
HAL Id: tel-02947048
https://theses.hal.science/tel-02947048v1

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unique solution techniques for processes and functions
Adrien Durier

To cite this version:
Adrien Durier. Unique solution techniques for processes and functions. Programming Languages
[cs.PL]. Université de Lyon; Università degli studi (Bologne, Italie), 2020. English. �NNT : 2020LY-
SEN016�. �tel-02947048�

https://theses.hal.science/tel-02947048v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2020LYSEN016

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée par

l’Ecole Normale Supérieure de Lyon
en cotutelle avec

Università di Bologna

Ecole Doctorale N°512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 11/06/2020, par :
Adrien Émile DURIER

Unique solution techniques for
processes and functions

Techniques d’unicité des solutions pour processus et fonctions

Devant le jury composé de :

Kesner, Delia IRIF Rapporteure
Roscoe, Bill University of Oxford Rapporteur
Dezani, Mariangiola Università di Torino Examinatrice
Schmitt, Alan INRIA – IRISA Examinateur
Hirschkoff, Daniel ENS de Lyon Directeur de thèse
Sangiorgi, Davide Università di Bologna Co-tuteur de thèse

Abstracts

Abstract

The bisimulation proof method is a landmark of the theory of concurrency and
programming languages: it is a proof technique used to establish that two pro-
grams, or two distributed protocols, are equal, meaning that they can be freely
substituted for one another without modifying the global observable behaviour.
Such proofs are often difficult and tedious; hence, many proof techniques have
been proposed to enhance this method, simplifying said proofs. We study such a
technique based on ’unique solution of equations’. In order to prove that two pro-
grams are equal, we show that they are solution of the same recursive equation,
as long as the equation has the ’unique solution property’: two of its solutions
are always equal. We propose a guarantee to ensure that such equations do have
a unique solution. We test this technique against a long-standing open prob-
lem: the problem of full abstraction for Milner’s encoding of the call-by-value
λ-calculus in the π-calculus.

Résumé

La méthode de preuve par bisimulation est un pilier de la théorie de la concur-
rence et des langages de programmation. Cette technique permet d’établir que
deux programmes, ou deux protocoles distribués, sont égaux, au sens où l’on
peut substituer l’un par l’autre sans affecter le comportement global du système.
Les preuves par bisimulation sont souvent difficiles et techniquement complexes.
De ce fait, diverses techniques ont été proposées pour faciliter de telles preuve.
Dans cette thèse, nous étudions une telle technique de preuve pour la bisimu-
lation, fondée sur l’unicité des solutions d’équations. Pour démontrer que deux
programmes sont égaux, on prouve qu’ils sont solution de la même équation, à
condition que l’équation satisfasse la propriété d’unicité des solutions : deux so-
lutions de l’équation sont nécessairement égales. Nous utilisons cette technique
pour répondre à une question ouverte, à savoir le problème de full abstraction
pour l’encodage, dû à Milner, du λ-calcul en appel par valeur dans le π-calcul.

3

Riassunto

La bisimulazione è una tecnica di prova fondamentale in teoria della concorrenza
e dei linguaggi di programmazione. Questa tecnica viene usata per dimostrare che
due programmi, o due protocolli distribuiti, sono uguali, nel senso che l’uno può
sostituire l’altro senza modificare il comportamento globale del sistema. Le prove
di bisimulazione sono spesso difficili e tecnicamente pesanti. Per questa ragione,
varie tecniche di prova sono state introdotte per facilitare le prove di bisimu-
lazione. In questo documento viene studiata tale tecnica, che sfrutta l’unicità
delle soluzioni di equazioni. Per dimostrare che due programmi sono uguali, si
stabilisce che sono soluzioni della stessa equazione ricorsiva, dal momento in cui
l’equazione soddisfa una proprietà di “unicità delle soluzioni”: ogni due soluzioni
di questa equazione sono uguali. Questa tecnica viene usata per rispondere alla
questione della full abstraction per l’encodaggio del λ-calcolo in call-by-value nel
π-calcolo, proposto inizialmente da R. Milner.

4

Introduction

Guardedness & ‘Unique Solution of equations’

Guardedness and coinduction. The general subject of this thesis is the study of pro-
gramming languages as formal objects, and in particular concurrent process algebras –
stripped-down formalisms used to represent concurrent and interactive processes. In order to
define such formal objects, we need well-formedness guarantees. The kind of mathematical
abstractions that we consider include not only programs written in a formal programming
language, or concurrent processes in a process algebra, but logical proofs as well. Among
the most standard tools of the mathematician for defining these objects are induction (for
bottom-up, finite, constructions), and its dual, coinduction (for top-down, infinite, construc-
tions).

In the case of coinduction, we often work with infinite objects. It is thus of critical
importance to enforce that the definitions do make sense by not containing trivial loops. For
instance, we do not want that the conclusion of a proof is derived directly from that same
assumption itself – that we assumed to hold as a co-inductive hypothesis. Given some logical
assertion H, the following (infinite) proof should not be valid:

...
H
H
H

as otherwise any assertion could be proven in such a fashion.
Guardedness is a tool to study (co-)recursive definitions, the existence of such defined

objects, and their uniqueness. The idea of guardedness is to use precedence to enforce the
productivity of definitions: before the recursion or co-recursion takes place, something has
to happen; for instance, another logical rule has to be used, or the program has to perform
an operation (it produces something). When defining an inductive or a coinductive object
(a fixed point), for instance, a proof, or a program’s behaviour, we say that it is guarded
whenever it enforces the precedence of a productive operation over the (co-)recursion (often
through the means of a syntactic construct). Guardedness has been used to study and war-
rant co-inductive logical proofs, for the modal µ-calculus [DHL06] or in proof assistants such
as coq [Coq93, Gim94], and more recently for parameterized coinductive proofs [HNDV13].
It also has been an integral part of the theory of programming languages and of concurrency
since their very beginning [BBR10, Hoa85, Mil89].

5

Guardedness in process algebras. We illustrate the concept of guardedness within
the framework of process algebras. Consider some processes that we write P,Q, . . . These
processes may perform some actions. We represent these actions with letters a, b, c . . . We
write P a−→ P ′ when the process P performs the action a, and reduces to the process P ′, which
may then perform additional actions. In that simple setting, the concept of guardedness is
captured by a simple syntactic operator, the prefix operator. We write a.P for the process
P prefixed by the action a: the process a.P has to first perform the action a, leaving then
the residual process P . With the previous notation, this is implemented by the rule :

a.P
a−→ P

We may now define a co-inductive process, using only this syntax. The following recursive
definition

P
4
= a.P

is, indeed, well-formed: there is a unique process that satisfies this definition. Such a process
may only perform the action a, and it may perform it indefinitely, over and over again:
P

a−→ P
a−→ P

a−→ . . . In contrast, the definition P
4
= P is not well-formed: it is unclear

which actions such a P should be able to perform, if any. And, indeed, any process satisfies
this equation. Hence, the problem of well-formedness for such defined processes boils down
to the property of ‘unique solution’ for their defining equation, i.e., whether two or more
different processes may be solution of said equation – as long as at least one such solution
exists. Writing X for a process variable (a place-holder for a process), the equation X = X
indeed does not enjoy the unique-solution property, while the equation X = a.X does.

The proof technique of unique solution of equations. We study guardedness because
it provides a tool to enforce that equations have a unique solution. However, we are mostly
interested in unique solution of equations as a proof technique, rather than a tool to provide
proper definitions. Proof techniques are an essential ingredient of the theory of any formal
language, including process algebras. Consider the following toy language, for a given set of
names N :

P,Q := a.P | 0 (a ∈ N)

The null process 0 is a process that may not perform any action. We use the names in the
set N to represent different actions than processes may perform. As above, we use a Labeled
Transition System (LTS) to describe the behaviour of processes: for each name a, b, · · · ∈ N
we define a relation a−→ over processes. Using infix notation for these relations, we write
P

a−→ P ′ when P can perform the action a; leaving P ′, in turn, able to perform some actions.
By definition, the null process has no possible actions: for any a and Q, 0 6 a−→ Q. This is
illustrated by the following process behaviour:

a. b.0
a−→ b.0

b−→ 0

Now that we gave a semantics to the language, describing the behaviour of processes, we
want to equate processes that exhibit the same behaviour, even if they do not share the

6

same syntax. Consider, for instance, recursively defined processes P 4
= a.P and Q 4

= a. a.Q
(leaving aside, for now, the formal meaning of such recursive definitions). Both have the
same behaviour: indeed, they might only perform the action a, infinitely many times. We
thus want to show that P = Q. By equality we do not mean syntactic equality: consider
that = stands for some equivalence relation that captures the behaviour of processes (we call
such relations ‘behavioural equivalences’). To provide a proof that they do indeed have the
same behaviour, we can use the fact that the equation

X = a. a.X

has a unique solution: if P and Q are solutions of this equation, then we can deduce that P =
Q. Indeed, as a consequence of guardedness, this equation has a unique solution. It is only
left to show that P = a. a.P and Q = a. a.Q. The second equality is a direct consequence of
Q’s definition. On the other hand, it is not hard to show that P = a. a.P : both P and a. a.P
can perform two transitions a, to reduce to P . The following diagram illustrates this proof:

P

a
��

= a. a.P

a
��

P

a
��

= a.P

a
��

P = P
We call this procedure for proving an equality the ‘unique solution of equations’ tech-

nique. It has been proposed by Milner in the setting of CCS, and plays a prominent role
in proofs of examples in his book [Mil89]. It was independently proposed by Hoare for his
language CSP [Hoa85]. The method is important in verification techniques and tools based
on algebraic reasoning [Ros10, BBR10, GM14].

Guardedness in presence of parallel composition. Process algebras are mostly used
to represent concurrent executions and communication. We thus assume action P

a−→ P ′

stands for the reception of a message, on some communication channel a. This is an external
action: we assume that in presence of another process, emitting some message (we write
Q

a−→ Q′ for the output on a), the two processes will synchronise, turning both external
actions into a single internal action – invisible to the outside world. Thus, the guard of the
process a.P , in presence of a message output on a, might be erased, leaving an unguarded
process.

We introduce CCS, a very simple language used to represent basic concurrent processes
and communications. It was first proposed by Milner [Mil89]. In CCS, processes may only
perform two types of actions: receive a message on some channel (channels are represented
by names, a, b, . . .), or output a message on such a channel. We write a.P for the input prefix
action, and a.P for the output prefix action. The null process is still 0. The new construct
is parallel composition P | Q, that allows concurrent execution and synchronisation. This
forms a subset of the original CCS; for now, we only consider this restricted syntax:

7

P,Q := 0 | a.P | a.P | P | Q

In the process a.P | b.Q, the inputs a and b may occur in any order, and likewise, a
may occur before or after any action of Q – as long as a occurs before any action of P , and
b before any action of Q (prefixes still enforce precedence). Furthermore, input actions a
and output actions a on the same channels may now synchronise, when put in parallel: in
a.0 | a.0, an (internal) communication may occur, leaving the process 0 | 0.

In presence of parallel composition, guardedness does not ensure uniqueness of solution
anymore, as illustrated by the following equation:

X = a.X | a.0 (1)

Indeed, while this equation is syntactically guarded (the equation variable X is placed below
a prefix operator), it has multiple solutions. The idea is that the a. prefix does not enforce
the behaviour of the equation’s solution, as it may be removed through synchronisation. To
take this into account, we distinguish between strong equivalences and weak equivalences.

Strong and weak equivalences. To model communications, we extend the Labeled Tran-
sition System with a new label, τ , standing for internal actions; thus P τ−→ P ′ means that
P performs some internal computation, then reduces to P ′. Likewise, we introduce the τ
prefix: τ .P stands for some internal computation followed by the process P Such internal
computation should not be observable by the outside world, and thus our behavioural equiv-
alence should not account for τ -transitions. Synchronisations are described by the following
τ -transition:

a.P | a.Q
τ−→ P | Q

Note that such a transition is optional, as the left-hand process might still perform either
the input or the output on a; for instance: a.P | a.Q

a−→ P | a.Q.
We call a behavioural equivalence strong when it accounts for τ transitions, and weak

when it does not. In this thesis, we are mostly interested in weak equivalences, as they are, in
practice, the most relevant ones: e.g., two equivalent programs may produce the same result
with different numbers of evaluation steps. However, the theory of a strong equivalence is
usually more accessible, as illustrated by the simple guard condition for strong equivalences,
sufficient to ensure that an equation has a unique solution. We are therefore interested in
comparing the theories of unique solution of equations for strong and weak equivalences.

An instance of such equivalences are the trace equivalences. In the ‘strong’ trace equiv-
alence, two processes are equated when they can perform the same sequences of actions
(including τs). The weak variant of trace equivalence matches sequences of transitions, but
ignoring τ -transitions. We now write a for the process a.0 (likewise for τ and a). Consider
the two processes τ | τ . a. a and τ . a | τ . a. For the strong trace equivalence, these processes
are not equal: the first process produces the trace τaaτ , while the second may not. However,

8

they are equal for weak trace equivalence, as their only weak traces are a and aa (τs are
ignored).

Milner shows in his book [Mil89] on CCS that, when considering strong equivalences,
unique solution of equations holds for any guarded equation. More precisely, he shows that
this is the case for strong bisimilarity, an equivalence finer than trace equivalence; however,
his result also holds for strong trace equivalence, and most strong behavioural equivalences.
Indeed, the equation

X = τ .X

has a unique solution for a strong equivalence (the solution is a process whose traces are
finite sequences of τs). On the other hand, any process is solution for a weak equivalence,
making this equation akin to X = X. This is illustrated by Equation (1) above: for any
process P , we have the transition a.P | a.0

τ−→ P | 0. Thus, the behaviour of any solution
will be expressed in the behaviour of a.P | a.0: while any solution must still have certain
behaviours imposed by the equation, it may also have, in addition, any other behaviour (it
may perform any other actions). In other words, if P is solution of this equation, so is P | Q
for any Q.

Because the transition a.P | a.0
τ−→ P | 0 holds for all possible solutions to the equation,

what we did amounts to rewriting the body of the equation: somehow, a.X | a.0
τ−→ X | 0.

Any process is solution of X = X | 0, and from this we deduce that solutions of the equation
might exhibit any transition (but not that any process is solution, as this τ -transition is not
the only possible transition of the original equation. In other words, the prefix guarding the
equation can always be deleted, thus the equation fails to have a unique solution. However,
for a strong equivalence, Equation (1) still has a unique solution.

Unique solution of equations for weak equivalences. Several notions of guardedness,
strong enough to ensure uniqueness of solutions, have been studied, for different languages
and process algebras; see, e.g., [BW90, GM14]. As shown above, the syntactic notion of
guardedness from CCS is not sufficient. Hence, in Milner’s theorem [Mil89], uniqueness of
solutions relies on an additional limitation: the equations must be ‘sequential’, that is, the
variables of the equations may not be preceded, in the syntax tree, by the parallel composi-
tion operator. This limits the expressiveness of the technique (in general, occurrences of the
parallel composition operator cannot be removed), and its transport onto other languages
(e.g., many languages, such as our restricted version of CCS, languages for distributed sys-
tems or higher-order languages, do not include any non-deterministic operator other than the
parallel composition, which makes the theorem essentially useless). A comparable technique,
involving similar limitations, has been proposed by Hoare in his book about CSP [Hoa85],
and plays an equally essential role in the theory of CSP.

Contractions. In order to overcome such limitations, a variant of the technique, called
unique solution of contractions, has been proposed [San15]. The technique is for behavioural
equivalences; however the meaning of ‘solution’ is defined in terms of the contraction of the
chosen equivalence. Contraction is, intuitively, a preorder that conveys an idea of efficiency

9

on processes, where efficiency is measured on the number of internal actions needed to
perform a certain activity. The condition for applicability of the technique is, as for Milner’s,
purely syntactic: each variable in the body of an equation should be underneath a prefix.
The technique has two main disadvantages:

1. the equational theory of the contraction preorder associated to an equivalence is not
the same as the equational theory of the equivalence itself, which thus needs to be
studied as well;

2. the contraction preorder is strictly finer than the equivalence, hence there are equivalent
processes, one of which might be solution of a given contraction, while the other is not,
and the technique might not be applicable in this case.

Roscoe’s unique-solution technique. Roscoe [Ros97, Ros92], proposes a different ap-
proach for CSP, relying on the concept of divergence: a process diverges if it may produce, at
any point of its execution, an infinite sequence of τ -transitions. For instance, the solution for
strong equivalences of the equation X = τ .X produces a divergence. The unique-solution
theorem condition relies on non-divergence of the syntactic solution, e.g., the solution of
the equation defined recursively thanks to the equation: for instance the process P 4

= τ .P
for the equation X = τ .X. A similar approach is to consider the infinite unfolding of the
equation: the infinite syntactic object obtained by replacing the variables with the body of
the equation within the equation itself, infinitely many times (the infinite unfolding of the
equation X = τ .X would be τ . τ . τ . . .). The unique-solution theorem essentially states that
a guarded equation (or system of equations) whose infinite unfolding never produces a diver-
gence has the unique-solution property. Roscoe’s result is presented, as usual in CSP, with
respect to denotational semantics and failure based equivalence [BHR84, BR84]. In such a
setting, where divergence is catastrophic (e.g., it is the bottom element of the domain), the
theorem has an elegant and natural formulation. (Indeed, Roscoe develops a denotational
model [Ros92] in which the proof of the theorem fits within just a few lines.) Operational
approaches, while more involved, are often more flexible, as they scale more easily to different
languages and equivalences.

Bisimulation and up-to-context techniques

Bisimulation and bisimilarity. Bisimilarity is a behavioural equivalence, but also a
mean to reason about behavioural equivalence. It originates in Milner’s work on concurrency
theory, but is now widely used in formal methods for programming languages – the certified
compiler CompCert [Ler], for instance, relies heavily on simulation methods.

The popularity of bisimilarity is mostly due to its associated coinductive proof method –
the bisimulation proof method. Two processes are deemed bisimilar if a bisimulation relation
R relating them can be exhibited, where a bisimulation is a relation required to be closed
under the following game: if P R Q (meaning P and Q are related by the bisimulation R),

10

then for any action, say a, that P can perform, reducing to a residual process P ′ (P a−→ P ′),
then Q must be able to perform the same action a, reducing to a residual process Q′,
whereby P ′ and Q′ are still related by R. Because we consider weak equivalences, Q might
perform any amount of internal work before and after performing a. Likewise, for any action
emanating from Q: P must answer with the same action, and possibly some internal steps
before and after. This can be described by the following diagram, whereR is a a bisimulation
relation, and ⇒ is used to represent internal work (sequences of τ transitions) performed by
the process.

P

a

��

R Q

��
a
��

��
P ′ R Q′

(for the actions of Q, the symmetrical game is played). When the challenge is a τ -transition,
the answering process might perform any number of τ -steps, including zero.

Up-to techniques. Improvements to the bisimulation proof method are an active research
area, and the best known such enhancements are the so-called ‘up-to techniques ’ [PS11].
Using such techniques, the derivatives of processes related by a bisimulation (P ′ and Q′

in the diagram above) can be manipulated and rewritten, before they are required to be
related by the bisimulation relation. The goal is to work with smaller relations, contained
within bisimulation relations. Among such techniques, a most notable one is the ‘up-to
bisimilarity’ technique, which allows to rewrite the residual processes using already-proven
bisimilarity equalities: we only require that P ′ and Q′ are bisimilar to processes related by
R. Unfortunately, this technique has been proven to be unsound [SM92]. Indeed, using
weak bisimilarity, it is possible to add new internal transitions after every step, so that the
bisimulation game never reaches the point at which the considered processes differ.

We therefore have to rely on weaker techniques, such as the so-called ‘up-to expansion’
techniques, which restricts the up-to bisimilarity technique (expansion is a preorder that
refines bisimilarity). Find new and more powerful replacements for the up-to bisimilarity
technique has been an active research area [San15, Pou08].

Up-to-context techniques. Among the most powerful such forms of enhancement, an-
other is the up-to-context technique, that allows one to exploit the syntactic structures of
the language by removing a common context in the derivative terms, and requiring only the
resulting terms to be related (the context may have multiple holes, in which case the tuples
of resulting terms should be componentwise related). It is rarely the case that the deriva-
tive terms explicitly exhibit a common context; usually they have to be ‘massaged’ (i.e., by
applying some algebraic laws) in order to bring up such a common context. A common way
of achieving this is by combining up-to context with the above up-to-expansion technique.
Writing � for the expansion, and C[P ′′] for the process P in some context C (shared with
the process C[Q′′]), the bisimulation game becomes:

11

P

a

��

R Q

��
a
��

��
P ′ � C[P ′′]

P ′′ R
C[Q′′]
Q′′

� Q′

As expressed by the diagram above, we can replace, modulo expansion, the process P ′
resulting from the transition with C[P ′′], and similarly Q′ with C[Q′′]. We can then remove
the common context C, and compare P ′′ and Q′′ using R.

Contractions and up to context. In his work on unique solution of contractions [San15],
Sangiorgi illustrates an interesting correspondence between the unique-solution and the up-
to-context techniques. Indeed, consider a proof of equivalence of the tuples of processes P̃
and Q̃, using the system of equations X̃ = Ẽ, assuming it has a unique solution. To show
that both P̃ and Q̃ are solutions of the system of equations, we have to show that for each
pair Pi R Qi, Pi and Qi can be rewritten to be processes equipped with some common
context, given by the body of the corresponding equation Ei. This is precisely the idea
behind up-to-context techniques. In other words, the body of an equation acts like a context
that is erased in a proof using ‘up to context’.

This correspondence particularly holds true in CCS (and other first-order languages):
Sangiorgi shows that, for any equivalence proof made with a system of equation-contractions,
there is a proof of similar complexity using a bisimulation up to context; this means the
bisimulation-up-to relation is of the same size as the system of equations. The converse also
holds: bisimulations up to can be turned into systems of equation-contractions. However,
this perfect correspondence does not hold anymore when considering higher-order languages,
or languages with name-passing, such as the π-calculus.

Name-passing and Higher-Order
The π-calculus. The π-calculus is an extension of CCS, where channel names can be
exchanged along communications. The other operators of the language are the same as in
CCS. However, despite this, the theory of the language is substantially impacted by this new
ability. In many regards, the theory of the π-calculus is closer to the theory of the λ-calculus:
many problems arise that are simply absent from CCS.

The names that are exchanged are the very same names used as prefixes. a(b).P is the
prefix representing the reception of a name b during a communication whose subject is a
– thus, b is bound in a(b).P . Consider the process a(b). b. It receives a name b along a
communication on a, then listens on this newly received channel (not that we are using here
CCS-like syntax, and write simply b, using the fact that the information sent on channel b
is not used). Thus, if this process were put in parallel with a process a〈c〉. c, that first emits
a name c along a, then emits on this channel c, two synchronisations could occur:

12

a(b). b | a〈c〉. c τ−→ c | c τ−→ 0 | 0

The previous transitions are instantiations of the more general law:

a(x̃).P | a〈̃b〉.Q τ−→ P{b̃/x̃} | Q

({b̃/x̃} denotes the syntactic replacement of x̃ with b̃, in a capture-avoiding way)
The fact that the exchanged names are the same used as guards presents a new prob-

lem: equations that may have seemed safe previously, now may become unguarded, as a
consequence of some synchronisation. The equation X = y.X | b has a unique solution;
however, the equation X = a(y). (y.X | b) | a〈b〉 does not: after a first τ -step, it reduces to
X = b.X | b, and then another τ -step brings it to what is, essentially, the equation X = X.

The unique-solution property is also impacted by the way we choose to build a LTS to
represent this behaviour. Indeed, we want to model the behaviour of a program even if no
synchronisation is possible. We often use the rule

a(x̃).P
a(̃b)−−→ P{b̃/x̃}

where bound names x̃ are instanciated by arbitrary names b̃, as to model the fact that an
external process may output any names along a.

In contrast, we sometimes require that in the previous rule, the names b̃ are fresh, meaning
that they do not appear free in P ; we call the LTS thus defined the ground LTS. While the
ground LTS is not adequate for the full π-calculus, it has a much simpler theory and accounts
for the potential constraints we might impose to the language (hence constraining the type of
names that processes may output). This is done by considering subcalculi of the π-calculus,
where some constructs are constrained or simply absent from the language.

Congruence and up-to-context. In the full π-calculus, bisimilarity is not a congruence:
this means that even though two processes P and Q might be bisimilar, when put in some
common context C, the resulting processes C[P] and C[Q] might not be bisimilar anymore.
Of course, up-to-context cannot be a sound technique in this case, as it implies congruence.
To recover context-based techniques, an often used solution is to consider subcalculi of the
π-calculus in which bisimilarity is a congruence.

There are many variants of the π-calculus in the litterature [SW01]. Among the calculi
with the most robust theory, an impoortant one is the Asynchronous π-calculus (Aπ), in
which communication is asynchronous, meaning it is not possible to know whether a message
has been received yet, or if it the communication is still waiting to occur. This is done by
forbidding that the output action prefixes any process other than the null process 0 (prefixed
processes can be either a(x).P for any P , or a〈b〉.0). In other words, outputs always occur in
parallel. In the asynchronous π-calculus, bisimilarity is indeed a congruence. Furthermore,
we are allowed use the ground LTS for Aπ, which simplifies the theory of proof techniques.
Another calculus for which bisimilarity is a congruence is the Internal π-calculus (Iπ), in

13

which communication always uses fresh names. This calculus has a theory very close to
that of CCS, and thus bisimilarity is also a congruence. However, while the congruence
property is essential to even consider context-based techniques, the converse is not true:
if unique-solution techniques are always sound when congruence holds (at least for strong
equivalences), this is not necessarily the case for up-to-context techniques.

An important difference between unique solution of equations and up-to techniques arises
in the asynchronous π-calculus. In this setting, forms of bisimulation enhancements that
involve ‘up to context’, such as ‘up to expansion and context’, require closure of the candidate
relation under substitutions . It is an open problem whether this closure is necessary.

Higher-order calculi. The Higher-Order π-calculus is a higher-order concurrent language,
whereby communication of channel names is not allowed, as processes themselves are ex-
changed along communications. For instance, the process a(X). (X | b〈X〉) receives another
process on a, and immediately runs it, while sending in parallel a copy of this process on b.

Up-to-context techniques can be particularly effective in such higher-order languages.
Other notable higher-order languages include the λ-calculi, and the Ambients calculus (e.g.,
[Las98a, Las98b, KW06, SW01, MN05]). Unfortunately, in such calculi, proving the sound-
ness of up-to context techniques can be surprisingly hard. Even in pure λ-calculi, and for
the most basic form of bisimilarity (e.g., the call-by-name or call-by-value λ-calculus and
Ambramsky’s applicative bisimilarity [Abr87]) long-standing open problems remain about
soundness, even though congruence is known to hold. Higher-order process calculi are the
class of languages in which up-to context techniques in the literature are most scarce. Re-
cently, techniques of this kind have been derived exploiting fully-abstract translations into
first-order calculi (CCS-like or π-calculus-like) [MPS14]. However fully abstract translations
are sensitive to the grammar of the language chosen: a modification to the grammar may
break or prevent a fully abstract translation to be defined, or, at the very least, will require
a careful re-examination of the full abstraction proof.

We thus look for direct proofs of soundness, that do not rely on translations into first-
order languages. These are rare. The only such direct proofs are [MN05], for the Ambient
calculus, and [SKS11] for the Higher-Order π-calculus (HOπ). The Ambient calculus rep-
resents a rather special case of higher-order calculus, for processes can move but cannot be
communicated. Moving a process is quite different from communicating it as in HOπ: in the
former case the process will always be run, immediately and exactly once; in the latter case,
in contrast, the process may be copied, and it is the recipient of the process that decides
when and where to run each copy. Thus the problems of soundness for up-to-context only
show up in a limited form in Ambients. The up-to-context technique considered in [SKS11]
is for environmental bisimilarity. This bisimilarity involves universal quantifications on pro-
cesses supplied by the environment. Up-to-context is essential for limiting the burden due
to such quantifications. The contexts used have constraints and are disallowed in certain
clauses (this is necessary for the soundness of the technique).

14

Contributions

Contributions on the unique solution technique

The main contributions of this thesis follow two axis. We introduce in this section our
contribution on the unique-solution technique. This work will be tested against an open
problem: the problem of full abstraction for Milner’s encoding of the call-by-value λ-calculus
in the π-calculus. This is a well-known and challenging problem, that we use to test the
effectiveness of the unique-solution techniques introduced in this thesis.

While our solution to this problem is enabled by our work on unique solution, these
subjects are somewhat orthogonal, as full abstraction is an interesting problem by itself. We
thus introduce it in the next section. A by-product of the study of full abstraction were a
few further developments of the unique-solution technique; these are presented in the current
section.

We study the technique of unique solution of equations for (weak) behavioural relations.
We mainly focus on bisimilarity but we also consider other equivalences, such as trace equiv-
alence, as well as preorders such as trace inclusion. We look for conditions, that, in conjunc-
tion with the syntactic guardedness condition of CCS, are sufficient to ensure that a given
equation enjoys unique solution.

We draw inspiration from Roscoe’s work on unique solution for CSP to formulate the
counterpart of these results in the operational setting of CCS and bisimilarity. In comparison
with the denotational CSP proof, the operational CCS proof is more complex. The opera-
tional setting offers however a few advantages. First, we can formulate more refined versions
of the theorem, in which we distinguish between different forms of divergence. Notably, we
can ignore divergences that appear after finite unfoldings of the equations, called innocuous
divergences in this paper. (These refinements would look less natural in the denotational
and trace-based setting of CSP, where any divergence causes a process to be considered un-
defined.) This allows us to establish some completeness results: in some restricted setting,
equations with a unique solution are precisely equations with only innocuous divergences.
However this does not hold in general: there are equations with a unique solution but no
divergences, even in CCS. Equations of this type do not seem to appear in practice.

A second and more important advantage comes as a consequence of the flexibility of
the operational approach: the unique-solution theorems can be tuned to other behavioural
relations (both equivalences and preorders), and to other languages.

To highlight the latter aspect, we present abstract formulations of the theorems, on a
generic LTS (i.e., without reference to CCS). In this abstract formulation, the body of an
equation becomes a function on the states of the LTS. The theorems for CCS are instances of
the abstract formulations. Similarly we can derive analogous theorems for other languages.
We illustrate this flexibility using rule formats [BIM88]: we show that any language that
enjoys congruence properties and that fit within certain standard rule formats, such as
GSOS [BIM88] or tyft/tyxt [GV92], also enjoy our unique-solution theorem. We describe
the abstract setting, and show how they illustrate the relationship between guardedness

15

and formats with lookaheads (tyft/tyxt). We then develop our own rule format, tailored
specifically for our technique, inspired by rule formats for weak bisimilarity [vG05, vG11,
UP02, Blo95], but much more general.

The abstract version of our main unique-solution theorem has been formalised using the
Coq proof assistant [Dur17].

We develop several tools to facilitate the application of the technique in practice. In
particular, one such result allows us to transplant uniqueness of solutions from a system of
equations, for which divergences are easy to analyse, to another one. Another result is about
the application of the technique to preorders. And lastly, we develop sufficient, decidable,
conditions for non-divergence.

One of the most powerful up-to technique is the ‘up to transitivity and context’ technique
due to Pous, which relies on a termination hypothesis [Pou08] – which is reminiscent of our
non-divergence hypothesis. Indeed we show that our unique-solution technique generalises
‘up to expansion’ and combines it with ‘up to context’ and ‘up to transitivity’. We show
that, modulo an additional hypothesis, our techniques are at least as powerful as this up-to
technique: any up-to relation can be turned into a system of equations of the same size
(where the size of a relation is the number of its pairs, and the size of a system of equations
is the number of its equations) for which uniqueness of solutions holds.

The relationship between up-to-context techniques and unique solution of equation is
less clear in languages that have name-passing or higher-order features; particularly, the
soundness of up to context is an open problem for both the π-calculus and the Higher-Order
π-calculus. This is even true of some of the well-behaved subcalculi of the π-calculus, such
as Aπ, where, as far as we know, a closure by substitution of the candidate bisimulation
up to is required. Our unique-solution techniques are strongly reminiscent of up to context
techniques (the body of an equation acts like a context that is erased in a proof using ‘up
to context’); yet, surprisingly, we are able to port it to some languages with higher-order
features, and to the π-calculus. We port it to the full π-calculus– baring that we have to
consider closed abstractions only, and that divergences are much more common when the
ground LTS is not available – as well as to several subcalculi of the π-calculus: Aπ, Iπ, and
ALπ. Furthermore, we develop conditions for non-divergence for these calculi, enabled by
the ground LTS.

We also transport the theory of unique solution to the setting of HOπ. We focus on
normal bisimilarity [San96a] to analyse HOπ processes, for two main reasons. First, it is the
most effective in proofs, as its clauses do not make use of additional universal quantifications
with respect to ordinary bisimulation of CCS-like processes (other forms of bisimilarity, such
as context bisimilarity or environmental bisimilarity, make use of universal quantifications
in the input terms supplied by the external observer, as well as in other clauses). Second,
precisely due to such lack of universal quantifications, the ‘contextual’ properties of normal
bisimilarity are quite delicate. Even proving substitutivity with respect to basic operators
such as parallel composition is hard (indeed, usually this is proved by relying on mappings
onto other forms of bisimilarity or onto first-order calculi). No direct proofs of soundness of
forms of up-to-contexts exists.

16

The structure of the proofs of the unique-solution theorems for HOπ or the π-calculi is
similar to that of CCS. We consider this as a positive outcome: the main objective of this
study was to examine if and how the CCS proofs could be transported onto a higher-order
setting. In HOπ, there are however noticeable differences in the proofs. For instance, often
the proofs require reasoning on sequences of transitions. Now, in CCS the derivative of any
transition is a process. In HOπ, in contrast, the derivative of an input is an abstraction,
that needs to receive a process before becoming a process itself; similarly for output transi-
tions, whose derivatives are concretions. This has also consequences on the reasoning about
unfolding of equations. Similar issues with instantiation of terms occur in the definitions of
bisimilarity in CCS and in HOπ, and are at the heart of the differences between them.

We also discuss how we get our theorem for free in languages that enjoy first-order
encodings [MPS14], further reinforcing the robustness and portability of our technique. And
lastly, we also discuss the unique-solution technique in the λ-calculus. While the results in
the λ-calculus are limited in scope (due to the omnipresence of divergences in its theory),
these are not surprising: fully abstract translations of the λ-calculus in the π-calculus exist,
that are the main subject of our studies on full abstraction.

Full abstraction for the encodings of the λ-calculus in the π-calculus

To test the effectiveness of the unique-solution technique introduced in the previous section,
we use it to study two well-known problems from concurrency theory, one of which was still
open.

Milner’s work on functions as processes [Mil90a, Mil92], that shows how the evaluation
strategies of call-by-name λ-calculus and call-by-value λ-calculus [Abr87, Plo75] can be faith-
fully mimicked in the π-calculus, is generally considered a landmark in Concurrency Theory,
and more generally in Programming Language Theory. The comparison with the λ-calculus
is a significant expressiveness test for the π-calculus. More than that, it promotes the π-
calculus to be a basis for general-purpose programming languages in which communication
is the fundamental computing primitive. From the λ-calculus point of view, the comparison
provides the means to study λ-terms in contexts other than purely sequential ones, and
with the instruments available to reason about processes. Further, Milner’s work, and the
works that followed it, have contributed to understanding and developing the theory of the
π-calculus.

More precisely, Milner shows the operational correspondence between reductions in the
λ-terms and in the encoding π-terms. He then uses the correspondence to prove that the
encodings are sound, i.e., if the processes encoding two λ-terms are behaviourally equivalent,
then the source λ-terms are also behaviourally equivalent in the λ-calculus. Milner also
shows that the converse, completeness, fails, intuitively because the encodings allow one to
test the λ-terms in all contexts of the π-calculus — more diverse than those of the λ-calculus.

The main problem that Milner work left open is the characterisation of the equivalence
on λ-terms induced by the encoding, whereby two λ-terms are equal if their encodings
are behaviourally equivalent π-calculus terms. The question is largely independent of the
precise form of behavioural equivalence adopted in the π-calculus because the encodings are

17

deterministic (or at least confluent). We consider contextual equivalence (that coincides with
may testing and trace equivalence) and barbed congruence (that coincides with bisimilarity).

For the call-by-name λ-calculus, the answer was found shortly after Milner’s study [San93b,
San00]: the equality induced is the equality of Levy-Longo Trees [Lon83], the lazy variant
of Böhm Trees. It is actually also possible to obtain Böhm Trees, by modifying the call-
by-name encoding so to allow also reductions underneath a λ-abstraction, and by including
divergence among the observables [SX14]. These results show that, at least for call-by-name,
the π-calculus encoding, while not fully abstract for the contextual equivalence of the λ-
calculus, is in remarkable agreement with the theory of the λ-calculus: several well-known
models of the λ-calculus yield Levy-Longo Trees or Böhm Trees as their induced equiva-
lence [Lév75, Lon83, Bar84].

As an example of application of our techniques in the π-calculus, we revisit the com-
pleteness part of the proof of full abstraction for the encoding of the call-by-name λ-calculus
into the π-calculus [San00, SX14] with respect to Levy-Longo Trees (LTs). The proof in
[San00, SX14] uses ‘up to expansion and context’. Such up-to techniques seem to be es-
sential: without them, it would be hard even to define the bisimulation candidate. For our
proof using unique-solution, there is one equation for each node of a given LT, describing
the shape of such node.

For call-by-value, in contrast, the problem of identifying the equivalence induced by the
encoding has remained open, for two main reasons. First, tree structures in call-by-value are
less studied and less established than in call-by-name. Secondly, proving completeness of an
encoding of λ into π requires sophisticated proof techniques. For call-by-name, for instance,
a central role is played by bisimulation up-to contexts. For call-by-value, however, existing
proof techniques, including ‘up-to contexts’, appeared not to be powerful enough.

One of the main contributions of this thesis is the study of the above open problem for
call-by-value. Our main result is that the equivalence induced on λ-terms by their call-by-
value encoding into the π-calculus is eager normal-form bisimilarity [Las05, LL05]. This is a
tree structure for call-by-value, proposed by Lassen as the call-by-value counterpart of Levy-
Longo Trees. Precisely we obtain the variant that is insensitive to some form of η-expansion,
called η-eager normal-form bisimilarity. It validates the η-expansion law, when applied to
variables:

λy.xy = x (2)

η-expansion is moreover always valid for abstractions, so that we have λy. (λz.M)y =
λz.M . However, in a weak call-by-value setting, η-expanded terms should not always be
equated: indeed, Ω diverges, while λx. Ωx converges to a value.

To obtain the results we have however to make a few adjustments to Milner’s encoding
and/or specialise the target language of the encoding. These adjustments have to do with
the presence of free outputs (outputs of known names) in the encoding. Indeed, Milner’s
first encoding maps a λ-variable to a free output. We have, writing V [[x]]〈p〉 for the encoding
of the variable x, where p is the location at which x is evaluated:

V [[x]]〈p〉 def
= p〈x〉 . (3)

18

However this is troublesome for the validity of βv-reduction (the property that λ-terms
that are related by βv-reduction — the call-by-value β-reduction — are are also equal in
the π-calculus). Milner solved the problem by ruling out the initial free output p〈x〉 and
replacing it with a bound output νy p〈y〉 followed by a static link y � x. A static link y � x
forwards any name received by y to x, therefore acting as a substitution between x and y,
but also constraining the context’s access to x (the context may not observe inputs on x: it
may only trigger outputs on x by performing an output on y). We write V ′[[·]] for Milner’s
second encoding:

V ′[[x]]〈p〉 def
= νy (p〈y〉. y � x) . (4)

It was indeed shown later [San93a] that with (3) the validity of βv-reduction fails. Ac-
cordingly, the final journal paper [Mil92] does not mention encoding (3). If one wants to
maintain the simpler rule (3), then the validity of βv-reduction can be regained by taking, as
target language, a subset of the π-calculus in which only the output capability of names is
communicated. This can be enforced either by imposing a behavioural type system includ-
ing capabilities [PS96], or by working in a dialect of the π-calculus in which only the output
capability of names is communicated, such as the Localised π-calculus [MS04].

The encoding (4) still makes use of free outputs — the final action of y�x is a free output
on x. While this limited form of free output is harmless for the validity of βv-reduction, we
show that this brings problems when analysing λ-terms with free variables. Indeed, desirable
call-by-value equalities fail; an example is given by the law:

I(xV) = xV (5)

where I is λz. z and V is a value.
Law (5) is valid in any model of call-by-value, because any closing context equates these

terms: for instance, λx. I(xV) = λx.xV .
Two possible solutions to recover law (5) are:

1. rule out the free outputs; this essentially means transplanting the encoding onto the
Internal π-calculus [San96b], a version of the π-calculus in which any name emitted in
an output is fresh;

2. control the use of capabilities in the π-calculus; for instance taking Asynchronous
Local π [MS04] as the target of the translation. (Controlling capabilities allows one to
impose a directionality on names, which, under certain technical conditions, may hide
the identity of the emitted names.)

We consider both approaches, and show that in both cases, the equivalence induced
coincides with η-eager normal-form bisimilarity.

In summary, our contributions on the call-by-value encoding are the following:

1. Showing that Milner’s encoding fails to equate terms that should be equal in call-by-
value.

19

2. Rectifying the encoding, by considering different target calculi, and investigating Mil-
ner’s problem in such a setting.

The rectification we make does not really change the essence of the encoding – in one case, the
encoding actually remains the same. Moreover, the languages used are well-known dialects
of the π-calculus, studied in the literature for other reasons. In the encoding, they allow us
to avoid certain accidental misuses of the names emitted in the communications. The calculi
were not known at the time of Milner’s paper [Mil92].

The unique-solution technique plays a central role in the proof. The structure induced
by Milner’s call-by-value encoding was expected to look like Lassen’s trees; however existing
proof techniques did not seem powerful enough to prove it. In this respect, another goal of
this work is to carry out an extended case study on the applicability and expressiveness of
our unique-solution technique.

Finally, we consider preorders — thus referring to the preorder on λ-terms induced by
a behavioural preorder on their π-calculus encodings. We introduce a preorder on Lassen’s
trees (preorders had not been considered by Lassen) and show that this is the preorder on
λ-terms induced by the call-by-value encoding, when the behavioural relation on π-calculus
terms is the ordinary contextual preorder (again, with the caveat of points (1) and (2)
above). With the move from equivalences to preorders, the overall structure of the proofs of
our full abstraction results remains the same. However, the impact on the application of the
unique-solution technique is substantial, because the phrasing of this technique in the cases
of preorders and of equivalences is quite different.

20

Outline of the document

Prologue. In the prologue we introduce first the general framework for our techniques:
CCS (0.1) and bisimulations (0.2). We present a quick introduction to up-to techniques
(0.3), and a more detailed account of up-to-context techniques (0.4).

We then introduce the unique-solution technique, with Milner’s unique solution Theo-
rems [Mil89] (for weak and strong bisimilarity) in Section 0.5.

The motivation of the work presented here is to find adequate replacements for up-to-
context techniques when we may not use them, and sometimes even proof techniques that
are provably at least as powerful as up to context; a first illustration of such a correspondence
is given by Sangiorgi’s unique solution of contractions technique [San15], that we present in
Section 0.6.

Chapter 1. The first chapter is dedicated to our ‘unique solution of equations’ technique,
based on Roscoe’s ideas [Ros92, Ros97], starting in Section 1.1 with CCS. We first give the
statement and proof of the main theorem in CCS (1.1.1), and then discuss how to improve the
result by taking into account non-innocuous divergences (1.1.2). Still in CCS, with present a
few auxiliary results to facilitate the application of the technique (1.1.3), we compare it with
other techniques in Section 1.1.4: first the ‘unique solution of contractions’ technique, then
the most powerful up-to-context techniques available, for which we prove a completeness
result. Lastly, we discuss completeness of the theorem with respect to equations enjoying
uniqueness of solutions, for CCS (1.1.5): we show some partial results, as well as counter-
examples for the general case.

In Section 1.2, we present our abstract framework for applying the technique; first for
bisimilarity (1.2.1), then for other equivalences (1.2.2) and preorders (1.2.3).

In Section 1.3, we instantiate the results of the previous section with rule formats; stan-
dard ones, such as GSOS or the tyft/tyxt formats (1.3.1), or new formats we develop, tailored
specifically for our technique (1.3.2).

Lastly, in Section 1.4, we adapt our technique to calculi with name-passing or higher-
order features, such as the π-calculus (1.4.1.4) or the Higher-Order π-calculus (1.4.2.1). We
give an example of a proof using our technique in the Higher-Order π-calculus (1.4.3).

Most of the results presented in Chapter 1 have been presented at the conference CON-
CUR’17 [DHS17] and later appeared, in long version, in [DHS19]. The study of unique
solutions of equations for the Higher-Order π-calculus is presented in [DHS20].

Chapter 2. This chapter is dedicated to our work on full abstraction for Milner’s encodings
of the λ-calculus in the π-calculus [Mil92]. To introduce gently the reader into this matter, we
start by revisiting, in the first subsection, the proof of full abstraction for the call-by-name
λ-calculus. A similar proof already exists [San00], using up to context instead of unique
solution of equations.

The second subsection discusses the call-by-value encoding. We first recall basic defi-
nitions about the call-by-value λ-calculus and its tree semantics in Section 2.2.1. Milner’s

21

original encoding is presented in Section 2.2.2, while Section 2.2.3 presents our analysis of
this encoding, beginning with the shortcomings related to the presence of free outputs. The
first solution to these shortcomings is to move to the Internal π-calculus: this is described in
Section 2.2.4. For the proof of completeness, in Section 2.2.7, we rely on unique solution of
equations; we also compare such technique with the up-to techniques. The second solution
is to move to the Asynchronous Local π-calculus: this is discussed in Section 2.2.8. We show
in Section 2.2.9 how our results can be adapted to preorders and to contextual equivalence.

The results of Chapter 2 have been presented at the LICS conference [DHS18], in an
abridged form.

22

Résumé en français

Cette thèse se place dans la tradition de l’étude de la théorie mathématique des langages
de programmation, et plus précisément du développement de l’outillage sémantique pour
leur étude. Afin de définir la sémantique d’un langage formel, une méthode éprouvée est la
construction d’une équivalence comportementale: une telle équivalence permet d’identifier des
programmes ayant le même comportement (c’est-à-dire qu’ils produisent les mêmes résultats,
qu’ils accomplissent les mêmes communications, etc), et ce même si ce sont des programmes
qui parviennent à ce résultat (ou à ces communications, dans le cas d’un langage concurrent)
d’une manière tout à fait distincte.

Étudier de telles équivalences comportementales permet d’abstraire la syntaxe des lan-
gages, pour en extirper le contenu significatif, sémantique. Cependant, la concrétisation de
cette opération par la preuve de l’équivalence de deux programmes peut être, dans certain
cas, d’une extrême difficulté. Ainsi, si la définition de telles équivalences est aujourd’hui une
question largement explorée et résolue, leur utilisation en pratique pose problème.

C’est pourquoi il est courant de faire appel à un outillage de techniques de preuves,
permettant de faciliter la preuve que deux programmes ont bien le même comportement. De
ce point de vue, la bisimilarité [Mil89] est une équivalence comportementale notable, car elle
est définie par une telle technique de preuve: la méthode de la bisimulation, à qui elle doit
dans une large mesure son succès – d’autant que cette méthode constitue aussi une technique
de preuve pour d’autres équivalences. En effet, la bisimilarité est une équivalence plus fine
que la plupart des autres équivalences considérées en pratique: pour montrer que deux
programmes sont équivalents, il suffit souvent de montrer qu’ils sont bisimilaires (lorsque
c’est possible). Les méthodes inspirées de la bisimilarité sont aujourd’hui utilisées dans de
nombreux domaines de l’informatique, dans la théorie des automates par exemple [BP13,
BP15b], ou encore, en pratique, dans la certification du compilateur CompCert [Ler].

Cette méthode est d’autant plus robuste qu’elle a été au fur et à mesure enrichie de di-
verses améliorations, dont entre autres les techniques dites « modulo » [Mil89, San98, PS11]
(« up to » en anglais). Si la théorie de ces améliorations constitue un sujet d’étude à part
entière, elle a également été comparée par Sangiorgi [San15] à la technique d’unicité des
solutions des équations. Plus précisément, Sangiorgi établit une correspondance entre les
techniques « modulo contextes » et la technique d’unicité des solutions. Cette technique
propose d’utiliser une équation récursive entre programmes, dotée de la propriété d’unicité
des solutions, caractérisant les équations dont tous les programmes qui sont solutions sont
aussi équivalents entre eux (pour une équivalence comportementale donnée – ici, la bisimi-

23

larité). Pour prouver que deux programmes sont équivalents, il suffit alors de prouver qu’ils
sont chacun solution de ladite équation; la preuve d’équivalence nécessaire pour le justifier
étant souvent plus simple qu’une preuve d’équivalence directe entre les deux programmes.

Toute équation n’admet pas l’unicité des solutions: ainsi, l’équation X = X admet tout
programme comme solution. Pour utiliser une telle technique, il est donc vital de caractériser
les équations admettant l’unicité des solutions, en proposant un ensemble de conditions
suffisantes pour le garantir. Milner, dans son ouvrage pionnier sur la concurrence [Mil89],
dans lequel il définit la bisimilarité, les techniques modulo, et les techniques d’unicité des
solutions, donne un tel critère, qui s’appuie sur la notion syntaxique de « garde »: une
équation est gardée si une opération doit nécessairement se produire avant toute récursion,
c’est-à-dire avant que la variable d’équation n’apparaisse. Ainsi, l’équation X = X n’est
pas gardée, mais pour une opération op, garantissant une forme de précédence, l’équation
X = op(X) le serait. Cependant le critère proposé par Milner est contraignant, en ce qu’il
interdit également toute forme de concurrence dans l’équation considérée. Cela est dû au fait
que l’on considère des équivalences comportementales faibles : c’est-à-dire que l’on abstrait
le programme du nombre de ses étapes de calcul internes (ou un protocole concurrent du
nombre de synchronisations internes). considérant uniquement les opérations « visibles ».
Or, dans ce cadre, le critère syntaxique habituel de garde ne garantit pas que des opérations
visibles doivent se produire avant qu’apparaisse la variable récursive. Il est intéressant de
constater que les techniques modulo également souffrent de limitations dans le cadre d’une
équivalence faible, pour des raisons similaires.

Le langage CSP, proposé par Hoare [Hoa85], et dont on considère généralement une
sémantique dénotationnelle, c’est-à-dire une sémantique mathématique abstraite, possède
également une théorie de la récursion et d’unicité des solutions. En particulier, si les critères
de Hoare sont soumis aux mêmes limitations que les critères de Milner, Roscoe [Ros92,
Ros97] propose une garantie bien plus flexible pour garantir l’unicité des solutions pour
une équivalence faible, reposant sur le concept de divergence: un programme diverge s’il a
la possibilité de procéder à un nombre infini d’opérations internes, impossibles à constater
pour un observateur extérieur.

Contributions

Les contributions de cette thèse s’articulent autour de deux axes: les apports sur les tech-
niques d’unicité des équations, que nous présentons immédiatement, et l’utilisation de telles
techniques dans l’étude d’une question ouverte, la question de « Full Abstraction » pour
l’encodage de Milner du λ-calcul en appel par valeur vers le π-calcul [Mil92]. Si l’étude de
cette question est rendue possible par la technique d’unicité des solutions, elle constitue en
elle-même un sujet d’étude complexe et intéressant; ce problème est donc introduit séparé-
ment, dans la section suivante.

La principale contribution concernant la technique d’unicité des solutions s’appuie sur
l’idée proposée par Roscoe, d’utiliser les divergences inhérentes à certaines équations pour
discriminer certaines équations dotées de l’unicité des solutions. Le théorème de Roscoe

24

s’appuie sur la sémantique dénotationnelle de CSP; si cela permet une preuve plus simple
et plus élégante (pour une sémantique adaptée, la preuve se résume à deux lignes), il est
moins évident d’adapter le résultat à d’autres calculs ou à d’autres équivalences (tels que
la bisimilarité). Nous proposons donc une preuve opérationnelle, c’est-à-dire s’appuyant sur
les méthodes standard d’analyse de l’exécution pas à pas des programmes. Cette preuve,
nous la réalisons d’abord dans le cadre de CCS [Mil89], un calcul de processus utilisé pour
représenter des protocoles de communications statiques.

Cette approche admet plusieurs avantages: tout d’abord, cela nous permet de raffiner
le résultat, en distinguant plusieurs types de divergences. En effet, nous pouvons ignorer
certaines divergences « anodines », qui ne sont pas dues à la récursion. Cela nous per-
met d’établir des résultats de complétude: pour certains types d’équations (linéaires, entre
autres), l’absence de divergences non anodines est équivalente à l’unicité des solutions.

De plus, cela permet d’établir un résultat de complétude vis-à-vis des techniques modulo,
plus précisément de la technique « modulo contextes et transitivité » de Pous [Pou08], une
des techniques modulo les plus puissantes: nous montrons que toute preuve réalisée avec
cette technique modulo peut être réalisée avec notre technique d’unicité des solutions, et ce
avec une preuve de la même taille (signifiant par là que la taille de la bisimulation est la
même que celle du système d’équations).

Surtout, nous pouvons grâce à cette approche opérationnelle porter le résultat à d’autres
calculs et d’autres équivalences. Nous proposons un cadre abstrait dans lequel le théorème
est formulé, applicable à de nombreux langages. Les théorèmes pour CCS sont alors de
simples instanciations de ces théorèmes abstraits. Pour illustrer la souplesse de ce cadre,
nous étudions les formats « SOS » (pour « structural operational semantics »): la discipline
SOS permet de décrire la sémantique formelle de langages; il est courant de considérer des
restrictions de ces formats SOS, afin de décrire des familles de langages vérifiant certaines
propriétés. Ainsi, tout langage décrit dans certains formats SOS peut instancier une vari-
ante de notre résultat. Nous montrons que c’est le cas pour des formats standards comme
GSOS [BIM88] ou les formats tyft/tyxt [GV92], mais également pour un format plus général,
taillé sur mesure pour notre technique. Les résultats dans le cadre abstrait sont formalisés
grâce à l’assistant de preuve Coq [Dur17].

Nous portons également le résultat à des calculs d’ordre supérieur ou avec mobilité, où
l’utilisation des techniques de preuves habituelles est plus délicate, voire impossible. De
tels langages incluent le π-calcul, ou le π-calcul d’ordre supérieur, HOπ. Le π-calcul est un
calcul de processus, similaire à CCS, mais dans lequel les processus sont mobiles, en ce que les
communications permettent de transférer la connaissance des canaux de communication eux-
mêmes, créant ainsi de nouvelles possibilités de communication. Le π-calcul d’ordre supérieur
est similaire, mais les processus eux-mêmes peuvent être communiqués sur ces canaux de
communication. Pour ces calculs, certaines questions liées à la validité des techniques modulo
contextes sont toujours ouverte; de plus, il existe peu de preuves directes de validité pour de
telles techniques pour des langages d’ordre supérieur.

Nous proposons aussi plusieurs exemples d’application, et plusieurs comparaisons avec
d’autres techniques, notamment pour le π-calcul et HOπ.

25

Le problème de « Full Abstraction »

Afin de tester sérieusement les potentialités de notre technique, nous la confrontons à deux
problèmes délicats, issus de la théorie de la concurrence pour processus mobiles entamée
par Milner. Peu après l’introduction du π-calcul [MPW92, Mil99, SW01], Milner mon-
tre comment les deux principales stratégies d’évaluation du λ-calcul, l’appel par nom et
l’appel par valeur, peuvent être fidèlement émulées par le π-calcul, sous la forme de deux en-
codages [Mil90a, Mil92]. Ce travail fondateur constitue non seulement un test d’expressivité
pour le π-calcul, mais démontre une méthode permettant d’utiliser la communication comme
primitive fondamentale du calcul. Cela fournit également un outil permettant d’étudier le
λ-calcul dans un context concurrent, avec les outils disponibles dans ce cadre.

Milner établit plus précisément une correspondance opérationnelle, montrant que toute
opération de réduction dans le λ-calcul peut être imité par le π-calcul. Il en déduit que les
encodages sont corrects, c’est-à-dire que si deux termes sont équivalents en λ-calcul, leurs
encodages sont équivalents en π-calcul. Cependant, les encodages ne sont pas complets :
étant donné deux termes dont les encodages sont équivalents, on ne peut pas en déduire
que les termes eux-mêmes le soient. Cela est lié aux contextes du π-calcul, qui sont dotés
d’un pouvoir discriminant supérieur à ceux du λ-calcul, de par les primitives concurrentes
du π-calcul, absentes en λ-calcul.

Milner pose donc la question de « Full Abstraction », c’est-à-dire de la détermination
des équivalences (plus fines que les équivalences traditionnelles du λ-calcul) pour lesquelles
la correspondance estparfaite; ou autrement dit, pour quelles équivalences les encodages
sont-ils corrects et complets? La réponse, pour l’encodage en appel par nom, est apportée
rapidement par Sangiorgi [San93a, San00]. Cette preuve recour, d’une manière qui semble
indispensable, aux techniques modulo contextes; nous explorons à nouveau cette preuve,
utilisant notre technique d’unicité des solutions.

Pour l’encodage en appel par valeur, par contre, le problème est resté ouvert. Cela est lié
principalement: 1. aux équivalences pour le λ-calcul en appel par valeur, qui sont moins bien
comprises; 2. à l’échec des techniques modulo pour cette preuve, dont les limitations (liées au
fait que nous considérons des équivalences faibles) ne permettent pas de les appliquer alors.
Une des principales contributions de cette thèse est précisément de proposer une solution à
ce problème, s’appuyant sur l’unicité des solutions.

Afin d’arriver à une telle solution, une première étape consiste à reconsidérer l’encodage
lui-même: en effet, pour l’encodage de Milner, l’égalité suivante

(λy. y)(xV) = xV

où V est une valeur arbitraire, n’est pas valide. Du point de vue du λ-calcul, il s’agit pourtant
d’une égalité essentielle, et il semble qu’elle devrait être valide en appel par valeur. Cela
est dû principalement à une faiblesse dans l’encodage de la variable, donnant un pouvoir
discriminant trop grand aux contextes, et qui empêchait déjà la correction pour une variante
de l’encodage [San93a, SW01].

Nous considérons deux modifications de l’encodage, pour pallier ces problèmes: 1. mod-
ifier l’encodage, afin qu’il fasse partie d’un sous calcul du π-calcul, le π-calcul Interne; 2. ne

26

pas modifier l’encodage, mais contraindre les contextes, en limitant leur capacité d’émission
(cela revient à restreindre les contextes à ceux du π-calcul Local).

Plus simplement, nous montrons que l’encodage de Milner échoue à identifier des termes
qui devraient l’être, et nous proposons deux méthodes pour corriger cet encodage. Ces
modifications sont mineures et ne modifient pas le principe de l’encodage. De plus, ces
calculs n’existaient pas lorsque Milner a proposé ses encodages.

Nous montrons que l’encodage modifié est correct et complet pour une équivalence, la
« eager normal form bisimulation », proposée par Lassen [Las05, LL05]. La technique
d’unicité des solutions joue un rôle central dans la preuve. Cela nous permet aussi de
développer des outils supplémentaires pour la technique d’unicité des solutions, qui facilitent
son application. Nous considérons également la preuve pour des pré-ordres, ce qui est facilité
par la souplesse de notre technique.

27

Contents

0.1 The calculus of communicating systems . 35
0.2 The bisimulation proof technique . 36

0.2.1 Bisimulation games . 36
0.2.2 Congruence properties . 38
0.2.3 Non-branching equivalences . 40

0.3 Up-to techniques . 41
0.3.1 Inadequacy of bisimulations . 41
0.3.2 Refining the bisimulation proof technique 43
0.3.3 Up-to techniques for weak bisimilarity 45

0.4 Up-to-context techniques . 47
0.4.1 The up-to-context technique in CCS 47
0.4.2 Combining up-to-context with other techniques 49
0.4.3 Formats . 52
0.4.4 Name-passing and the up-to-context technique 54

0.5 Milner’s unique solution of equations
(An alternative to up-to-context techniques) 55

0.6 Unique solution of contractions . 59
0.6.1 Correspondence of unique solution and up-to 61

1 The unique solution technique 63
1.1 Unique solution in CCS . 63

1.1.1 Divergences and Unique Solution . 63
1.1.2 Innocuous Divergences . 67
1.1.3 Toolbox . 69
1.1.4 Comparison with other techniques . 71
1.1.5 Completeness of unique solution in CCS 75

1.2 Generalizations and abstract setting . 79
1.2.1 Abstract Formulation . 79
1.2.2 Reasoning with other behavioural equivalences 87
1.2.3 Preorders . 89

1.3 Rule formats . 91
1.3.1 Autonomy and guardedness . 91
1.3.2 Loosely cool GSOS formats . 95

29

1.4 The unique solution technique in presence of name passing and higher order 101
1.4.1 The π-calculus and its subcalculi . 101
1.4.2 Unique solution in the Higher-order π-calculus 107
1.4.3 A proof with the unique-solution technique 116

2 Unique solution for Full Abstraction 119
2.1 Lazy functions as mobile processes . 119

2.1.1 The lazy λ-calculus . 119
2.1.2 Milner’s encoding . 120
2.1.3 Completeness with the unique solution technique 121

2.2 Eager functions as mobile processes . 124
2.2.1 Call-by-value reduction semantics . 124
2.2.2 The original encodings . 126
2.2.3 Difficulties with the encodings . 127
2.2.4 Definition of the encoding . 129
2.2.5 Validity of βv-reduction . 130
2.2.6 Soundness of the encoding . 131
2.2.7 Completeness of the encoding . 136
2.2.8 Encoding into ALπ . 142
2.2.9 Contextual equivalence and preorders 146

3 Conclusion 151
3.1 The unique-solution proof technique . 151

3.1.1 The importance of up to context . 151
3.1.2 Problems with the π-calculus and Higher-Order 152
3.1.3 Using the technique . 153

3.2 Open call-by-value in the π-calculus . 154
3.2.1 Milner’s open problem . 154
3.2.2 Building models with the π-calculus 156

A List of relation symbols 169
A.1 List of symbols for behavioural relations . 169

B Up-to-context techniques 171
B.1 Non-compatibility of up to context in Aπ . 171

C Proofs of variants of the main theorem 173
C.1 Unique solution proofs in HOπ . 173

C.1.1 Innocuous Divergences in HOπ . 179
C.2 Unique solution for contextual relations in Iπ 179
C.3 Abstract Formulation (Alternative version) 181

C.3.1 Sets of Operations and unique solution Theorem 181
C.3.2 Trace equivalence and innocuous divergences 184

30

D Calculi and equations for the proof of Full Abstraction 187
D.1 Proofs about the encoding in Iπ . 187

D.1.1 Properties of the encoding . 187
D.1.2 Soudness . 191
D.1.3 Completeness: systems of equations 194

31

Prologue:
A survey of up-to-context
& unique-solution techniques

General notations

Relations. We let letters R,S range over relations. We use the infix notation for relations,
e.g., P R Q means that (P,Q) ∈ R, and we write RS for the composition of R and S. A
relation terminates if there is no infinite sequence P1 R P2 R

Indexing sets and tuples. We use a tilde to denote a tuple, with countably many ele-
ments; thus the tuple may also be infinite. When the indexing set of a tuple, sequence or
relation is not important, we omit it. We write (Pi)i, Σi or ∪i for, respectively, the ordered
tuple P̃ , the sum or the union, in place of (Pi)i∈I , Σi∈I and ∪i∈I , omitting the indexing set I.

All relations are considered to be ordered; thus, a relation can be written as an ordered
sequence of pairs {(Pi, Qi)}i, where (Pi, Qi) is the i-th component of the relation.

All notations are extended to tuples componentwise; e.g., P̃ R Q̃ means that Pi R Qi,
for each component i of the tuples P̃ and Q̃.

Definitions and abbreviations. We use the symbol def
= for abbreviations; for instance,

P
def
= G, where G is some expression, means that P stands for the expression G. In contrast,

symbol 4= is used for the definition of constants, and = is used for equations and for either
syntactic equality or α-equivalence.

Other notations. If ≤ is a preorder, then ≥ is its inverse. Given any set X, we write id
for the identity function X → X, id : x 7→ x.

α-conversion. Free names, closed terms and α-conversion are defined as usual [Bar84,
HS86]. We adopt the usual “Barendregt convention”. This will allow us to assume freshness
of bound variables and names whenever needed. We write fn(X) for the free names of X.

33

Substitutions. Substitutions are defined as usual; following standard conventions, we
write X{Y/x} for the object X in which the free name x is substituted for the object Y
(this is not syntactic replacement : bound names should not be substituted). We write σ, σ′
for substitutions, and Pσ for P on which σ is inductively applied to all free names.

Labeled relations and diagrams. Labeled relations are sets of relations indexed by sets
of labels; we often write µ−→ for such relations, where µ is the label and→ the labeled relation.

Given two relations R,R′, and two labeled relations →,�, writing µ, µ′ for labels of the
former and λ, λ′ for the labels of the latter, the following diagram means : for all x, y, x′, µ
such that x R y and x µ−→ x′, there exists y′, λ such that y λ−→→ y′ and x′ R′ y′.

x

µ

��

R y

λ
����

x′ R′ y′

Symmetrically, whenever the dotted arrow is on the left, we mean: for all x, y, y′, λ such that
x R y and y λ−→→ y′, there exists x′, µ such that x µ−→ x′ and x′ R′ y′.

x

µ

��

R y

λ
����

x′ R′ y′

When it is clear from the context which of x′ and y′ implies the existence of the other, we
do not use dotted arrows, and the following diagram:

x

R1

R y

R2

x′ R′ y′

might mean either:

1. ∀x, y, x′ s.t x R1 x
′∃y′, y R2 y

′ and x′ R′ y′

2. ∀x, y, y′ s.t y R2 y
′∃x′, x R1 x

′ and x′ R′ y′

34

sum
Σi∈Iµi.Pi

µi−→ Pi
parL

P
µ−→ P ′

P | Q µ−→ P ′ | Q
comL

P
a−→ P ′ Q

a−→ Q′

P | Q τ−→ P ′ | Q′

res
P

µ−→ P ′

νa P
µ−→ νa P ′

µ 6= a, a const
P

µ−→ P ′

K
µ−→ P ′

if K 4
= P

Figure 1: The LTS for CCS

0.1 The calculus of communicating systems
We assume an infinite set of names a, b, . . . and a set of constant identifiers (or simply
constants) to write recursively defined processes. The special symbol τ does not occur in the
names and in the constants. The class of the CCS processes is built from the operators of
parallel composition, guarded sum, restriction, and constants, and the guard of a sum can
be an input, an output, or a silent prefix:

P := P1 | P2 | Σi∈Iµi.Pi | νa P | K µ := a | a | τ

where I is a countable indexing set. Sums are guarded to ensure that behavioural equiva-
lences and preorders are substitutive. We write 0 when I is empty, and P + Q for binary
sums, with the understanding that, to fit the above grammar, P and Q should be sums of
prefixed terms. Each constant K has a definition K 4

= P . We usually omit trailing 0, e.g.,
writing a | b for a.0 | b.0 . We write µn.P for P preceded by n µ-prefixes. The operational
semantics is given by means of a Labelled Transition System (LTS), and is given in Figure 1
(the symmetric versions of the rules parL and comL have been omitted). The immediate
derivatives of a process P are the elements of the set {P ′ | P

µ−→ P ′ for some µ }. In a
transition P µ−→ P ′, we call P ′ the residual of the transition. We use ` to range over visible
actions (i.e., inputs or outputs, excluding τ).

Some standard notations for transitions: =⇒ is the reflexive and transitive closure of τ−→,
and µ

=⇒ is =⇒ µ−→=⇒ (the composition of the three relations). Moreover, P µ̂−→ P ′ holds if
P

µ−→ P ′ or (µ = τ and P = P ′); similarly P µ̂
=⇒ P ′ holds if P µ

=⇒ P ′ or (µ = τ and P = P ′).
We write P (

µ−→)nP ′ if P can become P ′ after performing n µ-transitions. Finally, P µ−→
holds if there is P ′ with P µ−→ P ′, and similarly for other forms of transitions.

Replication. The replication of a process P , denoted !P , is part of the original syntax of
CCS [Mil89]. It stands for an infinite parallel composition of copies of P , and its operational
semantics is given by the rule

!P | P µ−→ P ′

!P
µ−→ P ′

Replication can be encoded by using recursive constants: we use K!P
4
= K!P | P as a

substitute for !P . Likewise, we use the constant K!µ.P
4
= µ. (P | K!µ.P) to encode guarded

35

replication !µ.P . Thus, unless specified otherwise, replications !P or !µ.P are solely abbre-
viations for said constants.

0.2 The bisimulation proof technique

0.2.1 Bisimulation games

Consider two processes, P and Q. We would like to compare them. More precisely, we would
like to know if if they have the same transitions, both now and later. Therefore, we compare
the transitions they can perform; and then compare the residual processes. As executions of
processes may be infinite, we have to do this operation coinductively.

This boils down to a simple game: one process of the pair, say P , might challenge the
other, Q, by performing a transition P

µ−→ P ′; Q has to answer by a transition with the
same label, Q µ−→ Q′. The game continues with P ′ and Q′, any of which may start a new
challenge. This is the bisimulation game: we call a relation R a bisimulation when any pair
in the relation follows this pattern, given by the diagram

P

µ

��

R Q

µ

��
P ′ R Q′

To prove two processes are equivalent, it is thus enough to exhibit a bisimulation relation by
which they are related.

There are many different variants on the bisimulation game; we call strong bisimulation
the previous one. For any bisimulation game, we can define the corresponding bisimilarity,
i.e., the union of all bisimulation relations, or, equivalently, the largest one. Bisimilarities
usually are equivalence relations, and thus behavioural equivalences. Bisimulation can be
seen as a proof technique, used to prove that two processes are bisimilar.

Definition 0.2.1 (Strong bisimilarity). A process relation R is a strong bisimulation if,
whenever P R Q, we have:

1. P µ−→ P ′ implies that there is Q′ such that Q µ−→ Q′ and P ′ R Q′;

2. the converse, on the transitions from Q.

P and Q are strongly bisimilar, written P ∼ Q, if P R Q for some strong bisimulation R.

Strong bisimilarity relates processes whose behaviour is similar, when taking also into
account internal steps τ . In other words, two processes have to be as efficient to be in a
strong bisimulation. While it can be useful, as a behavioural equivalence, it is inadequate:
we would rather relate processes that have the same visible transitions (inputs and outputs),

36

but that are not necessarily as efficient, i.e., that differ in the amount of internal steps they
perform.

Such an equivalence would be weak bisimilarity: it is based on a variant of the previous
strong bisimulation game, but it is insensitive to efficiency, as it uses, instead of transitions
µ−→ as challenges, weak transitions µ

=⇒, that can contain any number of internal steps (before
or after the possibly-visible action µ). As answers, it also allows transitions µ̂

=⇒ that are
either weak or null (when µ = τ only): if a process is only performing internal steps, the
other is allowed to be more efficient and, as a response, perform no actions.

Definition 0.2.2 (Weak bisimilarity). A process relation R is a (weak) bisimulation if,
whenever P R Q, we have:

1. P µ
=⇒ P ′ implies that there is Q′ such that Q µ̂

=⇒ Q′ and P ′ R Q′;

2. the converse, on the transitions from Q.

P and Q are bisimilar, written P ≈ Q, if P R Q for some (weak) bisimulation R.

As we are not interested in complexity or measures of efficiency, we focus on weak be-
havioural relations. Therefore, bisimilarity means weak bisimilarity by default, and bisimu-
lation means weak bisimulation.

Weak bisimulations, as defined above, are not convenient when writing proofs: for each
pair P,Q in R, we have to consider all possible transitions µ

=⇒ from P and Q. Because of
this, the same transition has to be analysed several times.

Take, for instance, the processes P = τ . τ . a and Q = a. To build a bisimulation con-
taining P and Q, we have to consider the pairs (P,Q), (τ . a, a), (a, a). For P , we have three
transitions to consider. For instance, consider the transition P τ

=⇒ a; we also have to break
it down, considering first the transition P τ−→ τ . a, and then the transition τ . a

τ−→ a.
We therefore give a characterisation of weak bisimulations that is more useful for concrete

proofs, where only strong transitions of a process have to be tested - but the challenged
process might answer by weak or null transitions µ̂

=⇒.

Lemma 0.2.3 ([San11]). A relation R is a weak bisimulation if and only if P R Q implies:

1. whenever P µ−→ P ′, there is Q′ such that Q µ̂
=⇒ Q′ and P ′ R Q′;

2. the converse, on the transitions from Q.

Proof. Because µ−→⊆ µ
=⇒, the first implication is immediate. Conversely, assume R is a rela-

tion such as described in the hypothesis; we have to show it is a weak bisimulation. Assume
w.l.o.g. that P µ

=⇒ P ′. We proceed by induction over the length of the transition. 2

We often consider the characterisation in Lemma 0.2.3 to be the default bisimulation game
for weak bisimilarity, and by (weak) bisimulation we mean this characterisation, rather than
the game from Definition 0.2.2.

37

0.2.2 Congruence properties

Example 0.2.4 (Structural congruence). Thanks to strong bisimilarity ∼, we can recover
usual algebraic laws of CCS processes. These basic, syntactic laws, are often used to define
the structural congruence [Mil89], an equivalence relation that contains all the following
equalities:

Strong bisimulation relation required to prove the law
P | 0 ∼ P {(P | 0, P) | P is any process}
P | Q ∼ Q | P {(P | Q,Q | P) | P,Q are any processes}
(P | Q) | R ∼ P | (Q | R) {((P | Q) | R,P | (Q | R)) | ∀P,Q,R}
νx (νy P) ∼ νy (νx P) {(νx (νy P),νy (νx P)) | ∀P, x, y}
νx 0 ∼ 0 {(νx 0,0) | ∀x}
νx (P | Q) ∼ νx P | Q if x 6∈ fn(Q). {(νx (P | Q),νx P | Q) | ∀P,Q, x, x 6∈ fn(Q)}
!P | P ∼ !P (Discussed in Section 0.3.)

Structural congruence is required to be an equivalence relation that contains previous
equalities, and that also verifies the congruence property (hence its name). This means
that, when two processes P and Q are related by structural congruence, they can be freely
substituted by each other, as components of a larger process: assume process R contains
P in its syntax tree; then write R′ for R when the subterm corresponding to P has been
replaced by Q. When P and Q are related, so are required to be R and R′.

In general, we define the congruence property by using the notion of context, i.e., processes
that may contain one or several occurrences of a hole [·], acting as a place holder for processes.
We also consider contexts with finitely many holes [·1], . . . , [·n], acting as place holders for
multiple processes.

We write C[P], where P is a process and C a context, for the process equal to C where
every occurrence of the hole [·] has been simultaneously replaced by P . Likewise, for a
context C with multiple holes and a list of processes P̃ , we write C[P̃] for C where every
occurrence of every hole [·i] is simultaneously replaced by the corresponding process Pi.

Definition 0.2.5 (Congruence). A relation R is a congruence if P R Q implies, for all
context C, C[P] R C[Q].

We write C(R) for the closure of a relation under contexts:

C(R)
4
= {(C[P], C[Q]) | P R Q, C is an arbitrary context}.

A relation is a congruence if C(R) ⊆ R.
Congruence is a highly desirable property for a behavioural equivalence, as it allows

compositional reasoning: to show that P | Q ≈ P ′ | Q, it is sufficient to show that P ≈ P ′,
assuming ≈ is a congruence.

Milner [Mil89] shows that strong and weak bisimilarities are indeed congruences.

38

Theorem 0.2.6 ([Mil89]). In CCS, strong and weak bisimilarities are congruences.

Congruence is a property of relations over processes, but it depends on the language: the
same equivalence, say strong or weak bisimilarity, might be a congruence or not, depending
on whether some behaviours or some constructs are part of a language. Example 0.2.7 below
illustrates this for CCS.

Structural congruence is usually the finest congruence relation that we bother to consider.

Example 0.2.7 (Unguarded sums and congruence). In the original presentation of CCS [Mil89],
Milner proposes the unguarded sum construct +, replacing guarded sums. The process P+Q
might perform the same transitions as the processes P and Q, reducing to the same residual:

P
µ−→ P ′

P +Q
µ−→ P ′

Q
µ−→ Q′

P +Q
µ−→ Q′

However, the presence of the unguarded sum construct prevents bisimilarity from being
a congruence: for any process P , τ .P ≈ P , but in general τ .P + τ .Q is not equivalent to
P + Q. Take, for instance, τ . a + τ . b and a + b. There is a transition τ . a + τ . b

τ−→ a, but
there is no action a+ b might perform to reduce to a process equivalent to a.

Barbed congruence. While, for CCS, we are happy to use its LTS to define equivalences,
this is not the case for higher-order calculi, such as the λ-calculus, or calculi with name-
passing, such as the π-calculus. In these calculi, it is more natural to reason using internal
transitions, but not a fully-fledged LTS. The standard method to define an equivalence for
these calculi is to define a notion of observable, and deem two processes to be equivalent if
they produce the same observables when placed in arbitrary contexts. This approach has
the advantage that

1. we only reason about the immediate observables of the terms or processes (and not on
its later behaviour)

2. they are congruences by construction.

In CCS, observables are the input or output actions a process may perform, possibly af-
ter some internal actions. The standard equivalence for CCS and the π-calculus is barbed
congruence [MS92]: processes are equivalent if compared by being placed in an arbitrary
context,

Bisimulations and bisimilarity are thus often used as proof techniques for reference equiv-
alences, such as barbed congruence for CCS and the π-calculus, rather than serve as an
equivalence on its own. In this spirit, we will aim for bisimilarity to coincide with barbed
congruence along this thesis. Barbed congruence is similar to contextual equivalence, but
allows for branching to different equivalence classes after some internal actions, in the spirit
of bisimilarity.

Definition 0.2.8 (Barbed congruence). Barbed bisimilarity is the largest symmetric relation
'• on CCS processes such that P '• Q implies:

39

1. If P → P ′ then there is Q′ such that Q⇒ Q′ and P ′ '• Q′.

2. For all a, P a
=⇒ iff Q a

=⇒ and P a
=⇒ iff Q a

=⇒.

We say that P and Q are barbed congruent, written P ' Q, if for each context C, it holds
that C[A] '• C[B].

Milner and Sangiorgi show that, restricting CCS to its finitely branching fragment, barbed
congruence and weak bisimilarity indeed coincide [MS92].

Proposition 0.2.9. Barbed congruence ' coincides with weak bisimilarity ≈ on image-finite
CCS processes.

Remark 0.2.10. Bisimulation can be used as a proof technique not only for barbed con-
gruence, but for virtually any equivalence, as it is usually the finest equivalence we might
consider – as long as in the considered language, bisimilarity is a congruence.

0.2.3 Non-branching equivalences

There are many behavioural equivalences, other than bisimilarity, for process calculi [vG90,
vG93], distinct even for a language as simple as CCS. More complex languages might neces-
sitate refinements of these various base equivalences, yielding even more equivalences (e.g.,
the π-calculus). However, bisimilarity can be used as a proof technique for most of these
equivalences, as it is among the finest equivalences (albeit, as a proof technique, it is not
necessarily complete, in the sense that it might not be powerful enough to prove any equality
holding for this equivalence).

We illustrate this fact with one of the most important equivalences from concurrency
theory, trace equivalence. Trace equivalence has been used to define several other well-
known equivalences, among which the testing equivalence, the must and may equivalences.
These trace-based equivalences, including trace equivalence itself, differ from bisimilarity
most notably in the fact that they are non-branching, as illustrated by the example thereafter.

We give below the definition for the weak trace inclusion and weak trace equivalence
(that we consider, as usual, as the defaults); strong trace inclusion and equivalence can be
deduced from the following definition, replacing weak transitions µ

=⇒ with transitions µ−→.
We call a finite sequence of actions s = µ1, . . . , µn, where each µi is a visible action, a

trace. Accordingly, an infinite sequence of such actions s = (µi)i∈N is called an infinite trace.
Given s = µ1, . . . , µn a trace, we write P s

=⇒ if P µ1
=⇒ P1

µ2
=⇒ P2 . . . Pn−1

µn
==⇒ Pn, for some

processes P1, . . . , Pn. Likewise, given s = (µi)i∈N an infinite trace, we write P s
=⇒ if there are

processes (Pi)i∈N such that P = P0 and for all i ∈ N, Pi
µi

=⇒ Pi+1.

Definition 0.2.11 (Trace-based relations). Two processes P,Q are in the trace inclusion,
written P �tr Q, if P s

=⇒ implies Q s
=⇒, for each trace s. They are trace equivalent, written

P ≈tr Q, if both P �tr Q and Q �tr P hold.
Two states P,Q are in the infinite trace inclusion, written P ⊆tr∞ Q, if P s

=⇒ implies
Q

s
=⇒, for each finite or infinite trace s. They are infinite trace equivalent, written P ≈∞tr Q,

if both P ⊆tr∞ Q and Q ⊆tr∞ P hold.

40

Example 0.2.12 (Incompleteness of bisimilarity w.r.t trace equivalence). We show that
bisimilarity is strictly finer than trace inclusion. As this example does not use any τ -action,
it is applies to strong and weak equivalences alike. Consider the processes a. (b + c) and
a. b+a. c. These theorems have the same traces, namely, a, ab, and ac. However, bisimilarity
is branching, meaning it can detect forks in the execution of the process, while the traces
only give information on the global sequence of actions that a process might perform.

Indeed, to show that a. (b+ c) ≈ a. b+ a. c, and given that a. b+ a. c
a−→ b, we would have

to exhibit a process P such that a. (b + c)
a−→ P and P ≈ b; the only candidate for such a

process would be b + c, however, b + c 6≈ c (they may not produce the same visible action).
Thus, there is no such P , and a. (b+ c) 6≈ a. b+ a. c.

a. (b+ c)

a

��

a. b+ a. c
a

##

a

{{

a

��

a

��b+ c

b
zz

c
$$

b

b

��

c

c

��

Traces:
b

��

c

��

0.3 Up-to techniques

0.3.1 Inadequacy of bisimulations

In this section we discuss examples illustrating the need for enhancements of the bisimula-
tion proof method (both in the weak and the strong case): indeed, proving a relation is a
bisimulation implies checking all transitions for each pair in the relation; hence, the largest
the relation is, the more work is needed. Furthermore, to prove even basic laws, one may
have to exhibit infinite and convoluted bisimulation relations, containing many redundant
pairs.

Example 0.3.1 (Inadequacy of strong bisimulations). Consider the law

!(a+ b) ∼ !a | !b (6)

We search for a bisimulation candidate, R, containing the pair (!(a+b), !a | !b). As illustrated
by the following diagram, this relation must related processes with an arbitrary number of
residual null processes in parallel:

!(a+ b)

a

��

R !a | !b
a

��
!(a+ b) | 0

b
��

R !a | 0 | !b

b
��

!(a+ b) | 0 | 0
...

R !a | 0 | !b | 0
...

41

Those null proccesses accumulate along the execution. We thus have to consider an
infinite bisimulation relation, with pairs

!(a+ b) |
n+m times︷ ︸︸ ︷
0 | . . . | 0 R !a

n times︷ ︸︸ ︷
| 0 | . . . | 0 | !b |

m times︷ ︸︸ ︷
| 0 | . . . | 0

We already established associativity and commutativity of parallel composition, as well
as deletion of null processes: P | 0 ≈ P in Example 0.2.4 (algebraic laws of structural
congruence). Using these laws, we may rewrite any of the previous pairs to the original pair
(!(a + b), !a | !b). It is thus desirable to reason up to these algebraic laws, and reuse the
already-established laws for ∼ along the proof.

Law 6 can be generalized as follows, for any processes P and Q:

!(a.P + b.Q) ∼ !a.P | !b.Q (7)

Law 6 is then obtained from Law 7 by replacing P and Q with the null process. The new
candidate bisimulation should factor, not only the residual P and Q processes, replacing the
null processes of Law 6, but also their derivatives. Assume, for instance, that P µ−→ P ′, we
then have

!(a.P + b.Q)

a

��

R !a.P | !b.Q
a

��
!(a.P + b.Q) | P

µ

��

R !a.P | P | !b.Q
µ

��
!(a.P + b.Q) | P ′

...

R !a.P | P ′ | !b.Q
...

In this case, the bisimulation proof method demands that we explore the whole transition
system emanating from P or Q. We can further illustrate the redundancy of the pairs
contained within relation R: consider the pair (!(a.P + b.Q) | P, !a.P | !b.Q | P), obtained
from R by rearranging parallel compositions. The processes it contains are processes already
related by R, but enriched with a common context [·] | P .

For weak bisimulations, we need not only to account for redundancies, but also for the
so-called ‘administrative reductions’, i.e., transitions P τ−→ P ′ where P ≈ P ′. An instance of
such transitions is given by the law

νa (a.P | a.Q) ≈ νa (P | Q) (8)

This law corresponds to a deterministic τ -transition, that has to occur before the process
can proceed.

The problem raised by such ‘administrative reductions’ when writing bisimulation proofs
is best illustrated by the following example.

42

Example 0.3.2 (Inadequacy of weak bisimulations). We consider the equality

!a. b | !a ≈ !a | !b | !a (9)

It holds because any input on b performed by the right-hand process can be reached by the
left-hand process, by performing an administrative reduction !a. b | !a

τ−→ b | !a. b | !a | 0.
However, there is no limit to the amount of administrative reductions both of these processes
are able to perform before any visible transition occurs, creating many redundant pairs,
similar to Example 0.3.1.

Example 0.3.3 (Inadequacy of weak bisimulations, again). We use two recursive constants
to define an implementation of a simple counter, C, containing a positive integer. The prefix
i acts as an increment of the counter, whereas the prefix d represents the decrement; hence,
the counter may only perform the action d as many times as it has already performed the
action i. To store the value of the counter, C uses a private name a. Hence, C is the
name-restriction of another recursive constant, Ca:

Ca
4
= i. a.Ca (10)

C
4
= νa (Ca | !a. d) (11)

A simpler implementation of this behaviour uses either replication, as the process !i. d,
or, equivalently, a recursive constant, defined as follows

C′
4
= i. (C′ | d) (12)

To verify the behaviour of C, we want to show it is equivalent to C′. However, as in
the previous examples, the bisimulation is infinite, the pairs contain an arbitrary number
of m and 0 processes in parallel, and as in Example 0.3.2, the administrative reduction
νa (a.Ca | !a. d)

τ−→ νa (Ca | !a. d | d) is not performed.

0.3.2 Refining the bisimulation proof technique

As illustrated by Examples 0.3.1, 0.3.2 and 0.3.3, while we are incentivized to reduce the size
of the relations we consider, the smallest bisimulation containing a given pair is often infinite.
However, we do not need to exhibit a full bisimulation relation: an incomplete bisimulation,
i.e., a relation that is shown to be included in a bisimulation, would suffice.

Milner [Mil89] proposes a technique based on this idea: given a relation R, the condition
that the residual processes must be related by R itself is relaxed, as they only have to
be related by a relation f(R), for some function f over relations. Usually, the function f
enlarges relation R, by adding some redundant pairs to it, so that the condition is easier
to check. We call such a relation a bisimulation up to f , and it can be described by the
following game (for weak bisimulations):

43

P

µ

��

R Q

µ̂
��

P ′ f(R) Q′

Similarly, for the strong bisimulation game, we get the following diagram:
P

µ

��

R Q

µ

��
P ′ f(R) Q′

When f is the identity, we get the usual bisimulation proof technique. We say of such a
function f it is a sound up to technique if any relation R that is a bisimulation up to f is
such that R ⊆≈ (resp. R ⊆∼ for strong bisimulations). Thus, if the up-to f technique is
sound, one may prove that two processes are bisimilar by exhibiting a bisimulation up to f
relating said processes.

We now fix a function f over the set of relations on processes.

Definition 0.3.4 (Bisimulation up to). A relation R is a bisimulation up to f (resp. strong
bisimulation up to f) if, whenever P R Q, for all µ we have:

1. P µ−→ P ′ implies that there is Q′ such that Q µ̂
=⇒ Q′ and P ′ f(R) Q′;

(resp. P µ−→ P ′ implies that there is Q′ such that Q µ−→ Q′ and P ′ f(R) Q′;)

2. the converse, on the transitions from Q.

When a relation verifies the hypothesis of a bisimulation, except that the target relation
is replaced by a different relation, say S, we sometimes say that R progresses to S. In the
definition above, we would say that R progresses to f(R).

Definition 0.3.5 (Sound up-to technique). We say f is a sound up-to technique for bisim-
ulation (resp. strong bisimulation) if, whenever R is a bisimulation up to f (resp. strong
bisimulation up to f), then R ⊆≈ (resp. R ⊆∼).

When the bisimulation game (strong or weak) is clear from the context, we simply say
that f is sound.

A first example of a sound up-to technique is the function R 7→∼R∼; this functions
allows to rewrite the residual processes with any law valid for ∼. In the literature, this
technique is often called ‘up to ∼’ [Mil89, SW01], and its corresponding bisimulations are
called bisimulations up to ∼.

Theorem 0.3.6 ([Mil89]). The function R 7→∼R∼ is a sound up-to technique for strong
bisimulations.

With that technique in our toolbox, we can treat the first equality proof from Exam-
ple 0.3.1.

44

Example 0.3.7 (Example 0.3.1). We recall Law 6 from Example 0.3.1:

!(a+ b) ∼ !a | !b

To show the validity of this law, we exhibit a strong bisimulation up to ∼; according to
Theorem 0.3.6, this is a sound up-to technique. We show the singleton relation R 4

= {(!(a+
b), !a | !b} is a strong bisimulation up to ∼. Consider, for instance, the transition along a:

!(a+ b)

a

��

R !a | !b
a

��
!(a+ b) | 0 ∼ !(a+ b) R !a | !b ∼ !a | 0 | !b

We only use laws from Example 0.2.4 (structural congruence), to rearrange parallel com-
positions (through associativity and commutativity), and delete 0 processes.

Example 0.3.8 (Up to bisimilarity and up to identity). The functions R 7→ R ∪ {(P, P) |
P is any process} and R 7→ R∪ ≈ (resp. R 7→ R∪ ∼ for strong bisimulations) are sound
up-to techniques, standard in the litterature [Mil89, PS11, SW01]. The latter is strictly more
general than the former. These basic techniques are, by construction, sound, including for
other bisimulation games. Indeed, if R∪ ≈⊆≈, then R ⊆≈ as well.

Fix some P ; we show the equality τ .P ≈ P , by showing the singleton relation R 4
=

{(τ .P, P)} is a bisimulation up to identity. There are two types of transitions to consider:
either τ .P

τ−→ P , or there is a transition P µ−→ P ′ (in which case τ .P
τ−→ µ−→ P ′).

τ .P

τ
��

R P τ .P

µ
��

R P

µ
��

P = P P ′ = P ′

0.3.3 Up-to techniques for weak bisimilarity

0.3.3.1 Up to bisimilarity

The original weak bisimulation proof method (Definition 0.2.2) is a standard (‘symmetrical’)
bisimulation game, but played on a different LTS µ̂

=⇒. In particular, the up-to-bisimilarity
technique is sound for this game, just as the up-to ∼ technique is sound for the strong
bisimulation game. However, the same is not true of the bisimulation game defined in
Lemma 0.2.3: the up-to-≈ technique is, in this case, unsound [SM92, SR11]. We illustrate
this with the singleton relation R 4

= {(τ . a,0)}. Although τ . a 6≈ 0, R is a bisimulation up
to ≈:

τ . a
τ

ww

R 0

a ≈ τ . a R 0 ≈ 0
The up-to bisimilarity technique is an essential tool for a bisimulation theory, as il-

lustrated by Examples 0.3.2 and 0.3.3, and by Example 0.4.4 below. However, for weak

45

bisimulations, it is not available, contrary to strong bisimulations. Several techniques have
been proposed to replace this technique. In this section, we discuss some techniques often
used in place of up to bisimilarity.

One of the goals of this thesis is to find an adequate substitute for up to bisimilarity. We
present in Chapter 1 a new technique, that replaces the up-to bisimilarity technique in most
cases.

Remark 0.3.9 (Strong bisimilarity up to transitivity). The up-to transitivity technique for
strong bisimulations, used in [Pou08, SR11], allows one to use the relation itself to expand
the target relation; we thus demand that a bisimulation up to transitivity progresses to R∗.
This is, in spirit, very similar to the corresponding up-to bisimilarity technique (up-to ≈
or up-to ∼). Thus, weak bisimilarity up to transitivity is not sound, for the same reasons
bisimilarity up to bisimilarity is not sound.

0.3.3.2 Up to strong bisimilarity

The up-to ∼ technique is sound for weak bisimulations. Indeed, the problem discussed above
is only possible because of a cycle in which τ -transitions are added, which is impossible with
strong bisimilarity. However, this solution is not satisfying, as it severely limits the available
operations and laws. If the structural congruence laws are still allowed, there are useful
algebraic laws that are only valid for weak bisimilarity, such as law 8, that we recall here:

νa (a.P | a.Q) ≈ νa (P | Q) (8)

Up to ∼ is, however, sufficient to treat Example 0.3.2.

Example 0.3.10 ([SR11]). Setting P := !a. b | !a and Q := !a | !b | !a, we show that the
following relation is a bisimulation up to ∼

R := {(P | bn, Q) | n ∈ N}

• For the challenges from P | bn: any transition from P | bn can be written as one of the
following

P | bn τ−→∼ P | bn+1 P | bn a−→∼ P | bn+1

P | bn+1 b−→∼ P | bn P | bn a−→∼ P | bn

Therefore we check that Q µ−→∼ Q (µ ∈ {a, τ, a, b}).

• If Q µ−→ Q′, then Q′ ∼ Q. We can match such a transition with above transitions,
except if µ = b and n = 0; there we have P τ−→ b−→∼ P .

46

0.3.3.3 Up to expansion

A better solution is proposed by Milner and Sangiorgi [SM92]. It is the up-to expansion
technique, that allows some of the behaviour of weak bisimilarity (such as Law 8), while
controlling some of the inefficiencies to prevent the degenerate cycles that break the up-to
≈ technique.

The Expansion pre-order. We define the expansion preorder, written �, where P � Q
intuitively means that P and Q have the same behaviour, and that P may not be ‘slower’
(in the sense of doing more τ−→ transitions) than process Q.

Definition 0.3.11. A process relation R is a bisimulation expansion if, whenever P R Q,
we have:

1. P µ−→ P ′, implies there exists some Q′ such that Q µ
=⇒ Q′ and P ′ R Q′;

2. Q µ−→ Q′ implies there exists some P ′ such that P µ̂−→ P ′ and P ′ R Q′.

The expansion preorder, written �, is the union of all bisimulation expansions. The converse
of � is written �.

Law 8 can be turned into an expansion:

νa (a.P | a.Q) � νa (P | Q) (13)

We can use the expansion preorder as a sound up-to technique, by defining the corre-
sponding function R 7→� R �. We can, however, improve this technique by making it
asymmetrical: indeed, we only to verify this efficiency constraint on the playing process; we
can rewrite the answering process with ≈. This is illustrated by the following bisimulation
game:

P

µ

��

R Q

µ̂
��

P

µ̂
��

R Q

µ

��
P ′ � R ≈ Q′ P ′ ≈ R � Q′

Note that this technique does not fit in the framework provided by Definition 0.3.4,
because it is in essence symmetrical. It does, however, fit within the more advanced lattice-
theoretic framework provided in [San98, San95, Pou07, Pou08, PS11, Pou16].

0.4 Up-to-context techniques

0.4.1 The up-to-context technique in CCS

As illustrated by Example 0.3.1, specifically the proof of the equality

!(a.P + b.Q) ∼ !a.P | !b.Q (7)

47

we might need to erase a common context that the derivatives of the related processes
share. This is done by using an up-to technique, expanding the bisimulation relation by
closing it under all contexts. This technique is called the ‘up to context’ technique, and it
uses the following function:

C : R 7→ {(C[P], C[Q]) | P R Q, C is any context}

We want to show it yields a valid up-to technique for bisimilarity, i.e. that the following
diagram is enough to deduce that R is contained in bisimilarity.

P

µ

��

R Q

µ̂
��

P ′ C(R) Q′

In the case of CCS, this technique has been shown to be sound for both strong and
weak bisimulation [San98] when it was first introduced. Remark that such context-based
techniques are language-dependent, and cannot be proven sound for a bisimulation game,
regardless of the language; to prove the soundness of such a technique, every constructor
has to be considered. For instance, the unguarded sum operator breaks congruence for
weak bisimilarity (see Example 0.2.7); but congruence is a precondition for up to context
to be sound (the soundness of up to context implies congruence). Thus, the up-to-context
technique is sound for CCS with guarded sums, but not for CCS with unguarded sums.

Example 0.4.1. (Examples 0.3.1, 0.3.7) We illustrate the use of up-to-context techniques
with a first part of the proof of bisimilarity !(a.P + b.Q) ∼ !a.P | !b.Q.

Indeed, consider the b-transition from either !(a.P + b.Q) or !a.P | !b.Q; both residual
processes are obtained by simply adding a common process Q in parallel. Thus, with the
context C = [·] | Q and the singleton relation relating the considered processes, we can play
a bisimulation up to context

!(a.P + b.Q)

b
��

R !a.P | !b.Q

b
��

!(a.P + b.Q) | Q
!(a.P+b.Q)

C(R)

R

!a.P | !b.Q | Q
!a.P |!b.Q

The previous method, however, does not work for the a-transition as the processes we
obtain are

!(a.P + b.Q) | P and !a.P | P | !b.Q

These processes do not directly share a common context, some rearrangement of parallel
composition is needed first. Although this makes it impossible to use up-to-context, we
would only need to combine it with some of the previous up-to technique, such as up to ∼
or �; even up to structural congruence would be sufficient, as illustrated below.

48

!(a.P + b.Q)

a

��

R !a.P | !b.Q
a

��
!(a.P + b.Q) | P

!(a.P+b.Q)

C(R)

R

!a.P | !b.Q | P
!a.P |!b.Q

∼ !a.P | P | !b.Q

(with the context C = [·] | P)

Quite surprisingly, it is still unknown whether the congruence of bisimilarity implies the
soundness of the up-to-context technique for bisimulation (this is also the case for strong
bisimilarity). Proofs of congruence are often very similar to proofs of soundness of up to
context; however, there are languages for which congruence is known, but the soundness of
up to context is still an open question (see Open Problem 0.4.13).

Open problem 0.4.2. In a language L for which bisimilarity is a congruence, is up to
context always a sound technique?

0.4.2 Combining up-to-context with other techniques

0.4.2.1 Up to expansion and contexts

As illustrated by Example 0.4.1 it is often desirable to combine up-to techniques, and in
particular up-to-context techniques with up-to techniques allowing to manipulate and rewrite
the residuals, such as up to ∼, up to ≈, or up to �. For instance, Sangiorgi shows that up
to � and context, obtained by combining up to context and up to �, is indeed sound.

Theorem 0.4.3 ([SM92, SW01, San15]). Up to � and context is a sound technique.

Other common up-to techniques can be combined with up to context: for instance, for
strong bisimulations and weak bisimulations alike, up to context and ∼ is a sound tech-
nique [San98]. We illustrate the usefulness of the up-to-context-and-expansion technique by
revisiting Example 0.3.3

Example 0.4.4 (Example 0.3.3). We use a bisimulation up to expansion and contexts to
show that both counters C and C′ are bisimilar;

The transition νa (a.Ca | !a. d)
τ−→ νa (Ca | !a. d | d) is an administrative reduction

(meaning it is a deterministic τ -transition), hence νa (a.Ca | !a. d) � νa (Ca | !a. d | d).
Using the structural congruence equations (Example 0.2.4), we also get νa (Ca | !a. d | d) ∼
νa (Ca | !a. d) | d = C | d; we thus deduce νa (a.Ca | !a. d) � C | d (as ∼⊆�).

We now show that the singleton relation R = {(C,C′)} is a bisimulation up to expansion
and contexts, and deduce that C ≈ C′:

C

i

��

R C′

i

��
νa (a.Ca | !a. d) � C | d C(R) C′ | d

49

0.4.2.2 Combining up-to techniques

Several frameworks have been proposed to provide simple ways to combine up-to techniques,
effectively generating up-to techniques for free: any technique obtained by combining other
techniques fitting one such framework is immediately sound.

Sangiorgi first proposes the ‘respectful functions’ and ‘compatible functions’ frameworks [San98,
San95, SW01]; the latter was then refined by Pous [Pou07, Pou08, PS11], and latter gener-
alized further, with a description of the most general theory [Pou16], based on the concept
of ‘companion’, encompassing both the concepts of respectfulness and compatibility.

These frameworks approach coinduction and up-to techniques from a lattice-theoretic
point of view; a precise understanding of these notions is not needed here, and we refer
the reader to the papers above for more details. Rather, the important aspect of these
frameworks, is that they provide a very powerful tool for obtaining up-to techniques, more
robust than a proof of soundness: for instance, functions that are ‘compatible’ do not only
have sound corresponding techniques, but any combination of compatible functions is also
compatible.

In the case of CCS, most techniques exhibited in the previous sections are either respect-
ful, compatible, or at least ‘below the companion’, meaning they can be combined with other
similar techniques. This is the case for up to context and up to ∼ in both the strong and
weak cases, and of up to � in the weak case, as well as many other such techniques.

The exact terminology is not needed to understand the examples in this chapter; simply,
when we say of a technique that it is respectful, compatible, or below the companion, it
means it can be combined with other techniques easily. We also provide counter-examples,
techniques that cannot be combined with other ‘compatible’ techniques, for instance, and
thus which are not compatible themselves.

0.4.2.3 Sound but not compatible up-to-context techniques

Whether the congruence property implies the soundness of up to context is still an open
question (see Open Problem 0.4.2); one might reasonably hypothesize that congruence could
imply not only the soundness of up to context, but also its compatibility. However this is
not the case: there are many situations where bisimilarity is a congruence, but C, while a
sound technique, is impossible to combine with other techniques (and hence not compatible,
respectful, nor below the companion).

We illustrate the difficulty of combining up-to-context techniques with other useful, and
otherwise sound (and compatible) up-to techniques. We give two known examples, from the
literature (see [San98] and [PS11]).

Up to context and weak bisimilarity. The symmetrical weak bisimulation (Defini-
tion 0.2.2) game is a game for which both up to context and up to ≈ are sound techniques;
but while up-to-contexts and up-to-∼ can be combined in the strong case, and up-to-contexts
with up-to-� in the weak case, we show that up to ≈ and contexts is not a sound tech-
nique [SM92].

50

A common counter-example for that technique is given by the relation R 4
= {(b. a, b)},

which is a bisimulation up to ≈ and contexts, although b. a 6≈ b.
Let C = νb (b | ·). Then, for all P , C[b.P] ∼ τ .P ≈ P . Therefore C[b. a] ≈ a and

C[b] ≈ 0. We can then play the following bisimulation up to:
b. a

b

��

R b

b

��
a ≈ νb (b | b. a)

b.a

C(R)

R

νb (b | b.0)

b

≈ 0

This proof is reminiscent of the problem with the equation X = b.νb (b | X), that uses
the context b.C as its body – corresponding to the first action b follow by the context C
deleted by the use of the technique. This context is erased infinitely many times through
the use of up to context, while the equation can be unfolded any number of time, creating
only τ -transitions.

‘Look-aheads’. We now illustrate the problem of combining up-to-context with other
techniques in the most simple case of strong bisimulation. We exhibit a small toy language
for which contexts are congruences, and up-to-context is sound. The language we consider
only needs a CCS-like prefix construct, a base process (for instance, 0), and another construct
that performs what we call a ’look-ahead ‘:

P := forward(P) | a.P | 0

a.P is the CCS-like prefix (with only one possible channel), 0 is the inactive process and
forward is an operator whose behaviour is given by the rule

P
a−→ Q Q

a−→ R

forward(P)
a−→ R

Thus, the next transition of a process forward(P) depends on the next two transitions of P .
This is often called a ‘look-ahead’: when an operator of the language allows to ‘see in the
future’, e.g., when its behaviour depends not on the immediate transitions of its arguments,
but on their future transitions as well.

Bisimilarity is a congruence for this language (it can be defined within the framework
of the so-called ’tyft format‘, ensuring that contexts preserve bisimilarity; more detailed are
given about this format in Sections 0.4.3.1 and 1.3.1.

We show that, on this language, the function C is not compatible, respectful, or below
any compatible function: the up-to-∼ technique is compatible, however combining C and ∼
yields an unsound technique, allowing to prove incorrect bisimilarities. Consider processes a
and a. a: they are not bisimilar. However we can show that R 4

= {(a, a. a)} is a bisimulation
up to contexts and strong bisimulation. There is only two transitions to consider, the a
transition from either a or a. a. Either way, R progresses to ∼ R ∼:

51

a

a

��

R a. a

a

��
0 ∼ forward(a) C(R) forward(a. a) ∼ a

Therefore, the ‘up to context and strong bisimulation’ technique is not sound. Up-to-∼
technique is, however, compatible. Hence, C is neither compatible nor below a compatible
function.

The counterexample above does not show that C itself is not sound. As indeed, it is sound
(see [PS11]). However, it does illustrate how limited in scope is the ‘up to context’ technique
when it is sound but not compatible: it cannot be combined with even elementary up-to
techniques.

0.4.3 Formats

Rule formats [AFV01, MRG07] are a means to enforce structural properties languages; these
provide a specification for the form of the Structural Operational Semantics (SOS) rules
used to describe the constructs of a language. In this section we give basic definitions for
rule formats, as well as a few examples relevant to up-to-context techniques. For a complete
overview of rule formats and for the relevant definitions, we refer the reader to [AFV01,
MRG07, BIM88].

We consider a term algebra on a signature Σ. We write t, u for terms, x, y, · · · ∈ V for
the variables and µ ∈ Λ for labels in the set of labels Λ.

Definition 0.4.5 (TSS). Let Σ be a signature. A positive Σ-literal is an expression t µ−→ t′

and a negative Σ-literal an expression t 6 µ−→ with t, t′ ∈ T(Σ) and µ an action. A transition
rule over Σ is an expression of the form

H

α

withH a set of Σ-literals (the premises of the rule) and α a positive Σ-literal (the conclusion).
The left- and right-hand side of α are called the source and the target of the rule, respectively.
A transition system specification (TSS), written (Σ, R), consists of a signature Σ and a
collection R of transition rules over Σ.

0.4.3.1 Formats for strong bisimilarity

The GSOS format. One of the most common formats is GSOS [BIM88, vG05, FvG16].
This format is a generalization of the De Simone format, and is known to ensure that
bisimilarity is a congruence.

Definition 0.4.6. A GSOS rule is a transition rule such that

• its source has the form f(x1, . . . , xar(f)) with f ∈ Σ and xi ∈ V ,

• the left-hand sides of its premises are variables xi with 1 ≤ i ≤ ar(f),

52

• the right-hand sides of its positive premises are variables that that are all distinct, and
that do not occur in its source,

• its target only contains variables that also occur in its source or premises.

Furthermore, a positive GSOS rule is a rule whose premises are positive.

A GSOS language, or TSS in GSOS format, is a TSS whose rules are GSOS rules. A
positive GSOS language is a language whose rules are in the positive GSOS format. In other
words, if op is a construct of a GSOS language, its rules are in the format

{xi
µi,j−−→ yi,j | i ∈ I, 1 ≤ j ≤ mi} ∪ {xj 6

µ′j,k−−→ | j ∈ J, 1 ≤ k ≤ nj}
op(x̃)

µ−→ t

where I, J are fixed indexing sets, and t may only use the variables xi for i ∈ I ∪ J or yi,j
for i ∈ I and 1 ≤ j ≤ mi.

Corollary 0.4.7. Strong bisimilarity is a congruence for any language in the GSOS format.

Aceto et al. show that up to context is compatible for any language in a positive GSOS
format.

Proposition 0.4.8 ([AFV01, BPPR17]). Up to context is compatible for strong bisimulations
for any positive GSOS language.

Remark 0.4.9. Language in the GSOS format do not ensure that weak bisimilarity is a
congruence: indeed, CCS with the sum operator (Example 0.2.7) is in the GSOS format,
however bisimilarity is not a congruence.

0.4.3.2 Format for weak bisimilarity

Rule formats for weak bisimilarity are trickier. The ‘WB cool GSOS’ rule format, for weak
bisimilarity, and other ‘cool GSOS’ formats, for variants of weak bisimilarity, are proposed
in [Blo95, UP02], and further studied in [vG05, vG11]. They are shown to guarantee that
bisimilarity is a congruence. These formats are complex; we refer the reader to [vG05, vG11]
for more details. We only give the central idea of these formats, as we the format we develop
in Section 1.3.2 is based on this same idea.

These formats crucially rely on the necessity for some of the operators of the language
to have ‘patience rules’; this enforces that these operators propagate τ -transitions. Only
operators that somehow ‘depend’ on their arguments share this constraint.

A patience rule for the ith argument of an operator op of arity n (with i ≤ n) is a rule
of the shape:

xi
τ−→ y

op(x̃)
τ−→ op(x̃{xi/y})

53

These formats enforce that, whenever a variable appears both in a premise and in the target
or source of a same rule, for a given operator op, then this operators op must have a patience
rule for this variable. The ‘WB cool GSOS’ rule format was also shown to guarantee that
up to context is compatible.

Theorem 0.4.10 ([BPPR17]). For a simply WB cool GSOS language, up to context is a
compatible technique for weak bisimilarity.

0.4.4 Name-passing and the up-to-context technique

In calculi with name-passing, such as the π-calculus, whereby substitutions inherited from
the context are propagated to sub-processes, the soundness of up-to-context techniques can
become a very delicate problem.

In the the full π-calculus [SW01], bisimilarity is not a congruence, hence up to context
cannot be sound. We thus illustrate the problems with up to context for a sub-calculus of the
π-calculus, for which bisimilarity is a congruence: the asynchronous π-calculus (abbreviated
Aπ). We give a quick overview of Aπ (detailed definitions and properties are given in
Section 1.4). Its syntax is given by the grammar:

P,Q := a(b).P | ab | P | Q | νa P | !P

The single prefix construct µ.P from CCS is replaced by one construct for the input
a(b).P that binds the name b in P , and a construct for the output ab (ab is usually a short
cut for ab.0, this thus amounts to say that an output can only prefix the null process). When
a prefix input and an output synchronize, the name bound in the input prefix is substituted
by the name in object position from the output:

a(b).P | ac τ−→ P{c/b}.

Comparing to the case of CCS, a new obstacle gets in the way of proving that bisimilarity
is a congruence: the name-binding input prefix has to respect bisimilarity. This implies
that substitutions too have to respect bisimilarity: indeed, νa (a(b).P | ac) is bisimilar to
P{c/b} (and strongly bisimilar to τ .P{c/b}). Assuming P ≈ Q, to show that C[P] ≈ C[Q]
means also proving that Pσ ≈ Qσ for any substitution σ. Hence, congruence depends on
the substitutivity of bisimilarity, i.e., whether P ≈ Q implies Pσ ≈ Qσ for an arbitrary
substitution σ. This is indeed shown by Sangiorgi [ACS98, SW01].

Lemma 0.4.11 ([SW01]). If P ≈ Q (resp. P ∼ Q), then for any substitution σ, Pσ ≈ Qσ
(resp. Pσ ∼ Qσ).

The substitutions here can be any arbitrary substitution, and are not limited to injec-
tive substitutions, or fresh-name substitutions. Congruence of strong and weak bisimilarity
follows.

Theorem 0.4.12 ([SW01]). In Aπ, ∼ and ≈ are congruences.

54

The dependence of congruence on substitutivity is also found as a dependence of up-to-
context techniques on up-to-substitution techniques – for soundness and for compatibility
alike; consider the following segment of a bisimulation up to context:

P

µ

��

R Q

µ

��
νa (a(b).P ′ | ac) C(R) νa (a(b).Q′ | ac)

As the removed context acts, effectively, as a substitution, this amounts to the following
bisimulation up to substitution:

P

µ

��

R Q

µ

��
νa (a(b).P ′ | ac)

τ

��

R νa (a(b).Q′ | ac)
τ

��
P ′{c/b} R{c/b} Q′{c/b}

However, it is not known whether up to context or up to substitution are sound tech-
niques (whether for strong or weak bisimilarity); furthermore, these techniques are not easily
combined with other techniques, are they are not compatible, respectful, nor below the com-
panion.

Indeed, a proof due to Damien Pous shows that the corresponding up-to functions are not
below the companion (hence they cannot be compatible or respectful). To our knowledge,
this result has never been published, nor has a similar result; because it refers to theories
that are out of the scope of this Chapter, we refer the reader to Appendix B.1, containing
Damien Pous’ proof [Pou17].

Thus, up to context is not compatible (or below a compatible function), even for strong
bisimulations, and, to the best of our knowledge, it is an open question whether it is sound.

Open problem 0.4.13. Is up to context a sound up-to technique for strong bisimilarity in
Aπ?

Weak bisimilarity. As this problem is open even for strong bisimulation, and it is also the
case of weak bisimulations. The objections to compatibility also apply to weak bisimilarity,
hence while up to context might be sound for weak bisimilarity, it is not compatible (or
below the companion).

0.5 Milner’s unique solution of equations
(An alternative to up-to-context techniques)

In his book [Mil89], Milner proposes, as an alternative to up-to-context techniques, the unique
solution of equations technique. This technique, while very usable for strong bisimilarity, is

55

severely lacking for bisimilarity: it is restricted to equations using parallel composition in a
very specific fashion.

The relationship between techniques relying on unique solution of equations and up-to-
context techniques was later illustrated by Sangiorgi [San15], as explained in Section 1.1.4.1.

Systems of equations.

We need variables to write equations. We use capital letters X, Y, Z for these variables
and call them equation variables. The body of an equation is a CCS expression possibly
containing equation variables. We use E,E ′, . . . to range over equation expressions ; these
are process expressions that may contain occurrences of variables; that is, the grammar for
processes is extended with a production for variables.

Definition 0.5.1. Assume that, for each i of a countable indexing set I, we have a variable
Xi, and an expression Ei, possibly containing some variables. Then {Xi = Ei}i∈I (sometimes
written X̃ = Ẽ) is a system of equations. (There is one equation for each variable Xi.)

In the equation X = E[X], we sometimes call body of the equation the equation expres-
sion E (we use the same terminology for systems of equations).

E[P̃] is the process resulting from E by replacing each variable Xi with the process Pi,
assuming P̃ and X̃ have the same length. (This is syntactic replacement.) The components
of P̃ need not be different from each other, while this must hold for the variables X̃.

Definition 0.5.2. Suppose {Xi = Ei}i∈I is a system of equations. We say that:

• P̃ is a solution of the system of equations for ≈ if for each i it holds that Pi ≈ Ei[P̃].

• The system has a unique solution for ≈ if whenever P̃ and Q̃ are both solutions for ≈,
then P̃ ≈ Q̃.

Examples of systems with a unique solution for ≈ are:

1. X = a.X

2. X1 = a.X2, X2 = b.X1

The unique solution of the system (1), modulo ≈, is the constant K 4
= a.K: for any

other solution P we have P ≈ K. The unique solution of (2), modulo ≈, is given by the
constants K1, K2 with K1

4
= a.K2 and K2

4
= b.K1; again, for any other pair of solutions

P1, P2 we have K1 ≈ P1 and K2 ≈ P2.
Examples of systems that do not have unique solution are:

1. X = X

2. X = τ .X

56

3. X = a | X

All processes are solutions of (1) and (2); examples of solutions for (3) are K and K | b, for
K
4
= a.K

Remark 0.5.3. To prove that two processes P and Q are equivalent using the unique
solution proof technique, one has first to find an equation X = E[X] of which both P and
Q are solutions. Then, a sufficient condition for uniqueness of solutions makes it possible to
deduce P ≈ Q.

The unique-solution method is currently particularly used in combination with algebraic
laws [Ros10, BBR10, GM14].

Definition 0.5.4. An equation expression E is

• strongly guarded if each occurrence of a variable in E is underneath a visible prefix;

• (weakly) guarded if each occurrence of a variable in E is underneath a prefix, visible
or not;

• sequential if each occurrence of a variable in E is only appears underneath prefixes and
sums .

We say that an equation satisfies one of the above properties when its body does. These
notions are extended to systems of equations in a natural way: for instance, {Xi = Ei}i∈I is
guarded if each expression Ei is (w.r.t. every variable that occurs in Ei).

In other words, if the system is sequential, then for every expression Ei, any sub-
expression of Ei in which Xj appears, apart from Xj itself, is a sum (of prefixed terms).
For instance,

• X = τ .X + µ.0 is sequential but not strongly guarded, because the guarding prefix
for the variable is not visible.

• X = `.X | P is guarded but not sequential.

• X = `.X + τ .νa (a. b | a.0), as well as X = τ . (a.X + τ . b.X + τ) are both guarded
and sequential.

Remark 0.5.5 (Recursive specifications in ACP). Systems of equations are called recursive
specifications in the literature related to ACP [BW90]. In that context, other notions of
guardedness have been studied. A sufficient condition, more powerful than Milner’s, was
originally given by Baeten, Bergstra and Klop [BW90], where synchronisation is transformed
into a visible action, which is then deleted through an explicit operator. An equation is then
guarded if no such deletion operator appears in its body.

In some process calculi, such as ACP [BW90] and mCRL2 [GM14], guardedness is syn-
onymous, for an equation, to having a unique solution: this follows the Recursive specifica-
tion principle (RSP), which states that guarded recursive specifications are unique (while

57

the Recursive definition principle states that recursive specifications do have solutions). In-
creasingly general definitions of guardedness that make this principle sound are then studied.
In this framework, our contribution can be seen as a new notion of guardedness, stronger
that what is found in the literature, under which the recursive definition principle is sound
for weak bisimilarity.

Theorem 0.5.6 (Unique solution of equations, [Mil89]). A system of equations has unique
solution in CCS:

1. for ∼, if it is weakly guarded

2. for ≈, if it is strongly guarded and sequential

The proof for ∼ is immediate. On the other hand, the proof for ≈ exploits an invariance
property on immediate transitions for strongly guarded and sequential expressions, and then
extracts a bisimulation (up to bisimilarity) out of the solutions of the system.

Example 0.5.7 ([Mil89]). To see the need of the sequentiality condition, consider the equa-
tion

X = νa (a.X | a) ,

where the occurrence of X in the equation expression is strongly guarded but not sequential.
Any process that does not use a is a solution.

This equation’s body corresponds to the context used in the first counter-example of
Section 0.4.2.3, illustrating that the up-to-bisimilarity technique is not sound.

Remark 0.5.8. In CCS, ν is not a binder; this allows us to write equations where local names
are used outside their scopes (for instance, X = a.νa(a | X)), as there is no alpha-renaming.
It would still be possible, when ν has to be considered a binder (in a higher-order setting,
for example), to write similar equations in a parametric fashion: X = (a) a.νa (a | X〈a〉).
Such an approach is adopted in Section 1.4.1.4, to handle name passing.

The unique-solution proof technique for ∼. Given two processes P and Q, and an
equation E that has a unique solution for ∼, it suffices to show that E[P] ∼ E[Q] to conclude
that P ∼ Q. More generally, given a system of equations Ẽ and processes P̃ , Q̃, if Ẽ has a
‘unique solution’, P̃ is solution of Ẽ, and Q̃ as well, then P̃ ∼ Q̃, and in particular, Pi ∼ Qi

for all i.
For strong bisimilarity, this technique is adequate, substituting for up-to-context tech-

niques: in most cases, the condition from Theorem 0.5.6 is sufficient to obtain that the
considered equations have a unique solution.

Example 0.5.9 (Unique solution and up to context, Examples 0.3.1 , 0.3.7 and 0.4.1). The
up-to-∼ and context proof of Example 0.3.1 can be turned into a proof using unique solution

58

of equation. For this, we first turn the processes from Examples 0.3.1, 0.3.7 and 0.4.1 into
recursive constant definitions:

K = a.K + b.K (14)
K ′ = a. (K ′ | P) + b. (K ′ | Q) (15)

and, in turn, make the definitions of these constants into equations:

X = a.X + b.X (14)
X = a. (X | P) + b. (X | Q) (15)

Theorem 0.5.6 certifies that Equations 14 and 15 have a unique solution. The constants
are solutions of the corresponding equations by construction. For instance, it is easy to show
that !(a.P + b.Q) is solution of Equation 15: the corresponding singleton relation progresses
to equality. There are two transitions to consider, along a and along b; for the transition
along a, we get the diagram

!(a.P + b.Q)

a

��

R a. (!(a.P + b.Q) | P) + b. (!(a.P + b.Q) | Q)

a

��
!(a.P + b.Q) | P = !(a.P + b.Q) | P

and similarly for the transition along b. We can thus conclude that K ′ ∼ !(a.P + b.Q).

For weak bisimilarity, this technique can only apply to sequential equations: this is very
limitating, as indeed equations from Examples 0.3.2 and 0.3.3 are not sequential.

0.6 Unique solution of contractions

Sangiorgi [San15] proposes an approach to expand the use of the unique solution technique, in
the case of weak bisimilarity. For this purpose, Sangiorgi introduces the contraction preorder,
�c, a refinement of the expansion preorder. Because contraction is sensitive to internal steps,
just as expansion is, Sangiorgi uses it to replace the the sequentiality hypothesis; Sangiorgi
is thus able to prove that all weakly guarded systems of contractions have a unique solution
for bisimilarity. A contraction is a pre-equation of the form

X ≥ E

(rather than an equation X = E) Are considered solutions of a contraction processes such
that P �c E[P].

By doing so, Sangiorgi also illustrates the correspondence between the unique solution of
contractions technique and the ’up to contraction and context’ technique.

Definition 0.6.1 (bisimulation contraction). A process relation R is a bisimulation con-
traction if, whenever P R Q,

59

1. P µ−→ P ′ implies there is Q′ such that Q µ̂−→ Q′ and P ′ R Q′;

2. Q µ−→ Q′ implies there is P ′ such that P µ̂
=⇒ P ′ and P ′ ≈ Q′.

The contraction preorder, written �c, is the union of all bisimulation contractions.

Intuitively, in the definition above, Q is capable of mimicking P ’s transition, at least as
efficiently as P (with as much or less internal steps). The contrary, on the other hand, does
not need to hold: as soon as a challenge comes from Q, P can be as inefficient as it needs,
as P ′ and Q′ need only to be related by ≈.

Contraction is coarser than the expansion relation � of Definition 0.3.11. Thus the ’up-
to contraction and context’ technique is a refinement of the ’up-to expansion and context’
technique (the former captures a larger set of relations because bisimilarity contraction is
coarser than expansion).

Sangiorgi shows that the contraction preorder is a congruence:

Theorem 0.6.2 ([San15]). �c is a congruence in CCS.

The proof is similar to analogous proofs for bisimilarity and expansion.

Systems of contractions. Given a system of pre-equations X̃ ≥ Ẽ, we say of the corre-
sponding system of contractions that

• P̃ is a solution if P̃ �c Ẽ[P̃];

• it has a unique solution for ≈ if whenever P̃ and Q̃ are both solutions then P̃ ≈ Q̃.

Sangiorgi shows that the sequentiality hypothesis of Theorem 0.5.6 can be dropped for
contractions: any weakly guarded system of contractions has a unique solution for ≈. The
guardedness condition is also weakened: prefixes are not required anymore to be visible, as
the equations are required to be weakly guarded (τ prefixes are thus allowed).

Theorem 0.6.3 (unique solution of contractions for ≈). A system of weakly-guarded con-
tractions has a unique solution for ≈.

Assume P̃ and Q̃ are solutions of a system of weakly guarded contractions. Sangiorgi
shows that the relation

R 4
= {(R, S) | R ≈ C[P̃], S ≈ C[Q̃] for some context C} .

is a bisimulation. The proof exploits the following lemma.

Lemma 0.6.4 ([San15]). Suppose P̃ and Q̃ are solutions of a system of weakly-guarded
contractions. For any context C, if C[P̃]

µ
=⇒ R, then there is a context C ′ such that R �c

C ′[P̃] and C[Q̃]
µ̂

=⇒≈ C ′[Q̃].

60

The proof proceeds by induction over the length of the transition C[P̃]
µ

=⇒ R, and exploits
the congruence of �c.

Indeed, if X ≥ E is a contraction, and P is such that P �c E[P], then also

P �c

n times︷ ︸︸ ︷
E[E[. . . E[P] . . .]

for any n.
Assume P µ

=⇒ is a transition of length n or less. If E is weakly guarded, the transition
P

µ
=⇒ can be mimicked by the context E[E[. . . [·] . . .]: each hole is underneath at least n

prefixes, and cannot contribute to an action in the first n transitions.

Example 0.6.5. Consider the equation from Example 0.5.7. It does not have a unique
solution for ≈. However, the following contraction now has a unique solution for ≈:

X ≥ νa (a.X | a)

Its solution are all diverging processes (processes are diverging if they can perform an infinite
number of internal steps), and may not produce any visible action. For instance, the process
τ∞

4
= τ . τ . τ . . . is a solution (it can be described as the constant Kτ∞ = τ .Kτ∞).
Any such solutions are indeed bisimilar: any process that may not perform any visible

action is bisimilar to the null process 0.

0.6.1 Correspondence of unique solution and up-to

Sangiorgi shows that the unique solution of contractions technique is computationally equiv-
alent to the ‘up-to �c and context’; computationally equivalent means that for any proof
using one of these two techniques, there is a proof of the same size using the other.

Theorem 0.6.6 ([San15]). Suppose R is a bisimulation up-to �c and context. Then there
is a system of weakly-guarded contractions, of the same size as R, of which R1 and R2 are
solutions for �c.

Conversely, suppose P̃ and Q̃ are solutions for �c to the same system of weakly-guarded
contractions. Then the relation {(Pi, Qi)}i is a bisimulation up-to �c and context.

The proof of the first part of the Theorem crucially relies on the so-called ’expansion
law’, adapted for contractions. This law states that a process P can be expressed as the
sum of its immediate transitions associated with the remaining processes. In other words, if
P

µi−→ Pi is an enumeration of the transitions of P , we have

P �c Σiµi.Pi

Sangiorgi uses this law, applied to a pair of processes P and Q related by a bisimulation
up-to �c and context R, according to the following diagram

61

P

µi

��

R Q

µ̂i

��
· �c Ci[Pi] C(R) Ci[Qi] ≈ ·

Considering also the transitions from Q, indexed by j, this immediately translates to the
equation

X �c Σiµi.Ci[Xi] + ΣjµjCj[Xj]

where Xi are variables corresponding to the pairs (Pi, Qi) ∈ R, and similarly for Xj.

Remark 0.6.7. The ’expansion law’, so crucial in the correspondence between the con-
traction technique and up-to techniques, is not valid asynchronous calculi, and particularly
for the asynchronous π-calculus. Thus, any such perfect correspondence is unattainable.
This explains why, while we manage to develop unique solution techniques for Aπ, as illus-
trated in Section 1.4, the mere soundness of up-to context for Aπ remains an open question
(Section 0.4.4).

Having shown that these two techniques are equivalent, Sangiorgi derives the soundness
of the up-to technique from the soundness of the contraction technique (i.e., Theorem 0.6.3).

Corollary 0.6.8 (soundness of ‘bisimulation up-to �c and context’). If R is a bisimulation
up-to �c and context, then R ⊆ ≈. 2

62

Chapter 1

The unique solution technique

1.1 Unique solution in CCS

1.1.1 Divergences and Unique Solution

We introduce our proof technique in the setting of CCS, looking first at bisimilarity as
a behavioural equivalence. We first introduce the concept of divergence, as it is used to
discriminate equations that enjoy the unique-solution property from equations that do not.

Definition 1.1.1 (Divergence). A process P diverges if it can perform an infinite sequence
of internal moves, possibly after some visible ones; i.e., there are processes Pi, i ≥ 0, and
some n, such that P = P0

µ0−→ P1
µ1−→ P2

µ2−→ . . . and for all i > n, µi = τ . We call a
divergence of P the sequence of transitions

(
Pi

µi−→ Pi+1

)
i
.

Example 1.1.2. The process L 4= a.νa (L | a) diverges, since L a−→ νa (L | a), and (leaving
aside 0 and useless restrictions) νa (L | a) has a τ transition onto itself.

To define the divergences of an equation X = E, hence to ensure an equation has a
unique solution, we need to reason with the unfoldings of said equation: we define the
n-th unfolding of E to be En; thus E1 is defined as E, E2 as E[E], and En+1 as En[E].
The infinite unfolding represents the simplest and most intuitive solution to the equation.
In the CCS grammar, such a solution is obtained by turning the equation into a constant
definition, namely the constant KE with KE

4
= E[KE]. We call KE the syntactic solution of

the equation.
For a system of equations X̃ = Ẽ[X̃], the unfoldings are defined accordingly (where Ei

replaces Xi in the unfolding): we write Ẽ2 for the system {Xi = Ei[Ẽ]}i∈I , and similarly
for Ẽn. The syntactic solutions are defined to be the set of mutually recursive constants
{KẼ,i

4
= Ei[K̃Ẽ]}i.

As equation expressions are terms of an extended CCS grammar, that includes variables,
we can apply the SOS rules of CCS to them (assuming that variables have no transitions).
We extend accordingly to expressions notations and terminology for LTS and transitions.

63

We have the following properties for transitions of processes of the form E[P̃], where the
transition emanates from the E component only:

Lemma 1.1.3 (Expression transitions).

1. Given E and E ′ two equation expressions, if E µ−→ E ′, then E[P̃]
µ−→ E ′[P̃], for all

processes P̃ , and E[F̃]
µ−→ E ′[F̃] for all equation expressions F̃ .

2. If E is a guarded expression and E[P̃]
µ−→ T , then there is an expression E ′ such that

E
µ−→ E ′ and T = E ′[P̃]. Similarly for a transition E[F̃]

µ−→ E ′.

Proof. 1. By a simple induction on the derivation of the transition.

2. By a simple induction on the equation expression E.
2

In the hypothesis of case 1 above, we sometimes call a transition E[P̃]
µ−→ E ′[P̃] an

instance of the expression transition E µ−→ E ′.

Definition 1.1.4 (Reducts). 1. The set of reducts of an expression E, written red(E),
is given by:

red(E)
4
=

⋃
n

{En | E
µ1−→ E1 · · ·

µn−→ En for some µi, Ei (1 ≤ i ≤ n) }.

2. The set of reducts of the unfoldings of a system of equations {Xi = Ei[X̃]}i∈I , also
written redω(Ẽ), is defined as

redω(Ẽ)
4
=

⋃
n∈N,i∈I

red(En
i)

Definition 1.1.5. A system of equations Ẽ protects its solutions if, for all solution P̃ of the
equation X̃ = Ẽ[X̃], the following holds: for all E ′ ∈ redω(Ẽ), if E ′[P̃]

µ
=⇒ Q for some µ and

Q, then there exists E ′′ and n such that E ′[Ẽn]
µ̂

=⇒ E ′′, and E ′′[P̃] ≈ Q.

Consider a single equation X = E[X]: it protects its solutions when all sequences of
transitions emanating from E ′[P], where P is a solution of E and E ′ is a reduct of the
unfoldings of E, can be mimicked by transitions involving unfoldings of E and reducts of E
only (without P performing a transition). This is a technical condition, which is useful in
the proofs, as a sufficient condition for unique solution. Indeed, when we give examples of
equations having a unique solution, they also satisfy this property.

Proposition 1.1.6. A system of equations that protects its solutions has a unique solution
for ≈.

64

Proof. Given two solutions P̃ , Q̃ of the system of equations X̃ = Ẽ[X̃] we prove that the
relation

R 4
= {(S, T) | ∃E ′, s.t. S ≈ E ′[P̃], T ≈ E ′[Q̃] and E ′ ∈ redω(Ẽ)}

is a bisimulation relation such that P̃RQ̃.
We consider (S, T) ∈ R, that is, S ≈ E ′[P̃] and T ≈ E ′[Q̃], for some E ′ ∈ redω(Ẽ). If

S
µ−→ S ′, then by bisimilarity E ′[P̃]

µ̂
=⇒ S ′′ ≈ S ′. Since Ẽ protects its solutions, there are

n, E ′′ such that E ′[Ẽn]
µ̂

=⇒ E ′′ and E ′′[P̃] ≈ S ′′. We can deduce by Lemma 1.1.3(1) that
E ′[Ẽn[Q̃]]

µ̂
=⇒ E ′′[Q̃]. Since Q̃ is a solution of Ẽ, we have Q̃ ≈ Ẽn[Q̃]. This entails, as we

know by hypothesis T ≈ E ′[Q̃], that T ≈ E ′[Q̃] ≈ E ′[Ẽn[Q̃]]. By bisimilarity, we deduce
from E ′[Ẽn[Q̃]]

µ̂
=⇒ E ′′[Q̃] that T µ̂

=⇒ T ′ ≈ E ′′[Q̃].
The situation can be depicted on the following diagram:

S

µ

��

≈ E ′[P̃]

µ̂

��

≈ E ′[Ẽn[P̃]]

µ̂
��

=

E ′[Ẽn[Q̃]]

µ̂
��

≈ E ′[Q̃] ≈ T

µ̂

��

S ′ ≈ S ′′ ≈ E ′′[P̃] E ′′[Q̃] ≈ T ′

Then, from E ′ ∈ redω(Ẽ) and E ′[Ẽn]
µ̂

=⇒ E ′′, we deduce that E ′′ ∈ redω(Ẽ). Finally,
T ′ ≈ E ′′[Q̃] and S ′ ≈ E ′′[P̃] give that (S, T) ∈ R.

We reason symmetrically for T µ−→ T ′. 2

We say that the syntactic solutions of the system Ẽ do not diverge if, for all i ∈ I, KẼ,i

does not diverge.

Theorem 1.1.7 (Unique solution). A guarded system of equations whose syntactic solutions
do not diverge has a unique solution for ≈.

Proof. To enhance readability, we first give the proof for a single equation X = E[X]. We
discuss the generalisation to a system of equations at the end of the proof.

Given a guarded equation expression E, we prove that E protects the solutions of its
equations. To prove that, we need to consider a transition E0[P]

µ
=⇒ P ′, for some E0 ∈

redω(E) and some solution P of E.
We build a sequence of expressions En, and an increasing sequence of transitions E0[E

n]
µ?
=⇒

En (where µ?
=⇒def

=⇒ ∪ µ̂
=⇒) such that: either this construction stops, yielding a transition

E0[E
n]

µ
=⇒ En, or the construction is infinite, therefore giving a divergence of KE.

We build this sequence so that it additionally satisfies:

• Either we have E0[E
n]

µ̂
=⇒ En and En[P]⇒≈ P ′, or E0[E

n]⇒ En and En[P]
µ̂

=⇒≈ P ′.

• The sequence is strictly increasing: the sequence of transitions E0[E
n+1]

µ?
=⇒ En[E] is

a strict prefix of the sequence of transitions E0[E
n+1]

µ?
=⇒ En+1

65

E0[E
n[P]]

=µ?
��

E0[E
n+1[P]]

µ?
��

= E0[E
n+1[P]]

µ?

��

En[P]

µ?

��

≈ En[E[P]]

µ?

��

= En[E[P]]

µ?

��

µ?

��

En+1[P]

AP ′ ≈ Tn ≈ Tn+1 = Tn+1

Figure 1.1: Recursion: construction of the sequence of transitions E0[E
n[P]]

µ?
=⇒ En

This construction is illustrated by Figure 1.2. We start with the empty sequence from E0.

Suppose therefore that at step n, we have for example E0[E
n[P]]

µ
=⇒ En[P] ⇒ Tn, with

P ′ ≈ Tn.

• If En[P]⇒ Tn is the empty sequence, we stop. We have in this case E0[E]n
µ

=⇒ En and
P ′ ≈ En[P].

• Otherwise (as depicted on Figure 1.1), we unfold further equation E: we haveE0[E
n+1]

µ
=⇒

En[E] by Lemma 1.1.3. By congruence and bisimilarity we have En[E[P]]⇒ Tn+1 ≈ P ′

for some Tn+1. If En[E[P]]⇒ Tn+1 is the empty sequence, we stop as previously. Oth-
erwise, we take En[E]

µ?
=⇒ En+1 to be the longest prefix sequence of transitions in

En[E[P]] ⇒ Tn+1 that are instances of expression transitions from En[E] (we remark
that as En[E] is guarded, this sequence is not empty).

Suppose now that the construction given above never stops. We know that En[E]
µ?

=⇒
En+1, therefore En[KE]

µ?
=⇒ En+1[KE]. This gives an infinite sequence of transitions starting

from E0[KE]: E0[KE]
µ?

=⇒ E1[KE]
µ?

=⇒ We observe that in the latter sequence, every
step involves at least one transition, and moreover, there is at most one visible action (µ)
occurring in this infinite sequence. Therefore E0[KE] is divergent, which contradicts the
hypothesis of the theorem. Hence, the construction does stop, and this concludes the proof.

Systems of equations. To extend the previous proof to systems of equations, we consider
solutions P̃ to the system Ẽ, and use unfoldings of the system of equations (instead of
unfoldings of a single equation). We also reason about an initial transition from E0[P̃],
where E0 is a reduct of the unfoldings of one of the equations (i.e., E0 ∈ redω(Ẽ)). 2

66

E0[P]

µ̂

��

≈ E0[E[P]]

µ̂

��

≈ E0[E
2[P]]

µ?

��

≈ E0[E
3[P]]

µ?

��

≈ . . . ≈ E0[E
n[P]]

µ?

��

µ?

��

µ?

��

P ′ ≈ T1 ≈ T2 ≈ T3 ≈ . . . ≈ En[P]

Figure 1.2: Construction of the expression transition

P

µ

��

≈ E[P]

µ̂

��

≈ E[E[P]]

µ̂

��

≈ . . . ≈ En[P]

µ̂

��

En[·]

µ̂

��

En[Q]

µ̂

��

≈ Q

µ̂

��

Figure 1.3: Proof of Theorem 1.1.7, building a a transition of En[Q] where Q does not move

1.1.2 Innocuous Divergences

In this section we refine Theorem 1.1.7 by taking into account only certain forms of di-
vergence. To introduce the idea, consider the equation X = !τ | a.X: the divergences
induced by !τ do not prevent uniqueness of the solution, as any solution P necessarily satis-
fies P ≈ a.P . Indeed the variable of the equation is strongly guarded and a visible action has
to be produced before accessing the variable. These divergences are not dangerous because
they do not percolate through the infinite unfolding of the equation; in other words, a finite
unfolding may produce the same divergence, therefore it is not necessary to go to the infinite
unfolding to diverge. We call such divergences innocuous. Formally, these divergences are
derived by applying only a finite number of times rule const of the LTS (see Figure 1) to
the constant that represents the syntactic solution of the equation. Those divergences can
be understood as instances, in the syntactic solution, of divergences of some finite unfolding

67

of the equation: Consider a (single) equation X = E[X]; this way, any divergence of En can
be transformed into an innocuous divergence of KE. This idea is also behind Lemma 1.2.20
below.

This refinement fits well the operational approach we adopt to formalise the results; it
looks less natural in a denotational or trace-based setting for CSP like in [Ros92, Ros97],
where any divergence causes a process to be considered as having an undefined behaviour
(in other words, any arbitrary behaviour).

Definition 1.1.8 (Innocuous divergence). Consider a guarded system of equations X̃ = Ẽ

and its syntactic solutions K̃Ẽ. A divergence of KẼ,i (for some i) is called innocuous when,
summing up all usages of rule const with one of the KẼ,js (including j = i) in all derivation
proofs of the transitions belonging to the divergence, we obtain a finite number.

Theorem 1.1.9 (Unique solution with innocuous divergences). Let X̃ = Ẽ be a system
of guarded equations, and K̃Ẽ be its syntactic solutions. If all divergences of any KẼ,i are
innocuous, then Ẽ has a unique solution for ≈.

Proof. We reason like in the proof of Theorem 1.1.7. We explain the difference, in the case
where we have a single equation (bearing in mind that the generalisation discussed at the
end of the proof of Theorem 1.1.7 can be carried over accordingly).

Along the construction in that proof, if at some point the transition E0[E
n[P]]

µ̂
=⇒ Tn is

an instance of an expression transition E0[E
n]

µ̂
=⇒ En, then the construction can stop.

Consequently, if the construction never stops, we build a non innocuous divergence: we
can assume that for any n, E0[E

n[P]]
µ̂

=⇒ Tn is not an instance of an expression transition
from E0[E

n]. This means that in this sequence of transitions, the LTS rule const is used
at least n times applied to the constant KE. Hence, the divergence we build uses at least n
times the rule const applied to the constant KE, for all n. Therefore, the divergence is not
innocuous, which is a contradiction. 2

Remark 1.1.10. The conditions for unique solution in Theorems 1.1.7 and 1.1.9 combine
syntactic (guardedness) and semantic (divergence-free) conditions. A purely semantic con-
dition can be used if rule const of Figure 1 is modified so that the unfolding of a constant
yields a τ -transition:

K
τ−→ P

if K4=P

Thus in the theorems the condition imposing guardedness of the equations could be dropped.
The resulting theorems would actually be more powerful because they would accept equations
which are not syntactically guarded: it is sufficient that each equation has a finite unfolding
which is guarded. For instance the system of equations X = b | Y , Y = a.X would be
accepted, although the first equation is not guarded.

Remark 1.1.11. Even taking innocuous divergences into account, our criterion for equations
to have a unique solution is not complete. Indeed, the following equation

X = a.X + a.X + d. (X | X) (1.1)

68

has a non-innocuous divergence: its syntactic solution, K, has the transition K d−→ K | K;
then, K | K diverges by unfolding on both sides at every step. However, the equation has a
unique solution, intuitively because the prefix d acts as a strong guard, that does not take
part in the divergence.

Note moreover that this equation is non-linear, in the sense that there are occurrences of
the same variable X in parallel. In practice, such examples are not very useful. Additionally,
the equation is not at top-level, meaning the syntactic solution produces some observable
action before the divergence can be fired up. Completeness of Theorem 1.1.9 in respect to
both linear equations and equations with top-level divergences is established for a subcalculi
of CCS in Section 1.1.5.

1.1.3 Toolbox

In this section we give tools, in the form of two lemmas, to facilitate the use of Theorems 1.1.7
and 1.1.9 for concrete proofs. Both are sufficient conditions for unique solution: the first is
a syntactic condition that guarantees that an equation only has innocuous divergences; the
second, a way to substitute a system of equations that has a unique solution, but to which
we are not able to apply the theorems, for another.

1.1.3.1 Syntactic condition for unique solution

The following lemma states a condition to ensure that all divergences produced by a system
of equations are innocuous. This condition is decidable, but weak. However, in practice, it
is often satisfied; it is in particular sufficient for the examples we give in CCS. With this
criterion, it is also possible to forego guardedness, and replace it with a weaker hypothesis:
equations only have to be eventually guarded, meaning, for each equation Ei, there has to
be some ni so that Eni

i is guarded.

Lemma 1.1.12. Consider a system of equations X̃ = Ẽ, and suppose that for each i there
is ni such that in Eni

i , each variable is underneath a visible prefix (say, a or a) whose
complementary prefix (a or a) does not appear in any equation. Then the system has only
innocuous divergences.

Proof. The condition ensures that at least one of the prefix occurring above the equation
variables may never take part in a τ action. This entails that this prefix cannot be triggered
along an infinite sequence of τ steps. Hence a divergence of the unique solution of such a
system of equations may not require the rule const to be used an infinite number of times.

2

1.1.3.2 Extension of a system of equations

We show how it is possible to transfer the property of uniqueness of solutions from a system of
equations to another one. This could be useful in the case that the first system of equations,
albeit having a unique solution, has non-innocuous divergences. We mostly use it in cases

69

where neither equations have non-innocuous divergences, but it is harder to show the absence
of divergences for one system rather than for the other. For instance, we can apply conditions
similar to Lemma 1.1.12 to the second system, but not to the first.

Both system of equations need not be of the same size: on system needs to extend the
other. Intuitively, this means Take, for instance, the system of equations

X = a.Y

Y = τ .X

This system of equations can be turned into the equation X = a. τ .X, for which it is easiest
to show the absence of divergences, by using Lemma 1.1.12 for instance.

Definition 1.1.13. A system of equations E ′ extends a system E if there exists a fixed set
of indices J such that any solution of E can be obtained from a solution of E ′ by removing
the components corresponding to indices in J .

Lemma 1.1.14. Consider two systems of equations E ′ and E where E ′ extends E. If E ′ has
a unique solution, then the property also holds for E.

Remark 1.1.15. We cannot derive Lemma 1.1.14 by comparing the syntactic solutions of
the two systems E ′ and E . For instance, the syntactic solutions of the equationsX = τ .X and
X = τ . τ . τ . . . are (strongly) bisimilar; yet only the latter equation has the unique-solution
property. (Further, Lemma 1.1.14 allows us to compare systems of different size.)

We use Lemma 1.1.14 in Chapter 2, when studying the system ER for the encoding of
the call-by-value λ-calculus in the Internal π-calculus. For this, we show how ER can be
extended into a system for which uniqueness is easier to establish.

System ER contains equations which give rise to innocuous divergences, therefore we could
also use a version of Theorem 1.1.9; however Lemma 1.1.14 also allows us to work with two
systems of equations of different sizes.

Another development of the theory in [DHS19] is presented in Section 2.2.9. It is a gen-
eralisation of Theorem 1.4.11 and Lemma 1.1.14 to trace equivalence and to trace preorders.
The extension to preorders follows the line of the one presented in [DHS19].

Remark 1.1.16. Lemma 1.1.14 does not replace Theorem 1.1.9 and its treatment of innocu-
ous divergences. Indeed, consider the equation X = (a.X) | K, where K is the constant
defined by the recursive constantK 4

= τ . (K | b)+c. Previous equation does have a unique so-
lution, which can be demonstrated using Theorem 1.1.9 (it only has innocuous divergences).
However, the divergence in K, albeit innocuous in this specific equation, is observable, in
the sense that if K τ−→ P0

τ−→ P1 . . . , the Pis are pairwise distinct for ≈. Therefore, any
solution to the equation has a divergence. This makes Lemma 1.1.14 insufficient to treat
this example.

70

1.1.4 Comparison with other techniques

1.1.4.1 An example (lazy and eager servers), and comparison with contractions

We now show an example of application of our technique, taken from [San15]. The example
also illustrates the relative strengths of the two unique solution theorems (Theorems 1.1.7
and 1.1.9), and a few aspects of the comparison with other bisimulation techniques.

For the sake of readability, we use a version of CCS with value passing; this could be
translated into pure CCS [Mil89]. In a value-passing calculus, a(x).P is an input at a in
which x is the placeholder for the value received, whereas a〈n〉.P is an output at a of the
value n; and A〈n〉 is a parametrised constant. This example consists of two implementations
of a server; this server, when interrogated by clients at a channel c, should start a certain
interaction protocol with the client, after consulting an auxiliary server A at a.

We consider the two following implementations of this server: the first one, L, is ‘lazy’,
and consults A only after a request from a client has been received. In contrast, the other
one, E, is ‘eager’, and consults A beforehand, so then to be ready in answering a client:

L
4
= c(z). a(x). (L | R〈x, z〉)

E
4
= a(x). c(z). (E | R〈x, z〉)

A〈n〉 4
= a〈n〉.A〈n+ 1〉

Here R〈x, z〉 represents the interaction protocol that is started with a client, and can be any
process. It may use the values x and z (obtained from the client and the auxiliary server A);
the interactions produced may indeed depend on the values x and z. We assume for now that
R〈x, z〉 may not use channel c and a; that is, the interaction protocol that has been spawned
need not come back to the main server or to the auxiliary server. Moreover we assume R
may not diverge. We want to prove that the two servers, when composed with A, yield
bisimilar processes. We thus define LS〈n〉 4= νa (A〈n〉 | L) and ES〈n〉 4= νa (A〈n〉 | E).
A proof that LS〈n〉 ≈ ES〈n〉 using the plain bisimulation proof method would be long and
tedious, due to the differences between the lazy and the eager server, and to the fact that R
is nearly an arbitrary process.

The paper [San15] presents two proofs of this equivalence. One proof makes use of the
‘bisimulation up-to expansion and context’ technique; this makes it possible to carry out a
proof using a single pair of processes for each integer n. A proof of similar size uses the
technique of ‘unique solution of contractions’, by establishing, with the help of a few simple
algebraic laws, that {LS〈n〉}n and {ES〈n〉}n are solutions of the same system of contractions.

We can also build a proof using the technique of ‘unique solution of equations’. Milner’s
original version of this technique cannot be used, because the equations make use of operators
other than just prefix and sum. In contrast, Theorem 1.1.7 can be applied. The equations
are: {Xn = c(z). (Xn+1 | R〈n, z〉)}n. The proofs that the two servers are solutions can be
carried out using a few algebraic laws: expansion law, structural laws for parallel composition
and restriction, one τ -law. It is essentially the same proof as that for unique solution of
contractions.

To apply Theorem 1.1.7, we also need to check that the equations do not produce diver-
gences. This check is straightforward, as no silent move may be produced by interactions

71

along c, and any two internal communications at a are separated by a visible input at c.
Moreover, by assumption, the protocol R does not produce internal divergences.

If on the other hand the hypothesis that R may not diverge is lifted, then Theorem 1.1.7
is not applicable anymore, and divergences are possible. However, such divergences are
innocuous: the equation need not be unfolded an infinite number of times for the diver-
gence to occur. We can therefore still prove the result, by appealing to the more powerful
Theorem 1.1.9.

We can relax the definition of R even further and allow calls back to the main server
from R itself. In this case, interactions between R and the main server (eager or lazy) may
yield divergences (for instance setting R def

= c). Such divergences need not be innocuous, as
intuitively they require infinitely many unfolding of the body of an equation. Thus now even
Theorem 1.1.9 is not applicable. (More precisely, for Theorem 1.1.9 to fail R〈n, z〉, for each
n and z, should have the possibility of performing an output at c as first visible transition.)

This becomes therefore an example in which the ‘unique solution of contraction’ technique
is more powerful, as such technique does not rely on conditions about divergence and is
therefore applicable.

Comparison with up-to techniques Milner’s syntactic condition for unique solution
of equations essentially allows only equations in which variables are underneath prefixes
and sums. The technique is not complete [San15]; for instance it cannot handle the server
example of Section 1.1.4.1.

The technique of ‘unique solution of contractions’ [San15] relies on the theory of an auxil-
iary preorder (contraction), needed to establish the meaning of ‘solution’; and the soundness
theorems in [San15] use a purely syntactic condition (guarded variables). In contrast, our
techniques with equations do not rely on auxiliary relations and their theory, but the sound-
ness theorems use a semantic condition (divergence) , see also Remark 1.1.10).

The two techniques are incomparable. Considering the server example of Section 1.1.4.1,
the contraction technique is capable of handling also the case in which the protocol R is freely
allowed to make calls back to the main server, including the possibility that, in doing this,
infinitely many copies of R are spawned. This possibility is disallowed for us, as it would
correspond to a non-innocuous divergence. On the other hand, when using contraction,
a solution is evaluated with respect to the contraction preorder, that conveys an idea of
efficiency (measured against the number of silent transitions performed). Thus, while two
bisimilar processes are solutions of exactly the same set of equations, they need not be
solutions of the same contractions. For instance, we can use our techniques to prove that
processes K 4

= τ . a. a.K and H
4
= a.H are bisimilar because solutions of the equation

X = a.X; in contrast, only H is a solution of the corresponding contraction.

1.1.4.2 Completeness for up-to-context techniques

We compare our unique-solution techniques with one of the most powerful forms of enhance-
ment of the bisimulation proof method, namely Pous ‘up to transitivity, bisimilarity and

72

context’ technique [Pou08]. This technique allows one to use ‘up to weak bisimilarity’, ‘up
to transitivity’, and ‘up to context’ techniques together. While ‘up to weak bisimilarity’
and ‘up to transitivity’ are known to be unsound techniques [PS11], here they are combined
safely thanks to a ‘control relation’, written below �, which satisfies a termination hypoth-
esis. This control relation is used to make sure there is no cyclic or infinite sequence of τ
transitions used to hide other potential visible transitions. In that regard, this condition is
very similar to the non-divergence hypothesis of Theorem 1.1.9, as can be seen in the proofs
below.

In this section, we will switch freely between equation expressions and contexts, keeping
in mind that contexts are needed to study up-to techniques while equation expressions are
needed for unique solution of equations.
R stands for (≈ ∪C(R)), and R+ for the transitive closure of R.

Definition 1.1.17. Let � be a relation that is transitive, closed under contexts, and such
that � (

τ−→
+

) terminates. A relation R is a bisimulation up to � and context if, whenever
P R Q:

1. if P µ−→ P ′ then Q µ̂
=⇒ Q′ for some Q′ with P ′ (� ∩R)+ C(R) ≈ Q′;

2. the converse on the transitions from Q.

We refer to [Pou08] for more details on this up-to technique, and for the the proof of its
soundness.

We remark that in [Pou08], instead of the transitive closure (� ∩R)+ in Definition 1.1.17,
we have a reflexive and transitive closure. We do not know if relaxing this technical condition
breaks Theorem 1.1.18 below.

We introduce some notations in order to state the correspondence between the technique
introduced in Definition 1.1.17 and systems of equations.

If R is a relation, then we can also view R as an ordered sequence of pairs (e.g., assuming
some lexicographical ordering). Then Ri indicates the tuple obtained by projecting the pairs
in R on the i-th component (i = 1, 2).

In the following statement, the size of a relation is the number of pairs it contains, and
the size of a system of equations is the number of equations it consists of.

Theorem 1.1.18 (Completeness with respect to up-to techniques). Suppose R is a bisim-
ulation up to � and context. Then there exists a guarded system of equations, with only
innocuous divergences, that admits R1 and R2 as solutions. Moreover, this system has the
same size as R.

Proof. Suppose R = {(Pi, Qi)}i∈I is a bisimulation up to � and context.
We index the transitions of Pi from 1 to ni, and write Pi

µi,j−−→ P ′i,j for 1 ≤ j ≤ ni.
Then, by Definition 1.1.17, for 1 ≤ j ≤ ni, there exist Ci,j and Q′i,j such that we have

the following diagram:

73

Pi

µi,j

��

R Qi

µ̂i,j

��
P ′i,j (� ∩(≈ ∪C(R)))+ Ci,j[P̃] C(R) Ci,j[Q̃] ≈ Q′i,j

We define the system of equations X̃ = Ẽ by setting ∀i ∈ I, Ei =
∑ni

j=1 µi,j.Ci,j[X̃]. By
construction, this system and R have the same size.

We prove that P̃ is a solution of X̃ = Ẽ. We have that Pi ∼
∑ni

j=1 µi,j.P
′
i,j. Moreover, by

the results in [Pou08], since � (
τ−→

+
) terminates, R ⊆≈, which implies (� ∩(≈ ∪C(R)))+ ⊆

≈. Therefore, P ′i,j ≈ Ci,j[P̃], and Pi ≈
∑ni

j=1 µi,j.Ci,j[P̃]. This shows that P̃ is a solution of
X̃ = Ẽ.

Since R ⊆≈, we have P̃ ≈ Q̃, hence Q̃ is also a solution of the system of equations.

It is left to prove that if for some i, KẼ,i has a non-innocuous divergence, then � (
τ−→

+
)

does not terminate. As this would be contradictory, we will be able to apply Theorem 1.1.9
to finish the proof.

Assume that KẼ,k

µ1−→ · · · µn−→ F0[K̃Ẽ]
τ−→ τ−→ . . . , and that this divergence is not innocu-

ous. Based on this divergence, we build a sequence of equation expressions Fn and F ′n such
that:

F0[K̃Ẽ]
τ−→
∗
F ′0[K̃Ẽ]

τ−→ F1[K̃Ẽ]
τ−→
∗
F ′1[K̃Ẽ]

τ−→ F2[K̃Ẽ] . . .

In the above divergence, we have that for all n, Fn
τ−→
∗
F ′n (these are expression transitions)

and F ′n[K̃Ẽ]
τ−→ Fn+1[K̃Ẽ]; moreover, the latter transition is not an instance of an expression

transition from F ′n (meaning that K̃Ẽ contributes to the transition). We will then show that
F ′n[P̃]

τ−→� Fn+1[P̃]. Therefore � (
τ−→

+
) does not terminate.

F0 is already given. Assume then that we have Fn such that there is a non innocuous
divergence from Fn[K̃Ẽ]. This entails that there exists F ′n such that Fn[K̃Ẽ]

τ−→
∗
F ′n[K̃Ẽ],

F ′n[K̃Ẽ]
τ−→, and the latter transition is not an instance of an expression transition from F ′n.

Without loss of generality, we can assume that the transitions in Fn[K̃Ẽ]
τ−→
∗
F ′n[K̃Ẽ] are

instances of expression transitions.
The fact that transition F ′n[K̃Ẽ]

τ−→ is not an instance of an expression transition means
that at least one equation expression Ei is involved in it. For readability, we assume that
this transition is of the form F ′n[K̃Ẽ]

τ−→ F ′n[(KẼ,k)k<i, Q, (KẼ,k)k>i] for some k and some Q,
with KẼ,i

τ−→ Q (i.e., in F ′n there is only one copy of KẼ,i, and the transition involves only
KẼ,i). The reasoning below can be adapted to cases where the τ -transition involves a more
complex synchronisation, and/or several copies of KẼ,i.

Since Ei =
∑

j µi,j.Ci,j[X̃], there is j such that τ = µi,j and Q = Ci,j[K̃Ẽ]. We then fix
Fn+1 to be F ′n{Xi/Ci,j[X̃]}. Indeed we have F ′n[K̃Ẽ]

τ−→ Fn+1[K̃Ẽ].
We have observed that Pi ∼

∑
j µi,j.P

′
i,j, and Ei =

∑
j µi,j.Ci,j[X̃], hence any transition

from Ei can be mimicked by a transition of Pi. Therefore we have that Pi
τ−→ P ′i,j and

F ′n[P̃]
τ−→ F ′n[(Pk)k<i, P

′
i,j, (Pk)k>i]. We have that P ′i,j �+ Ci,j[P̃] by construction, hence,

74

since � is transitive, P ′i,j � Ci,j[P̃]; finally, � is closed by contexts, hence

F ′n[(Pk)k<i, P
′
i,j, (Pk)k>i] � F ′n[(Pk)k<i, Ci,j[P̃], (Pk)k>i] = Fn+1[P̃] .

The sequence of equation expressions Fn and F ′n has thus been defined in such a way
that Fn

τ−→
∗
F ′n, hence Fn[P̃]

τ−→
∗
F ′n[P̃]. We also have F ′n[P̃]

τ−→� Fn+1[P̃], thus Fn[P̃](
τ−→

+

) � Fn+1[P̃]. This is an infinite sequence for (
τ−→

+
) �, hence we also have non-termination

for � (
τ−→

+
). This yields a contradiction. 2

Theorem 1.1.9 is essential to establish Theorem 1.1.18; Theorem 1.1.7 would be insuffi-
cient.

Remark 1.1.19. The above proof shows how to build a system of equations starting from
a pair of processes, by relying on the so-called expansion law [Mil89]. Using this law, one
can use guarded sum to express the immediate transitions of a process. Accordingly, we
can turn a process into a system of equations, each consisting of a guarded sum where the
continuations of prefixes are equation variables.

This form of system of equations is sometimes called a specification in the literature.
Such a specification can then be used to prove bisimilarity results, using unique solution
of equations. Milner’s unique solution theorem (Theorem 0.5.6) can be sufficient in such a
situation, as long as τ prefixes do not appear in the specification.

1.1.5 Completeness of unique solution in CCS

As discussed in Remark 1.1.11, our unique solution theorem is not complete in regard to
equations that have a unique solution. We recall Equation 1.1, that has a unique solution,
but also a non-innocuous divergence:

X = a.X + a.X + d. (X | X) (1.1)

This equation has two peculiarities:

• It is non-linear (multiple copies of the same variable appear in parallel)

• It diverges after a visible action

In this section we show how, by forbidding each of these two properties separately, we get
completeness for our theorems (on a subcalculus of CCS).

1.1.5.1 Guardedness and unique solution

We first discuss the guardedness hypothesis of Theorem 1.1.9: we show that guardedness is
essential to obtain a unique-solution theorem, as equations that are not weakly guarded do
not have a unique solution.

75

Proposition 1.1.20. If E is not weakly guarded, then the equation X = E does not have a
unique solution for ∼, nor for ≈.

Proof. We show, by induction on the syntax of E, that E[P | !a] ∼ E[P] | !a for any a fresh;
thus, if P is solution, so is P | !a, and E does not have a unique solution.

• If E is the trivial equation expression (equation X = X): P | !a ∼ P | !a

• If E = νb E ′, E ′ is not guarded and νb E ′[P | !a] ∼ νb E ′[P] | !a (by induction
hypothesis, and because a is fresh)

• If E = E1 | E2: at least one of E1 or E2 is not weakly guarded;

1. if neither is, E[P | !a] = E1[P | !a] | E2[P | !a] ∼ E1[P] | !a | E2[P] | !a ∼ E[P] | !a
2. otherwise assume only E1 is not; then E2[P | !a] | !a ∼ E2[P] | !a (a fresh), and
E1[P | !a] ∼ E1[P] | !a (induction hypothesis).

(by induction hypothesis, and with algebraic laws for ∼).

• Otherwise, E is guarded.
2

This result only applies to single equations; a system of equations would have to not be
eventually guarded. For example, the system of equations:

X = Y

Y = a.X

would have a unique solution.
We also show the following lemma, useful for the next section:

Lemma 1.1.21. If E is not weakly guarded, a is fresh in E, and P a−→ Q then E[P]
a−→

E ′[P,Q] for some E ′ such that E ′[X,X] = E.

Proof. By induction on the syntax of E. 2

1.1.5.2 Unique solution and top-level divergences

We first show that equations that have ‘top-level’ non-innocuous divergences (the syntactic
solution diverges immediately) do not have a unique solution.

Definition 1.1.22 (Top-level divergence). We say that a process P has a top-level divergence
if there is (Pi)i∈N such that P0 = P and Pi

τ−→ Pi+1 for all i ∈ N.

Likewise, we say that a divergence of an equation is at top-level if it is a divergence (i.e.,
a sequence (Ei)i∈N and a sequence (µi)i∈N with Ei[E∞]

µi−→ Ei+1[E
∞] and E0 = E) for which

µi = τ for all i ∈ N.

76

Proposition 1.1.23. Let E be a weakly guarded equation expression such that its syntactic
solution E∞ has a non-innocuous divergence at top-level. Then E does not have a unique
solution for ≈.

Proof. We show there is P 6≈ E∞ that is solution of X = E.
Consider a non-innocuous divergence E∞ τ−→ E1[E

∞]
τ−→ E2[E

∞] It is not a diver-
gence of E, hence there are equation expressions transitions E τ

=⇒ Ei, such that Ei[E∞]
τ−→

and this is not an equation expression transition transition of Ei. The sequence of transitions
E

τ
=⇒ E ′ is not empty: E is weakly guarded. The transition E[E

∞]
τ−→ is not an equation

expression transition of Ei, hence X is not weakly guarded in Ei.
Fix a fresh name α. We show that, for a well-chosen constant K, the recursively defined

process

Kα,K
def
= τ .E[Kα,K] + α.K

is solution of E = X for ≈. We show that the singleton relation {(Kα,K , E[Kα,K])} progresses
to identity and ≈ (for some well-chosen K).

We start with the challenges from E[Kα,K]. E is weakly guarded, therefore all transi-
tions from E[Kα,K] are equation expressions transitions of E; thus, a transition E[Kα,K]

µ−→
E ′′[Kα,K] can be matched by a transition Kα,K = τ .E[Kα,K]+α.K

τ−→ E[Kα,K]
µ−→ E ′′[Kα,K].

Kα,K

µ

��

R E[Kα,K]

µ

��

E ′′[Kα,K] = E ′′[Kα,K]

We now consider challenges from Kα,K . There are 2 possible transitions:

• The transition Kα,K
τ−→ E[Kα,K] is matched by the empty transition E[Kα,K]

τ̂
=⇒

E[Kα,K].

• The transition Kα,K
α−→ K is matched with

E[Kα,K]
τ

=⇒ E ′[Kα,K]

= E ′[τ .E[Kα,K] + α.K]
α−→ E ′′[Kα,K , K] (by Lemma 1.1.21, for some E ′′)

K needs to be such that K ≈ E ′′[Kα,K , K] (so that R progresses to ≈). We thus take
K to be the recursively defined constant K 4

= E ′′[Kα,K , K].

77

Kα,K

α

��

R E[Kα,K]

+

τ

��

E ′[τ . E[Kα,K] + α. Q]

α

��

Q ≈ E ′[Q]

We indeed have Kα,K 6≈ E∞: Kα,K
α−→ and α is fresh in E.

Furthermore, for any fresh name β, there is K such that Kβ,K is solution of E = X.
Therefore it has an infinite number of non-bisimilar solutions. 2

1.1.5.3 Completeness for linear equations

The proof of the result presented in this section is cumbersome and highly combinatorial.
We therefore consider it has no place in the main body of this document; we only present a
proof sketch.

Definition 1.1.24. We say that an equation expression is linear if its syntax belongs to the
inductively defined set:

E
def
= X | Σi∈Iµi.Ei | νa E | E | P | P | E

Additionally, the finite ν-free fragment of CCS is the subset of CCS syntax where repli-
cation, constant names, and restriction are not used.

Proposition 1.1.25. Let E be a linear equation expression from the finite ν-free fragment
of CCS. The equation X = E has a unique solution for ≈ if and only if its syntactic solution
diverges.

The idea of the proof is to extract, from an arbitrary divergence, a ‘regular’ divergence,
that is, a divergence where the same transitions are followed regularly, infinitely many times.
In other words, we want to find a reduct E ′ of the equation E, such that E ′[En]⇒ E ′ | E ′′
(up to rearranging of parallel compositions) for some E ′′ and some n. Then E ′′ can be
ignored, and the same route taken to create a divergence.

This is possible because equations are linear, hence they reduce to equation expressions
of the shape E0 | P1 | . . . | Pn, where E0 and the Pis are subterms of E. As there are
finitely many of such subterms, by a well-ordering argument there must be two points in the
divergence where the same subterms are repeated (possibly with some additional ones), thus
yielding a regular divergence.

From a regular divergence, one can build two solutions to the equation, by ‘hiding’ an
fresh prefix a in the solution, at a point at which the regular divergence must have started.

78

1.2 Generalizations and abstract setting

1.2.1 Abstract Formulation

In this section we propose generalisations of the unique-solution theorems. For this we intro-
duce abstract formulations of them, which are meant to highlight their essential ingredients.
When instantiated to the specific case of CCS, such abstract formulations yield the theo-
rems in Section 1.1. The proofs are adapted from those of the corresponding theorems in
Section 1.1. The results of this section, up to Theorem 1.2.16, have been formalised in Coq
theorem prover [Dur17], however with slight differences and only for equations with a single
variable (see Remark 1.2.17).

The abstract formulation is stated on a generic LTS, that is, a triple T = (S,Λ,→)
where: S is the set of states; Λ the set of action labels, containing the special label τ
accounting for silent actions; → is the transition relation. As usual, we write s1

µ−→ s2 when
(s1, µ, s2) ∈ →. The definition of weak bisimilarity ≈ is as in Section 0.2. We omit explicit
reference to T when there is no ambiguity.

We reason about state operations, i.e., functions from Sn to S for some n, and use
f, f ′, g to range over them. We say that an operation Sn → S is an operation of arity n.
CCS processes correspond here to the states of an LTS. In turn, a CCS context C (with
multiple holes) corresponds to a state operation, mapping processes P̃ to the process C[P̃].
If f : S → S and f ′ : S → S are the state operations corresponding to the unary contexts
C and C ′, then we can indeed check that f ◦ f ′ : P 7→ C[C ′[P]] is the unary state operation
corresponding to the context C[C ′]. Equations are now of the shapeX = f(X) (for equations
with a single variable), where X is a state variable; this is in spirit similar to replace equation
expressions with contexts applied to variables, e.g., equations of the shapeX = C[X] in CCS.

We first recall finitary multiple composition of operations.

Definition 1.2.1 (Finitary multiple composition). If f is an operation Sm → S and
g1, . . . , gm are operations Sn → S, the finitary multiple composition of f and g̃, written
f ◦ g̃, is the n-ary operation

(x1, . . . , xn) 7→ f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

We will usually consider composition of operations f, g̃ of the same arity, meaning, if f
is an operation Sn → S, then so are the gis.

Sets of functions that are closed under finitary multiple composition are studied in uni-
versal algebra [SB81]; when, additionally, such a set contains all projections Sn → S for all
n, it is called a clone. Clones are a widely studied algebraic structure [Sze86, SB81, HP07,
BP15a, BPP17], used to represent sets of finitary operations over a given set. This concept
is related to that of term algebra; in particular, a term algebra can be seen as a (freely gener-
ated) clone. The image, by the function associated to a term, of a tuple of variables is simply
the term itself; this function simply performs the adequate substitutions when applied to an
arbitrary term.

79

This is similar to our approach. Therefore our use of clones in regard to systems of
equations is quite mild: we simply use clones to represent sets of finitary contexts (again,
contexts are seen as functions Sn → S), or, equivalently, sets of finitary equation expressions.

Definition 1.2.2 (Clone of functions). A setC of operations on a set S is a clone of functions
on S if:

1. C contains all projections: πnk : Sn → S, defined by πnk (x1, . . . , xn) = xk

2. C is closed under finitary multiple composition.

Given a fixed language, we usually consider congruence to be a property of an equivalence
or relation, stating that the relation is preserved by applying any context to related terms
(see Definition 0.2.5). Here, we rather fix the relation (for instance, bisimilarity ≈), and
consider sets of contexts that preserve said relation. We say that such a set of contexts
respects the relation.

Definition 1.2.3 (Respect of an equivalence). A state operation f : Sn → S respects a
relation R if, whenever xi R yi for all i ≤ n, where x̃, ỹ ∈ S, then f(x̃) R f(ỹ).
We say that a set C of operations respects R if for all f ∈ C, f respects R.

Definition 1.2.4 (Autonomy). For state functions f, f ′ we say that there is an autonomous
µ-transition from f to f ′, written f

µ−→ f ′, if for all states x it holds that f(x)
µ−→ f ′(x).

Likewise, for operations f, f ′ of arity n, we say that there is an autonomous transition f µ−→ f ′

if for all x̃, f(x̃)
µ−→ f ′(x̃).

Likewise, given a clone C of state operations and f ∈ C, we say that a transition
f(x̃)

µ−→ y is autonomous on C if, for some f ′ ∈ C we have f µ−→ f ′ and y = f ′(x̃). Moreover,
we say that function f is autonomous on C if all the transitions emanating from f (that is,
all transitions of the form f(x̃)

µ−→ y, for some x̃, y, µ) are autonomous on C.
When C is clear, we omit it, and we simply say that a function is autonomous.

Thus, f is autonomous on C if, for some indexing set I, there are µi and operations
fi ∈ C such that for all x̃ it holds that: f(x̃)

µi−→ fi(x̃), for each i; the set of all transitions
emanating from f(x) is precisely ∪i{f(x̃)

µi−→ fi(x̃)}. Autonomous transitions correspond to
expression transitions in CCS, and autonomous operations correspond to guarded contexts,
which do not need the contribution of their process argument to perform the first transition.

The conditions under which, intuitively, a state function behaves like a CCS context, are
simple: it has to belong to a clone of operations C that respects a behavioural equivalence or
preorder; in this section we are interested in bisimilarity, hence the relation R in the definition
below should be understood to be ≈. Hence, such clone of operations are considered relative
to a behavioural equivalence or preorder.

The autonomous transitions of a set of R-operations yield an LTS whose states are the
operations themselves. Such transitions are of the form f

µ−→ g. We define weak transitions
as follows: f =⇒ g if there is a sequence of autonomous transitions f τ−→ f1

τ−→ · · · τ−→ fn
τ−→ g.

µ
=⇒ is then simply =⇒ µ−→=⇒.

80

We use state functions to express equations, such as X = f(X). We thus look at
conditions under which such an equation has a unique solution. Thinking of functions as
equation expressions, to formulate our abstract theory about unique solution of equations,
we have to define the divergences of finite and infinite unfoldings of state functions. The
finite unfoldings of state operations f̃ ∈ C of arity n are the operations of same arity, defined
recursively as follows: f 0

i = πni , and f
k+1
i = fki ◦ f̃ .

We also have to reason about the infinite unfolding of an equation X̃ = f̃(X̃). For this,
given a clone of functions C on the states S, we extend S with a set of points, defined by
the inductive syntax (with a single constructor)

g ◦ f̃∞ g, f1, . . . , fn ∈ C of arity n

(This is a syntactic construction. Note that this syntax only deals with infinite compositions,
and no such terms belongs to the original clone o operations. Since a clone C is closed under
finite compositions, we do not need to handle finite composition in the above definition)

We write g ◦ (h̃ ◦ f̃∞) for (g ◦ h̃) ◦ f̃∞. We also write f∞i for πni ◦ f̃∞, and call f̃∞ the
fixpoints of f̃ = (f∞1 , . . . , f

∞
n). For a single operation f , we write f∞ for π1

1 ◦ f∞.
We define the autonomous transitions for such terms using the following rules:

g
µ−→ g′

g ◦ f̃∞ µ−→ g′ ◦ f̃∞ g ◦ (f̃∞)
τ−→ (g ◦ f̃) ◦ f̃∞

g not autonomous (1.2)

Intuitively a term is ‘unfolded’, with the second rule, until at least one autonomous
transition is uncovered, and then transitions are computed using the first rule These rules
are consistent for finite composition of functions in C, in the sense that they allow one to
infer the correct transitions for finite compositions of functions (cf. Lemma 1.2.7 and 1.2.13).
We thus extend weak bisimilarity ≈ to these terms also.

Intuitively, an infinite term has a divergence if none of its finite unfoldings ever yields an
autonomous function, as it will always be possible to unfold using the second rule. We thus
defined divergences:

Definition 1.2.5 (Divergences). Let (fi)i∈N be operations in a clone C, and consider the
LTS induced by the autonomous transitions of operations in C. A sequence of transitions
f1

µ1−→ f2
µ2−→ f3 . . . is a divergence if for some n ≥ 1 we have µi = τ whenever i ≥ n. We

also say that f1 diverges. We apply these notations and terminology also to terms g ◦ f̃∞:
f1 ◦ f̃∞

µ1−→ f2 ◦ f̃∞ . . . is a divergence if for i ≥ n, µi = τ .

We say that the fixpoints f̃∞ of operations f̃ diverge if there is i such that f∞i diverges.
In the remainder of the section we fix a clone C of operations and we only consider

autonomous transitions on C. Where the underlying set C of operations is clear, we simply
call a function belonging to C a operation.

Definition 1.2.6 (Solution of an equation). We say that states x̃ ∈ Sn are solution of the
system of equations

{Xi = fi(X̃)}1≤i≤n
for some operations f̃ ∈ C of same arity n if xi ≈ fi(x̃) for all i ≤ n.

81

Before carrying out the proof of unique solution, we have to relate the transitions of a
fixpoint and the transitions of the finite unfoldings, more precisely turn transitions of finite
unfoldings into transitions of the fixpoints (the converse is not a problem: by definition, if
g ◦ f̃∞ µ−→ h ◦ f̃∞, then either g µ−→ h or h = g ◦ f̃ and µ = τ). This however is complicated
by the very lax conditions on a clone of operations: for instance, consider two functions
f, g ∈ C, g autonomous on C, such that g ◦ f µ−→ g′. This does not imply that there is a
function h ∈ C such that g µ−→ h and g′ = h ◦ f ; indeed, for all x ∈ S, there is hx ∈ C
such that g µ−→ hx and hx(f(x)) = g′(x), but these functions might differ pointwise, and a
function h such that g′ = h◦f might not be in C. Rules 1.2 enforce that no unfolding might
happen after an autonomous operation is reached, so to prevent divergences; this means that
a transition fn µ−→ g might have no equivalent in the LTS of f∞.

To solve this problem and establish a partial correspondence between the transitions of
the fns and of f∞, we only consider integers minimal so that g ◦ fn is autonomous (or so
that it is not autonomous). We thus define

minf̃ (g)
4
= {n | g ◦ fn is not autonomous, or n is minimal so that it is}. (1.3)

We also use a finer definition of the set redω(f), compared to the previous section. At the
end of this section, to define innocuous divergences, we discuss a complementary hypothesis
thanks to which we establish a perfect correspondence (Lemma 1.2.19) – notwithstanding
τ -transitions used to unfold the syntactic solution.

Lemma 1.2.7. Let f̃ , g and h be operations in some set C, and n ∈ minf̃ (g). Then
g ◦ fn µ−→ h implies that g ◦ f̃∞ ⇒ µ−→ h ◦ f̃∞.

Proof. Immediate derivation from Rules 1.2. 2

From there we deduce the proper definition for the reducts of operations.

Definition 1.2.8 (Reducts). 1. The set of p-step reducts of the unfoldings of the k-ary
operations f̃ , written p-red(f̃), is defined inductively by:

- 0-red(f̃)
4
= {πki | i ≤ k}.

- (p+1)-red(f̃)
4
= {g | h◦f̃n µ−→ g for some h ∈ p-red(f̃), n ∈minf̃ (h), and µ ∈ Λ}.

2. The set of reducts of the unfoldings of operations f̃ of arity k, also written redω(f̃), is
defined as

redω(f̃)
4
=

⋃
n∈N

n-red(f̃)

Note that if g ∈ redω(f̃), it has the same arity as any of the fi.
From the definition we immediately get the following proposition, relating reducts of the

finite unfoldings and reducts of the infinite unfoldings:

82

Proposition 1.2.9. Let f̃ ∈ C be operations of arity k. If g ∈ redω(f̃), then there is
µ1, . . . , µn and g1, . . . , gn ∈ redω(f̃), with g1 = πkj for some j ≤ k and gn = g, such that
gi ◦ f̃∞

µi+1
===⇒ gi+1 ◦ f̃∞ for i < n.

Proof. By induction on the predicate g ∈ p-red(f̃) (by definition it holds for some p). If
g ∈ p + 1-red(f̃), then there is h ∈ p-red(f̃) and n ∈ minf̃ (h) such that h ◦ f̃n µ−→ g; by
Lemma 1.2.7, h ◦ f̃∞ µ

=⇒ g. 2

Proposition 1.2.9 allows us to establish that equations that have no divergences are
‘eventually guarded’ or ‘eventually autonomous’ (as defined in Section 1.1.3.1):

Lemma 1.2.10. If the fixpoints f̃∞ of f̃ do not diverge, then for any g ∈ redω(f̃), there is
p such that g ◦ f̃p is autonomous.

Proof. By contradiction: otherwise, for any p we have g ◦ f̃p ◦ f̃∞ τ−→ g ◦ f̃p+1 ◦ f̃∞. Thus
g ◦ f̃∞ diverges, and by Proposition 1.2.9 f̃∞ diverges. 2

We can always choose such a p to be minimal among p’s that make g ◦ f̃p autonomous.
We have, in particular, that for any i, there is p such that fpi is autonomous.

To solve the problems of the operational correspondence between f̃∞ and the finite un-
foldings, we need one last definition.

Definition 1.2.11 (Transitions up to f̃). Let h, f̃ ∈ C and g ∈ redω(f̃). We say there
is a µ-transition up to f̃ from g to h, written g

µ−→f̃ h, if there is n ∈ minf̃ (g) such that

g ◦ f̃n µ−→ h. As usual, we write =⇒f̃ for τ−→
∗
f̃ ,

µ
=⇒f̃ for =⇒f̃

µ−→f̃=⇒f̃ and µ̂
=⇒f̃ for either µ

=⇒f̃ or =⇒f̃

when µ = τ .

Most importantly, if g µ
=⇒f̃ h, then there is n such that g ◦ f̃n µ

=⇒ (by definition of
autonomy). It also holds that if g µ−→f̃ h, g ◦ f̃∞

µ−→ h ◦ f̃∞ (by Lemma 1.2.7). This gives us
a last lemma, to turn transitions of the finite unfoldings into transitions of the fixpoints:

Lemma 1.2.12. Let f̃ ∈ C and g ∈ redω(f̃). If g µ
=⇒f̃ h, then g ◦ f̃∞ µ

=⇒ h ◦ f̃∞ and
h ∈ redω(f̃).

Proof. Proceed by induction on the length of µ
=⇒f̃ , using Lemma 1.2.7. It is immediate that

h ∈ redω(f̃). 2

Lastly, the converse (turning transitions of the fixpoints f̃∞ into transitions of the finite
unfoldings) is very simple.

Lemma 1.2.13. If g ∈ redω(f̃) and g ◦ f̃∞ µ1−→ · · · µn−→ h ◦ f̃∞ for some h, n and (µi)i≤n,
then there is p such that g ◦ f̃p µ̂1−→ · · · µ̂n−→ h.

Proof. We choose p to be the number of times the unfolding rule is applied in the sequence
of transition g ◦ f̃∞ µ1−→ · · · µn−→ h ◦ f̃∞. We then proceed by induction on n. 2

83

We now present results necessary to carry out the proof of unique solution.
The proof is essentially the same as that of Theorem 1.1.7, replacing equations expressions

with operations, from a fixed set of operations C, and replacing instantiation of equation
expression transitions with instantiation of autonomous transitions. A guarded equation
expression becomes an autonomous operator.

There is one difference, however, as the rule of unfolding above uses a τ -transition, simi-
larly to the alternative rule from Remark 1.1.10. The guardedness condition, that translates
here to an autonomy condition, can thus be dropped.

Definition 1.2.14. Operations f̃ ∈ C protect their solutions if, for all solution x̃ of the
equation X̃ = f̃(X̃), the following holds: for all g ∈ redω(f̃), if g(x̃)

µ
=⇒ y for some µ and y,

then there exists h ∈ redω(f̃) such that g µ̂
=⇒f̃ h, and h(x̃) ≈ y.

Proposition 1.2.15. Let C be a clone that respects ≈, and let f̃ ∈ C be operations of arity
n that protect their solutions. Then the equation X̃ = f̃(X̃) at most one solution for ≈.

Proof. Given two solutions x̃, ỹ of the system of equations X̃ = f̃(X̃) we prove that the
relation

R 4
= {(x, y) | x ≈ g(x̃) and y ≈ g(ỹ) for some g ∈ redω(f̃)}

is a bisimulation relation such that x̃ R ỹ.
We consider (x, y) ∈ R, that is, x ≈ g(x̃) and y ≈ g(ỹ), for some g ∈ redω(f̃). Now

consider a transition x µ−→ x′; we deduce:

• g(x̃)
µ̂

=⇒ x′′ ≈ x′ (g respects bisimilarity).

• g ◦ f̃n µ̂
=⇒ h and h(x̃) ≈ x′′ for some n, h ∈ redω(f̃) (f̃ protects their solutions and

Lemma 1.2.12).

• g ◦ f̃n(ỹ)
µ̂

=⇒ h(ỹ) (by definition of autonomy).

• ỹ ≈ f̃n(ỹ) (ỹ is solution of f̃ , f̃ respect ≈).

• y ≈ g(ỹ) ≈ g ◦ f̃n(ỹ) (g respects ≈).

• y µ̂
=⇒ y′ ≈ h(ỹ) (by bisimilarity, from g ◦ f̃n(ỹ)

µ̂
=⇒ h(ỹ)).

The situation can be depicted on the following diagram:

S

µ

��

≈ g(x̃)

µ̂

��

≈ g ◦ f̃n(x̃)

µ̂

��
=

g ◦ f̃n(ỹ)

µ̂

��

≈ g(ỹ) ≈ y

µ̂

��

x′ ≈ x′′ ≈ h(x̃) h(ỹ) ≈ y′

We have h ∈ redω(f̃); thus, y′ ≈ h(ỹ) and x′ ≈ h(x̃) give that (x, y) ∈ R.
We reason symmetrically for y µ−→ y′. 2

84

Theorem 1.2.16 (Unique solution, abstract formulation). Let f̃ ∈ C be operations of arity
n such that operations in C respect ≈, and the fixpoints f̃∞ do not diverge. Then X̃ = f̃(X̃)
has at most one solution.

Proof. We show that f̃ protects its solutions.
To prove that, we need to consider a transition g(x̃)

µ
=⇒ y, for some g ∈ redω(f̃) and

some solutions x̃ of X̃ = f̃(X̃).
We build a sequence of operations fn, and an increasing sequence of transitions g µ?

=⇒f̃ fn

(where µ?
=⇒f̃

def
==⇒f̃ ∪

µ̂
=⇒f̃) such that: either this construction stops, yielding a transition

g
µ

=⇒f̃ fn, or the construction is infinite, therefore giving a divergence of f̃∞ (by repeated
application of Lemma 1.2.12).

We build this sequence so that it additionally satisfies:

• Either we have g µ̂
=⇒f̃ fn and fn(x̃)⇒≈ y, or gfn =⇒f̃ fn and fn(x̃)

µ̂
=⇒f̃≈ y.

• The sequence is strictly increasing: the sequence of transitions g µ?
=⇒f̃ fn is a strict

prefix of the sequence of transitions g µ?
=⇒f̃ fn+1.

We initialise with the empty sequence from g.

Suppose therefore that at step n, we have for example g µ
=⇒f̃ fn and fn(x̃)⇒ yn, for some

yn ≈ y.

• If fn(x̃) ⇒ yn is the empty sequence, we stop. We have in this case g ◦ f̃n µ
=⇒ fn (see

Definition 1.2.11) and y ≈ fn(x̃).

• Otherwise we unfold further equation f̃ : let p be minimal such that fn ◦ f̃p is au-
tonomous (there exists such a p by Lemma 1.2.10); then p ∈minf̃ (fn). We have g µ

=⇒f̃

fn, and thus, by definition of autonomy and using Definition 1.2.11, g ◦ f̃p+k µ
=⇒ fn ◦ f̃p

for some k. By bisimilarity and respect of bisimilarity, we have fn ◦ f̃p(x̃)⇒ yn+1 ≈ y

for some yn+1. If fn ◦ f̃p(x̃) ⇒ yn+1 is the empty sequence, we stop as previously.
Otherwise, we take fn ◦ f̃p

µ?−→ fn+1 to be the first transition in fn ◦ f̃p(x̃)⇒ yn+1 (we
remark that as fn ◦ f̃p is autonomous, this is indeed an autonomous transition).

Suppose now that the construction given above never stops. We know that fn ◦ f̃p
µ?−→

fn+1 for some p ∈ minf̃ (fn), therefore fn
µ?−→f̃ fn+1 and thus fn ◦ f̃∞

µ?
=⇒ fn+1 ◦ f̃∞ (by

Lemma 1.2.12). This gives an infinite sequence of transitions starting from g ◦ f̃∞. In this
sequence, every step involves at least one transition, and moreover, there is at most one
visible action (µ) occurring in this infinite sequence. Therefore g ◦ f̃∞ is divergent, which
contradicts the hypothesis of the theorem. Hence, the construction does stop, and this
concludes the proof. 2

85

The equation in the statement of the theorem might have no solution at all. For example,
consider the LTS (N, {a},→) where for each n we have n+ 1

a−→ n. The operation of arity 1
f with f(n) = n+ 1 is an operation of the set {fn}n∈N (with f 0 = id, the identity function).
This set can be made into a clone: we consider its closure by composition with projections.
The function f is autonomous because, for all n, the only transition of f(n) is f(n)

a−→ n
(this transition is autonomous because f a−→ Id). A fixpoint of f would be an element x
with x a−→ x, and there is no such x in the LTS.

Remark 1.2.17 (Coq Implementation [Dur17]). A theorem similar to Theorem 1.2.16, for
an abstract formulation from [DHS19], is formalized in the proof assistant Coq [Tea], so to
illustrate the flexibility of this framework, and its possible uses for mechanized proofs. There
are however some differences with the version presented in this section:

1. To simplify the proof, only unary operations, (functions S → S) are considered.

2. The unfolding rules of f∞ are different, similar in spirit the constant rule in CCS (cf.
Remark 1.1.10). However, in exchange, an additional hypothesis is requested. These
differences are discussed in Section 1.3.1, and detailed in Appendix C.3.

This abstract approach, relying on functions, is unusual for mechanized proofs: for instance,
we have to assume extensional equality of functions, which is not always harmless in this
context.
However, the final proof is surprisingly simple and clean, possibly indicating that the chosen
level of abstraction is appropriate for formal proofs; this abstract framework might prove
well suited to formally instantiate the unique-solution proof technique to various languages
(rather than, for instance, rule formats).

Theorem 1.2.16 can be refined along the lines of Theorem 1.1.9. For this, we have to
relate the divergences of any f̃ni (for n ≥ 1) to divergences of f̃∞, in order to distinguish
between innocuous and non-innocuous divergences. To do so, we enforce a new hypothesis,
corresponding in some sense to the ability to syntactically decompose autonomous operations:
the idea is that if f is autonomous, it must contain some combination of operators of the
language that enforce autonomy; these operators must still appear in a context f ◦g, obtained
by combining f with some additional syntax; thus, if f ◦ g µ−→ h, there must be some f ′ such
that f µ−→ f ′ (this is always the case) and such that, additionally, f ′ ◦ g = h. We only have
to enforce this property on reducts of an operation.

Definition 1.2.18 (Decomposability.). Let f̃ ∈ C. We say that f̃ are decomposable if
whenever g ◦ f̃n µ−→ h for some h ∈ C and g ∈ redω(f̃) autonomous, then there is g′ ∈ C

such that g µ−→ g′ and h = g′ ◦ f̃n.

With this hypothesis we recover an equivalence between transitions µ
=⇒f̃ and µ

=⇒.
The following lemma shows that fixpoints of a decomposable operation have the same

weak transitions µ
=⇒ as their counterpart finite unfoldings. To build a transition g ◦ f̃∞ µ

=⇒
g′ ◦ f̃∞ from a transition of an unfolding g ◦ f̃n µ−→ h, we need to reason up to (finite)

86

unfoldings of f̃ : thus we set =˜̃
f
to be the symmetric reflexive transitive closure of the

relation on operations of arity n (assuming f̃ are of arity n), that relates g and g′ whenever
g = g′ ◦ f̃ .
Lemma 1.2.19. If f̃ ∈ C are decomposable, then whenever g ◦ f̃n µ

=⇒ h, there is h′ such
that h =f̃ h

′, and g ◦ f̃∞ µ
=⇒ h′ ◦ f̃∞.

Proof. By induction on the length of µ
=⇒. For the base case, we have to show that if g◦ f̃n µ−→

h, then g ◦ f̃∞ µ
=⇒ h′ ◦ f̃∞ for h′ =˜̃

f
h. If n ∈minf̃ (g), then g ◦ f̃∞ ⇒ µ−→ h ◦ f̃∞. Otherwise,

take p minimal so that g ◦ f̃p is autonomous (p > n). We know that g ◦ f̃p ◦ f̃n−p µ−→ h; by
decomposability, there is h′ =˜̃

f
h such that g◦f̃p µ−→ h′. Thus, g◦f̃∞ ⇒ g◦f̃p◦f̃∞ µ−→ h′◦f̃∞.

2

Lemma 1.2.20. Consider decomposable operations f̃ in C and a divergence of fni

fni
µ1−→ h1

µ2−→ . . .
µk−→ hk

τ−→ hk+1
τ−→ . . .

This yields a divergence of f∞i : f∞i
µ1

=⇒ g1 ◦ f̃∞
µ2

=⇒ . . .
µk=⇒ gk ◦ f̃∞

τ
=⇒ gk+1 ◦ f̃∞

τ
=⇒ . . .

such that for all j ≥ 1, gj ∈ redω(f̃) and gj =f̃ hj.

Given a divergence ∆ of fni , we write ∆∞ to indicate the divergence of f∞i obtained from
∆ as in Lemma 1.2.20. We call a divergence of f̃∞ innocuous when it can be described in
this way, that is, as a divergence ∆∞ of f∞i obtained from a divergence ∆ of fni , for some n
and some i.

Theorem 1.2.21 (Unique solution with innocuous divergences, abstract formulation). Let
f̃ ∈ C be operations of arity n such that operations in C respect ≈. If all divergences of f̃∞
are innocuous, then X̃ = f̃(X̃) has at most one solution.

Proof. Just as in CCS, where the proof of Theorem 1.1.7 has to be modified for Theo-
rem 1.1.9, here the proof of Theorem 1.2.16 is to be modified. The modification is essentially
the same as in CCS, again substituting equation expressions for operations. 2

1.2.2 Reasoning with other behavioural equivalences

We can adapt the results of the previous section about bisimilarity to other settings, includ-
ing both preorders and non-coinductive relations. As an example, we consider trace-based
relations.

The definitions for trace-based behavioural relations are given in Section 0.2.3.
The definitions from Section 1.3.1 are the same as for ≈; however we now consider sets

of ⊆tr-operators, i.e., we are interested in operations that respect ⊆tr. Indeed the preorder
⊆tr is used in the proof of unique solution for ≈tr, hence operations must respect ⊆tr rather
than ≈tr.

The notion of trace is extended to operations like we do for weak transitions: we
write f

s
=⇒ if there is a sequence of autonomous transitions f µ1

=⇒ f1
µ2

=⇒ · · · µn
==⇒ fn

(s = µ1, . . . , µn), and likewise for infinite traces.

87

Lemma 1.2.22. Given operations g, f̃ and a (finite) trace s:

1. g ◦ f̃∞ s
=⇒ implies there is n such that g ◦ f̃n s

=⇒.

2. g ◦ f̃n s
=⇒f̃ implies g ◦ f̃∞ s

=⇒.

Proof. 1. Immediate from Lemma 1.2.13.

2. We proceed by induction over the length of s, using Lemma 1.2.12.
2

All theorems obtained for ≈ can be adapted to ≈tr, with similar proofs. As an exam-
ple, Theorem 1.2.16 becomes (it is also possible to adapt Theorem 1.2.21, with the same
hypotheses – see Appendix C.3.2 for such a proof, in a variant of this abstract setting):

Theorem 1.2.23. Let f̃ ∈ C be operations of arity n such that operations in C respect ≈tr.
If the fixpoints f̃∞ do not diverge, then the equation X̃ = f̃(X̃) has at most one solution for
≈tr.

Proof. For simplicity, we consider the proof only in the case of a single equation X = f(X)
(extension to systems of equations is as in proof of Theorem 1.2.16).

We proceed by showing that x ⊆tr f(x) implies x ⊆tr f∞, and then that f(x) ⊆tr x
implies f∞ ⊆tr x. This indeed gives that x ≈tr f(x) implies x ≈tr f∞; hence the equation
has at most one solution (f∞ does not belong to the LTS, hence it is not a solution).

1. f(x) ⊆tr x implies f∞ ⊆tr x. For this part, the absence of divergence hypothesis is not
needed.

Let s be a trace, and assume f∞ s
=⇒. By Lemma 1.2.22, there is n such that fn s

=⇒.
Hence, fn(x)

s
=⇒. Since f(x) ⊆tr x and f respects ⊆tr, we have that fn(x) ⊆tr

fn−1(x) ⊆tr . . . ⊆tr x. Hence, x
s

=⇒, and f∞ ⊆tr x.

2. x ⊆tr f(x) implies x ⊆tr f∞. This part of the proof is very similar to the proofs of
Theorems 1.1.9 and 1.2.21.

Assume x ⊆tr f(x), and x s
=⇒. We want to show that id s

=⇒f̃ , then apply Lemma 1.2.22;
this would show f∞

s
=⇒. To that end, we build a strictly increasing sequence of (au-

tonomous) transitions id sn=⇒f̃ gn, such that gn(x)
s′n

==⇒ and such that s = sns
′
n for all

n (sn and s′n are traces whose concatenation is s). Strictly increasing means that the
transition id

sn=⇒f̃ gn is a strict prefix of the transition id
sn+1
==⇒f̃ gn+1 This construction

will have to stop, otherwise we build a divergence.

Construction of the sequence. We initialise with the empty trace from id. Indeed,
we have id(x) =⇒ id(x)

s
=⇒, and s is indeed the concatenation of itself with the empty

trace.

Then, at step n, suppose we have, for instance, id sn=⇒f̃ gn, and gn(x)
s′n=⇒.

88

• If s′n is the empty trace, we stop. We have in this case id
s

=⇒f̃ , which concludes.

• Otherwise, choose k minimal such that gn◦fk is autonomous (exists by Lemma 1.2.10).
The operations respect ⊆tr, and by hypothesis x ⊆tr f(x), therefore gn(x) ⊆tr
gn ◦ fk(x). From there, gn ◦ fk(x)

s′n=⇒.

s′n is not the empty sequence, thus
s′n=⇒ is not empty either. gn◦fk is autonomous;

we take gn+1 such that gn ◦ fk
µ−→ gn+1 is the first transition of

s′n=⇒. If µ 6= τ ,
sn+1 = snµ and s′n+1 is s′n with the first action removed, otherwise sn+1 = sn and
s′n+1 = s′n.

Then, we indeed have id
sn+1
==⇒f̃ gn+1 and gn+1(x)

s′n+1
===⇒ (by construction) wehere

s = sn+1s
′
n+1.

Suppose now that the construction given above never stops. To make the argument
clearer, we reason up to =f (we identify all operations that are =f). We know that
gn

µn−→f̃ gn+1 for some µn, therefore, by applying Lemma 1.2.12 as many times as needed
(just as in Lemma 1.2.22), we get that gn ◦ f∞

µn
==⇒ gn+1 ◦ f∞.

This gives an infinite sequence of transitions starting from f∞: f∞ µ0
=⇒ g1◦f∞

µ1
=⇒

We observe that in the latter sequence, every step involves at least one transition.
Moreover, the sequence s′′1s′′2 . . . , when removing all τs, is a prefix of s. Therefore there
is a finite number of visible actions occurring in this infinite sequence. Therefore f∞
is divergent.

2

In contrast, the theorems fail for infinitary trace equivalence, ≈∞tr (whereby two processes
are equated if they have the same traces, including the infinite ones), for the same reason why
the ‘unique solution of contraction’ technique fails in this case [San15]. As a counterexample,
we consider equation X = a+a.X, whose syntactic solution has no divergences. The process
P
4
=
∑

n>0 a
n is a solution, yet it is not ≈∞tr -equivalent to the syntactic solution of the

equation, because the syntactic solution has an infinite trace involving a transitions. This
phenomenon is due to the presence of infinitary observables.

1.2.3 Preorders

We show how the theory for equivalences can be transported onto preorders. This means
moving to systems of pre-equations, {Xi ≤ Ei}i∈I . With preorders, our theorems have a
different shape: we do not use pre-equations to reason about unique solution – we expect
interesting pre-equations to have many solutions, some of which may be incomparable with
each other. We rather derive theorems to prove that, in a given preorder, any solution of a
pre-equation is below its syntactic solution.

In the LTS we consider, an equation does not always have a solution. We thus extend
the original LTS with the transitions corresponding to the autonomous transitions of the
syntactic solution f∞.

89

We write ⊆tr for trace inclusion, ⊆tr∞ for infinitary trace inclusion, and ≤s for weak
simulation. These preorders are standard from the literature [vG90].

In the abstract setting, the body of the pre-equations are functions. Then the theorems
give us conditions under which, given a pre-equation X ≤ f(X) and a behavioural preorder
�, a solution r, i.e., a state for which r � f(r) holds, is below the syntactic solution f∞.
We present the counterpart of Theorem 1.2.21; other theorems are transported in a similar
manner, both the statements and the proofs.

Given a preorder ≤, we say that x̃ is a pre-fixed point for ≤ of operations f̃ if f̃(x̃) ≤ x̃;
similarly, x̃ is a post-fixed point for ≤ if x̃ ≤ f̃(x̃).

Theorem 1.2.24. Choose a preorder ≤ ∈ {⊆tr,⊆tr∞ ,≤s}. Let f̃ ∈ C be operations of arity
n, such that C respect ≤. If the fixpoints f̃∞ do not diverge, whenever x̃ ≤ f̃(x̃) we also
have x̃ ≤ f̃∞, for any states x̃.

Proof. 1. For ⊆tr, the proof is given as the item 2 of the proof of Theorem 1.2.23.

2. For ⊆tr∞ , the proof is very similar to the previous proof: simply consider infinite traces,
and rather that disjunct over whether or not the construction stops (the construction
cannot stop), disjunct over whether the full trace is captured, or only τ actions occur
from a moment in the construction.

3. For ≤s The proof is strictly included in the proofs of Theorems 1.1.9 or 1.2.21.
2

Theorem 1.2.24 intuitively says that the syntactic solution of a pre-equation is maximal
among all solutions. Note that, in contrast with equations, Theorem 1.2.24 and the theory
of pre-equations also work for infinitary trace inclusion.

The opposite direction for pre-equations, namely {Xi ≥ Ei}i∈I is less interesting; it means
that the syntactic solution is minimal among the solutions. This property is usually easy
to obtain for a behavioural preorder, and we do not need hypotheses such as autonomy,
well-behavedness, or non divergence, as stated in the following proposition:

Proposition 1.2.25. Let f̃ ∈ C be operations in a clone C, ≤∈ {⊆tr,≤s}, and x̃ such that
f̃(x̃) ≤ x̃ and C respects ≤. Then, f̃∞ ≤ x̃.

Proof. 1. For ⊆tr, the proof is given as item 1 of the proof of Theorem 1.2.23.

2. For ≤s, the proof is very similar to the above proof for ⊆tr.
2

However, Proposition 1.2.25 may fail for preorders with infinitary observables, such as
infinitary trace inclusion. This is why the theory of equations fails for infinitary trace equiva-
lence. Indeed, if P is a solution for the equation E ⊆tr∞ X (whether or not E is divergence-
free), then KE ⊆tr∞ P does not necessarily hold. The equation X = a + a.X, which is
discussed after Theorem 1.2.23, provides a counter-example to illustrate this observation.

90

Remark 1.2.26. Suppose that x and y are such that x ≤ f(x) and y ≤ x. Then we
do not necessarily have y ≤ f(y). Take for instance, in CCS, P = a. b, Q = a | b and
E = a.X + b.X. Then Q ≤s E[Q], and P ≤s Q, however P 6≤s E[P].

By combining Theorem 1.2.24 and Proposition 1.2.25, we obtain a symmetrical version
of the unique-solution theorem. Its statement is arguably more useful to derive a preorder
relation, essentially because the only requirement involving the syntactic solution of E is
about divergences.

Theorem 1.2.27. Choose a preorder ≤ ∈ {⊆tr,⊆tr∞ ,≤s}. Let f̃ ∈ C be operations of arity
n, such that C respect ≤. If the fixpoints f̃∞ do not diverge, whenever x̃ ≤ f̃(x̃) and f̃(ỹ) ≤ ỹ
we also have x̃ ≤ ỹ, for any states x̃, ỹ.

Proof. We apply Theorem 1.2.24 to x̃ and Proposition 1.2.25 to ỹ, which gives x̃ ≤ f̃∞ ≤ ỹ.
2

1.3 Rule formats
A way to instantiate the results in Sections 1.3.1 and 1.2.2 is to consider rule formats [AFV01,
MRG07]. These provide a specification of the expected shape of the SOS rules used to
describe the constructs of a language. To fit a rule format into the abstract formulation of
the theory from Section 1.3.1, we view the constructs of a language as functions on the states
of the LTS (the terms or processes of the language).

An quick overview of term algebras, TSS and rule formats are given in Section 0.4.3.
For a complete survey of rule formats and for the relevant definitions, we refer the reader
to [AFV01, MRG07, BIM88].

We first discuss some standard formats, such as GSOS [BIM88, vG05, FvG16], or the
tyft/tyxt [GV92] formats. We also discuss their relationship with the notions of guardedness,
and how look-aheads from the tyft/tyxt formats fit in our theory.

The relationship between the abstract setting from the previous section and syntactic
methods to specify recursive behaviour (e.g., recursive constants in CCS) is studied by the
means of the cool formats in Section 1.3 afterwards.

1.3.1 Autonomy and guardedness

In this section, we present an alternative formulation of this abstract framework, closer
to the original formulation in [DHS17, DHS19]. Formal definitions that are only slightly
different from [DHS17] are not given again here, but the whole development is accessible in
Appendix C.3. While the derived technique is strictly weaker, it is enlightening about the
role played by guardedness and the treatment of look-aheads.

In this formulation, unfolding g ◦ f̃∞ to (g ◦ f̃) ◦ f̃∞ does not produce a τ -transition, in
the same way that in CCS, unfolding a constant K does not produce a τ .

Autonomous transitions for terms g ◦ f̃∞ are thus defined using the following rules:

91

g
µ−→ g′

g ◦ f̃∞ µ−→ g′ ◦ f̃∞
g autonomous

(g ◦ f̃) ◦ f̃∞ µ−→ F

g ◦ (f̃∞)
µ−→ F

g not autonomous

We disallow unnecessary unfoldings; these would duplicate transitions (the transitions of
g◦ f̃ duplicate those of g when g is autonomous). This method ensures that there is a perfect
match between transitions of f̃∞ and of the unfoldings fn of f (otherwise, this would only
hold for weak transitions).

For a transition to be performed, an autonomous operation must be reached through
successive unfoldings of f̃ . Otherwise, the term is stuck. For instance, the CCS equation
expression E = X | a would have no transition, whereas with the rules in the previous
section, we would have E∞ τ−→ a−→ . . .

Consider the equation X = X. It now is divergence-free. This means we have to consider
operations that are eventually autonomous, as in CCS, whereas in the previous framework,
such an hypothesis is not needed: operations that are not eventually autonomous always
diverge. This is similar to the variant of CCS where constants perform a transition K τ−→ P

(where K 4
= P), capturing the guardedness hypothesis within the non-divergence one.

This guardedness hypothesis is not, however, sufficient. We must also demand that
operations respect autonomy. Take, for instance, a single unary operation f . Eventually
guarded means that there is n such that fn is autonomous. However, given an operation
g, this does not mean that there is m such that g ◦ fm is autonomous. Hence, we demand
that if f is autonomous, then so is g ◦ f (for any g in the clone). The symmetric hypothesis,
i.e., that g ◦ f is autonomous whenever g is, always hold: indeed, transitions of f(x) do not
depend on x, hence transitions of f(g(x)) do not depend on either x or g.

We give a concrete example, illustrating the need for this hypothesis.

Example 1.3.1. Consider a language with three constructors: first, a prefix constructor,
like the prefix of CCS, and with the same rule. We assume that we can use the prefix
constructor with at least two distinct labels, a and b. Second, a constant 0, that has no rule
(as in CCS). Third, a constructor forward with the following rule:

x
µ′−→ y y

µ−→ z

forward(x)
µ−→ z

Consider the equation
X = a. forward(X) (1.4)

It is autonomous or (strongly) guarded, and has no divergence: write f : x 7→ a. forward(x),
then f∞ a−→ forward(f∞), which has no transitions (intuitively, forward(a. forward(a. . . .))
has no transitions, because the forward construct always skip the visible input, and a possible
transition is never reached). However, it does not enjoy unique solution for ≈: both a.0 and
a. b.0 are solution.

A variant of this example is discussed at the end of this section (Example 1.3.2).

92

In Example 1.3.1, the construct forward breaks autonomy: assuming f is autonomous,
forward ◦ f might not be autonomous.

The rule defining this construct uses look-aheads. A look-ahead allows one to write rules
that ‘look into the future’ (a transition is allowed if certain sequences of actions are possible);
this breaks autonomy. Look-aheads are sometimes forbidden by rule formats, such as GSOS;
however look-aheads are possible in the tyft/tyxt formats [GV92], for instance. And indeed,
the small language defined in Example 1.3.1 fits the tyft format.

This means the theory presented here may not be applied to these formats, nor to any
other format that allows look-aheads; on the other hand, Theorem 1.2.21 can be applied to
languages defined by such formats. This is explained by the fact that the non-divergence
hypothesis in Theorem 1.2.21 is more discriminating, as there are more divergences, created
by unfolding infinitely non-autonomous operations. Theorem 1.2.21 thus captures the fact
that equation 1.4 does not have a unique solution: its syntactic solution diverges.

On the other hand, the equation

X = a. a. forward(X) (1.5)

does have a unique solution; and while this can be shown using Theorem 1.2.21, applying
the alternative theory is not possible: operations from the clone must respect autonomy
(or, at the very least, the reducts of the operations defining the equations must respect
autonomy). However, here, the operation x 7→ forward(x) does not.

The idea behind the rule

g ◦ (f̃∞)
τ−→ (g ◦ f̃) ◦ f̃∞

g not autonomous (1.2)

is to add τ -transitions, as many as needed to capture all equations that do not have a unique
solution. In CCS with the τ -unfolding rule, this rule is admissible. Indeed, any construct
op that is not autonomous (for instance, parallel composition or restriction) verifies that if
P

τ−→ P ′, then op(P)
τ−→ op(P ′). Such a construct can then be combined with the unfolding

rule

K
τ−→ P

K
4
= P

If a language were to be enriched with similar rule, any non-autonomous construct would
need to verify a similar property. In other words, the rule

x
τ−→ y

op(x)
τ−→ op(y)

Would have to be admissible for any non-autonomous construct op (or similarly for any
context) . This is the spirit of the formats presented in Section 1.3.2, similar also to the cool
formats for congruence for weak bisimilarity [vG05].

A possible objection to Example 1.3.1 is precisely that it does not follow this discipline.
Indeed, the forward construct allows to ’count’ the number of τ -transitions of a state; this
is not in the spirit of weak equivalences. We thus present a variant of Example 1.3.1, more
along the lines of formats for weak equivalences. It still fits within the tyft format.

93

Example 1.3.2. We consider a language similar to that of Example 1.3.1; however, there is
now a construct forwarda for each (visible) label a. We still assume there are at least two
distinct visible labels a and b. We now consider the following rules for forwarda (for each
label a):

x
a−→ y y

µ−→ z

forwarda(x)
µ−→ z

x
τ−→ y

forwarda(x)
τ−→ forwarda(y)

As the forward constructs are not autonomous, we ensure that they allow τ -transitions to
occur.

Again, the equation X = a. forwarda(X) is autonomous and has no divergences, but
does not enjoy unique solution for ≈, for similar reasons.

Remark 1.3.3. The tyft/tyxt formats, and, more generally, languages with look-aheads,
are an example of languages where up to context is sometimes sound, but never compatible,
as explained in Section 0.4.2.3.

1.3.1.1 GSOS format

We now discuss one of the most common formats, GSOS [BIM88, vG05, FvG16]. This
format guarantees that the constructs of the language preserve autonomy. This allows to
show that the clone of contexts in a GSOS language constitute a set of operations that
respect autonomy (when seen as functions from terms to terms).

We now use x, y for state variables, and t, u for terms that are part of the considered
GSOS language (i.e., for elements of the set of states). We use c, d for contexts, seen as
functions from the set of states to itself. We write op for a construct of the language (a
function symbol).

We recall the format of GSOS rules below, slightly modified in order to use contexts in
place of terms:

{xi
µi,j−−→ yi,j | i ∈ I, 1 ≤ j ≤ mi} ∪ {xj 6

µ′j,k−−→ | j ∈ J, 1 ≤ k ≤ nj}
op(x̃)

µ−→ c(x̃, ỹ)

I, J are fixed subsets of [1, n], where n is the length of x̃. For i ∈ I (resp. j ∈ J), mi (resp.
nj) is a fixed integer. ỹ is the list consisting of all yi,j for i ∈ I and 1 ≤ j ≤ mj, as well as
all yj,k for j ∈ J and 1 ≤ k ≤ nj. c is a context belonging to the language.

Lemma 1.3.4. The clone of contexts of a language defined within the GSOS format is such
that composition preserves autonomy (on this set).

Proof. Let L be such a language. We reason by induction over the contexts C (which are
defined inductively using the constructs of L).

• The empty context (i.e., the ‘hole’, corresponding to the identity function id) preserves
autonomy: if c ∈ C is autonomous, then so is id ◦ c = c.

94

• Consider a n-ary construct of the language (a function symbol), op, and a context
c = op(c1, . . . , cn), where the ci’s are unary contexts.

We have to show that so is c ◦ c′, for c′ autonomous. Consider for this a transition
c ◦ c′(t) µ−→ u (t, u ∈ L), we prove that this transition is autonomous. The last rule of
the derivation tree of this transition is an instance of a GSOS rule as seen above:

{xi
µi,j−−→ yi,j | i ∈ I, 1 ≤ j ≤ mi} ∪ {xj 6

µ′j,k−−→ | j ∈ J, 1 ≤ k ≤ nj}
op(x̃)

µ−→ c0(x̃, ỹ)

(I, J and the mis and njs being fixed, as well as c0).

By definition c◦c′(t) = op(c1◦c′(t), . . . , cn◦c′(t)). Therefore the xi must be instantiated
by the terms ci ◦ c′(t). Hence there are ui,j ∈ L such that ci ◦ c′(t)

µi,j−−→ ui,j for
i ∈ I, 1 ≤ j ≤ mi. As well, cj ◦ c′(t) 6

µj,k−−→ for j ∈ J, 1 ≤ k ≤ nj. Lastly, writing
u = c0(c̃ ◦ c′(t), ũ) and c ◦ c′(t) µ−→ c0(c̃ ◦ c′(t), ũ).

By induction hypothesis, each of the ci’s preserves autonomy under composition on
O, hence ci ◦ c′ is autonomous for all i. Hence there are autonomous transitions
ci ◦ c′

µi,j−−→ di,j, where di,j are contexts such that ui,j = di,j(t).

Furthermore, for any t′ ∈ L, cj ◦ c′(t′) 6
µj,k−−→: if there was such a t′, by autonomy of

cj ◦ c′, we would have cj ◦ c′(t)
µj,k−−→.

Therefore, for any t′ ∈ L, the premises of the above GSOS rule hold; hence we can
deduce c ◦ c′(t′) µ−→ c0(c̃ ◦ c′(t′), d̃(t)). Thus there is an autonomous transition c ◦ c′ µ−→
c0(c̃◦c′, d̃), and u = (c0(c̃◦c′, d̃))(t). The transition c◦c′(t) µ−→ u is indeed autonomous.
This concludes the proof.

2

1.3.2 Loosely cool GSOS formats

In this section we present a new format, a generalization of the GSOS cool formats discussed
in Section 0.4.3.2, tailored specifically for our unique solution technique. It illustrates how
to relate the arbitrary rules for unfolding in Section 1.2 with concrete, syntactic methods for
defining recursive processes. Non-diverging equations written in a language defined within
this format enjoy the unique-solution property.

Cool formats originate from [Blo95, UP02], but are here presented in a fashion similar
to [vG05, vG11].

We say that variable xi is at position i in the term op(x1, . . . , xn) (if i ≤ n). Patience rules
are defined similarly to [vG05, vG11]:

95

Definition 1.3.5 (Patience rule). A rule of the shape

xi
τ−→ y

op(x̃)
τ−→ op(x̃){y/xi}

is called a patience rule for op at position i.

To define the WB cool GSOS formats (and other variants), Van Glabeek uses the notion
of active and receiving variables. A variable is active if it is both in the source of a rule and
the source of a premise of the same rule, while it is receiving when it is both the target of a
rule and on the right-hand side of a premise of that same rule. We want to allow for more
general formats, and we do not intend that our formats enforce the congruence property, we
thus are only interested in active variables – more precisely, in variables that appear both
in the source of a rule and in the left-hand side of a premise. We say that an operator
with such a variable depends on this variable. Indeed, receiving variables have no impact
on guardedness (i.e., to know whether a transition is possible, we only need to look at the
source of a rule, not at its target).

Definition 1.3.6 (Dependence). Consider a TSS with signature Σ, and some operator op ∈
Σ of arity n. We say that op depends on position i ≤ n if there is a rule with source op(x̃),
such that xi appears in some premise of this rule.

This notion of dependence captures a local version of autonomy: if op does not depend
on any variable, then it is autonomous. A more general statement is shown in Lemma 1.3.12.

As in [vG05], we impose that any operator that depends on a variable or position
(in [vG05], that has an active or receiving variable) has a patience rule in that same po-
sition. This allows for unfolding transitions K τ−→ P (when K

4
= P) to percolate through

non-guarded operators.

Definition 1.3.7 (Loosely cool format). A language is loosely cool if whenever an operator
op depends on position k, then is a patience rule for op at that same position k.

The WB cool GSOS format is a specialization of the loosely cool GSOS format.
We now fix a language L, defined within a loosely cool GSOS format. To extend it with

recursive terms, we apply a method similar to the one used in CCS. We however use the
alternate rule for unfoldings (with explicit τ -transitions), as in previous sections.

Definition 1.3.8 (Constants). We extend L with an infinite set of constant names, K,K ′ . . .
Each constant is given a definition K

def
= P , where P is a process (constant names might

therefore appear in P). For any constant name K, the following rule is added to the TSS of
the language:

K
τ−→ P

K
4
= P

96

Remark 1.3.9 (Infinite unfoldings vs. fixpoints.). We will use the notion of fixpoints from
Section 1.2 (that relies on the semantic notion of autonomy), written E∞i for a system of
equations Ẽ; this is different from the notions of syntactic solutions, defined as the recursive
constants KẼ,i, from Section 1.1.1. The point of this section is precisely to demonstrate that
these two object correspond (for weak bisimilarity, and have the same divergences), assuming
adequate hypothesis on the language.

When considering a context, seen as a state operation, with multiple arguments (multiple
types of holes), we have to discriminate between arguments at which unfoldings can occur,
and arguments at which they cannot. We thus introduce a notion of partial autonomy,
representing the autonomy relative to a specific argument or variable of a state operation.
To that end, we first define partial composition of functions.

Definition 1.3.10 (Partial composition). Let f and g be two operations of arity n. Partial
composition of f and g along i, written g ◦i f , is defined as the operation of arity n, g ◦ f̃ ,
where fi

4
= f and fj

4
= πnj for all j 6= i.

Constant operations. Given a set S, a constant operation S → S is an operation of
arity 1 that maps any value to some fixed value x, y 7→ x. We write x for the constant
operation y 7→ x when it is clear from the context that x is a constant operation. Thus, we
write f ◦(x1, . . . , xi−1, id, xi+1, . . .) or f(x1, . . . , xi−1, id, xi+1, . . .) for the following operation
S → S:

x 7→ f(x1, . . . , xi−1, x, xi+1, . . .)

Definition 1.3.11 (Partial autonomy). Let f be a state operation in a clone on S con-
taining all constant operations S → S. We say it is i-autonomous if, forall x̃ ∈ Sn−1,
f(x1, . . . , xi−1, id, xi+1, . . .) : S → S is autonomous.

We can now state the property of operators that do not depend on a specific variable or
position: these are autonomous relative to that position.

Lemma 1.3.12. If a constructor op of arity n does not depend on position i, then the
operation x̃ 7→ op(x̃) is i-autonomous.

We now state general properties of partial composition.

Lemma 1.3.13. Let C be a clone on S containing all constants operations of S. Let g, f̃ ,
be state operations of arity n in C. The following hold

1. If i 6= j, then g ◦i fi ◦j fj = g ◦j fj ◦i fi

2. g ◦1 f1 ◦2 f2 · · · = g ◦ f̃

3. If g is autonomous, then it is i-autonomous for all i

4. If g ◦i fi is autonomous, then g ◦ f̃ is autonomous; likewise, if g ◦i1 fi1 ◦i2 fi2 . . . is
autonomous for some pairwise distinct i1, i2, . . . , then g ◦ f̃ is autonomous.

97

Proof. 1 and 2 are straightforward.
3. Assume g is autonomous. Fix i, and consider a transition g(x̃)

µ−→ z. Because g is
autonomous, there is h such that g µ−→ h and z = h(x̃). Now given some y, g(x̃{y/xi}])

µ−→
h(x̃{y/xi}), hence the operation g(x̃{πi/xi}) : S → S is autonomous.
4. First, remark that if g is autonomous, then g ◦i f is autonomous: if g is autonomous, then
g ◦ f̃ is autonomous for all f̃ . Now assume h = g ◦i1 fi1 ◦i2 fi2 . . . is autonomous. Write
I for the set of indices i1, i2, . . . , and index as j1, j2, . . . the set of indices not in I. Then
g ◦ f̃ = h ◦j1 fj1 ◦j2 fj2 . . . is autonomous. 2

We can now deduce that partial autonomy of composite functions can be derived from
the partial autonomy of the components.

Lemma 1.3.14. Let op be an operator in L. If for all j, either fj is i-autonomous, or op

does not depend on j, then op ◦ f̃ is i-autonomous.

Proof. Fix some x̃ ∈ Sn−1. We show that op ◦ f̃(x1, . . . xi−1, id, . . . , xn) : S → S is au-
tonomous. Take xi, y ∈ S, and consider a transition op ◦ f̃(x̃)

µ−→ y. This transition is an
instance of a rule

H

op(z̃)
µ−→ t

with a substitution σ such that σ(zk) = fk(x̃) and tσ = y. If op does not depend on j,
zj does not appear in H, hence fj(x̃) does not appear in Hσ. Thus, if xi appears in Hσ,
it is in a premise fj(x̃)

µ−→ y′, for a j such that fj is i-autonomous; thus, there is h such
that fj(x1, . . . I . . . xn)

µ−→ h and h(xi) = y′. We can conclude from the fact that the rule is
independent from xi. 2

We say that a context c is linear if each type of hole is used at most once in the syntax
tree of c; likewise, we say that c is i-linear if the hole [·i] is used at most once. An arbitrary
context c can always be transformed into a linear context c′ of different arity, such that for
all x̃, c(x̃) = c′(x1, . . . x1, x2, . . . x2, . . . xn, . . . xn).

We say that a rule is admissible if it can be derived from the rules of the language. We
now show that to obtain a non-autonomous context, we have to combine non-autonomous
operators, and thus, patience rules are admissible for non-autonomous contexts.

Lemma 1.3.15 (Autonomy and patience). Consider an i-linear context c. If c is not i-
autonomous, then the rule

xi
τ−→ y

c[x̃]
τ−→ c[x̃{y/xi}]

is admissible.

Proof. By induction on the syntax of C.

98

• If c is an empty context [·j]: c is not i-autonomous, thus i = j. Then the rule

xi
τ−→ y

xi
τ−→ y

is trivially admissible.

• Assume c is a non-empty context, and is not i-autonomous. We write c as op(c1, . . . , cn),
where op is the constructor at the root of c. By the contrapositive of Lemma 1.3.14
there must be j such that op does not depend on j and cj is not i-autonomous.

By induction hypothesis, the rule

xi
τ−→ y

cj[x̃]
τ−→ cj[x̃{y/xi}]

is admissible. By definition, there is a patience rule for position j in op:

zk
τ−→ y

op[z̃]
τ−→ op[z̃{y/zk}]

Because c is i-linear, only cj may actually use xi, thus, for k 6= j, ck[x̃] = ck[x̃{y/xi}].
Thus we derive

xi
τ−→ y

cj[x̃]
τ−→ cj[x̃{y/xi}]

op ◦ c̃[x̃]
τ−→ op ◦ c̃[x̃{y/xi}]

This concludes. 2

Lemma 1.3.15 can only be applied to linear contexts; however, as noted
We now derive the main result of this section, that allows, in conjunction with Theo-

rem 1.2.16, to derive the unique solution theorem.

Lemma 1.3.16. Let L be a language defined in a loosely cool GSOS format, extended with
constants, and let X̃ = Ẽ[X̃] be a system of equations of L. If E∞i diverges for some i, then
its syntactic solutions diverge.

Proof. Suppose Ẽ is such that E∞i diverges:

E∞i
µ1−→ c1 ◦ E∞

µ2−→ c2 ◦ E∞ . . .

and there is N such that for all n ≥ N , µn = τ . We take c0 to be the identity. We show
that there is a sequence (c′n)n∈N such that cn =Ẽ c′n, where =Ẽ is the smallest equivalence

99

relation relating c and c′ whenever c′ can be obtained by substituting some of the holes [·i]
in c by Ei. We also show that

K̃Ẽ

µ1
=⇒ c′1[K̃Ẽ]

µ2
=⇒ c′2[K̃Ẽ] . . .

Furthermore, cn is autonomous if and only if c′n is autonomous, and likewise for partial
autonomy relative to any i. We take c′0 to be the identity as well. Now, set some n ∈ N. We
have

cn ◦ E∞
µn+1−−−→ cn+1 ◦ E∞

• If cn is autonomous, then cn
µn+1−−−→ cn+1 and so is c′n; thus, c′n

µn+1−−−→ c′n+1 for c′n+1 =Ẽ

cn+1

• Otherwise, cn is not autonomous, µn+1 = τ , and cn+1 = cn ◦ Ẽ. By Lemma 1.3.15,
and linearising cn, we deduce there is i such that there is a transition cn[K̃Ẽ]

τ
=⇒ d =Ẽ

cn ◦iEi[K̃Ẽ]. If d is autonomous, we take it to be cn+1. Otherwise, there is j such that
d is not j-autonomous; if i is the only such j, then we take c′n+1

4
= d, and cn+1 = cn ◦ Ẽ

is not autonomous; otherwise, d[K̃Ẽ]
τ

=⇒ d′[K̃Ẽ] for d′ =Ẽ cn ◦i Ei ◦j Ej. We perform
this operation inductively, until there is no more such j, hence we take

c′n+1

4
= cn ◦i1 Ei1 ◦i2 . . .

Where the ik are pairwise distinct. c′n+1 is autonomous (resp. j-autonomous) if and
only if cn+1 is.

2

From Theorem 1.2.16 and Lemma 1.3.16, we derive the unique solution theorem.

Corollary 1.3.17 (Unique solution for loosely cool GSOS formats). Let L be a language
defined in a loosely cool GSOS format, for which ≈ is a congruence, and let X̃ = Ẽ[X̃] be
a system of equations in L. If its syntactic solutions do not diverge, then it has a unique
solution.

As the WB cool GSOS format enforces that bisimilarity is a congruence [vG05], we
immediately derive from Corollary 1.3.17 the unique-solution property for the WB cool
GSOS format.

Corollary 1.3.18 (Unique solution for WB cool GSOS). Let L be a language defined in the
WB cool GSOS format, and let X̃ = Ẽ[X̃] be a system of equations in L. If its syntactic
solutions do not diverge, then it has a unique solution.

100

1.4 The unique solution technique in presence of name
passing and higher order

1.4.1 The π-calculus and its subcalculi

1.4.1.1 Syntax of the π-calculus

In the π-calculus, the solutions of equations are parametric over their free names, i.e., they
are functions from names to π-calculus processes. This allows us to work with closed agents,
which makes the treatment of equations easier (in particular w.r.t. name capture). We call
such parametric processes abstractions.

The instantiation of the parameters of an abstraction F is done via the application con-
struct F 〈ã〉. We use P,Q for processes, F for abstractions. Processes and abstractions form
the set of π-agents (or simply agents), ranged over by A. Small letters a, b, . . . , x, y, . . . range
over the infinite set of names. The grammar of the π-calculus is thus:

A := P | F (agents)

P := 0 | a(̃b).P | a〈̃b〉.P | νa P (processes)
| P1 | P2 | !a(̃b).P | F 〈ã〉

F := (ã) P | K (abstractions)

0, restriction and parallel composition are like in CCS. An input-prefixed process a(̃b).P ,
where b̃ has pairwise distinct components, waits for a tuple of names c̃ to be sent along a
and then behaves like P{c̃/̃b}, where {c̃/̃b} is the simultaneous substitution of names b̃ with
names c̃. An output particle a〈̃b〉 emits names b̃ at a. Replication could be avoided in the
syntax since it can be encoded with recursion. For the sake equations using a replication
above a variable, it is simpler to include it in the grammar (its semantics is simple).

We omit the operators of sum and matching, as they are not always considered funda-
mental operators of the π-calculus, and are not useful in the examples we study (particularly
in Chapter 2). We assign parallel composition the lowest precedence among the operators.
We refer to [Mil93] for detailed discussions on the operators of the language.

In prefixes a(̃b) and a〈̃b〉, we call a the subject and b̃ the object. We use α to range over
prefixes. When the tilde is empty, the surrounding parentheses or brackets in prefixes will
be omitted. We often abbreviate α.0 as α, and νaνbP as (νa, b)P . An input prefix a(̃b).P ,
a restriction νb P , and an abstraction (̃b) P are binders for names b̃ and b, respectively, and
give rise in the expected way to the definition of free names (fn) and bound names (bn) of
a term or a prefix, and α-conversion. An agent is name-closed if it does not contain free
names. (Since the number of recursive definitions may be infinite, some care is necessary
in the definition of free names of an agent, using a least fixed-point construction.) As in
the λ-calculus, we identify processes or actions which only differ in the choice of the bound
names. The symbol = stands for “syntactic identity modulo α-conversion”. Sometimes, we

101

use def
= as abbreviation mechanism, to assign a name to an expression to which we want to

refer later.
We use constants, ranged over by K for writing recursive definitions. Each constant has

a defining equation of the form K
4
= (x̃) P , where (x̃) P is name-closed; x̃ are the formal

parameters of the constant (replaced by the actual parameters whenever the constant is
used).

Since the calculus is polyadic, we assume a sorting system [Mil93] to avoid disagreements
in the arities of the tuples of names carried by a given name and in applications of abstrac-
tions. We will not present the sorting system because it is not essential. The reader should
take for granted that all agents described obey a sorting.

A context C of the π-calculus is a π-agent in which some subterms have been replaced by
the hole [·] or, if the context is polyadic, with indexed holes [·]1, . . . , [·]n. Then, C[A] or C[Ã]

is the agent resulting from replacing the holes with the agents A or Ã. Holes in contexts
have a sort too, as they could be in place of an abstraction.

Substitutions are of the form {b̃/̃a}, and are finite assignments of names to names. We
use σ and ρ to range over substitutions. The application of a substitution σ to an expression
H is written Hσ. Substitutions have precedence over the operators of the language; σρ is
the composition of substitutions where σ is performed first, therefore Pσρ is (Pσ)ρ.

The Barendregt convention allows us to assume that the application of a substitution
does not affect bound names of expressions; similarly, when comparing the transitions of two
processes, we assume that the bound names of the actions do not occur free in the processes.
In a statement, we say that a name is fresh to mean that it is different from any other name
which occurs in the statement or in objects of the statement like processes and substitutions.

Application redexes and normalised agents. A process of the form ((x̃)P)〈ã〉 is called
an application redex ; its contracted form is P{ã/x̃}. An agent is normalised if it contains
no application redex.

When reasoning on behaviours it is useful to assume that all expressions are normalised, in
the above sense. Thus in the remainder of this thesis we identify an agent with its normalised
form.

1.4.1.2 Operational semantics

The operational semantics of the π-calculus is standard [SW01]. Transitions of π-calculus
processes are of the form P

µ−→ P ′, where µ is an action. The grammar for actions is given
by

µ := a(̃b) | νd̃ a〈̃b〉 | τ .

• P a(̃b)−−→ P ′ is an input, where b̃ are the names bound by the input prefix which is being
fired,

• P νd̃ a〈̃b〉−−−−→ P ′ is an output, where d̃ ⊆ b̃ are private names extruded in the output, and

102

• P τ−→ P ′ is an internal action.

We abbreviate ν∅ a〈̃b〉 as a〈̃b〉. The occurrences of b̃ in a(̃b) and those of d̃ in νd̃ a〈̃b〉
are bound; accordingly one defines the sets of bound names and free names of an action µ,
respectively written bn(µ) and fn(µ). The set of all the names appearing in µ (both free and
bound) is written n(µ).

Figure 1.4 presents the transition rules for the π-calculus.

a(̃b).P
a(̃b)−−→ P !a(̃b).P

a(̃b)−−→ !a(̃b).P | P a〈̃b〉.P a〈̃b〉−−→ P

P
νd̃ a〈̃b〉−−−−→ P ′

νn P
ν({n}∪d̃) a〈̃b〉−−−−−−−−→ P ′

n ∈ b̃
P

µ−→ P ′

νn P
µ−→ νn P ′

d /∈ n(µ)
P

a(̃b)−−→ P ′ Q
νd̃ a〈b̃′〉−−−−→ Q′

P | Q τ−→ νd̃ (P ′{b̃′/̃b} | Q′)

P
µ−→ P ′

P | Q µ−→ P ′ | Q
bn(µ) ∩ fn(Q) = ∅

F 〈ã〉 µ−→ P ′

K〈ã〉 µ−→ P ′
if K 4

= F

Figure 1.4: Labelled Transition Semantics for the π-calculus

=⇒, µ
=⇒ and µ̂

=⇒ are defined as in CCS. In bisimilarity or other behavioural relations for
the π-calculus we consider, no name instantiation is used in the input clause or elsewhere;
such relations are usually called ground [SW01]. Ground relations are not the standard
behavioural equivalences for the π-calculus, as they are often not congruences. However,
in the subcalculi of the π-calculus we consider (Aπ, Iπ, ALπ), ground bisimilarity is a
congruence and coincides with barbed congruence (congruence breaks in the full π-calculus).
The study of unique solutions of equations is also simpler when restricting to ground relations,
in particular when checking divergences (see the proofs in Chapter 2). In the remainder, we
omit the adjective ‘ground’.

Example 1.4.1 (Ground divergence). To illustrate the importance of the choice of LTS to
the unique-solution technique, we give an example of a process that does not diverge for the
ground LTS, but that diverges for another standard LTS of the π-calculus [SW01]. Consider
the recursive constant:

K
4
= (a, b) a(c).K〈a, c〉 | ba

For a 6= b, the process K〈a, b〉 does not diverge in the ground LTS: K〈a, b〉 a(d)−−→ K〈a, d〉 | ba
for d fresh, a synchronisation between the input on a and the output on b is never possible.
However, if we consider the non-ground transition K〈a, b〉 a(a)−−→ K〈a, a〉 | ba, we then imme-
diately have a divergence: K〈a, a〉 τ−→ K〈a, a〉.
The applications of the technique we consider in Chapter 2 have the same problem: for the

103

ground LTS, they have at worst innocuous divergences, however for other transition systems,
they do have non-innocuous divergences.

Barbed congruence. As for CCS, the reference behavioural equivalence for the π-calculi
usually is barbed congruence. We recall its definition, on a generic subset L of π-calculus
processes A L-context is a process of L with a single hole [·] in it.

We write P ⇓a if P can make an output action whose subject is a, possibly after some
internal moves. We make only output observable because this is standard in asynchronous
calculi. In the case of a synchronous calculus like Iπ, Definition 1.4.2 below yields syn-
chronous barbed congruence, and adding also observability of inputs does not change the
induced equivalence. More details on this are given in Section 2.2.8.

Definition 1.4.2 (Barbed congruence). Barbed bisimilarity is the largest symmetric relation
'· on π-calculus processes such that P '· Q implies:

1. If P =⇒ P ′ then there is Q′ such that Q =⇒ Q′ and P ′ '· Q′.

2. For all a, P ⇓a iff Q ⇓a.

Let L be a set of π-calculus agents, and A,B ∈ L. We say that A and B are barbed congruent
in L, written A 'L B, if for each (well-sorted) L-context C, it holds that C[A] '· C[B].

Remark 1.4.3. Barbed congruence has been uniformly defined on processes and abstrac-
tions (via a quantification over all process contexts). Usually, however, definitions will only
be given for processes; it is then intended that they are extended to abstractions by requiring
closure under ground parameters, i.e., by supplying fresh names as arguments.

As for all contextually-defined behavioural relations, so barbed congruence is hard to work
with. To work with bisimilarity, we use a characterisation in terms of ground bisimilarity,
with the (mild) condition that the processes are image-finite up to ≈. (We recall that the
class of processes image-finite up to ≈ is the largest subset IF of π-calculus processes which
is closed under transitions, and such that P ∈ IF implies that, for all actions µ, the set
{P ′ | P µ

=⇒ P ′} quotiented by ≈ is finite. The definition is extended to abstractions as by
Remark 1.4.3. All the agents in Chapter 2, including those obtained via an encoding of the
λ-calculus, are image-finite up to ≈.

The definitions for bisimilarity and expansion are the same as for CCS (Definitions 0.2.2
and 0.3.11). We extend ≈ and � to abstractions, as per Remark 1.4.3: F ≈ G if F 〈ã〉 ≈ G〈ã〉
for fresh ã, and, likewise, F � F ′ if F 〈ã〉 � F ′〈ã〉 for fresh ã.

1.4.1.3 Equations in the π-calculus

Equation expressions. We need variables to write equations. We use capital letters
X, Y, Z for these variables and call them equation variables. The body of an equation is
a name-closed abstraction possibly containing equation variables (that is, applications can
also be of the form X〈ã〉).

104

As for recursive definitions, so in equations the expression in the body is a closed ab-
straction. (Free names of equation expression and contexts are defined as for agents). Thus,
the solutions of equations are abstractions. By imposing that equations must be closed
abstraction, we can ignore some difficulties related to name capture.

We use E to range over expression bodies; and E to range over systems of equations,
defined as follows. In all the definitions, the indexing set I can be infinite.

Solutions of a system of equations {Xi = Ei}i∈I is defined as for CCS (except that here
equation expressions are closed abstractions, as well as solutions). Likewise, the syntactic
solutions are the recursively defined constants KẼ,i

4
= Ei[K̃Ẽ],(for each i ∈ I).

E[F̃] stands the abstraction obtained by replacing in E each occurence of the variable
Xi with the abstraction Fi (assuming as usual that F̃ and X̃ have the same sort). This
is syntactic replacement. However recall that we identify an agent with its normalised
expression: hence replacing X with (x̃)P in X〈ã〉 amounts to replacing X〈ã〉 with the
process P{ã/x̃}.

Example 1.4.4. If K is the syntactic solution of the equation X = (a) !a(x).X〈x〉, then
we have K〈b〉 b(y)−−→ K〈y〉 | K〈b〉.

Remark 1.4.5 (Contexts, equations and capture). Equation expressions are essentially con-
texts. However, when considering equation expression transitions in the π-calculus, closed
equation expressions applied to closed processes (using application X〈ã〉 to explicit substitu-
tions) behave differently from contexts: indeed, if E〈ã〉 µ−→ E ′〈ã〉, then E[F]〈ã〉 µ−→ E ′[F]〈ã〉
for all F ; however, if C µ−→ C ′, we might need a substitution σ so that C[P]

µ−→ C ′[Pσ];
in other words, contexts must carry substitutions at their leafs, because of implicit name
capture. This is what we attempt to explicit with parameters and abstractions.

1.4.1.4 Unique solution for Aπ

Theorems 1.1.7 and 1.1.9 for CCS can be adapted to the asynchronous π-calculus. The
definitions concerning transitions and divergences are transported to Aπ as expected. In the
case of an abstraction, one first has to instantiate the parameters with fresh names; thus F
has a divergence if the process F 〈ã〉 has a divergence, where ã are fresh names.

Theorem 1.4.6 (Unique solution in Aπ). A guarded system of equations whose syntactic
solutions do not contain divergences has a unique solution for ≈.

Proof. Because we only consider closed abstractions, all names are instantiated when per-
forming a substitution of a variable by an abstraction. This allows us to use the same proof
as for Theorem 1.1.9 in CCS. Some of the unique-solution proofs for subcalculi of the π-
calculus are detailed in Appendix C. 2

Theorem 1.4.7 (Unique solution with innocuous divergences in Aπ). A guarded system of
equations whose syntactic solutions only have innocuous divergences has a unique solution
for ≈.

105

Proof. The proof of Theorem 1.4.6 has to be modified exactly as in the CCS case, where the
proof of Theorem 1.1.7 is modified to establish Theorem 1.1.9. 2

As in CCS, the guardedness condition can be removed if the rule for the unfolding of a
constant produces a τ -transition.

We now state an analogue of Lemma 1.1.12 for Aπ, giving a sufficient condition to
guarantee that a system of equations only has innocuous divergences. This condition is
decidable, and sufficient for the applications in Chapter 2. We leave the study of finer
conditions for future work.

Lemma 1.4.8. Consider a well-sorted system of equations X̃ = Ẽ in Aπ (in particular, for
each i, the sort of Xi and of Ei are the same).

Suppose that there is a sort of names such that names of that sort are never used in subject
output position. If for each i there is ni such that in (Ei)

ni, each equation variable occurs
underneath an (input) prefix of that sort, then the system has only innocuous divergences.

As discussed in Section 0.4.4, the connection between techniques based on unique so-
lution of equations and up-to-context techniques is less immediate in name-passing calculi.
Indeed, up-to-context enhancements for the ground bisimilarity of the π-calculus require
closure under name instantiation, even when ground bisimilarity is known to be preserved
by substitutions (Open problem 0.4.13). Thus, when comparing two derivatives C[P] and
C[Q], in general it is not sufficient that P and Q alone are in the candidate relation: one is
required to include also all their closures under name substitutions (or, if the terms in the
holes are abstractions, instantiation of their parameters with arbitrary tuples of names). In
contrast, the two unique solution theorems above are ‘purely ground’: F = (x̃)P is solution
of an equation X = (x̃)E if P and E{F/X} are ground bisimilar – a single ground instance
of the equation is evaluated.

Remark 1.4.9 (Unique solution in the full π-calculus). In the full π-calculus, including the
output prefix a〈̃b〉.P , ground bisimilarity is not a congruence. One has therefore to use other
forms of bisimilarity. The most used is early bisimilarity ; correspondingly one uses an early
transition system, where the parameters of inputs are instantiated with arbitrary (i.e., not

necessarily fresh) names, as in a(x̃).P
a〈̃b〉−−→ P{b̃/̃x}. Modulo the move to the early setting,

the theory exposed for the asynchronous π-calculus also holds in the full π-calculus.
However, when considering a different LTS, such as the early LTS, divergences that did

not exist in the ground LTS may arise, and as such, prevent Theorems 1.4.6 or 1.4.7 to be
used. It is even possible that, by considering a different LTS, an equation that had a unique
solution loses this property. We leave the study of this question for future work.

1.4.1.5 Iπ and ALπ

Other than Aπ, we will consider two subcalculi of the π-calculus: the Internal π-calculus
(Iπ) [San96b, SW01], and the Asynchronous Local π-calculus (ALπ) [MS04, SW01]. These
are obtained by imposing certain constraints on prefixes. The proofs of unique solution are

106

identical for Aπ, Iπ, and ALπ, and very similar to the case of CCS, for instance. Some of
these proofs are detailed in Appendix C; to avoid redundancy, they are not detailed here.

Iπ. In Iπ, all outputs are bound. This is syntactically enforced by replacing the output
construct with the bound-output construct a(̃b).P , which is an abbreviation for ν b̃ a〈̃b〉.P .
In all tuples (input, output, abstractions, applications) the components are pairwise distinct
so to make sure that distinctions among names are preserved by reduction.

Theorem 1.4.10. In Iπ, on agents that are image-finite up to ≈, barbed congruence and
bisimilarity coincide.

The encoding of the λ-calculus into Iπ yields processes that are image-finite up to ≈.
Thus we can use bisimilarity as a proof technique for barbed congruence.

ALπ. The asynchronous local π-calculus, ALπ, is defined by enforcing that in an input
a(̃b).P , all names in b̃ appear only in output position in P . Moreover, ALπ being asyn-
chronous, output prefixes have no continuation; in the grammar of the π-calculus this cor-
responds to having only outputs of the form a〈̃b〉.0 (which we will simply write a〈̃b〉). In
ALπ, to maintain the characterisation of barbed congruence as (ground) bisimilarity, the
transition system has to be modified [MS04], in order to introduce additional processes (the
‘links’, sometimes also called forwarders) along the transitions. In Section 2.2.8, we present
these modifications, and explain how they allow us to obtain for ALπ a property similar to
that of Theorem 1.4.10 for Iπ.

We now present the unique-solution theorem for Iπ and ALπ. It is also possible to adapt
Theorem 1.1.9, discriminating innocuous and non-innocuous divergences.

Theorem 1.4.11. In Iπ and ALπ, a guarded system of equations whose syntactic solutions
are divergence-free has unique solution for ≈.

1.4.2 Unique solution in the Higher-order π-calculus

1.4.2.1 The Higher-Order π-calculus

In the syntax for HOπ we adopt, we use abstractions and concretions to represent input and
output prefixes; we also use first-order names, i.e., names which carry nothing. These are
opposed to higher-order names, i.e., names which are used to exchange processes. For the
theory we shall develop, the presence of first-order names is not necessary, but makes the
presentation of various results easier.

Thus, let F be the infinite set of first-order names, and H the infinite set of higher-order
names. Then, F def

= {m | m ∈ F}, H def
= {a | a ∈ H}, N def

= F ∪H and N def
= F ∪H. The

special symbol τ , which does not occur in N or N , denotes a silent step. We let µ range
over N ∪ N ∪ {τ}, and ` range over F ∪ F ∪ {τ} (the set of CCS-like actions). We use
symbols x, y, z for names in N ; symbols m,n for names in F ; and symbols a, b, c for names

107

in H. We also assume an infinite set of process variables, ranged over by X, Y, Z, and a set
constant identifiers (or simply constants) ranged over by K,H, to write recursively defined
processes.

Definition 1.4.12. The syntactic categories of our language and their grammar are:

Processes P : = a.F | a.C | `.P | P1 | P2 | νa P | X | F ◦ P | 0
Abstractions F : = (X)P | K
Concretions C : = νx C | 〈P1〉P2

Agents A : = P | F | C
A prefix a. (X)P represents an input, in which the process received at a will replace X in

P . Dually, a. 〈P1〉P2 is an output, in which P1 is emitted at a and P2 is the continuation. In
an application F ◦ P process P is supposed to replace the formal parameter of the abstrac-
tion F . The remaining operators are the usual one of CCS and derived calculi. Symbols
P,Q,R, . . . range over processes, F,G over abstractions, C,D over concretions, A,B over
agents. Each constant K has a corresponding definition K 4

= (X)P (as P may contain K,
the behaviour may be recursive). Although in HOπ recursion can be derived (examples of
this will be shown in Section 1.4.3), we take constants as primitives because they are useful
when reasoning about equations. The calculus is monadic — (higher-order) names carry
exactly one name; correspondingly, abstractions are parametrised over exactly one value.
We stick to monadicity for simplicity of presentation.

We omit the parameter in constants when it is not needed, therefore simply writing
K
4
= P and simply using K as a process. We shall also sometimes use a special form of

constants, namely the replication !P , that intuitively stands for an infinite number of copies
of P in parallel; it can be written as the constant KP

4
= P | KP .

An application redex ((X)P) ◦Q can be normalised as P{Q/X}. An agent is normalised
if all such application redexes have been contracted. Although the full application F ◦ P
is often convenient, when it comes to reasoning on behaviours it is useful to assume that
all expressions are normalised, in the above sense. Thus in the remainder of this sectionwe
identify an agent with its normalised expression. The application construct F ◦ P will play
an important role in the treatment of equations in the following sections.

We shall only admit standard concretions, i.e., expressions νx̃〈P1〉P2 where names in x̃ are
pairwise distinct and x̃ ⊆ fn(P1). Indeed, the remaining concretions have little significance:
in νx̃ 〈Q〉P , by alpha conversion, names x̃ can be assumed to be distinct; and if x 6∈ fn(Q)∪
{x̃} then in (νx, x̃)〈Q〉P the restriction on name x can be pushed inwards, resulting in
the standard concretion νx̃ 〈Q〉(νx P). In the following, we therefore assume that if x 6∈
fn(Q) ∪ {x̃}, then (νx, x̃)〈Q〉P denotes νx̃ 〈Q〉(νx P).

We wish to extend restriction to operate on abstractions, and (a form of) parallel com-
position to operate on abstractions and concretions:

Let F = (X)Q:

— if X 6∈ fv(P) then F | P denotes (X) (Q | P)

108

Prefix µ.A
µ−→ A

Parallelism P1
µ−→ A implies P1 | P2

µ−→ A | P2

First-order communication P1
m−→ P ′1

P2
m−→ P ′2 implies P1 | P2

τ−→ P ′1 | P ′2

Higher-order communication P1
a−→ F

P2
a−→ C implies P1 | P2

τ−→ F • C

Restriction P
µ−→ A, µ 6∈ {x, x} implies νx P

µ−→ νx A

Constants F ◦ P µ−→ A

K
4
= F implies K ◦ P µ−→ A

Table 1.1: The transition system

(and similarly for P | F),

— νx F denotes (X)νx Q;

if C = νx̃ 〈Q〉R then

if x̃ ∩ fn(P) = ∅ then C | P denotes νx̃ 〈Q〉(R | P)

(and similarly for P | C).

We now present the operational semantics of the calculus. First, we define an operation
of pseudo-application between an abstraction F = (X)P and a concretion C = νx̃ 〈Q〉R.
By alpha conversion, we can assume that x̃ ∩ fn(F) = ∅, and then we set

C • F def
= νx̃ (R | P{Q/X})

and, symmetrically,
F • C def

= νx̃ (P{Q/X} | R) .

The operational semantics of the calculus is reported in Table 1.1. We have omitted
the symmetric forms of the parallelism and communication rules. The following forms of

109

judgements are introduced:

P
a−→ F (higher-order input transition at port a)

P
a−→ C (higher-order output transition at port a)

P
`−→ Q (first-order transition)

where P,Q, F, C are agents. In turn, a first-order transition can be a first-order input (if
` ∈ F), a first-order output (if ` ∈ F), or an interaction (if ` = τ).

We shall normally put enough brackets in the expressions so to avoid precedence ambi-
guities among the operators. However, to reduce the number of brackets, in a few places
we shall assume the following syntactic rules: substitutions and notations “•” and “ ◦ ”
have the highest syntactic precedence; the abstraction and concretion constructs the lowest;
parallel composition has weaker precedence than the other process constructs. For instance,
〈P 〉!m.R | Q stands for 〈P 〉((!m.R) | Q), and F •C | Q{R/X} stands for (F •C) | (Q{R/X}).

1.4.2.2 Normal bisimulation

An arguably natural notion of bisimulation for higher-order processes is context bisimulation;
it exploits the duality between abstractions and concretions, so to test an abstraction with all
possible concretions it can be used with, and conversely. Its bisimulation clauses on higher-
order inputs and outputs are therefore as follows, if R is a context-bisimulation candidate:

1. whenever P a−→ F , there exists G s.t. Q a
=⇒ G and C • F R C • G, for all closed

concretions C;

2. whenever P a−→ C, there exists D s.t. Q a
=⇒ D and F • C R F • D, for all closed

abstractions F .

Surprisingly, the universal quantifications on concretions and abstractions supplied by
the external observer may be removed using a special kind of concretion and of abstraction,
namely the concretion 〈m.0〉0 and the abstraction (X) !m.X, where m is supposed to be
a name fresh in the tested processes. In the former concretion, the continuation is null
and therefore we can simply use the process m.0 (or even just m), called a trigger and
abbreviated Trm. Similarly we write Abm as an abbreviation for (X) !m.X. We thus obtain
normal bisimulation.

Definition 1.4.13 (normal bisimulation). A relation R ⊆ Pr×Pr is a normal simulation if
P R Q implies, for m 6∈ fn(P,Q):

1. whenever P `−→ P ′, there exists Q′ s.t. Q
ˆ̀

=⇒ Q′ and P ′ R Q′;

2. whenever P a−→ F , there exists G s.t. Q a
=⇒ G and F ◦ Trm R G ◦ Trm;

3. whenever P a−→ C, there exists D s.t. Q a
=⇒ D and C • Abm R D • Abm.

110

A relation R is a normal bisimulation, in symbols ≈-bisimulation, if R and R−1 are normal
simulations. We say that P and Q are normal bisimilar, in symbols P ≈ Q, if P R Q, for
some ≈-bisimulation R.

In clauses (2) and (3) of Definition 1.4.13 it is enough to pick some fresh name m, since
the specific choice of the fresh name does not affect the equivalence of the resulting processes.
The extension of≈ to closed abstractions and open agents is defined similarly, only employing
fresh triggers. For closed concretions C and D we set C ≈ D if C • Abm ≈ D • Abm, for some
fresh m.

Theorem 1.4.14. Normal bisimilarity is a congruence relation in HOπ.

The proof in [San96a] derives the congruence of normal bisimilarity from congruence of
context bisimilarity. In doing so, an auxiliary relation, triggered bisimilarity, is used for an
intermediate characterisation. We are not aware of a simpler and direct proof of congruence
for normal bisimulation, using the bisimulation proof method. The hard case is that of
parallel composition. Usually, substitutivity of a bisimilarity with respect to an operator is
established using, as a candidate relation, the closure of the bisimilarity under the operator
itself (possibly enhanced with an auxiliary operator such as restriction), and using some
‘bisimulation up-to’ techniques to simplify the reasoning.

For normal bisimilarity and parallel composition, we have to prove that P ≈ Q implies P |
T ≈ Q | T for all T . In the case of a higher-order interaction between P and T , the hypotheses
at hand can be used to show the existence of a matching interaction between Q and T , but
this is not sufficient to conclude. Normal bisimilarity guarantees that P and Q remain
related after a higher-order input only when a trigger process is received; however T may
transmit an arbitrary process. Replacing a trigger with an arbitrary process is possible as an
algebraic law. However the replacement is unsound within up-to techniques. The natural up-
to technique would be the ’up-to expansion’ technique (expansion is a behavioural preorder,
finer than weak bisimilarity, capturing an idea of ‘process efficiency’). For the technique to be
sound, however, the expansion preorder must be applied in a specific direction, whereas the
algebraic transformation needed for the replacement of a trigger would require the opposite
direction. Similar problems exist on interactions between P and T , and between Q and T
when P and Q perform higher-order outputs.

1.4.2.3 Equations in HOπ

We use bold lettersX,Y, . . . for equation variables. The body of an equation is an abstraction
possibly containing equation variables. We stick to monadic abstractions, as in the previous
sections.

We call extended HOπ the HOπ syntax of Section 1.4.2.1 extended with equation vari-
ables. To make the distinction between the ordinary syntax of HOπ and the syntax of
extended HOπ, we use bold letters to range over the syntactic categories of the latter. Thus,
in extended HOπ, P,Q stand for extended processes, F for extended abstractions, C for ex-
tended concretions, and A for extended agents (the word ‘extended’ is used here to denote
the fact that equation variables may occur). The grammar for F is:

111

F : = (X)P | K | X.

Extended agents can be either extended processes, extended concretions or extended ab-
stractions.

Example 1.4.15. We report some examples of systems of equations, whose solutions are
then discussed in Example 1.4.17:

1. X = (Y) (X ◦ Y) .

2. X = (Y) (X ◦ Y | Y) .

3. X = (X) a. (Y)(X | Y) (where the variable X of the equation does not occur in the
body) .

4. X = (X) d. (Z)Y ◦ Z
Y = (Z) r. (Z | Y ◦ Z)

If the parameter of the equation is not important, we omit it, as in the equation X =
a. (X)b.〈X〉X, whose solution is a link process that repeatedly receives a process at a and
emits it at b.

We write A[F̃] for the expression resulting from A by replacing each variable Xi with
the abstraction Fi, assuming F̃ and X̃ have the same length.

Remark 1.4.16. To avoid issues with restriction, we take the replacement in A[F̃] to be a
substitution, not a syntactic replacement (i.e., in the substitution, free names of an Fi may
not be bound by a restriction in A). An alternative would have been to impose abstractions
without free names; this would however introduce issues related to name mobility and make
the proofs of the main results more complex.

As for the plain syntax, so in the extended syntax we assume a normalisation of applica-
tion redexes; thus any subterm of the form ((X)P)◦Q should be thought of as an abbreviation
for P{Q/X}.

Example 1.4.17. Consider the equations from Example 1.4.15:

1. the equation X = (Y) (X ◦ Y) is satisfied by any closed abstraction of the form (Y)P .

2. In X = (Y) (X ◦ Y | Y), the abstraction (Y) (P | !Y) is solution, for any P .

3. The body of the equation X = (X) a. (Y)(X | Y) does not use the variable X, hence
the only solution is precisely its defining abstraction (X) a. (Y)(X | Y).

4. The system of equations

X = (X) d. (Z)Y ◦ Z
Y = (Z) r. (Z | Y ◦ Z)

has a unique solution. The abstraction for X receives a process at d, and then makes
it available at r, so that any output at r will start a copy of the received process.

112

Example 1.4.18. We show the syntactic solutions of some of the equations in Exam-
ple 1.4.17.

1. The syntactic solution of the equation X = (Y)X◦Y is the constant K 4
= (Y) (K ◦Y).

This recursive process actually behaves as 0.

2. The syntactic solution of the equation X = (Y) (X ◦ Y | Y) is the constant K 4
=

(Y) (K ◦ Y | Y), which receives a process and runs infinitely many copies of it.

3. The syntactic solution of the equation X = (X) a. (Y)(X | Y) is the constant K 4
=

(X) a. (Y)(X | Y) — as the equation does not use equation variables, the expression
of the equation is the same as the expression defining the constant.

The lemma below shows a form of commutativity on the order in which replacements are
made, when unfolding equations and instantiating its variables.

Lemma 1.4.19. For any extended agent A, and extended abstractions F̃ and F̃′, we have

A[F̃][F̃′] = A[F̃[F′]] .

Note that in the above lemma, F̃ and F̃′ need not have the same length. A special case
of the above lemma is when F̃′ are simple (i.e., non extended) abstractions, say F̃ ′. In this
case we obtain A[F̃][F̃ ′] = A[F̃[F̃ ′]]. This observation also holds for other results below,
which are often specialised with simple abstractions.

Lemma 1.4.20. For any extended agent A, we have that A[F̃] is guarded if either A is
guarded, or all extended abstractions F̃ are guarded.

We use the SOS rules of Table 1.1 also on the syntax of extended HOπ. The follow-
ing lemma relates transitions of terms of extended HOπ, possibly containing free equation
variables, with terms resulting from instantiations of such variables.

Lemma 1.4.21.

1. Given P an extended process and A an extended agent, if P µ−→ A, then P[F̃]
µ−→ A[F̃],

for all extended abstractions F̃.

2. If P is a guarded extended process and P[F̃]
µ−→ A0, then there is an extended agent A

such that P µ−→ A and A0 = A[F̃].

Proof. Both cases are treated by induction on the derivation of the transition (P µ−→ A

or P[F̃]
µ−→ A0).

2

113

Both properties of the previous lemma are valid, as a special case, for transitions ema-
nating from P[F̃].

The following lemma states basic properties about ◦ and •; it is used implicitly in several
places below.

Lemma 1.4.22.

• For all F, F̃ , and Q, we have (F ◦Q)[F̃] = F[F̃] ◦Q.

• For all C, F̃ and F , we have (C • F)[F̃] = C[F̃] • F .

Recall that for a name m, a trigger at m is a process Trm
def
= m.0, often simply written

m, and that Abm
def
= (X)!m.X. Thus, given an extended concretion C = 〈P1〉P2 (resp. an

extended abstraction F = (X) P), we haveC•Abm = !m.P1 | P2 (resp. F◦Trm = P{m/X}).

1.4.2.4 Unique solution in HOπ

Divergences in HOπ. In HOπ, a divergence in a process consists of a finite sequence of
transitions (of any kind) followed by an infinite sequence of τ transitions. In other words,
before embarking in a sequence of internal moves, a diverging process may perform some
higher-order interactions with its environment. In order to account for these, we follow the
definition of normal bisimulation (Definition 1.4.13), and instantiate agents with the special
forms for triggers and abstractions (processes Trm and Abm). By using such processes with
freshly generated names, we avoid possible interferences with other transitions of the process,
and do not break divergences.

We first introduce the notion of reduct, which then allows us to define divergences.

Definition 1.4.23 (Reducts).

1. We say that P reduces to P′, written P _ P′, if one of the following holds:

(a) P
`−→ P′;

(b) P′ = C • Abm for some fresh m and some C such that P a−→ C;

(c) P′ = F ◦ Trm for some fresh m and some F such that P a−→ F.

Relation P _ P ′ (“ P reduces to P ′ ”) is defined in the same way for processes that do
not contain equation variables.

2. The set of reducts of an extended process P, written red(P), is given by:

red(P)
4
=

⋃
n

{Pn | P _ P1 . . . _ Pn for some n and Pi (1 ≤ i ≤ n) }.

Again, the set of reducts of a process P , red(P), is defined in the same way.

114

3. The set of reducts of the unfoldings of a system of equations {Xi = Fi}i∈I , written
redω(F̃), is defined as

redω(F̃)
4
=

⋃
n∈N,i∈I,m fresh

red(Fn
i ◦ Trm).

Theorem 1.4.24 (Unique solution). A guarded system of equations whose syntactic solu-
tions do not diverge has a unique solution for ≈.

Theorem 1.4.25 (Unique solution with innocuous divergences). Let X̃ = F̃ be a system of
guarded equations, and K̃F̃ be its syntactic solutions. If for any i, all divergences of KF̃,i are
innocuous, then F̃ has a unique solution for ≈.

An example of an innocuous divergence is when the body of an equation P is able to
output a certain process P . In this case, the syntactic solution of P inherits the divergences
of P , which are innocuous.

Example 1.4.26. Consider the equation

X = a. 〈P 〉P

where P diverges (take for instance P = !τ). The syntactic solution of this equation diverges:
indeed we have (using _ from Definition 1.4.23):

a. 〈P 〉P _ !m.P | P .

After an input on m, P is active, and the divergence can happen. However this divergence is
innocuous, and does not prevent unique solution, as there is no need to unfold the equation
more than once to unleash the divergence.

We now show an example of a non-innocuous divergence that does not prevent the equa-
tion from having a unique solution.

Example 1.4.27. Consider the single equation

X = a. 〈!n〉 | n.X .

Its syntactic solution, which is given by K 4
= a. 〈!n〉 | n.K, has a divergence. Indeed we

have (again, using _ from Definition 1.4.23):

K _ !m. !n | n.K for m fresh (i.e., m 6= n)
_ !m. !n | !n | n.K

and the latter process can do an infinite sequence of τ -transitions, through synchronisations
on channel n. This divergence involves the unfolding of K after each τ -step, so it is not
innocuous.

However, the equation has a unique solution, intuitively because the transition at a,
which unleashes the divergence, can be avoided; therefore such a divergence causes no harm.
We see here, therefore, a limitation of the notion of innocuous divergence.

115

Remark 1.4.28. We have focused on the monadic calculus and on monadic abstractions,
and considered only process passing. The extension to polyadicity and to the communi-
cation of abstractions (i.e., parametrised processes) of arbitrarily high type, as in the full
HOπ [San93a], appears to be only notationally more complex. However, handling more
sophisticated types for the terms exchanged (i.e., abstractions with recursive types or poly-
morphism) would seem challenging.

1.4.3 A proof with the unique-solution technique

We now discuss another example of equality proof in HOπ, using the unique solution tech-
nique.

Example 1.4.29. We consider the proof of equality between the terms P1
def
= a . 〈b . (Y)P 〉

and Q1
def
= a . 〈b . (Y)Q〉, where

P
def
= νa (d.R | a . 〈R〉)

R
def
= a . (X) (Y | d.X | a . 〈X〉)

and
Q

def
= νa (S | a . 〈Y | S〉)

S
def
= a . (X) (d.X | a . 〈X〉)

Terms P1 and Q1 send on a terms that can receive a process at b and then make this
process freely available, at a channel d (i.e., arbitrarily many copies of the process may be
activated, using d). Essentially, processes P and Q correspond to two ways of modelling a
replication operator in HOπ, with a different internal structure. Indeed, if T is the process
received at b, and that replaces Y in P and Q, with the abbreviations PT

def
= P{T/Y } and

RT
def
= R{T/Y }, we have

PT
d−→ νa (RT | a . 〈RT 〉)
τ−→ νa (T | d.RT | a . 〈RT 〉)
≡ T | PT
d−→ . . .

where ≡ indicates the application of a simple algebraic law for shrinking the scope of a
restriction. Similarly, for QT

def
= Q{T/Y } and ST

def
= S{T/Y } we have

QT
τ−→ νa (d. (T | ST) | a . 〈T | ST 〉)
d−→ νa (T | ST | a . 〈T | ST 〉)
≡ T | νa (ST | a . 〈T | ST 〉)
τ−→ T | νa (d. (T | ST) | a . 〈T | ST 〉)
d−→ . . .

116

We prove P1 ≈ Q1 using the technique of unique solution of equations. We use the
following equations

X1 = a . 〈b . (Y) (X2 ◦ Y)〉
X2 = (Y) d. (Y | (X2 ◦ Y))

The equations are guarded and their unfoldings do not introduce divergences, hence we can
apply Theorem 1.4.24. We derive P1 ≈ Q1 by showing that both the pair P1, (Y)P and the
pair Q1, (Y)Q are solutions of the system. For the first pair we have to prove

P1 ≈ a . 〈b . (Y)P 〉
(Y)P ≈ (Y) d. (Y | P)

The first equivalence is trivial, as the two processes are identical. For the second, by definition
of normal bisimulation, for some m fresh, and writing Pm as abbreviation for P{m.0/Y }, we
have to show

Pm ≈ d. (m.0 | Pm)

We have, for Rm
def
= R{m.0/Y } :

Pm = νa (d.Rm | a . 〈Rm〉)
≈ d.νa (Rm | a . 〈Rm〉)
= d.νa (a . (X) (m.0 | d.X | a . 〈X〉) | a . 〈Rm〉)
≈ d.νa ((m.0 | d.Rm | a . 〈Rm〉))
≈ d. (m.0 | νa ((d.Rm | a . 〈Rm〉)))
= d. (m.0 | Pm)

where the uses of ≈ are derived using some simple algebraic laws for prefix and restriction
plus (for the second occurrence of ≈) the law

νa (a . (X)T1 | a . 〈T2〉T3) ≈ νa (((X)T1) • (〈T2〉T3))
= νa (T1{T2/X} | T3)

which is straightforward too, as the process on the right is the only immediate derivative
of the process on the left. The reasoning for the other pair, Q1, (Y)Q, is similar (in fact,
simpler).

The proof above makes use of two equations only. One may find this surprising, because
the calculus is higher-order and therefore process terms are exchanged with the environment
(i.e., the input at b and the output at a), and because of the recursive structure of the terms
compared (their ‘fixed-point-like’ behaviour). Such reduced size is due both to the choice
of normal bisimulation (that does not make use of universal quantifications on concretions
or abstractions in the input and output clauses), and to the ‘up-to context’ flavour of the
unique-solution technique.

When comparing the technique of unique solution of equations to the bisimulation proof
method [San15] the size of a system of equations is the number of equations involved, whereas
the size of a bisimulation is the number of its pairs. Thus the proof above, involving two

117

equations, would correspond to a bisimulation candidate with two pairs. The proof of a
similar result in [SKS11] (Section 6.7, second example) uses ’environmental bisimulation
up-to context’. The relation employed in that proof is infinite, because in environmental
bisimulation one has to take into account all possible processes that may be received in a
higher-order input and because of the limitations of the known forms of ‘up-to context’ for
environmental bisimulation (only in certain clauses of the bisimulation a context may be
erased and even in these cases there are syntactic constraints on the context itself).

118

Chapter 2

Unique solution for Full Abstraction

2.1 Lazy functions as mobile processes

2.1.1 The lazy λ-calculus

Before studying Milner’s call-by-value encoding, to serve as a gentle introduction, we revisit
the proof of full abstraction for Milner’s call-by-name encoding, more specifically the proof of
completeness. We skim over already-established result (such as soundness of the encoding,
soundness of β-reduction, etc), and over some technical details, to focus on the unique-
solution proof itself. The proof for call-by-value is harder, but has the same high-level
structure.

We first recall some basic definitions regarding the λ-calculus. We use M,N to range
over the set Λ of λ-terms, and x, y, z to range over λ variables.

We assume the standard concepts of free and bound variables and substitutions, and
identify α-convertible terms. The terms in Λ are sometimes call open to distinguish them
from the subset of closed terms – those without free variables.

We let x and y range over the set of λ-calculus variables. The set Λ of (open) λ-terms is
defined by the grammar

M := x | λx.M | M1M2 .

Free variables, closed terms, substitution, α-conversion etc. are defined as usual [Bar84,
HS86]. The “Barendregt convention” allows us to assume freshness of bound variables and
names whenever needed. The set of free variables in the term M is written fv(M). We
group brackets on the left; therefore MNL is (MN)L. The λ-abstraction λx. . . . has higher
priority, and thus reaches as far as possible to the right. We abbreviate λx1. · · · .λxn.M
as λx1 · · · xn.M , or λx̃.M if the length of x̃ is not important. Symbol Ω stands for the
always-divergent term (λx.xx)(λx.xx).

As previously, a context is a term with a hole [·], possibly occurring more than once. If
C is a context, C[M] is a shorthand for C where the hole [·] is substituted by M .

119

The rules defining the call-by-name strategy, defined on open terms, are the following:

(λx.M)N →M{N/x}
M →M ′

MN →M ′N

As usual ⇒ is the reflexive and transitive closure of the single-step reduction →.
We write M ⇑ if M diverges. If M is an open λ-term, then either M diverges, or

M ⇒ λx.M ′ (for some x and M ′), or M ⇒ xM1 . . .Mn (for some x, M1, . . . , Mn).
The following notion of tree is used to provide a semantics for the call-by-name λ-calculus.

Definition 2.1.1 (Lévy-Longo Tree). The Lévy-Longo Tree (LT) of an open λ-term M ,
written LT (M), is the (possibly infinite) tree defined coinductively as follows.

1. If M diverges, then LT (M) is the tree with a single node labelled ⊥.

2. If M ⇒ λx.M ′, then LT (M) is the tree with a root labelled with "λx.", and LT (M ′)
as its unique descendant.

3. If M ⇒ xM1 . . .Mn, then LT (M) is the tree with a root labelled with "x", and
LT (M1), . . . , LT (Mn) (in this order) as its n descendants.

LT equality (whereby two λ-terms are identified if their LTs are equal) can also be pre-
sented as a bisimilarity (open bisimilarity, 'o), defined as the largest open bisimulation.

Definition 2.1.2. A relation R on Λ is an open bisimulation if, whenever M R N :

1. M ⇒ λx.M ′ implies N ⇒ λx.N ′ with M ′ R N ′;

2. M ⇒ xM1 . . .Mn with n ≥ 0 implies N ⇒ xN1 . . . Nn and Mi R Ni for all 1 ≤ i ≤ n.

3. The converse of clauses 1 and 2 on the challenges from N .

Theorem 2.1.3 ([San00, SX14]). Let M and N be two λ-terms; then LT (M) = LT (N) iff
M 'o N .

2.1.2 Milner’s encoding

Milner’s encoding of the call-by-name λ-calculus into Aπ [Mil92] is defined in figure 2.1.
Function application is translated into a particular form of parallel combination of two

agents, the function and its argument; β-reduction is then modeled as process interaction.
Since the syntax of the π-calculus only allows for the transmission of names along channels,
the communication of a term is simulated by the communication of a trigger for it. The
translation of a λ-term is an abstraction that is parametric on a name, the location of the
λ-term, which is intuitively the name along which the term, as a function, will receive its
argument. Precisely, the encoding of a term receives two names along its location p: the

120

[[λx.M]]
4
= (p) p(x, q). [[M]]〈q〉 [[x]]

4
= (p) x〈p〉

[[MN]]
4
= (p) νr, x ([[M]]〈r〉 | r〈x, p〉 | !x(q). [[N]]〈q〉)

Figure 2.1: Milner’s encoding of the call-by-name λ-calculus into Aπ.

first is a trigger for its argument and the second is the location to be used for the next
interaction.

The full abstraction theorem for the encoding [San00, SX14] states that two λ-terms have
the same LT iff their encodings into Aπ are weakly bisimilar terms. Full abstraction has
two components: soundness, which says that if the encodings are weakly bisimilar then the
original terms have the same LT; and completeness, which is the converse direction. The
proof [San00, SX14] first establishes an operational correspondence between the behaviour
(visible and silent actions) of λ-terms and of their encodings. Then, exploiting this corre-
spondence, soundness and completeness are proved using the bisimulation proof method.
For soundness, this amounts to following the defining clauses of open bisimulation (Def-
inition 2.1.2). In contrast, completeness involves enhancements of the bisimulation proof
method, notably ‘bisimulation up to context and expansion’. In the latter, expansion is an
auxiliary preorder relation, finer than weak bisimilarity. As a consequence, the technique
requires having developed the basic theory for the expansion preorder (e.g., precongruence
properties and basic algebraic laws), and requires an operational correspondence fine enough
in order to be able to reason about expansion (expansion appears within the statements of
operational correspondence).

On the other hand, soundness is mostly technical, and does not require as advanced proof
techniques.

2.1.3 Completeness with the unique solution technique

We show that, by appealing to unique solution of equations, completeness can be proved
by defining an appropriate system of equations, each equation having a simple shape, and
without the need for auxiliary preorders.

Prerequisite. For this, the only results needed are: (i) validity of β-reduction for the
encoding (Lemma 2.1.4), whose proof is simple and consists in the application of a few
algebraic laws (including laws for replication); (ii) the property that if M diverges then
[[M]]〈p〉 may never produce a visible action (Lemma 2.1.5); (iii) a Lemma for rearranging
parallel composition and restrictions in the process encoding xM1 . . .Mn (Lemma 2.1.6).

Lemma 2.1.4 (Validity of β-reduction, [San00]). ForM ∈ Λ, ifM →M ′ then [[M]] ≈ [[M ′]].

Lemma 2.1.5. If M diverges, then [[M]] ≈ (p) 0.

121

Lemma 2.1.6 ([San00]). For any M1, . . . ,Mn ∈ Λ, and variable x, we have

[[x M1 . . . Mn]] = (p) (νr0, . . . , rn)
(
x〈r0〉 | r0〈r1, x1〉 | . . . | rn−1〈rn, xn〉 |

!x1(q1). [[M1]]〈q1〉 | . . . | !xn(qn). [[Mn]]〈qn〉
)

.

The system of equations. Suppose M0 and N0 are two λ-terms with the same LT. We
define a system of equations ER, whose solutions are obtained from the encodings of the
Lévy-Longo trees of M0 and N0. We will then use Theorem 1.4.7 to deduce [[M0]] ≈ [[N0]].

Since M0 and N0 have the same LT, then by Theorem 2.1.3 there is an open bisimulation
R containing the pair (M0, N0). The variables of the equations are of the form XM,N for
MRN , and there is one equation for each pair in R.

We consider a pair (M,N) in R, and explain how the corresponding equation is defined.
The equation is parametrised on the free variables of M and N (to ensure that its body is
a name-closed abstraction) together with an additional continuation name (as all encodings
of terms).

We assume an ordering of the λ-calculus variables so to be able to view a finite set of
variables as a tuple. This allows us to write x̃ for the variables appearing free in M or N .

The equations are the translation of the clauses of Definition 2.1.2, assuming a generalisa-
tion of the encoding to equation variables by adding the clause: [[XM,N]]

def
= (x̃, p)XM,N〈x̃, p〉.

Since MRN , then either both M and N diverge, or they satisfy one of the two clauses
of Definition 2.1.2.

• If M,N are both divergent, then the equation is

XM,N = (x̃, p) !τ

(as !τ ≈ [[Ω]])

• If M,N satisfy clause 1 of Definition 2.1.2, the equation is

XM,N = (x̃, p) [[λx.XM ′,N ′]]〈p〉

that is,
XM,N = (x̃, p) p(x, q).XM ′,N ′〈ỹ, q〉

where ỹ are the free variables in M ′, N ′.

• If M,N satisfy clause 2 of Definition 2.1.2, the equation is given by the transla-
tion of xXM1,N1 . . . XMn,Nn , which, rearranging restrictions and parallel compositions
(Lemma 2.1.6), can be written

XM,N = (x̃, p)(νr0, . . . , rn)
(
x〈r0〉 | r0〈r1, x1〉 | . . . | rn−1〈rn, xn〉 |
!x1(q1).XM1,N1〈x̃1, q1〉 | . . . | !xn(qn).XMn,Nn〈x̃n, qn〉

)
where x̃i are the free variables in Mi, Ni.

122

Essentially, each equation above represents the translation of a specific node of the LT for
M and N .

We need ER to have a unique solution.
Lemma 2.1.7. The system of equations ER has a unique solution.
Proof. We rely on Lemma 1.4.8 to show that the equations may only produce innocuous
divergences. It is easy to check that the syntactic condition holds: a location name may only
appear once (in input position); a trigger name either appears once (as a replicated input),
or it only appears in output position.

As a consequence, since the labelled transition system is ground (names are only replaced
by fresh ones), no τ -transition can ever be performed, after any number of visible actions.
Further, E ′R is guarded. Hence we can apply Theorem 1.4.11. 2

The solutions. We now define the set of solutions of ER. For (M,N) ∈ R, we set FM,N

to be the abstraction (x̃, p) [[M]]〈p〉, and similarly GM,N
4
= (x̃, p) [[N]]〈p〉.

Lemma 2.1.4 allows us to show that the set of all such abstractions FM,N yields a solution
for the system of equations, and similarly for GM,N .
Lemma 2.1.8. The sets of abstractions (FM,N)MRN and (GM,N)MRN are solutions of ER.
Proof. We reason by cases, following Definition 2.1.2.
• If clause (1) of Definition 2.1.2 holds, then M ⇒ xM1 . . .Mn and we have

FM,N = (ỹ, p) [[M]]〈p〉
≈ (ỹ, p) [[xM1 . . .Mn]]〈p〉 (by Lemma 2.1.4)
= (ỹ, p) p(x, q). [[M ′]]〈q〉
= (ỹ, p)

(
p(x, q).XM ′,N ′〈z̃〉

)
{FM ′,N ′/XM ′,N ′}

where z̃ is a subset of x, ỹ, containing the free variables of M and N .

• If clause (2) holds, then M ⇒ λx.M ′ and we have

FM,N = (ỹ, p) [[M]]〈p〉
≈ (ỹ, p) (νr0, . . . , rn)

(
x〈r0〉 | r0〈r1, x1〉 | . . . | rn−1〈rn, xn〉 |

!x1(q1). [[M1]]q1 | . . . | !xn(qn). [[Mn]]qn
)

(by Lemmas 2.1.4 and 2.1.6)
≈ (ỹ, p) (νr0, . . . , rn)

(
x〈r0〉 | r0〈r1, x1〉 | . . . | rn−1〈rn, xn〉 |

!x1(q1).XM1,N1〈x̃1, q1〉 | . . . | !xn(qn).XMn,Nn〈x̃n, qn〉
)

{FM1,N1/XM1,N1 , . . . , FMn,Nn/XMn,Nn}

• If neither clause (1) or (2) hold, meaning both M and N diverge, then we have

FM,N = (x̃, p) [[M]]〈p〉
≈ (x̃, p) 0 (by Lemma 2.1.5)
≈ (x̃, p) !τ

2

123

Completeness. We can now show the completeness of the encoding w.r.t. Lévy-Longo
trees.

Proposition 2.1.9 (Completeness, [San00]). For M,N ∈ Λ, LT (M) = LT (N) implies
[[M]] ≈ [[N]].

Proof. By combining Lemmas 2.1.7 and 2.1.8 . We have that (FM,N)MRN and (GM,N)MRN
are both solutions of the system of equations, hence they are bisimilar. Finally,

(x̃, p) [[M]]0〈p〉 = FM0,N0 ≈ GM0,N0 = (x̃, p) [[N]]0〈p〉

and thus [[M0]] ≈ [[N0]]. 2

2.2 Eager functions as mobile processes

2.2.1 Call-by-value reduction semantics

We consider the usual call-by-value reduction semantics [Plo75] with a ‘weak’ paradigm (no
reductions occur under an abstraction), as for call-by-name, and adapted to open terms. As
discussed in [AG16], if we were to work with a strong reduction strategy (e.g., reductions do
happen below a λ-abstraction), working with open terms is unavoidable. Our presentation
of call-by-value follows in the steps of Lassen; for more details on the reduction semantics of
call-by-value, we refer the reader to [Las05, AG16, RP04].

To define call-by-value’s βv-reduction, we need to enforce that evaluation may only occur
in a specific part of the term; this is the role of evaluation contexts. An evaluation context is
a special kind of inductively defined context, with exactly one hole [·], and in which a term
replacing the hole can immediately run. In the pure λ-calculus values are abstractions and
variables.

Evaluation contexts Ce := [·] | CeM | V Ce

Values V := x | λx.M

We write fv(Ce) for the free variables of Ce.
Eager reduction (or βv-reduction), −→ ⊆ Λ× Λ, is defined on open terms, and is deter-

mined by the rule:
Ce[(λx.M)V] −→ Ce[M{V/x}] .

We write =⇒ for the reflexive transitive closure of −→. A term in eager normal form is
a term that has no eager reduction.

Proposition 2.2.1. The following hold:

1. If M −→ M ′, then Ce[M] −→ Ce[M
′] and Mσ −→ M ′σ, for any substitution σ that

replaces variables with values.

2. Terms in eager normal form are either values or admit a unique decomposition of the
shape Ce[x V].

124

Therefore, given a term M , either M =⇒ M ′ where M ′ is a term in eager normal form,
or there is an infinite reduction sequence starting from M . In the first case, we say that M
has eager normal form M ′, written M ⇓ M ′; in the second case, we say that M diverges,
written M ⇑. We write M ⇓ when M ⇓M ′ for some M ′.

Definition 2.2.2 (Contextual equivalence). Given M, N ∈ Λ, we say that M and N are
contextually equivalent, written M 'Λ

ct N , if for any context C, we have C[M] ⇓ iff C[N] ⇓.

2.2.1.1 Tree semantics for the call-by-value λ-calculus

In this section, we present Lassen’s eager normal-form bisimilarity [Las05, LL05, SL09].

Definition 2.2.3 (Eager normal-form bisimulation). A relation R between λ-terms is an
eager normal-form bisimulation if, whenever M R N , one of the following holds:

1. both M and N diverge;

2. M ⇓ Ce[xV] and N ⇓ C ′e[xV ′] for some x, values V , V ′, and evaluation contexts Ce

and C ′e satisfying V R V ′ and Ce[z] R C ′e[z] for a fresh z;

3. M ⇓ λx.M ′ and N ⇓ λx.N ′ for some x, M ′, N ′ with M ′ R N ′;

4. M ⇓ x and N ⇓ x for some x.

Eager normal-form bisimilarity, -, is the largest eager normal-form bisimulation.

Essentially, the structure of a λ-term that is unveiled by Definition 2.2.3 is that of a
(possibly infinite) tree obtained by repeatedly applying βv-reduction, and branching a tree
whenever instantiation of a variable is needed to continue the reduction (clause (2)). We
call such trees Eager Trees (ETs) and accordingly also call eager normal-form bisimilarity
the Eager-Tree equality.

Example 2.2.4. Relation - is strictly finer than contextual equivalence 'Λ
ct: the inclusion

- ⊆ 'Λ
ct follows from the congruence properties of - [Las05]. For strictness, examples are

given by the following equalities, which hold for 'Λ
ct but not for -:

Ω = (λy. Ω)(xV) xV = (λy.xV)(xV) .

Example 2.2.5 (η rule). The η-rule is not valid for -. For instance, we have Ω 6- λx. Ωx.
The rule is not even valid on values, as we also have λy.xy 6- x. It holds however for
abstractions: λy. (λx.M)y - λx.M when y /∈ fv(M).

The failure of the η-rule λy.xy 6- x is troublesome as, under any closed value substitution
(a substitution replacing variables with closed values), the two terms are indeed eager normal-
form bisimilar. Thus η-eager normal-form bisimilarity [Las05] takes η-expansion into account
so to recover such missing equalities.

125

Definition 2.2.6 (η-eager normal-form bisimulation). A relation R between λ-terms is an
η-eager normal-form bisimulation if, wheneverM R N , either one of the clauses of Definition
2.2.3, or one of the two following additional clauses, hold:

5. M ⇓ x and N ⇓ λy.N ′ for some x, y, and N ′ such that N ′ ⇓ Ce[xV], with y R V and
z R Ce[z] for some value V , evaluation context Ce, and fresh z.

6. the converse of (5), i.e., N ⇓ x and M ⇓ λy.M ′ for some x, y, and M ′ such that
M ′ ⇓ Ce[xV], with V R y and Ce[z] R z for some value V , evaluation context Ce, and
fresh z.

Then η-eager normal-form bisimilarity, -η, is the largest η-eager normal-form bisimulation.

We sometimes call relation -η the η-Eager-Tree equality.

Remark 2.2.7. Definition 2.2.6 coinductively allows η-expansions to occur underneath other
η-expansions, hence trees with infinite η-expansions may be equated with finite trees. For
instance,

x -η λy.xy -η λy.x(λz. yz) -η λy.x(λz. y(λw. zw)) -η . . .

An example of -η equating a finite tree with an infinite tree is as follows: take a fixpoint
combinator Y , and define f def

= (λzxy.x(zy)). We then have Y fx =⇒ λy.x(Y fy), and then
x(Y fy) =⇒ x(λz. y(Y fz)), and so on. Hence, we have x -η Y fx.

2.2.2 The original encodings

Milner noticed [Mil90a, Mil92] that his call-by-value encoding can be easily tuned so to
mimic forms of evaluation in which, in an application MN , the function M is run first, or
the argument N is run first, or function and argument are run in parallel (the proofs are
actually carried out for this last option). We chose here the first scenario, because it is more
in line with ordinary call-by-value. A discussion on the ‘parallel’ call-by-value is deferred to
Section 3.2.1.

The core of any encoding of the λ-calculus into a process calculus is the translation of
function application. This becomes a particular form of parallel combination of two processes,
the function and its argument; βv-reduction is then modeled as process interaction.

The encoding of a λ-term is parametric over a name; this may be thought of as the location
of that term, or as its continuation. A term that becomes a value signals so at its continuation
name and, in doing so, it grants access to the body of the value. Such body is replicated,
so that the value may be copied several times. When the value is a function, its body can
receive two names: (the access to) its value-argument, and the following continuation. In the
translation of application, first the function is run, then the argument; finally the function
is informed of its argument and continuation.

In the original paper [Mil90a], Milner presented two candidates for the encoding of call-
by-value λ-calculus [Plo75]. They follow the same idea, but with a technical difference in
the rule for variables. One encoding, V , is defined as follows (for the case of application,

126

we adapt the encoding from parallel call-by-value to left-to-right call by value, as described
above):

V [[λx.M]]
def
= (p) p(y). !y(x, q).V [[M]]〈q〉

V [[MN]]
def
= (p) (νq)(V [[M]]〈q〉 | q(y).νr (V [[N]]〈r〉 | r(w). y〈w, p〉))

V [[x]]
def
= (p) p〈x〉

In the other encoding, V ′, application and λ-abstraction are treated as in V ; the rule for
variables is:

V ′[[x]]
def
= (p) p(y). !y(z, q).x〈z, q〉 .

The encoding V is more efficient than V ′. In V ′, the encoding of a λ-calculus variable gives
rise to a one-place buffer. As the computation proceeds, buffers are chained together, grad-
ually increasing the number of steps necessary to simulate a β-reduction. This phenomenon
does not occur in V , where the occurrence of a variable disappears after it is used.

2.2.3 Difficulties with the encodings

The immediate free output in the encoding of variables in V breaks the validity of βv-
reduction; i.e., there exist a termM and a value V such that V [[(λx.M)V]] 6≈ V [[M{V/x}]] [San93a].
The encoding V ′ fixes this by communicating, instead of a free name, a fresh pointer to that
name. Technically, the initial free output of x is replaced by a bound output coupled with a
link to x (the process !y(z, q).x〈z, q〉, receiving at y and re-emitting at x). Thus βv-reduction
is valid, i.e., V [[(λx.M)V]] ≈ V [[M{V/x}]] for any M and V [San93a].

(The final version of Milner’s paper [Mil92], which appeared in the Journal of Mathemat-
ical Structures in Computer Science, was written after the results in [San93a] were known,
and presents only the encoding V ′.)

Nevertheless, V ′ only delays the free output, as the added link contains itself a free output.
As a consequence, we can show that other desirable equalities of call-by-value are broken in
V ′. An example is law (5) from the Introduction, as stated by Proposition 2.2.8 below. This
law is desirable (and indeed valid for contextual equivalence, or the Eager-Tree equality)
intuitively because, in any substitution closure of the law, either both terms diverge, or
they converge to the same value (depending on whether the computation resulting from the
instantiation of xv diverges or not). The same argument holds for the λ-closures of these
terms, λx.xV and λx. I(xV).

We recall that 'π is barbed congruence in the π-calculus.

Proposition 2.2.8 (Non-law). For any value V , we have:

V ′[[I(xV)]] 6'π V ′[[xV]] and V [[I(xV)]] 6'π V [[xV]] .

(The law is violated also under coarser equivalences, such as contextual equivalence.)

127

Proof. For simplicity, we give the proof when V = y, and for encoding V . The same can be
shown for an arbitrary value V and for the encoding V ′, through similar calculations. We
use algebraic laws of the equivalence 'π, or of its associated proof techniques, to carry out
the calculations (cf. [SW01]).

V [[xy]]〈p〉 = νq (q〈x〉 | q(u).νr (r〈y〉 | r(w).u〈w, p〉))
'π νr (r〈y〉 | r(w).x〈w, p〉)
'π x〈y, p〉

V [[I(xy)]]〈p〉 'π νq (V [[I]]〈q〉 | q(u).νr (V [[xy]]〈r〉 | r(w).u〈w, p〉))
'π νq (q(u). !u(z, q′). q′〈z〉 | q(u).νr (V [[xy]]〈r〉 | r(w).u〈w, p〉))
'π νu (!u(z, q). q〈z〉 | νr (x〈y, r〉 | r(w).u〈w, p〉))
'π νr (x〈y, r〉 | r(w).νu (!u(z, q). q〈z〉 | u〈w, p〉))
'π νr (x〈y, r〉 | r(w). p〈w〉)
= νq (x〈y, q〉 | q(z). p〈z〉)
= νq (x〈y, q〉. q . p)

2

In presence of the normal form xy, the application of the identity I becomes observable.
Indeed, in the second term, a fresh name, q, is sent instead of continuation p, and a link
between q and p is installed. This corresponds to a law which is valid in ALπ, but not in π.

This problem can be avoided by iterating the transformation that takes us from V to V ′
(i.e., the replacement of a free output with a bound output so to avoid all emissions of free
names). Thus the target language becomes Internal π; the resulting encoding is analysed in
Section 2.2.6.

Another solution is to control the use of name capabilities in processes. In this case the
target language becomes ALπ, and we need not modify the initial encoding V . This situation
is analysed in Section 2.2.8.

We moreover notice that in both solutions, the use of link processes validates the following
law — a form of η-expansion — (the law fails for Milner’s encoding into the π-calculus):

λy.xy = x

In the call-by-value λ-calculus this is a useful sensible law (that holds because substitutions
replace variables with values).

Remark 2.2.9 (Generalisations of law (5)). As a direct consequence of Proposition 2.2.8,
for any evaluation context Ce and any value V , we have

V [[Ce[I(xV)]]]〈p〉 6'π V [[Ce[xV]]]〈p〉 .

128

I[[λx.M]]
def
= (p) p(y). !y(x, q). I[[M]]〈q〉

I[[x]]
def
= (p) p(y). y . x

I[[MN]]
def
= (p) νq

(
I[[M]]〈q〉 | q(y).νr

(
I[[N]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p)

))
Figure 2.2: The encoding into Iπ

One may want to generalize further this law, by replacing the identity I with an aribtrary
term λz.M , provided M somehow “uses” z: we may take, for instance, C ′e[z] for some
evaluation context C ′e. We can then show, indeed:

V [[Ce[(λz.C ′e[z])(xV)]]]〈p〉 6'π V [[Ce[C
′
e[xV]]]]〈p〉 .

This would still hold by replacing C ′e[z] with any term that reduces to C ′e[z]. Generalizing
further is outside the scope of this thesis. The work by Accattoli and Sacerdoti Coen [AC15]
on “useful reductions” could provide hints to investigate this.

2.2.4 Definition of the encoding

The encoding uses two kinds of names: triggers x, y, v, w . . . and continuations p, q, r,
For simplicity, we assume that the set of trigger names contains the set of λ-variables.
Continuation names are always used linearly; more precisely, they are only used once, in
subject position. On the other hand, trigger names may be used multiple times, and may
occur under a replication. This is a very mild form of typing. We could avoid the distinction
between these two kinds of names, at the cost of introducing additional replications in the
encoding.

Figure 2.2 presents the encoding into Iπ, which is derived from Milner’s encoding by
removing the free outputs as explained in Section 2.2.3. Process a . b represents a link,
sometimes called forwarder; for readability we have adopted the infix notation a . b for the
constant .. It transforms all outputs at a into outputs at b (therefore a, b are names of the
same sort). Thus the body of a . b is replicated, unless a and b are continuation names
(names such as p, q, r over which the encoding of a term is abstracted). The definition of the
constant . therefore is:

.
4
=

(p, q) p(x). q(y). y . x

if p, q are continuation names
(x, y) !x(z, p). y(w, q). (q . p | w . z)

otherwise

(The distinction between continuation names and the other sorts of names is not necessary,
but simplifies the proofs.)

We recall some useful properties of links [San96b]. The first one is a form of composition,
expressed in terms of the expansion preorder (Definition 0.3.11).

129

Lemma 2.2.10. We have:

1. νq (p . q | q . r) � p . r, for all continuation names p, r.

2. νy (x . y | y . z) � x . z, for all trigger names x, z.

The use of links in the encoding ensures that law (5) (from the Introduction) indeed
holds. More generally, the encoding equates Ce[xV] and (λz.Ce[z])(xV), for any evaluation
context Ce, value V and variable x (z is assumed to be fresh in Ce):

I[[(λz.Ce[z])(xV)]] ≈ I[[Ce[xV]]] . (2.1)

Law (5) is then an instance of law (2.1), by taking context Ce to be simply the hole. Law (2.1)
can be established by induction on the evaluation context Ce, using algebraic reasoning. We
give a simpler proof in Lemma 2.2.22 below (Section 2.2.7.1).

2.2.5 Validity of βv-reduction

The lemmas in this section are formulated using the expansion preorder (Definition 0.3.11),
as it is useful for the soundness proof. For the completeness proof, we use these lemmas with
≈ in place of �.

We first introduce a useful notation:

Definition 2.2.11. Given a value V , we define IV[[V]]〈z〉 as follows:

1. If V = x, then IV[[x]]〈z〉 4= z . x.

2. If V = λx.M , then IV[[V]]〈z〉 4= !z(x, q). I[[M]]〈q〉.

We observe that for any value V , we have:

I[[V]]〈p〉 = p(z). IV[[V]]〈z〉 .

The next lemma shows that, on the processes obtained by the encoding into Iπ, links
behave as substitutions. Some technical details of the proofs are found in Appendix D.1.1.
We recall that p, q are continuation names, whereas x, y are variable names.

Lemma 2.2.12. We have:

1. νx (I[[M]]〈p〉 | x . y) � I[[M{y/x}]]〈p〉;

2. νp (I[[M]]〈p〉 | p . q) � I[[M]]〈q〉;

3. νy (IV[[V]]〈y〉 | x . y) � IV[[V]]〈x〉.

Proof. Laws 1 and 2 are proved by induction onM , using algebraic reasoning and Lemma 2.2.10.
Law 1 is needed to show law 2.

130

3. Law 3 can be derived from laws 1 and 2, by case analysis on V :

• If V = λx.M , then IV[[V]]〈y〉 = !y(w, p). I[[M{w/x}]]〈p〉; we then have

νy (IV[[V]]〈y〉 | x . y) ∼ !x(z, q).νw, p (I[[M{w/x}]]〈p〉 | p . q | w . z)

� !x(z, q). I[[M{z/x}]]〈q〉 (by laws 1 and 2)
= IV[[V]]〈x〉

• If V = z, then IV[[V]]〈y〉 = !y(w, q). z(w′, q′). (w′ . w | q′ . q) = y . z; we can then
conclude by Lemma 2.2.10.

2

Lemma 2.2.13 (Validity of βv-reduction). For any M,N in Λ, M −→ N implies I[[M]] �
I[[N]].

Proof. One shows I[[(λx.M) V]] � I[[M{V/x}]] exploiting algebraic properties of replication.
The result then follows by the compositionality of the encoding and the congruence of �. 2

2.2.6 Soundness of the encoding

The structure of the proof of soundness of the encoding is similar to that for the analogous
property for Milner’s call-by-name encoding with respect to Levy-Longo Trees [San00]. The
details are however different, as in call-by-value both the encoding and the trees (the Eager
Trees extended to handle η-expansion) are more complex. As previously, some technical
details of the proofs are found in Appendix D.1.2.

Optimised encoding. In order to establish operational correspondence for the encoding,
we rely on the expansion preorder, �. To be able to reason up to �, we need, whenever
M =⇒ N , the encoding of N to be ‘faster’ than the encoding of M : the encoding of N
should perform less internal computation steps before a visible transition. This property is
not satisfied by encoding I.

We therefore introduce an optimised encoding, written O, between λ-terms and Iπ-terms.
The encoding is presented in Figure 2.3. In the figure we assume that rules for O[[V]] and
O[[(λx.M)V]] have priority over the others; in other words, in the other rules terms M and
N should not be values.

The optimised encoding of Figure 2.3 is obtained from that in Figure 2.2 by performing
a few (deterministic) reductions, at the price of a more complex definition. Precisely, in the
encoding of application we remove some of the initial communications, including those with
which a term signals to have become a value. To achieve this, the encoding of an application
goes by a case analysis (4 cases) on the occurrences of values in the subterms.

The general idea of the optimized encoding can be illustrated on two of its defining
clauses. For O[[VM]], the corresponding equation is the result of unfolding the original
encoding, and performing one (deterministic) communication. In the case of O[[xV]], not

131

O[[xV]]
def
= (p) x(z, q). (OV[[V]]〈z〉 | q . p)

O[[(λx.M)V]]
def
= (p) νy, w (OV[[λx.M]]〈y〉 | OV[[V]]〈w〉 | y(w′, r′). (w′ . w | r′ . p))

O[[VM]]
def
= (p) νy (OV[[V]]〈y〉 | νr (O[[M]]〈r〉 | r(w). y(w′, r′). (w′ . w | r′ . p)))

O[[MV]]
def
= (p) νq (O[[M]]〈q〉 | q(y).νw (OV[[V]]〈w〉 | y(w′, r′). (w′ . w | r′ . p)))

O[[MN]]
def
= (p) νq (O[[M]]〈q〉 | q(y).νr (O[[N]]〈r〉 | r(w). y(w′, r′). (w′ . w | r′ . p)))

O[[V]]
def
= (p) p(y).OV[[V]]〈y〉

where OV[[V]] is thus defined :

OV[[λx.M]]
def
= (y) !y(x, q).O[[M]]〈q〉

OV[[x]]
def
= (y) y . x

In the rules, we suppose that M and N are not values.

Figure 2.3: Optimised encoding into Iπ

only do we unfold the original encoding and reduce along deterministic communications, but
we also perform the administrative reductions that always precede the execution of I[[xV]],
as shown in the following calculations

I[[xV]]〈p〉 = νq (q(y). IV[[x]]〈y〉 | q(y).νr (r(w). IV[[V]]〈w〉 | r(w). y(w′, p′). (w′ . w | p′ . p)))
� ν(y, w) (IV[[x]]〈y〉 | IV[[V]]〈w〉 | y(w′, p′). (w′ . w | p′ . p)) (algebraic laws)
= ν(y, w) (y . x | y(w′, p′). (w′ . w | p′ . p) | IV[[V]]〈w〉)
� ν(w,w′, p′) (x(z, q). (z . w′ | q . p′) | p′ . p | w′ . w | IV[[V]]〈w〉)
� x(z, q).ν(w,w′, p′) . (z . w′ | w′ . w | q . p′ | p′ . p | IV[[V]]〈w〉)
� x(z, q).νw (q . p | z . w | IV[[V]]〈w〉) (by Lemma 2.2.10)
� x(z, q). (q . p | IV[[V]]〈z〉) (by Lemma 2.2.12)

The definition of OV[[xV]] is obtained by replacing IV[[V]] with OV[[V]].
Therefore, in the optimised encoding, the term in evaluation position is always ready

to be fired. As a consequence, in the encoding of Ce[xV], the first transition is the output
on x due to xV , rather than administrative reductions that may occur in Ce. Similarly,
the τ -transition from Ce[(λx.M)V] corresponds to the βv-reduction occuring in evaluation
position.

Relating the encodings. Lemma 2.2.15 below uses expansion to state that encoding O
is indeed an optimised version of I. It is established by analysing the behaviour of the
encoding of a stuck redex according to O:

132

Lemma 2.2.14. We have:

O[[Ce[xV]]]〈p〉 � x(z, q). (OV[[V]]〈z〉 | q(y).O[[Ce[y]]]〈p〉).
Proof. By induction on the evaluation context Ce. The base case is treated using the alge-
braic calculations which are given above. 2

Lemma 2.2.15. For all M ∈ Λ, I[[M]] � O[[M]].
This lemma is proved using simple algebraic laws.

Operational correspondence. We formulate operational correspondence between λ-terms
and their encodings using the optimised encoding.

In the lemma below, recall that we identify processes or transitions that only differ in
the choice of the bound names. Therefore, when we say a process has exactly one immediate
transition, we mean that there is a unique pair (µ,P), up to alpha-conversion of the pair,
such that O[[M]]〈p〉 µ−→ P .
Lemma 2.2.16 (Operational correspondence). For anyM ∈ Λ and fresh p, process O[[M]]〈p〉
has exactly one immediate transition, and exactly one of the following clauses holds:

1. O[[M]]〈p〉 p(y)−−→ P and M is a value, with P = OV[[M]]〈y〉;

2. O[[M]]〈p〉 x(z,q)−−−→ P and M = Ce[xV] and

P � OV[[V]]〈z〉 | q(y).O[[Ce[y]]]〈p〉;

3. OV[[M]]〈p〉 τ−→ P and there is N with M −→ N and P � O[[N]]〈p〉.
Proof. We reason by induction on M , and rely on Lemmas 2.2.13, 2.2.10, and 2.2.12. 2

The operational correspondence has two immediate consequences, for converging and
diverging terms.
Corollary 2.2.17. If O[[M]]〈p〉 =⇒ µ−→ P and µ 6= τ , then M admits an eager normal-form
M ′ such that O[[M ′]]〈p〉 µ−→� P .

Proof. By induction on the length of the reduction O[[M]]〈p〉 =⇒ µ−→ P . If O[[M]]〈p〉 µ−→ P
and µ 6= τ , by Lemma 2.2.16, M is an eager normal-form. Otherwise, there is P ′ such that
O[[M]]〈p〉 τ−→ P ′

µ
=⇒ P ; by Lemma 2.2.16, there is N such thatM −→ N , and P ′ � O[[N]]〈p〉.

Therefore O[[N]]〈p〉 µ
=⇒ Q, where Q � P . We can then apply the induction hypothesis to

deduce that N admits an eager normal-form M ′, which is also an eager normal-form of M ,
with O[[M ′]]〈p〉 µ−→� Q � P . 2

Lemma 2.2.18. O[[M]]〈p〉 ≈ 0 iff M ⇑.
Proof. Suppose O[[M]] 6≈ (p) 0. Then there is P , p and µ 6= τ such that O[[M]]〈p〉 µ

=⇒
O[[P]]〈p〉, and by Corollary 2.2.17, M has an eager normal form (hence M does not diverge).

For the converse implication, assume O[[M]] ≈ (p) 0. By Corollary 2.2.16, O[[M]]〈p〉 −→
P for some P , and there is N such that M −→ N , and O[[N]]〈p〉 ≈ P ≈ (p) 0. With this
property, using coinduction we derive M ⇑. 2

133

Soundness. Operational correspondence allows us to show that the observables for bisim-
ilarity in the encoding π-terms imply the observables for η-eager normal-form bisimilarity in
the encoded λ-terms. The delicate cases are those in which a branch in the tree of the terms
is produced — case (2) of Definition 2.2.3 — and where an η-expansion occurs — thus a
variable is equivalent to an abstraction, cases (5) and (6) of Definition 2.2.6.

For the branching, we exploit a decomposition property on π-terms, roughly allowing us
to derive from the bisimilarity of two parallel compositions the componentwise bisimilarity
of the single components. For the η-expansion, if I[[x]] ≈ I[[λz.M]], where M ⇓ Ce[xV], we
use a coinductive argument to derive V -η z and Ce[y] -η y, for y fresh; from this we then
obtain λz.M -η x.

The following lemma corresponds to the case of the branching; it allows us to decompose
an equivalence between two parallel processes. This result is used to handle equalities of the
form I[[Ce[xV]]] ≈ I[[C ′e[xV

′]]], in order to deduce equivalence between V and V ′ on the one
hand, and between Ce[y] and C ′e[y] on the other.

Lemma 2.2.19. Suppose that a does not occur free in Q or Q′, and one of the following
holds:

1. a(x).P | Q ≈ a(x).P ′ | Q′;

2. !a(x).P | Q ≈ !a(x).P ′ | Q′.

Then we also have Q ≈ Q′.

Proof. Since a does not appear free in Q or Q′, neither of those processes can perform an
action in which a occurs free (here we rely on the labelled transition system being ground).
As a consequence, we can play a bisimulation game relating Q and Q′, which can be deduced
from the game between a(x).P | Q and a(x).P ′ | Q′ (resp. from the game between !a(x).P |
Q and !a(x).P ′ | Q′). 2

We now show that the only λ-terms whose encoding is bisimilar to I[[x]] reduce either to
x, or to a (possibly infinite) η-expansion of x.

Lemma 2.2.20. If V is a value and x a variable, OV[[V]] ≈ OV[[x]] implies that either
V = x or V = λz.M , where the eager normal form of M is of the form Ce[xV

′], with
OV[[V ′]] ≈ OV[[z]] and O[[Ce[y]]] ≈ O[[y]] for any y fresh.

Proof. By definition, O[[x]]〈p〉 = p(y). y . x. If y 6= x, then I[[y]] 6≈ I[[x]]; therefore if
I[[V]] ≈ I[[x]] and V 6= x, then V is necessarily an abstraction, say V = λz.M . The
following equalities then hold:

• O[[λz.M]]〈p〉 = p(y). !y(z, q).O[[M]]〈q〉, and

• O[[x]]〈p〉 = p(y). !y(z, q).x(z′, q′). (z′ . z | q′ . q).

134

Therefore O[[M]]〈q〉 ≈ x(z′, q′). (z′ . z | q′ . q), and by Corollary 2.2.17 and Lemma 2.2.16,
M has an eager normal form Ce[xV

′]. We have, using Lemma 2.2.14:

O[[M]]〈q〉 ≈ O[[Ce[xV
′]]]〈q〉

≈ x(z′, q′). (OV[[V ′]]〈z′〉 | q′(y).O[[Ce[y]]]〈q〉) ,

hence
OV[[V ′]]〈z′〉 | q′(y).O[[Ce[y]]]〈q〉 ≈ z′ . z | q′ . q.

Then, z′ is not free in q′(y).O[[Ce[y]]]〈q〉 and q′ is not free in OV[[V ′]]〈z′〉. Furthermore,
OV[[V ′]]〈z′〉 is prefixed by an input on z′. By applying Lemma 2.2.19 twice, we deduce

OV[[V ′]]〈z′〉 ≈ z′ . z and q′(y).O[[Ce[y]]]〈q〉 ≈ q′ . q .

By definition, z′ . z = OV[[z]]〈z′〉, so

OV[[V ′]]〈z′〉 ≈ OV[[z]]〈z′〉 .

Moreover, by definition of ., we have

q′(y).O[[Ce[y]]]〈q〉 ≈ q′(y). q(y′). (y′ . y) .

The latter equivalence gives, by playing a step in the bisimulation game

O[[Ce[y]]]〈q〉 ≈ q(y′). (y′ . y)

= O[[y]]〈q〉 .

2

We can now establish soundness of the encoding.

Proposition 2.2.21 (Soundness). For any M,N ∈ Λ, if I[[M]] ≈ I[[N]] then M -η N .

Proof. Let R def
= {(M,N) | O[[M]] ≈ O[[N]]}. We show that R is an η-eager normal-form

bisimulation, and conclude by Lemma 2.2.15. Assume O[[M]] ≈ O[[N]].

1. Suppose w.l.o.g. that M ⇑. Then by Lemma 2.2.18, this gives O[[M]]〈p〉 ≈ 0. Hence
by hypothesis O[[N]]〈p〉 ≈ 0, which gives, by Lemma 2.2.18 that N ⇑.

2. Otherwise, M and N have eager normal-forms M ′ and N ′; thus M ⇓M ′ and N ⇓ N ′.
Therefore by Lemma 2.2.15 and validity of βv-reduction, O[[M ′]] ≈ O[[N ′]]. Since M ′ is

in eager normal-form, by Lemma 2.2.16, either O[[M ′]]〈p〉 x(z,q)−−−→ P or O[[M ′]]〈p〉 p(y)−−→
P , and likewise for N ′. This gives rise to two cases:

135

(a) M ′ = Ce[xV] and N ′ = C ′e[xV
′], and

OV[[V]]〈z〉 | q(y).O[[Ce[y]]]〈p〉
≈ OV[[V ′]]〈z〉 | q(y).O[[C ′e[y]]]〈p〉 .

Name q does not appear free in OV[[V]]〈z〉 or OV[[V ′]]〈z〉, hence by Lemma 2.2.19

OV[[V]] ≈ OV[[V ′]] .

Likewise, z′ does appear free neither in q(y).O[[Ce[y]]]〈p〉 nor in q(y).O[[C ′e[y]]]〈p〉,
and both OV[[V]]〈z〉 and OV[[V ′]]〈z〉 are prefixed by a replicated input on z. Hence,
by Lemma 2.2.19

O[[Ce[y]]] ≈ O[[C ′e[y]]] .

Therefore V R V ′ and Ce[y] R C ′e[y].

(b) M ′ and N ′ are values. They can be abstractions or variables.

i. If both are abstractionsM ′ = λz.M ′′, N ′ = λz.N ′′, and !y(z, q).O[[M ′′]]〈q〉 ≈
!y(z, q).O[[N ′′]]〈q〉, hence O[[M ′′]] ≈ O[[N ′′]], and M ′′ R N ′′.

ii. If both are variables, we must have M ′ = N ′ = x: for any y 6= x, O[[x]] 6≈
O[[y]]. We have x R x thus we can conclude.

iii. Otherwise, assumeM ′ = λz.M ′′ and N ′ = x without loss of generality. Then
O[[M ′]] ≈ O[[N ′]] ≈ O[[x]]. By Lemma 2.2.20, M ′′ ⇓ Ce[xV] for some Ce, V ,
and also O[[V]] ≈ O[[z]] and O[[Ce[y]]] ≈ O[[y]] for any y fresh. Hence, V R z,
Ce[y] R y for some y fresh, and we can conclude by case 6 of Definition 2.2.6.

2

2.2.7 Completeness of the encoding

Suppose M -η N . Then there is an η-eager normal-form bisimulation R such that MRN .
The completeness of the encoding can thus be stated as follows: given R an η-eager normal-
form bisimulation, for all (M,N) ∈ R, I[[M]] ≈ I[[N]].

To ease the reader into the proof, we first show the completeness for -, rather than -η.
The presentation of the extension to -η is deferred to Section 2.2.7.2.

2.2.7.1 Completeness for -

The system of equations. Suppose R is an eager normal-form bisimulation. We define
an (infinite) system of equations ER, solutions of which will be obtained from the encodings
of the pairs in R. We then use Theorem 1.4.11 and Lemma 1.1.14 to show that ER has a
unique solution.

We assume an ordering on names and variables, so to be able to view (finite) sets of these
as tuples. Moreover, if F is an abstraction, say (ã) P , then (ỹ) F is an abbreviation for the
abstraction (ỹ, ã) P .

136

In system ER, there is one equation XM,N = EM,N for each pair (M,N) ∈ R. The body
EM,N essentially describes the encoding of the eager normal form (or absence thereof) of
M and N , with the variables of the equations representing the coinductive hypotheses. To
formalise this, we extend the encoding of the λ-calculus to equation variables by setting

I[[XM,N]]
def
= (p) XM,N〈ỹ, p〉 where ỹ = fv(M,N) .

We now describe the equation XM,N = EM,N , for (M,N) ∈ R. The equation is parametrised
on the free variables ofM and N (to ensure that the body EM,N is a name-closed abstraction)
together with an additional continuation name (as all encodings of terms). Below, we let ỹ
stand for fv(M,N).

1. If M ⇓ x and N ⇓ x, then the equation is the encoding of x:

XM,N = (ỹ) I[[x]]

that is, the equation is

XM,N = (ỹ, p) p(z). z . x

Since x is the eager normal-form of M and N , x ∈ ỹ. Note that ỹ can contain more
names, occurring free in M or N .

2. If M ⇑ and N ⇑, then the equation uses a purely-divergent term. We choose the
encoding of Ω for this:

XM,N = (ỹ) I[[Ω]]

Note that since the encoding of any diverging term is bisimilar to 0, we could replace
the body of this equation with (ỹ, p) 0.

3. If M ⇓ λx.M ′ and N ⇓ λx.N ′, then the equation encodes an abstraction whose body
refers to the normal forms of M ′, N ′, via the variable XM ′,N ′ :

XM,N = (ỹ) I[[λx.XM ′,N ′]]

that is, the equation is

XM,N = (ỹ, p) p(z). !z(x, q).XM ′,N ′〈ỹ ′ , q〉

4. If M ⇓ Ce[xV] and N ⇓ C ′e[xV ′], we separate the evaluation contexts and the values,
as in Definition 2.2.3. In the body of the equation, this is achieved by: (i) rewriting
Ce[xV] into (λz.Ce[z])(xV), for some fresh z, and similarly for C ′e and V ′ (such a
transformation is valid for -, as per law 2.1, which is established in Lemma 2.2.22); and
(ii) referring to the equation variable associated to the evaluation contexts, XCe[z],C′

e[z],
and to the equation variable associated to the values, XV,V ′ . This yields the following
equation, for z fresh:

XM,N = (ỹ) I[[(λz.XCe[z],C′
e[z]) (x XV,V ′)]]

137

M ⇑ and N ⇑: XM,N = (ỹ, p) I[[Ω]]〈p〉
M ⇓ x and N ⇓ x : XM,N = (ỹ, p) p(y). y . x

M ⇓ λx.M ′ and N ⇓ λx.N ′ : XM,N = (ỹ, p) p(y). !y(x, q)XM ′,N ′〈ỹ ′ , q〉
M ⇓ Ce[xV] and N ⇓ C ′e[xV ′] : XM,N = (ỹ, p) I[[(λz.XCe[z],C′

e[z])(xXV,V ′)]]〈p〉

Figure 2.4: System ER of equations

Figure 2.4 sums up what has been presented, by providing the complete definition of
system ER (to preserve readability, we do not give the complete expression in the equation
for Ce[xV]).

As an example to illustrate the construction of ER, suppose (I, λx.M) ∈ R, where
I = λx.x and M = (λzy. z)xx′. The free variables of M are x and x′. We obtain the
following equations (assuming x is before x′ in the ordering of variables):

XI,λx.M = (x′, p) p(y). !y(x, q).Xx,M〈x, x′, q〉

(coming from (x′) I[[λx.Xx,M]]), and

Xx,M = (x, x′, p) p(y). y . x

(coming from (x, x′) I[[x]]).

Solutions of ER. Having constructed ER, the system of equations for R, we now define
solutions for ER from the encoding of the pairs in R.

We can view the relation R as an ordered sequence of pairs (e.g., assuming some lexico-
graphical ordering). Then Ri indicates the tuple obtained by projecting the pairs in R onto
the i-th component (i = 1, 2). Moreover we let (Mj, Nj) stand for the j-th pair in R, and ỹj
for fv(Mj, Nj).
Ic[[R1]] is defined as the sequence of closed abstractions resulting from the encoding of

R1, i.e., the tuple whose j-th component is (ỹj) I[[Mj]], and similarly for Ic[[R2]].
We observe that if ỹ = fv(M,N), then (ỹ, p) I[[M]]〈p〉 and (ỹ, p) I[[N]]〈p〉 are closed

abstractions.
To prove that Ic[[R1]] and Ic[[R2]] are solutions of the system, we need to establish

law (2.1):

Lemma 2.2.22. If Ce is an evaluation context, V is a value, x is a name and z is fresh in
Ce, then

I[[Ce[xV]]] ≈ I[[(λz.Ce[z])(xV)]] .

Proof. Lemmas 2.2.14 and 2.2.15; give us:

I[[Ce[xV]]]〈p〉 ≈ x(z, q). (OV[[V]]〈z〉 | q(y). I[[Ce[y]]]〈p〉)

138

and
I[[(λw.Ce[w])(xV)]]〈p〉 ≈ x(z, q). (OV[[V]]〈z〉 | q(y). I[[(λw.Ce[w])y]]〈p〉)

We conclude by validity of β-reduction (Lemma 2.2.13) applied to I[[(λw.Ce[w])y]]〈p〉. 2

Lemma 2.2.23. Ic[[R1]]and Ic[[R2]]are solutions of the system of equations ER.

Proof. We only establish the property for R1, the case for R2 is handled similarly.
We show that each component of Ic[[R1]] is solution of the corresponding equation, i.e.,

for the j-th component we show (ỹj) I[[Mj]] ≈ EMj ,Nj [Ic[[R1]]].
We reason by cases over the shape of the eager normal form of Mj, Nj.

• If Mj ⇑, we use Lemma 2.2.18, which gives us (ỹj) I[[M]]j ≈ (ỹj, p) 0 ≈ (ỹj) I[[Ω]].

• If Mj ⇓ Ce[xV], we have to show that:

I[[Mj]] ≈ I[[(λz.Ce[z])(xV)]] .

By Lemma 2.2.13, I[[M]]j ≈ I[[Ce[xV]]]; we then conclude by Lemma 2.2.22.

• If Mj ⇓ λx.M ′ (and Nj also reduces to an abstraction), then:

EMj ,Nj [I[[R1]]]〈ỹj, p〉 = p(z). !z(x, q). I[[M ′]]〈q〉
≈ I[[Mj]]〈ỹj, p〉 (by Lemma 2.2.13) .

• If Mj ⇓ x (and Nj ⇓ x), again:

EMj ,Nj [I[[R1]]]〈ỹj, p〉 = I[[x]]〈p〉
≈ I[[Mj]]〈ỹj, p〉 (by Lemma 2.2.13) .

2

Unique solution for ER. We now prove uniqueness of solutions for ER. The only delicate
requirement is the one on divergence for the syntactic solution. We introduce for this an
auxiliary system of equations, E ′R, that extends ER (in the sense of Definition 1.1.13). The
syntactic solutions of E ′R have no τ -transition, and hence trivially satisfy the requirement for
uniqueness of solutions. We then rely on Lemma 1.1.14 to deduce the same property for ER.

Like the original system ER, so the new one E ′R is defined by inspection of the pairs in
R. In E ′R, however, a pair in R may sometimes yield more than one equation.

As above, we consider (M,N) ∈ R with ỹ = fv(M,N).

1. When M ⇑ and N ⇑, the equation is

XM,N = (ỹ, p) 0 .

139

2. When M ⇓ V and N ⇓ V ′, we introduce a new equation variable XVV,V ′ and a new
equation. This allows us, in the following step (3), to perform some optimisations. The
equation is

XM,N = (ỹ, p) p(z).XVV,V ′〈z, ỹ ′〉 ,
and we have, accordingly, the two following additional equations corresponding to the
cases where values are functions or variables:

XVλx.M ′,λx.N ′ = (z, ỹ) !z(x, q).XM ′,N ′〈ỹ ′ , q〉
XVx,x = (z, x) z . x .

3. WhenM ⇓ Ce[xV] andN ⇓ Ce[xV
′], we refer toXVV,V ′ , instead ofXV,V ′ , so to remove all

initial reductions in the corresponding equation for ER. The first action thus becomes
an output:

XM,N = (ỹ, p) x(z, q). (XVV,V ′〈z, ỹ ′〉 | q(w).XCe[w],C′
e[w]〈ỹ

′′ , p〉) .

We now present Lemmas 2.2.24 and 2.2.25, which are are needed to apply Lemma 1.1.14.
(In Lemma 2.2.24, ‘extend’ is as by Definition 1.1.13.)

Lemma 2.2.24. The system of equations E ′R extends the system of equations ER.
Proof. The new system E ′R is obtained from ER by modifying the equations and adding new
ones. To show that the solutions to the common equations are the same, we use the same
laws as for the soundness proof. 2

Lemma 2.2.25. E ′R has a unique solution.

Proof. Divergence-freedom for the syntactic solutions of E ′R holds because in the equations
each name (bound or free) can appear either only in inputs or only in outputs. More precisely,
in the syntactic solutions, linear names (p, q, . . .) are used exactly once in subject position,
and non-linear names (x, y, w, . . .), when used in subject position, are either used exclusively
in input or exclusively in output.

As a consequence, since the labelled transition system is ground (names are only replaced
by fresh ones), no τ -transition can ever be performed, after any number of visible actions.
Further, E ′R is guarded. Hence we can apply Theorem 1.4.11. 2

We can remark that a more direct proof of Lemma 2.2.25 would have been possible, by
reasoning coinductively over the η-eager normal-form bisimulation defining the system of
equations.

Proposition 2.2.26 (Completeness for -). M - N implies I[[M]] ≈ I[[N]], for any M,N ∈
Λ.

Proof. Consider an eager normal-form bisimulation R, and the corresponding systems of
equations ER and E ′R. Lemmas 2.2.25 and 2.2.24 allow us to apply Lemma 1.1.14 and
deduce that ER has a unique solution. By Lemma 2.2.23, Ic[[R1]] and Ic[[R2]] are solutions
of ER. Thus, from M R N , we deduce (ỹ) I[[M]] ≈ (ỹ) I[[N]], where ỹ = fv(M,N). Hence
also I[[M]] ≈ I[[N]]. 2

140

2.2.7.2 Completeness for -η, and full abstraction

Completeness for -η. The proof for - is extended to -η, maintaining its structure. We
highlight the main differences. The systems of equations are given in full in Appendix D.1.3.

We enrich ER with the equations corresponding to the two additional clauses of -η

(Definition 2.2.6). When M ⇓ x and N ⇓ λz.N ′, where N ′ -η xz, we proceed as in case 4
of the definition of ER, given that N -η λz. ((λw.Ce[w])(xV)). The equation is:

XM,N = (ỹ) I[[λz.
(
(λw.Xw,Ce[w]) (x Xz,V)

)
]] .

We proceed likewise for the symmetric case.
In the ‘optimised equations’ defining E ′R, we add the following equation (relating values),

as well as its symmetric counterpart:

XVx,λz.N ′ = (y0, ỹ) !y0(z, q).x(z′, q′). (XVz,V 〈z′, ỹ ′〉 | q′(w).Xw,Ce[w]〈ỹ ′′ , q〉) .

As above, E ′R is used to prove uniqueness of solutions for ER. In order to prove that R
yields solutions of ER, we need to show that the encoding validates η-expansions for variables:

Lemma 2.2.27. I[[λy.xy]] ≈ I[[x]].

Proof. Using standard algebraic laws and the definition of links. 2

Finally, we prove that Ic[[R1]] and Ic[[R2]] are solutions of ER. Two additional cases are
to be considered :

• If M ⇓ x and N ⇓ λy.N ′, then:

EM,N [I[[R1]]]〈ỹ, p〉 = p(z). !z(y, q). I[[(λw.w)(xy)]]〈q〉
≈ p(z). !z(y, q). I[[xy]]〈q〉 (by Lemma 2.2.22)
= I[[λy.xy]]〈q〉
≈ I[[x]]〈p〉 (by Lemma 2.2.27)
≈ I[[M]]〈ỹ, p〉 (by Lemma 2.2.13) .

• If M ⇓ λy.M ′, M ′ ⇓ Ce[xV] and N ⇓ x, then:

EM,N [I[[R1]]]〈ỹ, p〉 = p(z). !z(y, q). I[[(λw.Ce[w])(xV)]]〈q〉
≈ p(z). !z(y, q). I[[Ce[xV]]]〈q〉 (by Lemma 2.2.22)
= I[[λy.Ce[xV]]]〈q〉
≈ I[[M]]〈ỹ, p〉 (by Lemma 2.2.13) .

Given the previous results, we can reason as for the proof of Proposition 2.2.26 to establish
completeness.

141

Proposition 2.2.28 (Completeness for -η). For any M,N in Λ, M -η N implies I[[M]] ≈
I[[N]].

Combining Propositions 2.2.21 and 2.2.28, and Theorem 1.4.10 we derive Full Abstraction
for -η with respect to barbed congruence.

Theorem 2.2.29 (Full Abstraction for -η). For any M,N in Λ, we have M -η N iff
I[[M]] 'Iπ I[[N]].

Remark 2.2.30 (Unique solutions versus up-to techniques). For Milner’s encoding of call-
by-name λ-calculus, the completeness part of the full abstraction result with respect to Levy-
Longo Trees [San00] relies on up-to techniques for bisimilarity. Precisely, given a relation R
on λ-terms that represents a tree bisimulation, one shows that the π-calculus encoding of R
is a π-calculus bisimulation up-to context and expansion.

In the up-to technique, expansion is used to manipulate the derivatives of two transitions
so to bring up a common context. Such up-to technique is not powerful enough for the call-
by-value encoding and the Eager Trees, because some of the required transformations would
violate expansion (i.e., they would require to replace a term by a ‘less efficient’ one). An
example of this is law (2.1) (in the proof of Lemma 2.2.23), that would have to be applied
from right to left so to implement the branching in clause (2) of Definition 2.2.3: in this
case, the common context is a context with two holes, corresponding to the encoding of
(λz. [·1])(x[·2]).

The use of the technique of unique solution of equations allows us to overcome the
problem: law (2.1) and similar laws that introduce ’inefficiencies’ can be used (and they are
indeed used, in various places), as long as they do not produce new divergences.

2.2.8 Encoding into ALπ

Full abstraction with respect to η-Eager-Tree equality also holds for Milner’s simplest encod-
ing, namely V (Section 2.2.2), provided that the target language of the encoding is taken to
be ALπ. The adoption of ALπ implicitly allows us to control capabilities, avoiding violations
of laws such as Law (5).

2.2.8.1 The Local π-calculus

We present here the results which make it possible for us to apply the unique-solution
technique to ALπ. The main idea is to exploit a characterisation of barbed congruence as
ground bisimilarity, from [MS04]. However, to obtain this, ground bisimilarity has to be set
on top of a non-standard transition system, specialised to ALπ. The Labelled Transition
System (LTS) is produced by the rules in Figure 2.5; these modify ordinary transitions (the
µ−→ relation) by adding static links a� b, which are abbreviations defined thus:

a� b
def
= !a(x̃). b〈x̃〉 .

142

P
νd̃ a〈̃b〉−−−−→ P ′ p̃ ∩ fn(P) = ∅

P
νp̃ a〈p̃〉7−−−−→ (p̃� b̃ | P ′)

P
a(̃b)−−→ P ′

P
a(̃b)7−−→ P ′

P
τ−→ P ′

P
τ7−→ P ′

Figure 2.5: The modified labelled transition system for ALπ

(We call them static links, following the terminology in [MS04], so to distinguish them from
the links a.b used in Iπ, whose definition makes use of recursive process definitions — static
links only need replication.)

Notations for the ordinary LTS (µ−→) are transported onto the new LTS (µ7−→), yielding,
e.g., transitions µZ=⇒ and µ̂Z=⇒.

We write ≈7→ for (ground) bisimilarity on the new LTS (defined as ≈ in Definition 0.2.2,
but using the new LTS in place of the ordinary one). Barbed congruence in ALπ, 'ALπ,
is defined as by Definition 1.4.2 (on τ -transitions, which are the only transitions needed to
define 'ALπ, the new LTS and the original one coincide).

We present the definition of asynchronous (ground) bisimilarity, which is used in [MS04]
to derive a characterisation of barbed congruence (asynchrony is needed because the calculus
is asynchronous, and barbed congruence observes only output actions).

Definition 2.2.31 (Asynchronous bisimilarity). Asynchronous bisimilarity, written ≈a
7→ , is

the largest symmetric relation R such that PRQ implies

• if P µ7−→ P ′ and µ is not an input, then there is Q′ s.t. Q µ̂Z=⇒ Q′ and P ′RQ′, and

• if P
a(̃b)7−−→ P ′, then either Q

a(̃b)
Z==⇒ Q′ and P ′ ≈a

7→
Q′ for some Q′, or Q =⇒ Q′ and

P ′R(Q′ | a〈̃b〉) for some Q′.

Theorem 2.2.32 ([MS04]). On ALπ processes that are image-finite up to ≈a
7→ , relations ≈a

7→

and 'ALπ coincide.

To apply our technique of unique solutions of equations it is however convenient to use
(synchronous) bisimilarity. The following result allows us to do so:

Theorem 2.2.33. On ALπ processes that have no free inputs, relations ≈7→ and ≈a
7→ coincide.

Proof. By construction, ≈7→ ⊆≈a
7→ .

To show that ≈a
7→ ⊆≈7→ , we first show that output capability is preserved along transitions:

we say that P respects output capability if any free name used in input subject position may
not be used in either object position or output subject positions. We show that if P respects
output capability and P µ7−→ P ′, then so does P ′.

We reason on the type of the transition P
µ′−→ P ′ from which P

P7−→
′
is derived (for

simplicity, assume monadic actions):

143

1. if P
a(c)−−→ P ′: for simplicity, we consider the transition a(b).Q

a(c)7−−→ Q{c/b}. c is fresh
in Q, and b may not be used in input position in Q. Therefore, c does not appear in
input position in P ′ = Q{c/b}, and P ′ respects output capability.

2. if P τ−→ P ′: there is no name appearing as both a free input and a free output in P .
We assume, for simplicity, P = νa (a(b).Q | ac) τ7−→ Q{c/b}. Then, b may not appear
in input position in Q, nor does c, as it appears in object position. Hence P ′ = Q{c/b}
respects output capability.

3. if P ab−→ P ′: assume for simplicity P = Q | ab, and P a(c)7−−→ νb (c � b | Q) (c 6∈ fn(Q)).
The only new input is due to c � b, but c is fresh in Q (and is not used in object
position in c� b). Hence νb (c� b | Q) respects output capability.

4. if P
a(b)−−→ P ′: same as the previous case.

Thus, we can consider bisimulations containing only processes that respect output capa-
bility.

Now, assume R is an asynchronous bisimulation relation containing only processes that
respect output capability. We show that R is also a synchronous bisimulation relation.

Let (P,Q) ∈ R. If P µ7−→ P ′ and µ is not an input action, the synchronous game is played.

Otherwise, P
a(̃b)7−−→ P ′. Then either Q

a(̃b)
Z==⇒ Q′ for some Q′ such that P ′ R Q′, and there is

nothing to show, or Q Z=⇒ Q′ for some Q′ such that P ′ R (Q′ | a〈̃b〉). Q′ | a〈̃b〉 can perform
an output on a, thus P ′ too (by the bisimulation game). Therefore, P has a free input on a,
and a free output on a. This is a contradiction. Therefore, only the synchronous game can
be played. This is illustrated by the following diagram:

P_

a
��

R Q
__

��
P ′__
a

��

R Q′
_
a

��

Over processes that respect output capability, asynchronous bisimulation relations are
synchronous bisimulation relations, thus ≈a

7→ and ≈7→ coincide. We can conclude: indeed,
ALπ processes that have no free input do respect output capability.

2

For any M ∈ Λ and p, process V [[M]]〈p〉 is indeed image-finite up to ≈a
7→ and has no free

input, and therefore satisfies the conditions of Theorem 2.2.33. We also exploit the fact that
≈7→ is a congruence relation in ALπ. The property in Theorem 2.2.33 is new | we are not
aware of papers in the literature presenting it. It is a consequence of the fact that, under
the hypothesis of the theorem, and with a ground transition system, the only input actions
in processes that can ever be produced are those emanating from the links, and two tested
processes, if bisimilar, must have the same sets of (visible) links.

144

M ⇑ and N ⇑: XM,N = (ỹ) V [[Ω]]

M ⇓ x and N ⇓ x : XM,N = (ỹ) V [[x]]

M ⇓ λx.M ′ and N ⇓ λx.N ′ : XM,N = (ỹ) V [[λx.XM ′,N ′]]

M ⇓ Ce[xV] and N ⇓ C ′e[xV ′] : XM,N = (ỹ) V [[(λz.XCe[z],C′
e[z]) (x XV,V ′)]]

M ⇓ x, N ⇓ λz.N ′, N ′ ⇓ Ce[xV] : XM,N = (ỹ) V [[λz.
(
(λw.Xw,Ce[w]) (x Xz,V)

)
]]

M ⇓ λz.M ′, M ′ ⇓ Ce[xV], N ⇓ x : XM,N = (ỹ) V [[λz.
(
(λw.XCe[w],w) (x XV,z)

)
]]

Figure 2.6: System ELR of equations (the last two equations are only needed for -η)

From Theorems 2.2.32 and 2.2.33, we therefore deduce that ≈7→ and 'ALπ coincide for
processes V [[M]]p.

Theorem 2.2.34. In ALπ, on agents that are image-finite up to ≈7→ and where no free name
is used in input, barbed congruence and bisimilarity coincide.

2.2.8.2 Full abstraction for the encoding into ALπ

We now discuss full abstraction for Milner’s encoding V [[·]], when the target language is ALπ
(considered with the modified LTS from Section 2.2.8.1). The proof of is overall very similar
to that of Theorem 2.2.29. There are some minor differences because of the modified LTS.

We define two systems of equations for ALπ: ELR (Figure 2.6) and EL′
R (Figure 2.7). These

are almost the same as ER and E ′R, except that the encoding of a term is given by V [[·]] rather
than I[[·]], with additional static links where appropriate. As above, we write ỹ, ỹ ′ or ỹ ′′ for
the free variables of the terms indexing the corresponding equation variable.

For both systems, we directly give all equations needed to handle -η.
We also recall the extension of the encoding to equation variables:

V [[XM,N]]
def
= (p) XM,N〈ỹ, p〉 where ỹ = fv(M,N)

The main difference with respect to the proofs of Propositions 2.2.26 and 2.2.28 is when
proving absence of divergences for the (optimised) system of equations. Indeed, in ALπ’s
modified transition system, visible transitions may create static links, that could thus produce
new reductions (cf. the rule for bound output transitions). Thus one has to show that the
added links do not introduce new divergences.

Lemma 2.2.35. Let P an ALπ process such that P has no divergence according to the
ground LTS. Then P has no divergence in the modified LTS for ALπ.

Proof. When an output occurs, static links are created. Each link is guarded by a replicated
input, whose subject is a fresh name. Hence, any synchronisation created by the link has to
be preceded by a visible action (the replicated input).

145

M ⇑ and N ⇑:

XM,N = (ỹ, p) 0

M ⇓ Ce[xV] and N ⇓ C ′e[xV ′] :

XM,N = (ỹ, p) (νz, q)(x〈z, q〉 | XVV,V ′〈z, ỹ ′〉 | q(w).XCe[w],C′
e[w]〈ỹ

′′ , p〉)
M ⇓ V and N ⇓ V ′ :

XM,N = (ỹ, p) (νy)(p〈y〉 | XVv,v′〈z, ỹ ′〉)
V = x and V ′ = x :

XVx,x = (z, x) z � x

V = λx.M and V ′ = λx.N :

XVλx.M,λx.N = (z, ỹ) !z(x, q).XM,N〈ỹ ′ , q〉
V = x, V ′ = λz.N , N ⇓ Ce[xV

′′] :

XVx,λz.N = (y0, ỹ) !y0(z, q). (νz′, q′)(x〈z′, q′〉 | XVz,V ′′〈z′, ỹ ′′〉 | q′(w).Xw,Ce[w]〈ỹ ′ , q〉)
V = λz.M , M ⇓ Ce[xV

′′], V ′ = x :

XVλz.M,x = (y0, ỹ) !y0(z, q). (νz′, q′)(x〈z′, q′〉 | XVV ′′,z〈z′, ỹ ′′〉 | q′(w).XCe[w],w〈ỹ ′ , q〉)

Figure 2.7: System EL′
R of equations (the last two equations are only needed for -η)

Furthermore, only fresh names are transmitted through this synchronisation: in !a(x̃). b〈x̃〉
the names x̃ are fresh and then immediately forwarded through b. Therefore, these synchro-
nisations cannot create additional synchronisations, nor can they induce divergences. 2

The rest of the proof is very similar to that of Theorem 2.2.29. We finally have

Theorem 2.2.36. M -η N iff V [[M]] 'ALπ V [[N]], for any M,N ∈ Λ.

2.2.9 Contextual equivalence and preorders

We have presented full abstraction for η-Eager-Tree equality taking a ‘branching’ behavioural
equivalence, namely barbed congruence, on the π-processes. We show here the same result for
contextual equivalence, the most common ‘linear’ behavioural equivalence. We also extend
the results to preorders.

We only discuss the encoding I into Iπ. Similar results however hold for the encoding V
into ALπ.

2.2.9.1 Contextual relations and traces

Contextual equivalence is defined in the π-calculus analogously to its definition in the λ-
calculus (Definition 2.2.2); thus, with respect to barbed congruence, the bisimulation game

146

on reduction is dropped. Since we wish to handle preorders, we also introduce the contextual
preorder.

Definition 2.2.37. Two Iπ agents A,B are in the contextual preorder, written A .Iπ
ct B,

if C[A] ⇓a implies C[B] ⇓a, for all contexts C. They are contextually equivalent, written
A 'Iπ

ct B, if both A .Iπ
ct B and B .Iπ

ct A hold.

To manage contextual preorder and equivalence in proofs, we exploit characterisations of
them as trace inclusion and equivalence.

Theorem 2.2.38. On Iπ processes, relation .Iπ
ct coincides with �tr, and relation 'Iπ

ct coin-
cides with ≈tr.

We adapt the results for preorders (from the abstract formulation, Section 1.2.3) to Iπ.
As the proofs are once again very similar, the details are deferred to Appendix C.2.

Lemma 2.2.39 (Pre-fixed points, �tr). Let E be a system of equations, and K̃E its syntactic
solution. If F̃ is a pre-fixed point for �tr of E, then K̃E �tr F̃ .

Proof. Consider a finite trace s of KẼ,i〈ã〉. As it is finite, there must be an n such that s
is a trace of En

i 〈ã〉, hence s is also a trace of En
i [F̃]〈ã〉. From Ẽ[F̃] �tr F̃ , by congruence

(which holds as a consequence of Theorem 2.2.38), it follows that En+1
i [F̃] �tr E

n
i [Fi], hence

also En+1
i [F̃] �tr Fi. Hence, s is a trace of Fi〈ã〉. 2

Lemma 2.2.40 (Post-fixed points, �tr). Let E be a guarded system of equations, and K̃E
its syntactic solution. Suppose K̃E has no divergence. If F̃ is a post-fixed point for �tr of E,
then F̃ �tr K̃E .

From Theorem 2.2.42, we immediatly get the following corollary.

Corollary 2.2.41 (Unique solution for trace equivalence). In Iπ, a weakly guarded system
of equations whose syntactic solution does not diverge has a unique solution for ≈tr.

Proof. Suppose F̃ ≈tr Ẽ[F̃] and G̃ ≈tr Ẽ[G̃]; this implies F̃ �tr G̃ and G̃ �tr F̃ , by applying
Theorem 2.2.42 twice. Hence F̃ ≈tr G̃. 2

Theorem 2.2.42. Suppose that E is a guarded system of equations with a divergence-free
syntactic solution.

If F̃ (resp. G̃) is a pre-fixed point (resp. post-fixed point) for �tr of E, then F̃ �tr G̃.

This result is the equivalence for Iπ of Theorem 1.2.27, for the abstract formulation; it
follows rather directly from Lemmas 2.2.39 and 2.2.40.

We can also extend Lemma 1.1.14 to preorders. Given a preorder relation S, two systems
of equations E and E ′, we say that E ′ extends E with respect to S if there exists a fixed set
of indices J such that:

147

1. any pre-fixed point of E for S can be obtained from a pre-fixed point of E ′ (for S) by
removing the components corresponding to indices in J ;

2. the same as (1) with post-fixed points in place of pre-fixed points.

Lemma 2.2.43. Consider two systems of equations E ′ and E where E ′ extends E with respect
to �tr. Furthermore, suppose E ′ is guarded and has a divergence-free syntactic solution. If
F̃ is a pre-fixed point for �tr of E, and G̃ a post-fixed point, then F̃ �tr G̃.

2.2.9.2 Full Abstraction

The preorder on λ-terms induced by the contextual preorder is η-eager normal-form sim-
ilarity, written ≤η. It is obtained by imposing that M ≤η N for all N , whenever M is
divergent. Thus, with respect to the bisimilarity relation -η, we only have to change clause
(1) of Definition 2.2.3, by requiring only M to be divergent. (The bisimilarity -η is then the
intersection of ≤η and its converse ≥η.)

Definition 2.2.44 (η-eager normal-form simulation). A relation R between λ-terms is an
η-eager normal-form simulation if, whenever MRN , one of the following holds:

1. M diverges;

2. M =⇒ Ce[xV] and N =⇒ C ′e[xV
′] for some x, V , V ′, Ce and C ′e such that VRV ′ and

Ce[z]RC ′e[z] for some z fresh in Ce, C
′
e;

3. M =⇒ λx.M ′ and N =⇒ λx.N ′ for some x, M ′, N ′ such that M ′RN ′;

4. M =⇒ x and N =⇒ x for some x;

5. M =⇒ x and N =⇒ λz.Ce[xV] for some x, z, V and Ce such that zRV and yRCe[y]
for some y fresh in Ce;

6. N =⇒ x and M =⇒ λz.Ce[xV] for some x, z, V and Ce such that VRz and Ce[y]Ry
for some y fresh in Ce.

η-eager normal form similarity is the largest η-eager normal-form simulation.

Theorem 2.2.45 (Full abstraction on preorders). For any M,N ∈ Λ, we have M ≤η N iff
I[[M]] .Iπ

ct I[[N]].

The structure of the proofs is similar to that for bisimilarity, using however Theorem
2.2.42. We discuss the main aspects of the soundness and the completeness.

Soundness means that I[[M]] �tr I[[N]] impliesM ≤η N . The proof follows the same lines
as the proof from Section 2.2.4: we define the relation R := {(M,N) | I[[M]] �tr I[[N]]},
and show that it is an η-eager normal-form simulation. The proof carries over similarly,
using the counterpart for trace inclusion of Lemmas 2.2.15 , 2.2.16, 2.2.17, 2.2.18 and 2.2.20.

148

To establish completeness, we consider an η-eager normal-form simulation R. We define
a system of equations ER as in Section 2.2.7. The only notable difference in the definition of
the equations is in the case where MRN , M diverges and N has an eager normal-form. In
this case, we use the following equation instead:

XM,N = (ỹ) I[[Ω]] . (2.2)

As in Section 2.2.7, we define a system of guarded equations E ′R whose syntactic solutions
do not diverge. In doing this, equation (2.2) is replaced with XM,N = (ỹ, p) 0. We can then
rely on Lemma 2.2.43 to use unique solution for preorders (Theorem 2.2.42) with ER instead
of E ′R.

Defining Ic[[R1]] and Ic[[R2]] as previously, we need to prove

Ic[[R1]] �tr ẼR[Ic[[R1]]] and ẼR[Ic[[R2]]] �tr Ic[[R2]] .

The former result is established along the lines of the analogous result in Section 2.2.7:
indeed, Ic[[R1]] is a solution of ER for ≈, and ≈tr is coarser than ≈.

For the latter, the only difference is due to equation (2.2), when MRN , and M diverges
but N does not. In that case, we have to prove that I[[Ω]] �tr I[[N]], which follows easily
because the only trace of I[[Ω]] is the empty one, hence I[[Ω]]〈p〉 �tr P for any P .

We obtain full abstraction for contextual equivalence as an immediate corollary.

Corollary 2.2.46 (Full abstraction for 'Iπ
ct). For any M,N in Λ, M -η N iff I[[M]] 'Iπ

ct

I[[N]].

149

Chapter 3

Conclusion

3.1 The unique-solution proof technique
We have revisited the proof technique of unique solution of equations, more precisely a version
of this proof technique due to Roscoe [Ros92, Ros97]. This technique played a central role
in the theory of Hoare’s CSP [Hoa85] in which it originated, and similar though weaker
versions of this technique are used in verification [GM14]. As a technique for coinductive
and operational equivalences it was first proposed by Milner; however, apart from its use
in examples from Milner’s original book on CCS [Mil89], it was mostly ignored, and saw
little to no use in the π-calculus or in concurrent languages with higher-order features, until
recently Sangiorgi illustrated the relationship between unique-solution and up-to-context
techniques [San15], that are central enhancements of the bisimulation proof technique.

The main contribution of this thesis, in the field of π-calculus and coinductive equiva-
lences, has been to dust off and rediscover this technique for coinductive equivalences and
operational semantics: we proved the soundness of one of its most powerful incarnations, for
different equivalences, compared it to other techniques, and applied to non-trivial examples,
including an open problem.

3.1.1 The importance of up to context

Another goal of this work was to illustrate the relationship of this technique with up-to
techniques, relationship that we tried to explore and formalize. In the Prologue, we exposed
how central up-to techniques are to the theory of bisimulations, and more specifically the
importance of ‘up to context’ techniques, but also the difficulties when applying such tech-
niques, and when proving them to be sound. We gave multiple examples from the literature
of situations where up-to-context is either unsound, impossible to combine with other tech-
niques, or its soundness is still an open problem. In all of these cases, unique solution of
equations provides an interesting alternative.

Another problem with up-to techniques for weak equivalences is the unsoundness of up
to bisimilarity (or at least of up to context and bisimilarity, see Section 0.4.2.3). A usual fix
is to consider preorders that are ‘sensitive to efficiency’, e.g. that control the relative number

151

of internal steps that the two processes playing the bisimulation game may perform; such
preorders include expansion (Definition 0.3.11) and contraction (Definition 0.6.1). However
these preorders limit, sometimes severely, the application of the technique (an example is
given by the call-by-value encoding in π, as discussed in Remark 2.2.30 and below). The
only existing technique that proposes a solution to these limitations is Pous’ ‘up to context,
transitivity and bisimilarity’ technique (defined in Section 1.1.4.1), one of the most powerful
forms of enhancements of the bisimulation proof method. We showed that our technique is
at least as powerful; furthermore, the up-to technique is arguably more complex, both in its
definition and its application. We believe that also the converse holds (Pous’ technique is as
powerful as our technique), though possibly with some additional side conditions (the non-
divergence hypothesis of our technique has to hold for some contexts only, while termination
needs a full context closure for Pous’ up-to technique), and only so for CCS. We leave a
detailed analysis of this comparison, which seems non-trivial, for future work. This result
also begs the question of the completeness of our technique with respect to up-to techniques
for other settings: while the proof in Section 1.1.4.1 is language-independent (under certain
assumptions) and should apply to most first-order synchronous settings, the relationship
between bisimulation enhancements and unique solution of equation theorems appears to be
weaker in name-passing calculi. In this respect, the goal of the work on unique solution of
equations was also to provide a way of better understanding up-to techniques and to shed
light into the conditions for their soundness, as discussed hereafter.

Lastly, up-to techniques have been analysed in an abstract setting using lattice the-
ory [Pou16] and category theory [BPPR17, RBR13]. It could be interesting to do the same
for the unique-solution techniques, to study their connections with up-to techniques, and
to understand which equivalences can be handled (possibly using, or refining, the abstract
formulation presented in Section 1.2.1).

3.1.2 Problems with the π-calculus and Higher-Order

Open Problem 0.4.13 (the need for closure under substitutions in up to context for the
asynchronous π-calculus) is a long-standing problem, and a crucial missing piece of the theory
of up-to techniques in name-passing calculi. Surprisingly, our unique solution technique,
despite these strong similarities with up-to context techniques, does not require the closure
under substitutions. However, it is currently unclear how to formally relate bisimulation
enhancements and ‘unique solution of equations’ in name-passing calculi, particularly if
those calculi have constraints such as asynchrony (Aπ, ALπ), type constraints (i/o types),
or other. Even if there is no formal correspondence between up-to-context techniques and
unique-solution techniques in this setting, the latter might act as a useful substitute for the
former in most cases.

We directly established our main unique-solution theorem and their variants for multiple
subcalculi of the π-calculus. This illustrates the robustness of our proof, that scales with
few to no modifications. A more systematic approach, however, would save a direct proof
in each and every case, giving unique-solution theorems for free (similar to Theorems 1.2.16
and 1.2.21). A possible direction to investigate is that of first-order encodings [MPS14]: a

152

framework to encode an LTS with name-binding as a first-order CCS-like LTS. The abstract
results from Section 1.2 might then directly apply to such settings, as long as the encodings
respect certain properties.

The Higher-order π-calculus. The case of HOπ is original in many regards. First,
because of process-passing, enforcing non-divergence for regular bisimulations is unreason-
able. On the other hand, the contraction approach does not seem applicable because of the
substitutivity problems for normal bisimilarity (that also prevent the use of up-to-context
techniques), which would also show up with contraction, as discussed at the end of Sec-
tion 1.4.2.2 (the problems with the the expansion preorder and the contraction preorder are
similar).

Similar problems arise for other equivalences: for context bisimulation (discussed in Sec-
tion 1.4.2.2), the clauses of the bisimulation involve universal quantifications on terms sup-
plied by the external environment, the current conditions on divergence might be too restric-
tive; thus, the treatment of divergence might need refinements.

Other divergence-related problems are discussed in Example 1.4.27: some forms of di-
vergence deserve further investigation, in order to refine the notion of innocuous divergence.
Indeed, the transmission of a process, which can be executed, can generate infinite sequences
of communication steps. Intuitively, this kind of divergence is not intrinsic to the original
process performing the input (one may choose not to execute the transmitted process). We
need to understand how this fits in our theory.

The λ-calculus. The unique-solution technique should scale for fined-grained equivalences
of the λ-calculus, such as eager normal form bisimilarity or open bisimilarity, if only by virtue
of Milner’s fully abstract encodings to Aπ and Iπ (Chapter 2). On the other hand for contex-
tual equivalence, problems similar to HOπ arise: divergences are the main observable, and
even non-innocuous divergences restrict the techniques to terms that might never diverge.
Defining a notion of contraction preorder seems really difficult. There are, however, inter-
esting uses of up-to-context in the λ-calculus, such as Biernacki et al. [BLP18]. We would
like to see if similar enhancements can also be applied to higher-order processes and to the
unique-solution technique.

3.1.3 Using the technique

Unique-solution techniques have been studied in many different settings [Mil89, Hoa85,
Ros92, GM14]. Our originality has been to propose a generic proof, that scales to mul-
tiple languages and most importantly different equivalences; to propose an abstract setting
formalizing the generic aspect of the proof, and pinpointing precisely the required hypothe-
ses; and proposing an improvement of the technique, which is specific to the operational
nature of our approach.

In comparison with the enhancements of the bisimulation proof method, the main draw-
back of the techniques we developed is the presence of a semantic condition, involving di-

153

vergence: the unfoldings of the equations should not produce divergences, or only produce
innocuous divergences. A syntactic condition for this has been proposed (e.g., variants of
Lemma 1.1.12). Various techniques for checking divergence in concurrent calculi exist in the
literature, including type-based techniques [YBH04, DHS10, DS06]. However, in general di-
vergence is undecidable, and therefore, the check may sometimes be unfeasible. Nevertheless,
the equations that one writes for proofs usually involve forms of ‘normalised’ processes, and
as such they are divergence-free (or at most, contain only innocuous divergences). Surprins-
ingly, this is confirmed in the case of the encodings of the λ-calculus in the π-calculus, even
though the main observable in the λ-calculus is precisely divergences. More experiments are
needed to validate this claim or to understand how limiting this problem is.

Several studies in functional programming and type theory rely on type-based methods
to ensure that coinductive definitions are productive, i.e., do not give rise to partially defined
functions (in order to preserve logical consistency) [Nak00, AM13]. Understanding whether
these approaches can be adapted to analyse divergences and innocuous divergences in systems
of equations is also a topic for future investigations.

3.2 Open call-by-value in the π-calculus

3.2.1 Milner’s open problem

The other main contribution of this thesis is our work on Milner’s open problem of Full
Abstraction for the encoding of call-by-vaue in the π-calculus, for which we proposed a
solution.

First we have shown that some expected equalities for open terms fail under Milner’s
encoding. We have considered two ways for overcoming this issue: rectifying the encodings
(precisely, avoiding free outputs); or restricting the target language to ALπ, so to control
the capabilities of exported names. We have proved that, in both cases, the equivalence
induced is Eager-Tree equality, modulo η (i.e., Lassen’s η-eager normal-form bisimulation).
For controlling capabilities, we have used ALπ. Another possibility would have been to use a
type system (such as i/o types [PS96], which can indeed enforce the behavioural constraints
of ALπ). In this case however, the technique of unique solution of equations needs to be
extended to typed calculi. We leave this investigation for future work.

On the π-calculus side, we studied the question for both contextual equivalence and
barbed congruence (the most common ‘linear’ and ’branching’ equivalences), and for the
contextual preorder; for the latter, we had to introduce a notion of preorder on Lassen’s
trees (η-eager normal-form simulation), quite naturally derived from η-eager normal-form
bisimulation.

For our encodings we have used the polyadic π-calculus; Milner’s original paper [Mil90a]
used the monadic calculus (the polyadic π-calculus makes the encoding easier to read; it
had not been introduced at the time of [Mil90a]). We believe that polyadicity does not
affect our results (the possibility of autoconcurrency breaks full abstraction of the encoding
of the polyadic π-calculus into the monadic one, but autoconcurrency does not appear in the

154

encoding of λ-terms).

Other encodings In the call-by-value strategy we have followed, the function is reduced
before the argument in an application. Our results can be adapted to the case in which
the argument runs first, changing the definition of evaluation contexts. The parallel call-by-
value, in which function and argument can run in parallel (considered in [Mil92]), appears
more delicate, as we cannot rely on the usual notion of evaluation context; furthermore,
the encodings of two diverging λ-terms evaluating in parallel can be different: for instance,
the π-calculus distinguishes between the term (xv)Ω and the term (yv)Ω (because the calls
to instantiate variables x and y, respectively, are observable). A full abstraction theorem
would thus necessitate an equivalence that discriminates between pure diverging terms; such
behavioural equivalences are uncommon, and to our knowledge, there is no such equivalence
for the parallel call-by-value λ-calculus in the literature.

There are also other encodings of λ-calculus strategies in the π-calculus: for call-by-need,
for instance [SW01], as well as a strong call-by-name encoding [SX14, MS04], that is fully
abstract for Böhm Tree equality. There are also encodings of Higher-Order calculi (HOπ) in
the π-calculus [San93a], and encodings of the λ-calculus in other Higher-Order calculi, such
as HOcore [BBL+17], a small but expressive process calculus. It would be interesting to
investigate, in future work, to what extent our technique could apply to those settings and
be used to prove full abstraction results.

Completeness proofs and the unique-solution techniques. It is plausible that the
proof based on the unique-solution technique could be turned into an up-to bisimulation.
However this would, at the very least, necessitate the use of an optimized encoding: indeed,
take for instance the encoding of Ce[xV]; it contains several administrative reductions, that
only occur later in the encoding of (λz.Ce[z])(xV), hence it would not be possible to use the
expansion pre-order. This is different from a direct bisimulation proof, as these transforma-
tions cannot be performed through an existing up-to technique. This is one of the very rare
cases where there is no obvious way to obtain a bisimulation up to expansion and context
from a unique-solution proof.

We leave for future investigation a formal study of this question, including if and how
our completeness results can be derived using the latter techniques or other (new) up-to
techniques, in a similar way as they are used in the completeness proofs with respect to
Levy-Longo Trees and Böhm Trees for the call-by-name encodings. We have discussed the
problems with call-by-value in Remark 2.2.30.

In any case, regardless of whether other proof techniques may be used, for this specific
problem the unique-solution technique appears to provide an elegant and natural framework
to carry out the proofs.

155

3.2.2 Building models with the π-calculus

Behavioural equivalences for open call-by-value. If the choice of an adequate proof
technique constituted an important obstacle to Full Abstraction for Milner’s call-by-value
encoding, another obstacle is that of the equivalence for which it is fully abstract: indeed,
equivalences for open call-by-value (call-by-value for open terms) are not as well understood
as equivalences for call-by-name, and standard equivalences from the theory of call-by-name
have no equivalence for call-by-value.

Lassen had introduced Eager Trees as the call-by-value analogous of Levy-Longo trees.
Our results would tend to confirm his claim, as it was known that for call-by-name, the
tree equalities induced by π-calculus encodings are Levy-Longo Trees. For strong call-by-
name, the equivalence induced is Böhm Trees equality [SX14]; however there is no Böhm
Tree equivalent for strong call-by-value, and it is as well unclear how to define a π-calculus
encoding for strong call-by-value. The obstacles impeding the definition of an equivalence
for strong call-by-value are the same we find in the case of open call-by-value, and as such
are related to the π-calculus encodings. In fact, the very notions of reduction and normal
forms are not clear for call-by-value, as terms can be stuck before reaching an actual value
(I(xV) does not reduce to xV). Lassen’s eager normal bisimulations had been proposed as
a first solution to this problem; we discuss some other solutions that have been proposed.

Related work on open and strong call-by-value. Open and strong call-by-value have
been studied in [AG16], where the focus is on operational properties of λ-terms; behavioural
equivalences are not considered. The paper describes the fireball calculus. As in our case,
the calculus is weak (no reduction is possible under a lambda), call-by-value, but, contrarily
to our setting, xV1 · · ·Vk is treated as a value, i.e., β-reduction can be triggered when the
argument has this shape.

A different origin for this calculus is the work by Grégoire and Leroy about the imple-
mentation of Coq [GL02], which uses strong reduction. There, the approach is to rely on
a evaluator for the weak version of the calculus, and progress by levels: first reduce at top
level, then go under lambda, hence opening the terms, and so on. This way open terms arise,
and this is why they study a weak strategy dealing with open terms.

An extensive presentation of call-by-value, including denotational models, is Ronchi della
Rocca and Paolini’s book [RP04].

For future investigation, it would be interesting to understand the relationship between
the π-calculus encodings and these theories of call-by-value, and whether these reduction
strategies can be faithfully represented in the π-calculus. We discuss possible directions to
use the π-calculus to represent models that are fully abstract with respect to to contextual
equivalence. This full abstraction property is one of the goals of previous variants of strong
call-by-value.

Models fromMilner’s encoding. The standard behavioural equivalence in the λ-calculus
is contextual equivalence. Encodings into the π-calculus (be it for call-by-name or call-by-
value) break contextual equivalence, at least without specific tweaks, because π-calculus

156

contexts are richer than those in the (pure) λ-calculus. We tried to understand how far
beyond contextual equivalence the discriminating power of the π-calculus brings us, for call-
by-value. The opposite approach is to restrict the set of ’legal’ π-contexts so to remain
faithful to contextual equivalence. This approach has been followed, for call-by-name, and
using type systems, in [BHY01, TY18].

Lassen et al. showed in [SL09] that eager normal form bisimilarity coincides with con-
textual equivalence for a (typed) variant of the µ-calculus with references; in other words,
given the results we established, the discriminating power of π-contexts is that of λ-contexts
with side-effects and Call/CC. This leads to two interesting research directions:

1. Looking to establish Full Abstraction for contextual equivalence, for an encoding that
translates references and exceptions to the π-calculus. We know how to translate
references [Wal95], we are not aware of π-calculus translations of Call/CC, which is
used in Lassen’s calculus. It is unclear whether using exceptions instead of Call/CC
would make the situation easier to handle.

2. Trying to recover Full Abstraction for contextual equivalence by diminishing the dis-
criminating power of π contexts: either by modifying the encoding, restricting the
language (for instance, by considering a subcalculus), or making bisimilarity on π pro-
cesses coarser.

π-calculus and games. Game semantics models of the π-calculus are trace-based, inter-
active, and usually fully abstract models, first introduced in the typed setting of PCF by
Hyland & Ong [HO00]. They rely, in their more concrete instantiations, on the description of
an operational semantics for partial λ-terms [GT12], and the use of global criteria on traces
(such as ‘innocence’ [HO00]).

Game semantics accounts of untyped call-by-name λ-calculus exist [GFH99], and they
allow us to derive both Böhm Trees [KNO03] and Levy-Longo Trees [OG04]. Game semantics
of untyped λ-calculus was also studied in [KNO99, KNO02]. Thus, for untyped call-by-
name, game models and the π-calculus encodings agree. In fact, game semantics appear to
be closely related to π-calculus representations of the λ-calculus: this relationship has been
first formally established in [HO95], where innocent traces from the game model of PCF are
represented using π-processes. This relationship, in the setting of call-by-name, has been
further explored using session types [CY19].

In this regard, our contribution on full abstraction for Milner’s encoding would tend to
validate both the idea that Eager Trees are the call-by-value counterpart of Levy-Longo
Trees, and as such correspond to game models, and the idea that the π-calculus and games
are strongly related, and that π-calculus encodings might be a very explicit and concrete
way to describe game models – before doing any sort of quotient of the model based on ‘bad’
traces.

However, while game semantics accounts of typed call-by-value do exist, e.g., [AM97,
HY99], we know of no game semantics accounts for the untyped case (albeit methods to
extract a game semantics for an untyped calculus from its typed counterpart do exist, as
described in [GFH99, McC00]).

157

Given this correspondence, it would be interesting to see whether our contributions can
help defining a game semantics approach to untyped call-by- value, based on Eager Trees,
and whether the relationship between π-calculus and Eager Trees we studied could help to
establish similar relationships in game semantics.

To go even further, this new work on π-calculus encodings might be an additional tool
to understand the general relation between the already-existing encodings and the already-
existing game models; in turn, this suggests to try and generalize this correspondence between
games and the π-calculus, and describe systematically game models as π encodings.

In conclusion, we believe the π-calculus might be the adequate tool to describe and
implement ‘concrete’ – i.e. operational, tractable – game models; π should be able to provide
powerful proof techniques (based on ‘bisimulations up to’ or ‘unique solution of equations’,
for instance) to study these models.

To be continued. . .

158

Bibliography

[Abr87] S. Abramsky. The lazy λ-calculus. In D. Turner, editor, Research Topics in
Functional Programming, pages 65–117. Addison Wesley, 1987.

[AC15] Beniamino Accattoli and Claudio Sacerdoti Coen. On the relative usefulness of
fireballs. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 141–155, 2015.

[ACS98] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations
for the asynchronous pi-calculus. Theor. Comput. Sci., 195(2):291–324, 1998.

[AFV01] Luca Aceto, Wan Fokkink, and Chris Verhoef. Handbook of Process Algebra (J.A.
Bergstra and A. Ponse and S.A. Smolka, editors), chapter Structural operational
semantics. Elsevier Science, 2001.

[AG16] Beniamino Accattoli and Giulio Guerrieri. Open call-by-value (extended version).
CoRR, abs/1609.00322, 2016.

[AM97] Samson Abramsky and Guy McCusker. Call-by-value games. In Proceedings of,
CSL ’97, Annual Conference of the EACSL, Selected Papers, pages 1–17, 1997.

[AM13] Robert Atkey and Conor McBride. Productive coprogramming with guarded
recursion. In ACM SIGPLAN International Conference on Functional Program-
ming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 197–208,
2013.

[Bar84] H.P. Barendregt. The lambda calculus: its syntax and semantics. Studies in logic
and the foundations of mathematics. North-Holland, 1984.

[BBL+17] Malgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk,
Damien Pous, and Alan Schmitt. Fully Abstract Encodings of λ-Calculus in
HOcore through Abstract Machines. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017,
pages 1–12, 2017.

[BBR10] Jos C.M. Baeten, Twan Basten, and Michel A. Reniers. Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge University Press, 2010.

159

[BC03] Vincent D. Blondel and Vincent Canterini. Undecidable problems for probabilis-
tic automata of fixed dimension. Theory Comput. Syst., 36(3):231–245, 2003.

[BCI+16] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piter-
man. T2: temporal property verification. In Tools and Algorithms for the
Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceed-
ings, pages 387–393, 2016.

[BGZ09] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. On the expressive
power of recursion, replication and iteration in process calculi. Mathematical
Structures in Computer Science, 19(6):1191–1222, 2009.

[BHR84] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communi-
cating sequential processes. J. ACM, 31(3):560–599, 1984.

[BHY01] Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the pi-
calculus. In TLCA, pages 29–45, 2001.

[BIM88] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced.
In Conference Record of the Fifteenth Annual ACM Symposium on Principles of
Programming Languages, pages 229–239, 1988.

[Blo95] Bard Bloom. Structural operational semantics for weak bisimulations. Theor.
Comput. Sci., 146(1&2):25–68, 1995.

[BLP18] Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. Proving soundness of ex-
tensional normal-form bisimilarities. Electr. Notes Theor. Comput. Sci., 336:41–
56, 2018.

[Bou00] Gérard Boudol. On the semantics of the call-by-name CPS transform. Theor.
Comput. Sci., 234(1-2):309–321, 2000.

[BP13] Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations
up to congruence. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 -
25, 2013, pages 457–468, 2013.

[BP15a] Manuel Bodirsky and Michael Pinsker. Topological birkhoff. Transactions of the
American Mathematical Society, 367(4):2527–2549, 2015.

[BP15b] Filippo Bonchi and Damien Pous. Hacking nondeterminism with induction and
coinduction. Commun. ACM, 58(2):87–95, 2015.

160

[BPP17] Manuel Bodirsky, Michael Pinsker, and András Pongrácz. Reconstructing
the topology of clones. Transactions of the American Mathematical Society,
369(5):3707–3740, 2017.

[BPPR17] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A general
account of coinduction up-to. Acta Inf., 54(2):127–190, 2017.

[BR84] Stephen D. Brookes and A. W. Roscoe. An improved failures model for com-
municating processes. In Seminar on Concurrency, Carnegie-Mellon University,
Pittsburg, PA, USA, pages 281–305, 1984.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University
Press, New York, NY, USA, 1990.

[Coq93] Thierry Coquand. Infinite objects in type theory. In Types for Proofs and Pro-
grams, International Workshop TYPES’93, Nijmegen, The Netherlands, May
24-28, 1993, Selected Papers, pages 62–78, 1993.

[CY19] Simon Castellan and Nobuko Yoshida. Two sides of the same coin: session types
and game semantics: a synchronous side and an asynchronous side. PACMPL,
3(POPL):27:1–27:29, 2019.

[DHL06] Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear
time µ-calculus. In Proceedings of the 26th International Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS’06,
pages 273–284, 2006.

[DHS10] Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi. Termination in
impure concurrent languages. In CONCUR 2010 - Concurrency Theory, 21th
International Conference, pages 328–342, 2010.

[DHS17] Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Divergence and Unique
Solution of Equations. In 28th International Conference on Concurrency Theory
(CONCUR 2017), volume 85, pages 11:1–11:16, 2017.

[DHS18] Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Eager functions as pro-
cesses. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 364–373,
2018.

[DHS19] Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Divergence and unique
solution of equations. Logical Methods in Computer Science, 15(3), 2019.

[DHS20] Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Towards ’up to context’
reasoning about higher-order processes. Theor. Comput. Sci., 807:154–168, 2020.

161

[dS85] Robert de Simone. Higher-level synchronising devices in meije-sccs. Theor. Com-
put. Sci., 37:245–267, 1985.

[DS06] Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. Inf.
Comput., 204(7):1045–1082, 2006.

[Dur17] Adrien Durier. Divergence and unique solution of equa-
tions in an abstract setting, Coq formal proof. Available at
https://github.com/adurier/uniquesolution/, 2017.

[FvG16] Wan Fokkink and Rob J. van Glabbeek. Divide and congruence II: delay and
weak bisimilarity. In Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, pages 778–787. ACM, 2016.

[GFH99] Pietro Di Gianantonio, Gianluca Franco, and Furio Honsell. Game semantics
for untyped lambda beta eta-calculus. In Proceedings of the 4th International
Conference on Typed Lambda Calculi and Applications, TLCA ’99, pages 114–
128, London, UK, UK, 1999. Springer-Verlag.

[Gim94] Eduardo Giménez. Codifying guarded definitions with recursive schemes. In
Types for Proofs and Programs, International Workshop TYPES’94, Båstad,
Sweden, June 6-10, 1994, Selected Papers, pages 39–59, 1994.

[GL02] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong re-
duction. In Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, Octo-
ber 4-6, 2002., pages 235–246, 2002.

[GM14] Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of
Communicating Systems. MIT Press, 2014.

[GT12] Dan R. Ghica and Nikos Tzevelekos. A system-level game semantics. In Ulrich
Berger and Michael W. Mislove, editors, Proceedings of the 28th Conference on
the Mathematical Foundations of Programming Semantics, MFPS 2012, Bath,
UK, June 6-9, 2012, volume 286 of Electronic Notes in Theoretical Computer
Science, pages 191–211. Elsevier, 2012.

[GV92] Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics
and bisimulation as a congruence. Inf. Comput., 100(2):202–260, 1992.

[HNDV13] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of
parameterization in coinductive proof. In The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013, pages 193–206, 2013.

[HO95] J. M. E. Hyland and C.-H. Luke Ong. Pi-calculus, dialogue games and PCF. In
Proceedings of FPCA 1995, pages 96–107. ACM, 1995.

162

https://github.com/adurier/uniquesolution/

[HO00] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: i, ii, and III.
Inf. Comput., 163(2):285–408, 2000.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HP07] Martin Hyland and John Power. The category theoretic understanding of uni-
versal algebra: Lawvere theories and monads. Electronic Notes in Theoretical
Computer Science, 172:437–458, 2007.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
Lambda-Calculus. Cambridge University Press, 1986.

[HY99] Kohei Honda and Nobuko Yoshida. Game-theoretic analysis of call-by-value
computation. Theor. Comput. Sci., 221(1-2):393–456, 1999.

[KNO99] Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. A universal innocent
game model for the böhm tree lambda theory. In Computer Science Logic, 13th
International Workshop, CSL ’99, 8th Annual Conference of the EACSL, Madrid,
Spain, September 20-25, 1999, Proceedings, pages 405–419, 1999.

[KNO02] Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. Innocent game models of
untyped lambda-calculus. Theor. Comput. Sci., 272(1-2):247–292, 2002.

[KNO03] Andrew D. Ker, Hanno Nickau, and C.-H. Luke Ong. Adapting innocent game
models for the böhm treelambda-theory. Theor. Comput. Sci., 308(1-3):333–366,
2003.

[KW06] Vassileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about
higher-order imperative programs. In Proc. POPL’06, pages 141–152, 2006.

[Las98a] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, 1998.

[Las98b] Søren B. Lassen. Relational reasoning about contexts. In Andrew D. Gordon and
Andrew M. Pitts, editors, Higher Order Operational Techniques in Semantics,
Publications of the Newton Institute, pages 91–135. Cambridge University Press,
1998.

[Las05] Søren B. Lassen. Eager normal form bisimulation. In 20th IEEE Symposium on
Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA,
Proceedings, pages 345–354, 2005.

[Ler] Xavier Leroy. CompCert C verified compiler. http://compcert.inria.fr/.

[Lév75] Jean-Jacques Lévy. An algebraic interpretation of the lambda beta - calculus and
a labeled lambda - calculus. In Lambda-Calculus and Computer Science Theory,
Proceedings of the Symposium Held in Rome, March 25-27, 1975, pages 147–165,
1975.

163

http://compcert.inria.fr/

[LL05] Søren B. Lassen and Paul Blain Levy. Eager normal form bisimulation. In In
Proc. 20th Annual IEEE Symposium on Logic in Computer Science, pages 345–
354. IEEE Computer Society, 2005.

[Lon83] Giuseppe Longo. Set-theoretical models of λ-calculus: theories, expansions, iso-
morphisms. Annals of Pure and Applied Logic, 24(2):153 – 188, 1983.

[McC00] Guy McCusker. Games and full abstraction for FPC. Inf. Comput., 160(1-2):1–
61, 2000.

[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

[Mil90a] Robin Milner. Functions as processes. Research Report RR-1154, INRIA, 1990.

[Mil90b] Robin Milner. Functions as processes. In Automata, Languages and Program-
ming, 17th International Colloquium, ICALP90, Warwick University, England,
July 16-20, 1990, Proceedings, pages 167–180, 1990.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992.

[Mil93] Robin Milner. The polyadic π-calculus: a tutorial. In Logic and algebra of
specification, volume 94 of NATO ASI Series (Series F: Computer & Systems
Sciences), pages 203–246. Springer, 1993.

[Mil99] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

[MN05] Massimo Merro and Francesco Zappa Nardelli. Behavioral theory for mobile
ambients. J. ACM, 52(6):961–1023, 2005.

[MPS14] Jean-Marie Madiot, Damien Pous, and Davide Sangiorgi. Bisimulations up-to:
Beyond first-order transition systems. In CONCUR 2014 - Concurrency Theory
- 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5,
2014. Proceedings, pages 93–108, 2014.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, I. Inf. Comput., 100(1):1–40, 1992.

[MRG07] Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. SOS for-
mats and meta-theory: 20 years after. Theor. Comput. Sci., 373(3):238–272,
2007.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Automata, Lan-
guages and Programming, 19th International Colloquium, ICALP92, Vienna,
Austria, July 13-17, 1992, Proceedings, pages 685–695, 1992.

164

[MS04] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi.
Mathematical Structures in Computer Science, 14(5):715–767, 2004.

[Nak00] Hiroshi Nakano. A modality for recursion. In 15th Annual IEEE Symposium on
Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000,
pages 255–266, 2000.

[OG04] C.-H. Luke Ong and Pietro Di Gianantonio. Games characterizing levy-longo
trees. Theor. Comput. Sci., 312(1):121–142, 2004.

[OY16] Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as ef-
fects. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 568–581, 2016.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor.
Comput. Sci., 1(2):125–159, 1975.

[Pou07] Damien Pous. Complete lattices and up-to techniques. In Programming Lan-
guages and Systems, 5th Asian Symposium, APLAS 2007, Singapore, November
29-December 1, 2007, Proceedings, pages 351–366, 2007.

[Pou08] Damien Pous. Up to techniques for bisimulations. PhD thesis, ENS Lyon, Febru-
ary 2008.

[Pou16] Damien Pous. Coinduction all the way up. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York,
NY, USA, July 5-8, 2016, pages 307–316, 2016.

[Pou17] Damien Pous. private communication, 2017.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6(5):409–453, 1996.

[PS11] Damien Pous and Davide Sangiorgi. Advanced Topics in Bisimulation and Coin-
duction (D. Sangiorgi and J. Rutten editors), chapter Enhancements of the coin-
ductive proof method. Cambridge University Press, 2011.

[RBR13] Jurriaan Rot, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Coalgebraic
bisimulation-up-to. In SOFSEM 2013: Theory and Practice of Computer Sci-
ence, 39th International Conference on Current Trends in Theory and Practice
of Computer Science, pages 369–381, 2013.

[Ros92] A. W. Roscoe. An alternative order for the failures model. J. Log. Comput.,
2(5):557–577, 1992.

165

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997.

[Ros10] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

[RP04] Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda Calculus
- A Metamodel for Computation. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

[San93a] Davide Sangiorgi. Expressing mobility in process algebras : first-order and higher-
order paradigms. PhD thesis, University of Edinburgh, UK, 1993.

[San93b] Davide Sangiorgi. An investigation into functions as processes. In Proc. of
MFPS’93, volume 802 of Lecture Notes in Computer Science, pages 143–159.
Springer, 1993.

[San94] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Inf.
Comput., 111(1):120–153, 1994.

[San95] Davide Sangiorgi. On the proof method for bisimulation (extended abstract). In
Mathematical Foundations of Computer Science 1995, 20th International Sym-
posium, MFCS’95, Prague, Czech Republic, August 28 - September 1, 1995, Pro-
ceedings, pages 479–488, 1995.

[San96a] Davide Sangiorgi. Bisimulation for higher-order process calculi. Inf. Comput.,
131(2):141–178, 1996.

[San96b] Davide Sangiorgi. pi-calculus, internal mobility, and agent-passing calculi. Theor.
Comput. Sci., 167(1&2):235–274, 1996.

[San98] Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures
in Computer Science, 8(5):447–479, 1998.

[San00] Davide Sangiorgi. Lazy functions and mobile processes. In G. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of
Robin Milner. MIT Press, 2000.

[San11] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, New York, NY, USA, 2011.

[San15] Davide Sangiorgi. Equations, contractions, and unique solutions. In Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, pages 421–432, 2015.

[SB81] Hanamantagouda P Sankappanavar and Stanley Burris. A course in universal
algebra, volume 78. 1981.

166

[SKS11] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimula-
tions for higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):5:1–
5:69, 2011.

[SL09] Kristian Støvring and Søren B. Lassen. A complete, co-inductive syntactic theory
of sequential control and state. In Semantics and Algebraic Specification, Essays
Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday, pages 329–
375, 2009.

[SM92] Davide Sangiorgi and Robin Milner. The problem of "weak bisimulation up to".
In CONCUR ’92, Third International Conference on Concurrency Theory, Stony
Brook, NY, USA, August 24-27, 1992, Proceedings, pages 32–46, 1992.

[SR11] Davide Sangiorgi and Jan Rutten. Advanced Topics in Bisimulation and Coin-
duction. Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile pro-
cesses. Cambridge University Press, 2001.

[SX14] Davide Sangiorgi and Xian Xu. Trees from functions as processes. In 25th Inter-
national Conference, CONCUR 2014, Rome, Italy, LNCS, pages 78–92. Springer
Verlag, 2014.

[Sze86] Ágnes Szendrei. Clones in universal algebra. Les presses de L’universite de
Montreal, 1986.

[TCP12] Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed
processes. In Foundations of Software Science and Computational Structures -
15th International Conference, FOSSACS 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012. Proceedings, pages 346–360, 2012.

[Tea] The Coq Development Team. Coq proof assistant. https://coq.inria.fr/.

[TY18] Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions
- A tale of two (fully abstract) encodings. In Proc. of ESOP 2018, volume 10801
of Lecture Notes in Computer Science, pages 827–855. Springer, 2018.

[UP02] Irek Ulidowski and Iain C. C. Phillips. Ordered SOS process languages for branch-
ing and eager bisimulations. Inf. Comput., 178(1):180–213, 2002.

[vG90] Rob J. van Glabbeek. The linear time-branching time spectrum (extended ab-
stract). In CONCUR ’90, Theories of Concurrency: Unification and Extension,
Amsterdam, The Netherlands, August 27-30, 1990, Proceedings, pages 278–297,
1990.

167

[vG93] Rob J. van Glabbeek. The linear time - branching time spectrum II. In CON-
CUR ’93, 4th International Conference on Concurrency Theory, Hildesheim,
Germany, August 23-26, 1993, Proceedings, pages 66–81, 1993.

[vG05] Rob J. van Glabbeek. On cool congruence formats for weak bisimulations. In
Theoretical Aspects of Computing - ICTAC 2005, Second International Collo-
quium, pages 318–333, 2005.

[vG11] Rob J. van Glabbeek. On cool congruence formats for weak bisimulations. Theor.
Comput. Sci., 412(28):3283–3302, 2011.

[Wal95] David Walker. Objects in the pi-calculus. Inf. Comput., 116(2):253–271, 1995.

[YBH04] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong Normalisation in the
Pi-Calculus. Information and Computation, 191(2):145–202, 2004.

168

Appendix A

List of relation symbols

A.1 List of symbols for behavioural relations
The following table summarises the notations used for the equivalences and preorders.

Equivalences for process calculi.

≈ (weak) bisimilarity (Definition 0.2.2, Prologue - Section 0.2.1)
∼ strong bisimilarity (Definition 0.2.1, Prologue - Section 0.2.1)
� expansion (Definition 0.3.11, Prologue - Section 0.3.3.3)
�c contraction (Definition 0.6.1, Prologue - Section 0.6)
≈tr trace equivalence (Definition 0.2.11, Prologue - Section 0.2.3)
�tr trace inclusion (Definition 0.2.11, Prologue - Section 0.2.3)
'• barbed congruence in CCS (Definition 0.2.8, Prologue - Section 0.2.2)
'L barbed congruence in L (Definition 1.4.2, Prologue - Section 1.4.1.2)
'L

ct contextual equivalence in L (Definition 2.2.37, Section 2.2.9.1)
.Iπ

ct contextual preorder in Iπ (Definition 2.2.37, Section 2.2.9.1)
≈7→ ground bisimilarity, ALπ special LTS (Section 2.2.8.1)

where L is supposed to be a subcalculus of π. In the paper we have considered Iπ and
ALπ.

Equivalences for the λ-calculus.

- eager normal-form bisimilarity (Definition 2.2.3, Section 2.2.1.1)
-η η-eager normal-form bisimilarity (Definition 2.2.6, Section 2.2.1.1)
≤η η-eager normal-form similarity (Definition 2.2.44, Section 2.2.9.2)
'Λ

ct contextual equivalence in Λ (Definition 2.2.2, Section 2.2.1)

169

Appendix B

Up-to-context techniques

B.1 Non-compatibility of up to context in Aπ
This appendix consists in a proof that the substitution closure function

S : R 7→ {(σ(P), σ(Q)) | P R Q and σ is any substitution}

is not compatible in the asynchronous π-calculus, and that neither is the context closure
function C (see Section 0.4.4 and reference [PS11] for more details).

This proof is due to Damien Pous [Pou17], exchanged in a personal communication; to
our knowledge, such a proof as never been published, this is why we reproduce it here, with
his authorisation.

We recall that b is the monotone function on the lattice of binary relations on processes
defined as :

b(R)
4
= {(P,Q) | ∀µ,

∀P ′, P µ−→ P ′ implies there exists Q′, Q µ−→ Q′ and P ′ R Q′

∀Q′, Q µ−→ Q′ implies there exists P ′, P µ−→ P ′ and P ′ R Q′}

As per usual, we use this function to characterize strong bisimilarity as a largest fixed-point:
νb =∼ [San11, Mil89, SR11, Pou16]. We define the successive approximations of strong
bisimilarity, written ∼i for an index i ∈ N, as follows:

• ∼0
4
= {(P,Q) | for all processes P and Q} is the full relation

• ∼i+1
4
= b(∼i)

We use the following characterisation of compatibility [SR11]: f is below a compatible
function iff for all i, f(∼i) ≤∼i. We show that the substitution σ such that σ(a) = b and is
otherwise the identity is not compatible, by showing σ(∼2) 6≤∼2.

First, remark that a. b | b ∼2 a | b. However, σ breaks this equivalence: σ(a. b | b) = a. a |
a

τ−→ a, however σ(a | b) = a | a τ−→ 0; thus σ(a. b | b) 6∼2 σ(a | b). Thus σ(∼2) 6≤∼2, and S
is not compatible (nor below any compatible function).

171

We now use the same example to show that C is not compatible either. Assume P =
a. (a. b | b) | b and Q = a. (a | b) | b. We have that P ∼4 Q. However, writing C for the
context νc (c(a). · | cb), we have that C[P] 6∼4 C[Q] (arguments are similar to above).
Therefore up-to input context is not compatible (nor below any compatible function).

172

Appendix C

Proofs of variants of the main theorem

C.1 Unique solution proofs in HOπ
This Appendix contains detailed proofs for the unique solution theorem in HOπ (Theo-
rems 1.4.24 and 1.4.25).

In analysing such transitions, there are several aspects which differ between CCS and
HOπ. First, we rely on the notions of reducts (Definition 1.4.23), which, as explained above,
have to be tailored to HOπ. Moreover, input and output transitions yield abstractions and
concretions, which need to be instantiated. This shows up in several places below, like in
the following definition, in clauses 3 and 4, when we need to refer to processes in order to
impose a condition involving ≈.

Definition C.1.1. A system of equations X̃ = F̃ protects its solutions if, for all solution F̃ ,
and for all P′ ∈ redω(F̃), the following hold:

1. if P′[F̃] =⇒ Q for some Q, then there exists P′′ and n such that P′[F̃n] =⇒ P′′ and
P′′[F̃] ≈ Q.

2. if P′[F̃]
`

=⇒ Q for some Q, then there exists P′′ and n such that P′[F̃n]
`

=⇒ P′′ and
P′′[F̃] ≈ Q.

3. ifP′[F̃]
a

=⇒ F0, for some a and some F , then there exists F and n such thatP′[F̃n]
a

=⇒ F0

and (F0 ◦ Trm)[F̃] ≈ F0 ◦ Trm (for any m fresh).

4. if P′[F̃]
a

=⇒ C, for some a and some C, then there exists C and n such that P′[F̃n]
a

=⇒ C

and (C • Abm)[F̃] ≈ C • Abm (for any m fresh).

Intuitively, a system of equations X̃ = F̃ protect its solutions when transitions emanating
from P[F̃], where P ∈ redω(F̃) and F̃ is a solution, can be mimicked by transitions of P[F̃n]
for some n — i.e., by replacing the solutions with unfoldings of the equations.

Proposition C.1.2. A system of equations that protects its solutions has a unique solution
for ≈.

173

Proof. We have to show that given two solutions F̃ , F̃ ′ of the system of equations X̃ = F̃,
and a fresh name m0, it holds that F̃ ◦ Trm0 ≈ F̃ ′ ◦ Trm0 .

With these hypotheses, we set Ẽ = F̃ ◦ Trm0 , P̃ = F̃ ◦ Trm0 and P̃ ′ = F̃ ′ ◦ Trm0 ; we have
that Ẽ[F̃] ≈ P̃ and Ẽ[F̃ ′] ≈ P̃ ′, and, by definition, redω(Ẽ) ⊂ redω(F̃).

We prove that the relation

R 4
= {(S, T) | ∃P′, s.t. S ≈ P′[F̃], T ≈ P′[F̃ ′] and P′ ∈ redω(Ẽ)}

is a bisimulation relation satisfying P̃RQ̃.
We consider (S, T) ∈ R, that is, S ≈ E′[F̃] and T ≈ E′[F̃]

′
, for some P′ ∈ redω(Ẽ). We

reason about the possible transitions from S.

1. Suppose S τ−→ S ′. We deduce:

• E′[F̃] =⇒ S ′′ ≈ S ′ (by bisimilarity).

• P′[F̃n] =⇒ P′′ and P′′[F̃] ≈ S ′′ for some n, P′′ (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] = P′[F̃n][F̃ ′] =⇒ P′′[F̃ ′] (by Lemmas 1.4.19 and 1.4.21(1)).

• T ≈ E′[F̃ ′] ≈ P′[F̃n][F̃ ′] = P′[F̃n[F̃ ′]] (T ≈ P′[F̃ ′] and F̃ ′ ≈ F̃n[F̃ ′], because F̃ ′ is
solution of F̃).

• T =⇒ T ′ ≈ P′′[F̃ ′] (by bisimilarity, from P′[F̃n[F̃ ′]] =⇒ P′′[F̃ ′]).

This situation can be depicted on the following diagram:

S

τ

��

≈ E′[F̃]

��

≈ P′[F̃n[F̃]]

��
=

P′[F̃n[F̃ ′]]

��

≈ E′[F̃ ′] ≈ T

��

S ′ ≈ S ′′ ≈ P′′[F̃] P′′[F̃ ′] ≈ T ′

From P′ ∈ redω(Ẽ) and P′[F̃n] =⇒ P′′, we deduce that P′′ ∈ redω(Ẽ). Finally,
T ′ ≈ P′′[F̃ ′] and S ′ ≈ P′′[F̃] give that (S, T) ∈ R.

2. Similarly, suppose S `−→ S ′. We deduce:

• E′[F̃]
`

=⇒ S ′′ ≈ S ′ (by bisimilarity).

• P′[F̃n]
`

=⇒ P′′ and P′′[F̃] ≈ S ′′ for some n, P′′ (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] = P′[F̃n][F̃ ′]
`

=⇒ P′′[F̃ ′] (by Lemmas 1.4.19 and 1.4.21(1))

• T ≈ E′[F̃ ′] ≈ P′[F̃n][F̃ ′] = P′[F̃n[F̃ ′]] (T ≈ P′[F̃ ′] and F̃ ′ ≈ F̃n[F̃ ′], because F̃ ′ is
solution of F̃).

• T `
=⇒ T ′ ≈ P′′[F̃ ′] (by bisimilarity, from P′[F̃n[F̃ ′]]

`
=⇒ P′′[F̃ ′]).

174

From P′ ∈ redω(Ẽ) and P′[F̃n]
`

=⇒ P′′, we deduce that P′′ ∈ redω(Ẽ). Finally,
T ′ ≈ P′′[F̃ ′] and S ′ ≈ P′′[F̃] give that (S, T) ∈ R.

3. Suppose now S
a

=⇒ F . We deduce:

• E′[F̃]
a

=⇒ F ′ and F ◦ Trm ≈ F ′ ◦ Trm for some m (by bisimilarity).

• P′[F̃n]
a

=⇒ F and (F◦Trm)[F̃] ≈ F ′ ◦Trm for some n, F (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] = P′[F̃n][F̃ ′]
a

=⇒ F[F̃ ′]. (by Lemmas 1.4.19 and 1.4.21(1)).

• T ≈ E′[F̃ ′] ≈ P′[F̃n][F̃ ′] = P′[F̃n[F̃ ′]] (T ≈ P′[F̃ ′] and F̃ ′ ≈ F̃n[F̃ ′], because F̃ ′ is
solution of F̃).

• T a
=⇒ F ′′ and F ′′ ◦Trm ≈ F[F̃ ′]◦Trm = (F◦Trm)[F̃ ′] for some F ′′ (by bisimilarity,

from P′[F̃n[F̃ ′]]
a

=⇒ F[F̃ ′]).

From P′ ∈ redω(Ẽ) and P′[F̃n]
a

=⇒ F, we deduce that F ◦ Trm ∈ redω(Ẽ). Finally,
F ′′◦Trm ≈ (F◦Trm)[F̃ ′] and F ◦Trm ≈ (F◦Trm)[F̃] give that (F ◦Trm, F ′′◦Trm) ∈ R.

4. Again, suppose now that S a
=⇒ C. Again:

• E′[F̃]
a

=⇒ C ′ and C • Abm ≈ C ′ • Abm for some m (by bisimilarity).

• P′[F̃n]
a

=⇒ C and (C•Abm)[F̃] ≈ C ′ •Abm for some n, C (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] = P′[F̃n][F̃ ′]
a

=⇒ C[F̃ ′] (by Lemmas 1.4.19 and 1.4.21(1)).

• T ≈ E′[F̃ ′] ≈ P′[F̃n][F̃ ′] = P′[F̃n[F̃ ′]] (T ≈ E′[F̃ ′] ≈ P′[F̃n[F̃ ′]], because F̃ ′ is
solution of F̃).

• T a
=⇒ C ′′ and C ′′ • Abm ≈ C[F̃ ′] • Abm = (C • Abm)[F̃ ′] (by Lemma 1.4.22 and by

bisimilarity, from P′[F̃n[F̃ ′]]
a

=⇒ F[F̃ ′]).

From P′ ∈ redω(Ẽ) and P′[F̃n]
a

=⇒ C, we get that C • Abm ∈ redω(Ẽ).

Finally, C ′′ • Abm ≈ (C • Abm)[F̃ ′] and C • Abm ≈ (C • Abm)[F̃] allow us to deduce that
(C • Abm, C ′′ • Abm) ∈ R.

We reason symmetrically for the actions of T . 2

We say that the syntactic solutions of the system X̃ = F̃ do not diverge if, for all i ∈ I,
KF̃,i does not diverge.

Theorem 1.4.24 (Unique solution). A guarded system of equations whose syntactic solu-
tions do not diverge has a unique solution for ≈.

Proof. Given a guarded system of equations X̃ = F̃ whose syntactic solutions do not diverge,
we prove that F̃ protects its solutions.

To prove that, we need to consider some P0 ∈ redω(F̃) and some solution F̃ of X̃ = F̃.
There are four cases to consider, according to the four clauses of Definition C.1.1.

175

P0[F̃
n[F̃]]

=
��

P0[F̃
n+1[F̃]]

��

= P0[F̃
n+1[F̃]]

��

Pn[F̃]

��

≈ Pn[F̃[F̃]]

��

= Pn[F̃[F̃]]

��

��

Pn+1[F̃]

AP ≈ Tn ≈ Tn+1 = Tn+1

Figure C.1: Recursion: construction of the sequence of transitions P0[F
n] =⇒ Pn

1. Consider a transition P0[F̃] =⇒ P .

We build a sequence of extended processes Pn and an increasing sequence of transi-
tions P0[F̃

n] =⇒ Pn such that: either this construction stops, yielding a transition
P0[F̃

n] =⇒ Pn, or the construction is infinite, therefore giving a divergence of K̃F̃.

We build this sequence so that it additionally satisfies:

• Pn[F̃] =⇒≈ P ,

• The sequence is strictly increasing: the sequence of transitions P0[F̃
n+1] =⇒

Pn[F̃] is a strict prefix of the sequence of transitions P0[F̃
n+1] =⇒ Pn+1 (hence

Pn[F̃] =⇒ Pn+1).

This construction is illustrated by Figure C.2. We initialise with the empty sequence
from P0.

Then, at step n, we have P0[F̃
n[F̃]] =⇒ Pn[F̃] =⇒ Tn, with P ≈ Tn.

• If Pn[F̃] =⇒ Tn is the empty sequence, we stop. We have in this case P0[F̃
n] =⇒

Pn and P ≈ Pn[F̃].

• Otherwise (as depicted on Figure C.1), we unfold the equations in F̃ one more
time. We deduce

– P0[F̃
n+1] = P0[F̃

n][F̃] =⇒ Pn[F̃] (by Lemmas 1.4.19 and 1.4.21), and
– Pn[F̃[F]] = Pn[F̃][F] =⇒ Tn+1 ≈ P for some Tn+1 (by Lemma 1.4.19, con-

gruence and bisimilarity).

If Pn[F̃[F]] =⇒ Tn+1 is the empty sequence, we stop as previously. Other-
wise, we take Pn[F̃] =⇒ Pn+1 to be the longest prefix sequence of transitions
in Pn[F̃][F] =⇒ Tn+1 that are instances of transitions from Pn[F̃] (we remark
that as Pn[F̃] is guarded, by Lemma 1.4.20, this sequence is not empty).

176

P0[F̃]

��

≈ P0[F̃[F̃]]

��

≈ P0[F̃
2[F̃]]

��

≈ P0[F̃
3[F̃]]

��

≈ . . . ≈ P0[F̃
n[F̃]]

���� ��

P ≈ T1 ≈ T2 ≈ T3 ≈ . . . ≈ Pn[F̃]

Figure C.2: Construction of the transition

Suppose now that the construction given above never stops. We know that Pn[F̃] =⇒
Pn+1, therefore Pn[K̃F̃] =⇒ Pn+1[K̃F̃]. This gives an infinite sequence of transitions
starting from P0[K̃F̃]: P0[K̃F̃] =⇒ P1[K̃F̃] =⇒ We observe that in the latter
sequence, every step involves at least one transition, and moreover, there is no visible
action occurring in this infinite sequence. Therefore P0[K̃F̃] is divergent, which con-
tradicts the hypothesis of the theorem. Hence, the construction does stop, and this
concludes the proof.

Before moving on to the next case, we can remark that here, in contrast with the
situation in CCS, no τ can follow an action triggered by a prefix in a weak transition:
by definition (Section 1.4.2.2), µ

=⇒ stands for =⇒ followed by µ−→. This means that in
the construction given above, (i) we stop as soon as said action is performed, and (ii)
we directly build a divergence if the construction never stops, rather than a sequence
of transitions leading to a divergence.

2. Now consider a transition P0[F̃]
`

=⇒ P . The construction is similar to that of the
previous point, for a transition =⇒; we just build the sequence Pn so that it satisfies
Pn[F̃]

`
=⇒≈ P .

For the same reason as in the previous case, the construction necessarily stops, other-
wise we would observe a divergence of the syntactic solutions.

3. Consider a transition P0[F̃]
a

=⇒ F ′. Likewise, we build an increasing sequence of

177

transitions P0[F̃
n] =⇒ Pn, such that when the construction stops, it yields a transition

P0[F̃
n]

a
=⇒ F′, for some equation abstraction F′ such that (F′ ◦ Trm)[F̃] ≈ F ′ ◦ Trm, for

some m fresh. We fix such an m.

The sequence also satisfies:

• Pn[F̃]
a

=⇒ Gn for some Gn, and Gn ◦ Trm ≈ (F′ ◦ Trm)[F̃].

• The sequence is strictly increasing.

Again, we initialise with the empty sequence from P0. Suppose we are at step n. We
then have

• P0[F
n[F̃]] =⇒ Pn[F̃]

a
=⇒ Gn with Gn ◦ Trm ≈ F ′ ◦ Trm.

• P0[F̃
n+1] = P0[F̃

n][F̃] =⇒ Pn[F̃] (by Lemmas 1.4.19 and 1.4.21).

• Pn[F̃[F̃]] = Pn[F̃][F̃]
a

=⇒ Gn+1 for some Gn+1 such that Gn+1 ◦ Trm ≈ Gn ◦ Trm
(by Lemma 1.4.19, congruence and bisimilarity).

If Pn[F̃][F̃]
a

=⇒ Gn+1 is an instance of a transition from Pn[F̃], meaning Pn[F̃]
a

=⇒ F′

for some F′ such that F′[F̃] = Gn+1, we stop. Such a transition Pn[F̃]
a

=⇒ F′ satisfies
indeed the desired properties.

Otherwise, we take Pn[F̃] =⇒ Pn+1 to be the longest prefix sequence of transitions
in Pn[F̃][F̃]

a
=⇒ Gn+1 that are instances of transitions from Pn[F̃]. It must be a strict

prefix, otherwise Pn[F̃][F̃]
a

=⇒ Gn+1 would be an instance of a transition from Pn[F̃];
it is indeed a transition =⇒ (as the input a must be the last performed action), and
since Pn[F̃] is guarded (by Lemma 1.4.20), it is not the empty sequence.

Again, the construction necessarily stops, otherwise it gives an infinite sequence of
transitions from P0[K̃F̃], hence a divergence of the syntactic solutions.

4. Consider a transition P0[F̃]
a

=⇒ C. The proof is similar to the previous case: we build
an increasing sequence of transitions P0[F̃

n] =⇒ Pn; when the construction stops, it
yields a transition P0[F̃

n]
a

=⇒ C such that (C • Abm)[F̃] ≈ C • Abm (m fixed). The
sequence is still strictly increasing, and Pn[F̃]

a
=⇒ Cn with Cn • Abm ≈ (C • Abm)[F̃].

At step n, we have

• P0[F̃
n[F̃]] =⇒ Pn[F̃]

a
=⇒ Cn with Cn • Abm ≈ C • Abm.

• P0[F̃
n+1] = P0[F̃

n][F̃] =⇒ Pn[F̃] (by Lemmas 1.4.19 and 1.4.21).

• Pn[F̃[F̃]] = Pn[F̃][F̃]
a

=⇒ Cn+1 for Cn+1 such that Cn+1 • Abm ≈ Cn • Abm (by
Lemma 1.4.19, congruence and bisimilarity).

If Pn[F̃][F̃]
a

=⇒ Cn+1 is an instance of a transition from Pn[F̃] we stop. Otherwise,
we take Pn[F̃] =⇒ Pn+1 to be the longest strict prefix sequence of transitions in

178

Pn[F̃][F̃]
a

=⇒ Cn+1 that are instances transitions from Pn[F̃]. It is not the empty
sequence, as by Lemma 1.4.20, Pn[F̃] is guarded.

Again, the termination argument still applies.

This concludes the proof. 2

C.1.1 Innocuous Divergences in HOπ

Theorem 1.4.25 (Unique solution with innocuous divergences). Let X̃ = F̃ be a system of
guarded equations, and K̃F̃ be its syntactic solutions. If for any i, all divergences of KF̃,i are
innocuous, then F̃ has a unique solution for ≈.

Proof. We reason like in the proof of Theorem 1.4.24. Cases 2, 3 and 4, corresponding to
inputs and outputs, are handled in the same way in the present proof.

The differences arise in case 1, corresponding to a τ transition.

• If at some point the transition P0[F̃
n][F̃]

τ
=⇒ Tn is an instance of a transition P0[F̃

n]
τ

=⇒
Pn, then the construction can stop.

• If on the other hand the construction never stops, we can build a non innocuous diver-
gence: we can assume that for any n, P0[F̃

n][F̃]
τ

=⇒ Tn is not an instance of a transition
from P0[F̃

n] (case 1), and likewise for transitions P0[F̃
n][F̃]

a
=⇒ Fn or P0[F̃

n][F̃]
a

=⇒ Cn.
This means that in the sequence of transitions leading to the divergence, the constant
rule is used at least n times applied to the constants KF̃,i for various i. Hence, the
divergence we build uses at least n times the constant rule for all n. Therefore, it is
not innocuous, which is a contradiction.

2

C.2 Unique solution for contextual relations in Iπ
We provide some details of the proofs of the unique solution techniques for trace preorders
and equivalence (Section 2.2.9).

Lemma 2.2.39 (Pre-fixed points, �tr). Let E be a system of equations, and K̃E its syntactic
solution. If F̃ is a pre-fixed point for �tr of E, then K̃E �tr F̃ .

Proof. Suppose {X̃ = Ẽ} is a guarded system of equations, K̃Ẽ its syntactic solution, and
Ẽ[F̃] �tr F̃ . We have to show that K̃Ẽ �tr F̃ , i.e., for any i and any ground instantiation of
the i-th constant, say KẼ,i〈ã〉, a trace s for KẼ,i〈ã〉 is also a trace for Fi〈ã〉.

As s is finite, for deriving the trace s from KẼ,i〈ã〉, the constants K̃Ẽ have been unfolded
a finite number of times, say n. This means that s is also a trace for (En

i [G̃])〈ã〉, for any G̃;
in particular also for (En

i [F̃])〈ã〉.

179

Since F̃ is a pre-fixed point (that is, Ẽ[F̃] �tr F̃), we have (Ei[F̃])〈ã〉 �tr F̃ 〈ã〉; and by
the substitutivity properties of �tr, also (En

i [F̃])〈ã〉 �tr F̃ 〈ã〉. We conclude that s is also a
trace of F̃ 〈ã〉. 2

The proof of the Lemma 2.2.40 is very similar to the proof of Theorem 1.4.11. For more
details, we refer the reader to [DHS19], specifically the proof of unique solution for weak
bisimilarity in the setting of CCS.

Lemma 2.2.40 (Post-fixed points, �tr). Let E be a guarded system of equations, and K̃E
its syntactic solution. Suppose K̃E has no divergence. If F̃ is a post-fixed point for �tr of E,
then F̃ �tr K̃E .

Proof. For simplicity, we only give the proof for a single equation E, rather than a system
of equations. The generalisation to systems of equations is straightforward.

Consider an equation E, a process abstraction F , and suppose F �tr E[F]. We fix a set
of fresh names ã, and write P for F 〈ã〉. If α̃ = α1 . . . αn is a finite trace of P (i.e, P α̃

=⇒), we
build a growing sequence of sequence transitions of En〈ã〉 and such that En[F]〈ã〉

α1...αik=====⇒
En[F]

αik+1,...,αn
=======⇒ Pn.

1. If a sequence of transitions labeled by α̃ are all transitions of the context En〈ã〉, we
stop and we have:
En〈ã〉 α̃

=⇒ and thus KE〈ã〉
α̃

=⇒ and α̃ is a trace of KE〈ã〉.

2. Otherwise there is an infinite sequence of transitions from KE〈ã〉 with visible actions
α1, . . . , αik for some k; therefore KE〈ã〉 has a divergence.

We now explain the construction of the sequence. Assume (i) : En〈ã〉
α1,...,αik=====⇒ En and

(ii) : En[F]
αik+1,...,αn

=======⇒. We proceed as follows:

• By (i) it follows that En+1[F]〈ã〉
α1,...,αik=====⇒ En[E[F]]

• By (ii) and congruence of �tr, it follows that αik+1, . . . , sn is a trace of En〈ã〉[F] �tr

En[E[F]]

• We take for the new sequence of transitions the concatenation of the previous one, and
the part of En[E[F]]

αik+1,...,αn
=======⇒ that is a transition of the context En[E]. Since E is

weakly guarded, this is not an empty sequence.

By 2 his construction has to stop, otherwise there would be a divergence. We conclude by 1.
2

180

C.3 Abstract Formulation (Alternative version)

C.3.1 Sets of Operations and unique solution Theorem

This Appendix is dedicated to an previous version of the abstract formulation in Section 1.3.1,
initially stated in [DHS19]. Among the main differences with the results from Chapter 1,
results are only formulated for functions with a single argument (monadic contexts), the
formulation and results are simpler, but are also less powerful, as discussed in Section 1.3.1.

The results of this section, up to Theorem C.3.6, have been formalised in Coq theorem
prover [Dur17].

Definition C.3.1 (Autonomy). For state functions f, f ′ we say that there is an autonomous
µ-transition from f to f ′, written f µ−→ f ′, if for all states x it holds that f(x)

µ−→ f ′(x).
Likewise, given a set F of state functions and f ∈ F , we say that a transition f(x)

µ−→ y

is autonomous on F if, for some f ′ ∈ F we have f µ−→ f ′ and y = f ′(x). Moreover, we
say that function f is autonomous on F if all the transitions emanating from f (that is, all
transitions of the form f(x)

µ−→ y, for some x, µ, y) are autonomous on F .
When F is clear, we omit it, and we simply say that a function is autonomous.

Thus, f is autonomous on F if, for some indexing set I, there are µi and functions fi ∈ F
such that for all x it holds that: f(x)

µi−→ fi(x), for each i; the set of all transitions emanating
from f(x) is precisely ∪i{f(x)

µi−→ fi(x)}. Autonomous transitions correspond to expression
transitions in CCS, and autonomous functions correspond to guarded contexts, which do not
need the contribution of their process argument to perform the first transition.

We now formulate conditions under which, intuitively, a state function behaves like a
CCS context. Functions satisfying these conditions are called operations. Such operators are
defined relative to a behavioural equivalence or preorder; in this section we are interested in
bisimilarity, hence the relation R in the definition below should be understood to be ≈.

Definition C.3.2 (Set of operations). Consider an LTS T , a binary relation R on T , and a
set O of functions from S to S. We say that O is a set of R-operations on T if the following
conditions hold:

1. O contains the identity function;

2. O is closed by composition (that is, f ◦ g ∈ O whenever f, g ∈ O);

3. composition preserves autonomy (i.e., if g is autonomous on O, then so is f ◦ g);

4. R is preserved, that is, all functions in O respect R

A ‘symmetric variant’ of clause 3 always holds: if f is autonomous, then so is f ◦ g:
indeed, transitions of f(x) do not depend on x, hence transitions of f(g(x)) do not depend
on either x or g. Clause 4 expresses congruence of the equivalence w.r.t. the set of contexts:
here, the state functions in O. The autonomous transitions of a set of R-operations yield an
LTS whose states are the operations themselves. Such transitions are of the form f

µ−→ g.

181

In the remainder of this section, we assume R to be equal to bisimilarity, and call set
of operators any set of ≈-operations, without specifying the relation. Where the underlying
set O of operations is clear, we simply call a function belonging to O an operation.

We define weak transitions as follows: f =⇒ g if there is a sequence of autonomous
transitions f τ−→ f1

τ−→ · · · τ−→ fn
τ−→ g. µ

=⇒ is then simply =⇒ µ−→=⇒.
We use state functions to express equations, such as X = f(X). We thus look at

conditions under which such an equation has a unique solution (again, the generalisation to
a system of equations is easy, using n-ary functions).

Thinking of functions as equation expressions, to formulate our abstract theory about
unique solution of equations, we have to define the divergences of finite and infinite unfoldings
of state functions. The nth unfolding of f (for n ≥ 1), fn, is the function obtained by n
applications of f . An operator is well-behaved if there is n with fn autonomous (the well-
behaved operators correspond, in CCS, to equations some finite unfolding of which yields
a guarded expression). We also have to reason about the infinite unfolding of an equation
X = f(X). For this, given a set O of operations, we consider the infinite terms obtained
by infinite compositions of operations in O, that is, the set coinductively defined by the
grammar:

F := f ◦ F for f ∈ O
(Note that this syntax only deals with infinite compositions. Since O is closed under finite
compositions, we do not need to handle such compositions in the above definition.) In
particular, we write f∞ for the infinite term f ◦ f ◦ f ◦

We define the autonomous transitions for such infinite terms using the following rules:

g
µ−→ g′

g ◦ F µ−→ g′ ◦ F
g autonomous

(g ◦ f) ◦ F µ−→ F ′

g ◦ (f ◦ F)
µ−→ F ′

g not autonomous

Intuitively a term is ‘unfolded’, with the second rule, until an autonomous function is un-
covered, and then transitions are computed using the first rule (we disallow unnecessary
unfoldings; these would complicate our abstract theorems, by adding duplicate transitions,
since the transitions of g ◦ f duplicate those of g when g is autonomous). An infinite term
has no transitions if none of its finite unfoldings ever yields an autonomous function. This
situation does not arise for terms of the form f∞ or g ◦ f∞, where f is well-behaved, which
are the terms we are interested in. Note that no infinite term belongs to a set of operators.

These rules are consistent for finite compositions of functions in O, in the sense that they
allow one to infer the correct transitions for finite compositions of functions.

The following lemmas show that infinite terms have the same transitions µ−→ and weak
transitions µ

=⇒ as their counterpart finite unfoldings. To build a transition f∞ µ−→ F from a
transition of an unfolding fn µ−→ g, we need to reason up to (finite) unfoldings of f : thus we
set =f to be the symmetric reflexive transitive closure of the relation that relates g and g′
whenever g = g′ ◦ f .

Lemma C.3.3. Let f be a well-behaved operation and g an operation in some set O. Then
g ◦ f∞ µ−→ F for some F if and only if there is n such that g ◦ fn µ−→ h for some h; in which
case, there is h′ =f h such that F = h′ ◦ f∞.

182

Proof. (⇒) Assume g ◦ f∞ µ−→ F . By a simple induction over the derivation of this transi-
tion, we get that there is n such that fn is autonomous, fn µ−→ h, and F = h ◦ f∞

(⇐) Assume g◦fn µ−→ h. Since f is well-behaved and composition respects autonomy, there
is m such that g ◦ fm is autonomous; we take that m to be the minimum among the
exponents that make g ◦ fm autonomous. If n ≤ m, there is an autonomous transition
g ◦ fm µ−→ h ◦ (fm−n). If m ≤ n, given that g ◦ fm is autonomous, there is a transition
g ◦ fm µ−→ h′, where h′ ◦ fn−m = h. Either way, g ◦ fm µ−→ h0, where h0 =f h.

Since m is the smallest exponent that makes g ◦ fm autonomous, we can derive (g ◦
fm) ◦ f∞ µ−→ g0 ◦ f∞. This concludes the proof.

2

We now adapt Lemma C.3.3 to weak transitions.

Lemma C.3.4. Let f be a well-behaved operation and g an operation in some set O. Then
g ◦ f∞ µ

=⇒ F for some F if and only if there is n such that g ◦ fn µ
=⇒ h for some h; in which

case, there is h′ =f h such that F = h′ ◦ f∞.

Proof. For each implication, proceed by induction over the length of µ
=⇒, and use Lemma C.3.3.

2

Definition C.3.5 (Operations and divergences). Let f, f ′, fi be operations in a set O of
operations, and consider the LTS induced by the autonomous transitions of operations in O.
A sequence of transitions f1

µ1−→ f2
µ2−→ f3 . . . is a divergence if for some n ≥ 1 we have µi = τ

whenever i ≥ n. We also say that f1 diverges. We apply these notations and terminology
also to infinite terms,

as expected.

In the remainder of the section we fix a set O of operations and we only consider au-
tonomous transitions on O. We now state the “abstract version” of Theorem 1.1.7.

Theorem C.3.6 (Unique solution, abstract formulation). Let f be a well-behaved operation
on O on some LTS T . If f∞ does not diverge, then the equation X = f(X) either has no
solution or has a unique solution for ≈.

Proof. The proof is essentially the same as that of Theorem 1.1.7, replacing equations ex-
pressions with operators, from a fixed set of operators O (one still has to consider reducts
from an operator), and replacing instantiation of equation expression transitions with instan-
tiation of autonomous transitions. A guarded equation expression becomes an autonomous
operator. 2

The equation in the statement of the theorem might have no solution at all. For example,
consider the LTS (N, {a},→) where for each n we have n + 1

a−→ n. The function f with
f(n) = n + 1 is an operation of the set O = {fn}n∈N (with f 0 = Id, the identity function).
The function f is autonomous because, for all n, the only transition of f(n) is f(n)

a−→ n

183

(this transition is autonomous because f a−→ Id). A fixpoint of f would be an element x
with x a−→ x, and there is no such x in the LTS.

Theorem C.3.6 can be refined along the lines of Theorem 1.1.9. For this, we have to
relate the divergences of any fn (for n ≥ 1) to divergences of f∞, in order to distinguish
between innocuous and non-innocuous divergences.

Lemma C.3.7. Consider an autonomous operation f on O and a divergence of fn

fn
µ1−→ f1

µ2−→ . . .
µi−→ fi

τ−→ fi+1
τ−→ . . .

This yields a divergence of f∞: f∞ µ1−→ g1 ◦ f∞
µ2−→ . . .

µi−→ gi ◦ f∞
τ−→ gi+1 ◦ f∞

τ−→ . . .
such that for all i ≥ 1, gi is an operator and gi =f fi.

Proof. The proof is a simple induction on the sequence of transitions defining the divergence.
At each step, we unfold f∞ as many times as needed. 2

Given a divergence ∆ of fn, we write ∆∞ to indicate the divergence of f∞ obtained from
∆ as in Lemma C.3.7. We call a divergence of f∞ innocuous when it can be described in
this way, that is, as a divergence ∆∞ obtained from a divergence ∆ of fn, for some n.

Theorem C.3.8 (Unique solution with innocuous divergences, abstract formulation). Let
f ∈ O be a well-behaved operation. If all divergences of f∞ are innocuous, then the equation
X = f(X) either has no solution or has a unique solution for ≈.

Proof. Just as in CCS, where the proof of Theorem 1.1.7 has to be modified for Theo-
rem 1.1.9, here the proof of Theorem C.3.6 is to be modified. The modification is essentially
the same as in CCS, again substituting equation expressions for operators. 2

C.3.2 Trace equivalence and innocuous divergences

The notion of trace is extended to operations like we do for weak transitions: we write f s
=⇒

if there is a sequence of autonomous transitions f µ1
=⇒ f1

µ2
=⇒ · · · µn

==⇒ fn (s = µ1, . . . , µn),
and likewise for infinite traces.

Lemma C.3.9. Given operations g, f̃ and a (finite) trace s, g ◦ f̃∞ s
=⇒ if and only if there

is n such that g ◦ f̃n s
=⇒.

Proof. We proceed by induction over the length of s, and apply Lemma C.3.4 in each case.
2

All theorems obtained for ≈ can be adapted to ≈tr, with similar proofs. As an example,
Theorem 1.2.21 becomes:

Theorem C.3.10. Let f̃ ∈ C be operations of arity n such that operations in C respect
≈tr. If all divergences of f̃∞ are innocuous, then the equation X̃ = f̃(X̃) has at most one
solution for ≈tr.

184

Proof. For simplicity, we consider the proof only in the case of a single equation X = f(X)
(extension to systems of equations is as in proof of Theorem 1.2.16).

We proceed by showing that x ⊆tr f(x) implies x ⊆tr f∞, and then that f(x) ⊆tr x
implies f∞ ⊆tr x. This indeed gives that x ≈tr f(x) implies x ≈tr f∞; hence the equation
has at most one solution (f∞ does not belong to the LTS, hence it is not a solution).

1. f(x) ⊆tr x implies f∞ ⊆tr x. For this part, the absence of divergence hypothesis is not
needed.

Let s be a trace, and assume f∞ s
=⇒. By Lemma C.3.9, there is n such that fn s

=⇒.
Hence, fn(x)

s
=⇒. Since f(x) ⊆tr x and f respects ⊆tr, we have that fn(x) ⊆tr

fn−1(x) ⊆tr . . . ⊆tr x. Hence, x
s

=⇒, and f∞ ⊆tr x.

2. x ⊆tr f(x) implies x ⊆tr f∞. This part of the proof is very similar to the proofs of
Theorems 1.1.9 and 1.2.21.

Assume x ⊆tr f(x), and x
s

=⇒. We want to show that there exists some n such
that fn s

=⇒, then apply Lemma C.3.9; this would show f∞
s

=⇒. To that end, we
build a strictly increasing sequence of (autonomous) transitions fpn sn=⇒ gn, such that
gn(x)

s′n
==⇒ and such that s = sns

′
n for all n (sn and s′n are traces whose concatenation is

s). Strictly increasing means that the transition f (n+1)×p sn+1
===⇒ gn+1 can be decomposed

as f (n+1)×p sn=⇒ gn ◦ fp
s′′n=⇒ gn+1 for some s′′n (sn+1 = sns

′′
n). Here (pn)n∈N is strictly

increasing as well. This construction will have to stop, otherwise we build a non-
innocuous divergence.

Construction of the sequence. Assume p0 is such that fp0 is autonomous; such a
p0 exists, since f is does not diverge, by Lemma 1.2.10.

We initialise with the empty trace from f 0 = id. Indeed, we have id(x) =⇒ id(x)
s

=⇒,
and s is indeed the concatenation of itself with the empty trace.

Then, at step n, suppose we have, for instance, fpn sn=⇒ gn, and gn(x)
s′n=⇒.

• If s′n is the empty trace, we stop. We have in this case fn s
=⇒, which concludes.

• Otherwise, choose k such that gn ◦ fk is autonomous (exists by Lemma 1.2.10).
Then pn+1 is pn + k. We have fpn+1

sn=⇒ gn ◦ fk (by autonomy). The operations
respect ⊆tr, and by hypothesis x ⊆tr f(x), therefore gn(x) ⊆tr gn ◦ fk(x). From

there, gn ◦ fk(x)
s′n=⇒.

s′n is not the empty sequence, so there is y1, . . . , yn for n ≥ 1 such that gn ◦
fk(x)

µ1−→ y1
µ2−→ · · · µn−→ yn, where s′n = µ1 . . . µk. Take µ1 . . . µi the longest prefix

of s′n such that there is operations h1, . . . , hi such that gn◦fk
µ1−→ h1

µ2−→ · · · µi−→ hi.
It cannot be empty: indeed, gn ◦ fk is autonomous. We take gn+1 to be hi, s′n+1

to be the trace corresponding to µi+1 . . . µk (i.e., removing all τs) and sn+1 to be
sns
′′
n, where s′′n is the trace corresponding to µ1 . . . µi (again, removing all τs).

185

Then, we indeed have fpn+1 = fpn ◦ fk sn+1
===⇒ gn+1, and gn+1(x)

s′n+1
===⇒, where

s = sn+1s
′
n+1.

Suppose now that the construction given above never stops. To make the argument
clearer, we reason up to =f (we identify all operations that are =f). We know that

gn ◦ fk
s′′n=⇒ gn+1 for some k, therefore, by applying Lemma C.3.4 as many times as

needed (just as in Lemma C.3.9), we get that gn ◦ f∞
s′′n=⇒ gn+1 ◦ f∞.

This gives an infinite sequence of transitions starting from f∞: f∞
s′′0=⇒ g1◦f∞

s′′1=⇒
We observe that in the latter sequence, every step involves at least one transition (the
s′′i are supposed non-empty, otherwise we would have stopped). Moreover, the sequence
s′′1s
′′
2 . . . , when removing all τs, is a prefix of s. Therefore there is a finite number of

visible actions occurring in this infinite sequence. Therefore f∞ is divergent.

Furthermore, this divergence is not innocuous: at every step, we know that the tran-

sition gn+1(x)
s′′n+1

===⇒ is not autonomous, otherwise s′′n+1 would be part of sn. Hence,

there cannot be such a divergence fm
s′′0=⇒

s′′1=⇒ . . . , as this would imply gn+1(x)
s′′n+1

===⇒
is autonomous for n such that pn ≥ m.

2

186

Appendix D

Calculi and equations for the proof of
Full Abstraction

D.1 Proofs about the encoding in Iπ
We present here the calculation details of the proofs of the various results in Section 2.2.6.

D.1.1 Properties of the encoding

Lemma 2.2.10. We have:

1. νq (p . q | q . r) � p . r, for all continuation names p, r.

2. νy (x . y | y . z) � x . z, for all trigger names x, z.

Proof. We first show the two following laws:

νq (p . q | q . r) ∼ p(x).νq (q(y). y . x | q . r)
� p(x).νy (y . x | r(z). z . y)

∼ p(x). r(z).νy (z . y | y . x)

and

νy (x . y | y . z) ∼ !x(p, x′).νy (y(q, y′). (y′ . x′ | q . p) | y(q, y′). z(r, z′). (z′ . y′ | r . q))
� !x(p, x′).νq, y′ . (y′ . x′ | q . p | z(r, z′). (z′ . y′ | r . q))
∼ !x(p, x′). z(r, z′). (νq (r . q | q . p) | νy′ (z′ . y′ | y′ . x′))

We define a relation R as the relation that contains, for all continuation names p, r and
for all trigger names x, z, the following pairs:

1. νq (p . q | q . r) and p . r
νy (x . y | y . z) and x . z

187

2. r(z).νy (z . y | y . x) and r(z). z . x
z(r, z′). (νq (r . q | q . p) | νy′ (z′ . y′ | y′ . x′)) and z(r, z′). (r . p | z′ . x′)
(for all non-continuation names x or x′, z′)

We show that this is an expansion up to expansion and contexts, using the previous laws
(each of those processes has only one possible action).

2

Lemma 2.2.12. We have:

1. νx (I[[M]]〈p〉 | x . y) � I[[M{y/x}]]〈p〉;

2. νp (I[[M]]〈p〉 | p . q) � I[[M]]〈q〉;

3. νy (IV[[V]]〈y〉 | x . y) � IV[[V]]〈x〉.

Proof. 1. By induction over the structure of M . We use Lemma 2.2.10, and usual laws
of expansion � [SW01].

• IfM = z, z 6= x, then νx (I[[z]]〈p〉 | x.y) = νx (p(z′). z′ .z | x.y) ∼ p(z′). z′ .z =
I[[z]]〈p〉 = I[[z{y/x}]]〈p〉 (because x does not appear free in p(z′). z′ . z).

• If M = x, then :

νx (I[[x]]〈p〉 | x . y) = νx (p(z). z . x | x . y)

∼ p(z).νx (z . x | x . y)

� p(z). z . y (by lemma 2.2.10)
= I[[y]]〈p〉
= I[[x{y/x}]]〈p〉

• If M = λz.M ′:

νx (I[[λz.M ′]]〈p〉 | x . y) = νx (p(z)′. !z′(z, q). I[[M ′]]〈q〉 | x . y)

∼ p(z)′. !z′(z, q).νx (I[[M ′]]〈q〉 | x . y)

� p(z)′. !z′(z, q). I[[M ′{y/x}]]〈q〉 (by induction hypothesis)
= I[[λz. (M ′{y/x})]]〈p〉
= I[[(λz.M ′){y/x}]]〈p〉

188

• If M1 M2:

νx (I[[M1 M2]]〈p〉 | x . y) = νx (νq (I[[M1]]〈q〉 | q(u).νr (I[[M2]]〈r〉 | r(w).u(w′, r′).

(w′ . w | r′ . p))) | x . y)

∼ νq (νx (I[[M1]]〈q〉 | x . y)

| q(u).νr (r(w).u(w′, r′). (w′ . w | r′ . p)
| νx (I[[M2]]〈r〉 | x . y)))

� νq (I[[M1{y/x}]]〈q〉 | q(u).νr (I[[M2{y/x}]]〈r〉 | r(w).u(w′, r′).

(w′ . w | r′ . p))) (by induction hypothesis)
= I[[(M1{y/x}) (M2{y/x})]]〈p〉
= I[[(M1 M2){y/x}]]〈p〉

2. By induction over the structure of M . We also use the previous case.

• If M = x:

νp (I[[x]]〈p〉 | p . q) = νp (p(y). y . x | p . q)
� νy (y . x | q(z). z . y)

∼ q(z).νy (z . y | y . x)

� q(z). z . x (by Lemma 2.2.10)
= I[[x]]〈q〉

• If M = λx.M ′:

νp (I[[λx.M ′]]〈p〉 | p . q) = νp (p(y). !y(x, r). I[[M ′]]〈r〉 | p . q)
� νy (!y(x, r). I[[M ′]]〈r〉 | q(z). z . y)

∼ q(z). !z(w, p).νy (!y(x, r). I[[M ′]]〈r〉 | y(x, r). (w . x | r . p))
� q(z). !z(w, p).νx, r (I[[M ′]]〈r〉 | w . x | r . p)
� q(z). !z(w, p). I[[M ′{x/w}]]〈p〉

(by induction hypothesis and using case 1)
= I[[λx.M ′]]〈q〉

• If M = M1 M2:

νp (I[[M1 M2]]〈p〉 | p . s) = νp (νq (I[[M]]〈q〉 | q(u).νr (I[[N]]〈r〉 | r(w).u(w′, r′).

(w′ . w | r′ . p))) | p . s)
∼ νq (I[[M]]〈q〉 | q(u).νr (I[[N]]〈r〉 | r(w).u(w′, r′).

(w′ . w | νp (r′ . p | p . s))))
� νq (I[[M]]〈q〉 | q(u).νr (I[[N]]〈r〉 | r(w).u(w′, r′).

(w′ . w | r′ . s))) (by Lemma 2.2.10)
= I[[M1 M2]]〈s〉

189

3. Law 3 can be derived from laws 1 and 2, by case analysis on V . Two cases:

• If V = λx.M , then IV[[V]]〈y〉 = !y(w, p). I[[M{w/x}]]〈p〉; then

νy (IV[[V]]〈y〉 | x . y) ∼ !x(z, q).νw, p (I[[M{w/x}]]〈p〉 | p . q | w . z)

� !x(z, q). I[[M{z/x}]]〈q〉 (by cases 1 and 2)
= IV[[V]]〈x〉

• If V = z: then IV[[V]]〈y〉 = !y(w, q). z(w′, q′). (w′ . w | q′ . q) = y . z; we can then
conclude by Lemma 2.2.10.

2

Lemma 2.2.13 (Validity of βv-reduction). For any M,N in Λ, M −→ N implies I[[M]] �
I[[N]].

Proof. One shows I[[(λx.M)V]] � I[[M{V/x}]] exploiting algebraic properties of replication;
then the result follows by the compositionality of the encoding and the congruence of �.

We start by simplifying I[[(λx.M)V]]:

I[[(λx.M)V]]〈p〉 = νq (q(y). !y(x, s). I[[M]]〈s〉 | q(y).νr (

r(w). IV[[V]]〈w〉
| r(w). y(w′, p′). (w′ . w | p′ . p)))

� νy (!y(x, p′). I[[M]]〈p′〉 | νw (IV[[V]]〈w〉 | y(x, p′). (x . w | p′ . p)))
� νx, p′ (I[[M]]〈p′〉 | p′ . p | νw (IV[[V]]〈w〉 | x . w))

� νx (I[[M]]〈p〉 | νw (!w(z, s). IV[[V]]〈z, s〉 | x . w)) (by Lemma 2.2.12)
∼ νx (I[[M]]〈p〉 | νw (IV[[V]]〈w〉 | x . w))

� νx (I[[M]]〈p〉 | IV[[V]]〈x〉) (by Lemma 2.2.12)

We now prove, by induction over M , that

νx (I[[M]]〈p〉 | IV[[V]]〈x〉) � I[[M{V/x}]]〈p〉

:

• If M = z, z 6= x:

νx (I[[z]]〈p〉 | IV[[V]]〈x〉) = νx (p(u).u . z | IV[[V]]〈x〉)
∼ p(u).u . z (because IV[[V]]〈x〉 = !x(y, q) . . .)
= I[[z{V/x}]]〈p〉

• If M = x:

νx (I[[x]]〈p〉 | IV[[V]]〈x〉) = νx (p(z). z . x | IV[[V]]〈x〉)
∼ p(z).νx (z . x | IV[[V]]〈x〉)
� p(z). IV[[V]]〈z〉 (by Lemma 2.2.12)
= I[[V]]〈p〉
= I[[x{V/x}]]〈p〉

190

• If M = λw.M ′:

νx (I[[λw.M ′]]〈p〉 | IV[[V]]〈x〉) = νx (p(z). !z(w, r). I[[M ′]]〈r〉 | IV[[V]]〈x〉)
∼ p(z). !z(w, r).νx (I[[M ′]]〈r〉 | IV[[V]]〈x〉)
� p(z). !z(w, r). I[[M ′{V/x}]]〈r〉 (by induction hypothesis)
= I[[λw. (M ′{V/x})]]〈p〉
= I[[(λw.M ′){V/x}]]〈p〉

• If M = M1M2. First recall that IV[[V]]〈x〉 is always replicated, so:

IV[[V]]〈x〉 ∼ IV[[V]]〈x〉 | IV[[V]]〈x〉

We deduce:

νx (I[[M1M2]]〈p〉 | IV[[V]]〈x〉) = νx (νq (I[[M1]]〈q〉 | q(u).νr (I[[M2]]〈r〉
| r(w).u(w′, r′). (w′ . w | r′ . p)))
| IV[[V]]〈x〉)
∼ νq (νx (I[[M1]]〈q〉 | IV[[V]]〈x〉)
| q(u).νr (νx (I[[M2]]〈r〉 | IV[[V]]〈x〉)
| r(w).u(w′, r′). (w′ . w | r′ . p)))
� νq (I[[M1{V/x}]]〈q〉 | q(u).νr (I[[M2{V/x}]]〈r〉
| r(w).u(w′, r′). (w′ . w | r′ . p)))
(by induction hypothesis, applied on M1 and M2)

= I[[M1{V/x}M2{V/x}]]〈p〉
= I[[(M1M2){V/x}]]〈p〉

We therefore have that I[[(λx.M)V]]〈p〉 � I[[M{V/x}]]〈p〉; by the compositionality of the
encoding and the congruence of �, it follows that for all evaluation context Ce

I[[Ce[(λx.M)V]]] � I[[Ce[M{V/x}]]]

which concludes. 2

D.1.2 Soudness

Lemma 2.2.14. We have:

O[[Ce[xV]]]〈p〉 � x(z, q). (OV[[V]]〈z〉 | q(y).O[[Ce[y]]]〈p〉).

Proof. By induction on the evaluation context Ce.

191

• Base case: Ce is the empty evaluation context [·]. We have to show that

I[[xV]]〈p〉 � x(z, q). (IV[[V]]〈z〉 | q(y). I[[y]]〈p〉)

We first remark that q(y). I[[y]]〈p〉 = q . p.

I[[xV]]〈p〉 = νp (q(y). y . x | q(y).νr (r(w). IV[[V]]〈w〉 | r(w). y(w′, p′). (w′ . w | p′ . p)))
� νy (y . x | νw (IV[[V]]〈w〉 | y(w′, p′). (w′ . w | p′ . p)))
� νw′, p′ (x(z, q). (z . w′ | q . p′) | νw (!w(z, s). IV[[V]]〈w〉 | w′ . w | p′ . p))
� x(z, q).νw (z . w | q . p | IV[[V]]〈w〉) (by Lemma 2.2.10)
� x(z, q). (q . p | IV[[V]]〈z〉)) (by Lemma 2.2.12)
∼ x(z, q). (IV[[V]]〈z〉 | q(y). I[[y]]〈p〉)

• Case Ce = C ′et

I[[Ce[xV]]]〈p〉 = I[[C ′e[xV]t]]〈p〉
= νs (I[[C ′e[xV]]]〈s〉 | s(u).νr (I[[t]]〈r〉 | r(w).u(w′, r′). (w′ . w | r′ . p)))
� νs (x(z, q). (IV[[V]]〈z〉 | q(y). I[[C ′e[y]]]〈s〉) |
s(u).νr (I[[t]]〈r〉 | r(w).u(w′, r′). (w′ . w | r′ . p)))
(by induction hypothesis)

∼ x(z, q). (IV[[V]]〈z〉 | q(y).νs (

(I[[C ′e[y]]]〈s〉 | s(u).νr (I[[t]]〈r〉 | r(w).u(w′, r′). (w′ . w | r′ . p)))))
= x(z, q). (IV[[V]]〈z〉 | q(y). I[[C ′e[y]t]]〈p〉)
= x(z, q). (IV[[V]]〈z〉 | q(y). I[[Ce[y]]]〈p〉)

• Case Ce = V ′C ′e

I[[Ce[xV]]]〈p〉 = I[[V ′C ′e[xV]]]〈p〉
= νs (I[[V ′]]〈s〉 | s(u).νr (I[[C ′e[xV]]]〈r〉 | r(w).u(w′, r′). (w′ . w | r′ . p)))
� νs (s(u). IV[[V ′]]〈u〉 | s(u).

νr ((x(z, q). (IV[[V]]〈z〉 | q(y). I[[C ′e[y]]]〈r〉) | r(w).u(w′, r′). (w′ . w | r′ . p)))
(by induction hypothesis)

� νu (IV[[V ′]]〈u〉 | νr (x(z, q). (IV[[V]]〈z〉 | q(y). I[[C ′e[y]]]〈r〉)
| r(w).u(w′, r′). (w′ . w | r′ . p)))

∼ x(z, q). (IV[[V]]〈z〉 | q(y).νr (I[[C ′e[y]]]〈r〉 | r(w).νu (IV[[V ′]]〈u〉
| u(w′, r′). (w′ . w | r′ . p))))) (because IV[[V ′]]〈u〉 = !u(v, s) . . .)

= x(z, q). (IV[[V]]〈z〉 | q(y). I[[V ′C ′e[y]]]〈p〉)
= x(z, q). (IV[[V]]〈z〉 | q(y). I[[Ce[y]]]〈p〉)

2

192

Lemma 2.2.15. For all M ∈ Λ, I[[M]] � O[[M]].

Proof. By induction over M .

• Case M = x: by definition, O[[M]]〈p〉 = I[[M]]〈p〉

• Case M = λx.N : assuming O[[N]]〈q〉 ≈ I[[N]]〈q〉, we have, by definition

O[[M]]〈p〉 = p(y). !y(x, q).O[[N]]〈q〉
∼ p(y). !y(x, q). I[[N]]〈q〉
= I[[M]]〈p〉

• Case M = xV :

I[[xV]]〈p〉 = νq (I[[x]]〈q〉 | q(y).νr (I[[V]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p)))
� νq (I[[x]]〈q〉 | q(y).νr (O[[V]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p))) (IH)
� ν(y, w) (y . x | OV[[V]]〈w〉 | y(w′, p′). (w′ . w | p′ . p))
� ν(w,w′) (x(z, q). (z . w′ | q . p′) | OV[[V]]〈w〉 | w′ . w | p′ . p)
� x(z, q).ν(w,w′) (OV[[V]]〈w〉 | z . w′ | w′ . w | q . p′ | p′ . p)
� x(z, q).νw (OV[[V]]〈w〉 | z . w | q . p)
� x(z, q). (OV[[V]]〈z〉 | q . p)

• Case M = (λx.N)V :

I[[(λx.N)V]]〈p〉 = νq (q(y). !y(x, p′). I[[N]]〈p′〉 | q(y).νr (I[[V]]〈r〉 |
r(w). y(w′, p′). (w′ . w | p′ . p)))
� νq (q(y). !y(x, p′). I[[N]]〈p′〉 | q(y).

νr (r(w).OV[[V]]〈w〉 | r(w). y(w′, p′). (w′ . w | p′ . p))) (IH)
� ν(y, p′, w) (!y(x, p′). I[[N]]〈p′〉 | OV[[V]]〈w〉 | y(x, p′). (x . w | p′ . p))
� ν(y, p′, w) (!y(x, p′).O[[N]]〈p′〉 | OV[[V]]〈w〉 | y(x, p′). (x . w | p′ . p)) (IH)
= O[[M]]〈p〉

• Case M = V N :

I[[V N]]〈p〉 = νq (I[[V]]〈q〉 | q(y).νr (I[[N]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p)))
� νq (q(y).OV[[V]]〈y〉 | q(y).νr (O[[N]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p))) (IH)
� νy (OV[[V]]〈y〉 | νr (O[[N]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p)))
= O[[V N]]〈p〉

193

• Case M = NV :

I[[NV]]〈p〉 = νq (I[[N]]〈q〉 | q(y).νr (I[[V]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p)))
� νq (O[[N]]〈q〉 | q(y).νr (r(w).OV[[V]]〈r〉 | r(w). y(w′, p′). (w′ . w | p′ . p))) (IH)
� νq (O[[N]]〈q〉 | q(y).νw (OV[[V]]〈w〉 | y(w′, p′). (w′ . w | p′ . p)))
= O[[NV]]〈p〉

• Case M = M ′N : the encodings are the same.
2

Lemma 2.2.16 (Operational correspondence). For anyM ∈ Λ and fresh p, process O[[M]]〈p〉
has exactly one immediate transition, and exactly one of the following clauses holds:

1. O[[M]]〈p〉 p(y)−−→ P and M is a value, with P = OV[[M]]〈y〉;

2. O[[M]]〈p〉 x(z,q)−−−→ P and M = Ce[xV] and

P � OV[[V]]〈z〉 | q(y).O[[Ce[y]]]〈p〉;

3. OV[[M]]〈p〉 τ−→ P and there is N with M −→ N and P � O[[N]]〈p〉.

Proof. By induction on M . We use Lemmas 2.2.13, 2.2.10, and 2.2.12. 2

D.1.3 Completeness: systems of equations

We provide the full description of the systems of equations ER (Figure D.1) and E ′R (Fig-
ure D.2). There, ỹ is assumed to be the ordering of fv(M,N). In E ′R we write ỹ ′ or ỹ ′′ for
the free variables of the terms indexing the corresponding equation variable.

For both systems, we give all equations needed to handle -η. As explained in Sec-
tion 2.2.7, the systems to handle - are obtained by omitting some equations (precisely, the
last two equations in Figures D.1 and D.2).

194

M ⇑ and N ⇑: XM,N = (ỹ) I[[Ω]]

M ⇓ x and N ⇓ x : XM,N = (ỹ) I[[x]]

M ⇓ λx.M ′ and N ⇓ λx.N ′ : XM,N = (ỹ) I[[λx.XM ′,N ′]]

M ⇓ Ce[xV] and N ⇓ C ′e[xV ′] : XM,N = (ỹ) I[[(λz.XCe[z],C′
e[z])(xXV,V ′)]]

M ⇓ x, N ⇓ λz.N ′, N ′ ⇓ Ce[xV] : XM,N = (ỹ) I[[λz.
(
(λw.Xw,Ce[w])(xXz,V)

)
]]

M ⇓ λz.M ′, M ′ ⇓ Ce[xV], N ⇓ x : XM,N = (ỹ) I[[λz.
(
(λw.XCe[w],w)(xXV,z)

)
]]

Figure D.1: System ER of equations (the last two equations are included only when consid-
ering -η)

M ⇑ and N ⇑:

XM,N = (ỹ, p) 0

M ⇓ Ce[xV] and N ⇓ C ′e[xV ′] :

XM,N = (ỹ, p) x(z, q). (XVV,V ′〈z, ỹ ′〉 | q(w).XCe[w],C′
e[w]〈ỹ

′′ , p〉)
M ⇓ V and N ⇓ V ′ :

XM,N = (ỹ, p) p(y).XVv,v′〈z, ỹ ′〉
V = x and V ′ = x :

XVx,x = (z, x) z . x

V = λx.M and V ′ = λx.N :

XVλx.M,λx.N = (z, ỹ) !z(x, q).XM,N〈ỹ ′ , q〉
V = x, V ′ = λz.N , N ⇓ Ce[xV] :

XVx,λz.N = (y0, ỹ) !y0(z, q).x(z′, q′). (XVz,V 〈z′, ỹ ′〉 | q′(w).Xw,Ce[w]〈ỹ ′′ , q〉)
V = λz.M , M ⇓ Ce[xV], V ′ = x :

XVλz.M,x = (y0, ỹ) !y0(z, q).x(z′, q′). (XVV,z〈z′, ỹ ′〉 | q′(w).XCe[w],w〈ỹ ′′ , q〉)

Figure D.2: System E ′R of equations (the last two equations are needed only when considering
-η)

195

	pagedethese
	these

