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Uvik ka bi Einstein izmišlja one šeme

prvo i glavno bi svratija do mene.
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neš ništa postić bez puno rada.
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šta se smi uvrstit, a šta ne smije.

Sve se mora dobro promatrat.

Evo, npr., na "c" ti fali kvadrat.

Ostalo je dobro, manje više, i Alberte zapamti:

Alles ist relativische!"

The Beat Fleet
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Extended Abstract

The gravitational waves (GWs) detection has a long history that culminated with the actual

detection on September 14, 2015 (Abbott et al., 2016). The detected transient signal is an

indisputable proof of the theory of general relativity published by Albert Einsten in 1916

(Einstein, 1916, 1918). The event consisted of signal with the peak strain of 1.1 × 10−21

which frequency increased with time (chirp) from 35 to 250 Hz in 0.15 s. It matched the

predicted waveform for the inspiral and merger of a pair of black holes and the ringdown of

the resulting signal black hole. This event, not only being remarkable by itself, encouraged

other existing theories to be reconsidered again. One of them is studying how the GWs

from the astrophysical sources interact with the elastic bodies, since it has been shown that

the GWs are capable of exciting their vibrations. The first idea came from Weber (1959),

who proposed to use Earth as a large detector of the GWs. Later on, Dyson (1969) was the

first one to develop a response of a Earth to the incoming GWs using a flat-Earth model. In

this study he showed that in the isotropic homogeneous elastic medium the GWs interact

only with the discontinuities in the shear-modulus profile. This leads to the important

fact that the GWs are for Earth ever-existing vibrational triggers since the shear-modulus

jump at the free-surface is always present. Next important study was the one done by

Ben-Menahem (1983) who calculated the response of a radially heterogeneous non-rotating

Earth model in terms of toroidal and spheroidal normal modes. He showed that for this

model the only spheroidal modes that are being excited are the quadrupole ones. In the

terms of the actual detection both studies provided the estimates of expected horizontal

displacement, for their different Earth models, to be 2 · 10−19 m and 10−9 m, respectively.

These results are remarkable and thus a bit doubtful, hence by reconsideration of these

results again we might get new insight into the GW detection. Therefore, the main aim of

this dissertation is to reconsider what has been done in terms of the GW detection using

Earth as a large detector and to extend these studies by accounting for more complex and

realistic Earth models and the GW sources.

The goal of this dissertation is to revisit and develop an analytical model of an induced

Earth spheroidal response to the emitted GWs from the astrophysical sources in terms of

Earth’s normal modes. There are three common sources of the GWs. The first class are

transient sources such as burst sources which includes, for example, the final coalescence



of the compact binary star systems. The second class are the narrow-band sources that

includes rotation of single asymmetrical stars or radiation from a binary star systems far

from the coalescence. And the third class are the stochastic backgrounds. There are two

sources of stochastic backgrounds: the ones created by the superposition of a large number

of the independent sources that cannot to be detected separately and the ones that formed

at the earliest moments of the universe shortly after the Big Bang. Each class of these

sources is associated with different part of the GW spectrum and hence for each source

there is a different detection strategy (see Fig. 1). For us the most interesting part of the

GW spectrum is the low frequency band defined from 10−4 Hz to 0.1 Hz, since this is a

range to which the normal modes of the Earth belong as well. In this frequency range there

has not been a detection, however the future mission Laser Interferometer Space Antenna

(LISA) should successfully operate in this range.

Fig 1: GW frequency spectrum versus the characteristic strain for the GW detectors and
sources (From Moore et al. (2015).)

Studying Earth response in terms of the normal modes in natural choice since nor-

mal modes are Earth’s vibrational states after any trigger. They are actually standing

waves whose properties (such as the frequency, the decay rate, the amplitude) depend on

the Earth’s interior. One can obtain normal modes as solutions to the linearized equa-

tions and boundary conditions for the spherically symmetric, non-rotating, perfectly elastic

and isotropic model (SNREI model). There are two types of these modes or oscillations,



spheroidal ones, which alter the external shape and internal density of the Earth and toroidal

modes, which are purely tangential and zero divergence, thus they leave the radial density

shape and distribution intact. Spheroidal and toroidal modes of the spherical symmetric

model have degenerate eigenfrequencies which span the (2l +1)-dimensional space since the

dependency upon azimuthal order m is removed. Also, for each angular order l there are

infinitive number of spheroidal and toroidal eigenfrequencies denoted with n, the overtone

order. The (2l + 1) oscillations is usually referred to as a multiplet, denoted as nSl for the

spheroidal modes or nTl for the toroidal modes. Each individual oscillations within the

multiplet is called singlet and is denoted with the order m. Effects of the Earth’s rotation,

hydrostatic ellipticity and lateral heterogeneity remove the eigenfrequency degeneracy and

cause each multiplet to split and couple. To model this one can use the normal-mode per-

turbation theory, where the aforementioned effects are regarded as slight perturbations from

the equilibrium state. There are different approximation how the perturbations, governing

the splitting of and coupling between modes, are calculated. One way is to define a splitting

matrix for an isolated multiplet (the self-coupling approximation), a group of multiplet in

the narrow frequency band (the group-coupling approximation) and a group of multiplet in

the wide frequency band (the full-coupling approximation). A splitting matrix is a opera-

tor that defines an ordinary eigenvalue problem for the complex frequency perturbations.

Once defined one can calculate the split and coupled eigenfrequencies. Naturally, theory

of the splitting and coupling help us to put constraints to the velocity and density profiles

inside the Earth by studying how the normal modes split and couple. In terms of the GW

detection to understand more thoroughly what will happen with the Earth when the GW

passes it is important to go beyond 1D Earth model such as SNREI. That implies studying

models that involve rotation, ellipticity and lateral heterogeneities.

The advantage of studying response in terms of the normal modes is that we can place

constrains on the GW detection in the mHz frequency band. Two models are considered.

One is the revisited model developed by Ben-Menahem (1983) for a radially heterogeneous

non-rotating Earth and the other the newly developed model one for a radially heteroge-

neous elliptical rotating model with lateral heterogeneities. For both models the gravita-

tional field is considered to be weak, hence the metric is decomposed into the Minkowski

metric and a small perturbation. The metric perturbation is taken to be ≤ 1, therefore

we can chose that it satisfies the transverse-traceless gauge condition where the metric per-

turbation is considered to be spatial, trace free and divergence free. In this gauge we can

express the metric perturbation as plane waves defined by the propagating vector. Also,

there are only two independent non-zero components in the transverse-traceless gauge, con-

ventionally called "+" and "×" polarizations. If the wave is traveling perpendicularly to



xy-plane, the "+" polarization distorts particles by stretching and contracting of x and y

axis. This configuration rotated for 45◦ represent "×" polarization. Moreover, for the weak

gravitational wave field one can use the linearized theory of gravity. In the linearized gravi-

tational theory Dyson (1969) showed that interaction between the GW and the elastic solid

can be described by defining the force term containing the shear modulus discontinuities.

This is further used in the two considered models.

Revisiting Ben-Menahem’s analytical model yielded some inconsistencies that were not

completely straightforward, therefore the full model is derived again but this time using

modern formalism defined in the book by Dahlen and Tromp (1998). The usefulness of his

approach, kept also for the newly developed model, is defining the induced displacement as a

double integral of the convolution between Green tensor, representing the impulse response

of a given Earth model, and the force term. Several other hypotheses are also included:

firstly, GWs are monochromatic waves described by a source scalar value, a polarization

tensor and a propagating vector; secondly, the Earth is a non-rotating and anelastic body;

thirdly, the derivation is conducted in the Earth’s reference system. Additionally to the

right-hand polarized GW waves, the linearly polarized solution is also considered. The

derivation and analysis have shown that in both cases, for the right-hand and linearly

polarizes waves, due to the fact that the GW tensor is traceless and symmetric the only

spheroidal normal modes that couple with the GW are the quadrupole ones, therefore con-

firming the Ben-Menahem result. Furthermore, it is shown that specific configuration of the

GW’s angles excite specific singlets within the quadrupole modes. Special consideration is

also given to the resonant and off-resonant excitations. It is shown that the low-frequency

resonant modes have larger response than the high-frequency modes and clearly the con-

tributions of the low-frequency modes could be used exclusively in the computation of the

induced displacement. With the newly derived analytical model the horizontal displacement

has a value of 2.5 · 10−14 m and radial 6.9 · 10−17 m. If we want to put this into perspective

what does this estimate means for a detection, let’s consider the following example. The

minimal envelope of the environmental seismic noise may be represented by the widely used

New Low Noise Model (NLNM) (Peterson, 1993).

By integrating this model over the frequency band of 0S2 multiplet width, a rough esti-

mate of the noise standard deviation is σNLNM = 1.1390 · 10−10m/s2 (-151.88 dB). In Fig.

2 we show the power spectral density of the signal obtained by stacking 209 synthetic res-

onances computed at stations from seismometer and superconducting gravimeter networks

for 0S2 and m = −2. Signal at each station depends on the station colatitude and longitude,

the GW amplitude which is set to h0 = 10−21 and is obtained for 19 days with ∆t = 60 s.

The noise level is primarily set to the value estimated above, σNLNM = 1.1390 · 10−10m/s2.



Since, this high noise level completely prevails the signal, we start reducing the noise till

our signal emerges from the noise. In the mentioned configuration the emerged signal is

reached with σNLNM = 3.6018 ·10−18m/s2, seven orders of magnitude smaller than the first

value. It is clear that the GW signal is far below the detection level. In the next example,

showed on the same figure, we calculate the stacked signal with the noise standard deviation

σNLNM = 1.1390 · 10−10m/s2, and we increase the GW source amplitude h0 until the signal

emerges from the noise. This is finally reached with h0 = 10−14 for 19 day long signals.

A cataclysmic event generating the GWs of amplitude of order 10−14 would emerge clearly

from the noise. Such an event is however not very realistic, since the expected maximum for

h0 would be of the order h0 = 10−17 at these frequencies (see Fig.1). This revisited model

and its solutions give us a foundation for studying interaction between Earth and GWs,

however further upgrade is needed to be able to consider different sources of astrophysical

origin.

Fig 2: Comparison in terms of power spectral densities between NLNM model, observed
acceleration signal at the BFO (Germany) station and synthetic noisy signals (4.74) obtained
by stacking 209 stations for 0S2 and m=-2. Dark grey signal is obtained for h0 = 10−21

and with the standard deviation of injected white noise adjusted to allow for the signal to
emerge from the noise. It was achieved with the rms value of NLNM model integrated over
the frequency band of 0S2 multiplet width, but reduced by seven orders of magnitude. Light
grey signal is obtained for the level of the noise set to match rms value of NLNM model.
The value of h0 is increased until the signal emerges from the noise. That is achieved for
h0 = 10−14.

The upgraded model consists in the analytical development of the induced response



for a radially heterogeneous elliptical rotating model with lateral heterogeneities. This

time we consider the realistic astrophysical GW source. The most promising GW sources

in the mHz frequency band are the white dwarf binary systems. These sources vastly

outnumber other compact binary sources in mHz band and are the fairest the simplest

objects and therefore represent good sources for modeling. Since this time we are using

the realistic astrophysical sources in the celestial reference system, the attention is given

to the transformation matrix of the metric perturbation from a celestial reference frame

to the rotating terrestrial reference frame. For the rotating Earth model the Green tensor

is obtained using the normal mode summation and the perturbation theory. Hence, the

effects of the splitting of and coupling between normal modes are introduced by defining

the splitting matrix. For the purpose of this study the splitting matrices are defined for the

group-coupling approximation. The first important alteration, using the binary systems as

the GW sources, introduces dependency of the induced solution on many binary parameters,

such as the masses of two stars, the orbital angular frequency (the GW source frequency),

the right ascension, the declination, the distance from the source, the inclination and the

polarization angles. Moreover, the GW frequencies are now defined by the angular orbital

velocity of the binary stars. Meaning they do not match the normal mode eigenfrequencies,

hence we are restricted to the off-resonance regime. The second important alternation

concerns using a rotating model. The effect of the rotation is manifested through the

patter functions. This functions define which singlets are going to be excited depending

on the inclination and polarization angles. Also, they define the splitting of the GWs

frequencies. For this model we also obtain that the only excited spheroidal modes are

quadrupole ones. For the GWs sources we used a verification catalog of the binary stars

for the future LISA (Laser Interferometer Space Antenna) space mission. LISA is a space

mission that will consist of a huge 2.5 million km arm length laser interferometer, compared

to a few kilometers long one on Earth, consisting of the three spacecraft that will follow

the Earth in its orbit. Estimated radial induced spheroidal responses for 14 GW sources

are shown in Fig. 3 and their maximum spectral amplitude are show in Tab. 1. We see

that the maximal radial response for the new model is 8.1 · 10−17 m. This is the same

order of magnitude as the radial response for the revisited model, even though this is for

the off-resonance regime. In the resonance regime this value is two orders of magnitude

larger than in the off-resonance regime due to the source-time function. The source-time

function depends on the GW source frequency and the normal mode eigenfrequencies. By

calculating the relative ratio between the source-time functions for the revisited (the non-

rotating model) and the new model (the rotating model) we obtain that the maximum

difference between functions of these two models is of the order of the Q-factor. This



explains two orders of magnitude difference between two models in the resonance regime.

Also, it implies that we can expect higher response amplitudes for the GWs that have

frequencies close to the normal mode eigenfrequencies and that have high Q-values.



Fig 3: Induced spheroidal response for 14 GW sources when all responses are summed
together (up) and when each response is plot individually (down) for one day long signals.



Tab 1: Maximum spectral amplitudes of the induced spheroidal response for 14 GW sources.

Name A [·10−18m] A [·10−22m/s2]

SDSSJ0651+2844 11.47999 30.94457

SDSSJ0935+4411 81.43515 91.11686

SDSSJ0106-1000 2.04780 0.58756

SDSSJ1630+4233 32.30985 8.93221

SDSSJ1053+5200 8.42014 0.98185

SDSSJ0923+3028 35.31244 3.69649

SDSSJ1436+5010 14.95197 1.50795

WD0957-666 40.41132 2.29791

SDSSJ0755+4906 3.72761 0.19854

SDSSJ0849+0445 69.10639 2.36004

SDSSJ0022-1014 54.40300 1.80340

SDSSJ2119-0018 7.80692 0.21934

SDSSJ1234-0228 4.63214 0.11721

WD1101+364 61.13572 0.61757

Once when the analytical model is developed, the next step is to study how one can

search for this signal in data. The considered sources, the white-dwarf binaries, are in the

inspiral phase meaning that they present nearly periodic sources that should be constantly

present in the measurements (at least longer than the existence of the active network of

sensors on the Earth). The best way to perform the search of the newly developed signal

in data is to utilize the matched filter technique (also commonly used for the detection of

the GWs from the interferometers data of the LIGO type (Feller, 1950; Allen and Romano,

1999; Allen, 2004; Allen et al., 2012)). The matched filtering technique can simultaneously

tell us if there is a signal and when it started. It is performed by calculating the correlation

between data and a template of the signal, that should resemble the target signal at some

level of accuracy. Our induced response depends on the white-dwarf binary parameters and

on the associated parameters’ standard deviations. The question that is imposing itself

if whether these standard deviations form the binary stars could deteriorate the matched

filtering performance. That is, if we perform the search for a signal using template that its

not generated with same binary star parameters as a target signal, could we still detect it.

To approach this problem several steps are undertaken. First, using the standard deviations

of the binary star parameters (the mass, the inclination angle, the declination angle, the



right ascension, the distance, the polarization angle, the GW source frequency) we define

range of values for each parameter around some default value. For each parameter and for

each value in its defined range we calculate the template to generate something called the

bank of templates. The generated bank of templates are used to preform the sensitivity

tests. These test help us understand which parameters are the best constrained and the most

sensitive. Tests have finally shown that the GW source frequency is the best one constrained

(the standard deviations are small enough so that the differences between templates are also

small in terms of the relative errors) and also the most sensitive one (a small change between

the templates is generating the largest difference scale-wise compared to other parameters).

Further, to answer the question at the beginning of this paragraph we need to understand

how the standard deviations or the individual templates in bank of templates are affecting

the match filtering technique. The two hypotheses are studied, one where there is just a

noise in the data, H0, and the other where within the noise the signal is also present, H1.

The results are represented in terms of the probability density functions (PDFs). When the

PDFs of the two hypothesis are well separated it means that there is a good probability

that we will detect signal within the current noise level. Next we perform the experiments

for each parameter separately. We keep the same noise level (thus keeping the PDF of the

hypothesis H0 the same) and for each template within the bank of template we calculate the

PDF. This means that the target signal and the template we perform the matched filtering

are the same. Comparing the two PDFs for the two edge templates for the GW source

frequency parameter is shown in Fig. 4. We can see that performing a matched filtering

with the template that is obtained for the parameter smaller than the default parameter

there is smaller probability of the detection than in the case when the analysis is performed

using a template obtained by the parameter bigger than the default one. This is expected,

since the response amplitude is larger for the second case.



Fig 4: Two PDFs for the H1 hypothesis calculated for the edge templates (blue for the
parameter smaller than the default parameter and orange for opposite) in the bank of
templates for the GW source frequency parameter.

In the next set of the experiments we also want to obtain the PDFs for each template

within the bank of templates, but this time the target signal and the template we perform

the matched filtering are not the same. This means that we fix a template used in the

matched filtering. The results for the GW source frequency are shown in Fig. 5. We can

see that the PDFs functions are the same for all templates within the bank of templates.

This implies that even if we perform the search where the target signal and the template

do not match, we have the same probability to detect signal even if they do match. This

is valid only if the differences between the target signal and the template are within the

standard deviations of the GW source frequency. The same conclusion is valid for all other

parameters. Our synthetic tests have therefore shown that the matched filtering technique

is not sensitive to the uncertainties present in the catalog of the binary systems. In other

words, the uncertainties are too small to significantly impact the shape of our response

signal so that they correlate very well with the target signal even if the template we use to

perform the matched filtering is not equal.



Fig 5: PDFs calculated for each template from the bank of templates for the case when the
target signal the template we perform the matched filtering do not match. The results are
for the GW source frequency parameter.

Synthetic test also showed that current noise levels from gravimetric data needs to be

10 orders of magnitude smaller to be able to detect the modelled radial induced response.

We tested this by inserting a target synthetic signal in the data obtained for the most quiet

station in the world, the Black Forest Observatory. We considered one year of data for the

year 2012 where all the earthquakes has been removed and only those days that has a power

spectral density below 25th percentile were accepted. The remaining days formed a data

set that we further recall as the observational noise. Our analysis showed that the matched

filtering technique has a same performance when the synthetic signal is inserted into data

set containing the white Gaussian noise or the observational noise. The result is showed in

Fig. 6.



Fig 6: Matched filter output for the synthetic signal inserted into white noisy time series
with σN = 7.5·10−21 m/s2 (above) and the same synthetic signal inserted into observational
noisy time series scaled with scalar 1.2 · 1010 (below).

The last part of this dissertation deals with the normal modes measurements only in

order to gain a complete concept of biases that one can introduce by using a normal modes

as tools in modeling. The normal modes studies have long provided some of the essential

constraints and contributed to building spherically symmetric Earth models as well as 3D

models of lateral heterogeneities by performing the measurements of normal modes eigenfre-

quencies. Despite many developed methods inconsistency in measurements still exists and

it is difficult to understand which results are more precise, that is which methods introduce

less systematic biases in measurements. Therefore, the main goal of this study is to test

the performances of typically used techniques in normal mode studies (which also came out

as best according to previously published studies) and to test their performances in the

eigenfrequency and Q-factors measurements. Three techniques are implemented: optimal

sequence estimation (OSE) (Ding and Shen, 2013a), autoregressive method in frequency

domain (ARFD80) (Chao and Gilbert, 1980) and phasor walkout method (Zürn and Ry-



delek, 1994) with R2-test. The phasor walkout is a graphical representation of the Fourier

transform at the desired frequency. The OSE method is the stacking method used to en-

chain weak signals buried in noise based on the assumption that the displacement at the

Earth’s surface is decomposed in spherical harmonics. The measurement of eigenfrequencies

is performed using ARFD80 method, which linearizes the non-linear problem of estimating

the singlets complex frequencies using the Prony technique for extracting exponential sig-

nals from time-series. Once measured, the complex eigenfrequency estimates are validated

graphically by using the phasor walkout method. These methods are tested on syntheti-

cally generated data and on observations. The synthetic tests are performed for a global

3-D Earth density and velocity model using only one source mechanism and one multiplet

chain at the time. The focus is set to the low-frequency modes, where one can use the

group-coupling approximation over full-coupling one. The synthetic tests have two main

parts: gradually increasing noise levels and decreasing the number of stations in stacking.

Furthermore, once when the eigenfrequencies are estimated, they are used to retrieve the

splitting function coefficients based on a perturbation theory of the first order. Synthetic

experiments have shown that when noise is gradually added, the signal-to-noise ratio (SNR)

of the stacked signals decreases and standard deviations of estimated frequencies and Q-

factors increase, being overall more scattered around the true synthetic value (see Fig. 7).

Results are foremost when more records are included in the stacking. More importantly it

has been shown that OSE method is sensitive to different station distributions under the

noise influence. Furthermore, the performances of ARFD80 method become deteriorated

when the stacking signal is obtained with the less excited signals, that is when the input

signals have SNR ≤ 2. However, even for those cases the estimates are within the standard

deviations. Moreover, it turns out that the standard deviations calculated with the boot-

strap method are not sufficient to include all biases introduced with the methods, that is to

say our standard deviations are for most cases underestimated. Thus, even though we have

a good precision on our estimates, the accuracy can be poor. This analysis showed that

we do not need a priori model to estimate structure coefficients, but results may be biased.

Synthetic tests are also compared with the measurements obtained in the observations.

The study shows that these kinds of tests are crucial in understanding and scrutinizing the

obtained values and their associated standard deviations. Any kind of measurement in the

normal mode studies should be considered within the context of used data (e.g. number of

stations in stacking) and the performances of used techniques.



Fig 7: Synthetic experiments for 0S1
2 singlet conducted for four station distributions: 1) full

(the first row), 2) northern (the second row), 3) southern (the third row), 4) selected (the
fourth row) networks. Figures on the left represent the estimated frequencies versus SNR
for ten different noise levels. Figures on the right represent the relative errors of frequencies
with regard to synthetic value (dashed line) versus SNR for ten noise levels. Be careful, the
vertical scales of the left-side figures are optimized, thus the full and the northern networks
have the same scale and the southern and the selected networks too.

In conclusion, we have revisited and develop a new model of the interaction between

the GWs and the Earth in terms of the normal modes. We have reevaluated the induced

resonance amplitude for a spherical and radially stratified terrestrial model which turns out

to be several orders of magnitude lower than the initially proposed by Ben-Menahem (1983)

but higher than proposed by Dyson (1969) for a flat Earth model. The newly developed



model consist in the analytical development of the induced response for a rotating elliptical

model with lateral heterogeneities. This time the GW sources are the double white-dwarf

binaries. These GW sources generate the amplitude of the order 1022 - 10−23, two order

of magnitude smaller than the event detected by LIGO in 2015 that was generated by the

coalescence of two black holes. The time scales for the two are different, since the considered

GW sources have frequencies in the mHz band and the emission of these sources are contin-

uous. Therefore, the excitation of the quadrupole normal modes by the white-dwarf binaries

is also continuous. However, the detection of these signal in gravimetric and seismological

data using the matched filter technique is very difficult due to the noise amplitude present

in the data. Finally, we have highlighted some limitations of the data analysis techniques

of the weak signals and some biases introduced by the station distribution on the surface

of the globe within the normal mode studies.

This work gives a new contribution to the GW studies and sets a new limit on their

detection. Detection of the GWs by their resonance with the Earth’s normal modes in the

milihertz frequency band is therefore not possible today. Technological limitations but also

the environmental noise present in the observations are still limiting factors. The normal

mode approach in this thesis could be extended to other planets, particular Mars where

a seismometer was recently deployed as part of the Mars Insight mission. A correlation

technique between lunar seismometric data with terrestrial data has been proposed by

Coughlin and Harms (2014c) resulting in a better constraint on the GW energy density

at frequencies below 1 Hz. In the future, Martian seismometer data may offer promising

perspectives in this context and thus bring new constraints on cosmological models.



Résumé Étendu

La quête des ondes gravitationnelles a connu une longue histoire jusqu’à leur première ob-

servation directe le 14 septembre 2015 grâce aux données de l’interféromètre LIGO (Abbott

et al., 2016). Le signal transitoire détecté constitue une preuve supplémentaire de la validité

de la théorie de la relativité générale publiée par Albert Einstein en 1916 (Einstein, 1916,

1918). L’événement gravitationnel ainsi observé présentait un pic d’amplitude 10−21 en

déformation avec une fréquence augmentant de 35 à 250 Hz en 0.15 s. Ce signal concorde

avec les différentes phases prédites de la coalescence de deux trous noirs : phase spiralante,

fusion, puis déclin du trou noir résultant. Cet évènement nous encourage donc à reconsid-

érer certaines idées développées pour la détection d’ondes gravitationnelles par des moyens

indirects. L’une d’elles est l’étude de l’interaction des ondes gravitationnelles d’origine

astrophysique avec les corps élastiques tels que les planètes : les ondes gravitationnelles

correspondent à la propagation d’une perturbation de la métrique de l’espace-temps. Elles

vont, lors de leur passage à travers un corps élastique, déclencher les vibrations propres de

ce corps. L’idée pionnière a été proposée par Weber (1959). Puis, Dyson (1969) a été le pre-

mier à développer les équations de la réponse de la Terre aux ondes gravitationnelles dans

le cadre d’un modèle de Terre plate. Il a montré que dans un milieu élastiquement isotrope

et homogène, les ondes gravitationnelles interagissent avec les discontinuités du module de

cisaillement. Cela mène au fait important que les ondes gravitationnelles constituent for-

cément une source de vibrations puisque le saut du module de cisaillement est présent à la

surface libre de la Terre. L’étude importante qui a suivi est celle de Ben-Menahem (1983)

qui a calculé la réponse d’un modèle de Terre sphérique et radialement stratifié en termes de

modes propres sphéroïdaux et toroïdaux. Il a montré que pour un tel modèle de Terre, les

seuls modes sphéroïdaux excités sont ceux de forme quadripolaire, correspondant au degré

harmonique deux. Dyson (1969) et Ben-Menahem (1983) ont estimé un déplacement hori-

zontal de l’ordre de 2 · 10−19 et 10−9 m pour leurs modèles de Terre respectifs et pour une

même amplitude de la perturbation de la métrique de l’espace-temps de 10−21 en déforma-

tion. Ces deux résultats très différents démontrent la nécessité de réévaluer ces amplitudes

dans le cadre d’une modélisation plus réaliste. L’objectif principal de cette thèse est donc

de considérer la possibilité d’utiliser la Terre comme détecteur d’ondes gravitationnelles

dans le cadre d’un modèle plus réaliste et pour des sources d’ondes gravitationnelles bien



définies. Une réévaluation des amplitudes attendues permettra ainsi de discuter la possibil-

ité de détecter les ondes gravitationnelles via leurs interactions avec les modes propres de

la Terre à des fréquences non atteintes par les détecteurs terrestres actuels.

Le but premier de ce travail est de développer un modèle analytique de la réponse

sphéroïdale de la Terre aux ondes gravitationnelles émises par des sources astrophysiques

en utilisant le formalisme des modes propres. Il y a typiquement trois types de sources

d’ondes gravitationnelles. La première sorte sont les sources transitoires telles que des

sources explosives qui incluent par exemple la phase finale de la coalescence de systèmes

d’étoiles binaires compactes. Les secondes sont les sources à bande fréquentielle étroite qui

incluent la rotation d’étoiles seules mais asymétriques ou la radiation émise par des systèmes

binaires d’étoiles éloignés de la phase de coalescence. Enfin, la troisième sorte constitue le

fond stochastique d’onde gravitationnelle. On distingue deux types de fond stochastique

: celui d’origine cosmologique produit peu de temps après le Big-Bang (pendant la phase

d’inflation cosmique) et celui d’origine astrophysique qui est la superposition des signaux

plus récents provenant d’un très grand nombre de sources qu’il est impossible de détecter

séparément.

Chacune de ces catégories de sources émet des ondes gravitationnelles dans différentes

bandes spectrales, ainsi, suivant les fréquences considérées, la stratégie de détection sera

différente (cf. Fig. 8). Pour nous, la partie du spectre des ondes gravitationnelles qui nous

intéresse est la bande basse-fréquences définie de 10−4 Hz à 0.1 Hz, puisqu’il s’agit de la

bande fréquentielle contenant les modes propres sismiques de la Terre. A ces fréquences, au-

cune détection d’onde gravitationnelle n’a encore eu lieu. Cependant la future mission LISA

(Laser Interferometer Space Antenna) devrait apporter de nouveaux résultats prometteurs

dans cette gamme de fréquences.



Fig 8: Amplitude spectrale en déformation des ondes gravitationnelles en fonction des
sources. Les courbes de sensibilité des détecteurs sont également indiquées (d’après Moore
et al. (2015).)

Etudier la Terre en termes de modes propres est un choix naturel puisque les modes

propres constituent les états de vibration de la Terre après une quelconque excitation.

Les modes propres correspondent à des ondes stationnaires dont les propriétés (fréquences

propres, temps d’amortissement et fonctions propres) ne dépendent que de la structure

interne de la Terre. Les modes propres peuvent être obtenus à partir des équations linéarisées

de la gravito-élasticité et les conditions aux limites qui gouvernent les oscillations libres d’un

modèle de Terre de type SNREI à symétrie sphérique, sans rotation, parfaitement élastique

et isotrope. Il existe deux sortes de modes propres, les modes sphéroïdaux qui altèrent

la forme externe et la densité interne de la Terre, et les modes toroïdaux qui possèdent

des déplacements purement tangentiels et une divergence nulle; ils laissent donc la forme

et la distribution en densité radiale de la Terre intactes. Les modes propres sphéroïdaux

et toroïdaux d’un modèle à symétrie sphérique ont des fréquences propres dégénérées avec

un espace propre associé de dimension (2l + 1); la dépendance sur l’ordre azimutal m est

supprimée. Pour chaque degré l il y a une infinité de fréquences propres identifiées avec

le nombre n, l’ordre harmonique. Les (2l + 1) oscillations sont appelées multiplet, dénoté

par nSl pour les modes sphéroïdaux ou nTl pour les modes toroïdaux. Chaque oscillation

individuelle dans un multiplet est appelée singlet et est désigné par son ordre m. Les effets

de la rotation de la Terre et son ellipticité hydrostatique ainsi que les hétérogénéités latérales



soulèvent la dégénérescence en éclatant le multiplet en (2l + 1) fréquences (« splitting »)

et couplent les modes (« coupling ») entre eux. Afin de modéliser ces effets, il est possible

d’utiliser une théorie de la perturbation des modes propres pour laquelle ces effets sont

considérés comme des petites perturbations de l’état d’équilibre. Il existe différents niveaux

d’approximation afin de calculer les perturbations dues au splitting et coupling des modes.

Un moyen est de définir une matrice de splitting pour un multiplet isolé (approximation

dite « self-coupling »), pour un groupe de multiplets dans une bande fréquentielle étroite

(approximation dite « group-coupling ») ou pour un groupe de multiplets dans une bande

fréquentielle large (approximation dite « full-coupling »). Une matrice de splitting est un

opérateur qui définit un problème classique aux valeurs propres pour les perturbations sur

la fréquence complexe du mode. Une fois définie, il est possible de calculer les fréquences

propres éclatées et couplées. Inversement, la théorie des modes propres et en particulier

l’étude du splitting et coupling des modes propres nous permet d’apporter des contraintes

sur les profils de vitesses et de densité dans la Terre. Pour comprendre la réponse de la

Terre aux ondes gravitationnelles, nous verrons par la suite qu’il est nécessaire de prendre

en compte une théorie complète des modes propres en tenant compte de du « splitting » et

du couplage des modes qui apparaissent pour une Terre elliptique en rotation à variations

latérales de densité.

L’avantage d’étudier la réponse de la Terre à une excitation par les ondes gravitation-

nelles en termes de modes sismiques est d’apporter des contraintes sur la détection des ondes

gravitationnelles dans la bande fréquentielle du millihertz. Deux modèles sont considérés.

Le premier consiste à revisiter le modèle développé par Ben-Menahem (1983) pour une

Terre sans rotation et radialement hétérogène. Le second est un nouveau développement

que nous proposons pour un modèle de Terre elliptique en rotation radialement stratifié et

à hétérogénéités latérales. Pour ces deux modélisations, le champ gravitationnel est con-

sidéré faible, ainsi la métrique peut être décomposée comme la somme de la métrique de

Minkowski et une petite perturbation. La perturbation de la métrique est prise inférieure

ou égale à 1, ainsi nous pouvons la choisir de sorte à ce qu’elle satisfasse à la condition de

gauge dite « transverse-traceless » pour laquelle la perturbation de la métrique est spatiale,

à trace nulle et à divergence nulle. Dans cette condition, la perturbation de la métrique

peut être représentée par des ondes planes définies par un vecteur de propagation. Il existe

seulement deux types de polarisations indépendantes et non nulles dans cette condition de

gauge « transverse-traceless » conventionnellement appelées polarisations "+" et "×". Si

l’onde se propage perpendiculairement au plan (x, y), la polarisation "+" déforme les par-

ticules en étirant et contractant selon les axes x et y. Cette configuration est tournée de 45

degrés pour représenter la polarisation "×". En outre, pour un champ gravitationnel faible,



on peut utiliser une théorie linéarisée. Dans une théorie linéarisée de la gravitation, Dyson

(1969) a montré que l’interaction entre les ondes gravitationnelles et un corps élastique peut

être décrite en définissant un terme de force qui contient les discontinuités du module de

cisaillement. Nous utilisons cette description du forçage dans nos modélisations.

En reprenant le travail de Ben-Menahem (1983), nous avons noté quelques incohérences

aussi nous avons repris son développement analytique mais avec un formalisme moderne

défini dans le livre de Dahlen and Tromp (1998). Nous avons suivi sa démarche basée sur le

calcul du déplacement de surface par la convolution entre le tenseur de Green, représentant

la réponse impulsionnelle d’un modèle de Terre donné, et le terme de force, représentant

l’action de l’onde gravitationnelle. Différentes hypothèses sont utilisées: les ondes gravi-

tationnelles sont des ondes monochromatiques décrites par une valeur scalaire source, un

tenseur de polarisation et un vecteur de propagation; la Terre est sphérique sans rotation

et anélastique; les équations sont écrites directement dans un système de référence ter-

restre. Par ailleurs, nous considérons la solution dans le cas d’une polarisation linéaire des

ondes gravitationnelles, en plus du cas d’ondes à polarisation circulaire droite. La dériva-

tion et l’analyse des équations dans ces deux cas de polarisation ont montré que comme le

tenseur des déformations associé aux ondes gravitationnelles est symétrique à trace nulle, les

seuls modes sphéroïdaux capables d’être excités par les ondes gravitationnelles sont ceux de

forme quadripolaire, confirmant les résultats de Ben-Menahem (1983). Nous montrons de

plus que pour certaines configurations angulaires des ondes gravitationnelles dans le système

terrestre, seulement certains termes azimutaux sont excités au sein d’un mode, apportant

ainsi de l’information sur la source d’ondes gravitationnelles dans le ciel. Une considération

particulière est apportée à l’excitation de modes à la résonance mais aussi en dehors de la

fréquence de résonance des modes sismiques. Nous montrons que le déplacement de surface

induit par les ondes gravitationnelles est plus important à résonance avec les modes les

plus graves qu’avec les modes à fréquences plus élevées. A partir de notre modèle analy-

tique, le déplacement horizontal de surface est de 2.5 · 10−14 m et le déplacement radial de

6.9 ·10−17 m. Pour une mise en perspectives en termes de détection à la surface de la Terre,

considérons le modèle de bruit bas (NLNM) de Peterson (1993) couramment utilisé pour

représenter le niveau de bruit environnemental sur Terre.

Par intégration de ce modèle sur la largeur fréquentielle du mode 0S2, l’écart-type estimé

est de l’ordre de σNLNM = 1.1390 · 10−10m/s2(≈ -152 dB). Sur la Fig. 9 nous avons

représenté la densité spectrale de puissance du signal obtenu après sommation de 209 séries

temporelles synthétiques calculées aux stations sismologiques et gravimétriques des réseaux

mondiaux, pour le singlet m = -2 du mode 0S2. Le signal à chaque station dépend de la

latitude et longitude du site, de l’amplitude de l’onde gravitationnelle fixée à h0 = 10−21.



Il est généré sur 19 jours avec un pas d’échantillonnage temporel ∆t = 60 s. Le bruit

blanc injecté est initialement fixé à la valeur définie précédemment, soit σNLNM = 1.1390 ·
10−10m/s2. Puisque ce niveau de bruit est trop élevé et masque complètement le signal des

ondes gravitationnelles, nous diminuons l’amplitude du bruit graduellement jusqu’à ce que

le signal émerge du bruit. Dans la configuration mentionnée plus haut, le signal émerge du

bruit lorsque σNLNM = 3.6018 · 10−18m/s2, soit sept ordres de grandeur de moins que la

valeur initiale. Il est clair que le signal des ondes gravitationnelles est largement en dessous

du seuil de détection. Dans l’exemple suivant, illustré sur la même figure, nous calculons le

signal stacké avec σNLNM = 1.1390 · 10−10m/s2 et nous augmentons l’amplitude source h0

de l’onde gravitationnelle jusqu’à l’émergence du signal au-dessus du bruit. La valeur ainsi

atteinte est h0 = 10−14 pour des signaux de durée 19 jours. Un évènement cataclysmique

générant des ondes gravitationnelles d’amplitude de l’ordre 10−14 en déformation émergerait

clairement du bruit. Un tel évènement n’est cependant pas très réaliste, puisque le maximum

attendu pour h0 serait de l’ordre de 10−17 à ces fréquences (cf. Fig. 8).

Bien que ce modèle nous donne les fondations pour l’étude de l’interaction entre la Terre

et les ondes gravitationnelles, des améliorations sont nécessaires afin de traiter tout type de

sources astrophysiques et cosmologiques.



Fig 9: Comparaison en termes de densités spectrales de puissance (PSD) du modèle de
bruit bas NLNM, avec le niveau de PSD observé à la station BFO (Black Forest Obser-
vatory, Allemagne) et avec les signaux synthétiques bruités obtenus en sommant les séries
temporelles générées à 209 stations pour le singlet m=-2 du mode 0S2. Le niveau de PSD
en gris foncé est obtenu pour h0 = 10−21 et avec un bruit blanc injecté ajusté de sorte
que son écart-type permette au signal résultant du stacking d’émerger au-dessus du bruit.
Ceci est atteint pour une valeur de RMS réduite de sept ordres de grandeur par rapport au
NLNM par intégration de ce modèle sur la largeur fréquentielle du mode 0S2. Le niveau de
PSD en gris clair correspond au niveau de bruit du NLNM à la fréquence de 0S2. Un signal
périodique d’amplitude h0 y a été ajouté avec une valeur h0 augmentée jusqu’à dépasser du
bruit. Ce niveau de détectabilité est atteint pour h0 = 10−13.

Nous développons par la suite une modélisation analytique de la réponse de la Terre

à des sources astrophysiques d’onde gravitationnelle bien définies. Le calcul est réalisé

dans le cas d’un modèle de Terre elliptique, en rotation et à hétérogénéités latérales. Les

sources d’onde gravitationnelle les plus prometteuses dans la bande du millihertz sont les

systèmes binaires de naines blanches. Ces sources surpassent en nombre les autres sources

de binaires compacts à ces fréquences et sont des objets relativement aisés à modéliser en

tant que source lointaine. Lorsque nous considérons des sources astrophysiques définies dans

un système de référence céleste, il est nécessaire d’appliquer un changement de repère via

une matrice de transformation permettant de passer d’une définition de la perturbation du

tenseur métrique dans un système de référence céleste à une définition de cette perturbation

dans un repère terrestre tournant. Le tenseur de Green pour un modèle de Terre en rotation

et à hétérogénéités latérales est quant à lui obtenu par sommation des modes propres dans le

cadre d’une théorie linéarisée des perturbations (Dahlen and Tromp, 1998). Ainsi les effets



de « splitting » (éclatement en fréquences) et de couplage des modes sont introduits en

définissant les matrices de « splitting ». Nous utilisons une approximation de type « group-

coupling ». L’expression de l’amplitude de la perturbation du tenseur métrique associée à

un système double de naines blanches dépend de caractéristiques propres aux deux étoiles

(masses, rayons), de leurs paramètres orbitaux et de la distance à laquelle on se place pour

estimer la perturbation (ici la distance par rapport à la Terre). Un fait très important dans

ce type de source est que la fréquence de l’onde gravitationnelle est désormais définie par la

vitesse angulaire orbitale du système binaire. Cette fréquence étant généralement différente

de celle des modes sismiques, nous sommes dans un régime hors résonance. Une autre

différence importante par rapport au cas d’un modèle de Terre non tournant est que l’effet de

la rotation se manifeste à travers des fonctions géométriques qui déterminent quels singlets

sont excités selon les angles d’inclinaison et de polarisation de l’onde gravitationnelle émise.

Elles définissent aussi le splitting des fréquences des ondes gravitationnelles. Dans cette

modélisation, les seuls modes sphéroïdaux excités sont également les modes quadripolaires.

Nous avons utilisé un catalogue de sources validé pour la future mission spatiale LISA

(Laser Interferometer Space Antenna). LISA est une mission spatiale qui consistera en un

immense interféromètre laser de longueur de bras 2.5 million km, à comparer aux quelques

kilomètres des observatoires sur Terre, formé de trois engins spatiaux qui suivront la Terre

sur son orbite. Les réponses sphéroïdales en terme de déplacement radial à la surface de la

Terre pour ces quatorze sources sont représentées sur la Fig. 10. Leurs amplitudes spectrales

maximales sont résumées dans la Table 2. Nous voyons que le déplacement radial maximum

est de 8.1 ·10−17 m, soit du même ordre de grandeur que dans le cas de la modélisation sans

rotation. Si nous considérons une fréquence de l’onde gravitationnelle égale à celle d’un

mode propre, c’est-à-dire si nous nous plaçons dans un régime à résonance, ces amplitudes

sont alors deux ordres de grandeur supérieures. En comparant les réponses respectives d’un

modèle de Terre avec et sans rotation, à résonance, alors le rapport correspond à la valeur

du facteur de qualité du mode propre considéré. La contribution du splitting des modes est

donc conséquente. Il serait également intéressant de pouvoir identifier des sources d’onde

gravitationnelle de fréquence proche des modes propres quadripolaires peu amortis.



Fig 10: Déplacement radial à la surface de la Terre induit par les modes sphéroïdaux
excités par 14 sources d’ondes gravitationnelles lorsque toutes les réponses individuelles sont
sommées (en haut) et pour chaque réponse individuelle (en bas). Le spectre d’amplitude
est calculé sur des signaux synthétiques d’une journée.



Tab 2: Amplitudes spectrales maximales de la réponse sphéroïdale induite pour les 14
sources d’ondes gravitationnelles du catalogue.

Name A [m · 10−18] A [m/s2 · 10−22]

SDSSJ0651+2844 11.47999 30.94457

SDSSJ0935+4411 81.43515 91.11686

SDSSJ0106-1000 2.04780 0.58756

SDSSJ1630+4233 32.30985 8.93221

SDSSJ1053+5200 8.42014 0.98185

SDSSJ0923+3028 35.31244 3.69649

SDSSJ1436+5010 14.95197 1.50795

WD0957-666 40.41132 2.29791

SDSSJ0755+4906 3.72761 0.19854

SDSSJ0849+0445 69.10639 2.36004

SDSSJ0022-1014 54.40300 1.80340

SDSSJ2119-0018 7.80692 0.21934

SDSSJ1234-0228 4.63214 0.11721

WD1101+364 61.13572 0.61757

Connaissant la réponse analytique de la Terre à une perturbation de la métrique de

l’espace-temps, il est alors possible de chercher à détecter ce signal dans des données

d’observations. Les sources considérées, les naines-blanches binaires, sont des sources sta-

bles en phase spiralante qui émettent continument des signaux quasi périodiques. Le signal

est donc constamment présent dans les données, du moins à l’échelle de temps des détecteurs

terrestres. Une technique de filtrage adaptatif appelée « matched filtering » s’avère être un

outil pertinent pour chercher ce type de signal dans les données bruitées. Ce type de filtrage

permet de détecter si un tel signal est présent dans les données et quand il a commencé.

Le « matched filtering » consiste à calculer la corrélation entre les données et un signal-

modèle (« template ») qui ressemble plus ou moins au signal cherché. Cette technique est

d’ailleurs couramment utilisée pour la détection des ondes gravitationnelles à partir des

interféromètres de type LIGO par exemple (Feller, 1950; Allen and Romano, 1999; Allen,

2004; Allen et al., 2012).

Le catalogue de sources que nous avons utilisé contient quatorze systèmes binaires de

naines blanches dont les paramètres sont entachés d’une certaine incertitude. Aussi nous

avons effectué des tests de sensibilité du signal gravitationnel modélisé à ces paramètres



et généré une banque de « templates » qui sera ensuite utilisée pour le filtrage adaptif.

Nous avons ainsi vérifié que la fréquence de l’onde gravitationnelle est le paramètre le

mieux contraint mais aussi le plus sensible pour définir des « templates ». Autrement dit,

une faible modification de la fréquence génère de grandes différences sur les templates par

rapport aux autres paramètres.

De plus, il est important de vérifier si le résultat du « matched filtering » va être

influencé par des templates générés à partir de paramètres légèrement erronés. Nous allons

donc faire varier les valeurs de ces paramètres sur un intervalle de valeurs défini par les

incertitudes données dans le catalogue de sources. Nous testons ainsi deux hypothèses. La

première H0 correspond à la présence de bruit uniquement et H1 à la présence d’un signal

dans le bruit. Les résultats sont présentés sous forme de fonctions de densité de probabilité

(PDFs). Lorsque les PDFs des deux hypothèses sont bien séparées, cela signifie qu’il y a

une forte probabilité que l’on puisse détecter le signal avec le niveau de bruit présent. Nous

testons ensuite une série d’expériences dans lesquelles nous faisons varier un paramètre à la

fois tout en gardant le même niveau de bruit (la PDF de l’hypothèse H0 ne change pas).

Pour chaque « template », nous calculons ensuite la PDF. Le signal cherché et le template

utilisé pour le filtrage sont pour l’instant identiques. Une comparaison des PDFs obtenues

pour des templates générés à partir des deux valeurs extrêmes (c’est-à-dire la fréquence par

défaut plus ou moins l’incertitude donnée dans le catalogue) de la fréquence de la source est

représentée Fig. 11. Nous voyons qu’un template généré à partir d’une valeur du paramètre

plus petite que celle par défaut (celle utilisée pour le signal cherché) nous conduit à une

probabilité plus faible de détecter le signal que dans le cas où le template est généré à l’aide

d’une valeur plus grande que la valeur par défaut. Ce qui est attendu, étant donné qu’alors

l’amplitude de la déformation est plus grande.



Fig 11: Fonctions densité de probabilité (PDFs) pour l’hypothèse H1 lorsque le matched
filtering est utilisé avec des templates générés à partir des valeurs extrêmes des paramètres
source (en bleu pour des valeurs plus petites et en orange pour des valeurs plus grande que
la valeur par défaut du paramètre). Ici nous avons représenté un exemple pour la fréquence
source de l’onde gravitationnelle.

Dans les expériences suivantes, le signal cherché et le template utilisé pour le matched

filtering ne sont pas forcément identiques. Le résultat dans le cas d’une modification de la

fréquence source de l’onde gravitationnelle est représenté sur la Fig. 12. Nous voyons que les

PDFs sont les mêmes pour tous les templates générés. Cela signifie que si nous appliquons le

filtrage adaptatif avec un template légèrement différent du signal cherché (dans les limites de

l’incertitude sur le paramètre considéré, ici la fréquence), nous obtenons la même probabilité

de détection du signal. Cette conclusion est valide pour tous les paramètres que nous avons

testés.



Fig 12: Fonctions densité de probabilité pour chaque template lorsque le template utilisé
pour le matched filtering est légèrement différent du signal cherché. Ici nous avons représenté
un exemple pour la fréquence source de l’onde gravitationnelle.

Nos tests synthétiques ont donc démontré que le « matched filtering » n’est pas sensible

aux incertitudes présentes dans le catalogue de systèmes binaires. En d’autres termes, les

incertitudes sur les paramètres des naines blanches doubles sont trop faibles pour impacter

significativement la forme de nos signaux-modèles de sorte qu’ils se corrèlent très bien avec

le signal cherché même si la superposition n’est pas parfaite.

La technique de « matched filtering » est désormais testée sur un signal synthétique

injecté dans des vraies données gravimétriques. Les données utilisées sont celles enregistrées

à BFO (Allemagne), qui est l’une des stations les moins bruitées dans la bande sismique

considérée. Nous avons considéré un an de données enregistrées en 2012 dans lesquelles nous

avons enlevé les journées comprenant des séismes. Nous avons ensuite sélectionné les jours

pour lesquels le niveau de densité spectrale de puissance est inférieur au 25ème percentile. La

technique de « matched filtering » est finalement appliquée à ces données d’observation. Le

résultat est représenté sur la Fig. 13. Afin de pouvoir détecter le signal injecté, le bruit des

données a été artificiellement réduit en le divisant par un facteur d’amplitude 1.2 · 1010 de

sorte à avoir le même niveau de bruit que dans le cas d’un bruit blanc synthétique d’écart-

type σN = 7.5 · 10−21 m/s2. La Fig. 13 démontre qu’avec un bruit blanc synthétique la

probabilité de détection est la même qu’avec un vrai bruit d’observations. Ce n’est pas

surprenant, puisqu’à ces fréquences les PSDs observées sont constantes (cf. Fig. 9), ce

qui est caractéristique d’un bruit blanc. Enfin, ce test montre que les niveaux de bruit

actuels des données gravimétriques nécessitent d’être 10 ordres de grandeur plus petits afin

de pouvoir détecter la réponse radiale induite par les ondes gravitationnelles émises par les



binaires de naines blanches.

Fig 13: Résultat du matched filtering appliqué pour détecter un signal synthétique injecté
dans (en haut) du bruit blanc d’écart-type σN = 7.5 · 10−21 m/s2 et (en bas) dans des
données enregistrées à la station BFO, pour lesquelles nous avons artificiellement réduit le
bruit observé d’un facteur 1.2 · 1010.

La dernière partie de ce travail de thèse concerne l’analyse des modes propres et en

particulier souligne les éventuels biais qui peuvent être introduits par des méthodes de

sommation de données. L’étude des modes sismiques apporte des contraintes essentielles

sur notre connaissance de l’intérieur de la Terre et a largement contribué à la construction

des modèles de référence, aussi bien des modèles radiaux de type PREM que des modèles

tomographiques 3D. Malgré les nombreux outils d’analyses développés, des différences dans

les mesures des paramètres (fréquences et facteurs de qualité) des modes sismiques existent

encore soulignant la possible présence de biais inhérent à chaque méthode. Nous avons donc

testé les performances de certaines techniques d’analyse couramment utilisées dans l’étude

des modes propres et qui ont été proposées comme étant les plus adaptées. Nous avons

ainsi implémenté trois méthodes qui ont été utilisées en complémentarité, à savoir : une



méthode de sommation dite OSE (Optimal Sequence Estimation) proposée par (Ding and

Shen, 2013a), une méthode auto-régressive d’analyse fréquentielle (ARFD80) développée

par (Chao and Gilbert, 1980) et une méthode appelée « phasor walkout » suggérée par

(Zürn and Rydelek, 1994) basée sur la représentation d’un diagramme des phases d’une

transformée de Fourier discrète d’un signal à une fréquence test donnée. La méthode OSE

est une méthode de sommation permettant d’extraire des signaux de faible amplitude noyés

dans du bruit. Cette méthode est basée sur le développement en harmoniques sphériques

et suppose donc que le signal recherché est harmonique. La mesure de la fréquence propre

d’un mode est effectuée à l’aide de la méthode ARFD80 qui repose sur la linéarisation

du problème de l’estimation d’une fréquence complexe à l’aide de la technique de Prony

permettant d’extraire des signaux exponentiels d’une série temporelle. Une fois mesurée,

la fréquence propre complexe d’un mode est validée graphiquement à l’aide du « phasor

walkout ». Ces trois méthodes ont été testées sur des sismogrammes synthétiques et sur

des données gravimétriques et sismologiques. Les tests synthétiques sont effectués pour

un modèle de Terre 3D à variations latérales de densité et de vitesse, pour un mécanisme

de source sismique et en ne considérant qu’une chaîne de multiplets à la fois. Nous nous

concentrons sur les modes basse-fréquence, là où l’approximation en « group-coupling »

n’introduit que très peu d’erreur par rapport à l’approche en « full-coupling ». Nous avons

conduit deux tests indépendants : augmenter progressivement le niveau de bruit d’une part

et diminuer le nombre de stations utilisées dans le stacking d’autre part. L’influence sur

les valeurs estimées des fréquences propres est quantifiée, ainsi que sur les coefficients de

la fonction de splitting obtenue à partir de ces fréquences dans le cadre d’une théorie de

la perturbation du premier ordre. Nos expériences synthétiques ont ainsi démontré que

lorsque le bruit augmente, le rapport signal sur bruit (SNR) des signaux stackés diminue et

les écarts-types des fréquences et facteurs de qualité Q estimés augmentent, et surtout les

valeurs obtenues sont de plus en plus dispersées autour de la valeur de référence (cf. Fig. 14).

Nous avons en particulier montré que la méthode OSE devient sensible à la distribution des

stations sous l’influence du bruit. En outre, les performances de la méthode auto-régressive

ARFD80 se détériorent lorsque le signal stacké est obtenu avec des signaux faiblement

excités, c’est-à-dire lorsque les signaux d’entrée ont un rapport signal sur bruit inférieur

ou égal à 2. Cependant, même dans ces cas, les estimations obtenues restent dans les

barres d’erreur. Nos incertitudes calculées à l’aide d’une méthode itérative de « bootstrap

» ne tiennent pas compte des biais identifiés précédemment. Par conséquent, même si

la précision semble bonne, l’exactitude des estimations peut être mauvaise. Finalement,

estimer les coefficients de structure à partir des fréquences, présente l’avantage d’avoir une

détermination indépendante d’un modèle a priori, mais un biais peut alors être introduit.



Fig 14: Expériences synthétiques pour le singlet m=1 du mode 0S2 pour quatre distributions
de stations différentes: 1) réseau complet (1ère ligne), 2) stations de l’hémisphère nord
uniquement (2ème ligne), 3) stations de l’hémisphère sud uniquement (3ème ligne), 4) une
sélection de stations (4ème ligne). Les figures sur la gauche représentent les fréquences
estimées versus le SNR pour dix niveaux de bruit différents. Les figures sur la droite
représentent les écarts relatifs des fréquences obtenues par rapport à la valeur synthétique
de référence (valeur indiquée en line pointillée) en fonction du SNR pour les dix niveaux de
bruit considérés. A noter que les échelles verticales des figures de gauche sont optimisées
de sorte que celles pour le réseau complet et le réseau du Nord sont les mêmes, et celles du
réseau du Sud et du réseau sélectionné sont les mêmes.

En conclusion, nous avons réécrit les équations modélisant l’effet des ondes gravita-

tionnelles d’origine astrophysique sur les modes propres de la Terre. Nous avons réévalué

l’amplitude à résonance pour un modèle de Terre sphérique et radialement stratifié du dé-



placement induit qui s’avère être plusieurs ordres de grandeur plus faible qu’initialement

proposé par Ben-Menahem (1983) mais plus élevé que proposé par Dyson (1969) pour un

modèle de Terre plate. Nous avons ensuite considéré la solution pour une Terre elliptique en

rotation et à variations latérales de densité pour des sources d’ondes gravitationnelles que

sont les systèmes doubles de naines blanches. Les amplitudes en déformation de ces ondes

gravitationnelles émises sont de l’ordre de 10−22-10−23, soit deux ordres de magnitude plus

faible que l’évènement détecté par LIGO en 2015 et provenant de la coalescence de deux

trous noirs. Les échelles de temps en jeu sont cependant beaucoup plus longues puisque les

fréquences considérées sont de l’ordre du millihertz et l’émission de ces ondes est continue

dans le temps. L’excitation des modes sismiques de degré deux par les systèmes doubles

de naines blanches est donc continue. La recherche dans les données gravimétriques et sis-

mologiques à l’aide d’une technique de filtrage adaptatif est cependant rendue très difficile

par l’amplitude du bruit présent dans les données. Enfin, nous avons mis en évidence cer-

taines limites des techniques de combinaison et d’analyse de données dans la recherche et la

caractérisation de faibles signaux et certains biais introduits par la distribution des réseaux

de stations à la surface du globe.

Ce travail apporte une nouvelle contribution à l’étude des ondes gravitationnelles et

pose de nouvelles limites sur leur détection. Détecter les ondes gravitationnelles par leur

résonance avec les modes propres de la Terre dans la bande fréquentielle du millihertz

n’est donc pas envisageable aujourd’hui de par les limites technologiques mais aussi à cause

de la difficulté de réduire le bruit environnemental présent sur les observations terrestres.

L’approche par modes propres proposée dans le cadre de cette thèse pourrait être étendue

à d’autres planètes, en particulier Mars où un sismomètre a été récemment déployé dans

le cadre de la mission Mars Insight. Une technique de corrélation entre les données sis-

mométriques lunaires avec des données terrestres a été proposée par Coughlin and Harms

(2014c) aboutissant à une meilleure contrainte sur la densité d’énergie d’ondes gravitation-

nelles émises dans l’univers aux fréquences inférieures à 1 Hz. Dans le futur les données

du sismomètre martien pourront offrir des perspectives prometteuses dans ce contexte et

apporter ainsi de nouvelles contraintes sur les modèles cosmologiques.
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Chapter 1

Introduction

On September 14, 2015 at 09:50:45 UTC for the first time in history the two detectors of

the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously detected

a gravitational wave (GW) from a binary hole merger (Abbott et al., 2016). This was an

additional indisputable proof of the theory of general relativity published by Albert Einstein

in 1916, who found transverse waves that travel at the speed of light as a solution for the

weak-field equation of his theory. These waves are generated by the time variation of the

mass quadruple moment of the sources (Einstein, 1916, 1918). The detection consisted of

a transient GW signal with the peak strain of 1.1 × 10−21 whose frequency increased with

time (chirp) from 35 to 250 Hz in 0.15 s. The signal matched the predicted waveform for

the inspiral and merger of a pair of black holes and the ringdown of the resulting single

black hole. After the main detection ten more followed, thus until today there are eleven

successfully identified mergers, ten of stellar-mass binary black hole mergers and one binary

neutron star (Abbott et al., 2018). Currently The Advanced LIGO (Aasi et al., 2015) and

The Advanced Virgo (Acernese et al., 2014b) are in the third observation run, known as

O3, which began 1st of April, 2019 and is scheduled for one calendar year. The updates

on detectors statuses and GW Candidate Event Database can be followed on the website

https://www.gw-openscience.org/about/.

This historical breakthrough is a marvel of human achievement. It is a catalyst of many

new sciences and as well a motivation for the reconsideration of some earlier ideas on the

GW detection. One of these ideas is the topic of this dissertation and that is detecting the

GWs by observing the vibration of the elastic bodies due to the incident GWs. The elastic

body in question is the Earth and its states of vibration, the normal modes. The study is

based on the works by Dyson (1969) and Ben-Menahem (1983). We use these earlier works

to develop a new interaction model between the GWs and Earth. We further use this model

to determine a limit of the sensitivity that we must reach with our sensors on Earth to be

able to detect GWs. The appealing thought is whether we could use the existing network

1



of sensors, so far used to improve our understanding of Earth, as an astrophysical device to

explore our Universe.

This dissertation is organized as follow. Chapter 1 is about the GW detection in general,

what kind of sources generate GWs, what is the frequency spectrum of the GWs sources and

detectors and also a short revision about the interaction between GWs and elastic bodies.

Chapter 2 deals with the theoretical background on the normal modes of the Earth in terms

what are the normal modes, how we define the idealized Earth model and the perturbation

to that model, what does this implies in terms of normal modes splitting and coupling

and how we model that. In chapter 3 we present two models of the interaction between

GWs and Earth. In chapter 4 we introduce the matched filtering technique and application

of this technique to the model developed in previous chapter. Chapter 5 is focused on

the measurement uncertainties within the context of the normal mode studies, such as

measurement of the normal mode frequencies, Q-factors and splitting function coefficients.

We finish with general conclusions and perspective how this work could be extended in the

future.
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Chapter 2

Detection of Gravitational Waves

The first direct detection of the GWs started an era of the gravitational-wave observational

astronomy. Standard astronomy has traditionally relied on electromagnetic radiation, how-

ever since 96% of the mass-energy of the universe carries no charge, the large part of the

universe remained non-visible within the electromagnetic spectrum (Sathyaprakash and

Schutz, 2009). Electromagnetic waves strongly couple to charges, therefore they are easy to

detect but are also easily scattered or absorbed by material between us and the source. Un-

like electromagnetic waves, the GWs couple extremely weakly to matter, making them very

hard to detect but allowing them to travel substantially unaffected by intervening matter.

Last few decades many work has been done to understand what kind of sources generate

the GWs and how one can detect them. In this chapter we give a short introduction into

these two topics. In Section 2.2 we list some of the expected GW sources; in Section 2.1 we

explain a bit further the GW spectrum and detectors associated with each GW frequency

band; in Section 2.3 we touch upon some of the earliest studies on the GW detection using

elastic bodies.

2.1 Sources

Due to the non-existence of the monopolar and dipolar gravitational radiation a spherical

symmetric variation does not produce gravitational radiation. And this is true no matter

how violent the explosion or a collapse is. Also, a rotation lacking contraction or expansion

does not generate gravitational radiation because the quadrupolar and higher moments are

changeless. The sources that actually produce gravitational radiation form a spectrum that

is conventionally divided into three classes, according to the data processing methods and

signal extraction (Ju et al., 2000).

The first class consist of very poorly modeled transient sources which are catastrophic

burst sources: the final coalescence of the compact binary star systems (binary neutron
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stars, black holes and neutron-star-black-hole binaries), formation of neutron stars and

black holes in supernova events (gravitational collapse to a neutron star or black holes).

The burst signals can produce very strong signals with very large amplitudes, however they

are of the short duration and due to the lack of the detailed waveform, their detection is

difficult. The search is normally performed using the time-frequency techniques. One needs

to identify the excess of power in the data segments in the frequency domain (Abadie et al.,

2012; Moore et al., 2015).

The second class are narrow-band sources. This includes a rotation of single nonax-

isymmetric stars (pulsars and accreting neutron stars) and radiation from a binary star

systems far from coalescence. Such systems are less stronger than the burst signals, how-

ever they are quasi-periodic and by tracking them over a long time period, in principle,

one can extract their signal from noise. This implies that one needs to accurately model

frequency modulation due to the binary motion and the Earth’s orbital motion. During the

orbital motion of the binary star system the energy radiation causes the orbit to shrink.

The shrinking is causing the increase in the GW frequency in time, called a chirp. As the

binary system evolves, the frequency and the amplitude of the GW grow and this cause

the binary to evolve even more rapidly. The slow inspiral phase is ending when stars begin

to merge or when the distance between stars reach the last stable orbit (for the compact

binaries). After passing the last stable orbit the compact-object coalesces and this is called

compact binary coalescences (Sathyaprakash and Schutz, 2009). The eleven confident de-

tection of GWs belong to the class of the compact binary merges, ten binary black holes

mergers and one binary neutron star signal (Abbott et al., 2018). At lower frequencies

than the frequencies of the coalescing binaries the most promising source of GWs are the

more abundant white-dwarf binaries. These binaries have a long lifetimes and since they

are not as compact as neutron stars or black holes they never reach the last stable orbit.

Their amplitude is several orders smaller than the amplitude of the neutron star or black

binary hole coalescence at the same distance. Another type of second class sources are also

supermassive black holes and extreme and intermediate mass-ratio inspiral sources.

The third class of the GW sources are the stochastic backgrounds, random GW fields

produced from a superposition of the countless discrete systems and also from fundamental

processes, such as the Big Bang. They can contain everything, from very weak periodic

sources, very distant burst sources and as well cosmological processes existing in the early

universe. Detection of the stochastic backgrounds is performed by cross-correlating two

nearby detectors, because a random radiation is indistinguishable from the noise in a single

detector. By doing so one expects to obtain nonzero output that is much larger than one
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would obtain from the variance of the correlation of two statistically independent noise

fields from the two detectors.

Each of these sources can be detected differently and in the next section we introduce

more specifically individual parts of the GW spectrum and their associated detectors.

2.2 Detectors and Frequency Ranges

Detection of the GW has many different approaches for different part of the GW spec-

trum. Each frequency band is characterized by different operating detectors and different

gravitational sources. There are four frequency bands of interest:

• extremely low frequency (ELF) band from ∼ 10−15 to ∼ 10−18 Hz,

• very low frequency (VLF) band from ∼ 10−7 to ∼ 10−9 Hz,

• low frequency (LF) band from ∼ 10−4 to ∼ 0.1 Hz,

• high frequency (HF) band from ∼ 10 to ∼ 103 Hz.

In the ELF band the GWs are sought via their imprint on the polarization of the cosmic

microwave background (CMB) radiation, a relic of the early Universe. The expected sources

are the quantum fluctuations in the gravitational field (space-time curvature) that emerged

from the Big Bang’s event (Thorne and Blandford, 2017).

In the VLF band radio astronomers search for small irregularities in the arrival times of

the pulsar signals caused by the GWs. Pulsars are spinning neutron stars that emit strong

radio waves due to their rotational energy. Their very high rotational energy generates

electric field from the movement of the very strong magnetic field, which result in the accel-

eration of protons and electrons on the star surface and thus creation of the electromagnetic

beam emanating from the poles of the magnetic field. Every time a magnetic pole points

toward the Earth, the beamed emission is observed as a ’pulse’ of radio waves. Therefore,

each pulsar act as a regular clock. The measured pulse arrival time can be compared against

a prediction, where residual times include the effects of the passing GW through the radio

array (Schutz, 2009). Current pulsar timing arrays (PTAs) in operation are the European

Pulsar Timing Array (EPTA1; Kramer and Champion (2013); the detector sensitivities in

Babak et al. (2016)), the Parkes Pulsar Timing Array (PPTA2; Hobbs (2013)) in Australia

and the North American Nanohertz Observatory for Gravitational Waves (NANOGrav3,

1http://www.epta.eu.org/
2http://www.atnf.csiro.au/research/pulsar/ppta/
3http://nanograv.org/
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McLaughlin (2013)). The International Puslar Timing Array (IPTA4; Manchester (2013))

is a consortium of consortia, comprised of EPTA, PPTA, NANOGrav, and its principal

goal is to detect GWs using one single array of approximately 30 pulsars. The next de-

tector prototype in the radio astronomy is the Square Kilometre Array (SKA5; Dewdney

et al. (2009)), the world’s largest radio telescope. It will be made up of arrays of antennas -

SKA-mid observing mid to high frequencies and SKA-low observing low frequencies - spread

approximately over one square kilometre. Having the receiving stations extending over the

vast area it would provide the highest resolution images in all astronomy.

In the LF band a common method to detect GWs is interplanetary spacecraft tracking.

This technique works on the principle of a general beam detector (Thorne and Blandford,

2017). Spacecraft carries transponders, radio receivers, that amplify and return the signal

from the ground tracking stations. A measurement of the return time defines the position of

the spacecraft and if this measurement is accurate enough, small changes in the return time

of the radio signals might indicate existence of the GWs (Armstrong, 2006). Since it turned

out that the sensitivity of these searches is not high, this technique will be supplanted by

Laser Interferometer Space Antenna (LISA6, Bender et al. (1995)) and eLISA7 (Amaro-

Seoane et al., 2012), rescoped version of the classic LISA mission. LISA is a space-based

detector that consists of three satellites flying in a triangular constellation with arms of

length 5 × 109 m in a 1 AU orbit around the Sun, trailing the Earth by 20◦. Each satellite

contains of two telescopes, two lasers and two free falling test masses arranged so that each

satellite point at the other two. This forms Michelson-like interferometers, each centered

on one of the satellites, with the test masses defining the ends of the arms. Therefore,

LISA-like detectors use laser interferometry, however the laser beams are not contained in

cavity and the beam travels only once along each arm, unlike in ground-based detectors.

The distances between the satellites are precisely monitored and every distortions will be

caused by the passing GWs. Each satellite is a zero-drag satellite, which effectively floats

around test masses, maintaining themselves centered around the masses and monitoring

their relative position to the spacecraft. Thus, using this principle all non-gravitational

forces are eliminated. eLISA (evolved Laser Interferometer Space Antenna) is designed to

probe the same frequency range as LISA and the main differences are the shorter arms (109

m), two laser arms instead of three and different orbit. Some of the potential sources for

space-based detectors are massive black holes mergers at the centre of galaxies, massive black

holes orbited by small compact objects, extreme mass ratio inspirals, binaries of compact

4http://www.ipta4gw.org/
5https://www.skatelescope.org/
6https://lisa.nasa.gov/
7https://www.elisascience.org/

6



stars in our Galaxy. Proposed successor to LISA are the Advanced Laser Interferometer

Antenna (ALIA; Crowder and Cornish (2005)), Big Bang Observer (BBO; Crowder and

Cornish (2005)) and Deci-hertz Interferometer GW Observatory (DECIGO; Takahashi and

Nakamura (2003)). All successors are designed to probe the decihertz region of the GW

spectrum. For overview of the GW detection in space the reader is referred to Ni (2016).

In the HF band GWs are detected by the ground-based laser interferometer detectors

and the resonant-mass detectors. The laser interferometers utilize the principle of laser

interferometry and a common configuration for optical interferometry is the Michelson in-

terferometer. It consists minimally of one stable laser (source), a beam splitter (usually a

partially reflecting mirror), two reflecting mirrors at the end of two arms and a detector

(Fig. 2.1). In Michelson interferometer a single coherent light beam passes through a beam

splitter, which sends half the light down one arms and other half down the orthogonal

arm. The two beams have correlated phases. In the two arms beams are passing through

an optical cavity and are being reflected by the mirrors at the end of the two arms. On

their why back they are recombined to an interference pattern measured by detector. Any

difference in the local space time creates a phase difference between the two beams and this

effect is measured by observing the changing interference pattern. Therefore, if two arms

have same proper length, beams will return in phase, interfering constructively. Otherwise,

beams will return to the detector out of phase and they will interfere destructively. All

mirrors and beam splitter are freely floating and suspended in order to filter out the me-

chanical vibration noise. The response of the detector to the incident GW depends upon

the relative orientations of the detector and the incoming wave. The existed, existing and

planned ground-based detector are listed in Tab. (2.1) with relevant references.

Tab 2.1: The summary of the existed, existing and planned ground-based laser interferom-
eters.

Detector Country Arm length Years active Generation

GEO600 8 (Grote, 2010) Germany 600 m 2001 - present First

TAMA300 9 (Ando, 2002) Japan 300 m 1995 - present First

iLIGO (Abbott et al., 2009) USA 4 km 2004 - 2010 First

Virgo (Accadia et al., 2012) Italy 3 km 2007 - 2011 First

aLIGO 10 (Harry et al., 2010) USA 4 km 2015 - present Second

AdV 11 (Acernese et al., 2014a) Italy 3 km 2016 - present Second

KAGRA 12 (Somiya, 2012) Japan 3 km est. 2019 Second

ET 13 (Punturo et al., 2010) - 10 km est. 2025 Third

7



Fig 2.1: Light from the laser first pass through the power recycling mirror and then is
split by passing though the beam splitter. From the beam splitter light is sent along two
arms, where these arms form cavities between near and far mirrors (the near mirrors are
almost fully reflecting). After light leaves the cavities it returns back to the beam splitter
to be recombined. If the recombined beam has a destructive interference it goes further
to the photodetector; it is dark if GW is not present. Otherwise, if the recombined beam
is constructive interference beam it is returned back to the laser. There the beam enters
the power recycling mirror and is being reflected back into the interferometer in phase with
the new incoming laser beam. All the mirrors and beam splitter are suspended to filter
out mechanical vibrations. This scheme is not to scale, since arms are, for example, 4 km
long like in LIGO experiment and all mirrors ( except far mirrors) with beam splitter and
photodetector are contained in a single building. (Adopted from Schutz (2009).)

The other type of the HF band detector is the resonant mass detector. There are

different types of this detector (see Fig. 2.2) and they all work on the principle of the

absorption of the GW energy that manifest itself as the detector’s vibrations. The very

first GW detector was resonant bar detector developed by Weber (1959). It consisted of the

two cylindrical aluminum bar detectors, each of mass 1.4 · 103 kg, length 1.5 m, resonant

frequency 104 Hz and Q-factor of 105. The resonant mass detectors are non-free mass

detectors (Aguiar, 2011). The atoms in the body are connected by the crystal structures

8http://www.geo600.org/
9http://gwpo.nao.ac.jp/en/

10https://www.ligo.caltech.edu/
11http://public.virgo-gw.eu/
12https://gwcenter.icrr.u-tokyo.ac.jp/en/
13http://www.et-gw.eu/

8



and when the GWs pass the atoms try to follow the geodesic trajectories produced by the

space-time distortions. However, electrostatic connections between atoms prevent them for

following this trajectories. That is, if the GW is traveling perpendicularly to the bar’s axis

it produces tidal forces that stretched and contracts the bar’s length. And if the frequency

of the GW is close to the frequency of the bar, there are better chances that this change

in length will be detected. The sensitivity of the aforementioned resonant bar detectors is

limited due to technical challenges. It depends on the wave’s amplitude, length of the bar

and the Q-value of the bar (Schutz, 2009). The practical bars cannot be larger than few

meters, otherwise it is difficult to isolate bar from the external disturbances. However, this

limits the size of tidal stretching excited by the GW (compare this with four kilometer long

arms used in LIGO). Further, the resonant bars require very high Q-values due to several

effects. First, it will continue to oscillate long after the GW has passed, as it remembers the

effect of the GW (Ju et al., 2000). And second effect is based on the fluctuation-dissipation

theorem: the lower the dissipation the lower the fluctuation, that is the thermal noise level.

Therefore, a high-Q bar approaches a idealized harmonic oscillator whose motion becomes

predictable. If there is a high level of predictability small deviation from the harmonic

sinusoidal behavior can be resolved. Therefore, the highest the Q-value the better, but this

is limited by the crystal structure of the material. The resonant bars also encounter the

difficulty of detecting broadband signals that are very far from their resonant frequencies

(although it is possible in principle). Their resonant frequencies usually lay above 600 Hz

and since the most of the strong GW sources are at lower frequencies, this represent a big

challenge. Next problem, concerns reaching the sensitivity around 10−21. This implies that

bars need to be able to detect below quantum limit, since at these small excitation the energy

transferred to the bar from the wave is below one quantum of excitation of the resonant

mode energy (Schutz, 2009). And the detection below quantum limit has not been met in

practice. All modern-day resonant detectors use cryogenic techniques since these reduce the

thermal noise and enable the use of high-sensitivity superconducting transducers. In Tab.

2.2 we enlisted some of the existed and still operational bar detectors. All detectors are bar

ones, expect MiniGRAIL and Mario Schenberg which are spherical resonant detectors.
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Fig 2.2: Different models of the resonant mass detectors: two masses connected by the
spring (up left), a bar (up right), multi-spring mass detector (down left), spherical detector
formed with six transducers located with dots (down right). (From Ju et al. (2000).)

Tab 2.2: The summary of the existed and existing resonant bar detectors.

Detector Country Years active Frequency [Hz] Strain sensitivity

ALLEGRO 14 (Mauceli et al., 1996) Louisiana 1991-2007 900 7 · 10−19

EXPLORER 15 (Astone et al., 1993) CERN 1990-2010 900 7 · 10−19

NIOBE (Heng et al., 1996) Australia 1993-2001 700 5 · 10−19

NAUTILUS 16 (Astone et al., 1997) Italy 1995-present 900 6 · 10−19

AURIGA (Conti et al., 2001) Italy 1997-present 900 3 · 10−19

MiniGRAIL 17 (Waard et al., 2003) Netherlands 2004-present 3250 1.5 · 10−20

Mario Schenberg (Aguiar et al., 2002) San Paulo 2006-present 3000 - 3400 4 · 10−20

14http://www.auriga.lnl.infn.it/welcome.html
15http://www.roma1.infn.it/rog/rogmain.html
16http://www.roma1.infn.it/rog/rogmain.html
17http://www.minigrail.nl/
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The extensive summary of the GW detectors and sources is shown in Fig. 2.3 versus the

characteristic strain (plot is created using interactive tool on the website http://gwplotter.com/).

Fig 2.3: GW frequency spectrum versus the characteristic strain for GW detectors and
source (From Moore et al. (2015).)

Utilizing of the Earth as a detector of the GWs has a long history and this is a topic of

next section.

2.3 Elastic Bodies as Detectors

Around the same time when the first idea about the ground-based detector was established,

the idea that GWs could excite the vibrations of elastic bodies, and therefore Earth too, was

developed (Pirani, 2009; Weber, 1959). Weber (1959) proposed methods for the interstellar

gravitational radiation detection using the fact that the relative motion of mass points are

driven by second spatial derivatives of the gravitational fields. He proposed an experiment

where the Earth is considered as a block of material representing the GW antenna, a res-

onant body, for which the normal modes of the Earth are expected as a response to the

excitation. He also discussed generation and detection of GW in the laboratory. Forward

et al. (1961) were the first to calculate the upper bound of the GW energy passing through

the Earth using the strain data from the seismograph at Isabella, California. They computed

the strain magnitude induced by the Riemann tensor in a longitudinally vibrating rod (We-

ber, 1959). Next, Weber (1967) provided the first upper limit on the gravitational-radiation
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flux using a mechanical gravimeter in vicinity of normal mode periods. Tuman (1971, 1973)

first claimed a GW detection using the Earth’s normal modes observed in cryogenic gravity

meter records. He interpreted a higher energy content in the power spectra of the even

harmonic degrees as the normal modes harmonics excited by gravitational radiation. His

finding was criticized due to a lack of more convincing statistical proof (Flinn, 1971). An

important study was done by Dyson (1969) who was the first to calculate the response of

a flat-Earth model to an incident GW, where effects of sphericity and rotation were added

to the flat stationary Earth solution. The calculated response was in the 1-Hz band where

seismic wavelengths are small compared to the Earth’s radius and large compared to lateral

density heterogeneities. Dyson (1969) showed that the GWs, in such a set-up, are absorbed

only by irregularities in the shear-modulus, with the strongest absorption at free surface.

De Sabbata et al. (1970) proposed detecting GWs by the observation of Earth’s free os-

cillations. Their apparatus consisted of laser interferometer which allows to measure the

soil deformations. They proposed that distinction of the seismic (free oscillations) from

the gravitational signals could be accomplished by considering a long interval of time, to

look at the Fourier components at the presumed frequencies and consider the decay time

of the oscillations. Mast et al. (1974) performed the search for gravitational radiation from

pulsars using a seismometer on the Earth. Even though no signal was found, they esti-

mated an upper limit on the Earth motion due to such signal from 10−11 m near 1 Hz to

10−14 m near 125 Hz. Extensive work on the reception of GW by an elastic self-gravitating

spherical detector was done by Ashby and Dreitlein (1975). The equations of motion of

a detector are presented in the coordinate system of Fermi, where the GW field appears

as a classical driving force, and exact analytic solutions are modeled for the homogeneous

isotropic elastic sphere as well as self-stress sphere, where stress on the body due to its own

gravitational field causes radial variations in density and elastic moduli in equilibrium state.

The elastic response was calculated for monochromatic waves in the range 10−4 Hz to 1

Hz. Similar work was done by Linet (1984), where he modeled the equations governing the

interaction between non-rotating elastic self-gravitating sphere and GWs. Based on Dyson

(1969), Jensen (1979) analysed the absorption of GW in the 1-Hz band by the layered

crust of a realistic Earth model, developing the interaction between GWs and the elastic

continuum. Jensen (1979) showed that discontinuities in the elastic modulus in a layered

model significantly enhance the response of Earth to GWs at specific frequencies. The com-

plete response of the radially heterogeneous rotating and self-gravitating Earth in terms

of induced toroidal and spheroidal motions was then developed by Ben-Menahem (1983).

He showed that in the long-wavelength regime for the induced spheroidal vibration the

most significant response corresponds to quadrupole modes. More recently, Coughlin and
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Harms (2014a,b,c) revisited Dyson’s and Ben-Menahem’s formalism of the Earth response

to incident GW for the calculation of the upper limit of GW energy density. In the first

paper (Coughlin and Harms, 2014a) they used a global network of broadband seismometers

and they considered isotropic stochastic GW background integrated over one year in the

frequency range 0.05-1 Hz. In the second paper (Coughlin and Harms, 2014b) they used

data from a superconducting gravimeter network in the frequency range 0.035-0.15 Hz. In

the third paper (Coughlin and Harms, 2014c) they used Apollo-era seismic data integrated

over one year in the frequency range 0.1-1 Hz.

Besides Weber and Dyson, who were pioneers in considering the Earth as a detector

of GW, many papers that followed studied the interaction of GW and elastic solids in

the general relativity context. One of the first studies modeled a concept of the perfectly

elastic solid in the high-pressure elasticity theory (condition that occurs in the interiors of

neutron stars) for the purpose of scrutinizing the interaction of gravitational radiation with

planetary bodies (Carter and Quintana, 1972). Also, for the fist time the strain-curvature

equation for an elastic test body interacting with a GW was formulated in general relativistic

systems (Glass and Winicourt, 1972). Further, the interaction problem was also solved in

the gravito-inertial system of reference (Dozmorov, 1976a,b). In the later paper (Dozmorov,

1976b), it was emphasized the existence of the superposition of two different elastic waves,

those with the phase velocity equal to the speed of light and those with the phase velocity

equal to the seismic velocity.

The first two papers to consider absorption of GW by astrophysical objects were Zim-

merman and Hellings (1980) and Walgate (1983). Boughn and Kuhn (1984) were the first

one to use realistic Earth and Sun models to calculate their responses to the homogeneous

isotropic gravitational radiation considering coupling of GW to a spherically symmetric

body. Thus, they put upper limits on the stochastic gravitational background from the ob-

served solar oscillations. Khosroshahi and Sobouti (1997) studied the excitation possibility

of the polytropic stars normal modes. They showed that the interaction is achieved through

the irrotational component of the displacement vector field. Siegel and Roth (2010, 2011,

2012, 2014) published four articles on the topic of the non-relativistic stars excitation by

arbitrary external GW fields starting from the full field equations of general relativity. In

Siegel and Roth (2010), it was shown that GWs solely couple to quadrupole spheroidal eigen-

modes. In their next paper (Siegel and Roth, 2011), they developed a hydrodynamic model

of the excited normal modes for any non-relativistic star and arbitrary external GW fields,

allowing them to use realistic current solar and stellar models. They studied two types of

radiation, either from a particular astrophysical source or from a stochastic background. In

the third and fourth papers (Siegel and Roth, 2012, 2014), based on their earlier theoretical
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work, they showed that asteroseismology can place upper bounds on the amplitude of a

stochastic background of GWs in the mHz and µHz frequency range. Recently, Lopes and

Silk (2014, 2015, 2017) and Lopes (2017) published studies on the stars quadrupole acoustic

modes. They showed that GWs with a strain spectral amplitude in the range 10−20 - 10−17

can lead to the excitation of Sun’s low order quadrupole acoustic modes (Lopes and Silk,

2014). They also argued that stars in general form a natural set of detectors over a large

spectral frequency range, from 10−7 to 10−2 Hz, and that their stellar configuration is ideal

for GW search. Unlike experimental detectors this kind of network of stars allow to study

the progression of GWs throughout space (Lopes and Silk, 2015). Lopes (2017) calculated

that impact of GWs on low-order quadrupole modes is not above the current observational

threshold of detectability, however he concluded it may be reached with the next generation

of near infrared observatories and asteroseismology satellite missions. Among others, the

studies about the absorption of GW by stars near black holes and white-dwarfs (McKernan

et al., 2014) and red giant stars (Campante et al., 2015) also exist. A historical summary

of all papers is presented in the chart in Fig. 2.4.

In next chapter we will further give a basic introduction into the normal mode theory

in terms of different Earth models.
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Fig 2.4: Historical chart representing the progress of the utilization of Earth as a detector
of GWs (•). Additionally, the studies utilizing general elastic sphere (+) and astrophysical
bodies (×) are also shown. Abbreviations stands for: ρP (ω) - power spectrum of the
gravitational-radiation mass density, f - frequency/frequency range, u - displacement, uh -
horizontal displacement, ΩGW - upper limit on energy density, SE - spectral energy density,
F - flux density.
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Chapter 3

Earth Normal Modes

A short introduction to normal modes of a spherically symmetric, non-rotating, perfectly

elastic Earth model and compared with a rotating, anelastic, laterally heterogeneous Earth

model is presented below. For a detailed and more complete overview the reader is refeered

to Dahlen and Tromp (1998).

3.1 Spherical Non-rotating Elastic Isotropic Earth (SNREI)

A SNREI Earth model stands for the spherically symmetric, non-rotating, perfectly elastic

and isotropic model. Isotropic in this case means that the initial stress is isotropic, so there

is no deviatoric stress τ = 0, and that the fourth-order elastic tensor Γ is isotropic, defined

as

Γijkl =

(

κ − 2

3
µ

)

δijδkl + µ(δikδjl + δilδjk), (3.1)

where κ stands for isentropic incompressibility or bulk modulus and µ for rigidity or

shear modulus. Incompressibility and rigidity may be specified as radial variations of the

compressional-wave speed α =
√

(κ + 4
3)/ρ and shear-wave speed β =

√

µ/ρ, where ρ is

mass density. The most well known and used SNREI 1D Earth model is the Preliminary

Reference Earth Model, henceforth referred as PREM (Dziewonski and Anderson, 1981).

The model is polynomial in nature, hence it provides formulas for the seismic velocities, α

and β, density and quality factors Q as a function of radius for various regions of the Earth.

The original version is transversely isotropic (only 220 km in the outer mantle) as well as

anelastic.

The linearized equations and boundary conditions governing the free oscillations of a

SNREI Earth model can be obtained for a non-rotating, hydrostatic model (τ0 = 0). The

frequency-domain equation in terms of the displacement s and the incremental gravitational
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potential φ is defined as

−ω2ρs −
(

κ +
1

3
µ

)

∇(∇ · s) − µ∇2s −
(

∂rκ − 2

3
∂rµ

)

(∇ · s)r̂

−2∂rµ

[

∂rs +
1

2
r̂ × (∇ × s)

]

+ (4πGρ2sr)r̂ + ρ∇φ

+ρg
[

∇sr − (∇ · s + 2r−1sr)r̂
]

= 0,

(3.2)

where the vector Laplacian is ∇2s = ∇(∇ · s) − ∇ × (∇ × s). The kinematic boundary

conditions require the displacement to be continuous everywhere except on the fluid-solid

boundaries, where tangential slip is allowed. The dynamical boundaries are

r̂ · T = 0 on ∂⊗, (3.3)

[r̂ · T]+− on ΣSS, (3.4)

[r̂ · T]+− = 0 on ΣFS, (3.5)

where ∂⊗ stand for boundaries at the exterior surface, ΣSS for the union of internal solid-

solid discontinuities and ΣFS for the union of fluid-solid discontinuities. The incremental

Cauchy stress T is given by the isotropic relation

T = κ(∇ · s)I + 2µd (3.6)

where d = 1
2

[

∇s + (∇s)T
]

− 1
3 (∇ · s) I is the deviatoric strain. Outside and inside of the

boundary are marked as + and − sides of the boundary. The Eulerian perturbation of the

gravitational potential in the spherically symmetric Earth takes the form

∇2φ = −4πG(ρ∇ · s + ∂rρsr). (3.7)

The potential must be continuous everywhere, including the boundaries where we have

[φ]+− = 0. Additionally, we have

[∂rφ + 4πGρsr]+− = 0, (3.8)

on all boundaries. The eigenfrequencies and eigensolutions of a SNREI Earth model, ω, s, φ,

are found by solving the equation (3.2) for all solid regions in the Earth and equation (3.7)

for all space respecting the boundary conditions (3.3) - (3.5) and (3.8). This is accomplished

by converting these equations and boundaries into an equivalent system of coupled scalar

equations. One approach is a straightforward brute-force approach, where a system of

spherical polar coordinates r, θ, φ is used. The separable solutions are defined in the form

s = UPlm + V Blm + WClm, φ = PYlm, (3.9)
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where the radial eigenfunctions U(r), V (r), W (r) and P (r) are function of radius only. The

real spherical harmonics Ylm of degree 0 ≤ l ≤ ∞ and order −l ≤ m ≤ l are defined as

Ylm(θ, φ) =























√
2Xl|m|(θ) cos mφ if − l ≤ m < 0

Xl0(θ) if m = 0
√

2Xlm(θ) sin mφ if 0 < m ≤ l

(3.10)

with

Xlm = (−1)m

√

2l + 1

4π

√

(l − m)!

(l + m)!
Plm(cos θ), (3.11)

and Plm(cos θ) as associated Legendre functions defined as

Plm(cos θ) = (−1)m 1

2ll!
(1 − cos2 θ)m/2

(

d

d cos θ

)l+m

(cos2 θ − 1)l. (3.12)

The vector spherical harmonics Plm, Vlm, Clm are defined as

Plm = r̂Ylm(θ, φ),

Blm = (
√

l(l + 1))−1∇1Ylm(θ, φ),

Clm = −(
√

l(l + 1))−1(r̂ × ∇1)Ylm(θ, φ),

(3.13)

with the surface gradient ∇1 = θ̂∂θ+φ̂(sin θ)−1∂φ and the surface curl r̂×∇1 = −θ̂(sin θ)−1∂φ+

φ̂∂θ on the unit sphere Ω. Substituting expressions (3.9) into (3.2), (3.7), (3.3) - (3.5) and

(3.8) gives the system of equations for obtaining the eigensolutions for SNREI Earth model

(full expressions in Dahlen and Tromp (1998)).

Every spherically symmetric, non-rotating Earth model consists of two types of free

oscillations - spheroidal oscillations, which alter the external shape and internal density of

the Earth, defined with the displacement of the form UPlm + V Blm and toroidal oscilla-

tions, which are purely tangential and zero divergence, of the form WClm. The spherical

symmetry of the model removes the oscillations’ dependency upon the azimuthal order

m, thenceforth every spheroidal and toroidal eigenfrequency ω is degenerate spanning the

(2l+1)-dimensional space defined with the real spherical harmonics. It is important to

emphasize that for each spherical-harmonic degree l there will be an infinite number of

spheroidal and toroidal eigenfrequencies, nωS
l and nωT

l , since n → ∞ where n is the over-

tone number. Further, for each l there are (2l+1) oscillations collectively referred to as a

multiplet, denoted as nSl for spheroidal modes or nTl for toroidal modes and associated with

eigenfrequencies nωS
l or nωT

l , respectively. Each individual oscillation within the multiplet

is called a singlet and is denoted with the azimuthal order m, for spheroidal modes as nSm
l

and toroidal nTm
l . Therefore, there are (2l+1) singlets spanning the multiplet. Any depar-

ture from the spherically symmetric Earth model removes the eigenfrequency degeneracy

and causes each multiplet, nωS
l or nωT

l , to split and couple. This is the topic of the next

chapter.
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3.2 Rotating Anelastic Heterogeneous Earth

In most global seismological applications effects of Earth’s rotation, hydrostatic ellipticity

and lateral heterogeneity can be regarded as slight perturbations from the equilibrium state.

Usually in those applications, the normal-mode perturbation theory is used to calculate the

singlet eigenfrequencies and associated eigenfunctions of the perturbed Earth. The basic

problem to start with is finding the perturbation to a non-degenerate eigenfrequency of a

mode that is well isolated in the seismic spectrum. In the first-order perturbation theory

one wants to find the eigenfrequency perturbation δω without solving simultaneously for

the perturbations in the associated eigenfunctions δs. Solutions to this classical problem

serves as a basis for the degenerate and quasi-degenerate perturbations problem, where

we cannot treat modes as perfectly isolated in the normal-mode spectrum. As mentioned

before, the real eigenfrequencies of spherically non-rotating symmetric Earth model exist

in (2l + 1) degenerate spheroidal and toroidal multiplets. This degeneracy is removed in

a three-dimensional rotating Earth model and it is perceived as splitting of the multiplet

eigenfrequencies and coupling between singlets within the multiplet and also between indi-

vidual multiplets, if their unperturbed eigenfrequencies are in close proximity to each other

for later case. In the splitting and coupling approaches the basis functions are the unper-

turbed multiplet eigenfunctions of the mode one wishes to investigate, and the perturbed

singlet eigenfunctions are of the form s =
∑

k qksk, where qk are expansion coefficients to

be determined and sk are the singlet eigenfunctions on a SNREI Earth model. Theoret-

ically, all eigenfunctions form the basis set, however since it is impossible to incorporate

n → ∞ modes into the computation, one needs to truncate the number of studied multi-

plets, hence the term quasi-degenerate multiplets. The split eigenfrequencies are treated as

small perturbation away from positive reference or fiducial frequency ω0 .

3.2.1 The Splitting of an Isolated Multiplet

In the isolated-multiplet approximation the splitting of and self-coupling between singlets

within the target multiplet, due to the rotation, ellipticity and lateral heterogeneity, is

governed by a splitting matrix defined as

H = W + (2ω0)−1
[

Vell+cen + Vlat + iA − ω2
0(Tell + Tlat)

]

, (3.14)

where W is rotating matrix, which contains the first-order perturbations of the Earth’s

rotation without the centrifugal potential and without associated ellipticity perturbations.

Further, the combined effects of rotation and hydrostatic ellipticity are represented by

matrices (2ω0)−1(Vell+cen − ω2
0Tell) with Tell being the kinetic-energy matrix and Vell+cen
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the elliptical-plus-centrifugal potential energy matrix. Non-hydrostatic lateral heterogeneity

perturbations are contained in (2ω0)−1(Vlat − ω2
0Tlat) matrices and A is the matrix of

anelastic perturbations. Therefore, the matrices W, Vell+cen, Vlat, Tell and Tlat contain all

deviations from the SNREI Earth model, so they are also called the perturbation matrices.

The perturbation splitting matrix H is fundamentally an operator defining an ordinary

eigenvalue problem for the complex eigenfrequency perturbations. In the isolated-multiplet

approximation the size of the matrix is (2l + 1) × (2l + 1), therefore the coupling between

adjacent multiplets is ignored. The elements of this complete (2l+1)× (2l+1) self-coupling

matrix are given by

Hmm′ = ω0[ibmδl−l′ + (a + cm2)δmm′ ] + ω0

∑

st

(cst + iψst)

∫

Ω
YlmYstYlm′dΩ, (3.15)

where aforementioned rotation and elliptical effects are defined with parameter b due to

the first-order effect of the Coriolis force, whereas a and c are due to ellipticity and the

second-order rotational effects (Dahlen and Sailor, 1979). Further, δmm′ is the Kronecker

delta symbol defined as

δij =











0 if i Ó= j

1 if i = j
, (3.16)

Values cst are called the splitting function coefficients and are linearly related to the per-

turbations of the spherical structure due to lateral heterogeneity in terms of bulk modulus

κ, shear modulus µ, density ρ and boundaries d perturbations. They are defined as

cst =
1

2
ω−2

0

{

∫ a

0
[δκstVκ + δµstVµ + δρst(Vρ − ω2

0Tρ)]r2dr +
∑

d

d2δdst[Vd − ω2
0Td]+−

}

. (3.17)

where s is the degree of the heterogeneity. For the explicit expressions of kernels Vκ, Vµ,

Vρ −ω2
0Tρ, Vd −ω2

0Td reader is referred to the Appendix D.4.2 in Dahlen and Tromp (1998).

Additionally, the real integrals satisfy the selection rules

∫

Ω
YlmYstYlm′dΩ = 0 unless























s is even

0 ≤ s ≤ 2l

t = m − m′























, (3.18)

consequently defining the kind of structure a specific isolated multiplet is sensitive to (Wood-

house, 1980; Ritzwoller et al., 1986; Dahlen and Tromp, 1998). For example, the first rule

requires that the splitting of an isolated multiplets depends only upon the even-degree

structure of the Earth. Coefficients ψst belong to the the anelastic perturbation matrix A

and are given by

ψst =
1

2
ω−2

0

∫ a

0
(κ0qκ,stVκ + µ0qµ,stVµ)r2dr (3.19)
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where δκ → δκ + iκ0qκ and δµ → δµ + iκ0qµ with expansion coefficients defined as

qκ =
smax
∑

s=1

s
∑

t=−s

qκ,stYst, qµ =
smax
∑

s=1

s
∑

t=−s

qµ,stYst. (3.20)

To calculate the first-order eigenfrequency perturbations one needs to diagonalize the

splitting matrix H by similarity transformations, under conditions that H is non-defective,

Z−1Z = I, Z−1HZ = ∆. (3.21)

Matrix ∆ = diag [· · · δνj · · · ], contains complex eigenfrequency perturbations. The columns

of the transformation matrix Z and the rows of its inverse Z−1 contain singlet eigenvectors.

Eigenvectors are further used to modify receiver r and source s vectors. For example, in

case of the acceleration a(t) of an isolated multiplet

a(t) = A0(t)eiω0t−γ0t, (3.22)

that consists of the sum of 2l + 1 varying complex exponential functions where the modu-

lation function is

A0(t) = r̃Tei∆ts̃ =
∑

j

Ajeiδωj+δγjt (3.23)

with Aj = r̃j s̃j . The renormalized receiver r̃ and source s̃ vectors are related to their SNREI

counterparts by

r̃ = ZT

(

I − 1

2
Tell − 1

2
Tlat − 1

2
ω−1

0 W

)

r, (3.24)

s̃ = Z−1
(

I − 1

2
Tell − 1

2
Tlat − 1

2
ω−1

0 W

)

s, (3.25)

where tilde symbol is characterizing the receiver and source vectors where the effects of

rotation and lateral heterogeneities are considered. In the absence of laterally heterogeneous

anelasticity matrix A = 0, the diagonalizing transformation matrix becomes unitary Z−1 =

ZH.

3.2.2 The Mode Coupling

The isolated-multiplet approximation is not suitable for the overlapping modes or modes

whose degenerate eigenfrequencies are in close vicinity to each other. To account for the

possibility of coupling between multiplets, one needs to treat target multiplets within a

single quasi-degenerate super-multiplet. Therefore, the splitting of and coupling between

several multiplets is governed by the super-version of (3.14)

H = N − ν0I + W + (2ω0)−1
[

Vell+cen + Vlat + iA − ω2
0(Tell + Tlat)

]

, (3.26)
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where the additional matrix N = diag[· · · νk · · · ] is the diagonal matrix of complex de-

generate eigenfrequencies, ν0 = ω0 + iγ0 is a complex fiducial or reference frequency

and is typically chosen to be one of the degenerate frequencies νk. The dimension of

this matrix is determined by the number of multiplets we are considering, hence one has
∑

k(2lk +1)×∑

k(2lk +1) dimension where lk denotes the degree of kth multiplet and where

index k denotes the quadruplet {n, l, m, S or T}. For better visual clarity let’s say there are

five multiplets in the super-multiplet, the matrix (3.26) can be written as



























H1,1 H1,2 H1,3 H1,4 H1,5

H2,1 H2,2 H2,3 H2,4 H2,5

H3,1 H3,2 H3,3 H3,4 H3,5

H4,1 H4,2 H4,3 H4,4 H4,5

H5,1 H5,2 H5,3 H5,4 H5,5



























. (3.27)

where matrices with the same subscripts, Hk,k, are the self-coupling matrices and matrices

with combination of different subscripts, Hk,k′ , represent the coupling matrices between two

different multiplets. Therefore, if k denotes a basis multiplet of spherical-harmonic degree

l, and k′ denotes a basis multiplet of spherical-harmonic degree l′ then the matrix Hk,k′ is

a (2l + 1) × (2l′ + 1) submatrix. The acceleration due to this super-splitting matrix is the

same as (3.22) only the dimensions of each matrix change.

The coupling between modes is particularly strong if their frequencies are close and if

their radial and geographical displacement fields are similar. There are a few selection rules

defining how the two modes are coupled and these are (Laske and Widmer-Schindrig) :

• Coriolis force introduces coupling between spheroidal and toroidal (S-T) modes that

differ by a single angular degree |l − l′| = 1;

• Earth’s ellipticity causes the same coupling as above for |l − l′| = 1 and also same

type coupling (S-S or T-T) for |l − l′| = 0 and |l − l′| = 2;

• the rotation causes same type coupling for |l − l′| = 0;

• lateral heterogeneity of degree s causes S-T coupling if |l − l′| + 1 ≤ s ≤ l + l′ + 1 and

l + l′ + s is odd;

• lateral heterogeneity of degree s causes same type coupling if m − m′ + t = 0, l + l′ + s

is even and |l − l′| ≤ s ≤ l + l′.

Calculation of the splitting matrix for multiplets in narrow frequency band governed by

these specific selection rules is called the group-coupling approximation. This is different
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from the full-coupling approximation where a large groups of multiplets in a broad frequency

band are considered.

3.2.3 The Splitting Function Coefficients

As stated earlier, the degenerate frequencies of a spherically symmetric non-rotating Earth

models are split by rotation, ellipticity and lateral heterogeneities. In most studies, rotation

and ellipticity are known and lateral heterogeneities, which are represented by velocity and

density perturbations, are the quantities to be estimated. Since lateral heterogeneities are

described by the splitting function coefficients, cst, to measure them we actually need to

measure the splitting function coefficients. Estimation of the splitting function coefficients

is a highly non-linear inverse problem which is commonly performed iteratively from a

starting model in the spectral domain (Ritzwoller et al., 1986, 1988; Giardini et al., 1987,

1988; Li et al., 1991). This procedure has been frequently used in the past several years

specially for building a catalog of cst coefficients (Resovsky and Ritzwoller, 1998; Deuss

et al., 2011, 2013; Koelemeijer et al., 2013). Besides, Ritzwoller et al. (1986) and Widmer

et al. (1992) proposed retrieving information about splitting function coefficients directly

from the estimated normal mode eigenfrequencies. This approach is based on a first-order

perturbation theory for isolated multiplets and the assumption that the lateral heterogeneity

is predominantly zonal which is also valid for some isolated multiplets (Woodhouse and

Dahlen, 1978; Woodhouse, 1980; Dahlen and Tromp, 1998). Moreover, for multiplets below 1

mHz where the splitting is dominated by the effect of rotation it is known that the dominant

heterogeneity sensed is axisymmetric (Widmer et al., 1992). All listed assumptions are valid

only for the low-frequency modes.

For an isolated multiplet we can write the splitting matrix (3.15) in more simple form

as

Hmm′ = ω̄k(a + mb + m2c)δmm′ +
2l

∑

s=0
s even

s
∑

t=−s

γmm′

st cst (3.28)

Obtaining the splitting matrix, calculating its eigenvalues and adding them to the multi-

plet degenerate eigenfrequency ω̄k, one can calculate the singlet split eigenfrequencies, ωm,

within the multiplet. In the special case where (3.28) is diagonal, resulting in a singlet be-

ing sensitive only to rotation, ellipticity and even degree axisymmetric aspherical structure

(t = 0), equation (3.28) simplifies to

Hmm = ω̄k(a + mb + m2c) +
2l

∑

s=0
s even

γmm
s0 cs0, (3.29)
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which leads us to the expression of the split eigenfrequency

ωm = ω̄k(1 + a + mb + m2c) +
2l

∑

s=0
s even

γmm
s0 cs0. (3.30)

Relation (3.30) shows that if one measures the split eigenfrequencies ωm and further sub-

tracts the first term on the right-hand side, calculated for a given Earth model, from the

left-hand side one can estimate axisymmetric splitting function coefficients sensitive to even

degree structures.

3.3 Green tensor

The Earth’s response to any source which excites free oscillations or traveling body and

surface waves, can be expressed in terms of the second-order Green tensor G(r, r′; t). It

represents a displacement response at location r and time t to a force acting at location

r′ at time 0. Therefore, the displacement s(r, t) produced by the equivalent body force

density f(r, t) acting per unit volume and the equivalent surface force density t(r, t) can be

written as a convolution of the impulse response Green function G(r, r′; t) with the entire

past history of the equivalent forces f(r, t) and t(r, t) as

s(r, t) =

∫ t

−∞

∫

V
G(r, r′; t− t′) · f(r′, t′)dV ′dt′ +

∫ t

−∞

∫

S
G(r, r′; t− t′) · t(r′, t′)dΣ′dt′, (3.31)

where the volume integral is carried throughout the Earth’s volume and the surface integral

over Earth’s surface satisfying a dynamical free-surface boundary condition given by (3.3)

for all surface. Definition of the Green tensor naturally changes with the Earth model

used. In Tab (3.1) and (3.2) one can find four expressions of the Green tensor and the

displacement eigenfucntions with and without rotation and anelasticity, respectively.

Tab 3.1: Seismic Green tensor with and without rotation and anelasticity. Each of the sums
is over all of the seismic normal modes with associated real or complex eigenfrequencies ωk

or νk = ω + iγk.

Earth model Green Tensor

Non-rotating elastic G(r, r′; t) = ℜ ∑

k ω−1
k sk(r)sk(r′)eiωkt

Rotating elastic G(r, r′; t) = ℜ ∑

k(iωk)−1sk(r)s∗
k(r′)eiνkt

Non-rotating anelastic G(r, r′; t) = ℜ ∑

k(iνk)−1sk(r)sk(r′)eiνkt

Rotating anelastic G(r, r′; t) = ℜ ∑

k(iνk)−1sk(r)̄sk(r′)eiνkt
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Tab 3.2: Displacement eigenfunction of a spherically symmetric Earth model in the presence
or absence of rotation and anelasticity. The scalars U,V,W and the spherical harmonics
Ylm are real, whereas U , V, W and Ylm are complex. The eigenfunctions of a non-rotating
spherical Earth model are exact, whereas those of a rotating spherical Earth model are only
correct to zeroth order in the angular rate of rotation, Ω = ||Ω||.

Spherical Earth model Exact or Zeroth-Order Displacement Eigenfunction

Non-rotating elastic s = U r̂Ylm + k−1V ∇1Ylm − k−1W (r̂ × ∇1Ylm)

Rotating elastic s = U r̂Ylm + k−1V ∇1Ylm − k−1W (r̂ × ∇1Ylm)

Non-rotating anelastic s = U r̂Ylm + k−1V∇1Ylm − k−1W(r̂ × ∇1Ylm)

Rotating anelastic s = U r̂Ylm + k−1V∇1Ylm − k−1W(r̂ × ∇1Ylm)

In the definition of displacement eigenfunctions in Tab. (3.2) the complex spherical

harmonics are defined as

Ylm(θ, φ) = Xlm(θ)eimφ. (3.32)

In the next chapter we further develop the interaction between the GWs and the Earth

in terms of the normal modes.
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Chapter 4

Normal Modes Excited By
Gravitational Waves

Elastic bodies such as the Earth can serve as the GWs detectors and we have shown that

this idea is not a new one (see Subsection 2.3). In this chapter we want to focus on Dyson

(1969) and Ben-Menahem (1983) formalism to upgrade the analytical model of the inter-

action between the GWs and the radially heterogeneous non-rotating Earth model (further

referred to 1D Earth model) and to derive a new analytical model for radially heterogeneous

elliptical rotating model where lateral heterogeneities are also included (further referred to

3D Earth model). This chapter is divided in three sections. In the first section we define

the mathematical background for the GWs. In the second one we revisit Ben-Menahem’s

spheroidal displacement. This solution is based on the metric perturbation defined in the

terrestrial reference system and for the monochromatic GW source. In the last section, we

derive a new analytical model, where the metric perturbation is defined for a binary star

system in the celestial reference system.

4.1 Force Term in Flat Space-Time Approximation

Far away from any significant masses, space-time possesses no curvature. It is the flat space-

time approximation, where we can idealize the waves as plane-fronted. The appropriate

formalism for describing this approximation is a linearized theory of gravity, a consequence

of considering the Newtonian limit (moving from a curved space-time to a flat one). In

the Newtonian limit particles are moving slowly with respect to the speed of light, the

gravitational field is weak and so it can be considered as a perturbation of flat space and

the field is static. The weakness of the gravitational field is expressed as decomposition of

the metric into the Minkowski metric plus a small perturbation

gµν = ηµν + hµν , |hµν | ≪ 1, (4.1)
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where the metric tensor gµν is a function of the distribution of mass and energy in space and

time, ηµν takes its canonical form ηµν = diag(−1, 1, 1, 1) and hµν is the metric perturbation.

The assumption |hµν | ≪ 1 allows us to ignore anything that is higher order than first order

in the metric perturbation. In this assumption the metric perturbation can be chosen so as

to satisfy a transverse-traceless gauge condition where hµ0 = 0 is purely spatial, hmm = 0

trace free and hmn;n = 0 divergence free. In this gauge all components hµν obey the wave

equation
(

− 1

c2

∂2

∂t2
+ ∇2

)

hµν = 0 (4.2)

where the solutions are plane waves, which phase fronts are huge compared to the wavelength

and the radius of the curvature of the space-time through which they propagate. Because

the metric (4.1) is the Minkowski metric plus a small spatial perturbation, we can do all

important calculation for the GWs in the vector notation in three-dimensional Euclidean

space. The wave coming from a distant source can be treated as a plane wave propagating

along vector k̂ which points from the source to the observer. We choose our coordinate axes

so that this unit vector has components

k̂ = (0, 0, 1), (4.3)

thus defining a vector propagating in êz direction. Because of a transverse-traceless gauge

there are only two independent non-zero components of the metric perturbation conven-

tionally named h+ and h×, therefore we can write the metric perturbation tensor as

h =













h+ h× 0

h× h+ 0

0 0 0













, (4.4)

where components h+ and h× are functions of (t − k̂ · r
c ). Expression (4.4) can also be

written as

h = h+e+ + h×e×, (4.5)

using polarization tensors defined as

e+ = l̂l̂T − m̂m̂T =













1 0 0

0 −1 0

0 0 0













, e× = l̂m̂T + m̂l̂T =













0 1 0

1 0 0

0 0 0













, (4.6)

with

l̂ = (1, 0, 0), m̂ = (0, 1, 0). (4.7)
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We see that for the construction of e+ and e× tensors we first need to define vector l̂ in

the plane perpendicular to k̂ and then vector m̂ is uniquely determined as m̂ = k̂ × l̂. The

metric perturbation defined as (4.5) is the linearly polarized metric perturbation (compared

to, for example, a right-hand or a left-hand polarizations).

Dyson (1969) discussed that in the linearized gravitational theory to account for the

interaction between GW and the elastic solid one needs to modify the Lagrangian of the

elastic solid by replacing the strain tensor with the sum of the strain tensor and the metric

perturbation (4.4). This modification alters the linear elastic equations by simply adding a

force term (Dyson, 1969; Ben-Menahem, 1983)

f(r, t) = −∂µ

∂r
êr · h(r). (4.8)

to the equations, where µ is the shear modulus distribution in the Earth and êr is the radial

unit vector. This result is important, since it tells us that within the interior of an isotropic

elastic medium a GW interacts only with the discontinuities in the shear modulus profile µ.

When considering an Earth profile there are two major discontinuities in the shear-modulus

profile: at the free-surface and at the core-mantle boundary. This implies that for the GW

described by (4.8) the Earth is constantly exposed to the forcing motion. To define the

response of the Earth to the GW we need to consider the force term (4.8) as a body force in

the relevant linear elastic equations of motion. This approach is taken in next two sections

for deriving a response of 1D (see Section 4.2) and 3D (see Section 4.3) Earth models to

GWs.

4.2 Terrestrial Reference System and Elastic, Non-rotating
Earth Model

Ben-Menahem (1983) obtained an analytical solution of the interaction between the GWs

and the Earth in terms of toroidal and spheroidal normal modes. For his calculation he used

a radially heterogeneous non-rotating elastic Earth model. He assumed that the GWs are

plane waves defined by their scalar values, polarization tensors and the propagation vectors.

The usefulness of his approach is defining the induced displacement as a double integral of

the convolution between the Green tensor and the force term as defined in Subsection 3.3.

In this section we revisit his analytical model using the same assumption and also including

some new ones. One of the main alteration involves using a standard notation as used in

the global seismology and defined in Chapter 3. The section is organized as follows: firstly,

we define the metric perturbation, and its components, which constitute the force term

(4.8); secondly, we define the Green tensor for a specific Earth model, because the force

term together with the Green tensor define the displacement relation (3.31); thirdly, we
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derive the induced spheroidal response for linearly polarized metric perturbation; fourthly,

we calculate the induced spheroidal response for a right-hand polarized metric perturbation,

present the comparison with Ben-Menahem’s solution and recalculate radial and horizontal

displacement values.

Results from this Section are published in Majstorović et al. (2019b) (link).

4.2.1 Metric Perturbation Defined as Plane-wave

The metric perturbation as a plane-wave source is expressed as

h = ℜ{h0ǫei(ωgt−k̂g ·r)}, (4.9)

where ℜ designates the real part, h0 defines the intensity of the wave source, ǫ is a polariza-

tion tensor, k̂g =
ωg

c êk is the wavenumber with ωg as frequency, c the velocity of light and

êk a unit vector normal to the wave front of the GW. The polarization tensor is defined by

the configuration of the incoming GW propagating along a vector k̂g located in the Earth

reference system. Vectors k̂g, l̂, m̂ are determined in the Earth’s Cartesian coordinate

system O, with the êz-axis pointing toward North, the êx and êy-axes perpendicular to êz,

and whose origin coincidences with the center of mass of the Earth. Unit vector êx points

to the Greenwich meridian. The plane of polarization in the O-system is specified by three

angles {e, λ, ν}, where e defines the rotation in êyêz-plane, λ in êxêy-plane and ν is the

rotation angle about the unit vector êk (Fig. 4.1).

��

Fig 4.1: Cartesian coordinate system O, where its origin coincides with the center of mass
of the Earth and êz-axis points to the North, êx-axis toward the Greenwich Meridian and
êy-axis is perpendicular to the êzêx-plane.
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Thus in the system O we have

êe = (cos e cos λ, cos e sin λ, − sin e),

êλ = (− sin λ, cos λ, 0),

êk = (sin e cos λ, sin e sin λ, cos e).

(4.10)

Further, rotation about the GW-propagation axis gives us the unit vectors

l̂ = cos ν(−êe) + sin ν(−êλ),

m̂ = sin ν(êe) + cos ν(−êλ).
(4.11)

Considering the definition of tensors tensors e+ and e× from equation (4.6) and using the

linearly polarized configuration tensor ǫ is defined as

ǫ = l̂l̂T − m̂m̂T + l̂m̂T + m̂l̂T. (4.12)

whence, in terms of angles {e, λ, ν}, we have (with the shorthand sin = s and cos = c)

ǫ =









b1(c2(e)c2(λ) − s2(λ)) − b2c(e)s(2λ) 1
2
b1s(2λ)(c2(e) + 1) + b2c(e)c(2λ) −

1
2
b1s(2e)c(λ) + b2s(e)s(λ)

1
2
b1s(2λ)(c2(e) + 1) + b2c(e)c(2λ) b1(c2(e)s2(λ) − c2(λ)) + b2c(e)s(2λ) −

1
2
b1s(2e)s(λ) − b2s(e)c(λ)

−

1
2
b1s(2e)c(λ) + b2s(e)s(λ) −

1
2
b1s(2e)s(λ) − b2s(e)c(λ) b1s2(e)









,

(4.13)

with
b1 = cos 2ν − sin 2ν,

b2 = cos 2ν + sin 2ν.
(4.14)

The metric perturbation defined with (4.9) is further used to define force term (4.8).

4.2.2 Green tensor

Next step is to chose appropriate definition of the Green tensor for the model we want

to calculate the response. Therefore, taking into account that the elastic wave speed is

much smaller than the speed of light, we consider that the whole Earth is simultaneously

excited, therefore the effect of rotation is ignored (Mulargia and Kamenshchik, 2016). For

this purpose we use a Green tensor for a non-rotating, anelastic Earth defined in Tab. 3.1

G(r, r′; t) = ℜ
∑

k

(iνk)−1sk(r)sk(r′)eiνkt, (4.15)

with associated definition of eigenfunction from Tab. 3.2

sk(r) = Uk(r)êrYlm(θ, φ) + κ−1Vk(r)∇1Ylm(θ, φ) − κ−1Wk(r)(êr × ∇1Ylm(θ, φ)), (4.16)

where Ylm(θ, φ) are real spherical harmonics defined as (3.10). Radial scalar functions

Uk(r), Vk(r), Wk(r) are complex, however for practical reasons in the calculation of synthetic

seismograms on a spherical Earth, only the effect of anelasticity upon the eigenfrequencies
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is retained and the effect of the anleasticity upon the radial eigenfunctions is ignored. This

implies that the displacement eigenfunction becomes

sk(r) = Uk(r)êrYlm(θ, φ) + κ−1Vk(r)∇1Ylm(θ, φ) − κ−1Wk(r)(êr × ∇1Ylm(θ, φ)), (4.17)

where Uk(r), Vk(r), Wk(r) are real functions. With the metric perturbation for the plane

waves (4.9) and the Green tensor for a non-rotating, anelastic Earth (4.15) we are ready to

calculate the induced displacement in the next subsection.

4.2.3 Induced spheroidal response

To obtain the solution for the spheroidal motion induced by a GW defined by the force

term (4.8), we need to insert this term into displacement (3.31) and take into account the

boundary condition (3.3) on the surface. Using the weak field linear approximation, the

interaction between GW and an elastic solid can be taken into account by adding a term

(Dyson, 1969; Ben-Menahem, 1983)

TGW = −µh (4.18)

into the stress tensor, which results in the gravitational tidal force in the equation of mo-

tion, shown elsewhere (Ashby and Dreitlein, 1975; Linet, 1984). Therefore, the boundary

condition (3.31) is altered and the surface force density becomes

t = µ(a)êr · h. (4.19)

where µ(a) is the value of the shear modulus at the Earth’s surface. Considering the above

relation, equation (3.31) becomes

s(r, t) = −
∫ t

−∞

∫

V

∂µ

∂r
G(r, r′; t − t′) · (êr · h)dV ′dt′

+ µ(a)

∫ t

−∞

∫

S
G(r, r′; t − t′) · (êr · h)dΣ′dt′.

(4.20)

and substituting (4.9) and (4.15) we have for a given seismic mode k

sk(r, t) = − h0sk(r)ḡ(t)

∫

V

∂µ

∂r
sk(r′) · (êr · ǫe−ik̂g ·r′

)dV ′

+ µ(a)h0sk(r)ḡ(t)

∫

S
sk(r′) · (êr · ǫe−ik̂g ·a′

)dΣ′,
(4.21)

where we have extracted the source-time function

ḡ(t) =

∫ t

−∞
(iνk)−1eiνk(t−t′)eiωgt′

dt′. (4.22)
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Convolution in the time domain is equivalent to multiplication in the frequency domain,

that is F{f(t)∗g(t)} = F{f(t)}·F{g(t)}, where F is Fourier transform. Using this theorem

we obtain

ḡ(t) =
1

2π

∫ +∞

−∞
(iνk)−1F{f(t)} · F{g(t)}eiωtdω

=
1

2π

∫ +∞

−∞
(iνk)−1δ(ω − ωg)

1

γk + i(ω − ωk)
eiωtdω

=
1

2π
(iνk)−1 1

γk + i(ωg − ωk)
eiωgt.

(4.23)

In the long-wavelength regime we expect kga ≪ 1 (Linet, 1984; Ashby and Dreitlein, 1975;

Khosroshahi and Sobouti, 1997), thus we simplify (4.21) into

sk(r, t) = h0sk(r)ḡ(t)

[

−
∫

V

∂µ

∂r
sk(r′) · (êr · ǫ)dV ′ + µ(a)

∫

S
sk(r′) · (êr · ǫ)dΣ′

]

= h0sk(r)ḡ(t)ǫ :

[

−
∫

V

∂µ

∂r
sk(r′)êrdV ′ + µ(a)

∫

S
sk(r′)êrdΣ′

]

.

(4.24)

Substituting the definition of the displacement eigenfunction (4.17) for the spheroidal modes

(W = 0) we obtain

sk(r, t) = h0sk(r)ḡ(t)ǫ :

[(

µ(a)Uk(a)a2 −
∫

r

∂µ

∂r
Uk(r)r2dr

) ∫

Ω
êrêrYlm(θ, φ)dΩ

+

(

µ(a)κ−1Vk(a)a2 −
∫

r

∂µ

∂r
κ−1Vk(r)r2dr

) ∫

Ω
êr∇1Ylm(θ, φ)dΩ

]

(4.25)

where dΩ = sin θdθdφ with 0 < φ < 2π, 0 < θ < π and
∫

r is integral over radius from center

(r = 0) to surface (r = a). To solve integrals in (4.25) we need to define the unit vectors

{êr, êθ, êφ} and their dyadic products {êrêr, êrêθ, êrêφ}. For this we use the expressions of

the unit vectors {êr, êθ, êφ} in spherical coordinates













êr

êθ

êφ













=













sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin θ cos φ 0

























êx

êy

êz













(4.26)

and calculate dyadic products using definition ab =
∑3

j=1

∑3
i=1 aibj êiêj . The solutions are

êrêr =













sin2 θ cos2 φ sin2 sin φ cos φ sin θ cos θ cos φ

sin2 θ sin φ cos φ sin2 θ sin2 φ sin θ cos θ sin φ

sin θ cos θ cos φ sin θ cos θ sin φ cos2 θ













, (4.27)

êrêθ =













sin θ cos θ cos2 φ sin θ cos θ sin φ cos φ − sin2 θ cos φ

sin θ cos θ sin φ cos φ sin θ cos θ sin2 φ − sin2 θ sin φ

cos2 θ cos φ cos2 θ sin φ − sin θ cos θ













, (4.28)
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êrêφ =













− sin θ cos φ sin φ sin θ cos2 φ 0

− sin θ sin2 φ sin θ sin φ cos φ 0

− cos θ sin φ cos θ cos φ 0













. (4.29)

The first integral in (4.25)

I1 =

∫

Ω
êrêrYlm(θ, φ)dΩ =

∫ π

0

∫ 2π

0
êrêrYlm(θ, φ) sin θdθdφ (4.30)

is a double integral over two arguments φ and θ over nine components of the dyadic product

{êrêr}. The solution is

I1 =
2
√

π

3
δl,0δm,0













1 0 0

0 1 0

0 0 1













+
2

3

√

π

5
δl,2δm,0













−1 0 0

0 −1 0

0 0 2













+ 2

√

π

15
δl,2













δm,−2 δm,2 −δm,−1

δm,2 −δm,−2 −δm,1

−δm,−1 −δm,1 0













.

(4.31)

Next, we derive the second integral in relation (4.25), which is

I2 =

∫

Ω
êr∇1Ylm(θ, φ)dΩ =

∫ π

0

∫ 2π

0
êrêθ∂θYlm(θ, φ) sin θdθdφ

+

∫ π

0

∫ 2π

0
êrêφ(sin θ)−1∂φYlm(θ, φ) sin θdθdφ.

(4.32)

The two integrals in (4.32) also involve nine integrals due to {êrêθ} and {êrêφ} dyadic

products and the final result is

I2 = 2

√

π

5
δl,2δm,0













−1 0 0

0 −1 0

0 0 2













+ 6

√

π

15
δl,2













δm,−2 δm,2 −δm,−1

δm,2 −δm,−2 −δm,1

−δm,−1 −δm,1 0













(4.33)

Finally, the expression (4.25) becomes

sk(r, t) = h0sk(r)ḡ(t)ǫ :























2
√

π

3
δl,0δm,0













1 0 0

0 1 0

0 0 1













(

µ(a)Uk(a)a2 −
∫

r

∂µ

∂r
Uk(r)r2dr

)

+













2

3

√

π

5
δl,2δm,0













−1 0 0

0 −1 0

0 0 2













+2

√

π

15
δl,2













δm,−2 δm,2 −δm,−1

δm,2 −δm,−2 −δm,1

−δm,−1 −δm,1 0

























(

µ(a)a2
(

Uk(a) +
3√
6

Vk(a)

)

−
∫

r

∂µ

∂r

(

Uk(r) +
3√
6

Vk(r)

)

r2dr

)}

.

(4.34)
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However, since ǫ : I = 0 (I is the identity matrix) the above expression reduces to

sk(r, t) = h0sk(r)ḡ(t)δl,2ǫ :























2

3

√

π

5
δm,0













−1 0 0

0 −1 0

0 0 2













+ 2

√

π

15













δm,−2 δm,2 −δm,−1

δm,2 −δm,−2 −δm,1

−δm,−1 −δm,1 0



































(

µ(a)a2
(

Uk(a) +
3√
6

Vk(a)

)

−
∫

r

∂µ

∂r

(

Uk(r) +
3√
6

Vk(r)

)

r2dr

)

.

(4.35)

The complete contraction between ǫ and matrices appearing in (4.35) yields the expression

sk(r, t) = h0sk(r)ḡ(t)δl,2fm(e, λ, ν)ζk, (4.36)

with

ζk = µ(a)a2
(

Uk(a) +
3√
6

Vk(a)

)

−
∫

r

∂µ

∂r

(

Uk(r) +
3√
6

Vk(r)

)

r2dr, (4.37)

and the function fm(e, λ, ν) defined as

fm(e, λ, ν) =
2

3

√

π

5
δm,0b1 sin2 e

+ δm,2
C

2
[4b2 cos e cos 2λ + b1(3 + cos 2e) sin 2λ]

+ δm,−2C
[

b1 cos 2λ(cos2 e + 1) − 2b2 cos e sin 2λ
]

+ δm,12C sin e [b2 cos λ + b1 cos e sin λ]

− δm,−12C sin e [b2 sin λ − b1 cos e cos λ] ,

(4.38)

with C = 2
√

π
15 . According to (4.36) the leading angular term for the induced spheroidal mo-

tion is δl,2 and therefore associated azimuth terms are {m = −2, −1, 0, 1, 2} (Ben-Menahem,

1983; Boughn and Kuhn, 1984; Khosroshahi and Sobouti, 1997; Siegel and Roth, 2010; Mag-

giore, 2008). This result comes from the fact that in the general relativity hµν is traceless

and symmetric (Maggiore, 2008). In Fig. 4.2 we show the values of function fm(e, λ, ν)

when ν = 0, since this angle is usually a unknown. The displacement depends on the value

of the scalar h0 which is defined by the gravitational source, the displacement eigenfunction

sk, the source-time function ḡ(t), the function fm(e, λ, ν) defining the incoming GW and a

constant ζk which depends on the Earth model. The three components of the displacement

(4.36) at r are

nsm
2,r = h0 nζ2 nU2 Ylm(θ, φ) fm(e, λ, ν) ℜ{ḡ(t)}, (4.39)

nsm
2,θ = h0 nζ2

1√
6

nV2 ∂θYlm(θ, φ) fm(e, λ, ν) ℜ{ḡ(t)}, (4.40)

nsm
2,φ = h0 nζ2

1√
6

nV2(sin θ)−1 ∂φYlm(θ, φ) fm(e, λ, ν) ℜ{ḡ(t)}, (4.41)
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with

ℜ {ḡ(t)} =
1

2π

(ω2
k − ωkωg − γ2

k) cos ωgt − (γkωg − 2γkωk) sin ωgt

(ω2
k + γ2

k)
[

γ2
k + (ω2

g − ω2
k)

] . (4.42)

We see that the incident angles of the GW {e, λ, µ} determine which normal modes are

being excited. In Table 4.1 we show excited azimuth terms of the radial displacement nsm
2,r

for different combinations of {e, λ, µ} angles.
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Fig 4.2: Function fm(e, λ, ν) depending on e and λ angles when ν = 0 from left to right
and up to down corresponding to azimuth order m = {−2, −1, 0, 1, 2}, respectively.
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Tab 4.1: Excited degree-2 azimuthal terms for different combinations of the {e, λ, µ} angles
defining the incoming gravitational wave.

{e, λ, µ} m

{0, 0, 0}, {0, π
2 , 0} , {0, 0, π

2 }, {0, π
2 , π

2 } -2,2

{π
2 , 0, 0}, {π

2 , 0, π
2 } -2,1,0

{π
2 , 0, 0} , {π

2 , π
2 , 0} , {π

2 , π
2 , π

2 } -2,-1,0

We emphasise that we are primarily interested in the Earth oscillatory motion continu-

ously forced by a GW. We neglect the impulse reponse of the Earth to the initial excitation

by the GW. We also neglect the transient motion that follows the initial excitation and

decays before the oscillatory regime is reached.

4.2.4 Discussion

The relations (4.39)-(4.41) are essentially the same as relations [47]-[49] in Ben-Menahem

(1983). However, differences exist since we used a different definition of spherical harmonics,

different polarization of GW and Green tensor formalism from Dahlen and Tromp (1998).

Next, we derive expression for the right-hand circularly polarized GW, defined as 1
2(e+ −

ie×), since this one was used in Ben-Menahem (1983). Therefore, the polarization tensor

is defined as

ǫb =
1

2
e2iν









(c(e)c(λ) + is(λ))2
−ic(e)c(2λ) + 1

2
(1 + c2(e))s(2λ) −s(e)(c(e)c(λ) + is(λ))

−ic(e)c(2λ) + 1
2
(1 + c2(e))s(2λ) −(c(λ) + ic(e)s(λ))2 is(e)(c(λ) + ic(e)s(λ))

−s(e)(c(e)c(λ) + is(λ)) is(e)(c(λ) + ic(e)s(λ)) s2(e)









,

(4.43)

and corresponds to the polarization tensor of equation [15] in Ben-Menahem (1983). For the

newly defined tensor the function fm(e, λ, ν) from the displacement vector (4.36) becomes

fm
b (e, λ, ν) =

√

π

5
δm,0e2iν sin2 e

+ δm,−1Ce2iν sin e [cos e cos λ + i sin λ]

+ δm,1Ce2iν sin e [cos e sin λ − i cos λ]

+ δm,−2
C

4
e2iν [3 cos 2λ + cos 2e cos 2λ + 4i cos e sin 2λ]

+ δm,2
C

4
e2iν [3 sin 2λ + cos 2e sin 2λ − 4i cos e cos 2λ] ,

(4.44)

with C defined above. The values in Table 4.1 are valid for the relation (4.44) too.

Considering this new expression the radial component of the induced spheroidal quadrupole

response can be written as

nsm
2,r = h0 nζ2 nU2 Ylm(θ, φ) ℜ{fm

b (e, λ, ν)ḡ(t)}. (4.45)
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This expression is compared directly with the equivalent relation [47] from Ben-Menahem

(1983) which is

nur = (−1)m 2√
6

h0nω2
2 ḡn(t)

[

y1n(r)
µ(a)a2(y1n + 3y3n) −

∫ a
0

∂µ
∂r (y1n(r) + 3y3n(r))r2dr

nω2
2

∫ a
0 (y2

1n(r) + 6y2
3n(r))r2dr

]

ℜ{e2iνP2m(cos θ) sin2−m
(

e

2

)

cos2+m
(

e

2

)

eim(φ+λ)}.

(4.46)

We rewrite the radial induced response (4.46) in terms that are comparable to relation

(4.45) as

nur = h0 nαBM83
2 y1n(r) Ylm(θ, φ) ℜ{fm;BM83

b (e, λ, ν)ḡ(t)}, (4.47)

where

nαBM83
2 =

µ(a)a2(y1n + 3y3n) −
∫ a

0
∂µ
∂r (y1n(r) + 3y3n(r))r2dr

∫ a
0 (y2

1n(r) + 6y2
3n(r))r2dr

, (4.48)

and

fm;BM83
b (e, λ, ν) = δm,0

1

2
√

6
e2iν sin2 e

+ δm,2
2√
6

e2iν cos4
(

e

2

)

e2im

+ δm,−2
2√
6

e2iν sin4
(

e

2

)

e−2im

− δm,1
2√
6

e2iν sin

(

e

2

)

cos3
(

e

2

)

eim

− δm,−1
2√
6

e2iν sin3
(

e

2

)

cos

(

e

2

)

e−im.

(4.49)

Therefore, by directly comparing (4.45) and (4.47), we see there are several differences. At

the beginning, it should be emphasised that in these two relations the notations for the

displacement eigenfunction are different, thus we have Uk(r) = y1n(r) and Vk(r) = y3n(r).

Thus, the first difference concerns the model dependent functions (4.49) and (4.37), which

are dissimilar due to the different normalization used for the displacement eigenfunctions

that actually depends on the spherical harmonics normalization. In Dahlen and Tromp

(1998) one uses the orthonormalized spherical harmonics and in Ben-Menahem (1983) the

Schmidt semi-normalized spherical harmonics. The radial eigenfunctions in Dahlen and

Tromp (1998) are orthonormal due to the general orthonormality of displacement eigenfunc-

tions (see page 279 in Dahlen and Tromp (1998)). This is not the case for the formalism in

Ben-Menahem and Singh (1981) and the reader is referred to page 379 for further details.

The second difference concerns the used definition of the spherical harmonics. Beside a

different normalization for the spherical harmonics, we use real spherical harmonics. This

essentially affects the results of the two integrals (4.31) and (4.33). The integrals addi-

tionally generate a third difference and these are dissimilarities between functions (4.44)
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and (4.49), a consequence of the contraction between the polarization tensor and integrals

outputs.

Comparing the solutions from Ben-Menahem (1983) with ours is not completely straight-

forward because we do not use the same formalism. Also, when we rederive the solutions

of Ben-Menahem (1983) we find some inconsistencies that we are going to be describe. In

the following, the equations from Ben-Menahem (1983) are still inserted in square brackets.

Ben-Menahem stated that he derived the induced spheroidal field by using his equations

[28], [35] and [36]. For the sake of comparison we assume that those equations are correct

and we perform the same calculations. Further, we adopt his notation and to distinguish

fm functions derived above from the ones below we change notation to fm by changing the

m from superscript to subscript. Thus, the result is

num2(r, t) = h0ḡn(t)nQ∗
m2(r)n∧−1

m2

8π

5
√

6
fm

[

a2µ(a)(y1n + 3y3n) −
∫ a

0

∂µ

∂r
(y1n + 3y3n)r2dr

]

,

(4.50)

with function fm being

fm =

√
6

4
sin2 (e) e2iνδm,0

+ cos4
(

e

2

)

e2iλe2iνδm,2

+ sin4
(

e

2

)

e−2iλe2iνδm,−2

− 2 sin

(

e

2

)

cos3
(

e

2

)

eiλe2iνδm,1

− 2 sin3
(

e

2

)

cos

(

e

2

)

e−iλe2iνδm,−1.

(4.51)

Substituting the normalization factor defined as

n∧m2 =
4π

5

∫ a

0
(y2

1n + 6y2
3n)ρ(r)r2dr, (4.52)

into (4.50) we arrive at the expression

num2(r, t) =
2√
6

h0ḡn(t)nQ∗
m2(r)fmα̃, (4.53)

where we introduce the abbreviation defined as

α̃ =
a2µ(a)(y1n + 3y3n) −

∫ a
0

∂µ
∂r (y1n + 3y3n)r2dr

∫ a
0 (y2

1n + 6y2
3n)ρ(r)r2dr

. (4.54)

This can be compared with his solution [45]

nuBM
m2 (r, t) = (−1)m 2√

6
h0ḡn(t)α̃ℜ{nQm2(r) sin2−m

(

e

2

)

cos2+m
(

e

2

)

eim(λ+ν)}, (4.55)
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which can be recast as

nuBM
m2 (r, t) =

2√
6

h0ḡn(t)nQm2(r)fBM
m α̃, (4.56)

with the function fBM
m defined by

fBM
m = =

1

4
sin2(e)e2iνδm,0

+ cos4
(

e

2

)

e2iλe2iνδm,2

+ sin4
(

e

2

)

e−2iλe2iνδm,−2

− sin

(

e

2

)

cos3
(

e

2

)

eiλe2iνδm,1

− sin3
(

e

2

)

cos

(

e

2

)

e−iλe2iνδm,−1.

(4.57)

Just by simple comparison of the expressions (4.53) and (4.56) there are two differences:

firstly, Ben-Menahem did not include the complex conjugate for the displacement eigen-

function nQm2(r), even though it exists in the definition given by relation [26]; secondly,

he misplaced the coefficients θm defined in his expression [36], since these are the values

missing in expression (4.57) compared to (4.51).

If we try a different approach and recalculate the induced response [45] using expressions

[42] and [43] obtained by contracting polarization tensor [15] and quadrupole moment tensor

[44] we should obtain the same result [45]. Thus, we have

FS1 =
a2µ(a)y1n −

∫ a
0

∂µ
∂r y1nr2dr

3
∫ a

0 ρ0y3nr3dr
(εε : δDB)

=

(

a2µ(a)y1n −
∫ a

0

∂µ

∂r
y1nr2dr

)

1

3

24π

5
√

6
δl,2

1

2
4

[√
6

4
sin2 ee2iνδm,0

+ cos4
(

e

2

)

e2iλe2iνδm,2

+ sin4
(

e

2

)

e−2iλe2iνδm,−2

+2 sin3
(

e

2

)

cos

(

e

2

)

e−iλe2iνδm,1

−2 sin

(

e

2

)

cos3
(

e

2

)

eiλe2iνδm,−1

]

=
16π

5
√

6
δl,2fBM,2

m (e, λ, ν)

(

a2µ(a)y1n −
∫ a

0

∂µ

∂r
y1nr2dr

)

(4.58)
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with function fBM2
m defined as

fBM2
m (e, λ, ν) =

√
6

4
sin2 ee2iνδm,0

+ cos4
(

e

2

)

e2iλe2iνδm,2

+ sin4
(

e

2

)

e−2iλe2iνδm,−2

+ 2 sin3
(

e

2

)

cos

(

e

2

)

e−iλe2iνδm,1

− 2 sin

(

e

2

)

cos3
(

e

2

)

eiλe2iνδm,−1.

(4.59)

Substituting this in [28] we have

nuBM2
m2 (r, t) =

4√
6

h0ḡn(t)nQm2(r)fBM,2
m α̃. (4.60)

Eventually, we see that this approach also yields some differences. Function (4.59) is more

similar to the relation (4.51) than (4.57). However, the values multiplying the Kronecker

symbols δm,1 and δm,−1 are inverted compared to (4.51) and (4.57). We highly suspect that

the reason for this comes from the definition of the quadrupole moment tensor [44], which

we were not able to reproduce.

Let us now derive the solution of this study using fully normalized complex spherical

harmonics defined as

Ylm(θ, φ) =

√

2l + 1

4π

√

(l − m)!

(l + m)!
Plm(cos θ)eimφ, (4.61)

with the associated Legendre function Plm(x) defined by (3.12). This assumption yields for

the integrals I1 and I2 solutions that are different from our results (4.31) and (4.33). They

are

I1 =
2
√

π

3
δl,0δm,0













1 0 0

0 1 0

0 0 1













+
2

3

√

π

5
δl,2δm,0













−1 0 0

0 −1 0

0 0 2













+

√

2π

15
δl,2













δm,2 + δm,−2 iδm,2 − iδm,−2 −δm,1 − δm,−1

iδm,2 − iδm,−2 −δm,2 − δm,−2 −iδm,1 + −iδm,−1

δm,1 − δm,−1 −iδm,1 − iδm,−1 0













,

(4.62)
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and

I2 = 2

√

π

5
δl,2δm,0













−1 0 0

0 −1 0

0 0 2













+ 3

√

2π

15
δl,2













δm,2 + δm,−2 iδm,2 − iδm,−2 −δm,1 − δm,−1

iδm,2 − iδm,−2 −δm,2 − δm,−2 −iδm,1 + −iδm,−1

δm,1 − δm,−1 −iδm,1 − iδm,−1 0













.

(4.63)

This, finally, gives us a new induced spheroidal response

sCSH
k (r, t) = 2

√

2π

15
h0sk(r)ḡ(t)δl,2fCSH

m (e, λ, ν)αk, (4.64)

with function fCSH
m (e, λ, ν) defined as

fCSH
m (e, λ, ν) =

√
6

4
sin2 ee2iνδm,0

+ cos4
(

e

2

)

e2iλe2iνδm,2

+ sin4
(

e

2

)

e−2iλe2iνδm,−2

+ 2 sin

(

e

2

)

cos3
(

e

2

)

eiλe2iνδm,1.

+ 2 sin3
(

e

2

)

cos

(

e

2

)

e−iλe2iνδm,−1,

(4.65)

where CSH stand for complex spherical harmonic and αk for the model dependent function

(4.37). We repeat the same calculation just with the spherical harmonics defined as

Ỹlm = (−1)m

√

2l + 1

4π
Ylm (4.66)

which gives us

Ỹlm =

(

2l + 1

4π

)

√

(l − m)!

(l + m)!
P̃lm(cos θ)eimφ, (4.67)

where for the associated Legendre function P̃lm(x) the valid relation is

Plm(x) = (−1)mP̃lm(x). (4.68)

This definition of spherical harmonics corresponds to the one in Ben-Menahem and Singh

(1981) that is presumably used in Ben-Menahem (1983). The induced spheroidal response

becomes

sCSH2
k (r, t) =

2√
6

h0sk(r)ḡ(t)δl,2f̃CSH2
m (e, λ, ν)αk, (4.69)
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with

f̃CSH2
m (e, λ, ν) =

√
6

4
sin2 ee2iνδm,0

+ cos4
(

e

2

)

e2iλe2iνδm,2

+ sin4
(

e

2

)

e−2iλe2iνδm,−2

− 2 sin

(

e

2

)

cos3
(

e

2

)

eiλe2iνδm,1.

− 2 sin3
(

e

2

)

cos

(

e

2

)

e−iλe2iνδm,−1.

(4.70)

Therefore, one can use the transformation (4.66) between two definitions of spherical har-

monics to obtain similar but not the same relations. With this transformation we arrive

at the same expression for (4.51) and (4.70), while relation (4.69) still has some differences

compared to relation (4.53). These dissimilarities concern how we define the displacement

eigenfunctions and what normalization we use for the radial eigenfunctions. One of the

differences concerns the definition of the Green tensor. We use a formalism where the defi-

nition of the Green tensor depends on the Earth model (see page 231 in Dahlen and Tromp

(1998)). In Ben-Menahem and Singh (1981) those differences are not explicitly emphasized.

In Ben-Menahem (1983) stated that he developed the displacement for radially heteroge-

neous, anelastic self-gravitating, rotating Earth models and thus he used the Green tensor

defined by relation [25], depending on the real radial eigenfunctions and complex spherical

harmonics. Additionally, his displacement eigenfunction at the receiver is complex conju-

gate. For the same Earth model we would use Green tensors containing complex radial

eigenfunction and complex spherical harmonics (Dahlen and Tromp, 1998). Moreover, the

displacement eigenfunction at the source would be dual. However, this could be simplified:

anelasticity is ignored, therefore the radial eigenfunctions become real and the displace-

ment eigenfunctions at the source become complex conjugate. At the end, we would have

complex conjugate displacement eigenfunction at source unlike Ben-Menahem. Thus, if we

follow our formalism for radially heterogeneous, anelastic self-gravitating, rotating Earth

model we would derive integrals (4.62) and (4.63) for complex conjugate fully normalized

spherical harmonic. In Tab. 4.2 we compare the functions that would be used in these two

studies to derive displacement for radially heterogeneous, anelastic self-gravitating, rotating

Earth model. The final solution highly depends on the spherical harmonic normalization,

therefore on the normalization of radial eigenfunctions, on the definition of Green tensors

and on the definition of the displacement eigenfunctions.
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Tab 4.2: List of functions (spherical harmonics, associated Legendre functions, Green ten-
sors, displacement eigenfunctions, normalization of displacement eigenfunctions, respec-
tively) that are used to develop displacement for radially heterogeneous, anelastic self-
gravitating, rotating Earth model for Ben-Menahem (1983) and Dahlen & Tromp (1998)

formalism. Constants are Ωlm = 4π
2l+1

(l−m)!
(l+m)! and κ =

√

(l(l + 1)). Normalization of the dis-

placement eigenfunction for Dahlen & Tromp (1998) is written for spherical non-rotating
elastically isotropic Earth model, since the rotation is treated as a perturbation.

Ben-Menahem (1983) This study

Ylm(θ, φ) =

√

(l−m)!
(l+m)!

Plm(cos θ)eimφ Ylm(θ, φ) =
√

2l+1
4π

√

(l−m)!
(l+m)!

Plm(cos θ)eimφ

Plm(cos θ) = 1
2ll!

(1 − cos2 θ)m/2 dl+m

d cos θ[l+m] (cos2 θ − 1)l Plm(cos θ) =
(−1)m

2ll!
(1 − cos2 θ)m/2 dl+m

d cos θ[l+m] (cos2 θ − 1)l

Gk(r, r′; t) = Q∗
k(r)Qk(r′)ḡ(t)∧k Gk(r, r′; t) = (iνk)−1sk(r)s∗

k(r′)eiνkt

Qk(r) = y1n(r)êrYlm(θ, φ) + y3n(r)∇1Ylm(θ, φ) sk(r) = Uk(r)êrYlm(θ, φ) + κ−1Vk(r)∇1Ylm(θ, φ)
∫

V
Qk(r)Q∗

k(r)(r)ρ0(r)dV = ΩmlI
S
n

∫

⊗
ρ0sk · s′

kdV = δkk′

IS
n =

∫ a

0
(y2

1n + l(l + 1)y2
3n)ρ(r)r2dr -

To further compare the solution revisited in this study with Ben-Menahem (1983), we

will estimate the values of three components of the displacement from (4.39) to (4.41)

with the function fm(e, λ, ν) defined as (4.44). We focus on the 0S2 normal mode and the

monochromatic source at the resonance frequency ωg = ωk with the sensor position at the

equator, i.e. at {θ = π
2 , φ = π

2 }, and source angles {e = π
2 , λ = 0, ν = 0}, which gives

fm
b (e, λ, ν) =

√

π

5
δm,0 − i2

√

π

15
δm,1 +

√

π

15
δm,−2. (4.71)

The eigenfunctions and eigenfrequencies for a spherically symmetric, non-rotating Earth

model are calculated for a transversely isotropic PREM model (Dziewonski and Anderson,

1981), modified for the oceanless case, using MINEOS software package (Woodhouse, 1988;

Masters et al., 2011). These calculations are later used for obtaining the constant value ζ̂k

given by (4.37). Further, we consider that an idealized accelerometer responds to the pertur-

bation in gravitational potential and free-air change in the gravity in addition to the particle

acceleration. These corrections are accounted for by replacing the PREM eigenfuntions Uk,

Vk by Ūk = Uk + ω−2
k 2a−1gUk + (l + 1)ω−2

k a−1Pk and V̄k = Vk − κω−2
k a−1gUk − κω−2a−1Pk,

where Pk is the gravitational potential (Ashby and Dreitlein, 1975; Boughn and Kuhn, 1984;

Dahlen and Tromp, 1998; Coughlin and Harms, 2014b) and g the gravity at the surface.

Thus, we have

0Ū2 = 0U2 + (0ω2)−22a−1g 0U2 + 3(0ω2)−2a−1
0P2 (4.72)

0V̄2 = 0V2 −
√

6(0ω2)−2a−1g 0U2 −
√

6(0ω2)−2a−1
0P2 (4.73)

0s2,r =
∑

m
0s2,r

m = h0 0α2 0Ū2

∑

m

Y2m(θ, φ) ℜ{fm
b (e, λ, ν)ḡ(t)}

= − 1

4π
h0 0α2 0Ū2

0ω2 sin 0ω2t − 0γ2 cos 0ω2t

0γ2(0ω 2
2 + 0γ 2

2 )
,

(4.74)
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0s2,θ =
∑

m
0s2,θ

m = − 1

π2
√

6
h0 0α2 0V̄2

0γ2 sin 0ω2t + 0ω2 cos 0ω2t

0γ2(0ω 2
2 + 0γ 2

2 )
, (4.75)

0s2,φ =
∑

m
0s2,φ

m = 0. (4.76)

Using the values from Table 4.3 we calculate the radial and tangential displacements (4.74)

and (4.75) depending on the GW source amplitude h0 and for t = 0. The values are then

multiplied by the radius of the Earth (a =6371 km) to account for the normalization and

by 109 to convert from meters to nanometers, thus we have

0s2,r ≈ 6.9 · 1013h0 nm ≈ 6.9 · 10−8 nm,

0s2,θ ≈ 2.5 · 1016h0 nm ≈ 2.5 · 10−5 nm.
(4.77)

Further, we can calculate the acceleration by multiplying by 0ω 2
2

0a2,r ≈ 2.6 · 108h0 nm/s2 ≈ 2.6 · 10−13 nm/s2,

0a2,θ ≈ 9.6 · 1010h0 nm/s2 ≈ 9.6 · 10−11 nm/s2.
(4.78)

where we set h0 = 10−21 for the representation purpose only, since this was the strain value

obtained at the recent first observation of GW (Abbott et al., 2016). However, in the mHz

frequency band we expect to have different strain values for the binary black hole mergers.

Tab 4.3: MINEOS normalized values of the eigenfunctions U, V, P at the Earth surface
r = a, frequency ω, quality factor Q for 0S2 and gravity value at the surface g. Used
normalization for length is R = 6371 km, time 1

πGρa
and mass ρaR3, where G = 6.67408 ·

10−11 m3kg−1s−2 is the gravitational constant and ρa = 5515.0 kgm−3 is the average density.

U(a) V (a) P (a) ζ ω Q g a

1.329 0.030 -0.847 0.273 1.807 509.648 1.333 1

For the same mode, Ben-Menahem’s calculations in Ben-Menahem (1983) consisted of

the same set of source angles, but with the sensor position at {θ = 0, φ = 0}. Further,

for the resonance and h0 = 10−21 he found that the values for the horizontal displacement

may reach the level of 0s2,θ,0 s2,φ ≈ 10−8 cm = 0.1 nm, which gives 0a2,θ,0 a2,φ ≈ 3.6 ·
10−7 nm/s2, four orders of magnitude bigger than estimated in this study. However, this

result should not be directly compared to our estimate because we do not use the same

source type and therefore not the same source-time function. Ben-Menahem used a finite

monochromatic wave source whereas we use an infinite monochromatic wave source. Only

by considering a different source-time function there is already a difference of four orders of

magnitude. Additionally, our source-time function definition for an infinite monochromatic

source definition differs from the one in Ben-Menahem (1983), because our definition of the

Green tensors differs. We also checked Ben-Menahem’s calculations by using his equations
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and approximations. For an infinite monochromatic source we obtain 0uθ = 1.6 · 10−6 nm

and 0aθ = 1.4 · 10−13 nm/s2, one order of magnitude smaller than our estimate. We believe

that this order of magnitude difference still comes from a different definition of the source-

time functions. Also, a significant difference is that in Ben-Menahem (1983) calculations

are done for Jeffreys-Bullen and Gutenberg-Bullard Earth models (Ben-Menahem et al.,

1971), whereas we use the PREM model.

When one talks about the signal detection at the Earth surface one should consider two

factors, the first one is the instrument precision and stability and the other is the environ-

mental noise level (Rosat and Hinderer, 2018). Only by combining all these information

together with the possible detection threshold we can resolve the estimation of elusive

signals, like GW signals. The minimal envelope of the environmental seismic noise may

be represented by the widely used New Low Noise Model (NLNM) (Peterson, 1993). This

model was developed empirically by taking the lowest noise levels recorded on the ≈ 10-day-

long vertical components at 75 stations, after all earthquakes and transients were removed.

The NLNM corresponds then to the lower envelope of power spectral densities (PSDs) cal-

culated for all available seismometers. To answer a question how large the monochromatic

signal needs to be to be detectable when embedded in the noise, we need to obtain a rough

estimate of the noise standard deviation that represents the seismic background noise. This

values is obtained from the PSD defined with NLNM. The PSD is frequency dependent and

to define noise standard deviation from the PSD we can use the definition

σ2 =

∫ f+∆f/2

f−∆f/2
P (f)df, (4.79)

where σ2 is variance of the signal in the frequency band ∆f and P (f) is frequency dependent

PSD. Thus, if we integrate PSD over the frequency band of interest we can obtain the

variance of the signal in that band. Therefore, if the PSD is constant near the frequency f

we obtain

σ2 = P (f)∆f. (4.80)

Therefore, the variance of the signal in question depends on the frequency band-width.

There is no exact answer what is the band-width of the target signal. In the case of the

0S2 mode we can either take the splitting width which is ∆f = 20 µHz or the width of

the individual singlet broaden due to its Q-factor which would be ∆f = 5 µHz. Since the

NLNM is flat in the mHz band around 0S2 frequency we set P (f) = −151.88 dB and this

gives us

σNLNM =

√

10− −151.88
10

√

∆f. (4.81)
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Considering (4.81) we can calculate the noise standard deviations when frequency band-

width is define for entire multiplet or one singlet, presented in Tab. 4.4.

Tab 4.4: Estimate of the noise standard deviations for the frequency band-width of entire
multiplet and one singlet for 0S2 mode and the fixed PSD value of the NLNM.

∆f σNLNM

multiplet 20 µHz 1.1390 ·10−10

singlet 5 µHz 5.6949 ·10−11

With the PSD of the white noise defined as PSDnoise = σ2T0 (where σ is noise standard

deviation and T0 is sampling interval) and the PSD of undamped harmonic signal defined

as PSDsignal = A2NT0
4 (where N is number of data points, A is amplitude of the signal),

our signal amplitude needs to satisfy the relation A > 2σ√
N

to be visible in the noisy data.

Thus, to detect the radial component (4.78) buried in the noisy time series with standard

deviations defined as in Tab. 4.4, one would need either L = N∆t >
(

2σNLNM

0a2,r

)2
∆t >

1.46 · 1018 years (multiplet band-width) or 3.65 · 1017 (singlet band-width) years, if we

set δt = 60 s. One can look at this differently and say that for this particular noise

standard deviation and 10 years of recorded data and ∆t = 60 s (thus N = 5256000), one

would need the GW amplitude signal to be larger than either h0 > 2σNLNM

a0

√
N

> 3.8 · 10−13

(multiplet band-width) or h0 ≈ 1.9 · 10−13 (singlet band-width) to be detected on Earth,

where 0a2,r = a0h0 = 0.26h0 m/s2. These estimates are indicating how difficult is to

measure the GW induced signal on Earth.
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Fig 4.3: Comparison in terms of power spectral densities between NLNM model, observed
acceleration signal at the BFO (Germany) station and synthetic noisy signals (4.74) obtained
by stacking 209 stations for 0S2 and m=-2. Dark grey signal is obtained for h0 = 10−21 and
with the standard deviation of injected white noise adjusted to allow for the signal to emerge
from the noise. It was achieved with the rms value of NLNM model for frequency band-
width 20 µHz (see Tab. 4.4), but reduced by seven orders of magnitude. Light grey signal
is obtained for the level of the noise set to match rms value of NLNM model. The value of
h0 is increased until the signal emerges from the noise. That is achieved for h0 = 10−14.

In Fig. 4.3 we show the PSD of the signal (4.74) obtained by stacking 209 synthetic res-

onances computed at stations from seismometer and superconducting gravimeter networks

for 0S2 and m = −2. Signal at each station depends on the station colatitude and longitude,

GW amplitude which is set to h0 = 10−21 and is obtained for 19 days with ∆t = 60 s. The

noise level is primarily set to the value estimated above, σNLNM = 1.1390 · 10−10m/s2.

Since, this high noise level completely prevails the signal, we start reducing the noise till

our signal emerges from the noise. In the mentioned configuration the emerged signal is

reached with σNLNM = 3.6018 ·10−18m/s2, seven orders of magnitude smaller than the first

set. The stacking was performed with the optimal sequence estimation (Ding and Shen,

2013a), based on the assumption that displacement on the Earth’s surface is decomposed in

spherical harmonics. On the same figure we plot the PSD value for the NLNM model and

PSD for the Black Forest Observatory station, the quietest station (Rosat and Hinderer,

2011). It is clear that the GW signal is far below the detection level, which is already stated

in the paragraph above. In the next example, showed on the same figure, we calculate the

stacked signal with the noise standard deviation σNLNM = 1.1390 · 10−10m/s2, and we
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increase GW source amplitude h0 until the signal emerges from the noise. This is finally

reached with h0 = 10−14 for 19 day long signals. This estimate achieved by stacking a

large number of time-series is one order of magnitude smaller than the one estimated in the

previous paragraph. However this is still 4 orders of magnitude bigger than the expected

GW source amplitudes in the mHz band (≈ 10−18) for possible astrophysical sources (Moore

et al., 2015). It should be noted that this estimates could be improved by considering longer

time series. This is because the induced displacement is the forced solution, therefore by

following the signal for longer than 19 days we would have better detection.

Besides NLNM, there is a more recent noise model proposed by Berger et al. (2004)

(further BLNM), where 118 Global Seismograph Network stations were analyzed in the

duration of one year. The analysis was performed on vertical and horizontal components

and data were not scrutinized for earthquakes and transients or any other variation. As such,

the envelope of the first percentile of the empirical distribution for all station and channels

is lower than NLNM for frequencies < 2.5 Hz. The noise standard deviation for BLNM

with sampling period of 10 s and vertical component is σBLNM = 6.92 · 10−10m/s2 (-173.2

dB). The conclusion above is similar, since the improvement by one order of magnitude for

σNLNM , is not significantly sufficient. For horizontal displacement the standard deviation

for T0 = 10 s is one order smaller, being σBLNM = 6.10 · 10−9m/s2 (-154.3 dB). This means

that for 10 years one would need GW amplitude to be larger than h0 > 10−13 to be detected

on Earth. There are two more noise models, one proposed by McNamara and Buland (2004)

and the other by Castellaro and Mulargia (2012), however they do not consider the lowest

normal mode frequency band and therefore they could not be considered in this study.

From his flat-Earth model filled with a uniform isotropic elastic medium in the 1-Hz

frequency band Dyson (1969) calculated the horizontal displacement for a horizontally in-

cident GW to be 2 · 10−17 cm = 2 · 10−10 nm, which was the same result derived by Weber

(1968) and Dozmorov (1976b). This value is five orders of magnitude smaller than ours,

which is not surprising since Dyson pointed out that his estimation might be pessimistic

because this estimate involved several assumptions that could be wrong by several orders of

magnitude, such as the type of source, the absence of the reflection or the resonance effects

in the seismic response. Recalculating Dyson’s values, De Sabbata et al. (1970) arrived

at 1.4 · 10−12 cm = 1.4 · 10−5 nm for the peak displacement, just by considering different

values for the incoming GW flux and Q-factor, and these values are already comparable

with (4.77). Several studies search for seismic signals at pulsar frequencies but without

success (Wiggins and Press, 1969; Sadeh and Meidav, 1972; Mast et al., 1974). General

conclusions were that the detection of such small signals is limited by Earth intrinsic noise

and the short data series (Rundeko, 1994).
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Many studies also provided the upper limits on the characteristic strain, the spectral

energy density or dimensionless energy density of the GW stochastic backgrounds or GW

burst (Forward et al., 1961; Weber, 1967; Zimmerman and Hellings, 1980; Boughn and

Kuhn, 1984; Kravchuk et al., 1995). The level of the stochastic gravitational radiation

is conventionally expressed as the energy density relative to the critical energy density,

that is the energy density per logarithmic frequency interval, or as a characteristic rms

strain (Maggiore, 2008). The most recent relevant estimation of the upper limit in the

mHz band used an analytical solution of the Earth’s normal modes for PREM model to

calibrate normal mode amplitudes into GW strain data (Coughlin and Harms, 2014b). They

estimated the upper limit of the GW energy density in the 0.035 - 0.15 Hz frequency band,

normalized by the critical energy density of the Universe, to be between ΩGW(0S2) = 0.039

to ΩGW(13S2) = 0.12. These values translated into strain amplitude spectral density lie

between hGW (0S2) = 2.2 · 10−14Hz1/2 to hGW (13S2) = 6.2 · 10−16Hz1/2. The authors stated

this is still by a large amount above the predicted levels of the GW background from the

cosmological models.

In our example above we focus on the resonance effect between GW and only one normal

mode 0S2 by setting ωg =0 ω2, however our results show that all the normal modes with

the angular order l = 2 should be excited by the GW. To understand the relationship

between the resonance effect between different modes we calculate the resonance response

for hundred normal modes (n = 0, ..., 99) of angular order l = 2 (1 fundamental mode and 99

harmonics). The result, shown in Fig. 4.4, is calculated at the BFO station (43.33◦, 8.33◦)

for 30 day long time series with a constant h0 set to 1 (for better visual clarity). We can

see that some modes have higher resonance amplitudes than others, which makes them

better candidates for the detection. To calculate the response of the Earth to the GW more

precisely, one should consider the off-resonance modes as well. That is, the full excitation

response should consider the sum of the resonance and the off-resonance normal modes

(Boughn and Kuhn, 1984). It is expected that during the resonance between GW and a

normal mode, the contribution of the mode in resonance is the largest contribution (due to

the source-time function). However, this is true for the low frequencies modes, while the

largest contribution for the high frequency modes is not necessarily coming from the mode

in the resonance (Boughn and Kuhn, 1984). To demonstrate a relation between resonance

and the off-resonance effect we plot in Fig. 4.5 the absolute amplitude values versus the

radial order n. Each row on the y-axis represents the radial order for which the resonance

was calculated, therefore ωg =n ω2, and each column on the x-axis represents the absolute

amplitude value of the radial order in the off-resonance regime. What we would expect is to

have the largest value in the diagonal of this square, which would indicate that the largest
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contribution comes form the mode in resonance. For example, from the figure, we can

conclude that the first row on the y-axis stands for the values when ωg =0 ω2 and in that

case the largest contribution comes from 0S2. Unlike the case before, for the row six on the

y-axis, the largest contribution comes from column n = 7 on the x-axis and not n = 6, what

is expected. This tells us that the prevailing factor in the amplitude is not the resonant

frequency anymore, but other factors such as nζk. For the reference we plot the values of

nQ2-factors, nU2 eigenfunctions and nζ2 functions for all considered radial orders in Fig. 4.6.

In the case considered above, since the factor defined by the resonance is order of 10−2 for

6S2 and 10−3 for 7S2 the prevailing factor becomes the product of two values nζ2nU2 that

are 0.008 and 2.295, respectively. Therefore when calculating the response of the Earth

to the incoming GW it is more correct to include both the resonance and off-resonance

effects. In reality it is hardly possible that the GW would have the exact frequency of the

normal mode, consequently the full off-resonance effect should be considered. Thenceforth,

the response should definitely consists of the sum of the normal modes closest to the GW

frequency as well as other modes.

Fig 4.4: Resonance excitation of the Earth’s normal modes due to monochromatic GW
passing through Earth. Each frequency spike represent a resonance for a different radial
order of a quadrupole mode. The light grey lines represent the normal mode frequency as
a function of the radial order n indicated above the figure.
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Fig 4.5: Absolute amplitude values for resonance and off-resonance modes. Each row on y-
axis labelled by n represents the radial order of nS2 mode in resonance, for which ωg =0 ω2,
while each column on x-axis also labelled by n represents modes that are in the off-resonance
regime. Each row is normalized with the largest value in that row. The black color represent
the normal mode with the largest contribution.
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Fig 4.6: Values for nQ2-factors (up), nU2(r = a) eigenfucntions at the free surface (middle)
and nζ2 functions (bottom) for n = 0, ..., 99 radial orders and l = 2.

Theoretically, Earth resembles a spherical resonant-mass detector. It is argued that

performances of the spherical resonant-mass detectors could improve the detection of GWs

as compared to the resonant bars (Zhou and Michelson, 1995; Lobo, 1995; Maggiore, 2008).

Firstly, due to their bigger mass they have a larger cross section for the absorption of GWs

and hence a better sensitivity. Secondly, a sphere does not have a preferable orientation

and offers a full sky coverage, unlike other detectors which have blind directions. Thirdly,
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using the information about the excited quadrupolar modes it is possible to reconstruct the

arrival direction and polarization of GW. Weber (1967) gave an estimate of the Earth cross

section to be 104 m2. Ruffini and Wheeler (1971) estimated the resonance integral of the

absorption cross section for radiation incident from random directions and with random

polarizations for a fluid globe model. This globe, held in a shape of a sphere by only

gravitational forces, has a uniform density with an average value of 5.517 g/cm3 and thus

the quadrupole vibration period of 94 min. To roughly estimate the resonance integral for

the Earth model with a quadrupolar vibration period of 54 min, they adjusted the moment

tensor for the two models and arrived to an absorption cross section value of 4.7 cm2 Hz. By

comparison, the cross-section of the spherical resonant-mass detector, with the diameter of

3.2 m, mass of 4.6 ·104 kg and frequency of 840 Hz, has a resonance absorption cross section

of 8.7 · 10−20 cm2 Hz (Zhou and Michelson, 1995), which is much smaller than the Earth’s

cross-section. Furthermore, all spherical resonant-mass detectors have relatively small sizes

and thus are suitable for the exploration of high frequencies regions, unlike Earth where we

could explore the mHz frequency band.

The detection of elusive signals, such as GW, is a problem consisting of several parts. It

depends on the instrument precision, the ubiquitous environmental noise, the modeling of

the signal we want to find and techniques performed for the search. Considering the specific

problem in this study, that is detecting the GWs using the resonance effect between GWs

and the normal modes of Earth in the gravimetric and seismic data, not all categories afore-

mentioned have been fully scrutinized. What we know, from the geophysical perspective, is

that the instruments with the best sensitivity in the 0.3 - 1 mHz band are superconducting

gravimeters (Widmer-Schnidrig, 2003; Rosat and Hinderer, 2011), whose nominal sensitiv-

ity is generally referred to as 1 nGal= 10−11m/s2 (Hinderer et al., 2007). Also, it has been

shown that instrumental self-noise is not the main issue in the detection threshold, but

the environmental noise and many geophysical processes, such as seismic, atmospheric and

tidal perturbations, that have not been reduced from gravimetric and seismic data (Rosat

and Hinderer, 2018). This problem is substantial and complex, since it is more difficult to

control and model unknown geophysical processes than to just compensate them, such as

in the case of the laser interferometrical free mass antenna procedure. For this purpose it

would be really interesting to use seismic noise compensation in the laser interferometry for

the study of geophysical processes that produce it (Rundeko, 1994). Therefore, it is only

reasonable to claim that to this day we are still only able to measure existing geophysical

effects and estimate a new upper limit on the GW. One recent study (Mulargia and Kamen-

shchik, 2016) supported the idea of the whole Earth as a detector of the GW by utilizing

the network of thousand of seismometers as a single gravitational antenna. They showed
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that in the frequency range 0.1-10 Hz it is possible to resolve absolute strains h / 10−17 on

burst gravitational pulses and h / 10−21 on periodic signals. However this does not comply

with theoretical predictions for the cosmic gravitational radiations.

4.2.5 Conclusion

In this section we revisited the theoretical equations describing the interaction between

Earth and GWs of astrophysical origin. This modeling is roughly based on several hy-

potheses. Firstly, GWs are monochromatic waves described by a source scalar value, a

polarization tensor and a propagating vector. Secondly, the Earth is a non-rotating and

anelastic body. Thirdly, the set-up is in the Earth’s reference system. Fourthly, GWs are

considered as a trigger of the Earth’s normal modes, therefore they are represented as a

force term in the Green tensor formalism. The derivation and analysis have shown that

due to the fact that the GW tensor hµν is traceless and symmetric the only normal modes

that couple with the GW are the ones with the degree l = 2. Also, the spheroidal in-

duced displacement depends on the source scalar value h0, the displacement eigenfunction

sk and a constant ζk, both depending on the Earth model, the source-time function ḡ(t)

and the three angles function fm(e, λ, ν) defining the incoming GW in the Earth reference

system. Specific configuration of the GW angles fm(e, λ, ν) triggers specific singlets within

the nS2 multiplet, and thus having information about individual singlets is giving us in-

formation about the position of the GW source in the sky. Considering the comparison

between the resonant and off-resonant modes of low and high frequencies, it is shown that

the low-frequency resonant modes have a larger response than the high-frequency modes

and clearly the contributions of the low-frequency modes could be used exclusively in the

computation of the induced displacement. However, it seems more reasonable to always

consider the sum of all off-resonant modes near the frequency of the incoming GW to have

a more representative solution.

Considering the measurements of the gravitationaly triggered normal modes, published

values and the one in this study, show us that we are still obscured by the seismic noise of

the geophysical origin. Even though instruments with appropriate sensitivity may exist, en-

vironmental noise will be a limiting factor. With the new era approaching new instruments

of low-frequency sensitivity are developed, among others superconducting gravity gradiome-

ters (SGG) (Griggs et al., 2017) and atom interferometers (Geiger et al., 2015; Canuel et al.,

2018). These instruments have promising standpoint with improved sensitivities over their

predecessors. However, the problem of the unknown geophysical processes present in data

still remains.
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The represented modeled interaction between Earth and GWs is restrained by some

basic assumption and can be improved. Those upgrades concern the fact that if we want

to scrutinize more realistic GW sources we should not be restrained by the Earth reference

system. Therefore, in the next section we study the transformation from the celestial

reference systems to the terrestrial reference system and how this is affecting our final

induced spheroidal displacement. This introduces some effects that we have ignored, like

Earth’s rotation and its associated effects, which may become important.

4.3 Celestial Reference System and Anelastic, Rotating Earth
Model

In this section we develop a new model of the interaction between GWs and Earth in

terms of the normal modes. The analytical model is developed for a radially heterogeneous

elliptical rotating model. For the GW sources we consider the double white-dwarf binary

stars, therefore our source is now defined in the celestial reference system. Using The

rotating Earth model implies considering the splitting of and coupling between multiplets

that constitute the induced displacement. This section is organized as follows: firstly, we

develop the rotating matrix that translates the source from the celestial reference system to

the terrestrial reference system, secondly, we define the metric perturbation of the binary

star system; thirdly, we define a Green tensor for a rotating, anelastic Earth that is going to

use to develop the induced response; fourthly, we developed the induced spheroidal response

due to incoming GWs from the double white-dwarf binary stars; fifth, we discuss the newly

developed analytical model.

4.3.1 Rotation matrix from Celestial to Terrestrial Reference System

The equatorial coordinate system or the celestial coordinate system is a reference frame

widely used to specify position of the celestial objects. The source location in the equatorial

system is specified in terms of its right ascension α and declination δ angles. By specifying

these two angles we define k̂. To assign a reference basis to each sky position, additionally

we define vectors î and ĵ. We can require that î is parallel to the celestial equator, i.e.

perpendicular to the direction of the Earth’s axis. We choose î to point in the direction

of decreasing right ascension, so that the third vector ĵ = k̂ × î points into the Northern

Celestial Pole (Fig. 4.7).

57



E
S

CNP

CSP

k

j

i
Celestial

equator

CNP

CSP

k

j

i

Fig 4.7: Celestial reference system where CNP stands for Celestial Northern Pole and CSP
for Celestial Southern Pole. On left, E stands for Earth and S for star system. The right
ascension α and declination δ angles are marked, together with three vectors k̂, î, ĵ that
form the orthogonal basis in the celestial reference system. On right, the same orthogonal
basis in side view. The vector k̂ points from a star system to the center of the celestial
reference system, î is parallel to the celestial equator and point in the direction of decreasing
right ascension.

Using the unit vectors î and ĵ we can construct a reference polarization basis for the

traceless symmetric tensors that are transverse to k̂:

ε+ = î̂iT − ĵĵT,

ε× = îĵT + îĵT.
(4.82)

Vectors l̂ and m̂ that we used to define polarization tensors in Section 4.1 lie in the same

plane as î and ĵ vectors. The reference basis is positioned relative to the natural basis using

the angle between î and l̂, measured counter-clockwise around k̂ (see Fig. 4.8), therefore

we have
l̂ = î cos ψ + ĵ sin ψ,

m̂ = −î sin ψ + ĵ cos ψ.
(4.83)
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Fig 4.8: Rotation of the natural polarization unit vectors l̂ and m̂ respect to the reference
polarization unit vectors î and ĵ via (4.83). The polarization angle ψ is measured from î

to l̂, counter-clockwise around k̂. (From Whelan (2013)).

We can substitute (4.83) into (4.6) to get e+ and e× in terms of ε+ and ε×

e+ = ε+ cos 2ψ + ε× sin 2ψ,

e× = −ε+ sin 2ψ + ε× cos 2ψ.
(4.84)

This shows that we need three angles to associate particular source to the polarization basis:

the right ascension angle α and the declination angle δ, for the sky position and to define

the propagation vector k̂, and an additional polarization angle ψ to define orientation of

the basis {e+, e×} relative to some reference basis {ε+, ε×}.

Since measurement in this study are performed on Earth, the reference basis needs to

be expressed in the terrestrial reference system. A convenient basis for this is the one fixed

to the Earth system: the unit vector ê∗
3 points parallel to the Earth’s axis, from the center

of the Earth to the North Pole; the unit vector ê∗
1 points from the center of the Earth

to the point on the equator with 0◦ latitude and longitude. The remaining unit vector

ê∗
2 = ê∗

3 × ê∗
1 point from the center of the Earth to the point on the equator with latitude 0◦

and longitude 90◦E. Next to this basis we need inertial basis with respect to the fixed stars:

ê3 points to the Celestial North Pole (which means ê∗
3 = ê3); the unit vector ê1 points to

the point with the declination δ = 0◦ and the right ascension α = 0hr, i.e. the intersection

of the ecliptic with the celestial equator known as the Vernal (March) Equinox; the third

unit vector ê2 = ê3 × ê1 thus points to the point with δ = 0◦ and right ascension α = 6hr

(Whelan, 2013).
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Fig 4.9: Relationship between the Earth-fixed system {ê∗
1, ê∗

2, ê∗
3} and the inertial system

{ê1, ê2, ê3} where ê∗
3 = ê3. Angle γ between these two systems is Greenwich Sidereal Time.

Vector êq is the projection of the vector k̂ into the equatorial plane. (From Whelan (2013)).

The relationship between {ê∗
1, ê∗

2, ê∗
3} and {ê1, ê2, ê3} is shown in Fig. 4.9. The rela-

tionship is defined by angle γ which corresponds to Sidereal Time. This angle increases

by 24 hours, i.e. 360◦ = 2π, every sidereal day of approximately 23 hours and 56 minutes.

As the Earth rotates the starred unit vectors rotate in regards to the unstarred vectors.

Vectors ê∗
1 and ê1 coincide when the Sidereal Time at Greenwich is midnight. Therefore,

we define angle γ to be the Greenwich Sidereal Time (GST) which is the angle from ê1 to

ê∗
1 measured counterclockwise around ê∗

3. Therefore we have

ê∗
1 = ê1 cos γ + ê2 sin γ,

ê∗
2 = −ê1 sin γ + ê2 cos γ.

(4.85)

To get the metric perturbation for an arbitrary sky point, we need to calculate compo-

nents of î, ĵ and k̂ in a basis with given α and δ angles. We can then find l̂ and m̂ vectors

for given ψ angle and using the reference matrices ε+,× obtain the natural polarization

matrices e+,×. The plane containing ê3 and k̂ is shown in Fig. 4.10. By projecting vector

k̂ to the equatorial plane we can define unit vector êq from the observer to the source -

pointing towards the point on the Celestial Equator with right ascension α, which also lies

in the same plane. Since δ is the angle measured from the Celestial equator to the sky

position of the source we can define

k̂ = −êq cos δ − ê3 sin δ. (4.86)
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Fig 4.10: Projection of the unit vector k̂ into the equatorial plane represented by the vector
êq. This vector point to the Celestial Equator with the right ascension α, while vector ê3

points to Celestial North Pole. (From Whelan (2013)).

To get the components of êq in the equatorial basis we look at the equatorial plane in

Fig. 4.8. The right ascension α is the angle from the Vernal Equinox (ê1) to the source

point in the sky, therefore

êq = ê1 cos α + ê2 sin α, (4.87)

and thus

k̂ = −ê1 cos δ cos α − ê2 cos δ sin α − ê3 sin δ. (4.88)

The components along ê1, ê2 and ê3 will be constant for a given source. To get the

components along the starred unit vectors, we just need to note that angle from ê∗
1 to êq

is α − γ. In terms of the starred basis we have

ê∗
q = ê∗

1 cos(α − γ) + ê∗
2 sin(α − γ) (4.89)

and thus

k̂ = − cos δ cos(α − γ)ê∗
1 − cos δ sin(α − γ)ê∗

2 − sin δê∗
3. (4.90)

To define the complementary and orthogonal vectors î and ĵ, as well as l̂ and m̂ vectors, we

should consider the equatorial plane as shown in Fig. 4.11. The unit vector î is parallel to

the Celestial Equator and points in the direction of decreasing right ascension. Therefore,

we have

î = sin(α − γ)ê∗

1 − cos(α − γ)ê∗

2. (4.91)

The last, the unit vector ĵ is

ĵ = − cos(α − γ) sin δê∗

1 − sin(α − γ) sin δê∗

2 + cos δê∗

3. (4.92)
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Fig 4.11: Equatorial plane viewed from the top where the unit vectors {ê∗
1, ê∗

2, ê∗
3} are

associated with the Earth-fixed system and the unit vectors {ê1, ê2, ê3} with the inertial
star system. Vector êq is projection of the unit vector k̂ into the equatorial plane and it

points to Celestial Equator. Vectors î and ĵ together with k̂ define the orthogonal basis
defined by the right ascension α and the declination δ angles. γ is Greenwich Sidereal Time.

From (4.91) and (4.92) using (4.83) we have

l̂ = (sin(α − γ) cos ψ − cos(α − γ) sin δ sin ψ)ê∗

1

+ (− cos(α − γ) cos ψ − sin(α − γ) sin δ sin ψ)ê∗

2

+ (cos δ sin ψ)ê∗

3,

(4.93)

m̂ = (− sin(α − γ) sin ψ − cos(α − γ) sin δ cos ψ)ê∗

1

+ (cos(α − γ) sin ψ − sin(α − γ) sin δ cos ψ)ê∗

2

+ (cos δ cos ψ)ê∗

3.

(4.94)

With the basis vectors l̂ and m̂ we can construct the natural polarization tensors e+,× in

α, δ, ψ basis by applying the rotation

e+ = E ·













1 0 0

0 −1 0

0 0 0













· ET, e× = E ·













0 1 0

1 0 0

0 0 0













· ET, (4.95)

where the rotation matrix E is

E =













sin α′ cos ψ − cos α′ sin δ sin ψ − sin α′ sin ψ − cos α′ sin δ cos ψ − cos α′ cos δ

− cos α′ cos ψ − sin α′ sin δ sin ψ cos α′ sin ψ − sin α′ sin δ cos ψ − sin α′ cos δ

cos δ sin ψ cos δ cos ψ − sin δ













(4.96)
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with α′ = α − γ. For the calculation of Greenwich Sidereal Time we refer to Appendix A.

Next, we define the metric perturbation of the binary star system to be able to use the

double white-dwarf binaries as the GW sources.

4.3.2 Metric perturbation for the binary star system

In general relativity, the quadrupole formula states that the GW amplitude hij is propor-

tional to the second time derivative of the quadrupole moment of the source defined with

expression

hT T
ij =

2

r

G

c4
Q̈T T

ij

(

t − r

c

)

, (4.97)

where

Q̈T T
ij

(

t − r

c

)

=

∫

ρ(xixj − 1

3
δijr2)d3x

= M ij − 1

3
δijMkk,

(4.98)

is the quadrupole moment in the transverse-traceless (TT) gauge evaluated at the retarded

time t − r/c and ρ is the matter density in a volume element d3x at the position xi,

G = 6.67408 · 10−11 m3kg−1s−2 is gravitational constant and c = 299792458 m/s speed of

light in the vacuum. If GW is propagating in êz direction, relation (4.97) is modified into

two polarization amplitude

h+ =
1

r

G

c4
(M̈11 − M̈22),

h+ =
2

r

G

c4
M̈12.

(4.99)

To obtain waveform emitted in the arbitrary direction ên one needs to compute the trans-

formation from (êx, êy, êz) frame to (êx′ , êy′ , êz′) frame where ên = êz′ and ên can be

written in the first frame as

ên = (sin θ sin φ, sin θ cos φ, cos θ). (4.100)

For the full derivation reader is referred to Maggiore (2008), here we write the final expres-

sions for both polarization as

h+ =
1

r

G

c4

[

M̈11(cos2 φ − sin2 φ cos2 θ)

+M̈22(sin2 φ − cos2 φ cos2 θ)

−M̈33 sin2 θ

−M̈12 sin 2φ(1 + cos2 θ)

+M̈13 sin φ sin 2θ

+M̈23 cos φ sin 2θ
]

,

(4.101)
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h× =
1

r

G

c4

[

(M̈11 − M̈22) sin 2φ cos θ

+2M̈12 cos 2φ cos θ

−2M̈13 cos φ sin θ

+M̈23 sin φ sin θ
]

.

(4.102)

Let’s now consider a binary star system with masses m1 and m2 and their reduced mass

defined as

µ =
m1m2

m1 + m2
. (4.103)

For simplicity, we assume that the binary orbit is circular and we denote the separation

between the centers of masses as a. Then Newtonian force balance dictates that the orbital

angular velocity Ω is given by Kepler’s law

Ω =

√

G(m1 + m2)

a3
. (4.104)

Next, we chose the binary orbit to lies in the (êx, êy) plane and is given by

x0(t) = a cos(Ωt),

y0(t) = a sin(Ωt),

z0(t) = 0.

(4.105)

In the center of mass frame with the mass coordinate xCM = m1x1+m2x2
m1+m2

= 0 the second

mass moment is defined as M ij = µxi
0(t)xj

0(t), therefore we have

M11 = µa2 1 + cos 2Ωt

2
, (4.106)

M22 = µa2 1 − cos 2Ωt

2
, (4.107)

M12 =
1

2
µa2 sin 2Ωt, (4.108)

while other components are equal to zero. Further, we have

M̈11 = −M̈22 = −2µa2Ω2 cos 2Ωt, (4.109)

M̈12 = −2µa2Ω2 sin 2Ωt. (4.110)

Substituting above expressions into relations (4.101) and (4.102) we obtain

h+ = −2(1 + cos2 θ)
G

c4

µa2Ω2

r
cos[2(Ωt + φ)], (4.111)

h× = −4 cos θ
G

c4

µa2Ω2

r
sin[2(Ωt + φ)]. (4.112)
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Therefore, according to above expression the quadrupole radiation is the twice the orbital

angular velocity Ω of the source. The GW frequency is twice the orbital frequency

f =
2Ω

2π
=

Ω

π
. (4.113)

Since GW field is calculated at the retarded time we additionally have 2Ωt + φ → 2Ωt −
2Ω r

c + φ. Physically, φ describes the rotation around êz axis and angle θ is equal to the

inclination angle ι between the normal to the orbit and the line-of-sight. In this study we

ignore the phase term −2Ω r
c + φ and with θ = ι we introduce two abbreviations

h+,c = −2(1 + cos2 ι)
G

c4

µa2Ω2

r
, (4.114)

h×,c = −4 cos ι
G

c4

µa2Ω2

r
, (4.115)

then (4.111) and (4.112) become

h+ = h+,c cos(2Ωt), (4.116)

h× = h×,c sin(2Ωt). (4.117)

The above expressions are used to define our binary sources.

Next, we define a Green tensor for a rotating, anelastic Earth that is used to calculate

the induced spheroidal displacement.

4.3.3 Green tensor

The Green tensor for a rotating, anelastic Earth from Tab. 3.1 is

G(r, r′; t) = ℜ
∑

k

(iνk)−1sk(r)̄sk(r′)eiνkt, (4.118)

where sk are the associated displacement eigenfunctions and s̄k their dual eigenfunctions.

The eigenfunctions from Tab. 3.2 are

sk(r) = Uk(r)erYlm(θ, φ) + κ−1Vk(r)∇1Ylm(θ, φ) − κ−1Wk(r)(er × ∇1Ylm(θ, φ)). (4.119)

Using the same reasoning as in Subsection 4.2.2 by keeping only the effect of anelasticity

upon the eigenfrequencies the relation (4.119) becomes

sk(r) = Uk(r)erYlm(θ, φ) + κ−1Vk(r)∇1Ylm(θ, φ) − κ−1Wk(r)(er × ∇1Ylm(θ, φ)), (4.120)

where, naturally, Uk(r), Vk(r), Wk(r) are real functions. In the absence of anelasticity the

eigenfunction and their duals are complex conjugate: s̄k = s∗
k.
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The effects of rotation and lateral heterogeneities introduce splitting of and coupling

between the normal modes and to include those effects in Green tensor we need to calculate

the quasi-degenerate super-multiplet splitting matrix (3.26). Next, using the similarity

transformations one needs to calculate eigenvalues and eigenvectors of the splitting matrix

to calculate the renormalized receiver and source displacement eigenfunctions in (4.118) by

applying

s̃k(r) = ZT

(

I − 1

2
Tell − 1

2
Tlat − 1

2
ω−1

0 W

)

sk(r) = ZTMsk(r), (4.121)

s̃k(r′) = Z−1
(

I − 1

2
Tell − 1

2
Tlat − 1

2
ω−1

0 W

)

sk(r′) = Z−1Msk(r′). (4.122)

One needs to keep in mind that in the case of the group-coupling approximation H has a

dimension
∑

k(2lk + 1) × ∑

k(2lk + 1) where k stands for the k multiplet within the group.

The definition of a Green tensor is now altered to consider the effects of the splitting and

the group-coupling

G(r, r′; t) = ℜ
∑

k

(iνk)−1s̃k(r)̃s∗
k(r′)ei(νk+δνk)t. (4.123)

Next we proceed with the calculation of the induced spheroidal response.

4.3.4 Induced spheroidal response

As for the induced spheroidal response in Section 4.2.3 to obtain solution one needs to

insert a force term (4.8) into displacement (3.31) and take into account the boundary

condition (3.3) on the surface. Therefore, the expressions below resemble the ones in Section

4.2.3, where differences come from the metric perturbation and newly defined Green tensor.

The force term is now defined using the metric perturbation defined for a binary star

system in terrestrial reference system. The relevant expressions that constitute the metric

perturbation are

h = h+e+ + h×e×, (4.124)

where amplitudes are

h+ = h+,c cos(2Ωt), (4.125)

h× = h×,c sin(2Ωt), (4.126)

and the polarization matrices defined by rotation matrix E are

e+ = E ·













1 0 0

0 −1 0

0 0 0













· ET, e× = E ·













0 1 0

1 0 0

0 0 0













· ET, (4.127)
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E =













sin α′ cos ψ − cos α′ sin δ sin ψ − sin α′ sin ψ − cos α′ sin δ cos ψ − cos α′ cos δ

− cos α′ cos ψ − sin α′ sin δ sin ψ cos α′ sin ψ − sin α′ sin δ cos ψ − sin α′ cos δ

cos δ sin ψ cos δ cos ψ − sin δ













,

(4.128)

with α′ = α − γ. From this point we can already conclude that our solution will depend on

the right ascension α angle, the declination δ angle, Greenwich Sidereal Time (GST) γ, the

polarization angle ψ, the orbital inclination angle ι. Inserting force term into displacement

we obtain

s(r, t) = −
∫ t

−∞

∫

V

∂µ

∂r
G(r, r′; t − t′) · (êr · (h+e+ + h×e×))dV ′dt′

+ µ(a)

∫ t

−∞

∫

S
G(r, r′; t − t′) · (êr · (h+e+ + h×e×))dΣ′dt′

= −
∫ t

−∞

∫

V

∂µ

∂r
G(r, r′; t − t′) · (êr · h+e+)dV ′dt′

−
∫ t

−∞

∫

V

∂µ

∂r
G(r, r′; t − t′) · (êr · h×e×)dV ′dt′

+ µ(a)

∫ t

−∞

∫

S
G(r, r′; t − t′) · (êr · h+e+)dΣ′dt′

+ µ(a)

∫ t

−∞

∫

S
G(r, r′; t − t′) · (êr · h×e×)dΣ′dt′,

(4.129)

where we separate + and × parts of the displacement. Further, we insert the definition of

the modified Green tensor (4.123) and we obtain

sk(r, t) = − h+,cs̃k(r)ḡ+(t, Ω, ωk)

∫

V

∂µ

∂r
s̃∗

k(r′) · (êr · e+)dV ′

− h×,cs̃k(r)ḡ×(t, Ω, ωk)

∫

V

∂µ

∂r
s̃∗

k(r′) · (êr · e×)dV ′

+ µ(a)h+,cs̃k(r)ḡ+(t, Ω, ωk)

∫

S
s̃∗

k(r′) · (êr · e+)dΣ′

+ µ(a)h×,cs̃k(r)ḡ×(t, Ω, ωk)

∫

S
s̃∗

k(r′) · (êr · e×)dΣ′,

(4.130)

with the source-time functions as

ḡ+(t, Ω, ωk) =

∫ t

−∞
(iνk)−1ei(νk+δνk)(t−t′) cos(2Ωt′)dt′

=
1

2

∫ t

−∞
(iνk)−1ei(νk+δνk)(t−t′)(ei2Ωt′

+ e−i2Ωt′

)dt′,
(4.131)

ḡ×(t, Ω, ωk) =

∫ t

−∞
(iνk)−1ei(νk+δνk)(t−t′) sin(2Ωt′)dt′

=
i

2

∫ t

−∞
(iνk)−1ei(νk+δνk)(t−t′)(−ei2Ωt′

+ e−i2Ωt′

)dt′.
(4.132)
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Using the convolution theorem, the same as for (4.23), we arrive at the expressions for the

source-time functions

ḡ+(t, Ω, ωk) =
1

4π

∫ +∞

−∞
(iνk)−1δ(ω − 2Ω)

1

γ′
k + i(ω − ω′

k)
eiωtdω

+
1

4π

∫ +∞

−∞
(iνk)−1δ(ω + 2Ω)

1

γ′
k + i(ω − ω′

k)
eiωtdω

=
1

4π
(iνk)−1 1

γ′
k + i(2Ω − ω′

k)
ei2Ωt +

1

4π
(iνk)−1 1

γ′
k + i(−2Ω − ω′

k)
e−i2Ωt,

(4.133)

ḡ×(t, Ω, ωk) = − i

4π

∫ +∞

−∞
(iνk)−1δ(ω − 2Ω)

1

γ′
k + i(ω − ω′

k)
eiωtdω

+
i

4π

∫ +∞

−∞
(iνk)−1δ(ω + 2Ω)

1

γ′
k + i(ω − ω′

k)
eiωtdω

= − i

4π
(iνk)−1 1

γ′
k + i(2Ω − ω′

k)
ei2Ωt +

i

4π
(iνk)−1 1

γ′
k + i(−2Ω − ω′

k)
e−i2Ωt,

(4.134)

where we used the abbreviation for the complex eigenfrequencies

νk + δνk = ωk + iγk + δωk + iδγk = ω′
k + γ′

k. (4.135)

Combining + and × parts and extracting the polarization tensors we arrive at

sk(r, t) = h+,cs̃k(r)ḡ+(t, Ω, ωk)

[

−
∫

V

∂µ

∂r
s̃∗

k(r′) · (êr · e+)dV ′ + µ(a)

∫

S
s̃∗

k(r′) · (êr · e+)dΣ′
]

+ h×,cs̃k(r)ḡ×(t, Ω, ωk)

[

−
∫

V

∂µ

∂r
s̃∗

k(r′) · (êr · e×)dV ′ + µ(a)

∫

S
s̃∗

k(r′) · (êr · e×)dΣ′
]

=h+,cs̃k(r)ḡ+(t, Ω, ωk)e+ :

[

−
∫

V

∂µ

∂r
s̃∗

k(r′)êrdV ′ + µ(a)

∫

S
s̃∗

k(r′)êrdΣ′
]

+ h×,cs̃k(r)ḡ×(t, Ω, ωk)e× :

[

−
∫

V

∂µ

∂r
s̃∗

k(r′)êrdV ′ + µ(a)

∫

S
s̃∗

k(r′)êrdΣ′
]

.

(4.136)

Considering only the spheroidal displacement, thus putting Wk = 0 in (4.120), the displace-

ment eigenfunction s̃k(r) = Z−1M(Uk(r)erY ∗
lm(θ, φ) + κ−1Vk(r)∇1Y ∗

lm(θ, φ)) is substituted

to (4.136), thus we have

sk(r, t) = s̃k(r) (h+,cḡ+(t, Ω, ωk)e+ + h×,cḡ×(t, Ω, ωk)e×) :
[

Z−1M

(

µ(a)Uk(a)a2 −
∫

r

∂µ

∂r
Uk(r)r2dr

) ∫

Ω
êrêrY ∗

lm(θ, φ)dΩ

+Z−1M

(

µ(a)κ−1Vk(a)a2 −
∫

r

∂µ

∂r
κ−1Vk(r)r2dr

) ∫

Ω
êr∇1Y ∗

lm(θ, φ)dΩ

]

.

(4.137)

We again arrive at the expressions that contain integrals of the dyadic products, however

this time the spherical harmonics within the integral are complex conjugate. The first
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integral from (4.137) is

I1 =

∫

Ω
êrêrY ∗

lm(θ, φ)dΩ =

∫ π

0

∫ 2π

0
êrêrY ∗

lm(θ, φ) sin θdθdφ, (4.138)

whose solution

I1 =
2
√

π

3
δl,0δm,0













1 0 0

0 1 0

0 0 1













+
2

3

√

π

5
δl,2δm,0













−1 0 0

0 −1 0

0 0 2













+

√

2π

15
δl,2













δm,2 + δm,−2 −iδm,2 + iδm,−2 −δm,1 + δm,−1

−iδm,2 + iδm,−2 −δm,2 − δm,−2 iδm,1 + iδm,−1

−δm,1 + δm,−1 iδm,1 + iδm,−1 0













,

(4.139)

differs from (4.31) in the third term. The same argument is aslo valid for the second integral

I2 =

∫

Ω
êr∇1Ylm(θ, φ)dΩ =

∫ π

0

∫ 2π

0
êrêθ∂θYlm(θ, φ) sin θdθdφ

+

∫ π

0

∫ 2π

0
êrêφ(sin θ)−1∂φYlm(θ, φ) sin θdθdφ,

(4.140)

whose solution is

I2 = 3
2

3

√

π

5
δl,2δm,0













−1 0 0

0 −1 0

0 0 2













+ 3

√

2π

15
δl,2













δm,2 + δm,−2 −iδm,2 + iδm,−2 −δm,1 + δm,−1

−iδm,2 + iδm,−2 −δm,2 − δm,−2 iδm,1 + iδm,−1

−δm,1 + δm,−1 iδm,1 + iδm,−1 0













.

(4.141)

Again, only one term is different from the same integral in previous case (4.33), the second

one. Since the polarization tensors are traceless and symmetric the contraction with the

unitary matrix is zero, e+ : I = 0, e× : I = 0. This leaves us with the complete expression
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for the induced spheroidal displacement where only the contraction needs to be performed

sk(r, t) = s̃k(r) (h+,cḡ+(t, Ω, ωk)e+ + h×,cḡ×(t, Ω, ωk)e×) :























2

3

√

π

5
δm,0δl,2













−1 0 0

0 −1 0

0 0 2













+

+

√

2π

15
δl,2













δm,2 + δm,−2 −iδm,2 + iδm,−2 −δm,1 + δm,−1

−iδm,2 + iδm,−2 −δm,2 − δm,−2 iδm,1 + iδm,−1

−δm,1 + δm,−1 iδm,1 + iδm,−1 0



































Z−1M

(

µ(a)a2
(

Uk(a) +
3√
6

Vk(a)

)

−
∫

r

∂µ

∂r

(

Uk(r) +
3√
6

Vk(r)

)

r2dr

)

.

(4.142)

We introduce two abbreviations for + and × contractions in terms of the pattern functions

fm
+ (γ(t), α, δ, ψ), fm

× (γ(t), α, δ, ψ). Therefore we have

fm
+ (γ(t), α, δ, ψ) = e+ :























2

3

√

π

5
δm,0













−1 0 0

0 −1 0

0 0 2













+

√

2π

15













δm,2 + δm,−2 −iδm,2 + iδm,−2 −δm,1 + δm,−1

−iδm,2 + iδm,−2 −δm,2 − δm,−2 iδm,1 + iδm,−1

−δm,1 + δm,−1 iδm,1 + iδm,−1 0



































= −2

√

π

5
δm,0 cos2 δ cos 2ψ

+
1

2

√

2π

15
e−2iα′

δm,2[−4i sin 2ψ sin δ + (−3 + cos 2δ) cos 2ψ]

+
1

2

√

2π

15
e2iα′

δm,−2[4i sin 2ψ sin δ + (−3 + cos 2δ) cos 2ψ]

−
√

2π

15
e−iα′

δm,1[2i sin 2ψ cos δ + sin 2δ cos 2ψ]

+

√

2π

15
eiα′

δm,−1[−2i sin 2ψ cos δ + sin 2δ cos 2ψ],

(4.143)
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fm
× (γ(t), α, δ, ψ) = e× :























2

3

√

π

5
δm,0













−1 0 0

0 −1 0

0 0 2













+

√

2π

15













δm,2 + δm,−2 −iδm,2 + iδm,−2 −δm,1 + δm,−1

−iδm,2 + iδm,−2 −δm,2 − δm,−2 iδm,1 + iδm,−1

−δm,1 + δm,−1 iδm,1 + iδm,−1 0



































= 4

√

π

5
δm,0 cos2 δ cos ψ sin ψ

+
1

2

√

2π

15
e−2iα′

δm,2[−4i cos 2ψ sin δ − (−3 + cos 2δ) sin 2ψ]

+
1

2

√

2π

15
e2iα′

δm,−2[4i cos 2ψ sin δ − (−3 + cos 2δ) sin 2ψ]

+

√

2π

15
e−iα′

δm,1[−2i cos 2ψ cos δ + sin 2δ sin 2ψ]

− 2

√

2π

15
eiα′

δm,−1 cos δ[i cos 2ψ + sin δ sin 2ψ],

(4.144)

with α′ = α − γ(t). Introducing the abbreviation for the model dependent function

ζk =

(

µ(a)a2
(

Uk(a) +
3√
6

Vk(a)

)

−
∫

r

∂µ

∂r

(

Uk(r) +
3√
6

Vk(r)

)

r2dr

)

(4.145)

our displacement becomes

sk(r, t) = ŝk(r)δl,2

(

h+,cḡ+(t, Ω, ωk)fm
+ (γ(t), α, δ, ψ) + h×,cḡ×(t, Ω, ωk)fm

× (γ(t), α, δ, ψ)
)

ζ̂k.

(4.146)

For relation (4.146) using the definition of displacement eigenfunction (4.120) for the spheroidal

motions we can define three displacement components

sk(r) = êrUk(r)Ylm(θ, φ)

+ êθ

(

κ−1Vk(r)∂θPlm(cos θ)
)

+ êφ

(

κ−1Vk(r)
1

sin θ
Plm(cos θ)∂φeimφ

)

.

(4.147)

This, finally, defines the spheroidal induced displacement for k mode. The complete re-

sponse is found by summing over all excited modes for the specific GW source. For better

clarification we drop the subscript k and write the full response for the spheroidal radial

displacement as

nsm
2 (r) =

∑

n

∑

m
nU2(r)Y2m(θ, φ)

(

h+,cḡ
m
+ (t, Ω, ωm)fm

+ (γ(t), α, δ, ψ)

+h×,cḡ
m
× (t, Ω, ωm)fm

× (γ(t), α, δ, ψ)
)

nζ̂2.

(4.148)

With no further explanation, here we also include corrections for an idealized accelerometer

for the displacement eigenfunctions (see 4.72 and 4.73).
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4.3.5 Discussion

Derived induced displacement (4.146) from the previous subsection can be compared to

the one derived in Subsection 4.2.3 described with the relation (4.36). The individual

members of the two displacements are comparable, however they are not identical due to

the start conditions. For example, both expressions contain the displacement eigenfunctions

at the receiver position, the scalar metric perturbations, the source-time functions, the

pattern functions that depend on the angles of the incoming GW and the model dependent

functions. Two important differences are the newly defined metric perturbation for a binary

star system and the utilization of a rotating Earth model. The first alteration introduces the

binary parameters into the induced displacement. The second alternation implies utilization

of different Green tensors (compare (4.15) and (4.123)) and displacement eigenfunctions

(compare (4.17) and (4.120)). Even so, from the integral solutions (4.139) and (4.141)

we see that the only induced angular order is again quadrupole one. This means that

displacement (4.146) only represents summation over all relevant quadrupole normal modes

as demonstrated by equation (4.148). As emphasized in Subsection 4.3.3 the effects of

the splitting of and coupling between the normal modes are introduced by calculating

the similarity transformation matrices from the splitting matrices. We chose to calculate

the splitting matrices in the group-coupling approximation, over the self- or full-coupling

approximations for the reason that will be elaborated further in text. The selection of the

multiplet chains, for which the splitting matrices are calculated, is tightly connected with

the frequencies of the GWs sources.

The good candidates of the GW sources in mHz band are LISA verification binaries

(Stroeer and Vecchio, 2006), a handful of known nearby galactic binary systems that are

well known from electromagnetic observations. Binaries are divided in several classes, such

as mass-transferring AM CVn binary systems, double white dwarf binary systems, (ultra-

)compact x-ray binaries and cataclysmic variables. We chose to work with the detached

double white dwarfs, since they vastly outnumber all other compact binary objects in the

Galactic disk (Nelemans et al., 2001) and they are far away the simplest objects since there

are no varying elements in these binaries. The list of detected double white dwarf binaries

with their parameters is shown in Tab. 4.5. The location of the system in the sky using

the ecliptic coordinates, the right ascension and the declination angles, together with the

orbital period is considered to be exactly known (Stroeer and Vecchio, 2006). However,

other parameters are considered to be unknown or poorly constrained. For example, it has

been proven in astronomy that it is difficult to measure fundamental white dwarf binaries

parameters, such as their masses and radii (Schmidt, 1996). Further, from the orbital

periods one can calculate the GW frequencies and using relations (4.114) and (4.115) the
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strength of the metric perturbation. Calculation of the metric perturbation strength requires

information on the inclination and the polarization angles, among others. These angles are

usually missing in the catalog or, in case of the polarization angle, are completely unknown,

thus we set them to zero. Finally, the last source from Tab. 4.5 is ignored due to the

missing information on the distance. The final values are shown in Tab. 4.6. Considering

the range of the GW frequencies in Tab. 4.6 the normal modes that should be the most

affected, when the GW passes the Earth, are the low frequency normal modes.
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Tab 4.5: List of the double white dwarf binaries and their parameters: the orbital periods, the distances to the sources,the masses of
the two stars, the inclination angle, the right ascension and the declination angle. Each parameter, except the right ascension and the
declination, has associated uncertainties if they exist. The last column contains appropriate references. The table is based on link.

Name Period ∆ r ∆ M2 ∆ M1 ∆ ι ∆ α δ Refs.

[s] [s] [pc] [pc] M⊙ M⊙ M⊙ M⊙ [◦] [◦] [h:m:s] [h:m:s]

SDSS J0651+2844 765.4 7.9 1000 - 0.50 - 0.25 - 86.9 1.6-1 06:51:33.338 28:44:23.37 Brown et al. (2011); Hermes et al. (2012)

SDSS J0935+4411 1188 44 660 - >0.14 - 0.32 - - - 09:35:XX 44:11:YY Brown et al. (2016); Kilic et al. (2014)

SDSS J0106-1000 2346 2 2400 - 0.43 - 0.17 - 67 13 01:06:57.39 -10:00:03.3 Kilic et al. (2011b)

SDSS J1630+4233 2390 4 830 - >0.52 - 0.31 - - - 16:30:XX 42:33:YY Brown et al. (2016); Kilic et al. (2011a)

SDSS J1053+5200 3680 10 1100 - >0.26 - 0.20 - - - 10:53:53.89 52:00:31.0 Kilic et al. (2010)

SDSS J0923+3028 3884 - 270 - >0.34 - 0.23 - - - 09:23:45.59 30:28:05.0 Brown et al. (2016, 2010)

SDSS J1436+5010 3957 10 800 - >0.46 - 0.24 - - - 14:36:33.29 50:10:26.8 Kilic et al. (2010)

WD 0957-666 5269.81080 10−5 135 20 0.32 0.03 0.37 0.02 50-86 - 09:58:54.96 -66:53:10.2 Moran et al. (1997); Bragaglia et al. (1995)

SDSS J0755+4906 5445 - 2620 - > 0.81 - 0.17 - - - 07:55:52.40 49:06:27.9 Kilic et al. (2012)

SDSS J0849+0445 6800 - 930 - > 0.64 - 0.17 - - - 08:49:10.13 04:45:28.7 Kilic et al. (2010)

SDSS J0022-1014 6902 - 790 - > 0.19 - 0.33 - - - 00:22:07.65 -10:14:23.5 Kilic et al. (2012)

SDSS J2119-0018 7497 - 2500 - > 0.75 - 0.17 - - - 21:19:21.96 -00:18:25.8 Kilic et al. (2012)

SDSS J1234-0228 7900 - 780 - > 0.09 - 0.23 - - - 12:34:10.36 -02:28:02.8 Kilic et al. (2012)

WD 1101+364 12503 5 97 -15 0.36 - 0.31 - 25 - 11:04:32.61 36:10:49.5 Marsh (1995)

WD 1704+4807BC 12511 2 - - 0.56 0.07 0.39 0.05 61 - 17:05:30.1 48:03:17 Maxted et al. (2000)
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Tab 4.6: List of the double white dwarf binaries with their orbital frequencies and the
associated relative errors and the metric perturbation strength for + and × terms.

Name fgw [mHz] ∆ [ppm] h+,c h×,c

SDSS J0651+2844 2.613013 10321.4 -1.56e-22 -1.68e-23

SDSS J0935+4411 1.683502 37037.0 -1.48e-22 -1.48e-22

SDSS J0106-1000 0.852515 852.5 -2.23e-23 -1.51e-23

SDSS J1630+4233 0.836820 1673.6 -2.18e-22 -2.18e-22

SDSS J1053+5200 0.543478 2717.4 -4.85e-23 -4.85e-23

SDSS J0923+3028 0.514933 - -2.67e-22 -2.67e-22

SDSS J1436+5010 0.505433 2527.2 -1.17e-22 -1.17e-22

WD 0957-666 0.379520 0 -4.37e-22 -3.98e-22

SDSS J0755+4906 0.367309 - -3.23e-23 -3.23e-23

SDSS J0849+0445 0.294118 - -6.60e-23 -6.60e-23

SDSS J0022-1014 0.289771 - -5.14e-23 -5.14e-23

SDSS J2119-0018 0.266773 - -2.58e-23 -2.58e-23

SDSS J1234-0228 0.253165 - -1.85e-23 -1.85e-23

WD 1101+364 0.159962 399.9 -4.20e-22 -4.18e-22

The quadrupole normal modes in the frequency range from 0.10 to 3 mHz (fitting the

frequency range in Tab. 4.6) are nS2, n = 0, . . . , 7. From the splitting and coupling selec-

tion rules these modes form chains listed in Tab. 4.7. Although the first eight quadrupole

modes are the focus in this study, we included modes nS2, n = 8, . . . , 23 to test the far off-

resonance regime effect on these modes. The choice to use group-coupling approximation

in the calculation of the splitting matrix is based upon the needed frequency resolution. In

the normal mode studies the frequency uncertainties are present due to the theoretical com-

putations, utilization of the different 3D Earth models and the biased measurements (for

further clarification on biased measurements see Section 6.1). However, all these errors are

smaller than frequency uncertainties that we find in the double white dwarf binary catalog

showed in third column in Tab. 4.6. To compare frequency uncertainties from binary cata-

log with the ones obtained using different 3D Earth models, we calculated eigenfrequencies

for two multiplet chains, namely 0S2 - 0T2 - 2S1 - 0S3 and 2S0 - 7S2 for five 3D models of the

shear-velocity variations in Earth’s mantle, namely S40RTS (Ritsema et al., 2011), SP16b30

(Masters et al., 1996), S20RTS (Ritsema et al., 1999), SP12RTS (Koelemeijer et al., 2016),

S362ANI (Kustowski et al., 2008). Listed 3D models differ between themselves due to the
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dissimilar data types used for their building and due to dissimilar modeling approaches.

For example, S20RTS and S40RTS use collections of Rayleigh wave phase velocities, the

teleseismic body-wave traveltimes and the normal mode splitting function measurements,

while SP12RTS uses additionally the P-waves traveltimes measurements and the new split-

ting measurements of 33 normal modes sensitive to the compressional-wave velocity and

9 Stoneley modes; S16b30 uses the differential body wave traveltimes, the surface-wave

phase velocities and the normal mode structural coefficients; S362ANI uses the Love- and

Rayleigh-wave phase velocities, the mantle- and body-wave waveforms and the teleseismic

bodywave traveltimes. Calculated synthetic split and coupled eigenfrequencies are com-

pared for different models by computing relative errors |f−fr|
fr

· 1000000 [ppm], where fr

is the referent frequency, the one calculated for S40RTS model. The results in Fig. 4.12

show that differences between models are systematic, reaching maximum values up to 700

ppm, but in average are 116 ppm. Next, we examine the errors introduced by using the

group-coupling approximation instead of the full-coupling one when calculating the split

and coupled frequencies. For this purpose we calculate the frequencies in full-coupling ap-

proximation up to 3 mHz (Al-Attar et al., 2012). The results are shown in Fig. 4.13 in terms

of the relative error between frequencies calculated in group- and full-coupling approxima-

tion with frequencies from group-coupling approximation as the referent ones. Relative

errors are in average three times larger than for the 3D Earth models, thus around 370

ppm, reaching maximum values up to 1126 ppm. Nevertheless, these relative errors are still

smaller than the frequency errors found in the binary catalog. Consequently, for the current

work it is sufficient to consider only the group-coupling approximation when calculating the

split and coupled normal mode eigenfrequencies, since the frequency uncertainties within

the binary measurements are larger. For all further calculation we only use S40RTS model.

Also, we calculate all responses for the BFO station.
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Tab 4.7: List of the multiplet chains and their frequency ranges used in the group-coupling
approximation for the splitting matrix calculation. Multiplet chains for nS2, n = 0, . . . , 7
modes are adopted from Deuss and Woodhouse (2001). Multiplets from n = 8 to n = 23
are used to check the far off-resonance regime.

Multiplets f [mHz] Multiplets f [mHz]

0S2 - 0T2 - 2S1 - 0S3 0.309 - 0.469 12S2 4.330

0T3 - 0S4 - 1S2 0.586 - 0.680 13S2 4.845

0T5 - 2S2 - 1S3 - 3S1 0.928 - 0.944 14S2 5.374

3S2 1.106 15S2 5.557

5S1 - 4S2 - 0S10 - 0T11 - 1T5 1.714 - 1.750 16S2 5.697

5S2 - 0T14 - 1T7 - 0S13 2.091 - 2.113 17S2 6.395

5S4 - 4S5 - 2S10 - 2T4 - 6S2 2.380 - 2.411 18S2 6.545

2S0 - 7S2 2.510 - 2.517 19S2 7.078

8S2 3.214 20S2 7.357

9S2 3.231 21S2 7.514

10S2 4.032 22S2 8.207

11S2 4.058 23S2 8.561
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Fig 4.12: Split and coupled eigenfrequencies relative errors calculated for five models of the
shear-velocity variations in Earth’s mantle and two multiplet chains 0S2 - 0T2 - 2S1 - 0S3

(up) and 2S0 - 7S2 (bottom). Model S40RTS model is the referent one. y-axis stand for the
relative error function.
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Fig 4.13: Split and coupled eigenfrequencies relative errors between full- and group-coupling
approximations for two multiplet chains 0S2 - 0T2 - 2S1 - 0S3 (up) and 2S0 - 7S2 (bottom),
with group coupling values as referent ones. Both set of frequencies (for full and group
coupling) are calculated for S40RTS model. y-axis stand for the relative error function.

Comparing the exact GWs frequencies in Tab. 4.6 with the split and coupled quadrupole

modes eigenfrequencies in Tab. 4.8 it is straightforward that we are not in a resonance

regime and is it highly unlikely that we will ever be. Incorporating information from
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the binary catalog in Tab. 4.6, the eigenfrequencies from Tab. 4.8 together with the

displacement eigenfunctions, the model dependent functions ζk and the pattern functions

fm
+,×(γ(t), α, δ, ψ) we can calculate the complete induced spheroidal radial response for a

rotating 3D Earth model to the incoming GWs. The results for each GW source are shown

in Fig. 4.14 where all responses are summed in one total response, since on Earth we are

receiving the summed response from all GW sources, and also on separate plot where they

are plotted individually. The maximum spectral amplitudes for individual GW sources are

listed in Tab. 4.10. We are primarily interested in the continuously forced motion, thus

the frequencies of our responses are equal to GWs frequencies. If we scrutinize response

for one catalog entry, let’s say the first entry from the catalog (SDSS J0651+2844), a bit

further by looking at its individual components for only one normal mode, for example 0S2,

we can plot Fig. 4.15. We can see that the GW frequency of our response is split and

this is consequence of the exponential functions within the pattern functions represented by

expressions (4.143) and (4.144). These exponential functions depend on the right ascension

angle and Greenwich Sidereal Time, in other words it means that the splitting of the GW

frequencies is caused by rotation.

80



Tab 4.8: Split and coupled eigenfrequencies (in mHz) for 24 quadrupole modes calculated
for S40RTS model.

Mode / m -2 -1 0 1 2

0S2 0.299874 0.304467 0.309087 0.313702 0.318335

1S2 0.673504 0.677305 0.680566 0.683091 0.684999

2S2 0.934869 0.936727 0.938229 0.939367 0.940150

3S2 1.101922 1.105062 1.107022 1.108593 1.108834

4S2 1.717967 1.721015 1.722665 1.723805 1.724158

5S2 2.086851 2.090049 2.091603 2.093396 2.093913

6S2 2.407423 2.409519 2.411163 2.412433 2.413250

7S2 2.517429 2.516401 2.514741 2.519262 2.519715

8S2 3.209084 3.212019 3.212971 3.215910 3.216284

9S2 3.225804 3.230217 3.231335 3.234290 3.235501

10S2 4.028591 4.031640 4.032067 4.034329 4.034675

11S2 4.054522 4.057871 4.058929 4.060161 4.060605

12S2 4.319723 4.326204 4.327935 4.332262 4.332948

13S2 4.840962 4.841738 4.845084 4.848812 4.849457

14S2 5.363416 5.372038 5.374407 5.379946 5.381128

15S2 5.552475 5.556524 5.558518 5.559144 5.559708

16S2 5.691855 5.693602 5.696764 5.700023 5.700832

17S2 6.383572 6.392156 6.393636 6.400451 6.401756

18S2 6.538620 6.540623 6.545051 6.549906 6.550698

19S2 7.073365 7.077868 7.080399 7.080740 7.081474

20S2 7.349424 7.351190 7.356375 7.361493 7.362804

21S2 7.502535 7.513479 7.515454 7.523615 7.524762

22S2 8.198689 8.200363 8.206567 8.211003 8.212599

23S2 8.548147 8.560894 8.564423 8.572771 8.575040
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Tab 4.9: Q-factors corresponding to the split and coupled eigenfrequencies for 24 quadrupole
modes calculated for S40RTS model in Tab. 4.8.

Mode / m -2 -1 0 1 2

0S2 494.142110 501.707789 509.320483 516.925422 524.559878

1S2 307.438499 309.151594 310.627192 311.775378 312.659810

2S2 95.587854 95.820610 95.985271 96.062156 96.118498

3S2 365.196019 366.236740 366.886285 367.407026 367.486779

4S2 432.964520 433.728921 434.129037 434.410786 434.490357

5S2 317.187615 317.673615 317.909833 318.182413 318.260972

6S2 92.650176 92.722350 92.779936 92.834791 92.876552

7S2 341.638798 341.991007 342.802680 342.952956 348.049296

8S2 337.877156 338.186159 338.286414 338.595854 338.635213

9S2 406.418421 406.974407 407.115289 407.487627 407.640126

10S2 191.788285 191.933394 191.953731 192.061428 192.077912

11S2 130.659712 130.767645 130.801712 130.841434 130.855726

12S2 228.982397 229.325928 229.417716 229.647082 229.683414

13S2 877.791921 877.932649 878.539316 879.215325 879.332293

14S2 202.080223 202.405076 202.494342 202.703033 202.747577

15S2 102.462099 102.536816 102.573610 102.585153 102.595569

16S2 328.351345 328.452141 328.634546 328.822561 328.869214

17S2 230.712993 231.023232 231.076696 231.323015 231.370179

18S2 532.563443 532.726570 533.087255 533.482661 533.547178

19S2 90.782761 90.840555 90.873048 90.877423 90.886844

20S2 514.945983 515.069696 515.432982 515.791573 515.883464

21S2 218.103160 218.421318 218.478731 218.715966 218.749334

22S2 714.897810 715.043807 715.584783 715.971593 716.110714

23S2 199.519432 199.816977 199.899331 200.094193 200.147139
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Fig 4.14: Induced spheroidal radial response for 14 GW sources from Tab. 4.5 when all
responses are summed together (up) and when each response is plot individually (bottom)
for one day long signals.
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Tab 4.10: Maximum spectral amplitudes of the induced spheroidal radial responses shown
in Fig. 4.14.

Name A [·10−18m] A [·10−22m/s2]

SDSSJ0651+2844 11.47999 30.94457

SDSSJ0935+4411 81.43515 91.11686

SDSSJ0106-1000 2.04780 0.58756

SDSSJ1630+4233 32.30985 8.93221

SDSSJ1053+5200 8.42014 0.98185

SDSSJ0923+3028 35.31244 3.69649

SDSSJ1436+5010 14.95197 1.50795

WD0957-666 40.41132 2.29791

SDSSJ0755+4906 3.72761 0.19854

SDSSJ0849+0445 69.10639 2.36004

SDSSJ0022-1014 54.40300 1.80340

SDSSJ2119-0018 7.80692 0.21934

SDSSJ1234-0228 4.63214 0.11721

WD1101+364 61.13572 0.61757
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Fig 4.15: Induced spheroidal radial response of the GW source SDSS J0651+2844 split into
five singlets.

Besides defining the splitting of the GW frequency, the pattern functions are also impor-

tant since they define which singlets are going to be excited based on the declination δ and

the polarization ψ angles of the binary system. For visualization we plot the dependency of

the pattern functions on these two angles for different azimuthal orders for fm
+ (γ(t), α, δ, ψ)

in Fig. 4.16 and for fm
× (γ(t), α, δ, ψ) in Fig. 4.17 where we set γ(t), α = 0. From figures

it is clear that there exist combinations of the declination andthe polarization angles when

singlet defined by specific azimuthal order m is not going to be excited. The characteristics

of the pattern functions are twofold. Firstly, if one has a possibility to measure only one or

few of the excited singlets one can obtain a range of possible declination and polarization

angles where this pattern would be possible. Secondly, if one can measure the frequency

of the binary star with good precision then one can calculate the right ascension angle by

observing how much the GW frequency is split. Our analytical response model confirms

that the frequency uniquely depends on the GW frequency of the binary system, the right

ascension angle and Greenwich Sidereal Time.
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Fig 4.16: Pattern function fm
+ (γ(t), α, δ, ψ) values for the declination δ versus the polar-

ization ψ angles where Greenwich Sidereal Angle and the right ascension angle are set
to zero (γ(t) = 0, α = 0). From up to down each row stands for five azimuthal orders
m = −2, −1, 0, 1, 2, respectively. From left to right each column stand for absolute, real
and imaginary part of the function, respectively.
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Fig 4.17: Same as Fig. 4.16 just for pattern function fm
× (γ(t), α, δ, ψ).

If we go back to the full response shown in Fig. 4.14 we need to remind ourselves that
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each of these displacements are defined as a collective contribution of 24 quadrupole modes.

However, not all quadrupole modes contribute equally in the building of the response for a

particular GW source. This statement is demonstrated in Fig. 4.18 for the first entry in

the binary catalog, SDSS J0651+2844. The plot represents only response amplitude values

for each mode and their singlets that are used to construct response for this particular GW

source. Therefore, each row represents one quadrupole mode nS2 where n = 0 is the first row

and n = 23 is the last row. Each column represents one azimuthal order, from left to right

m = −2, −1, 0, 1, 2, respectively. Amplitudes are normalized by the maximum amplitude

within all estimates. This particular source has a frequency that is closest to the frequency

of 7S2 mode, whose singlets amplitudes are shown in the 8th row on the figure. It is no

surprise that this mode contributes the most for this particular GW source, because in this

case we are closest to the resonance regime based on the source-time functions (see (4.133)

and (4.134)) shown in Fig. 4.19. Further, it is interesting that although 6S2 mode is close to

this particular source frequency it does not have a sizeable effect. To understand this result

it is useful to look individually at the values of functions that constitutes the response, such

as the source-time functions amplitudes and the Q-factors, for these two modes. The values

of source-time functions ḡ+(t, Ω, ωk) and ḡ×(t, Ω, ωk) with t = 0 for the first entry in binary

catalog are shown in Fig. 4.20. For both functions the most significant values are the ones

for 7S2 mode, but we see that 6S2 mode is just behind 7S2 with twice smaller amplitudes.

However, if we look at the amplitudes values, that consist of jointly contributions from the

displacement eigenfunctions and the model dependent function ζk, for all modes and their

singlets used in this study shown in Fig. 4.21, we see that 6S2 mode has significantly smaller

amplitude than 7S2 mode. Therefore, both effects generate the final result that we see in

Fig. 4.18. The complete response amplitudes for all other sources are shown in Fig. 4.22,

4.23, 4.24. Since GW sources in Fig. 4.23, 4.24 are closes to 0S2 mode (see Fig. 4.19)

singlets of this mode contribute the most to the responses for these sources. The case of

five sources (SDSS J0106-1000, SDSS J1630+4233, SDSS J1053+5200, SDSS J0923+3028,

SDSS J1436+5010) in Fig. 4.22 is interesting one since all these modes have frequencies

between and close to 2S2, 1S2 and eventually 0S2 mode. However, the largest contributions

are mostly accomplished for 3S2, 4S2 modes. This is mostly predetermined by the amplitude

values shown in Fig. 4.20. For same reason, we also observe 7S2 mode quite persistently.

When approaching smaller frequencies the influence of 0S2 largely predominates. Next, the

case of sources SDSS J0106-1000 and SDSS J1630+4233 is also an appealing one. These

two sources have quite close frequencies and their response amplitudes have same pattern,

however with different intensities compared to the maximum value. In conclusion, it seems

that prevailing factor is not coming only from the closeness of the GW source frequencies to
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the normal mode frequencies. The 2S2 mode is rarely ever having large contribution since

this mode has a very small amplitude values.
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Fig 4.18: Normalized response amplitudes for SDSS J0651+2844 source frequency 2.61 mHz
for all quadrupole modes and their singlets used for building the complete response for this
particular source. The rows represent quadrupole modes nS2 where n = 0 is the first row
and n = 23 is the last row. Each column represents one azimuthal order, from left to right
m = −2, −1, 0, 1, 2, respectively.
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Fig 4.19: Comparison of the quadrupole modes frequencies for nS2, n = 0, 1, 2, 3, 4, 5, 6, 7
with the orbital frequencies of the binary systems listed in Tab. 4.5.

Fig 4.20: Amplitudes of the source-time functions ḡ+(t, Ω, ωk) (left) and ḡ×(t, Ω, ωk) (right)
with t = 0 and for SDSS J0651+2844 source. The rows represent quadrupole modes nS2

where n = 0 is the first row and n = 23 is the last row. Each column represents one
azimuthal order, from left to right m = −2, −1, 0, 1, 2, respectively.
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Fig 4.21: Amplitudes in terms of jointly contributions from displacement eigenfunction and
model dependent functions ζk for all quadrupole modes nS2, where n = 0 is the first row
and n = 23 is the last row. Each column represents one azimuthal order, from left to right
m = −2, −1, 0, 1, 2, respectively.
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Fig 4.22: Same as Fig. 4.18 but for sources A) SDSS J0935+4411, B) SDSS J0106-1000,
C) SDSS J1630+4233, D) SDSS J1053+5200, E) SDSS J0923+3028, F) SDSS J1436+5010
from left to right and up to bottom, respectively.
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Fig 4.23: Same as Fig. 4.18 but for sources A) WD 0957-666, B) SDSS J0755+4906, C)
SDSS J0849+0445, D) SDSS J0022-1014, E) SDSS J2119-0018, F) SDSS J1234-0228 from
left to right and up to bottom, respectively.
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Fig 4.24: Same as Fig. 4.18 but for source WD 1101+364.

The response of the rotating Earth model to the GWs from a binary star system can

be quantitatively compared to the response of the non-rotating Earth model to the GWs

from the general source described by scalar value h0 and angles {e, λ, ν} from Section 4.2.3.

As emphasized earlier all responses for the rotating model are the off-resonance responses

because the GW frequencies are not equal to normal mode frequencies. This implies that

these responses could be larger in the resonance case. We focus on the second GW source

from the binary catalog, SDSS J0935+4411, since this GW source has the largest response

according to Tab. 4.10. Thus, for the S40RTS Earth model, J0935+4411 GW source, t = 0

at the BFO station the radial response amplitude for l = 2, m = 1 is

sr = 6.0 · 10−8 nm (1.683502 mHz). (4.149)

Considering different frequency ranges the largest amplitude around the frequency of 0S2

mode comes from the GW source J0849+0445 and for this source the radial response am-

plitude using same parameters as above is

sr = 1.0 · 10−8 nm (0.294118 mHz). (4.150)

If for the comparison we set that GW frequency for J0849+0445 source is equal to the

frequency of 0S2 normal mode we obtain value for the radial response amplitude, just for

0S2 multiplet, to be

0s2
2 = 2.2 · 10−6 nm (0.313702 mHz) (4.151)

which is two orders of magnitude larger than both responses (4.149) and (4.150). This

value can be compared with the estimate of the induced radial displacement for the non-

rotating model defined by relation (4.39). We also consider resonance response and 0S2
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mode. Further, since this model requires three source angles {e, λ, ν} we set these to

{e = π
2 , λ = 0, ν = 0}. Finally, the response for t = 0 and BFO station is

0s2
2 = 9.4 · 10−8 nm (0.309262 mHz). (4.152)

Even though values at the resonance for the two models are not obtained in completely

same conditions (e.g. the source angles for a non-rotating model versus the right ascension

and the declination angles for a rotating model), still comparing them we notice that there

is one to two orders of magnitude difference. One or two orders of magnitude difference

comes from the source-time functions definition. For the non-rotating model the source-time

function for t = 0 and at resonance, based on relation (4.39), is

|ℜ{ḡ(t = 0)}| =
1

2π

4Q2

(4Q2 + 1)ω2
k

, (4.153)

and for the rotating model based on (4.133) and (4.134) we have

|ℜ{ḡ+(t = 0)}| =
1

2π

4Q2

(16Q2 + 1)ω2
k

, (4.154)

|ℑ{ḡ+(t = 0)}| =
1

π

8Q3

(16Q2 + 1)ω2
k

, (4.155)

|ℜ{ḡ×(t = 0)}| =
1

π

4Q3(8Q2 − 1)

(1 + 20Q2 + 64Q4)ω2
k

, (4.156)

|ℑ{ḡ×(t = 0)}| =
1

π

24Q4

(1 + 20Q2 + 64Q4).ω2
k

, (4.157)

If we calculate the relative ratio between (4.154), (4.155), (4.156), (4.157) and (4.153) we

get
|ℜ{ḡ+}|
|ℜ{ḡ}| ≈ 0.25, (4.158)

|ℑ{ḡ+}|
|ℜ{ḡ}| ≈ Q, (4.159)

|ℜ{ḡ×}|
|ℜ{ḡ}| ≈ 8Q

10 + 32Q2
, (4.160)

|ℑ{ḡ×}|
|ℜ{ḡ}| ≈ 6

10 + 32Q2
, (4.161)

where we have assumed that Q ≥ 100. Therefore, the substantial contribution is coming

from (4.155) due to (4.159), which also explains one to two orders of magnitude difference

between the two models.

Furthermore, the induced spheroidal displacement that we developed for the elliptical

and rotating Earth model in the Section 4.3.4 could be improved by considering the shear

modulus perturbation. The Dyson force term (4.8) originally contain the shear modulus
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gradient. Since in this work we only consider the radially dependent shear modulus the only

term that contributes to the force term is the partial derivation along the radial component.

However, we could improve this by adding the perturbation of the shear modulus defined

as

δµ =
2

3
rǫ

∂µ

∂r
P2(cos θ), (4.162)

where ǫ is ellipticity (Dahlen and Tromp, 1998). This would add an additional term in

our force term and then consecutively additional terms in our induced spheroidal solution.

Likewise, observing the shear modulus profile (see PREM model profile on Fig. 4.25), as

we argued before, we notice that this modulus has two discontinuities, precisely one at the

free surface and one at the core mantle boundary. It should be emphasized that these two

discontinuities have different contributions to the force term and consequently to the final

solution.

Fig 4.25: Density, horizontal and vertical P-velocity, horizontal and vertical S-velocity pro-
files (left) and shear modulus profile (right) of the PREM model.

4.3.6 Conclusion

In this section we have developed a new interaction model between a rotating anelastic

Earth and GWs from the binary star sources. The interaction is expressed in terms of the

response displacement. The model is based on several assumptions:
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• the GW expressed in terms of the metric perturbation is defined for the binary star

system in the celestial reference frame;

• the binary star system is defined by five parameters which are the masses of two stars,

the GW frequency, the distance to the source and the inclination angle, all taken from

the LISA verification binary catalog;

• the rotation from the celestial to terrestrial reference frame introduces four angles

into the final response which are the right ascension, the declination, the polarization

angle and Greenwich Sidereal Time angle;

• the considered Earth model is rotating and anelastic defined by Green tensor consisting

of real radial eigenfunctions and complex spherical harmonics;

• the model also involves splitting of and coupling between normal modes calculated in

the group-coupling approximation by defining the narrow band splitting matrix.

The final induced response depends on five functions: the radial displacement, the spherical

harmonic depending on the location at the Earth surface, the scalars h+, h×, the source-

time functions ĝm
+,×(t, Ω, ωm), the pattern functions fm

+,×(γ(t), α, δ, ψ). The calculation once

again confirmed that the only normal modes that couple with GWs are quadrupole ones.

Therefore, the full response is defined as a summation over all radial n and azimutal m orders

for l = 2. Fundamentally, in this model we are still interested in continuous forced motion.

It has been also shown that due to the rotation the GW frequency is being split into five GW

frequencies. Since the GW frequencies from binary star systems are not equal to the normal

mode split and coupled eigenfrequencies we are also dealing with an off-resonance regime.

During the modeling the split and coupled normal mode eigenfrequencies are calculated in

a group-coupling approximation, because the errors introduced by this approximation are

smaller than the uncertainties found in the catalog of binary star systems. It has been also

shown that the each response obtained for one GW source is calculated by summing over 24

normal modes which do not contribute equally to the final displacement value. This effect

is jointly determined by the source-time function (the closeness of the GW frequency to

the split normal mode eigenfrequencies), then displacement eigenfunctions and the model

dependent function ζk. The final estimates of the induced off-resonance displacement values

are between 10−18 − 10−17 m.

Further, the detection possibilities of the induced spheroidal radial displacement devel-

oped in this section are studies in Chapter 5.
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Chapter 5

Search for Gravitational Waves
Using Matched Filtering

Detection of the small signals buried in the noise is very well covered topic in geophysical

and physical studies, however it still presents a great challenge. The problem consists of

understanding the characteristic of the target signal, its modeling and all possible included

approximations; developing functional techniques that are not, preferably, time consuming

for extracting the target signals from the noisy data; the acquisition of data in the preferred

configuration and also using the instruments that have the required sensitivity level; the

characterization of the noise existing in the measured data, that is identifying and removing

everything that is not the target signal. In this chapter we are considering the second point

in the context of the GW studies. In GW studies the usual target is the modeled signal and

its detection is performed by utilizing the matched filtering technique (see Appendix B).

Generally, one does not really know if the signal is present in the data and if it is present

what is the starting time. The matched filter technique can answer to these two question

simultaneously and therefore is more suitable in the GW studies over, for example, the

Fourier transform.

In this chapter we consider the induced response developed in the Section 4.2.5 and we

scrutinize how this signal could be found in the data measurements.

5.1 Introduction

In general, we consider that our instrument or detector as an output has a conventional

form d(t) = n(t)+w(t), where d(t) is the data, w(t) is the target signal and n(t) is the noise.

When dealing with the GW signals we are dealing with a case where n(t) ≫ h(t) and the

question is how to detect the target signal when the signal itself is overwhelmed by the noise.

In this situation we are compelled to know the signal at some level of accuracy. Each model

is subjected to many approximations due to the difficulties in theoretical computations and
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also due to the uncertainties introduced by the measurements of the parameters used in

the model. In this section we acknowledge the standard deviations found in the catalog

of the binary stars (see Tab. 4.5) and we study how these uncertainties influence the final

response model from Section 4.3. Further, we utilize the matched filtering technique and

perform several synthetic tests to scrutinize the performances of this technique.

5.2 Synthetic tests

Our analytical model from Section 4.3 depends on the binary star parameters which are

obtained by measurements and naturally come with measurement uncertainties. The pa-

rameters modify either the amplitude or the amplitude and the frequency of our modeled

waveform. For the purpose of understanding how the parameter’s catalog uncertainties are

affecting our waveform we perform sensitivity tests (Hamby, 1995). They consist of defin-

ing the range of possible values for each parameter determined by the standard deviations

found in the catalog. For example, if p is the parameter and ∆p is the parameter’s standard

deviation we can define range as

rp = {p − ∆p, p + ∆p}, (5.1)

with the step ∆rp = 2∆p
n defined to have n values in the range. There are seven parameters

under consideration: the mass, the inclination angle, the declination angle, the right as-

cension angle, the distance, the polarization angle and the GW source frequency. For each

parameter and for each value from its defined range of values we calculate waveform and

by this generate a group of waveforms called a "bank of templates". We chose to work with

one GW source from the binary catalog and that is SDSS J0935+4411, because this source

has the largest amplitude based on Tab. 4.10. All waveforms within the bank of templates

are calculated for the first eight multiplets and for all five singlets within the multiplet.

We compute one day long signals with the sampling rate of 60 s and with the Greenwitch

Sidereal Angle defined for 2012 year (see Appendix A). We also work with the acceleration

response, because later on we combine this signal with the gravimetric data. The results

for each parameter are shown in Fig. 5.1, 5.2 and 5.3. The bank of templates for the mass,

the declination angle, the right ascension and the distance are showing the variability of

the waveforms amplitudes, with the mass parameters having the largest variability. The

bank of templates for the inclination angle, the polarization angle and the frequency are bit

more complex. Since templates for the inclination angle are defined in range from 0 to π

we see the influence of the h+,c and the h×,c scalar values (see (4.114) and (4.115)), because

for the defined range these scalar values change from one minimum to the other minimum

and from the minimum to maximum values, respectively. The polarization angle is acting
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through patter functions fm
+ (γ(t), α, δ, ψ) and fm

× (γ(t), α, δ, ψ) (see (4.143) and (4.144)).

The values of these functions for the range of the polarization angle from 0 to π, when

other angles are fixed (see Fig. 4.16 and 4.17), is showing us the difference between the

two pattern functions. This is further expressed in the bank of templates where the singlets

m = {−2, −1, 0} gradually merge. The bank of templates for the frequency parameter is the

most specific one, since here the amplitude and the frequency of each wavefrom is affected.

This is defined by the source-time function (see (4.133) and (4.134)).

Further, we define the sensitivity tests in the frequency domain by calculating expres-

sions
s1(f) = |w(f ; p − ∆p + ∆rp) − w(f ; pd)|

...

sn(f) = |w(f ; p − ∆p + n∆rp) − w(f ; pd)|,

(5.2)

where w stands for the waveform from the bank of templates and pd is the default parameter

value for which the range was calculated at the first place. The results for the sensitivity

tests for all seven parameters are shown in Fig. 5.4 and 5.5. On the horizontal axis we

have a frequency and on the vertical axis we either write the parameter for which the

signal was calculated (the inclination and the polarization angle) or we express differences

between the parameter for which signal was calculated and default parameter by calculating

relative error (the mass, the declination angle, the right ascension angle, distance, the GW

source frequency). This was necessary since the inclination and the polarization angles

are most of the time undefined, therefore the full range of all possible angles with non

repeated values is taken as input for these two parameters. As expected all the parameters

expect the frequency alter only the amplitude of the signals. Notice that scale for each

parameter is different, where lowest to largest scale correspond to the declination, the

distance, the right ascension, the mass, the inclination, the polarization angle and the

GW source frequency, respectively. If for the purpose of further comparison we exclude

results for the inclination and the polarization angle, we see that between the other five

parameters the frequency is the best constrained, however it also has the largest sensitivity.

Thus, even small change is producing a significant influence on the signal compared to

other five parameters. For the frequency sensitivity plot in Fig. 5.5 we see that the largest

deviations from the default signal generate even two frequency peaks, due to the fact that

two subtracted signals have two different frequencies. In addition, changing the frequency

between different templates also modify the amplitude of the templates, since amplitude

depends on the relative difference between the GW source frequency and the normal mode

eigenfrequencies. Also, for the frequency only one template within the bank of templates

has the largest amplitude, but this doesn’t need to be the template computed for the default
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parameter, which is use as a referent template when calculating the sensitivity tests. This

is apparent on the sensitivity results in Fig. 5.5, because the largest value (the most

dissimilar value) is not associated for the edge of the range. Further, the right ascension

and the declination angles seems to be defined with good accuracy in the catalog, but for the

purpose of this test we artificially set standard deviations to be 5 degrees. The declination

is better constrained, since it has smaller sensitivity.
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Fig 5.1: Bank of the acceleration templates for the mass (up), the inclination angle (mid-
dle) and the declination angle (bottom) parameter. The bank of templates for the mass
parameter is defined by the standard deviations from the catalog of the binaries, for the
inclination angle the full range of non-repeating angles is considered and for the declination
angle we artificially set standard deviation to be 5◦. The result is for SDSS J0935+4411
source.
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Fig 5.2: Bank of the acceleration templates for the right ascension angle (up), the distance
(middle) and the polarization angle (bottom) parameter. The bank of templates for the
right ascension parameter is defined by the standard deviations artificially set to be 5◦.
For the distance the standard deviations from the catalog of the binaries is used. For the
polarization angle the full range of non-repeating angles is considered. The result is for
SDSS J0935+4411 source.
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Fig 5.3: Bank of the acceleration templates for the GW source frequency parameter defined
by the frequency standard deviations from the catalog of binaries. The result is for SDSS
J0935+4411 source. We show all templates plot together (up) and the first 14 (middle) and
last 6 templates (bottom) separately.
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Fig 5.4: Sensitivities to the mass (up left), the inclination angle (up right), the declination
(down left) and the right ascension angle (down right) parameters of the GW source. The
default template is indicated with the zero relative error percentage, except for the inclina-
tion angle where zero indicates the value of the angle for which the template is calculated.
The result is for SDSS J0935+4411 source.
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Fig 5.5: Same as Fig. 5.4 for the distance (up left), polarization angle (up right) and the
GW source frequency (bottom) parameters. For polarization angle the same argument is
valid as for the inclination angle. The result is for SDSS J0935+4411 source.

The results for the sensitivity tests above are indeed interesting in sense that one can

better understand how the differences between templates are introduced due to the catalog

standard deviations. However, further in the analysis it is even more important to under-

stand how these uncertainties are affecting the main technique that is used for the search

of these signals in data. As mentioned in the introduction this technique is the matched

filtering. The introduction into the matched filter in Appendix B gives us a basic and com-

plete overview. To further address the problem of the signal detection it is necessary to

properly define and chose all parameters that determine the matched filtering performance.

This is highly dependent on the type of signal we are searching for. In our case the signal

we are working with is the simple periodic sinusoidal signal, which is different from the the

first ever detected GW signal, the burst sweep signal. The burst signals are the transient

phenomenon characteristic for the supernova explosions and final merging of the coalescing

binaries that release large amount of the energy in less than 1 second or just few miliseconds.
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In the case of the periodic signal it is important to track signal over a long period of time

(Maggiore, 2008). Fortunately, this is possible using the matched filtering even if the data

are not completely continuously recorded, since the matched filtering outputs are additive

(see relation (B.3)). Lets now define the parameters used in the matched filter analysis. As

an example we define a synthetic data d(t) where the input GW signal w(t) is the one for

SDSS J0935+4411 source and the input noise n(t) is the white Gaussian one. Next, within

the synthetic data d(t) of length M we define that signal of length N , which is not always

present M > N . To perform matched filtering technique we also need to define a template

wtemplate(t) of length L. We set that length of the template wtemplate(t) is smaller than

length of the signal w(t), thus N > L. Further, as stated earlier, since the recorded data

where we perform the actual search are not continuous to simulate the realistic case we also

need to define length of the window K where the matched filtering is performed. All these

four lengths are shown in Fig. 5.6. Additionally, we also set the noise standard deviations

relative to the GW signal amplitude, denoted as σN .

Fig 5.6: Synthetic data d(t) of length M = 5 days consisting of white noise n(t) of equal
length and GW signal w(t) for the SDSS J0935+4411 source of length N ≈ 9.5 h. Indicated
is also the template length of 5 periodic cycles L < 1 h and length of the window for which
the matched filtering is performed of size K = 2 days.

It is of great interest to understand how length M, L, K affect the matched filter output

when N is fixed. To perform these tests we need to set up an experiment defined in Appendix

B. It involves obtaining the probability density functions (PDFs) for the two hypotheses:

H0 when the target signal is absent in the data and H1 when the target signal is present in
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the data. For obtaining these PDFs we follow a specific protocol expressed with relations

d(1, . . . , M) = σN n(1, . . . , M) + w(1, . . . , N)

⇓

d1(1, . . . , K), d2(1, . . . , K), · · · , dk(1, . . . , K)

⇓

ρw,1(1, . . . , K), ρw,2(1, . . . , K), · · · , ρw,k(1, . . . , K)

⇓

ρ̄w,1 =
K

∑

i=1

ρw,1,i, ρ̄w,2 =
K

∑

i=1

ρw,2,i, · · · , ρ̄w,k =
K

∑

i=1

ρw,k,i

⇓

p = {ρ̄w,1, ρ̄w,2, . . . ρ̄w,k}

(5.3)

and illustrated in Fig. 5.7. Firstly, the synthetic signal w(t) of length N is inserted into

noisy time series of standard deviation σN and length M . The standard deviation of the

noise is chosen so that the signal is not completely buried in the noise and it is actually a

scaled value of the noise standard deviation from Peterson’s NLNM model (Peterson, 1993)

for Nyquist frequency 50 mHz σNLNM = 8.0538 · 10−9 m/s2. Secondly, the data d(t) of

length M is divided into k windows of length K. Thirdly, for each window we calculate

the matched filter output σw of length K defined by the expression (B.6) in Appendix B.

Besides data of length K, the input into the matched filter technique is a size L template

for which we perform the filtering. Following the definition of the matched filter (B.3) for

each window we perform a Fourier transform of the data and template and since L < K

we zero pad the template to match the size of data. The power spectral density function

Sn(f) is calculated using the input noisy time series σN n(t) and for each window k. The

summed matched filter outputs ρ̄w represents one statistically independent measurement

used to build up a set of the measurements p, which is later used for the calculating of the

PDFs for the two hypotheses, H0 and H1. The relative position of the two PDFs is telling

us how sensitive our matched filter technique is or, in other words, what is the probability

that our background noise is oscillating to the most expected value of our signal. Since

the PDFs are represented as histogram PDFs, the area of each bin represent the relative

number of observations and the sum of all bar areas is less than or equal to 1. Therefore,

the PDFs plots are also showing us what is the most expected value of our noise or signal

and what is the probability of the most expected values and also any value presented on

the histogram. The calculation of the PDFs requires large set of the measurements. This is

obtained by repeating the protocol 2500 times, for which we are still within the acceptable

time frame, by fixing all the parameters and by only changing the input white Gaussian
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noise time series. Complementary to the PDF plots we also calculate Receiver Operating

Characteristic (ROC) curves. All further results are commented in terms of the relative

position of the two PDF functions and the ROC curves.

In Fig. 5.7 the ROC curve show us that there is 99.79 % chance that the matched

filter analysis will be able to distinguish between two hypotheses for this specific set up.

Naturally, if we increase the noise standard deviation σN the matched filter performance

is deteriorating and this is shown in Fig. 5.8. We chose to work with the template that

is not the same length as the input signal N , because this is a situation one is dealing

when working with the observations. We expect that the nearly periodic signal from the

inspiral phase of the two binary stars lasts very long time (longer that the existing network

of sensor on the Earth) and it is impossible to have the template of the same length. For

the example in Fig. 5.7 we chose a template to be one periodic cycle of the signal and

in Fig. 5.9 we show results when the template length is equal to ten periodic cycles. We

see that the results are better for later example, because the two PDFs distributions are

more separated. However, the general probabilities of the two hypotheses are smaller and

our expected values are more spread, specially for the H1 hypothesis. Next, we consider

length of the window K. The size of this window determine the size of the smaller data set

on which we perform the Fourier and inverse Fourier transform within the matched filter

technique (see relation (B.7)). If length of the window is smaller than length of the signal,

K < N , or if signal is not completely captured within the size of this default window, then

the signal is physically divided in ≥ 2 windows. Since our statistical measurement is defined

as the sum over all signal-to-noise ratios within one window of length K, dividing the signal

in more than one window, generally decreases the sum value ρ̄w and shifts the PDF of the

H1 hypothesis left on the plot. Even so, this is also the case because we have less data

in the matched filter output and by summing this output the expected value is smaller.

Therefore, the PDF for the H0 hypothesis is also shifted on left. We also observe that the

general probability is better in later case, however the detection is still the same in both

cases (the relative position of the two PDFs are the same). This is demonstrated in Fig.

5.10. In conclusion, the choice of the template length L has a more important effect on the

general outcome of the matched filter technique than the choice of the window length K.

Further, we decided to work with M = 145 days, N =1 day, K = 1 day, L = 1 cycle and

σN = 5.1 · 10−21 m/s2.
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Fig 5.7: Protocol expressed by the relations (5.3). From up to down: the first row, the
synthetic signal w(t) of length N = 1 day inserted into the noisy time series σN n(t) of
the standard deviation σN = 5.1 · 10−21 m/s2 and length M ≈ 145 days constitute data
d(t) of length M ; the second row, data d(t) is separated in k = 145 smaller data sets of
length K = 1 day; the third row, represent the two matched filter outputs ρw of length
K for window when there is a signal and when there is no signal present; the fourth row,
the PDFs for the two hypotheses H0 (blue) and H1 (orange) for 2500 randomly generated
signals (left) and the ROC curve for these two probabilities (right).
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Fig 5.8: PDFs for the two hypotheses H0 (blue) and H1 (orange) (left) and the ROC curves
(right) for the three different noise standard deviations σN : 1.3 ·10−20 m/s2 (up), 2.0 ·10−20

m/s2 (middle), 3.2 · 10−20 m/s2 (bottom). All the other parameters are the same as in Fig.
6.1.
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Fig 5.9: PDFs for the two hypotheses H0 (blue) and H1 (orange) when template is one cycle
long (background) and ten cycles long (foreground) with all the other parameters same as
in Fig. 6.1.

Fig 5.10: PDFs for the two hypotheses H0 (blue) and H1 (orange) for K = 1 (background)
and K = 0.5 day (foreground) and with all the other parameters same as in Fig. 6.1.

Next, we test how the PDFs of the hypothesis H1 depend on the uncertainties found

in the binary star catalog by calculating the PDF for each waveform from the bank of
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templates of each parameter. In all further test the noise standard deviations is always the

same, therefore the position of the PDF of the hypothesis H0 is always the same. Meaning,

that further we can only study the relative position of the PDFs of the hypothesis H1.

Naturally, we would expect that any parameter that is changing the amplitude of our signal

is eventually affect the signal-to-noise ratio of the matched filter technique and therefore

also the relative position of the two PDFs. The results, for the two edge waveforms from

the bank of templates and for all seven parameters are shown in Fig. 5.11, 5.12 and 5.13.

From the figures we see that only three parameters out of seven (the mass, the inclination

and the frequency) have waveforms that notably effect the PDFs. Other parameters, even

though they do affect the amplitude they do not have large enough diversity within their

bank of templates to generate the PDFs that would differ from each others. The results

for the mass parameter are not surprising, since a larger mass binaries have larger signals

amplitudes which was already apparent on the bank of templates figure. The range of values

for the inclination angle set between 0 and π generate the minimum and the minimum and

maximum of the metric perturbation scalars defined by (4.114) and (4.115), respectively.

Therefore the outcome of the PDFs is also not surprising, however this result is not giving

us answer that we need and without the standard deviation associated with the inclination

measurement we cannot conclude anything further. The complexity of the frequency pa-

rameter expressed by the bank of templates is also transferred to the PDFs results. We can

notice that the most important factor for the PDFs calculating is the amplitude of the tem-

plate. The beginning of the bank of templates for the frequency parameter is characterized

by the smallest amplitude within this bank and this corresponds to the PDF function that

is the leftmost on the plot. The larger the amplitude the more PDF of the hypothesis H1

is right on the plot and thus we expect better detection.
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Fig 5.11: Two PDFs for the H1 hypothesis calculated for the edge templates (the left edge,
when parameter value is smaller than the default parameter is denoted by blue; the right
edge, when parameter value is bigger than the default parameter is denoted by orange) in
the bank of templates for the mass (up), the inclination angle (middle) and the declination
angle (bottom) parameter.
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Fig 5.12: Same as Fig. 5.11 just for the right ascension angle (up), the distance (middle)
and the polarization angle (bottom) parameter.
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Fig 5.13: Same as Fig. 5.11 just for the frequency parameter.

Final test performed involve testing how the PDFs are behaving when the signal w(t)

we are searching for and template wtemplate(t) we perform search with do not match. We

again work with the banks of templates of the seven parameters. We set that the default

template we perform the matched filtering with is always the first template within the bank

of templates for each parameter. The results are shown in Fig. 5.14 and 5.15. They are very

similar for all seven parameters, lacking any shift to the right or left in the plot. We only

notice that the height of the PDFs change. Overall, the results signify that the matched

filtering technique is nonsensitive to the uncertainties associated with the parameters from

the binary catalog. This is encouraging, since it means that we can still perform search for

the signals in data even if we are not sure that the parameters characterizing the template

are same as the parameters of the signal. This is valid within the range of the standard

deviations found in the catalog.
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Fig 5.14: PDFs calculated for each template from the bank of templates for the case when
the waveform w(t) and the template wtemplate(t) do not match for a) the mass, b) the
inclination angle, c) the declination angle, d) the right ascension angle.
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Fig 5.15: Same as Fig. 5.14 just for a) the distance, b) the polarization angle, c) the GW
source frequency.

Further, we perform the search for the signal using the matched filtering technique in

real observations.

5.3 Observations

The matched filtering technique is also applied using the observations by inserting the

synthetic signal in the observations. We chose to work with the gravimeter data from

the superconductive gravimeter placed at the most quiet station which is the Black Forest

Observatory (BFO), positioned in Schiltach in Germany (43.33◦, 8.33◦). To find the most

quite data set at the BFO we first look up for the year, within the time range from 1998

to 2017, that has the least number of earthquakes. The finally chosen year is 2012 and the
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plot of the earthquake distribution through out the year is shown in Fig. 5.16.

Fig 5.16: Distribution of the earthquakes of magnitude larger than 6.5 for year 2012 at the
Black Forest Obsrvatory station, Germany (43.33◦, 8.33◦).

Next step is to select days without the earthquakes and that have, in general, very low

power spectral density (PSD). To obtain this we first remove the earthquakes by removing

the direct P and S phases; second, we divide our one year long time signal into one day

long time signals; third, we calculate the PSD for each one day long time signals using the

Welch average periodogram method Welch (1967); fourth, we compute the 1st, 25th, 50th

and 75th percentile of all previously calculated PSDs by considering only the frequency

band from 1 to 3 mHz. The final percentiles together with New Low Noise Model (NLNM)

Peterson (1993) are shown in Fig. 5.17. We finally chose to work with the 25th percentile,

therefore the remaining data set, shown in Fig. 5.18, consists of 58 days. The data are

are also high-pass filtered with a cut-off frequency at 0.1 mHz to remove tides and other

long-period effects. We also correct the atmospheric pressure effects by using a nominal

admittance of -3 nm/s2/hPa. It is important to emphasis that after the data processing

the normal modes and other periodic signals are still present in the data and we can see

their presence in Fig. 5.17. Afterwards, some days are removed by subjective reasoning and

finally we are left with 47 days.
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Fig 5.17: PSDs of the one day long signals for year 2012 at BFO station with 1st, 25th,
50th and 75th percentile marked together with the NLNM.

Fig 5.18: Same as Fig. 5.17 just for 25th percentile only.

It is clear from the start that inserting a original synthetic signal from the section above
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into the observations means that the synthetic signal will be completely buried with noise,

since there is around eleven orders of magnitude difference. Therefore, it is expected that

the matched filtering is not going to work with the proposed set up. However, we are

still interested in using the observational data because the noise is not completely white

Gaussian anymore. Considering this fact, the question is, whether the usual detection using

the matched filtering is more complicated with non-white noise. To test this, we firstly adopt

the matched filter parameter from the synthetic test, that is we keep N = 1 day, K = 1

day, L = 1 cycle and now M = 47 days. Secondly, we scale the noise standard deviations of

the observational data to match the standard deviation of the synthetic signal, so that their

ratio is one. Thirdly, we scale the white noise time series so that its standard deviation is

equal to the one of observational time series, thus their ratio of standard deviations is also

one. Fourthly, we simultaneously apply the matched filtering on the data where we inserted

synthetic signal into white Gaussian noise and on the data where our signal is inserted into

non-white observational noise. To be able to use the matched filtering technique with non-

white noise we need to modify the one-sided PSD function S(f) in relation (B.3). For this

purpose we redefine S(f) to be a constant value and calculate it using a definition of the

PSD for the white noise defined as PSDnoise = σ2T0, where σ is the noise standard deviation

and T0 is the sampling rate. The results of this test are shown in Fig. 5.19 for white noise

and in 5.20 for observational noise for the smaller window where we inserted the synthetic

signal. The matched filter output for the observational noise produces satisfactory output,

however one needs to remember that we use different definition of function S(f).
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Fig 5.19: Synthetic signal inserted into white noisy time series with σN = 7.5 · 10−21 m/s2

(above) and the matched filter output (below) for window where the signal is inserted.
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Fig 5.20: Synthetic signal inserted into observational noisy time series scaled with scalar
1.2 · 1010 (above) and the matched filter output (below) for window where the signal is
inserted.

The performed analysis on one station in general would not be enough to detect an

event. To be able to recognize false events from the true ones, it would be preferable to

perform search on several stations, to look for the coincident events. Since we can use

the synthetic response from the Section 4.2.5 to generate templates for different station in

different time of the year, the later idea is manageable, however the appropriate data sets in

the mHz regime on Earth do not exit. This represent the biggest downside of this research

on the Earth.

5.4 Conclusion

The above analysis showed us that when performing the search for the GW from the binary

stars, in the mHz frequency band, some of the parameters defining the GW response model

influence the general rate of the detection. For example, the larger mass means the better
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detection. However, more importantly, this study showed us that even if the parameters

of our model are not completely the same as the parameters of the signal in data, we still

have a good chance of detecting it. And this works only if the differences are within the

the standard deviations found in the catalog of the binary stars. Meaning that the model

generated using the parameters found in the catalog are satisfying, at least for the first stage

of the search when one only needs to identify the possible GW events. Moreover, we also

showed that the GW response model is crucial to understand the probability of the detection

rate. Because having a realistic model and also the expected noise level in the data one can

inquiry the threshold for which one would expect the detection. The further steps in this

search, not covered in this study, would be to statistically test the obtained events above

the predetermined threshold and then also to study the exact or the true parameters of the

binary stars Abbott et al. (2016). The search could be improved by defining the optimal

matched filtering parameters, for example using the longer template that is also consistent

with the data length. The model could be also improved by considering the spindown of

the inspiral phase of the binaries Maggiore (2008). However, this might be more important

for the final stage of the search, when one requires the exact binary star parameters.

Considering the detection of the binary GW signal on Earth the conclusions are con-

tradictory. There are many advantages, but only one drawback. The existing network of

gravimeters and seismometers, that has been operating for over a two decades now, offers

a possibility to look for many coincident detections around the globe and to follow the

signal over a long period of time. This is also possible because our model is dependent on

the specific position on the surface and it contains the rotation of the Earth. However, in

practice this is not feasible since the noise in the data is substantial. Therefore, this study

might have better opportunity in the space, but more about the perspective is discussed in

the chapter Conclusion and Perspectives 7.
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Chapter 6

Uncertainties in Normal Mode
Studies

In the context of the normal mode studies the usual targets are normal mode eigenfrequen-

cies, Q-factors or the splitting function coefficients. There is no standardized technique used

for obtaining those values. We measure the normal mode parameters after an earthquake

and usually Fourier transform is sufficient, since it enables us to see which modes are being

excited.

In this chapter we discuss how one can obtain information about the Earth structure

within the normal mode studies and what are the difficulties and uncertainties one encoun-

ters when measuring the frequencies and Q-factors of the normal modes.

Results of this Chapter are published in Majstorović et al. (2019a) (link).

6.1 Introduction

Until the present day, the interior of the Earth represents a great challenge in geophysics.

The normal modes studies have long provided some of the essential discoveries. For ex-

ample, they contributed to building spherically symmetric Earth models (Dziewonski and

Anderson, 1981) as well as 3D models of lateral heterogeneities (Ritsema et al., 2011; Moulik

and Ekström, 2014; Koelemeijer et al., 2016). However, even though normal mode stud-

ies contributed in the estimation of the lateral density variations (Ishii and Tromp, 1999,

2001; Trampert et al., 2004), the resolution of density is still controversial (Resovsky and

Ritzwoller, 1999; Romanowicz, 2001; Kuo and Romanowicz, 2002; Al-Attar et al., 2012;

Akbarashrafi et al., 2017). During the years many methods were developed, from the

well-established techniques to retrieve eigenmodes frequencies and quality factors, such as

stripping (Gilbert, 1971; Ritzwoller et al., 1986) and stacking methods (Courtier et al.,

2000). Further, techniques like the autoregressive and non-linear fit of a resonance func-

tion have also been widely used (e.g. Chao and Gilbert, 1980; Rosat et al., 2005; Ding and
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Shen, 2013a), while splitting function coefficients are usually determined through iterative

non-linear spectral fitting (Woodhouse and Giardini, 1985; Ritzwoller et al., 1986, 1988; Gi-

ardini et al., 1987, 1988; Resovsky and Ritzwoller, 1998; Deuss et al., 2011, 2013). For more

complete insight into existing techniques the reader is referred to the papers by Masters

and Gilbert (1983), Ding and Shen (2013a), Ding and Chao (2015a). Despite these various

studies and methods substantial uncertainties and inconsistency in the singlets eigenfre-

quencies and splitting function coefficients measurements still exist (Pachhai et al., 2016;

Akbarashrafi et al., 2017).

A reason for this is the inherent problem of spectral leakage and mode-mode interference,

which introduce a systematic bias in spectral peak measurements in frequency domain and

consequently also in the split singlet frequencies measurements (Guoming et al., 1983). This

issue has been more or less solved by introducing data tapering, however this solution is

more efficient for well isolated low-frequency modes (Dahlen, 1982a). The next essential

problem is the presence of noise in recorded displacements. Substantial studies have been

done on the estimation of station noise levels (e.g. Rosat et al., 2003; Rosat and Hinderer,

2011) and noise sources (Widmer-Schnidrig, 2003, and references therein). Nevertheless,

the question of how the noise deteriorates estimates, how it introduces bias in methods and

what is the level of sensitivity of the methods are still important to understand.

The calculation of realistic normal mode displacements is another problem in normal

mode studies. The problem is twofold, since one needs to truncate the infinite normal

mode set to a finite one and also accurately implement the mode coupling theory (Dahlen,

1968, 1969; Woodhouse and Dahlen, 1978; Woodhouse, 1980, 1983; Woodhouse and Giar-

dini, 1985). It is known that self- and group-coupling approximations introduce biases over

the full-coupling approximation (SC, GC, FC, respectively) (Deuss and Woodhouse, 2001,

2004; Irving et al., 2008, 2009; Al-Attar et al., 2012; Yang and Tromp, 2015; Akbarashrafi

et al., 2017). These theoretical errors cannot be ignored for the frequencies higher than

1 mHz, where FC calculations are necessary to obtain sufficiently accurate spectra (Yang

and Tromp, 2015). They also have for sure affected earlier studies where the measurements

substantially depend on the comparison of the synthetically calculated normal mode dis-

placements with the observations. However, since in this study we do not implement those

measurements, we just acknowledge these theoretical errors as being significant.

There are still important issues in normal mode studies, that have been acknowledged,

but not properly scrutinized. In this study the focus is set on the inevitable presence of

noise in the records and the number of stations used during the measurement process. For

example, for the signal to noise ratio (SNR) ≤ 50 the aforementioned effects have higher

errors than theoretical errors introduced by the SC, GC and FC approximations. Therefore,
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the objective of this paper is to measure sensitivity and to test performance of the commonly

used methods under the influence of noise and number of stations. The tested methods are,

the stacking method, called the optimal sequence estimation (OSE) introduced by Ding

and Shen (2013a), and the autoregressive method for the estimation of normal mode’s

parameters introduced by Chao and Gilbert (1980)(ARFD80).

Motivated by the previous findings, we decide first to test these methods on synthetic

seismograms. Experiments contain two main parts, one is the gradually addition of noise in

my records and the other part is the usage of different networks in OSE. The purpose of both

parts is the quantification of noise and network effect on the estimates of eigenfrequencies,

quality factors and amplitudes. The importance of noise effect is implicit, on the other hand

the network effect is linked with the OSE feature. Theoretically, the measured frequency

of a normal mode should be the same anywhere on the Earth and the usage of different

station network should have the same results. Consequently, if one wants to measure the

split frequencies of specific modes one only needs to consider those stations which are not

located on the nodal lines of the eigendisplacements (Masters et al., 2000; Häfner and

Widmer-Schnidrig, 2013). Thus, the second part of this work aims at testing whether any

systematic bias is introduced by the network effect. We also validate the accuracy of my

complex eigenfrequency estimate graphically using the phasor walkout method (Zürn and

Rydelek, 1994). Furthermore, once measured, the split eigenfrequencies are used to retrieve

the splitting function coefficients using a perturbation theory of the first-order (Dahlen,

1974; Ritzwoller et al., 1988; Widmer et al., 1992; Häfner and Widmer-Schnidrig, 2013).

Since we are interested in the method’s performances my tests include only one source

mechanism, also only one multiplet chain is used at the time and we focus on the low-

frequency modes, where one can use the SC approximation. The interest in the highly pre-

cise measurement of the low-frequency split eigenfrequencies is valuable, since it is known

that any existing density model should fit split frequencies perfectly (Widmer-Schnidrig,

2003). For suitable candidates, we chose to work with the lowest frequency multiplet

chain 0S2 − 0T2 − 2S1 − 0S3, spanning from 0.309 mHz to 0.468 mHz, and the lowest

frequency multiplet chain where there is a significant interference between adjacent multi-

plets, 0T5 − 2S2 − 1S3 − 3S1, spanning from 0.928 mHz to 0.943 mHz. For the purpose of

analyzing complex eigenfrequencies and splitting function coefficients the specific protocol

is established (Fig. 6.1): firstly, we stack records using OSE stacking method (Appendix D);

secondly, we calculate complex eigenfrequencies, quality factors (further on Q-factors), and

amplitudes of target singlets using ARFD80 method (Appendix C); thirdly, we check the

validity of eigenfrequency estimates using the phasor walkout method (Appendix E); and
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finally from the eigenfrequencies we estimate splitting function coefficients. The real obser-

vations results are also presented, based on long period seismometer and superconducting

gravimeter (SG) data after six earthquakes of magnitude larger than 8.3, for multiplets

0S2, 2S1, 0S3 and 3S1.

NETWORK NOISE

RESPONSE FUNCTION FOR n,l,m

f± f  Q± Q  

cst  

OSE

ARFD80 + bootstrap

P.W. + R2 test

Fig 6.1: Diagram of the used protocol, where the input data are in yellow color, output
data in blue and used methods in purple. The input data, the network of stations and noise
level, are used to obtain response functions for specific normal mode described by radial n,
angular l and azimuthal m order in the stacking process by OSE method. Further, from
each function the complex frequency and Q-factor are estimated using ARFD80 method
and phasor walkout is used to validate the estimated values. Finally, from the obtained
singlets complex frequencies the splitting function coefficients are estimated.

6.2 Synthetic Experiments

To test how the methods are influenced by different noise levels and station distributions, ex-

periments are conducted by simulating records using real earthquakes parameters. Synthetic

seismograms are calculated for a 3D Earth model by means of normal mode summation and

perturbation theory. Reference basis functions, eigenfrequencies and the associated eigen-

functions, for a spherically symmetric, non-rotating Earth model are obtained for PREM

model using MINEOS software package (Woodhouse, 1988) with a cut-off frequency of 80

mHz. Perturbations due to rotation, ellipticity and lateral heterogeneities are introduced by

computing the splitting matrix Hk for the GC approximation (Dahlen and Tromp, 1998, p.

643) using S40RTS 3D Earth model (Ritsema et al., 2011). Therefore, shear wave velocity

perturbation δlnVs is calculated from S40RTS model, where compressional wave velocity

perturbation are scaled by δlnVp = 0.5δlnVs and density perturbation by δlnρ = 0.3δlnVs.

Source vector is calculated using the Global CMT Catalog solutions (Dziewonski et al.,

1981; Ekström et al., 2012).
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The analyses are done for the spheroidal modes of two multiplet chains, namely 0S2 −
0T2−2S1−0S3 and 0T5−2S2−1S3−3S1, that have frequencies < 1.5 mHz. Target modes are

considered in the GC approximation, that is the multiplets within the chain were coupled

and isolated from all the other modes (Deuss and Woodhouse, 2001).

For the 0S2 − 0T2 − 2S1 − 0S3 chain we generate seismograms for the magnitude 9.0

Tohoku earthquake that occurred on March 11, 2011 at 05:46 UTC with the epicenter

approximately 70 kilometers east of the Oshika Peninsula of Tohoku. Station database is

built from the Global Seismograph Network (GSN - IRIS/USGS) consisting of 81 stations.

From this general network we define 4 groups of stations, namely "full" network which

contains all stations (81 stations), "northern" network with stations in northern hemisphere

(53 stations), "southern" network with stations in southern hemisphere (28 stations) and

"selected" network which contains only 10 stations chosen for specific reasons (see Fig. 6.2),

explained further in the text.

Fig 6.2: Station database build from Global Seismograph Network, where 4 group of sta-
tions are: "full" network of 81 stations (circle mark), "northern" network with 53 stations
in northern hemisphere (blue color), "southern" network with 23 stations in southern hemi-
sphere (red color) and "selected" network which 10 stations (underlined).

Noise is generated using a random function that draws scalars from the standard normal

distribution with zero mean and variance one and is added to the synthetic time series. If

the station displacement is denoted by xs and if the noise function is denoted by xn the

simple relation between the two is established by

xs+n = xs + σnxn, (6.1)

131



σn being the noise standard deviation with the acceleration unit nm/s2, which we gradually

increase in the analysis from 1 to 10. For every experiment of specific station network and

noise level the results are estimated frequency, Q-factor, amplitude, OSE resonance function

and the phasor walkouts with associated R2-tests of the target singlet.

From the three spheroidal modes in the 0S2−0T2−2S1−0S3 chain, we show results for 0S2

and 2S1, while the results for 0S3 are more or less similar to the ones for 0S2. To successfully

analyze 0S2 one needs to use at least 4 hours of data to separate this multiplet from the next

multiplet in frequency domain, 2.5 days to separate singlets within the multiplet, while the

1.1 Q cycle is 19 days for having the optimal SNR (Dahlen, 1982a). We choose 15 day-long

records which are zero-padded till 90 days to obtain a frequency resolution of order 10−8

Hz with a sampling rate of 10 s. After the 2011 event, amplitudes of m = ±1 singlets are

better excited than amplitudes of m = ±2 singlets and specially compared to m = 0 (Ding

and Shen, 2013b). For this reason, the selected network contains only 10 stations for which

the m = 0 singlet is visibly excited.

Since 0S2 mode has 5 singlets, the full experiment for 4 different network of stations

and 10 noise levels consists of 200 frequency estimates, 200 Q-factor estimates, 200 OSE

resonant functions, 1000 phasor walkout estimates (since we test for 5 frequencies) and

1000 associated R2-tests. Considering that all results and conclusions can be drawn from the

results of only one singlet, we choose to do so. The results for the best excited singlet m = 1

of 0S2, noted 0S1
2, are in Fig. 6.3. The results, quite straightforward, confirm that when

noise is gradually added the SNR decreases and standard deviations increase. Furthermore,

the results for the full network are overall foremost while the estimates have the smallest

standard deviations and relative errors. Besides, estimates become more scattered around

the true synthetic value (dashed line) with noise increment. However, not all frequency

estimates contain the true synthetic values within their standard deviations. Conclusions

drawn for the frequency estimates are also applicable to the estimates of Q-factors (see Fig.

6.4). In the case of Q-factors, relative error for full network is not more than 6.2 % (σn = 9

nm/s2) while it increases to 50 % (σn = 9 nm/s2) for selected network. The variability of

the OSE resonance functions due to different networks and noise levels is shown in Fig. 6.5

where we plot the maximum and the minimum of the resonance function assemblage. The

four out of five singlets are in all experiments nicely excited and not buried in the noise,

however this is not the case for the 0S0
2 singlet.

Further, to better understand our results we examine the phasor walkout for five test

frequencies fs = {fe − 2σf , fe − σf , fe, fe + σf , fe + 2σf } and three cases: 1) full network

with noise level σn = 1 nm/s2 and relative error 1.4 ppm 2) full network with σn = 9

nm/s2 and 66.6 ppm (the largest for this network, frequency with its standard deviation
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does not include the synthetic value), 3) selected network with σn = 8 nm/s2 and 251.1 ppm

(the largest for the whole data set). The results shown in Fig. 6.6 demonstrate that the

phasor walkout method successfully distinguishes between five different test frequencies and

additionally indicates that the centre one is the true frequency of the stacked signal when the

noise level is only σn = 1 nm/s2. This encourages us to further use this method, when the

noise levels are higher. Moreover, mutual comparison of these three cases demonstrates how

noise deteriorates our estimates: with more noise our phase is consistently abrupt causing

twisting of the walkout pattern, which nevertheless has the propensity to straightness.

However, we can expect that in some cases, where this twisting is more prominent, the

R2-test will be difficult to accomplish. For the second case we can ask ourselves: why

do the estimated frequencies not include the true synthetic value within their standard

deviations? Our goal is to understand where the bias is coming from, OSE or ARFD80

method. From the theoretical background, if the ARFD80 method failed in estimating

frequency, which means that the bias is not coming from the stacking, by plotting the

phasor walkout one should obtain a curved line for fs = fe. However if the estimated

frequency is the true frequency of this harmonic signal one should have a straight line. In

the latter case, it means that the OSE method introduced a bias by producing a slight

peak shift of the singlet due to noise input. The results in Fig. 6.6 confirm that the bias is

introduced with OSE method because the R2-test is the highest for the central frequencies

indicating that ARFD80 method estimated true frequency of stacked signal. Additionally,

we can confirm that the bias introduced with OSE method is generated by the noise input,

since the estimates of eigenfrequencies without added noise are not biased. Furthermore,

observing the phasor walkout graphs and R2-tests of the three cases it is evident that the

first case has the highest R2-test, while the third case, the lowest R2-test, meaning that the

first case holds the highest linearity and the third one the lowest.
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Fig 6.3: Synthetic experiments for 0S1
2 singlet conducted for four station distributions: 1)

full (the first row), 2) northern (the second row), 3) southern (the third row), 4) selected
(the fourth row) networks. Figures on the left represent the estimated frequencies versus
SNR for ten different noise levels. Figures on the right represent the relative errors of
frequencies with regard to synthetic value (dashed line) versus SNR for ten noise levels.
Be careful, the vertical scales of the left-side figures are optimized, thus the full and the
northern networks have the same scale and the southern and the selected networks too.
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Fig 6.4: Synthetic experiments for 0S1
2 singlet conducted for four station distributions: 1)

full (the first row), 2) northern (the second row), 3) southern (the third row), 4) selected
(the fourth row) networks. Figures on the left represent the estimated Q-factors versus SNR
for ten different noise levels. Figures on the right represent the relative errors of Q-factors
with regard to synthetic value (dashed line) versus SNR for ten noise levels.
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Fig 6.5: Variability of the OSE resonance functions due to four different networks and ten
noise levels for the 0S2 mode.
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Fig 6.6: Fourier Transform of OSE stacked signals (left) with associated phasor walkouts
and applied R2-test values (right) for five test frequencies with fe being the estimated
frequency of stacked signal on left and σ the standard deviation. Three cases are shown:
full network with noise level σn = 1 nm/s2(top), full network with σn = 9 nm/s2 (middle)
and selected network with σn = 8 nm/s2 (bottom). Results are for 0S1

2 singlet.
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Studying the relationship between relative errors and SNRs within all experiments con-

ducted for the 0S2 multiplet, thus considering all singlets, one can notice that for each SNR

one can associate a range of possible relative errors. Meaning that, it does not necessarily

means that solution with larger SNR has smaller relative error and thus better estimate.

Considering this fact, we decide to compare relationship between standard deviations esti-

mated with the bootstrap method and the one estimated from the maximum relative error

from all our experiments (i.e. 200 experiments for 5 singlets, 10 noise levels and 4 networks)

for a specific SNR. In Fig. 6.7 we plot the aforementioned standard deviations versus SNR

in log scale. Standard deviations estimated from maximum relative errors are obtained

using the formula

σr.e.(SNR) = max r.e.(SNR)fsyn, (6.2)

where max r.e.(SNR) is, as stated before, a maximum relative error for the specific SNR.

Surprisingly, both estimates of standard deviations are exponentially dependent on SNR.

However, standard deviations, recalculated from the relative errors, are for most cases higher

than the bootstrap standard deviations. This implies that for most SNRs, especially for

the lower values, we can have bootstrap standard deviations which are smaller than the

actual differences between synthetic values and estimated values. We can conclude that

even though we have good precision on our estimates we have poor accuracy due to the

biases introduced by all used methods.

Fig 6.7: Estimated frequency bootstrap standard deviations (black line) and standard devi-
ations estimated from frequency relative errors (gray line) versus SNRs for all experiments
of 0S2 multiplet.

From the built catalog consisting of frequencies and their associated standard deviations

for each singlet within the 0S2 multiplet using Eq. (3.30) we can calculate the splitting
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function coefficients associated for each network and noise level. For that we need the

values of a, b and c parameters and of the degenerate frequency ω̄k. The parameters a, b,

and c are estimated by fitting a parabola to the synthetic singlets frequencies for a rotating

hydrostatic ellipsoidal Earth model derived from PREM. Please note that these parameters

could also be computed directly using explicit formulas form Dahlen and Sailor (1979). ω̄k

is a degenerate eigenfrequency of the spherical non-rotating PREM model. In the next step

we subtract the first term in (3.29) from singlet frequencies to arrive at

ωresidual
m = γmm

20 c20 + γmm
40 c40, (6.3)

because for 0S2 azimuthal order is 2, thus s = 2, 4. Since it was found from some studies

of aspherical structures that the degree 2 structure is much larger in amplitude than the

degree 4 (Ritzwoller et al., 1986; Widmer et al., 1992) we decide to fit only for degree 2

structure in (6.3) (for example, for the S40RTS model c20 is 6 times larger than c40). The

real coefficient γmm
20 is calculated using the SC approximation theory (Dahlen and Tromp,

1998). The results for c20 splitting function coefficients are shown in Fig. 6.8. They are

calculated using non-weighted and weighted ordinary least squares method where weights

are obtained from frequency standard deviations. To be consistent with observed values,

we estimate the referent value (dashed line in Fig. 6.8) in the same manner. That is,

from the synthetic singlet frequencies, calculated for a rotating Earth model with lateral

heterogeneities (S40RTS model), we first remove the effects of rotation and ellipticity using

previously estimated a, b, and c parameters and next we fit just for c20 using relation

(6.3). We are aware that this procedure may introduce a small bias in our referent value,

however this is necessary for the value to be comparable with the measured ones (due to

the diagonalization of the splitting matrix (Dahlen and Tromp, 1998, p. 650)).

It is usually expected that the weighted solutions have overall better results than the

non-weighted solutions, however Fig. 6.8 shows that the non-weighted solutions have similar

results as weighted solutions specially when SNR is large and there are enough stations.

As analysis progresses the non-weighted solutions become expectedly more deteriorated

and off balanced. It is important to emphasize that each splitting function coefficients

is obtained considering five biased frequencies and their associated standard deviations,

however it seems that this effect is the most relevant for all non-weighted solutions and for

weighted solutions in case of 10 stations, impacting both the structure coefficients and their

associated standard deviations. The latter one is evident due to the fact that the standard

deviations are in some occasions uncorrelated with the number of stations used or noise

level amplitude (Fig. 6.8). Besides, it is encouraging that weighted c20 coefficients are close
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to and contain synthetic values within the estimated standard deviations for most of the

experiments.

Fig 6.8: Splitting function coefficient c20 inverted from eigenfrequencies estimated in syn-
thetic experiments for 0S2 multiplet considering four different station distributions and ten
noise levels.

For comparison, let us consider now the case of the m = −1 singlet of 2S1 multiplet. In

this case the selected network contains stations where all three singlets of this multiplet are

excited. For the analysis we use around 12 day time-series, which are zero padded to 72 days.

The conclusions made for the 0S2 multiplet are valid for this multiplet too. However, since

this mode is poorly excited, the number of stations used in the stacking method becomes

more critical than for 0S2. During the experiments, not for all combinations of noise levels

and station distributions singlets emerge during the stacking. The relative errors become

quite large compared to 0S2, ranging from 56 ppm (full network) to 323 ppm (selected

network) for σn = 1 nm/s2 and phasor walkouts become much more complex with more

loops indicating the higher noise influence (Fig. 6.9). During the analysis the number of

used stations and associated records’ SNR become more relevant. If we have two stacked

signals with the same SNR, one of them could be built for the singlet with less excited

amplitude, more stations and lower noise level, and the other stacked signal could be built

for the singlet with better excited amplitude, less stations and higher noise level. Even

though we end up with the same SNR, the ARFD80 method frequently fails in estimating

the true frequency of stacked signal for the first case according to the R2-test. Instead, the

estimated frequencies are within the estimated standard deviations. Hence, it seems that
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ARFD80 is sensitive to the singlet starting amplitude to be stacked, that is the method is

becoming unreliable when starting signals of singlets are buried in noise.

Fig 6.9: Fourier Transform of OSE signal (left) with associated phasor walkout and R2-test
values (right) for five test frequencies with fe being the estimates frequency of stacked signal
on left and σ the standard deviation. Results correspond to selected network with σn = 1
nm/s2 for 2S−1

1 singlet with SNR of 5.8.

The performances of the used methods are tested on the higher frequency multiplet

chain 0T5 − 2S2 − 1S3 − 3S1, characterized by more prominent mode-mode interferences.

It is known from the PREM model prediction that three modes 2S2, 1S3, 3S1 have very

different Q-factors, but similar frequencies. Their Q-factors are approximately 96, 283, 827

and frequencies 937.85 µHz, 939.83 µHz, 943.95 µHz, respectively. The frequency difference

between 2S2 and 3S1 is 6.1 µHz, which means that one needs 2.8 days to separate them in

frequency domain, but the 2S2 has the Q-cycle duration of 1.18 days, thus it is impossible

to observe this mode without interference of 3S1 and 1S3. The quickly decaying 2S2 mode

is always predominate by slower decaying 3S1 and 1S3 modes. The observation of the 1S3

mode has the similar issues due to the presence of 3S1 mode. The measurement of 3S1 is

easier than the other two, however the existing overlapping with 1S3 mode introduces the

contamination in the measurement of the 3S1 splitting frequencies (Rogister, 2003; Roult

et al., 2010; Shen and Wu, 2012; Ding and Shen, 2013a,b; Chao and Ding, 2014). Although

there are several studies which measured the 3S1 frequencies (Roult et al., 2010; Shen and

Wu, 2012; Ding and Shen, 2013a,b; Chao and Ding, 2014) only in the work by Chao and

Ding (2014) the frequencies of all three modes 2S2, 1S3, 3S1 are recovered using spherical

harmonics stacking (Buland et al., 1979) in the SC approximation.

In the present study, the aforementioned characteristics of this chain prevent us from

conducting the station distribution analysis, while it is already difficult to find combination
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of stations where some singlets are excited above noise level. Once the best combination

of stations has been found we perform noise analysis. The OSE method turns out to be

less successful in generating isolated singlets than in the case of the 0S2 multiplet chain

and the phasor walkouts consistently generate beating patterns indicating the existence of

neighboring singlets. The example for the relatively successful OSE resonance functions for

1S3 multiplet is showed in Fig. 6.10. The figure is showing the comparison between the

synthetic resonance functions obtained for the cases of the GC approximation considering

0T5 − 2S2 − 1S3 − 3S1 and the SC approximation considering only 1S3.

Fig 6.10: Comparison between the synthetic resonance functions obtained for group coupling
(solid line) and self coupling (dashed line) approximations for the singlets of 1S3 multiplet.

In our knowledge there is only one study that claims that 2S2, 1S3, 3S1 multiplets can
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be successfully recovered in the SC approximation. According to the recent work OSE is

successfully performing for the higher frequency modes in the SC approximation (Zeng and

Shen, 2017) and in the GC approximation (Zeng and Shen, 2018), however Fig. 6.10 seems

to suggest us that OSE is not working sufficiently good for the coupled multiplets in the SC

approximation. For the 3S1 multiplet there are more studies which claim that this multiplet

could be recovered in the SC approximation (Roult et al., 2010; Shen and Wu, 2012; Ding

and Shen, 2013a,b).

6.3 Observations

The methods and procedure conducted on synthetic data are now applied to the long-period

seismometer and superconducting gravimeter data recorded after the six latest earthquakes

of magnitude greater than 8.3. Seismogram database is built considering earthquakes with

epicenters off the west coast of Sumatra island, Indonesia in 2004, off the coast of central

Chile in 2010, off the Pacific coast of Tohoku, Japan in 2011, near the Indonesian province

of Aceh in 2012, in the Sea of Okhotsk in western Pacific Ocean in 2013 and offshore from

Illapel, Chile in 2015. The long-period STS-1 and STS-2 seismometer data are requested

from IRIS service for LHZ channel with 125 stations in total. The RDseed software is

used to read SEED volumes and to retrieve SAC files. Next the Python package Obspy

(Beyreuther et al., 2010; Megies et al., 2011; Krischer et al., 2015) is used to perform

instrument deconvolution and finally the TSoft software (Van Camp and Vauterin, 2005) is

used to clear time series of glitches, small gaps etc. The accepted records are decimated to

60 s after low-pass filtering and cut 5 hours after the earthquake. 12 day-long time records

(rarely 10 days due to deteriorated time series) are then used. Seismometer data are not

corrected for the atmospheric pressure effect because most of the barometric data is missing.

Thus to be consistent during the analysis we skip this part. Gravimeter database is built

considering the same earthquakes and downloaded from the IGETS website (http://igets.u-

strasbg.fr/). The downloaded files are first merged, then the instrumental and pressure scale

factors are applied. Further, the gaps and spikes are fixed and finally we apply a high pass

least-squares filter with a cut-off frequency of 0.1 mHz to remove tides and other long-period

effects. Atmospheric pressure effects are finally corrected using a nominal admittance of -3

nm/s2/hPa (Zürn and Widmer-Schnidrig, 1995).

In view of the synthetic experimental results we base our analysis of observed data on

the SNRs. That is, after choosing the target singlet we estimate SNR from each seismogram

and gravimetric record and organize them by decreasing SNR and eventually choose the

first half of the records, with the highest SNRs. Chosen records are stacked and the SNR

of this newly stacked signal is calculated, which we call SNRbase. In the next steps, we
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either add or remove one signal from the chosen first half, perform again the stacking and

calculation of the SNR of newly stacked signal, which we call SNRbase + 1 if we add signal and

SNRbase − 1 if we remove signal. If either SNRbase + 1 > SNRbase or SNRbase − 1 > SNRbase

we continue adding or removing n signals until either SNRbase + n < SNRbase + (n−1) or

SNRbase − n < SNRbase − (n−1). Once we find the combination of records which produces

the highest SNR for target singlet, we perform the calculation of complex frequencies with

ARFD80 method and additionally validate our eigenfrequencies with the phasor walkout

representation.

For the purpose of comparing observed results with synthetic results, we decide to

analyze the same multiplets as in synthetic experiments, namely 0S2, 0S3, 2S1 and 3S1.

There have been numerous studies dedicated to the estimates of the frequencies of the

aforementioned multiplets, however the first study of all singlets of 0S2 and 0S3 multiplets

was done by Buland et al. (1979), for the triplet 2S1 by Rosat et al. (2003) and for 3S1 by

Chao and Gilbert (1980). Our process of searching for the stacked signal with the highest

SNR resulted in obtaining different station distributions, different numbers of stations and

different percentages of used earthquakes for each singlet. The estimated split frequencies,

Q-factors and associated standard deviations along with the SNR of stacked signals and

number of stations used are shown in Tab. 6.1, 6.2, 6.3 together with published values.

During the analysis the OSE method successfully isolates singlets and the phasor walkout

graphs with the associated R2-test indicate that the true eigenfrequencies of stacked signals

are within the estimated standard deviations. The example of stacked signals for 2S1 and 3S1

is shown in Fig. 6.11. It is important to notice that the phasor walkout patterns for observed

data and synthetic experiments are quite different. The walkout pattern for real data is

characterized with repeated loops and twists, where the first characteristics indicate the

presence of a harmonic function of close frequency with the dominant amplitude compared

with the amplitude of tested signal and the second characteristics indicate the noise presence

and the phase abruptness, which is expected due to the imperfections of the observed data,

such as remaining glitches.
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Fig 6.11: 2S1 and 3S1 singlets obtained using the OSE stacking method applied on 7 and
12 days long time series, respectively. The amplitude values are 0.08, 0.05, 0.20 nm/s2 for

2S1 and 0.51, 0.25, 0.81 nm/s2 for 3S1.

The new set of estimated eigenfrequencies with associated standard deviations is used

to calculate a new axisymmetric splitting function coefficient of second order. As for the

synthetic case, to be able to use Eq. (6.3), we subtracte the a, b, c parameters from the

split eigenfrequencies. In this case a, b, c parameters are estimated by fitting the frequencies

for the PREM model, calculated for a rotating ellipsoidal oceanless Earth model (Rogister,

2003). The results for non-weighted and weighted (where weights are frequency standard

deviations) solution are shown in Tab. 6.4 and compared with published values. The

splitting function coefficients from Häfner and Widmer-Schnidrig (2013) are estimated by

subtracting a, b, c parameters as in this work.

At this stage it is difficult to thoroughly compare results of this study with previously

published values, considering that all other studies used different methods and data to obtain

the estimates. Thus, it is difficult to conclude which study is less biased and more relevant.

Summarizing the information from the ten published studies used in Tab. 6.1 and 6.2, we

notice that most studies used no more than three earthquakes in their analysis, where all

of them used Sumatra earthquake from 2004. Next, the majority used around 11 stations,

with the exception of Deuss et al. (2011) where they even used 300 spectra for some modes,

Chao and Ding (2014) 96 records, Ding and Chao (2015b) 46 records and Roult et al. (2010)

247 records. However, it is not always clear whether all the records are used in the analysis

of all target modes in their studies. Most of the studies used SG records, except (Deuss

et al., 2011), Chao and Ding (2014) and Roult et al. (2010) who used only seismograms.

Further, the methods for obtaining the modal parameters are different (see Tab. 6.1 and
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Tab 6.1: Estimated eigenfrequencies (in µHz) and Q-factors with associated standard de-
viations, SNRs and number of stations N used in the stacking for 0S2 and 0S3 multiplets
compared with published values. Methods applied: ∗ Lorentzian fitting, ⋄ nonlinear iterative
least squares inversion, ◦ multitapers, ▽ ARFD80, ⊳ ensemble empirical mode decomposi-
tion, ⊲ AR-spectrum and ARFD80.

0S2 m -3 -2 -1 0 1 2 3

This work f - 299.939 304.619 309.226 313.830 318.431 -

- ± 0.013 ± 0.009 ± 0.018 ± 0.012 ± 0.013 -

Q - 412.8 477.3 481.7 484.8 469.6 -

- ± 14.6 ± 13.7 ± 26.2 ± 17.8 ± 17.2 -

SNR - 39 53 27 39 40 -

N - 33 35 60 68 50 -

Roult et al. (2010)∗ f - 299.98 304.47 309.22 313.74 318.35 -

Deuss et al. (2011)⋄ f - 299.93 304.63 309.28 313.86 318.40 -

Rosat et al. (2012)∗ f - 299.96 304.58 309.25 313.83 318.44 -

- ± 0.022 ± 0.051 ± 0.033 ± 0.046 ± 0.021 -

Häfner and Widmer-Schnidrig (2013)◦ f - 299.948 304.612 309.269 313.840 318.429 -

- ± 0.009 ± 0.006 ± 0.016 ± 0.005 ± 0.009 -

Q - 486 473 512 488 498 -

- ± 16 ± 9 ± 29 ± 8 ± 15 -

Ding and Shen (2013b)▽ f - 299.958 304.588 309.263 313.835 318.422 -

- ± 0.0081 ± 0.0046 ± 0.011 ± 0.0014 ± 0.0074 -

Q - 509.4 484.7 394.4 520.2 532.7 -

- ± 12.1 ± 9.3 ± 14.3 ± 8.1 ± 10.1 -

Shen and Ding (2014)⊳ f - 299.994 304.618 309.278 313.865 318.424 -

- ± 0.011 ± 0.0078 ± 0.0091 ± 0.0077 ± 0.0096 -

Ding and Chao (2015b)⊲ f - 299.967 304.587 309.372 313.850 318.396 -

- ± 0.014 ± 0.0078 ± 0.050 ± 0.0069 ± 0.013 -

0S3

This work f 461.705 464.132 466.459 468.724 470.781 472.838 474.724

±0.023 ±0.012 ±0.020 ±0.040 ±0.020 ±0.012 ±0.015

Q 418.2 410.1 439.9 298.5 433.9 438.0 408.6

18.3 9.8 17.0 15.1 16.8 9.5 10.5

SNR 25.14 46.10 27.95 17 27.37 49.38 40.66

N 50 55 51 39 51 55 50

Roult et al. (2010)∗ f 461.60 464.17 466.40 468.60 470.76 472.75 474.70

Rosat et al. (2012)∗ f 461.67 464.24 466.39 - 470.84 472.66 474.74

±0.054 ± 0.078 ± 0.036 - ± 0.030 ± 0.078 ± 0.068

Ding and Shen (2013b)▽ f 461.623 464.219 466.535 468.549 470.657 472.843 474.831

± 0.0049 ± 0.0018 ± 0.0026 ± 0.0052 ± 0.0024 ± 0.0017 ± 0.0035

Q 351.5 418.5 348.4 424.4 356.9 397.7 417.2

± 19.1 ± 9.2 ± 15.8 ± 22.5 ± 14.5 ± 10.0 ± 16.3

Shen and Ding (2014)⊳ f 461.618 464.161 466.397 468.650 470.734 472.816 474.727

± 0.018 ± 0.011 ± 0.026 ± 0.030 ± 0.022 ± 0.011 ± 0.019
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Tab 6.2: Estimated eigenfrequencies (in µHz) and Q-factors with associated standard devi-
ations, SNRs and number of stations N used in the stacking for 2S1 triplet compared with
published values. Methods applied: ∗ Lorentzian fitting, ⋄ nonlinear iterative least squares
inversion, × OSE and ARFD80, ▽ ARFD80, ⊳ ensemble empirical mode decomposition, ⊲

AR-spectrum and ARFD80, ⊗ multi-station experiment technique, † spherical harmonic
stacking and ARFD80.

2S1 m -1 0 1

This work f 398.854 405.290 410.880

± 0.347 ± 0.316 ± 0.108

Q 250.5 391.0 404.8

98.9 237.6 91.0

SNR 3.3 2.6 8.2

N 34 23 34

Roult et al. (2010)∗ f 397.70 403.94 410.63

Deuss et al. (2011)⋄ f 397.92 405.18 410.45

Rosat et al. (2012)∗ f 398.10 - 410.82

± 0.98 - ± 0.18

Ding and Shen (2013a)× f 397.982 - 411.051

± 0.12 - ± 0.055

Ding and Shen (2013b)▽ f 398.662 405.014 410.768

± 0.0085 ± 0.0027 ± 0.0012

Q 365.9 448.3 385.6

± 20.3 ± 15.7 ± 11.8

Shen and Ding (2014)⊳ f 398.363 404.757 410.810

± 0.043 ± 0.039 ± 0.019

Ding and Chao (2015b)⊲ f 398.174 404.955 410.806

± 0.2 ± 0.079 ± 0.064
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Tab 6.3: Estimated eigenfrequencies (in µHz) and Q-factors with associated standard devi-
ations, SNRs and number of stations N used in the stacking for 3S1 triplet compared with
published values. Methods applied: ∗ Lorentzian fitting, ⋄ nonlinear iterative least squares
inversion, × OSE and ARFD80, ▽ ARFD80, ⊳ ensemble empirical mode decomposition, ⊲

AR-spectrum and ARFD80, ⊗ multi-station experiment technique, † spherical harmonic
stacking and ARFD80.

3S1

This work f 942.565 944.570 945.661

± 0.019 ± 0.032 ± 0.005

Q 873.2 649.5 903.9

± 31.3 ± 28.1 ± 9.5

SNR 30.42 20.91 103

N 82 12 82

Roult et al. (2010)∗ f 942.56 944.19 945.79

Shen and Wu (2012)⊗ f 942.598 944.113 945.864

± 0.42 ± 0.27 ± 0.21

Ding and Shen (2013a)× f 942.267 944.765 945.763

± 0.022 ± 0.051 ± 0.018

Ding and Shen (2013b)▽ f 942.426 944.713 945.612

± 0.0025 ± 0.0017 ± 0.0046

Q 943.8 773.6 629.5

± 12.5 ± 10.1 ± 18.4

Chao and Ding (2014)† f 942.57 944.20 945.76

± 0.028 ± 0.092 ± 0.034

Q 801 625 650

± 20 ± 31 ± 22

Tab 6.4: Second order axisymmetric structure coefficients for 0S2 compared with published
values. The structure coefficients are computed from the singlet frequencies (∗) or the
nonlinear iterative least squares inversion (⋄).

References c20 [µHz]

This work (weighted)∗ -0.7233 ± 0.0623

This work (non-weighted)∗ -0.7428 ± 0.0633

Ritzwoller et al. (1986)∗ -0.30 ± 0.65

Deuss et al. (2011)⋄ -0.66 ± 0.32

Häfner and Widmer-Schnidrig (2013) (weighted)∗ -0.7404 ± 0.0466

Häfner and Widmer-Schnidrig (2013) (non-weighted)∗ -0.6902 ± 0.0398
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6.2). The estimation of standard errors is performed either by using the bootstrap method

along with the weighted mean (Häfner and Widmer-Schnidrig, 2013; Ding and Shen, 2013b;

Shen and Ding, 2014), or just the bootstrap method (Ding and Chao, 2015b), or using the

error analysis from Dahlen (1982b) (Rosat et al., 2012) or the error analysis from Chao and

Gilbert (1980) (Ding and Shen, 2013a; Chao and Ding, 2014) and the least-square fitting

(Shen and Wu, 2012). Methodologically, only Ding and Shen (2013a) used the same process

analysis as in this paper, however they used only 8 and 11 SG records for obtaining the

estimates for 2S1 and 3S1, respectively, and thus their results may be more biased. Further,

directly comparing the measured eigenfrequencies and their standard deviations we can

conclude that not all measurements agree within their standard errors. Whether it is a

problem in the small data sets within some studies or biases introduced with the methods,

it is difficult to comment. We would have the complete information by comparing the

SNR values and used number of stations for each estimate, unfortunately, this information

is usually missing. Considering the error analysis, the error estimated by the bootstrap

method is the statistical error, while the error analysis from Dahlen (1982b) and Chao and

Gilbert (1980) give the formal errors. In the view of our synthetic tests, we show that for

the most relevant SNRs the estimated error by the bootstrap method is understimated.

However, one needs to remember that this error reflects the bias from the used OSE and

ARFD80 methods. For our tests it is shown that using around and more than 50 stations

in the analysis is generating satisfying estimates. Compared to the frequency estimates,

the Q-factor estimates are more scattered, but this has been already known since it is

more difficult to measure amplitude than frequency of a mode. The structure coefficient

estimates are satisfying since they agree well with published values, bearing in mind that

they are estimated using frequencies and their standard deviations obtained for different

station distributions. It is true that we can always argue that our estimates are close to

published values, however the question of accuracy remains. Only a truthfully comparison

of all relevant methods in the same condition can tell which study is the most precise.

6.4 Conclusions

We have quantified the effects of different station distributions and noise levels on the

estimation of eigenfrequencies, Q-factors and splitting function coefficients of the gravest

seismic modes. A specific protocol was used: the OSE method for stacking signals, the

ARFD80 method for obtaining the estimates of harmonic parameters and finally the phasor

walkout together with R2-test for validating the estimated eigenfrequencies. The methods

were tested on synthetically generated data and on observations. Synthetic experiments

have shown that when noise is gradually added, the SNR of the stacked signals decreases
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and standard deviations of estimated frequencies and Q-factors increase, being overall more

scattered around the true synthetic value. Results are foremost when more records are

included in the stacking. More importantly it has been shown that OSE method is sensitive

to different station distributions under the noise influence. Furthermore, the performances

of ARFD80 method become deteriorated when the stacking signal is obtained with the less

excited signals, that is when the input signals have SNR ≤ 2. However, even for those

cases the estimates are within the standard deviations. Moreover, it turns out that the

standard deviations calculated with the bootstrap method are not sufficient to include all

biases introduced with the methods, that is to say our standard deviations are for most cases

underestimated. Thus, even though we have a good precision on our estimates, the accuracy

can be poor. This analysis showed that we do not need a priori model to estimate structure

coefficients, but results may be biased. Finally, we have proposed new eigenfrequency and

Q-factor estimates for 0S2, 0S3, 2S1 and 3S1 and also new estimates for the axisymmetric

degree-2 structure coefficient from 0S2 eigenfrequencies measurements. The results are in

good agreement with previously published values, even though the methods are different

and thus presumably introduce different biases into the estimates. With the synthetic test

performed, we are confident in our new estimates, specially for the ones obtained with

more than 50 stations. Finally, future tomographic models that use the splitting function

measurements should take into account the existing biases mentioned in this work.
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Chapter 7

Conclusion and Perspectives

The main subject of this thesis is modeling the interaction between the GWs from astro-

physical sources and the Earth. Two models are considered: the revisited one for a radially

heterogeneous non-rotating Earth model (1D Earth model) and a newly developed one for

a radially heterogeneous elliptical rotating Earth model (3D Earth model). The solutions of

both models are expressed in terms of the normal modes. The GWs are represented by plane

waves in the flat space-time approximation. They consist of two main polarizations, the

plus and cross one. The induced displacement at the Earth’s is developed by defining the

displacement as the convolution between the Green tensor and the force term. The Green

tensor is defined for a specific Earth model, while the force term is determined for a given

GW source. The revisited model is based on the study done by Ben-Menahem (1983) and it

involves an infinite monochromatic source expressed by a scalar value, a polarization tensor

and a propagation vector. The calculation is performed such as if the source of the GW is

within the Earth reference system. The new model is derived for a system of binary stars.

It depends on seven parameters of the binary source (the masses, the inclination angle,

the polarization angle, the right ascension, the declination and the GW source frequency)

and the transformation matrix from the celestial to the terrestrial reference system. Addi-

tionally, since the model is rotating the splitting of and coupling between modes are also

introduced. Both derivation show that the only normal modes that couple with the GWs

are quadrupole ones. Their responses are expressed in terms of five functions: the displace-

ment eigenfunction at the surface; the source-time function that depends on the GW source

frequency and the normal mode frequency; the scalar metric perturbation which is for the

1D model just a value and for the 3D model depends on the binary parameters; the pattern

functions that depend on the angles of the incoming GW. These pattern functions define

which singlet is going to be excited and additionally for the 3D model the functions also

determine the splitting of the response due to the Earth’s rotation; the model dependent

function that is actually the same for both models. The induced response for the 1D model
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is calculated in a resonance regime, while the one for the 3D model is in a off-resonance

regime. By comparing their estimates, the later one has two orders of magnitude larger

response due to different definition of the source-time functions.

The newly developed model for a 3D Earth, naturally, includes some approximations.

For example, one of them concerns the calculation of the splitting of and coupling be-

tween normal modes that is based on the group-coupling approximation, instead of the

full-coupling one. However, the frequency uncertainties due to the coupling approximations

or due to the different shear velocity models or due to the uncertainties introduced by gen-

eral measurements in the normal modes studies, are in general smaller than the frequency

uncertainties found in the catalog of the binary stars. Next, another approximation concerns

the circular binary orbit or not including the spindown of binaries as well. Nevertheless,

for the first stage of the GW search these refinements are unnecessary. During the search

for the GW signals performed by the matched filter technique the basic response model,

defined by the parameters from the catalog of the binary stars, is indeed sufficient at least

to generate events over a predetermined threshold.

In the GW studies we do not know if the signal is present in the data and even if we

believe that it is there we do not know when it started and how long we can follow it in

time. The matched filtering technique is suitable for this type of search since it answers these

two questions, whether the GW signal is present in the data and when it started. In the

normal modes studies we know that after an earthquake the Earth is set to vibrations, the

normal modes. The Fourier transform is sufficient to observe these modes and to measure

them as well. Measuring the normal mode parameters such as frequencies, Q-factors and

the splitting function coefficients, we further define constraints on the 3D Earth models.

During the past years many techniques have been proposed to extract those parameters

from the measurements. However some biases are unavoidable. In this thesis we have

quantified some of these biases. By applying three methods (OSE, ARFD80 and the phasor

walkout) we test how the frequency estimates are affected by the number and distribution

of stations used and different noise levels applied. The results are not straightforward when

noise is involved in the measurements and generally more stations means better estimates.

This study also provides new eigenfrequency and Q-factor estimates for 0S2, 0S3, 2S1 and

3S1 and also new estimates for the axisymmetric degree-2 structure coefficient from 0S2

eigenfrequencies measurements. Ideally, all measurements within the normal mode studies

should be interpreted in the context of the used methods and data.

The very first measurement of a GW, and all other successors, was accomplished in the

high frequency band using an apparatus that is kept in an exceptionally controlled envi-

ronment to reach required sensitivities. The low frequency band is much more complicated
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than high frequency band due to the seismic, environmental and other ’non-stationary’ noise

sources. This produces the ten orders of magnitude difference between the GW response

model developed in this thesis and the most sensitive instrument in the mHz band, the

superconducting gravimeters. However, the work might not be ending here since chances

for some improvement exist. Firstly, the developed induced spheroidal displacement model

showed us that if we know more GW sources we should be able to obtain a response model

of larger amplitude. Secondly, if we have more stations to perform the stacking method

we would again increase the amplitude of our target signal. Thirdly, since the developed

response model is the model of a forced oscillator the signal is not attenuating and thus it

is always present in the data and it should be there for a long time. Therefore, using the

matched filtering technique we should be able to follow this signal for an extensive amount

of time, thus improving the chances of its detection.

The future of the GW detection on Earth in the mHz band is very challenging, however

it could be supplemented with the measurement in space. For example, Coughlin and Harms

(2014c) were the first ones to consider Apollo seismic data to calculate the upper limit of

the isotropic stochastic background. Their work consisted in calculating the correlation

of data from pairs of seismometers on Earth and Moon. Since the Moon has the lowest

ambient seismic noise currently measured, their results offer probably the best upper limits

that can currently be achieved with seismometers in the frequency range 0.1–1 Hz. They

also emphasized the advantage of the data correlation between seismometers from Moon

and Earth, since in this case there is no seismic correlation due to seismic activity present

at both seismometers locations. It would be very interesting to conduct the same study just

by using the data from Mars. On November 26, 2018, the InSight spacecraft successfully

landed on Mars surface, thus deploying the SEIS (Seismic Experiment for Internal Structure)

instrument (Lognonné et al., 2019). Mars differs from Earth in the sense that we expect

to observe seismic events with magnitudes lower than on Earth and also since there is no

ocean or human activity, we also expect lower seismic noise compared to Earth. The largest

contribution to the noise is expected to come from environmental effects such as large

thermal changes, magnetic field impact, large pressure signal and winds (Mimoun et al.,

2017). Thus, one idea would be to perform a correlation search between SEIS instrument

on Mars and seismometers on Earth. This could offer us with a new upper limit of the

isotropic stochastic background. Furthermore, with the new interaction model between the

GWs and the Earth, we now know how to model the same interaction model between the

GWs and the normal modes of Mars. This would gives us, just as in the case of Earth, a

sensitivity level in terms of the induced displacement level.
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The story about the GW interaction with elastic bodies might not be finishing here. In

this study we did not focus on the toroidal modes and this could represent one extension

of this work. Studying the interaction between toroidal modes and GWs could offer us new

standpoints on the GW detection and maybe even better estimates of the response model

amplitudes.

In conclusions, this thesis gives us new perspectives and a theoretical framework for the

detection and search of GWs. It emphasizes the use of planets, such as Earth, Moon or

Mars, as GW detector and thus presents the advantages and disadvantages associated with

that subject. Since the study is concerned about the Earth the associated frequency range of

the search is the milliherz band and thus is complementary to the high frequency searches

where successful detections have been already accomplished. Considering the fact that

future will bring new technologies combined with optimized data algorithms, this method

could potentially lead to the new detection of GWs.
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Appendix A

Greenwich Sidereal Time

Calculation of Greenwich Sidereal Time (GST) is obtained by conversion from the UTC

time. Following Petit and Luzum (2010) (and references inside) the GST refers to the

equinox and is related to the Earth Rotation Angle (ERA), that refers to the Celestial

Intermediate Origin, by the following relationship

GST = dT0 +ERA+

∫ t

t0

̂(φA + ∆ψ1) cos(ωA +∆ǫ1)dt−χA +∆ψ cos ǫA +∆ψ1 cos ωA, (A.1)

where ∆ψ1 and ∆ǫ1 are nutation angles in longitude and obliquity referred to the ecliptic

of epoch and χA is the precession of the ecliptic along the equator (i.e. the right ascension

component of the precession of the ecliptic). We can also write above relation as

GST = ERA(UT1) − EO, (A.2)

therefore to calculate GST we need to define two parameters, ERA(UT1) ans EO. The

second parameter, EO, is the equation of the origins defined by

EO = −dT0 −
∫ t

t0

̂(φA + ∆ψ1) cos(ωA + ∆ǫ1)dt − χA + ∆ψ cos ǫA + ∆ψ1 cos ωA (A.3)

which is the Celestial Intermediate Origin (CIO) based right ascension of the equinox along

the moving equator. The EO accounts for the accumulated precession and nutation in right

ascension from J2000.0 to the date t. Constant term dT0 was chosen to ensure continuity

in UT1 at the date of change. A numerical expression for EO consistent with the IAU

2006/2000A precession-nutation model, that is ensuring consistency at the microarcsecond

level and the continuity in UT1 at the date of change, is

EO = −0.014509′′−4612.156534′′t−1.3915817′′t2+0.00000044′′t3−∆ψ cos ǫA−
∑

k

C ′
k sin αk,

(A.4)

where the polynomial part provide the accuracy in arcseconds and last two terms in mi-

croarcseconds. For the current models we will disregard the non-polynomial part. The
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nutation in longitude ∆ψ and obliquity ∆ǫ are given by series within the IAU 2000 nuta-

tion model. They are referred to the ecliptic of date with t measured in Julian centuries

from epoch J2000.0 and defined as

∆ψ =
N

∑

i=1

(Ai + A′
it) sin(ARG) + (A′′

i + A′′′
i t) cos(ARG), (A.5)

where the lunisolar terms in the nutation series is characterized by a set of five integers

Nj ans five Fundamental Arguments Fj , namely the Delaunay variables (l,l′,F ,D,Ω), which

defines ARG =
∑5

j=1 NjFj . The expression for the fundamental arguments of nutation are

given by the following expressions

F1 ≡ l = 134.96340251◦ + 1717915923.2178′′t + 31.8792′′t2 + 0.051635′′t3 − 0.00024470′′t4,

(A.6)

F2 ≡ l′ = 357.52910918◦ + 129596581.0481′′t − 0.5532′′t2 + 0.000136′′t3 − 0.00001149′′t4,

(A.7)

F3 ≡ F = 93.27209062◦ + 1739527262.8478′′t − 12.7512′′t2 − 0.001037′′t3 + 0.00000417′′t4,

(A.8)

F4 ≡ D = 297.85019547◦ + 1602961601.2090′′t − 6.3706′′t2 + 0.006596′′t3 − 0.00003169′′t4,

(A.9)

F5 ≡ Ω = 125.04455501◦−6962890.5431′′t+7.4722′′t2+0.007702′′t3−0.00005939′′t4. (A.10)

where l stands for mean anomaly of the Moon, l′ for mean anomaly of the Sun, F = L − Ω

with L for mean longitude of the Moon and Ω for mean longitude of the ascending node

of the Moon and, finally, D for mean elongation of the Moon from the Sun. In the above

equations t is usually measured in Julian centuries in Barycentric Dynamical Time (TSB),

however Terrestrial Time (TT) can be used instead, since this is introducing difference at

the 0.01 µas level. Next, the cosine argument ǫA is the mean obliquity of date t is defined

as

ǫA = ǫ0 − 46.836769′′t − 0.0001832′′t2 + 0.00200340′′t3 − 0.000000576′′t4 + 0.0000000434′′t5,

(A.11)

where ǫ0 = 84381.406′′ is the mean obliquity at J2000.0 of the ecliptic. The date t we define

as

t = (TT − 2000 January 1d 12h TT) in days/36525. (A.12)

This definition is consistent with IAU 1994 Resolution C7 which recommends that the epoch

J2000.0 is defined at the geocenter and at the date 2000 January 1.5 TT = Julian Date
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2451545.0 TT. The second term in (A.2), defining UT1 from the ERA, is conventionally

defined as

ERA(Tu) = 2π(0.7790572732640 + 1.00273781191135448Tu), (A.13)

where Tu = (Julian UT1 date - 2451545.0), and UT1 = UTC + (UT1- UTC), or equivalently

ERA(Tu) = 2π(UT1 Julian day fraction + 0.7790572732640 + 0.00273781191135448Tu).

(A.14)

With relation (A.14) we completely defined GST and its calculation.
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Appendix B

Matched Filter And Detection
Statistics

The standard way of extracting signal of known waveform from the noisy data is by utilizing

the matched filter technique, also know as Wiener Filter (Wiener, 1949) or optimal filter.

Here we present a short introduction and for more details the reader is referred to Feller

(1950); Allen and Romano (1999); Allen (2004); Allen et al. (2012).

First, we introduce convention for the Fourier transform of the continuous quantities as

x̃(f) =

∫ ∞

−∞
x(t)e−2πiftdt (B.1)

and

x(t) =

∫ ∞

−∞
x̃(f)e2πiftdf (B.2)

where x̃(f) is the Fourier transform of x(t).

Now, let’s assume that we have a data time series d(t) that either consists of stationary

Gaussian white noise d(t) = n(t) alone or a signal w(t) in addition to the noise d(t) =

n(t)+w(t). Since we assume that n(t) is stationary Gaussian white noise we can also assume

that it has a zero mean and we can define the one-sided power spectral density Sn(f) as

〈ñ(f)ñ∗(f ′)〉 = 1
2Sn(|f |)δ(f − f ′). The matched filter is a linear filter that maximizes the

signal-to-noise (further in text SNR) ratio in the presence of additive stochastic noise. The

filter function is define to "match" the signal we are looking for. In the case of our data

stream d(t) and signal w(t) it is defined as

m(t) = 4ℜ
∫ ∞

0

d̃(f)w̃∗(f)

Sn(f)
e2πiftdf, (B.3)

where the filter itself is

K(f) =
w̃(f)

Sn(f)
. (B.4)
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The optimal value of SNR ratio is given as

σ2
w = 4

∫ ∞

0

|w̃(f)w̃∗(f)|
Sn(f)

df, (B.5)

therefore the amplitude SNR ratio of the matched filter is defined as

ρw(t) =
|m(t)|

σw
. (B.6)

Of course, if we are searching for specific signal, obviously, we do not know the exact

waveform w(t), but we have a template wtemplate(t) that resembles our signal in some

degree. Therefore, our matched filter is more accurately written as

m(t) = 4ℜ
∫ ∞

0

d̃(f)w̃∗
template(f)

Sn(f)
e2πiftdf, (B.7)

and consequently (B.5) as

σ2
w = 4

∫ ∞

0

|w̃template(f)w̃∗
template(f)|

Sn(f)
df. (B.8)

The more our template resembles the signal we are searching we have higher SNR ratio,

consequently SNR ratio, in some sense, characterize the quality of the filter performance.

However, it is difficult to quantitatively say how much one value of SNR ratio is better

than the other one. This quantification is defined within the detection statistics. More

specifically, the value ρw is quantitatively related to the basic characteristic of the receiver

performing the optimum detection. This theory involves defining the probability of the

"false alarm" (probability of detecting signal when one is not present) and "false dismissal"

(probability of not detecting signal when one is present).

In order to decide whether or not we have detected a signal in statistical manner, we

first need to define two hypotheses:

H0 : d(t) = n(t),

H1 : d(t) = n(t) + w(t), µ > 0
(B.9)

that is, the signal is either absent or present and characterized by some fixed, unknown,

mean value µ > 0 in our data, thus two hypotheses are mutually exclusive. Further,

let’s define set of n measurements over statistically independent time intervals each of

length T (for measurement to be statistically independent this time intervals should be

non-overlapping) as p := {ρ1, ρ2, · · · , ρn}. The n measurements are independent samples

drawn from a normal distribution having mean µ := 〈ρ〉 and variance σ2 = 〈ρ2〉 − 〈ρ〉2.

Since set p represent one experiment we can construct a sample mean defined as

µ̂ :=
1

ni

n
∑

i=1

ρi, (B.10)
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and sample variance

σ̂2 :=
1

n − 1

n
∑

i=1

(ρi − µ̂)2. (B.11)

The existence of noise is intrinsic in all experiments involving signal detection, therefore

an experiment p is a random variable, which can be statistically described by probability

density functions (further as PDF) as

• P (p|0) is PDF for an experiment p that does not contain signal,

• P (p|µ) is PDF for an experiment p that does contain signal of the unknown mean µ,

and are defined as

P (p|0) =
1

(2πσ̂)−n/2
exp

[

−
n

∑

i=1

ρ2
i

2σ̂2

]

, (B.12)

P (p|µ) =
1

(2πσ̂)−n/2
exp

[

−
n

∑

i=1

(ρi − µ)2

2σ̂2

]

. (B.13)

The decision rule that, based on the outcome of the experiment, chooses between two

hypotheses (B.9) can be visually represented by two disjoint regions R0 and R1: if p ∈ R0,

then H0 is chosen; if p ∈ R1, then H1 is chosen. The existence of an experiment in either

of these two regions is characterized by two, already mentioned errors

• false alarm - when H1 is chosen and H0 is really true;

• false dismissal - when H0 is chosen and H1 is really true.

Error are defined in terms of conditional probabilities as

false alarm rate (FAR) := PF A :=

∫

R1

dpP (p|0), (B.14)

false dismissal rate (FDR) := PM :=

∫

R0

dpP (p|µ), (B.15)

detection rate (DR) := PD := 1 − FDR. (B.16)

In order for the decision rule to work in some optimal way one possibility is to minimize

the probability of the error, written in terms of PFA and PM, as

Pe = p0PF A + p1PM . (B.17)

where p0 and p1 are a priori or prior probabilities for H0 and H1, respectively. However,

since one usually does not know a priori probabilities, one can chose decision rule that

minimizes the false dismissal rate by fixing the false alarm rate. The most utilized decision

rule in the literature is known as the Neyman-Pearson criterion (Neyman et al., 1933).

Without going into details how and why the Neyman-Pearson criterion is generally used,

for our purpose we simply state: the Neyman-Pearson criterion is satisfied if, given the

outcome of the experiment p, we form the estimators µ̂ and σ̂2 an choose
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• H0 if µ̂ < zασ̂√
n

,

• H1 if µ̂ ≥ zασ̂√
n

,

where zα is a Gaussian random variable having zero mean and unit variance for which the

area under the standard normal distribution to its right is equal to α.

The Neyman-Pearson bound and the two disjoint regions R0 and R1 can be graphically

represented first by plotting the PDFs for H0 and H1 hypotheses and second by plotting

PF A versus PD rate. The latter one is referred to as the Receiver Operating Characteristic

(ROC). Normally, the ROC can be defined for any decision rule that causes PD to be

uniquely fixed, once PF A is specified. In Fig. (B.1) we show three cases of PDFs for H0

and H1 hypotheses and their associated ROC curves. The more the PDFs are separated

the larger the area under the ROC curve (AROC) is.

Finally, based on the theory above one should be able to set a threshold for ρw(t) in

order to identify an event candidates for tested templates. Once that the event candidates

are identified further tests are required to select those events that truly belong to the signals.

For detailed explanation on this topic reader is referred to Allen et al. (2012).
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Fig B.1: Probability density functions for H0 (blue) and H1(orange) hypothesis (left col-
umn) and associated ROC curves (right column). AROC stand for the area under the ROC
curves.
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Appendix C

Autoregressive Method in
Frequency Domain

The recorded ground displacement after an earthquake at any point at the surface of the

Earth is a discrete time series. It represents the supersposition of discrete modes of os-

cillation that can be represented in the complex domain with exponential functions. The

measurement of exponential parameters, e.g. amplitudes and exponential arguments, is

performed using the ARFD80 method, which is based on the Prony technique for extract-

ing exponential signals from time series. Only the basic outline will be presented, and for

further discussion the reader is referred to the papers by Chao and Gilbert (1980) and Chao

(1990).

For the estimation of the harmonic function parameters we chose the ARFD80 method

because it has been proven to be very successful. This method is fast, highly accurate,

multi-mode estimation suitable and easy to implement (Chao and Gilbert, 1980; Masters

and Gilbert, 1983; Ding and Shen, 2013b; Ding and Chao, 2015a,c,b; Zeng and Shen, 2017,

2018).

A displacement represented as discrete time series of superimposed decaying, complex

exponential functions can be written as

x(t) =
M
∑

j=1

[Ajeiσjt + A∗
je−iσ∗

j t], t = ∆t, 2∆t, . . . , N∆t, (C.1)

where M is the number of recorded modes, ∆t is sampling rate, N is the number of data

samples, Aj are the complex amplitudes, σj are the complex frequencies that can be written

in terms of eigenfrequencies and decay rates as σj = ωj + iαj , and ∗ denotes the complex

conjugate. Complex amplitudes Aj and complex frequencies σj are unknowns to be deter-

mined. For this purpose (C.1) can be represented by a recursive system of linear difference
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equations of order 2M

x(t) =
2M
∑

i=1

Six(t − i∆t), t = 2M∆t + ∆t, . . . , N∆t, (C.2)

where Si are real constant coefficients. If for the demonstration we put M = 1 the relation

(C.1) and (C.2) become

x(t) = A1eiσ1t + A∗
1e−iσ∗

1 t, t = ∆t, 2∆t, . . . , N∆t, (C.3)













x(3∆t)
...

x(N∆t)













=













x(2∆t) x(∆t)
...

...

x(N∆t − ∆t) x(N∆ − 2∆t)



















S1

S2






, (C.4)

Substituting (C.3) into the first equation of (C.4) (Masters, G. lectures’ notes) with a little

bit algebra it is easy to see that

S2 = −e−2α1∆t,

S1 = 2 cos(ω1∆t)e−α1∆t,
(C.5)

thus, by solving for coefficients S1 and S2 we can found frequency ω1 and decay rate α1 and

Q-factor Q1 = ω1/2α1.

The calculation of the real coefficients Si using (C.2) is heavy in the time domain, while

the number of excited modes after the earthquake is large and unknown. The problem is

resolved by considering that the basis functions eiσj are separated into individual peaks

in frequency domain. Basically, the main idea behind the ARFD80 method is to Fourier

transform Eq. (C.4) in order to solve a system of linear equations for narrow frequency

band containing the small number of modes. The advantage of this procedure is to focus

on the narrow frequency range where the mode is expected to occur. This enables re-sizing

the linear system (C.4). As shown earlier, if M = 1 the system to solve consists of two

unknowns and K > 2M linear equations, where usually 3 ≤ K ≤ 5 and it represents 3 or

5 frequencies that describe the position of the spectral peak in the frequency domain we

study. The described analysis plainly depends on the Fourier transform and hence bears all

technical advantages and disadvantages of the Fourier transform. To reduce the side-band

levels of the spectral peaks due to spectral leakage we perform tapering with a Hann window

and to refine the waveform frequency resolution we perform zero padding to each column

in (C.4).

Even though ARFD80 is capable of analyzing small group of modes, we focus on ana-

lyzing one mode at once, hence it was important to observe a spectral peak in frequency

domain that belongs to the target singlet. When the singlet is visible we choose at least five
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frequencies that describe the position of the spectral peak in frequency domain, one which

defines the main peak and two on each side of the main peak. After solving linear sys-

tem (C.4) in frequency domain and obtaining coefficients Si, calculating frequencies, decay

rates and Q-factors we also estimate complex amplitudes (Chao and Gilbert, 1980) used

in bootstrap experiments for the calculation of parameter’s standard deviations following

Häfner and Widmer-Schnidrig (2013). Simultaneously, for every estimate we also measure

the SNR as the ratio of peak amplitude of the singlet over the root mean square amplitude

of two narrow frequency bands targeting the singlet.
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Appendix D

Optimal Sequence Estimation

Successful estimation of harmonic function parameters such as complex frequency, Q-factor

and amplitude, substantially depends on the representation of the spectral peak in frequency

domain. One can improve spectral peak representation by increasing the time series length,

however bearing in mind the trade off between frequency resolution and noise level. An

alternative option is to use stacking methods to enhance the SNR of the target signal.

Here we will give a short introduction to the optimal sequence estimation (Ding and Shen,

2013a). The OSE was first applied in the search for the Slichter modes (Slichter, 1961),

which are the three translational modes of the inner core, (Ding and Shen, 2013a; Ding and

Chao, 2015c), but its application extended to the retrieval of other normal modes (Ding and

Chao, 2015a; Zeng and Shen, 2017, 2018) as well as to the pole tide signals (Ding and Chao,

2016). It has been proven that OSE has better performance than other stacking methods,

such as the spherical harmonic stacking (SHS) (Buland et al., 1979) and the multistation

experiment (MSE) (Courtier et al., 2000), since it was developed on the basis of these two

methods using the principle of the noise-term elimination (Zeng and Shen, 2017). The

OSE has been successfully extended to transverse components (Ding and Chao, 2015a) and

applied in the GC approximation, where nearby modes were grouped as an isolated cluster

(Zeng and Shen, 2017). In terms of frequency range it has been successfully applied in the

SC approximation from 0.309 mHz (0S2) to 9.865 mHz (27S2) (Ding and Shen, 2013a; Ding

and Chao, 2015b; Zeng and Shen, 2017) and in the spheroidal-spheroidal GC approximation

from 1.413 mHz (4S1) to 2.822 mHz (6S3) (Zeng and Shen, 2018). Most studies claim that

OSE in the SC approximation is performing accurately and as a consequence it can be

applied to the modes with f ≤ 1.5 mHz (Zeng and Shen, 2017, 2018). Furthermore, even

though the OSE method proved to be the foremost among the stacking methods, some

limitations have been identified. For example, the dependence on records SNRs and the

number of stations used in stacking (Ding and Shen, 2013a; Zeng and Shen, 2017).
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The radial component of the displacement at the surface of the anelastic Earth model

with the singlet complex eigenfrequency σm is defined as

uR(Ω, t) =
∑

m
nUlY

m
l (Ω)sm(r0)eiσmt (D.1)

where nUl is the value taken by the radial eigenfunction at the surface, Y m
l (Ω) is the

spherical harmonic function of degree l and order m and Ω = (θ, φ) are the colatitude and

longitude of the receiver. For brevity we will introduce ǫm = nUlsm(r0) and Am = ǫmeiσmt

therefore (D.1) becomes

uR(Ω, t) =
∑

m

AmY m
l (Ω), (D.2)

and for j = 1, . . . , N stations from relation (D.2) one can form a multistack

U = YA, (D.3)

where

U =



















uR(Ω1, t)

uR(Ω2, t)
...

uR(ΩN , t)



















, (D.4)

Y =



















Y −L
L (Ω1) Y −L+1

L (Ω1) . . . Y L
L (Ω1)

Y −L
L (Ω2) Y −L+1

L (Ω2) . . . Y L
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...

Y −L
L (ΩN ) Y −L+1

L (ΩN ) . . . Y L
L (ΩN )



















, (D.5)

A =



















ε−Lexpiσ−Lt

ε−L+1expiσ−L+1t

...

εLexpiσLt



















, (D.6)

for t = 1, . . . , n time samples. In (D.3) U is a [N × n] matrix of radial-component observa-

tions, Y is a [N ×(2L+1)] matrix of spherical harmonics and A is a [(2L+1)×n] matrix to

be inverted for which each row consists of only one singlet for the target (N, L) multiplet.

If N > (2L + 1) system (D.3) can be solved by the general least-squares procedure

A = (YT pY)−1YT pU (D.7)

where p is a weight whose values can be chosen to be inversely proportional to the SNR of

the target mode. Equation (D.7) defines the OSE method.
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Separating each singlet resonance function within a multiplet in matrix A by yielding

only one spectral peak in spectral domain corresponding to the target singlet, gives OSE

advantage over e.g. the least squares spectral analysis (Vanícek, 1969), the product spectral

analysis (Smylie, 1992) and the cross-spectrum anaysis (Hinderer et al., 1995), where all

singlets within the multiplet would appear together in only one spectrum. Furthermore,

the OSE method does not require the information about the source mechanism, which gives

it advantage over e.g. the singlet stripping method (Gilbert, 1971; Ritzwoller et al., 1986).

For more comparison we recommend paper by Ding and Shen (2013a).
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Appendix E

Phasor Walkout

In signal processing one usually face the problem whether the spectral peak observed in

the frequency domain corresponds to a harmonic signal or noise. One way to address

this problem is to use the phasor walkout method revisited by Zürn and Rydelek (1994).

Essentially, it is a graphical representation of Fourier transform for a test frequency where

one estimates the complex contribution of the Fourier transforms for each sample and sums

the corresponding vectors in the complex plane. The shape and behavior of the resulting

vector pattern, the walkout, gives us information about the signal properties.

The derivation process is quite straightforward. If we consider a time series xj , for

j = 1, . . . , N equidistantly sampled with sampling rate ∆t, that may consist of a signal

with the frequency f0, the phasor walkout contributions obtained for the test frequency fs

are

pj(fs) = xje−i2πfs(j−1)∆t, j = 1, . . . , N. (E.1)

Noticeably, these contributions are complex and they are recognized as vectors in a two-

dimensional space. Deriving the full phasor walkout pattern is achieved by adding these

vectors graphically and successively in the complex plane. For a better understanding it

is useful to look at the function (E.1) where xj defines the scaling of walkout and the

exponential factor defines the walkout rotation by angle 2πfs∆t. Firstly, the walkout has

a loop-like circular shape if the scaling factor is constant. This loop shape is completely

defined by the rotation angle, that is the full loop of 2π is closed in K steps, where K = 2fn

fs
,

with fn being Nyquist frequency (fn = 1
2∆t). Consequently, the loop-like circular shapes

are K polygons. If K is an integer the polygons are aligned and if K is not an integer the

polygons are rotated with respect to each other. If we now consider that xj is noise, one

would no longer have polygons with the constant phase change in successive samples, but

randomly changing phases which would result in a random walk.
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One important case to consider is a simple harmonic function xj = A0cos(2πf0(j−1)∆t)

in which case the phasor walkout for tested frequency fs is

pj(fs) =
A0

2

(

ei2π(f0−fs)(j−1)∆t + e−i2π(f0+fs)(j−1)∆t
)

. (E.2)

Assuming that f0 Ó= fs the shape of (E.2) is still a polygon even though a more complicated

one, because each axis, the real and complex ones, now contains the sum of two trigonometric

functions instead of one trigonometric function. The rotation angle is now changed and it

is 2π(f0 − fs)∆t, hence the full circle is now reached with K steps, where K = 2fn

|f0−fs| . An

interesting feature is obtained when f0 = fs, so (E.2) becomes

pj(fs) =
A0

2

(

1 + e−i4πf0(j−1)∆t
)

. (E.3)

Examining (E.3) one can notice that the complex part is bounded by a sine function,

while the real part is progressively advancing because of the constant term, number one,

in its definition. Strikingly, this means that the phasor walkout of a harmonic signal, when

f0 = fs, is going to gradually progress without curving, hence showing linearity. This is the

most useful feature of the phasor walkout: by examining the phasor walkout pattern, one

can conclude that the tested signal is really a harmonic signal with frequency f0.

Furthermore, it is important to consider the case of signals consisting of two harmonic

functions with very close frequencies, because this is often the case in normal mode studies.

Work on this topic has been also done by Zürn and Rydelek (1994). Due to the very similar

harmonic function frequencies in frequency domain the phasor walkout of each harmonic

function now depends on the relative amplitude between the two functions. The phasor

walkout at the frequency of the signal with larger amplitude has rapid phase changes,

while the phasor walkout of the signal with smaller amplitude has slower phase changes

and additional loops. However, the most important is that both walkouts show linear

progress, which is not the case if the tested frequencies are different from the true harmonic

frequencies. Different cases are studied in the Appendix of the paper.

The situation is becoming even more complicated when the signals are contaminated

by noise. The regularity of the phasor walkout in the presence of noise is more or less

deteriorated. In such circumstances it is useful to use a range of tested frequencies to

calculate the phasor walkouts. Theoretically, if the estimated frequency fe is the true

frequency of the harmonic function only the phasor walkout with fs = fe should be a straight

line and for all other tested frequencies the phasor walkouts should be softly curved. As

stated before differences between slightly different tested frequencies are sometimes difficult

to observe due to the presence of noise. To overcome this problem, we propose to compute

the coefficient of determination R2 (Draper and Smith, 1998) on our phasor walkouts.
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Basically, this includes fitting a linear model on our phasor walkout and then estimating

R2 coefficient, which is a statistical feature determining how well the fitted model describes

the data. This would be an additional statistical test to show how much our phasors are

actually straight or curved. Hence, having a basic linear model Y = aX + b one should

estimate the a and b coefficients, Y being the complex part of phasor walkout and X, the

real part of the walkout. The next step is to build a linear model Ym using estimated a and

b coefficients and X data: Ym = aX + b. Ending up with observed data Y and modeled

data Ym one can calculate the coefficient of determination R2 defined by

R2 = 1 −
∑

i(Yi − Ym,i)
2

∑

i(Yi − Ȳ )2
, (E.4)

where Ȳ is the mean of the Yi. Values of R2 fall between 0 and 1, with a value 1 indicating

that all variance is accounted for by the model, that is all of the data points fall perfectly

on the regression line. Therefore, the coefficient of the determination for our five tested

frequencies should be the largest for fs = fe if fe is the true frequency of the harmonic

function. Finally, the R2-test does not provide us with the frequency estimates, but with

the statistical values for our estimated frequencies. An example of the method performance

for the cosine signal is shown on figure (E.1) with three tested frequencies {fe−σ, fe, fe+σ},

where in this case fe is truth frequency of tested signal and for this frequency the R2-test

is the closest to 1.

Fig E.1: The result of the R2-test for three different tested frequencies {fe − σ, fe, fe + σ},
where fe is truth frequency of tested signal, thus the R2-test is the closest to 1.

For the signal defined as

xj = Ak cos(2πfk(j − 1)∆t + θk)e−αk(j−1)∆t, j = 1, . . . , N, (E.5)
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the phasor walkout is defined as

pj(fs = fk) =
1

2
Ake−αk(j−1)∆t{[cos(θk) + cos(4πfk(j − 1)∆t + θk)]

+ i[sin(θk) − sin(4πfk(j − 1)∆t + θk)]}
(E.6)

and for constants Ak > 0, θk > 0 and condition | sin(θk)| > | sin(4πfk(j − 1)∆t + θk)|, the

phasor walkout is placed in the first quadrant of Cartesian two-dimensional system, where

x-axis is real axis and y-axis is imaginary axis. In other case, | sin(θk)| < | sin(4πfk(j −
1)∆t + θk)|, the phasor would be placed in the fourth quadrant of the Cartesian system.

This is also true if θk < 0. Both axes have constant value in terms of phase angle θk,

which implies that the phasor walkout is progressing in the straight inclined line. If for

some reason the amplitude is negative, which can be the case due to stacking, the combined

effect of amplitude and phase angle defines the quadrant of the Cartesian system in witch

the phasor walkout is placed. That is, besides the first and fourth quadrant the phasor

walkout could be also placed in the second and the third quadrant. The mentioned effects

are demonstrated using the signal containing two harmonic functions of close frequencies,

called "beats". In this case the signal is defined as

xj = A1 cos(2πf1j∆t + θ1) + A2 cos(2πf2j∆t + θ2), (E.7)

where f1 ≈ f2. The study is carried out by calculating the phasor walkout for tested

frequencies fs = f1 and fs = f2 for several different cases:

1. setting θ1 > 0, θ2 < 0, |θ1| = |θ2|, |A1| = |A2| > 0;

2. setting |θ1| = |θ2| > 0, |A1| > |A2| > 0;

3. setting |θ1| = |θ2| > 0, |A1| > |A2| > 0 and decay rate e
(

− πf1
Q

i∆t
)

to both harmonic

functions.
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Fig E.2: The phasor walkout for a signal with two harmonic functions of frequencies f1 = 9
mHz and f2 = 10.1 mHz for several different cases. From a) to g) the tested frequency is
fs = f1, while for b) to h) fs = f2. Cases a) and b) the starting signal is defined by (E.7)
with A1 = A2 = 1 [nm/s2], θ1 = θ2 = 0. In c) and d) phases are added θ1 = 0.75 and
θ2 = −0.75 are added. In e) and f) phases are the same θ1 = θ2 = 0.75 and amplitudes are
added with A1 = 10 [nm/s2] and A2 = 1 [nm/s2]. In g) and h) phases and amplitudes stay

the same but a decay rate defined with exp
(

−πf1

100 i∆t
)

is added.

The results are shown in Fig. E.2. The phasor walkout for the basic signal defined in

(E.7) with A1 = A2 = 1 [nm/s2], θ1 = θ2 = 0 and tested for the frequencies of both

harmonic functions is shown on a) for fs = f1 and on b) for fs = f2. It is important to

notice the regularity of this walkout, that is progressive advantage due to the fact that the

tested frequencies is the same as the frequencies of one of the harmonic functions within

the signal. In the next example, on c) and d) figures, study case (i) is shown. Added phases

cause the inclination of the walkout to have either positive imaginary axis for θ > 0 (case

c) or negative imaginary axis for θ < 0 (case d). On figures e) and f), study case (ii) is

shown. Now, even though both cases show linearity, the phasor walkout of the harmonic

function with smaller amplitude (f) has slower phase change and additional loops, while

the harmonic function with larger amplitude has rapid phase changes (e). The final study

case (iii) is shown on figures g) and h). Adding decay rate is affecting the phasor walkouts

amplitude causing the final walkout to have cone shape. In conclusion, the phasor walkout

of the two harmonic functions of similar frequencies heavily depends on the amplitude ratio

of the harmonic functions within the signal. Having more similar amplitudes will cause

walkouts to have straight lines and thus enabling easier conclusion about the existence of

particular harmonic function in the signal.
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Next, we simulate signal containing the five 0S2 singlets, where each singlet is defined

as (E.5) with θk = 0. Therefore, in case of 0S2 mode k is 5. The signal is 15 days long

with a sampling rate of 60 s. We simulated ten cases which parameters are summarized in

Table E.1. Results are shown in Fig. E.3 and E.4. The frequency used for calculating the

walkout in each case is marked with the asterisk, for example, in the j case we tested for

the 0S−1
2 singlet. Compared to the previous case the differences between singlets frequencies

are about 100 times smaller introducing a considerable effect of the coupling between the

singlets - the walkouts become more complex. In the experiments from a to e, we fix the

same amplitude for all singlets and gradually increase the number of singlets in the signal

from case a having one singlet, 0S−2
2 , to case e having all five singlets. Adding more singlets

is affecting the phasor walkout of the first singlet obviously. While in the first case the

walkout is simple cone-like in other cases the number and complexity of loops are more

prominent. In the experiments from f to j we change the amplitudes of singlets and test

for different singlets. In the case f we calculate the walkout for the 0S0
2 singlet and even

though the signal is the same as in case e the walkout output is much different. At the

same time it is also more difficult to argue about the straightness even though a regularity

exists. Similar conclusions are valid for the cases h and i. We can claim that regularity

exists, however the straightness of the walkout is completely deteriorated. Therefore, it is

reasonable to conclude that small singlets in close vicinity of singlets with higher amplitude

are completely under-dominated resulting in phasor walkouts which are not straight but

adopt loop-like shapes.

Tab E.1: Singlets parameters used to calculate signals, where f [µHz] is the frequency of the
signal, Q the quality-factor and A [nm/s2] amplitude. Amplitude marked with the asterisk
points to the singlet which frequency is used as test frequency for obtaining the phasor
walkout patters in Fig. E.3 and E.4.

Mode 0S−2
2 0S−1

2 0S0
2 0S1

2 0S2
2

f 300.001 304.493 309.064 313.716 318.452

Q 494.6 501.8 509.3 517.0 525.0

a A 50∗ 0 0 0 0

b A 50∗ 50 0 0 0

c A 50∗ 50 50 0 0

d A 50∗ 50 50 50 0

e A 50∗ 50 50 50 50

f A 50 50 50∗ 50 50

g A 20∗ 50 10 50 20

h A 20 50 10∗ 50 20

i A 2∗ 50 5 50 10

j A 2 2∗ 5 50 10
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Fig E.3: Synthetic signals (left) and appropriate phasor walkouts (right) for the experiment
setups a, b, c, d, e from Table E.1. In all setups the phasor walkout is calculated for the 0S−2

2

singlet.
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Fig E.4: Synthetic signals (left) and appropriate phasor walkouts (right) for the experiment
setups f, g, h, i, j from Table E.1. In setups f and h the phasor walkout is calculated for
the 0S0

2 singlet, in g and i for 0S−2
2 singlet and in j for 0S−1

2 singlet.
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Résumé 

Nous avons révisé et développé une modélisation analytique de l’interaction des ondes 
gravitationnelles avec la Terre en termes d’excitation des modes propres. Nous avons, dans un 
premier temps, réévalué la réponse d’une Terre sphérique, sans rotation et radialement stratifiée à 
des sources d’ondes gravitationnelles monochromatiques en termes de déplacement radial induit à 
la surface. Nous avons ensuite développé une nouvelle solution pour une Terre en rotation, 
ellipsoïdale et latéralement hétérogène. Nous avons considéré comme sources d’ondes 
gravitationnelles les systèmes binaires de naines blanches. Dans les deux cas, les seuls modes 
propres qui sont excités sont les modes quadripolaires. La réponse finale dépend fortement de la 
fréquence de l’onde gravitationnelle, la plus grande excitation étant à résonance avec des modes 
propres. Cependant, la détection de ces faibles signaux dans des données gravimétriques ou 
sismologiques est très difficile de par la présence d’un bruit trop élevé dans ces observations et ce 
même après l’utilisation de techniques de traitement du signal, comme le filtrage adaptatif. La 
réponse de la Terre en termes d’excitation des modes propres est dix ordres de grandeur plus faible 
que le niveau de bruit ambiant sur Terre. Finalement, nous avons mis en évidence certaines limites 
d’outils de traitement du signal utilisés pour la recherche et l’analyse de petits signaux. En particulier, 
la distribution des stations à la surface du globe peut introduire des biais dans l’étude des modes 
propres. 

Mots clés: ondes gravitationnelles, modes propres, filtrage adaptatif, traitement du signal 
 
 
 
 

Abstract 

We have revisited and developed an analytical model of the interaction between the gravitational 
waves and the Earth in terms of normal modes excitation. We have first reevaluated the induced 
response for a spherical, radially heterogeneous and non-rotating model to monochromatic 
gravitational wave sources in terms of radial displacement at the Earth’s surface. Then we have 
developed a new analytical solution for a rotating elliptical model with lateral heterogeneities. We 
have considered sources of the gravitational waves that are the double white-dwarf binary systems. 
We have shown that for both models the only normal modes that are being excited are the 
quadrupole ones. The final responses highly depend on the gravitational wave frequencies, the 
largest response being at resonance with a normal mode. However, the detection of these elusive 
signals in gravimetric and seismological data is very difficult due to large environmental noise 
present in the data, even after using some signal processing techniques like the matched filtering. 
There are ten orders of magnitude difference between the calculated Earth’s normal modes 
response and the ambient noise level. Finally, we have highlighted some limitation of the signal 
processing techniques used for the search and analysis of the weak signals. In particular, some 
biases can be introduced when using different station distributions at the surface of the globe in the 
frame of normal mode studies.  

Keywords: gravitational waves, normal modes, matched filtering, signal processing techniques 


