations of data (all neurons
output either 0 or 1) and has a null gradient everywhere (and undefined on the threshold),
which makes it a bad choice for learning parameters.
In this context, the sigmoid function was proposed as a smoothed version of the step func-
tion, which is differentiable and has value between 0 and 1. The hyperbolic tangent is
very similar, as it is a rescaled sigmoid. The main differences lie in the values taken by the
tanh (−1 to 1) and the derivative at 0, which is greater for the tanh, thus making weights
move away from potentially small initial values. The ReLU was also proposed since it al-
lows a larger scale of values to be taken (ReLU(x) ∈ R+ ∀x ∈ R) and has very easily
computed gradient (1 if x > 0 and 0 otherwise), thus resulting in faster learning. Besides,
ReLU has the nice property of not having a “vanishing gradient” (i.e. very low gradient
values) contrary to the sigmoid, which may “slow” the learning for high input values.
Although the choice of activation functions can be decisive, aside common sense (e.g. for
classification, since sigmoid outputs values between 0 and 1, it is usually used in the last
layer), there is no general rule for selecting them, and according to literature, this relies
more on experimental skills [71].

Convolutional neural networks. Convolutional neural networks (CNN) are feedfor-
ward models in which the layers do not apply the same inner transformation to the input.
Instead, the matrix product is replaced by a convolution between the input and a set of
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Figure C.2: Common activation functions for feedforward neural networks.

Figure C.3: Convolutional 2D layer.

filters. Like fully-connected networks, an activation function is then applied before pass-
ing the output to the next layer. Although applicable to one-dimensional signals, CNN
are usually used for image recognition, and therefore applied with 2D signals. Each filter
produces an output channel whose size depends (but not exclusively, see later) on the filter
size. Figure C.3 displays a convolutional layer.
Convolutional layers are usually followed by pooling layers, the most used one being the
MaxPooling layer. These layers are responsible for a size reduction of the inputs. Similarly
to a convolutional layer, a MaxPooling layer consists of passing a small filter that, instead
of being multiplied with the input, performs themaximum operation on it (see Figure C.4).
These operations, the convolutional and the pooling layers, can be performed with various
strides. Indeed, in discrete convolution, a new parameter arises which is the step size when
the filter is passed along the input channel. In classical convolution, this step is of size
1, however one can choose to bring it to larger values so that the output is even more
downsized. Figure C.5 displays the effect of different strides.
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Figure C.4: MaxPooling layer.

(a) Stride 1 (b) Stride 2 (c) Stride 3

Figure C.5: Schematics of the stride in convolutional layers.

2 Training the neural network

Gradient descent. Most neural networks are trained with stochastic gradient descent
(SGD) [71]. It is a slightly different version of the classical gradient descent in which at
each step, rather than using the whole training set to estimate the gradient of the objective
function, only a subset of examples is used. The SGD usually refers to a subset of size
one, while using a larger subset is referred to as minibatch gradient descent. This variant
revealed to be useful for very large training sets since computing the gradient becomes
faster. However in our framework, since we deal with rather small data sets, the training
of both parts of our model (the step detection network and the final classification network)
can be done while computing the gradient with the whole training set. We then use a
classical gradient descent scheme.
Let us denote by Θ the set of all parameters of the neural network. In a fully-connected
network, Θ would encompass all the weights and biases of all layers. Then, given a loss
function L associated with our task (e.g. the binary cross entropy for classification), the
objective function to minimize is written

J(Θ) = 1
N

N∑
i=1
L(xi, yi, Θ) .

The gradient over the whole training set can be written

∇ΘJ(Θ) = 1
N

N∑
i=1
∇ΘL(xi, yi, Θ) .
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The gradient descent (GD) algorithm consists in successively computing the gradient and
updating Θ as follows:

Θ(q+1) = Θ(q) − α∇ΘJ(Θ(q)) ,

with q denoting the iteration number and α the learning rate.

Adapting the learning rate. Since the objective function for neural network is not
convex, it contains local minima or saddle points in which a gradient descent algorithm
may be stuck. However, reaching a local minimum that is not the global minimum does
not prevent the model from yielding good results on the testing set [71]. To ensure that
we end up in a “good” minimum of J in a reasonable time, the learning rate α can be
tuned. In fact, the learning rate can be decisive when using gradient descent methods. A
low value of α can lead to very slow convergence, or make the algorithm stay in the first
encountered local minimum, while a too large value may make the algorithm “bounce” in
the parameter space without settling in any minimum.
As the gradient descent approaches the minimum of J , we wish to “slow” the progression
of the descent so that the algorithm may converge. It is then common to use a decay for
the learning rate [71]. There are various ways of choosing α, and several works proposed
automatic computation, such as Adam [93]. These methods were proposed for SGD were
the gradient is expected to be very noisy. In our case, we used a simple geometric decay,
meaning that every M epochs of the learning procedure, α is multiplied by a constant
γ < 1. We combined this decay with a momentum strategy, and this was used for both
NurseNet and SPN optimization procedures.

Momentum. Among strategies that allow to improve the gradient descent the method
ofmomentum has been fairly used [71]. It is called that way due to a physical interpretation
that when going downhill, a mass retains its velocity. The method introduces a vector v
that aims to retain the negative gradient with a decaying factor β. In this case, the gradient
update is replaced by

v(q+1) = βv(q) − α∇ΘJ(Θ(q))
Θ(q+1) = Θ(q) + v(q+1) ,

where 0 < β < 1. Momentum speeds up the movement along strong gradients hence
accelerating the descent and helping the algorithm to avoid local minima. A variant was
proposed by Sutskever et al. [169] inspired by Nesterov’s accelerated gradient [128]. The
Nesterov momentum is sightly different in the way that the gradient is evaluated ahead of
the current position in the parameter space. The update becomes

v(q+1) = βv(q) − α∇ΘJ(Θ(q) + βv(q))
Θ(q+1) = Θ(q) + v(q+1) .

This variant is thought as a correction of the classical momentum method in the way that
if the momentum makes the descent algorithm point in the wrong direction or overshoot,
looking ahead allows to correct the trajectory. Figure C.6 illustrates the momentum strate-
gies.
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(a) Classical (b) Nesterov

Figure C.6: Schematics of momentum strategies.

Early stopping. Most learning techniques use optimization as their core training proce-
dure. In our method for example, we used gradient descent to train SPN and NurseNet. As
the optimization algorithm is progressing through iterations (or epochs), if parameters are
well set, the training error is expected to continuously decrease. However, the validation
error may reach a minimum and increase as iterations continue, thus leading to overfit-
ting. Since neural networks are complex models, they are all the more prone to overfitting.
Therefore, it is crucial to track the validation error along training and stop the latter at
the right moment. Techniques that follow this principle are referred to as early stopping.
They are usually quite simple heuristics whose main goal is to stop training as soon as
validation error rises. In practice, rather than using rules that rely on the variation of the
validation error, one can simply train a first time the model while monitoring training and
validation errors and retrain the model with the right amount of iterations [71].
During our optimization procedures, we used this straightforward method and recorded
the “necessary” number of iterations while monitoring errors.

Batch normalization. Batch normalization [87] is a recent innovation that aims at im-
proving the stability and performance of deep neural networks. The principle is to nor-
malize the output of a layer by the mean and the variance of the activations, that is, given
a vector of activations z, replacing it with z′ = z−µ

σ+ϵ , with µ and γ being the mean and
variance vectors over the units in the layer. The main motivation is to prevent activations
to “shift around”, that is, no matter how the activation changes, we maintain a controlled
mean and variance. However, in order not to force the layer to have zero-mean and vari-
ance one, the procedure adds two new trainable parameters γ and β to the layer, so that
after normalization, the activations are replaced with z′′ = z′γ + β, thus allowing the
network to learn by itself the “useful” mean and variance for the given layer. Although
the contributions of batch normalization are still a subject of research in the deep learning
community [106], it has been largely used in many state-of-the-art deep learning models.
In our model, batch normalization is applied after the first three convolution layers.

Dropout. Batch normalization if often combined with dropout [71]. Dropout is a regu-
larization method that consists of zeroing a random subset of units during training, thus
limiting overfitting [163]. The random selection is usually done according to a Bernouilli
distribution of parameter p = 0.5, and it is applied to all layers except the output one.
With p = 0.5, it means that during training, half of the neurons (in average) are inactive,
and the selection of neurons that are zeroed is changing at each pass (see Figure C.7). This
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(a) Original network (b) with dropout

Figure C.7: Schematics of dropout regularization.

can be seen as training a very large ensemble of subnetworks that can be formed with less
neurons at each layer, each one of them being trained with a single step of gradient [71].
It should be noted that even if dropout may be applied with convolutional layers, in our
model it is used on the fully-connected layers only.

3 Convolutional neural network for object detection

TheCNN architecture is effective for two main reasons. First, in signals such as time series
or images, we find many locally correlated groups forming patterns that may be of interest.
Due to its inner filters, a CNN can grasp such patterns. Besides, these patterns are likely to
be repeated, which makes the convolution operation ideal to localize them in every part of
the input signals. When applied, CNNs are responsible for localizing patterns with several
level of features and are finally combined with fully-connected layers that perform the
final classification.

Region proposal for object detection. Unlike image classification where the goal is to
guess the class of the whole input image, the main goal of object detection is to localize and
classify objects in the image. To that end, many attempts were based on the exhaustive
sliding window strategy, which yields performing detection results, although at a great
computational cost [82]. To overcome this issue, recent advances were driven by proposal
models [67, 145, 146]. The main idea is that, instead of exploring and running a classifica-
tion procedure over a very large set of window shapes and positions, a first model is passed
over the image and “proposes” to the classifier positions (and shapes) with high probability
of object presence. This procedure, called region proposal, is an ongoing research topic and
has received various solutions1, one of them being the well-known selective search [180].
In fact, it has been noted that when exploring test time of object detection methods, the
region proposal might represent the largest part, hence becoming the bottleneck in many
algorithms. One of the latest advances in this topic consists of using a CNN as the proposal
model. It was proposed by Ren et al. [146] in a general object detection model called Faster
R-CNN, in which the subpart responsible for the region proposal is simply called region
proposal network (RPN).

1A comprehensive review of region proposal models has been proposed by Hosang et al. [82].
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Region proposal network. One major improvement Faster R-CNN brings to object
detection is that RPN and the classifier share the same first convolutional layers, thus dras-
tically reducing the marginal cost of region proposal during test time. As explained in
Chapter 5, RPN evaluates K bounding boxes (called anchors) of various sizes and shapes
using the main convolutional layers and a mini-network made of two sibling layers, one
layer giving the probability estimate of the box to be an object, the other layer yielding 4
coordinates of the box (center coordinates, width and height). This is done with a sliding
window on which anchors are centred. Authors use K = 9, resulting from 3 scales and 3
aspect ratios. For the training procedure, they assign positive value to anchors that have
IoU > 0.7 and negative if IoU < 0.3. The loss function they minimize is the multi-task
loss proposed by Fast R-CNN [67], which is the weighted sum over two losses:

L(pi, ti) = Lcls(pi, p∗
i ) + λLreg(ti, t∗

i ) ,

with i denoting the box index, pi the output prediction of box i being an object, p∗
i the

ground-truth label, ti the vector of 4 coordinates of the predicted box and t∗
i the ground-

truth box coordinates. Lcls is the log-loss over the class object, andLreg a custom regression
loss for the box coordinates [67].
Authors propose a training method called alternating training that entails four steps de-
signed to train RPN and the classifier while enforcing their convolutional layers to be
shared. Step 1 consists of training end-to-end RPN, and step 2 uses RPN proposals to
train the classification network. At this stage, RPN and the classifier have the same con-
volutional architecture but do not share the same filters since weights have been trained
separately. The procedure adds then two more steps. Step 3 consists of initializing the
convolutional layers of RPN with the classifier’s filters and fixing them so that just the
layers unique to RPN are refined. Finally, step 4 fine-tunes the layers that are unique to
the classifier while fixing the convolutional layers. At this point, the convolutional layers
are shared across both networks, hence forming a unified network [146].
Inspired by this work, our classification network NurseNet is based on a simpler version
of RPNwhich is trained to “propose” boxeswith high probability of containing a step signal.
This part of NurseNet is called step proposal network (SPN). Like RPN, we chose several
box sizes according to a typical step size. The main differences with RPN is that we do not
use a regression layer over the boxes since our purpose is not to perform a precise step
detection.
Then, the output layer of SPN is removed, leaving only the convolutional layers, and we
add fully-connected layers that are finally trained over the classification taskwhile keeping
the SPN part fixed. Like RPN, SPN tells the fully-connected part of NurseNet “where to
look”.

Average precision. The average precision (AP) is a common metric used in object de-
tection literature. It is the average of the precision along all recall values. Precision and
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recall are defined as:

Precision = True positives
Positive outputs = TP

TP + FP

Recall = True positives
Total positives = TP

TP + FN
(= TPR)

AP is the area under curve (AUC) of the precision-recall curve. To obtain this curve, the
methodology is the following:

1. The object detector outputs boxes over the testing data. Each box has an associated
score (i.e. a confidence value).

2. All output boxes with a high score (e.g. above 0.5) are considered positive outputs
according to the detector. These prediction boxes are ranked along their score.

3. The boxes with IoU > Th with ground truth boxes are considered true positive and
false positive otherwise.

4. The precision and recall values are computed as we take into account output boxes
from the highest to lowest score.

5. The AUC over the precision-recall curve is computed.
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Résumé : Cette thèse porte sur la détection 

d'événements dans des signaux issus de capteurs 

sols pour le suivi des personnes âgées. Au vu des 

questions pratiques, il semble que les capteurs de 

pression situés au sol soient des candidats 

prometteurs pour les activités de suivi, notamment la 

détection de chute. Les signaux étant complexes, il 

convient d’utiliser des modèles sophistiqués. Afin de 

concevoir un détecteur de chutes, nous proposons 

une approche basée sur les forêts aléatoires, tout en 

répondant aux contraintes matérielles à l’aide d’une 
procédure de sélection des variables. Les 

performances sont améliorées à l’aide d’une 
méthode d’augmentation des données ainsi qu’à 
l'agrégation temporelle des réponses du modèle. 

Nous abordons ensuite la question de la 

confrontation de notre modèle au monde réel, avec 

des méthodes d'apprentissage par transfert qui 

agissent sur le modèle de base des forêts aléatoires, 

c'est-à-dire les arbres de décision.  

Ces méthodes sont des adaptations de travaux 

antérieurs aux nôtres et sont conçues pour aborder le 

problème de déséquilibre des classes, la chute étant 

un événement rare. Nous les testons sur plusieurs 

ensembles de données, montrant ainsi des résultats 

encourageants pour la suite, et une implémentation 

Python est mise à disposition. Enfin, motivés par la 

question du suivi des personnes âgées tout en 

traitant un signal unidimensionnel pour une grande 

zone, nous proposons de distinguer les personnes 

âgées des individus plus jeunes grâce à un modèle de 

réseau de neurones convolutifs et un apprentissage 

de dictionnaire. Les signaux à traiter étant 

principalement constitués de marches, la première 

brique du modèle est entrainée pour se focaliser sur 

les pas dans les signaux, et la seconde partie du 

modèle est entraînée séparément. Cette nouvelle 

approche de la classification de la marche permet de 

reconnaître avec efficacité les signaux issus de 

personnes âgées. 
 

 

Title : Event classification from floor sensor – application to elderly monitoring 

Keywords : Fall detection, Transfer learning, Decision tree, Random forest, Convolutional neural network 

Abstract : This thesis addresses the subject of event 

detection in temporal signals for elderly monitoring 

by the use of a floor pressure sensor. We first show 

that most proposed systems do not meet main 

practical issues and that floor systems constitute 

promising candidates for monitoring tasks. Since 

complex signals require sophisticated models, we 

propose a random-forest-based approach that 

detects falls with state-of-the-art accuracy and meets 

hardware constraints with a feature selection 

procedure. The model performance is improved with 

data augmentation and time aggregation of the 

random forest outputs. Then, we address the issue of 

confronting our model to the real world with transfer 

learning methods that act on the core model of 

random forests, i.e. decision trees. 

 These methods are adaptations of seminal work and 

are designed to tackle the class imbalance problem as 

falls are rare events. Methods are tested on several 

data sets, showing interesting potential continuation, 

and a Python implementation is made available. 

Finally, motivated by the issue of elderly monitoring 

while dealing with one-dimensional signals for a large 

areas, we propose to distinguish elderly persons from 

younger individuals with a model based on 

convolutional neural network and convolutional 

dictionary learning. Since signals are mainly made of 

walks, the first part of the model is trained to 

recognize steps, and the last part of the model is 

trained with all previous layers frozen. This novel 

approach to gait classification allows to isolate 

elderly-generated signals with very high accuracy. 
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