
HAL Id: tel-02947051
https://theses.hal.science/tel-02947051v1

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilient scheduling algorithms for large-scale platforms
Valentin Le Fèvre

To cite this version:
Valentin Le Fèvre. Resilient scheduling algorithms for large-scale platforms. Distributed, Parallel,
and Cluster Computing [cs.DC]. Université de Lyon, 2020. English. �NNT : 2020LYSEN019�. �tel-
02947051�

https://theses.hal.science/tel-02947051v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2020LYSEN019

THÈSE de DOCTORAT de L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512 :

École doctorale Informatique et Mathématiques

Spécialité de doctorat : Informatique

Soutenue publiquement le 18/06/2020, par :

Valentin Le Fèvre

Resilient scheduling algorithms for large-scale platforms
Algorithmes d’ordonnancement tolérants aux fautes pour les plates-formes à grande échelle

Devant le jury composé de :

Olivier Beaumont Directeur de recherche INRIA, INRIA Bordeaux Sud-Ouest Examinateur

Anne Benoit Maı̂tresse de conférences, ENS de Lyon, LIP Co-encadrante

Henri Casanova Professeur, Université d’Hawai’i Rapporteur

Amina Guermouche Maitresse de conférences, Télécom Sud-Paris Examinatrice

Rami Melhem Professeur, Université de Pittsburgh Rapporteur

Yves Robert Professeur des universités, ENS de Lyon, LIP Directeur

Remerciements

Merci Sci-hub

iii

Contents

Remerciements iii

Contents v

1 Introduction 1

I Advanced checkpointing techniques 5

2 Towards optimal multi-level checkpointing 7
2.1 Introduction . 7
2.2 Computing the optimal pattern . 10

2.2.1 Assumptions . 11
2.2.2 Optimal two-level pattern . 11

2.2.2.1 With a single segment . 11
2.2.2.2 With multiple segments 13

2.2.3 Optimal k-level pattern . 16
2.2.3.1 Observations . 16
2.2.3.2 Analysis . 17

2.2.4 Optimal subset of levels . 27
2.2.4.1 Checkpoint cost models 27
2.2.4.2 Dynamic programming algorithm 28

2.3 Simulations . 28
2.3.1 Simulation setup . 29
2.3.2 Assessing accuracy of first-order approximation 29

2.3.2.1 Using set of parameters (A) 30
2.3.2.2 Using set of parameters (B) 31

2.3.3 Comparing performance of different approaches 34
2.3.3.1 Using set of parameters (C) 34
2.3.3.2 Using set of parameters (D) 36

2.3.4 Summary of results . 37
2.4 Related work . 37
2.5 Conclusion . 38

v

vi CONTENTS

3 Comparing the performance of rigid, moldable and grid-shaped applications
on failure-prone HPC platforms 41
3.1 Introduction . 42
3.2 Performance model . 44

3.2.1 Application/platform framework 44
3.2.2 Mean Time Between Failures (MTBF) 44
3.2.3 Checkpoints . 44
3.2.4 Wait Time . 45
3.2.5 Objective. 45

3.3 Expected yield . 46
3.3.1 Rigid application . 46
3.3.2 Moldable application . 47
3.3.3 GridShaped application . 48
3.3.4 ABFT for GridShaped . 51

3.4 Applicative scenarios . 54
3.4.1 Main scenario . 54
3.4.2 Varying key parameters . 57
3.4.3 Comparison between C/R and ABFT 62

3.5 Related work . 63
3.5.1 Moldable and GridShaped applications 63
3.5.2 ABFT . 64

3.6 Conclusion . 64

4 A generic approach to scheduling and checkpointing workflows 67
4.1 Introduction . 67
4.2 Example . 70
4.3 Model . 72

4.3.1 Execution Model . 72
4.3.2 Fault-Tolerance Model . 73
4.3.3 Problem Formulation . 74

4.4 Scheduling and checkpointing algorithms 74
4.4.1 Scheduling heuristics . 74
4.4.2 Checkpointing strategies . 75

4.5 Experiments . 78
4.5.1 Experimental methodology . 78
4.5.2 Simulator . 80
4.5.3 Results . 82

4.6 Related work . 91
4.7 Conclusion . 93

CONTENTS vii

II Coupling checkpointing with replication 95

5 Using Checkpointing and Replication for Reliable Execution of Linear Work-
flows with Fail-Stop and Silent Errors 97
5.1 Introduction . 97
5.2 Model and objective . 100

5.2.1 Application model . 100
5.2.2 Execution platform . 100
5.2.3 Verification . 100
5.2.4 Checkpointing . 101
5.2.5 Replication . 102
5.2.6 Optimization problem . 104

5.3 Computing Enorep(i) and Erep(i) . 105
5.3.1 Computing Enorep(i) . 105
5.3.2 Computing Erep(i) . 106

5.4 Optimal dynamic programming algorithm 108
5.5 Experiments . 111

5.5.1 Scenarios with fail-stop errors only 112
5.5.1.1 Experimental setup . 112
5.5.1.2 Comparison to checkpoint only 113
5.5.1.3 Impact of error rate and checkpoint cost on the perfor-

mance . 117
5.5.1.4 Impact of the number of checkpoints and replicas . . . 118

5.5.2 Scenarios with both fail-stop and silent errors 118
5.5.2.1 Experimental setup . 118
5.5.2.2 Comparison to checkpoint only 120
5.5.2.3 Impact of error rate and checkpoint cost on the perfor-

mance . 123
5.6 Related work . 125
5.7 Conclusion . 127

6 Optimal Checkpointing Period with Replicated Execution on Heterogeneous
Platforms 129
6.1 Introduction . 129
6.2 Model . 131
6.3 Optimal pattern . 132

6.3.1 Expected execution time . 132
6.3.2 Expected overhead . 141
6.3.3 Failures in checkpoints and recoveries 143

6.4 On-failure checkpointing . 144
6.4.1 Expected execution time . 145
6.4.2 Expected overhead . 146

6.5 Experimental evaluation . 146
6.5.1 Simulation setup . 146

viii CONTENTS

6.5.2 Accuracy of the models . 147
6.5.3 Comparison of the two strategies 148
6.5.4 Summary . 155

6.6 Conclusion . 155

7 Replication is more efficient than you think 157
7.1 Introduction . 157
7.2 Model . 161
7.3 Background . 163

7.3.1 With a Single Processor . 163
7.3.2 With N Processors . 165

7.4 Replication . 165
7.4.1 Computing the Mean Time To Interruption 166
7.4.2 With One Processor Pair . 167
7.4.3 With b Processor Pairs . 170

7.5 Time-To-Solution . 171
7.6 Asymptotic Behavior . 172
7.7 Experimental Evaluation . 173

7.7.1 Simulation Setup . 174
7.7.2 Model Accuracy . 174
7.7.3 Restart-on-failure . 177
7.7.4 Impact of Parameters . 178
7.7.5 I/O Pressure . 178
7.7.6 Time-To-Solution . 179
7.7.7 When to Restart . 181

7.8 Energy consumption . 183
7.8.1 Without replication . 183

7.8.1.1 With a single processor 183
7.8.1.2 With N processors . 184

7.8.2 With replication . 184
7.8.2.1 With one processor pair 184
7.8.2.2 With b processor pairs 185

7.8.3 Experiments . 186
7.9 Conclusion . 189

III Scheduling problems 191

8 Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs 193
8.1 Introduction . 193
8.2 Models . 195

8.2.1 Job model . 195
8.2.2 Error model . 196
8.2.3 Problem statement . 196

CONTENTS ix

8.2.4 Expected makespan . 197
8.2.5 Static vs. dynamic scheduling . 198

8.3 Resilient Scheduling Heuristics . 198
8.3.1 R-List scheduling heuristic . 198
8.3.2 Approximation ratios of R-List . 200

8.3.2.1 Result for Reservation 200
8.3.2.2 Result for Greedy . 201

8.3.3 R-Shelf scheduling heuristic . 202
8.4 Performance Evaluation . 204

8.4.1 Simulation setup . 205
8.4.2 Results for synthetic jobs . 206
8.4.3 Results for jobs from Mira . 210

8.5 Background and Related Work . 212
8.5.1 Different scheduling flavors and strategies 212
8.5.2 Offline scheduling of rigid jobs . 213
8.5.3 Online scheduling of rigid jobs . 213
8.5.4 Batch schedulers in practical systems 214

8.6 Conclusion . 214

9 I/O scheduling strategy for periodic applications 217
9.1 Introduction . 217
9.2 Model . 220

9.2.1 Parameters . 220
9.2.2 Execution Model . 221
9.2.3 Objectives . 222

9.3 Periodic scheduling strategy . 223
9.3.1 PerSched: a periodic scheduling algorithm 225
9.3.2 Complexity analysis . 227
9.3.3 High-level implementation, proof of concept 234

9.4 Evaluation and model validation . 234
9.4.1 Experimental Setup . 235
9.4.2 Applications and scenarios . 235
9.4.3 Baseline and evaluation of existing degradation 236
9.4.4 Comparison to online algorithms 236
9.4.5 Discussion on finding the best pattern size 242

9.5 Related Work . 243
9.6 Conclusion . 245

10 Conclusion 247

Bibliography 251

Publications 267

Chapter 1

Introduction

In the recent years, many scientific advances in physics, chemistry, biology and more
have been achieved thanks to high performance computing (HPC). For example, to
study magnetic field properties, physicists need to go deep into tiny details of fluid
dynamics, which is an intense computational task even for current machines [138]. In
order to compute faster, processors and more generally units of computation have seen
their number of transistors increase, as observed by Moore’s law. However, physical
limits (thermal limits, density and more [128, 123]) made constructors unable to keep
increasing the number of transistors with the same rate as before. The new plan since
reaching these limits has been to increase the number of components in a machine
in order to split the computation across all the units of computation. State-of-the-
art computing platforms have all grown to very large scales. For example, the current
fastest machine according to the Top500 in November 2019 [181] is Summit, a platform
with more than 2.4 millions of cores, for a peak performance of 2× 1017 Flop/s.

However, this increase in the number of components brings one major problem:
resilience. It was reported to be among the top ten challenges of exascale computing
(i.e., 1018 Flop/s) by the Advanced Scientific Computing Advisory Committee (AS-
CAC) [135]. Resilience can be defined by “ensuring correct scientific computation in
face of faults, reproducibility, and algorithm verification challenges”. Why is this chal-
lenge relevant? Resilience is mandatory so that most (if not all) applications can finish
and deliver non-erroneous results. Indeed, if one processor has a lifetime of 100 years
(which is already optimistic), then a machine with 100,000 processors will experience
a failure every 9 hours. More generally, if we consider a mean time before failures
(MTBF) µ for one processor, a machine using p such components will have a MTBF
of µ

p [106, Proposition 1.2], i.e., the MTBF of the platform decreases linearly with the
number of components. Since applications running on such systems can last for a day
up to a few weeks, solutions need to be provided to recover from two sources of errors:
fail-stop and silent errors.

Silent errors are errors that strike while an application is running and are unnoticed
by the system. Such errors can be bit-flips in the memory or faulty Arithmetic Logic
Units (ALU). They can be caused by lots of factors including cosmic radiation [147].

1

2 Chapter 1: Introduction

The main challenge with these faults is to detect them as they only modify the data or
output of an algorithm. Verification mechanisms exist and need to be carefully used
to detect (and correct if possible) this kind of errors. Fail-stop errors, in contrast to
silent errors, are automatically detected because they result in the complete stop of an
application. They can come from either a dead component, or a bug in the code of
the application that provokes a segmentation fault, for instance. If they are simpler
to detect than silent errors, fail-stop errors make the progress of an application lost
and thus cannot be “corrected“. The standard approach to deal with these errors is
checkpointing, which consists in regularly saving the progress of the application.

Checkpointing. This de facto technique works as follows: in order to avoid restarting
an application from scratch (and probably reach an infinite execution time by starting
over and over), the idea is to save the state of an application regularly. When an error
is detected (either a fail-stop or silent error), we can roll back to that saved state so that
we can start recomputing from that state. When silent errors are taken into account, a
verification mechanism can be added just before taking the checkpoint to ensure that
the saved progress is not erroneous and that the application can be safely restored
from that point.
The main question is now: when should we save the state of the application so that
it completes the earliest possible in average? If we perform a checkpoint too often,
we will lose some time overall due to spending too much time saving data instead
of computing. However, if we do not save regularly enough, the risk of having to
re-execute a huge part of the application increases and can lead to some degraded
performance as well. Young [200] and Daly [58] proposed a model for fail-stop errors
and a simple equation to optimize the total execution time:√

2Cµ,

where C is the time of writing a checkpoint and µ is the MTBF of the platform (de-
pending on the number of components as seen above)1. This formula applies to di-
visible applications (applications that can be pre-empted at anytime). In this thesis
we present extensions of this formula for various checkpointing strategies: Chapter 2
deals with multi-level checkpointing instead of single-level checkpointing; Chapters 6
and 7 extend the formula when replication (see next paragraph) is added. Chapter 4
also tries to address the problem of checkpointing a general workflow with tasks that
are atomic and cannot be pre-empted at any time. For workflows that are linear, Toueg
and Babaoglu [183] gave an optimal dynamic programming algorithm (that we extend
with replication in Chapter 5) but no optimal algorithm exists for generic workflows.

Replication. The principle of replication is to execute some work several times in
parallel and each running copy is called a replica: if one replica fails (for any reason),

1A similar equation exists for minimizing the energy consumption (another big challenge in [135])
instead of the execution time. We address this problem in Section 7.8.

Introduction 3

the other replicas are still safe and can be used. Hence, an application crashes or is
uncorrectable only if all the replicas have failed. By definition, this is less likely to hap-
pen than when having no copy, but we still need to use a checkpoint/restart strategy
to handle these cases [159, 75, 205, 82, 46, 110]. The number of replicas determine how
strong the replication is: for example, with two replicas (duplication), we can tolerate
one fail-stop error on one of the two replicas and still succeed. However, if a silent
error strikes, we can detect it by looking at the results of the replicas but we would be
unable to guess which replica was not corrupted by the error. Instead, if we use three
replicas (triplication), we can tolerate up to one fail-stop error on two different replicas,
and we can also correct a silent error by using a majority rule. The main drawback
of replication is that it uses more components to execute the same effective amount of
work, but we show in Part II that duplication still leads to better performance than no
replication in some cases.

In this thesis, we review a set of techniques using checkpointing in Part I. In Chap-
ter 2, we derive a Young/Daly-like formula for multi-level checkpointing. Chap-
ter 3 studies how enrolling more processors than necessary can be efficient for a
checkpointed application, while Chapter 4 proposes a generic workflow checkpointing
scheme.

We combine replication with checkpointing in Part II. In Chapter 5, we design an
optimal dynamic programming algorithm for placing checkpoints and choosing the
replicated tasks in linear workflows. Chapter 6 extends the Young/Daly formula to
an application duplicated on heterogeneous platforms. Chapter 7 extends the formula
for homogeneous core-based duplication.

Finally, we investigate some scheduling results for HPC in Part III. Chapter 8 stud-
ies, theoretically and experimentally, several scheduling heuristics in a non-reliable
context. The main question is to know if algorithms that were designed for job
scheduling without failures [184] are still efficient when some tasks have to be re-
executed. Another problem with the recent supercomputers is that more and more
data are produced faster while the I/O bandwidth increases at a slower pace. For in-
stance, when Los Alamos National Laboratory moved from Cielo to Trinity, the peak
performance moved from 1.4 Petaflops to 40 Petaflops (×28) while the I/O bandwidth
moved to 160 GB/s to 1.45TB/s (only ×9) [124]. To tackle this challenge, Chapter 9
investigates scheduling at the I/O level.

Part I

Advanced checkpointing techniques

5

Chapter 2

Towards optimal multi-level checkpointing

We provide a framework to analyze multi-level checkpointing protocols, by formally
defining a k-level checkpointing pattern. We provide a first-order approximation to
the optimal checkpointing period, and show that the corresponding overhead is in the
order of ∑k

`=1
√

2λ`C`, where λ` is the error rate at level `, and C` the checkpointing
cost at level `. This nicely extends the classical Young/Daly formula on single-level
checkpointing. Furthermore, we are able to fully characterize the shape of the optimal
pattern (number and positions of checkpoints), and we provide a dynamic program-
ming algorithm to determine the optimal subset of levels to be used. Finally, we
perform simulations to check the accuracy of the theoretical study and to confirm the
optimality of the subset of levels returned by the dynamic programming algorithm.
The results nicely corroborate the theoretical study, and demonstrate the usefulness of
multi-level checkpointing with the optimal subset of levels. The work in this chapter
is joint work with Anne Benoit, Aurélien Cavelan, Yves Robert and Hongyang Sun,
and has been published in Transactions on computers (TC) [J1].

2.1 Introduction

Checkpointing is the de-facto standard resilience method for HPC platforms at extreme-
scale. However, the traditional single-level checkpointing method suffers from signif-
icant overhead, and multi-level checkpointing protocols now represent the state-of-
the-art technique. These protocols allow different levels of checkpoints to be set, each
with a different checkpointing overhead and recovery ability. Typically, each level cor-
responds to a specific fault type, and is associated to a storage device that is resilient
to that type. For instance, a two-level system would deal with (i) transient memory
errors (level 1) by storing key data in main memory; and (ii) node failures (level 2) by
storing key data in stable storage (remote redundant disks).

In this chapter, we deal with fail-stop errors only. We consider a very general
scenario, where the platform is subject to k levels of faults, numbered from 1 to k.
Level ` is associated with an error rate λ`, a checkpointing cost C`, and a recovery
cost R`. A fault at level ` destroys all the checkpoints of lower levels (from 1 to `− 1

7

8 Chapter 2: Towards optimal multi-level checkpointing

included) and implies a roll-back to a checkpoint of level ` or higher. Similarly, a
recovery of level ` will restore data from all lower levels. Typically, fault rates are
decreasing and checkpoint/recovery costs are increasing when we go to higher levels:
λ1 ≥ λ2 ≥ · · · ≥ λk, C1 ≤ C2 ≤ · · · ≤ Ck, and R1 ≤ R2 ≤ · · · ≤ Rk.

Time

Time

Time

C3 C3

C2 C2 C2

C1 C1 C1 C1 C1 C1 C1 C1

(level 3)

(level 2)

(level 1)

Figure 2.1: Independent checkpointing periods for three levels of faults: no synchro-
nization between checkpoint levels.

The idea of multi-level checkpointing is that checkpoints are taken for each level of
faults, but at different periods. Intuitively, the less frequent the faults, the longer the
checkpointing period: this is because the risk of a failure striking is lower when going
to higher levels; hence the expected re-execution time is lower too; one can safely
checkpoint less frequently, thereby reducing failure-free overhead (checkpointing is
useless in the absence of fault). There are several natural approaches to implement
multi-level checkpointing. The first option is to use independent checkpointing periods
for each level, as illustrated in Figure 2.1 with k = 3 levels. This option raises several
difficulties, the most prominent one being overlapping checkpoints. Typically, we need
to checkpoint different levels in sequence (e.g., writing into memory before writing
onto disk), so we would need to delay some checkpoints, which might not be possible
in some environments, and which would introduce irregular periods. The second
option is to synchronize all checkpoint levels by nesting them inside a periodic pattern
that repeats over time, as illustrated in Figure 2.2(a). In this figure, the pattern has five
computational segments, each followed by a level-1 checkpoint. A segment is a chunk
of work between two checkpoints, and a pattern consists in segments and checkpoints.
The second and fifth level-1 checkpoints are followed by a level-2 checkpoint. Finally,
the pattern ends with a level-3 checkpoint. When using patterns, a checkpoint at level
` is always preceded by checkpoints at all lower levels 1 to `− 1, which makes good
sense in practice (e.g., with two levels, main memory and disk, one writes the data
into memory before transferring it to disk).

Using periodic patterns simplifies the orchestration of checkpoints at all levels.
In addition, repeatedly applying the same pattern is optimal for on-line scheduling
problems, or for jobs running a very long (even infinite) time on the platform. Indeed,
in this scenario, we seek the best pattern, i.e., the one whose overhead is minimal. The
overhead of a pattern is the price per work unit to pay for resilience in the pattern; hence
minimizing overhead is equivalent to optimizing platform throughput. For a pattern
P(W) with W units of work (the cumulated length of all its segments), the overhead

2.1. INTRODUCTION 9

C1 C2 C3 C1 C1 C2 C1 C1 C1 C2 C3(a)

Time

Time

C1 C1(b)

Time

C1 C2 C1 C1 C2 C1 C1 C2(c)

Figure 2.2: Checkpointing patterns (highlighted using red bars) with (a) k = 3, (b)
k = 1, and (c) k = 2 levels.

H(P(W)) is defined as the ratio of the pattern’s expected execution time E(P(W)) over
its total work W minus 1:

H(P(W)) =
E(P(W))

W
− 1. (2.1)

If there were neither checkpoint nor fault, the overhead would be zero. Determining
the optimal pattern (with minimal overhead), and then repeatedly using it until job
completion, is the optimal approach with Exponential failure distributions and long-
lasting jobs. Indeed, once a pattern is successfully executed, the optimal strategy is to
re-execute the same pattern. This is because of the memoryless property of exponential
distributions: the history of failures has no impact on the solution, so if a pattern is
optimal at some point in time, it stays optimal later in the execution, because we have
no further information about the amount of work still to be executed.

The difficulty of characterizing the optimal pattern dramatically increases with
the number of levels. How many checkpoints of each level should be used, and at
which locations inside the pattern? What is the optimal length of each segment? With
one single level (see Figure 2.2(b)), there is a single segment of length W, and the

Young/Daly formula [200, 58] gives Wopt =
√

2C1
λ1

. The minimal overhead is then

Hopt =
√

2λ1C1 + O(λ1).
With two levels, the pattern still has a simple shape, with N segments followed

by a level-1 checkpoints, and ended by a level-2 checkpoint (see Figure 2.2(c)). Re-
cent work [63] shows that all segments have same length in the optimal pattern, and
provides mathematical equations that can be solved numerically to compute both the
optimal length Wopt of the pattern and its optimal number of segments. However,
no closed-form expression is available, neither for Wopt, nor for the minimal overhead
Hopt.

With three levels, no optimal solution is known. The pattern shape becomes quite
complicated. Coming back to Figure 2.2(a), we identify two sub-patterns ending with
a level-2 checkpoint. The first sub-pattern has 2 segments while the second one has 3.
The memoryless property does not imply that all sub-patterns are identical, because

10 Chapter 2: Towards optimal multi-level checkpointing

the state after completing the first sub-pattern is not the same as the initial state when
beginning the execution of the pattern. In the general case with k levels, the shape of
the pattern will be even more complicated, with different-shaped sub-patterns (each
ended by a level k − 1 checkpoint). In turn, each sub-pattern may have different-
shaped sub-sub-patterns (each ended by a level k − 2 checkpoint), and so on. The
major contribution of this work is to provide an analytical characterization of the
optimal pattern with an arbitrary number k of checkpointing levels, with closed-form
formulas for the pattern length Wopt, the number of checkpoints at each level, and the
optimal overhead Hopt. In particular, we obtain the following beautiful result:

Hopt =
k

∑
`=1

√
2λ`C` + O(Λ), (2.2)

where Λ = ∑k
`=1 λ`. However, we point out that this analytical characterization relies

on a first-order approximation, so it is valid only when resilience parameters C` and
R` are small in front of the platform Mean Time Between Failures (MTBF) µ = 1/Λ.
Also, the optimal pattern has rational number of segments, and we use rounding to
derive a practical solution. Still, Equation (2.2) provides a lower bound on the optimal
overhead, and this bound is met very closely in all our experimental scenarios.

Finally, in many practical cases, there is no obligation to use all available check-
pointing levels. For instance, with k = 3 levels, one may choose among four possibili-
ties: level 3 only, levels 1 and 3, levels 2 and 3, and all levels 1, 2 and 3. Of course, we
still have to account for all failure types, which translates into the following:

• level 3: use λ3 ← λ1 + λ2 + λ3;

• levels 1 and 3: use λ1 and λ3 ← λ2 + λ3;

• levels 2 and 3: use λ2 ← λ1 + λ2 and λ3;

• all levels: use λ1, λ2 and λ3.

Our analytical characterization of the optimal pattern leads to a simple dynamic pro-
gramming algorithm for selecting the optimal subset of levels.

The rest of this chapter is organized as follows. Section 2.2 is the heart of the
chapter and shows how to compute the optimal pattern as well as the optimal subset
of levels. Section 2.3 is devoted to simulations assessing the accuracy of the first-order
approximation. Section 2.4 surveys the related work. Finally, Section 2.5 provides
concluding remarks and hints for future work.

2.2 Computing the optimal pattern

This section computes the optimal multi-level checkpointing pattern. We first state
our assumptions in Section 2.2.1, and then analyze the simple case with k = 2 levels
in Section 2.2.2, before proceeding to the general case in Section 2.2.3. Finally, the
algorithm to compute the optimal subset of levels is described in Section 2.2.4.

2.2. COMPUTING THE OPTIMAL PATTERN 11

2.2.1 Assumptions

In this chapter, we assume that failures from different levels are independent1. For
each level `, the arrival of failures follows Poisson process with error rate λ`. In order
to deal with the interplay of failures from different levels, we make use of the following
well-known properties of independent Poisson processes [87, Chapter 2.3].

Property 1. During the execution of a segment with length w, let X` denote the time when the
first level-` error strikes. Thus, X` is a random variable following an Exponential distribution
with parameter λ`, for all ` = 1, 2, . . . , k.

(1). Let X denote the time when the first error (of any level) strikes. We have X =
min{X1, X2, . . . , Xk}, which follows an Exponential distribution with parameter Λ =

∑k
`=1 λ`. The probability of having an error (from any level) in the segment is therefore

P(X ≤ w) = 1− e−Λw.

(2). Given that an error (from any level) strikes during the execution of the segment, the
probability that the error belongs to a particular level is proportional to the error rate of
that level, i.e., P(X = X`|X ≤ w) = λ`

Λ , for all ` = 1, 2, . . . , k.

Moreover, we assume that error rates of different levels are of the same order, i.e.,
λ` = Θ(Λ) for all ` = 1, 2, . . . , k, and that errors only strike during the computations,
while checkpointing and recovery are error-free. Indeed, the durations of checkpoints
and recoveries are generally small compared to the pattern length, so the probability
of a failure striking during these operations is low. It has been shown in [20] that
removing this assumption does not impact the first-order approximation of the pattern
overhead.

2.2.2 Optimal two-level pattern

We start by analyzing the two-level pattern shown in Figure 2.2(b). The goal is to
determine a first-order approximation to the optimal pattern length W, the number
n of level-1 checkpoints in the pattern, as well as the length wi = αiW of the i-th
segment, for all 1 ≤ i ≤ n, where ∑n

i=1 αi = 1.

2.2.2.1 With a single segment

We first consider a special case of the two-level pattern, in which only a single seg-
ment is present, i.e., n = 1. The result establishes the order of the optimal pattern
length Wopt, which will be used later for analyzing the general case. Recall that
Λ = λ1 + λ2 and, for convenience, let us also define C = C1 + C2. The following
proposition shows the expected time of such a pattern with fixed length W.

1In practice, failures from different checkpointing levels can exhibit potential correlation [104, 62].
Consideration of correlated failures is beyond the scope of this work.

12 Chapter 2: Towards optimal multi-level checkpointing

Proposition 1. The expected execution time of a two-level pattern with a single segment and
fixed length W is

E = W + C +
1
2

ΛW2 + O(max{Λ2W3, ΛW}).

Proof. We can express the expected execution time of the pattern recursively as follows:

E = P

(
Elost(W, Λ) +

λ1

Λ
(R1 + E) +

λ2

Λ

(
R2 + R1 + E

))
+ (1− P) (W + C) , (2.3)

where P = 1− e−ΛW denotes the probability of having a failure (either level-1 or level-
2) during the execution of the pattern based on Property 1.1, and Elost(wi, Λ) denotes
the expected time lost when such a failure occurs. In this case, and based on Property
1.2, if the failure belongs to level 1, which happens with probability λ1

Λ , we can recover
from the latest level-1 checkpoint (R1). Otherwise, the failure belongs to level 2 with
probability λ2

Λ , and we need to first recover from the latest level-2 checkpoint (R2)
before restoring the level-1 checkpoint (R1). In both cases, the entire pattern needs to
be re-executed again. Finally, if no error (of any level) strikes, which happens with
probability 1− P, the pattern is completed after W time of execution followed by the
time C to perform the two checkpoints, which are assumed to be error-free.

From [106, Equation (1.13)], the expected time lost when executing a segment of
length W with error rate Λ is

Elost(W, Λ) =
1
Λ
− W

eΛW − 1
. (2.4)

Substituting Equation (2.4) into Equation (2.3) and solving for E, we get:

E =
(

eΛW − 1
)(1

Λ
+ R1 +

λ2

Λ
R2

)
+ C1 + C2, (2.5)

which is an exact formula on the expected execution time of the pattern. Now, using
Taylor series to expand eΛW = 1 + ΛW + Λ2W2

2 + O(Λ3W3) while assuming W =
Θ(Λ−x), where 0 < x < 1, we can re-write Equation (2.5) as

E = W +
1
2

ΛW2 + C1 + C2 + O(Λ2W3)

+

(
ΛW +

Λ2W2

2
+ O(Λ3W3)

)(
R1 +

λ2

Λ
R2

)
.

Since recovery costs (R1, R2) are assumed to be constants, and error rates (λ1, λ2, Λ)

2.2. COMPUTING THE OPTIMAL PATTERN 13

are in the same order, the expected execution time can be expressed as follows:

E = W + C1 + C2 +
1
2

ΛW2 + O(Λ2W3) + O(ΛW),

which completes the proof of the proposition.

From Proposition 1, the expected execution overhead of the pattern can be derived
as

H =
C
W

+
1
2

ΛW + O(max{Λ2W2, Λ}).

Assume that the platform MTBF µ = 1/Λ is large in front of the resilience parameters,
and consider the first two terms of H: the overhead is minimized when the pattern
has length W = Θ(Λ−1/2), and in that case both terms are in the order of Θ(Λ1/2), so
we have H = Θ(Λ1/2) + O(Λ). Indeed, the last term O(Λ2W2) = O(Λ) becomes neg-
ligible compared to Θ(Λ1/2). Hence, the optimal pattern length Wopt can be obtained
by balancing the first two terms in H, which gives

Wopt =

√
2C
Λ

= Θ(Λ−1/2), (2.6)

and the optimal execution overhead becomes

Hopt =
√

2ΛC + O(Λ). (2.7)

Remarks. Unlike in single-level checkpointing, the checkpoint to roll back to in
a two-level pattern depends on which type of error strikes first. Under first-order
approximation and assuming that the resilience parameters are small compared to
the platform MTBF and pattern length, the formulas shown in Equations (2.6) and
(2.7) reduce exactly to Young/Daly’s classical result by aggregating the error rates and
checkpointing costs of both levels.

2.2.2.2 With multiple segments

We now consider the general two-level pattern with multiple segments, and derive the
optimal pattern parameters. As in the single-segment case, we start with a proposition
showing the expected time to execute a two-level pattern with fixed parameters.

Proposition 2. The expected execution time of a given two-level pattern is

E=W+nC1+C2 +
1
2

(
λ1

n

∑
i=1

α2
i + λ2

)
W2 + O(Λ1/2).

Proof. We first prove the following result (by induction) on the expected time Ei to
execute the i-th segment of the pattern (up to the level-1 checkpoint at the end of the

14 Chapter 2: Towards optimal multi-level checkpointing

segment):

Ei = wi + C1 +
λ1

2
w2

i + λ2

(
w2

i
2

+
i−1

∑
j=1

wjwi

)
+ O(Λ1/2). (2.8)

According to the result with a single segment, we know that the optimal pattern length
and hence the segment length are in the order of O(Λ−1/2), which implies that Ei =
wi + O(1).

For the ease of analysis, we assume that there is a hypothetical segment at the
beginning of the pattern with length w0 = 0 (hence no need to checkpoint). For this
segment, we have E0 = w0 = 0, satisfying Equation (2.8). Suppose the claim holds up
to Ei−1. Then, Ei can be recursively expressed as follows:

Ei = Pi

(
Elost(wi, Λ) +

λ1

Λ
(R1 + Ei)

+
λ2

Λ

(
R2 + R1 +

i−1

∑
j=1

Ej + Ei

))
+ (1− Pi)(wi + C1), (2.9)

where Pi = 1− e−Λwi denotes the probability of having a failure (either level-1 or level-
2) during the execution of the segment, and Elost(wi, Λ) denotes the expected time lost
when such a failure occurs.

Equation (2.9) is very similar to Equation (2.3), except when a level-2 failure occurs
we need to re-execute all the segments (up to segment i) that have been executed
so far. Following the derivation of Proposition 1 and applying Ej = wj + O(1) for
j = 1, 2, . . . , i− 1, we can derive the first-order approximation of Ei as follows:

Ei =wi+C1+
1
2

(
λ1w2

i +λ2w2
i +2λ2wi

i−1

∑
j=1

Ej

)
+O(Λ1/2)

=wi+C1+
1
2

(
λ1w2

i +λ2w2
i +2λ2wi

i−1

∑
j=1

(
wj+O(1)

))
+O(Λ1/2)

=wi+C1+
1
2

(
λ1w2

i +λ2

(
w2

i +2
i−1

∑
j=1

wjwi

))
+O(Λ1/2). (2.10)

Since the level-2 checkpoint at the end of the pattern is also assumed to be error-

2.2. COMPUTING THE OPTIMAL PATTERN 15

free, we can compute the expected execution time of the pattern as

E =
n

∑
i=1

Ei + C2

= W + nC1 + C2 +
1
2

(
λ1

n

∑
i=1

α2
i + λ2

)
W2 + O(Λ1/2),

since ∑n
i=1 w2

i + 2 ∑n
i=1 ∑i−1

j=1 wjwi =(∑n
i=1 wi)

2=W2.

Theorem 1. A first-order approximation to the optimal two-level pattern is characterized by

nopt =

√
λ1

λ2
· C2

C1
, (2.11)

α
opt
i =

1
nopt ∀i = 1, 2, . . . , nopt, (2.12)

Wopt =

√√√√ noptC1 + C2

1
2

(
λ1

nopt + λ2

) , (2.13)

where nopt is the number of segments, α
opt
i Wopt is the length of the i-th segment, and Wopt is

the pattern length.
The optimal pattern overhead is

Hopt =
√

2λ1C1 +
√

2λ2C2 + O(Λ). (2.14)

Proof. For a given pattern with a fixed number n of segments, ∑n
i=1 α2

i is minimized
subject to ∑n

i=1 αi = 1 when αi =
1
n for all i = 1, 2, . . . , n. Hence, we can derive the

expected execution overhead from Proposition 2 as follows:

H =
nC1 + C2

W
+

1
2

(
λ1

n
+ λ2

)
W + O(Λ). (2.15)

For a given n, the optimal work length can then be computed from Equation (2.15),

and it is given by Wopt =
√

nC1+C2
1
2

(
λ1
n +λ2

) . In that case, the execution overhead becomes

H =

√
2
(

λ1

n
+ λ2

)
(nC1 + C2) + O(Λ), (2.16)

which is minimized as shown in Equation (2.14) when n satisfies Equation (2.11).
Indeed, 2

(
λ1

nopt + λ2

)
(noptC1 + C2) = 2λ1C1 + 2λ2C2 + 4

√
λ1λ2C1C2 = (

√
2λ1C1 +√

2λ1C1)
2. In practice, since the number of segments can only be a positive integer, the

optimal solution is either max(1, bnoptc) or dnopte, whichever leads to a smaller value

16 Chapter 2: Towards optimal multi-level checkpointing

of the convex function H as shown in Equation (2.16).

Remarks. Consider the example given in [63] with C1 = R1 = 20, C2 = R2 = 50,
λ1 = 2.78× 10−4 and λ2 = 4.63× 10−5. The optimal solution2 provided by [63] gives
nopt = 3.83, Wopt = 1362.49 and Hopt = 0.1879, while Theorem 1 suggests nopt = 3.87,
Wopt = 1378.27 and Hopt = 0.1735, which is quite close to the exact optimum. The
difference in overhead is due to the negligence of lower-order terms in the first-order
approximation. We point out that the solution provided by [63] relies on numerical
methods to solve rather complex mathematical equations, whose convergence is not
always guaranteed, and it is only applicable to two levels. Our result, on the other
hand, is able to provide fast and good approximation to the optimal solution when
the error rates are sufficiently small, and it can be readily extended to an arbitrary
number of levels, as shown in the next section.

2.2.3 Optimal k-level pattern

In this section, we derive the first-order approximation to the optimal k-level pattern
by determining its length W, the number N` of level-` checkpoints for all 1 ≤ ` ≤ k,
as well as the positions of all checkpoints in the pattern.

2.2.3.1 Observations

Before analyzing the optimal pattern, we make several observations. First, we can
obtain the orders of the optimal length and pattern overhead as shown below (recall
that Λ = ∑k

`=1 λ`).

Observation 1. Consider the simplest k-level pattern with a single segment of length W. We
can conduct the same analysis as in Section 2.2.2.1 to show that the optimal pattern length
satisfies Wopt = Θ(Λ−1/2), and the corresponding overhead satisfies Hopt = Θ(Λ1/2).

From the analysis of the two-level pattern, we can also observe that the overall
execution overhead of any pattern comes from two distinct sources defined below.

Observation 2. There are two types of execution overheads for a pattern:

(1). Error-free overhead, denoted as oef, is the total cost of all the checkpoints placed in the
pattern. For a given set of checkpoints, the error-free overhead is completely determined
regardless of their positions in the pattern.

(2). Re-executed fraction overhead, denoted as ore, is the expected fraction of work that
needs to be re-executed due to errors. The re-executed fraction overhead depends on both
the set of checkpoints and their positions.

2The original optimal solution of [63] considers faults in checkpointing but not during recoveries. We
adapt its solution to exclude faults in checkpointing so to be consistent with the model in this chapter
for a fair comparison. The results reported herein are based on this modified solution.

2.2. COMPUTING THE OPTIMAL PATTERN 17

For example, in the two-level pattern with n level-1 checkpoints and given values
of αi for all i = 1, 2, . . . , n, the two types of overheads are given by oef = nC1 + C2 and
ore = 1

2

(
f1 ∑n

i=1 α2
i + f2

)
, where f` =

λ`
Λ for ` = 1, 2. Assuming that checkpoints at all

levels have constant costs and that the error rates at all levels are in the same order,
then both oef and ore can be considered as constants, i.e., oef = O(1) and ore = O(1).

A trade-off exists between these two types of execution overheads, since plac-
ing more checkpoints generally reduces the re-executed work fraction when an error
strikes, but it can adversely increase the overhead when the execution is error-free.
Therefore, in order to achieve the best overall overhead, a resilience algorithm must
seek an optimal balance between oef and ore.

For a given pattern with fixed overheads oef and ore, we can make the following
observation based on Propositions 1 and 2, which partially characterizes the optimal
pattern.

Observation 3. For a given pattern (with fixed oef and ore), the expected execution time is
given by

E = W + oef︸ ︷︷ ︸
error-free

execution time

+ ΛW︸︷︷︸
expected
errors

· oreW︸ ︷︷ ︸
re-executed work
in case of error

+ O(Λ1/2), (2.17)

and the optimal pattern length and the resulting expected execution overhead of the pattern are

Wopt =

√
oef

Λ · ore
, (2.18)

Hopt = 2
√

Λ · oef · ore + O(Λ). (2.19)

Equation (2.19) shows that the trade-off between oef and ore is manifested as the
product of the two terms. Hence, in order to determine the optimal pattern, it suffices
to find the pattern parameters (e.g., n and αi) that minimize oef · ore.

2.2.3.2 Analysis

We now extend the analysis to derive the optimal multi-level checkpointing patterns.
Generally, for a k-level pattern, each computational segment s(`)ik−1,...,i`

can be uniquely
identified by its level ` as well as its position 〈ik−1, . . . , i`〉 within the multi-level hier-
archy. For instance, in a four-level pattern, the segment s(2)1,3 denotes the third level-2
segment inside the first level-3 segment of the pattern (see Figure 2.3). Note that a seg-
ment can contain multiple sub-segments at the lower levels (except for bottom-level
segments) and is a sub-segment of a larger segment at a higher level (except for top-
level segments). The entire pattern can be denoted as s(k), which is the only segment
at level k.

For any segment s(`)ik−1,...,i`
at level `, where 1 ≤ ` ≤ k, let w(`)

ik−1,...,i`
denote its length.

Hence, we have w(`+1)
ik−1,...,i`+1

= ∑i` w(`)
ik−1,...,i`

and w(k) = W. Also, let n(`)
ik−1,...,i`

denote

18 Chapter 2: Towards optimal multi-level checkpointing

s(4)

s
(3)
1 s

(3)
2

c4
c3 c3

s
(2)
1,1 s

(2)
1,2 s

(2)
1,3 s

(2)
1,4

c2

s
(2)
2,1 s

(2)
2,2

c2 c2

c2 c2
c1 c1 c1

s
(1)
1,3,1 s

(1)
1,3,2 s

(1)
1,3,3

c4

Figure 2.3: Example of a 4-level pattern. Here, we let c` = C1|C2| · · · |C` denote the
succession of checkpoints from level 1 to level `.

the number of sub-segments contained by s(`)ik−1,...,i`
at the lower level ` − 1. We have

n(1)
ik−1,...,i1

= 1 for all ik−1, . . . , i1. For convenience, we further define

α
(`)
ik−1,...,i`

=
w(`)

ik−1,...,i`
W

as the fraction of the length of segment s(`)ik−1,...,i`
inside the pattern, and define N` to be

the total number of level-` segments in the entire pattern. Therefore, we have Nk = 1,
Nk−1 = n(k), and in general

N` = ∑
ik−1,...,i +̀1

n(+̀1)
ik−1,...,i +̀1

.

The following proposition shows the expected time to execute a given k-level pat-
tern.Proposition 3. The expected execution time of a given k-level pattern is

E = W +
k−1

∑
`=1

N`C` + Ck

+
W2

2

(
k

∑
`=1

λ` ∑
ik−1,...,i`

(
α
(`)
ik−1,...,i`

)2
)
+ O(Λ1/2).

Proof. We show that the expected time to execute any segment s(h)ik−1,...,ih
at level h, where

1 ≤ h ≤ k, satisfies the following (without counting the time to execute all the check-

2.2. COMPUTING THE OPTIMAL PATTERN 19

points inside the segment):

E
(h)
ik−1,...,ih

= w(h)
ik−1,...,ih

+
W2

2

(
h

∑
`=1

λ` ∑
ih−1,...,i`

(
α
(`)
ik−1,...,i`

)2
)

+ Λ[h+1,k]


(

w(h)
ik−1,...,ih

)2

2
+ w(h)

ik−1,...,ih

ih−1

∑
jh=1

E
(h)
ik−1,...,jh


+ w(h)

ik−1,...,ih

k

∑
`=h+2

Λ[`,k]

i −̀1−1

∑
j −̀1=1

E
(−̀1)
ik−1,...,j −̀1

+O(Λ1/2), (2.20)

where Λ[x,y] = ∑
y
`=x λ` and, if x > y, we define Λ[x,y] = 0. The proposition can then

be proven by setting E = E(k) + ∑k−1
`=1 N`C` + Ck, since checkpoints are assumed to be

error-free.

We now prove Equation (2.20) by induction on the level h. For the base case,
i.e., when h = 1, consider a segment s(1)ik−1,...,i1

at the first level. Following the proof of
Proposition 2 (in particular, Equation (2.9)), we can express its expected execution time
E

(1)
ik−1,...,i1

, as

E
(1)
ik−1,...,i1

=P(1)
ik−1,...,i1

(
Elost(w(1)

ik−1,...,i1
, Λ
)

+
λ1

Λ

(
R1 + E

(1)
ik−1,...,i1

)
+

λ2

Λ

(2

∑
j=1

Rj +
i1

∑
j1=1

E
(1)
ik−1,...,j1

)
+

λ3

Λ

(3

∑
j=1

Rj +
i2−1

∑
j2=1

E
(2)
ik−1,...,j2

+
i1

∑
j1=1

E
(1)
ik−1,...,j1

)
...

+
λk

Λ

(k

∑
j=1

Rj +
ik−1−1

∑
jk−1=1

E
(k−1)
jk−1

+
ik−2−1

∑
jk−2=1

E
(k−2)
ik−1,jk−2

+ · · ·+
i1

∑
j1=1

E
(1)
ik−1,...,j1

))
+
(
1− P(1)

ik−1,...,i1

)
w(1)

ik−1,...,i1
, (2.21)

where Λ = ∑k
`=1 λ` is the total rate of all error sources, and P(1)

ik−1,...,i1
= 1− eΛ·w(1)

ik−1,...,i1

denotes the probability of having an error (from any level) during the execution of the

20 Chapter 2: Towards optimal multi-level checkpointing

segment. Simplifying Equation (2.21) and solving for E
(1)
ik−1,...,i1

we get:

E
(1)
ik−1,...,i1

= w(1)
ik−1,...,i1

+
W2

2
Λ[1,k]

(
α
(1)
ik−1,...,i1

)2

+ w(1)
ik−1,...,i1

k

∑
`=2

Λ[`,k]

i −̀1−1

∑
j −̀1=1

E
(−̀1)
ik−1,...,j −̀1

+ O(Λ1/2)

= w(1)
ik−1,...,i1

+
W2

2
λ1

(
α
(1)
ik−1,...,i1

)2

+ Λ[2,k]


(

w(1)
ik−1,...,i1

)2

2
+ w(1)

ik−1,...,i1

i1−1

∑
j1=1

E
(1)
ik−1,...,j1


+ w(1)

ik−1,...,i1

k

∑
`=3

Λ[`,k]

i −̀1−1

∑
j −̀1=1

E
(−̀1)
ik−1,...,j −̀1

+O(Λ1/2),

which satisfies Equation (2.20).

Suppose Equation (2.20) holds up to any segment s(h)ik−1,...,ih
at level h. Following the

proof of Proposition 2 (in particular, the derivation of Equation (2.10)), we can show by
induction that E

(h)
ik−1,...,ih

= w(h)
ik−1,...,ih

+ O(1). Hence, for segment s(h+1)
ik−1,...,ih+1

at level h + 1,
we have the Equation (2.22).

Hence, Equation (2.20) also holds for any segment at level h + 1. This completes
the proof of the proposition.

E
(h+1)
ik−1,...,ih+1

= ∑
ih

E
(h)
ik−1,...,ih

= ∑
ih

w(h)
ik−1,...,ih

+
W2

2

(
h

∑
`=1

λ` ∑
ih,...,i`

(
α
(`)
ik−1,...,i`

)2
)

+ Λ[h+1,k] ∑
ih


(

w(h)
ik−1,...,ih

)2

2
+w(h)

ik−1,...,ih

ih−1

∑
jh=1

w(h)
ik−1,...,jh


+ ∑

ih

w(h)
ik−1,...,ih

k

∑
`=h+2

Λ[`,k]

i −̀1−1

∑
j −̀1=1

E
(−̀1)
ik−1,...,j −̀1

+ O(Λ1/2)

2.2. COMPUTING THE OPTIMAL PATTERN 21

E
(h+1)
ik−1,...,ih+1

= w(h+1)
ik−1,...,ih+1

+
W2

2

(
h

∑
`=1

λ` ∑
ih,...,i`

(
α
(`)
ik−1,...,i`

)2
)
+ Λ[h+1,k]

(
w(h+1)

ik−1,...,ih+1

)2

2

+ w(h+1)
ik−1,...,ih+1

k

∑
`=h+2

Λ[`,k]

i −̀1−1

∑
j −̀1=1

E
(−̀1)
ik−1,...,j −̀1

+ O(Λ1/2)

= w(h+1)
ik−1,...,ih+1

+
W2

2

(
h+1

∑
`=1

λ` ∑
ih,...,i`

(
α
(`)
ik−1,...,i`

)2
)

+ Λ[h+2,k]


(

w(h+1)
ik−1,...,ih+1

)2

2
+w(h+1)

ik−1,...,ih+1

ih+1−1

∑
jh+1=1

E
(h+1)
ik−1,...,jh+1


+ w(h+1)

ik−1,...,ih+1

k

∑
`=h+3

Λ[`,k]

i −̀1−1

∑
j −̀1=1

E
(−̀1)
ik−1,...,j −̀1

+ O(Λ1/2). (2.22)

Proposition 3 shows that, for a given k-level checkpointing pattern, the error-free
overhead oef and the re-executed fraction overhead ore are given as follows:

oef =
k−1

∑
`=1

N`C` + Ck, (2.23)

ore =
1
2

k

∑
`=1

f` ∑
ik−1,...,i`

(
α
(`)
ik−1,...,i`

)2
, (2.24)

where f` = λ`
Λ . According to Observation 3, it remains to find parameters of the

pattern such that oef · ore is minimized.
To derive the optimal pattern, we first consider the case where oef is fixed, i.e., the

set of checkpoints is given. The following proposition shows the optimal value of ore.

Proposition 4. For a k-level checkpointing pattern, suppose the number N` of checkpoints at
each level ` is given, i.e., the error-free overhead oef is fixed (as in Equation (2.23)). Then, the
optimal value of the re-executed work overhead is given by

oopt
re =

1
2

(
k−1

∑
`=1

f`
N`

+ fk

)
, (2.25)

and it is obtained when all the checkpoints of each level are equally spaced in the pattern.

Proof. According to Equation (2.24), which shows the value of ore for the entire pattern,
we can define the corresponding overhead for each level-h segment s(h)ik−1,...,ih

recursively

22 Chapter 2: Towards optimal multi-level checkpointing

as follows:

ore

(
s(h)ik−1,...,ih

)
=

fh

2
·
(

α
(h)
ik−1,...,ih

)2
+∑

ih−1

ore

(
s(h−1)

ik−1,...,ih−1

)
,

with ore

(
s(0)ik−1,...,i0

)
= 0 by definition.

For each segment s(h)ik−1,...,ih
, we also define N`

(
s(h)ik−1,...,ih

)
to be the total number of level-

` segments it contains, with ` ≤ h. We will show that the optimal value oopt
re

(
s(h)ik−1,...,ih

)
for the segment satisfies:

oopt
re

(
s(h)ik−1,...,ih

)
=

1
2

 h

∑
`=1

f`
N`

(
s(h)ik−1,...,ih

)
(α

(h)
ik−1,...,ih

)2
, (2.26)

and it is achieved when its level-` checkpoints are equally spaced, for all ` ≤ h− 1.
The proposition can then be proven by setting oopt

re = oopt
re

(
s(k)
)

, since N`

(
s(k)
)
= N`,

Nk = 1, and α(k) = 1.

Now, we prove Equation (2.26) by induction on the level h. For the base case,

i.e., when h = 1, we have ore

(
s(1)ik−1,...,i1

)
= f1

2 ·
(

α
(1)
ik−1,...,i1

)2
by definition, and it satisfies

Equation (2.26), because N1

(
s(1)ik−1,...,i1

)
= 1. Suppose Equation (2.26) holds for any

segment s(h)ik−1,...,ih
at level h. Then, for segment s(h+1)

ik−1,...,ih+1
at level h + 1, we have:

ore

(
s(h+1)

ik−1,...,ih+1

)
=

fh+1

2
·
(

α
(h+1)
ik−1,...,ih+1

)2
+∑

ih

oopt
re

(
s(h)ik−1,...,ih

)
=

fh+1

2
·
(

α
(h+1)
ik−1,...,ih+1

)2
+

1
2

y, (2.27)

where y = ∑ih
x(h)ik−1,...,ih

·
(

α
(h)
ik−1,...,ih

)2
, and x(h)ik−1,...,ih

= ∑h
`=1

f`
N`

(
s(h)ik−1,...,ih

) . To minimize

ore

(
s(h+1)

ik−1,...,ih+1

)
as shown in Equation (2.27), it suffices to solve the following minimiza-

tion problem:

minimize y = ∑
ih

x(h)ik−1,...,ih
·
(

α
(h)
ik−1,...,ih

)2
,

subject to ∑
ih

α
(h)
ik−1,...,ih

= α
(h+1)
ik−1,...,ih+1

.

Since y is clearly a convex function of α
(h)
ik−1,...,ih

, we can readily get, using Lagrange

2.2. COMPUTING THE OPTIMAL PATTERN 23

multiplier [32], the minimum value of y as follows:

ymin =
1

∑ih
1/x(h)ik−1,...,ih

·
(

α
(h+1)
ik−1,...,ih+1

)2
, (2.28)

which is obtained at

α̃
(h)
ik−1,...,ih

=
1/x(h)ik−1,...,ih

∑jh 1/x(h)ik−1,...,jh

· α(h+1)
ik−1,...,ih+1

. (2.29)

Let us define z = ∑ih
1/x(h)ik−1,...,ih

. We now need to solve the following maximization
problem:

maximize z = ∑
ih

1

∑h
`=1

f`
N`

(
s(h)ik−1,...,ih

) ,

subject to ∑
ih

N`

(
s(h)ik−1,...,ih

)
=N`

(
s(h+1)

ik−1,...,ih+1

)
, ∀` = 1, . . . , h.

Again, z is a convex function of N`

(
s(h)ik−1,...,ih

)
, and it can be shown to be maximized

when

N`

(
s(h)ik−1,...,ih

)
=

N`

(
s(h+1)

ik−1,...,ih+1

)
n(h+1)

ik−1,...,ih+1

, ∀` = 1, . . . , h,

which gives α̃
(h)
ik−1,...,ih

= 1
n(h+1)

ik−1,...,ih+1

· α(h+1)
ik−1,...,ih+1

according to Equation (2.29). This implies

that all level-` checkpoints are also equally spaced inside segment s(h+1)
ik−1,...,ih+1

, for all
` ≤ h. The maximum value of z in this case is

zmax =
1

∑h
`=1

f`
N`

(
s(h+1)

ik−1,...,ih+1

) ,

and the optimal value of ymin according to Equation (2.28) is then given by

yopt
min =

1
zmax

(
α
(h+1)
ik−1,...,ih+1

)2

=

 h

∑
`=1

f`
N`

(
s(h+1)

ik−1,...,ih+1

)
(α

(h+1)
ik−1,...,ih+1

)2
.

Substituting yopt
min into Equation (2.27), we get the optimal value of ore

(
s(h+1)

ik−1,...,ih+1

)
as

24 Chapter 2: Towards optimal multi-level checkpointing

follows:

oopt
re

(
s(h+1)

ik−1,...,ih+1

)
=

fh+1

2
·
(

α
(h+1)
ik−1,...,ih+1

)2
+

1
2

yopt
min

=
1
2

h+1

∑
`=1

f`
N`

(
s(h+1)

ik−1,...,ih

)
(α

(h+1)
ik−1,...,ih+1

)2
.

This shows that Equation (2.26) also holds for segment s(h+1)
ik−1,...,ih+1

at level h + 1 and,
hence, completes the proof of the proposition.

We are now ready to characterize the optimal k-level pattern. The result is stated
in the following theorem.

Theorem 2. A first-order approximation to the optimal k-level pattern and its overhead are
characterized by

Wopt =

√√√√√2
(

∑k−1
`=1 Nopt

` C` + Ck

)
∑k−1

`=1
λ`

Nopt
`

+ λk
, (2.30)

Nopt
` =

√
λ`

C`
· Ck

λk
, ∀` = 1, 2, . . . , k− 1, (2.31)

Hopt =
k

∑
`=1

√
2λ`C` + O(Λ). (2.32)

Proof. From Observation 3, Equation (2.23) and Proposition 4, we know that the opti-
mal pattern can be obtained by minimizing the following function:

F = oef · oopt
re =

1
2

(
k−1

∑
`=1

N`C` + Ck

)(
k−1

∑
`=1

f`
N`

+ fk

)
.

We first compute the optimal number of checkpoints at each level using a two-phase
iterative method. Towards this end, let us define

oef(h) =
k−1

∑
`=h

N`C` + Ck,

oopt
re (h) =

1
2

(
k−1

∑
`=h

f`
N`

+ fk

)
.

In the first phase, we set initially

F(1) = oef(1) · oopt
re (1).

2.2. COMPUTING THE OPTIMAL PATTERN 25

The optimal value of N1 that minimizes F(1) can then be obtained by setting

∂F(1)
∂N1

= C1oopt
re (1)− oef(1)

f1

2N2
1

= C1

(
f1

2N1
+ oopt

re (2)
)
− (N1C1 + oef(2))

f1

2N2
1

= C1oopt
re (2)− oef(2)

f1

2N2
1
= 0,

which gives Nopt
1 =

√
f1
C1
· oef(2)

2oopt
re (2)

. Substituting it into F(1) and simplifying, we can get

the value of F after the first iteration as

F(2) =
1
2

(√
f1C1 +

√
oef(2) · oopt

re (2)
)2

.

Repeating the above process, we can get the optimal value of F after k− 1 iterations as

Fopt = F(k) =
1
2

(
k

∑
`=1

√
f`C`

)2

, (2.33)

and the optimal value of N` as

Nopt
` =

√
f`
C`
· oef(`+ 1)

2oopt
re (`+ 1)

, ∀` = 1, 2, . . . , k− 1. (2.34)

In the second phase, we first compute from Equation (2.34)

Nopt
k−1 =

√
fk−1

Ck−1
· oef(k)

2oopt
re (k)

=

√
fk−1

Ck−1
· Ck

fk

=

√
λk−1

Ck−1
· Ck

λk
.

26 Chapter 2: Towards optimal multi-level checkpointing

Substituting it into Nopt
k−2, we obtain:

Nopt
k−2 =

√
fk−2

Ck−2
· oef(k− 1)

2oopt
re (k− 1)

=

√√√√√λk−2

Ck−2
· Nopt

k−1Ck−1 + Ck
λk−1

Nopt
k−1

+ λk

=

√√√√√λk−2

Ck−2
·

√
λk−1

λk
Ck−1Ck + Ck√

λk−1λk
Ck−1

Ck
+ λk

=

√√√√√√λk−2

Ck−2
·

Ck

(√
λk−1

λk
· Ck−1

Ck
+ 1
)

λk

(√
λk−1

λk
· Ck−1

Ck
+ 1
)

=

√
λk−2

Ck−2
· Ck

λk
.

Repeating the above process iteratively, we can compute the optimal values of Nopt
` for

` = k− 3, . . . , 2, 1, as given in Equation (2.31) by using values of Nopt
k−1, . . . , Nopt

`+1.
The optimal pattern length, according to Equation (2.18), can be expressed as

Wopt =
√

oef

Λ·oopt
re

, which turns out to be Equation (2.30) with the optimal values of

Nopt
` .

The optimal overhead, according to Equations (2.19) and (2.33), can be expressed
as Hopt = 2

√
Λ · Fopt + O(Λ), which gives rise to Equation (2.32). This completes the

proof of the theorem.

Since Proposition 4 shows that all the checkpoints of each level are equally spaced
in the pattern, we can readily obtain the following corollary.

Corollary 1. In an optimal k-level pattern, the number of level-` checkpoints between any two
consecutive level-(`+ 1) checkpoints is given by

nopt
` =

Nopt
`

Nopt
`+1

=

√
λ`

λ`+1
· C`+1

C`
. (2.35)

for all ` = 1, . . . , k− 1.

Remarks. The optimal k-level pattern derived in this section has a rational number
of segments, while the optimal integer solution could be much harder to compute.
In Section 2.3, we use rounding to derive a practical solution. Still, Equation (2.32)

2.2. COMPUTING THE OPTIMAL PATTERN 27

provides a lower bound on the optimal overhead, which is met very closely in all our
experimental scenarios.

2.2.4 Optimal subset of levels

The preceding section characterizes the optimal pattern by using k levels of check-
points. In many practical cases, there is no obligation to use all available levels. This
section addresses the problem of selecting the optimal subset of levels in order to
minimize the overall execution overhead.

2.2.4.1 Checkpoint cost models

So far, we have assumed that all the checkpoint costs are fixed under a multi-level
checkpointing scheme. In practice, the checkpoint costs may vary depending upon
the implementation, and upon the subset of selected levels. In order to determine the
optimal subset, we identify the following two checkpoint cost models:

• Fixed independent costs. The checkpoint cost C` at level ` is the cost paid to
save data at level `, independently of the subset of levels used. In this model, the
checkpoint costs stay the same for all possible subsets.

• Incremental costs. The checkpointing cost C` at level ` is the additional cost paid
to save data when going from level `− 1 to `. In this model, the checkpoint cost
at a particular level depends on the subset of levels selected.

For example, with k = 2 levels and C1=10, C2=20, two subsets are possible: {1, 2} and
{2}. In the fixed independent cost model, these costs will stay unchanged regardless
of the subset chosen. In the incremental cost model, since C2 is the additional cost paid
after C1 is done, when using subset {2}, i.e., only placing level-2 checkpoints in the
pattern, we need to adjust its cost as C′2 = 10 + 20 = 30. In both cases, once the subset
is decided, the checkpoint costs at the selected levels can be computed and therefore
considered as fixed constants. The theoretical analysis presented in Section 2.2.3 can
then be used to compute the optimal pattern.

But how to determine the optimal subset of levels? Consider again the example
with k = 2 levels. In the incremental cost model, Equation (2.32) suggests that the
optimal solution (ignoring lower-order terms) uses both levels if and only if√

2λ1C1 +
√

2λ2C2 ≤
√

2 (λ1 + λ2) (C1 + C2)

⇔ 0 ≤
(√

λ1C2 −
√

λ2C1

)2
,

which is always true when assuming λ1 ≥ λ2 and C1 ≤ C2. We can easily apply the
same argument to show that the optimal subset must contain all levels available as
long as all checkpoint costs are positive.

28 Chapter 2: Towards optimal multi-level checkpointing

In the fixed independent cost model, however, it is not clear whether all available
levels should be used. Consider the same example with k = 2 levels, and define α = λ2

λ1

and β = C2
C1

. The optimal solution uses both levels if and only if

√
2λ1C1 +

√
2λ2C2 ≤

√
2 (λ1 + λ2)C2

⇔ 4αβ ≤ (β− 1)2,

which is not true when α = 0.5 and β = 2. In this case, using only level-2 checkpoints
leads to a smaller overhead.

2.2.4.2 Dynamic programming algorithm

In the fixed independent cost model, the optimal subset of levels in a general k-level
pattern could well depend on the checkpoint costs and error rates of different levels.
One can enumerate all 2k−1 possible subsets and select the one that leads to the small-
est overhead. The following theorem presents a more efficient dynamic programming
algorithm when the number k of levels is large.

Theorem 3. Suppose there are k levels of checkpoints available and their costs are fixed. Then,
the optimal subset of levels to use can be obtained by dynamic programming in O(k2) time.

Proof. Let Sopt(h) ⊆ {0, 1, . . . , h} denote the optimal subset of levels used by a pattern
that is capable of handling errors up to level h, and let Hopt(h) denote the correspond-
ing optimal overhead (ignoring lower-order terms) incurred by the pattern. Define
Sopt(0) = ∅ and Hopt(0) = 0. Recall that Λ[x,y] = ∑

y
`=x λ`. We can compute Hopt(h)

using the following dynamic programming formulation:

Hopt(h) = min
0≤`≤h−1

{
Hopt(`) +

√
2Λ[`+1,h]Ch

}
, (2.36)

and the optimal subset is Sopt(h) = Sopt(`opt)
⋃{h}, where `opt is the value of ` that

yields the minimum Hopt(h).
The optimal subset of levels to handle all k levels of errors is then given by Sopt(k)

with the optimal overhead Hopt(k). The complexity is clearly quadratic in the total
number of levels.

2.3 Simulations

In this section, we conduct a set of simulations whose goal is threefold: (i) to ver-
ify the accuracy of the first-order approximation; (ii) to confirm the optimality of the
subset of levels found by the dynamic programming algorithm; and (iii) to evaluate
the performance of our approach and to compare it with other multi-level checkpoint-
ing algorithms. After introducing the simulation setup in Section 2.3.1, we proceed
in two steps. First, in Section 2.3.2, we instantiate the model with realistic parameters

2.3. SIMULATIONS 29

from the literature and run simulations for all possible subsets of levels and roundings.
Then, in Section 2.3.3, we instantiate the model with different test cases from the recent
work of Di et al. [62, 63] on multilevel checkpointing and compare the overheads ob-
tained with three approaches: (a) Young/Daly’s classical formula; (b) our first-order
approximation formula; and (c) Di et al.’s iterative/optimal algorithm. The simula-
tor code is publicly available at http: // perso. ens-lyon. fr/ aurelien. cavelan/
multilevel. zip , so that interested readers can experiment with it and instantiate the
model with parameters of their own choice.

2.3.1 Simulation setup

Checkpoint and recovery costs both depend on the volume of data to be saved, and
are mostly determined by the hardware resource used at each level. As such, we
assume that recovery cost for a given level is equivalent to the corresponding check-
pointing cost, i.e., R` = C` for 1 ≤ ` ≤ k (unless specified otherwise). This a common
assumption [140, 62], even though in practice the recovery cost can be expected to be
somewhat smaller than the checkpoint cost [62, 63]. All costs are fixed and independent
(as discussed in Section 2.2.4.1).

The simulator is fed with k levels of errors and their MTBFs µ` = 1/λ`, as well
as the resilience parameters C` and R`. For each of the 2k−1 possible subsets of levels
(the last level is always included), we take the optimal pattern given in Theorem 2
and Corollary 1, and then try all possible roundings (floor and ceiling) based on the
optimal (rational) number of checkpoints (nopt

` given in Equation (2.35)). For each
rounding, we compare the following three overheads:

• Simulated overhead, obtained by running the simulation 10000 times and aver-
aging the results;

• Corresponding theoretical overhead, obtained from Equations (2.19), (2.23) and
(2.25) using the integer solution that corresponds to the rounding;

• Theoretical lower bound, obtained from Equation (2.32) with the optimal ratio-
nal solution.

In the following, we associate Young/Daly’s classical formula, defined as Wopt =√
2C
Λ , with the highest checkpointing level available, i.e., C = Ck. Note that in this

case, Young/Daly’s formula and Equation (2.30) can be used interchangeably, and the
corresponding theoretical overhead is obtained with Hopt =

√
2ΛC.

2.3.2 Assessing accuracy of first-order approximation

In this section, we run simulations with two sets of parameters, described in Table 2.1.
For each set of parameters, we consider all possible subsets of levels. Then, for each
subset, we compute the optimal pattern length and number of checkpoints to be used
at each level. We show the accuracy of our approach in both scenarios, and we confirm
the optimality of the subset of levels returned by the dynamic programming algorithm.

http://perso.ens-lyon.fr/aurelien.cavelan/multilevel.zip
http://perso.ens-lyon.fr/aurelien.cavelan/multilevel.zip

30 Chapter 2: Towards optimal multi-level checkpointing

Table 2.1: Sets of parameters (A) and (B) used as inputs for simulations.

Set From Level 1 2 3 4

(A)
Moody C (s) 0.5 4.5 1051 -

et al. [140] MTBF (s) 5.00e6 5.56e5 2.50e6 -

(B)
Balaprakash C (s) 10 30 50 150

et al. [14] MTBF (s) 3.60e4 7.20e4 1.44e5 7.20e5

2.3.2.1 Using set of parameters (A)

The first set of parameters (shown in set (A) of Table 2.1) corresponds to the Coastal
platform, a medium-sized HPC system of 1104 nodes at the Lawrence Livermore Na-
tional Laboratory (LLNL). The Coastal platform has been used to evaluate the Scalable
Checkpoint/Restart (SCR) library by Moody et al. [140], who provided accurate mea-
surements for the checkpoint costs using real applications (given in the first row of
Table 2.1). There are k = 3 levels of checkpoints. First-level checkpoints are written
to the local RAMs of the nodes, and this is the fastest method (0.5s). Second-level
checkpoints are also written to local RAMs, but small sets of nodes collectively com-
pute and store parity redundancy data, which takes a little while longer (4.5s). Lastly,
Lustre is used to store third-level checkpoints onto the parallel file system, which takes
significantly longer time (1051s). Failures were analyzed in [140], and the error rates
are given in the second row of Table 2.1. Note that the error rate at level 2 is higher
than those of levels 1 and 3.

Results: Table 2.2 and Figure 2.4 present the simulation results. Table 2.2 shows,
from left to right, the subset of levels used, the number of checkpoints computed by
our first-order approximation formula for each possible rounding (N1, N2, N3), the
corresponding optimal pattern length (Wopt(s)), the simulated overhead (Sim. Ov.),
the corresponding theoretical overhead (Th. Ov.), the absolute and relative differences
of these two overheads (Ab. Diff. = 100 × (Sim. Ov. - Th. Ov.), and Rel. Diff. = 100 ×
(Sim. Ov. - Th. Ov.)/Sim. Ov.), and finally the theoretical lower bound for this subset
(Th. L.B.).

With k = 3, there are four possible subsets of levels, and both the best simu-
lated overhead and the corresponding theoretical overhead are achieved for the subset
{2, 3}, with N2 = 35 and N3 = 1 (highlighted in bold in the table). First, the differ-
ence between the simulated and theoretical overheads is very small, with a difference
< 0.7% in absolute values, and a relative difference ranging from 2.9% (for subset
{1, 2, 3}) to 8.14% (for subset {3}), which shows the accuracy of the first-order approx-
imation for this set of parameters. The simulated overhead is always higher than the
theoretical one, which is expected, because the first-order approximation ignores some
lower-order terms. Next, we observe that, for each subset, all roundings of the number
of checkpoints yield similar overheads on this platform, and the difference between
the best and worst roundings is almost negligible.

2.3. SIMULATIONS 31

Table 2.2: Simulation results using set of parameters (A).

Levels N1 N2 N3 Wopt (s) Sim. Ov. Th. Ov. Abs. Diff. Rel. Diff. Th. L.B.

{3} - - 1 2.96e4 7.74e-2 7.11e-2 0.63% 8.14% 7.11e-2

{1,3} 14 - 1 3.09e4 7.40e-2 6.85e-2 0.55% 7.43%
6.85e-2

13 - 1 3.09e4 7.39e-2 6.85e-2 0.54% 7.31%

{2,3} - 35 1 7.27e4 3.44e-2 3.33e-2 0.11% 3.20%
3.33e-2

- 34 1 7.25e4 3.46e-2 3.33e-2 0.13% 3.76%

{1,2,3} 33 33 1 7.27e4 3.46e-2 3.35e-2 0.11% 3.18%
3.35e-2

32 32 1 7.24e4 3.45e-2 3.35e-2 0.10% 2.90%

{3} {1,3} {2,3} {1,2,3}
Subsets of Levels

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
v

e
rh

e
a

d

Sim. Overhead (Young/Daly)

Sim. Overhead (Di et al.)

Theoretical L.B. (Optimal Subset)

Sim. Overhead (Best Rounding)

Corresp. Theoretical Overhead

Sim. Overhead (Worst Rounding)

Corresp. Theoretical Overhead

Figure 2.4: Simulated and (corresponding) theoretical overheads for all possible sub-
sets of levels with the best and worst roundings for each subset using set of parameters
(A).

Furthermore, using the best subset ({2, 3}) improves the overhead by over 50%
compared to using level-3 checkpoints alone (as in Young/Daly’s result). This is
indeed the subset returned by the dynamic programming algorithm, and the result
matches closely the minimum theoretical lower bound. Finally, comparing our result
to the one obtained by the optimal two-level algorithm by Di et al. [63] on this best
subset, we see that the simulated overheads are similar under the optimal subset, as
the patterns found using both approaches share the same number of checkpoints and
the pattern lengths are also almost identical.

2.3.2.2 Using set of parameters (B)

The second set of parameters correspond to the execution of the LAMMPS application
on the large BG/Q platform Mira at the Argonne National Laboratory (ANL) [14].
The parameters are presented in set (B) of Table 2.1. In this setting, the Fault Tolerance

32 Chapter 2: Towards optimal multi-level checkpointing

{4} {1,4} {2,4} {3,4} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}
Subsets of Levels

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

O
v

e
rh

e
a

d

Sim. Overhead (Young/Daly)

Sim. Overhead (Di et al.)

Theoretical L.B. (Optimal Subset)

Sim. Overhead (Best Rounding)

Corresp. Theoretical Overhead

Sim. Overhead (Worst Rounding)

Corresp. Theoretical Overhead

Figure 2.5: Simulated and (corresponding) theoretical overheads for all possible sub-
sets of levels with the best and worst roundings for each subset using set of parameters
(B).

Interface (FTI) [17] was used, which has four checkpoint levels (k = 4): Local check-
point; Local checkpoint + Partner-copy; Local checkpoint + Reed-Solomon coding; and
PFS-based checkpoint. The MTBFs correspond to the failure rates typically observed
for petascale HPC applications [140, 17, 62].

Results: Table 2.3 and Figure 2.5 present the simulation results for this set of
parameters. There are 8 possible subsets of levels. As before, we observe that the
theoretical overhead is always slightly smaller than the simulated one, with an abso-
lute difference of less than 2%, and a relative difference between 6-14%, demonstrating
the accuracy of the model. Again, the results are very close to the theoretical lower
bound. For this platform, the simulated overheads vary from 9.68% (with optimal sub-
set of levels {1, 3, 4} found by the dynamic programming algorithm) to 14.3% (with
level-4 checkpoints alone). For a given subset of levels, the rounding does not play
a significant role, as Wopt is also adjusted accordingly (increased or decreased) as a
result of rounding. For instance, we observe that, for subset {1, 2, 3, 4}, the numbers
of checkpoints at levels 1 and 2 are halved for the third rounding compared to the first
rounding in Table 2.3, but Wopt is also reduced by 31%, so that for the same amount of
work, the number of checkpoints does not change by much. We can also see that the
pattern length Wopt for the smallest overhead is around 10400s, but only 2450s for the
largest overhead. In fact, the largest pattern lengths are obtained for the highest cumu-
lated checkpoint cost, which turns out to be 830s for {2, 3, 4} with N2=16, N3=4, N4=1,
and for {1, 2, 3, 4} with N1 = 24, N2 = 8, N3 = 4 and N4 = 1. This is because using
more checkpoints both increases the error-free overhead and reduces the time lost due
to re-executions upon errors. As a consequence, and to mitigate the aforementioned
overhead, the length of the pattern increases (e.g., Wopt = 17000s for {2, 3, 4} and
Wopt = 16600s for {1, 2, 3, 4}). And the converse is also true: when using fewer check-
points, the error-free overhead decreases and the time lost upon errors increases. In

2.3. SIMULATIONS 33

Table 2.3: Simulation results using set of parameters (B).

Levels N1 N2 N3 N4 Wopt (s) Sim. Ov. Th. Ov. Abs. Diff. Rel. Diff. Th. L.B.

{4} - - - 1 2.45e3 1.43e-1 1.22e-1 1.9% 13.3% 1.22e-1

{1,4} 5 - - 1 3.79e3 1.18e-1 1.05e-1 1.3% 11.0%
1.05e-1

4 - - 1 3.61e3 1.18e-1 1.05e-1 1.3% 11.0%

{2,4} - 5 - 1 6.00e3 1.11e-1 1.00e-1 1.1% 9.9% 1.00e-1

{3,4} - - 11 1 1.55e4 9.96e-2 9.02e-2 0.94% 9.44%
9.01e-2

- - 10 1 1.44e4 9.91e-2 9.01e-2 0.90% 9.08%

{1,2,4}

9 3 - 1 6.41e3 1.11e-1 1.03e-1 0.8% 7.2%

1.02e-1
6 2 - 1 5.21e3 1.13e-1 1.04e-1 0.9% 8.0%

6 3 - 1 5.84e3 1.11e-1 1.03e-1 0.8% 7.2%

4 2 - 1 4.74e3 1.17e-1 1.05e-1 1.2% 10.3%

{1,3,4}

21 - 7 1 1.58e4 9.72e-2 8.99e-2 0.73% 7.51%

8.96e-2
18 - 6 1 1.40e4 9.82e-2 8.98e-2 0.84% 8.55%

14 - 7 1 1.04e4 9.68e-2 9.01e-2 0.67% 6.92%

12 - 6 1 1.26e4 9.85e-2 9.04e-2 0.81% 8.22%

{2,3,4}

- 16 4 1 1.70e4 1.07e-1 9.75e-2 0.95% 8.9%

9.68e-2
- 12 3 1 1.36e4 1.04e-1 9.73e-2 0.67% 6.4%

- 12 4 1 1.47e4 1.05e-1 9.68e-2 0.82% 7.8%

- 9 3 1 1.17e4 1.05e-1 9.75e-2 0.75% 7.1%

{1,2,3,4}

24 8 4 1 1.66e4 1.09e-1 1.00e-1 0.9% 8.2%

9.92e-2

18 6 3 1 1.32e4 1.08e-1 9.99e-2 0.81% 7.5%

12 4 4 1 1.15e4 1.11e-1 1.03e-1 0.8% 7.2%

9 3 3 1 9.17e3 1.14e-1 1.05e-1 0.9% 7.9%

16 8 4 1 1.51e4 1.08e-1 9.95e-2 0.85% 7.9%

12 6 3 1 1.20e4 1.09e-1 1.00e-1 0.9% 8.3%

8 4 4 1 1.05e4 1.16e-1 1.05e-1 1.1% 9.5%

6 3 3 1 8.33e3 1.19e-1 1.08e-1 1.1% 9.2%

34 Chapter 2: Towards optimal multi-level checkpointing

order to compensate, the pattern length decreases (e.g., Wopt = 8330s for {1, 2, 3, 4}
with N1=6, N2=3, N3=3 and N4=1).

We note that, in this case, our first-order solution slightly outperforms the iterative
method by Di et al. [62] on multi-level checkpointing (with a simulated overhead of
9.68e-2 compared to 9.75e-2). The reason is that their algorithm computes a solution
under the independent checkpointing model, i.e., checkpoints at different levels are
taken according to different independent periods. However, it is not clear how such a
model can be implemented in practice due to the difficulties as explained in Section 2.1
and the different options to rollback to a checkpoint in case of a fault. Therefore, we
transformed their result to a pattern-based solution by rounding the different numbers
of checkpoints obtained using their algorithm to create equal number of checkpoints
at level `− 1 between two consecutive level-` checkpoints. Although the best rounding
is selected here for comparison, the result can still change drastically the number of
checkpoints computed by their initial rational solution without changing the pattern
length, thus increasing the overhead.

2.3.3 Comparing performance of different approaches

In this section, we conduct simulations using settings from Di et al.’s recent work on
multilevel checkpointing, which comprises two cases with four levels [62] and eight
cases with two levels [63], thus covering a wide range of configurations. For each
case, we compare the performance of three different approaches: (a) Young/Daly’s
classical formula; (b) our first-order approximation formula; and (c) Di et al.’s iterative
algorithm.

Table 2.4: Set of parameters (C) used as input for simulations.

Set (C), from Di et al. [62]

Level 1 2 3 4

Case #A

C (s) 8 10 80 90

R (s) 8 10 80 90

MTBF (s) 2160 1440 8640 21600

Case #B

C (s) 1 20 60 70

R (s) 1 10 30 35

MTBF (s) 864 864 1080 1440

2.3.3.1 Using set of parameters (C)

We first run simulations for Cases #A and #B, whose parameters are presented in
Table 2.4. These parameters are based on the FTI multilevel checkpointing model and

2.3. SIMULATIONS 35

have been used by Di et al. [62] to evaluate the performance of their approach. Note
that the recovery cost is about half that of the checkpointing cost in Case #B.

In their work, Di et al. considered independent checkpointing periods, as opposed
to the nested method based on periodic patterns (as discussed in Section 2.1). Al-
though they provided an optimal solution, an iterative approach was used to compute
it numerically in contrast to the simple formula we propose in this work. Recall that
using independent checkpointing periods allows checkpoints at different levels to be
taken simultaneously, which can hardly be done in practice. Adapting their solution
to our model results in rational numbers of checkpoints, and we again use rounding
to resolve this issue. We find that, using the best roundings for both approaches, their
solution turns out to be very similar to ours (with the same number of checkpoints,
and close periods with < 1% difference).

Results: Figure 2.6 presents the overheads for both cases. First, we observe that Di
et al.’s optimal iterative algorithm has almost identical performance to our solution,
with a simulated overhead around 45% for Case #A and 140% for Case #B under
both approaches. However, using Young/Daly’s formula to checkpoint only at the
highest level yields significantly worse overheads (around 90% for Case #A and 170%
for Case #B). Overall, our solution is as good as Di et al.’s optimal numerical one (but
has much less complexity), and it is up to 45% better than Young/Daly’s formula in
Case #A and 30% better in Case #B.

Note that the corresponding theoretical overhead of our solution is close to the
simulated one for Case #A, but starts to diverge for Case #B. This is because first-order
approximation is only accurate when the resilience parameters and pattern length are
small compared to the MTBF, which is no longer true for Case #B. Specifically, we
have:

• In Case #A, the optimal subset of levels is {2, 4}. The optimal pattern has length
Wopt=1052s and consists of N2=8 level-2 checkpoints followed by N4=1 level-4
checkpoint, meaning that we have a level-2 checkpoint every 131.5s of compu-
tation. So a level-2 checkpoint is saved every 141.5s and a level-4 checkpoint is
saved every 1222s. On the other hand, the combined MTBF for errors at levels
1 and 2 (handled by level-2 checkpoints) is 864s and the combined MTBF for
errors at levels 3 and 4 (handled by level-4 checkpoints) is 6171s. Hence, we have
141.5
864 = 0.164 and 1222

6171 = 0.198, which are reasonably small, making our solution
accurate.

• In Case #B, the optimal subset of levels is {1, 4}, and the optimal pattern has
Wopt = 223s, N1 = 5 and N4 = 1. Thus, we have a level-1 checkpoint every
44.6s of computation. So a level-1 checkpoint is saved every 45.6s and a level-4
checkpoint is saved every 298s. The MTBF for errors at level 1 is 864s and the
combined MTBF for errors at levels 2, 3 and 4 (handled by level-4 checkpoints)
is 360s. Thus, we have 44.6

864 = 0.052, which is fine, but 298
360 = 0.828, which is too

high and essentially makes the first-order solution inaccurate.

36 Chapter 2: Towards optimal multi-level checkpointing

Table 2.5: Set of parameters (D) used as input for simulations.

Set (D), from Di et al. [63]

Level 1 2 Level 1 2

Case 1
C (s) 20 50

Case 5
C (s) 10 40

MTBF (s) 3600 21600 MTBF (s) 432 2160

Case 2
C (s) 20 50

Case 6
C (s) 100 20

MTBF (s) 1728 8640 MTBF (s) 432 2160

Case 3
C (s) 20 100

Case 7
C (s) 40 200

MTBF (s) 864 4320 MTBF (s) 288 1440

Case 4
C (s) 10 40

Case 8
C (s) 50 300

MTBF (s) 864 4320 MTBF (s) 216 1440

Despite the difference between the theoretical and simulated overheads under Case #B,
the proximity of our solution to Di et al.’s optimal numerical solution nevertheless
shows the usefulness of first-order approximation for determining the optimal multi-
level checkpointing patterns.

2.3.3.2 Using set of parameters (D)

Finally, we run simulations for eight cases, whose parameters are presented in Ta-
ble 2.5. These parameters have been used by Di et al. [63] to evaluate their two-level
checkpointing model, and as such, each case consists of only two checkpointing levels.
In their work, the authors proposed an optimal solution by solving complex math-
ematical equations using numerical method. Again, for each case, we compare the
simulated overheads obtained with the three different approaches.

In this set of parameters, the MTBF has a large variation, ranging from more than
1 hour (Case 1) to less than 4 minutes (Case 8). Similarly, the checkpointing costs vary
from 10s (Cases 4 and 5) to 300s (Case 8). Note that Cases 7 and 8 have both very short
MTBFs and very high checkpointing costs, resulting in a lot of errors and recoveries.
In particular, the checkpointing cost at level 2 in Case 8 (300s) is larger than the MTBF
at level 1 (216s).

Results: Figure 2.7 presents the simulation results for the eight cases. First, we
observe that the optimal algorithm by Di et al. only yields a slightly better simulated
overhead compared to our simple first-order approximation solution (by less than 2%
in Cases 1 to 6). However, our solution always improves significantly over Young/-
Daly’s formula, from 2% (Case 1) up to 100% (Case 6). Due to their short MTBFs,
Cases 7 and 8 stand out and incur much higher overheads compared to the first six
cases (thus their results are presented in a separate plot). Still, considering Case 8,
we are able to improve over Young/Daly’s solution by as much as 2500% (in abso-

2.4. RELATED WORK 37

lute value of the overhead), and we are off the optimal simulated overhead by only
300%. In addition, Figure 2.7 shows the theoretical overheads obtained both with our
formula and the solution provided by Di et al. in [63]. As expected, our first-order
approximation remains accurate when the MTBF is large, as in Cases 1, 2 and 4. How-
ever, it becomes less accurate with shorter MTBFs and higher error rates, especially in
Cases 7 and 8 (which do not represent healthy HPC platforms).

2.3.4 Summary of results

From the simulation results, we conclude that first-order approximation remains a
valuable performance model for evaluating checkpointing solutions in HPC systems
(as long as the error rates stay reasonably low). We have demonstrated, through an
extensive set of simulations with a wide range of parameters, the usefulness of multi-
level checkpointing (over using only one level of checkpoints) with significantly re-
duced overheads. The results also corroborate the analytical study by showing the
benefit of selecting an optimal subset of levels among all the levels available. Overall,
our approach achieves the optimal or near-optimal performance in almost all cases,
except when the MTBF is too small, in which case even the optimal solution yields an
unacceptably high overhead (e.g., Case 8 of Table 2.5).

2.4 Related work

Given the checkpointing cost and platform MTBF, classical formulas due to
Young [200] and Daly [58] are well known to determine the optimal checkpointing pe-
riod in the single-level checkpointing scheme. However, this method suffers from the
intrinsic limitation that the cost of checkpointing/recovery grows with failure proba-
bility, and becomes unsustainable at large scale [82, 30] (even with diskless or incre-
mental checkpointing [151]).

To reduce the I/O overhead, various two-level checkpointing protocols have been
studied. Vaidya [185] proposed a two-level recovery scheme that tolerates a single
node failure using a local checkpoint stored on a parter node. If more than one fail-
ure occurs during any local checkpointing interval, the scheme resorts to the global
checkpoint. Silva and Silva [164] advocated a similar scheme by using memory to
store local checkpoints, which is protected by XOR encoding. Di et al. [63] analyzed
a two-level checkpointing pattern, and proved equal-length segments in the optimal
solution. They also provided mathematical equations that can be solved numerically
to compute the optimal pattern length and number of segments. Benoit et al. [20] re-
lied on disk checkpoints to cope with fail-stop failures and memory checkpoints cou-
pled with error detectors to handle silent data corruptions. They derived first-order
approximation formulas for the optimal pattern length and the number of memory
checkpoints between two disk checkpoints.

Some authors have also generalized two-level checkpointing to account for an arbi-
trary number of levels. Moody et al. [140] implemented this approach in a three-level

38 Chapter 2: Towards optimal multi-level checkpointing

Scalable Checkpoint/Restart (SCR) library. They relied on a rather complex Markov
model to recursively compute the efficiency of the scheme. Bautista-Gomez et al. [17]
designed a four-level checkpointing library, called Fault Tolerance Interface (FTI), in
which partner-copy and Reed-Solomon coding are employed as two intermediate lev-
els between local and global disks. Based on FTI, Di et al. [62] proposed an iterative
method to compute the optimal checkpointing interval for each level with prior knowl-
edge of the application’s total execution time. Hakkarinen and Chen [97] considered
multi-level diskless checkpointing for tolerating simultaneous failures of multiple pro-
cessors. Balaprakash et al. [14] studied the trade-off between performance and energy
for general multi-level checkpointing schemes.

While all of these works relied on numerical methods to compute the checkpoint-
ing intervals at different levels, this work is the first to provide explicit formulas on
the optimal parameters in a multi-level checkpointing protocol (up to first-order ap-
proximation as in Young/Daly’s classical result).

2.5 Conclusion

This chapter has studied multi-level checkpointing protocols, where different levels of
checkpoints can be set; lower levels deal with frequent errors that can be recovered at
low cost (for instance with a memory copy), while higher levels allow us to recover
from all errors, such as node failures (for instance with a copy in stable storage). We
consider a general scenario with k levels of faults, and we provide explicit formulas
to characterize the optimal checkpointing pattern, up to first-order approximation.
The overhead turns out to be of the order of ∑k

`=1
√

2λ`C`, which elegantly extends
Young/Daly’s classical formula.

The first-order approximation to the optimal k-level checkpointing pattern uses ra-
tional numbers of checkpoints, and we prove that all segments should have equal
lengths. We corroborate the theoretical study by an extensive set of simulations,
demonstrating that greedily rounding the rational values leads to an overhead very
close to the lower bound. Furthermore, we provide a dynamic programming algo-
rithm to determine those levels that should be selected, and the simulations confirm
the optimality of the subset of levels returned by the dynamic programming algorithm.

The problem of finding a first-order optimal pattern with an integer number of
segments to minimize the overhead remains open. It may well be the case that such
an integer pattern is not periodic at each level and uses different-length segments.
However, the good news is that the rounding of the rational solution provided in this
chapter seems quite efficient in practice.

Case #A Case #B
0.0

0.5

1.0

1.5

2.0

O
v
e
rh
e
a
d

Young/Daly's formula (Simulated)

Our first-order approx. (Simulated)

Our first-order approx. (Theoretical)

Di et al.'s algorithm (Simulated)

Figure 2.6: Performance comparison of the three different approaches using two cases
from Di et al. [62].

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0.0

0.5

1.0

1.5

2.0

O
v
e
rh
e
a
d

Young/Daly's formula (Simulated)

Our first-order approx. (Simulated)

Our first-order approx. (Theoretical)

Di et al.'s algorithm (Simulated)

Di et al.'s algorithm (Theoretical)

Case 7 Case 8
0

5

10

15

20

25

30

35

40

45

O
v
e
rh
e
a
d

Young/Daly's formula (Simulated)

Our first-order approx. (Simulated)

Our first-order approx. (Theoretical)

Di et al.'s algorithm (Simulated)

Di et al.'s algorithm (Theoretical)

Figure 2.7: Performance comparison of the three different approaches using 8 cases
from Di et al. [63].

40 Chapter 2: Towards optimal multi-level checkpointing

Chapter 3

Comparing the performance of rigid, mold-
able and grid-shaped applications on failure-
prone HPC platforms

In this chapter, we compare the performance of different approaches to tolerate fail-
ures for applications executing on large-scale failure-prone platforms. We study (i)
Rigid applications, which use a constant number of processors throughout execution;
(ii) Moldable applications, which can use a different number of processors after each
restart following a fail-stop error; and (iii) GridShaped applications, which are mold-
able applications restricted to use rectangular processor grids (such as many dense
linear algebra kernels). We start with checkpoint/restart, the de-facto standard ap-
proach. For each application type, we compute the optimal number of failures (i.e.
that maximizes the yield of the application) to tolerate before relinquishing the cur-
rent allocation and waiting until a new resource can be allocated, and we determine
the optimal yield that can be achieved. For GridShaped applications, we also inves-
tigate Application Based Fault Tolerance (ABFT) techniques and perform the same anal-
ysis, computing the optimal number of failures to tolerate and the associated yield.
We instantiate our performance model with realistic applicative scenarios and make it
publicly available for further usage. We show that using spare nodes grants a much
better yield than currently used strategies that restart after each failure. Moreover,
the yield is similar for Rigid, Moldable and GridShaped applications, while the op-
timal number of failures to tolerate is very high even for a short wait time. Finally,
Moldable applications have the advantage to restart less frequently than Rigid ap-
plications. The work in this chapter is joint work with Thomas Hérault, Yves Robert,
Aurélien Bouteiller, Atsushi Hori, George Bosilca and Jack Dongarra, and has been
published in Parallel Computing (ParCo) [J5].

41

42
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

3.1 Introduction

Consider a long-running job that requests N processors from the batch scheduler.
Resilience to fail-stop errors1 is typically provided by a Checkpoint/Restart (C/R)
mechanism, the de-facto standard approach for High-Performance Computing (HPC)
applications. After each failure on one of the nodes used by the application, the
application restarts from the last checkpoint but the number of available processors
decreases, assuming the application can continue execution after a failure (e.g., using
ULFM [28]). Until which point should the execution proceed before requesting a new
allocation with N fresh resources from the batch scheduler?

The answer depends upon the nature of the application. For a Rigid application,
the number of processors must remain constant throughout the execution. The ques-
tion is then to decide the number F of processors (out of the N available initially) that
will be used as spares. With F spares, the application can tolerate F failures. The appli-
cation always executes with N − F processors: after each failure, then it restarts from
the last checkpoint and continues executing with N − F processors, the faulty proces-
sor having been replaced by a spare. After F failures, the application stops when the
(F + 1)st failure strikes, and relinquishes the current allocation. It then asks for a new
allocation with N processors, which takes a wait time, D, to start (as other applications
are most likely using the platform concurrently). The optimal value of F obviously
depends on the value of D, in addition to the application and resilience parameters.
The wait time typically ranges from several hours to several days if the platform is
over-subscribed (up to 10 days for large applications on the K-computer [196]). The
metric to optimize here is the (expected) application yield, which is the fraction of
useful work per second, averaged over the N resources, and computed in steady-state
mode (expected value for multiple batch allocations of N resources).

For a Moldable application, the problem is different: here we assume that the
application can use a different number of processors after each restart. The applica-
tion starts executing with N processors; after the first failure, the application recovers
from the last checkpoint and is able to continue with only N − 1 processors, albeit
with a slowdown factor N−1

N . After how many failures F should the application de-
cide to stop2 and accept to produce no progress during D, in order to request a new
allocation? Again, the metric to optimize is the application yield.

Finally, consider an application which must have a given shape (or a set of given
shapes) in terms of processor layout. Typically, these shapes are dictated by the ap-
plication algorithm. In this chapter, we use the example of a GridShaped applica-
tion, which is required to execute on a rectangular processor grid whose size can
dynamically be chosen. Most dense linear algebra kernels (matrix multiplication, LU,
Cholesky and QR factorizations) are GridShaped applications, and perform more ef-

1We use the terms fail-stop error and failure indifferently.
2Another limit is induced by the total application memory Memtot. There must remain at least ` live

processors such that Memtot ≤ `×Memind , where Memind is the memory of each processor. We ignore
this contraint in this chapter but it would be straightforward to take it into account.

3.1. INTRODUCTION 43

Figure 3.1: Example of node failures substituted by spare nodes in a 2-D GridShaped

application.

ficiently on square processor grids than on elongated rectangle ones. The application
starts with a (logical) square p× p grid of N = p2 processors. After the first failure,
execution continues on a p × (p − 1) rectangular grid, keeping p − 1 processors as
spares for the next p − 1 failures (Figure 3.1, b). After p failures, the grid is shrunk
again to a (p − 1) × (p − 1) square grid (see Figure 3.1(d)), and so on. We address
the same question: after how many failures F should the application stop working
on a smaller processor grid and request a new allocation, in order to optimize the
application yield?

Many GridShaped applications can also be protected from failures by us-
ing Algorithm-Based Fault Tolerant techniques (ABFT), instead of Checkpoint/Restart
(C/R). ABFT is a widely used approach for linear algebra kernels [109, 31]. We present
how we can model ABFT techniques instead of C/R and we perform the same anal-
ysis: we compute the optimal number of failures to tolerate before relinquishing the
allocation, as well as the associated yield.

Altogether, the major contribution of this chapter is to present a detailed perfor-
mance model and to provide analytical formulas for the expected yield of each ap-
plication type. We instantiate the model for several applicative scenarios, for which
we draw comparisons across application types. Our model is publicly available [166]
so that more scenarios can be explored. Notably, we qualify the optimal number of
spares for the optimal yield, and the optimal length of a period between two full
restarts; it also qualifies how much the yield and total work done within a period are
improved by deploying Moldable applications w.r.t. Rigid applications. Finally, for
GridShaped applications, it compares the use of C/R and ABFT under various frame-
works. Our main result is that using spare nodes grants a significantly higher yield for
every kind of application, even for short wait times. We also show that the number of
failures to tolerate before resubmitting the application is very high, meaning that it is
possible that the application never needs to be resubmitted. Finally, we show the ad-
vantage of Moldable applications: while the yield obtained is similar for Rigid and
Moldable applications, Moldable applications can tolerate more failures and thus

44
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

restart more rarely than Rigid ones. This means that a Moldable application is more
likely to terminate before being resubmitted.

The rest of the chapter is organized as follows. Section 3.2 is devoted to formally
defining the performance model. Section 3.3 provides formulas for the yield of Rigid,
Moldable and GridShaped applications using the C/R approach, and for the yield
of GridShaped applications using the ABFT approach . All these formulas are instan-
tiated through the applicative scenarios in Section 3.4, to compare the different results.
Section 3.5 provides an overview of related work. Finally, Section 3.6 provides final
remarks and hints for future work.

3.2 Performance model

This section reviews the key parameters of the performance model. Some assumptions
are made to simplify the computation of the yield. We discuss possible extensions in
Section 3.6.

3.2.1 Application/platform framework

We consider perfectly parallel applications that execute on homogeneous parallel plat-
forms. Without loss of generality, we assume that each processor has unit speed: we
only need to know that the total amount of work done by p processors within T sec-
onds requires p

q T seconds with q processors.

3.2.2 Mean Time Between Failures (MTBF)

Each processor is subject to failures which are IID (independent and identically dis-
tributed) random variables3 following an Exponential probability distribution of mean
µind, the individual processor MTBF. Then the MTBF of a section of the platform com-
prised of i processors is given by µi =

µind
i [106].

3.2.3 Checkpoints

Processors checkpoint periodically, using the optimal Young/Daly period [200, 58]:
for an application using i processors, this period is

√
2Ciµi, where Ci is the time to

checkpoint with i processors. We consider two cases to define Ci. In both cases, the
overall application memory footprint is considered constant at Memtot, so the size of
individual checkpoints is inversely linear with the number of participating/surviv-
ing processors. In the first case, the I/O bandwidth is the bottleneck (which is often
the case in HPC platforms – it takes only a few processors to saturate the I/O band-
width); then the checkpoint cost is constant and given by Ci = Memtot

τio
, where τio is

the aggregated I/O bandwidth. In the second case, the processor network card is

3In datacenters, failures can actually be correlated in space or in time. But to the best of our knowl-
edge, there is no currently available method to analyze their impact without the IID assumption.

3.2. PERFORMANCE MODEL 45

the bottleneck, and the checkpoint cost is inversely proportional to number of active
processors: Ci =

Memtot
τxnet×i , where τxnet is the available network card bandwidth, i.e. the

bandwidth available for one and only one processor, and Memtot
i the checkpoint size.

We denote the recovery time with i processors as Ri. For all simulations we use
Ri = Ci, assuming that the read and write bandwidths are identical.

3.2.4 Wait Time

Job schedulers allocate nodes to given applications for a given time. They aim at
optimizing multiple criteria, depending on the center policy. These criteria include
fairness (balancing the job requests between users or accounts), platform utilization
(minimizing the number of resources that are idling), and job makespan (providing
the answer as fast as possible). Combined with a high resource utilization (node
idleness is usually in the single digit percentage for a typical HPC platform), a job has
to wait a Wait Time (D) between its submission and the beginning of its execution.

Job schedulers implement the selection based on the list of submitted jobs, each job
defining how many processors it needs and for how long. That definition is, in most
cases, unchangeable: an application may use less resource than what it requested,
but the account will be billed for the requested resource, and it will not be able to
re-dimension the allocation during the execution.

Thus, if after some failures, an application has not enough resources left to ef-
ficiently complete, it will have to relinquish the allocation, and request a new one.
During the wait time D, the application does not execute any computation to progress
towards completion: its yield is zero during D seconds.

3.2.5 Objective.

We consider a long-lasting application that requests a resource allocation with N pro-
cessors. We aim at deriving the optimal number of failures F that should be tolerated
before paying the wait time and requesting a new allocation. We aim at maximizing
the yield Y of the application, defined as the fraction of time during the allocation
length and wait time where the N resources perform useful work. More precisely, the
yield is defined by the following formula:

Y =
total time spent computing for all processors

number of processors × total execution time of application
.

. Of course a spare does not perform useful work when idle, processor do not compute
when checkpointing or recovering, re-execution odes not account for actual work, and
no processor is active during wait time. All this explains that the yield will always be
smaller than 1. We will derive the value of F that maximizes Y for the three application
types using C/R (and both C/R and ABFT for GridShaped applications).

46
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

3.3 Expected yield

This section is the core of the chapter. We compute the expected yield for each ap-
plication type, Rigid (Section 3.3.1), Moldable (Section 3.3.2) and GridShaped (Sec-
tion 3.3.3), using the C/R approach, and compare it with ABFT for GridShaped in
Section 3.3.4.

3.3.1 Rigid application

We first consider a Rigid application that can be parallelized at compile-time to use
any number of processors but cannot change this number until it reaches termination.
There are N processors allocated to the application. We use N − F for execution and
keep F as spares. The execution is protected from failures by checkpoints of duration
CN−F. Each failure striking the application will incur an in-place restart of duration
RN−F, using a spare processor to replace the faulty one. However, when the (F + 1)st

failure strikes, the job will have to stop and perform a full restart, waiting for a new
allocation of N processors to be granted by the job scheduler.

We define TR as the expected duration of an execution period until the (F + 1)st

failure strikes. The first failure is expected to strike after µN seconds, the second failure
µN−1 seconds after the first one, and so on. We relinquish the allocation after F + 1
failures and wait some time D. As faults can also happen during the checkpoint and
the recovery, this means that:

TR =
N−F

∑
i=N

µi + D. (3.1)

What is the total amount of work WR computed during a period TR? During the
sub-period of length µi, there are µi√

2CN−FµN−F
checkpoints, each of length CN−F. The

failure hits one of live processors, either a working processor or a spare. In both cases,
the number of live processors decreases. if the failure hits a spare, it has no immediate
impact on the application, except that the number of available spares decreases. If
the failure hits a working processor, which happens with probability N−F

i , some work
is lost, and a restart is needed. During each sub-period, and weighting the cost by
the probability of the failure hittingt a working processor during that sub-period, the

work lost by each processor by the end of the sub-period is in average
√

2CN−FµN−F
2 · N−F

i
(see [106] for further details). Each time there is a failure, the next sub-period is thus
started by a restart RN−F with probability N−F

i+1 , except for the first sub-period which
always starts by a restart (it corresponds to reading input data at the beginning of the
allocation). All in all, during the sub-period of length µi with i 6= N, each processor
works during

1

1 + CN−F√
2CN−FµN−F

·
(

µi − RN−F ·
N − F
i + 1

−
√

2CN−FµN−F

2
· N − F

i

)

3.3. EXPECTED YIELD 47

seconds. The first fraction corresponds to the proportion of the time that is
used for useful computations and not for checkpointing. This fraction is actually:

period time
period time+checkpoint time =

√
2CN−FµN−F√

2CN−FµN−F+CN−F
which is equivalent to the former fraction

after simplification.
Finally, each processor works during

1

1 + CN−F√
2CN−FµN−F

·
(

µN − RN−F −
√

2CN−FµN−F

2
· N − F

i

)

seconds in the first sub-period of length µN as it always starts by reading the initial
data.

There are N − F processors at work, hence, re-arranging terms, we obtain that

WR =
N − F

1 + CN−F√
2CN−FµN−F

·
N−F

∑
i=N

(
µi − (RN−F +

√
2CN−FµN−F

2
) · N − F

i

)
(3.2)

Indeed, the factor for RN−F is N−F
i+1 for all subperiods except the first one, i.e. N − F ≤

i ≤ N − 1 , which means it is equivalent to N−F
i with N − F + 1 ≤ i ≤ N. Moreover,

N−F
N−F = 1 which is the corresponding factor for the first subperiod, so by summing all

the terms we get to
N−F
∑

i=N
RN−F · N−F

i .

During the whole duration TR of the period, in the absence of failures and pro-
tection techniques, the application could have used all the N processors to compute
continuously. Thus the effective yield with protection for the application during TR is
reduced to YR:

YR =
WR

N · TR

3.3.2 Moldable application

We now consider a Moldable application that can use a different number of proces-
sors after each restart. The application starts executing with N processors. After the
first failure, the application recovers from the last checkpoint and is able to continue
with only N− 1 processors, after paying the restart cost RN−1, albeit with a slowdown
factor N−1

N of the parallel work per time unit. After F + 1 failures, the application
stops, just as it was the case for a Rigid application.

We define TM as the expected duration of an execution period until the (F + 1)st

failure strikes. The length of a period is

TM =
N−F

∑
i=N

µi + D, (3.3)

48
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

the same as for Rigid applications.
However, for the total amount of work WM during a period, things are slightly

different. To compute the total amount of work WM during a period TM, we proceed
as before and consider each sub-period. During the sub-period of length µi, there are

µi√
2Ciµi

checkpoints, each of length Ci. There is also a restart Ri at the beginning of each

sub-period, and the average time lost is
√

2Ciµi
2 . The probability that the failure strikes

a working processor is always 1, because all alive processors are working during each
sub-period. Overall, there are i processors at work during the sub-period of length µi,
and each of them actually works during

µi − Ri −
√

2Ciµi
2

1 + Ci√
2Ciµi

seconds. Altogether, we derive that

WM =
N−F

∑
i=N

i× µi − Ri −
√

2Ciµi
2

1 + Ci√
2Ciµi

(3.4)

The yield of the Moldable application is then:

YM =
WM

N · TM

3.3.3 GridShaped application

Next, we consider a GridShaped application, defined as a moldable execution which
requires a rectangular processor grid. Here we mean a logical grid, i.e. a layout of
processes whose communication pattern is organized as a 2D grid, not a physical pro-
cessor grid where each processor has four neighbors directly connected to it. Indeed,
there is little hope to use physical grids today. Some modern architectures have a
multi-dimensional torus as physical interconnexion network, but the job scheduler
never guarantees that allocated nodes are adjacent, let alone are organized along an
actual torus. This means that the actual time to communicate with a logically adja-
cent processor is variable, depending upon the length of the path that connects them,
and also upon the congestion of the links within that path (these links are likely to be
shared by other paths). Other architecture communicate through a hierarchical inter-
connexion switch, hence a 2D processor grid is not meaningful for such architectures.
Altogether, this explains that one targets logical process grids, not physical processor
grids. Now why do the application needs a process grid? State-the-art linear algebra
kernels such as matrix product, LU, QR and Cholesky factorizations, are most efficient
when the data is partitioned across a logical grid of processes, preferably a square, or

3.3. EXPECTED YIELD 49

at least a balanced rectangle of processes [150]. This is because the algorithms are
based upon outer-product matrix updates, which are most efficiently implemented on
(almost) square grids. Say you start with 64 working processors, arranged as a 8× 8
process grid. When one processor fails, the squarest grid would be 63 = 9× 7, and
then after a second failure we get 62 = 31× 2 which is way too elongated to be effi-
cient. After the first failure, it is more efficient to use a 8× 7 grid and keep 7 spares;
then we use spares for the next 7 failures, after which we shrink to a 7× 7 grid (and
keep 7 spares), and so on.

For the analysis, assume that the application starts with a square p× p grid of N =
p2 processors. After the first failure, execution continues on a p× (p− 1) rectangular
grid, keeping p− 1 processors as spares for the next p− 1 failures. After p failures, the
grid is shrunk again to a (p− 1)× (p− 1) square grid, and the execution continues on
this reduced-size square grid. After how many failures F should the application stop,
in order to maximize the application yield?

The derivation of the expected length of a period and of the total work is more com-
plicated for GridShaped than for Rigid and Moldable. To simplify the presentation,
we outline the computation of the yield only for values of F of the form F = 2p f − f 2,
hence p2 = F + (p− f)2, meaning that we stop shrinking and request a new allocation
when reaching a square grid of size (p− f)× (p− f) for some value of f < p to be
determined. Obviously, we could stop after any number of faults F, and the publicly
available software [166] shows how to compute the optimal value of F without any
restriction.

We start by computing an auxiliary variable: on a (p1 − 1)× p2 grid with p1 ≥ p2,
the expected time to move from p2 − 1 spare nodes to no spare nodes will be denoted
by TG(p1, p2). It means that the number of computing nodes never changes and is
(p1 − 1)p2. It always starts with a restart R(p1−1)p2

, because having p2 − 1 spare nodes
means that a failure just occurred on one of the p1 p2 processors that were working just
before that failure, and we had to remove a row from the process grid. As previously
this time is the sum of all the intervals between each failure, namely:

TG(p1, p2) =
(p1−1)p2

∑
i=p1 p2−1

µi.

Going from p2 processors down to (p− f)2 processors thus require a time

TG = µp2 +
f−1

∑
g=0

(
TG(p− g, p− g) + TG(p− g, p− g− 1)

)
+ D.

We simply add the time before the first failure and the wait time to the time needed
to move from a grid of size p2 to (p− 1)2, to (p− 2)2, . . . , to (p− f)2.

Similarly, we define the auxiliary variable WG(p1, p2) as the parallel work when
moving from a (p1 − 1)× p2 grid with p2 − 1 spare nodes to a (p1 − 1)× p2 grid with
no spare node, where p1 ≥ p2. There are (p1 − 1)p2 processors working during all

50
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

sub-periods. Without restart and re-execution, this work is (p1 − 1)p2 · ∑(p1−1)p2
i=p1 p2−1 µi.

Any failure which hits one of the working processors calls for a restart R(p1−1)p2
and

incurs some lost work:
√

2C(p1−1)p2
2 in average. The first sub-period starts with a restart

R(p1−1)p2
,because the application (distributed on a grid of p1 × p2 was previously

hit by a failure, except if this is the beginning of a new allocation (which case will
be dealt with later on). Then, for all other sub-periods, a restart is taken if one of
(p1 − 1)p2 computing processors was hit by a failure. This means that the sub-period
with i processors alive (of length µi) starts with a restart R(p1−1)p2

with probability
(p1−1)p2

i+1 , for i ≤ p1 p2 − 2. Similarly, for all sub-periods with i processors alive, we

lose the expected compute time
√

2C(p1−1)p2
µ(p1−1)p2

2 with probability (p1−1)p2
i . Finally,

the checkpoint period evolves with the number of processors, just as for Moldable

applications. We derive the following formula:

WG(p1, p2) =
(p1−1)p2

1+
C(p1−1)p2√

2C(p1−1)p2
µ(p1−1)p2

×
(

µp1 p2−1 − R(p1−1)p2
−
√

2C(p1−1)p2
µ(p1−1)p2

2 · (p1−1)p2
p1 p2−1

+ ∑
(p1−1)p2
i=p1 p2−2

(
µi − R(p1−1)p2

· (p1−1)p2
i+1 −

√
2C(p1−1)p2

µ(p1−1)p2
2 · (p1−1)p2

i

))

Going from p2 processors down to (p− f)2 processors thus corresponds to a total
work

WG =
p2

1 +
Cp2√

2Cp2 µp2

·
µp2 − Rp2 −

√
2Cp2 µp2

2


+

f−1

∑
g=0

(WG(p− g, p− g) + WG(p− g, p− g− 1))

We use the previously computed function just as we did with the time and we add the
work done during the first sub-period on the initial grid of size p2 (this is the special
case for the beginning of an allocation that was mentioned above). Its computation is
similar to that of other subperiods.

The yield of the GridShaped application is then:

YG =
WG

N · TG

where N = p2.

3.3. EXPECTED YIELD 51

3.3.4 ABFT for GridShaped

Finally, in this section, we investigate the impact of using Algorithm-Based Fault Tolerant
techniques, or ABFT, instead of Checkpoint:Restart (C/R). Just as before, we build a
performance model that uses first-order approximations. In particular, we do not
consider overlapping failures, thereby allowing for a failure-free reconstruction of lost
data after a failure. This first-order approximation is accurate up to a few percent,
whenever the failure rate is not too high, or more precisely, when the MTBF remains an
order of magnitude higher than resilience parameters [106]. Note that this is the case
for state-of-the-art platforms, but may prove otherwise whenever millions of nodes are
assembled in the forthcoming years.

Consider a matrix factorization on a p × p grid. The matrix is of size n × n and
is partitioned into tiles of size b × b. These tiles are distributed in a 2D block-cyclic
fashion across processors. Letting n = pbr, each processor initially holds r2 tiles.
Every set of p consecutive tiles in the matrix is checksummed into a new tile, which
is duplicated for resilience. These two new tiles are added to the right border of the
matrix and will be distributed in a 2D block-cyclic fashion across processors, just as
the original matrix tiles. In other words, we add 2pr2 new tiles, extending each tile
row of the matrix (there are pr such tile rows) with 2r new tiles. Fig. 3.2 illustrates
this scheme: the white area represents the original user matrix of size n× n, split in
tiles of size b × b, and distributed over a p × p process grid. The number in each
tile represents the rank that hosts a given tile of the matrix. There are two groups of
tile-columns of checksums: the light grey ones checksum the right end of the matrix,
and the dark grey ones checksum the left part of the matrix. For a bigger matrix, more
groups would be added, each group accumulate the sum of p consecutive tile-columns
of the matrix. In each group, there are two tile-columns: the checksum and its replica.
These new tiles will be treated as regular matrix tiles by the ABFT algorithm, which
corresponds to a ratio 2pr2

p2r2 = 2
p of extra work, and to a failure-free slowdown factor

1 + 2
p [31].

Now, if a processor crashes, we finish the current step of the factorization on all
surviving processors, and then reconstruct the tiles of the crashed processor as follows:

• For each tile lost, there are p− 1 other tiles (the ones involved in the same check-
sum as the lost tile) and at least one checksum tile (maybe two if the crashed
processor did not hold any of the two checksum tiles for that lost tile). This is
what is needed to enable the reconstruction. We solve a linear system of size b
and reconstruct the missing tile for a time proportional to b3 + pb2.

• We do this for the r2 tiles of the crashed processor, for a total time of O(r2(b3 +
pb2)τa), where τa is the time to perform a floating-point operation.

Doing so, we reconstruct the same tile as if we had completed the factorization step
without failure.

Then, there are two cases: the ABFT algorithm relies on a process grid, so the ap-
plication behaves similarly to a GridShaped application. If spare nodes are available,

52
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

0
1
2
0
1
2

3
4
5
3
4
5

6
7
8
6
7
8

0
1
2
0
1
2

3
4
5
3
4
5

6
7
8
6
7
8

0
1
2
0
1
2

3
4
5
3
4
5

6
7
8
6
7
8

0
1
2
0
1
2

+

+

=

=

b

b

p

n

p

n

Figure 3.2: Example of data redundancy and checksuming in an ABFT factorization.
Each white square represents a matrix tile; numbers in the square represent the rank
on which this tile is hosted; grey tiles represent the checksums and their replica (sym-
bolized by the = arrow). In this case, p = 3, n = 6b.

one of them is selected and inserted within the process grid at the place of the crashed
processor, at a cost of communicating O(r2b2) matrix coefficients (the amount of data
held by the faulty processor). If, on the other hand, there are no spare nodes, we have
to start the redistribution of the matrix onto a p× (p− 1) grid. The distribution is op-
erated in parallel across the p grid rows. Within a processor row, most of the tiles will
have to change owner to keep enforcing a 2D block-cyclic distribution, which implies
O(n2

p) = O(r2 pb2) communications as we redistribute everything on every row. Since
all rows operate in parallel, the time for the redistribution is O(r2 pb2τc), where τc is
the time to communicate a floating point number. Altogether, the total cost to recover
from a failure is O(r2b2(bτa + p(τa + τc))).

In the following, we compute the expected yield of a linear algebra kernel protected
by ABFT. Again, we consider numbers of failures of the form F = 2p f − f 2 so that
p2 = F + (p− f)2. Again, we could stop after any number of faults F, and the publicly
available software [166] shows how to do so.

We first compute the expected time between two full restarts:

TABFT =
(p− f)2

∑
i=p2

µi + D.

As previously, we tolerate failures up to reaching a processor grid size of (p − f)×
(p− f), each inter-arrival time being the MTBF of the platform with the corresponding
number of alive processors.

Now, we define the auxiliary variable WABFT(p1, p2) as the parallel work when

3.3. EXPECTED YIELD 53

moving from a (p1 − 1)× p2 grid with p2 − 1 spare nodes to a (p1 − 1)× p2 grid with
no spare node. There are (p1 − 1)p2 processors working during all sub-periods, just
as it was the case for GridShaped applications. A failure-free execution would imply
a parallel work of 1

1+ 2
p

∑
(p1−1)p2
i=p1 p2−1 µi which is the total time of computation divided

by overhead added with the checksum tiles. However, for each failure we need to
reconstruct the lost tiles and either pay a redistribution cost (during the first sub-
period where we just reduced the size of the grid because we had no spare) or a
communication cost to send data to one of the p2 − 1 spare nodes (all other sub-
periods where we select a spare). This happens if and only if the failure stroke a
working processor just as in the GridShaped case, i.e. with probability (p1−1)p2

i+1 . In the
end, since there are (p1 − 1)p2 processors at work, we get the following formula:

WABFT(p1, p2)=
(p1 − 1)p2

1 + 2
p

(
µp1 p2−1−RDp1+

(p1−1)p2

∑
i=p1 p2−2

(µi −RP· (p1 − 1)p2

i + 1
)

)
,

where RP is the cost to replace a faulty processor by a spare, namely

RP = r2(b3 + pb2)τa + r2b2τc,

and RDi is the cost to reistribute data, namely

RDi = r2(b3 + pb2)τa +
n2

i
τc.

To compute these values, we proceed as follows:
• The reconstruction of the lost tiles always takes r2(b3 + pb2) floating-point opera-

tions, and the enrollment of the spare requires that it receives r2b2 floating-point
values, which directly leads to the value of RP, which is independent of the
number of processors;

• However, when we redistribute the tiles to shrink the grid, the time needed
increases as the number of processors decreases because each of them has to
gather more data: it requires O(n2

i) communications when redistributing from
a i× j grid of processors to a (i− 1)× j grid, or similarly from a j× i grid to a
j× (i− 1) grid, where j = i or j = i− 1.

Overall, going from a p × p grid to a (p − f) × (p − f) grid corresponds to a total
work of WABFT. At the beginning of the allocation, we need to read the input data,
then we wait for the first failure to happen (giving a work of µp2 − Rp2 during the first
sub-period that we divide by the overhead added by the checksum tiles) and then we
use our auxiliary variables to decrease the size of the grid step by step. This leads to
the following:

WABFT =
p2(µp2 − Rp2)

1 + 2
p

+
f−1

∑
i=0

(WABFT(p− i, p− i)+WABFT(p− i, p− 1− i)) .

54
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

The yield of the application protected with ABFT is then:

YABFT =
WABFT

N · TABFT

where N = p2.

3.4 Applicative scenarios

We consider several applicative scenarios in this section. We start with a platform
inspired from existing ones in Section 3.4.1, then we study the impact of several key
parameters in Section 3.4.2. Finally, we compare ABFT and C/R for a GridShaped

application in Section 3.4.3.

3.4.1 Main scenario

As a main applicative scenario using C/R, we consider a platform with 22,250 nodes
(1502), with a node MTBF of 20 years, and an application that would take 2 minutes
to checkpoint (at 22,250 nodes). In other words, we let N = 22, 500, µind = 20y
and Ci = C = 120s. These values are inspired from existing platforms: the Titan
supercomputer at OLCF [95], for example, holds 18,688 nodes, and experiences a few
node failures per day, implying a node MTBF between 18 and 25 years. The filesystem
has a bandwidth of 1.4TB/s, and nodes altogether aggregate 100TB of memory, thus a
checkpoint that would save 30% of that system should take in the order of 2 minutes
to complete. In other words, Ci = C = 120 seconds for all i ≤ 18, 688.

Figure 3.3 shows the yield that can be expected if doing a full restart after an opti-
mal number of failures, as a function of the wait time, for the three kind of applications
considered (Rigid, Moldable and GridShaped). We also plot the expected yield when
the application experiences a full restart after each failure (NoSpare). First, one sees
that the three approaches that avoid paying the cost of a wait time after every fail-
ure experience a comparable yield, while the performance of the NoSpare approach
quickly degrades to a small efficiency (30% when the wait time is around 14h).

The zoom box to differentiate the Rigid, Moldable and GridShaped yield shows
that the Moldable approach has a slightly higher yield than the other ones, but only
for a minimal fraction of the yield. This is expected, as the Moldable approach
takes advantage of all living processors, while the GridShaped and Rigid approaches
sacrifice the computing power of the spare nodes waiting for the next failure. However,
the size of the gain is small to the point of being negligible. The GridShaped approach
experiences a yield whose behavior changes in steps: it starts with a constant slope,
under the Rigid yield, until the wait time reaches 8h at which point both Rigid and
GridShaped yields are the same. The slope of GridShaped then becomes smaller,
exhibiting a better yield than Rigid and slowly reaching the yield of Moldable. If we
extend the wait time, or change the configuration to experience more phase changes (as

3.4. APPLICATIVE SCENARIOS 55

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.888
 0.892
 0.896

 0.9
 0.904
 0.908

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Figure 3.3: Optimal yield as function of the wait time, for the different types of appli-
cations.

is done in Section 3.4.2 below), the yield of GridShaped would reach the same value
as the yield of Moldable, at which point the slope of GridShaped would change
again and become higher. This phenomenon is explained by the next figures.

Figure 3.4 shows the number of failures after which the application should do a
full restart, to obtain an optimal yield, as a function of the wait time, for the three kind
of applications considered. We observe that this optimal is quickly reached: even with
long wait times (e.g. 10h), 170 to 250 failures (depending on the method) should be
tolerated within the allocation before relinquishing it. This is small compared to the
number of nodes: less than 1% of the resource should be dedicated as spares for the
Rigid approach, and after losing 1% of the resource, the Moldable approach should
request a new allocation.

This is remarkable, taking into account the poor yield obtained by the approach
that does not tolerate failures within the allocation. Even with a small wait time (as-
suming the platform would be capable of re-scheduling applications that experience
failures in less than 2h), Figure 3.3 shows that the yield of the NoSpare approach
would decrease to 70%. This represents a waste of 30%, which is much higher than
the recommended waste of 10% for resilience in the current HPC platforms recom-
mendations [42, 55]. Comparatively, keeping only 1% of additional resources (within
the allocation) would allow to maintain a yield at 90%, for every approach considered.

The GridShaped approach experiences steps that correspond to using all the spares
created when redeploying the application over a smaller grid before relinquishing the
allocation. As illustrated in Figure 3.3, the yield evolves in steps, changing the slope
of a linear approximation radically when redeploying over a smaller grid. This has

56
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

for consequence that the maximal yield is always at a slope change point, thus at the
frontier of a new grid size. It is still remarkable that even with very small wait times,
it is more beneficial to use spares (and thus to lose a full row of processors) than to
redeploy immediately.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18 20

N
u
m
b
e
r
o
f
F
a
ilu
re
s

b
e
fo
re

R
e
s
u
b
m
is
s
io
n

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

Figure 3.4: Optimal number of failures tolerated between two full restarts, as function
of the wait time, for the different types of applications.

Figure 3.5 shows the maximal length of an allocation: after such duration, the job
will have to fully restart in order to maintain the optimal yield. This figure illustrates
the real difference between the Rigid and Moldable approaches: although both ap-
proaches are capable of extracting the same yield, the Moldable approach can do so
with significantly longer periods between full restarts. This is important when consid-
ering real life applications, because this means that the applications using a Moldable

approach have a higher chance to complete before the first full restart, and overall will
always complete in a lower number of allocations than the Rigid approach.

Finally, Figure 3.6 shows an upper limit of the duration of the wait time in order
to guarantee a given yield for the three applications. In particular, we see that to reach
a yield of 90%, an application which would restart its job at each fault would need
that restart to be done in less than 6 minutes whereas the Rigid and GridShaped

approaches need a full restart in less than 3 hours approximately. This bound goes up
to 7 hours for the Moldable approach. In comparison, with a wait time of 1 hour, the
yield obtained using NoSpare is only 80%. This shows that, using these parameters,
it seems impossible to guarantee the recommended waste of 10% without tolerating (a
small) number of failures before rescheduling the job.

3.4. APPLICATIVE SCENARIOS 57

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

Figure 3.5: Optimal length of allocations, for the different types of applications.

3.4.2 Varying key parameters

We performed a full-factorial 4 level design simulation to assess the impact of key
parameters. We tried all combinations of MTBF (5 years, 10 years, 20 years, 50 years),
checkpointing cost (2 minutes, 10 minutes, 30 minutes, 60 minutes) and application
size (50× 50 = 2500, 150× 150 = 22500, 250× 250 = 62500, 350× 350 = 122500). Not
all results are presented for conciseness, but they all give very similar results compared
to the main scenario of Section 3.4.1.

Figure 3.7 shows the yield and the corresponding allocation length for different
values of the MTBF, when using the largest application size N = 350× 350. The top
subfigure is for µind = 5 years while the bottom subfigure is for µind = 50 years.
The checkpoint cost is Ci = C = 10 minutes. As expected, the yield increases when
the MTBF increases. However, the variation of the allocation length is a bit different.
At first, it decreases with the MTBF (for example, with a wait time of 10 hours, it
decreases from around 150 days to around 100 days when µind decreases from 50 years
to 20 years). This is because the optimal number of faults allowed is not much higher
when µind = 20 years, thus it decreases the overall allocation length. However, when
we reach limit behaviours with short node MTBF, the number of failures to tolerate
explodes and increases the allocation length. We can also see that the allocation length
for GridShaped applications tends to follow that of a Moldable application when
µind decreases.

Figure 3.8 shows the optimal number of faults to tolerate for the four different
application sizes (with µind = 20 years and Ci = C = 10 minutes). We can see from
this experiment that the number of tolerated failures stays within a small percentage
of the total number of processors. In particular, the optimal number of failures allowed

58
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

0.80 0.82 0.84 0.86 0.88 0.90
Target Yield

10 1

100

101

102

103

M
ax

im
um

 W
ai

t T
im

e
(h

)
Rigid
Moldable
GridShaped
NoSpare

Figure 3.6: Maximum wait time allowed to reach a target yield.

for every type of application stays below or equals 2% of the total application size in
all the four cases.

Figure 3.9 aims at showing the impact of the checkpointing cost on the allocation
length. The trend is that it does not depend on the checkpointing cost. This can be
explained by the fact that the allocation length does not take into account the check-
point/restart strategy into its computation, only the MTBF and the number of failures
allowed. Overall, the impact of the checkpointing cost stays minimal compared to the
impact of the wait time or the MTBF.

Finally, Figure 3.10 describes the yield obtained when using different models for
the checkpointing cost: either the checkpoint is constant (independent of the number
of processors: left figure) or it is inversely proportional to the number of processors
(right figure). As these plots show, the difference between the two models does not
have a noticeable impact on the yield of the applications. This can be explained as
follows: as Figure 3.8 showed, only a small number of faults is allowed before re-
submission, in comparison to the application size. Changing the number of active
processors by a few percentage does not really make a difference for the checkpoint
cost, which remains almost the same in both models.

3.4. APPLICATIVE SCENARIOS 59

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 0.16

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(a) µind = 5 years

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.3168
 0.317

 0.3172
 0.3174
 0.3176
 0.3178

 0.318
 0.3182

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(b) µind = 10 years

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.509
 0.51

 0.511
 0.512
 0.513
 0.514
 0.515
 0.516
 0.517
 0.518

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(c) µind = 20 years

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.686
 0.687
 0.688
 0.689

 0.69
 0.691
 0.692
 0.693
 0.694
 0.695

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(d) µind = 50 years

Figure 3.7: Yield and optimal allocation length of as a function of the wait time with
N = 350× 350, and C = 10 minutes.

60
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16 18 20

N
u
m
b
e
r
o
f
F
a
ilu
re
s

b
e
fo
re

R
e
s
u
b
m
is
s
io
n

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(a) 50× 50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16 18 20

N
u
m
b
e
r
o
f
F
a
ilu
re
s

b
e
fo
re

R
e
s
u
b
m
is
s
io
n

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(b) 150× 150

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16 18 20

N
u
m
b
e
r
o
f
F
a
ilu
re
s

b
e
fo
re

R
e
s
u
b
m
is
s
io
n

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(c) 250× 250

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

N
u
m
b
e
r
o
f
F
a
ilu
re
s

b
e
fo
re

R
e
s
u
b
m
is
s
io
n

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(d) 350× 350

Figure 3.8: Optimal number of faults before rescheduling the application for different
application sizes.

3.4. APPLICATIVE SCENARIOS 61

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(a) C = 2 min

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(b) C = 10 min

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(c) C = 30 min

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld
-O
p
tim

a
l
L
e
n
g
th

o
f
A
llo
c
a
tio
n

(d
a
y
s
)

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

(d) C = 60 min

Figure 3.9: Optimal number of faults before rescheduling the application for different
checkpointing costs.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.09165
 0.0917

 0.09175
 0.0918

 0.09185
 0.0919

 0.09195
 0.092

 0.09205
 0.0921

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.0902
 0.0904
 0.0906
 0.0908

 0.091
 0.0912
 0.0914
 0.0916
 0.0918

 0.092
 0.0922

 0 2 4 6 8 10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Figure 3.10: Constant checkpoint cost (Ci = 60 min) on the left, and increasing check-
point cost (Ci =

N
i × 60 min) on the right, with µind = 5 years and N = 350× 350.

62
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

3.4.3 Comparison between C/R and ABFT

In this subsection, we present the results of ABFT and C/R strategies, for a GridShaped

application. In order to compare both strategies, we introduce ABFT parameters, and
use data from the Titan platform [4]:

• We use tiles of size 180× 180, i.e. we let b = 180. We set r = 325; so that a node
holds 3252 = 105625 tiles.

• These values give a total of almost 25.5 GB used by each node, which corresponds
to 80% of the memory of a node in Titan.

• Overall, the total memory of the application is 8p2r2b2 bytes, so we set the check-
pointing cost to be 8p2r2b2

1.4×10244 , using 1.4 TB/s for the I/O bandwidth of the Titan
platform. With r and b set as mentioned, we get Ci = C ≈ 25.5N

1.4×1024 ≈ N
56.3 .

• Titan has 18,688 cores for a peak performance of 17.59 PFlop/s. We derive a
performance per core of 987 GFlop/s, i.e. τa =

1
987×10243 .

• Using the same reasoning, we derive that τc =
1

87.2×10243 .

Figure 3.11 presents the yield obtained by both strategies with either no spare pro-
cessors (NoSpare and NoSpare-ABFT) or with the optimal number of spare processors
(GridShaped for the C/R strategy and ABFT for the ABFT strategy). In Figure 3.11 ,
we use N = 150× 150 and µind = 20 years. Unsurprisingly, the ABFT strategy grants a
better yield than the C/R strategy with a yield very close to 1, compared to ≈ 0.8 for
C/R. This is largely due to the fact that the overhead added by the ABFT is 2

p and so is
negligible compared to the checkpoint overhead. Moreover, the reconstruction of the
tiles is done in parallel so it does not induce any significant overhead. This can also be
seen when we do not use any spare: C/R and ABFT follow the same trend but ABFT
is always more efficient than C/R, which exactly shows that the checkpoint overhead
is larger than the ABFT overhead, since it is the only source (along with the wait time)
of wasted time if F = 0. For a wait time of 10 hours the C/R strategy gives a yield of
0.820 while ABFT grants a better yield of 0.973 (0.364 and 0.426 respectively with no
spare processors). We can see on the right figure that the allocation lengths are similar
for both strategies. However, for some values, ABFT will have a shorter allocation
length, mostly due to the fact that its overhead is small and does not depend on the
number of alive processors; hence loosing a few nodes implies a greater slowdown
than for the C/R strategy where the checkpointing period is adapted regularly.

The conclusion of this comparative study is that, for a GridShaped application,
ABFT uses a very small percentage of spare resources and grants a better yield than
classical C/R.

3.5. RELATED WORK 63

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

Y
ie

ld

Wait Time (h)

GridShaped
NoSpare

ABFT
NoSpare-ABFT

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

 0 2 4 6 8 10 12 14 16 18 20

Y
ie

ld

Wait Time (h)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14 16 18 20

Y
ie

ld
-O

pt
im

al
 L

en
gt

h
of

 A
llo

ca
tio

n
(d

ay
s)

Wait Time (h)

GridShaped
NoSpare

ABFT
NoSpare-ABFT

Figure 3.11: Comparison of ABFT and C/R strategies for a GridShaped application,
N = 150× 150 and µind = 20 years.

3.5 Related work

We already surveyed related work on checkpoint-restart in Section 2.4. We now discuss
previous contributions on Moldable applications in Section 3.5.1. Finally, we provide
a few references for ABFT techniques in Section 3.5.2

3.5.1 Moldable and GridShaped applications

Rigid and Moldable applications have been studied for long in the context of scien-
tific applications. A detailed survey on various application types (Rigid, Moldable,
malleable) was conducted in [71]. Resizing application to improve performance has
been investigated by many authors, including [141, 52, 176, 175] among others. A re-
lated recent study is the design of a MPI prototype for enabling tolerance in Moldable

MapReduce applications [94].
The TORQUE/Maui scheduler has been extended to support evolving, malleable,

and Moldable parallel jobs [153]. In addition, the scheduler may have system-wide
spare nodes to replace failed nodes. In contrast, our scheme does not assume a change
of behavior from the batch schedulers and resource allocators, but utilizes job-wide
spare nodes: a node set including potential spare nodes is allocated and dedicated to
a job at the time of scheduling, that can be used by the application to restart within the
same job after a failure. At the application level, spare nodes have become common in
HPC centers since more than a decade [187]. Recent work aims at sharing spare-nodes
across the whole platform to achieve a better global resource utilization [154].

An experimental validation of the feasibility of shrinking application on the fly
is provided in [6]. In this paper, the authors used an iterative solver application to
compared two recovery strategies, shrinking and spare node substitution. They use
ULFM, the fault-tolerant extension of MPI that offers the possibility of dynamically re-
sizing the execution after a failure. Finally, in [79, 107], the authors studied Moldable

and GridShaped applications that continue executing after some failures. They focus
on the performance degradation incurred after shrinking or spare node substitution,

64
Chapter 3: Comparing the performance of rigid, moldable and grid-shaped applications on

failure-prone HPC platforms

due to less efficient communications (and in particular collective communications). A
major difference with our work is that these studies focus on recovery overhead and
do not address overall performance nor yield.

3.5.2 ABFT

ABFT stands for Algorithm-Based Fault Tolerant techniques. It is a widely used approach
for linear algebra kernels. Since the pioneering paper of Huang and Abraham [109],
ABFT protection has been successfully applied to dense LU [69], LU with partial piv-
oting [197], Cholesky [98] and QR [70] factorizations, and more recently to sparse
kernels like SpMxV (matrix-vector product) and triangular solve [162].

In a nutshell, ABFT consists of adding a few checksum vectors as extra columns of
each tile, which will be used to reconstruct data lost after a failure. The checksums are
maintained by applying the kernel operations to the extra columns, just as if they were
matrix elements. The beauty of ABFT is that these checksums can be used to recover
from a failure, without any rollback nor re-execution, by reconstructing lost data and
proceeding onward. In addition, the failure-free overhead induced by ABFT is usually
small, which makes it a good candidate for the design of fault-tolerant linear algebra
kernels. We refer to [31, 69] for recent surveys on the approach.

Altogether, we are not aware of any previous study aiming at determining the
optimal number of spares as a function of the downtime and resilience parameters, for
a general divisible-load application of either type (Rigid, Moldable or GridShaped).

3.6 Conclusion

In this chapter, we have compared the performance of Rigid, Moldable and
GridShaped applications when executed on large-scale failure-prone platforms. We
have mainly focused on the C/R approach, because it is the most widely used ap-
proach for resilience. For each application type, we have computed the optimal num-
ber of faults that should be tolerated before requesting a new allocation, as a function
of the wait time. Through realistic applicative scenarios inspired by state-of-the-art
platforms, we have shown that the three application types experience an optimal yield
when requesting a new allocation after experiencing a number of failures that repre-
sents a small percentage of the initial number of resources (hence a small percentage
of spares for Rigid applications), and this even for large values of the wait time. On
the contrary, the NoSpare strategy, where a new allocation is requested after each
failure, sees its yield dramatically decrease when the wait time increases. We also ob-
served that Moldable applications enjoy much longer execution periods in between
two re-allocations, thereby decreasing the total execution time as compared to Rigid

applications (and GridShaped applications lying in between).
GridShaped applications may also be protected using ABFT, and we have com-

pared the efficiency of C/R and ABFT for a typical dense matrix factorization prob-
lem. As expected, using ABFT leads to even better yields than C/R for a wide variety

3.6. CONCLUSION 65

of scenarios, in particular for larger problem sizes for which ABFT scales remarkably
well.

Future work will be devoted to exploring more applicative scenarios, and running
actual experiments using ULFM [28]. We also intend to extend the model in several di-
rections. On the application side, we aim at dealing with non-perfectly parallel appli-
cations but instead with applications whose speedup profile obeys Amdahl’s law [3].
On the platform side, we aim at adapting the model to heterogeneous platforms and at
doing more experiments with different values for the recovery and checkpoint costs as
bandwidths are different when reading or writing data. We will also introduce a more
refined speedup profile for GridShaped applications, with an execution speed that
depends on the grid shape (a square being usually faster than an elongated rectangle).
On the resilience side, we will explore the case with different costs for checkpoint and
recovery. More importantly, we will address the combination of ABFT and C/R (in-
stead of dealing with either method individually). Such a combination would allow
to tolerate for several failures striking within the same computational step: the idea
would be to use ABFT to recover from a single failure and to rollback to the last check-
point only in the case of multiple failures. Such a combination would enable us to go
beyond first-order approximations and single-failure scenarios.

Chapter 4

A generic approach to scheduling and check-
pointing workflows

This work deals with scheduling and checkpointing strategies to execute scientific
workflows on failure-prone large-scale platforms. To the best of our knowledge, this
work is the first to target fail-stop errors for arbitrary workflows. Most previous work
addresses soft errors, which corrupt the task being executed by a processor but do
not cause the entire memory of that processor to be lost, contrarily to fail-stop errors.
We revisit classical mapping heuristics such as HEFT and MinMin and complement
them with several checkpointing strategies. The objective is to derive an efficient trade-
off between checkpointing every task (CkptAll), which is an overkill when failures
are rare events, and checkpointing no task (CkptNone), which induces dramatic re-
execution overhead even when only a few failures strike during execution. Contrarily
to previous work, our approach applies to arbitrary workflows, not just special classes
of dependence graphs such as M-SPGs (Minimal Series-Parallel Graphs). Extensive
experiments report significant gain over both CkptAll and CkptNone, for a wide
variety of workflows. The work in this chapter is joint work with Li Han, Louis-Claude
Canon, Yves Robert and Frédéric Vivien, and has been published in the International
Journal of High Performance Computing Applications (IJHPCA) [J4].

4.1 Introduction

P1

P2

T1 T2

T3

T4

T5

T6 T7 T8 T9

Figure 4.1: Schedule of a workflow with 9 tasks on 2 processors (each edge corre-
sponds to a file dependence between tasks).

67

68 Chapter 4: A generic approach to scheduling and checkpointing workflows

T1 T2 T1 T2

T3 T5 T3 T5

T4 T6 T7 T8 T9

time

P1

P2

Figure 4.2: Sample execution of the workflow in Figure 4.1 without any checkpoint,
with two failures striking during the execution of T2 on P1 and during that of T5 on P2.

This work deals with scheduling techniques to deploy scientific workflows on large
parallel or distributed platforms. Scientific workflows are the archetype of HPC (High
Performance Computing) applications, which are naturally partitioned into tasks that
represent computational kernels. The tasks are partially ordered because the output of
some tasks may be needed as input to some other tasks. Altogether, the application is
structured as a DAG (Directed Acyclic Graph) whose nodes are the tasks and whose
edges enforce the dependences. Nodes are weighted by the computational require-
ments (in flops) while edges are weighted by the size of communicated data (in bytes).
Given a workflow and a platform, the problem of mapping the tasks onto the proces-
sors and to schedule them so as to minimize the total execution time, or makespan,
has received considerable attention.

This classical mapping and scheduling problem has recently been revisited to ac-
count for the fact that errors and failures can strike during execution. Indeed, platform
sizes have become so large that errors and failures are likely to strike at a high rate
during application execution ([42]). More precisely, the MTBF (Mean Time Between
Failures) µP of the platform decreases linearly with the number of processors P, since
µP = µind

P , where µind is the MTBF of each individual component (see Proposition 1.2
in ([106])). Take µind = 10 years as an example. If P = 105 then µP ≈ 50 minutes and
if P = 106 then µP ≈ 5 minutes: from the point of view of fault-tolerance, scale is the
enemy.

Several approaches (see Section 4.6 for a review) have been proposed to mitigate
the simplest instance of the problem, that of soft and silent errors. Soft errors cause a
task execution to fail but without completely losing the data present in the processor
memory. Local checkpointing (or more precisely making a copy of all task input/out-
put data), and task replication, are the most widely used technique to address soft
errors. Silent errors represent a different challenge than soft errors, in that they do
not interrupt the execution of the task but corrupt its output data. However, their net
effect is the same, since a task must be re-executed whenever a silent error is detected.
A silent error detector is applied at the end of a task’s execution, and the task must be
re-executed from scratch in case of an error. Again, local checkpointing (making copies
of input/output data) or replicating tasks and comparing outputs, are two common
techniques to mitigate the impact of silent errors.

Fail-stop errors, or failures, are much more difficult to deal with. In the case of a
fail-stop error (e.g., a crash due to a power loss or some other hardware problem) the

4.1. INTRODUCTION 69

execution of the processor stops, all the content of its memory is lost, and the compu-
tations have to be restarted from scratch, either on the same processor once it reboots
or on a spare. The de-facto approach to handle such failures is Checkpoint/Restart
(C/R), by which application state is saved to stable storage, such as a shared file
system, throughout execution. The common strategy used in practice is checkpoint
everything, or CkptAll: all output data of each task is saved onto stable storage (in
which case we say “the task is checkpointed”). For instance, in production Workflow
Management Systems (WMSs) ([2, 78, 191, 1, 192, 61]), the default behavior is that
all output data is saved to files and all input data is read from files, which is exactly
the CkptAll strategy. While this strategy leads to fast restarts in case of failures, its
downside is that it maximizes checkpointing overhead. At the other end of the spec-
trum would be a checkpoint nothing strategy, or CkptNone, by which all output data
is kept in memory (up to memory capacity constraints) and no task is checkpointed.
This corresponds to “in-situ” workflow executions, which has been proposed to re-
duce I/O overhead ([202]). The downside is that, in case of a failure, a large number
of tasks may have to be re-executed, leading to slow restarts. The objective of this
work is to achieve a desirable trade-off between these two extremes. To the best of
our knowledge, no general solution is available. We build upon previous work ([99])
that was restricted to M-SPGs (Minimal Series-Parallel Graphs) ([186]). In ([99]), the
authors took advantage of the recursive structure of M-SPGs and used proportional
mapping ([152]) for scheduling and checkpointing M-SPG workflows as sets of super-
chains. For general graphs, we have to resort to classical scheduling heuristics such as
HEFT ([182]) and MinMin ([33]), two reference scheduling algorithms widely used by
the community. We provide extensions of HEFT and MinMin that allow for a smaller
subset of tasks to be checkpointed and lead to better makespans than the versions
where each task (CkptAll) or no task (CkptNone) is checkpointed.

The main contributions of this chapter are the following:
• We deal with arbitrary dependence graphs, and require no graph transformation

before applying our scheduling and checkpointing algorithms.
• We compare several mapping strategies and combine them with several check-

pointing strategies.
• We design an event-based simulator to evaluate the makespan of the proposed

solution. Indeed, computing the expected makespan of a solution is a difficult
problem ([99]), and simple Monte-Carlo based simulations cannot be applied to
general DAGs unless all tasks are checkpointed: otherwise, sampling the weight
distribution for each task independently is not enough to compute the makespan,
since a failure may involve re-executing several tasks (as shown in Section 4.2).

• We report extensive experimental evaluation with both real-world and randomly
generated workflows to quantify the performance gain achieved by the proposed
approach.

The rest of the chapter is organized as follows. First in Section 4.2, we work out
an example to help understand the difficulty of the problem. Then we introduce
the performance model in Section 6.2. We detail our scheduling and checkpointing

70 Chapter 4: A generic approach to scheduling and checkpointing workflows

P1

P2

T1 T2

T3

T4

T5

T6 T7 T8 T9

Figure 4.3: A purple crossover checkpoint is performed for each file produced by one
processor and used by another one.

T1 13 T2 T1 T2

13 T3 34 T5 13 T3 T5 59

34 T4 T6 T7 T8 59 T9

time

P1

P2

Figure 4.4: Sample execution of the application in Figure 4.3 with two failures striking
during the execution of T2 on P1 and that of T5 on P2, with crossover checkpoints.
Label ij indicates the file from Ti to Tj. Now T4 can start before the re-execution of T3
since its output was checkpointed.

algorithms in Section 4.4. We give experimental results in Section 4.5. Section 4.6
surveys the related work. Finally, we provide concluding remarks and directions for
future work in Section 6.6.

4.2 Example

In this section, we illustrate the difficulty of deciding where to place checkpoints in a
workflow. Consider the example of Figure 4.1 with 9 tasks, Ti, 1 ≤ i ≤ 9, that have
been mapped on 2 processors as shown on the figure. Note that this DAG cannot
be reduced to an M-SPG and the previous approach ([99]) cannot be applied for this
graph. While most tasks are assigned to processor P1, some tasks are assigned to the
second processor, P2, to exploit the parallelism of the DAG. Any dependence between
two tasks represents a file that is required to start the execution of the successor task;
hence, T1 → T2 represents a file produced by task T1 that is required for the execution
of task T2 to start. Because T1 and T2 are both executed on processor P1, this file is
kept in the memory of P1 after T1 completes. However, for the dependence T1 → T3,
because the tasks T1 and T3 are executed on different processors, the corresponding
file must be retrieved by P2. Such a dependence between two tasks assigned to two
different processors is called a crossover dependence.

In a first scenario, let us suppose that no task is checkpointed as showed in Fig-
ure 4.1: then if no failure strikes, the makespan will be the shortest possible, consisting
only of the execution time of each task and of retrieving the necessary input files. How-
ever, as soon as a failure happens, we may need to restart the whole application from

4.2. EXAMPLE 71

P1

P2

T1 T2

T3

T4

T5

T6 T7 T8 T9

Figure 4.5: Blue induced checkpoints are used to isolate task sequences on a processor
(labeled in green, such as the sequence T4, T6, T7 and T8 on P1). Finally, additional
checkpoints can be added inside an idle-free task sequence through a dynamic pro-
gramming algorithm: the orange checkpoint corresponds to such an addition.

the very beginning. To study such a scenario, we need to explicit the memory man-
agement. Let us assume that once a processor has sent a file to another processor, then
this file is deleted from the memory of the producing processor. For instance, as soon
as P2 has received from P1 the file corresponding to the dependence T1 → T3, this file
is erased from the memory of P1. Remember that a failure wipes out the whole content
of the memory of the struck processor. Thus, if a failure strikes during the execution
of T5, to be able to re-attempt to execute T5, T3 will need to be re-executed before
(because the file T3 → T5 is no longer available), which requires T1 to be re-executed
first (because the file T1 → T3 is no longer available). Hence, a single failure in a part
of the graph may require the re-execution of most of the workflow. Figure 4.2 shows
an example of execution of the DAG when no task is checkpointed. To execute T4, we
need both T2 and T3 to finish successfully, and that no fault strikes neither P1 nor P2
between the completion of these tasks and the start of T4. Here, T2 does not finish so
T1 is re-executed. When P2 fails, we need to re-execute T3, which requires input from
T1. Luckily (!), P1 already suffered from a failure, so T1 has already been re-executed.
Otherwise, we would have had to restart the execution of the whole workflow because
of the failure of P2.

To avoid rolling back to the beginning in case of failures, we can try to place some
checkpoints inside the workflow. As commonly assumed in workflow management
systems ([2, 78, 191, 1, 192, 61]), we do not rely on direct point-to-point communi-
cations between processors but instead assume that task input and output files are
exchanged through the file system. Thus, any file produced by one processor and re-
quired by another processor is necessarily saved to, and then read from, stable storage.
In the second scenario shown in Figure 4.3, we decide to checkpoint every crossover
dependence (from T1 to T3, T3 to T4, and T5 to T9). An execution of that schedule is
shown in Figure 4.4. Cyan boxes represent checkpoints while yellow boxes represent
data being read. The transfer of file T1 → T3 is done through a checkpointing phase
on P1, followed by a reading phase on P2. We can see that thanks to the crossover
checkpoints, T4 does not need to wait for the completion of the second execution of
T3 anymore, as T3 output data has already been checkpointed. Moreover, if only a
failure on P2 happened, instead of rolling back to task T1 to re-execute T3 as it was
the case before, T3 could have restarted directly (although the entire content of the

72 Chapter 4: A generic approach to scheduling and checkpointing workflows

processor memory is lost, so all inputs of T3 must be recovered from stable storage
after a downtime before the execution of T3 can restart). The motivation to checkpoint
all files involved in crossover dependences is to isolate the processors. Indeed, if all
crossover files are checkpointed, a failure on a processor will never lead to the re-
execution of a task successfully executed on another processor. Overall, we will lose
less time recomputing tasks or waiting for their second completion. However, reading
from stable storage and checkpointing also take time. Finding the right trade-off is the
main focus of this chapter: deciding which tasks should be checkpointed, so that the
overhead added by the checkpointing and reading of files is not more expensive than
the re-execution of tasks.

We conclude by informally introducing examples of checkpointing strategies that
achieve desirable trade-offs (see Section 4.4.2 for details). Two additional checkpoints,
in blue, called induced checkpoints, have been added in Figure 4.5. Their role is to
secure the fast re-execution of tasks that are the target of a crossover dependence,
namely T4 and T9. The blue checkpoint after T2 isolates the execution of the task se-
quence S1 = {T4, T6, T7, T8} on P1. To this purpose, it is necessary to checkpoint all
intermediate results that may be used after the execution of T2: these are the files
generated by previous tasks, namely T1 → T7 and T2 → T4, This way, when a fail-
ure strikes, previous tasks do not have to be restarted and the computation may be
restarted directly from T4. This way, tasks in the sequence S1 may be sequentially
executed without idle time. It would not have been possible to include T1 and T2 in
S1 because T4 could have waited for the completion of T3 leading to idle time in some
scenarios. Similarly, the second blue checkpoint isolates the execution of T9.

Finally, once the four tasks T4, T6, T7, and T8 of the sequence S1 have been “isolated”
from other tasks, it is possible to use a dynamic programming algorithm similar to
that used in ([99]) in order to introduce additional checkpoints. In the example of
Figure 4.5, a single additional checkpoint, in orange, is inserted after T7.

4.3 Model

This section details the execution and fault-tolerance models used to compare schedul-
ing and checkpointing algorithms.

4.3.1 Execution Model

The execution model for a task workflow on a homogeneous system is represented as a
Directed Acyclic Graph (DAG), G = (V, E), where V is the set of nodes corresponding
to the tasks, and E is the set of edges corresponding to the dependences between
tasks. In a DAG, a node without any predecessor is called an entry node, while a node
without any successor is an exit node. For a task T in G, pred(T) and succ(T) represent
the set of its immediate predecessors and successors respectively. We say that a task T
is ready if either it does not have any predecessor in the dependence graph, or if all its
predecessors have been executed. In this model, the execution time of a task Ti ∈ V

4.3. MODEL 73

is wi, i.e., its execution time in a failure-free execution. Each dependence (Ti, Tj) ∈ E
is associated with the cost ci,j to store/read the data onto/from stable storage. Before
the execution of Tj on processor Pk, all input files needed by Tj must be present in
the local memory of Pk and absent files must be read from the stable storage, which
happens as late as possible. We ignore direct communication between processors
because each data transfer between two processors (i.e., a crossover dependence) consists
in writing to and reading from the stable storage. Alternatively, we also say that the
file is checkpointed and then recovered.

4.3.2 Fault-Tolerance Model

In this work, each processor is a processing element that is subject to its own individual
failures. Failures can strike a processor at any time, during either task execution or
waiting time. Failure inter-arrival times are assumed to be Exponentially distributed.
These failure-prone processors stop their execution once a failure strikes, i.e., we have
fail-stop errors. When a fail-stop error strikes a processor, the whole content of its
memory is lost and the computation it was performing must be restarted, either on
the same processor after a reboot, or on a spare processor (e.g., taken from a pool of
spare processors either specifically requested by the job submitter, or maintained by
the resource management infrastructure).

Consider a single task T, with weight w, scheduled on such a processor, and whose
input is stored on stable storage. It takes a time r to read that input data from stable
storage, either for its first execution or after a failure. The total execution time W of
T is a random variable, because several execution attempts may be needed before the
task succeeds.

We assume that failures are i.i.d. (independent and identically distributed) across
the processors and that the failure inter-arrival times at each processor is Exponen-
tially distributed with Mean Time Between Failures (MTBF) µ = 1/λ. Let λ � 1
be the Exponential failure rate of the processor. With probability e−λ(r+w), no fail-
ure occurs, and W is equal to r + w. With probability (1 − e−λ(r+w)), a failure oc-
curs. For Exponentially distributed failures, the expected time to failure, knowing
that a failure occurs during the task execution (i.e., in the next r + w seconds), is
1/λ − (r + w)/(eλ(r+w) − 1) ([106]). After this failure, there is a downtime d, which
is (an upper bound of) the time needed to reboot the processor or migrate to a
spare. Then we start the execution again, first with the recovery r and then the
work w. With a general model where an unbounded number of failures can oc-
cur during recovery and work, the expected time W to execute task T is given by
W =

(1
λ + d

) (
eλ(r+w) − 1

)
([106]). Now if the output data of task T is checkpointed,

with a time c to write all of its output files onto stable storage, the total time becomes:

W =

(
1
λ
+ d
)(

eλ(r+w+c) − 1
)

. (4.1)

Equation (4.1) assumes that failures can also occur during checkpoints, which is the

74 Chapter 4: A generic approach to scheduling and checkpointing workflows

most general model for failures. We also assume that failures may strike during the
idle time (i.e., waiting time) of the processor (e.g., the power supply may fail). In
the case of a sequence of non-checkpointed tasks to be executed on a processor P, the
output data of each task resides in the memory of P for use by subsequent tasks. When
a failure strikes P, the entire memory content is lost and the whole task sequence must
be re-executed from scratch.

4.3.3 Problem Formulation

Given a DAG and a set of processors on which fail-stop failures strike with Exponen-
tially distributed inter-arrival times, the objective is to schedule the task executions
and potential checkpoints such that the expected completion time (or makespan) is
minimized. Due to delays resulting from the faults, the schedule of the tasks consists
of an assignment to processors and of a task ordering. Each processor executes tasks
as soon as possible and resumes their processing when a failure strikes. Finally, the
schedule of the checkpoints is the (possibly empty) list of files that must be check-
pointed after each task execution.

4.4 Scheduling and checkpointing algorithms

In this section, we first present heuristics to map tasks to processors. Then we propose
three different checkpointing strategies that can be used simultaneously.

4.4.1 Scheduling heuristics

We map tasks to processors and schedule them using two classical scheduling heuris-
tics, HEFT ([182])† and MinMin ([33]). We run these heuristics as if the platforms were
not subject to failures, that is, without considering checkpoints. Therefore, we decide
first on which processor a task will be executed, and the order in which a processor
will execute tasks, before deciding when and what to checkpoint (see Section 4.4.2).
However, we present variants of HEFT and MinMin, named HEFTC and MinMinC,
that are specifically designed for our failure-prone framework.

Heterogeneous Earliest Finish Time first (HEFT) is presented as the HEFTC variant
in Algorithm 1. The original HEFT algorithm comprises two phases. In a first task
prioritizing phase, the bottom-level of all tasks is computed and tasks are ordered by
non-increasing bottom-levels. The bottom-level of a task is the maximum length of
any path starting at the task and ending in an exit task, considering that all commu-
nications take place ([59]). In the second processor selection phase, the first unscheduled
task is scheduled as early as possible on a processor that minimizes its completion
time. In all cases, ties are broken arbitrarily. To these original two phases, we add a
third one, the chain mapping phase (lines 7 and 8 of Algorithm 1). If the newly mapped
task T is the head of a chain in the task graph, then this whole chain is mapped on the
same processor as T, and the tasks will be executed consecutively. Ensuring that entire

4.4. SCHEDULING AND CHECKPOINTING ALGORITHMS 75

chain of tasks are scheduled on the same processor decreases the number of crossover
dependences and thus, the time to checkpoint them. HEFTC has a complexity of O(n2)
for a workflow with n tasks. During the processor selection phase, the earliest finish
time of a task is computed in HEFTC while assuming that the newly mapped task
must start after all tasks previously scheduled on that processor have completed. On
the contrary, the original HEFT heuristic is allowed to perform backfilling following a
classical insertion-based policy, as long as the completion time of no task is delayed.
Allowing backfilling is more expensive at scheduling time but should lower the exe-
cution time (the complexity of HEFT with backfilling is also O(n2) with homogeneous
processors). We do not allow backfilling for HEFTC because it could be antagonistic
to the chain mapping phase if it led to backfill the head of the chain, but not the whole
chain.

Algorithm 1: HEFTC

1 Compute the bottom-level of all tasks by traversing the graph from the exit
tasks

2 Sort the tasks by non-increasing values of their bottom-levels
3 while there are unscheduled tasks do
4 Select the first task Ti
5 k← arg min1≤k≤p EarliestFinishTime(Ti, Pk)

6 Schedule task Ti on processor Pk
7 if Ti is the head of a chain of tasks then
8 Schedule the whole chain continuously on Pk

The MinMin scheduling algorithm is presented in the MinMinC variant in Al-
gorithm 2. The original MinMin algorithm is a simple loop which, at each step,
schedules the task that can finish the earliest among unscheduled tasks. Therefore, at
each step it considers all ready tasks and, for each of them, all the processors. We (try
to) improve this heuristic by adding a chain mapping phase exactly as previously (lines 5
and 6 of Algorithm 2). MinMinC has a complexity of O(n2 p) for a workflow with n
tasks and p processors.

4.4.2 Checkpointing strategies

While the previous scheduling algorithms provide mappings of tasks to processors, it
remains to decide which files must be checkpointed and when. This section introduces
finer strategies than the two extremes solutions that consist of checkpointing no task
or all tasks. These two extreme solutions, CkptNone and CkptAll, are denoted with
the suffixes None and All, respectively.

In principle, our model forbids direct communications between processors (see
Section 4.3.1). However, for the sake of comparison, we make an exception for Ckpt-
None: in the absence of any checkpoint with CkptNone, direct communications must

76 Chapter 4: A generic approach to scheduling and checkpointing workflows

Algorithm 2: MinMinC

1 ReadyTasks← entry tasks
2 while there are unscheduled tasks do
3 Pick a task T ∈ ReadyTasks and a processor P such that the completion time

of T on P is minimum among the Earliest Finish Times of all ready tasks
4 Schedule task T on processor P
5 if T is the head of a chain of tasks then
6 Schedule the whole chain continuously on P

7 Update ReadyTasks

be performed for each crossover dependence. We assume that, in this special case,
transferring a file takes half the time needed to save it to and read it from stable
storage. This special case is thus more efficient when files are large.

The minimum strategy that is required to avoid direct communications consists
of checkpointing all files that must be transferred between any pair of processors,
i.e., exactly the files corresponding to crossover dependences. Moreover, in this case,
any failure on a processor will not require any re-execution on other processors. The
strategy is denoted with a “C” in the checkpoint suffix.

For the next two additional strategies, we introduce a new type of checkpoints:
task checkpoints. While a simple file checkpoint consists of writing to stable storage a
file that corresponds to a dependence between two tasks, a task checkpoint consists of
writing all files that (i) reside in memory on a processor; (ii) will be used later by tasks
assigned to the same processor; and (iii) have not already been checkpointed. In the
example in Section 4.2, for each crossover dependence we did a simple file checkpoint
rather than a full task checkpoint. A task checkpoint after task T3 would have also
checkpointed the file corresponding to the dependence T3 → T5. A non-trivial task
checkpoint for the example of Section 4.2 would be a task checkpoint for task T2. This
checkpoint would require checkpointing the files corresponding to the dependences
T2 → T4 and T1 → T7.

When a task checkpoint is performed after the execution of a task, multiple files
may be checkpointed “at the same time” (either newly created files or previously
created ones that will later be used). If several files are checkpointed, they are all
checkpointed after the task completion, one after the other (in any order), and they can
all be read again only when the last of them has been checkpointed. When absent from
memory (following a failure or due to a crossover dependence), input files are read
from stable storage as late as possible, just before the execution of the task that needs
them. One could imagine optimizations where files (in a task checkpoint) would be
checkpointed independently and as soon as possible, or in a carefully designed order.
Such optimizations could lead to lower expected makespans in some cases. However,
the interplay of file checkpoints and reads that could result from these optimizations
may lead to slowdowns. This is the reason why we prefer our simpler scheme.

4.4. SCHEDULING AND CHECKPOINTING ALGORITHMS 77

Checkpointing crossover dependences enable to isolate processors, in that there is
no re-execution propagation from a processor to another. However, when a task is the
target of a crossover dependence, its starting time is the maximum of the availability
times of all its input files, and these files come from different processors. Therefore, its
starting time may be delayed by failures occurring on other processors. Because fail-
ures can strike during idle time, it may be beneficial to try to use the potential waiting
time by performing a task checkpoint of the task preceding the target task. This way,
the whole content of the memory will be preserved, the cost of the checkpoint may be
offset by some waiting time, and if a failure strikes during the remaining waiting time
all input files remain available. Therefore, we propose a new checkpointing strategy
denoted with “I” in the checkpoint suffix. This strategy consists of checkpointing all
induced dependences. A dependence Ti → Tj is an induced dependence if Ti and Tj are
scheduled on the same processor P and there exists a crossover dependence Tk → Tl
such that Tl is scheduled on P after Ti and before Tj (or Tl = Tj). Checkpointing these
induced dependences is done by performing a task checkpoint of the task preceding
Tl on P. In the example of Section 4.2, the dependences T2 → T4 and T1 → T7 are both
induced dependences because of the crossover dependence T3 → T4.

So far, we have only introduced checkpoints to isolate processors, either to avoid
failure propagation or to try to minimize the impact of processors having to wait from
each other. We further consider checkpoints that more directly optimize expected
total execution time. We present an additional strategy, denoted by the suffix “DP”,
which adds additional checkpoints through a O(n2) dynamic programming algorithm,
which is a transposition of that of ([99]). This dynamic program considers a maximal
sequence of consecutive tasks that are all assigned to the same processor, and that are
isolated from other tasks: the sequence contains no checkpoint and none of its tasks
is the target of a crossover dependence, except for its first task. Let T1, ..., Tk be such a
sequence of tasks. By definition, all input data produced by some previous tasks have
been checkpointed. Then, the optimal expected time to execute this sequence is given
by Time(k) where Time is defined as follows:

Time(j) = min
(

T(1, j), min
1≤i<j

Time(i) + T(i + 1, j)
)

where T(i, j) is the expected time to execute tasks Ti to Tj provided that two task
checkpoints are performed: one right before task Ti and one right after task Tj. Using
the same reasoning as in Section 4.3.2, we can provide an upper bound on T(i, j) as
follows:

T(i, j) =
(

1
λ
+ d
)(

eλ(Rj
i+W j

i +Cj
i) − 1

)
where Rj

i (resp. W j
i and Cj

i) is the sum of the recovery (resp. execution and checkpoint-
ing) costs of tasks Ti to Tj. The recovery costs concern all input files of these tasks that
are on the stable storage, while the checkpointing costs concern all files that will be
checkpointed when a task checkpoint is done after Tj. This is an upper bound, because

78 Chapter 4: A generic approach to scheduling and checkpointing workflows

when no failure strikes, some input files of tasks Ti to Tj may already be present in
memory and will not be read from stable storage. Because we have no simple mean
to know whether some failures had previously struck, we have to resort to this upper
bound. This is a necessary condition to be able to reuse, in some way, the dynamic
programming approach of ([99]). This algorithm requires, by construction, that in-
duced dependences be checkpointed. However, we heuristically use it even when this
condition is not satisfied. In this case, we take a maximal sequence while allowing
tasks to be the target of crossover dependences, and behave as if these crossover de-
pendences were not existing: we discard any potential waiting time that may be due
to these crossover dependences (because we have no means to estimate them).

4.5 Experiments

In this section, we describe the experiments conducted to assess the efficiency of the
checkpointing strategies. In Subsection 4.5.1, we describe the parameters and appli-
cations used during our experimental campaign, then in Subsection 4.5.2 we present
the simulator used to run the applications and simulate the behavior of large-scale
platforms. Finally, we present our results in Subsection 4.5.3.

4.5.1 Experimental methodology

We consider workflows from real-world applications, namely representative workflow
applications generated by the Pegasus Workflow Generator (PWG) ([26, 117, 165]),
as well as the three most classical matrix decomposition algorithms (LU, QR, and
Cholesky) ([51]), and randomly generated DAGs from the Standard Task Graph Set
(STG) ([180]).

Pegasus workflows. PWG uses the information gathered from actual executions of
scientific workflows as well as domain-specific knowledge of these workflows to gen-
erate representative and realistic synthetic workflows (the parameters of which, e.g.,
the total number of tasks, can be chosen). We consider all of the five workflows ([149])
generated by PWG, including three M-SPGs (Genome, Ligo, and Montage) that are
used to compare our new general approach with PropCkpt, the strategy for M-SPGs

proposed in ([99]).
• Montage: The NASA/IPAC Montage application stitches together multiple in-

put images to create custom mosaics of the sky. The average weight of a Mon-
tage task is 10s. Structurally, Montage is a three-level graph ([60]). The first
level (reprojection of input image) consists of a bipartite directed graph. The
second level (background rectification) is a bottleneck that consists of a join fol-
lowed by a fork. Then, the third level (co-addition to form the final mosaic) is
simply a join.

• Ligo: LIGO’s Inspiral Analysis workflow is used to generate and analyze gravi-
tational waveforms from data collected during the coalescing of compact binary
systems. The average weight of a Ligo task is 220s. Structurally, Ligo can be

4.5. EXPERIMENTS 79

seen as a succession of Fork-Joins meta-tasks, that each contains either fork-join
graphs or bipartite graphs.

• Genome: The epigenomics workflow created by the USC Epigenome Center and
the Pegasus team automates various operations in genome sequence processing.
The average weight of a Genome task depends on the total number of tasks and
is greater than 1000s. Structurally, Genome starts with many parallel fork-join
graphs, whose exit tasks are then both joined into a new exit task, which is the
root of fork graphs.

• CyberShake: The CyberShake workflow is used by the Southern Calfornia
Earthquake Center to characterize earthquake hazards in a region. The aver-
age weight of a CyberShake task is 25s. Structurally, the CyberShake workflow
starts with several forks. Then each of the forked tasks has two dependences:
one to a single task (join) and one to a specific task for each of the tasks. Finally,
all these new tasks are joined without another dependence this time.

• Sipht: The Sipht workflow, from the bioinformatics project at Harvard, is used
to automate the search for untranslated RNAs (sRNAs) for bacterial replicons in
the NCBI database. The average weight of a Sipht task is 190s. Structurally, the
Sipht workflow is composed of two different parts that are joined at the end: the
first one is a series of join/fork/join, while the other is made of a giant join.

We generate these workflows with 50, 300, and 700 tasks (these are the number of
tasks given to the generator, the actual number of tasks in the generated workflows
depend on the workflow shape). The task weights and file sizes are generated by PWG.
In some instances, a single file may be used by more than one task and a dependence
may represent multiple files to transfer between two tasks. In the first case, whenever
a file is common to multiple dependences, the file is only saved once. In the second
case, files are aggregated into a single one.

Matrix factorizations. We consider the three most classical factorizations of a k× k
tiled matrix: LU, QR, and Cholesky factorizations.

• The LU decomposition is the factorization of any matrix into a product of one
lower-triangular (L) and one upper-triangular (U) matrices. Structurally, the
DAG is made of k steps, with at step i, one task having two sets of k − i − 1
children, and each pair of tasks between the two sets having another child.

• The QR decomposition is the decomposition of a matrix into a product of an
orthogonal matrix (Q) and upper-triangular matrix (R), i.e., A = QR with QQT =
Id. Structurally, the QR decomposition looks like the LU decomposition but it
has more complex dependences between the k− i− 1 children at step i.

• Cholesky is a factorization of a positive and definite matrix into the product of
a triangular matrix and its transpose, i.e., A = BBT where B is lower-triangular
and has non-zero values of the diagonal. The Cholesky decomposition DAG is
the representation of a panel algorithm and can be constructed recursively by
removing the first row and the first column of submatrices, to keep factorizing
the trailing matrix.

For each factorization, we perform experiments with k = 6, 10, and 15, for a total

80 Chapter 4: A generic approach to scheduling and checkpointing workflows

of 3× 3 = 9 DAGs with up to 1240 tasks. The number of vertices in the DAG depends
on k as follows: the Cholesky DAG has 1

3 k3 +O(k2) tasks, while the LU and QR DAGs
have 2

3 k3 + O(k2) tasks. There are 4 types of tasks in LU, QR, and Cholesky, which
are labeled by the corresponding BLAS kernels ([51]), and their weights are based on
actual kernel execution times as reported in ([8]) for an execution on Nvidia Tesla
M2070 GPUs with tiles of size b = 960.

Random graphs. The STG benchmark ([180]) includes 180 instances for each size
of DAGs (from 50 to 5 000). This set is often used in the literature to compare the
performance of scheduling strategies. Instead of choosing part of the instances for
each size, we did experiments on all instances of size 300 and 750. For each instance,
one of the four DAG generators specifies the structure of the dependences (e.g., layer-
by-layer) and one of the six cost generators provides the distribution of the processing
times (e.g., uniform).

Failure distribution. In the experiments, we consider different exponential proces-
sor failure rates. To allow for consistent comparisons of results across different DAGs
(with different numbers of tasks and different task weights), we simply fix the proba-
bility that a task fails, which we denote as pfail, and then simulate the corresponding
failure rate. Formally, for a given DAG G = (V, E) and a given pfail value, we compute
the average task weight as w̄ = ∑i∈V wi/|V|, where wi is the weight of the i-th task in
V. We then pick the failure rate λ such that pfail = 1− e−λw̄. We conduct experiments
for three pfail values: 0.01, 0.001, and 0.0001.

Checkpointing costs. An important factor that influences the performance of check-
pointing strategies, and more precisely of the checkpointing and recovery over-
heads, is the data-intensiveness of the application. We define the Communication-to-
Computation Ratio (CCR) as the time needed to store all the files handled by a work-
flow (input, output, and intermediate files) divided by the time needed to perform
all the computations of that workflow on a single processor. For Pegasus workflows,
LU, QR, and Cholesky, we vary the CCR by scaling file sizes by a factor. As STG only
provides task weights, we compute the average communication cost as c̄ = w̄× CCR.
Communication costs are generated with a lognormal distribution with parameters
µ = log(c̄) − 2 and σ = 2 to ensure an expected value of c̄. This distribution with
parameter σ = 2 has been advocated to model file sizes ([67]). This allows considering
and quantifying the data-intensiveness of all workflows in a coherent manner across
experiments and workflow classes and configurations.

Reference strategies. In the experiments, we compare our strategies to the two ex-
treme approaches CkptAll and CkptNone. We use the simulator described in Sub-
section 4.5.2. For each parameter setting of each workflow, we run 10,000 random
simulations and approximate the makespan by the observed average makespan.

4.5.2 Simulator

In order to evaluate the performance of our strategies, we implemented a discrete
event simulator. The C++ code for the simulator is available at http://github.

http://github.com/vlefevre/task-graph-simulation
http://github.com/vlefevre/task-graph-simulation
http://github.com/vlefevre/task-graph-simulation

4.5. EXPERIMENTS 81

com/vlefevre/task-graph-simulation. To simulate the execution of applications on
large-scale platforms, we operate in three steps:

1. We first read an input file describing the task-graph and the scheduling/map-
ping strategy;

2. Then we generate a set of fail-stop error times for each processor during a time
horizon (that is set by the user);

3. Finally, we execute ready tasks by mapping them to a processor and we keep
doing this until all tasks are executed.

The first part is basically reading a file that describes the following important ele-
ments for the simulation:

• For each task,
– its ID,
– its weight (i.e., duration),
– the ID of the processor it has been mapped to,
– several booleans indicating whether the task has to be checkpointed or not,

one for each checkpointing strategy.
• For each dependence between two tasks,

– the ID of the parent,
– the ID of the child,
– the list of files with their time to be loaded/written that creates the depen-

dence (i.e., there are some of the output files of the parent and some of the
input files of the child).

• For each processor, its schedule: a list of tasks that have been mapped to it and
that respects the causal order of the task-graph.

The second part is done by using the inversion sampling method: we generate
error times according to a random variable that follows an exponential distribution,
and this exponential distribution is generated from an (assumed) uniform distribution
between 0 and 1 obtained by calling the C function rand(), and dividing its result by
the C constant RAND MAX. In our case, if U is a random variable following a uniform
distribution between 0 and 1, then − log U

λ follows an exponential distribution of pa-
rameter λ. We generate errors one each processor, until the time of one error is greater
than the horizon parameter. In the experiments, it was set to at least 2 times the
expected makespan we have with the CkptAll strategy, which we computed using
the Monte-Carlo method. In practice, most of the simulations were done before the
horizon was reached except for None with large pfail.

For the last step, we keep a global time t on all the processors, and we generate
events happening on each processor (either a failure or the successful completion of a
task). Each processor holds the time of its last event in a variable ti. At each moment
of the simulation, we have ti ≥ t, ∀i. The algorithm repeats these steps until all tasks
are marked executed:

• For each processor pi,
– we look at the next task to be executed on pi (following the list scheduling

given as input) if the current task is finished at time t;

http://github.com/vlefevre/task-graph-simulation
http://github.com/vlefevre/task-graph-simulation
http://github.com/vlefevre/task-graph-simulation

82 Chapter 4: A generic approach to scheduling and checkpointing workflows

– if it is ready, we compute its full execution time by computing the time of
reading the necessary input files, the weight of the task (given as input)
and potentially some writing (in case of crossover dependences or if the
checkpoint strategy requires this task to be checkpointed);

– we look at the next error happening after time t: if it is before the end of
the task then we set ti to be the time of that failure, otherwise ti is set to the
time when the task ends and the task is marked executed.

• We set t = min
i

ti.

There are two more things to detail: the computation of reading times and how we
rollback when there is a failure. For the first problem, we keep a set of all files loaded
on each processor. Before reading an input file, we check if it is already loaded (i.e.,
belongs to that set). If it is already loaded, we count a cost of 0, otherwise we add the
reading time for that file that is given as input. Files are added to the set whenever
there are loaded or written (not necessarily a checkpoint). The set is cleared whenever
a fail-stop error strikes on the processor or a checkpoint is performed, for simplicity.
However, keeping the files needed by tasks after the checkpoint would improve even
more the makespan.

When there is a failure, the rollback is easy because we always checkpoint crossover
dependences. This implies that a failure on a processor pi will only impact the tasks
that have been executed on pi since the last checkpointed task that was mapped to
pi. To rollback we explore the list of tasks backward from the current task to the last
checkpointed one (we keep two pointers on these two tasks at each time to access them
instantaneously), we mark each task unexecuted, we clear the set of loaded files and
we can start simulating again from the last checkpointed task as if nothing happened.
In the case of CkptNone, the simulation is rolled back from the first task anytime an
execution or communication is interrupted.

Finally, the simulator computes the following measures: the number of file check-
points taken, the number of task checkpoints taken, the number of failures, the total
time spent checkpointing data and the execution time of the application.

4.5.3 Results

In this section, we first compare the expected makespan of our proposed checkpointing
strategies (CDP and CIDP) over two baseline strategies (All and None) with the same
task mapping and scheduling strategy. Then, we compare the solutions (different task
mapping and scheduling heuristics combined with several checkpointing strategies)
from this work with the method PropCkpt proposed in ([99]) for M-SPGs.

In Figures 4.6-4.10, we compare the four considered task mapping and scheduling
strategies: HEFT and MinMin, with their chain-mapping variants HEFTC and Min-
MinC using boxplots‡. On these figures, the lower the better and the baseline at 1 is the
performance of HEFT. The chain-mapping variants have the same performance or im-
prove that of their basic counterparts, especially when communications are expensive
(rightmost parts of the graphs). The other conclusion is that MinMin (resp. Min-

4.5. EXPERIMENTS 83

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Figure 4.6: Relative performance of the four task mapping and scheduling strategies
for Cholesky.

MinC) almost always achieves same or worse performance than HEFT (resp. HEFTC).
This is easily explained by the fact that HEFT and HEFTC take into account the critical
path of workflows. These trends are representative of the trends that can be observed
for all considered graphs and workflows, but suffer from some exceptions. The chain-
mapping variants can be superceded by their basic counterparts for workflows that
do not include any chains (like LU in Figure 4.7), because the basic variants can use
backfilling. However, backfilling sometimes backfires, even in the absence of chains,
like for Sipht in Figure 4.9 where HEFTC can decrease the expected makespan by
more than 30% with respect to HEFT. Overall, of the four considered task mapping
and scheduling heuristics, HEFTC never achieves significantly bad performance, and
most of the time achieves the best performance. This is the reason why we focus on it
in the remainder of this section.

Figures 4.11 through 4.18 present the expected makespans achieved by CDP, CIDP
and None divided by that of All when the Communication-to-Computation Ratio
increases. Therefore, the lower the better and data points below the y = 1 line denote
cases in which these strategies outperform the competitor All (i.e., achieve a lower
expected makespan). Each figure shows results for workflows with different number
of tasks, ranging from 50 to 1240 tasks (each line of subfigure is for a different size,
the number of tasks being reported on the rightmost column), for various number of
processors P (different line styles), and for the three pfail values (0.0001, 0.001, 0.01). We
report on these figures the average number of failures that occur for the 10,000 random
trials for each setting. These numbers are reported in black above the horizontal axis
in each figure. The other two lines of numbers are the number of checkpointed tasks
for the CDP and CIDP strategies, each number is printed with the same color as the
curve of the corresponding strategy.

A clear observation is that CIDP never achieves worse performance than All: ei-

84 Chapter 4: A generic approach to scheduling and checkpointing workflows

●●●

●

●●●● ●●●● ●●●●

●●

●●●●

●●

●●

●●●●●●

●●
●

●●●

●●
●

●●●
●●●
●

●

●●●

●●

●●●

●●

●●●

●●

●●
●●

●●

●●●●

●●●
●

●

●●

●●●●

●●

●●●

●

●●●● ●●● ●●●
●●
●●
●

●●
●

CIDP CDP ALL

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication−to−Computation Ratio

R
at

io
 to

 H
E

F
T mapping

HEFTC

MinMin

MinMinC

Figure 4.7: Relative performance of the four task mapping and scheduling strategies
for LU.

●●●●

●●●●

●●●●

●●●●

●●

●●●● ●●●● ●●●●

●●● ●●●●●●

●●●●

●●●●●●●●

●●●●

●●●

●●●●

●●

●●●●

●

●●●●

●●
●●

●

●

●●●

●●

●●●

●●

●●●●●

●●●●

●●●●●

●●●●

●●●

●●●●

●●●

●●●● ●●●●

●●●●●

CIDP CDP ALL

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication−to−Computation Ratio

R
at

io
 to

 H
E

F
T mapping

HEFTC

MinMin

MinMinC

Figure 4.8: Relative performance of the four task mapping and scheduling strategies
for QR.

4.5. EXPERIMENTS 85

●●● ●● ●●
●

●●●

●●●●●●

●●● ●● ●
●●

● ●●

●●●●●●

●●
●

●●●● ●●● ●● ●●●
●

●●●
● ●●●●●●

CIDP CDP ALL

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication−to−Computation Ratio

R
at

io
 to

 H
E

F
T mapping

HEFTC

MinMin

MinMinC

Figure 4.9: Relative performance of the four task mapping and scheduling strategies
for Sipht.

●●

●●

●●

●●
CIDP CDP ALL

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication−to−Computation Ratio

R
at

io
 to

 H
E

F
T mapping

HEFTC

MinMin

MinMinC

Figure 4.10: Relative performance of the four task mapping and scheduling strategies
for CyberShake.

86 Chapter 4: A generic approach to scheduling and checkpointing workflows

ther it achieves a similar performance or it outperforms All, especially when commu-
nications, and thus checkpoints, are expensive (in the rightmost parts of graphs). It
should be noted that when checkpoints come for free (leftmost parts of graphs), All

and CIDP have the same performance as they do the same thing: they checkpoint all
tasks. When the number of failures rises, the optimal solution is to checkpoint more
tasks, potentially all of them, and the gain of CIDP with respect to All therefore de-
creases. This can be seen, for instance, on Figure 4.12 when pfail = 0.01, n = 385 and
there are 385 tasks checkpointed.

In the majority of cases, CDP also achieves similar or better performance than
All. As we explained in Section 4.4, the dynamic programming algorithm is well-
defined for CIDP, which checkpoints all induced dependences. However, CDP tries
to save some checkpointing overhead by not systematically checkpointing induced
dependences. As a consequence, the dynamic programming algorithm estimations
of expected execution times may be inaccurate, which explains the sometimes bad
performance of CDP. There are only a couple of CCR values for CyberShake for which
CDP achieves a significantly worse performance than All. On the contrary, CDP often
has better performance than CIDP when checkpointing cost is high. In all scenarios,
CDP checkpoints less or the same number of tasks than CIDP. Depending on the
checkpointing cost and failure rate, CDP can lead to significant improvement over
All. For workflows as dense as LU, we save more than 10% when CCR = 1 for both
strategies, and CDP even achieves 35% saving for Sipht. As the CCR decreases, the
ratio converges to 1. As already pointed out, this is because both strategies decide to
checkpoint most, if not all, tasks, when checkpointing becomes cheaper.

CDP and CIDP achieve better results than None except when (i) checkpoints are
expensive (high CCR) and/or (ii) failures are rare (low pfail). In these cases, check-
pointing is a losing proposition, and yet our strategies, by design, always check-
points some files (they checkpoint all crossover files and even induced dependences
for CIDP). In practice, in such cases, the optimal approach is to bet that no failure
will happen and to restart the whole workflow execution from scratch upon the very
rare occurrence of a failure. None becomes worse whenever there are more failing
tasks, i.e., when the failure rate increases (going from the leftmost column to the right-
most one in the figures), and/or when the number of tasks increases (going from the
topmost row to the bottom one in the figures). When the failure rate is high and
the workflows are large (the bottom right corner of the figures), the relative expected
makespan of None is so high that it does not appear in the plots. The above results,
and our experimental methodology in general, make it possible to identify these cases
so as to select which approach to use in practical situations.

Figure 4.19 presents the aggregated results for the 180 STG random DAGs with
boxplots. The trends on these graphs are the same as already reported. This confirms
the generality of our conclusions.

Finally, we compare our new general approach with PropCkpt, the approach spe-
cific to M-SPGs that is proposed in ([99]). Figures 4.20-4.22 present this comparison for
Montage, Ligo and Genome, which are the three M-SPGs presented in ([99]). Overall,

4.5. EXPERIMENTS 87

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

50 50 50 50 50 50 50 50
28 25 23 23 23 23 21 17
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

210 210 210 210 210 210 210 210
154 150 150 150 150 151 152 149
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

665 665 665 665 665 665 665 665
552 548 547 547 547 547 547 547
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

51 50 50 50 50 50 50 50
51 37 28 25 23 23 21 17
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

211 210 210 210 210 210 210 210
211 164 154 150 150 151 152 149
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

666 665 665 665 665 665 665 665
666 573 552 548 547 547 547 548
1 1 1 1 1 1 2 4

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

56 56 51 50 50 50 50 50
56 56 51 37 29 26 26 24
1 1 1 1 1 1 1 3

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

220 220 211 210 210 210 210 211
220 220 211 164 158 154 154 160

2 2 2 2 2 3 5 10

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

680 680 666 665 665 665 665 666
680 680 666 574 571 557 563 570

6 6 6 6 7 9 14 32

pfail=0.0001 pfail=0.001 pfail=0.01

56
220

680

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

strategy
● CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 4.11: Performance of the different checkpointing strategies for Cholesky using
HEFTC for task mapping and scheduling.

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

85 85 85 85 85 85 85 85
57 49 44 44 44 43 42 32
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

375 375 375 375 375 375 375 375
287 277 261 261 263 264 244 244
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

1225 1225 1225 1225 1225 1225 1225 1225
1045 1026 1026 1021 1024 1024 921 924

1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

86 85 85 85 85 85 85 85
86 73 58 50 44 43 42 40
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

376 375 375 375 375 375 375 375
368 307 287 277 271 266 244 247
1 1 1 1 1 1 1 2

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

1225 1225 1225 1225 1225 1225 1225 1225
1207 1092 1046 1026 1027 1024 924 928

2 2 2 2 2 2 3 6

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

91 91 86 85 85 85 85 85
91 91 86 75 68 55 54 57
1 1 1 1 1 2 2 4

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

385 385 376 375 375 375 375 376
385 385 376 312 293 286 263 272

4 4 4 4 4 5 8 17

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

1240 1240 1226 1225 1225 1225 1226 1226
1240 1240 1220 1092 1056 1040 937 953
11 11 11 12 13 17 26 58

pfail=0.0001 pfail=0.001 pfail=0.01

91
385

1240

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

strategy
● CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 4.12: Performance of the different checkpointing strategies for LU using HEFTC
for task mapping and scheduling.

88 Chapter 4: A generic approach to scheduling and checkpointing workflows

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

81 81 81 81 81 82 83 82
49 38 34 32 30 34 31 30
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

370 370 370 372 372 372 372 373
268 251 245 238 229 225 237 248
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

1222 1220 1219 1219 1219 1219 1220 1219
1011 985 966 949 963 978 979 917

1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

86 82 81 81 81 82 83 82
86 68 50 44 34 36 32 34
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

376 371 370 372 372 372 372 373
367 301 274 248 235 226 238 256
1 1 1 1 1 1 1 2

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

1224 1220 1219 1219 1219 1219 1220 1219
1134 1083 1018 971 975 990 982 959

2 2 2 2 2 2 3 6

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

91 91 86 82 82 82 83 82
91 91 86 70 57 50 48 49
1 1 1 1 1 2 2 4

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

385 385 376 372 372 372 372 376
385 385 376 307 283 259 264 310

4 4 4 4 5 6 8 18

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

1240 1240 1226 1220 1219 1220 1222 1225
1240 1240 1213 1080 1061 1047 1039 1056
13 13 13 13 14 17 26 60

pfail=0.0001 pfail=0.001 pfail=0.01
91

385
1240

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

strategy
● CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 4.13: Performance of the different checkpointing strategies for QR using HEFTC
for task mapping and scheduling.

● ● ● ● ●
●

●

●

● ● ● ● ●
●

●

●

48 48 47 47 47 47 47 47
30 16 13 14 15 14 12 14
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●
●

● ● ● ●
●

●
●

●

298 298 298 298 298 297 297 296
244 216 185 179 186 194 188 185
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●
●

● ● ● ●
●

●
●

●

698 698 698 698 698 698 698 698
629 579 553 538 551 540 538 505
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●

●

● ● ● ● ●
●

●

●

48 48 48 48 48 47 47 47
47 38 32 18 15 15 13 15
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●
●

● ● ● ●
●

●
●

●

298 298 298 298 298 298 298 297
298 270 248 208 189 195 188 194
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

699 699 698 698 698 698 698 698
699 649 630 588 554 544 543 518
1 1 1 1 1 1 2 3

● ● ● ● ●
●

●

●

● ● ● ●
●

●

●

●

49 48 48 48 48 48 48 48
49 47 47 38 29 27 23 28
1 1 1 1 1 1 1 2

● ● ● ● ●
●

●
●

● ● ● ●
●

●
●

●

300 299 298 298 298 298 298 298
300 299 298 272 257 242 232 254

2 2 2 2 3 3 5 11

● ● ● ● ●
●

● ●

● ● ● ● ●
●

● ●

700 699 699 699 698 698 698 698
700 699 699 652 626 610 618 617

5 5 5 5 6 7 11 28

pfail=0.0001 pfail=0.001 pfail=0.01

50
300

700

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

#proc

5

10

30

60

70

140

strategy
● CIDP

CDP

NONE

Figure 4.14: Performance of the different checkpointing strategies for Montage using
HEFTC for task mapping and scheduling.

4.5. EXPERIMENTS 89

● ● ● ● ●
●

●

●

● ● ● ● ● ●

●
●

13 13 13 13 14 13 12 12
11 11 11 10 10 9 9 9
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

78 78 78 79 78 81 82 84
71 71 70 70 68 71 73 73
1 1 1 1 1 1 1 1

● ● ● ●
●

●
● ●

● ● ● ●
●

●
●

●

183 183 182 182 187 189 190 190
171 171 170 168 173 173 178 177
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●

●

● ● ● ● ● ●

●
●

14 13 13 13 14 13 12 12
12 11 11 11 11 10 10 9
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

85 79 79 80 79 82 83 84
78 72 72 73 72 74 74 73
1 1 1 1 1 1 1 1

● ● ● ●
●

●
● ●

● ● ● ●
●

●
●

●

193 192 189 187 190 191 191 191
182 180 177 175 178 176 180 180
1 1 1 1 1 1 2 2

● ● ● ● ●
●

●

●

● ● ● ● ● ●

●
●

24 19 15 15 15 15 14 14
23 18 13 13 12 13 12 13
1 1 1 1 1 1 1 2

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

126 90 85 85 85 85 85 86
125 87 82 80 80 80 81 85

4 4 4 4 4 4 5 9

● ● ● ● ●
●

●
●

● ● ● ●
●

●
●

●

339 234 199 196 197 197 197 198
338 232 194 188 190 191 195 197

8 8 8 8 8 9 12 22

pfail=0.0001 pfail=0.001 pfail=0.01

47
297

699

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

#proc

5

10

30

60

70

140

strategy
● CIDP

CDP

NONE

Figure 4.15: Performance of the different checkpointing strategies for Genome using
HEFTC for task mapping and scheduling.

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

25 25 25 25 25 25 25 25
23 22 21 19 18 18 18 17
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

151 151 150 150 150 150 150 149
146 145 144 127 126 122 126 122
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

506 502 502 503 502 502 505 504
480 479 478 459 454 454 458 460
1 1 1 1 1 1 1 1

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

36 26 26 26 26 26 25 26
35 24 23 22 21 19 19 18
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

222 157 152 152 152 152 152 151
216 151 146 145 144 130 128 124
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

729 541 515 512 512 511 513 512
702 503 481 479 477 472 468 470
1 1 1 1 2 2 2 3

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

40 37 37 27 26 26 26 26
39 36 36 25 23 22 22 22
1 1 1 1 1 1 1 2

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

249 226 223 161 153 153 153 153
248 224 218 155 148 147 148 145

3 3 4 4 4 4 5 9

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

837 747 731 549 521 521 521 521
826 727 707 512 482 483 484 487
10 11 10 11 11 12 16 28

pfail=0.0001 pfail=0.001 pfail=0.01

50
300

1000

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

strategy
● CIDP

CDP

NONE

#proc

5

10

30

60

100

200

Figure 4.16: Performance of the different checkpointing strategies for Ligo using
HEFTC for task mapping and scheduling.

90 Chapter 4: A generic approach to scheduling and checkpointing workflows

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

47 47 47 47 46 44 32 32
15 18 16 17 12 17 12 12
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

288 288 288 288 288 278 278 277
178 183 171 168 170 165 188 135
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

671 671 671 671 671 658 648 648
493 442 455 472 450 430 441 365
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

48 47 47 47 46 46 34 34
18 20 16 17 14 19 12 12
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

288 288 288 288 288 288 288 287
187 192 178 169 179 174 190 136
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

671 671 671 671 671 672 671 671
520 464 475 476 462 452 450 368
1 1 1 1 1 1 1 2

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

48 48 48 47 46 46 34 34
21 24 21 21 17 20 15 15
1 1 1 1 1 1 1 2

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

290 289 288 288 288 288 288 287
225 209 195 188 198 190 209 156

3 3 4 4 4 4 5 8

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

677 674 671 671 671 672 671 671
562 504 511 519 504 492 496 414

8 7 8 8 8 9 11 18

pfail=0.0001 pfail=0.001 pfail=0.01
48

290
677

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

#proc

5

10

30

60

70

140

strategy
● CIDP

CDP

NONE

Figure 4.17: Performance of the different checkpointing strategies for Sipht using
HEFTC for task mapping and scheduling.

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

47 45 45 46 45 45 45 41
38 35 33 32 29 27 32 29
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

299 296 297 297 294 267 266 268
235 215 214 215 215 203 191 182
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

700 697 697 695 689 652 654 618
556 494 495 493 501 490 470 425
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

50 49 47 46 47 49 49 45
50 44 38 34 33 29 34 33
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

300 300 299 298 295 296 298 298
300 276 238 216 217 212 216 213
1 1 1 1 1 1 1 1

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

700 699 699 696 696 697 697 696
699 631 563 495 502 505 499 497
1 1 1 1 1 1 1 2

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

50 50 50 49 49 49 49 46
50 50 50 43 41 36 37 36
1 1 1 1 1 1 1 2

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

300 300 300 300 297 298 300 299
300 300 300 282 245 225 219 223

4 4 4 4 4 4 4 7

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

700 700 700 699 697 699 699 696
700 700 699 634 583 522 502 515

8 8 8 8 8 8 10 15

pfail=0.0001 pfail=0.001 pfail=0.01

50
300

700

0.01 1.00 0.01 1.00 0.01 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Communication−to−Computation Ratio

R
at

io
 to

 A
LL

#proc

5

10

30

60

70

140

strategy
● CIDP

CDP

NONE

Figure 4.18: Performance of the different checkpointing strategies for CyberShake us-
ing HEFTC for task mapping and scheduling.

4.6. RELATED WORK 91

1 1 1 1 1 1 1 2 1 1 1 1 2 3 7 21 8 8 9 10 14 29 77 294

pfail=0.0001 pfail=0.001 pfail=0.01

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.00

0.25

0.50

0.75

1.00

Communication-to-Computation Ratio

R
a

tio
 t

o
 A

L
L strategy

CIDP

CDP

NONE

Figure 4.19: Average performance of the different checkpointing strategies for the STG
task graphs using HEFTC for task mapping and scheduling.

the new approaches perform better than PropCkpt.

4.6 Related work

Checkpointing workflows has received considerable attention in the recent years, but
no satisfactory solution has yet been proposed for fail-stop failures and general DAGs.

Many authors ([115, 39, 118]) have considered soft errors, by which a task execution
fails but does not lead to completely losing the data present in the processor memory.
Fail-stop errors have far more drastic consequences than soft errors as they induce the
loss of all data present in memory. Therefore they require different solutions.

As discussed in Section 6.1, silent errors represent do not interrupt the execution
of the task but corrupt its output data. Their net effect is the same, since a task must
be re-executed whenever a silent error is detected. Their detection requires the use of
some silent error detectors at the end of a task’s execution. Two well-known examples
of fault detectors are Algorithm-Based Fault Tolerance (ABFT) (see Section 3.5.2) and
silent error detectors based on domain-specific data analytics ([15, 16, 25]). As we only
consider fail-stop errors we do not need to use fault detectors.

Relatively few published works have studied fail-stop failures, rather than soft and
silent errors, in the context of workflow applications. When the workflow consists of
a linear chain of tasks, the problem of finding the optimal checkpoint strategy, i.e., de-
termining which tasks to checkpoint, has been solved by Toueg and Babaoglu ([183])
using a dynamic programming algorithm. The algorithm of ([183]) was later extended
in ([23]) to cope with both fail-stop and silent errors simultaneously. When the work-
flow is general but comprised of parallel tasks that each executes on the whole plat-
form, the problem of placing checkpoints is NP-complete for simple join graphs ([11])
(this is because the original workflow is not a chain but must be linearized). In the

92 Chapter 4: A generic approach to scheduling and checkpointing workflows

CIDP CDP ALL

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

3e
-0

4

0.
00

1

0.
00

3
0.

01
0.

03 0.
1

0.
3 1

0.95

1.00

1.05

1.10

Communication-to-Computation Ratio

R
a

tio
 t

o
 H

E
F

T mapping

HEFTC

MinMin

MinMinC

Prop

Figure 4.20: Relative performance of the four task mapping and scheduling strategies
and of PropCkpt for Montage.

●●
●●

●●
●● ●● ●● ●●

●●●
●●
●●

●●●●●
●● ●● ●●

●●●

●●
●● ●●

●●●
●● ●● ●●●

CIDP CDP ALL

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

0.6

0.8

1.0

1.2

Communication−to−Computation Ratio

R
at

io
 to

 H
E

F
T mapping

HEFTC

MinMin

MinMinC

Prop

Figure 4.21: Relative performance of the four task mapping and scheduling strategies
and of PropCkpt for Ligo.

4.7. CONCLUSION 93

● ●●● ●●● ●●

●
●●

●●
●

●

●●

●● ●●● ●●

●
●●

●●
●

●●

●
●●

●
●●

●
●●

●●●

●
●●

CIDP CDP ALL

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

3e
−0

4
0.

00
1
0.

00
3
0.

01
0.

03 0.
1

0.
3 1

0.4

0.6

0.8

1.0

1.2

Communication−to−Computation Ratio

R
at

io
 to

 H
E

F
T mapping

HEFTC

MinMin

MinMinC

Prop

Figure 4.22: Relative performance of the four task mapping and scheduling strategies
and of PropCkpt for Genome.

most general case, tasks of a workflow do not necessarily span the whole platform
when executing. Existing work in this most general context diverges from ours as
follows: either there is a limit to the number of failures that an execution can cope
with ([188]), or the optimization objective is reliability ([7]), meaning that the appli-
cation execution can fail altogether. The only exception that we are aware of is some
previous work ([99]). The limitation of that work was different: the proposed solution
could only deal with workflows whose structure was a Minimal Series-Parallel Graph
(a generalization of Series-Parallel Graph).

To the best of our knowledge, this work is the first approach (beyond application-
specific solutions) that (i) does not resort to linearizing the entire workflow as a chain
of (parallel) tasks; (ii) can be applied to any workflow; (iii) can cope with an arbitrary
number of failures; (iv) always guarantees a successful application execution; and (v)
minimizes the (expectation of) the application execution time. As a result, we propose
the first DAG scheduling/checkpointing algorithm that allows arbitrary workflows
to execute concurrently on multiple failure-prone processors in standard task-parallel
fashion.

4.7 Conclusion

This work tackles the challenging problem of executing arbitrary workflows on homo-
geneous processors, with reasonable performance in presence of failures but without
incurring a prohibitive cost when no failure strikes. While CkptAll meets the first ob-
jective by expensively checkpointing every task and CkptNone meets the second one
by avoiding any checkpoint at all, we propose new strategies that provide different
trade-offs between these two extremes. First, all crossover dependences, correspond-
ing to file transfers between processors, are checkpointed, which prevents re-execution

94 NOTES

propagation between processors in case of failure. Then, a DP (Dynamic Program-
ming) solution is used to insert additional checkpoints to minimize the expected com-
pletion time. Additional (induced) checkpoints may be added prior to the DP exe-
cution to provide it with more accurate information. Moreover, different mapping
strategies that extend classical ones to reduce the number of checkpoints were also
proposed. To the best of our knowledge, these new strategies are the first to be tuned
to minimize the need for checkpointing while mapping tasks. Extensive experiments
with a discrete event simulator, conducted for both synthetic and realistic instances,
show that our approaches significantly outperform CkptAll and CkptNone in most
scenarios.

Future work will aim at extending our approach to workflows with parallel mold-
able tasks ([68]). Such an extension raises yet another significant challenge: now the
number of processors assigned to each task becomes a parameter to the proposed
solutions, with a dramatic impact on both performance and resilience.

Notes
†In fact, because we have homogeneous processors, we use MCP (Modified Critical Path) ([194]) with

backfilling, which is exactly HEFT in this context.
‡Each boxplot consists of a bold line for the median, a box for the quartiles, whiskers that extend at

most to 1.5 times the interquartile range from the box and additional points for outliers.

Part II

Coupling checkpointing with replication

95

Chapter 5

Using Checkpointing and Replication for Re-
liable Execution of Linear Workflows with Fail-
Stop and Silent Errors

Large-scale platforms currently experience errors from two different sources, namely
fail-stop errors (which interrupt the execution) and silent errors (which strike unno-
ticed and corrupt data). This work combines checkpointing and replication for the
reliable execution of linear workflows on platforms subject to these two error types.
While checkpointing and replication have been studied separately, their combination
has not yet been investigated despite its promising potential to minimize the exe-
cution time of linear workflows in error-prone environments. Moreover, combined
checkpointing and replication has not yet been studied in the presence of both fail-
stop and silent errors. The combination raises new problems: for each task, we have to
decide whether to checkpoint and/or replicate it to ensure its reliable execution. We
provide an optimal dynamic programming algorithm of quadratic complexity to solve
both problems. This dynamic programming algorithm has been validated through ex-
tensive simulations that reveal the conditions in which checkpointing only, replication
only, or the combination of both techniques, lead to improved performance. The work
in this chapter is joint work with Anne Benoit, Aurélien Cavelan, Florina M. Ciorba
and Yves Robert, and has been published in the International Journal of Networking and
Computing (IJNC) [J3].

5.1 Introduction

Several high-performance computing (HPC) applications are designed as a succession
of (typically large) tightly-coupled computational kernels, or tasks, that should be
executed in sequence [37, 119, 57]. These parallel tasks are executed on the entire
platform, and they exchange data at the end of their execution. In other words, the
task graph is a linear chain, and each task (except maybe the first one and the last
one) reads data from its predecessor and produces data for its successor. Such linear

97

98
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

chains of tasks also appear in image processing applications [137], and are usually
called linear workflows [177].

The first objective when considering linear workflows is to ensure their efficient ex-
ecution, which amounts to minimizing the total parallel execution time, or makespan.
However, a reliable execution is also critical to performance. Indeed, large-scale plat-
forms are increasingly subject to errors [41, 42]. Scale is the enemy here: even if each
computing resource is very reliable, with, say, a Mean Time Between Errors (MTBE) of
ten years, meaning that each resource will experience an error only every 10 years on
average, a platform composed of 100, 000 of such resources will experience an error
every fifty minutes [106]. Hence, fault-tolerance techniques to mitigate the impact of
errors are required to ensure a correct and uninterrupted execution of the applica-
tion [135]. To further complicate matters, several types of errors need to be considered
when computing at scale. In addition to the classical fail-stop errors (such as hardware
failures or crashes), silent errors (also known as silent data corruptions) constitute an-
other threat that can no longer be ignored [147, 208, 209, 210, 140]. There are several
causes of silent errors, such as cosmic radiation, packaging pollution, among others.
Silent errors can strike the cache and memory (bit flips) components as well as the
CPU operations; in the latter case they resemble floating-point errors due to improper
rounding, but have a dramatically larger impact because any bit of the result, not only
low-order mantissa bits, can be corrupted.

The standard approach to cope with fail-stop errors is checkpoint with rollback
and recovery [47, 74]: in the context of linear workflow applications, each task can
decide to take a checkpoint after it has correctly executed. A checkpoint is simply a
file including all intermediate results and associated data that is saved on a storage
medium resilient to errors; it can be either the memory of another processor, a local
disk, or a remote disk. This file can be recovered if a successor task experiences an
error later in the execution. If there is an error while some task is executing, the
application has to roll back to the last checkpointed task (or to start recomputing
again from scratch if no checkpoint was taken). Then the checkpoint is read from the
storage medium (recovery phase), and execution resumes from that task onward. If the
checkpoint was taken many tasks before an error strikes, there is a lot of re-execution
involved, which calls for more frequent checkpoints. However, checkpointing incurs a
significant overhead, and is a mere waste of resources if no error strikes. Altogether,
there is a trade-off to be found, and one may want to checkpoint only carefully selected
tasks.

While checkpoint/restart [47, 73, 74] is the de-facto recovery technique for ad-
dressing fail-stop errors, there is no widely adopted general-purpose technique to
cope with silent errors. The challenge with silent errors is detection latency: contrarily
to a fail-stop error whose detection is immediate, a silent error is identified only when
the corrupted data is activated and/or leads to an unusual application behavior. How-
ever, checkpoint and rollback recovery assumes instantaneous error detection, and this
raises a new difficulty: if the error stroke before the last checkpoint, and is detected
after that checkpoint, then the checkpoint is corrupted and cannot be used to restore

5.1. INTRODUCTION 99

the application. To address the problem of silent errors, many application-specific de-
tectors, or verification mechanisms, have been proposed. We apply such a verification
mechanism after each task in this chapter. Our approach is agnostic of the nature of
the verification mechanism (checksum, error correcting code, coherence test, etc.). In
this context, if the verification succeeds, then the output of the task is correct, and
one can safely either proceed to the next task directly, or save the result beforehand
by taking a checkpoint. Otherwise, if verification fails we have to rollback to the last
saved checkpoint and re-execute the work since that point on. However, and contrarily
to fail-stop errors, silent errors do not cause the loss of the entire memory content of
the affected processor. To account for this difference, we use a two-level checkpointing
scheme: the checkpoint file is saved in the main memory of the processor before being
transferred to some storage (disk) that is resilient to fail-stop errors. This allows for
recovering faster after a silent error than after a fail-stop error.

Replication is a well-known, but costly, method to deal with both, fail-stop er-
rors [159, 75, 205, 76, 82, 72, 172, 46] and silent errors [145, 21]. While both checkpoint-
ing and replication have been extensively studied separately, their combination has
not yet been investigated in the context of linear workflows, despite its promising po-
tential to minimize the execution time in error-prone environments. The contributions
of this work are the following:

• We provide a detailed model for the reliable execution of linear workflows,
where each task can be replicated or not, and with a two-level checkpoint/recov-
ery mechanism whose cost depends both on the number of processors executing
the task, and on whether the task is replicated or not.

• We address both fail-stop and silent errors. We perform a verification after each
task to detect silent errors and recover from the last in-memory checkpoint after
detecting one. We recover from the last disk checkpoint after a fail-stop error. If
a task is replicated, we do not need to roll back and we can directly proceed to
the next task, unless both replicas have been affected (by either error type).

• We design an optimal dynamic programming algorithm that minimizes the
makespan of a linear workflow with n tasks, with a quadratic complexity, in
the presence of fail-stop and silent errors.

• We conduct extensive experiments to evaluate the impact of using both repli-
cation and checkpointing during execution, and compare them to an execution
without replication.

• We provide guidelines about when it is beneficial to employ checkpointing only,
replication only, or to combine both techniques together.

The chapter is organized as follows. Section 5.2 details the model and formalizes
the objective function and the optimization problem. Section 5.3 presents a prelim-
inary result for the dynamic programming algorithm: we explain how to compute
the expected time needed to execute a single task (replicated or not), assuming that
its predecessor has been checkpointed. The proposed optimal dynamic programming
algorithm is outlined in Section 5.4. The experimental validation is provided in Sec-
tion 5.5. Finally, related work is discussed in Section 5.6, and the work is concluded in

100
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

Section 5.7.

5.2 Model and objective

This section details the framework of this study. We start with the application and
platform models, then we detail the verification, checkpointing and replication, and
finally we state the optimization problem.

5.2.1 Application model

We target applications whose workflows represent linear chains of parallel tasks. More
precisely, for one application, consider a chain T1 → T2 → · · · → Tn of n parallel tasks
Ti, 1 ≤ i ≤ n. Hence, T1 must be completed before executing T2, and so on.

Here, each Ti is a parallel task whose speedup profile obeys Amdahl’s law [3]: the
total work, wi, consists of a sequential fraction αiwi, 0 ≤ αi ≤ 1, and the remaining
fraction (1− αi)wi perfectly parallel. The (error-free) execution time, Ti, using qi pro-
cessors is thus wi

(
αi +

1−αi
qi

)
. Without loss of generality, we assume that processors

execute the tasks at unit speed, and we use time units and work units interchangeably.
While our study is agnostic of task granularity, it applies primarily to frameworks
where tasks represent large computational entities whose execution takes from a few
minutes up to tens of minutes. In such frameworks, it may be worthwhile to replicate
or to checkpoint tasks to mitigate the impact of errors.

5.2.2 Execution platform

We target a homogeneous platform with p processors Pi, 1 ≤ i ≤ p. We assume that
the platform is subject to fail-stop and silent errors whose inter-arrival times follow
an Exponential distribution. More precisely, let λF

ind be the fail-stop error rate of each
individual processor Pi: the probability of having a fail-stop error striking Pi within
T time-units is P(X ≤ T) = 1− e−λF

indT. Similarly, let λS
ind be the silent error rate of

each individual processor Pi: the probability of having a silent error striking Pi within
T time-units is P(Y ≤ T) = 1− e−λS

indT. Then, a computation on q ≤ p processors has
an error rate qλF

ind for fail-stop errors, and qλS
ind for silent errors. The probability of

having a fail-stop error within T time-units and with q processors becomes 1− e−qλF
indT

(and 1− e−qλS
indT for a silent error) [106].

5.2.3 Verification

To detect silent errors, we add a verification mechanism at the end of each task. This
ensures that the error will be detected as soon as possible. The verification following
task Ti has a cost Vi. We assume that the verification mechanism has a perfect recall
(it detects all errors). This guarantees that all taken checkpoints are correct, because

5.2. MODEL AND OBJECTIVE 101

they are always preceded by a verification. Similarly, we assume that no silent error
can strike during the verification.

The cost Vi depends upon the detector and can thereby take a wide range of values.
In this work, we adopt a quite general formula and use

Vi(qi) = ui +
vi

qi
(5.1)

to model the cost of verifying task Ti when executed with qi processors, where ui
and vi denote the sequential and parallel cost of the verification, respectively. In the
experiments (Section 5.5.2), we instantiate the model with two cases:

• We use ui = βwi and vi = 0, where β is a small parameter (around 1%). This
means that the cost of the verification is proportional to the sequential cost wi of
Ti. It corresponds to the case of data-oriented kernels processing large files and
checksumming for verification in a centralized location (hence sequentially) [23].

• We use ui = 0 and vi = βwi. This means that the cost of the verification is propor-
tional to the parallel fraction of Ti. It corresponds to the same scenario as above,
but where checksumming is performed in parallel on all enrolled processors.

5.2.4 Checkpointing

The output of each task Ti can be checkpointed in time Ci. We use a two-level check-
point protocol where the checkpoint is first saved locally (memory checkpoint) before
being transferred to a slower but reliable storage like a filesystem (disk checkpoint).
The memory checkpoint will be lost when a fail-stop error strikes a processor (and
its local data), whereas the disk checkpoint will always remain available to restart the
application.

When a fail-stop error strikes during the execution of Ti, we first incur a downtime
D, and then we must start the execution from the task following the last checkpoint.
Hence, if Tj is the last checkpointed task, the execution starts again at task Tj+1, and
the recovery cost is RD

j+1, which amounts to reading the disk checkpoint of task Tj.
When a silent error is detected at the end of Ti by the verification mechanism, we also
roll back to the last checkpointed task Tj, but (i) we do not pay the downtime D; and
(ii) the recovery cost is RM

j+1, which amounts to reading the memory checkpoint of
task Tj (hence at a much smaller cost than for a fail-stop error).

The checkpoint cost Ci, and both recovery costs RD
j+1 and RM

j+1 clearly depend
upon the checkpoint protocol and storage medium, as well as upon the number qi of
enrolled processors. In this work, we adopt a quite general formula for checkpoint
times and use

Ci(qi) = ai +
bi

qi
+ ciqi (5.2)

102
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

to model the time to save a checkpoint after Ti executed with qi processors. Here, ai +
bi
qi

represents the I/O overhead to write the task output file Mi to the storage medium.

For in-memory checkpointing [204], ai +
bi
qi

is the communication time, in which ai

denotes the latency to access the storage system; then we have bi
qi

= Mi
τnetqi

, where

τnet is the network bandwidth (each processor stores Mi
qi

data items). For coordinated
checkpointing to stable storage, there are two cases: if the I/O bottleneck is the storage
system’s bandwidth, then ai = β + Mi

τio
and bi = 0, where β is a start-up time and τio is

the I/O bandwidth; otherwise, if the I/O bottleneck is the network latency, we retrieve
the same formula as for in-memory checkpointing. Finally, ciqi represents the message
passing overhead that grows linearly with the number of processors, in order for all
processors to reach a global consistent state [74, 206].

For the cost of recovery (from memory or from disk), we assume similar formulas:

RM
i (qi) = aM

i +
bM

i
qi

+ cM
i qi; RD

i (qi) = aD
i +

bD
i

qi
+ cD

i qi. (5.3)

The coefficients depend on the type of recovery: again, a memory recovery is much
faster than a disk recovery. If we further assume that reading and writing from/to the
same storage medium (memory or disk) have same cost, we have

Ci(qi) = RD
i+1(qi) + RM

i+1(qi)

since recovering for task Ti+1 amounts to reading the checkpoint from task Ti.
Finally, we assume that there is a fictitious task T0 of zero weight (w0 = 0) that

is always checkpointed, so that RD
1 (q1) represents the time for I/O input from the

external world. Similarly, we systematically checkpoint the last task Tn, in order to
account for the I/O output time Cn(qn).

5.2.5 Replication

When executing a task, we envision two possibilities: either the task is not replicated,
or it is replicated. To explain the impact of replication, we momentarily assume that
we consider fail-stop errors only. Then we return to the scenario with both fail-stop
and silent errors.

With fail-stop errors only, consider a task Ti, and assume for simplicity that the
predecessor Ti−1 of Ti has been checkpointed. If it is not the case, i.e., if the predecessor
Ti−1 of Ti is not checkpointed, we have to roll back to the last checkpointed task, say
Tk where k < i− 1, whenever an error strikes, and re-execute the entire segment from
Tk+1 to Ti instead of just Ti.

Without replication, a single copy of Ti is executed on the entire platform, hence
with qi = p processors. Then we let Enorep(i) denote the expected execution time of
Ti when accounting for errors. We attempt a first execution, which takes Tnorep

i =

wi

(
αi +

1−αi
p

)
if no fail-stop error strikes. But if a fail-stop error does strike, we must

5.2. MODEL AND OBJECTIVE 103

account for the time that has been lost (between the beginning of the execution and
the fail-stop error), then perform a downtime D, a recovery Ri(p) (since we use the
entire platform for Ti), and then re-execute Ti from scratch. Similarly, if we decide to
checkpoint after Ti, we need Ci(p) time units. We explain how to compute Enorep(i) in
Section 5.3.

With replication, two copies of Ti are executed in parallel, each with qi = p
2

processors. If no fail-stop error strikes, both copies finish execution in time Trep
i =

wi

(
αi +

1−αi
p
2

)
, since each copy uses p

2 processors. If a fail-stop error strikes one copy,

we proceed as before, account for the downtime D, recover (in time Ri(
p
2) now), and

restart execution with that copy. Then there are two cases: (i) if the second copy
successfully completes its first execution, the fail-stop error has no impact and the
execution time remains the same as the error-free execution time; (ii) however, if the
second copy also fails to execute, we resume its execution, and iterate until one copy
successfully completes. Of course, case (ii) is less likely to happen than case (i), which
explains why replication can be useful. Finally, if we decide to checkpoint after Ti, the
first successful copy will take the checkpoint in time Ci(

p
2).

Replication raises several complications in terms of checkpoint and recovery costs.
When a replicated task Ti is checkpointed, we can enforce that only one copy (the first
one to complete execution) would write the output data onto the storage medium,
hence with a cost Ci(

p
2), as stated above. Similarly, when a single copy of a replicated

task Ti performs a recovery after a fail-stop error, the cost would be Ri(
p
2). However,

in the unlikely event where both copies are struck by a fail-stop error at close time
instances, their recoveries would overlap, and the cost can vary anywhere between
Ri(

p
2) and 2Ri(

p
2), depending upon the amount of contention, the length of the overlap

and where the I/O bottleneck lies. We will experimentally evaluate the impact of the
recovery cost with replication in Section 5.5.1. For simplicity, in the rest of the chapter,
we use Crep

i for the checkpoint cost of Ti when it is replicated, and Cnorep
i when it is

not. Similarly, we use RDrep
i or RMrep

i for the recovery costs (disk or memory) when Ti

is replicated, and RDnorep
i or RMnorep

i when it is not. Note that the recovery cost of Ti
depends upon whether it is replicated or not, but does not depend upon whether the
checkpointed task Ti−1 was replicated or not, since we need to read the same file from
the storage medium in both cases. The values of Crep

i and Cnorep
i can be instantiated

from Equation (5.2) and those of RDrep
i , RDnorep

i , RMrep
i and RMnorep

i can be instantiated
from Equation (5.3). We let Erep(i) denote the expected execution time of Ti with
replication and when accounting for fail-stop errors, when Ti−1 is checkpointed. The
derivation of Erep(i) is significantly more complicated than for Enorep(i) and represents
a new contribution of this work, detailed in Section 5.3.2.

We now detail the impact of replication when both fail-stop and silent errors can
strike. First, we have to state how the verification cost Vi of task Ti depends upon
whether Ti is replicated or not. For the analysis, we keep a general model and let Vrep

i
be the cost when Ti is replicated, and Vnorep

i when it is not. However, as explained
later in the experimental evaluation (Section 5.5.2), we use two different instantiations

104
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

of Equation (5.1), which directly give the two (possibly different) values of Vrep
i and

Vnorep
i as a function of parameter β.

Next, consider again a task Ti, and still assume for simplicity that the predecessor
Ti−1 of Ti has been checkpointed. The impact of fail-stop errors is the same as before,
and depends upon how many replicas of Ti are executed. The only difference is that
the fail-stop error can now strike either during the execution of a replica or during its
verification. But if no fail-stop error strikes, we still have to perform the verification to
detect a possible silent error, whose probability depends upon the error-free execution
time of that replica. Recall that no silent error can strike during the verification (but a
fail-stop can strike). If a silent error is detected, we have to re-execute the task, in which
case we recover from the memory checkpoint instead of from the disk checkpoint.

Finally, we extend the definition of Enorep(i) and Erep(i) to account for both fail-
stop and silent errors, when Ti−1 is checkpointed. We explain how to compute both
quantities in Section 5.3.2.

5.2.6 Optimization problem

The objective of this work is to minimize the expected makespan of the linear workflow in
the presence of fail-stop and silent errors. For each task, we have four choices: either
we replicate the task or not, and either we checkpoint it or not. More formally, for
each task Ti we need to decide: (i) if it is checkpointed or not; and (ii) if it is replicated
or not, (meaning that there are 4n combinations for the whole workflow) with the
objective to minimize the total execution time of the workflow. We point out that
none of these decisions can be made locally. Instead, we need to account for previous
decisions and optimize globally. Our major contribution of this work is to provide an
optimal dynamic programming algorithm to solve this problem, which we denote as
ChainsRepCkpt.

We point out that ChainsCkpt, the simpler problem without replication, i.e., op-
timally placing checkpoints for a chain of tasks, has been extensively studied. The
first dynamic programming algorithm to solve ChainsCkpt appears in the pioneer-
ing paper of Toueg and Babaoğlu [183] back in 1984, for the scenario with fail-stop
errors only (see Section 5.6 on related work for further references). Adding replica-
tion significantly complicates the solution. Here is an intuitive explanation: When the
algorithm recursively considers a segment of tasks from Ti to Tj, where Ti−1 and Tj
are both checkpointed and no intermediate task Tk, i ≤ k < j is checkpointed, there
are many cases to consider to account for possible different values in: (i) execution
time, since some tasks in the segment may be replicated; (ii) checkpoint, whose cost
depends upon whether Tj is replicated or not; and (iii) recovery, whose cost depends
upon whether Ti is replicated or not. We provide all details in Section 5.4.

5.3. COMPUTING ENOREP(I) AND EREP(I) 105

5.3 Computing Enorep(i) and Erep(i)

This section details how to compute the expected time needed to execute a task Ti,
assuming that the predecessor of Ti has been checkpointed. Hence, we need to re-
execute only Ti when an error strikes. We explain how to deal with the general case
of re-executing a segment of tasks, some of them replicated, in Section 5.4. Here, we
start with the case where Ti is not replicated. It is already known how to compute
Enorep(i) [106, 23], but we present this case to help the reader follow the derivation in
Section 5.3.2 for the case where Ti is replicated, which is new and much more involved.

5.3.1 Computing Enorep(i)

To compute Enorep(i), the average execution time of Ti with p processors without repli-
cation, we conduct a case analysis:

• Either a fail-stop error strikes during the execution of the task and its verification
(lasting Tnorep

i +Vnorep
i), and in this case we lose some work and need to re-execute

the task, recovering from a disk checkpoint;

• Either there is no fail-stop error, and in this case the verification indicates whether
there has been a silent error or not:

– If a silent error is detected, we need to re-execute the task right after the
verification, recovering from a memory checkpoint;

– Otherwise the execution has been successful.

This leads to the following recursive formula:

Enorep(i) = P(Xp ≤ Tnorep
i + Vnorep

i)
(

Tnorep
lost (Tnorep

i + Vnorep
i)

+ D + RDnorep
i + Enorep(i)

)
+ (1−P(Xp ≤ Tnorep

i + Vnorep
i))

(
Tnorep

i + Vnorep
i (5.4)

+ P(X
′
p ≤ Tnorep

i)(D + RMnorep
i + Enorep(i))

)
,

where P(Xp ≤ t) is the probability of having a fail-stop error on one of the p processors
before time t, i.e., P(Xp ≤ t) = 1− e−λF

ind pt, and P(X
′
p ≤ t) is the probability of having

a silent error on one of the p processors before time t, i.e., P(X
′
p ≤ t) = 1− e−λS

ind pt. The
time lost when an error strikes is the expectation of the random variable Xp, knowing
that the error stroke before the end of the task and its verification. We compute it as
follows:

106
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

Tnorep
lost (Tnorep

i + Vnorep
i) =

+∞∫
0

xP(Xp = x|Xp ≤ Tnorep
i + Vnorep

i)dx

=
1

P(Xp ≤ Tnorep
i + Vnorep

i)

Tnorep
i +Vnorep

i∫
0

xP(Xp = x)dx

=
1

P(Xp ≤ Tnorep
i + Vnorep

i)

Tnorep
i +Vnorep

i∫
0

x
dP(Xp ≤ x)

dx
dx

After integration, we get the formula:

Tnorep
lost (Tnorep

i + Vnorep
i) =

1
λF

ind p
− Tnorep

i + Vnorep
i

eλF
ind p(Tnorep

i +Vnorep
i) − 1

. (5.5)

Replacing the left hand side term of Equation (5.5) in Equation (5.4) and solving, we
derive:

Enorep(i) =

(
1

λF
ind p

+ D + RDnorep
i

)
ep((λF

ind+λS
ind)T

norep
i +λF

indVnorep
i) (5.6)

−
(

1
λF

ind p
+ (RDnorep

i − RMnorep
i)

)
eλS

ind pTnorep
i − (D + RMnorep

i).

Recall that Tnorep
i = wi

(
αi +

1−αi
p

)
in Equation (5.6). Finally, if we decide to checkpoint

Ti, we simply add Cnorep
i to Enorep(i).

5.3.2 Computing Erep(i)

We now discuss the case where Ti is replicated; each copy executes with p
2 processors.

To compute Erep(i), the expected execution time of Ti with replication, we conduct a
case analysis similar to that of Section 5.3.1:

• Either two fail-stop errors strike before the end of the task and its verification
(lasting Trep

i + Vrep
i), with one fail-stop error striking each copy. Then we have

lost some work and need to re-execute the task from a disk checkpoint;

• Or at least one copy is not hit by any fail-stop error. Then we need to account
for two different cases in the analysis:

– Both copies have survived: then we need to re-execute the task (recovering
from a memory checkpoint) only if both copies are hit by a silent error.

– Only one replica survived: then we need to re-execute the task if this replica
is hit by a silent error.

5.3. COMPUTING ENOREP(I) AND EREP(I) 107

This leads to the following formula:

Erep(i) = P(Yp ≤ Trep
i + Vrep

i)2
(

Trep
lost(T

rep
i + Vrep

i) + D + RDrep
i + Erep(i)

)
+ (1−P(Yp ≤ Trep

i + Vrep
i)2)(Trep

i + Vrep
i) (5.7)

+
(

2(1−P(Yp ≤ Trep
i + Vrep

i))P(Yp ≤ Trep
i + Vrep

i)P(Y
′
p ≤ Trep

i)

+ (1−P(Yp ≤ Trep
i + Vrep

i))2P(Y
′
p ≤ Trep

i)2
)
(D + RMrep

i + Erep(i)),

where P(Yp ≤ t) is the probability of having an error on one replica of p
2 processors

before time t, i.e., P(Yp ≤ t) = 1− e−
λF

ind p
2 t, and P(Y

′
p ≤ t) is the probability of having

a silent error on one replica of p
2 processors before time t, i.e., P(Y

′
p ≤ t) = 1− e−

λS
ind p
2 t.

The first line of Equation (5.7) corresponds to the case where both replicas are hit by
a fail-stop error, the second line accounts for the time spent in case at least one replica
survives. The last two lines correspond to the two cases when we need to re-execute
the task after the detection of a silent error (one replica alive for line 3, two replicas
alive for line 4 of Equation (5.7)).

The time lost when both copies fail can be computed in a similar way as before:

Trep
lost(T

rep
i) =

1
P(Yp ≤ Trep

i + Vrep
i)

Trep
i +Vrep

i∫
0

x
dP(Yp ≤ x)

dx
dx.

After computation and verification using a Maple sheet, we obtain the following
result:

Trep
lost(T

rep
i + Vrep

i) =
(−2λF

ind p(Trep
i +Vrep

i)−4)e−
λF

ind p(Trep
i +Vrep

i)

2

(e−
λF

ind p(Trep
i +Vrep

i)

2 −1)2λF
ind p

+
(λF

ind p(Trep
i +Vrep

i)+1)e−λF
ind p(Trep

i +Vrep
i)+3

(e−
λF

ind p(Trep
i +Vrep

i)

2 −1)2λF
ind p

.
(5.8)

Replacing the left hand side term of Equation (5.8) in Equation (5.7) and solving,

108
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

we get:

Erep(i) = − (4 + 2λF
ind p(RDrep

i − RMrep
i))ep(

λF
ind(T

rep
i +Vrep

i)

2 +λS
indTrep

i)

(2ep
λF

ind(T
rep
i +Vrep

i)+λS
indTrep

i
2 − 1) · λF

ind p
(5.9)

+
(1 + λF

ind p(RDrep
i − RMrep

i))eλS
ind pTrep

i

(2ep
λF

ind(T
rep
i +Vrep

i)+λS
indTrep

i
2 − 1) · λF

ind p

+
(3 + λF

ind p(D + RDrep
i))ep(λF

ind(T
rep
i +Vrep

i)+λS
indTrep

i)

(2ep
λF

ind(T
rep
i +Vrep

i)+λS
indTrep

i
2 − 1) · λF

ind p
− (D + RMrep

i)

Recall that Trep
i = wi

(
αi +

1−αi
p
2

)
in Equation (5.9). Finally, if we decide to checkpoint

Ti, we simply add Crep
i to Erep(i).

5.4 Optimal dynamic programming algorithm

In this section, we provide an optimal dynamic programming (DP) algorithm to solve
the ChainsRepCkpt problem for a linear chain of n tasks.

Theorem 4. The optimal solution to the ChainsRepCkpt problem can be obtained using a
dynamic programming algorithm in O(n2) time, where n is the number of tasks in the chain.

Proof. The algorithm recursively computes the expectation of the optimal time re-
quired to execute tasks T1 to Ti and then checkpoint Ti. As already mentioned, we
need to distinguish two cases, according to whether Ti is replicated or not, because
the cost of the final checkpoint depends upon this decision. Hence, we recursively
compute two different functions:

• Trep
opt(i), the expectation of the optimal time required to execute tasks T1 to Ti,

knowing that Ti is replicated;
• Tnorep

opt (i), the expectation of the optimal time required to execute tasks T1 to Ti,
knowing that Ti is not replicated.

Note that checkpoint time is not included in Trep
opt(i) nor Tnorep

opt (i). The solution to
ChainsRepCkpt will be given by

min
{

Trep
opt(n) + Crep

n , Tnorep
opt (n) + Cnorep

n
}

. (5.10)

We start with the computation of Trep
opt(j) for 1 ≤ j ≤ n, hence assuming that the

5.4. OPTIMAL DYNAMIC PROGRAMMING ALGORITHM 109

last task Tj is replicated. We express Trep
opt(j) recursively as follows:

Trep
opt(j)= min

1≤i<j



Trep
opt(i) + Crep

i + Trep,rep
NC (i + 1, j),

Trep
opt(i) + Crep

i + Tnorep,rep
NC (i + 1, j),

Tnorep
opt (i) + Cnorep

i + Trep,rep
NC (i + 1, j),

Tnorep
opt (i)+Cnorep

i +Tnorep,rep
NC (i + 1, j),

RDrep
1 + Trep,rep

NC (1, j),

RDnorep
1 + Tnorep,rep

NC (1, j)


(5.11)

In Equation (5.11), Ti corresponds to the last checkpointed task before Tj, and we
try all possible locations Ti for taking a checkpoint before Tj. The first four lines
correspond to the case where there is indeed an intermediate task Ti between T1 and
Tj that is checkpointed, while the last two lines correspond to the case where no
checkpoint at all is taken until after Tj.

The first two lines of Equation (5.11) apply to the case where Ti is replicated. Line
1 is for the case when Ti+1 is replicated, and line 2 when it is not. In the first line
of Equation (5.11), Trep,rep

NC (i + 1, j) denotes the optimal time to execute tasks Ti+1 to Tj
without any intermediate checkpoint, knowing that Ti is checkpointed, and both Ti+1
and Tj are replicated. If Ti+1 is not replicated, we use the second line of Equation (5.11),
where Tnorep,rep

NC (i + 1, j) is the counterpart of Trep,rep
NC (i + 1, j), except that it assumes that

Ti+1 is not replicated. This information on Ti+1 (replicated or not) is needed to compute
the recovery cost when executing tasks Ti+1 to Tj and experiencing an error.

Lines 3 and 4 apply to the case where Ti is not replicated, with similar notation as
before. In the first four lines, no task between Ti+1 and Tj−1 is checkpointed, hence the
notation NC for no checkpoint.

If no checkpoint at all is taken before Tj (this corresponds to the case i = 0), we
use the last two lines of Equation (5.11): we include the cost to read the initial input,
which depends whether T1 is replicated (in line 5) or not (in line 6) of Equation (5.11).

We have a very similar equation to express Tnorep
opt (j) recursively, with intuitive no-

tation:

Tnorep
opt (j) = min

1≤i<j



Trep
opt(i) + Crep

i + Trep,norep
NC (i + 1, j),

Trep
opt(i) + Crep

i + Tnorep,norep
NC (i + 1, j),

Tnorep
opt (i) + Cnorep

i + Trep,norep
NC (i + 1, j),

Tnorep
opt (i)+Cnorep

i +Tnorep,norep
NC (i + 1, j),

RDrep
1 + Trep,norep

NC (1, j),

RDnorep
1 + Tnorep,norep

NC (1, j)


(5.12)

To synthesize the notation, we have defined TA,B
NC (i + 1, j), with A, B ∈ {rep, norep},

as the optimal time to execute tasks Ti+1 to Tj without any intermediate checkpoint,
knowing that Ti is checkpointed, Ti+1 is replicated if and only if A = rep, and Tj is

110
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

replicated if and only if B = rep. In a nutshell, we have to account for the possible
replication of the first task Ti+1 after the last checkpoint, and of the last task Tj, hence
the four cases.

There remains to compute TA,B
NC (i, j) for all 1 ≤ i, j ≤ n and A, B ∈ {rep, norep}.

This is still not easy, because there remains to decide which intermediate tasks should
be replicated. In addition to the status of Tj (replicated or not, according to the value
of B), the only thing we know so far is that the only checkpoint that we can recover
from while executing tasks Ti to Tj is the checkpoint taken after task Ti−1, hence we
need to re-execute from Ti whenever an error strikes. Furthermore, Ti is replicated if
and only if A = rep, hence we know the corresponding cost for recovery, RA

i . Letting
TA,B

NC (i, j) = 0 whenever i > j, we can express TA,B
NC (i, j) for 1 ≤ i ≤ j ≤ n as follows:

TA,B
NC (i, j) = min

{
TA,rep

NC (i, j− 1), TA,norep
NC (i, j− 1)

}
+ TA,B(j | i).

Here the new (and final) notation TA,B(j | i) is simply the time needed to execute
task Tj, knowing that an error during Tj implies to recover from Ti. Indeed, to execute
tasks Ti to Tj, we account recursively for the time to execute Ti to Tj−1; Ti−1 is still
checkpointed; Ti is replicated if and only if A = rep, Tj is replicated if and only if
B = rep, and we consider both cases whether Tj−1 is replicated or not. The time lost
in case of an error during Tj depends whether Tj is replicated or not, and we need to
restart from Ti in case of error, hence the notation TA,B(j | i), representing the expected
execution time for task Tj with or without replication (depending on B), given that we
need to restart from Ti if there is an error (and Ti is replicated if and only if A = rep).

The last step is hence to express these execution times. We start with the case
where Tj is not replicated:

TA,norep(j | i) =
(

1− e−λF
ind p(Tnorep

j +Vnorep
j)

) (
Tnorep

lost (Tnorep
j + Vnorep

j) + D + RD A
i

+min
{

TA,rep
NC (i, j− 1), TA,norep

NC (i, j− 1)
}
+ TA,norep(j | i)

)
+ e−λF

ind p(Tnorep
j +Vnorep

j)
(

Tnorep
j + Vnorep

j +
(

1− e−λS
ind pTnorep

j
)
(D + RM A

i

+min
{

TA,rep
NC (i, j− 1), TA,norep

NC (i, j− 1)
}
+ TA,norep(j | i))

)
.

The term in e−λF
ind p(Tnorep

j +Vnorep
j) represents the case without fail-stop error, where the

execution time is simply Tnorep
j +Vnorep

j . If a silent error is detected after the verification,
we pay a downtime and a memory recovery (with a cost depending on A). Next, we
need to re-execute all the tasks since the last checkpoint (Ti to Tj−1) and take the
minimal value obtained out of the execution where Tj−1 is replicated or not; finally,
we execute Tj again (with a time TA,norep(j | i)) from last checkpoint. When a fail-stop

5.5. EXPERIMENTS 111

error strikes, we account for Tnorep
lost (Tnorep

j + Vnorep
j), the time lost within Tj, and whose

value is given by Equation (5.5). Then we pay a downtime and a disk recovery (with
a cost depending on A). Finally, we re-execute all the tasks from last checkpoint and
that is similar to the previous case.

The formula is similar with replication of Tj, where the probability of error ac-
counts for the fact that we need to recover only if both replicas fail for the fail-stop
errors and accounts for the number of living replicas in the case where a silent error
is detected (see Section 5.3.2 for the details):

TA,rep(j | i) =

(
1− e−

λF
ind p(Trep

j +Vrep
j)

2

)2 (
Trep

lost(T
rep
j + Vrep

j) + D + RD A
i

+min
{

TA,rep
NC (i, j− 1), TA,norep

NC (i, j− 1)
}
+ TA,rep(j | i)

)
+

1−
(

1− e−
λF

ind p(Trep
j +Vrep

j)

2

)2
(Trep

j + Vrep
j

)
+
(
(1− e−

λF
ind p(Trep

j +Vrep
j)

2)e−
λF

ind p(Trep
j +Vrep

j)

2 (1− e−
λS

ind pTrep
j

2)

+e−λF
ind p(Trep

j +Vrep
j)(1− e−

λS
ind pTrep

j
2)2

)(
D + RM A

i

+min
{

TA,rep
NC (i, j− 1), TA,norep

NC (i, j− 1)
}
+ TA,rep(j | i)

)
.

Note that the value of Trep
lost(T

rep
j) is given by Equation (5.8). Overall, we need to

compute the O(n2) intermediate values TA,B(j | i) and TA,B
NC (i, j) for 1 ≤ i, j ≤ n

and A, B ∈ {rep, norep}, and each of these take constant time. There are O(n) values
TA

opt(i), for 1 ≤ i ≤ n and A ∈ {rep, norep}, and these perform a minimum over at
most 6n elements, hence they can be computed in O(n). The overall complexity is
therefore O(n2).

5.5 Experiments
In this section, we evaluate the advantages of adding replication to checkpointing
in the presence of both, fail-stop and silent errors. We point out that the simulator
that implements the proposed DP algorithm is publicly available at http://graal.
ens-lyon.fr/˜yrobert/chainsrep.zip so that interested readers can instantiate their
preferred scenarios and repeat the same simulations for reproducibility purpose. The
code is written in-house in C++ and does not use any library other than the STL.

We start by assessing scenarios with fail-stop errors only in Section 5.5.1. We first
describe the evaluation framework in Section 5.5.1.1, then we compare checkpoint with
replication to checkpoint only in Section 5.5.1.2. In Section 5.5.1.3, we assess the impact
of the different model parameters on the performance of the optimal strategy. Finally,
Section 5.5.1.4 compares the performance of the optimal solution to alternative sub-
optimal solutions.

http://graal.ens-lyon.fr/~yrobert/chainsrep.zip
http://graal.ens-lyon.fr/~yrobert/chainsrep.zip

112
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

Then we assess scenarios with both fail-stop and silent errors in Section 5.5.2. We
first describe the few modifications of the evaluation framework in Section 5.5.2.1, then
we compare checkpoint with replication to checkpoint only in Section 5.5.2.2. Finally, Sec-
tion 5.5.2.3 assesses the impact of the different model parameters on the performance
of the optimal strategy.

5.5.1 Scenarios with fail-stop errors only

5.5.1.1 Experimental setup

We fix the total work in the chain to W = 10, 000 seconds. The choice of this value
is less important than the duration of the tasks compared to the error rate. For this
reason, we rely on five different work distributions, where all tasks are fully parallel
(αi = 0):

• Uniform: every task i is of length wi =
W
n , i.e., identical tasks.

• Increasing: the length of the tasks constantly increases, i.e., task Ti has length
wi = i 2W

n(n+1) .

• Decreasing: the length of the tasks constantly decreases, i.e., task Ti has length
wi = (n− i + 1) 2W

n(n+1) .

• HighLow: the chain is formed by long tasks followed by short tasks. The long
tasks represent 60% of the total work and there are d n

10e such tasks. Short tasks
represent the remaining 40% of the total work and consequently there are n −
d n

10e small tasks.

• Random: task lengths are uniformly chosen at random between W
2n and 3W

2n . If
the total work of the first i tasks reaches W, the weight of each task is multiplied
by i

n so that we can continue adding the remaining tasks.

Experiments with increasing sequential part (αi) for the tasks are available in the
companion research report [22]. Setting αi = 0 amounts to being in the worse pos-
sible case for replication, since the tasks will fully benefit of having twice as much
processors when not replicated.

For simplicity, we assume that checkpointing costs are equal to the corresponding
recovery costs, assuming that read and write operations take approximately the same
amount of time, i.e., RDnorep

i+1 = Cnorep
i . For replicated tasks, we set Crep

i = αCnorep
i and

RDrep
i = αRDnorep

i , where 1 ≤ α ≤ 2, and we assess the impact of parameter α in Sec-
tion 5.5.2.3. In the following experiments, we measure the performance of a solution
by evaluating the associated normalized expected makespan, i.e., the expected execu-
tion time needed to compute all the tasks in the chain, with respect to the execution
time without errors, checkpoints, or replicas.

5.5. EXPERIMENTS 113

5.5.1.2 Comparison to checkpoint only

We start with an analysis of the solutions obtained by running the optimal dynamic
programming (DP) algorithm ChainsRepCkpt on chains of 20 tasks for the five differ-
ent work distributions described in Section 5.5.1.1. We also run a variant of Chains-
RepCkpt that does not perform any replication, hence using a simplified DP algorithm,
that is called ChainsCkpt.

We vary the fail-stop error rate λF
ind p from 10−8 to 10−2. Note that when λF

ind p =
10−3, we expect an average of 10 errors per execution of the entire chain (neglecting
potential errors during checkpoints and recoveries). The checkpoint cost Cnorep

i = ai
is constant per task (hence bi = ci = 0) and varies from 10−3Tnorep

i to 103Tnorep
i . For

replicated tasks, we set α = 1 in this experiment, i.e., Crep
i = Cnorep

i and RDrep
i = RDnorep

i .
Figure 5.1 presents the results of these experiments for the Uniform distribution.

We are interested in the number of checkpoints and replicas in the optimal solution. As
the optimal solution may or may not contain checkpoints and replicas, we distinguish
4 cases: None means that no task is checkpointed nor replicated, Checkpointing Only
means that some tasks are checkpointed but no task is replicated, Replication Only
means that some tasks are replicated, but no task is checkpointed, and Checkpoint-
ing+Replication means that some tasks are checkpointed and some tasks are replicated.
First, we observe that when the checkpointing cost is less than or equal to the length
of a task (on the left of the black line), the optimal solution does not use replication,
except when the error rate becomes very high. However, if the checkpointing cost ex-
ceeds the length of one task (on the right of the black vertical bar), replication proves
useful in some cases. In particular, when the fails-stop error rate λF

ind p is medium
to high (i.e., 10−6 to 10−4), we note that only replication is used, meaning that no
checkpoint is taken and that replication alone is a better strategy to prevent any er-
ror from stopping the application. When the error rate is the highest (i.e., 10−4 or
higher), replication is added to the checkpointing strategy to ensure maximum relia-
bility. It may seem unusual to use replication alone when checkpointing costs increase.
This is because the recovery cost has to be taken into account as well, in addition to
re-executing the tasks that have failed. Replication is added to reduce this risk: if
successful, there is no recovery cost to pay for, nor any task to re-execute. Finally,
note that for low error rates and low checkpointing costs, only checkpoints are used,
because their cost is lower than the average re-execution time in case of error. We
point out that similar results are obtained when using other work distributions (see
the extended version [22]).

In the next experiment, we focus on scenarios where both checkpointing and repli-
cation are useful, i.e., we set the checkpointing cost to be twice the length of a task
(i.e., Cnorep

i = ai = 2Tnorep
i), and we set the fail-stop error rate λF

ind p to 10−3, which cor-
responds to the case highlighted by the red box in Figure 5.1. Figure 5.2 presents the
optimal solutions obtained with the ChainsCkpt and ChainsRepCkpt algorithms for
the Uniform, Increasing, Decreasing, HighLow and Random work distributions,
respectively. First, for the Uniform work distribution, it is clear that the Chains-

114
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

1.0e
− 03
4.0e
− 03
1.6e
− 02
6.4e
− 02
2.6e
− 01
1.0e

+ 00
4.1e

+ 00
1.6e

+ 01
6.6e

+ 01
2.6e

+ 02
1.0e

+ 03

Checkpoint/Recovery cost over task length ratio

1.00e− 08

4.00e− 08

1.60e− 07

6.40e− 07

2.56e− 06

1.02e− 05

4.10e− 05

1.64e− 04

6.55e− 04

2.62e− 03

1.05e− 02

E
rr

or
R

at
e

None
Checkpointing Only
Replication Only
Checkpointing+Replication

Figure 5.1: Impact of checkpoint/recovery cost and error rate on the usage of check-
pointing and replication. Total work is fixed to 10, 000s and is distributed uniformly
among n = 20 tasks (i.e., T1 = T2 = · · · = T20 = 500s). Each color shows the presence
of checkpoints and/or replicas in the optimal solution. Results corresponding to the
case highlighted with a red square are presented in Figure 5.2.

5.5. EXPERIMENTS 115

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(a) Uniform

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(b) Increasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(c) Decreasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(d) HighLow

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

None
Checkpointing Only
Replication Only
Checkpointing+Replication

(e) Random

Figure 5.2: Optimal solutions obtained with the ChainsCkpt algorithm (top) and the
ChainsRepCkpt algorithm (bottom) for the five work distributions.

116
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

RepCkpt strategy leads to a decrease in the number of checkpoints compared to the
ChainsCkpt strategy. Under the ChainsCkpt strategy, a checkpoint is taken every
two tasks, while under the ChainsRepCkpt strategy, a checkpoint is instead taken ev-
ery three tasks, while two out of three tasks are also replicated. Then, for the Increas-
ing and Decreasing work distributions, the results show that most tasks should be
replicated, while only the longest tasks are also checkpointed. A general rule of thumb
is that replication only is preferred for short tasks while checkpointing and replication is
reserved for longer tasks, where the probability of error and the re-execution cost are
the highest. Finally, we observe a similar trend for the HighLow work distribution,
where two of the first four longer tasks are checkpointed and replicated.

20 40 60 80 100
Number of Tasks

0

2

4

6

8

10

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

10

20

30

40

50
N

um
be

ro
fC

he
ck

po
in

ts
CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

20

40

60

80

100

N
um

be
ro

fR
ep

lic
as

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

Uniform, Increasing, Decreasing, HighLow, Random distributions

Figure 5.3: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for differ-
ent numbers of tasks: impact on the makespan (left), number of checkpoints (middle)
and number of replicas (right) with a fail-stop error rate of λF

ind p = 10−3 and a constant
chekpointing/recovery cost Cnorep

i = Crep
i = 1000s.

Figure 5.3 compares the performance of ChainsRepCkpt to the checkpoint-only
strategy ChainsCkpt. First, we observe that the expected normalized makespan of
ChainsCkpt remains almost constant at ≈ 4.5 for any number of tasks and for any
work distribution. Indeed, in our scenario, checkpoints are expensive and the number
of checkpoints that can be used is limited to ≈ 17 in the optimal solution, as shown
in the middle plot. However, the ChainsRepCkpt strategy can take advantage of the
increasing number of shorter tasks by replicating them. In this scenario (high error
rate and high checkpoint cost), this is clearly a winning strategy. The normalized ex-
pected makespan decreases with increasing n, as the corresponding number of tasks
that are replicated increases almost linearly. The ChainsRepCkpt strategy reaches a
normalized makespan of ≈ 2.6 for n = 100, i.e., a reduction of 35% compared to the
normalized expected makespan of the ChainsCkpt strategy. This is because repli-
cated tasks tend to decrease the global probability of having an error, thus reducing
even more the number of checkpoints needed as seen previously. Regarding the High-
Low work distribution, we observe a higher optimal expected makespan for both the
ChainsCkpt and the ChainsRepCkpt strategies. Indeed, in this scenario, the first
tasks are very long (60% of the total work), which greatly increases the probability of
error and the associated re-execution cost.

5.5. EXPERIMENTS 117

10−5 10−4 10−3 10−2

Error rate λindp

0

2

4

6

8

10

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (C = R = 1000)
CHAINSCKPT (C = R = 1000)

0 1 2 3 4 5
Checkpoint/Recovery cost over task length ratio

0

2

4

6

8

10

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

0 20 40 60 80 100
Number of Tasks

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (Crep = Cnorep)
CHAINSREPCKPT (Crep = 1.5 Cnorep)
CHAINSREPCKPT (Crep = 2 Cnorep)

Figure 5.4: Impact of fail-stop error rate λF
ind p (left), checkpoint cost (middle), and

ratio α between the checkpointing cost for replicated task Crep
i over non-replicated

tasks Cnorep
i (right).

0 2000 4000 6000 8000 10000
Number of Processors

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(a) (100, 10000, 1)

0 2000 4000 6000 8000 10000
Number of Processors

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(b) (100, 100000, 0.1)

0 2000 4000 6000 8000 10000
Number of Processors

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n
CHAINSREPCKPT

CHAINSCKPT

(c) (100, 1000000, 0.01)

Figure 5.5: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for differ-
ent numbers of processors, with different model parameter values for the checkpoint-
ing cost (ai, bi, ci).

5.5.1.3 Impact of error rate and checkpoint cost on the performance

Figure 5.4 shows the impact of three of the model parameters on the optimal expected
normalized makespan of both ChainsCkpt and ChainsRepCkpt. First, we show the
impact of the fail-stop error rate λF

ind p on the performance. The ChainsRepCkpt algo-
rithm improves the ChainsCkpt strategy for large values of λF

ind p: replication starts to
be used for λF

ind p > 2.6× 10−4 and it reduces the makespan by ≈ 16% for λF
ind p = 10−3

and by up to ≈ 40% when λF
ind p = 10−2, where all tasks are checkpointed and repli-

cated.
Then, we investigate the impact of the checkpointing cost with respect to the task

length. As shown in Figure 5.1, replication is not needed for low checkpointing costs,
i.e., when the checkpointing cost is between 0 and 0.8 times the cost of one task: in this
scenario, all tasks are checkpointed and both strategies lead to the same makespan.
When the checkpointing cost is between 0.9 and 1.6 times the cost of one task, Chains-
RepCkpt checkpoints and replicates half of the tasks. Overall, the ChainsRepCkpt

strategy improves the optimal normalized expected makespan by ≈ 11% for a check-
pointing cost ratio of 1.6, and by as much as ≈ 36% when the checkpointing cost is

118
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

five times the length of one task.
We now investigate the impact of the ratio between the checkpointing and recov-

ery cost for replicated tasks and non-replicated tasks α and we present the results for
α = 1 (Crep

i = RDrep
i = Cnorep

i = RDnorep
i), α = 1.5 (Crep

i = RDrep
i = 1.5Cnorep

i = 1.5RDnorep
i)

and α = 2 (Crep
i = RDrep

i = 2Cnorep
i = 2RDnorep

i). As expected, the makespan in-
creases with α, but it is interesting to note that the makespan converges towards a
same lower-bound as the number of (shorter) tasks increases. As shown previously,
when tasks are smaller, ChainsRepCkpt favors replication over checkpointing, espe-
cially when the checkpointing cost is high, which means less checkpoints, recoveries
and re-executions.

Finally, we evaluate the efficiency of both strategies when the number of processors
increases. For this experiment, we instantiate the model using variable checkpointing
costs, i.e., we do not use bi = ci = 0 anymore, so that the checkpointing/recovery
cost depends on the number of processors. We set n = 50, λF

ind = 10−7 and we make
p vary from 10 to 10,000 (i.e., the global error rate varies between 10−6 and 10−3).
Figure 5.5 presents the results of the experiment using three different sets of values for
ai, bi and ci. We see that when bi increases while ci decreases, the replication becomes
useless, even for the larger error rate values. However, when the term ci p becomes
large in front of bi

p , we see that ChainsRepCkpt is much better than ChainsCkpt,
as the checkpointing costs tend to decrease, in addition to all the other advantages
investigated in the previous sections. With p = 10, 000, the three different experiments
show an improvement of 80.5%, 40.7% and 0% (from left to right, respectively).

5.5.1.4 Impact of the number of checkpoints and replicas

Figure 5.6 shows the impact of the number of checkpoints and replicas on the nor-
malized expected makespan for different checkpointing costs and fail-stop error rates
λF

ind p under the Uniform work distribution. We show that the optimal solution with
ChainsRepCkpt (highlighted by the green box) always matches the minimum value
obtained in the simulations, i.e., the optimal number of checkpoints, number of repli-
cas, and expected execution times are consistent. In addition, we show that in sce-
narios where both the checkpointing cost and the error rate are high, even a small
deviation from the optimal solution can quickly lead to a large overhead.

5.5.2 Scenarios with both fail-stop and silent errors

In this section we evaluate the power of replication in addition to checkpointing on
platforms subject to both fail-stop and silent errors.

5.5.2.1 Experimental setup

All the model parameters are instantiated as before, with the following changes to
account for the presence of silent errors. Unless stated otherwise, the fail-stop error

5.5. EXPERIMENTS 119

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20
#R

ep
lic

as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 5.6: Impact of the number of checkpoints and replicas on the normalized ex-
pected makespan for fail-stop error rates of λF

ind = 10−4 (top), λ = 10−3 (middle) and
λ = 10−2 (bottom) and for checkpointing costs of 0.5× Tnorep

i (left), 1× Tnorep
i (middle)

and 2× Tnorep
i (right), with Cnorep

i = Crep
i under Uniform work distribution. The opti-

mal solution obtained with ChainsRepCkpt always matches the minimum simulation
value and is highlighted by the green box.

rate has been set to 1.28e-3s−1 and the silent error rate has been set to 5.48e-3s−1.
The silent error rate has been computed from real measures [18]: we derived a non-
corrected silent error rate per core of 5.48e-9s−1. Similarly, the fail-stop error rate
per core considered was 1.28e-9s−1, which corresponds to a core lifetime of 25 years.
Finally, we considered a platform of 1 million cores which tends to be the trend for
current Top500 machines [181].

As for other parameters, we considered a verification cost of 1% of the correspond-
ing task length. The cost of memory recovery was set to 5% of that of a disk recovery,
considering an average between different measured values from [140].

For simplicity, we assume that checkpointing costs are equal to the sum of the

120
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

corresponding recovery costs, assuming that read and write operations take approxi-
mately the same amount of time, i.e., RDnorep

i+1 + RMnorep
i+1 = Cnorep

i . For replicated tasks,

we set Crep
i = αCnorep

i , RDrep
i = αRDnorep

i and RMrep
i = αRMnorep

i , where 1 ≤ α ≤ 2, and
we assess the impact of parameter α in Section 5.5.2.3. As in the previous section, we
measure the performance of a solution by evaluating the associated normalized ex-
pected makespan, i.e., the expected execution time needed to compute all the tasks in
the chain, with respect to the execution time without errors, checkpoints, or replicas.

5.5.2.2 Comparison to checkpoint only

We start with an analysis of the solutions obtained by running the optimal dynamic
programming (DP) algorithm ChainsRepCkpt on chains with 20 tasks for the five
different work distributions described in Section 5.5.1.1. We also run a variant of
ChainsRepCkpt that does not perform any replication, hence using a simplified DP
algorithm, that is called ChainsCkpt.

We vary the fail-stop error rate λF
ind p from 10−8 to 10−2, without changing the

silent error rate λS
ind. The disk checkpoint/recovery cost is constant per task and varies

from 10−3Tnorep
i to 103Tnorep

i (hence, the memory checkpoint/recovery cost varies from
5× 10−5Tnorep

i to 50Tnorep
i). Overall, all checkpoints have a cost from 1.05× 10−3Tnorep

i to
1.05× 103Tnorep

i as we always perform both types of checkpoints. For replicated tasks,
we set α = 1 in this experiment, i.e., Crep

i = Cnorep
i , RDrep

i = RDnorep
i and RMrep

i = RMnorep
i .

In another experiment, we also make the silent error rate λS
ind p vary from 10−8 to

10−2 without changing the fail-stop error rate of 1.28e-3, with the same range for the
checkpoint cost.

s
1.0e
− 03
4.0e
− 03
1.6e
− 02
6.4e
− 02
2.6e
− 01
1.0e

+ 00
4.1e

+ 00
1.6e

+ 01
6.6e

+ 01
2.6e

+ 02
1.0e

+ 03

Checkpoint/Recovery cost over task length ratio

1.00e− 08

4.00e− 08

1.60e− 07

6.40e− 07

2.56e− 06

1.02e− 05

4.10e− 05

1.64e− 04

6.55e− 04

2.62e− 03

1.05e− 02

Fa
il-

st
op

E
rr

or
R

at
e

Checkpointing Only
Checkpointing+Replication

1.0e
− 03
4.0e
− 03
1.6e
− 02
6.4e
− 02
2.6e
− 01
1.0e

+ 00
4.1e

+ 00
1.6e

+ 01
6.6e

+ 01
2.6e

+ 02
1.0e

+ 03

Checkpoint/Recovery cost over task length ratio

1.00e− 08

4.00e− 08

1.60e− 07

6.40e− 07

2.56e− 06

1.02e− 05

4.10e− 05

1.64e− 04

6.55e− 04

2.62e− 03

1.05e− 02

S
ile

nt
E

rr
or

R
at

e

Checkpointing Only
Checkpointing+Replication

Figure 5.7: Impact of checkpoint/recovery cost and error rates on the usage of check-
pointing and replication. Total sequential work is fixed to 10, 000s and is distributed
uniformly among n = 20 tasks (i.e., T1 = T2 = · · · = T20 = 500s). Each color shows
the presence of checkpoints and/or replicas in the optimal solution.

Figure 5.7 presents the results of these experiments for the Uniform distribution.

5.5. EXPERIMENTS 121

The colors are the same as in Figure 5.1, with Checkpointing Only meaning that some
tasks are checkpointed but no task is replicated and Checkpointing+Replication mean-
ing that some tasks are checkpointed and some tasks are replicated. The left figure
presents the results when the silent error rate is fixed but the fail-stop error rate varies.
The right figure presents the results of the other experiment with a fixed fail-stop error
rate and different silent error rates.

First, we observe that with silent errors, checkpointing becomes mandatory. Too
many failures can strike during the execution, and checkpointing helps reducing the
time spent on rollbacks and re-executions. However, as soon as the cost of a checkpoint
exceeds the length of a task, replication becomes useful and this remains true even for
low error rates. This holds for both fail-stop errors (left) and silent errors (right). There
is one exception: when the fail-stop error rate is lower than 10−5 and the checkpointing
cost is less than twice the length of a task, checkpoints are sufficient and is replication
is not needed. Replication is overall not needed under good conditions, however for
our real setup, indicated by the red box, using both checkpointing and replication is a
better solution. We point out that similar results are obtained when using other work
distributions (see the extended version [22]).

In the next experiment, we focus on scenarios where both checkpointing and repli-
cation are useful, i.e., we set the checkpointing cost to be twice the length of a task
(i.e., Cnorep

i = ai = 2Tnorep
i), keeping λF

ind p = 1.28e-3 and λS
ind p = 5.48e-3, for the fail-

stop and silent error rates, respectively, which corresponds to the case highlighted by
the red box in Figure 5.7. Figure 5.8 presents the optimal solutions obtained with
the ChainsCkpt and ChainsRepCkpt algorithms for the Uniform, Increasing, De-
creasing, HighLow and Random work distributions, respectively. With two sources
of errors, the solution is straightforward: almost every task must be checkpointed,
with the exception of one (short) task for the Decreasing and Increasing distribu-
tions. However almost every task is also replicated (20 tasks out of 20 for the Uniform

distribution compared to only 13 in the experiments of Section 5.5.1.2), showing once
more that replication grants better protection to failures even if it increases the failure-
free execution time. Checkpoints are being taken the same way as in our previous
experiments: long tasks are systematically checkpointed while shorter tasks are ei-
ther unprotected or replicated, as can be seen with the first tasks of the Increasing

distribution and the last task of the Decreasing distributions.
Figure 5.9 compares the performance of ChainsRepCkpt to the checkpoint-only

strategy ChainsCkpt with fail-stop and silent errors. First, we observe that long
tasks, being more likely to fail than shorter tasks, introduce a high overhead. As a
consequence, with 20 tasks, the normalized makespan is too high and the execution of
such applications is not possible, independently of the work distribution and the cho-
sen checkpointing strategy. With more tasks however, the ChainsRepCkpt strategy
always yield a shorter makespan compared to the ChainsCkpt strategy. For example,
with 100 tasks, the normalized makespan obtained with the ChainsRepCkpt strategy
is as high as ≈ 8.5 (and much more for the HighLow distribution), compared to ≈ 13
for ChainsCkpt. Indeed, with such high error rates, all tasks are replicated under

122
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(a) Uniform

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(b) Increasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(c) Decreasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(d) HighLow

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

None
Checkpointing Only
Replication Only
Checkpointing+Replication

(e) Random

Figure 5.8: Optimal solutions obtained with the ChainsCkpt algorithm (top) and the
ChainsRepCkpt algorithm (bottom) for the five work distributions.

5.5. EXPERIMENTS 123

20 40 60 80 100
Number of Tasks

0

10

20

30

40

50

60

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

20

40

60

80

100

N
um

be
ro

fC
he

ck
po

in
ts

CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

20

40

60

80

100

N
um

be
ro

fR
ep

lic
as

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

Uniform, Increasing, Decreasing, HighLow, Random distributions

Figure 5.9: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for differ-
ent numbers of tasks: impact on the makespan (left), number of checkpoints (mid-
dle) and number of replicas (right) with a fail-stop error rate of λF

ind p = 1.28e-3,
a silent error rate of λS

ind p = 5.48e-3 and a constant chekpointing/recovery cost
Cnorep

i = Crep
i = 1000s.

the ChainsRepCkpt strategy, as can be seen on the right plot, but fewer tasks need
to be be checkpointed (up to 50% fewer checkpoints with 100 tasks and the Uniform

distribution).
The improvement is comparable to the 35% improvement observed with only fail-

stop errors. Once again, replicated tasks tend to decrease the global probability of hav-
ing an error, thus slightly reducing the number of checkpoints needed, while reducing
the re-execution costs that can be very important with late-detected silent errors. Re-
garding the HighLow work distribution, we again observe a higher optimal expected
makespan for both the ChainsCkpt and the ChainsRepCkpt strategies. Indeed, in
this scenario, the first tasks are very long (60% of the total work), which greatly in-
creases the error probability and the associated re-execution cost. Overall, for such
applications on platforms subject to both, fail-stop and silent errors, replication ap-
pears to be mandatory and allows a reduction of the makespan of at least 30% if tasks
are not too large (i.e. the probability of completing the task is not close to 1).

5.5.2.3 Impact of error rate and checkpoint cost on the performance

Figure 5.10 shows the impact of four of the model parameters on the optimal expected
normalized makespan of both ChainsCkpt and ChainsRepCkpt, using the Uniform

distribution. First, we show the impact of the fail-stop error rate λF
ind p on the perfor-

mance. The ChainsRepCkpt strategy always yields shorter makespans compared to
the ChainsCkpt strategy. All tasks are always replicated, reducing the probability of
having an error for each task, and each task is also checkpointed. The normalized
makespan for ChainsCkpt is 19.5 for λF

ind p = 10−5, compared to 19.2 for Chains-
RepCkpt, i.e. a reduction of only 1.7%, but this goes up to 50.3 for λF

ind p = 1.14e-3
compared to 35.2 when using replication, i.e. a reduction of 30%. The results are sim-
ilar when we vary the silent error rate: when λS

ind p = 10−5, ChainsRepCkpt results in

124
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

10−5 10−4 10−3 10−2

Fail-stop error rate λFindp

0

5

10

15

20

25

30

35

40

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (C = R = 1000)
CHAINSCKPT (C = R = 1000)

10−5 10−4 10−3 10−2

Silent error rate λSindp

0

2

4

6

8

10

12

14

16

18

20

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (C = R = 1000)
CHAINSCKPT (C = R = 1000)

0.0 1.05 2.1 3.15 4.2 5.25
Checkpoint/Recovery cost over task length ratio

0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

0 20 40 60 80 100
Number of Tasks

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (Crep = Cnorep)
CHAINSREPCKPT (Crep = 1.5 Cnorep)
CHAINSREPCKPT (Crep = 2 Cnorep)

Figure 5.10: Impact of fail-stop error rate λF
ind p (top left), silent error rate λS

ind p (top
right), checkpoint cost (bottom left) and ratio α between the checkpointing cost for
replicated task Crep

i over non-replicated tasks Cnorep
i (bottom right) for the Uniform

distribution.

0 500000 1000000 1500000 2000000
Number of Processors

0

10

20

30

40

50

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(a) (105, 1050000, 0.0105)

0 500000 1000000 1500000 2000000
Number of Processors

0

5

10

15

20

25

30

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(b) (105, 10500000, 0.00105)

0 500000 1000000 1500000 2000000
Number of Processors

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(c) (105, 105000000, 0.000105)

Figure 5.11: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for differ-
ent numbers of processors, with different model parameter values for the checkpoint-
ing cost (ai, bi, ci).

5.6. RELATED WORK 125

a normalized makespan of 4.60 compared to 5.55 with ChainsCkpt, i.e. a reduction
of 17%, and this goes up to more than 30% when λS

ind p > 5× 10−3.
Then, we investigate the impact of the checkpointing cost with respect to the task

length. The results are slightly different now that we have silent errors: Chains-
Ckpt and ChainsRepCkpt behave similarly only for small values of checkpoint cost.
ChainsRepCkpt becomes better than ChainsCkpt for C ≥ 0.525, thus reducing the
makespan obtained using only checkpoints. Both strategies yield a makespan that
increases linearly with the checkpointing cost, however the ChainsRepCkpt strat-
egy needs less checkpoints, and the makespan increases slower. This means that the
costlier the checkpoints the better the improvement thanks to replication. Overall, the
execution under the ChainsRepCkpt strategy is 1.17 times faster than ChainsCkpt for
a checkpointing cost of 1.05Tnorep

i , 1.66 times faster for a checkpoint cost of 3.15Tnorep
i ,

and this goes up to 1.95 times faster when the checkpointing cost is 5.25Tnorep
i .

We now investigate the impact of the ratio α between the checkpointing and recov-
ery cost for replicated tasks and non-replicated tasks and we present the results for
α = 1, α = 1.5 and α = 2. As expected, the makespan increases with α, but it is interest-
ing to note that the makespan converges towards a same lower-bound as the number
of (shorter) tasks increases. As shown previously, when tasks are smaller, ChainsRep-
Ckpt favors replication over checkpointing, especially when the checkpointing cost is
high, which means fewer checkpoints, recoveries and re-executions.

Finally, we evaluate the efficiency of both strategies when the number of processors
increases. For this experiment, we instantiate the model using variable checkpointing
costs, i.e., we do not use bi = ci = 0 anymore, so that the checkpointing/recov-
ery cost depends on the number of processors. We set n = 50, λF

ind = 1.28× 10−9,
λS

ind = 5.48× 10−9 and we make p vary from 1000 to 2,000,000 (i.e., the error rates
vary between 10−6 and 10−2 approximately). Figure 5.11 presents the results of the
experiment using three different sets of values for ai, bi and ci. The trend is the same
as previously with fail-stop errors: when bi increases and ci decreases, the advantage
of using replication becomes less clear. However, on every plot, ChainsCkpt and
ChainsRepCkpt grants the same makespan only when using a few cores. Every plot
shows that, with the increasing number of cores on nowadays platforms, Chains-
RepCkpt will behave better and better compared to ChainsCkpt. In particular, the
improvement for each set of parameters (from left to right) is 69%, 30% and 0% for
p = 500000, and is 76%, 60% and 16% for p = 1500000.

5.6 Related work

In this section, we discuss the work related to replication. For related work on check-
pointing, refer to Section 2.4. Each of these mechanisms has been studied for coping
with fail-stop errors and/or with silent errors. The present work combines check-
pointing and replication for linear workflows in the presence of fail-stop and silent
errors.

As mentioned earlier, this work only considers task duplication. Triplication [136]

126
Chapter 5: Using Checkpointing and Replication for Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

(three replicas per task) is also possible yet only useful with extremely high error rates,
which are unlikely in HPC systems. The use of redundant MPI processes is analyzed
in [76, 82, 46]. In particular, Ferreira et al. [82] studied the use of process replication for
MPI applications, using two replicas per MPI process. They provide a theoretical anal-
ysis of parallel efficiency, an MPI implementation that supports transparent process
replication (including error detection, consistent message ordering among replicas,
etc.), and a set of experimental and simulation results. Thread-level replication has
also been investigated [155, 56, 201]. The present work targets selective task replica-
tion as opposed to full task replication in conjunction with selective task checkpointing
to cope with fail-stop and silent errors and minimize makespan.

Partial redundancy was also studied (in combination with coordinated checkpoint-
ing) to decrease the overhead of full replication [72, 172, 174]. Recently, Hussain et
al. [110] have demonstrated the usefulness of partial redundancy for platforms where
individual node failure distributions are not identical. They numerically determine the
optimal partial replication degree. Adaptive redundancy is introduced in [91], where
a subset of processes is dynamically selected for replication. Earlier work [21] consid-
ered replication in the context of divisible load applications. In the present work, task
replication (including work and data) is studied in the context of linear workflows,
which represent a harder case than that of divisible load applications as tasks cannot
arbitrarily be divided and are executed non-preemptively.

In contrast to fail-stop errors whose detection is immediate, silent errors are identi-
fied only when the corrupted data leads to an unusual application behavior, and sev-
eral works use replication to detect and/or correct silent errors. For instance, thread-
level replication has been investigated in [155, 56, 201], which target process-level
replication in order to detect (and correct) silent errors striking in all communication-
related operations. Ni et al. [145] introduce process duplication to cope both with
fail-stop and silent errors. Their pioneering paper contains many interesting results. It
differs from this work in that they only consider perfectly parallel applications while
we investigate herein per task speedup profiles that obey Amdahl’s law. Recently,
Subasi et al. [173] proposed a software-based selective replication of task-parallel ap-
plications with both, fail-stop and silent errors. In contrast, the present work (i) con-
siders dependent tasks such as found in applications consisting of linear workflows;
and (ii) proposes an optimal dynamic programming algorithm to solve the combined
selective replication and checkpointing problem. More recently, Benoit et al. [21] ex-
tended these work to general applications, and compare traditional process replication
with group replication, where the whole application is replicated as a black box. They
analyze several scenarios with duplication or triplication. Combining replication with
checkpointing has also been proposed in [159, 75, 205] for HPC platforms, and in [127,
198] for grid computing.

5.7. CONCLUSION 127

5.7 Conclusion

In this chapter, we studied the combination of checkpointing and replication to min-
imize the execution time of linear workflows in environments prone to both fail-stop
and silent errors. We introduced a sophisticated dynamic programming algorithm that
solves the combined problem optimally, by determining which tasks to checkpoint and
which tasks to replicate, in order to minimize the total execution time. This dynamic
programming algorithm was validated through extensive simulations that reveal the
conditions in which checkpointing, replication, or both lead to improved performance.
We have observed that the gain over the checkpoint-only approach is quite significant,
in particular when checkpointing is costly and error rates are high.

Future work will address workflows whose dependence graphs are more complex
than linear chains of tasks. Although an optimal solution seems hard to reach, the
design of efficient heuristics that decide where to locate checkpoints and when to use
replication, would prove highly beneficial for the efficient and reliable execution of
HPC applications on current and future large-scale platforms.

Chapter 6

Optimal Checkpointing Period with Replicated
Execution on Heterogeneous Platforms

In this chapter, we design and analyze strategies to replicate the execution of an appli-
cation on two different platforms subject to failures, using checkpointing on a shared
stable storage. We derive the optimal pattern size W for a periodic checkpointing
strategy where both platforms concurrently try and execute W units of work before
checkpointing. The first platform that completes its pattern takes a checkpoint, and the
other platform interrupts its execution to synchronize from that checkpoint. We com-
pare this strategy to a simpler on-failure checkpointing strategy, where a checkpoint is
taken by one platform only whenever the other platform encounters a failure. We use
first or second-order approximations to compute overheads and optimal pattern sizes,
and show through extensive simulations that these models are very accurate. The sim-
ulations show the usefulness of a secondary platform to reduce execution time, even
when the platforms have relatively different speeds: in average, over a wide range of
scenarios, the overhead is reduced by 30%. The simulations also demonstrate that the
periodic checkpointing strategy is globally more efficient, unless platform speeds are
quite close. The work in this chapter is joint work with Anne Benoit, Aurélien Cavelan
and Yves Robert, and has been published in the workshop on Fault Tolerance for HPC
at eXtreme Scale (FTXS) [W3].

6.1 Introduction

One of the most important challenges faced by large-scale computing systems is the
frequent occurence of failures (a.k.a. fails-top errors) [42, 169]. Platform sizes have
become so large that failures are likely to strike during the execution of an application.
Consider the mean time between failures µ (usually denoted as MTBF) of a platform
with p processors: µ decreases linearly with p, since µ = µind

p , where µind is the MTBF
of each individual component (see Proposition 1.2 in [106]). For instance, with µind =
10 years and p = 105, we have µ ≈ 50 minutes, and it goes down to a failure every 5
minutes for p = 106.

129

130 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

The classical technique to deal with failures is to use a checkpoint-restart mecha-
nism: the state of the application is periodically checkpointed on stable storage, and
when a failure occurs, we can recover from the last valid checkpoint and resume
the execution, rather than starting again from scratch. Checkpointing policies have
been widely studied, see [106] for a survey of various protocols and the derivation
of the Young/Daly formula [200, 58] for the optimal checkpointing period. Recent
advances include multi-level approaches, or the use of SSD or NVRAM as secondary
storage [42].

Another technique that has been advocated to deal with failures is process replica-
tion, where each process in a parallel MPI (Message Passing Interface) application is
duplicated to increase the mean-time to interruption. More precisely, each processor
of the platform is paired with a replica so that the execution can continue whenever
one of them is struck by a failure. Given the high rate of failures expected in cur-
rent systems, process replication is usually combined with a periodic checkpointing
mechanism, as proposed in [159, 75, 205] for HPC platforms, and in [127, 198] for grid
computing. These approaches use process replication: each processor of the platform is
paired with a replica so that the execution can continue whenever one is struck by a
failure.

Another approach introduced in [45] is group replication, a technique that can be
used whenever process replication is not available. Group replication is agnostic to
the parallel programming model, and thus views the application as an unmodified
black box. Group replication consists in executing multiple application instances con-
currently. For example, two distinct p-process application instances could be executed
on a 2p-processor platform. Once an instance saves a checkpoint, the other instance
can use this checkpoint immediately to “jump ahead” in its execution. Hence, group
replication is more efficient than the mere independent execution of two instances:
each time one instance successfully completes a given “chunk of work”, the other
instance immediately benefits from this success.

In this work, we extend group replication to the case of two different computing
platforms executing concurrently and cooperating to the success of a given applica-
tion. To the best of our knowledge, this scenario has not been explored yet. The
two platforms share a set of remote disks, used as a stable storage for checkpointing.
Typically, these platforms would be clusters, which may have different number of pro-
cessors, and hence different MTBFs and execution speeds. Our goal is to determine
the best way to have both platforms cooperate so that the execution time of the appli-
cation is minimized. We design and analyze two strategies:
1. A periodic checkpointing strategy, where both platforms checkpoint periodically
once they have executed a chunk of work of size W. Both platforms synchronize
through the shared storage as soon as one of them has completed the execution of
a chunk (at the time of the checkpoint). We provide a thorough analysis to express
the overhead given the checkpointing period W, and we derive the size of the optimal
pattern.
2. An on-failure checkpointing strategy, where each platform progresses at its own

6.2. MODEL 131

speed, and checkpoints only when a failure occurs on the other platform. Hence, when
a failure occurs on one of the platforms (say platform A), the other one (platform B)
checkpoints, and platform A gets a copy of this checkpoint to restart its execution
at this point. Intuitively, if both platforms have the same speed, we will never roll
back with this strategy, unless a failure occurs during checkpoint. We compare both
strategies through extensive simulations, and show the gain (or the absence thereof)
compared to using a single platform. We also assess the accuracy of the model and of
our first or second-order approximations.

The rest of the chapter is organized as follows. We introduce the execution model
in Section 6.2, and derive the optimal pattern for the periodic checkpointing strategy in
Section 6.3. The analysis for the checkpoint-on-failure strategy is given in Section 6.4.
Section 6.5 is devoted to the experimental evaluation. Finally, we provide concluding
remarks and directions for future work in Section 6.6.

6.2 Model

We consider a black-box application and replicate its execution on two different com-
puting platforms P1 and P2. The platforms may well be heterogeneous, with different
processor numbers, different MTBF values and different execution speeds. Both plat-
forms use the same stable storage system. A typical instance is the case of two clusters
that share a set of storage disks. We assume that both executions can synchronize
through checkpointing. Checkpoint time is C on either platform, and this includes the
time to update the state of the application on the other platform. We make no further
hypothesis: The checkpointing protocol can be single-level or multi-level, and the up-
date of the application state on the other platform can take place either through the
network or via the file system. Recovery time is R, independently of which platform
has taken the last checkpoint.

We partition the execution of the application into periodic patterns, i.e., computa-
tional units that repeat over time. Each pattern includes W units of work (we also
say a chunk of size W) and ends with a checkpoint. With a single platform, the opti-
mal pattern length is well-known and obeys the Young/Daly formula [200, 58]. With
two platforms executing concurrently, both platforms execute the pattern concurrently,
and repeat until success. Once a platform succeeds, the other one stops executing and
synchronizes on checkpoint. Computing the optimal pattern length turns out a chal-
lenging problem in this case.

We assume that failures independently strike the platforms with an Exponential
distribution. Platform P1 has failure rate λ1, which means its MTBF (Mean Time
Between Failures) is µ1 = 1

λ1
. Similarly, P2 has failure rate λ2, and MTBF µ2 = 1

λ2
. We

let σ1 be the execution speed of the application on platform P1, and σ2 be the speed on
P2. We assume that P1 is the fast platform, so that σ1 ≥ σ2.

The expected execution time of the pattern is E(P): we have to take expectations,
as the computation time is not deterministic. Letting T1 = W

σ1
, we note that E(P) >

T1 + C, the failure-free time on the fast platform. An optimal pattern is defined as

132 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

the one minimizing the ratio E(P)
T1

, or equivalently the ratio H(P) = E(P)
T1
− 1. This

latter ratio is the relative overhead paid for executing the pattern. The smaller this
overhead, the faster the progress of the execution. For the theoretical analysis, we
assume that checkpoint and recovery are failure-free, because this assumption does
not modify the dominant terms of the overhead (see Section 6.3.3 for details), but for
the simulations, we do account for failures striking anytime. Finally, to be able to
write Taylor expansions, we also let λ be the global failure rate and write λ1 = α1λ
and λ2 = α2λ, with α1 + α2 = 1.

6.3 Optimal pattern

In this section, we show how to derive the optimal pattern length. The derivation is
quite technical, and the reader may want to skip the proofs.

6.3.1 Expected execution time

Consider a pattern P of size W, and let E(P) denote the expected execution time of
the pattern. Because we assume that checkpoints are failure-free, we have E(P) =
E(W) + C, where E(W) is the expected time to execute a chunk of size W.

We start with some background on well-known results on E(W) with a single
platform P1, before moving on to our problem with two platforms. With a single
platform P1, let T1 = W

σ1
and p1 = 1− e−λ1T1 be the probability of a failure on P1 while

attempting to execute the chunk of size W. We can write

E(W) = (1− p1)T1 + p1(E
lost + R + E(W)).

The first term corresponds to a successful execution, while the second term accounts
for a failure striking during execution, with expected time lost Elost, recovery time R
and calling E(W) recursively to restart from scratch. We know from [106] that Elost =
1

λ1
− T1

eλ1T1−1
, and after simplification we get E(W) = (1

λ1
+ R)(eλ1T1 − 1) (see [106]for

details). We aim at minimizing the pattern overhead H(P) = E(P)
T1
− 1. To get a

first-order approximation, we assume that λ1W is small so that we can expand p1 =
1− eλ1T1 into

p1 = λ1
W
σ1

+
1
2

(
λ1

W
σ1

)2

+ o

((
λ1

W
σ1

)2
)

.

We then derive that H(P) = Cσ1
W + λ1W

2σ1
+ o(
√

λ1). The first two-terms show that

Wopt = Θ(λ−1/2
1) and we retrieve the Young/Daly formula Wopt = σ1

√
2C
λ1

. For the

optimal pattern, we have Hopt =
√

2Cλ1 + o(
√

λ1).
Equipped with these results for a single platform, we can now tackle the problem

6.3. OPTIMAL PATTERN 133

with two platforms. We will need a second-order approximation of the form

H(P) =
Cσ1

W
+ β

(
λ

W
σ1

)
+ γ

(
λ

W
σ1

)2

+ δλ + o
(
(λW)2

)
,

where λ = λ1 + λ2 is the total failure rate, and β, γ and δ are constants that we
derive below. With a single platform, we had β = 1

2 . With two platforms, we obtain a
complicated expression for β, whose value will always be nonnegative. If β is strictly
positive and above a reasonable threshold, we will proceed as above and be satisfied

with the first-order approximation that gives Wopt = σ1

√
C
βλ = Θ(λ−1/2). However,

if β is zero or close to zero, we will need to resort to the second-order expansion to
derive an accurate approximation of Wopt. In particular, when P1 and P2 are same-
speed platforms, we will find that β = 0, γ > 0 and Wopt = Θ(λ−2/3).

As above, let E(W) be the expected time to execute a chunk of size W with both
platforms. Let T1 = W

σ1
and p1 = 1− e−λ1T1 as before. We write:

E(W) =
∞

∑
i=0

pi
1(1− p1)Ei ,

where Ei denotes the expected time to execute W successfully, knowing that there
were i failures on P1 before P1 executes the chunk successfully. We point out that we
condition Ei on the number of failures on P1, independently on what is happening on
P2. In other words, we let P1 execute until success, but we do account for the fact that
P2 may have completed before P1 when computing Ei. Similarly, letting T2 = W

σ2
and

p2 = 1− e−λ2T2 be the probability of a failure on P2, we write

Ei =
∞

∑
j=0

pj
2(1− p2)Ei,j ,

where Ei,j denotes the expected execution time of the pattern, knowing there were i
failures on P1 and j failures on P2 before both platforms execute successfully.

Theorem 5. The expected execution time of a pattern E(P), whose execution is replicated on
two platforms P1 and P2, is

E(P) = (1− p1)T1 + p1(1− p1 − p2)E1,0

+ p1 p2E1,1 + p2
1E2,0 + C + o(λ2W3) ,

where p1 and p2 denote the probability of having a failure during the execution of the pattern
on P1 or P2, respectively.

Proof. We aim at deriving a second-order approximation of E. When i = 0, there is no
failure on P1, and the execution takes time T1, regardless of the number of failures on

134 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

P2. Therefore:

E(W) = (1− p1)T1 + p1(1− p1)E1 + p2
1(1− p1)E2 + p3

1E3+

where E3+ denote the expected time to execute the pattern successfully, knowing that
there were at least 3 failures on P1. The rationale to introduce E3+ is that it represents
a lower-order term that can be neglected. Indeed, we have E3+ ≤ 3W

σ1
+ 3R +E. To see

that: for each failure, we lose at most T1 + R; in the worst case, the three failures strike
right before the checkpoint on P1, and for each of them we lose the entire pattern time
T1 plus the recovery R (and P2 has not completed execution yet). Then we re-execute
the application once more, which is accounted for in re-introducing E. Similarly, we
can write E1 and E2 as follows:

E1 = (1− p2)E1,0 + p2(1− p2)E1,1 + p2
2E1,2+

E2 = (1− p2)E2,0 + p2E2,1+ ,

where E1,2+ ≤ W
σ1
+ R + E1 and E2,1+ ≤ 2W

σ1
+ 2R + E2. Then, we use Taylor series to

approximate p1 and p2 to α1λ
σ1

W +O(λ2W2) and α2λ
σ2

W + o(λ2W2), respectively. Solving
for E1 and E2, we derive that:

E1 ≤
1

1− p2
2

(
(1− p2)E1,0 + p2(1− p2)E1,1 + p2

2

(
1W
σ1

+ 1R
))

E2 ≤
1

1− p2

(
(1− p2)E2,0 + p2

(
2W
σ1

+ 2R
))

.

Note that 1
1−p2

2
= 1+O(λ2W2) and that 1

1−p2
= 1+O(λW). Altogether, p2

2

(
W
σ1
+ R

)
=

O(λ2W3) and p2

(
2W
σ1

+ 2R
)
= O(λW2). Therefore, we derive that:

E1 = (1− p2)E1,0 + p2E1,1 + O(λ2W3)

E2 = E2,0 + O(λW2) .

Then, putting E1, E2, and E3+ back into E and solving for E, we obtain:

E(W) ≤ 1
1− p3

(
(1− p1)T1

+ p1(1− p1)
(
(1− p2)E1,0 + p2E1,1 + O(λ2W3)

)
+ p2

1(1− p1)
(
E2,0 + O(λW2)

)
+ p3

1

(
3W
σ1

+ 3R
))

.

6.3. OPTIMAL PATTERN 135

Time

Time

C1 T1 C1

C1 T2 C1

(P1)

(P2)

Figure 6.1: I0 – no failure on P1 (there can be failures on P2); P1 always finishes first.

Finally, note that 1
1−p3 = 1 + O(λ3W3) and p3

1

(
3W
σ1

+ 3R
)
= O(λ3W4).

Therefore, keeping second-order terms only, we obtain

E(W) = (1− p1)T1 (I0)
+ p1(1− p1 − p2)E1,0 (I1)
+ p1 p2E1,1 (I2)

+ p2
1E2,0 (I3)

+ O(λ3W4) ,

where I0, I1, I2 and I3 denote the four possible outcomes of the execution (up to two
failures), with their associated probability. Finally, plugging E(W) back into E(P) =
E(W) + C, we retrieve the equation of Theorem 5.

Computing I0 (Figure 6.1). Let I0 denote the expected execution time associated with
having no failures on P1. With probability (1− p1), P1 finishes faster than P2 in T1
time, and we can write:

I0 = (1− p1)T1 .

Using Taylor expansions to approximate p1 to λ1T1 +
λ2

1T2
1

2 + o(λ2T2
1), we can write:

I0 =

(
1− λ1T1 −

λ2
1T2

1
2

+ o(λ2T2
1)

)
T1

= T1 − λ1T2
1 −

λ2T3
1

2
+ o(λ2T3

1) .

Computing I1 (Figure 6.2). Let I1 denote the expected execution time when having
exactly one failure on P1. Letting X ∼ exp(λ1) denote the failure inter-arrival time, we
have:

I1 = p1(1− p1 − p2)
∫ ∞

0
P(X = t|X ≤ T1)min(t + R + T1, T2)dt

= p1(1− p1 − p2)
1

P(X ≤ T1)

∫ T1

0
P(X = t)min(t + R + T1, T2)dt .

136 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

Time

Time

C1 t1 R T1 C1

C1 T2 C1

(P1)

(P2)
(a)

Time

Time

C1 t1 R T1 C1

C1 T2 C1

(P1)

(P2)
(b)

Figure 6.2: I1 – there is one failure on P1; depending on the failure arrival time t1, P1
finishes either first (a) or last (b).

By definition, P(X ≤ T1) = p1 and P(X = t) = λ1e−λ1t, therefore:

I1 = (1− p1 − p2)
∫ T1

0
λ1e−λ1t min(t + R + T1, T2)dt .

Note that min(t + R + T1, T2) is in order of O(W). Using Taylor series to approximate
p1 to λ1T1 + o(λW), p2 to λ2T2 + o(λW), e−λ1t to 1− λ1t + o(λt) and keeping second-
order terms only, we can get:

I1 = λ1(1− λ1T1 − λ2T2)
∫ T1

0
(1− λ1T1)min(t + R + T1, T2)dt

+ o(λ2W3) .

The minimum depends on which platform finishes first. We know that t + R + T1 ≤
T2 ⇐⇒ t ≤ T2 − T1 − R, so that we break the integral into two parts to address both
cases, as follows:

I1 = λ1(1− λ1T1 − λ2T2)

(∫ T2−T1−R

0
(1− λ1t)(t + R + T1)dt

+
∫ T1

T2−T1−R
(1− λ1t)T2

)
dt + o(λ2W3) ,

where T2−T1−R must be both positive and less that T1. Finally, let r1 = max(min(T2−
T1 − R, T1), 0), and we can write:

I1 = λ1(1− λ1T1 − λ2T2)

(∫ r1

0
(1− λ1t)(t + R + T1)dt

+
∫ T1

r1

(1− λ1t)T2dt

)
+ o(λ2W3) .

6.3. OPTIMAL PATTERN 137

Time

Time

C1 t1 R T1 C1

C1 t2 R T2 C1

(P1)

(P2)
(a)

Time

Time

C1 t1 R T1 C1

C1 t2 R T2 C1

(P1)

(P2)
(b)

Figure 6.3: I2 – there is one failure on P1 and one failure on P2; depending on the
failure arrival times t1 and t2, P1 finishes either first (a) or last (b).

Finally, note that I1 depends on the value of r1 as follows:

r1 =


T2 − T1 − R, if 0 ≤ T2 − T1 − R ≤ T1

T1, if T2 − T1 − R > T1

0, otherwise.

Assuming R is small in front of T1 and T2, we derive:

r1 =

{
T2 − T1 − R, if 1 ≤ σ1

σ2
≤ 2

T1, if 2 < σ1
σ2

.

Computing I2 (Figure 6.3). Let I2 denote the expected execution time when having
one failure in P1 and one failure in P2. Let X1 ∼ exp(λ1) and X2 ∼ exp(λ2) denote the
failure arrival time in P1 and P2, respectively. We can write:

I2 = p1 p2

(∫ ∞

0
P(X1 = t1|X1 ≤ T1)P(X2 = t2|X2 ≤ T2)

min(t1 + R + T1, t2 + R + T2)dt1dt2

)

=
p1 p2

P(X1 ≤ T1)P(X2 ≤ T2)

(∫ T1

0

∫ T2

0
P(X1 = t1)P(X2 = t2)

min(t1 + R + T1, t2 + R + T2)dt1dt2

)
.

Again, we have P(X1 ≤ T1) = p1 and P(X2 ≤ T2) = p2, as well as P(X1 = t1) =
λ1e−λ1t1 and P(X2 = t2) = λ2e−λ2t2 . Therefore, we can write:

I2 =
∫ T1

0

∫ T2

0
λ1e−λ1t1 λ2e−λ2t2 min(t1+R+T1, t2+R+T2)dt1dt2 .

138 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

Using Taylor series to approximate the Exponential terms to 1 + o(1) and keeping
second-order terms only, we can get:

I2 = λ1λ2

∫ T1

0

∫ T2

0
min(t1+R+T1, t2+R+T2)dt1dt2 + o(λ2W3) .

As before, platform P2 finishes faster ⇐⇒ t2 + R + T2 ≤ t1 + R + T1 ⇐⇒ t2 ≤
t1 + T1 − T2. Therefore, we can can break the second integral into two parts, and we
get:

I2 = λ1λ2

∫ T1

0
e−λ1t1

(∫ t1+T1−T2

0
(t2 + R + T2)dt2

+
∫ T2

t1+T1−T2

(t1 + R + T1)dt2

)
dt1 + o(λ2W3) ,

where t1 + T1 − T2 must be both positive and less than T2. We find that t1 + T1 − T2 ≤
T2 ⇐⇒ t1 ≤ 2T2 − T1, which is always true, since t1 is comprised between 0 and T1.
There remains one condition, and we find that t1 + T1 − T2 ≤ 0 ⇐⇒ t1 ≥ T2 − T1,
so that we can break the first integral into parts. Let r2 = min(T2 − T1, T1) (note that
T2 − T2 is always positive), and we can write:

I2 = λ1λ2

(∫ r2

0

∫ T2

0
(t1 + R + T1)dt2dt1

+
∫ T1

r2

(∫ t1+T1−T2

0
(t2 + R + T2)dt2

+
∫ T2

t1+T1−T2

(t1 + R + T1)dt2

)
dt1

)
+ o(λ2W3) .

Finally, note that, similarly to I1, I2 depends on the value of r2, which can be either:

r2 =

{
T2 − T1, if T1 − T2 ≤ T1

T1, otherwise.

Simplifying, we find that:

r2 =

{
T2 − T1, if 1 ≤ σ1

σ2
≤ 2

T1, if 2 < σ1
σ2

.

Computing I3 (Figure 6.4). Let I3 denote the expected execution time when having
two failures on P1. Let X1 ∼ exp(λ1) and X2 ∼ exp(λ1) denote the failure arrival time

6.3. OPTIMAL PATTERN 139

Time

Time

C1 t1 R t2 R T1 C1

C1 T2 C1

(P1)

(P2)
(a)

Time

Time

C1 t1 R t2 R T1 C1

C1 T2 C1

(P1)

(P2)
(b)

Figure 6.4: I3 – there are two failures on P1; depending on the failure arrival times t1
and t2, P1 finishes either first (a) or last (b).

of each failure relative to their execution. We can write:

I3 = p1 p1

(∫ ∞

0
P(X1 = t1|X1 ≤ T1)

∫ ∞

0
P(X2 = t2|X2 ≤ T1)

min(t1 + t2 + 2R + T1, T2)dt1dt2

)

=
p1 p1

P(X1 ≤ T1)P(X2 ≤ T1)

(∫ T1

0
P(X1 = t1)

∫ T1

0
P(X2 = t2)

min(t1 + t2 + 2R + T1, T2)dt1dt2

)
,

where P(X1 ≤ T1) = P(X2 ≤ T1) = p1, and P(X1 = t1) = λ1e−λ1t1 and P(X2 = t2) =
λ1e−λ1t2 . Therefore, we can get:

I3 =
∫ T1

0
λ1e−λ1t1

∫ T1

0
λ1e−λ1t2 min(t1 + t2 + 2R + T1, T2)dt1dt2

=
∫ T1

0
λ1e−λ1t1

∫ t1+R+T1

t1+R
λ1e−λ1t2 min(t2 + R + T1, T2)dt1dt2 .

Using Taylor series to approximate e−λ1t to 1 + o(1) and keeping second-order terms
only, we can get:

I3 = λ2
1

∫ T1

0

∫ t1+R+T1

t1+R
min(t2 + R + T1, T2)dt1dt2 + o(λ2W3) .

We find that t2 + R+ T1 ≤ T2 ⇐⇒ t2 ≤ T2− T1− R, and we break the second integral

140 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

into two parts, as follows:

I3 = λ2
1

∫ T1

0

(∫ T2−T1−R

t1+R
(t2 + R + T1)dt2

+
∫ t1+R+T1

T2−T1−R
T2dt2

)
dt1 + o(λ2W3) ,

where T2 − T1 − R must be both greater than t1 + R and less than t1 + R + T1. Again,
we find that T2− T1− R ≤ t1 + R + T1 ⇐⇒ t1 ≤ T2− 2T1− 2R, and we can break the
first integral into two parts again, as follows:

I3 = λ2
1

(∫ T2−2T1−2R

0

∫ t1+R+T1

t1+R
(t2 + R + T1)dt2dt1

+
∫ T1

T2−2T1−2R

(∫ T2−T1−R

t1+R
(t2 + R + T1)dt2

+
∫ t1+R+T1

T2−T1−R
T2dt2

)
dt1

)
+ o(λ2W3) ,

where T2 − 2T1 − 2R must be both positive and less than T1. Let r3,1 = max(min(T2 −
2T1 − 2R, T1), 0). Then, thanks to the last step, we know that the condition T2 − T1 −
R ≤ t1 + R + T1 is always verified, but there remains t1 + R ≤ T2 − T1 − R ⇐⇒ t1 ≤
T2 − T1 − 2R. Therefore, we can break the second term into parts, as follows:

I3 = λ2
1

(∫ r3,1

0

∫ t1+R+T1

t1+R
(t2 + R + T1)dt2dt1

+
∫ T2−T1−2R

r3,1

(∫ T2−T1−R

t1+R
(t2 + R + T1)dt2 +

∫ t1+R+T1

T2−T1−R
T2dt2

)
dt1

+
∫ T1

T2−T1−2R

∫ t1+R+T1

t1+R
T2dt2dt1

)
+ o(λ2W3) ,

where T2 − T1 − 2R must be both greater than r3,1, and less than T1. Let r3,2 =

6.3. OPTIMAL PATTERN 141

max(min(T2 − T1 − 2R, T1), 0), and we can write:

I3 = λ2
1

(∫ r3,1

0

∫ t1+R+T1

t1+R
(t2 + R + T1)dt2dt1

+
∫ r3,2

r3,1

(∫ T2−T1−R

t1+R
(t2 + R + T1)dt2 +

∫ t1+R+T1

T2−T1−R
T2dt2

)
dt1

+
∫ T1

r3,2

∫ t1+R+T1

t1+R
T2dt2dt1

)
+ o(λ2W3) .

Finally, and similarly to I1 and I2 before, I3 depends on the value of r3,1 and r3,2, which
are as follows:

r3,1 =


T2 − 2T1 − 2R, if 0 ≤ T2 − 2T1 − 2R ≤ T1

T1, if T2 − 2T1 − 2R > T1

0, otherwise.

r3,2 =


T2 − T1 − 2R, if 0 ≤ T2 − T1 − 2R ≤ T1

T1, if T2 − T1 − 2R > T1

0, otherwise.

Asymptotically, the constant R is small in front of T1 and T2, which tend to infinity
when λ tends to zero, and we derive:

r3,1 =


0, if 1 ≤ σ1

σ2
< 2.

T2 − 2T1 − 2R, if 2 ≤ σ1
σ2
≤ 3

T1, if 3 ≤ σ1
σ2

r3,2 =

{
T2 − T1 − 2R, if 1 ≤ σ1

σ2
≤ 2

T1, if 2 < σ1
σ2

.

6.3.2 Expected overhead

Theorem 6. The expected overhead of a pattern H(P), whose execution is replicated on two
independent platforms P1 and P2 is

H(P) =
Cσ1

W
+ β

(
λ

W
σ1

)
+ γ

(
λ

W
σ1

)2

+ δλ + o
(
(λW)2

)
, (6.1)

where λ1 = α1λ and λ2 = α2λ with α1 + α2 = 1. The values of the constants β, γ and δ are
provided by the following case analysis:

142 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

Case 1: 1 ≤ σ1
σ2
≤ 2.

β =
α1

2
−σ2

1 + 4σ1σ2 − 3σ2
2

σ2
2

,

γ =
α2

1
2

σ2
1 − 3σ1σ2 + 2σ2

2

σ2
2

+
α1α2

3
2σ3

1 − 9σ2
1 σ2 + 12σ1σ2

2 − 4σ3
2

σ3
2

,

δ = R
σ1 − σ2

σ2
.

Case 2: 2 ≤ σ1
σ2

< 3.

β =
α1

2

γ =
α2

1
6

σ3
1 − 9σ2

1 σ2 + 27σ1σ2
2 − 26σ3

2

σ3
2

δ = α1R .

Case 3: 3 ≤ σ1
σ2

.

β =
α1

2
γ = α2

1

δ = α1R .

The optimal checkpointing period Wopt can be obtained by solving the following third-degree
equation numerically:

∂H(P)
∂W

= −Cσ1

W2 + β
λ

σ1
+ 2γ

λW
σ2

1
= 0 . (6.2)

Proof. Let H(P) = E(P)
T1
− 1. We can write:

H(P) =
σ1C
W

+ σ1
I0 + I1 + I2 + I3

W
− 1 + o(λ2W2) .

Then, computing I0, I1, I2 and I3 according to the values of r1, r2, r3,1 and r3,2 presented
in Section 6.3.1, we need to consider three cases, depending upon the ratio σ1

σ2
. The

values of β, γ and δ for each of the three cases are reported above. Finally, in order to
get the corresponding optimal period, we need to solve ∂H(P)

∂W = 0, which amounts to
solve Equation (6.2). This can be done numerically.

For cases 2 and 3 (where σ1 ≥ 2σ2), we have β = α1
2 . If we use the first-order

approximation, we neglect the last two terms with γ and δ in H(P). Then we obtain

Wopt = σ1

√
C
βλ , a similar formula as with a single platform. We experimentally check

6.3. OPTIMAL PATTERN 143

the accuracy of the first-order approximation in Section 6.5.
On the contrary for case 1 (where σ1 ≥ 2σ2), we have β = α1

2 (
σ1
σ2
− 1)(3− σ1

σ2
) ≥ 0 but

β = 0 ⇐⇒ σ1 = σ2. We can still use the first-order approximation when β is not too
close to 0. For same-speed platforms, we need to use the second-order approximation:

Theorem 7. For same-speed platforms (σ2 = σ1), the expected overhead is

H(P) =
Cσ1

W
+

α1α2λ2W2

3σ2
1

+ o(λ2W2) . (6.3)

and the associated optimal checkpointing period is

Wopt = σ1
3

√
3C

2α1α2λ2 . (6.4)

Proof. With two same-speed platforms, we have σ2 = σ1. This corresponds to case 1
with β = δ = 0 and γ = α1α2

3 , hence we retrieve Equation (6.3). Then, differentiating
and solving for W, we obtain Equation (6.4).

It is striking to note that Wopt = Θ(λ−2/3) for same speed platforms, instead of
Wopt = Θ(λ−1/2). Finally, with two identical platforms (α1 = α2 = 1

2 and λ = 2λ1), we

obtain Wopt = σ1 3
√

3C
2λ2

1
.

6.3.3 Failures in checkpoints and recoveries

So far, we have assumed that failures do not strike during checkpoints and recoveries.
In this section, we show how to handle failures during these operations, and that the
approximations derived in the preceding section remain valid as long as the platform
MTBF µ = 1/λ is large in front of the other resilience parameters.

Let E(R) and E(C) denote the expected time to perform a recovery and a check-
point, respectively. The probability of a failure occurring during a process of length L

on platform Pi is given by pL
i = 1− e−λi

L
σi . If a failure strikes during the recovery, we

lose Elost
R time due to the failure, and we account for the time to try again by calling

E(R) recursively. If a failure strikes during the checkpoint, we lose Elost
C time due to

the failure, we account for the recovery time E(R), and we then need to re-execute the
entire pattern, which is accounted for by calling E(W) and E(C), recursively. Alto-
gether, we have:

E(R) = pR
i

(
Elost

R + E(R)
)
+ (1− pR

i)R ,

E(C) = pC
i

(
Elost

C + E(R) + E(W) + E(C)
)
+ (1− pC

i)C .

144 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

We know from [106] that Elost
L = 1

λi
− L

eλi L−1
. Solving the above equations and simpli-

fying, we derive that:

E(R) =
eλi R − 1

λi
, (6.5)

E(C) =
eλiC − 1

λ1
+ (eλiC − 1) (E(R) + E(W)) . (6.6)

Now, recall from our previous analysis in Section 6.3 that the optimal pattern length
satisfies Wopt = Θ(λ−1/2) and that Hopt(P) = Θ(λ1/2). Hence, in an optimized pat-
tern, we will have E(W) ≤ E(P) = Wopt

σi

(
1 + Hopt(P)

)
= Θ(λ−1/2). Then, using Taylor

expansions to approximate Equations 6.5 and 6.6, we can derive the following results:

E(R) = R + O(λ) ,

E(C) = C + O(
√

λ) .

This suggests that the expected costs to perform checkpoints and recoveries are domi-
nated by their original costs, under the assumption of a large MTBF. Intuitively, this is
due to the small probability of encountering a failure during these operations. Thus,
in Section 6.3, replacing R and C by their expected values does not affect the expected
execution time of the pattern, neither in the first-order nor second-order approxima-
tions.

6.4 On-failure checkpointing

In this section, we present another strategy. Contrarily to the approach of Section 6.3,
the work is not divided into periodic patterns. We only checkpoint when a failure
strikes either platform. More precisely, when a failure f strikes one platform, we use
the other platform to checkpoint the work, so that both platforms can resume their
execution from this checkpoint, in a synchronized fashion. This scheme is exposed to
the risk of having a second failure f ′ striking the other platform during its checkpoint,
which would cause to roll-back and re-execute from the previous checkpoint (which
was taken right after the failure preceding f , which may be a long time ago). Such a
risk can be neglected in most practical settings. As before, we will assume that failures
do not strike during checkpoints.

Intuitively, this checkpoint-on-failure strategy is appealing, because we checkpoint
a minimum number of times. And when a failure strikes the slow platform P2, we do
not roll-back. However, when a failure strikes the fast platform P1, we have to roll-back
to the state of P2. Altogether, we expect this strategy to work better when platform
speeds are close. We will experimentally assess the checkpoint-on-failure strategy in
Section 6.5.

6.4. ON-FAILURE CHECKPOINTING 145

6.4.1 Expected execution time

Let E(A) denote the expected time needed to execute the application successfully, and
let Tbase =

Wbase
σ1

denote the total execution time of the application on the fast platform
P1, without any resilience mechanism nor failures. Here Wbase denotes the total amount
of work of the application.

Theorem 8. The expected execution time of the application is

E(A) = Tbase +
Tbase

µ

(
C + α1

(
µ

σ1 − σ2

σ1

))
. (6.7)

where µ = 1
λ is the MTBF.

Proof. We first consider the case of two identical platforms, i.e. σ1 = σ2 and λ1 =
λ2 = λ

2 . In this case, as soon as a failure occurs on either platform, the other one
immediately checkpoints, and both platforms synchronize on this checkpoint, before
resuming execution. In other words, the execution never rolls back, and no work is
ever lost.

Now, in order to compute the expected execution time, we need to account for
the time needed to execute the entire application Tbase, as well as the time lost due to
failures. When a failure occurs, we only need to account for the time C to checkpoint
and synchronize. In addition, we can estimate the expected number of failures as Tbase

µ

in average, and we write:

E(A) = Tbase +
Tbase

µ
C .

This is fine for two identical platforms. However, when failure rates and speeds
differ, there are two cases: (i) a failure strikes the fast platform P1. Then platform P2
checkpoints, but because it is slower than P1, P1 needs to rollback and we lose the extra
amount of work that P1 has computed since the last failure and synchronization; (ii) a
failure strikes the slow platform P2. Then platform P1 checkpoints, and because it is
faster, P2 will roll-forward instead, catching up with the execution of P1.

Assuming failures are Exponentially distributed, and given that a failure (from
either platform) strikes during the execution of the segment, the probability that the
failure belongs to a particular platform is proportional to the failure rate of that plat-
form [139], i.e. the probability that the failure belongs to P1 and P2 are λ1

λ = α1 and
λ2
λ = α2, respectively.

In order to compute the expected execution time, we first need to account for Tbase,
which is the time to execute the application once, without failures. Then, when a
failure strikes, either it strikes P2, with probability α2, and we only lose the time to
checkpoint C; or it strikes P1, with probability α1, and we lose the difference between
the amount of work executed on P1 and P2 since the last synchronization. In average,
the last synchronization was when the last failure occurred, that is µ time-steps ago.

146 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

Name Titan Cori K computer Trinity Theta

Speed (PFlops) 17.6 14.0 10.5 8.1 5.1

MTBF (s) 50,000 100,000

Table 6.1: Summary of parameters used for simulations for each platform.

During that time, P1 and P2 have executed µσ1 and µσ2 units of work, respectively, and
we have lost µ σ1−σ2

µ due to the failure. Altogether, we can write:

E(A) = Tbase +
Tbase

µ

(
C + α1

(
µ

σ1 − σ2

σ1

))
.

6.4.2 Expected overhead

Theorem 9. The expected overhead is

H(A) =
C
µ
+ α1

(
σ1 − σ2

σ1

)
. (6.8)

Proof. Let H(A) = E(A)
Tbase
− 1. We write:

H(A) =
1
µ

(
C + α1

(
µ

σ1 − σ2

σ1

))
.

Then, simplifying, we obtain Equation (6.8).

6.5 Experimental evaluation

In this section, we conduct a set of simulations, whose goal is three-fold: (i) assess the
accuracy of the proposed models; (ii) compare the performance of the two replication
strategies in different scenarios; and (iii) evaluate the performance improvement of the
approach over classical periodic checkpointing with a single platform.

6.5.1 Simulation setup

This section describes the parameters used for the simulations. First, we set R = C in
all cases. Indeed, the recovery time and checkpointing time are equivalent to a read
(recovery) and a write (checkpoint) operation, and they take approximately the same
amount of time. Then, we set the other parameters according to real behaviors on

6.5. EXPERIMENTAL EVALUATION 147

today’s supercomputers. Because the typical failure rate for the most powerful Top500
platforms [181] is around 1 or 2 failures per day, we choose µ1 = 50, 000s ≈ 14h
and µ2 = 100, 000s ≈ 28h. The speeds were set using the Rmax value (maximum
performance achieved when executing LINPACK) in PFlops of Top500 platforms (list
of November 2016). We always set σ1 = 17.6 (units in Petaflops, corresponding to
the Titan platform), and we build four different cases aiming at having different σ1

σ2
ratios: σ2 can be either 14.0 (Cori), 10.5 (K computer), 8.1 (Trinity) or 5.1 (Theta). We
also have two possible configurations for the checkpointing (and recovery) time: a
small checkpoint of 60 seconds and a large checkpoint of 1800 seconds. Overall, the
parameters used by default for each platform are summarized in Table 6.1.

For each experiment, we setup the simulator with the resilience parameters λ1, λ2, C
and R, and we compute the optimal pattern length Wopt, which is obtained by solv-
ing Equation 6.1 numerically. The total amount of work in the simulation is fixed
to be 1000Wopt, and each simulation is repeated 1000 times. All the figures report
the optimal overhead Hopt as a function of some parameter. The solid lines are sim-
ulation results: green for the fastest machine alone (with Young/Daly period), blue
for the periodic checkpoint strategy, red for the on-failure checkpoint strrtegy. The
dashed lines are model predictions: blue for the periodic checkpoint strategy, red
for the on-failure checkpoint strategy. The simulator is publicly available at http:
//perso.ens-lyon.fr/aurelien.cavelan/replication-ftxs.zip.

6.5.2 Accuracy of the models

In this section, we study the accuracy of the models and we assess the usefulness of
the second-order approximation by comparing the results obtained with both first and
second-order formulas. We take the fastest machine Titan and let its speed σ1 vary,
while keeping all other parameters fixed. Hence we always have µ1 = 50, 000s and
four possible second platforms (Cori, K-computer, Trinity, Theta) whose parameters
are given in Table 6.1.

Figures 6.5 and 6.6 present the evolution of the overhead as a function of σ1 vary-
ing from σ2 to 5σ2, and using a checkpointing time of 60s (Figure 6.5), and 1800s (Fig-
ure 6.6). We observe that the model matches very well the results of the simulations:
the maximum relative error is 5% with C = 1800s, and is within 0.2% with C = 60s.
The latter result is expected: we do not account for failures during checkpoints t in the
analysis, hence the approximation gets less accurate as checkpoint time increases.

For each value of σ1 varying from σ2 to 5σ2, we set β, γ and δ in Equation 6.1,
according to the ratio σ1

σ2
, which shows the accuracy of the formula in all three cases.

Finally, we note that the overhead increases with larger speeds σ1, but the expected
throughput (time per unit of work) keeps decreasing.

Regarding on-failure checkpointing, we observe that the precision of the formula
quickly degrades with larger σ1, because it does not take into account failures that
can occur during the re-execution work, which corresponds to the factor µ(σ1−σ2

σ1
) in

Equation 6.8. Note that this factor grows when σ1 increases (or when σ2 decreases),

http://perso.ens-lyon.fr/aurelien.cavelan/replication-ftxs.zip
http://perso.ens-lyon.fr/aurelien.cavelan/replication-ftxs.zip

148 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

20 30 40 50 60 70

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/Cori, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

15 20 25 30 35 40 45 50

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/K, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25 30 35 40

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/Trinity, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

σ1 variation (Titan/Theta, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.5: Evolution of overhead when σ1 varies with C = R = 60s.

and it is not surprising to find that the overhead is always underestimated when the
two speeds are quite different.

Next in Figures 6.7 and 6.8, we compare the simulated and theoretical overheads
obtained with the first and second-order approximations. Note that the plot colors
have a different meaning in this figure. The difference is small when using small
checkpoint time (Figure 6.7), but when the two speeds get close and the checkpoint
cost is high (Figure 6.8), the first-order approximation collapses and the theoretical
overhead increases dramatically (Hopt = 0.5). This is because the coefficient in O(λW)
tends to 0, and the first-order approximation used to get Wopt is not valid anymore.
However, we show that using the second-order approximation, (i.e. considering addi-
tional terms in O(λ2W2)) still yields good results (Hopt = 0.128).
6.5.3 Comparison of the two strategies

In this section, we compare the overhead with the two strategies against that with a
single platform. Coming back to Figures 6.5 and 6.6, we make two observations. First,
when the ratio between σ1 and σ2 is large (greater than 2 with a small checkpoint C,
somewhat higher when C increases), using a periodic pattern with replication is the
same as using the fast platform only: the slow platform is not useful. Second, when
this ratio between between σ1 and σ2 increases, the on-failure checkpointing strategy
becomes worst than using the fast platform alone, especially with small checkpoint
costs (left). This can be explained as follows: we wait for a failure on the slow platform
to checkpoint the work done by the fast platform. But given the value of µ2, the slow

6.5. EXPERIMENTAL EVALUATION 149

20 30 40 50 60 70

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/Cori, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

15 20 25 30 35 40 45 50

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/K, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25 30 35 40

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/Trinity, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10 15 20 25

σ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

σ1 variation (Titan/Theta, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.6: Evolution of overhead when σ1 varies with C = R = 1800s.

20 30 40 50 60 70

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/Cori, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

15 20 25 30 35 40 45 50

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/K, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25 30 35 40

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/Trinity, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25

σ1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

σ1 variation (Titan/Theta, C,R=60)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

Figure 6.7: Comparison of overhead using first-order approximation and second-order
approximation when σ1 varies, with C = R = 60s.

150 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

20 30 40 50 60 70

σ1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

σ1 variation (Titan/Cori, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

15 20 25 30 35 40 45 50

σ1

0.0

0.1

0.2

0.3

0.4

0.5

H(P)

σ1 variation (Titan/K, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25 30 35 40

σ1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

H(P)

σ1 variation (Titan/Trinity, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

10 15 20 25

σ1

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

σ1 variation (Titan/Theta, C,R=1800)

Simulated second-order

Theoretical second-order

Simulated first-order

Theoretical first-order

Figure 6.8: Comparison of overhead using first-order approximation and second-order
approximation when σ1 varies, with C = R = 1800s.

6.5. EXPERIMENTAL EVALUATION 151

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.00

0.05

0.10

0.15

0.20

0.25

H(P)

µ1 variation (Titan/Cori, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H(P)

µ1 variation (Titan/K, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

H(P)

µ1 variation (Titan/Trinity, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan
10

00
0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.5

1.0

1.5

2.0

H(P)

µ1 variation (Titan/Theta, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.9: Evolution of overhead when µ1 varies with C = R = 60s.

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

µ1 variation (Titan/Cori, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

µ1 variation (Titan/K, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

H(P)

µ1 variation (Titan/Trinity, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H(P)

µ1 variation (Titan/Theta, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.10: Evolution of overhead when µ1 varies with C = R = 1800s.

152 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.00

0.05

0.10

0.15

0.20

0.25

H(P)

µ2 variation (Titan/Cori, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H(P)

µ2 variation (Titan/K, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H(P)

µ2 variation (Titan/Trinity, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.5

1.0

1.5

2.0

2.5

H(P)

µ2 variation (Titan/Theta, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.11: Evolution of overhead when µ2 varies with C = R = 60s.

platform is struck less frequently than the fast one, hence we often lose a lot of work
in expectation (remember we lose µ(σ1 − σ2) units of work when a failure strikes on
P1).

Figures 6.9 to 6.13 show the evolution of the overhead when parameters µ1, µ2
and C, R vary. Overall, we observe again that the work lost when a failure occurs on
P1 is important with the on-failure checkpointing strategy, whose overhead strongly
depends upon on the second platform used. For instance, the overhead for µ1 =
10, 000s and C = 60s goes from 0.236 (using Cori) to 1.81 (using Theta), whereas the
overhead of the periodic checkpointing remains small (between 0.074 and 0.125). This
observation is confirmed by Figures 6.11 and 6.12, where the overhead increases when
the number of faults actually decreases on the slow platform!

We see the benefits of using replication when looking at Figures 6.9 and 6.10. When
µ1 becomes small (10, 000s, or 8.6 failures per day), the overhead with a single platform
(green) increases a lot, while the overhead with the periodic strategy (blue) increases
only a little, even when the second platform is twice slower than the first one. For
instance we have an overhead of 1.36 for P1 alone when C = 1800s, whereas we get
0.894 when using P1 in conjunction with Trinity, i.e. a reduction of 34%. However,
when the second platform gets too slow, the improvement brought by the use of P2 is
only meaningful when the checkpointing cost is large: on Figure 6.13, we get 15% of

6.5. EXPERIMENTAL EVALUATION 153

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

µ2 variation (Titan/Cori, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.3

0.4

0.5

0.6

0.7

H(P)

µ2 variation (Titan/K, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.4

0.6

0.8

1.0

1.2

H(P)

µ2 variation (Titan/Trinity, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan
0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.0

0.5

1.0

1.5

2.0

2.5

H(P)

µ2 variation (Titan/Theta, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.12: Evolution of overhead when µ2 varies with C = R = 1800s.

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H(P)

C,R variation (Titan/Cori)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H(P)

C,R variation (Titan/K)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.2

0.4

0.6

0.8

1.0

H(P)

C,R variation (Titan/Trinity)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

C,R variation (Titan/Theta)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.13: Evolution of overhead when C and R vary.

154 Chapter 6: Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms

0

10
00

20
00

30
00

40
00

50
00

C,R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H(P)

C,R variation (Titan/Titan)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.14: Evolution of overhead when C and R vary, using two same-speed plat-
forms.

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

H(P)

µ2 variation (Titan/Titan, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

µ2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

H(P)

µ2 variation (Titan/Titan, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H(P)

µ1 variation (Titan/Titan, C,R=1800)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

µ1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H(P)

µ1 variation (Titan/Titan, C,R=60)

Simulated periodic

Theoretical periodic

Simulated on-failure

Theoretical on-failure

Simulated Titan

Figure 6.15: Evolution of overhead when other parameters vary, using two same-speed
platforms.

6.6. CONCLUSION 155

improvement if C ≥ 10s with Cori, if C ≥ 760s with K, if C ≥ 4460s with Trinity, and
more than 5000s with Theta.

Figures 6.14 and 6.15 present the case of same-speed platforms. In this case, for all
parameter choices (C, R, µ1, µ2), it is interesting to see that on-failure checkpointing
is the best strategy, while it was less efficient than periodic checkpointing in almost
all the other scenarios that we considered. This can be explained by the fact that
there is no work lost at all with this strategy, except when there is a failure during a
checkpoint.

6.5.4 Summary

We summarize simulation results as follows:
• The model is very accurate, as long as the resilience parameters remain reason-

ably small.
• On-failure checkpointing is generally less efficient than periodic checkpointing,

except when the speeds of the two platforms are equal (σ2 = σ1).
• If P2 is really too slow compared to P1 (σ2 < σ1

2) or if the checkpointing cost is
small, there is little reason to use a second platform.

• In all other cases (σ1
2 ≤ σ2 < σ1), the periodic checkpointing strategy reduces the

overhead by 30% in average, and up to 90% in some particular cases.

6.6 Conclusion

This work has addressed group replication for a black-box application executing on
two heterogeneous platforms. We designed and thoroughly analyzed two strategies,
periodic checkpointing and on-failure checkpointing. For periodic checkpointing, we
have been able to analytically derive the best pattern length, using either first-order or
second-order approximations. These results nicely extend the Young/Daly formula.

Simulations show that the model is quite accurate. As expected, when the platform
speeds have different orders of magnitude, it is better to use only the fast platform.
However, periodic checkpointing is useful for a wide range of speeds, and generally
more efficient than on-failure checkpointing. The latter strategy is to be preferred only
when the platform speeds are close.

Future work will be devoted to extending replication with heterogeneous platforms
to deal with more complex applications, such as scientific workflows arranged as linear
chains or fork-join graphs. Another interesting direction is to study the bi-criteria
problem with energy consumption as a second metric, in addition to total execution
time, in order to better assess the cost of replication.

Chapter 7

Replication is more efficient than you think

This chapter revisits replication coupled with checkpointing for fail-stop errors. Repli-
cation enables the application to survive many fail-stop errors, thereby allowing for
longer checkpointing periods. Previously published works use replication with the
no-restart strategy, which works as follows: (i) compute the application Mean Time To
Interruption (MTTI) M as a function of the number of processor pairs and the indi-
vidual processor Mean Time Between Failures (MTBF); (ii) use checkpointing period
Tno

MTTI =
√

2MC à la Young/Daly, where C is the checkpoint duration; and (iii) never
restart failed processors until the application crashes. We introduce the restart strategy
where failed processors are restarted after each checkpoint. We compute the optimal
checkpointing period Trs

opt for this strategy, which is much larger than Tno
MTTI, thereby

decreasing I/O pressure. We show through simulations that using Trs
opt and the restart

strategy, instead of Tno
MTTI and the usual no-restart strategy, significantly decreases the

overhead induced by replication. The work in this chapter is joint work with Anne
Benoit, Thomas Hérault and Yves Robert, and has been published in Supercomputing
(SC) 2019 [C2].

7.1 Introduction

Current computing platforms have millions of cores: the Summit system at the Oak
Ridge National Laboratory (ORNL) is listed at number one in the TOP500 rank-
ing [181], and it has more than two million cores. The Chinese Sunway TaihuLight
(ranked as number 3) has even more than 10 million cores. These large-scale com-
puting systems are frequently confronted with failures, also called fail-stop errors.
Indeed, even if individual cores are reliable, for instance if the Mean Time Between Fail-
ures (MTBF) for a core is µ = 10 years, then the MTBF for a platform with a million
cores (N = 106) becomes µN = µ

N ≈ 5.2 minutes, meaning that a failure strikes the
platform every five minutes, as shown in [106].

The classical technique to deal with failures consists of using a checkpoint-restart
mechanism: the state of the application is periodically checkpointed, and when a
failure occurs, we recover from the last valid checkpoint and resume the execution

157

158 Chapter 7: Replication is more efficient than you think

from that point on, rather than starting the execution from scratch. The key for an
efficient checkpointing policy is to decide how often to checkpoint. Young [200] and
Daly [58] derived the well-known Young/Daly formula TYD =

√
2µNC for the optimal

checkpointing period, where µN is the platform MTBF, and C is the checkpointing
duration.

Another technique that has been advocated for dealing with failures is process
replication, where each process in a parallel MPI (Message Passing Interface) applica-
tion is duplicated to increase the Mean Time To Interruption (MTTI). The MTTI is the
mean time between two application failures. If a process is struck by a failure, the
execution can continue until the replica of this process is also struck by a failure. More
precisely, processors are arranged by pairs, i.e., each processor has a replica, and the
application fails whenever both processors in a same pair have been struck by a failure.
With replication, one considers the MTTI rather than the MTBF, because the applica-
tion can survive many failures before crashing. Given the high rate of failures on
large-scale systems, process replication is combined with periodic checkpoint-restart,
as proposed for instance in [159, 75, 205] for high-performance computing (HPC) plat-
forms, and in [127, 198] for grid computing. Then, when the application fails, one can
recover from the last valid checkpoint, just as was the case without replication. Intu-
itively, since many failures are needed to interrupt the application, the checkpointing
period should be much larger than without replication. Previous works [82, 46, 110]
all use Tno

MTTI =
√

2MNC for the checkpointing period, where MN is the MTTI with N
processors (instead of the MTBF µN).

To illustrate the impact of replication on reliability at scale, Figure 7.1 compares
the probability distribution of the time to application failure for: (a) a single processor,

0 1000 2000 3000 4000 5000
t (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 A
pp

lic
at

io
n

Fa
ilu

re

1 proc
2 procs
1 pair

(a) CDFs of the probability distribution of time to
app. failure for one processor, two parallel proces-
sors and one proc. pair (replication).

10 4 10 3 10 2 10 1 100 101 102

t (hours)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 A
pp

lic
at

io
n

Fa
ilu

re

100,000 procs
200,000 procs
100,000 pairs

(b) CDFs of the proba. distrib. of time to app.
failure for 100,000 parallel proc., 200,0000 parallel
proc. and 100,000 proc. pairs (replication).

Figure 7.1: Comparison of CDFs with and without replication.

7.1. INTRODUCTION 159

two parallel processors and a pair of replicated processors; and (b) a platform of
N = 100, 000 parallel processors, N = 200, 000 parallel processors without replication,
and b = 100, 000 processor pairs with replication. In all cases, the individual MTBF
of a single processor is µ = 5 years. The time to reach 90% chances of having a fatal
failure is: (a) 1688 days for one processor, 844 days for two processors and 2178 days
for a processor pair; and (b) 24 minutes for 100,000 processors, 12 minutes for 200,000
processors and 5081 minutes (almost 85 hours) for 100,000 processor pairs. We see
that replication is key to safe application progress at scale! Again, the cost is that half
of the resources are doing redundant work, hence time-to-solution is increased. We
compare time-to-solution with and without replication in Section 7.7.6. We also see
that in heavily failure-prone environments (small MTBF values), checkpoint/restart
alone cannot ensure full reliability, and must be complemented by replication.

One major contribution of this chapter is to introduce a new approach that mini-
mizes the overhead incurred by the checkpoint-restart mechanism when coupled with
replication. Previous works [82, 46, 110] use the no-restart strategy: if a processor was
struck by a failure (but not its replica), then the processor remains failed (no recovery)
until the whole application fails. Hence, there is a recovery only every MN seconds
on average, whenever the application fails. Many periodic checkpoints are taken in
between two application crashes, with more and more processors failing on the fly.
To the best of our knowledge (i) all related works use the no-restart strategy and (ii)
analytically computing the optimal period for no-restart is an open problem (see Sec-
tion 7.4.2 for more details, where we also show that non-periodic strategies are more
efficient for no-restart), but simulations can help assess this approach.

The study of the no-restart strategy raises an important question: should failed
processors be restarted earlier on in the execution? Instead of waiting for an appli-
cation crash to rejuvenate the whole platform, a simple approach would be to restart
processors immediately after each failure. Let restart-on-failure denote this strategy. It
ensures that all processor pairs involve two live processors throughout execution, and
would even suppress the notion of checkpointing periods. Instead, after each failure
striking a processor, its replica would checkpoint immediately, and the spare processor
replacing the failed processor would read that checkpoint to resume execution. There
is a small risk of fatal crash if a second failure should strike the replica when writing
its checkpoint, but (i) the risk is very small because the probability of such a cascade
of two narrowly spaced failures is quite low; and (ii) if the checkpoint protocol is scal-
able, every other processor can checkpoint in parallel with the replica, and there is
no additional time overhead. With tightly coupled applications, the other processors
would likely have to wait until the spare is able to restart, and they can checkpoint
instead of idling during that wait. While intuitively appealing, the restart-on-failure
strategy may lead to too many checkpoints and restarts, especially in scenarios when
failures strike frequently. However, frequent failures were exactly the reason to deploy
replication in the first place, precisely to avoid having to restart after each failure.

In this work, we introduce the restart strategy, which requires any failed processor
to recover each time a checkpoint is taken. This ensures that after any checkpoint at the

160 Chapter 7: Replication is more efficient than you think

end of a successful period, all processors are alive. This is a middle ground between
the no-restart and restart-on-failure strategies, because failed processors are restarted at
the end of each period with restart. On the one hand, a given period may well include
many failures, hence restart restarts processors less frequently than restart-on-failure.
On the other hand, there will be several periods in between two application crashes,
hence restart restarts processors more frequently than no-restart.

Periodic checkpointing is optimal with the restart strategy: the next period should
have same length as the previous one, because we have the same initial conditions
at the beginning of each period. Restarting failed processors when checkpointing
can introduce additional overhead, but we show that it is very small, and even non-
existent when in-memory (a.k.a. buddy) checkpointing is used as the first-level of
a hierarchical multi-level checkpointing protocol (such state-of-the-art protocols are
routinely deployed on large-scale platforms [140, 17, 40]). A key contribution of this
chapter is a mathematical analysis of the restart strategy, with a closed-form formula
for its optimal checkpointing period. We show that the optimal checkpointing period
for the restart strategy has the order Θ(µ

2
3), instead of the Θ(µ

1
2) used in previous

works for no-restart as an extension of the Young/Daly formula [82, 46, 110]. Hence,
as the error rate increases, the optimal period becomes much longer than the value that
has been used in all previous works (with no-restart). Consequently, checkpoints are
much less frequent, thereby dramatically decreasing the pressure on the I/O system.

The main contributions in this chapter are the following:
• We provide the first closed-form expression of the application MTTI MN with repli-
cation;
• We introduce the restart strategy for replication, where we recover failed processors
during each checkpoint;
• We formally analyze the restart strategy, and provide the optimal checkpointing pe-
riod with this strategy;
•We apply these results to applications following Amdahl’s law, i.e., applications that
are not fully parallel but have an inherent sequential part, and compare the time-to-
solution achieved with and without replication;
•We validate the model through comprehensive simulations, by showing that analyti-
cal results, using first-order approximations and making some additional assumptions
(no failures during checkpoint and recovery), are quite close to simulation results; for
these simulations, we use both randomly generated failures and log traces.
• We compare through simulations the overhead obtained with the optimal strategy
introduced in this work (restart strategy, optimal checkpointing period) to those used
in all previous works (no-restart strategy, extension of the Young/Daly checkpoint-
ing period), as well as with strategies that use partial replication or that restart only
at some of the checkpoints, and demonstrate that we can significantly decrease both
total execution time and utilization of the I/O file system.

The chapter is organized as follows. We first describe the model in Section 7.2. We
recall how to compute the optimal checkpointing period when no replication is used
in Section 7.3. The core contribution is presented in Section 7.4, where we explain how

7.2. MODEL 161

to compute the MTTI with b (= N
2) processor pairs, detail the restart strategy, and show

how to derive the optimal checkpointing period with this restart strategy. Results are
applied to applications following Amdahl’s law in Section 7.5. An asymptotic analysis
of no-restart and restart is provided in Section 7.6. The experimental evaluation in Sec-
tion 7.7 presents extensive simulation results, demonstrating that replication is indeed
more efficient than you think, when enforcing the restart strategy instead of the no-restart
strategy. Finally, we extend the analysis and experiments to energy consumption in
Section 7.8, and conclude in Section 7.9.

7.2 Model

This section describes the model, with an emphasis on the cost of a combined
checkpoint-restart operation.

Fail-stop errors. Throughout the text, we consider a platform with N identical pro-
cessors. The platform is subject to fail-stop errors, or failures, that interrupt the ap-
plication. Similarly to previous work [82, 72, 110], for the mathematical analysis, we
assume that errors are independent and identically distributed (IID), and that they
strike each processor according to an exponential probability distribution exp(λ) with
support [0, ∞), probability density function (PDF) f (t) = λe−λt and cumulative distri-
bution function (CDF) F(T) = P(X ≤ T) = 1− e−λT. We also introduce the reliability
function G(T) = 1− F(T) = e−λT. The expected value µ = 1

λ of the exp(λ) distri-
bution is the MTBF on one processor. We lift the IID assumption in the performance
evaluation section by using trace logs from real platforms.

Checkpointing. To cope with errors, we use periodic coordinated checkpointing. We
assume that the divisible application executes for a very long time (asymptotically
infinite) and we partition the execution into periods. Each period P consists of a work
segment of duration T followed by a checkpoint of duration C. After an error, there
is a downtime of duration D (corresponding to the time needed to migrate to a spare
processor), a recovery of size R, and then one needs to re-execute the period from its
beginning.

Replication. We use another fault tolerance technique, namely replication. Each pro-
cess has a replica, which follows the exact same states in its execution. To ensure this,
when a process receives a message, its replica also receives the same message, and
messages are delivered in the same order to the application (an approach called active
replication; see [92, 82]). If a crash hits a process at any time, and its replica is still
alive, the replica continues the execution alone until a new process can replace the
dead one.

We rely on the traditional process allocation strategy that assigns processes and
their replicas on remote parts of the system (typically different racks) [34]. This strat-

162 Chapter 7: Replication is more efficient than you think

egy mitigates the risk that a process and its replica would both fail within a short time
interval (much shorter than the expected MTTI). As stated in [158], when failure cor-
relations are observed, their correlation diminishes when the processes are far away
from each other in the memory hierarchy, and becomes undistinguishable from the
null hypothesis (no correlation) when processes belong to different racks.

Combined checkpoint-restart. In this chapter, we propose the restart strategy where
failed processes are restarted as soon as the next checkpoint wave happens. When
that happens, and processes need to be restarted, the cost of a checkpoint and restart
wave, CR, is then increased: one instance of each surviving process must save their
state, then processes for the missing instances of the replicas must be allocated; the
new processes must load the current state, which has been checkpointed, and join the
system to start acting as a replica. The first part of the restart operation, allocating
processes to replace the failed ones, can be managed in parallel with the checkpoint of
the surviving processes. Using spare processes, this allocation time can be very small
and we will consider it negligible compared to the checkpoint saving and loading
times. Similarly, integrating the newly spawned process inside the communication
system when using spares is negligible when using mechanisms such as the ones
described in [29].

There is a large variety of checkpointing libraries and approaches to help applica-
tions save their state. [140, 17, 40] are typically used in HPC systems for coordinated
checkpointing, and use the entire memory hierarchy to speed up the checkpointing
cost: the checkpoint is first saved on local memory, then uploaded onto local storage
(SSD, NVRAM if available), and eventually to the shared file system. As soon as a
copy of the state is available on the closest memory, the checkpoint is considered as
taken. Loading that checkpoint requires that the application state from the closest
memory be sent to the memory of the new hosting process.

Another efficient approach to checkpoint is to use in-memory checkpoint replica-
tion using the memory of a ’buddy’ process (see [204, 146]). To manage the risk of
losing the checkpoint in case of failure of two buddy processes, the checkpoint must
also be saved on reliable media, as is done in the approaches above. Importantly, in-
memory checkpointing is particularly fitted for the restart strategy, because the buddy
process and the replica are the same process: in that case, the surviving processes up-
load their checkpoint directly onto the memory of the newly spawned replicas; as soon
as this communication is done, the processes can continue working. Contrary to tradi-
tional buddy checkpointing, it is not necessary to exchange the checkpoints between
a pair of surviving buddies since, per the replication technique, both checkpoints are
identical.

In the worst case, if a sequential approach is used, combining checkpointing and
restart takes at most twice the time to checkpoint only; in the best case, using buddy
checkpointing, the overhead of adding the restart to the checkpoint is negligible. We
consider the full spectrum C ≤ CR ≤ 2C in the simulations.

As discussed in [148, 82], checkpoint time varies significantly depending upon the

7.3. BACKGROUND 163

target application and the hardware capabilities. We will consider a time to checkpoint
within two reasonable limits: 60s ≤ C ≤ 600s, following [110].

First-order approximation. Throughout the chapter, we are interested in first-order
approximations, because exact formulas are not analytically tractable. We carefully
state the underlying hypotheses that are needed to enforce the validity of first-order
results. Basically, the first-order approximation will be the first, and most meaningful,
term of the Taylor expansion of the overhead occurring every period when the error
rate λ tends to zero.

7.3 Background

In this section, we briefly summarize well-known results on the optimal checkpointing
period when replication is not used, starting with a single processor in Section 7.3.1,
and then generalizing to the case with N processors in Section 7.3.2.

7.3.1 With a Single Processor

We aim at computing the expected time E(T) to execute a period of length P = T +C.
The optimal period length will be obtained for the value of T, minimizing the overhead

H(T) =
E(T)

T
− 1. (7.1)

We temporarily assume that fail-stop errors strike only during work T and not
during checkpoint C nor recovery R. The following recursive equation is the key to
most derivations:

E(T) = (1− F(T))(T + C) + F(T)(Tlost(T) + D + R + E(T)). (7.2)

Equation (7.2) reads as follows: with probability 1− F(T), the execution is successful
and lasts T +C seconds; with probability F(T), an error strikes before completion, and
we need to account for time lost Tlost(T), downtime D and recovery R before starting
the computation anew. The expression for Tlost(T) is the following:

Tlost(T) =
∫ ∞

0
tP(X = t|X ≤ T)dt =

1
F(T)

∫ T

0
t f (t)dt.

Integrating by parts and re-arranging terms in Equation (7.2), we derive

E(T) = T + C +
F(T)

1− F(T)
(Tlost(T) + D + R)

and H(T) = C
T + F(T)

T(1−F(T)) (D + R) +
∫ T

0 G(t)dt
T(1−F(T)) − 1. Now, if we instantiate the value of

164 Chapter 7: Replication is more efficient than you think

F(T) = 1− G(T) = 1− e−λT, we obtain

H(T) =
C
T
+

eλT − 1
T

(D + R +
1
λ
)− 1.

We can find the value Topt by differentiating and searching for the zero of the
derivative, but the solution is complicated as it involves the Lambert function [58, 106].
Instead, we use the Taylor expansion of e−λT = ∑∞

i=0(−1)i (λT)i

i! and the approximation

e−λT = 1− λT + (λT)2

2 + o(λ2T2). This makes sense only if λT tends to zero. It is
reasonable to make this assumption, since the length of the period P must be much
smaller than the error MTBF µ = 1

λ . Hence, we look for T = Θ(λ−x), where 0 < x < 1.
Note that x represents the order of magnitude of T as a function of the error rate λ.
We can then safely write

H(T) =
C
T
+

λT
2

+ o(λT). (7.3)

Now, C
T = Θ(λx) and λT

2 = Θ(λ1−x), hence the order of magnitude of the overhead
is H(T) = Θ(λmax(x,1−x)), which is minimum for x = 1

2 . Differentiating Equation (7.3),
we obtain

Topt =

√
2C
λ

= Θ(λ−
1
2), and Hopt =

√
2Cλ + o(λ

1
2) = Θ(λ

1
2) (7.4)

which is the well-known and original Young formula [200].

Variants of Equation (7.4) have been proposed in the literature, such as Topt =√
2(µ + R)C in [58] or Topt =

√
2(µ− D− R)C− C in [106]. All variants are approxi-

mations that collapse to Equation (7.4). This is because the resilience parameters C, D,
and R are constants and thus negligible in front of Topt when λ tends to zero. This also
explains that assuming that fail-stop errors may strike during checkpoint or recovery
has no impact on the first-order approximation of the period given in Equation (7.4).
For instance, assuming that fail-stop errors strike during checkpoints, we would mod-
ify Equation (7.2) into

E(T + C) = (1− F(T + C))(T + C) + F(T + C)(Tlost(T + C) + D + R + E(T + C))

and derive the same result as in Equation (7.4). Similarly, assuming that fail-stop errors
strike during recovery, we would replace R with E(R), which can be computed via an
equation similar to that for E(T), again without modifying the final result.

Finally, a very intuitive way to retrieve Equation (7.4) is the following: consider a
period of length P = T + C. There is a failure-free overhead C

T , and a failure-induced
overhead 1

µ × T
2 , because with frequency 1

µ an error strikes, and on average it strikes in
the middle of the period and we lose half of it. Adding up both overhead sources gives

C
T
+

T
2µ

, (7.5)

7.4. REPLICATION 165

which is minimum when T =
√

2µC. While not fully rigorous, this derivation helps
understand the tradeoff related to the optimal checkpointing frequency.

7.3.2 With N Processors

The previous analysis can be directly extended to multiple processors. Indeed, if
fail-stop errors strike each processor according to an exp(λ) probability distribution,
then these errors strike the whole platform made of N identical processors according
to an exp(Nλ) probability distribution [106]. In other words, the platform MTBF
is µN = µ

N , which is intuitive: the number of failures increases linearly with the
number of processors N, hence the mean time between two failures is divided by N.
All previous derivations apply, and we obtain the optimal checkpointing period and
overhead:

Topt =

√
2C
Nλ

= Θ(λ−
1
2), and Hopt =

√
2CNλ + o(λ

1
2) = Θ(λ

1
2) (7.6)

This value of Topt can be intuitively retrieved with the same (not fully rigorous)
reasoning as before (Equation (7.5)): in a period of length P = T + C, the failure-free
overhead is C

T , and the failure-induced overhead becomes 1
µN
× T

2 : we factor in an

updated value of the failure frequency, using 1
µN

= N
µ instead of 1

µ . Both overhead
sources add up to

C
T
+

T
2µN

=
C
T
+

NT
2µ

, (7.7)

which is minimum when T =
√

2µC
N .

7.4 Replication

This section deals with process replication for fail-stop errors, as introduced in [82] and
recently revisited by [110]. We consider a platform with N = 2b processors. Exactly
as in Section 7.3, each processor fails according to a probability distribution exp(λ),
and the platform MTBF is µN = µ

N . We still assume that checkpoint and recovery are
error-free: it simplifies the analysis without modifying the first-order approximation
of the optimal checkpointing period.

Processors are arranged by pairs, meaning that each processor has a replica. The
application executes as if there were only b available processors, hence with a reduced
throughput. However, a single failure does not interrupt the application, because the
replica of the failed processor can continue the execution. The application can thus
survive many failures, until both replicas of a given pair are struck by a failure. How
many failures are needed, in expectation, to interrupt the application? We compute
this value in Section 7.4.1. Then, we proceed to deriving the optimal checkpointing
period, first with one processor pair in Section 7.4.2, before dealing with the general
case in Section 7.4.3.

166 Chapter 7: Replication is more efficient than you think

7.4.1 Computing the Mean Time To Interruption

Let nfail(2b) be the expected number of failures to interrupt the application, with b
processor pairs. Then, the application MTTI M2b with b processor pairs (hence N = 2b
processors) is given by

M2b = nfail(2b) µ2b = nfail(2b)
µ

2b
=

nfail(2b)
2λb

, (7.8)

because each failure strikes every µ2b seconds in expectation. Computing the value of
nfail(2b) has received considerable attention in previous work. In [156, 82], the authors
made an analogy with the birthday problem and use the Ramanujan function [84] to

derive the formula nfail(2b) = 1 + ∑b
k=0

b!
(b−k)!b;k ≈

√
πb
2 . The analogy is not fully cor-

rect, because failures can strike either replica of a pair. A correct recursive formula
is provided in [46], albeit without a closed-form expression. Recently, the authors
in [110] showed that

nfail(2b) = 2b4b
∫ 1

2

0
xb−1(1− x)bdx (7.9)

but did not give a closed-form expression either. We provide such an expression below:

Theorem 10.

nfail(2b) = 1 + 4b /
(

2b
b

)
. (7.10)

Proof. The integral in Equation (7.9) is known as the incomplete Beta function B(1
2 , b, b+

1), where B(z, u, v) =
∫ z

0 xu−1(1 − x)v−1dx. This incomplete Beta function is also

known [190] as the hypergeometric function B(z, u, v) = zu

u × 2F1

[
u, 1−v

u+1 ; z
]

, where

2F1

[u, v
w

; z
]
=

∞

∑
n=0

〈u〉n〈v〉n
〈w〉n

zn

n!
= 1 +

uv
1!w

z +
u(u + 1)v(v + 1)

2!w
z2 + . . .

We need to compute B(1
2 , b, b + 1) = 1

b2b × 2F1

[
b, −b
b+1 ; 1

2

]
, and according to [189], we

have

2F1

[
b, − b
b + 1

;
1
2

]
=

√
π Γ(b + 1)

2b+1

[1
Γ(b + 1)Γ(1

2)
+

1
Γ(b + 1

2))Γ(1)

]
.

Here, Γ is the well-known Gamma function extending the factorial over real numbers:
Γ(z) =

∫ ∞
0 xz−1e−xdx. We have Γ(1) = 1, Γ(b + 1) = b!, Γ(1

2) =
√

π, and Γ(b + 1
2) =√

π(2b)!
4bb! . Hence,

2F1

[
b, − b
b + 1

;
1
2

]
=

1
2b+1

[
1 +

4b(b!)2

(2b)!

]
=

1
2b+1

[
1 +

4b

(2b
b)

]
.

7.4. REPLICATION 167

For the last equality, we observe that (2b
b) =

(2b)!
(b!)2 . We derive B(1

2 , b, b + 1) = 1
2b4b

[
1 +

4b

(2b
b)

]
, and finally nfail(2b) = 1 + 4b

(2b
b)

, which concludes the proof.

Using Sterling’s formula, we easily derive that nfail(2b) ≈
√

πb, which is 40% more

than the value
√

πb
2 used in [156, 82].

Plugging the value of nfail(2b) back in Equation (7.8) gives the value of the MTTI
M2b. As already mentioned, previous works [82, 46, 110] all use the checkpointing
period

Tno
MTTI =

√
2M2bC (7.11)

to minimize execution time overhead. This value follows from the same derivation as
in Equations (7.5) and (7.7). Consider a period of length P = T + C. The failure-free
overhead is still C

T , and the failure-induced overhead becomes 1
M2b
× T

2 : we factor in an
updated value of the failure frequency, which now becomes the fatal failure frequency,
namely 1

M2b
. Both overhead sources add up to

C
T
+

T
2M2b

, (7.12)

which is minimum when T =
√

2M2bC.
In the following, we analyze the restart strategy. We start with one processor pair

(b = 1) in Section 7.4.2, before dealing with the general case in Section 7.4.3.

7.4.2 With One Processor Pair

We consider two processors working together as replicas. The failure rate is λ = 1
µ

for each processor, and the pair MTBF is µ2 = µ
2 , while the pair MTTI is M2 = 3µ

2
because nfail(2) = 3. We analyze the restart strategy, which restarts a (potentially)
failed processor at every checkpoint. Hence, the checkpoint has duration CR and
not C. Consider a period of length P = T + CR. If one processor fails before the
checkpoint but the other survives until reaching it, the period is executed successfully.
The period is re-executed only when both processors fail within T seconds. Let p1(T)
denote the probability that both processors fail during T seconds: p1(T) = (1− e−λT)2.
We compute the expected time E(T) for period of duration P = T + CR using the
following recursive equation:

E(T) = (1− p1(T))(T + CR) + p1(T)(Tlost(T) + D + R + E(T)). (7.13)

Here, CR denotes the time to checkpoint, and in addition, to recover whenever one of
the two processors had failed during the period. As discussed in Section 7.2, we have
C ≤ CR ≤ C + R: the value of CR depends upon the amount of overlap between the
checkpoint and the possible recovery of one processor.

Consider the scenario where one processor fails before reaching the end of the
period, while the other succeeds and takes the checkpoint. The no-restart strategy

168 Chapter 7: Replication is more efficient than you think

continues execution, hence pays only for a regular checkpoint of cost C, and when the
live processor is struck by a failure (every M2 seconds on average), we roll back and
recover for both processors [82, 46, 110]. However, the new restart strategy requires
any failed processor to recover whenever a checkpoint is taken, hence at a cost CR.
This ensures that after any checkpoint at the end of a successful period, we have two
live processors, and thus the same initial conditions. Hence, periodic checkpointing
is optimal with this strategy. We compare the restart and no-restart strategies through
simulations in Section 7.7.

As before, in Equation (7.13), Tlost(T) is the average time lost, knowing that both
processors have failed before T seconds. While Tlost(T) ∼ T

2 when considering a single
processor, it is no longer the case with a pair of replicas. Indeed, we compute Tlost(T)
as follows:

Tlost(T) =
∫ ∞

0
tP(X = t|t ≤ T)dt =

1
p1(T)

∫ T

0
t
dP(X ≤ t)

dt
dt

=
2λ

(1− e−λT)2

∫ T

0
t(e−λt − e−2λt)dt.

After integration, we find that

Tlost(T) =
(2e−2λT − 4e−λT)λT + e−2λT − 4e−λT + 3

2λ(1− e−λT)2 =
1

2λ

u(λT)
v(λT)

,

with u(y) = (2e−2y − 4e−y)y + e−2y − 4e−y + 3 and v(y) = (1− e−y)2.

Assuming that T = Θ(λ−x) with 0 < x < 1 as in Section 7.3.1, then Taylor ex-
pansions lead to u(y) = 4

3 y3 + o(y3) and v(y) = y2 + y3 + o(y3) for y = λT = o(1),

meaning that Tlost(T) = 1
2λ

4λT
3 +o(λT)

1+λT+o(λT) . Using the division rule, we obtain Tlost(T) =
1

2λ (
4λT

3 + o(λT)) = 2T
3 + o(T). Note that we lose two thirds of the period with a pro-

cessor pair rather than one half with a single processor. Plugging back the value of
Tlost(T) and solving, we obtain:

E(T) = T + CR + (D + R +
(2e−2λT − 4e−λT)λT + e−2λT − 4e−λT + 3

2λ(1− e−λT)2) · (e
λT − 1)2

2eλT − 1
. (7.14)

We then compute the waste Hrs(T) of the restart strategy as follows:

Hrs(T) =
E(T)

T
− 1 =

CR

T
+

2
3

λ2T2 + o(λ2T2). (7.15)

Moreover, with T = Θ(λ−x), we have CR

T = Θ(λx) and 2
3 λ2T2 = Θ(λ2−2x), hence

Hrs(T) = Θ(λmax(x,2−2x)), which is minimum for x = 2
3 . Differentiating, we readily

obtain:

Topt =

(
3CR

4λ2

) 1
3

= Θ(λ−
2
3), (7.16)

7.4. REPLICATION 169

Hrs(Topt) =

(
3CRλ√

2

) 2
3

+ o(λ
2
3) = Θ(λ

2
3). (7.17)

Note that the optimal period has the order Topt = Θ(λ−
2
3) = Θ(µ

2
3), while the exten-

sion
√

2M2C of the Young/Daly formula has the order Θ(λ−
1
2) = Θ(µ

1
2). This means

that the optimal period is much longer than the value that has been used in all previ-
ous works. This result generalizes to several processor pairs, as shown in Section 7.4.3.
We further discuss asymptotic results in Section 7.6.

For an intuitive way to retrieve Equation (7.16), the derivation is similar to that
used for Equations (7.5), (7.7) and (7.12). Consider a period of length P = T +CR. The
failure-free overhead is still CR

T , and the failure-induced overhead becomes 1
µ

T
µ × 2T

3 :

we factor in an updated value of the fatal failure frequency 1
µ

T
µ : the first failure strikes

with frequency 1
µ , and then with frequency T

µ , there is another failure before the end

of the period. As for the time lost, it becomes 2T
3 , because in average the first error

strikes at one third of the period and the second error strikes at two-third of the pe-
riod: indeed, we know that there are two errors in the period, and they are equally
spaced in average. Altogether, both overhead sources add up to

CR

T
+

2T2

3µ2 , (7.18)

which is exactly Equation (7.15).

We conclude this section with a comment on the no-restart strategy. The intuitive
derivation in Equation (7.12) leads to Hno(T) = C

T + T
2M2b

. We now understand that
this derivation is accurate if we have Tlost(T) = T

2 + o(T). While this latter equality is
proven true without replication [58], it is unknown whether it still holds with repli-
cation. Hence, computing the optimal period for no-restart remains an open problem,
even with a single processor pair.

Going further, Figure 7.2 shows that periodic checkpointing is not optimal for
no-restart with a single processor pair, which provides another hint of the diffi-
culty of the problem. In the figure, we compare four approaches: in addition to
Restart(Trs

opt) and NoRestart(Tno
MTTI), we use two non-periodic variants of no-restart,

Non-Periodic(T1, T2). In both variants, we use a first checkpointing period T1 while
both processors are alive, and then a shorter period T2 as soon as one processor has
been struck by a failure. When an application failure occurs, we start anew with pe-
riods of length T1. For both variants, we only restart processors after an application
failure, just as no-restart does. The first variant uses T1 = Tno

MTTI =
√

3µC (the MTTI is

M2 = 3 µ
2) and the second variant uses T1 = Trs

opt =
(3

4 Cµ2) 1
3 . We use the Young/Daly

period T2 =
√

2µC for both variants, because there remains a single live processor
when period T2 is enforced. The figure shows the ratio of the time-to-solution for the
two non-periodic approaches over that of periodic no-restart (with period Tno

MTTI). Note
that the application is perfectly parallel, and that the only overhead is for checkpoints

170 Chapter 7: Replication is more efficient than you think

10 1 100

MTBF (days)

0.4

0.6

0.8

1.0

Ra
tio

 to
 N

oR
es

ta
rt(

Tno M
TT

I)
Non-Periodic(Tno

MTTI, TYD)
Non-Periodic(Trs

opt, TYD)
Restart(Trs

opt)

Figure 7.2: Ratio of time-to-solution of two non-periodic strategies and restart over
time-to-solution of no-restart (one processor pair, C = CR = 60).

and re-executions after failures. Both non-periodic variants are better than no-restart,
the first one is within 98.3% of no-restart, and the second one is even better (95% of
no-restart) when the MTBF increases. We also see that restart is more than twice better
than no-restart with a single processor pair. Note that results are averaged over 100,000
simulations, each lasting for 10,000 periods, so that they are statistically guaranteed to
be accurate.

7.4.3 With b Processor Pairs

For b pairs, the reasoning is the same as with one pair, but the probability of hav-
ing a fatal error (both processors of a same pair failing) before the end of the period
changes. Letting pb(T) be the probability of failure before time T with b pairs, we
have pb(T) = 1− (1− (1− e−λT)2)b. As a consequence, computing the exact value of
Tlost(T) becomes complicated: obtaining a compact closed-form is not easy, because
we would need to expand terms using the binomial formula. Instead, we directly use
the Taylor expansion of pb(T) for λT close to 0. Again, this is valid only if T = Θ(λ−x)
with x < 1. We have pb(T) = 1 − (1 − (λT + o(λT))2)b = bλ2T2 + o(λ2T2) and
compute Tlost(T) with b pairs as Tlost(T) = 1

pb(T)

∫ T
0 t dP(X≤t)

dt dt = 2T
3 + o(T). As be-

fore, Tlost(T) ∼ 2T
3 . Also, as in Section 7.4.2, we analyze the restart strategy, which

requires any failed processor to recover whenever a checkpoint is taken. We come
back to the difference with the no-restart strategy after deriving the period for the
restart strategy. We compute the expected execution time of one period: E(T) =

pb(T)
(
Tlost(T) + D + R + E(T)

)
+ (1− pb(T))

(
T + CR) = T + 2bλ2T3

3 + o(λ2T3), and

7.5. TIME-TO-SOLUTION 171

Hrs(T) =
E(T)

T
− 1 =

CR

T
+

2bλ2T2

3
+ o(λ2T2). (7.19)

We finally derive the expression of the optimal checkpointing period with b pairs:

Trs
opt =

(
3CR

4bλ2

) 1
3

= Θ(λ−
2
3). (7.20)

When plugging it back in Equation (7.19), we get

Hrs(Trs
opt) =

(
3CR
√

bλ√
2

) 2
3

+ o(λ
2
3) = Θ(λ

2
3). (7.21)

for the optimal overhead when using b pairs of processors.
The derivation is very similar to the case with a single pair, and the result is essen-

tially the same, up to factoring in the number of pairs to account for a higher failure
rate. However, the difference between the no-restart and the restart strategies gets more
important. Indeed, with the no-restart strategy, several pairs can be struck once (and
even several times if the failures always strike the failed processor) before a pair finally
gets both its processors killed. While the no-restart strategy spares the cost of several
restarts, it runs at risk with periods whose length has been estimated à la Young/Daly,
thereby assuming an identical setting at the beginning of each period.

Finally, for the intuitive way to retrieve Equation (7.20), it goes as for Equation (7.18),
multiplying the frequency of fatal failures 1

µ
T
µ by a factor b to account for each of the

b pairs possibly experiencing a fatal failure.

7.5 Time-To-Solution

So far, we have focused on period length. In this section, we move to actual work
achieved by the application. Following [110], we account for two sources of overhead
for the application. First, the application is not perfectly parallel and obeys Amdahl’s
law [3], which limits its parallel speedup. Second, there is an intrinsic slowdown due
to active replication related to duplicating every application message [82, 110].

First, for applications following Amdahl’s law, the total time spent to compute W
units of computation with N processors is TAmdahl = γW + (1− γ)W

N = (γ + 1−γ
N)W,

where γ is the proportion of inherently sequential tasks. When replication is used,
this time becomes TAmdahl = (γ + 2(1−γ)

N)W. Following [110], we use γ = 10−5 in Sec-
tion 7.7. Second, as stated in [82, 110], another slowdown related to active replication
and its incurred increase of communications writes Trep = (1 + α)TAmdahl, where α is
some parameter depending upon the application and the replication library. Follow-
ing [110], we use either α = 0 or α = 0.2 in Section 7.7.

All in all, once we have derived Topt, the optimal period between two check-
points without replication (see Equation (7.6)), and Trs

opt, the optimal period between
two checkpoints with replication and restart (see Equation (7.20)), we are able to
compute the optimal number of operations to be executed by an application be-

172 Chapter 7: Replication is more efficient than you think

tween two checkpoints as Wopt =
Topt

(γ+ 1−γ
N)

for an application without replication, and

Wrs
opt =

Trs
opt

(1+α)(γ+ 1−γ
b)

=
Trs

opt

(1+α)
(

γ+ 2(1−γ)
N

) for an application with replication and the restart

strategy. Finally, for the no-restart strategy, using Tno
MTTI (see Equation (7.11)), the num-

ber of operations becomes Wno
MTTI =

Tno
MTTI

(1+α)(γ+ 1−γ
b)

=
Tno

MTTI

(1+α)
(

γ+ 2(1−γ)
N

) .

To compute the actual time-to-solution, assume that we have a total of Wseq op-
erations to do. With one processor, the execution time is Tseq = Wseq (assuming unit
execution speed). With N processors working in parallel (no replication), the failure-
free execution time is Tpar = (γ + 1−γ

N)Tseq. Since we partition the execution into
periods of length T, meaning that we have Tpar

T periods overall, the time-to-solution is
Tfinal =

Tpar
T E(T) = Tpar(H(T) + 1), hence

Tfinal =

(
γ +

1− γ

N

)
(H(T) + 1)Tseq. (7.22)

If we use replication with b pairs of processors (i.e., N
2 pairs) instead, the difference is

that Tpar = (1 + α)
(

γ + 1−γ
b

)
Tseq, hence

Tfinal = (1 + α)

(
γ +

2(1− γ)

N

)(
γ +

2(1− γ)

N

)
(H(T) + 1)Tseq. (7.23)

Without replication, we use the optimal period T = Topt. For the restart strategy, we
use the optimal period T = Trs

opt, and for no-restart, we use T = Tno
MTTI, as stated above.

7.6 Asymptotic Behavior

In this section, we compare the restart and no-restart strategies asymptotically. Both
approaches (and, as far as we know, all coordinated rollback-recovery approaches) are
subject to a design constraint: if the time between two restarts becomes of same mag-
nitude as the time to take a checkpoint, the application cannot progress. Therefore,
when evaluating the asymptotic behavior (i.e., when the number of nodes tends to
infinity, and hence the MTTI tends to 0), a first consideration is to state that none of
these techniques can support infinite growth, under the assumption that the check-
point time remains constant and that the MTTI decreases with scale. Still, in that case,
because the restart approach has a much longer checkpointing period than no-restart,
it will provide progress for lower MTTIs (and same checkpointing cost).

However, we can (optimistically) assume that checkpointing technology will evolve,
and that rollback-recovery protocols will be allowed to scale infinitely, because the
checkpoint time will remain a fraction of the MTTI. In that case, assume that with any
number N of processors, we have C = xMN for some small constant x < 1 (where
MN is the MTTI with N processors). Consider a parallel and replicated application

7.7. EXPERIMENTAL EVALUATION 173

that would take a time Tapp to complete without failures (and with no fault-tolerance
overheads). We compute the ratio R, which is the expected time-to-solution using the
restart strategy divided by the expected time-to-solution using the no-restart strategy:

R =
(Hrs(Trs

opt) + 1)Tapp

(Hno(Tno
MTTI) + 1)Tapp

=

3
√

9
8 πx2 + 1
√

2x + 1
.

Because of the assumption C = xMN , both the number of nodes N and the MTBF µ
simplify out in the above ratio. Under this assumption, the restart strategy is up to
8.4% faster than the no-restart strategy if x is within the range [0, 0.64], i.e., as long as
the checkpoint time takes less than 2/3 of the MTTI.

In the next section, we consider realistic parameters to evaluate the performance of
various strategies through simulations, and we also provide results when increasing
the number of processors N or reducing the MTBF.

7.7 Experimental Evaluation

In this section, we evaluate the performance of the no-restart and restart strategies
through simulations. Our simulator is publicly available [24] so that interested read-
ers can instantiate their preferred scenarios and repeat the same simulations for repro-
ducibility purpose. The code is written in-house in C++ and does not use any library
other than the Standard Template Library (STL).

We compare different instances of the models presented above. We let Restart(T)
denote the restart strategy with checkpointing period T, and NoRestart(T) denote the
no-restart strategy with checkpointing period T. In most figures, we present the over-
head as given by Equation (7.1): it is a relative time overhead, that represents the time
spent tolerating failures divided by the duration of the protected application. Recall
previously introduced notations:
• For Restart(T), the overhead Hrs(T) is predicted by the model according to Equa-
tion (7.19);
• For NoRestart(T), the overhead Hno(T) is estimated in the literature according to
Equation (7.12);
• Trs

opt denotes the optimal period for minimizing the time overhead for the restart strat-
egy, as computed in Equation (7.20);
• Tno

MTTI from Equation (7.11) is the standard period used in the literature for the
no-restart strategy, after an analogy with the Young/Daly formula.

The no-restart strategy with overhead Hno(Tno
MTTI) represents the state of the art

for full replication [82]. For completeness, we also compare the no-restart and restart
strategies with several levels of partial replication [72, 110].

We describe the simulation setup in Section 7.7.1. We assess the accuracy of our
model and of first-order approximations in Section 7.7.2. We compare the performance
of restart with restart-on-failure in Section 7.7.3. In Section 7.7.4, we show the impact of
key parameters on the difference between the checkpointing periods of the no-restart
and restart strategies, and on the associated time overheads. Section 7.7.5 discusses the

174 Chapter 7: Replication is more efficient than you think

impact of the different strategies on I/O pressure. Section 7.7.6 investigates in which
scenarios a smaller time-to-solution can be achieved with full or partial replication.
Section 7.7.7 explores strategies that restart after a given number of failures.

7.7.1 Simulation Setup

To evaluate the performance of the no-restart and restart strategies, we use a pub-
licly available simulator [24] that generates random failures following an exponential
probability distribution with a given mean time between individual node failures and
number of processor pairs. Then, we set the checkpointing period, and checkpointing
cost. Default values are chosen to correspond to the values used in [110], and are de-
fined as follows. For the checkpointing cost, we consider two default values: C = 60
seconds corresponds to buddy checkpointing, and C = 600 seconds corresponds to
checkpointing on remote storage. We let the MTBF of an individual node be µ = 5
years, and we use N = 200, 000, hence having b = 100, 000 pairs when replication is
used. We then simulate the execution of an application lasting for 100 periods (total
execution time 100T) and we average the results on 1000 runs. We measure two main
quantities: time overhead and optimal period length. For simplicity, we always as-
sume that R = C, i.e., read and write operations take (approximately) the same time.
We cover the whole range of possible values for CR, using either C, 1.5C or 2C. This
will show the impact of overlapping checkpoint and processor restart.

7.7.2 Model Accuracy

0 500 1000 1500 2000 2500 3000 3500
Checkpoint duration (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

rs(Trs
opt)

Restart(Tno
MTTI)

rs(Tno
MTTI)

NoRestart(Tno
MTTI)

no(Tno
MTTI)

Figure 7.3: Evaluation of model accuracy
for time overhead. µ = 5 years, b = 105.

Figure 7.3 compares three different ways
of estimating the time overhead of an
application running on b = 105 proces-
sor pairs. Solid lines are measurements
from the simulations, while dashed lines
are theoretical values. The red color
is for Restart(Trs

opt), the blue color is for
Restart(Tno

MTTI) and the green color is for
NoRestart(Tno

MTTI). For the restart strategy,
CR = C in this figure.

For the restart strategy, the results
from simulation match the results from
the theory quite accurately. Because our
formula is an approximation valid when
T � C, the difference between simulated
time overhead and Hrs(Trs

opt) slightly in-
creases when the checkpointing cost be-
comes greater than 1500 seconds. We also verify that Restart(Trs

opt) has smaller overhead
than Restart(Tno

MTTI) in the simulations, which nicely corroborates the model.

7.7. EXPERIMENTAL EVALUATION 175

We also see that Hno(Tno
MTTI) is a good estimate of the actual simulated overhead of

NoRestart(Tno
MTTI) only for C < 500. Larger values of C induce a significant deviation

between the prediction and the simulation. Values given by Hno(T) underestimate the
overheads for lower values of C more than Hrs(T), even when using the same Tno

MTTI
period to checkpoint. As described at the end of Section 7.4.1, the Hno(T) formula is
an approximation whose accuracy is unknown, and when C scales up, some elements
that were neglected by the approximation become significant. The formula for Trs

opt, on
the contrary, remains accurate for higher values of C.

0 500 1000 1500 2000 2500 3000 3500
Checkpoint duration (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

rs(Trs
opt)

Restart(Tno
MTTI)

rs(Tno
MTTI)

NoRestart(Tno
MTTI)

no(Tno
MTTI)

0 1000 2000 3000
Checkpoint duration (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

rs(Trs
opt)

Restart(Tno
MTTI)

rs(Tno
MTTI)

NoRestart(Tno
MTTI)

no(Tno
MTTI)

Figure 7.4: Evaluation of model accuracy for time overhead with two trace logs
(LANL#18 on the left, and LANL#2 on the right).

Figure 7.4 is the exact counterpart of Figure 7.3 when using log traces from real
platforms instead of randomly generated failures with an exponential distribution. We
use the two traces featuring the largest number of failures from the LANL archive [125,
120], namely LANL#2 and LANL#18. According to the detailed study in [12], failures
in LANL#18 are not correlated while those in LANL#2 are correlated, providing per-
fect candidates to experimentally study the impact of failure distributions. LANL#2
has an MTBF of 14.1 hours and is composed of 5350 failures, while LANL#18 has an
MTBF of 7.5 hours and is composed of 3899 failures. For the sake of comparing with
Figure 7.3 that used a processor MTBF of 5 years (and an exponential distribution), we
scale both traces as follows:
•We target a platform of 200,000 processors with an individual MTBF of 5 years. Thus
the global platform MTBF needs to be 64 times smaller than the MTBF of LANL#2,
and 32 times smaller than the MTBF of LANL#18. Hence we partition the global plat-
form into 64 groups (of 3,125 processors) for LANL#2, and into 32 groups (of 6,250
processors) for LANL#18;
•Within each group, the trace is rotated around a randomly chosen date, so that each
trace starts independently;
• We generate 200 sets of failures for each experiment and report the average time
overhead.

We observe similar results in Figure 7.3 and Figure 7.4. For LANL#18, the exper-

176 Chapter 7: Replication is more efficient than you think

imental results are quite close to the model. For LANL#2, the model is slightly less
accurate because of some severely degraded intervals with failure cascades. However,
the restart strategy still grants lower time overheads than the no-restart strategy. For an
exponential distribution, only 15% of the runs where an application failure was expe-
rienced did experience two or more failures. This ratio increases to 20% for LANL#18
and reaches 50% for LANL#2; this leads to a higher overhead than estimated for IID
failures, but this is true for all strategies, and restart remains the best one.

0 10000 20000 30000 40000
Period length T (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ti
m

e
ov

er
he

ad

Restart(T) (CR = C)
Restart(T) (CR = 1.5C)
Restart(T) (CR = 2C)

rs(T)
NoRestart(T)
Optimums
Tno

MTTI

0 20000 40000 60000 80000 100000
Period length T (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
ov

er
he

ad

Restart(T) (CR = C)
Restart(T) (CR = 1.5C)
Restart(T) (CR = 2C)

rs(T)
NoRestart(T)
Optimums
Tno

MTTI

Figure 7.5: Time overhead as a function of the checkpointing period T for C = 60
seconds (left) or C = 600 seconds (right), MTBF of 5 years, IID failures and b = 105

processor pairs.

Next, on both graphs in Figure 7.5, we present the details of the evolution of the
time overhead as a function of the period length for C = 60s and C = 600s. Here,
we compare the overhead of the restart strategy obtained through simulations (solid
red, orange and yellow lines for different values of CR), the overhead of the restart
strategy obtained through the theoretical model with CR =C (dashed blue line), and
the overhead of the no-restart strategy obtained through simulations (solid green line).
In each case, a circle denotes the optimal period, while Tno

MTTI (the MTTI extension of
the Young/Daly formula for no-restart) is shown with a vertical bar.

Hrs(Trs
opt) perfectly matches the behavior of the simulations, and the optimal value

is very close to the one found through simulations. The simulated overhead of
NoRestart(T) is always larger than for Restart(T), with a significant difference as T
increases. Surprisingly, the optimal value for the simulated overhead of NoRestart(T)
is obtained for a value of T close to Tno

MTTI, which shows a posteriori that the approxi-
mation worked out pretty well in this scenario. The figure also shows that the restart
strategy is much more robust than the no-restart one: in all cases, Restart(T) provides
a lower overhead than NoRestart(T) throughout the spectrum, even when CR = 2C.
More importantly, this overhead remains close to the minimum for a large range of
values of T: when CR = C = 60s, for values of T between 21,000s and 25,000s, the
overhead remains between 0.39% (the optimal), and 0.41%. If we take the same tol-
erance (overhead increased by 5%), the checkpointing period must be between 6,000s

7.7. EXPERIMENTAL EVALUATION 177

100 101 102

MTBF (years)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

RestartOnFailure

Figure 7.6: Comparison with restart-on-failure.

and 9,000s, thus a range that is 1/3rd larger than for the restart strategy. When consid-
ering CR = C = 600s, this range is 18,000s (40,000s to 58,000s) for the restart strategy,
and 7,000s (22,000s to 29,000s) for the no-restart one. This means that a user has a
much higher chance of obtaining close-to-optimum performance by using the restart
strategy than if she was relying on the no-restart one, even if some key parameters that
are used to derive Trs

opt are mis-evaluated. If CR = 1.5C or CR = 2C, the same trends
are observed: the optimal values are obtained for longer periods, but they remain
similar in all cases, and significantly lower than for the no-restart strategy. Moreover,
the figures show the same plateau effect around the optimal, which makes the restart
strategy robust.

7.7.3 Restart-on-failure

Figures 7.3 to 7.5 showed that the restart strategy is more efficient than the no-restart
one. Intuitively, this is due to the rejuvenation introduced by the periodical restarts:
when reaching the end of a period, failed processes are restarted, even if the appli-
cation could continue progressing in a more risky configuration. A natural extension
would be to consider the restart-on-failure strategy described in Section 7.1. This is the
scenario evaluated in Figure 7.6: we compare the time overhead of Restart(Trs

opt) with
restart-on-failure, which restarts each processor after each failure.

Compared to Restart(Tno
MTTI), the restart-on-failure strategy grants a significantly

higher overhead that quickly grows to high values as the MTBF decreases. The
restart-on-failure strategy works as designed: no rollback was ever needed, for any
of the simulations (i.e., failures never hit a pair of replicated processors within the
time needed to checkpoint). However, the time spent checkpointing after each failure
quickly dominates the execution. This reflects the issue with this strategy, and the
benefit of combined replication and checkpointing: as failures hit the system, it is nec-
essary for performance to let processors fail and the system absorb most of the failures

178 Chapter 7: Replication is more efficient than you think

100 101 102

MTBF (years)

0.00

0.02

0.04

0.06

0.08

0.10
Ti

m
e

ov
er

he
ad

Restart(Trs
opt) (CR = C)

Restart(Trs
opt) (CR = 2C)

NoRestart(Tno
MTTI)

100 101 102

MTBF (years)

0.0

0.1

0.2

0.3

0.4

Ti
m

e
ov

er
he

ad

Restart(Trs
opt) (CR = C)

Restart(Trs
opt) (CR = 2C)

NoRestart(Tno
MTTI)

Figure 7.7: Time overhead as a function of MTBF, with C = 60s (left) or C = 600s
(right), b = 105 processor pairs.

using the replicates. Combining this result with Figure 7.5, we see that it is critical for
performance to find the optimal rejuvenation period: restarting failed processes too
frequently is detrimental to performance, as is restarting them too infrequently.

7.7.4 Impact of Parameters

The graphs in Figure 7.7 describe the impact of the individual MTBF of the proces-
sors on the time overhead. We compare Restart(Trs

opt), Restart(Tno
MTTI) (both in the most

optimistic case when CR = C and in the least optimistic case when CR = 2C) and
NoRestart(Tno

MTTI). As expected, when CR increases, the time overhead increases. How-
ever, even in the case CR = 2C, both restart strategies outperform the no-restart strategy.
As the MTBF increases, the overhead of all strategies tends to be negligible, since a
long MTBF has the cumulated effect that the checkpointing period increases and the
risk of needing to re-execute decreases. The longer the checkpoint time C, the higher
the overheads, which is to be expected; more interestingly, with higher C, the restart
strategy needs CR to remain close to C to keep its advantage against the no-restart strat-
egy. This advocates for a buddy checkpointing approach with restart strategy when
considering replication and checkpointing over unreliable platforms.

7.7.5 I/O Pressure

Figure 7.8 reports the difference between Trs
opt and Tno

MTTI. We see that Trs
opt increases

faster than Tno
MTTI when the MTBF decreases. This is due to the fact that the processors

are restarted at each checkpoint, hence reducing the probability of failure for each pe-
riod; it mainly means that using the restart strategy (i) decreases the total application
time, and (ii) decreases the I/O congestion in the machine, since checkpoints are less
frequent. This second property is critical for machines where a large number of appli-
cations are running concurrently, and for which, with high probability, the checkpoint

7.7. EXPERIMENTAL EVALUATION 179

100 101 102

MTBF (years)
0

2

4

6

9

Pe
rio

d
le

ng
th

 (d
ay

s)

Trs
opt (CR = C)

Trs
opt (CR = 1.5C)

Trs
opt (CR = 2C)

Tno
MTTI

100 101 102

MTBF (years)
0

2

4

6

9

Pe
rio

d
le

ng
th

 (d
ay

s)

Trs
opt (CR = C)

Trs
opt (CR = 1.5C)

Trs
opt (CR = 2C)

Tno
MTTI

Figure 7.8: Period length T as function of MTBF, with C = 60s (left) or C = 600s
(right), b = 105 processor pairs.

100 101 102

MTBF (years)

5

10

50

Ti
m

e
to

 S
ol

ut
io

n
(d

ay
s)

100 101 102

MTBF (years)

5

10

50

Ti
m

e
to

 S
ol

ut
io

n
(d

ay
s)

No replication
Restart(Trs

opt) (CR = C)
Partial90(Trs

opt) (CR = C)
Partial50(Tno

MTTI) (CR = C)

NoRestart(Tno
MTTI)

Lower bound with full replication
Lower bound without replication

Figure 7.9: Time-to-solution for N = 2× 105 standalone proc. against full and partial
replication approaches, as a function of MTBF, with CR = C = 60s (left) or CR = C =
600s (right), γ = 10−5, α = 0.2.

times are longer than expected because of I/O congestion.

7.7.6 Time-To-Solution

Looking at the time overhead is not sufficient to evaluate the efficiency of replication.
So far, we only compared different strategies that all use full process replication. We
now compare the restart and no-restart strategies to the approach without replication,
and also to the approach with partial replication [72, 110]. Figure 7.9 shows the corre-
sponding time-to-solution for γ = 10−5 and α = 0.2 (values used in [110]), and CR = C

180 Chapter 7: Replication is more efficient than you think

104 105 106

N

5

10

50
Ti

m
e

to
 S

ol
ut

io
n

(d
ay

s)

104 105 106

N

5

10

50

Ti
m

e
to

 S
ol

ut
io

n
(d

ay
s)

No replication
Restart(Trs

opt) (CR = C)
Partial90(Trs

opt) (CR = C)
Partial50(Tno

MTTI) (CR = C)

NoRestart(Tno
MTTI)

Lower bound with full replication
Lower bound without replication

Figure 7.10: Time-to-solution with MTBF of 5 years against full and partial replication
approaches, as a function of N, with CR = C = 60s (left) or CR = C = 600s (right),
γ = 10−5, α = 0.2.

when the individual MTBF varies. Recall that the time-to-solution is computed using
Equation (7.22) without replication (where H(T) is given by Equation (7.7)), and using
Equation (7.23) with replication (where H(T) is given by Equation (7.12) for no-restart,
and by Equation (7.19) for restart). In the simulations, Tseq is set so that the application
lasts one week with 100,000 processors (and no replication).

In addition to the previously introduced approaches, we evaluate Partial90(Trs
opt)

and Partial50(Tno
MTTI). Partial90 represents a partial replication approach where 90%

of the platform is replicated (there are 90,000 processor pairs and 20,000 standalone
processors). Similarly, 50% of the platform is replicated for Partial50 (there are 50,000
processor pairs and 100,000 standalone processors). Figure 7.9 illustrates the benefit
of full replication: when the MTBF becomes too short, replication becomes manda-
tory. Indeed, in some cases, simulations without replication or with partial replication
would not complete, because one fault was (almost) always striking before a check-
point, preventing progress. For C = 60s and N = 2× 105, γ = 10−5 and α = 0.2,
full replication grants the best time-to-solution for an MTBF shorter than 1.8× 108.
However, when the checkpointing cost increases, this value climbs up to 1.9× 109, i.e.,
roughly 10 times higher than with 60 seconds. As stated before, Trs

opt gives a better
overhead, thus a better execution time than Tno

MTTI. If machines become more unreli-
able, the restart strategy allows us to maintain the best execution time. Different values
of γ and α give the same trend as in our example, with large values of γ making repli-
cation more efficient, while large values of α reduce the performance. Similarly to
what was observed in [110], for a homogeneous platform (i.e., if all processors have a
similar risk of failure), partial replication (at 50% or 90%) exhibits lower performance

7.7. EXPERIMENTAL EVALUATION 181

100 101 102

MTBF (years)

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
ov

er
he

ad

Restart(Trs
opt)

Restart-2(Trs
opt)

Restart-2(Tno
MTTI)

Restart-6(Trs
opt)

Restart-6(Tno
MTTI)

Restart-12(Trs
opt)

Restart-12(Tno
MTTI)

Restart-56(Trs
opt)

Restart-56(Tno
MTTI)

Restart-112(Trs
opt)

Restart-112(Tno
MTTI)

Restart-281(Trs
opt)

Restart-281(Tno
MTTI)

NoRestart(Tno
MTTI)

Figure 7.11: Comparison of restart strategy with restart only every 2, 6, 12, 56, 112, or
281 dead proc., with Trs

opt and Tno
MTTI.

than no replication for long MTBF, and lower performance than the no-restart strategy
(hence even lower performance than the restart strategy) for short MTBF. This confirms
that partial replication has potential benefit only for heterogeneous platforms, which
is outside the scope of this study.

We now further focus on discussing when replication should be used. Figure 7.10
shows the execution time of an application when the number of processors N varies.
Each processor has an individual MTBF of 5 years. The same general comments can be
made: Restart(Trs

opt) always grants a slightly lower time-to-solution than NoRestart(Tno
MTTI),

because it has a smaller overhead. As before, when N is large, the platform is less reli-
able and the difference between Restart(Trs

opt) and NoRestart(Tno
MTTI) is higher compared

to small values of N. We see that replication becomes mandatory for large platforms:
without replication, or even with 50% of the platform replicated, the time-to-solution
is more than 10 times higher than the execution time without failures. With γ = 10−5

and α = 0.2, replication becomes more efficient than no replication for N ≥ 2× 105

processors when C = 60s. However, when C = 600s, it starts being more efficient
when N ≥ 2.5× 104, i.e., roughly 10 times less processors when C is 10 times longer.
This study further confirms that partial replication never proved to be useful through-
out our experiments.

7.7.7 When to Restart

In this section, we consider a natural extension of the restart approach: instead of
restarting failed processors at each checkpoint, the restart can be delayed until the

182 Chapter 7: Replication is more efficient than you think

next checkpoint where the number of accumulated failures reaches or exceeds a given
bound nbound, thereby reducing the frequency of the restarts.

The restart strategy assumes that after a checkpoint, the risk of any processor fail-
ing is the same as in the initial configuration. For the extension, there is no guarantee
that Trs

opt remains the optimal interval between checkpoints; worse, there is no guar-
antee that periodic checkpointing remains optimal. To evaluate the potential gain of
reducing the restart frequency, we consider the two proposed intervals: Trs

opt and Tno
MTTI.

And, since most checkpoints will not incur a restart, we assume CR = C when com-
puting Trs

opt. However, checkpoints where processes are restarted have a cost of twice
the cost of a simple checkpoint in the simulation: this is the worst case for the restart
strategy. We then simulate the execution, including restarts due to reaching nbound
failures and due to application crashes. With b = 100, 000 processor pairs, we expect
nfail(2b) = 561 failures before the application is interrupted; so we will consider a
large range of values for nbound: from 2, 6, 12, to cover cases where few failures are
left to accumulate, to 56, 112, or 281, that represent respectively 10%, 20% and 50% of
nfail(2b), to cover cases where many failures can accumulate.

The results are presented in Figure 7.11, for a variable node MTBF. The time over-
head of the extended versions is higher than the time overhead of the restart approach
using Trs

opt as a checkpointing (and restarting) interval. The latter is also lower than the
overhead of the no-restart strategy, which on average corresponds to restarting after
nbound = nfail(2b) = 561 failures. This shows that restarting the processes after each
checkpoint consistently decreases the time overhead. Using the optimal checkpointing
period for restart Trs

opt, increasing nbound also increases the overhead. Moreover, when
using small values (such as 2 and 6) for nbound, we obtain exactly the same results as
for the restart strategy. This is due to the fact that between two checkpoints, the restart
strategy usually looses around 6 processors, meaning that restart is already the same
strategy as accumulating errors up to 6 (or less) before restarting. With nbound =12, on
average the restart happens every two checkpoints, and the performance is close, but
slightly slower than the restart strategy.

Finally, an open problem is to determine the optimal checkpointing strategy for the
extension of restart tolerating nbound failures before restarting failed processors. This
optimal strategy could render the extension more efficient than the baseline restart
strategy. Given the results of the simulations, we conjecture this optimal number to be
0, i.e., restart would be the optimal strategy.

Summary. Overall, we have shown that the restart strategy with period Trs
opt is indeed

optimal and that our model is realistic. We showed that restart decreases time over-
head, hence time-to-solution, compared to using no-restart with period Tno

MTTI. The next
section shows similar gains in energy overheads. The main decision is still to decide
whether the application should be replicated or not. However, whenever it should be
(which is favored by a large ratio of sequential tasks γ, a large checkpointing cost C,
or a short MTBF), we are now able to determine the best strategy: use full replication,
restart dead processors at each checkpoint (overlapped if possible), and use Trs

opt for

7.8. ENERGY CONSUMPTION 183

the checkpointing period.

7.8 Energy consumption

In this last section, we extend the approach to a different objective function: the goal is
now to minimize the energy overhead. If E(T) is the expected energy consumption of
a period of length P = T +C, the energy overhead with a single processor is expressed
as:

Henergy(T) =
E(T)

T(Pcomp + Pstatic)
− 1, (7.24)

where Pcomp is the dynamic power consumption of a processor when computing, and
Pstatic denotes the static power, which is paid when the processor is kept idle, but still
turned on.

We also denote by PI/O the dynamic power when performing I/O operations,
which has to be accounted for when checkpointing, hence in the expression of E(T).
We express below E(T) and Henergy(T) in the cases without replication (single pro-
cessor or N processors, Section 7.8.1) and with replication (one pair or b pairs, Sec-
tion 7.8.2), and derive in each case the optimal period, and the optimal energy over-
head. Finally, we present comprehensive simulation results in Section 7.8.3.

7.8.1 Without replication

7.8.1.1 With a single processor

In this case, we use the same approach as in Section 7.3.1 and we write a recursive
formula similar to Equation (7.2):

E(T) = (1− F(T))(T(Pcomp + Pstatic) + C(PI/O + Pstatic))

+ F(T)(ElostT(Pcomp + Pstatic) + DPstatic + R(PI/O + Pstatic)

+ E(T)) (7.25)

If the computation is successful, then we compute at power Pcomp + Pstatic during a
time T and use the power PI/O + Pstatic during the checkpoint. However if a failure
strikes, the machine is used at power Pcomp + Pstatic for ElostT seconds, then used at
power Pstatic for the downtime, and used at power PI/O + Pstatic during the recovery
before starting the period anew. Finally, we obtain:

E(T) =
(

C + (eλT − 1)R
)
(PI/O + Pstatic)

+ (eλT − 1)DPstatic +
eλT − 1

λ
(Pcomp + Pstatic).

184 Chapter 7: Replication is more efficient than you think

Using the Taylor expansion as previously, we obtain the overhead

Henergy(T) =
C(PI/O + Pstatic)

T(Pcomp + Pstatic)
+

λT
2

+ o(λT). (7.26)

Again, this overhead is minimized for T = Θ(λ−
1
2). By differentiating Equa-

tion (7.26), we get the optimal period minimizing energy consumption:

Tenergy
opt =

√
2C(PI/O + Pstatic)

λ(Pcomp + Pstatic)
= Θ(λ−

1
2). (7.27)

Plugging it back into Equation (7.26), we get the optimal energy overhead:

H
energy
opt =

√
2Cλ(PI/O + Pstatic)

Pcomp + Pstatic
+ o(λ

1
2) = Θ(λ

1
2). (7.28)

7.8.1.2 With N processors

We can generalize the previous result for the case with N processors, as done in Sec-
tion 7.3.2 for the time overhead. We obtain another similar formula:

Tenergy
opt =

√√√√ 2C(P(N)
I/O + NPstatic)

N2λ(Pcomp + Pstatic)
= Θ(λ−

1
2) (7.29)

for the optimal checkpointing period, while the overhead becomes:

H
energy
opt =

√√√√2Cλ(P(N)
I/O + NPstatic)

Pcomp + Pstatic
+ o(λ

1
2) = Θ(λ

1
2). (7.30)

The main difference between Equations (7.27), (7.28) and Equations (7.29), (7.30) is that
the dynamic power and the static power is multiplied by N, the number of processors,
as more processors consume more energy. Similarly, PI/O becomes P(N)

I/O = PI/O,static +
NPI/O,comm to take into account that more nodes are sending data to the external
storage.

7.8.2 With replication

7.8.2.1 With one processor pair

We now compute the expected energy consumption E(T) of a period of length P =
T + CR. We use the same approach as in Section 7.8.1.1 and aim at minimizing the

7.8. ENERGY CONSUMPTION 185

energy overhead

Henergy(T) =
E(T)

2T(Pcomp + Pstatic)
− 1 (7.31)

We write a recursive formula similar to Equation (7.13):

E(T) = (1− p1(T))
(

T(2Pcomp + 2Pstatic) + CR(P(2)
I/O + 2Pstatic)

)
+ p1(T)

(
ElostT(2Pcomp + 2Pstatic) + 2DPstatic

+ R(P(2)
I/O + 2Pstatic) + E(T)

)
. (7.32)

After solving, we obtain:

E(T) = T(2Pcomp + 2Pstatic) + CR(P(2)
I/O + 2Pstatic)

+
(eλT − 1)2

2eλT − 1

((2e−2λT − 4e−λT)λT + e−2λT − 4e−λT + 3
2λ(1− e−λT)2 (2Pcomp + 2Pstatic)

+ 2DPstatic + R(P(2)
I/O + 2Pstatic)

)
.

After Taylor expansion, we derive the overhead Henergy(T):

Henergy(T) =
CR(P(2)

I/O + 2Pstatic)

2T(Pcomp + Pstatic)
+

2λ2T2

3
+ o(λ2T2) (7.33)

The computations are similar to Section 7.4.2 and we find the following optimal values
for Tenergy

opt and H
energy
opt :

Tenergy
opt =

3CR(P(2)
I/O + 2Pstatic)

8λ2(Pcomp + Pstatic)

 1
3

= Θ(λ
−2
3). (7.34)

H
energy
opt =

3CRλ(P(2)
I/O + 2Pstatic)

2
√

2(Pcomp + Pstatic)

 2
3

+ o(λ
2
3) = Θ(λ

2
3). (7.35)

7.8.2.2 With b processor pairs

As previously, we compute the energy consumption for the execution of one period of
duration P = T + CR using the following recursion:

E(T) = pb(T)
(
ElostT(2bPcomp + 2bPstatic) + D2bPstatic

+ R(P(N)
I/O + 2bPstatic) + E(T)

)
+ (1− pb(T))

(
T(2bPcomp + 2bPstatic) + CR(P(N)

I/O + 2bPstatic)
)
.

186 Chapter 7: Replication is more efficient than you think

With probability pb(T), the application fails so we account for the energy consumed
until the failure ElostT(2bPcomp + 2bPstatic), followed by a downtime and a restart

(power consumption of P(N)
I/O + 2bPstatic). Otherwise, the application is successful,

meaning that we computed at power 2b(Pcomp + Pstatic) during T seconds and we

stored a checkpoint (overlapped with a restart) at power P(N)
I/O + 2bPstatic. We already

computed ElostT in the previous subsection so we can directly derive, using a Taylor
expansion of the exponential function and solving the previous equation that:

Henergy(T) =
E(T)

T · 2b(Pcomp + Pstatic)
− 1 (7.36)

=
CR(P(N)

I/O + 2bPstatic)

2bT(Pcomp + Pstatic)
+

2bλ2T2

3
+ o(λ2T2),

which is very similar to Equation (7.33), with the only difference being a factor b on
the second term and power consumption factors. We then derive a similar optimal
period time Tenergy

opt as well as the optimal energy overhead H
energy
opt :

Tenergy
opt =

 3CR(P(N)
I/O + 2bPstatic)

8b2λ2(Pcomp + Pstatic)

 1
3

= Θ(λ
−2
3). (7.37)

H
energy
opt =

3CRλ(P(N)
I/O + 2bPstatic)

2
√

2b(Pcomp + Pstatic)

 2
3

+ o(λ
2
3) = Θ(λ

2
3). (7.38)

7.8.3 Experiments

For the power consumption, we chose Pstatic = 10W/node and Pcomp = Pstatic, so that
the non-idle power consumption of a node is 20W (i.e., an exascale machine with 106

nodes would reach the proposed bound of 20MW). For PI/O, as measured in [64], we
set it to 15% of the static power, i.e., PI/O = 0.15Pstatic = 1.5W/node. With these values,
we have PI/O+Pstatic

Pcomp+Pstatic
= 0.575, meaning that optimizing energy overhead will result in a

shorter period than when optimizing time overhead.
Graphs in Figure 7.12 describe the impact of the individual MTBF of the proces-

sors on the energy overhead: they are the counterpart of Figure 7.7 that focused on
execution time. The energy overheads reduce by a factor ranging from 62% to 80%,
with the average being 72%.

Figure 7.13 shows the difference between the two optimal periods Trs
opt and Trs

opt,en.
As we can see, optimizing the time overhead or the energy overhead has a negligible
impact on their values. When we optimize the energy overhead, our worst increase for
the time overhead is around 15% for a MTBF ranging from 5× 106 to 1010, CR = C =
60 seconds and b = 105. The average increase however is of 3.1% over the whole range.

7.8. ENERGY CONSUMPTION 187

100 101 102

MTBF (years)

0.00

0.02

0.04

0.06

0.08

En
er

gy
 o

ve
rh

ea
d

Restart(Trs
opt) (CR = C)

Restart(Trs
opt) (CR = 2C)

NoRestart(Tno
MTTI)

100 101 102

MTBF (years)

0.0

0.1

0.2

0.3

En
er

gy
 o

ve
rh

ea
d

Restart(Trs
opt) (CR = C)

Restart(Trs
opt) (CR = 2C)

NoRestart(Tno
MTTI)

Figure 7.12: Influence of the MTBF on the energy overhead for the Ra nd no-restart
strategies. Checkpointing time set to 60 seconds (left) or 600 seconds (right), with 105

pairs of processors.

106 107 108 109 1010

MTBF (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

T
im

e
 o

v
e
rh

e
a
d

Restart(T rsopt) (C
R =C)

Restart(T rsopt, en) (C
R =C)

106 107 108 109 1010

MTBF (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
n
e
rg

y
 o

v
e
rh

e
a
d

Restart(T rsopt) (C
R =C)

Restart(T rsopt, en) (C
R =C)

Figure 7.13: Impact of optimizing the time overhead or the energy overhead on the
time overhead (left) or the energy overhead (right) as a function of the MTBF (C = 60s,
105 pairs of processors).

188 Chapter 7: Replication is more efficient than you think

105 106 107 108

PI/O

10-3

10-2

10-1

100
T
im

e
 o

v
e
rh

e
a
d

Restart(T rsopt) (C
R =C)

Restart(TnoMTTI) (C
R =C)

Restart(T rsopt) (C
R =C+R)

Restart(TnoMTTI) (C
R =C+R)

NoRestart(TnoMTTI)

105 106 107 108

PI/O

10-3

10-2

10-1

100

E
n
e
rg

y
 o

v
e
rh

e
a
d

Restart(T rsopt) (C
R =C)

Restart(TnoMTTI) (C
R =C)

Restart(T rsopt) (C
R =C+R)

Restart(TnoMTTI) (C
R =C+R)

NoRestart(TnoMTTI)

Figure 7.14: Time and energy overheads when varying PI/O (MTBF 5 years, C = 60s,
b = 105) when optimizing the time overhead.

105 106 107 108

PI/O

10-3

10-2

10-1

100

T
im

e
 o

v
e
rh

e
a
d

Restart(T rsopt, en) (C
R =C)

Restart(TnoMTTI, en) (C
R =C)

Restart(T rsopt, en) (C
R =C+R)

Restart(TnoMTTI, en) (C
R =C+R)

NoRestart(TnoMTTI, en)

105 106 107 108

PI/O

10-3

10-2

10-1

100

E
n
e
rg

y
 o

v
e
rh

e
a
d

Restart(T rsopt, en) (C
R =C)

Restart(TnoMTTI, en) (C
R =C)

Restart(T rsopt, en) (C
R =C+R)

Restart(TnoMTTI, en) (C
R =C+R)

NoRestart(Tno, enMTTI)

Figure 7.15: Time and energy overheads when varying PI/O (MTBF 5 years, C = 60s,
b = 105) when optimizing the energy overhead.

When optimizing the time overhead, we measured a maximum of 23% improvement
under the same conditions with the average increase being 4.2%. Overall, with our
values we do not need to specifically optimize the energy overhead, except if the ratio
between PI/O + Pstatic and Pcomp + Pstatic is much greater or much smaller than 1, where
the difference between the two optimal periods might differ more than that.

Finally, Figures 7.14 and 7.15 show the impact of varying PI/O on both time and
energy overheads, the former when optimizing the time overhead, the latter when
optimizing the energy overhead. We once again show that the Rs trategy with the
corresponding optimal period is the best one, with the only exception being when
PI/O is high (more than 107W, i.e. 10 times the value set in the previous experiments).
If we want to optimize the energy consumption, then using Tno

MTTI,en can lower the
time overhead (and only increases a bit the energy overhead).

7.9. CONCLUSION 189

7.9 Conclusion

In this work, we have revisited process replication combined with checkpointing, an
approach that has received considerable attention from the HPC community in re-
cent years. Opinion is divided about replication. By definition, its main drawback
is that 50% of platform resources will not contribute to execution progress, and such
a reduced throughput does not seem acceptable in many scenarios. However, check-
point/restart alone cannot ensure full reliability in heavily failure-prone environments,
and must be complemented by replication in such unreliable environments. Previous
approaches all used the no-restart strategy. In this work, we have introduced a new
rollback/recovery strategy, the restart strategy, which consists of restarting all failed
processes at the beginning of each period. Thanks to this rejuvenation, the system
remains in the same conditions at the beginning of each checkpointing period, which
allowed us to build an accurate performance model and to derive the optimal check-
pointing period for this strategy. This period turns out to be much longer than the
one used with the no-restart strategy, hence reducing significantly the I/O pressure
introduced by checkpoints, and improving the overall time-to-solution. To validate
this approach, we have simulated the behavior of realistic large-scale systems, with
failures either IID or from log traces. We have compared the performance of restart
with the state-of-the-art strategies. Another key advantage of the restart strategy is its
robustness: the range of periods in which its performance is close to optimal is much
larger than for the no-restart strategy, making it a better practical choice to target un-
reliable platforms where the key elements (MTBF and checkpoint duration) are hard
to estimate. In the future, we plan to evaluate, at least experimentally, non-periodic
checkpointing strategies that rejuvenate failed processors after a given number of fail-
ures is reached or after a given time interval is exceeded.

Part III

Scheduling problems

191

Chapter 8

Design and Comparison of Resilient Schedul-
ing Heuristics for Parallel Jobs

This chapter focuses on the resilient scheduling of parallel jobs on high-performance
computing (HPC) platforms to minimize the overall completion time, or makespan.
We revisit the classical problem while assuming that jobs are subject to transient or
silent errors, and hence may need to be re-executed each time they fail to complete
successfully. This work generalizes the classical framework where jobs are known of-
fline and do not fail: in the classical framework, list scheduling that gives priority to
longest jobs is known to be a 3-approximation when imposing to use shelves, and a 2-
approximation without this restriction. We show that when jobs can fail, using shelves
can be arbitrarily bad, but unrestricted list scheduling remains a 2-approximation.
The chapter focuses on the design of several heuristics, some list-based and some
shelf-based, along with different priority rules and backfilling strategies. We assess
and compare their performance through an extensive set of simulations, using both
synthetic jobs and log traces from the Mira supercomputer. The work in this chapter
is joint work with Anne Benoit, Hongyang Sun and Yves Robert, and will be pub-
lished in the workshop on Advances in Parallel and Distributed Computational Models
(APDCM) [W7].

8.1 Introduction

One of the main challenges faced by today’s HPC platforms is resilience, since such
platforms are confronted with many failures or errors due to their large scale [169].
Indeed, the number of failures is known to grow proportionally with the number of
nodes on a platform [106], and the largest supercomputers today experience several
failures per day. There are two main classes of errors that can cause failures in an
application’s execution, namely, fail-stop and silent errors. While fail-stop errors cause
the execution to terminate (e.g., due to hardware fault), large-scale platforms are also
confronted with silent errors, or silent data corruptions (SDCs). Such errors are caused
by cosmic radiation or packaging pollution, striking either the cache or memory units

193

194 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

(bit flips), or the CPU operations [147, 210]. Even though any bit can be corrupted, the
execution continues (unlike fail-stop errors), hence the error is transient, but it may
dramatically impact the result of a running application. Many silent errors can be
accurately detected by verifying the data using dedicated, lightweight detectors (e.g.,
[195, 50, 93, 49]). In this work, we focus on job failures caused by silent errors, and we
aim to design resilient scheduling heuristics while assuming the availability of ad-hoc
detectors to detect such errors.

The problem of scheduling a set of independent jobs on parallel platforms with
the goal of minimizing the total completion time, or makespan, has been extensively
studied (see Section 8.5). Jobs may be parallel and should be executed on a given
number of processors for a certain duration; both the processor requirement and the
execution time of each job are known at the beginning. Such jobs are called rigid
jobs, contrarily to moldable or malleable jobs, whose processor allocations can vary
at launch time or during execution [80]. While moldable or malleable jobs offer more
flexibility in the execution, rigid jobs remain the most prevalent form of parallel jobs
submitted on today’s HPC systems, and we focus on rigid jobs in this chapter.

Unlike the classical scheduling problem without job failures, we consider failure-
prone platforms subject to silent errors. Hence, at the end of each job’s execution, an
SDC detector will flag if a silent error has occurred during its execution. In this case,
the job must be re-executed until it has been successfully completed without errors.
For a set of jobs, each execution may lead to a different failure scenario, depending
upon the jobs that have experienced failures as well as the number of such failures.
The objective is to minimize the makespan under any failure scenario, as well as the
expected makespan, averaged over all possible failure scenarios, where each scenario is
weighted by a probability that governs its occurrence under certain failure assump-
tions. Since a failure scenario is unknown a priori, the scheduling decisions must be
made dynamically on-the-fly, whenever an error has been detected. As a result, even for
the same set of jobs, different schedules may be produced, depending on the failure
scenario that occurred in a particular execution.

Building upon the existing framework for scheduling parallel jobs without failures,
we propose two scheduling strategies, namely, a list-based strategy and a shelf-based
strategy. While list-based schedules have no restrictions on the starting times of the
jobs, shelf-based schedules group all jobs into subsets of jobs having the same starting
time (called shelves); a shelf of jobs can start its execution once the longest job from the
previous shelf has completed. For list-based scheduling, practical systems also employ
a combination of reservation and backfilling strategies with different job priority rules
to increase the system utilization. On platforms with no failures, variants for all of
these strategies exist that could achieve constant approximations for the makespan
(see Section 8.5 for details). The main focus of this chapter is to extend these existing
heuristics to execution scenarios with job failures, and to experimentally compare their
performance using a variety of job and platform configurations.

Our main contributions are the following:
• We propose a formal model for the problem of resilient scheduling of parallel

8.2. MODELS 195

jobs on failure-prone platforms. The model formulates the performance of an
algorithm under both worst-case and expected executions.

• We design a resilient list-based strategy, and prove that its greedy variant achieves
(2− 1

P)-approximation, and its reservation variant is (3− 4
P+1)-approximation,

where P is the total number of processors. These results apply to both worst-case
and expected makespans.

• We design a resilient shelf-based strategy, but we show that, under some failure
scenarios, any shelf-based algorithm has an unbounded approximation ratio,
thus having a makespan that is arbitrarily higher than the optimal makespan in
the worst case.

• We conduct an extensive set of simulations to evaluate and compare different
variants of these heuristics using both synthetic jobs and log traces from the
Mira supercomputer. The results show that the performance of these resilient
scheduling heuristics is close to the optimal in practice, even when confronted
with failures.

The rest of this chapter is organized as follows: The formal models and the prob-
lem statement are presented in Section 8.2. The key contributions of the chapter are
presented in Section 8.3, where we describe both list-based and shelf-based strategies,
and analyze their performance. Section 8.4 presents an extensive set of simulation
results and highlights the main findings. Section 8.5 describes the background of par-
allel job scheduling and presents some related work. Finally, Section 8.6 concludes the
chapter and discusses future directions.

8.2 Models

In this section, we formally present the models, the problem statement, and the main
assumptions we make in the chapter.

8.2.1 Job model

We consider a set J = {J1, J2, . . . , Jn} of n parallel jobs to be executed on a platform
consisting of P identical processors. All jobs are released at the same time, correspond-
ing to the batch scheduling scenario in an HPC environment. We focus on rigid jobs,
which must be executed with a fixed number of processors set by the user when the
job is submitted1. For each job Jj ∈ J , let pj ∈ {1, 2, . . . , P} denote its fixed (integral)
processor allocation, and let tj denote its error-free execution time. The area of the job
is defined as aj = pj × tj.

1Other parallel job models include moldable and malleable models, which allow the processor allocation
of a job to vary at launch time or during execution [80]. Considering alternative job models will be part
of our future work.

196 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

8.2.2 Error model

We consider failures that manifest as silent errors or silent data corruptions (SDCs) [169]
that could corrupt a job during execution. A silent error detector is assumed to be
available for each job, which is triggered at the end of the job’s execution. If an error
is detected, the job needs to be re-executed, followed by another error detection. This
process repeats until the job completes successfully without errors. Current state-of-
the-art SDC detectors are typically lightweighted (e.g., ABFT for matrix computations
[195, 50], data analytics for scientific applications [93, 49]), and hence incur a negligible
cost compared to the job’s overall execution time.

All the list-based and shelf-based scheduling heuristics introduced and compared
in this chapter are agnostic of the probability of each job to fail any given number of
times. Specifically, for a job Jj, consider a particular run where it fails f j times before
succeeding on the (f j + 1)-th execution. The probability that this happens is denoted
as qj(f j). Let f = (f1, f2, . . . , fn) denote a failure scenario, i.e., a vector of the number
of failed execution attempts for all jobs, during a particular run. Assuming that er-
rors occur independently for different jobs, the probability that this combined failure
scenario happens can be computed as Q(f) = ∏j=1...n qj(f j). The failure scenario f, as
well as the associated probabilities qj(f j) and Q(f) may be unknown to the scheduler.

8.2.3 Problem statement

We study the following resilient scheduling problem: Given a set J of parallel
jobs, find a schedule for J on P identical processors under any failure scenario
f = (f1, f2, . . . , fn). Here, a schedule for f is defined by a collection s = (~s1,~s2, . . . ,~sn) of

starting time vectors for all jobs, where vector ~sj = (s(1)j , s(2)j , . . . , s
(f j+1)
j) specifies the

starting times for job Jj at different execution attempts until success.
The objective is to minimize the overall completion time of all jobs, or the makespan.

Suppose an algorithm Alg makes scheduling decision s during a failure scenario f,
then the makespan of the algorithm for this scenario is defined as:

TAlg(f, s) = max
j=1...n

(
s
(f j+1)
j + tj

)
. (8.1)

All scheduling decisions should be made while satisfying the following two con-
straints:

1. Processor constraint: The number of processors used at any time t by the set Jt
of running jobs should not exceed the total number P of available processors on
the platform, i.e., ∑Jj∈Jt

pj ≤ P, ∀t.

2. Re-execution constraint: A job cannot be re-executed if its previous execution at-
tempt has not yet been completed, i.e., s(i+1)

j ≥ s(i)j + tj, ∀j = 1 . . . n, ∀i ≥ 1.

This scheduling problem, encompassing the failure-free problem as a special case,
is clearly NP-hard. A scheduling algorithm Alg is said to be c-approximation if its

8.2. MODELS 197

makespan is at most c times that of an optimal scheduler for all possible sets of jobs
under all possible failure scenarios, i.e.,

TAlg(f, s) ≤ c · TOpt(f, s∗) , (8.2)

where TOpt(f, s∗) denotes the optimal makespan with scheduling decision s∗ under
failure scenario f. Clearly, this optimal makespan admits the following two lower
bounds:

TOpt(f, s∗) ≥ tmax(f) , (8.3)

TOpt(f, s∗) ≥ A(f)
P

, (8.4)

where tmax(f) = maxj=1...n(f j + 1) · tj is the maximum cumulative execution time of
any job under f, and A(f) = ∑n

j=1(f j + 1) · aj is the total cumulative area.
In Section 8.3, we establish several approximation results, which are valid for any

failure scenario regardless of its individual probability. This is the strongest result that
can be obtained from a theoretical perspective. However, from a practical perspective,
given a set of jobs, it is not easy to assess the performance of a scheduling heuristic
if the probability Q(f) = ∏j=1...n qj(f j) of each failure scenario f is not known. Thus,
for the experiments in Section 8.4, we report the expected makespan of each heuristic
under the standard Exponential probability distribution, as explained below.

8.2.4 Expected makespan

Suppose the occurrence of silent errors striking the jobs follows an Exponential proba-
bility distribution, and that the mean time between error (MTBE) of an individual pro-
cessor is µ, so the error rate of the processor is given by λ = 1/µ. For a job Jj executed
on pj processors, the probability that the job is struck by a silent error during execution
is then given by qj = 1− e−λpj·tj = 1− e−λaj [106]. Then, the probability for job Ji to

fail f j times before succeeding on the (f j + 1)-th execution is qj(f j) = q
f j
j (1− qj).

Given a set J of jobs, we can now define the expected makespan of an algorithm
Alg, taken over all possible failure scenarios weighted by their probabilities, as:

E(TAlg) = ∑f Q(f) · TAlg(f, s) . (8.5)

In this case, an algorithm is a c-approximation if we have:

E(TAlg) ≤ c ·E(TOpt) , (8.6)

for all possible sets of jobs, where E(TOpt) denotes the optimal expected makespan.
This is because the inequality is true for each failure scenario, hence for the weighted
sum. Obviously, the converse is not true: an algorithm could satisfy Equation (8.6)
(thus achieving c-approximation in expectation) but be arbitrarily worse than the op-

198 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

timal on some (low probability) failure scenarios. Still, expected makespan provides
a synthetic indicator on the performance of an algorithm under study, enabling easy
and quantitative comparisons. Thus, we use it for the experimental evaluations in
Section 8.4.

8.2.5 Static vs. dynamic scheduling

As all the information regarding the set of jobs (except the failure scenario f) is avail-
able, one approach would be to make all scheduling decisions (i.e., starting times s)
statically at the beginning, and then execute the jobs according to this static schedule.
While this approach works for failure-free executions, it is problematic when jobs can
fail and re-execute. In particular, a static schedule needs to pre-compute a (possibly
infinite) sequence of starting times for all jobs to account for every possible failure sce-
nario, while ensuring the satisfaction of the constraints. Pre-computing such a static
schedule would be computationally intractable, especially when there turn out to be
only a few failures in a run.

In contrast, another more flexible approach is to make scheduling decisions dynam-
ically depending on the particular failure scenario that is unveiled from an execution.
For example, a scheduling algorithm may decide the starting time for the next exe-
cution attempt of a job depending on the failure scenario and schedule so far. As a
result, even for the same set of jobs, the algorithm may produce different schedules in
response to the different failure scenarios that could arise at runtime. In this chapter,
we adopt this dynamic approach.

8.3 Resilient Scheduling Heuristics

In this section, we present a resilient list-based heuristic (R-List) and a resilient shelf-
based heuristic (R-Shelf) for scheduling rigid parallel jobs that could fail due to
silent errors. We show that the greedy variant of R-List without reservation is 2-
approximation, and a variant with reservations is 3-approximation. For R-Shelf, even
though it achieves 3-approximation in the failure-free case, we show through an ex-
ample that any resilient shelf-based algorithm may have an approximation ratio of
Ω(ln P) compared to the optimal in some failure scenario.

8.3.1 R-List scheduling heuristic

We first present a resilient list-based scheduling heuristic, called R-List, that sched-
ules any set of jobs with the capability to handle failures. Algorithm 3 shows the
pseudocode of R-List. It extends the classical batch scheduler that combines reser-
vation and backfilling strategies. The algorithm first organizes all jobs in a list (or a
queue) based on some priority rule. Then, whenever an existing job Jk completes and
hence releases processors (at time 0, a virtual job J0 can be considered to complete), the
algorithm schedules the remaining jobs in the queue. First, it checks if job Jk completes

8.3. RESILIENT SCHEDULING HEURISTICS 199

Algorithm 3: R-List

Input: a set J = {J1, J2, · · · , Jn} of rigid jobs, with processor allocation pj and error-free
execution time tj for each job Jj ∈ J , a platform with P identical processors, parameter
m;

Output: a list schedule with starting times for all jobs in J till they complete successfully.
begin

Insert all jobs into a queue Q according to some priority rule;
whenever an existing job Jk completes do

if error detected for Jk then
Q.insert with priority(Jk);

// schedule high-priority jobs using reservation
for j = 1, 2 . . . , min(m, |Q|) do

Jj ← Q(j);
Give job Jj an earliest possible reservation without delaying the reservation of job

Jj′ , ∀j′ = 1, . . . , j− 1;

// schedule low-priority jobs using backfilling
for j = m + 1, . . . , |Q| do

Jj ← Q(j);
if Job Jj can be scheduled at the current time without delaying the reservation of

job Jj′ , ∀j′ = 1 . . . m then
execute job Jj at the current time;

with error. If so, the job will be inserted back into the queue, based on its priority, to
be rescheduled later. All jobs in the queue are divided into two groups: the first m
jobs with the highest priorities are each given a reservation at the earliest possible
time, provided that any reservation made should not delay the starting times of the
higher-priority jobs; the subsequent jobs in the queue (if any) are then examined one
by one and backfilled to start at the current time, again if such backfilling does not
affect any reservations for the higher-priority jobs.2

The R-List heuristic takes a parameter m, and depending on the value of m chosen,
it resembles several scheduling strategies known in theory and practice:

• m = |Q| (Conservative backfilling [142]): this strategy makes reservations for all
pending jobs in the queue;

• m = 1 (Aggressive or EASY backfilling [129, 168]): this strategy makes a reser-
vation only for the job at the head of the queue, and uses backfilling to schedule
all remaining jobs in the queue;

• m = 0 (Greedy scheduler [88, 184, 81]): this strategy does not make any reserva-
tion, and uses backfilling to schedule all jobs in the queue.

Note that, when m > 0 and when a job Jk with high priority fails, it may be re-
inserted back into the first part of the queue (i.e., among the top m jobs). This may
require recomputing the existing reservations (made previously) for some jobs that
have lower priority than Jk. From an analysis point of view, we can think of each
job completion as a trigger, which deletes all previous reservations and makes a fresh

2For practical schedulers, this is typically implemented using two separate job queues, one for reser-
vation and one for backfilling.

200 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

round of reservation and backfilling decisions based on the updated queue.
In the following, we denote by Reservation this variant of R-List with reservations

(m > 0), and by Greedy the variant with m = 0.

8.3.2 Approximation ratios of R-List

We show that, under any failure scenario, Reservation with a particular priority rule
is a (3 − 4

P+1)-approximation, and that Greedy with any priority rule is a (2 − 1
P)-

approximation. According to Equation (8.6), these results directly imply the same
approximation ratios for the respective heuristic variants in terms of the expected
makespan.

8.3.2.1 Result for Reservation

We first consider the Reservation variant, while applying a priority rule that favors
large jobs and uses any priority for small jobs. We call this rule Large Job First (LJF).
Specifically, a job is said to be large if its processor allocation is at least P+1

2 , and small
otherwise. The LJF rule specifies that: (1) all large jobs have higher priority than all
small jobs; (2) the priorities for large jobs are based on decreasing processor allocation;
and (3) the priorities for small jobs are defined arbitrarily.

The following proposition shows the performance of Reservation in any failure
scenario using the above LJF rule. The result matches the 3-approximation ratio [13,
184] known for failure-free jobs.

Proposition 5. For any set of rigid parallel jobs under any failure scenario f, the makespan of
Reservation with the LJF priority rule satisfies:

TR(f, s) ≤ (3− 4
P + 1

) · TOpt(f, s∗) . (8.7)

Proof. Let Jj be a last successfully completed job in the schedule. We divide the set
I = {I1, I2, . . . , Iv} of all intervals into two disjoint subsets I1 and I2, where I1 contains
the intervals in which job Jj is executing (including all of its execution attempts), and
I2 = I\I1. Let T1 = ∑I∈I1

|I| and T2 = ∑I∈I2
|I| denote the total lengths of all intervals

in I1 and I2, respectively. Based on Equation (8.3), we have T1 = (f j + 1) · tj(pj) ≤
tmax(f) ≤ Topt(f, s∗).

We will show that the processor utilization in any interval I ∈ I2 satisfies p(I) ≥
P+1

2 . First, we observe that all large jobs are completed sequentially (in decreasing
order of processor allocation) at the beginning of the entire schedule, since no two
large jobs can be scheduled at the same time, and no small (backfilling) jobs can delay
their executions because large jobs have higher priority based on the LJF rule. Thus, if
an interval I ∈ I2 contains a large job, its processor allocation must satisfy p(I) ≥ P+1

2 .
Now, consider any interval I ∈ I2 after all the large jobs have completed, and sup-

pose I lies in between the i-th execution attempt and the (i + 1)-th execution attempt
of Jj, where 0 ≤ i ≤ f j. Hence, if such an interval exists, it means that Jj is a small job

8.3. RESILIENT SCHEDULING HEURISTICS 201

(with pj ≤ P+1
2), as well as all remaining jobs that are to be executed. Let t be the time

at the beginning of this interval I. Recall that we can consider Reservation to make a
fresh round of reservations and backfillings based on the current job queue Q at time
t. Let Jk be the first job in Q that cannot be scheduled (either reserved or backfilled)
to run at t. We know that such a job always exists because of the (i + 1)-th execution
attempt of Jj, which is scheduled to run at a later time. Let Jt be the set of jobs already
running at time t or just scheduled to run at time t before job Jk, and let p(Jt) be the
total processor allocation of all jobs in Jt. As Jk cannot be scheduled to run at time t,
it must be due to p(Jt) + pk ≥ P + 1. Since Jk is a small job, i.e., pk ≤ P+1

2 , it implies
that p(I) ≥ p(Jt) ≥ P+1

2 .
Thus, based on Equation (8.4) and since pj ≥ 1, we have P · Topt(f, s∗) ≥ A(f) ≥

P+1
2 · T2 + pj · T1 ≥ P+1

2 · T2 + T1. The overall execution time of Reservation with the
LJF priority rule therefore satisfies:

TR(f, s) = T1 + T2

≤ T1 + 2 · P · Topt(f, s∗)− T1

P + 1

=
2P

P + 1
· Topt(f, s∗) +

(
1− 2

P + 1

)
· T1

≤ (3− 4
P + 1

) · Topt(f, s∗) .

8.3.2.2 Result for Greedy

We now consider the Greedy variant. The following proposition shows the perfor-
mance of Greedy in any failure scenario regardless of the priority rule. The result
generalizes the 2-approximation ratio [88, 184, 81] known for failure-free jobs.

Proposition 6. For any set of rigid parallel jobs under any failure scenario f, the makespan of
Greedy regardless of the priority rule satisfies:

TG(f, s) ≤ (2− 1
P
) · TOpt(f, s∗) . (8.8)

Proof. Given the set I = {I1, I2, . . . , Iv} of all intervals in the schedule, let pmin =
min1≤`≤v p(I`) denote the minimum processor utilization among them. Since the algo-
rithm never idles all processors unless all jobs complete successfully, we have pmin ≥ 1.
We consider two cases:

Case 1: pmin ≥ P+1
2 . In this case, we have p(I`) ≥ pmin ≥ P+1

2 for all 1 ≤ ` ≤ v.
Hence, based on Equation (8.4), we get P · Topt(f, s∗) ≥ A(f) = ∑`=1,...,v |I`| · p(I`) ≥
P+1

2 · TG(f, s). This implies:

TG(f, s) ≤ 2P
P + 1

· Topt(f, s∗) ≤ (2− 1
P
) · Topt(f, s∗) .

202 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

Case 2: pmin < P+1
2 . In this case, let Imin denote the last-executed interval that has

processor utilization pmin. Consider a job Jj that is running during interval Imin. Nec-
essarily, we have pj ≤ pmin. We divide the set I of intervals into two disjoint subsets
I1 and I2, where I1 contains the intervals in which job Jj is executing (including all of
its execution attempts), and I2 = I\I1. Let T1 = ∑I∈I1

|I| and T2 = ∑I∈I2
|I| denote

the total lengths of all intervals in I1 and I2, respectively. Based on Equation (8.3), we
have T1 = (f j + 1) · tj(pj) ≤ tmax(f) ≤ Topt(f, s∗).

For any interval I ∈ I2 that lies between the i-th execution attempt and the (i + 1)-
th execution attempt of Jj in the schedule, where 0 ≤ i ≤ f j, the processor utilization
of I must satisfy p(I) ≥ P − pmin + 1, since otherwise there are at least pmin ≥ pj
available processors during interval I and hence the (i + 1)-th execution attempt of Jj
would have been scheduled at the beginning of I.

For any interval I ∈ I2 that lies after the (f j + 1)-th (last) execution attempt of Jj,
there must be a job Jk running during I and that was not running during Imin (mean-
ing no attempt of executing Jk was made during Imin). This is because p(I) > pmin,
hence the job configuration must differ between I and Imin. The processor utilization
during interval I must also satisfy p(I) ≥ P− pmin + 1, since otherwise the processor
allocation of Jk will be pk ≤ p(I) ≤ P− pmin, implying that the first execution attempt
of Jk after interval Imin would have been scheduled at the beginning of Imin.

Thus, for all I ∈ I2, we have p(I) ≥ P − pmin + 1. Based on Equation (8.4), we
have P · Topt(f, s∗) ≥ A(f) ≥ (P− pmin + 1) · T2 + pmin · T1. Since pmin ≥ 1, the overall
execution time of Greedy therefore satisfies:

TG(f, s) = T1 + T2

≤ T1 +
P · Topt(f, s∗)− pmin · T1

P− pmin + 1

=
P

P− pmin + 1
· Topt(f, s∗) +

P− 2pmin + 1
P− pmin + 1

· T1

≤ 2P− 2pmin + 1
P− pmin + 1

· Topt(f, s∗)

≤ (2− 1
P− pmin + 1

) · Topt(f, s∗)

≤ (2− 1
P
) · Topt(f, s∗) .

8.3.3 R-Shelf scheduling heuristic

We now present a shelf-based scheduling heuristic, called R-Shelf, that schedules any
set of parallel jobs onto a series of shelves while handling job failures.

Heuristic description Algorithm 4 shows the pseudocode of R-Shelf. As in R-List,
the algorithm starts by organizing all jobs in a queue based on some priority rule.
Whenever the jobs in the preceding shelf all complete (at time 0, a virtual shelf S0 with

8.3. RESILIENT SCHEDULING HEURISTICS 203

Algorithm 4: R-Shelf

Input: a set J = {J1, J2, · · · , Jn} of rigid jobs, with processor allocation pj and error-free
execution time tj for each job Jj ∈ J , a platform with P identical processors, parameter b;

Output: a shelf schedule with starting times for all jobs in J till they complete successfully.
begin

Insert all jobs into a queue Q according to some priority rule;
i← 0, Si ← ∅;
whenever all jobs in Si complete do

if error detected for Jk ∈ Si then
Q.insert with priority(Jk);

i← i + 1 and Si ← ∅; // start a new shelf
for j = 1, 2 . . . , |Q| do

Jj ← Q(j);
if Job Jj can fit in shelf Si then

Si ← Si
⋃{Jj};

else if b = 0 then
break ; // no backfilling

execute all jobs in Si at the current time;

no job in it can be considered to complete), the algorithm builds a new shelf and adds
the remaining jobs to it. First, any job in the preceding shelf that completes with error
will be inserted back into the queue based on its priority. Then, the algorithm scans
the queue and adds a job to the new shelf if the job can fit in without violating the
processor constraint. R-Shelf takes a binary parameter b that determines if backfilling
is used in the process:

• b = 0 (No backfilling): the heuristic closes the new shelf upon encountering the
first job in the queue that does not fit in the shelf. This resembles the Next-Fit
(NF) strategy for bin-packing.

• b = 1 (Backfilling): the heuristic scans all the jobs in the queue until no more
job can be added to the new shelf. This resembles the First-Fit (FF) strategy for
bin-packing.

Once the jobs in the new shelf have been selected, they will simultaneously start
their executions.

Inapproximability result For failure-free jobs, the variant of R-Shelf without back-
filling and considering jobs in the non-increasing execution time order is equivalent
to the Next-Fit Decreasing Height (NFDH) [53] algorithm for strip packing. The algo-
rithm starts with the longest job J1, which is put on the first shelf, whose height is t1.
Then, the next job J2 is put on the same shelf if it fits in, meaning that p1 + p2 ≤ P,
otherwise a new shelf is started for J2, whose height is t2. The algorithm proceeds like
this, either putting the next job on the last shelf if it fits in, or creating a new shelf
otherwise. Despite its simplicity, the algorithm is shown to be a 3-approximation for
failure-free jobs [53, 184].

Now, when jobs can fail, we show that there exists a job instance J and a failure
scenario f such that any shelf-based algorithm has a makespan TS(f, s) that is arbitrar-

204 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

ily higher than the optimal makespan TOpt(f, s∗) regardless of the job priority used.
This is in clear contrast with the 3-approximation result for the failure-free case. Note
that TOpt(f, s∗) is not necessarily the optimal makespan of a shelf-based schedule.

Proposition 7. There exists a job instance and a failure scenario such that any shelf-based
algorithm has an approximation ratio of Ω(ln P).

Proof. Consider a set J = {J1, . . . , JP} of P uniprocessor jobs, where tj = P/j and
pj = 1 for 1 ≤ j ≤ P. For the failure scenario f, we let f j = j− 1 for 1 ≤ j ≤ P; hence
job J1 does not fail, job J2 fails once before success, and job JP fails fP = P− 1 times
before success.

We first consider the R-Shelf algorithm. Because the problem instance above has
only P uniprocessor jobs, R-Shelf has no freedom at all: it schedules the first execution
of all P jobs in the first shelf of height t1, then the second execution of jobs J2 to JP in
the second shelf of height t2, and so on until the last shelf of height tP, which includes
only the P-th execution of job JP. Therefore, the makespan of R-Shelf is TS(f, s) = P +
P
2 + · · ·+ 1 = P ∑P

j=1
1
j , while the optimal algorithm schedules the different executions

of all jobs right after each other, thus having a makespan of TOpt(f, s∗) = P. The ratio
TS(f,s)

TOpt
(f,s∗) tends to ln(P) when P tends to infinity, hence it is not bounded.

Furthermore, since the P jobs have decreasing execution time and increasing num-
ber of failures, any shelf-based algorithm will have at least one shelf of height tj, for
all 1 ≤ j ≤ P, thus having a makespan that is at least TS(f, s). Therefore, the same
ratio applies to any shelf-based algorithm.

We conclude this section with an open problem. Instead of a single failure sce-
nario, consider an Exponential probability distribution and the expected makespan as
defined in Section 8.2.4. Will R-Shelf or any shelf-based algorithm admit a constant
approximation ratio in expectation? To answer this question seems difficult, because
computing the expected makespan seems out of reach analytically. Given P = 10 in
the above example, we find numerically (using a computer program) that the expected
makespan ratio of R-Shelf is 1.00005 for λ = 10−7 and 1.07 for λ = 10−3. We have
not been able to build an example where this ratio (computed numerically) is greater
than 3.

8.4 Performance Evaluation

We now evaluate and compare the performance of all heuristics presented in Sec-
tion 8.3, using different job priority rules and backfilling strategies. The evaluation
is performed by simulation using both synthetic jobs and jobs extracted from the log
traces of the Mira supercomputer.

8.4. PERFORMANCE EVALUATION 205

8.4.1 Simulation setup

We compare five different heuristics combined with seven different priority rules. The
five heuristics are:

• R-List-0: The list-based algorithm with m = 0;
• R-List-1: The list-based algorithm with m = 1;
• R-List-Q: The list-based algorithm with m = |Q|;
• R-Shelf-B: The shelf-based algorithm with b = 1.
• R-Shelf-NB: The shelf-based algorithm with b = 0.

For each of these five heuristics, we consider seven different job priority rules:
• Lpt/Spt (Longest/Shortest Processing Time): a job with a longer/shorter pro-

cessing time will have higher priority;
• Hpa/Lpa (Highest/Lowest Processor Allocation): a job with a higher/lower

number of requested processors will have higher priority;
• La/Sa (Largest/Smallest Area): a job with a larger/smaller area will have higher

priority;
• Random (Random): the priorities are determined randomly for all jobs.

We simulate two different settings, one using synthetic jobs and the other using
real job traces from the Mira logs.

• Synthetic jobs: We generate 30 different job sets, each containing 100 jobs. For
each job, the processor allocation is generated uniformly at random between 50
and 2000, while the execution time is generated uniformly at random between
100 and 20000 seconds. The total number of processors is set to be P = 10000. In
the experiments, we also vary P to study its impact.

• Jobs from Mira logs: We generate jobs by extracting from the log traces [5] (of June
2019) of the Mira supercomputer, which has P = 49152 compute nodes. There
were 4699 jobs submitted in June 2019, and we group the ones submitted each
day as a set to form 30 sets of jobs. Figure 8.1(a) plots the number of jobs in each
day of the month, varying between 66 and 277. The processor allocations of the
jobs vary between 512 and 49152, and the execution times vary between 37 and
86494 seconds. Figure 8.1(b) plots these two parameters for all jobs in the month
(with each point representing a job).

In both settings, silent errors are injected to the jobs based on the Exponential
distribution as described in Section 8.2.4. To study the impact of error rate, we further
define the average failure probability for a set of jobs to be q̄ = 1 − e−λā, where
ā = ∑n

j=1 aj/n is the average area of all jobs in the set. Intuitively, q̄ represents the
probability that a job with the average area over all jobs would fail due to silent errors.
For a given value of q̄, we can compute the error rate as λ = − ln(1− q̄)/ā, and hence
the failure probability of any job Jj with area aj to be qj = 1− e−λaj = 1− (1− q̄)aj/ā.
Based on this q̄, we then randomly generate 1000 failure scenarios for the set of jobs
following the probabilities. For each failure scenario f, we evaluate the makespans of
the heuristics, normalized by the lower bound L(f) = max(tmax(f), A(f)/P) as defined
in Equations (8.3) and (8.4). The normalized makespans are then averaged over the

206 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

(a) (b)

Figure 8.1: Data from the trace logs of the Mira supercomputer.

1000 failure scenarios for comparison.
The simulation code for all experiments is publicly available at http://www.github.

com/vlefevre/job-scheduling.

8.4.2 Results for synthetic jobs

We first compare the performance of different heuristics using synthetic jobs. Here,
we focus on assessing the impact of two parameters: the average failure probability q̄,
and the total number of processors P. The results are averaged over the 30 different
sets of jobs.

Figure 8.2 shows the performance of different heuristics when q̄ varies from 0 to
0.9. First, we can see that, for all list-based heuristics, the normalized makespans
first increase with q̄ and then decrease. Indeed, a higher failure probability will re-
sult in a larger number of errors, thus increasing the difficulty of scheduling and
hence the makespan. However, when the probability is too high, an excessive number
of errors will occur, making the optimal scheduler perform equally worse and thus
reducing the makespan ratios for the heuristics. For the shelf-based heuristics, the
performance appears to be independent of the failure probability. Here, tasks that fail
need to wait for the completion of the current shelf to be re-executed, so the number of
shelves is mainly determined by the number of re-executions, which influences both
the makespan and an optimal scheduler. The normalized makespan is thus mainly
decided by the efficiency of the heuristic to fill one shelf, which does not depend
on the failure probabilities. Second, the Lpt and La priorities lead to the best per-
formance for all list-based heuristics, with Lpt performing better when q̄ is low for
R-List-1 and R-List-Q, and La performing better for R-List-0 under any q̄. For the
shelf-based heuristics, Lpt and Spt are the two best priorities, which is not surprising
as the performance of these algorithms is mainly determined by the duration of each
shelf.

Figure 8.4(a) further compares the performance of the five heuristics using some
of the best priorities. While most list-based heuristics behave similarly when there is

http://www.github.com/vlefevre/job-scheduling
http://www.github.com/vlefevre/job-scheduling

8.4. PERFORMANCE EVALUATION 207

0.0 0.2 0.4 0.6 0.8
q̄

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(a) R-List-0

0.0 0.2 0.4 0.6 0.8
q̄

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(b) R-List-1

0.0 0.2 0.4 0.6 0.8
q̄

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(c) R-List-Q

0.0 0.2 0.4 0.6 0.8
q̄

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(d) R-Shelf-B

0.0 0.2 0.4 0.6 0.8
q̄

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(e) R-Shelf-NB

Figure 8.2: Normalized makespans of different heuristics and priority rules over 30
sets of jobs when q̄ varies between 0 and 0.9, and P = 10000.

208 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

5000 10000 15000 20000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(a) R-List-0

5000 10000 15000 20000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(b) R-List-1

5000 10000 15000 20000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(c) R-List-Q

5000 10000 15000 20000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(d) R-Shelf-B

5000 10000 15000 20000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(e) R-Shelf-NB

Figure 8.3: Normalized makespans of different heuristics and priority rules over 30
sets of jobs when P varies between 5000 and 20000, and q̄ = 0.3.

8.4. PERFORMANCE EVALUATION 209

0.0 0.2 0.4 0.6 0.8
q̄

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

m
ak

es
pa

n

R-List-0 / Lpt

R-List-0 / La

R-List-1 / Lpt

R-List-1 / La

R-List-Q / Lpt

R-List-Q / La

R-Shelf-B / Lpt

R-Shelf-NB / Lpt

(a)

5000 10000 15000 20000
P

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

m
ak

es
pa

n

R-List-0 / Lpt

R-List-0 / La

R-List-1 / Lpt

R-List-1 / La

R-List-Q / Lpt

R-List-Q / La

R-Shelf-B / Lpt

R-Shelf-NB / Lpt

(b)

Figure 8.4: Comparison of different heuristics with the best priority rules Lpt and/or
La when: (a) q̄ varies between 0 and 0.9, and P = 10000; and (b) P varies between 5000
and 20000, and q̄ = 0.3.

no failure (i.e., q̄ = 0), R-List-0 clearly outperforms the rest when jobs can fail. This
corroborates the theoretical result that R-List-0 (i.e., Greedy) has the lowest approxi-
mation ratio regardless of the priority rule and failure scenario. Moreover, R-List-0 is
also the heuristic that is least affected by job failures, with an increase in normalized
makespan by less than 10% compared to the case of q̄ = 0, while the other heuristics
experience 20-30% increase in normalized makespan. Finally, R-Shelf-NB appears to
be the worst heuristic for small and high probabilities of failure with a makespan that
is up to 15% higher than that of R-List-0 (when q̄ = 0.9), while R-List-Q is the worst
for medium probabilities (e.g., 26% higher than that of R-List-0 for q̄ = 0.5). The
results are likely due to: (i) the restriction of R-Shelf-NB for building shelves in a
schedule, which leads to poor performance for some failure scenarios (such as the one
discussed in Section 8.3.3), and hence an increase in the expected makespan, and (ii)
the fact that R-List-Q is more affected by the increasing failure probability.

Figure 8.3 shows the performance of different heuristics when the number of pro-
cessors P varies from 5000 to 20000 while the failure probability is fixed at q̄ = 0.3.
Again, we can see that La and Lpt are the two best priority rules for all heuristics,
with La performing better for R-List-0 and R-List-1, and Lpt performing better for
other heuristics under all P. Also, the normalized makespans of the heuristics first in-
crease with the number of processors and then tend to decrease. This is because when
P is either too small (i.e., total resource is constrained) or too big (i.e., total resource is
almost unconstrained), the optimal scheduler tends to have very similar performance
as the heuristics.

We further compare the performance of the five heuristics using some of the best
priorities in Figure 8.4(b). As in the previous experiment, the best heuristic is R-List-0
with the La priority, which is the least impacted by the total number of processors
(with < 10% variations in normalized makespan). Also, R-List-Q gives the worst
performance (with a 23% increase in makespan compared to R-List-0 with La when

210 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

Table 8.1: Performance of different heuristics using Lpt priority for all 30 days (sets)
of jobs from June 2019 on the Mira supercomputer.

q̄ Average
#failures

Average makespan ratio Standard deviation Maximum makespan ratio

R-List R-Shelf R-List R-Shelf R-List R-Shelf

0 1 Q B NB 0 1 Q B NB 0 1 Q B NB

0 0 1.067 1.051 1.051 1.407 1.441 8.78× 10−2 8.19× 10−2 8.23× 10−2 1.29× 10−1 1.45× 10−1 1.425 1.425 1.425 1.633 1.760

0.05 15.2913 1.031 1.049 1.061 1.129 1.141 6.72× 10−2 6.87× 10−2 7.76× 10−2 1.30× 10−1 1.40× 10−1 1.278 1.292 1.292 1.489 1.510

0.1 254.453 1.016 1.025 1.028 1.071 1.073 4.66× 10−2 4.54× 10−2 4.97× 10−2 1.03× 10−1 1.06× 10−1 1.249 1.224 1.245 1.398 1.413

P = 15000) and has the largest variation (∼20%) in normalized makespan as the
number of processors changes.

From these experiments, we can see that job failures and processor variations do
have an impact on the relative performance of different heuristics. Nevertheless, the
makespans of all the heuristics (with good priorities) are never more than 40% worse
than the theoretical lower bound, which can be much less than the optimal makespan.
The results suggest the robustness of these heuristics, and that they should actually
perform really well in practice, even with job failures.

8.4.3 Results for jobs from Mira

We now evaluate the performance of different heuristics using real jobs from the Mira
trace logs. Figures 8.5 and 8.6 show the normalized makespans of all heuristics and
priority rules under all 30 days (sets) of jobs with and without failures. We observe
that the Lpt and La priorities again offer the best performance, with Lpt performing
better this time for most job sets. This holds for every heuristic on average, especially
when there is no failure (i.e., q̄ = 0). As the failure probability increases, both Lpt

and La (and even Hpa) give similar performance. The reason is that the processor
allocations and execution times of the jobs in Mira are more skewed than those of
the synthetic ones. Here, some jobs use a very large number of processors and have
long execution times, which make them fail more often even with small values of q̄.
As a result, the makespan lower bound is largely determined by the total execution
times of these jobs, thus any priority rule that favors these jobs will achieve similar
performance. Comparing different heuristics, we can see that R-List-0 again performs
the best and R-Shelf-B the worse, especially with higher failure probability (q̄ = 0.1).
This is consistent with the previous findings and corroborates the analysis.

Table 8.1 summarizes the results of the five heuristics using the Lpt priority (which
is overall the best one) over 30 days (sets) of jobs, which have an average of 157.63
jobs per day (set). As q̄ increases to 0.05 and 0.1, the average number of failures
rises to around 15 and 254, respectively. All list-based heuristics have good average
makespan ratios that are very close to 1 (with low standard deviations), as well as
good maximum makespan ratios that are lower than 1.5, while the two shelf-based
heuristics have worse performance in comparison, even when failures are not present.
The maximum makespans, however, are never more than 80% of the theoretical lower
bound. This again corroborates the results in Section 8.4.2.

Overall, these results confirm the efficacy and robustness of the resilient scheduling

8.4. PERFORMANCE EVALUATION 211

5 10 15 20 25 30

Set

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

m
ak

es
pa

n

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(a) R-List-0 (with q̄ = 0)

5 10 15 20 25 30

Set

1.0

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

m
ak

es
pa

n

4.
75

1
4.

46
9

4.
88

9
14

.0
02

5.
71

9
22

.8
97

4.
59

4
8.

42
9

4.
88

9
13

.3
61

12
.6

61
11

.8
52

21
.1

79
9.

10
5

18
.0

14
21

.7
72

6.
25

4
11

.2
28

15
.6

04
16

.1
88

47
.5

46
9.

33
7

10
.2

47
13

.1
55

59
.2

94
24

.5
04

11
.3

92
22

.4
81

16
.6

99
12

.2
28

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(b) R-List-0 (with q̄ = 0.05)

5 10 15 20 25 30

Set

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

m
ak

es
pa

n

11
.0

78
11

.5
46

11
.8

55
60

.5
98

22
.9

73
30

1.
05

14
.7

83
55

.1
43

11
.8

55
58

.5
54

66
.2

53
64

.1
26

0.
04

22
.6

29
11

8.
37

6
14

4.
57

3
14

.7
34

38
.3

2
75

.6
87

44
.8

72
20

10
.4

6
29

.3
93

24
.6

75
73

.0
06

33
74

.8
4

29
6.

64
9

78
.0

65
25

3.
00

9
52

.7
82

31
.6

89

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(c) R-List-0 (with q̄ = 0.1)

5 10 15 20 25 30

Set

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(d) R-List-1 (with q̄ = 0)

5 10 15 20 25 30

Set

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

m
ak

es
pa

n

4.
75

1
4.

46
9

4.
88

9
14

.0
02

5.
71

9
22

.8
97

4.
59

4
8.

42
9

4.
88

9
13

.3
61

12
.6

61
11

.8
52

21
.1

79
9.

10
5

18
.0

14
21

.7
72

6.
25

4
11

.2
28

15
.6

04
16

.1
88

47
.5

46
9.

33
7

10
.2

47
13

.1
55

59
.2

94
24

.5
04

11
.3

92
22

.4
81

16
.6

99
12

.2
28

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(e) R-List-1 (with q̄ = 0.05)

5 10 15 20 25 30

Set

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

m
ak

es
pa

n

11
.0

78
11

.5
46

11
.8

55
60

.5
98

22
.9

73
30

1.
05

14
.7

83
55

.1
43

11
.8

55
58

.5
54

66
.2

53
64

.1
26

0.
04

22
.6

29
11

8.
37

6
14

4.
57

3
14

.7
34

38
.3

2
75

.6
87

44
.8

72
20

10
.4

6
29

.3
93

24
.6

75
73

.0
06

33
74

.8
4

29
6.

64
9

78
.0

65
25

3.
00

9
52

.7
82

31
.6

89

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(f) R-List-1 (with q̄ = 0.1)

5 10 15 20 25 30

Set

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(g) R-List-Q (with q̄ = 0)

5 10 15 20 25 30

Set

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

m
ak

es
pa

n

4.
75

1
4.

46
9

4.
88

9
14

.0
02

5.
71

9
22

.8
97

4.
59

4
8.

42
9

4.
88

9
13

.3
61

12
.6

61
11

.8
52

21
.1

79
9.

10
5

18
.0

14
21

.7
72

6.
25

4
11

.2
28

15
.6

04
16

.1
88

47
.5

46
9.

33
7

10
.2

47
13

.1
55

59
.2

94
24

.5
04

11
.3

92
22

.4
81

16
.6

99
12

.2
28

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(h) R-List-Q (with q̄ = 0.05)

5 10 15 20 25 30

Set

1.0

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

m
ak

es
pa

n

11
.0

78
11

.5
46

11
.8

55
60

.5
98

22
.9

73
30

1.
05

14
.7

83
55

.1
43

11
.8

55
58

.5
54

66
.2

53
64

.1
26

0.
04

22
.6

29
11

8.
37

6
14

4.
57

3
14

.7
34

38
.3

2
75

.6
87

44
.8

72
20

10
.4

6
29

.3
93

24
.6

75
73

.0
06

33
74

.8
4

29
6.

64
9

78
.0

65
25

3.
00

9
52

.7
82

31
.6

89

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(i) R-List-Q (with q̄ = 0.1)

Figure 8.5: Performance of list-based heuristics for 30 job sets using the Mira trace
logs (June 2019) with and without failures. Each row represents a different heuris-
tic (R-List-0, R-List-1 and R-List-Q), and each column represents a different failure
probability (q̄ = 0, q̄ = 0.05 and q̄ = 0.1). The average number of failures for each job
set is indicated on top of each plot.

212 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

5 10 15 20 25 30

Set

1

2

3

4

5

6

7
N

or
m

al
iz

ed
m

ak
es

pa
n

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(a) R-Shelf-B (with q̄ = 0)

5 10 15 20 25 30

Set

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

4.
75

1
4.

46
9

4.
88

9
14

.0
02

5.
71

9
22

.8
97

4.
59

4
8.

42
9

4.
88

9
13

.3
61

12
.6

61
11

.8
52

21
.1

79
9.

10
5

18
.0

14
21

.7
72

6.
25

4
11

.2
28

15
.6

04
16

.1
88

47
.5

46
9.

33
7

10
.2

47
13

.1
55

59
.2

94
24

.5
04

11
.3

92
22

.4
81

16
.6

99
12

.2
28

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(b) R-Shelf-B (with q̄ = 0.05)

5 10 15 20 25 30

Set

1.00

1.25

1.50

1.75

2.00

2.25

N
or

m
al

iz
ed

m
ak

es
pa

n

11
.0

78
11

.5
46

11
.8

55
60

.5
98

22
.9

73
30

1.
05

14
.7

83
55

.1
43

11
.8

55
58

.5
54

66
.2

53
64

.1
26

0.
04

22
.6

29
11

8.
37

6
14

4.
57

3
14

.7
34

38
.3

2
75

.6
87

44
.8

72
20

10
.4

6
29

.3
93

24
.6

75
73

.0
06

33
74

.8
4

29
6.

64
9

78
.0

65
25

3.
00

9
52

.7
82

31
.6

89

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(c) R-Shelf-B (with q̄ = 0.1)

5 10 15 20 25 30

Set

1

2

3

4

5

6

7

N
or

m
al

iz
ed

m
ak

es
pa

n
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(d) R-Shelf-NB (with q̄ = 0)

5 10 15 20 25 30

Set

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

4.
75

1
4.

46
9

4.
88

9
14

.0
02

5.
71

9
22

.8
97

4.
59

4
8.

42
9

4.
88

9
13

.3
61

12
.6

61
11

.8
52

21
.1

79
9.

10
5

18
.0

14
21

.7
72

6.
25

4
11

.2
28

15
.6

04
16

.1
88

47
.5

46
9.

33
7

10
.2

47
13

.1
55

59
.2

94
24

.5
04

11
.3

92
22

.4
81

16
.6

99
12

.2
28

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(e) R-Shelf-NB (with q̄ = 0.05)

5 10 15 20 25 30

Set

1.00

1.25

1.50

1.75

2.00

2.25

N
or

m
al

iz
ed

m
ak

es
pa

n

11
.0

78
11

.5
46

11
.8

55
60

.5
98

22
.9

73
30

1.
05

14
.7

83
55

.1
43

11
.8

55
58

.5
54

66
.2

53
64

.1
26

0.
04

22
.6

29
11

8.
37

6
14

4.
57

3
14

.7
34

38
.3

2
75

.6
87

44
.8

72
20

10
.4

6
29

.3
93

24
.6

75
73

.0
06

33
74

.8
4

29
6.

64
9

78
.0

65
25

3.
00

9
52

.7
82

31
.6

89

Lpt

La

Hpa

Spt

Sa

Lpa

Random

(f) R-Shelf-NB (with q̄ = 0.1)

Figure 8.6: Performance of shelf-based heuristics for 30 job sets using the Mira trace
logs (June 2019) with and without failures. Each row represents a different heuristic (R-
Shelf-B and R-Shelf-NB), and each column represents a different failure probability
(q̄ = 0, q̄ = 0.05 and q̄ = 0.1). The average number of failures for each job set is
indicated on top of each plot.

heuristics, not only for synthetic jobs, but also for real sets of jobs. In particular, both
theory and practice have suggested that R-List-0 is the best heuristic when silent
errors are present, and Lpt and La are the two best priorities for most cases. In all
experiments we have conducted, this heuristic achieves a makespan that is within a
few percent of the lower bound on average, and never more than 50% in the worst
case.

8.5 Background and Related Work

This section describes the background of scheduling rigid parallel jobs and reviews
some related work.

8.5.1 Different scheduling flavors and strategies

Historically, scheduling parallel jobs comes in two flavors: if a job requests p proces-
sors, either any subset of p processors can be assigned, or only subsets of p contiguous
processors can be chosen. In the latter case, processors are organized as a linear ar-
ray and labeled from 1 to P, where P is the total number of processors; then only

8.5. BACKGROUND AND RELATED WORK 213

neighboring processors (whose labels differ by one) can be assigned to a job. The con-
tiguous variant is equivalent to the rectangle strip packing problem, where rectangles are
to be stacked (without rotation) within a strip of width P: rectangle widths represent
processor numbers, and rectangle heights represent execution times.

Most scheduling strategies also come in two flavors: either the schedule is re-
stricted to building shelves (also referred to as levels in some literature), or it is unre-
stricted, in which case the jobs are often scheduled based on an ordered list. Shelves
are subsets of jobs with the same starting time, and for which each of the P proces-
sors is used at most once: the height of a shelf is the length of its longest job; when
the shorter jobs complete, their processors become idle, but these processors are not
reassigned to other jobs until the completion of the longest job of the shelf. Thus, a
shelf resembles a bookshelf, hence the name. Shelf-based schedules play an important
role in HPC, because they correspond to batched execution scenarios, where jobs are
grouped into batches that are scheduled one after another. Note that for shelf-based
algorithms, the contiguous and non-contiguous variants collapse.

8.5.2 Offline scheduling of rigid jobs

To minimize the makespan for a set of rigid jobs that are known statically and available
initially (i.e., offline), the problem is obviously NP-complete, as it generalizes the prob-
lem of scheduling independent jobs on two processors, a variant of the 2-PARTITION
problem [89]. Coffman et al. [53] showed that the Next-Fit Decreasing Height (NFDH)
algorithm is 3-approximation, and the First-Fit Decreasing-Height (FFDH) algorithm is
2.7-approximation. Both algorithms are shelf-based. See the survey by Lodi et al. [132]
for more results and lower bounds on the best possible approximation ratio for shelf-
based algorithms, and see Han et al. [100] for the intricate relationship between strip
packing and bin packing.

For list-based scheduling, Baker et al. [13] showed that the Bottom-up Left-justified
(BL) heuristic while ordering the jobs in decreasing processor requirement achieves
3-approximation. Turek et al. [184] showed that ordering jobs in decreasing execu-
tion time is also 3-approximation. Moreover, both algorithms guarantee contiguous
processor allocations for all jobs. Without the contiguous processor constraint, sev-
eral works [88, 184, 81] showed that the greedy list-scheduling heuristic achieves 2-
approximation. Finally, Jansen [114] presented a (3/2 + ε)-approximation algorithm
for any fixed ε > 0. This is the best result possible, since a lower bound on the
approximation ratio is 3/2, which holds even when considering asymptotic perfor-
mance [116].

8.5.3 Online scheduling of rigid jobs

In the online problem, a set of rigid jobs arrive dynamically over time and information
of a job is not known until the job has arrived. In this case, the list-based greedy
algorithm maintains a competitive ratio of 2 [144, 116]. Chen and Vestjens [48] showed
a 1.3473 lower bound on the competitive ratio of any deterministic online algorithm

214 Chapter 8: Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs

even when all jobs are sequential. Shmoys et al. [163] showed that by collecting all
jobs that arrive during a batch and then scheduling them together in the next batch,
one can transform any c-approximation offline algorithm into a 2c-competitive online
algorithm. We point out that this technique, however, does not apply to the model
considered in this chapter, because it relies on jobs having fixed, although unknown,
release times, whereas the “new job arrivals” in our model (corresponding to failed
jobs restarting) depend on the decisions made on-the-fly by the schedulers.

8.5.4 Batch schedulers in practical systems

In practical systems, parallel jobs are often scheduled by batch schedulers [113, 199,
171] that use a combination of reservation and backfilling strategies: while high-priority
jobs are scheduled by reserving processors in advance, low-priority ones are used to
fill in the “holes” to improve system utilization. Two popular backfilling strategies are
conservative [142] and aggressive (a.k.a. EASY) [129, 168]. The former gives a reserva-
tion for every job in the queue, and a lower-priority job is moved forward as long as it
does not delay the reservation for any higher-priority job. The latter only gives reser-
vation to the job at the head of the queue (i.e., the one with the highest priority), and
backfilling is allowed without delaying this highest-priority job. As jobs arrive over
time, most practical schedulers use First-Come First-Serve (FCFS) in conjunction with
these strategies to prevent job starvation, but no worst-case performance guarantee
is known. Various priority rules have been empirically evaluated to characterize and
tune their performance for different metrics (e.g., [170, 193, 90]).

8.6 Conclusion

In this chapter, we have investigated the problem of scheduling rigid jobs onto a par-
allel platform subject to silent errors. We have revisited the classical scheduling al-
gorithms in this new framework, where jobs that have been struck by errors must be
re-executed (possibly many times) until success. We designed resilient list-based and
shelf-based scheduling heuristics, along with different priority rules and backfilling
strategies. On the theoretical side, we proved that variants of the list-based heuris-
tic achieve a constant approximation ratio (2 or 3 depending whether reservation is
used or not). We also showed that any shelf-based heuristic is no longer a constant-
factor approximation, while a failure-free variant was known to be a 3-approximation.
Extensive simulations conducted using both synthetic jobs and real traces from the
Mira supercomputer demonstrate that these heuristics are quite robust, and achieve
makespans close to the optimal. As highlighted by the theoretical analysis, the best
strategy remains the unrestricted greedy list-based scheduling with no reservations,
and good results are obtained in practice when job priorities are assigned by process-
ing times (favoring jobs with long execution times) or by areas (favoring jobs with
many processors and/or long execution times).

8.6. CONCLUSION 215

Some problems remain open, in particular for the study of shelf-based algorithms,
whose expected makespan under the Exponential probability distribution is not known
to be bounded by a constant factor of the optimal or not. A natural extension of this
work would be to consider moldable jobs, whose processor allocations can be de-
cided at launch time. However, for jobs with nonlinear speedup curves, changing the
number of processors assigned to a job also changes its error probability under the
Exponential probability distribution, thereby severely complicating the problem, and
thus calling for the design of novel heuristics.

Chapter 9

I/O scheduling strategy for periodic applica-
tions

With the ever-growing need of data in HPC applications, the congestion at the I/O
level becomes critical in supercomputers. Architectural enhancement such as burst
buffers and pre-fetching are added to machines, but are not sufficient to prevent con-
gestion. Recent online I/O scheduling strategies have been put in place, but they add
an additional congestion point and overheads in the computation of applications.

In this work, we show how to take advantage of the periodic nature of HPC ap-
plications in order to develop efficient periodic scheduling strategies for their I/O
transfers. Our strategy computes once during the job scheduling phase a pattern
which defines the I/O behavior for each application, after which the applications run
independently, performing their I/O at the specified times. Our strategy limits the
amount of congestion at the I/O node level and can be easily integrated into current
job schedulers. We validate this model through extensive simulations and experi-
ments on an HPC cluster by comparing it to state-of-the-art online solutions, showing
that not only does our scheduler have the advantage of being de-centralized and thus
overcoming the overhead of online schedulers, but also that it performs better than
the other solutions, improving the application dilation up to 16% and the maximum
system efficiency up to 18%. The work in this chapter is joint work with Guillaume
Pallez and Ana Gainaru, and has been published in Transactions on Parallel Computing
(TOPC) [J2].

9.1 Introduction

Nowadays, supercomputing applications create or process TeraBytes of data. This
is true in all fields: for example LIGO (gravitational wave detection) generates
1500TB/year [126], the Large Hadron Collider generates 15PB/year, light source
projects deal with 300TB of data per day and climate modeling are expected to have
to deal with 100EB of data [102].

Management of I/O operations is critical at scale. However, observations on the

217

218 Chapter 9: I/O scheduling strategy for periodic applications

Intrepid machine at Argonne National Lab show that I/O transfer can be slowed down
up to 70% due to congestion [85]. For instance, when Los Alamos National Labora-
tory moved from Cielo to Trinity, the peak performance moved from 1.4 Petaflops to
40 Petaflops (×28) while the I/O bandwidth moved to 160 GB/s to 1.45TB/s (only
×9) [124]. The same kind of results can be observed at Argonne National Labora-
tory when moving from Intrepid (0.6 PF, 88 GB/s) and to Mira (10PF, 240 GB/s).
While both peak performance and peak I/O improve, the reality is that I/O through-
put scales worse than linearly compared to performance, and hence, what should be
noticed is a downgrade from 160 GB/PFlop (Intrepid) to 24 GB/PFlop (Mira).

With this in mind, to be able to scale, the conception of new algorithms has to
change paradigm: going from a compute-centric model to a data-centric model.

To help with the ever growing amount of data created, architectural improvements
such as burst buffers [130, 9] have been added to the system. Work is being done to
transform the data before sending it to the disks in the hope of reducing the I/O [65].
However, even with the current I/O footprint burst buffers are not able to completely
hide I/O congestion. Moreover, the data used is always expected to grow. Recent
works [85] have started working on novel online, centralized I/O scheduling strategies
at the I/O node level. However, one of the risks noted on these strategies is the
scalability issue caused by potentially high overheads (between 1 and 5% depending
on the number of nodes used in the experiments) [85]. Moreover, it is expected that
this overhead will increase at larger scale since it need centralized information about
all applications running in the system.

In this chapter, we present a decentralized I/O scheduling strategy for supercom-
puters. We show how to take known HPC application behaviors (namely their peri-
odicity) into account to derive novel static scheduling algorithms. This chapter is an
extended version of our previous work [W2]. We improve the main algorithm with
a new loop aiming at correcting the size of the period at the end. We also added a
detailed complexity analysis and more simulations on synthetic applications to show
the wide applicability of our solution. Overall we consider that close to 50% of the
technical content is new material.

Periodic Applications Many recent HPC studies have observed independent patterns
in the I/O behavior of HPC applications. The periodicity of HPC applications has
been well observed and documented [43, 66, 85, 108]: HPC applications alternate
between computation and I/O transfer, this pattern being repeated over-time. Carns
et al. [43] observed with Darshan [43] the periodicity of four different applications
(MADBench2 [44], Chombo I/O benchmark [54], S3D IO [157] and HOMME [143]).
Furthermore, in a previous work [85], the authors were able to verify the periodicity of
gyrokinetic toroidal code (GTC) [77], Enzo [36], HACC application [96] and CM1 [35].
Furthermore, fault-tolerance techniques (such as periodic checkpointing [58, 105]) also
add to this periodic behavior.

The key idea in this project is to take into account those known structural behaviors
of HPC applications and to include them in scheduling strategies.

9.1. INTRODUCTION 219

Using this periodicity property, we compute a static periodic scheduling strategy
(introduced in our previous work [W2]), which provides a way for each application to
know when it should start transferring its I/O (i) hence reducing potential bottlenecks
due to I/O congestion, and (ii) without having to consult with I/O nodes every time
I/O should be done and hence adding an extra overhead. The main contributions of
this chapter are:

• A novel light-weight I/O algorithm that looks at optimizing both application-
oriented and platform-oriented objectives;

• The full details of this algorithm and its implementation along with the full
complexity analysis;

• A set of extensive simulations and experiments that show that this algorithm
performs as well or better than current state of the art heavy-weight online algo-
rithms.

• More simulations to show the performance at scale and a full evaluation to un-
derstand how each parameter of the algorithm impacts its performance

Of course, not all applications exhibit a perfect periodic behavior, but based on our
experience, many of the HPC scientific applications have this property. This work is
preliminary in the sense that we are offering a proof of concept in this chapter and we
plan to tackle more complex patterns in the future. In addition, future research will
be done for including dynamic schedules instead of only relying on static schedules.
This work aims at being the basis of a new class of data-centric scheduling algorithms
based on well-know characteristics of HPC applications.

The algorithm presented here is done as a proof of concept to show the efficiency of
these light-weight techniques. We believe our scheduler can be implemented naturally
into a data scheduler (such as Clarisse [112]) and we provide experimental results
backing this claim. We also give hints of how this could be naturally coupled with non-
periodic applications. However, this integration is beyond the scope of this chapter.
For the purpose of this chapter the applications are already scheduled on the system
and are able to receive information about their I/O scheduling. The goal of our I/O
scheduler is to eliminate congestion points caused by application interference while
keeping the overhead seen by all applications to the minimum. Computing a full
I/O schedule over all iterations of all applications is not realistic at today’s scale. The
process would be too expensive both in time and space. Our scheduler overcomes this
by computing a period of I/O scheduling that includes different number of iterations
for each application.

The rest of the chapter is organized as follows: in Section 9.2 we present the appli-
cation model and optimization problem. In Section 9.3 we present our novel algorithm
technique as well as a brief proof of concept for a future implementation. In Section 9.4
we present extensive simulations based on the model to show the performance of our
algorithm compared to state of the art. We then confirm the performance by perform-
ing experiments on a supercomputer to validate the model. We give some background
and related work in Section 9.5. We provide concluding remarks and ideas for future
research directions in Section 9.6.

220 Chapter 9: I/O scheduling strategy for periodic applications

b=0.1Gb/s/Node

=B

Figure 9.1: Model instantiation for Intrepid [85].

9.2 Model

In this section we use the model introduced in the previous work [85] that has been
verified experimentally to be consistent with the behavior of Intrepid and Mira, super-
computers at Argonne.

We consider scientific applications running at the same time on a parallel platform.
The applications consist of series of computations followed by I/O operations. On a
supercomputer, the computations are done independently because each application
uses its own nodes. However, the applications are concurrently sending and receiving
data during their I/O phase on a dedicated I/O network. The consequence of this I/O
concurrency is congestion between an I/O node of the platform and the file storage.

9.2.1 Parameters

We assume that we have a parallel platform made up of N identical unit-speed nodes,
composed of the same number of identical processors, each equipped with an I/O
card of bandwidth b (expressed in bytes per second). We further assume having a
centralized I/O system with a total bandwidth B (also expressed in bytes per second).
This means that the total bandwidth between the computation nodes and an I/O node
is N · b while the bandwidth between an I/O node and the file storage is B, with
usually N · b � B. We have instantiated this model for the Intrepid platform on
Figure 9.1.

We have K applications, all assigned to independent and dedicated computational
resources, but competing for I/O. For each application App(k) we define:

• Its size: App(k) executes with β(k) dedicated processors;
• Its pattern: App(k) obeys a pattern that repeats over time. There are n(k)

tot instances
of App(k) that are executed one after the other. Each instance consists of two
disjoint phases: computations that take a time w(k), followed by I/O transfers for
a total volume vol(k)io . The next instance cannot start before I/O operations for
the current instance are terminated.

We further denote by rk the time when App(k) is executed on the platform and dk the

9.2. MODEL 221

App(1) w(1) w(1) w(1)

App(2) w(2) w(2) w(2)
App(3) w(3) w(3) w(3)

Bandwidth

Time0
0

B

Figure 9.2: Scheduling the I/O of three periodic applications (top: computation, bot-
tom: I/O).

time when the last instance is completed. Finally, we denote by γ(k)(t), the bandwidth
used by a node on which application App(k) is running, at instant t. For simplicity we
assume just one I/O transfer in each loop. However, our model can be extended to
work with multiple I/O patterns as long as these are periodic in nature or as long as
they are known in advance. In addition, our scheduler can complement I/O prefetch-
ing mechanisms like [38, 103] that use the regular patterns within each data access
(contiguous/non-contiguous, read or write, parallel or sequential, etc) to avoid con-
gestion.

9.2.2 Execution Model

As the computation resources are dedicated, we can always assume without loss of
generality that the next computation chunk starts immediately after completion of
the previous I/O transfers, and is executed at full (unit) speed. On the contrary, all
applications compete for I/O, and congestion will likely occur. The simplest case is
that of a single periodic application App(k) using the I/O system in dedicated mode
during a time-interval of duration D. In that case, let γ be the I/O bandwidth used by
each processor of App(k) during that time-interval. We derive the condition β(k)γD =

vol(k)io to express that the entire I/O data volume is transferred. We must also enforce
the constraints that (i) γ ≤ b (output capacity of each processor); and (ii) β(k)γ ≤ B
(total capacity of I/O system). Therefore, the minimum time to perform the I/O

transfers for an instance of App(k) is time(k)io =
vol(k)io

min(β(k)b,B)
. However, in general many

applications will use the I/O system simultaneously, and the bandwidth capacity B
will be shared among all applications (see Figure 9.2). Scheduling application I/O
will guarantee that the I/O network will not be loaded with more than its designed
capacity. Figure 9.2 presents the view of the machine when 3 applications are sharing
the I/O system. This translates at the application level to delays inserted before I/O
bursts (see Figure 9.3 for application 2’s point of view).

This model is very flexible, and the only assumption is that at any instant, all
processors assigned to a given application are assigned the same bandwidth. This

222 Chapter 9: I/O scheduling strategy for periodic applications

App(2) w(2) IO D IO w(2) IO w(2) IO
Bandwidth

Time

Figure 9.3: Application 2 execution view (D represents the delay in I/O operations)

assumption is transparent for the I/O system and simplifies the problem statement
without being restrictive. Again, in the end, the total volume of I/O transfers for an
instance of App(k) must be vol(k)io , and at any instant, the rules of the game are simple:
never exceed the individual bandwidth b of each processor (γ(k)(t) ≤ b for any k and

t), and never exceed the total bandwidth B of the I/O system (
K
∑

k=1
β(k)γ(k)(t) ≤ B for

any t).

9.2.3 Objectives

We now focus on the optimization objectives at hand. We use the objectives introduced
in [85].

First, the application efficiency achieved for each application App(k) at time t is de-
fined as

ρ̃(k)(t) =
∑i≤n(k)(t) w(k,i)

t− rk
,

where n(k)(t) ≤ n(k)
tot is the number of instances of application App(k) that have been

executed at time t, since the release of App(k) at time rk. Because we execute w(k,i)

units of computation followed by vol(k,i)
io units of I/O operations on instance I (k)i of

App(k), we have t− rk ≥ ∑i≤n(k)(t)

(
w(k,i) + time(k,i)

io

)
. Due to I/O congestion, ρ̃(k) never

exceeds the optimal efficiency that can be achieved for App(k), namely

ρ(k) =
w(k)

w(k) + time(k)io

The two key optimization objectives, together with a rationale for each of them,
are:

• SysEff: maximize the peak performance of the platform, namely maximizing the
amount of operations per time unit:

maximize
1
N

K

∑
k=1

β(k)ρ̃(k)(dk). (9.1)

The rationale is to squeeze the most flops out of the platform aggregated com-
putational power. We say that this objective is CPU-oriented, as the schedule

9.3. PERIODIC SCHEDULING STRATEGY 223

will give priority to compute-intensive applications with large w(k)and small
vol(k)io values.

• Dilation: minimize the largest slowdown imposed to each application (hence
optimizing fairness across applications):

minimize max
k=1..K

ρ(k)

ρ̃(k)(dk)
. (9.2)

The rationale is to provide more fairness across applications and corresponds to
the stretch in classical scheduling: each application incurs a slowdown factor due
to I/O congestion, and we want the largest slowdown factor to be kept minimal.
We say that this objective is user-oriented, as it gives each application a guarantee
on the relative rate at which the application will progress.

We can now define the optimization problem:

Definition 1 (Periodic [85]). We consider a platform of N processors, a set of applications
∪K

k=1(App(k), β(k), w(k), vol(k)io), a maximum period Tmax, we want to find a periodic schedule
P of period T ≤ Tmax, in order to optimize one of the following objectives:

1. SysEff

2. Dilation

Note that it is known that both problems are NP-complete, even in an (easier)
offline setting [85].

9.3 Periodic scheduling strategy

In general, for an application App(k), n(k)
tot the number of instances of App(k) is very

large and not polynomial in the size of the problem. For this reason, online schedules
have been preferred until now. The key novelty of this chapter is to introduce periodic
schedules for the K applications. Intuitively, we are looking for a computation and I/O
pattern of duration T that will be repeated over time (except for initialization and clean
up phases), as shown on Figure 9.4a. In this section, we start by introducing the notion
of periodic schedule and a way to compute the application efficiency differently. We
then provide the algorithms that are at the core of this work.

Because there is no competition on computation (no shared resources), we can
consider that a chunk of computation directly follows the end of the I/O transfer,
hence we need only to represent I/O transfers in this pattern. The bandwidth used
by each application during the I/O operations is represented over time, as shown in
Figure 9.4b. We can see that an I/O operation can overlap with the previous pattern
or the next pattern, but overall, the pattern will just repeat.

To describe a pattern, we use the following notations:
• n(k)

per: the number of instances of App(k) during a pattern.

224 Chapter 9: I/O scheduling strategy for periodic applications

Bw

Time

Init

· · ·

Pattern Clean up

c T+c 2T+c 3T+c (n−2)T+c (n−1)T+c nT+c

(a) Periodic schedule (phases)

Bw

Time0
0

T

B

vol(1)io vol(1)io vol(1)io

vol(2)io vol(2)io vol(2)io
vol(3)io vol(3)iovol(4)io

initW(4)1endW(4)1 initIO(4)1

(b) Detail of I/O in a period/pattern

Figure 9.4: A schedule (above), and the detail of one of its regular pattern (below),
where (w(1) = 3.5; vol(1)io = 240; n(1)

per = 3), (w(2) = 27.5; vol(2)io = 288; n(2)
per = 3), (w(3) =

90; vol(3)io = 350; n(3)
per = 1), (w(4) = 75; vol(4)io = 524; n(4)

per = 1), and c is the duration of
the initilization phase.

• I (k)i : the i-th instance of App(k) during a pattern.

• initW(k)i : the time of the beginning of I (k)i . So, I (k)i has a computation interval

going from initW(k)i to endW(k)i = initW(k)i + w(k) mod T.

• initIO(k)i : the time when the I/O transfer from the i-th instance of App(k) starts

(between endW(k)i and initIO(k)i , App(k) is idle). Therefore, we have

∫ initW(k)
(i+1)%n(k)per

initIO(k)i

β(k)γ(k)(t)dt = vol(k)io .

Globally, if we consider the two instants per instance initW(k)i and initIO(k)i , that
define the change between computation and I/O phases, we have a total of S ≤
∑K

k=1 2n(k)
per distinct instants, that are called the events of the pattern.

We define the periodic efficiency of a pattern of size T:

ρ̃
(k)
per =

n(k)
perw(k)

T
. (9.3)

For periodic schedules, we use it to approximate the actual efficiency achieved for each
application. The rationale behind this can be seen in Figure 9.4. If App(k) is released
at time rk, and the first pattern starts at time rk + c, that is after an initialization phase
of duration c, then the main pattern is repeated n times (until time n · T + rk + c),

9.3. PERIODIC SCHEDULING STRATEGY 225

and finally App(k) ends its execution after a clean-up phase of duration c′ at time
dk = rk + c + n · T + c′. If we assume that n · T � c + c′, then dk − rk ≈ n · T. Then the
value of the ρ̃(k)(dk) for App(k) is:

ρ̃(k)(dk) =

(
n · n(k)

per + δ
)

w(k)

dk − rk
=

(
n · n(k)

per + δ
)

w(k)

c + n · T + c′

≈ n(k)
perw(k)

T
= ρ̃

(k)
per

where δ can be 1 or 0 depending whether App(k) was executed or not during the
clean-up or init phase.

9.3.1 PerSched: a periodic scheduling algorithm

For details in the implementation, we refer the interested reader to the source code available
at [83].

The difficulties of finding an efficient periodic schedule are three-fold:
• The right pattern size has to be determined;
• For a given pattern size, the number of instances of each application that should

be included in this pattern need to be determined;
• The time constraint between two consecutive I/O transfers of a given application,

due to the computation in-between makes naive scheduling strategies harder to
implement.

Finding the right pattern size A solution is to find schedules with different pattern
sizes between a minimum pattern size Tmin and a maximum pattern size Tmax.

Because we want a pattern to have at least one instance of each application, we
can trivially set up Tmin = maxk(w(k) + time(k)io). Intuitively, the larger Tmax is, the
more possibilities we can have to find a good solution. However this also increases
the complexity of the algorithm. We want to limit the number of instances of all
applications in a schedule. For this reason we chose to have Tmax = O(maxk(w(k) +

time(k)io)). We discuss this hypothesis in Section 9.4, where we give better experimental
intuition on finding the right value for Tmax. Experimentally we observe (Section 9.4,
Figure 9.11) that Tmax = 10Tmin seems to be sufficient.

We then decided on an iterative search where the pattern size increases exponen-
tially at each iteration from Tmin to Tmax. In particular, we use a precision ε as input
and we iteratively increase the pattern size from Tmin to Tmax by a factor (1 + ε). This
allows us to have a polynomial number of iterations. The rationale behind the ex-
ponential increase is that when the pattern size gets large, we expect performance to
converge to an optimal value, hence needing less the precision of a precise pattern size.
Furthermore while we could try only large pattern sizes, it seems important to find
a good small pattern size as it simplifies the scheduling step. Hence a more precise
search for smaller pattern sizes. Finally, we expect the best performance to cycle with

226 Chapter 9: I/O scheduling strategy for periodic applications

the pattern size. We verify these statements experimentally in Section 9.4 (Figure 9.10).
Determining the number of instances of each application By choosing Tmax = O(maxk(w(k)+

time(k)io)), we guarantee the maximum number of instances of each application that fit

into a pattern is O
(

maxk(w(k)+time(k)io)

mink(w(k)+time(k)io)

)
.

Instance scheduling Finally, our last item is, given a pattern of size T, how to sched-
ule instances of applications into a periodic schedule.

To do this, we decided on a strategy where we insert instances of applications in
a pattern, without modifying dates and bandwidth of already scheduled instances.
Formally, we call an application schedulable:

Definition 2 (Schedulable). Given an existing pattern

P = ∪K
k=1

(
n(k)

per ,∪n(k)
per

i=1{initW(k)i , initIO(k)i , γ(k)()}
)

, we say that an application App(k) is

schedulable if there exists 1 ≤ i ≤ n(k)
per , such that:

∫ initIO(k)i −w(k)

initW(k)i +w(k)
min

(
β(k)b, B−∑

l
β(l)γ(l)(t)

)
dt ≥ vol(k)io (9.4)

To understand Equation (9.4): we are checking that during the end of the compu-
tation of the ith instance (initW(k)i + w(k)), and the beginning of the computation of the
i + 1th instance to be, there is enough bandwidth to perform at least a volume of I/O
of vol(k)io . Indeed if a new instance is inserted, initIO(k)i −w(k) would then become the
beginning of computation of the i + 1th instance. Currently it is just some time before
the I/O transfer of the ith instance. We represent it graphically on Figure 9.5.

Bw

Time0
0

B

vol(1)io 1 vol(1)io 2

vol(2)io 1 vol(2)io 2 vol(2)io 3

vol(3)io

initW(2)2 +w(2) initIO(2)2 −w(2)

Figure 9.5: Graphical description of Definition 2: two instances of App(1) and App(2)

are already scheduled. To insert a third instance of App(2), we need to check that the
blue area is greater than vol(2)io with the bandwidth constraint (because an instance of
App(1) is already scheduled, the bandwidth is reduced for the new instance of App(2)).
The red area is off limit for I/O (used for computations).

With Definition 2, we can now explain the core idea of the instance scheduling part

9.3. PERIODIC SCHEDULING STRATEGY 227

of our algorithm. Starting from an existing pattern, while there exist applications that
are schedulable:

• Amongst the applications that are schedulable, we choose the application that
has the worst Dilation. The rationale is that even though we want to increase
SysEff, we do it in a way that ensures that all applications are treated fairly;

• We insert the instance into an existing scheduling using a procedure Insert-
In-Pattern such that (i) the first instance of each application is inserted using
procedure Insert-First-Instance which minimizes the time of the I/O transfer
of this new instance, (ii) the other instances are inserted just after the last inserted
one.

Note that Insert-First-Instance is implemented using a water-filling algorithm [86]
and Insert-In-Pattern is implemented as described in Algorithm 5 below. We use a
different function for the first instance of each application because we do not have any
previous instance to use the Insert-In-Pattern function. Thus, the basic idea would
be to put them at the beginning of the pattern, but it will be more likely to create
congestion if all applications are “synchronized” (for example if all the applications
are the same, they will all start their I/O phase at the same time). By using Insert-
First-Instance, every first instance will be at a place where the congestion for it is
minimized. This creates a starting point for the subsequent instances.

The function addInstance updates the pattern with the new instance, given a list
of the intervals (El , El′ , bl) during which App(k) transfers I/O between El and El′ using
a bandwidth bl .

Correcting the period size In Algorithm 6, the pattern sizes evaluated are determined
by Tmin and ε. There is no reason why this would be the right pattern size, and one
might be interested in reducing it to fit precisely the instances that are included in the
solutions that we found.

In order to do so, once a periodic pattern has been computed, we try to improve
the best pattern size we found in the first loop of the algorithm, by trying new pattern
sizes, close to the previous best one, Tcurr. To do this, we add a second loop which
tries 1/ε uniformly distributed pattern sizes from Tcurr to Tcurr/(1 + ε).

With all of this in mind, we can now write PerSched (Algorithm 6), our algorithm
to construct a periodic pattern. For all pattern sizes tried between Tmin and Tmax, we
return the pattern with maximal SysEff.

9.3.2 Complexity analysis

In this section we show that our algorithm runs in reasonable execution time. We
detail theoretical results that allowed us to reduce the complexity. We want to show
the following result:

Theorem 11. Let nmax =

(
maxk(w(k)+time(k)io)

mink(w(k)+time(k)io)

)
,

228 Chapter 9: I/O scheduling strategy for periodic applications

Algorithm 5: Insert-In-Pattern

1 procedure Insert-In-Pattern(P , App(k))
2 begin
3 if App(k) has 0 instance then
4 return Insert-First-Instance (P ,App(k));
5 else
6 Tmin := +∞ ;

7 Let I{i}k be the last inserted instance of App(k);

8 Let E0, E1, · · · , Eji the times of the events between the end of I{i}k + w(k) and

the beginning of I{(i+1) mod lT(k)}
k ;

9 For l = 0 · · · ji − 1, let Bl be the minimum between β(k) b and the available
bandwidth during [El , El+1];

10 DataLeft = vol(k)io ;
11 l = 0;
12 sol = [];
13 while DataLeft > 0 and l < ji do
14 if Bl > 0 then
15 TimeAdded = min(El+1 − El , DataLeft/Bl);
16 DataLeft -= TimeAdded·Bl ;
17 sol = [(El , El + TimeAdded, Bl)] + sol;

18 l++;

19 if DataLeft> 0 then
20 return P
21 else
22 return P .addInstance(App(k),sol)

PerSched(K′, ε, {App(k)}1≤k≤K) runs in

O
((⌈

1
ε

⌉
+

⌈
log K′

log(1 + ε)

⌉)
· K2 (nmax + log K′

))
.

9.3. PERIODIC SCHEDULING STRATEGY 229

Algorithm 6: Periodic Scheduling heuristic: PerSched

1 procedure PerSched(K′, ε, {App(k)}1≤k≤K)
2 begin
3 Tmin ← maxk(w(k) + time(k)io);
4 Tmax ← K′ · Tmin;
5 T = Tmin;
6 SE← 0;
7 Topt ← 0;
8 Popt ← {};
9 while T ≤ Tmax do

10 P = {};
11 while exists a schedulable application do
12 A = {App(k)|App(k) is schedulable};
13 Let App(k) be the element of A minimal with respect to the lexicographic

order
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
;

14 P←Insert-In-Pattern(P , App(k));

15 if SE < SysEff(P) then
16 SE← SysEff(P);
17 Topt ← T;
18 Popt ← P
19 T ← T · (1 + ε);

20 T ← Topt;
21 while true do
22 P = {};
23 while exists a schedulable application do
24 A = {App(k)|App(k) is schedulable};
25 Let App(k) be the element of A minimal with respect to the lexicographic

order
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
;

26 P←Insert-In-Pattern(P , App(k));

27 if SysEff(P) = Topt
T · SE then

28 Popt ← P ;

29 T ← T − (Topt − Topt
1+ε)/b1/εc

30 else
31 return Popt

We estimate SysEff of a periodic pattern, by replacing ρ̃(k)(dk) by ρ̃
(k)
per in Equation (9.1)

230 Chapter 9: I/O scheduling strategy for periodic applications

Some of the complexity results are straightforward. The key results to show are:

• The complexity of the tests “while exists a schedulable application” on lines 11
and 23

• The complexity of computing A and finding its minimum element on line 13
and 25.

• The complexity of Insert-In-Pattern

To reduce the execution time, we proceed as follows: instead of implementing the
set A, we implement a heap Ã that could be summarized as

{App(k)|App(k) is not yet known to not be schedulable}

sorted following the lexicographic order:
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
. Hence, we replace the while

loops on lines 11 and 23 by the algorithm snippet described in Algorithm 7. The idea
is to avoid calling Insert-In-Pattern after each new inserted instance to know which
applications are schedulable.

Algorithm 7: Schedulability snippet

11 Ã = ∪k{App(k)} (sorted by
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
);

12 while Ã 6= ∅ do
13 Let App(k) be the minimum element of Ã;
14 Ã ← Ã \ {App(k)};
15 Let P ′ =Insert-In-Pattern(P , App(k));
16 if P ′ 6= P then
17 P ← P ′;
18 Insert App(k) in Ã following

(
ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
;

We then need to show that they are equivalent:

• At all time, the minimum element of Ã is minimal amongst the schedulable

applications with respect to the order
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
(shown in Lemma 4);

• If Ã = ∅ then there are no more schedulable applications (shown in Corollary 3).

To show this, it is sufficient to show that (i) at all time, A ⊂ Ã, and (ii) Ã is always

sorted according to
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
.

9.3. PERIODIC SCHEDULING STRATEGY 231

Definition 3 (Compact pattern).

We say that a pattern P = ∪K
k=1

(
n(k)

per ,∪n(k)
per

i=1{initW(k)i , initIO(k)i , γ(k)()}
)

is compact if for

all 1 ≤ i < n(k)
per , either initW(k)i + w(k) = initIO(k)i , or for all t ∈ [initW(k)i , initIO(k)i],

∑l β(l)γ(l)(t) = B.

Intuitively, this means that, for all applications App(k), we can only schedule a new
instance between I (k)

n(k)
per

and I (k)1 .

Lemma 1. At any time during PerSched, P is compact.

Proof. For each application, either we use Insert-First-Instance to insert the first
instance (so P is compact as there is only one instance of an application at this step),
or we use Insert-In-Pattern which inserts an instance just after the last inserted one,
which is the definition of being compact. Hence, P is compact at any time during
PerSched.

Lemma 2. Insert-In-Pattern(P , App(k)) returns P , if and only if App(k) is not schedula-
ble.

Proof. One can easily check that Insert-In-Pattern checks the schedulability of App(k)

only between the last inserted instance of App(k) and the first instance of App(k).
Furthermore, because of the compactness of P (Lemma 1), this is sufficient to test the
overall schedulability.

Then the test is provided by the last condition Dataleft > 0.
• If the condition is false, then the algorithm actually inserts a new instance, so it

means that one more instance of App(k) is schedulable.
• If the condition is true, it means that we cannot insert a new instance after the

last inserted one. Because P is compact, we cannot insert an instance at another
place. So if the condition is true, we cannot add one more instance of App(k) in
the pattern.

Corollary 2. In Algorithm 7, an application App(k) is removed from Ã if and only if it is not
schedulable.

Lemma 3. If an application is not schedulable at some step, it will not be either in the future.

Proof. Let us suppose that App(k) is not schedulable at some step. In the future, new
instances of other applications can be added, thus possibly increasing the total band-
width used at each instant. The total I/O load is non-decreasing during the execution
of the algorithm. Thus if for all i, we had

∫ initIO(k)i −w(k)

initW(k)i +w(k)
min

(
β(k)b, B−∑

l
β(l)γ(l)(t)

)
dt < vol(k)io ,

232 Chapter 9: I/O scheduling strategy for periodic applications

then in the future, with new bandwidths used γ′(l)(t) > γ(l)(t), we will still have that
for all i, ∫ initIO(k)i −w(k)

initW(k)i +w(k)
min

(
β(k)b, B−∑

l
β(l)γ′(l)(t)

)
dt < vol(k)io .

Corollary 3. At all time,

A = {App(k)|App(k) is schedulable} ⊂ Ã.

This is a direct corollary of Corollary 2 and Lemma 3

Lemma 4. At all time, the minimum element of Ã is minimal amongst the schedulable appli-

cations with respect to the order
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
(but not necessarily schedulable).

Proof. First see that {App(k)|App(k) is schedulable} ⊂ Ã. Furthermore, initially the
minimality property is true. Then the set Ã is modified only when a new instance
of an application is added to the pattern. More specifically, only the application that
was modified has its position in Ã modified. One can easily verify that for all other

applications, their order with respect to
(

ρ(k)

ρ̃
(k)
per

, w(k)

time(k)io

)
has not changed, hence the set

is still sorted.

This concludes the proof that the snippet is equivalent to the while loops. With all
this we are now able to show timing results for the version of Algorithm 6 that uses
Algorithm 7.

Lemma 5. The loop on line 21 of Algorithm 6 terminates in at most d1/εe steps.

Proof. The stopping criteria on line 27 checks that the number of instances did not
change when reducing the pattern size. Indeed, by definition for a pattern P ,

SysEff(P) = ∑
k

β(k)ρ̃
(k)
per =

∑k β(k)n(k)
perw(k)

T
.

Denote SE the SysEff reached in Topt at the end of the while loop on line 9 of
Algorithm 6. Let SysEff(P) be the SysEff obtained in Topt/(1 + ε). By definition,

SysEff(P) < SE and
Topt

1 + ε
SysEff(P) < ToptSE.

Necessarily, after at most d1/εe iterations, Algorithm 6 exits the loop on line 21.

9.3. PERIODIC SCHEDULING STRATEGY 233

Proof of Theorem 11. There are bmc pattern sizes tried where Tmin · (1 + ε)m = Tmax in
the main “while” loop (line 9), that is

m =
log Tmax − log Tmin

log(1 + ε)
=

log K′

log(1 + ε)
.

Furthermore, we have seen (Lemma 5) that there are a maximum of d1/εe pattern
sizes tried of the second loop (line 21).

For each pattern size tried, the cost is dominated by the complexity of Algorithm 7.
Let us compute this complexity.

• The construction of Ã is done in O(K log K).

• In sum, each application can be inserted a maximum of nmaxtimes in Ã (maxi-
mum number of instances in any pattern), that is the total of all insertions has a
complexity of O(K log Knmax).

We are now interested in the complexity of the different calls to Insert-In-Pattern.
First one can see that we only call Insert-First-Instance K times, and in particular

they correspond to the first K calls of Insert-In-Pattern. Indeed, we always choose
to insert a new instance of the application that has the largest current slowdown. The
slowdown is infinite for all applications at the beginning, until their first instance is
inserted (or they are removed from Ã) when it becomes finite, meaning that the K first
insertions will be the first instance of all applications.

During the k-th call, for 1 ≤ k ≤ K, there will be n = 2(k − 1) + 2 events (2 for
each previously inserted instances and the two bounds on the pattern), meaning that
the complexity of Insert-First-Instance will be O(n log n) (because of the sorting of
the bandwidths available by non-increasing order to choose the intervals to use). So
overall, the K first calls have a complexity of O(K2 log K).

Furthermore, to understand the complexity of the remaining calls to Insert-In-
Pattern we are going to look at the end result. In the end there is a maximum of
nmaxinstance of each applications, that is a maximum of 2nmaxK events. For all appli-
cation App(k), for all instance I (k)i k, 1 < i ≤ n(k), the only events considered in Insert-

In-Pattern when scheduling I (k)i k were the ones between the end of initW(i)k + w(k)

and initW(i)k+1. Indeed, since the schedule has been able to schedule vol(k)io , Insert-In-
Pattern will exit the while loop on line 13. Finally, one can see that the events con-
sidered for all instances of an application partition the pattern without overlapping.
Furthermore, Insert-In-Pattern has a linear complexity in the number of events con-
sidered. Hence a total complexity by application of O(nmaxK). Finally, we have K
applications, the overall time spent in Insert-In-Pattern for inserting new instances
is O(K2nmax).

Hence, with the number of different pattern tried, we obtain a complexity of

O
((
dme+

⌈
1
ε

⌉) (
K2 log K + K2nmax

))
.

234 Chapter 9: I/O scheduling strategy for periodic applications

In practice, both K′ and K are small (≈ 10), and ε is close to 0, hence making the
complexity O

(nmax
ε

)
.

9.3.3 High-level implementation, proof of concept

We envision the implementation of this periodic scheduler to take place at two levels:
1) The job scheduler would know the applications profiles (using solutions such as

Omnisc’IO [66]). Using profiles it would be in charge of computing a periodic pattern
every time an application enters or leaves the system.

2) Application-side I/O management strategies (such as [133, 203, 112, 179]) then
would be responsible to ensure the correct I/O transfer at the right time by limiting
the bandwidth used by nodes that transfer I/O. The start and end time for each I/O
as well as the used bandwidth are described in input files.

To deal with the fact that some applications may not be fully-periodic, several
directions could be encompassed:

• Dedicating some part of the IO bandwidth to non-periodic applications depend-
ing on the respective IO load of periodic and non-periodic applications;

• Coupling a dynamic I/O scheduler to the periodic scheduler;

• Using burst buffers to protect from the interference caused by non-predictable
I/O.

Note that these directions are out of scope for this chapter, as the goal of this chapter
aims to show a proof-of-concept. Although future work will be devoted to the study
of those directions.

9.4 Evaluation and model validation

Note that the data used for this section and the scripts to generate the figures are available at
https: // github. com/ vlefevre/ IO-scheduling-simu .

In this section, (i) we assess the efficiency of our algorithm by comparing it to a re-
cent dynamic framework [85], and (ii) we validate our model by comparing theoretical
performance (as obtained by the simulations) to actual performance on a real system.

We perform the evaluation in three steps: first we simulate behavior of applications
and input them into our model to estimate both Dilation and SysEff of our algorithm
(Section 9.4.4) and evaluate these cases on an actual machine to confirm the validity of
our model. Finally, in Section 9.4.5 we confirm the intuitions introduced in Section 9.3
to determine the parameters used by PerSched.

https://github.com/vlefevre/IO-scheduling-simu

9.4. EVALUATION AND MODEL VALIDATION 235

9.4.1 Experimental Setup

The platform available for experimentation is Jupiter at Mellanox, Inc. To be able
to verify our model, we use it to instantiate our platform model. Jupiter is a Dell
PowerEdge R720xd/R720 32-node cluster using Intel Sandy Bridge CPUs. Each node
has dual Intel Xeon 10-core CPUs running at 2.80 GHz, 25 MB of L3, 256 KB unified L2
and a separate L1 cache for data and instructions, each 32 KB in size. The system has
a total of 64GB DDR3 RDIMMs running at 1.6 GHz per node. Jupiter uses Mellanox
ConnectX-3 FDR 56Gb/s InfiniBand and Ethernet VPI adapters and Mellanox SwitchX
SX6036 36-Port 56Gb/s FDR VPI InfiniBand switches.

We measured the different bandwidths of the machine and obtained b = 0.01GB/s
and B = 3GB/s. Therefore, when 300 cores transfer at full speed (less than half of the
640 available cores), congestion occurs.

Implementation of scheduler on Jupiter We simulate the existence of such a sched-
uler by computing beforehand the I/O pattern for each application and providing it as
an input file. The experiments require a way to control for how long each application
uses the CPU or stays idle waiting to start its I/O in addition to the amount of I/O it
is writing to the disk. For this purpose, we modified the IOR benchmark [161] to read
the input files that provide the start and end time for each I/O transfer as well as the
bandwidth used. Our scheduler generates one such file for each application. The IOR
benchmark is split in different sets of processes running independently on different
nodes, where each set represents a different application. One separate process acts
as the scheduler and receives I/O requests for all groups in IOR. Since we are inter-
ested in modeling the I/O delays due to congestion or scheduler imposed delays, the
modified IOR benchmarks do not use inter-processor communications. Our modified
version of the benchmark reads the I/O scheduling file and adapts the bandwidth
used for I/O transfers for each application as well as delaying the beginning of I/O
transfers accordingly.

We made experiments on our IOR benchmark and compared the results between
periodic and online schedulers as well as with the performance of the original IOR
benchmark without any extra scheduler.

9.4.2 Applications and scenarios

In the literature, there are many examples of periodic applications. Carns et al. [43]
observed with Darshan [43] the periodicity of four different applications (MAD-
Bench2 [44], Chombo I/O benchmark [54], S3D IO [157] and HOMME [143]). Fur-
thermore, in a previous work [85], the authors were able to verify the periodicity of
Enzo [36], HACC application [96] and CM1 [35].

Unfortunately, few documents give the actual values for w(k), vol(k)io and β(k). Liu
et al. [130] provide different periodic patterns of four scientific applications: Plasma-
Physics, Turbulence1, Astrophysics and Turbulence2. They were also the top four

236 Chapter 9: I/O scheduling strategy for periodic applications

App(k) w(k)(s) vol(k)io (GB) β(k)

Turbulence1 (T1) 70 128.2 32,768

Turbulence2 (T2) 1.2 235.8 4,096

AstroPhysics (AP) 240 423.4 8,192

PlasmaPhysics (PP) 7554 34304 32,768

Table 9.1: Details of each application.

Set # T1 T2 AP PP

1 0 10 0 0

2 0 8 1 0

3 0 6 2 0

4 0 4 3 0

5 0 2 0 1

Set # T1 T2 AP PP

6 0 2 4 0

7 1 2 0 0

8 0 0 1 1

9 0 0 5 0

10 1 0 1 0

Table 9.2: Number of applications of
each type launched at the same time
for each experiment scenario.

write-intensive jobs run on Intrepid in 2011. We chose the most I/O intensive patterns
for all applications (as they are the most likely to create I/O congestion). We present
these results in Table 9.1. Note that to scale those values to our system, we divided
the number of processors β(k) by 64, hence increasing w(k)by 64. The I/O volume stays
constant.

To compare our strategy, we tried all possible combinations of those applications
such that the number of nodes used equals 640. That is a total of ten different scenarios
that we report in Table 9.2.

9.4.3 Baseline and evaluation of existing degradation

We ran all scenarios on Jupiter without any additional scheduler. In all tested scenarios
congestion occurred and decreased the visible bandwidth used by each applications
as well as significantly increased the total execution time. We present in Table 9.3
the average I/O bandwidth slowdown due to congestion for the most representative
scenarios together with the corresponding values for SysEff. Depending on the I/O
transfers per computation ratio of each application as well as how the transfers of mul-
tiple applications overlap, the slowdown in the perceived bandwidth ranges between
25% to 65%.

Interestingly, set 1 presents the worst degradation. This scenario is running con-
currently ten times the same application, which means that the I/O for all applica-
tions are executed almost at the same time (depending on the small differences in
CPU execution time between nodes). This scenario could correspond to coordinated
checkpoints for an application running on the entire system. The degradation in the
perceived bandwidth can be as high as 65% which considerably increases the time to
save a checkpoint. The use of I/O schedulers can decrease this cost, making the entire
process more efficient.

9.4.4 Comparison to online algorithms

In this subsection, we present the results obtained by running PerSched and the online
heuristics from recent work [85]. Because in [85], the authors had different heuristics to
optimize either Dilation or SysEff, in this work, the Dilation and SysEff presented

9.4. EVALUATION AND MODEL VALIDATION 237

Set # Application BW slowdown SysEff

1 Turbulence 2 65.72% 0.064561

2 Turbulence 2 63.93% 0.250105

AstroPhysics 38.12%

3 Turbulence 2 56.92% 0.439038

AstroPhysics 30.21%

4 Turbulence 2 34.9% 0.610826

AstroPhysics 24.92%

6 Turbulence 2 34.67% 0.621977

AstroPhysics 52.06%

10 Turbulence 1 11.79% 0.98547

AstroPhysics 21.08%

Table 9.3: Bandwidth slowdown, performance and application slowdown for each set
of experiments

are the best reached by any of those heuristics. This means that there are no online
solution able to reach them both at the same time! We show that even in this scenario, our
algorithm outperforms simultaneously these heuristics for both optimization objectives!

The results presented in [85] represent the state of the art in what can be achieved
with online schedulers. Other solutions show comparable results, with [207] present-
ing similar algorithms but focusing on dilation and [65] having the extra limitation of
allowing the scheduling of only two applications.

PerSched takes as input a list of applications, as well as the parameters, presented
in Section 9.3, K′ = Tmax

Tmin
, ε. All scenarios were tested with K′ = 10 and ε = 0.01.

Simulation results We present in Table 9.4 all evaluation results. The results obtained
by running Algorithm 6 are called PerSched. To go further in our evaluation, we also
look for the best Dilation obtainable with our pattern (we do so by changing line 15
of PerSched). We call this result min Dilation in Table 9.4. This allows us to estimate
how far the Dilation that we obtain is from what we can do. Furthermore, we can
compute an upper bound to SysEff by replacing ρ̃(k) by ρ(k) in Equation (9.1):

Upper bound =
1
N

K

∑
k=1

β(k)w(k)

w(k) + time(k)io

. (9.5)

The first noticeable result is that PerSched almost always outperforms (when it
does not, it matches) both the Dilation and SysEff attainable by the online scheduling

238 Chapter 9: I/O scheduling strategy for periodic applications

Set
Min Upper bound PerSched Online

Dilation SysEff Dilation SysEff Dilation SysEff

1 1.777 0.172 1.896 0.0973 2.091 0.0825

2 1.422 0.334 1.429 0.290 1.658 0.271

3 1.079 0.495 1.087 0.480 1.291 0.442

4 1.014 0.656 1.014 0.647 1.029 0.640

5 1.010 0.816 1.024 0.815 1.039 0.810

6 1.005 0.818 1.005 0.814 1.035 0.761

7 1.007 0.827 1.007 0.824 1.012 0.818

8 1.005 0.977 1.005 0.976 1.005 0.976

9 1.000 0.979 1.000 0.979 1.004 0.978

10 1.009 0.988 1.009 0.986 1.015 0.985

Table 9.4: Best Dilation and SysEff for our periodic heuristic and online heuristics.

algorithms! This is particularly impressive as these objectives are not obtained by the
same online algorithms (hence conjointly), contrarily to the PerSched result.

While the gain is minimal (from 0 to 3%, except SysEff increased by 7% for case
6) when little congestion occurs (cases 4 to 10), the gain is between 9% and 16% for
Dilation and between 7% and 18% for SysEff when congestion occurs (cases 1, 2, 3)!

The value of ε has been chosen so that the computation stays short. It seems to be
a good compromise as the results are good and the execution times vary from 4 ms
(case 10) to 1.8s (case 5) using a Intel Core I7-6700Q. Note that the algorithm is easily
parallelizable, as each iteration of the loop is independent. Thus it may be worth
considering a smaller value of ε, but we expect no big improvement on the results.

Model validation through experimental evaluation We used the modified IOR bench-
mark to reproduce the behavior of applications running on HPC systems and ana-
lyze the benefits of I/O schedulers. We made experiments on the 640 cores of the
Jupiter system. Additionally to the results from both periodic and online heuristics,
we present the performance of the system with no additional I/O scheduler.

Figure 9.6 shows the SysEff (normalized using the upper bound in Table 9.4) and
Dilation when using the periodic scheduler in comparison with the online scheduler.
The results when applications are running without any scheduler are also shown. As
observed in the previous section, the periodic scheduler gives better or similar results
to the best solutions that can be returned by the online ones, in some cases increasing
the system performance by 18% and the dilation by 13%. When we compare to the
current strategy on Jupiter, the SysEff reach 48%! In addition, the periodic scheduler
has the benefit of not requiring a global view of the execution of the applications at

9.4. EVALUATION AND MODEL VALIDATION 239

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Set

Sy
st

em
 E

ffi
ci

en
cy

 /
U

pp
er

 b
ou

nd

Periodic (expe)
Periodic (simu)
Online (expe)
Online (simu)
Congestion

(a) SysEff/ Upper bound SysEff

1.2

1.5

1.8

2.1

1 2 3 4 5 6 7 8 9 10
Set

D
ila

tio
n

Periodic (expe)
Periodic (simu)
Online (expe)
Online (simu)

(b) Dilation

Figure 9.6: Performance for both experimental evaluation and theoretical (simulated)
results. The performance estimated by our model is accurate within 3.8% for periodic
schedules and 2.3% for online schedules.

every moment of time (by opposition to the online scheduler).
Finally, a key information from those results is the precision of our model intro-

duced in Section 9.2. The theoretical results (based on the model) are within 3% of the
experimental results!

This observation is key in launching more thorough evaluation via extensive simulations
and is critical in the experimentation of novel periodic scheduling strategies.

Synthetic applications The previous experiments showed that our model can be used
to simulate real life machines (that was already observed for Intrepid and Mira in [85]).
In this next step, we now rely on synthetic applications and simulation to test exten-
sively the efficiency of our solution.

We considered two platforms (Intrepid and Mira) to run the simulations with con-
crete values of bandwidths (B, b) and number of nodes (N). The values are reported
in Table 9.5.

Platform B (GB/s) b (GB/s) N N·b
B GFlops/node

Intrepid 64 0.0125 40,960 8 2.87

Mira 240 0.03125 49,152 6 11.18

Table 9.5: Bandwidth and number of processors of each platform used for simulations.

The parameters of the synthetic applications are generated as followed:

• w(k)is chosen uniformly at random between 2 and 7500 seconds for Intrepid
(and between 0.5 and 1875s for Mira whose nodes are about 4 times faster than
Intrepid’s nodes),

240 Chapter 9: I/O scheduling strategy for periodic applications

• the volume of I/O data vol(k)io is chosen uniformly at random between 100 GB and
35 TB.

These values where based on the applications we previously studied.
We generate the different sets of applications using the following method: let n be

the number of unused nodes. At the beginning we set n = N.
1. Draw uniformly at random an integer number x between 1 and max(1, n

4096 − 1)
(to ensure there are at least two applications).

2. Add to the set an application App(k) with parameters w(k) and vol(k)io set as pre-
viously detailed and β(k) = 4096x.

3. n← n− 4096x.
4. Go to step 1 if n > 0.

We then generated 100 sets for Intrepid (using a total of 40,960 nodes) and 100 sets
for Mira (using a total of 49,152 nodes) on which we run the online algorithms (either
maximizing the system efficiency or minimizing the dilation) and PerSched. The re-
sults are presented on Figures 9.7a and 9.7b for simulations using the Intrepid settings
and Figures 9.8a and 9.8b for simulations using the Mira settings.

0.6

0.8

1.0

0 25 50 75 100
Set

Sy
st

em
 E

ffi
ci

en
cy

 /
U

pp
er

 b
ou

nd

Periodic
Online (best)

(a) SysEff/ Upper bound SysEff

1.0

1.2

1.4

1.6

0 25 50 75 100
Set

D
ila

tio
n

Periodic
Online (best)

(b) Dilation

Figure 9.7: Comparison between online heuristics and PerSched on synthetic appli-
cations, based on Intrepid settings.

We can see that overall, our algorithm increases the system efficiency in almost
every case. On average the system efficiency is improved by 16% on intrepid (32%
on Mira) with peaks up to 116%! On Intrepid the dilation has overall similar values
(an average of 0.6% degradation over the best online algorithm, with variation be-
tween 11% improvement and 42% degradation). However on Mira in addition to the
improvement in system efficiency, PerSched improves on average by 22% the dilation!

The main difference between Intrepid and Mira is the ratio compute (= N ·
GFlops/node) over I/O bandwidth (B). In other terms, that is the speed at which data
is created/used over the speed at which data is transferred. Note that as said earlier,
the trend is going towards an increase of this ratio. This ratio increases a lot (and
hence incurring more I/O congestion) on Mira. To see if this indeed impacts the per-

9.4. EVALUATION AND MODEL VALIDATION 241

0.4

0.6

0.8

1.0

0 25 50 75 100
Set

Sy
st

em
 E

ffi
ci

en
cy

 /
U

pp
er

 b
ou

nd

Periodic
Online (best)

(a) SysEff/ Upper bound SysEff

1

2

3

0 25 50 75 100
Set

D
ila

tio
n

Periodic
Online (best)

(b) Dilation

Figure 9.8: Comparison between online heuristics and PerSched on synthetic appli-
cations, based on Mira settings.

formance of our algorithm, we plot on Figure 9.9 the average results of running 100
synthetic scenarios on systems with different ratios of compute over I/O. Basically, the
systems we simulate have identical performance to Mira (Table 9.5), and we only in-
crease the GFlops/node by a ratio from 2 to 1024. We plot the SysEff improvement
factor (SysEff(Online)

SysEff(PerSched)
) and the Dilation improvement factor (Dilation(Online)

Dilation(PerSched)
).

Figure 9.9: Comparison between online heuristics and PerSched on synthetic appli-
cations, for different ratios of compute over I/O bandwidth.

The trend that can be observed is that PerSched seems to be a lot more efficient
on systems where congestion is even more critical, showing that this algorithm seems
to be even more useful at scale. Specifically, when the ratio increases from 2 to 1024
the gain in SysEff increases on average from 1.1 to 1.5, and at the same time, the gain
in Dilation increases from 1.2 to 1.8.

242 Chapter 9: I/O scheduling strategy for periodic applications

9.4.5 Discussion on finding the best pattern size

The core of our algorithm is a search of the best pattern size via an exponential growth
of the pattern size until Tmax. As stated in Section 9.3, the intuition of the exponential
growth is that the larger the pattern size, the less precision is needed for the pattern
size as it might be easier to fit many instances of each application. On the contrary, we
expect that for small pattern sizes finding the right one might be a precision job.

0.080

0.085

0.090

0.095

2500 5000 7500

Sy
sE

ff

Set 1

2.0

2.5

3.0

3.5

2500 5000 7500

D
ila

tio
n

0.175

0.200

0.225

0.250

0.275

40000 80000 120000 160000

Set 2

1.50

1.75

2.00

2.25

40000 80000 120000 160000

0.30

0.35

0.40

0.45

40000 80000 120000 160000

Set 3

1.25

1.50

1.75

2.00

40000 80000 120000 160000

0.35
0.40
0.45
0.50
0.55
0.60
0.65

40000 80000 120000 160000

Set 4

1.00

1.25

1.50

1.75

2.00

40000 80000 120000 160000

0.5

0.6

0.7

0.8

1e+06 2e+06 3e+06 4e+06 5e+06

Set 5

1.00

1.25

1.50

1.75

2.00

1e+06 2e+06 3e+06 4e+06 5e+06

0.5

0.6

0.7

0.8

40000 80000 120000 160000

Sy
sE

ff

Set 6

1.00

1.25

1.50

1.75

2.00

40000 80000 120000 160000
Period

D
ila

tio
n

0.5

0.6

0.7

0.8

10000 20000 30000 40000

Set 7

1.00

1.25

1.50

1.75

2.00

10000 20000 30000 40000
Period

0.6

0.7

0.8

0.9

1e+06 2e+06 3e+06 4e+06 5e+06

Set 8

1.00

1.25

1.50

1.75

2.00

1e+06 2e+06 3e+06 4e+06 5e+06
Period

0.5

0.6

0.7

0.8

0.9

1.0

40000 80000 120000 160000

Set 9

1.00

1.25

1.50

1.75

2.00

40000 80000 120000 160000
Period

0.80

0.85

0.90

0.95

40000 80000 120000 160000

Set 10

1.00

1.25

1.50

1.75

2.00

40000 80000 120000 160000
Period

Figure 9.10: Evolution of SysEff (blue) and Dilation (pink) when the pattern size
increases for all sets.

We verify this experimentally and plot on Figure 9.10 the SysEff and Dilation

found by our algorithm as a function of the pattern size T for all the 10 sets. We can
see that they all have very similar shape.

Finally, the last information to determine to tweak PerSched is the value of Tmax.
Remember that we denote K′ = Tmax/Tmin.

Set ninst nmax

1 11 1.00

2 25 35.2

3 33 35.2

4 247 35.2

5 1086 1110

Set ninst nmax

6 353 35.2

7 81 10.2

8 251 31.5

9 9 1.00

10 28 3.47

Table 9.6: Maximum number of instances per application (ninst) in the solution re-
turned by PerSched, ratio between longest and shortest application (nmax).

9.5. RELATED WORK 243

To be able to get an estimate of the pattern size returned by PerSched, we provide
in Table 9.6 (i) the maximum number of instances ninstof any application, and (ii)

the ratio nmax =
maxk

(
w(k)+time(k)io

)
mink

(
w(k)+time(k)io

) . Together along with the fact that the Dilation

(Table 9.4) is always below 2 they give a rough idea of K′ (≈ ninst
nmax

). It is sometimes
close to 1, meaning that a small value of K′ can be sufficient, but choosing K′ ≈ 10 is
necessary in the general case.

We then want to verify the cost of under-estimating Tmax. For this evaluation all
runs were done up to K′ = 100 with ε = 0.01. Denote SysEff(K′) (resp. Dilation(K′))
the maximum SysEff (resp. corresponding Dilation) obtained when running Per-
Sched with K′. We plot their normalized version that is:

SysEff(K′)
SysEff(100)

(
resp.

Dilation(K′)
Dilation(100)

)
on Figure 9.11. The main noticeable information is that the convergence is very fast:

0.97

0.98

0.99

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K' = Tmax / Tmin

N
or

m
al

iz
ed

 S
ys

Eff

1.00

1.05

1.10

1.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
K' = Tmax / Tmin

N
or

m
al

iz
ed

 D
ila

tio
n

Figure 9.11: Normalized system efficiency and dilation obtained by Algorithm 6 aver-
aged on all 10 sets as a function of K′ (with Standard Error bars).

when K′ = 3, the average SysEff is within 0.3% of SysEff(100), but the corresponding
average Dilation is 5% higher than Dilation(100). If we go to K′ = 10 then we have
a SysEff of 0.1% of SysEff(100) and a Dilation within 1% of Dilation(100)! Hence
validating that choosing K′ = 10 is sufficient.

9.5 Related Work

Performance variability due to resource sharing can significantly detract from the suit-
ability of a given architecture for a workload as well as from the overall performance
realized by parallel workloads [167]. Over the last decade there have been studies to
analyze the sources of performance degradation and several solutions have been pro-
posed. In this section, we first detail some of the existing work that copes with I/O
congestion and then we present some of the theoretical literature that is similar to our
Periodic problem.

The storage I/O stack of current HPC systems has been increasingly identified as
a performance bottleneck [131]. Significant improvements in both hardware and soft-

244 Chapter 9: I/O scheduling strategy for periodic applications

ware need to be addressed to overcome oncoming scalability challenges. The study
in [111] argues for making data staging coordination driven by generic cross-layer
mechanisms that enable global optimizations by enforcing local decisions at node
granularity at individual stack layers.

I/O congestion While many other studies suggest that I/O congestion is one of the
main problems for future scale platforms [27, 134], few papers focus on finding a so-
lution at the platform level. Some papers consider application-side I/O management
and transformation (using aggregate nodes, compression etc) [133, 203, 179]. We con-
sider those work to be orthogonal to our work and able to work jointly. Recently,
numerous works focus on using machine learning for auto tuning and performance
studies [19, 122]. However these solutions also work at the application level and do
not have a global view of the I/O requirements of the system and they need to be
supported by a platform level I/O management for better results.

Some paper consider the use of burst buffers to reduce I/O congestion by delaying
accesses to the file storage, as they found that congestion occurs on a short period of
time and the bandwidth to the storage system is often underutilized [130]. Note that
because the computation power increases faster than the I/O bandwidth, this assump-
tion may not hold in the future and the bandwidth may tend to be saturated more
often and thus decreasing the efficiency of burst buffers. Kougas et al. [121] present a
dynamic I/O scheduling at the application level using burst buffers to stage I/O and
to allow computations to continue uninterrupted. They design different strategies to
mitigate I/O interference, including partitioning the PFS, which reduces the effective
bandwidth non-linearly. Note that their strategy only consider two applications. Tang
et al. [178] consider the use of Burst-Buffers to serve the I/O bursts of HPC applica-
tions. They prove that a basic reactive draining strategy that empties the burst buffer
as soon as possible can lead to a severe degradation of the aggregate I/O through-
put. On the other hand, they advocate for a proactive draining strategy, where data
is divided into draining segments which are dispersed evenly over the I/O interval,
and the burst buffer draining throughput is controlled through adjusting the number
of I/O requests issued each time. Recently, Aupy et al. [10] have started discussing
coupling of IO scheduling and buffers partitionning to improve data scheduling. They
propose an optimal algorithm that determines the minimum buffer size needed to
avoid congestion altogether.

The study from [160] offers ways of isolating the performance experienced by ap-
plications of one operating system from variations in the I/O request stream char-
acteristics of applications of other operating systems. While their solution cannot be
applied to HPC systems, the study offers a way of controlling the coarse grain alloca-
tion of disk time to the different operating system instances as well as determining the
fine-grain interleaving of requests from the corresponding operating systems to the
storage system.

Closer to this work, online schedulers for HPC systems were developed such as
previous work [85], the study by Zhou et al [207], and a solution proposed by Dorier
et al [65]. In [65], the authors investigate the interference of two applications and

9.6. CONCLUSION 245

analyze the benefits of interrupting or delaying either one in order to avoid congestion.
Unfortunately their approach cannot be used for more than two applications. Another
main difference with our previous work is the light-weight approach of this study
where the computation is only done once.

The previous study [85] is more general by offering a range of options to schedule
each I/O performed by an application. Similarly, the work from [207] also utilizes a
global job scheduler to mitigate I/O congestion by monitoring and controlling jobs’
I/O operations on the fly. Unlike online solutions, this paper focuses on a decentral-
ized approach where the scheduler is integrated into the job scheduler and computes
ahead of time, thus overcoming the need to monitor the I/O traffic of each application
at every moment of time.

Periodic schedules As a scheduling problem, our problem is somewhat close to the
cyclic scheduling problem (we refer to Hanen and Munier [101] for a survey). Namely
there are given a set of activities with time dependency between consecutive tasks
stored in a DAG that should be executed on p processors. The main difference is that
in cyclic scheduling there is no consideration of a constant time between the end of
the previous instance and the next instance. More specifically, if an instance of an
application has been delayed, the next instance of the same application is not delayed
by the same time. With our model this could be interpreted as not overlapping I/O
and computation.

9.6 Conclusion

Performance variation due to resource sharing in HPC systems is a reality and I/O
congestion is currently one of the main causes of degradation. Current storage systems
are unable to keep up with the amount of data handled by all applications running on
an HPC system, either during their computation or when taking checkpoints. In this
document we have presented a novel I/O scheduling technique that offers a decen-
tralized solution for minimizing the congestion due to application interference. Our
method takes advantage of the periodic nature of HPC applications by allowing the
job scheduler to pre-define each application’s I/O behavior for their entire execution.
Recent studies [66] have shown that HPC applications have predictable I/O patterns
even when they are not completely periodic, thus we believe our solution is general
enough to easily include the large majority of HPC applications. Furthermore, with
the integration of burst buffers in HPC machines [130, 9] periodic schedules could al-
low to stage data from non periodic applications in Application-side burst buffers, and
empty those buffers periodically to avoid congestion. This is the strategy advocated
by Tang et al. [178].

We conducted simulations for different scenarios and made experiments to validate
our results. Decentralized solutions are able to improve both total system efficiency
and application dilation compared to dynamic state-of-the-art schedulers. Moreover,
they do not require a constant monitoring of the state of all applications, nor do they
require a change in the current I/O stack. One particularly interesting result is for

246 Chapter 9: I/O scheduling strategy for periodic applications

scenario 1 with 10 identical periodic behaviors (such as what can be observed with
periodic checkpointing for fault-tolerance). In this case the periodic scheduler shows
a 30% improvement in SysEff. Thus, system wide applications taking global check-
points could benefit from such a strategy. Our scheduler performs better than existing
solutions, improving the application dilation up to 16% and the maximum system effi-
ciency up to 18%. Moreover, based on simulation results, our scheduler shows an even
greater improvement for future systems with increasing ratios between the computing
power and the I/O bandwidth.

Future work: we believe this work is the initialization of a new set of techniques to
deal with the I/O requirements of HPC system. In particular, by showing the efficiency
of the periodic technique on simple pattern, we expect this to serve as a proof of
concept to open a door to multiple extensions. We give here some examples that we
will consider in the future. The next natural directions is to take more complicated
periodic shapes for applications (an instance could be composed of sub-instances) as
well as different points of entry inside the job scheduler (multiple I/O nodes). We
plan to also study the impact of non-periodic applications on this schedule and how
to integrate them. This would be modifying the Insert-In-Pattern procedure and
we expect that this should work well as well. Another future step would be to study
how variability in the compute or I/O volumes impact a periodic schedule. This
variability could be important in particular on machines where the inter-processor
communication network is shared with the I/O network. Indeed, in those case, I/O
would likely be delayed. Finally we plan to model burst buffers and to show how to
use them conjointly with periodic schedules, specifically if they allow to implement
asynchrone I/O.

Chapter 10

Conclusion

Summary of results

In this thesis, we have addressed several challenges related to exascale computing,
more particularly resilience. We have presented some algorithms that allow applica-
tions to complete in a failure-prone environment. Moreover, we have been able to
derive optimal solutions to minimize the execution time (or the energy consumption
in some cases, as it remains one of the big challenges of exascale computing).

In Part I, we have presented an extension of Young and Daly’s formula for a multi-
level checkpointing scheme, which targets fail-stop errors. In particular, we have been
able to derive the optimal (rational) number of checkpoints for each level and that they
are equally spaced. We have also provided a dynamic programming algorithm that
selects the optimal subset of levels to be used. We have compared the performance of
Rigid, Moldable and GridShaped applications with checkpoint/restart (and ABFT
for GridShaped applications), and showed that the yield can be improved a lot by
requesting a new allocation after a number of failures corresponding to a small per-
centage of the total resources, even for large values of wait time. Finally, we have
designed the first (for fail-stop errors) heuristic for checkpointing generic workflows
while mapping tasks to processors. This heuristic achieves a trade-off between check-
pointing every task (which is secure but long) and checkpointing no task (which might
imply too many re-executions).

Part II deals with problems related to replication. We first proposed an optimal
dynamic programming algorithm to decide which tasks are duplicated and/or check-
pointed in a linear workflow. The algorithm runs in O(n2) and applies to both silent
and fail-stop errors. We then studied a divisible application executed on two hetero-
geneous platforms and we derived the optimal checkpointing period (more exactly, a
first or second-order approximation) for a periodic strategy and we compared it to an-
other strategy: on-failure checkpointing. One striking result is that when the speeds
of both machines are the same, the optimal checkpointing period is proportional to
λ−

2
3 instead of λ−

1
2 as it is classically. We find this result again in our study of process

duplication on homogeneous processors with our restart strategy. All previous works
used the no-restart strategy, and we showed that our approach can be significantly bet-

247

248 Chapter 10: Conclusion

ter in terms of execution time, energy consumption, robustness as regard to the period
choice or I/O utilization.

Finally, we studied two scheduling problems in Part III. We first extended approx-
imation results on list scheduling heuristics to a context where tasks can fail and we
get constant approximation ratios. We also showed that shelf-based algorithms can no
longer be constant-factor approximation algorithms. Then, to tackle the problem of
I/O congestion (computational power increases faster than bandwidths), we designed
a nice I/O scheduling algorithm at the platform level. We relied on applications that
have a periodic behavior to compute a periodic schedule, each time a new application
is launched. We were able to improve two metrics: SysEff and Dilation, and we
provided a additional scenario to show even more the benefits of I/O scheduling in
the future.

For each theoretical result, we validated our model and solution with extensive
sets of simulations. These simulations have been helpful in two major ways: assessing
the accuracy of our first-order (or second-order) approximations and measuring the
practical impact of the proposed solutions. When possible, we used numbers coming
from real applications to further strengthen the analysis (for example, we used real
logs from Mira [5] in Chapter 8) instead of using only randomly generated input data,
which, in some cases, may not reflect the same exact behavior of our algorithms.

Future work and perspectives

On-going work includes two different problems. We first plan to extend the re-
sults described in Chapter 8 to moldable jobs, i.e., jobs that do not require a fixed
number of processors to run. We consider several models (Amdahl’s law, rooftop,
communication-bound jobs, ...) and design a new algorithm for attributing the re-
sources to each job before scheduling them. We expect to have higher approximation
ratios compared to rigid jobs, as it is already the case when considering jobs that
cannot fail [184].

Another study that we target is a comparison of residual checking and ABFT for
correcting silent data corruptions (SDC). Residual checking is an ABFT-like technique
that has one major asset: while ABFT uses embedded checksums that are transmitted
through the computation (for example, for a matrix-matrix product, some rows and
columns are added, then the multiplication is done as if these rows and columns are
part of the orignal matrices thanks to linear properties), residual checking consists in
doing this check only at the end of the computation. This is easier for a developer to
implement even for complex transformations like LU and Cholesky. The challenging
part in this problem is to detect where the SDCs strike and to find a way to correct
them. To the best of our knowledge, using residual checking has only been used to
detect errors so far, and preliminary results seem to indicate that it can have a lower
overhead than ABFT for matrix-matrix multiplication.

In the long term, future work is composed of several perspectives, as most chapters
can be extended with a more complex framework. In Chapter 3, we considered only

Conclusion 249

perfectly divisible applications, ABFT and checkpoint/restart separately and homoge-
neous platforms. It would be natural to see if similar results can be derived for jobs
obeying Amdahl’s law [3], heterogeneous platforms, and check what happens when
both ABFT and checkpoint/restart are applied (to deal with both fail-stop and silent
errors for example). As we saw in Chapter 4, it is already difficult to select which tasks
should be checkpointed in a generic workflow. A challenging extension for Chapter 5
would be to find which tasks should be replicated and/or checkpointed in such a
workflow. Finally, an interesting perspective found in Chapter 7 could be to study
non-periodic checkpointing periods for a replicated divisible application. Indeed, we
provided an example where periodic checkpointing is not optimal with one pair of
processors, and we believe that this result holds for several pairs of processors.

Bibliography

[1] M. Albrecht, P. Donnelly, P. Bui, and D. Thain. “Makeflow: A portable abstrac-
tion for data intensive computing on clusters, clouds, and grids.” In: 1st ACM
SWEET SIGMOD. ACM. 2012.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. “Kepler:
an extensible system for design and execution of scientific workflows.” In: Proc.
of 16th SSDBM. IEEE, 2004, pp. 423–424.

[3] G. Amdahl. “The validity of the single processor approach to achieving large
scale computing capabilities.” In: AFIPS Conference Proceedings. Vol. 30. AFIPS
Press, 1967, pp. 483–485.

[4] APEX. APEX Workflows. Research report SAND2016-2371 and LA-UR-15-29113.
LANL, NERSC, SNL, 2016.

[5] Argonne Leadership Computing Facility. Mira log traces. https://reports.
alcf.anl.gov/data/mira.html.

[6] R. A. Ashraf, S. Hukerikar, and C. Engelmann. “Shrink or Substitute: Handling
Process Failures in HPC Systems using In-situ Recovery.” In: CoRR abs/1801.04523
(2018). arXiv: 1801.04523.

[7] I. Assayad, A. Girault, and H. Kalla. “A Bi-Criteria Scheduling Heuristic for
Distributed Embedded Systems under Reliability and Real-Time Constraints.”
In: Dependable Systems Networks (DSN). IEEE, 2004.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures.” In:
Concur. and Comp.: Pract. and Exp. 23.2 (2011), pp. 187–198.

[9] G. Aupy, O. Beaumont, and L. Eyraud-Dubois. “What size should your Buffers
to Disk be?” In: Proceedings of the 32nd International Parallel Processing Sympo-
sium, (IPDPS’18). IEEE. 2018.

[10] G. Aupy, O. Beaumont, and L. Eyraud-Dubois. “Sizing and Partitioning Strate-
gies for Burst-Buffers to Reduce IO Contention.” In: Proceedings of the 33rd In-
ternational Parallel Processing Symposium, (IPDPS’19). IEEE. 2019.

[11] G. Aupy, A. Benoit, H. Casanova, and Y. Robert. “Scheduling computational
workflows on failure-prone platforms.” In: Int. J. of Networking and Computing
6.1 (2016), pp. 2–26.

251

https://reports.alcf.anl.gov/data/mira.html
https://reports.alcf.anl.gov/data/mira.html
https://arxiv.org/abs/1801.04523

252 Bibliography

[12] G. Aupy, Y. Robert, and F. Vivien. “Assuming failure independence: are we
right to be wrong?” In: FTS’2017, the Workshop on Fault-Tolerant Systems, in con-
junction with Cluster’2017. IEEE Computer Society Press, 2017.

[13] B. S. Baker, E. G. Coffman, and R. L. Rivest. “Orthogonal Packings in Two
Dimensions.” In: SIAM Journal on Computing 9.4 (1980), pp. 846–855.

[14] P. Balaprakash, L. A. B. Gomez, M.-S. Bouguerra, S. M. Wild, F. Cappello, and
P. D. Hovland. “Analysis of the Tradeoffs Between Energy and Run Time for
Multilevel Checkpointing.” In: Proc. PMBS’14. 2014.

[15] L. Bautista Gomez and F. Cappello. “Detecting Silent Data Corruption Through
Data Dynamic Monitoring for Scientific Applications.” In: SIGPLAN Notices
49.8 (2014), pp. 381–382.

[16] L. Bautista Gomez and F. Cappello. “Detecting and Correcting Data Corruption
in Stencil Applications through Multivariate Interpolation.” In: FTS. IEEE, 2015.

[17] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and
S. Matsuoka. “FTI: High Performance Fault Tolerance Interface for Hybrid Sys-
tems.” In: Proc. SC’11. 2011.

[18] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith. “Unpro-
tected Computing: A Large-scale Study of DRAM Raw Error Rate on a Su-
percomputer.” In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’16. Salt Lake City, Utah: IEEE
Press, 2016, 55:1–55:11. isbn: 978-1-4673-8815-3.

[19] Behzad et al. “Taming parallel I/O complexity with auto-tuning.” In: SC13.
2013.

[20] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Optimal Resilience Patterns to
Cope with Fail-Stop and Silent Errors.” In: 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). May 2016, pp. 202–211. doi: 10.1109/
IPDPS.2016.39.

[21] A. Benoit, A. Cavelan, F. Cappello, P. Raghavan, Y. Robert, and H. Sun. “Cop-
ing with silent and fail-stop errors at scale by combining replication and check-
pointing.” In: J. Parallel and Distributed Computing 122 (2018), pp. 209–225.

[22] A. Benoit, A. Cavelan, F. Ciorba, V. L. Fèvre, and Y. Robert. Combining check-
pointing and replication for reliable execution of linear workflows. Research report
RR-9152. INRIA, 2018.

[23] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. “Assessing General-Purpose Al-
gorithms to Cope with Fail-Stop and Silent Errors.” In: ACM Trans. Parallel
Comput. 3.2 (July 2016), 13:1–13:36. issn: 2329-4949. doi: 10.1145/2897189.

[24] A. Benoit, T. Herault, V. L. Fèvre, and Y. Robert. Replication Is More Efficient
Than You Think: Code and Technical Report. https://doi.org/10.5281/zenodo.
3366221. Aug. 2019.

https://doi.org/10.1109/IPDPS.2016.39
https://doi.org/10.1109/IPDPS.2016.39
https://doi.org/10.1145/2897189
https://doi.org/10.5281/zenodo.3366221
https://doi.org/10.5281/zenodo.3366221

Bibliography 253

[25] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. “Lightweight
Silent Data Corruption Detection Based on Runtime Data Analysis for HPC
Applications.” In: HPDC. ACM, 2015.

[26] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi. “Char-
acterization of scientific workflows.” In: Workflows in Support of Large-Scale Sci-
ence (WORKS). IEEE, 2008, pp. 1–10.

[27] R. Biswas, M. Aftosmis, C. Kiris, and B.-W. Shen. “Petascale computing: Impact
on future NASA missions.” In: Petascale Computing: Architectures and Algorithms
(2007), pp. 29–46.

[28] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. “Post-failure
recovery of MPI communication capability: Design and rationale.” In: Interna-
tional Journal of High Performance Computing Applications 27.3 (2013), pp. 244–254.
doi: 10.1177/1094342013488238. eprint: http://hpc.sagepub.com/content/
27/3/244.full.pdf+html.

[29] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra.
“An evaluation of User-Level Failure Mitigation support in MPI.” In: Computing
95.12 (2013), pp. 1171–1184.

[30] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guermouche,
T. Herault, Y. Robert, F. Vivien, and D. Zaidouni. “Unified model for assess-
ing checkpointing protocols at extreme-scale.” In: Concurrency and Computation:
Practice and Experience (2013). issn: 1532-0634. doi: 10.1002/cpe.3173.

[31] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. “Algorithm-based fault tol-
erance applied to high performance computing.” In: J. Parallel Distrib. Comput.
69.4 (2009), pp. 410–416.

[32] S. Boyd and L. Vandenberghe. Convex Optimization. New York, NY, USA: Cam-
bridge University Press, 2004. isbn: 0521833787.

[33] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, et al. “A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems.” In: Journal of Parallel and Distributed computing
61.6 (2001), pp. 810–837.

[34] R. Brightwell, K. Ferreira, and R. Riesen. “Transparent Redundant Computing
with MPI.” In: EuroMPI. Springer, 2010.

[35] G. H. Bryan and J. M. Fritsch. “A benchmark simulation for moist nonhydro-
static numerical models.” In: Monthly Weather Review 130.12 (2002).

[36] G. L. Bryan et al. “Enzo: An Adaptive Mesh Refinement Code for Astrophysics.”
In: arXiv:1307.2265 (2013).

[37] E. S. Buneci. “Qualitative Performance Analysis for Large-Scale Scientific Work-
flows.” PhD thesis. Duke University, 2008.

https://doi.org/10.1177/1094342013488238
http://hpc.sagepub.com/content/27/3/244.full.pdf+html
http://hpc.sagepub.com/content/27/3/244.full.pdf+html
https://doi.org/10.1002/cpe.3173

254 Bibliography

[38] S. Byna, Y. Chen, X. Sun, R. Thakur, and W. Gropp. “Parallel I/O prefetching
using MPI file caching and I/O signatures.” In: SC ’08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing. Nov. 2008, pp. 1–12. doi: 10.1109/SC.
2008.5213604.

[39] C. Cao, T. Herault, G. Bosilca, and J. Dongarra. “Design for a Soft Error Resilient
Dynamic Task-Based Runtime.” In: IPDPS. IEEE, 2015, pp. 765–774.

[40] F. Cappello, K. Mohror, et al. VeloC: Very Low Overhead Checkpointing System.
https://veloc.readthedocs.io/en/latest/. Mar. 2019.

[41] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. “Toward Ex-
ascale Resilience.” In: Int. J. High Performance Computing Applications 23.4 (2009),
pp. 374–388.

[42] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. “Toward
Exascale Resilience: 2014 update.” In: Supercomputing frontiers and innovations
1.1 (2014).

[43] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. “24/7 characteri-
zation of petascale I/O workloads.” In: Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on (Jan. 2009), pp. 1–10.

[44] J. Carter, J. Borrill, and L. Oliker. “Performance characteristics of a cosmology
package on leading HPC architectures.” In: HiPC. Springer, 2005, pp. 176–188.

[45] H. Casanova, M. Bougeret, Y. Robert, F. Vivien, and D. Zaidouni. “Using group
replication for resilience on exascale systems.” In: Int. Journal of High Perfor-
mance Computing Applications 28.2 (2014), pp. 210–224.

[46] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. “On the impact of process
replication on executions of large-scale parallel applications with coordinated
checkpointing.” In: Future Gen. Comp. Syst. 51 (2015), pp. 7–19.

[47] K. M. Chandy and L. Lamport. “Distributed Snapshots: Determining Global
States of Distributed Systems.” In: ACM Transactions on Computer Systems 3.1
(1985), pp. 63–75.

[48] B. Chen and A. P. Vestjens. “Scheduling on identical machines: How good is
LPT in an on-line setting.” In: Operations Research Letters 21.4 (1997), pp. 165–
169.

[49] C. Chen, G. Eisenhauer, M. Wolf, and S. Pande. “LADR: Low-cost Application-
level Detector for Reducing Silent Output Corruptions.” In: HPDC. Tempe, Ari-
zona, 2018, pp. 156–167.

[50] Z. Chen. “Online-ABFT: An Online Algorithm Based Fault Tolerance Scheme
for Soft Error Detection in Iterative Methods.” In: SIGPLAN Not. 48.8 (2013),
pp. 167–176.

[51] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C.
Whaley. “Design and implementation of the ScaLAPACK LU, QR, and Cholesky
factorization routines.” In: Scientific Programming 5.3 (1996), pp. 173–184.

https://doi.org/10.1109/SC.2008.5213604
https://doi.org/10.1109/SC.2008.5213604
https://veloc.readthedocs.io/en/latest/

Bibliography 255

[52] W. Cirne and F. Berman. “Using Moldability to Improve the Performance of
Supercomputer Jobs.” In: J. Parallel Distrib. Comput. 62.10 (2002), pp. 1571–1601.

[53] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. “Performance
Bounds for Level-Oriented Two-Dimensional Packing Algorithms.” In: SIAM J.
Comput. 9.4 (1980), pp. 808–826.

[54] P. Colella et al. Chombo infrastructure for adaptive mesh refinement. https://sees
ar.lbl.gov/ANAG/chombo/. 2005.

[55] CORAL: Collaboration of Oak Ridge, Argonne and Livermore National Lab-
oratorie. DRAFT CORAL-2 BUILD STATEMENT OF WORK. Tech. rep. LLNL-
TM-7390608. Lawrence Livermore National Laboratory, Mar. 2018.

[56] S. P. Crago, D. I. Kang, M. Kang, R. Kost, K. Singh, J. Suh, and J. P. Walters.
“Programming Models and Development Software for a Space-Based Many-
Core Processor.” In: 4th Int. Conf. on Space Mission Challenges for Information
Technology. IEEE, 2011, pp. 95–102.

[57] V. Cuevas-Vicenttı́n, S. C. Dey, S. Köhler, S. Riddle, and B. Ludäscher. “Scien-
tific Workflows and Provenance: Introduction and Research Opportunities.” In:
Datenbank-Spektrum 12.3 (2012), pp. 193–203.

[58] J. T. Daly. “A higher order estimate of the optimum checkpoint interval for
restart dumps.” In: Future Generation Comp. Syst. 22.3 (2006), pp. 303–312.

[59] A. Darte, Y. Robert, and F. Vivien. Scheduling and automatic parallelization. Birkhäuser,
2000. isbn: 978-3-7643-4149-7.

[60] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, G. B. Berriman, J. Good, et al. “Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems.” In: Scientific Programming
13.3 (2005), pp. 219–237.

[61] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R.
Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger. “Pegasus, a
Workflow Management System for Science Automation.” In: Future Generation
Computer Systems 46 (2015), pp. 17–35.

[62] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. “Optimization
of multi-level checkpoint model for large scale HPC applications.” In: Proc.
IPDPS’14. 2014.

[63] S. Di, Y. Robert, F. Vivien, and F. Cappello. “Toward an Optimal Online Check-
point Solution under a Two-Level HPC Checkpoint Model.” In: IEEE Trans.
Parallel & Distributed Systems (2016).

[64] M. e. M. Diouri, O. Glück, L. Lefevre, and F. Cappello. “Energy considerations
in checkpointing and fault tolerance protocols.” In: IEEE/IFIP International Con-
ference on Dependable Systems and Networks Workshops (DSN 2012). June 2012,
pp. 1–6. doi: 10.1109/DSNW.2012.6264670.

https://seesar.lbl.gov/ANAG/chombo/
https://seesar.lbl.gov/ANAG/chombo/
https://doi.org/10.1109/DSNW.2012.6264670

256 Bibliography

[65] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim. “CALCioM: Miti-
gating I/O Interference in HPC Systems through Cross-Application Coordina-
tion.” In: IPDPS’14. 2014.

[66] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross. “Omnisc’IO: a grammar-based
approach to spatial and temporal I/O patterns prediction.” In: SC. IEEE Press.
2014, pp. 623–634.

[67] A. B. Downey. “The structural cause of file size distributions.” In: MASCOTS
2001. IEEE. 2001, pp. 361–370.

[68] M. Drozdowski. Scheduling for Parallel Processing. Computer Communications
and Networks. Springer, 2009.

[69] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. “Algorithm-based
Fault Tolerance for Dense Matrix Factorizations.” In: PPoPP. ACM. 2012, pp. 225–
234.

[70] P. Du, P. Luszczek, S. Tomov, and J. Dongarra. “Soft error resilient QR fac-
torization for hybrid system with GPGPU.” In: Journal of Computational Science
4.6 (2013). Scalable Algorithms for Large-Scale Systems Workshop (ScalA2011),
Supercomputing 2011, pp. 457–464. issn: 1877-7503.

[71] P.-F. Dutot, G. Mounié, and D. Trystram. “Scheduling Parallel Tasks Approxi-
mation Algorithms.” In: Handbook of Scheduling - Algorithms, Models, and Perfor-
mance Analysis. Ed. by J. Y.-T. Leung. CRC Press, 2004.

[72] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. “Com-
bining partial redundancy and checkpointing for HPC.” In: ICDCS. IEEE, 2012.

[73] E. N. (Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. “A survey of
rollback-recovery protocols in message-passing systems.” In: ACM Computing
Survey 34 (3 2002), pp. 375–408.

[74] E. Elnozahy and J. Plank. “Checkpointing for peta-scale systems: a look into
the future of practical rollback-recovery.” In: IEEE Trans. Dependable and Secure
Computing 1.2 (2004), pp. 97–108.

[75] C. Engelmann, H. H. Ong, and S. L. Scorr. “The case for modular redundancy
in large-scale high performance computing systems.” In: PDCN. IASTED, 2009.

[76] C. Engelmann and B. Swen. “Redundant execution of HPC applications with
MR-MPI.” In: PDCN. IASTED, 2011.

[77] S. Ethier, M. Adams, J. Carter, and L. Oliker. “Petascale parallelization of the
gyrokinetic toroidal code.” In: VECPAR (2012).

[78] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig,
J. Qin, M. Siddiqui, H.-L. Truong, et al. “Askalon: A development and grid
computing environment for scientific workflows.” In: Workflows for e-Science.
Springer, 2007, pp. 450–471.

Bibliography 257

[79] A. Fang, H. Fujita, and A. A. Chien. “Towards Understanding Post-recovery Ef-
ficiency for Shrinking and Non-shrinking Recovery.” In: Euro-Par 2015: Parallel
Processing Workshops. Springer, 2015, pp. 656–668.

[80] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong.
“Theory and Practice in Parallel Job Scheduling.” In: JSSPP. 1997, pp. 1–34.

[81] A. Feldmann, J. Sgall, and S.-H. Teng. “Dynamic scheduling on parallel ma-
chines.” In: Theoretical Computer Science 130.1 (1994), pp. 49–72.

[82] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R.
Riesen, P. G. Bridges, and D. Arnold. “Evaluating the Viability of Process Repli-
cation Reliability for Exascale Systems.” In: Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis. Seattle,
WA, 2011, 44:1–44:12.

[83] V. L. Fèvre. source code. https://github.com/vlefevre/IO-scheduling-simu.
2017.

[84] P. Flajolet, P. J. Grabner, P. Kirschenhofer, and H. Prodinger. “On Ramanujan’s
Q-Function.” In: J. Computational and Applied Mathematics 58 (1995), pp. 103–116.

[85] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir. “Schedul-
ing the I/O of HPC applications under congestion.” In: IPDPS. IEEE. 2015,
pp. 1013–1022.

[86] R. G. Gallager. Information theory and reliable communication. Vol. 2. Springer,
1968.

[87] R. G. Gallager. Stochastic Processes: Theory for Applications. New York, NY, USA:
Cambridge University Press, 2014.

[88] M. R. Garey and R. L. Graham. “Bounds for multiprocessor scheduling with
resource constraints.” In: SIAM J. Comput. 4.2 (1975), pp. 187–200.

[89] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

[90] E. Gaussier, J. Lelong, V. Reis, and D. Trystram. “Online Tuning of EASY-
Backfilling using Queue Reordering Policies.” In: IEEE Transactions on Parallel
and Distributed Systems 29.10 (2018), pp. 2304–2316.

[91] C. George and S. S. Vadhiyar. “ADFT: An Adaptive Framework for Fault Toler-
ance on Large Scale Systems using Application Malleability.” In: Procedia Com-
puter Science 9 (2012), pp. 166–175.

[92] R. Guerraoui and A. Schiper. “Fault-tolerance by replication in distributed sys-
tems.” In: Reliable Software Technologies — Ada-Europe ’96. Ed. by A. Strohmeier.
1996, pp. 38–57.

[93] P.-L. Guhur, H. Zhang, T. Peterka, E. Constantinescu, and F. Cappello. “Lightweight
and Accurate Silent Data Corruption Detection in Ordinary Differential Equa-
tion Solvers.” In: Euro-Par. 2016.

https://github.com/vlefevre/IO-scheduling-simu

258 Bibliography

[94] Y. Guo, W. Bland, P. Balaji, and X. Zhou. “Fault tolerant MapReduce-MPI for
HPC clusters.” In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November
15-20, 2015. 2015, 34:1–34:12.

[95] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari. “Failures in Large Scale Sys-
tems: Long-term Measurement, Analysis, and Implications.” In: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’17. Denver, Colorado, 2017, 44:1–44:12. isbn: 978-1-4503-5114-
0.

[96] S. Habib et al. “The universe at extreme scale: multi-petaflop sky simulation on
the BG/Q.” In: SC12. IEEE Computer Society. 2012, p. 4.

[97] D. Hakkarinen and Z. Chen. “Multilevel Diskless Checkpointing.” In: IEEE
Transactions on Computers 62.4 (2013), pp. 772–783.

[98] D. Hakkarinen, P. Wu, and Z. Chen. “Fail-Stop Failure Algorithm-Based Fault
Tolerance for Cholesky Decomposition.” In: Parallel and Distributed Systems,
IEEE Transactions on 26.5 (May 2015), pp. 1323–1335. issn: 1045-9219.

[99] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien. “Checkpointing
workflows for fail-stop errors.” In: IEEE Transactions on Computers (2018).

[100] X. Han, K. Iwama, D. Ye, and G. Zhang. “Strip Packing vs. Bin Packing.” In:
Algorithmic Aspects in Information and Management. Ed. by M.-Y. Kao and X.-Y.
Li. Springer, 2007, pp. 358–367.

[101] C. Hanen and A. Munier. Cyclic scheduling on parallel processors: an overview.
Citeseer, 1993.

[102] B. Harrod. Big data and scientific discovery. 2014.

[103] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun. “I/O
Acceleration with Pattern Detection.” In: Proceedings of the 22Nd International
Symposium on High-performance Parallel and Distributed Computing. HPDC ’13.
New York, New York, USA: ACM, 2013, pp. 25–36. isbn: 978-1-4503-1910-2.
doi: 10.1145/2493123.2462909.

[104] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello. “Mod-
eling and tolerating heterogeneous failures in large parallel systems.” In: Proc.
ACM/IEEE Supercomputing’11. ACM Press, 2011.

[105] T. Herault, Y. Robert, A. Bouteiller, D. Arnold, K. Ferreira, G. Bosilca, and J.
Dongarra. “Optimal Cooperative Checkpointing for Shared High-Performance
Computing Platforms.” In: APDCM 2018, Vancouver, Canada, May 2018. 2018.

[106] T. Hérault and Y. Robert, eds. Fault-Tolerance Techniques for High-Performance
Computing. Computer Communications and Networks. Springer Verlag, 2015.

https://doi.org/10.1145/2493123.2462909

Bibliography 259

[107] A. Hori, K. Yoshinaga, T. Herault, A. Bouteiller, G. Bosilca, and Y. Ishikawa.
“Sliding Substitution of Failed Nodes.” In: Proceedings of the 22Nd European MPI
Users’ Group Meeting. EuroMPI ’15. Bordeaux, France: ACM, 2015, 14:1–14:10.
isbn: 978-1-4503-3795-3. doi: 10.1145/2802658.2802670.

[108] W. Hu, G.-m. Liu, Q. Li, Y.-h. Jiang, and G.-l. Cai. “Storage wall for exascale su-
percomputing.” In: Journal of Zhejiang University-SCIENCE 2016 (2016), pp. 10–
25.

[109] K.-H. Huang and J. A. Abraham. “Algorithm-Based Fault Tolerance for Matrix
Operations.” In: IEEE Trans. Comput. 33.6 (1984), pp. 518–528.

[110] Z. Hussain, T. Znati, and R. Melhem. “Partial Redundancy in HPC Systems
with Non-uniform Node Reliabilities.” In: SC ’18. IEEE, 2018.

[111] F. Isaila and J. Carretero. “Making the case for data staging coordination and
control for parallel applications.” In: Workshop on Exascale MPI at Supercomput-
ing Conference. 2015.

[112] F. Isaila, J. Carretero, and R. Ross. “Clarisse: A middleware for data-staging
coordination and control on large-scale hpc platforms.” In: Cluster, Cloud and
Grid Computing (CCGrid), 2016 16th IEEE/ACM International Symposium on. IEEE.
2016, pp. 346–355.

[113] D. B. Jackson, Q. Snell, and M. J. Clement. “Core Algorithms of the Maui Sched-
uler.” In: JSSPP. 2001, pp. 87–102.

[114] K. Jansen. “A (3/2+ε) Approximation Algorithm for Scheduling Moldable and
Non-moldable Parallel Tasks.” In: SPAA. Pittsburgh, Pennsylvania, USA, 2012,
pp. 224–235.

[115] H. Jin, X.-H. Sun, Z. Zheng, Z. Lan, and B. Xie. “Performance Under Failures
of DAG-based Parallel Computing.” In: CCGRID ’09. IEEE Computer Society,
2009.

[116] B. Johannes. “Scheduling Parallel Jobs to Minimize the Makespan.” In: J. of
Scheduling 9.5 (2006), pp. 433–452.

[117] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi. “Char-
acterizing and profiling scientific workflows.” In: Future Generation Computer
Systems 29.3 (2013), pp. 682–692.

[118] E. Kail, P. fchtpen, and M. Kozlovszky. “A novel adaptive checkpointing method
based on information obtained from workflow structure.” In: Computer Science
17.3 (2016).

[119] G. Kandaswamy, A. Mandal, and D. A. Reed. “Fault Tolerance and Recovery
of Scientific Workflows on Computational Grids.” In: Proceedings of the 2008
Eighth IEEE International Symposium on Cluster Computing and the Grid. CCGRID
’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 777–782. isbn:
978-0-7695-3156-4. doi: 10.1109/CCGRID.2008.79.

https://doi.org/10.1145/2802658.2802670
https://doi.org/10.1109/CCGRID.2008.79

260 Bibliography

[120] D. Kondo, B. Javadi, A. Iosup, and D. Epema. “The Failure Trace Archive: En-
abling Comparative Analysis of Failures in Diverse Distributed Systems.” In:
Cluster Computing and the Grid, IEEE International Symposium on (2010), pp. 398–
407. doi: http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.71.

[121] A. Kougkas, M. Dorier, R. Latham, R. Ross, and X.-H. Sun. “Leveraging Burst
Buffer Coordination to Prevent I/O Interference.” In: IEEE International Confer-
ence on eScience. IEEE. 2016.

[122] S. Kumar et al. “Characterization and modeling of PIDX parallel I/O for per-
formance optimization.” In: SC. ACM. 2013.

[123] S. Kumar. “Fundamental limits to Moore’s law.” In: arXiv preprint arXiv:1511.05956
(2015).

[124] A. N. Lab. The Trinity project. http://www.lanl.gov/projects/trinity/.

[125] LANL. Computer Failure Data Repository. https://www.usenix.org/cfdr-data.
2006.

[126] A. Lazzarini. Advanced LIGO Data & Computing. 2003.

[127] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok. “VolpexMPI: An MPI Library
for Execution of Parallel Applications on Volatile Nodes.” In: 16th European
PVM/MPI Users’ Group Meeting. Springer-Verlag, 2009, pp. 124–133.

[128] Y. LI and L. B. KISH. “HEAT, SPEED AND ERROR LIMITS OF MOORE’S
LAW AT THE NANO SCALES.” In: Fluctuation and Noise Letters 06.02 (2006),
pp. L127–L131. doi: 10.1142/S0219477506003215. eprint: https://doi.org/
10.1142/S0219477506003215.

[129] D. A. Lifka. “The ANL/IBM SP Scheduling System.” In: JSSPP. 1995, pp. 295–
303.

[130] N. Liu et al. “On the Role of Burst Buffers in Leadership-Class Storage Sys-
tems.” In: MSST/SNAPI. 2012.

[131] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J. Wright. “A year
in the life of a parallel file system.” In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis. IEEE Press.
2018, p. 74.

[132] A. Lodi, S. Martello, and M. Monaci. “Two-dimensional packing problems: A
survey.” In: European Journal of Operational Research 141.2 (2002), pp. 241–252.

[133] J. Lofstead et al. “Managing variability in the IO performance of petascale stor-
age systems.” In: SC. IEEECS. 2010.

[134] J. Lofstead and R. Ross. “Insights for exascale IO APIs from building a petascale
IO API.” In: SC13. ACM. 2013, p. 87.

[135] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu,
R. Colwell, W. Dally, J. Dongarra, et al. “Top ten exascale research challenges.”
In: DOE ASCAC subcommittee report (2014), pp. 1–86.

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.71
http://www.lanl.gov/projects/trinity/
https://www.usenix.org/cfdr-data
https://doi.org/10.1142/S0219477506003215
https://doi.org/10.1142/S0219477506003215
https://doi.org/10.1142/S0219477506003215

Bibliography 261

[136] R. E. Lyons and W. Vanderkulk. “The use of triple-modular redundancy to
improve computer reliability.” In: IBM J. Res. Dev. 6.2 (1962), pp. 200–209.

[137] D. P. Mehta, C. Shetters, and D. W. Bouldin. “Meta-Algorithms for Scheduling
a Chain of Coarse-Grained Tasks on an Array of Reconfigurable FPGAs.” In:
VLSI Design (2013).

[138] P. Mendygral, N. Radcliffe, K. Kandalla, D. Porter, B. O’Neill, C. Nolting, P. Ed-
mon, J. Donnert, and T. Jones. “WOMBAT: A Scalable and High-performance
Astrophysical Magnetohydrodynamics Code.” In: The Astrophysical Journal Sup-
plement Series 228 (Feb. 2017), p. 23. doi: 10.3847/1538-4365/aa5b9c.

[139] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

[140] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. “Design, Model-
ing, and Evaluation of a Scalable Multi-level Checkpointing System.” In: Proc.
of the ACM/IEEE SC Conf. 2010, pp. 1–11.

[141] J. E. Moreira and V. K. Naik. “Dynamic resource management on distributed
systems using reconfigurable applications.” In: IBM Journal of Research and De-
velopment 41.3 (1997), pp. 303–330.

[142] A. W. Mu’alem and D. G. Feitelson. “Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling.” In: IEEE
Trans. Parallel Distrib. Syst. 12.6 (2001), pp. 529–543.

[143] R. Nair and H. Tufo. “Petascale atmospheric general circulation models.” In:
Journal of Physics: Conference Series. Vol. 78. IOP Publishing. 2007, p. 012078.

[144] E. Naroska and U. Schwiegelshohn. “On an On-line Scheduling Problem for
Parallel Jobs.” In: Inf. Process. Lett. 81.6 (2002), pp. 297–304.

[145] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. “ACR: Automatic Checkpoint/Restart
for Soft and Hard Error Protection.” In: Proc. SC’13. ACM, 2013.

[146] X. Ni, E. Meneses, and L. V. Kalé. “Hiding checkpoint overhead in HPC ap-
plications with a semi-blocking algorithm.” In: Cluster Computing (CLUSTER),
2012 IEEE International Conference on. IEEE Computer Society, 2012, pp. 364–372.

[147] T. O’Gorman. “The effect of cosmic rays on the soft error rate of a DRAM at
ground level.” In: IEEE Trans. Electron Devices 41.4 (1994), pp. 553–557.

[148] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen, and P. Roth.
“Modeling the Impact of Checkpoints on Next-Generation Systems.” In: Proc.
of IEEE MSST. 2007, pp. 30–46. doi: 10.1109/MSST.2007.4367962.

[149] Pegasus. Pegasus Workflow Generator. https://confluence.pegasus.isi.edu/
display/pegasus/WorkflowGenerator. 2014.

https://doi.org/10.3847/1538-4365/aa5b9c
https://doi.org/10.1109/MSST.2007.4367962
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

262 Bibliography

[150] A. Petitet, H. Casanova, J. Dongarra, Y. Robert, and R. C. Whaley. “Parallel
and Distributed Scientific Computing: A Numerical Linear Algebra Problem
Solving Environment Designer’s Perspective.” In: Handbook on Parallel and Dis-
tributed Processing. Ed. by J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram.
Available as LAPACK Working Note 139. Springer Verlag, 1999.

[151] J. Plank, K. Li, and M. Puening. “Diskless checkpointing.” In: IEEE Trans. Par-
allel Dist. Systems 9.10 (1998), pp. 972–986. issn: 1045-9219.

[152] A. Pothen and C. Sun. “A mapping algorithm for parallel sparse Cholesky
factorization.” In: SIAM J. on Scientific Computing 14.5 (1993), pp. 1253–1257.

[153] S. Prabhakaran. “Dynamic Resource Management and Job Scheduling for High
Performance Computing.” PhD thesis. Technische Universität Darmstadt, 2016.

[154] S. Prabhakaran, M. Neumann, and F. Wolf. “Efficient Fault Tolerance Through
Dynamic Node Replacement.” In: 18th Int. Symp. on Cluster, Cloud and Grid
Computing CCGRID. IEEE Computer Society, 2018, pp. 163–172.

[155] M. W. Rashid and M. C. Huang. “Supporting highly-decoupled thread-level
redundancy for parallel programs.” In: 14th Int. Conf. on High-Performance Com-
puter Architecture (HPCA). IEEE, 2008, pp. 393–404.

[156] R. Riesen, K. Ferreira, and J. Stearley. “See applications run and throughput
jump: The case for redundant computing in HPC.” In: Proc. of the Dependable
Systems and Networks Workshops. 2010, pp. 29–34.

[157] Sankaran et al. “Direct numerical simulations of turbulent lean premixed com-
bustion.” In: Journal of Physics: conference series. Vol. 46. IOP Publishing. 2006,
p. 38.

[158] N. El-Sayed and B. Schroeder. “Reading between the lines of failure logs: Un-
derstanding how HPC systems fail.” In: 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). June 2013, pp. 1–12.
doi: 10.1109/DSN.2013.6575356.

[159] B. Schroeder and G. A. Gibson. “Understanding Failures in Petascale Comput-
ers.” In: Journal of Physics: Conference Series 78.1 (2007).

[160] S. R. Seelam and P. J. Teller. “Virtual I/O Scheduler: A Scheduler of Sched-
ulers for Performance Virtualization.” In: Proceedings VEE. San Diego, Califor-
nia, USA: ACM, 2007, pp. 105–115.

[161] H. Shan and J. Shalf. “Using IOR to Analyze the I/O Performance for HPC
Platforms.” In: Cray User Group (2007).

[162] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. “Fault Tolerant Precondi-
tioned Conjugate Gradient for Sparse Linear System Solution.” In: ICS. ACM,
2012.

[163] D. B. Shmoys, J. Wein, and D. P. Williamson. “Scheduling Parallel Machines
On-line.” In: SIAM J. Comput. 24.6 (1995), pp. 1313–1331.

https://doi.org/10.1109/DSN.2013.6575356

Bibliography 263

[164] L. Silva and J. Silva. “Using two-level stable storage for efficient checkpointing.”
In: IEE Proceedings - Software 145.6 (1998), pp. 198–202.

[165] R. F. da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman. “Community re-
sources for enabling research in distributed scientific workflows.” In: e-Science
(e-Science), 2014 IEEE 10th International Conference on. Vol. 1. IEEE. 2014, pp. 177–
184.

[166] Simulation Software. Computing the yield. https : / / zenodo . org / record /
2159761#.XA51mhCnfCJ. 2018.

[167] D. Skinner and W. Kramer. “Understanding the Causes of Performance Vari-
ability in HPC Workloads.” In: IEEE Workload Characterization Symposium (2005),
pp. 137–149.

[168] J. Skovira, W. Chan, H. Zhou, and D. A. Lifka. “The EASY - LoadLeveler API
Project.” In: JSSPP. 1996, pp. 41–47.

[169] M. Snir and et al. “Addressing Failures in Exascale Computing.” In: Int. J. High
Perform. Comput. Appl. 28.2 (2014), pp. 129–173.

[170] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. “Character-
ization of backfilling strategies for parallel job scheduling.” In: International
Conference on Parallel Processing Workshop. 2002.

[171] G. Staples. “TORQUE Resource Manager.” In: Proceedings of the ACM/IEEE Con-
ference on Supercomputing. Tampa, Florida, 2006.

[172] J. Stearley, K. B. Ferreira, D. J. Robinson, J. Laros, K. T. Pedretti, D. Arnold,
P. G. Bridges, and R. Riesen. “Does partial replication pay off?” In: FTXS. IEEE,
2012.

[173] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta. “Designing and
Modelling Selective Replication for Fault-Tolerant HPC Applications.” In: Proc.
CCGrid’2017. May 2017, pp. 452–457. doi: 10.1109/CCGRID.2017.40.

[174] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal. “Programmer-directed
Partial Redundancy for Resilient HPC.” In: Computing Frontiers. ACM, 2015.

[175] R. Sudarsan and C. J. Ribbens. “Design and performance of a scheduling frame-
work for resizable parallel applications.” In: Parallel Computing 36.1 (2010),
pp. 48–64.

[176] R. Sudarsan, C. J. Ribbens, and D. Farkas. “Dynamic Resizing of Parallel Scien-
tific Simulations: A Case Study Using LAMMPS.” In: Int . Conf . Computational
Science ICCS. Procedia, 2009, pp. 175–184.

[177] D. Talia. “Workflow Systems for Science: Concepts and Tools.” In: ISRN Software
Engineering (2013).

[178] K. Tang, P. Huang, X. He, T. Lu, S. S. Vazhkudai, and D. Tiwari. “Toward Man-
aging HPC Burst Buffers Effectively: Draining Strategy to Regulate Bursty I/O
Behavior.” In: MASCOTS. IEEE. 2017, pp. 87–98.

https://zenodo.org/record/2159761#.XA51mhCnfCJ
https://zenodo.org/record/2159761#.XA51mhCnfCJ
https://doi.org/10.1109/CCGRID.2017.40

264 Bibliography

[179] F. Tessier, P. Malakar, V. Vishwanath, E. Jeannot, and F. Isaila. “Topology-aware
data aggregation for intensive I/O on large-scale supercomputers.” In: First
Workshop on Optimization of Communication in HPC. IEEE Press. 2016, pp. 73–81.

[180] T. Tobita and H. Kasahara. “A standard task graph set for fair evaluation
of multiprocessor scheduling algorithms.” In: Journal of Scheduling 5.5 (2002),
pp. 379–394.

[181] Top500. Top 500 Supercomputer Sites. https://www.top500.org/lists/2018/
11/. Nov. 2019.

[182] H. Topcuoglu, S. Hariri, and M.-y. Wu. “Performance-effective and low-complexity
task scheduling for heterogeneous computing.” In: IEEE transactions on parallel
and distributed systems 13.3 (2002), pp. 260–274.

[183] S. Toueg and Ö. Babaoglu. “On the Optimum Checkpoint Selection Problem.”
In: SIAM J. Comput. 13.3 (1984), pp. 630–649.

[184] J. Turek, J. L. Wolf, and P. S. Yu. “Approximate Algorithms Scheduling Paral-
lelizable Tasks.” In: SPAA. San Diego, California, USA, 1992.

[185] N. H. Vaidya. “A Case for Two-level Distributed Recovery Schemes.” In: SIG-
METRICS Perform. Eval. Rev. 23.1 (1995), pp. 64–73.

[186] J. Valdes, R. E. Tarjan, and E. L. Lawler. “The Recognition of Series Parallel
Digraphs.” In: Proc. of STOC’79. ACM, 1979, pp. 1–12.

[187] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. “Proactive process-level
live migration in HPC environments.” In: SC ’08: Proc.ACM/IEEE Conference on
Supercomputing. ACM Press, 2008.

[188] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan. “Replication-Based Fault-
Tolerance for Large-Scale Graph Processing.” In: 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. June 2014, pp. 562–
573.

[189] E. Weisstein. Gauss hypergeometric function. From MathWorld–A Wolfram Web Re-
source. http://functions.wolfram.com/HypergeometricFunctions/Hyperge
ometric2F1/03/04/02/.

[190] E. Weisstein. Incomplete Beta Function. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/IncompleteBetaFunction.html.

[191] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster.
“Swift: A language for distributed parallel scripting.” In: Parallel Computing
37.9 (2011), pp. 633–652.

[192] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S.
Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al. “The Taverna workflow
suite: designing and executing workflows of Web Services on the desktop, web
or in the cloud.” In: Nucleic acids research (2013), gkt328.

https://www.top500.org/lists/2018/11/
https://www.top500.org/lists/2018/11/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/04/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/04/02/
http://mathworld.wolfram.com/IncompleteBetaFunction.html

Bibliography 265

[193] A. K. L. Wong and A. M. Goscinski. “Evaluating the EASY-backfill Job Schedul-
ing of Static Workloads on Clusters.” In: CLUSTER. 2007.

[194] M. Y. Wu and D. D. Gajski. “Hypertool: a programming aid for message-
passing systems.” In: IEEE Trans. Parallel Distributed Systems 1.3 (1990), pp. 330–
343.

[195] P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson, and Z. Chen. “Fault Tol-
erant Matrix-matrix Multiplication: Correcting Soft Errors On-line.” In: ScalA’11.
Seattle, Washington, USA, 2011, pp. 25–28.

[196] K. Yamamoto, A. Uno, H. Murai, T. Tsukamoto, F. Shoji, S. Matsui, R. Sek-
izawa, F. Sueyasu, H. Uchiyama, M. Okamoto, N. Ohgushi, K. Takashina, D.
Wakabayashi, Y. Taguchi, and M. Yokokawa. “The K computer Operations: Ex-
periences and Statistics.” In: Procedia Computer Science (ICCS) 29 (2014), pp. 576–
585.

[197] E. Yao, J. Zhang, M. Chen, G. Tan, and N. Sun. “Detection of soft errors in LU
decomposition with partial pivoting using algorithm-based fault tolerance.”
In: International Journal of High Performance Computing Applications 29.4 (2015),
pp. 422–436.

[198] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. “Using Replication and Check-
pointing for Reliable Task Management in Computational Grids.” In: SC’10.
ACM, 2010.

[199] A. B. Yoo, M. A. Jette, and M. Grondona. “SLURM: Simple Linux Utility for
Resource Management.” In: JSSPP. 2003, pp. 44–60.

[200] J. W. Young. “A first order approximation to the optimum checkpoint interval.”
In: Comm. of the ACM 17.9 (1974), pp. 530–531.

[201] J. Yu, D. Jian, Z. Wu, and H. Liu. “Thread-level redundancy fault tolerant CMP
based on relaxed input replication.” In: ICCIT. IEEE, 2011.

[202] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and H. Abbasi.
“Enabling In-situ Execution of Coupled Scientific Workflow on Multi-core Plat-
form.” In: Proc. 26th IEEE IPDPS. 2012, pp. 1352–1363.

[203] X. Zhang, K. Davis, and S. Jiang. “Opportunistic data-driven execution of par-
allel programs for efficient I/O services.” In: IPDPS’12. IEEE. 2012, pp. 330–
341.

[204] G. Zheng, L. Shi, and L. V. Kale. “FTC-Charm++: an in-memory checkpoint-
based fault tolerant runtime for Charm++ and MPI.” In: Cluster Computing,
2004 IEEE International Conference on. IEEE Computer Society, 2004, pp. 93–103.

[205] Z. Zheng and Z. Lan. “Reliability-aware scalability models for high perfor-
mance computing.” In: Cluster Computing. IEEE, 2009.

[206] Z. Zheng, L. Yu, and Z. Lan. “Reliability-Aware Speedup Models for Parallel
Applications with Coordinated Checkpointing/Restart.” In: IEEE Trans. Com-
puters 64.5 (2015), pp. 1402–1415.

266 Bibliography

[207] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang, and Z. Lan. “I/O-Aware
Batch Scheduling for Petascale Computing Systems.” In: Cluster15. Sept. 2015,
pp. 254–263. doi: 10.1109/CLUSTER.2015.45.

[208] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. “IBM
Experiments in Soft Fails in Computer Electronics.” In: IBM J. Res. Dev. 40.1
(1996), pp. 3–18.

[209] J. Ziegler, H. Muhlfeld, C. Montrose, H. Curtis, T. O’Gorman, and J. Ross. “Ac-
celerated testing for cosmic soft-error rate.” In: IBM J. Res. Dev. 40.1 (1996),
pp. 51–72.

[210] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, and C.
Montrose. “Cosmic ray soft error rates of 16-Mb DRAM memory chips.” In:
IEEE Journal of Solid-State Circuits 33.2 (1998), pp. 246–252.

https://doi.org/10.1109/CLUSTER.2015.45

Publications

Articles in International Refereed Journals

[J1] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun. “Towards Optimal
Multi-Level Checkpointing.” In: IEEE Transactions on Computers (2016).

[J2] G. Aupy, A. Gainaru, and V. Le Fèvre. “I/O Scheduling Strategy for Periodic
Applications.” In: ACM Transactions on Parallel Computing 6.2 (July 2019). issn:
2329-4949. doi: 10.1145/3338510.

[J3] A. Benoit, A. Cavelan, F. M. Ciorba, V. Le Fèvre, and Y. Robert. “Combining
Checkpointing and Replication for Reliable Execution of Linear Workflows with
Fail-Stop and Silent Errors.” In: International Journal of Networking and Computing
9.1 (2019), pp. 2–27. issn: 2185-2847.

[J4] L. Han, V. Le Fèvre, L.-C. Canon, Y. Robert, and F. Vivien. “A generic approach
to scheduling and checkpointing workflows.” In: The International Journal of
High Performance Computing Applications 33.6 (2019), pp. 1255–1274. doi: 10.
1177/1094342019866891. eprint: https://doi.org/10.1177/1094342019866891.

[J5] V. Le Fèvre, T. Herault, Y. Robert, A. Bouteiller, A. Hori, G. Bosilca, and J.
Dongarra. “Comparing the performance of rigid, moldable and grid-shaped
applications on failure-prone HPC platforms.” In: Parallel Computing 85 (2019),
pp. 1–12. issn: 0167-8191. doi: https://doi.org/10.1016/j.parco.2019.02.
002.

Articles in International Refereed Conferences

[C1] L. Han, V. Le Fèvre, L.-C. Canon, Y. Robert, and F. Vivien. “A Generic Ap-
proach to Scheduling and Checkpointing Workflows.” In: Proceedings of the 47th
International Conference on Parallel Processing. ICPP 2018. Eugene, OR, USA: As-
sociation for Computing Machinery, 2018. isbn: 9781450365109. doi: 10.1145/
3225058.3225145.

267

https://doi.org/10.1145/3338510
https://doi.org/10.1177/1094342019866891
https://doi.org/10.1177/1094342019866891
https://doi.org/10.1177/1094342019866891
https://doi.org/https://doi.org/10.1016/j.parco.2019.02.002
https://doi.org/https://doi.org/10.1016/j.parco.2019.02.002
https://doi.org/10.1145/3225058.3225145
https://doi.org/10.1145/3225058.3225145

268 Publications

[C2] A. Benoit, T. Herault, V. Le Fèvre, and Y. Robert. “Replication is More Effi-
cient than You Think.” In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’19. Denver, Col-
orado: Association for Computing Machinery, 2019. isbn: 9781450362290. doi:
10.1145/3295500.3356171.

Articles in International Refereed Workshops

[W1] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun. “A Different Re-
execution Speed Can Help.” In: 2016 45th International Conference on Parallel
Processing Workshops (ICPPW). Aug. 2016, pp. 250–257. doi: 10.1109/ICPPW.
2016.45.

[W2] G. Aupy, A. Gainaru, and V. Le Fèvre. “Periodic I/O Scheduling for Super-
Computers.” In: High Performance Computing Systems. Performance Modeling, Bench-
marking, and Simulation. Ed. by S. Jarvis, S. Wright, and S. Hammond. Cham:
Springer International Publishing, 2017, pp. 44–66. isbn: 978-3-319-72971-8.

[W3] A. Benoit, A. Cavelan, V. Le Fèvre, and Y. Robert. “Optimal Checkpointing Pe-
riod with Replicated Execution on Heterogeneous Platforms.” In: Proceedings of
the 2017 Workshop on Fault-Tolerance for HPC at Extreme Scale. FTXS ’17. Wash-
ington, DC, USA: Association for Computing Machinery, 2017, pp. 9–16. isbn:
9781450350013. doi: 10.1145/3086157.3086165.

[W4] A. Benoit, A. Cavelan, F. M. Ciorba, V. Le Fèvre, and Y. Robert. “Combining
Checkpointing and Replication for Reliable Execution of Linear Workflows.” In:
2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). May 2018, pp. 793–802. doi: 10.1109/IPDPSW.2018.00126.

[W5] V. Le Fèvre, L. Bautista-Gomez, O. Unsal, and M. Casas. “Approximating a
Multi-Grid Solver.” In: 2018 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). Nov. 2018, pp. 97–107.
doi: 10.1109/PMBS.2018.8641651.

[W6] V. Le Fèvre, G. Bosilca, A. Bouteiller, T. Herault, A. Hori, Y. Robert, and J.
Dongarra. “Do Moldable Applications Perform Better on Failure-Prone HPC
Platforms?” In: Euro-Par 2018: Parallel Processing Workshops. Ed. by G. Mencagli,
D. B. Heras, V. Cardellini, E. Casalicchio, E. Jeannot, F. Wolf, A. Salis, C. Schi-
fanella, R. R. Manumachu, L. Ricci, M. Beccuti, L. Antonelli, J. D. Garcia Sanchez,
and S. L. Scott. Cham: Springer International Publishing, 2018, pp. 787–799.
isbn: 978-3-030-10549-5.

[W7] A. Benoit, V. Le Fèvre, P. Raghavan, Y. Robert, and H. Sun. “Design and Com-
parison of Resilient Scheduling Heuristics for Parallel Jobs.” In: 2020 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW).
2020.

https://doi.org/10.1145/3295500.3356171
https://doi.org/10.1109/ICPPW.2016.45
https://doi.org/10.1109/ICPPW.2016.45
https://doi.org/10.1145/3086157.3086165
https://doi.org/10.1109/IPDPSW.2018.00126
https://doi.org/10.1109/PMBS.2018.8641651

	Remerciements
	Contents
	Introduction
	I Advanced checkpointing techniques
	Towards optimal multi-level checkpointing
	Introduction
	Computing the optimal pattern
	Assumptions
	Optimal two-level pattern
	With a single segment
	With multiple segments

	Optimal k-level pattern
	Observations
	Analysis

	Optimal subset of levels
	Checkpoint cost models
	Dynamic programming algorithm

	Simulations
	Simulation setup
	Assessing accuracy of first-order approximation
	Using set of parameters (A)
	Using set of parameters (B)

	Comparing performance of different approaches
	Using set of parameters (C)
	Using set of parameters (D)

	Summary of results

	Related work
	Conclusion

	Comparing the performance of rigid, moldable and grid-shaped applications on failure-prone HPC platforms
	Introduction
	Performance model
	Application/platform framework
	Mean Time Between Failures (MTBF)
	Checkpoints
	Wait Time
	Objective.

	Expected yield
	Rigid application
	Moldable application
	GridShaped application
	ABFT for GridShaped

	Applicative scenarios
	Main scenario
	Varying key parameters
	Comparison between C/R and ABFT

	Related work
	Moldable and GridShaped applications
	ABFT

	Conclusion

	A generic approach to scheduling and checkpointing workflows
	Introduction
	Example
	Model
	Execution Model
	Fault-Tolerance Model
	Problem Formulation

	Scheduling and checkpointing algorithms
	Scheduling heuristics
	Checkpointing strategies

	Experiments
	Experimental methodology
	Simulator
	Results

	Related work
	Conclusion

	II Coupling checkpointing with replication
	Using Checkpointing and Replication for Reliable Execution of Linear Workflows with Fail-Stop and Silent Errors
	Introduction
	Model and objective
	Application model
	Execution platform
	Verification
	Checkpointing
	Replication
	Optimization problem

	Computing Enorep(i) and Erep(i)
	Computing Enorep(i)
	Computing Erep(i)

	Optimal dynamic programming algorithm
	Experiments
	Scenarios with fail-stop errors only
	Experimental setup
	Comparison to checkpoint only
	Impact of error rate and checkpoint cost on the performance
	Impact of the number of checkpoints and replicas

	Scenarios with both fail-stop and silent errors
	Experimental setup
	Comparison to checkpoint only
	Impact of error rate and checkpoint cost on the performance

	Related work
	Conclusion

	Optimal Checkpointing Period with Replicated Execution on Heterogeneous Platforms
	Introduction
	Model
	Optimal pattern
	Expected execution time
	Expected overhead
	Failures in checkpoints and recoveries

	On-failure checkpointing
	Expected execution time
	Expected overhead

	Experimental evaluation
	Simulation setup
	Accuracy of the models
	Comparison of the two strategies
	Summary

	Conclusion

	Replication is more efficient than you think
	Introduction
	Model
	Background
	With a Single Processor
	With N Processors

	Replication
	Computing the Mean Time To Interruption
	With One Processor Pair
	With b Processor Pairs

	Time-To-Solution
	Asymptotic Behavior
	Experimental Evaluation
	Simulation Setup
	Model Accuracy
	Restart-on-failure
	Impact of Parameters
	I/O Pressure
	Time-To-Solution
	When to Restart

	Energy consumption
	Without replication
	With a single processor
	With N processors

	With replication
	With one processor pair
	With b processor pairs

	Experiments

	Conclusion

	III Scheduling problems
	Design and Comparison of Resilient Scheduling Heuristics for Parallel Jobs
	Introduction
	Models
	Job model
	Error model
	Problem statement
	Expected makespan
	Static vs. dynamic scheduling

	Resilient Scheduling Heuristics
	R-List scheduling heuristic
	Approximation ratios of R-List
	Result for Reservation
	Result for Greedy

	R-Shelf scheduling heuristic

	Performance Evaluation
	Simulation setup
	Results for synthetic jobs
	Results for jobs from Mira

	Background and Related Work
	Different scheduling flavors and strategies
	Offline scheduling of rigid jobs
	Online scheduling of rigid jobs
	Batch schedulers in practical systems

	Conclusion

	I/O scheduling strategy for periodic applications
	Introduction
	Model
	Parameters
	Execution Model
	Objectives

	Periodic scheduling strategy
	PerSched: a periodic scheduling algorithm
	Complexity analysis
	High-level implementation, proof of concept

	Evaluation and model validation
	Experimental Setup
	Applications and scenarios
	Baseline and evaluation of existing degradation
	Comparison to online algorithms
	Discussion on finding the best pattern size

	Related Work
	Conclusion

	Conclusion
	Bibliography
	Publications

