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Résumé

Assurer le passage à l’échelle des analyseurs statiques définis par interprétation abstraite
pose des difficultés à la fois techniques et pratiques. Une méthode classique d’accélération
consiste en la découverte et la réutilisation de contrats satisfaits par certaines comman-
des du code source (par exemple, le corps d’une fonction). Cette thèse s’intéresse à un
sous-ensemble de C qui ne permet pas la récursivité, pour lequel on définit un analyseur
modulaire capable d’inférer, de prouver et d’exploiter de tels contrats. Ces contrats sont:
(1) précis: ils permettent d’exprimer une relationnalité numérique entre les états d’entrée
et de sortie à travers l’utilisation de domaines numérique relationnels; (2) corrects: utiliser
un contrat précédemment inféré pour une commande produit un état de sortie surapproxi-
mant l’ensemble des états effectivement atteignables à la fin de ladite commande; (3) dirigés
par les entrées: des contrats ne sont découverts que pour les contextes d’appel rencontrés
pendant l’analyse; si une divergence apparait, un opérateur d’élargissement est utilisé pour
stabiliser les contextes d’entrée. Notre analyseur modulaire est défini au dessus d’un anal-
yseur C existant et est donc capable de manipuler des types unions, des types structures,
des tableaux, des allocations de mémoire (statique et dynamique), des pointeurs, y compris
l’arithmétique de pointeur et le transtypage, appels de fonction, des chaînes de caractères,
.... La représentation des chaînes de caractère est gérée par un nouveau domaine abstrait
défini dans cette thèse. Ce domaine abstrait de chaînes stocke avec précision la longueur
des chaînes C (position du premier '\0') sans recourir à une représentation explicite des
tableaux, qui peut devenir coûteuse, ce qui est utile pour prouver l’absence d’accès hors
mémoire lors de manipulations de chaîne.

La plupart des domaines abstraits numériques utilisés dans le cadre de l’interprétation ab-
straite se concentrent sur la représentation d’ensembles de fonctions numériques partageant
le même ensemble de définition. Si des ensembles hétérogènes apparaissent pendant une
analyse, la plupart des analyseurs ont recours à du partitionnement ou à des méthodes non
relationnelles. Dans cette thèse, nous proposons une technique paramétrique de transfor-
mation de la sémantique classique des domaines abstraits vers une sémantique d’ensembles
hétérogènes. Cette technique peut être utilisée pour des domaines relationnels et ne main-
tient qu’un seul état abstrait numérique, par opposition au partitionnement. De plus, lorsque
l’ensemble est homogène, on retrouve la précision et la complexité des domaines classiques.

Le dernier point d’intérêt de cette thèse est la définition d’un domaine abstrait capa-
ble de représenter des ensembles d’arbres dont les feuilles peuvent contenir des labels
numériques. Cette abstraction est basée sur les langages régulier et les langages d’arbre
régulier, et délègue une partie de son abstraction à un domaine numérique sous-jacent capa-
ble de représenter des ensembles d’environnements hétérogènes. Cette abstraction d’arbres
a plusieurs applications parmi lesquelles: la représentation de la mémoire pour les langages
fournissant des structures arborescentes, le développement d’un domaine sauvegardant des
égalités symboliques entre les variables et les expressions dans un programme, le développe-
ment d’une pré-analyse pour le language C, fournissant des informations de framing.

Cette thèse s’étant déroulée dans le projet MOPSA, nous donnons un aperçu de certains ré-
sultats obtenus par l’équipe pendant la thèse. De plus, tous les domaines abstraits présentés
ici ont été implantés dans l’analyseur statique MOPSA, une discussion sur certains résultats
expérimentaux préliminaires est fournie pour chaque domaine.
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Abstract

Ensuring the scalability of static analyzers defined by abstract interpretation poses both
theoretical and practical difficulties. A classical technique known to speed up analyses is the
discovery and reuse of summaries for some of the sequences of statements of the source code
(e.g. functions bodies). In this thesis we focus on a subset of C that does not allow recursion
and define a modular analyzer, able to infer, prove and use (to improve the efficiency) such
summaries. The summaries considered here are (1) precise: they allow input/output numer-
ical relationality via the use of relational numerical domain; (2) sound: the use of a summary
inferred for a statement represents an over-approximation of the reachable set of states at
the end of the considered statement; (3) inputs oriented: summaries are inferred only for
calling contexts met during the analysis, if a divergence occurs a widening operator is used to
stabilize input contexts. Our modular analyzer is built on top of a existing C analyzer and is
therefore able to handle unions, structures, arrays, memory allocations (static and dynamic),
pointers, pointer arithmetics, pointer casts, function calls, string manipulations,…. String
handling is provided by a new abstract domain defined in this thesis, this string abstract
domain aims at precisely tracking the length of C strings (position of the first '\0'), which
is helpful to prove the absence of out-of-memory accesses in string manipulations.

Most numerical abstract domains used in the abstract interpretation framework focus on
the representation of sets of numerical maps that all share the same definition set. When
the need arises to represent heterogeneous sets of maps, most analyzers fall back to the use
of partitioning. In this thesis we provide a lifting of classically used abstract domains to the
representation of heterogeneous sets. This lifting can be used for relational domains and
maintains only one numerical abstract state, by opposition to partitioning. Moreover when
the set is homogeneous the lifted domain behaves as the underlying numerical domain in
terms of both precision and efficiency.

The last point of interest of this thesis is the definition of an abstract domain able to rep-
resent sets of trees with numerically labeled leaves. This abstraction is based on regular and
tree regular languages and delegates the handling of numerical constraints to an underly-
ing domain able to represent heterogeneous sets of environments. This tree abstraction has
several applications among which: memory representation for languages providing tree-like
structures, the development of a domain tracking symbolic equalities between variables and
expressions in a program, the development of a pre-analyzer providing framing information
for the C language.

As the thesis took place in the MOPSA project, we provide an overview of some of the
results obtained by the MOPSA team during the thesis. Finally, all domains presented in the
thesis have been implemented as abstract domains in the MOPSA static analyzer, therefore
some preliminary experimental results are presented and discussed in the thesis.
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Chapter 1

Introduction

The increasing usage of software in various fields (aeronautic industry, medical world, army,
…) is an area of concern as we have witnessed in the past years several failures of such soft-
ware. As examples, let us mention the Ariane 5 failure (caused by an integer overflow and an
unhandled exception) [Le 97], the Patriot missile battery at Dhahran [Ske92], and finally the
infamous Therac-25 radiation therapy machine which administered excessive quantities of beta
radiation [LT93].

In order to prevent these from happening, we first need to detect that such failures may
occur. Two approaches can be taken in catching these failures. The first method is to add
dynamic testing, meaning that while the software is running it self-checks its behavior, in case
of an error the execution is stopped, potentially leading to other failures. The second method
is to discover before the execution of the program whether bugs will occur or not. This can
be achieved by testing the program before its deployment, by reviewing the code or finally by
using formal methods to obtain mathematical results about the behavior of the program. Among
formal methods we can cite: program proving, model-checking and static analysis, all of which
are described in the following. A particular attention will be given to static analysis as this is the
context of this thesis.

Such failures are moreover very hard to discover by hand and it is even harder to prove the
absence of such “bugs” without automation, due to the size of real life software and to the fact
that the configuration space might be unbounded. In the process of automating this discovery,
one is faced with the theoretical limit that: there exists no programs, taking programs as input
and deciding whether or not they terminate [Tur37]. This result is extended by Rice’s theo-
rem [Ric53] that states that all non-trivial properties about the language recognized by a Turing
machine are undecidable. The set of all possible executions of a software is called its seman-
tics and is defined by the programming language. The problem of proving the absence of bugs
requires to infer and prove that the semantics of the program satisfies some properties, which
can be seen as proving that the semantics of the targeted program is included into the set of all
executions satisfying this property. The results above ensure that semantics are not computable
in general, moreover they might not be representable in a computer.

As for other fields of computer science, a notion of soundness and completeness are defined. We
say that a static analysis is sound with respect to the concrete semantics when the set of program
executions considered by the analysis is greater than the actual semantics, conversely we say that
it is complete when it is lower. As we have seen, a sound, complete and automatic analyzer able
to handle all programs can not be designed. This leaves us with several choices: (1) giving up
on Turing complete languages; (2) choosing any two of the three properties (sound, complete,
automated) and giving up on the last. These observations led to the creation and development
of several fields of computer science, their objective ranging from discovering bugs in software
to mathematically proving that all executions of a program behave as its specifications asserts.
The work presented in this thesis is automated and sound but is not complete in general.

1
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In the next section we provide a small overview of some of the fields of program verification.

1.1 Program verification

1.1.1 Tests

In most cases, the only static analysis performed on programs is testing. Testing consists in
launching the targeted program on some inputs (a finite number) and verifying that the prop-
erty holds on this particular execution. Testing can be done by hand, by executing the program
on some well-chosen inputs, or automatically by generating inputs (e.g. see [CH00]). This gen-
eration can be uniform and/or guided by the program. Note that, for a program failing on only
one of its 232 possible inputs (imagine for example an integer overflow), uniform testing will find
the error with probability 2−32. Moreover each input requires a run of the targeted program,
which may be slow to execute or might not terminate at all. In any cases, if the input space is
not bounded, testing is a complete and automated but unsound technique to prove that some
property holds on the semantics of a program. Indeed only a finite number of executions can be
checked.

1.1.2 Model Checking

Model Checking [CGP99, QS82] is a sound and complete verification process for transition sys-
tems that are finite or enjoymore regularity than that provided by Turing complete programming
languages. The set of properties that can be checked is restricted to some logic (e.g. CTL, LTL),
and the framework provides algorithms that can check whether a given structure is a model of
a formula of this logic or not. When starting from a transition system too expressive for model
checking, one can sometimes refine it by hand (by removing information useless to proving the
targeted property) to its core behavior and perform model checking on the result. A classical
introductory example of model checking is the beverage dispenser machine. This machine has
several (a finite number) states and changes states according to user inputs, incoming money,
beverage being dispensed, …. The property – if I input enough money, I will get a beverage at some
point – can be encoded into a temporal logic, a predefined algorithm can thus check whether the
description of the beverage dispensing machine satisfies the above property.

1.1.3 Program proving

One can analyze a program by hand by providing and proving properties satisfied by the seman-
tics of the program. This can be helped and in some place automated using theorem provers
(see for example Coq). This approach may lead to complete and sound reasoning about the
semantics of a program, hence statically providing very powerful properties about executions
of the program such as: this function adds an element to the tree and yields a balanced tree.
Type systems, in a language such as OCaml, are a particular case of program proving restricted
to a subset P of properties for which inferring and proving the strongest property satisfied by
the program in P is decidable and has a “reasonable” time complexity (an example of property
is f: 'a -> 'a, stating that f always outputs a value of the same type as its input). Program
proving has been used successfully in the past years, leading to the development of software
that are mathematically proved to follow their specifications (e.g. CompCert [Ler09]). Program
proving is very powerful, but demands that programmers write proofs that their programs sat-
isfy (potentially complicated) properties. This can be done as a part of the development process
for some targeted software, however for existing codes and for most of the software written in
industry this does not seem achievable. Deductive verification tools (such as Why3) only asks
the user to provide invariants and contracts for loops and functions from the source code. Proof
goals for these contracts and invariants are automatically generated, provers (such as Z3) then
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try to automatically prove these goals. This offers a less powerful but more automatic approach
to theorem proving than theorem provers.

1.1.4 Abstract interpretation

Abstract interpretation [CC77b] is a theory formalizing semantics approximations. As the seman-
tics of programs is not computable we build a sequence of semantics, each being an abstraction
of the previous one (the notion of abstract/concrete semantics is relative). The goal of building
such sequences is to forget information from the original semantics, the choice of how precision
is lost being guided by the targeted properties. The last abstract semantics of the sequence is
designed so that: (1) elements of this abstract semantics are machine representable; (2) usual
semantics operators (union, transitions in the original system, fixpoint computations) are com-
putable. As abstractions might lose information about the original semantics, results discovered
on the abstract semantics may not always be exact. The goal of abstract interpretation being to
certify software, we want to obtain properties of the form “no integer overflow will occur during
the execution of this program”. Therefore the information loss yielding computability results
can not be obtained by removing elements from the original semantics, otherwise it would be
possible in the abstract worlds to observe the absence of integer overflow without it implying the
same in the original world. For this reasons we chose to over-approximate the concrete seman-
tics during the approximation steps. As mentioned above, the semantics S of a program (and
more generally of a transition system) is the set of all its possible executions, a property can be
defined as the set of all execution that do satisfy this property P. Proving that the semantics
satisfy the property, amounts to showing that S ⊆ P, it is therefore sufficient to show that a set
of states containing S is included in the property P.

Abstract interpretation is fully automatic, in the sense that the user designs abstract domains
which will be able to precisely represent a (potentially unbounded) subset of all the possible
properties. Abstract domains will then be able, given a program, to infer and prove that some
property holds on the semantics of this program. As we mentioned, information may be lost
due to over-approximations and therefore abstract interpretation provides sound but incomplete
analyzers. This induces false positives being potentially reported by the analyzer.

The above mentioned abstract domains enjoy several composition mechanisms that can be
used to target different input language features, or even refine each other in order to gain preci-
sion. This allows the designers of abstract domains to focus on building high precision analyses
for small features of the language, as these will then be composed with already existing abstract
domains tackling the rest of the language.

Abstract interpretation has enjoyed a growing success, as witnessed by commercial tools used
in the industry: Polyspace Verifier, Astrée [KWN+10], Sparrow [OHL+12], Julia [Spo05], etc.
Astrée was able to prove the absence of run-time errors in real life critical software such as the
flight control software of the Airbus A340 fly-by-wire system, a program of 132,000 lines of C.
Open-source industrial-strength frameworks to design analyzers by abstract interpretation have
also been proposed: Frama-C [CKK+12], IKOS [BNSV14], Infer [CDD+15a], etc.

1.2 Content of the thesis

This thesis was made in the scope of Abstract interpretation. In this section we provide an
overview of the different topics addressed in this thesis, as well as the reasons why these topics
were chosen. These can be sorted into 5 categories: modularity, strings, numeric, trees, analyzer
design and implementation.

Modularity. Modularity is to be understood in the sense that the analysis of a large software
can be obtained as a composition of the analysis of the different parts composing the software
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1 int incr(int x) {

2 int y = x+1;

3 return (y);

4 }

5

6 int main() {

7 int a = incr(0);

8 int b = incr(1);

9 …

10 }

Program 1.1: Modularity
example

1 while (*q != '\0') {

2 *p = *q;

3 p++;

4 q++;

5 }

6 *p = *q;

Program 1.2: C String copy

(this can be applied at different scales: functions, libraries, …). Radhia Cousot and Patrick
Cousot mention in [CC02], that performing modular analysis is a way to improve scalability of
analyzers defined by abstract interpretation. Indeed as software may contain hundreds of thou-
sands lines of codes, the ability to reduce the complete analysis to the composition of analysis
results of its different parts may induce a great speed up. Moreover if, during the development,
a component is not modified between two versions of the software, the results of its analysis
in the first version may be reused for the second one, leading to incremental analyses. In the
above presentation, we mentioned that the goal of analyzers defined by abstract interpretation
is to compute an over-approximation of the semantics of a program. This over-approximation
is obtained by following the definition of the original semantics of the program, by replacing
the usual semantics operator (union, transitions, fixpoint computation, …) by an abstract coun-
terpart. Consider the small example of Program 1.1, this program contains an incrementation
function incr. The behavior of function main depends on the behavior of function incr. A non
modular analysis will follow the execution of this program, therefore the body of function incr

will be visited at least twice. However, in a modular analysis, we would start by inferring from
the body of function incr that: ∀x, incr(x) = x+ 1. This fact describes completely the behavior
of incr, which will therefore not be visited again. When trying to design a modular analysis in
the framework of abstract interpretation, one is faced with two challenges: precision and cost.
Indeed during a classical analysis of a program, we do not compute an over-approximation of the
semantics of all statements appearing in the program, we rather compute an over-approximation
of the part of the semantics that is used for the analysis of the complete program. As an example:
it is unnecessary to compute the complete semantics of statement y = x + 1 in Program 1.1, as
we will only be interested in the cases where x = 0 or x = 1. Computing the complete semantics
of this statement might be more costly than computing only parts of it, however discovering such
facts is non trivial when trying to analyze functions independently from one another. Further-
more as we perform static analysis by abstract interpretation, semantics are over-approximated.
Analyzing a component of the program independently from the rest may lead to a result that is
strictly less precise than what we would have obtained by partitioning the context and comput-
ing a semantics for each case. A modular analyzer is provided in Chapter 5, this chapter also
provides a more detailed introduction to the problem of modular analysis as well as a presenta-
tion of already existing works. The modular analyzer of Chapter 5 is able to handle most of the C
language features (including pointers) as we designed it on top of an existing analysis for the C
language [Min06a]. It performs a top-down analysis of the program, following the control flow.
When function calls are encountered the analyzer will (1) use a pre-discovered summary, hence
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1 typedef struct node

2 {

3 int data;

4 struct node* next;

5 } node;

6

7 node* append(node* head, int data)

8 {

9 if (head==NULL) {

10 return (create(data, NULL));

11 } else {

12 node *cursor=head;

13 while(cursor->next != NULL)

14 cursor=cursor->next;

15 node* new_node=create(data,NULL);

16 cursor->next=new_node;

17 return head;

18 }

19 }

Program 1.3: append function

avoiding an analysis of the function body, or (2) infer a context-dependant summary . Input
contexts are however stabilized by use of widening before analysis, this ensures that, ultimately,
summaries are stable. Finally in order to improve precision and reusability, input framing will
be used.

Strings. In order to show that modularity can be obtained even for analyzers targeting prop-
erties that are not purely numerical, we decided to enrich our C analyzer so that is was able to
reason about mutable '\0'-terminated strings. Our analysis handles accesses to strings made via
C pointer arithmetic manipulations, as an example consider the string copy from Program 1.2.
Strings are used in all C software and are often error prone as they may lead to out-of-bound
accesses. This new abstract domain is described in Chapter 4.

Trees. The precision and scalability of our modular static analyzer depends greatly upon the
quality of its framing. The frame rule from separation logic [Rey02] enables to lift local reason-
ing: if a precondition P of a statement is “extended” with some facts, and the added facts do
not interfere with the statement, then these facts can be added to the postcondition obtained
from P. In order to improve both precision and analysis time we need our analyzer to “frame” its
inputs. As an example consider Program 1.3, describing an append function that adds an integer
d at the end of a list h. The behavior of append is independent from the content of the data fields
of the list. Discovering this fact would allow us to forget the values contained in these fields be-
fore the analysis, and allow reusability of the summary independently from the values contained
in the list. This can be achieved by providing the analyzer with facts gathered beforehand by
a pre-analysis. We decided to use terms of the C language to describe the memory zones that
may be used during a function call, for example in the case of the append function we would
say that only {head, ∗(head+ 4), . . . } are used by the function. We were therefore faced with the
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problem of analyzing a language manipulating terms containing numerical values. This led to
the development of an abstract domain presented in Chapter 7.

Numeric domains. During the development of the tree abstract domain, we needed to be able
to manipulate heterogeneous sets of environments. These are sets of environments that are not
all defined on the same support. In classical abstract interpretation, concrete environments from
the semantics are abstracted using numerical abstract domains. These domains have been widely
studied (see Section 2.4 for an overview), and are able to abstract set of environments defined
over a given finite set of variables. However when analyzing dynamic languages like python, or
when designing high-level predicate abstractions, we need to represent and manipulate hetero-
geneous sets of environments. Very few results gave an answer to this problem, some of them
being more “folk results” that were not well-defined, widely used and limited to non relational
numerical domains. For these reasons we defined a general lifting of numerical abstract domains
to be able to represent heterogeneous environments. This lifting and several of its improvements
are presented in Chapter 6. Note moreover that the ability to represent heterogeneous environ-
ments can also be used, during a modular analysis, to merge input contexts of a function, not
necessarily defined on the same variable set.

MOPSA. This thesis took place in the MOPSA project. The goal of this project is to design and
develop a modular framework for the development of static analyzers defined by abstract inter-
pretation. All implementations from this thesis were made in the MOPSA static analyzer. This
served the dual purpose of: (1) easing the development of the new abstract domains as already
existing features could be reused; (2) testing and improving the expressiveness of the MOPSA
framework.

1.3 Outline of the thesis

The remainder of the thesis is organized as follow:
• Chapter 2 provides some of the theoretical prerequisites of this thesis.
• Chapter 3 details some of the features of the MOPSA static analyzer. This analyzer is an

ongoing project being developed by several persons (including myself), this chapter has
therefore a dual purpose: (1) it presents some the work performed on this analyzer during
this thesis; (2) it shows some of the features of the analyzer in which all subsequent abstract
domains and algorithms of this thesis were implemented.

• Chapter 4 presents an abstract domain targeting the discovery of out-of-bounds accesses
in C '\0'-terminated strings. The definition of this abstraction requires to introduce the
cell abstraction [Min06a], used to represent C memory manipulation in our analyzer.

• Chapter 5 presents a modular analyzer. We start by showing how this modular analyzer
handles numerical programs. Moreover, in order to emphasize that our modular analysis
can be used for abstract domains that are not purely numerical, we apply the technique on
a abstract domain able to handle the full C language.

• Chapter 6 provides numerical abstractions that enable the representation of set of numer-
ical maps that do not necessarily share the same support. These abstractions were first
devised because they were needed in: the MOPSA framework, the definition of higher level
abstractions as the one of Chapter 7.

• Chapter 7 presents an abstraction for sets of trees with leaves that can be labeled with nu-
merical values. The goal of this abstraction is to provide a pre-analysis for the C language.
This pre-analysis would be used in combination with results from Chapter 5.

• Chapter 8 concludes the thesis, and puts forth some future works.
• Finally, note that results we deemed proof-worthy are annotated as such in the body of the

thesis, proofs can then be found in Appendix A.
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Each chapter (except Chapter 2) features: (1) a motivating introduction, (2) a presentation
of related works, (3) some implementation considerations and (4) a conclusion





Chapter 2

Background – Abstract interpretation

In this chapter we provide the theoretical background of this thesis. We present here the common
part of the prerequisites of all subsequent chapters. Every chapter will then provide backgrounds
of their own (such sections are marked with “Background” so as to differentiate contributions
from state of the art results). As an example, results from automata theory are used in this thesis
but will only be introduced in the Background section of Chapter 7.

This thesis will make extensive use of the abstract interpretation framework [CC77b]. For this
reason this chapter is devoted to a presentation of some of the results of abstract interpretation
used in the subsequent chapters.

The mathematical semantics of a programming language (no matter its definition pattern:
denotational, equational, …) is usually defined ([Cou97]) using the following:

• a set of all “states” D;
• atomic transformers operating on ℘(D): ℘(D)→ ℘(D);
• union;
• least fixed point.

Indeed unions are used for merging points (e.g. the end of an if statement) and the least fixed
point are used to define the semantics of looping features (e.g. recursivity, while, goto).

As soon as : (1) the atomic transformers provided by the semantics are expressive enough
(tests and basic numerical operations), (2) and the language features a looping mechanism,
one can prove that knowing whether the semantics of a given program satisfies some non trivial
property or not is non decidable. This undecidability may come from the following:

1. the sets of states manipulated might not be machine representable;
2. some of the atomic transformers might not be computable;
3. the union might not be computable;
4. the least fixed point might not be reached in finitely many steps.
As the precise semantics might not be computable, abstract interpretation will focus on the

computation of an over-approximation of this semantics. Indeed as mentioned in the introduc-
tory Chapter 1, our goal is to prove that the semantics is included in some property. In order to
obtain this, it is sufficient to prove that some over-approximation of the semantics is included in
the property. Instead of operating on the set of states defined by the concrete semantics (called
concrete states), we move the computations to a “simpler” world (called abstract states). The
computation of an over-approximation of the semantics will then be made by replacing each
operator used in the definition of the concrete semantics (e.g. union, atomic transformers, least
fixed point) with an abstract counterpart. Elements from the abstract world will be given a
meaning in the concrete world via the use of a concretization function. An abstract element is
then called a sound over-approximation of some concrete element if its concretization covers
the concrete element. We mentioned that the computation of this over-approximating abstract
counterpart will be made by following the mathematical definition of the concrete semantics,
therefore abstract interpretation provides an answer to each of the four sources of indecidability

9
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presented therebefore.
• Point 1 is answered by defining a machine representable abstract world;
• Point 2 and Point 3 are answered by defining over-approximating abstract transformers

operating on the abstract world. These operators are over-approximating in the sense that
their image covers at least the image of their concrete counterpart;

• Point 4 is answered by defining an binary operator ▽ that accelerates convergence to an
over-approximation of the least fixed point.

The first section of this chapter is dedicated to the presentation of some of the mathematical
notations used in this thesis. As we have seen the soundness notion is defined via a compari-
son operator. Section 2.2 is dedicated to a presentation of results from order and lattice theory
including a definition and some properties of Galois connections, at the heart of the concrete/ab-
stract pair. Section 2.3 is then dedicated to a case study, where we show how an abstract inter-
preter is built and how its soundness is ensured by results from Section 2.2. Finally as numerical
domains are widely used in the following chapters, we dedicate Section 2.4 to a catalogue of the
most used of them.

2.1 Notations

Substitution. Given two sets A and B, an element a ∈ A, an element b ∈ B, a function
f ∈ A → B, we denote as f[a 7→ b] the function from A to B associating b to a and f(x) to x

otherwise.

λ expressions. Given a setA, we will use the λ notations: λx ∈ A, f to denote the mathematical
function defined on A and associating f to x.

Functions defined as extension. Given a set {x1, . . . , xn}, the notation (x1 7→ a1, . . . , xn 7→
an) is used to denote the function defined on {x1, . . . , xn} and associating ai to each of the xi.

Functions projection and extension. Given two sets A and B, a function f ∈ A → B, a
subset A ′ of A we denote as f|A ′ , the restriction of f to A ′. Moreover given two functions
f ∈ A → B and g ∈ C → B such that A ∩ C = ∅, we denote as f ] g the function: λx ∈ A ∪

C.
{

f(x) if x ∈ A

g(x) otherwise . Both notations are extended to set operations: Given a set of functions

F, F|A ′ = {f|A ′ | f ∈ F} and given another set of functions G, F]G = {f] g | f ∈ F,g ∈ G}.

Partial functions. Given two sets A and B, A ↛ B denotes the set of partial maps from A to
B. We denote as def(f) the definition set of f.

Set of subsets. Given a set S, ℘(S) denotes the set of all subsets of S and ℘f(S) denotes the set
of all finite subsets of S.

Equivalence classes. When S is a set, ∼ is an equivalence relation on elements from S and
x ∈ S, we denote as [x]∼ the equivalence class of x under ∼.

2.2 Order theory

2.2.1 Order and Galois connections

Abstract interpretation is a theory of sound approximations of semantics. The soundness notion
will be expressed via an order relation (e.g. the inclusion). For this reason, we start by recalling
some results on order relations.
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a b

c d

e

Figure 2.1: Hasse diagram of Example 2.1

Definition 2.1 (Partial order). Given a set S, a partial order ≼ on S, is a binary relation (a subset
of S× S) being:

• reflexive: ∀x ∈ S, x ≼ x;
• transitive: ∀x,y, z ∈ S, x ≼ y⇒ y ≼ z⇒ x ≼ z;
• anti-symmetric: ∀x,y ∈ S, x ≼ y⇒ y ≼ x⇒ x = y

Definition 2.2 (Poset). When a set S, is equipped with a partial order ≼, we say that (S,≼) is a
poset.

Definition 2.3 (Monotonicity). Given two posets (S1,≼1) and (S2,≼2), and a function f ∈ S1 →
S2, f is said to be monotonous whenever ∀x,y ∈ S1, x ≼1 y⇒ f(x) ≼2 f(y).

Definition 2.4 (lower-bound, upper-bound, lub, glb). Given a poset (S,≼) and a subset X ⊆ S,
we say that m (resp. M) is a lower (resp. upper) bound of X, whenever ∀x ∈ X,m ≼ x (resp.
∀x ∈ X, x ≼ M). We denote as X↓ (resp. X↑) the subset of S of all lower bounds (resp. upper
bounds) of X. Let m (resp. M) be a lower (resp. upper) bound of X, we say that m (resp. M)
is the greatest lower bound (glb) (resp. least upper bound (lub)), whenever ∀m ′ ∈ X↓,m ′ ≼ m

(resp. ∀M ′ ∈ X↑,M ≼M ′). When such a lub (resp. glb) exists it is unique and will be denotedc
X (resp.

b
X).

A commonly used visual representation of posets (and this thesis will not fail to the rule) are
Hasse diagrams, which we now succinctly present.

Definition 2.5 (Hasse diagrams). Given a poset (S,≼), we define the following directed graph
(V,E), where:

• V = S

• E = {(x,y) | x ≼ y∧ x 6= y∧ ∀z ∈ S, x ≼ z ≼ y⇒ z = x∨ z = y}

Basically we have a transition between an element x and y if x ≼ y, but we remove transitions
that can be inferred from the reflexive, and transitive, property of the order relation.

Remark 2.1. By the transitive and anti-symmetric property of the order relation we have that
the graph is actually acyclic. Edges of a Hasse diagram are therefore represented visually by an
edge going up from the smallest element of the two, to the biggest one.

Example 2.1 (Non existence of lub). Consider the following set S = {a,b, c,d, e} ordered
by the relation ≼= {(a,a), (b,b), (c, c), (d,d), (e, e), (a, c), (a,d), (b, c), (b,d), (a, e), (b, e), (c,
e), (d, e)}, represented by the Hasse diagram of Figure 2.1. We can see that the set {c,d} does
not admit a greatest lower bound, however it admits a least upper bound

b
{c,d} = e

Definition 2.6 (Chains). Given a poset (S,≼), a chain is a subset C of S such that: ∀x,y ∈ C, x ≼
y∨ y ≼ x. C is completely ordered.

Definition 2.7 (CPO). A poset (S,≼) is called a CPO if every chain of the poset admits a lub, it
is then denoted (S,≼,

b
,⊥), where ⊥ =

b
∅.
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∅

{a}

{a,b}

{a,b, c}

{a,b, c,d}

{a,b,d}

{a, c}

{a, c,d}

{a,d}

{b}

{b, c}

{b, c,d}

{b,d}

{c}

{c,d}

{d}

Figure 2.2: Hasse diagram of Example 2.1

Definition 2.8 (Lattice). A poset (S,≼) is called a lattice when every subset of size 2 of S admits
a lub and a glb, those are then denoted ⋎ (for the lub) and ⋏ (for the glb). We then say that
(S,≼,⋎,⋏) is a lattice.

Definition 2.9 (Complete lattice). A lattice (S,≼,⋎,⋏) is said to be a complete lattice whenever
every subset of X admits a glb. This implies that every subset of X admits a lub (and conversely).
We then denote ⊥ =

b
∅ and > =

c
∅, and say that (S,≼,⋎,⋏,⊥,>) is a complete lattice.

Example 2.2 (Powerset lattice). For any given set X the powerset lattice (℘(X),∪,∩, ∅,X) is
a complete lattice. Figure 2.1 provides the Hasse diagram of the powerset lattice of the set
{a,b, c,d}.

Definition 2.10 (Lifted lattice). Given a (complete) lattice (S,≼,⋎,⋏,⊥,>) and a set X we can
derive a new complete lattice: ((X→ (S \ {⊥}))∪⊥,≼,⋎,⋏,⊥,>) where:

≼ ∆
= {(f, f ′) | ∀x ∈ X, f(x) ≼ f ′(x)}

f⋎f ∆
= λx.f(x)⋎ f ′(x)

f⋏f ∆
= λx.f(x)⋏ f ′(x)

> ∆
= λx.>

and ⊥ is a new element.

Remark 2.2. This last definition provides a way to lift a “value” lattice to an “environment” lattice
by setting X to be a set of variables.

We now introduce vocabulary specific to abstract interpretation. Recall that instead of work-
ing in the concrete world (C), our goal is to translate the computations to a simpler abstract
world (A). In order to give a meaning to elements of the abstract world as abstractions of ele-
ments from the concrete world, we define a concretization function, which is a function from
the abstract world to the concrete one. We can then rely on the comparison operator provided
by the concrete world to compare a concrete element with a concretized abstract element. As
mentioned earlier, the notion of soundness is conveyed by the order relation of the concrete
world, we will therefore say that an abstract element a is an sound abstraction of a concrete one
c if the concretization of a is greater than c.
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Definition 2.11 (Concretization, soundness, exactness). Given two posets (C,≼) and (A,v), a
monotonic function γ ∈ A → C is called a concretization function. Given c ∈ C and a ∈ A, we
then say that:

• a is a sound abstraction of c whenever c ≼ γ(a);
• a is an exact abstraction of c whenever c = γ(a).

Even though the concretization is sufficient to reason about soundness (e.g. prove that an
analyzer is sound in the sense that it considered the complete semantics of a program), we now
define a stronger framework: Galois connections. The notion of Galois connection is used to link
an abstract world and a concrete one, in addition to a concretization function, this provides an
abstraction function. This function maps elements from the concrete world to elements from
the abstract world. Moreover the equivalence from the next definition ensures that in a Galois
connection the abstraction function provides the best possible sound abstraction (again for the
order relation of the abstract world).

Definition 2.12 (Galois connections). Given two posets (C,≼) and (A,v), we say that the pair
(α ∈ C→ A,γ ∈ A→ C) is a Galois connection when:

∀a ∈ A,∀c ∈ C, c ≼ γ(a)⇔ α(c) v a

We then write (C,≼) −−−→←−−−
α

γ
(A,v)

Proposition 2.1 (Properties on Galois connections [CC77b]). Given a Galois connection (C,≼ ) −−−→←−−−
α

γ

(A,v) we have:
• γ and α are monotonic
• ∀c ∈ C, c ≼ γ ◦α(c)
• ∀a ∈ A,α ◦ γ(a) v a

• γ ◦α ◦ γ = γ and α ◦ γ ◦α = α

• ∀c ∈ C, {a | c ≼ γ(a)} admits a glb and α(c) =
d
{a | c ≼ γ(a)}

• ∀a ∈ A, {c | α(c) v a} admits a lub and γ(a) =
b
{c | α(c) v a}

• Given two Galois connections (S1,≼1) −−−→←−−−
α1

γ1
(S2,≼2) and (S2,≼2) −−−→←−−−

α2

γ2
(S3,≼3) we have

the following Galois connection: (S1,≼1) −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2
(S3,≼3)

• Given a Galois connection (C,≼) −−−→←−−−
α

γ
(A,v) between two lattices (C,≼,⋎,⋏,⊥c,>c) and

(A,v,t,u,⊥a,>a), and a set V, we have a Galois connection between the two lifted posets
of Definition 2.10: ((X→ C \ {⊥c})∪⊥c,≼) −−−→←−−−

α

γ
((X→ A \ {⊥a})∪⊥a,v) where

γ(f)
∆
=

{
⊥c if f = ⊥a

λs ∈ X.γ(f(s)) otherwise

α(f)
∆
=

{
⊥a if f = ⊥c

λs ∈ X.α(f(s)) otherwise

2.2.2 An example of Galois connection: intervals [CC76]

We recall here the definition of the Galois connection between the lattice (℘(Z),⊆,∪,∩, ∅, Z)

and the interval lattice (see [CC76]). We define the set of intervals to be I
∆
= {[a;b] | a ∈

Z∪ {−∞} ∧ b ∈ Z∪ {∞} ∧ a ⩽ b}∪ {⊥}. On I we define the concretization function γ such that
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⊥

. . . [−2;−2] [−1;−1] [0; 0] [1; 1] [2; 2] . . .

[−2;−1] [−1; 0] [0; 1] [1; 2]

[−2; 0] [−1; 1] [0; 2]

[−2; 1] [−1; 2]

[−2; 2]

] −∞;−1]

] −∞; 0]

] −∞; 1]

] −∞; 2] [−2;∞[

[−1;∞[

[0;∞[

[1;∞[

. . .. . .

] −∞;∞[

Figure 2.3: Hasse diagram of the interval lattice

γ([a;b]) = {x ∈ Z | a ⩽ x ⩽ b} and γ(⊥) = ∅. I is enriched with the following operators:

v ∆
= {([a;b], [c;d]) | c ⩽ a∧ b ⩽ d}

[a;b]t [c;d] ∆
= [min(a, c); max(b,d)]

[a;b]u [c;d] ∆
=

{
[max(a, c); min(b,d)] if max(a, c) ⩽ min(b,d)
⊥ otherwise

> ∆
= [−∞;∞]

(I,v,t,u,>,⊥) is a complete lattice, Figure 2.3 represents its Hasse diagram. Moreover let us
consider the function α ∈ ℘(Z)→ I defined by:

α(S) =

{
[min(S); max(S)] if S 6= ∅
⊥ otherwise

We then have the following Galois connection (℘(Z),⊆) −−−→←−−−
α

γ
(I,v). Note that we went from

the world ℘(Z), the elements of which are not all machine representable, to the interval world
I, the elements of which are machine representable. Obviously information was lost, consider
for example the set 2Z which can not be precisely represented with an interval. Its most precise
abstraction is ] −∞;∞[, representing Z ⊋ 2Z.

2.2.3 Operators, fixpoint theorems

The semantics of a transition system is defined using not only set-theoretic operations, but also
operators, representing transition steps in the system. An operator is merely a function between
two posets, we start here by providing some vocabulary on such functions.

Definition 2.13 (function properties).
• Continuity: Given two CPO (S1,≼1) and (S2,≼2) (the lub of chains will be denoted resp.b

1 and
b

2), a function f ∈ S1 → S2 is said to be continuous whenever for every chain C1
of S1 we have: {f(x) | x ∈ C1} is a chain of S2 and f(

b
1 C1) =

b
2{f(x) | x ∈ C1}.
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• Join-morphism: a function f between a lattice (S1,≼1,⋎1, . . . ) and a lattice (S2,≼2,⋎2, . . . )
is said to be a join-morphism when: ∀x,y ∈ A1, f(x⋎1 y) = f(x)⋎2 f(y). When A1 and
A2 are complete lattices and the property can be extended to arbitrary sets, we call f a
complete join morphism. A join morphism is monotonous, a complete join morphism is
continuous.

We have seen how a concretization function is used to define a notion of sound abstraction of a
concrete element. We now define a notion of sound operators. Informally a function fA operating
on the abstract world is said to be a sound abstraction of its concrete counterpart f whenever
the image of every abstract element is a sound abstraction of the image of the concretization of
this element. This property is stable by composition, which ensures that an analyzer built as the
composition of sound operators will itself be sound. Similarly a notion of exactness is defined.

Definition 2.14 (Sound and exact abstraction of operators). Given a monotonic function γ from
the poset (A,v) to the poset (C,≼) and an operator f ∈ C → C. We say that fA is a sound
abstraction of operator f whenever

∀x ∈ A, f(γ(x)) ≼ γ(fA(x))

we say that is an exact abstraction of operator f whenever

∀x ∈ A, f(γ(x)) = γ(fA(x))

Remark 2.3. When we are given a Galois connection between the concrete and abstract world:
(C,≼) −−−→←−−−

α

γ
(A,v), fA ∆

= α ◦ f ◦ γ is a sound abstraction of f. Moreover it is the best possible
abstraction of f in the sense that: if g is another sound abstraction of f then ∀a ∈ A, fA(a) v g(a).

The definition of a semantics makes use of fixpoints (e.g. for the definition of the semantics of
a while statement), more precisely it uses the notion of least fixed point, which is the smallest of
all fixpoints. We provide here two fixpoint theorems that will ensure that the semantics is well-
defined (there exists a least fixed point). Moreover as the definition of our abstract semantics will
copy that of the original semantics we provide transfer theorems ensuring a fixpoint computed
in the abstract world over-approximates the least fixed point from the original semantics.

Definition 2.15 (Fixpoints). Given a poset (S,≼) and a function f ∈ S→ S, we define:
• a fixpoint of f is an element x ∈ S such that f(x) = x, we denote as fp(f) the set of all such

fixpoints.
• lfp(f) denotes (when it exists) the least fixed point of f.

Theorem 2.1 (Tarski’s fixpoint theorem [Tar55]). If (S,≼,⋎,⋏,⊥,>) is a non empty complete
lattice and f is a monotonic function, then fp(f) is a non empty complete lattice, lfp(f) exists and
is such that lfp(f) =

c
{x ∈ S | f(x) ≼ x}

Theorem 2.2 (Kleene’s fixpoint theorem [CC77b]). Given a CPO (S,≼,
b

,⊥), a continuous func-
tion f ∈ S→ S we have lfp(f) exists, {fn(⊥) | n ∈N} is a chain, and lfp(f) =

b
{fn(⊥) | n ∈N}.

Theorem 2.3 (Tarski’s fixpoint approximation [Cou97]). Given a complete lattice (C,≼,⋎,⋏,
⊥c,>c), a poset (A,v), a concretization function γ from A to C, f a monotonic operator on C, g
an operator on A that is a sound approximation of f with respect to γ, then ∀a ∈ A,g(a) v a ⇒
lfp(f) ≼ γ(a).

Theorem 2.4 (Kleene’s fixpoint approximation [Cou97]). Given a CPO (C,≼,
b

,⊥c), a poset
with minimal element (A,v,⊥a), a concretization function γ from A to C, f a continuous operator
on C, g an operator on A that is a sound approximation of f with respect to γ, if the sequence
{gi(⊥a) | i ∈N} has a least upper bound l =

⊔
{gi(⊥a) | i ∈N} then lfp(f) ≼ γ(l).
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2.2.4 Widening

In the introductory remarks to this chapter we underlined four difficulties encountered while
trying to compute the concrete semantics. To this point we provided an answer to the first
three by translating the problem to an abstract world. However there remains the problem that
the least fixed point used in the concrete may not be computed in finitely many steps in the
abstract. As we will see in the next section, following Kleene’s fixpoint theorem, we compute
over-approximations of fixpoints of functions f by considering the iterates (fAi

(⊥))i∈N, where
fA is a sound approximation of operator f. The sequence (fA

i
(⊥))i∈N will often be increasing.

Whenever the abstract world has finite height (meaning that there exists no infinite sequence
(yi)i∈N such that ∀i,yi v yi+1 and yi 6= yi+1) the iterates (fAi

(⊥))i∈N converges. However in
all abstractions considered in this thesis, the abstract lattice will have infinite height, therefore
the sequence (fA

i
(⊥))i∈N is not ensured to converge. For this reason we define a widening

operator, the goal of which is to stabilize sequences.

Definition 2.16 (Widening operator). Given a poset (A,v) we say that a binary operator ▽ ∈
A×A→ A is a widening operator if:

1. ∀x,y ∈ A, x v x▽y∧ y v x▽y
2. for all sequences (xi)i∈N ∈ AN the sequence (yi)i∈N ∈ AN defined by (y0 = x0)∧ (yi+1 =

yi▽xi+1) satisfies ∃N ∈N,∀k ⩾ N,yk = yN

Theorem 2.5 (Widening ensures convergence [CC77b]). Given a complete lattice C, a poset A
with minimal element ⊥A, a concretization function γ from A to C, a monotonic operator f on C,
an operator g on A that is a sound approximation of f with respect to γ, then the sequence (yi)i∈N

defined by:

y0 = ⊥A

yi+1 = yi▽g(yi)

is such that ∃N ∈N,∀k ⩾ N,yk = yN. Moreover for such a N, we have lfp(f) ≼ γ(yN).

2.3 Abstract Interpretation

2.3.1 By example

As abstract interpretation is a framework easing the development of static analyzers by providing
sufficient conditions to ensure the soundness of the analysis, we show here an example of static
analyzer defined by abstract interpretation. Let us consider a modified version of register ma-
chines as toy language for this section. The reason we chose to present register machine as toy
language is the fact that numerical operations are limited to incrementation and decrementa-
tion. Therefore we do not have to deal with the definition of the evaluation of expressions. This
language will be denoted as RM in the remainder of this section. The different points presented
in the following are the classical steps followed by the definition of an abstract interpreter.

Syntax of the language. We start by providing the syntax of the language. We assume given
a finite non empty set of variables (the registers) denoted R. We denote as stmt the set of all
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statements from our language, defined by the following grammar.

stmt ∆
= | while (r!=0) {stmt} r ∈ R

| if (r!=0) {stmt} else {stmt} r ∈ R

| skip

| stmt;stmt
| r++ r ∈ R

| r-- r ∈ R

Memory state. The semantics of the language will operate on sets of states which are maps
assigning an integer value to each of the registers. We denote as D the set of all such sets of
maps: D ∆

= ℘(R→ Z).

Semantics of atomic statements. Asmentioned in the introductory remarks to this section, the
definition of the semantics requires the definition of the transfer functions for atomic statements.
Given an atomic statement stmt we denote as SJstmtK ∈ D→ D the transfer function associated
to statement stmt.

SJr==0K ∆
= λR ∈ D.{ρ | ρ ∈ R∧ ρ(r) = 0}

SJr!=0K ∆
= λR ∈ D.{ρ | ρ ∈ R∧ ρ(r) 6= 0}

SJr++K ∆
= λR ∈ D.{ρ[r 7→ ρ(r) + 1] | ρ ∈ R}

SJr--K ∆
= λR ∈ D.{ρ[r 7→ ρ(r) − 1] | ρ ∈ R}

SJskipK ∆
= λR ∈ D.R

Semantics of compound statements. Now that we have provided a mathematical definition
of the semantics of atomic statements, we define by induction on the syntax, the semantics of
compound statements. As mentioned before, these definitions rely on the use of the mathemat-
ical set union and smallest fixed points.

SJwhile (r!=0) {stmt}K ∆
= λR ∈ D.SJr==0K(lfp(λS ∈ D.R∪ SJstmtK ◦ SJr!=0K(S)))

SJif (r!=0) {stmtt} else {stmte}K ∆
= λR ∈ D.SJstmttK ◦ SJr!=0K(R)∪ SJstmteK ◦ SJr==0K(R)

SJstmt1;stmt2K ∆
= SJstmt2K ◦ SJstmt1K

We mentioned that any powerset is a complete lattice. In particular here D is a complete lattice,
and we can show that for every statement stmt SJstmtK is a complete join-morphism. It follows
that for every R ∈ D and for every stmt ∈ stmt the function F

∆
= λS ∈ D.R∪SJstmtK◦SJr!=0K(S) ∈

D → D is a complete join-morphism. By application of both Theorem 2.1 and Theorem 2.2 we
get that F admits a least fixed point. Therefore our semantics is well-defined.

Abstract domain. The first step in building a static analyzer by abstract interpretation is the
definition of an abstract domain. An abstract domain is a structure providing all the operators re-
quired for the definition of an abstract semantics. We recall that the abstract semantics is defined
by following the definition of the concrete semantics and replacing some of the uncomputable
operators by computable, over-approximating ones. Moreover as the least fixed point might not
be reached (via Kleene’s theorem) in a finite number of iterations, we ask abstract domains to
provide an operator accelerating convergence, denoted ▽. An abstract domain therefore pro-
vides:
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• A lattice (D♯,v,t,u,⊥,>);
• A Galois connection with the concrete domain (D,⊆) −−−→←−−−

α

γ
(D♯,v);

• Abstract transformers for the atomic statements of the language, denoted as S♯JstmtK ∈
D♯ → D♯: S♯Jr==0K, S♯Jr!=0K, S♯Jr++K, S♯Jr--K;

• A widening operator ▽ ∈ D♯ ×D♯ → D♯.
Moreover in order to ensure soundness and computability of the overall analysis, produced by
the composition of such operators, we require the following to hold:

• t is a sound over-approximation of the union operator ∪ (we extend Definition 2.14):

∀R♯
1,R♯

2 ∈ D♯,γ(R♯
1)∪ γ(R

♯
2) ⊆ γ(R♯

1 t R
♯
2)

• For all atomic statements stmt, S♯JstmtK is a sound abstraction of operators SJstmtK, in the
sense of Definition 2.14;

• Elements from D♯ are machine representable;
• ▽, t, and S♯JstmtK for any stmt are computable operators.

Example continued: the interval domain. Let us now define an abstract domain for the RM
language. Our first abstraction will be to lose the relationality of the concrete worldD = ℘(R→
Z). We have shown that (℘(Z),⊆,∪,∩, ∅, Z) is a complete lattice. We lift this lattice using
Definition 2.10, to a lattice L1 = (R → ℘(Z) \ {∅})∪ {⊥},⊆,∪,∩,⊥,>). We now define a Galois
connection between the concrete world and this lattice:

℘(R→ Z) −−−→←−−−
α1

γ1
((R→ ℘(Z) \ {∅})∪ {⊥},⊆)

γ1(m) =

{
∅ if m = ⊥
{ρ ∈ R→ Z | ∀r ∈ R, ρ(r) ∈ m(r)} otherwise

α1(R) =

{
⊥ if R = ∅
λr ∈ R.{ρ(r) | ρ ∈ R} otherwise

Note that this abstraction looses relations between values in registers. As an example consider
the set of environments R = {(r1 7→ 1, r2 7→ 0), (r1 7→ 0, r2 7→ 1)}, we have α(R) = (r1 7→
{0, 1}, r2 7→ {0, 1}) and therefore γ ◦ α(R) = {(r1 7→ 1, r2 7→ 0), (r1 7→ 0, r2 7→ 1), (r1 7→ 0, r2 7→
0), (r1 7→ 1, r2 7→ 1)}.

Moreover we have shown in Section 2.2.2 a Galois connection between ℘(Z) and I the set of
intervals of Z. By lifting this Galois connection using Proposition 2.1 and Definition 2.10 we get
a Galois connection between the lattice L1 and the lattice ((R → (I \ {⊥}) ∪ {⊥},v,t,u,>,⊥),
we denote D♯ ∆

= (R→ (I \ {⊥})∪ {⊥}

((R→ ℘(Z) \ {∅})∪ {⊥},⊆) −−−→←−−−
α2

γ2
(D♯,v)

By the composability result provided in Proposition 2.1 we get a Galois connection between our
concrete world D and our abstract world D♯. Moreover please note that as R is finite, elements
from our abstract world are machine representable and our abstract operators are computable.
Let us now define sound abstract transformers on D♯, over-approximating the semantics of the
atomic statements of language RM.
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S♯Jr==0K ∆
= λR♯ ∈ D♯.

{
⊥ if R♯ = ⊥∨ 0 /∈ R♯(r)
R♯[r 7→ [0; 0]] otherwise

S♯Jr!=0K ∆
= λR♯ ∈ D♯.


⊥ if R♯ = ⊥∨ R♯(r) = [0; 0]
R♯[r 7→ [1;a]] else if R♯(r) = [0;a]
R♯[r 7→ [a;−1]] else if R♯(r) = [a; 0]
R♯ otherwise

S♯Jr++K ∆
= λR♯ ∈ D♯.

{
⊥ if R♯ = ⊥
R♯[r 7→ [a+ 1;b+ 1]] otherwise when R♯(r) = [a;b]

S♯Jr--K ∆
= λR♯ ∈ D♯.

{
⊥ if R♯ = ⊥
R♯[r 7→ [a− 1;b− 1]] otherwise when R♯(r) = [a;b]

In order not to make the previous definitions too cumbersome, we assumed that ∞± 1 = ∞
and −∞± 1 = −∞. All above abstract operators are sound and or the best possible abstract
operators that can be associated to their concrete counterpart.

We now provide a widening operator for the interval domain. As for the other set abstract
operators, we define ▽ as a lifting to maps of the following operator:

[a;b]▽0[c;d] ∆
= [

{
−∞ if c < a

a otherwise ;
{ ∞ if d > b

b otherwise ]

Finally please note that all soundness and computability conditions are met by our definitions.

Abstract semantics. Now that we have defined an abstract domain, an abstract semantics can
be automatically defined by following the definition of the concrete semantics and replacing
every operator by its abstract counterpart. In the following v, u, t, ⊥, > denotes the abstract
operator on the lifted interval abstract domain.

S♯Jwhile (r!=0) {stmt}K ∆
= λR♯ ∈ D♯.S♯Jr==0K( lim

n→∞ Fn(⊥))

with F(S♯) = S♯▽(R♯ t S♯JstmtK ◦ S♯Jr!=0K(S♯))
S♯Jif (r!=0) {stmtt} else {stmte}K ∆

= λR♯ ∈ D♯.S♯JstmttK ◦ S♯Jr!=0K(R♯)

t S♯JstmteK ◦ S♯Jr==0K(R♯)

S♯Jstmt1;stmt2K ∆
= S♯Jstmt2K ◦ S♯Jstmt1K

S♯JskipK ∆
= λR♯ ∈ D♯.R♯

Using the soundness and computability of abstract operators for atomic statements and for
abstract set operators, the stabilizing property of the widening operator, and the fixpoint transfer
theorems, we can show that the composition of these operators in the definition of our abstract
semantics is sound and computable.

Theorem 2.6 (Soundness and computability). For every statement stmt, S♯JstmtK is a sound and
computable abstraction of operator SJstmtK.
Application. Let us consider Program 2.1 written in RM where R = {a, b, c}. We can show that
SJaddK ∈ D → D is such that ∀x,y ∈ N, SJaddK({(a 7→ x, b 7→ y, c 7→ 0)}) = {(a 7→ 0, b 7→ 0, c 7→
x + y)}. Moreover if a or b is initially negative, then the set of reachable states at the end of
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1 // 0 ⩽ a ⩽ 2∧ 0 ⩽ b ∧ c = 0
2 while (a!=0) {

3 a--;

4 c++

5 };

6 while (b!=0) {

7 b--;

8 c++

9 }

Program 2.1: add

Program 2.1 is empty. Indeed, no such inputs yield terminating executions and SJ.K ignores non
terminating executions as it focuses on partial correction.

Let us now compare this concrete behavior with the one of our abstract semantics. We choose
as starting point S♯0 = (a 7→ [0; 2], b 7→ [0;∞[, c 7→ [0; 0]). Consider the first while statement, we
have:

F0(⊥) = ⊥
F1(⊥) = ⊥▽(S♯0 t SJa--;c++K ◦ S♯Ja!=0K(⊥))

= S
♯
0

F2(⊥) = S
♯
0▽(S

♯
0 t SJa--;c++K ◦ S♯Ja!=0K(S♯0))

= S
♯
0▽(S

♯
0 t (a 7→ [0; 1], b 7→ [0;∞[, c 7→ [1, 1]))

= S
♯
0▽(a 7→ [0; 2], b 7→ [0;∞[, c 7→ [0, 1]))

= (a 7→ [0; 2], b 7→ [0;∞[, c 7→ [0,∞[)
∆
= S2

F3(⊥) = S
♯
2▽(S

♯
0 t SJa--;c++K ◦ S♯Ja!=0K(S♯2))

= S
♯
2▽(S

♯
0 t (a 7→ [0; 1], b 7→ [0;∞[, c 7→ [1,∞[))

= S
♯
2▽(a 7→ [0; 2], b 7→ [0;∞[, c 7→ [0,∞[))

= S
♯
2

From this fixed point computation we deduce that ( denotes the first while loop): S♯J K(S♯0) =
S♯Ja==0K(S♯2) = (a 7→ 0, b 7→ [0;∞[, c 7→ [0;∞[). By a similar computation on the second loop
we get that: S♯JaddK(S♯0) = (a 7→ [0; 0], b 7→ [0; 0], c 7→ [0;∞[). Therefore we were able to prove
automatically that: whenever register a starts with a value in [0; 2], register b starts with a non
negative value and register c starts with a null value then at the end of the execution, we have
register a and b containing null value and register c contains a non negative value. Note that this
result provides properties satisfied by an infinite number of program executions and could not
have been obtained by executing the concrete semantics on every considered inputs. Obviously
this is not the strongest invariant satisfied by Program 2.1, however the aforementioned result
might be sufficient for the considered application (e.g. prove that no negative values are stored
in registers).
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1 if (a!=0) {

2 a--;

3 c++;

4 if (a!=0) {

5 a--;

6 c++;

7 while (a!=0) {

8 a--;

9 c++

10 }

11 } else {skip}

12 } else {skip}

Program 2.2: loop unrolling

1 while (i < 123) {

2 i++;

3 }

Program 2.3:
incrementation

2.3.2 Improving precision of the abstract fixpoint computation

Several techniques can be employed to improve the precision of the analysis for Program 2.1,
some of which will be presented in the remainder of this chapter.

Delayed widening. The fixed point computation presented above resorted to widening as soon
as it started iteration computation. We could soundly and without loosing computability remove
this widening computation for any finite number of iterations.

Loop unrolling. This improvement can be described as a syntactic code transformation. As
implied by its name, this technique separates the first loop iterations from one another. As an
example loop would be replaced by the code fragment from Program 2.2. Applying this pro-
gram transformation, we would have obtained the following more precise invariant: S♯J K(S♯0) =
(a 7→ [0; 0], b 7→ [0;∞[, c 7→ [0; 2]) at the end of the first loop.

For the presentation of the following two techniques we assume our language extended with
some features so that Program 2.3 is part of our language. We provide neither the concrete nor
the abstract semantics of added statements as it is straightforward.

Widening with thresholds. One of the biggest source of imprecision for static analysis by
abstract interpretation is the use of widening operations to converge to an over-approximation
of the least fixed point. As we have seen in our examples, jumps are performed from abstract
elements representing two concrete values [0; 1] to the unbounded abstract element [0;∞[. We
have seen that unrolling loops or delaying widening could prevent this when the number of loop
iterations performed in the concrete are relatively low. Widening with thresholds consists in
adding several stops (a finite number) before over-approximating to ∞. As an example consider
a program incrementing an integer while it is lower that 123 (Program 2.3), and the set of
thresholds {10, 100, 1000}. The first iterations of the abstract fixpoint computation would go as
follow:

[0; 0]▽[0; 1] = [0; 10]
[0; 10]▽[0; 11] = [0; 100]

[0; 100]▽[0; 101] = [0; 1000]
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[0; 1000] is then stable and can soundly be used as a loop invariant. Note that the number of
iterations depends upon the number of thresholds and not on the actual value 123 from the
program. Of course it is interesting to gather widening thresholds from the program syntax
(e.g. 123 here) and even more interesting to gather them dynamically during the analysis.

Decreasing iterations. Once again consider Program 2.3. Assume that we start an analysis
with the hypothesis that (i 7→ [0; 100]), following the fixpoint computation introduced above we
would obtain the following loop invariant: (i 7→ [0;∞[). This represents an over-approximation
of the actual fixpoint, that may be refined. This improvement can be obtained by applying F one
more time and intersecting the results with the abstract fixpoint. This can be seen as continuing
the iterations of F without widening. This process can then be iterated. Note however that it
might not converge. For this reason we define a narrowing operator that ensures convergence.

Definition 2.17 (Narrowing operator). Given a lattice (A,v,t,u,>,⊥) we say that a binary
operator △∈ A×A→ A is a narrowing operator if:

1. ∀x,y ∈ A, xu y v x △ y v x;
2. for all sequences (xi)i∈N ∈ AN the sequence (yi)i∈N ∈ AN defined by (y0 = x0)∧ (yi+1 =

yi △ xi+1) satisfies ∃N ∈N,∀k ⩾ N,yk = yN.

Example 2.3 (Interval example continued). We define here a narrowing operator for the interval
domain:

[a;b] △ [c;d] = [

{
c if a = −∞
a otherwise ;

{
d if b = ∞
b otherwise ]

This operator can then be lifted to the interval abstract domain presented above.

Using this narrowing operator we can now improve the precision of the invariant inferred
for Program 2.3. We start by applying the loop transformer on the previously obtained abstract
fixpoint: (i 7→ [0; 100])tS♯Ji++K ◦S♯Ji < 123K(i 7→ [0;∞[) = (i 7→ [0; 123]). We then narrow our
abstract fixpoint with this value: (i 7→ [0;∞]) △ (i 7→ [0; 123]) = (i 7→ [0; 123]). The result is a
sound over-approximation of the concrete semantics of the loop and the process can be iterated.
This result is more precise than the initial loop invariant. Note moreover that the postcondition
obtained for Program 2.3 under starting hypothesis 0 ⩽ i ⩽ 100, is: S♯J¬(i < 123)K((i 7→
[0; 123])) = (i 7→ [123; 123]). This is actually the most precise invariant we could obtain and we
were able to infer and prove it with 3 abstract executions of the loop body, and this invariant
holds for 100 different program traces.

2.3.3 Composing abstract domains

In the previous section we focused on the analysis of a toy language containing only numerical
variables. In a real-life programming language, the abstract domain performing the analysis
needs to handle a lot of different features (strings, pointers, …). Moreover we want to be able
to easily adapt the analyzer to the kind of properties we want to prove. This is not achieved by
defining from scratch a new abstract domain for each type of analysis, but rather by composing
already existing ones. We have seen how domains can be derived from another by lifting their
value semantics to an environment semantics. In this section we show two more methods for the
derivation of new abstract domains: either as a direct product of two domains, or as a reduced
product of two domains.

Definition 2.18 (Direct product). Given two abstract domains D
♯
1 and D

♯
2 abstracting D, we

define its product domain to be D
♯
1×2

∆
= D

♯
1 ×D

♯
2 with concretization and abstraction functions:

γ1×2
∆
=λ(R♯

1,R♯
2) ∈ D

♯
1 ×D

♯
2.γ1(R

♯
1)∩ γ2(R

♯
2)

α1×2
∆
=λR ∈ D.(α1(R),α2(R))
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All abstract operators are lifted by applying the underlying operator on the corresponding com-
ponent of the pair. As an example:

(R♯
1,R♯

2)t1×2 (R
♯′
1 ,R♯′

2 )
∆
= (R♯

1 t1 R
♯′
1 ,R♯

2 t2 R
♯′
2 )

The direct product provides an abstract domain that can represent more precise properties
than both its arguments. However both underlying abstract domains will behave as if they were
alone. A similar precision level would be obtained by analyzing the program once with D

♯
1 only

and once with D
♯
2 only and conjuncting the results. D♯

1 is not able to use information discovered
by D

♯
2 and reciprocally.

For this reason a notion of reduced product was introduced. A reduction operator ρ is a
function in D

♯
1×2 → D

♯
1×2. Its goal is to propagate information from the D

♯
1 component to

the D
♯
2 component and reciprocally. As D

♯
1 and D

♯
2 are both able to represent elements from

D♯, D♯ can be used as a common language for the computation of reductions: ρ1×2(R
♯
1,R♯

2)
∆
=

(α1(γ1×2((R
♯
1,R♯

2))), (α2(γ1×2((R
♯
1,R♯

2)))). This reduction operator concretizes the product ab-
stract element, therefore obtaining the conjunction of the information from R

♯
1 and R

♯
2, and ab-

stracts it back to D
♯
1 and D

♯
2. However, this (optimally precise) reduction operator might not

necessarily be computable. Moreover as we will show in the next section, some abstract domains
do not provide an abstraction function α. For this reason reduced products are parameterized
by a user-defined reduction function as none can be always automatically derived.

Definition 2.19 (Reduced product). Given two abstract domains D♯
1 and D

♯
2 abstracting D, and

a reduction function ρ, we define the reduced product domain in the same manner as the product
domain. However abstract operators are modified by applying the reduction operator after each
computation of the classic product operator. As an example:

(R♯
1,R♯

2)t1×2 (R
♯′
1 ,R♯′

2 )
∆
= ρ(R♯

1 t1 R
♯′
1 ,R♯

2 t2 R
♯′
2 )

Contrary to the product domain, the reduced product of two domainsD♯
1 andD

♯
2 can discover

more precise properties that what could be inferred by two analyses: one usingD♯
1 and one using

D
♯
2.

2.3.4 Concretization only framework

The results presented above made use of the Galois connection framework. Galois connections
are defined by two functions α ∈ D → D♯ and γ ∈ D♯ → D. However some abstract lattices
can be concretized via a monotonic function γ to a concrete lattice without there existing a best
abstraction function α (an example is provided in Section 2.4.2, another in Section 7.3.1). Note
however that the concretization function γ is sufficient to express the “meaning” of the abstract
lattice, as we have seen in the previous definitions and examples. When we are given an abstract
poset (A,v), a concrete poset (C,≼) and a monotonic concretization function γ, we will say that
we have a representation , denoted (C,≼) γ←− (A,v). The definition of abstract domain provided
in Section 2.3.1 can be modified so as to not require a Galois connection but a representation, all
soundness requirements were defined with respect to γ and are unchanged. The computability
and soundness result of Thm. 2.6 can be obtained as well, within the representation framework.
For a more in-depth presentation of the representation framework we refer to [Bou92b].

2.4 Numerical Domains

As emphasized by the example of Section 2.3.1, abstract domains able to represent sets of nu-
merical maps are an essential part of an analyzer built by abstract interpretation. Such abstract
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domains are heavily used as they enable: (1) to express constraints on program variables and
(2) the definition of higher level abstractions. For instance in [Cou03] Patrick Cousot has shown
how to devise predicate abstractions able to infer and prove functional properties of programs.
Such abstractions state that some formula holds, the numerical free variables of these formu-
las are then delegated to some underlying numerical domain. Consider the following example:
Pa(x,y) ∆

= ∀i, x ⩽ i < y⇒ a[i] = 0, where a is an array in some program. The predicate Pa states
that the array was set to 0 for all indexes between x and y. The predicate in conjunction with the
numerical abstraction (x 7→ [0; 1],y 7→ [10; 10]), states that: Pa(0, 10)∨ Pa(1, 10). Another exam-
ple of such a predicate abstraction can be found in [JM18], finally the string abstraction of Chap-
ter 4 is also a predicate abstraction. The abstract semantics of numerical domains can moreover
be lifted in several ways: (1) they can represent sets of environments with unbounded supports
(this is particularly used for the representation of environments with unbounded memory loca-
tions, as is the case when dynamic memory allocation is allowed), see [GDD+04] or Section 6.7
for more details. (2) Moreover they can represent sets of environments with heterogeneous
supports. This can be achieved by means of partitioning or by using the abstraction defined in
Chapter 6. For all the above reasons, numerical domains have been widely studied. Popular ex-
amples include: Signs domain [CC76], Intervals [CC76], Simple congruences [Gra89, Gra97],
Interval congruences [Mas93], Power analysis [Mas01], Linear equalities [Kar76], Linear con-
gruences [Gra91], Trapezoidal congruences [Mas92], Polyhedra [CH78], Ellipsoids [Fer04],
Zones [Min01a], Octagons [Min01b]. The example of Section 2.3.1 has presented the inter-
val abstract domain in action. This example emphasized that the interval abstract domain was
not able to convey relations between the values potentially stored in registers. This lack of re-
lationality was one of the reason of the loss of precision (with respect to the concrete world)
of the abstract analysis performed in Section 2.3.1. In addition to the already presented inter-
val abstract domain, this thesis makes use of two relational domains: the octagon domain and
the polyhedra domain. The rest of this section is organized as follow: Section 2.4.1 provides a
definition of numerical abstract domains, Section 2.4.2 presents the polyhedra abstract domain,
finally Section 2.4.3 recalls the definition and some results on the octagon abstract domain.

2.4.1 Definitions

In the following, we assume given a set I ∈ {Z, Q, R}.

Numerical environments. Given a finite set of variables W, we call numerical environments
elements of E ∆

= W→ I.

Numerical expressions. We define a set of numerical expressions on W:

expr ∆
= | v v ∈W

| i i ∈ I

| expr ./ expr ./∈ {<,⩽,=, 6=,⩾,>,+,−,×, /}

Let us denote as fv ∈ expr → ℘(V) the set of free variables occurring in a expression. Given
such an expression expr ∈ expr we define an evaluation function EJexprK ∈ E→ ℘(I∪B) where
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B
∆
= {true, false}:

EJv ∈WK ∆
= λρ ∈ E.{ρ(v)}

EJi ∈ IK ∆
= λ_ ∈ E.{i}

EJexpr1 ./∈ {<,⩽,=, 6=,⩾,>}expr2K ∆
= λρ ∈ E.{

{true} when ∃i1 ∈ EJexpr1K(ρ)∩ I,∃i2 ∈ EJexpr2K(ρ)∩ I, i1 ./I i2
∅ otherwise ∪{
{false} when ∃i1 ∈ EJexpr1K(ρ)∩ I,∃i2 ∈ EJexpr2K(ρ)∩ I, i1./Ii2
∅ otherwise

EJexpr1 ./∈ {+,−,×, /}expr2K ∆
= λρ ∈ E.

⋃
i1∈EJexpr1K(ρ)
i2∈EJexpr2K(ρ)

{
∅ if i2 = 0∧ ./= /

{i1 ./I i2} otherwise

where ./ denotes the usual ¬ transformation of a binary operator and ./I its usual evaluation as
a function from I× I to B.

Numerical atomic operators. We define two statements: assignment and test (Assume(expr)
where expr ∈ expr) with the following semantics in ℘(E)→ ℘(E):

SJv← exprK ∆
= λR ∈ ℘(E).{ρ[v 7→ i] | ρ ∈ R∧ i ∈ EJexprK(ρ)∩ I}

SJAssume(expr)K ∆
= λR ∈ ℘(E).{ρ | ρ ∈ R∧ true ∈ EJexprK(ρ)}

Numerical abstract domains A numerical abstract domain is an abstract domain (in the sense
of the definition from Section 2.3.1) with the following constraints:

• The concrete lattice that is represented is of the form D = ℘(E).
• The abstract domain provides sound numerical operators abstracting operators SJv ←

exprK and SJAssume(expr)K.
Note moreover that in all the previous definitions, the set of variables was fixed for presentation
purposes. We actually assume that the numerical abstract domain provides an abstract domain
for every finite set of variablesW, as is the case for all numerical abstract domain. In the following
whenever there is an ambiguity on the set of variables, operators will be superscripted with the
set of variables on which it operates. Finally a numerical abstract domain provides the following
additional operators that allow the addition and removal of variables from the environment:
S♯Jremove(v)K ∈ D♯W → D♯W\{v} (where v ∈ W) and S♯Jadd(v)K ∈ D♯W → D♯W∪{v} (where
v /∈W), these operators satisfy the following soundness conditions:

∀X♯ ∈ D♯W,γW(X♯)|W\{v} ⊆ γW\{v}(S♯Jremove(v)K(X♯))

∀X♯ ∈ D♯W,γW(X♯)] {(v 7→ i) | i ∈ I} ⊆ γW∪{v}(S♯Jadd(v)K(X♯))

We say that these operators are exact whenever the equality holds, (as in Definition 2.14). Note
that the classical forget(v) operation, can be obtained by removing and adding back variable v.

2.4.2 The polyhedra abstract domain [CH78]

As mentioned in the introductory remarks to this section, the polyhedra domain is a relational
domain. Given a set W = {x1, . . . , xn}, its abstract elements are of the form:

m∧
i=1

n∑
j=1

ai,jxj + bi ⩾ 0
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x

y

Figure 2.4: Polyhedron example

The concretization of such an abstract element is the set of numerical environments ρ ∈ W →
I such that ∀i ∈ {1, . . . ,m},

∑n
j=1 ai,jρ(xj) + bi ⩾ 0. Constraints can actually contain strict

inequalities however, for presentation purposes, we assume that all constraints are loose. Note
that using such a set of linear constraints, we can express the following input/output relation
holding at the end of Program 2.1 when all registers are non negative initially: a'+ b'− c = 0,
where a primed register represent the initial value of the register.

Duality

A polyhedron can also be described as the convex hull of a set of generators, that is vertices
and rays, where rays represent directions in which the polyhedron is unbounded. As an illus-
tration consider the example of Figure 2.4 showing a polyhedron in . This polyhedron can
be represented by 4 constraints (in ) or by 3 vertices and one ray (in ). Numerical abstract
domains provide several operators, in the case of polyhedra the generator/constraint duality
can be found in the implementation of these operators. Indeed a sound over-approximation of
the union can be obtained by computing the union of the two generator and ray sets; whereas
a sound (and exact) over-approximation of the intersection of two polyhedra can be obtained
by computing the union of the two constraint sets. The conversion between generator and con-
straint representation can be computed via Chernikova’s algorithm[Che68, LV92]. Note however
that this conversion might induce a blow-up in the representation (and therefore in the cost of
subsequent operations), indeed transforming an hypercube from the constraints representation
to the generator representation requires a number of generator exponential in the number of
initial constraints. Most polyhedra libraries (e.g. PPL [BHZ08] or NewPolka [JM09]) work in
the double description framework [MRTT53], in which both the constraint and generator repre-
sentation are stored. The VPL library [FMP13, MMP17] provides abstract operators working on
a constraints only representation of polyhedra

No Galois connection

As mentioned in Subsec 2.3.4 some abstract lattices do not enjoy a best abstraction function.
The polyhedra lattice is a non complete lattice that does not enjoy a best abstraction function.
Consider indeed as a concrete element the unit disk in dimension 2. There exists an infinite fam-
ily of polyhedra encompassing this disk however none of them is more precise (for the inclusion
relation) than all others.
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Intervals

Octagons

Polyhedra

Concrete environments

Spurious environments

Figure 2.5: Comparison between numerical domains

2.4.3 The octagon abstract domain [Min01b]

We have presented two numerical abstract domain: the interval domain and the polyhedra do-
main. The interval abstraction provides a low-cost, low-precision abstraction, whereas the poly-
hedra abstraction is more precise, but exponentially (in the number of dimensions of the concrete
environment) more costly. In this subsection we present the octagon domain [Min01b], this do-
main is more costly that the interval domain as it is relational, however it is not able to represent
every linear relations between program variables as for the polyhedra domain. The octagon
domain contains elements that are a conjunction of constraints of the form ±x± y ⩽ c. The
concretization of such a set of constraints is defined as for the polyhedra abstraction. The num-
ber of irredundant constraints in a polyhedra is unbounded, whereas octagons on n dimensions
can be restricted to 2n2 constraints and retain their maximal level of precision (as subsequent
constraints would necessarily be redundant). Abstract transformers with a O(n3) time complex-
ity have been devised for the octagon abstract domain.

The octagon domain is able to express the most precise loop invariant of the first loop of
Program 2.1: a + c ⩽ 0 ∧ −a − c ⩽ 0. However the complete program invariant can not be
expressed by the octagon domain.

The octagon domain is strictly more expressive than the interval domain. Indeed x ∈ [a;b]
can be expressed with the two octagonal constraints: x+ x ⩽ 2b and −x− x ⩽ −2a.

As a conclusion to the presentation of the three abstract domains: intervals, octagons, and
polyhedra, Figure 2.5 provides the classical graphical comparison between these three domains.
This figure underlines that polyhedra are more precise than octagons, themselves more precise
than intervals.

2.4.4 Notations

In the remainder of thesis, we assume given, for every finite set W, a numerical abstract domain

NW providing a representation (℘(W → I),⊆) γW

←−− (NW,vW). We assume moreover that NW

provides abstract transformers for the atomic statements from Section 2.4.1 (these are denoted
as S♯J□KW), as well as for abstract operators for set operations: uW, tW, and finally a widening
operator: ▽W. Moreover we overload notations and given x ∈ W, y /∈ W, and N♯ ∈ NW then
N♯[x 7→ y] ∈ NW∪{y}\{x} is the abstract element obtained by renaming x into y. If W ′ is another
finite set N♯

|W ′ ∈ NW ′ is obtained by iteratively removing variables that are in W and not in W ′

and iteratively adding variables that are in W ′ and not in W (using S♯JaddK and S♯JremoveK).
When N♯ ∈ NW, we call W the support of N♯, denoted as def(N♯) . Finally when (ei)i∈{1,n} ∈
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expr, we denote as S♯JAssume(e1, . . . , en)K(N♯) the composition of all Assume: S♯JAssume(e1)K ◦
· · · ◦ S♯JAssume(en)K(N♯).

Constraints extraction. We assume that, given a numerical abstract element N♯, we can ex-
tract a finite set of constraints satisfied by N♯, those are denoted constraints(N♯). For example
if the numerical domain is the interval domain, constraints have the form ±x ⩾ a. If the numer-
ical domain is the octagon domain the constraints operator yields all the linear relations among
variables that define the octagon.

2.5 Conclusion

In this chapter we provided a brief overview of the results in abstract interpretation that are
required for the understanding of the remainder of the thesis.

Even though we presented the Galois connection framework, most of the abstractions used
and defined in this thesis will not necessarily enjoy a best abstraction function. For this reason
we will mainly use the notion of representations.

Numerical abstract domains will be extensively used and will be lifted in two different man-
ners: to represent input/output relations, as sketched in the polyhedra presentation, to represent
sets of environments not all defined on the same definition sets.



Chapter 3

MOPSA

3.1 Introduction

During this thesis, I was part of the MOPSA project [MOJ18], the goal of which is the development
of a static analyzer. For this reason, in addition to my participation to the development of the
framework of the analyzer, I implemented all abstract domains from subsequent chapters inside
the MOPSA analyzer. We provide in this chapter a brief overview of the collective results of the
MOPSA team regarding this analyzer. Moreover, we will underline in subsequent chapters which
features of the analyzer were used for the development of the abstract domains.

3.1.1 Motivations

In the introductory chapter we mentioned that several tools based on the abstract interpretation
framework have been designed and successfully used. Most tools however focus on analyzing
families of C-like or Java-like languages, and do not target dynamic languages (e.g., Python,
JavaScript) and a fortiori cannot handle both kinds of languages. Moreover, while all tools are
based on a modular combination of abstractions, as advocated by abstract interpretation [CC79],
these are often restricted to specific abstractions: e.g., Astrée [CCF+06a] achieves a reduced
product of numeric abstractions but has a monolithic memory abstraction; Frama-C’s abstractions
can be composed either through coarse-grain plug-ins, or as non-relational value abstractions
[BBY17]. To try and address these issues, and push abstract interpretation frameworks further,
we have started the design of a Modular Open Platform for Static Analysis (MOPSA) in OCaml.
It is based on a standard interpreter by induction on the syntax and a collection of abstractions
(see, e.g., [BCC+10]) but with unique features:

• all domains share a common extensible Abstract Syntax Tree datatype; it can express both
high-level syntax close to the source languages, and simpler intermediate ones used inter-
nally by abstractions (e.g., numeric fragments);

• we eschew static simplifications common to frameworks (e.g., LLVM [LA04]); transforma-
tions are performed dynamically during interpretation and benefit from inferred facts;

• all domains share a common interface and are easy to compose; notably, iterators are
viewed as domains, and domains are responsible for statement simplification;

• domains need only handle a fragment of the AST; they can be reused after extending the
AST to new languages.

MOPSA is a work in progress: its architectural foundations are implemented, but it is not ready to
analyze realistic programs. As a proof of concept, analyses for both a fragment of C and Python
have been implemented (during this thesis I worked only on the C component of the analyzer),
showing it can support legacy abstractions (e.g., numeric domains, low-level C memory models
[Min06a]) and is a great help developing novel ones (e.g., modular C analysis [JMO18] from
Chapter 5, Python analysis [FOM18], tree manipulating language analysis [JMO19] from Chap-

29
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1 module type DOMAIN = sig

2 (* Lattice definition *)

3 type t

4 val bottom : t

5 val top : t

6 val leq : t -> t -> bool

7 val join : t -> t -> t

8 val meet : t -> t -> t

9 val widening : t -> t -> t

10 (* Transfer functions *)

11 val exec : stmt -> ('a, t) man -> 'a flow -> 'a flow option

12 val eval : expr -> ('a, t) man -> 'a flow -> 'a evl option

13 val ask : 'r query -> ('a, t) man -> 'a flow -> 'r option

14

15 end

Program 3.1: Unified signature for abstract domains.

ter 7). MOPSA was extended with a “universal” language, that is a toy-language which is helpful
for testing new abstractions. This language mainly allows the manipulation of numeric variables.
It has been extended to feature tree manipulating operations, as detailed in Chapter 7.

3.1.2 Outline of the chapter

Sections 3.2 and 3.3 present the domain signature and domain composition; Section 3.4 reports
on early experiments (analyzing part of Juliet for C and Python’s regression tests); Section 3.5
concludes.

3.2 Unified Domains Signature

Abstract domains are OCaml modules implementing the DOMAIN signature in Program 3.1. In the
following, we describe the main types and functions, and state the core design goals.

3.2.1 Lattice

Each domain defines a type t characterizing its abstract state, as well as corresponding lattice
operators (join, widening, etc.). The internal abstract state of a domain is private: other domains
have no direct access. This separation ensures a low coupling between domains. Note that: on
the one hand, abstract domains have a private type, unknown by the other domains, but on the
other hand, they can extend a public type used by other abstract domains to query them on
properties that they know might hold. This mechanism is called querying and is shown below.

3.2.2 Managers

During the analysis of one statement, a domain may require computing the post-condition of
statements handled by other domains. Indeed, consider the two following examples: (1) the
domain handling loop iterations need to execute the body of the loop, (2) the domain handling
C pointers will rewrite the statement *p=0 into a=0 (when p points to a), it will then delegate
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1 type ('a, 't) man = {

2 (* Functions on the global abstract element *)

3 bottom : 'a;

4 top : 'a;

5 leq : 'a -> 'a -> bool;

6 join : 'a -> 'a -> 'a;

7 meet : 'a -> 'a -> 'a;

8 widen : 'a -> 'a -> 'a;

9

10 (* Accessors to the domain's abstract element *)

11 get : 'a -> 't;

12 set : 't -> 'a -> 'a;

13

14 (** Transfer functions *)

15 exec : stmt -> 'a flow -> 'a flow;

16 eval : expr -> 'a flow -> ('a, expr) evl;

17 ask : 'r. 'r query -> 'a flow -> 'r;

18 }

Program 3.2: Manager definition.

the post-condition computation to another domain. To allow inter-domain communication with-
out sacrificing modularity, each domain transfer function is not defined over its private type t,
but on the product of types from all domains: using notations from Section 2.3.3, a domain is
given an element from D

♯
1×2 rather than its component from D

♯
1. To ensure that each domain

can be programmed independently from the others, the product is a type parameter 'a, and we
use an encoding of polymorphic records in OCaml: the manager ('a, t) man is a record pro-
viding lattice operators on 'a, transfer functions over all domains in 'a, and accessor functions
get: 'a -> t and set: t -> 'a -> 'a to allow a domain to access and update its private ab-
straction within the global abstraction. The complete definition of the manager type is shown in
Program 3.2. Note that the manager also provides lattice operators on the complete abstraction,
this can be used for example by the loop iterator to join the results from successive body analysis.

3.2.3 Flows

MOPSA operates by induction on the syntax of the program. To handle non-local control flows, we
use continuations (similarly to Astrée [BCC+10]): we collect not only environments reaching the
current program location, but also those at previously encountered jump locations. Suspended
flows are merged back into the current flow when reaching the corresponding jump target. Ex-
pressing flows as continuations makes it possible to abstract very complex non-local control, such
as generators in Python [FOM18]. Flow continuations are implemented as maps from flow tokens
into the global abstraction 'a. Tokens belong to an extensible type, thus allowing a domain to
add new control flow abstractions independently from the remaining domains.

Example 3.1. Consider the syntax of RM from Section 2.3.1 extended with two statements (L
is a finite set of labels, containing a special label cur):

stmt ∆
= · · · | L: stmt | goto L
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1 type token += T_goto of Ast.label

2

3 let exec stmt man flow =

4 match stmt with

5 | S_c_goto(label) -> (* Case of SJgoto labelK *)

6 let cur_env = Flow.find T_cur man flow in

7 let flow' = Flow.add (T_goto label) cur_env man flow in

8 let flow'' = Flow.set T_cur man.bottom man flow' in

9 Post.return flow''

10 | S_c_label(label, stmt) -> (* Case of SJlabel: stmtK *)

11 let goto_env = Flow.find (T_goto label) man flow in

12 let flow' = Flow.add T_cur goto_env man flow in

13 let flow'' = man.exec stmt flow' in

14 Post.return flow''

15 | _ -> None

Program 3.3: Transfer function for forward goto statements.

The abstract domain from Chapter 2 was defined over the lifted interval domainD♯. The concrete
(resp. abstract semantics) is lifted to L→ D (resp. D♯). The lattice operations are lifted point-
wise, the abstract semantics of statements is lifted by applying the corresponding transformer on
the environment associated with the cur label. The concrete semantics of the two new statements
is defined as:

SJl: stmtK(m ∈ L→ D)
∆
= SJstmtK(m[cur 7→ m(cur)∪m(l), l 7→ ∅])

SJgoto lK(m ∈ L→ D)
∆
= (m[cur 7→ ∅, l 7→ m(cur)])

The abstract semantics is then derived by replacing ∅ with ⊥ and ∪ with t.

Example 3.2. We give in Program 3.3 an example of a transfer function for handling forward
goto statements in C (the concrete/abstract semantics is similar as the one defined on our RM
toy language from the previous example). Flows are enriched with a new token T_goto anno-
tated with the target label. When reaching a statement goto label, the current environments
are moved to token T_goto label, before being reset to ⊥ because the next control location be-
comes unreachable. Encountering label: stmt joins environments associated to T_goto label

into current environments, and returns a post-condition of stmt via the manager. The default
case returns None, indicating that other domains should handle the other constructions. Such a
pure iterator domain does not maintain any abstract state by itself, hence t = unit. Despite its
brevity, the code in Figure 3.3 is the complete transfer function of a domain that adds C-style
forward goto to an analysis. It is completely decoupled from other domains, and thus highly
reusable.

3.2.4 Evaluations

Domains in MOPSA can implement dynamic rewriting rules to simplify expressions by exploiting
the available abstract information. As an example consider the transformation from modular
arithmetic from C expressions into mathematical arithmetic, easier to handle in relational nu-
meric domains, after ensuring the absence of overflows in the current state. Another contribution
of MOPSA is the ability to handle natively disjunctive evaluations. Domains can return different
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1 type ('a, 'e) evl_case = {

2 expr : 'e option;

3 flow : 'a flow;

4 }

5 type ('a, 'e) evl = ('a, 'e) evl_case Dnf.t

Program 3.4: Type of evaluations in MOPSA.

1 (* Case of EJlist.__getitem__(self, i)K *)

2 let flow1, flow2, flow3 = getitem_cases self i man flow in

3 let evl1 =

4 let flow' = man.exec (mk_raise "IndexError") flow1 in

5 Eval.empty flow'

6 in

7 let evl2 = Eval.singleton (summary self) flow2 in

8 let evl3 =

9 let tmp = mk_tmp () in

10 let flow' = man.exec (expand tmp (summary self)) flow3 in

11 Eval.singleton tmp flow'

12 in

13 Eval.or_list [evl1; evl2; evl3]

Program 3.5: Evaluation of index access on lists in Python.

results for different parts of the input abstract environment, indeed the 'a evl type in the previ-
ous definitions is a disjunctive normal form of evaluation cases. These evaluation cases contain
an expression e and an abstract environment in which it is sound to rewrite the original ex-
pression into e. This can be seen in the definition of the Program 3.4. Consider the following
example from Python analysis.

Example 3.3. Program 3.5 shows the evaluation of an index access on Python lists. As lengths of
lists are parametric, they can not be represented by extension (i.e. by allocating one dimension
of the numerical domain for each element of the list). For this reason we use a summarization
variable that represents all possible values of all possible elements in the list (see [GDD+04]).
Moreover in order to track the number of elements in the list, a special numerical variable
is added to the numerical domain, this variable encodes all possible list lengths, as done in
[FOM18]. When analyzing a read access, the function getitem_cases is used to partition the
pre-condition w.r.t. the length. The first flow flow1 represents the case when index i is outside
the size of self: flow1

∆
= S♯JAssume(¬(−len(self) ⩽ i < len(self)(

∆
= C1)))K(flow). The as-

sociated evaluation is an empty expression since an exception is raised. The second flow flow2

is obtained by filtering the pre-condition verifying that the list contains exactly one element:
flow2

∆
= S♯JAssume(len(self) = 1(∆= C2))K ◦ S♯JAssume(C1)K(flow). In this case, the summary

variable is returned as a sound simplification of index access. Finally, when the list contains
at least two elements: flow3

∆
= S♯JAssume(¬C2)K ◦ S♯JAssume(C1)K(flow) a temporary variable is

created as a copy of the summary variable using the expand function, similarly to the case of
summarized arrays from [GDD+04].
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This pre-condition partitioning mechanism will be used extensively in the abstract domains
defined in subsequent chapters.

3.2.5 Queries

When a domain needs specific information maintained by another domain, it can fetch them via
queries, similarly to Astrée [CCF+06a]. The type _ query is an extensible public GADT type that
can be enriched by domains. For example, an interval query can be defined by:

type _ query += Q_interval: expr -> Itv.t query

Numeric domains handle requests to Q_interval in the transfer function ask, and client domains
retrieve this information via their manager by calling man.ask (Q_interval e) flow. GADT typ-
ing ensures that the returned value has type Itv.t. An abstract domain defining a new query
of type u provides a join and meet lattice operator on type u. These are then used to compose
results when several domains in the abstraction are able to answer the query, for example both
the interval and the polyhedra abstract domain can answer interval queries.

3.3 Domain Composition

The global abstraction of an analysis instance is constructed at run-time by composing domains
according to a user-given configuration file. An illustrative example is depicted in Figure 3.1
representing a simplified version of an analysis of C. The configuration starts with a long sequence
of iterators, C program to C goto , i.e. state-less domains that handle individual parts of the
C compound syntax by induction, including loops, switch, goto, etc. The configuration merges
domains reused from the Universal toy-language (underlined) and C-specific domains. Following
these iterators, the C analysis contains a composition of domains that handle atomic statements
such as assignments and tests. Dynamic memory is handled by heap using recency abstraction
[BR06]: each allocation site is associated with at most two abstract blocks, one representing
the lastly allocated block at this site, and one representing all the blocks allocated before — this
domain could be easily replaced with any domain that partitions the possibly unbounded set of
allocated blocks into a bounded set of abstract blocks. Each variable or abstract heap block is
then decomposed into a set of virtual variables, called cells, of scalar type, by C cells . In order to
handle transparently union types and type-punning, we use the cell abstraction from [Min06a],
where the decomposition is adapted dynamically according to the actual access pattern during
the execution (rather than based on the static type, which can be deceiving), a more in-depth
presentation of the cell abstraction will be provided in Chapter 4. The cell domain is composed,
using a reduced product, with the C smash abstraction. This abstraction summarizes several

cells into one, this is particularly useful for the representation of arrays. Domain C pointers
is then used to handle assignments and tests on pointers, while the numerical statements are
delegated to an interval numerical abstraction boxes lifted to a semantics of machine integers.

Three types of generic composers are used to connect leaf domains:

Iterators. This composer iterates sequentially over a set of domains, which is materialized with
in Figure 3.1. Lattice operators are defined pointwise, and transfer functions are called in

sequence until one succeeds: domain i is invoked only if previous domains j < i returned None.
This composition is useful to combine a set of iterators defining transfer functions for disjoint
parts of the AST, such as loops, function calls, etc. In addition, it allows plugging new iteration
schemes easily, e.g., replacing the induction-based iterators with CFG-based ones.
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Reduced products. The classic method employed in most static analyzers (e.g., [BCC+10])
for creating reduced products is via cascading binary functors. MOPSA provides instead a generic
n-ary reduced product composer that enables better propagation of reduction channels. Lattice
operators are defined pointwise and transfer functions of argument domains are called in par-
allel. All post-conditions are given to a user-defined reduction operator, that can access directly
abstract elements of any domain in the pool and can exploit the published reduction channels
to refine the final post-condition.

Stacks. Another novelty in MOPSA is a stacked reduced product of n functors sharing the same
subordinate domain instance. This form of composition is useful when several domains depend
on an external domain to delegate management of parts of their abstract state. Consider the case
of cell and smashing abstractions from [Min06a, BCC+10] in Figure 3.1. Both domains need a
pointer domain for address resolution and a numeric domain for abstracting numeric environ-
ments. By sharing the same numeric domain instance, relations between cells and smashed
variables can be inferred. Please note that for presentation purposes and as this was not cru-
cial to the understanding of the results of subsequent sections, the signatures presented in this
section have been simplified w.r.t. the actual implementation, we refer to [MOJ18] for a more
complete presentation. The signature of exec from Program 3.1 does not actually permits the
use of sharing under a reduced product. Indeed, when a domain C is shared by two domains A
and B, combined in a reduced product, the handling of a statement by A and B might generate
two different sets of statements, propagated to C, thus yielding two different elements from C.
These are merged back together by a function merge defined by C, taking as arguments the two
diverging abstract elements and the log of all statements propagated to C by A and by B.

Results from this thesis in MOPSA. As an illustration of composition mechanisms, we now
show how results from subsequent sections will be added/composed in MOPSA. Consider the
“default” C configuration from Figure 3.1.

• The string analysis from Chapter 4 will be incorporated by replacing the domain C smash
by the domain C string , where the C string domain is defined in Chapter 4. Moreover the

boxes domain will be replaced with a polyhedra domain in order to allow the expression
of relations.

• The modular iterator from Chapter 5 will then be incorporated in MOPSA by replacing the
C interproc domain with the one defined in Chapter 5.

• Results from Chapter 6 were tested in the universal language and in the C language by re-
placing the numerical component boxes with the application of the CLIP functor (defined
in Chapter 6) to a numerical abstraction.

Finally the tree abstraction from Chapter 7 will be added as a stacked domain above the CLIP
abstraction in the configuration for the universal language.

Note that subsequent chapters will only present analyses based on Universal or C, never
Python. Python configurations and benchmarks from this chapter were only presented for the
purpose of illustrating the behavior of MOPSA.

3.4 Experiments

We instantiated two analyzers, one for C (Figure 3.1) and one for Python (Figure 3.2). We
note that the configurations share several domains (underlined), including iterators, heap and
numeric abstractions. C benchmarks were taken from the Juliet Test Suite (v 1.3) for C/C++. We
selected all the C tests corresponding to the following categories: CWE190 on integer overflows,
CWE369 on divisions by zero, and CWE476 on null pointer dereferences. Each category provides
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Leaf domains Functor domains Iterator composer

Product composer Stack composer

C pointers
boxes

C integers

×C cells C smash

heap

C program C libs C desugarisation

C switch C interproc loops

intraproc interproc C goto

Figure 3.1: C analysis configuration.

Py program Py libs Py desugarisation

Py exceptions Py generator intraproc

interproc loops Py objects

Py containers Py data model heap

boxes

Figure 3.2: Python analysis configuration.

several test cases, themselves split in two programs: a bad program containing an error, and
its corrected version. Python benchmarks were performed on regression tests from the official
Python 3.6.3 distribution, that test the builtins of the language and the standard library. The
current configuration for the Python analysis does not provide an analyzer able to handle all
the 500 regression tests; we selected 9 tests in the scope of our configuration (see [FOM18] for
more information). Tables 3.1 and 3.2 provide results of these experimentations: 3 are good
programs for which no alarm was raised, 3 are bad programs for which an alarm was raised, 7

are good programs for which the analyzer raised an alarm (false positive), Q are programs that
could not be handled by the analyzer (e.g., by lack of stubs). False positives in CWE369 are due
to the use of a non-partitioned numerical domain for the analysis of programs testing divisions
by zero; thanks to the modularity of the analyzer, this could be avoided by adding a partitioning
domain.
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Regression test Lines Tests Time 3 7 Q Coverage
test_augassign 273 7 645ms 4 2 1 85.71%
test_baseexception 141 10 20ms 6 0 4 60.00%
test_bool 294 26 47ms 12 0 14 46.15%
test_builtin 454 21 360ms 3 0 18 14.29%
test_contains 77 4 418ms 1 0 3 25.00%
test_int_literal 91 6 29ms 6 0 0 100.00%
test_int 218 8 88ms 3 0 5 37.50%
test_list 106 9 88ms 3 0 6 33.33%
test_unary 39 6 11ms 2 0 4 33.33%
Total 1693 97 1.71s 40 2 55 43.30%

Table 3.1: Benchmarks on regression tests of Python 3.6.

tests Loc Tests Time 3 3 7 Q Coverage
CWE190 440k 6840 11.0mn 2584 3213 0 1043 84.75%
CWE369 109k 1368 3.30mn 76 380 304 608 55.55%
CWE476 25k 522 0,207mn 270 252 0 0 100%
Total 574k 8730 14.5mn 2930 3845 304 1651 77.60%

Table 3.2: Benchmarks on CWE from the Juliet test suite.

3.5 Conclusion

We have presented the design principles of MOPSA, a new platform for static analysis develop-
ment through compositions of highly reusable abstractions. It is not yet feature-complete, but
it is already successfully used in research projects to support the analysis of non-trivial C and
Python codes [JMO18, FOM18]. In the future, we plan to extend the support for C standard
libraries and Python built-ins to be able to analyze realistic codes. Other research projects on
MOPSA include static analysis of novel properties beyond safety, such as a portability analysis.
These future works are those of the MOPSA project team and are unrelated with the additions
made to MOPSA in the following chapters.





Chapter 4

String abstraction

In Chapter 5 we provide the definition of a modular analyzer. As a proof of concept of the
expressiveness of this modular analyzer and to meet some cost/precision trade off needs in the
MOPSA project, we decided to add to our C analyzer a predicate abstraction targeting out-of-
memory accesses in string manipulations in C. As we were not able to directly reuse results from
the literature (detailed in Section 4.5), we defined a new predicate abstraction presented in this
chapter. Furthermore the modular analysis of Chapter 5 and the string analysis from this chapter
were both designed on top of an already existing analyzer for the C language, introduced in this
chapter.

4.1 Introduction

4.1.1 Motivations

In a C string, a '\0' character designates the end of the string. Henceforth the length of a
string is defined to be the index of the first '\0' character appearing in the string. As emphasized

1 while (*q != '\0') {

2 *p = *q;

3 p++;

4 q++;

5 }

6 *p = *q;

Program 4.1: strcpy

op desta
desta − op

srcloq
srcl − oq

dest

src

= '\0' 6= '\0' ?

1 for (;;) {

2 if (!(*s = *t)) return ; ++s; ++t;

3 if (!(*s = *t)) return ; ++s; ++t;

4 if (!(*s = *t)) return ; ++s; ++t;

5 if (!(*s = *t)) return ; ++s; ++t;

6 }

Program 4.2: strcpy from Qmail

39
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in Program 4.1, the correctness of a string manipulating program (in the sense that it does not
yield an out of bound memory access) depends upon the length and the allocated size of the
buffer in which it is contained. Therefore in the fashion of [WFBA00] we summarize strings
by two values: the position of the first '\0' character (denoted as e.g. srcl) and the maximal
string size (i.e. the buffer size, denoted as e.g. srca). This summarization will make use of the
capacity of an underlying numerical domain to relate the summary variable denoting the length
of the string, with program variables or offsets of pointers. Such abstractions are called predicate
abstractions [Cou03].

The fragment of C onwhichwewant to perform out-of-bounds analysis supports stringmanip-
ulations, unions, structures, arrays, memory allocations (static and dynamic), pointers, pointer
arithmetics, pointer casts, function calls, …. Accordingly we need to build our analyzer upon an
existing analyzer able to deal with low level features of C.

By using the idea of representing a string as its length using a numeric abstraction, our
analyzer is able to handle the strcpy example of Program 4.1. More precisely, consider that
char* p points to some char[10] dest string and char* q points to some char[20] src string with
dest 6= src, furthermore let variables oq, op denote the initial offset of p and q. Our analyzer
is able to prove that if srcl < srca and srcl − oq < desta − op then no out of bounds access is
performed.

In order to underline the fact that such functions are often user-redefined, consider Pro-
gram 4.2, showing the strcpy function as defined in Qmail. Our analyzer was able to infer the
same results as for Program 4.1. The design of our string analysis on top of a C analyzer already
handling most of the C language features provides non negligible advantages: we only have
to provide operators for a small subset of the language, the capabilities of the analyzer do not
depend upon the manner in which strings are accessed.

4.1.2 Outline of the chapter

Section 4.2 describes the subset of Cwe wish to analyze, Section 4.3 defines a low-level C abstrac-
tion upon which our analyzer is based, Section 4.4 details the String abstract domain. Finally
Section 4.5 gives an overview of related works, while Section 4.6 concludes.

4.2 Syntax and concrete semantics

In this section we recall some of the definitions of the cell concrete semantics, which is a concrete
semantics for the C language originally defined in [Min06a]. The descriptions and examples of
the cell semantics and the cell abstraction made in this section and the following are sufficient
for the understanding of subsequent abstraction definitions. We refer to [Min06a, Min13] for a
more complete presentation.

Syntax. We will thereafter call C-- the language defined in Figure 4.1 and denote as V the
set of all potential variables. The description of Figure 4.1 omits some classical statements but
makes precise some low-level features of the language. Note moreover that int-types are denoted
by their signededness (s for signed integers, u for unsigned integers) and their length in bits,
instead of char or unsigned long. This transformation is made before the analysis, and depends
on the platform. Moreover, in order to simplify the presentation we will consider strings as arrays
of u8 (or unsigned char), results can be easily extended to arrays of s8 (signed char).

Cells. Our C-like language features a rich type system. In a classic way, we will present the
semantics of operations on scalar data-types: integers of various size (this can be easily extending
to floats) and pointers, and reduce structured data-types, such as arrays, structs and unions,
malloced blocks, to collections of scalar objects, we call cells. A simple solution would be to
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int-type ∆
= s8 | s16 | s32 | s64
| u8 | u16 | u32 | u64

scalar-type ∆
= int-type | ptr

type ∆
= scalar-type
| type[n] n ∈N

| struct{u0 : type, . . . ,un−1 : type}
| union{u0 : type, . . . ,un−1 : type}

lval ∆
= *scalar-typeexpr | v ∈ V

expr ∆
= cst cst ∈N

| &lval
| expr � expr � ∈ {+,⩽, . . . }

stmt ∆
= v = malloc(e)

v ∈ V, e ∈ expr
| type v v ∈ V

| lval = expr
| · · ·

Figure 4.1: The syntax of the C-- subset of C.

use the type of a structured variable and decompose it statically into such collections; writable
memory zones (left-values) thus become access paths. Unfortunately, this static view does not
hold for programs that abuse the type system and access some block of memory with various
types, which is possible (and even common) in C using union types and pointer casts (consider
for example Program 4.2). One solution would be to model the memory as arrays of bytes or even
bits, and synthesize non-byte access (for instance, reading a 16-bit integer a would be expressed
as a[0]+256*a[1]), but such a complex modeling would put a great strain on numeric abstract
domains and cause huge precision losses. We thus rely on previous work [Min06a], that proposes
to model memory blocks as collections of (possibly multi-byte) scalar cells, that are inferred and
maintained dynamically during the analysis, according to the memory access pattern effectively
employed by the program at run-time. For our purpose, we can assume that all memory accesses
have the form *τe, where τ is a scalar type and e is a pointer expression using pointer arithmetic
at the byte level (this reduction can be performed statically as a pre-processing).

Remark 4.1. In addition to the definitions of Figure 4.1, we assume that we are given a function
typeof ∈ (V→ type). The type of a variable is given by its declaration in a C-- program. Moreover
we assume given a sizeof function from type to N that gives the size in bytes of each type (e.g.
sizeof(s32) = 4).

A cell denotes an addressable group of bytes to store a scalar value, it is represented by a
base variable (v), an integer coding for the offset of the cell (o), and the type of the cell (t).
Therefore we define the following set of cells:

Cell
∆
= {〈v,o, t〉 | v ∈ V, t ∈ scalar-type, 0 ⩽ o ⩽ sizeof(typeof(v)) − sizeof(t)}

By construction Cell represents the set of all addressable memory locations. The abstract states
we will build contain a subset of those cells. Cells might denote overlapping portions of the
memory. In such cases the underlying state satisfies every constraint implied by a cell: cells are
understood conjunctively. Therefore removing cells induces a loss of information. A key aspect of
[Min06a] we reuse is that new cells from Cell are added to the current environment dynamically
to account for the access patterns encountered during the analysis, in a flow-sensitive way. As
we do not rely on static type information, which can be misleading in C, we can handle union
types, type-punning, and untyped allocated blocks transparently.

Concrete semantics. We will not detail here the complete concrete semantics of the C-- lan-
guage, however we give a definition of the set of concrete environments using cells, noted E.
An environment is a set of cells C and a function ρ mapping each cell to a value. A value can
be either a numerical value or a pointer. A pointer is represented by: the base variable towards
which it points and its offset. The set of pointer Ptr is augmented with two special values: the
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NULL pointer and the invalid pointer : Ptr ∆
= (V×Z)∪ {NULL, invalid}

E
∆
=

⋃
C⊆Cell

{〈C, ρ〉 | ρ ∈ R
∆
= C→ (N∪Ptr)}

4.3 Background – Cell abstract domain

Let us consider the Cell abstraction [Min06a], an abstract domain able to abstract the semantics
of C programs manipulating pointers. This abstraction associates to each cell with pointer type
the set of variables it may point to; and associates to each cell a dimension in a numerical abstract
domain. This dimension provides constraints on the content of cells with integer types, on the
offset of the pointer for cells with pointer types. This abstraction is relational for numerical
values (offsets of pointers and integer values), but is not relational for the variables pointed to by
pointers. This abstract domain comes with an abstract interpreter that can successfully analyze
C programs with no recursion and no dynamic memory allocation. The abstraction we propose
here is built upon the cell abstract domain, it extends this domain so as to handle dynamic
allocations and higher level string manipulations.

Pointers bases. When C ⊆ Cell is a subset of cells, we define C to be the set of cells denoting
pointers : C ∆

= {〈v,o, t〉 ∈ C | t = ptr}. Upon this we define PC = C → ℘(V∪ {NULL, invalid}).
PC represents the possible memory locations pointed to by cells representing pointers (note that
PC only accounts for the base variable that is pointed to and not for the offset).

Numerical domain. We recall that for any finite set W, we assume given a numerical abstract
domainNW. In addition to the hypothesis from Chapter 2, we assume that there exists a function
range ∈ W×NW → Z

2 such that: for any v ∈ W and for any N♯ ∈ NW, range(x,N♯) yields
an interval of Z containing all concrete values associated to variable x in N♯. In the interval
domain this function simply returns the interval associated to the variable x, in the polyhedra
domain, this returns the projection of the polyhedron onto the one dimensional space generated
by variable x.

For any subset C ⊆ Cell we can therefore rely on a numerical abstraction NC abstracting
℘(C→ Z). We give the numerical domain of our abstraction a double role:

• For a cell containing a pointer, the variable (from the numerical domain) assigned to this
cell codes for possible offsets of the pointer (thus paired with information from PC we will
describe completely the pointer contained in the cell)

• For other cells (containing e.g. a u8, a s32) the variable (from the numerical domain)
codes for values contained in the cell.

Abstract states. We define the abstract domain D
♯
m with concretization γm ∈ D

♯
m → E as:

D♯
m

∆
= {〈C,N♯,P〉 | C ⊆ Cell, N♯ ∈ NC, P ∈ PC}

γm〈C,N♯,P〉 ∆
= 〈C, {ρ ′ ∈ R,∃ρ ∈ γC(N♯), ∀c = 〈v,o, t〉 ∈ C,

ρ ′(c) = ρ(c) if t 6= ptr
ρ ′(c) = 〈p, ρ(c)〉 if t = ptr∧ p ∈ P(c)∩V
ρ ′(c) = p if t = ptr∧ p ∈ {NULL, invalid}

}〉

Example 4.1. Consider Program 4.2. At program point we have the abstract state: S♯ = 〈{〈a, 0,
u64〉}, {〈a, 0,u64〉 = 232 + 2}, ∅〉. Moreover the next statement requires to read cells {〈a, 0,u32〉}
and {〈a, 4,u32〉}. S♯ is equivalent to: 〈{〈a, 0,u64〉, 〈a, 0,u32〉, 〈a, 4,u32〉}, {〈a, 0,u64〉 = 232 + 2,
〈a, 0,u32〉 = 2 (= (232 + 2) mod 232)), 〈a, 4,u32〉 = 1 (= (232 + 2) /232)}, ∅〉.
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1 unsigned long a = 0x100000002;

2 unsigned int x = *((unsigned int *) &a) + *((unsigned int *) &a + 1);

Figure 4.2: Pair of u32 as u64

1 int a = 1;

2 int* p = &a;

3 *p = *p + 1;

Program 4.3: Dereferencing

Abstract operators and abstract transformers. Abstract operators (join, meet, widening)
are defined by first unifying the operands, and then performing the operation in the underlying
unified numerical domain and pointer map. The unification operator transforms two abstract
elements into abstract elements with the same set of cells. This is done by by adding, in each
element, the cells that exist only in the other element. We do not give here the definition of
all the abstract transformers operating on our abstract states (we refer to [Min06a, Min13]),
however the following example emphasizes how an abstract state is modified by expressions
and statements of the C language. In particular, we note that when cells are available, most
expressions are treated as expressions on a language where cells are the variables. When cells
mentioned in the expressions are not available, they are added to the set of cells of the abstract
state, by collecting information available in the overlapping cells, such as joining two byte-cells
to synthesize the initial value of a new u16-cell at the same position or splitting a u64 cell into
two u32 cells, as done in Example 4.1. The addition of cells required by the unification operator
also uses this cell materialization, hence the set abstract operators also rely on cell additions.

Henceforth, in order to clarify the presentation, a denotes 〈a, 0, τ〉 when τ is the declared
type of variable a.

Example 4.2. Consider Program 4.3, starting from > = 〈∅, ∅, ∅〉. The first statement requires
the existence of the cell a = 〈a, 0, s32〉. The set of cells constrained by our abstract state is
dynamically updated to mention a, yielding: 〈{a},>{a}, ∅〉, then we rewrite the statement in the
following manner: a = 1. We execute this statement in the underlying numerical domain, and
get: 〈{a}, {a = 1}, ∅〉. The second statement adds a new cell p = 〈p, 0,ptr〉 and an element to
the pointer map: 〈{a,p}, {a = 1,p = 0}, {p 7→ {a}}〉. Note that p = 0 codes for the value of the
offset of pointer p. Finally the expression *p of the third statement is evaluated by following the
P component of the abstract state, therefore the statement is transformed into a = a + 1. Thus
yielding: 〈{a,p}, {a = 2,p = 0}, {p 7→ {a}}〉.

4.4 String abstract domain

4.4.1 Domain definition

The introductory example shows that describing a string by a set of cells (one cell per character
of the string) was usually not necessary to prove the absence of buffer overrun in string manipu-
lations. Therefore we propose to add to our existing low-level abstraction of C-- an abstraction
of strings that sums up all of its characters into two variables, one coding for the length of the
string and the other for the allocated size of the buffer in which it is contained. We recall that
the length of the string is defined to be the index of the first '\0' character, when there is no
such character we define, by convention, the length of the string as the allocated size of the
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buffer containing the string. Memory blocks will therefore be abstracted either by the cell ab-
stract domain or by the string abstract domain, whenever a memory block contains strings and
integers (as is the case in a struct), we leave the task of representing this region to the cell ab-
stract domain. In order to simplify the presentation we assume given a set of memory locations
V for which we will use a string summary, however this set can be dynamically modified and
reductions could be proposed in order to store information on some memory locations in both
the String domain and the Cell domain. We assume that for each memory location s ∈ V, we
are given two variables denoted sl and sa. Those variables code for the length and the allocated
size of the string, they will be added to the numerical domain of the cell abstract domain so
that we are able to describe relations between lengths of variables and offsets of pointers. In the
following V⋆ denotes

⋃
s∈V{sa, sl}, this is the set of all numerical variables needed to describe

strings in V.

Definition 4.1 (String abstract domain). We define the String abstract domain to be:

S♯m
∆
= {〈C,N♯,P〉 | C ⊆ Cell \ {〈v, _, _〉 | v ∈ V}, N♯ ∈ NC∪V⋆ , P ∈ PC}

This definition is the same as the cell abstract domain, with the difference that no cells are
allocated for strings. However two numerical variables are added to the numerical domain for
each string. These two variables encode the length and allocated size of the string.

Definition 4.2 (Order relation). The string abstract domain is ordered by the same relation as
the cell abstract domain: v

S
♯
m

∆
=v

D
♯
m
.

We recall that vDm
will test the inclusion of the two numerical domains once cell sets have

been unified, therefore our definition of S♯ v
S
♯
m
S♯′ amounts to verifying that the constraints on

the string variables (sl and sa) are stronger in the left member of the inequality.

4.4.2 Galois connection with the Cell abstract domain

The String abstract domain is an abstraction of the Cell abstract domain. Indeed we forget
information that do not help us track the position of the first '\0' character. We define the
Galois connection between the Cell domain and the String domain using two functions : to_cell
and from_cell. The to_cell(s,S♯) function computes the range of sl in the numeric abstract
domain, for each possible length value we set the cells placed before (resp. at) the length to
[1; 255] (resp. 0), this yields an abstract element per possible value in the range, those are then
joined. Conversely from_cell(s,S♯) computes the minimum length value (the index of the first
cell whose range contains 0), and the maximum length value (the index of the first cell whose
range is exactly {0}, it is the size of the buffer if no such index is found), finally those constraints
are added to the numerical domain. If a string does not contain any '\0' character, we define its
length to be the allocated size of the buffer it is contained in. The cell abstract domain provides
an add_cells, which given a set of cells and an abstract element adds the set of cells to the
abstract element, by collecting potential constraints.
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Definition 4.3 (to_cell and from_cell). In the following st denotes sizeof ◦ typeof.

to_cell(s,S♯) =
let 〈C,N♯,P〉 = add_cells({〈s, 0,u8〉, . . . , 〈s, st(s) − 1,u8〉},S♯) in
let [a;b] = range(sl,N♯)∩ [0; st(s) − 1] in
let (N♯

i)i∈[a;b] = S♯Jremove(sl)K ◦ S♯Jremove(sa)K◦
S♯JAssume({〈s, 0,u8〉 6= 0,   . . . , 〈s, i− 1,u8〉 6= 0, 〈s, i,u8〉 = 0})K(N♯) in

b⊔
j=0
〈C ′,N♯

j,P〉

from_cell(s,S♯) =
let 〈C,N♯,P〉 = add_cells({〈s, 0,u8〉, . . . , 〈s, st(s) − 1,u8〉},S♯) in
let c⩾ = min({i | 0 ∈ range(〈s, i,u8〉,N♯)}∪ {st(s)}) in
let c⩽ = min({i | {0} = range(〈s, i,u8〉,N♯)}∪ {st(s)}) in
let C⋆ = {〈s ′, i, τ〉 ∈ C | s 6= s ′} in

let N♯⋆ = S♯JAssume({sl ⩾ c⩾, sl ⩽ c⩽, sa = st(s)})K(N♯) in

〈C⋆,N♯⋆,P〉

Definition 4.4 (Galois connection). With V = {s0, . . . , sn−1}, we can define:

γ
S
♯
m,D♯

m
(S♯) = to_cell(s0, . . . , (to_cell(sn−1,S♯)) . . . )

α
S
♯
m,D♯

m
(S♯) = from_cell(s0, . . . , (from_cell(sn−1,S♯)) . . . )

Example 4.3. Consider the string abstract elements 〈∅, {sl = 2, sa = 4}, ∅〉when sizeof(type(s)) =
4. We have: γ

S
♯
m,D♯

m
= 〈{〈s, 0,u8〉, 〈s, 1,u8〉, 〈s, 2,u8〉}, {〈s, 2,u8〉 = 0, 〈s, 0,u8〉 6= 0, 〈s, 1,

u8〉 6= 0}, ∅}〉. The corresponding concrete state is the set of states in which there is a mem-
ory location where the first two bytes are non zero bytes, the third byte is set to zero and the
fourth byte is unconstrained.

Remark 4.2. The interest of the definition of γ
S
♯
m,D♯

m
and α

S
♯
m,D♯

m
is twofold: it enables us to de-

fine the semantics of the String abstract domain, but we also note that both functions to_cell and
from_cell are computable. Therefore the set of memory locations dealt with by each domain can
easily evolve during the analysis. Moreover with γ

S
♯
m,D♯

m
and α

S
♯
m,D♯

m
being both computable,

we can define a reduction operator between the String abstract domain and the Cell abstract
domain. For efficiency reasons we can remove some information from the Cell domain, knowing
that information from the String domain can be brought back to the Cell domain. This situation
is similar to a reduction between octagons and the, strictly less expressive, interval domain as
proposed in [CCF+06b].

Now that we have defined the String abstract domain, let us define the operators and trans-
formers on elements of this domain.

4.4.3 Operators

Definition 4.5 (t
S
♯
m
, u

S
♯
m

and ▽
S
♯
m
). As for the definition of the v

S
♯
m

operator, the join (t
S
♯
m
),

meet (u
S
♯
m
) and widening (▽

S
♯
m
) of two abstract elements is defined by applying the accord-

ing operator in the underlying numerical abstract domain (after the addition on both sides of
potentially missing variables and the unification of the set of cells).
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Example 4.4. Consider Program 4.1 of the introductory example where typeof(p) = typeof(q) =
ptr, if S♯1 = 〈{p,q}, {p = 0,q = 0, srcl ⩾ 0, srca ⩾ srcl, destl ⩾ 0, desta ⩾ destl}, {p 7→ {dest},
q 7→ {src}}〉 is the abstract state from which we start the analysis then S

♯
2 = 〈{p,q}, {p = 1,q = 1,

srcl ⩾ 1, srca ⩾ destl, destl ⩾ 1, desta ⩾ 1, desta ⩾ destl}, {p 7→ {dest},q 7→ {src}}〉 is the
abstract state after one analysis of the body of the while loop (constraint srca ⩾ destl comes
from the fact that we collect error free executions). Therefore our analyzer has to perform the
join of those two abstract states before reanalyzing the body of the loop. S

♯
1 tS♯

m
S
♯
2 = 〈{p,q},

{p = q,p ⩽ 1,p ⩾ 0,p ⩽ destl, desta ⩾ destl,p ⩽ srcl,p ⩽ srca}, {p 7→ {dest},q 7→ {src}}〉.
Applying a widening at first loop iteration would yield: S

♯
1 tS♯

m
S
♯
2 = 〈{p,q}, {p = q,p ⩾ 0,

p ⩽ destl, desta ⩾ destl,p ⩽ srcl,p ⩽ srca}, {p 7→ {dest},q 7→ {src}}〉

The state transformations induced on our abstract state by the semantics of the C language
is mainly dealt with by the Cell abstraction.

Definition 4.6 (@[v,e]). To ease the presentation of the transformers1, we add expressions of
the form @[v,e] with e ∈ expr and v ∈ V to the C-- language. Such expressions denote pointers
to variable v, with offset e:

@[v,e]
∆
= &v+ e

Example 4.5. We want to perform the analysis of the statement

stmt
∆
= *u8t = *u8(p + *s32(&u + 2))

(where typeof(p) = typeof(t) = ptr) in the following abstract state: S♯ = 〈{p, 〈u, 2, s32〉, t},N♯,
{p 7→ s ′, t 7→ s}〉 where N♯ is a numerical abstract state built from the set of constraints we do
not need to explicit for this example. The Cell abstraction rewrites stmt into:

stmt⇝ *u8@[s,ot] = *u8(@[s
′,op] + *u32(@[u,0] + 2))

⇝ *u8@[s,ot] = *u8(@[s
′,op] + *u32@[u,2])

⇝ *u8@[s,ot] = *u8(@[s
′,op + *u32@[u,2]])

⇝ *u8@[s,ot] = *u8(@[s
′,op + 〈u, 2, u32〉]).

This example emphasizes that there are only two transformers that need to be defined, the
rest being delegated to the underlying cell domain:

S♯J*τ@[s,e1] = e2K(S♯) where s ∈ V, e1 ∈ expr, e2 ∈ expr, τ ∈ scalar-type
E♯J*τ@[s,e]K(S♯) where s ∈ V, e ∈ expr, τ ∈ scalar-type

4.4.4 Abstract evaluation

Let us first consider the evaluation of the dereferencing of a pointer to a string. The analyzer we
want to define performs partitioning on the abstract state during the evaluation of expressions,
therefore evaluation results are pairs (evaluated expression × abstract state): E♯J.K ∈ S

♯
m →

℘(exp× S
♯
m). This return set is understood disjunctively and greatly improves the precision of

the analyzer. We recall from Chapter 3 that mopsa handles such evaluations. Five cases can be
distinguished during the evaluation of *τ@[s,e]:

• before: τ = u8 and @[s,e] points before the first '\0' character. In this case the evaluation
can yield any character that is not '\0'.

• at: τ = u8 and @[s,e] points at the first '\0' character. In this case the evaluation yields
'\0'.

1and actually to ease the implementation as well.
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function tests on offset evaluation
before 0 ⩽ o∧ o < l∧ o < a [1; 255]
at 0 ⩽ o∧ o = l∧ o < a 0
after 0 ⩽ o∧ o > l∧ o < a [0; 255]
eerror o+ r > a∨ o < 0 ∅

Figure 4.3: Evaluation of a dereferencing.

• after: τ = u8 and @[s,e] points after the first '\0' character. In this case the evaluation
can yield any character.

• eerror: @[s,e] points outside of the allocated memory. In such a case we generate an
out_of_bounds error.

• τ 6= u8, in this case we over-approximate the evaluation by the range of the type τ.
Figure 4.3 summarizes these cases. In this table o is the offset of the pointer, l and a are the length
and the allocated size of the string. The following definition of the before operator underlines
how Figure 4.3 should be read.

before(e, s, 〈C,N♯,P〉) =
{([1; 255], 〈C, S♯JAssume({0 ⩽ e, e < sl, e < sa})K(N♯),P〉}

Definition 4.7 (E♯J*τ@[s,e]K(S♯)). Using these functions, we can now define:

E♯J*τ=u8@[s,e]K(S♯) = ⋃
(e ′,S♯)∈E♯JeKS♯

(before(e ′, s,S♯)∪ at(e ′, s,S♯)

∪ after(e ′, s,S♯)∪ eerror(e ′, 1, s,S♯))

and

E♯J*τ ̸=u8@[s,e]K(S♯) = {(range(τ),S♯)}∪ eerror(e ′, st(τ), s,S♯))

Example 4.6. Consider S♯ = 〈{〈p, 0,ptr〉(∆= p)}, {p ⩽ sl, sl < sa}, (p 7→ s)〉. As p may point at,
or before the first '\0' we get that:

E♯J*u8pK(S♯) = {(0, 〈{p}, {p = sl, sl < sa}, (p 7→ s)〉),
([1, 255], 〈{p}, {p < sl, sl < sa}, (p 7→ s)〉)
}

4.4.5 Abstract transformations

In order to complete the definition of our abstract interpreter, we need to provide the abstract
semantics of an assignment in a string *τ@[s,e1] = e2. We can distinguish 7 cases in such an
assignment:

• set0: τ = u8 and a character that appears before the first '\0' is assigned to '\0', in which
case we need to set the variable coding for the length of the string to its new value (the
offset of the pointer to the string). This case is dealt with by the set0 function.

• setnon0: τ = u8 and the first '\0' is replaced with a non-'\0' character, in which case
we need to set the variable coding for the length of the string to its new value (it can be
anything greater than the offset of the pointer to the string). This case is dealt with by the
setnon0 function.
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function tests on offsets tests on rhs transformation
set0 o ⩾ 0∧ o ⩽ l∧ o < a c = 0 l← o

setnon0 o ⩾ 0∧ o = l∧ o < a c 6= 0 l← [o+ 1;a]
unchanged o ⩾ 0∧ o < l∧ o < a c 6= 0
unchanged o ⩾ 0∧ o > l∧ o < a >
l_unchanged o ⩾ 0∧ o > l∧ o+ r ⩽ a >
forget o ⩾ 0∧ o ⩽ l∧ o+ r ⩽ a > l← [o;a]
serror o+ r > a∨ o < 0 > out_of_bounds

Figure 4.4: Summary of transformations.

• unchanged: τ = u8 and we are performing an assignment that does not change the posi-
tion of the first '\0' character. Either because we are replacing a character placed before
the first '\0' character by a non-'\0' character, or because we are assigning a character
after the position of the first '\0' character. Both cases are dealt with by the unchanged
function.

• l_unchanged: τ 6= u8 and we are performing an assignment that does not change the
position of the first '\0' character: the only modified characters are placed after the first
'\0' character. This case is dealt with by the l_unchanged function.

• forget: τ 6= u8 and the offset of the pointer is less than the length of the string, in this case
the position of the first '\0' character is greater than the offset of the pointer. This case is
dealt with by the forget function.

• serror: Thewrite generates an out of bounds, in which cases we generate an out_of_bounds
warning. This case is dealt with by the serror function.

Figure 4.4 summarizes these cases. In this table l and a denote respectively the length and the
allocated size of string s, o denotes the offset of the pointer, c denotes the evaluated right-hand
side of the assignment, and finally r denotes sizeof(τ). The following definition of operator set0
underlines how Figure 4.4 should be read.

set0(s, e1, e2, 〈C,N♯,P〉) =
let N♯

1 = S♯JAssume({e1 ⩾ 0, e1 ⩽ sl, e1 < sa, e2 = 0})K(N♯) in

let N♯
2 = S♯Jsl ← e1K(N♯

1) in

〈C,N♯
2,P〉

Definition 4.8 (S♯J*τ@[s ∈ V,e1]=e2K(S♯)). Using the 6 transformations aforementioned we can
now define:

S♯J*τ=u8@[s ∈ V,e1]=e2K(S♯) = ⊔
(e ′

1,S♯′)∈E♯Je1K(S♯)

(e ′
2,S♯′′)∈E♯Je2K(S♯′)

set0(s, e ′1, e ′2,S♯′′)t serror(s, e ′1, 1, S♯′′)

t unchanged(s, e ′1, e ′2,S♯′′)
t setnon0(s, e ′1, e ′2,S♯′′)
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and

S♯J*τ ̸=u8@[s ∈ V,e1]=e2K(S♯) = ⊔
(e ′

1,S♯′)∈E♯Je1K(S♯)

l_unchanged(s, e ′1, sizeof(τ),S♯′)

t forget(s, e ′1, sizeof(τ),S♯′)
t serror(s, e ′1, sizeof(τ),S♯′)

Example 4.7. Going back to Example 4.5, we now assume that N♯ is a numerical abstract
state built from the constraint set: {t < sa, t = sl,p + 〈u, 2, s32〉 < s ′l, s ′l < s ′a}. More-
over in the following S♯ ∧ E denotes the abstract state S♯ in which the numerical component
has been extended with the constraints set E, and e denotes the expression p + 〈u, 2, s32〉.
E♯J*(@[s ′,e])K(S♯) = {([1; 255],S♯ ∧ {e ⩾ 0, e < s ′l, e < s ′a}), (0,S♯ ∧ {e ⩾ 0, e = s ′l, e < s ′a}),
([0; 255],S♯ ∧ {e ⩾ 0, e > s ′l, e < s ′a})}. With a precise enough numerical domain (e.g. polyhe-
dra), S♯ ∧ {e ⩾ 0, e = s ′l, e < s ′a}, S♯ ∧ {e ⩾ 0, e > s ′l, e < s ′a} and S♯ ∧ {e < 0 ∨ e ⩾ s ′a} form
empty partitions, meaning that in this example, they represent impossible cases. For similar
reasons S♯JstmtK(S♯) will compute abstract elements that are reduced to ⊥ for functions set0,
unchanged and serror. Therefore: S♯JstmtK(S♯) = 〈{p, 〈u, 2, s32〉, t},R♯′, {p 7→ s ′, t 7→ s}〉 with
R♯′ = {t < sa, t+ 1 ⩽ sl,p+ 〈u, 2, s32〉 < s ′l, s ′l < s ′a}. This assignment made our abstraction
lose the position of the first '\0' character, as it wrote a non-'\0' character in its place.

4.4.6 String declaration

When encountering a local variable declaration (u8 s[n] with n ∈N and s ∈ V) we can set the
allocated size of the string to n, and set the length to the range [0,n] as shown in the following
example: S♯Ju8 s[27]K〈∅, ∅, ∅〉 = 〈∅, {sl ⩾ 0, sl ⩽ 27, sa = 27}, ∅}〉. The formal definition is
straightforward:

S♯Ju8 s∈ V[n ∈N]K〈C,N♯,P〉 = 〈C, S♯Jsl ← [0,n]K ◦ S♯Jsa ← nK(N♯),P〉

Example 4.8. S♯Ju8 s[27]K〈∅, ∅, ∅〉 = 〈∅, {sl ⩾ 0, sl ⩽ 27, sa = 27}, ∅〉

Example 4.9. Consider again Program 4.1 from the introductory example, analyzed starting
from an abstract state S♯ = 〈{p,q}, {p = 0,q = 0, 0 ⩽ sl < sa, 0 ⩽ s ′l < s ′a}, {p 7→ s,q 7→ s ′}〉.
Note that the input state contains the information that p and q do not alias. The numerical
invariant (the rest of the abstract state is not modified by the analysis) found at the beginning
of line 2 is: {−p+ q = 0, s ′l ⩾ p+ 1, s ′a − s ′l ⩾ 0,p ⩾ 0, sl ⩾ p}. An out_of_bounds error is
generated at line 3, indeed in the starting abstract state, no hypothesis is made on the relation
between s ′l and sa therefore there might be a buffer overrun at line 3. Finally the numerical
invariant discovered at the end of line 6 is: {s ′l = sl,q = sl,p = sl, s ′a ⩾ sl + 1, sl ⩾ 0,
sa ⩾ sl + 1}, thus showing that we were able to infer that the two strings pointed to by p and q

have the same size at the end of the analysis.

Remark 4.3. When a string gets out of the scope, its allocated numerical variables are removed
from the numerical domain. The handling of pointers pointing towards the string, at the time it
gets out of scope, is handled, as for other memory zones, by the C analyzer upon which we built
the string abstraction.

4.4.7 Dynamic memory allocation

As mentioned in Figure 4.1, we allow dynamic memory allocations. The Cell abstract domain
as presented in Section 4.3 is not able to handle those. To model dyamic memory allocation,
we consider a finite set A of heap addresses, derived from the allocation site using recency
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1 void aux1(char** x,int e) {

2 *x = malloc(e);

3 }

4 void aux2(char** x,int e) {

5 *x = malloc(e);

6 }

7 int main() {

8 char* x;

9 aux1(&x,10); aux1(&x,20);

10 aux1(&x,30); aux2(&x,40);

11 *x = '\0';

12 }

Program 4.4: Dynamic memory
allocations

abstraction [BR06]: for each allocation site a, one abstract address, as, is used to model the
last block allocated at a, and another one, aw, to summarize the blocks allocated previously at
a. While we perform weak updates on the later, we can perform strong updates on the former,
which ensures a gain in precision. Indeed, in C allocated block are uninitialized, their value must
therefore be set to >. If an uninitialized block is merged with all previously allocated blocks we
have to modify it via weak updates, therefore the > value will never be modified. To solve this,
recency abstraction keeps separated the last allocated block from the others, allowing strong
updates on the newly allocated memory zone.

Example 4.10. Consider now Program 4.4, and assume that as and aw (resp. bs and bw) are
addresses for which we perform strong and weak update at program point (resp. ). Starting
from > the analysis of the body of function main, we get: 〈{x}, {0 ⩽ awl ⩽ awa , 10 ⩽ awa ⩽ 20, 0 ⩽
asl ⩽ asa, asa = 30, bsa = 40, bsl = 0, x = 0}, {x 7→ bs}〉 This state gives us that x points to a
memory location starting from a '\0' character. We also note that information about the two
first allocations made at program point a have been collapsed into the aw address.

Experimental results. The abstraction presented in this chapter was implemented in MOPSA
and used in a C analyzer. This abstraction was coupled with the modular analysis presented in
the following chapter (Chapter 5). For this reason, experimental results on the String abstraction
will be provided after the presentation of the modular analyzer from Chapter 5.

4.5 Related works

One popular technique to avoid buffer overflows is dynamic analysis. There is a long history
of such techniques (see [WK03] for some examples). These methods induce an overhead cost
and do not prevent program failures. By contrast we employ static analysis. Strings are arrays
of characters, therefore analysis methods proposed in [CCL11] and [Cou03] could be used to
design static analyzers handling strings, here however we rather tend to transfer string accesses
to pointer manipulations in order to use the expressiveness of the Cell abstraction. The three
following works are the closest to ours and all follow the idea introduced in [WFBA00] to track
the length of strings. Dor et al. [DRS01] tackled the problem by rewriting string manipulating
statements into statements over a numerical variable language, however this transformation
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induced the usage of a number of variables quadratic in the number of strings present in the
analysis, in order to account for pointer aliasing, our predicates give constraints onmemory zones
and not on pointers, removing the need for pointer aliasing handling. Simon and King [SK02]
proposed an analyzer for a sub-C language manipulating strings, and allowing dynamic memory
allocation, but some pointer manipulations could not be handled. They improved their results in
[Sim08], the string domain presented here is a combination of results from [Sim08] and the cell
abstract domain, moreover we provided a way to dynamically balance strings dealt with by the
string abstract domain and by the cell domain. Additionally string length and allocated size are
bound to pointers (whereas we bind them to the actual memory location containing the string),
and this approach seems to prevent the modular integration of this domain in a full C language
analyzer. Allamigeon et al. [AGH06] also proposed an analyzer that keeps track of the position of
the first '\0' character, however their analysis is non-relational, can not handle arbitrary pointer
cast, and uses static information on string length, therefore preventing the domain reusability for
dynamically allocated strings. Note moreover that both [AGH06] and [DRS01] defined special
abstract transformations for strcpy, whereas we provide an abstraction that is able to precisely
analyze different versions of strcpy .

4.6 Conclusion

To conclude this chapter, let us discuss two of the future works on the string abstract domain.
We assumed given a static partitioning between the memory regions that should be handled
by the string abstraction and those that should be handled by the cell abstract domain. This
can be improved in two ways. Firstly we could choose dynamically which abstraction should
handle which memory regions. Secondly we could use both abstractions and design a reduction
operator between them so that information from each domain can be used by the other. These
two improvements can be made using the to_cell and from_cell functions defined here.

Moreover, the string abstract domain can only handle precisely strings that are stored in
their own memory region. Indeed if two strings are inlined in a struct the abstraction will fail to
precisely represent the length of the second one. Our abstraction should be extended in future
works so as to be able to handle such cases.

We proposed an abstract domain able to tackle C strings of parametric size, built as an add-on
to an existing domain [Min06a] capable of dealing with most of the features of the C language.
We have shown how our analyzer can be tuned dynamically by choosing whether the String or
Cell domain should deal with certain memory regions or by changing the underlying numerical
domain, so as to adjust its precision (even though we did not provide heuristics as to when one
should be used instead of the other).

We are now given a full C abstract interpreter augmented with a predicate abstraction tar-
geting out-of-memory accesses in C strings. We will show, in the next chapter, how this analyzer
is lifted to a modular analysis framework.





Chapter 5

Modular analysis

5.1 Introduction

5.1.1 Motivations

In Chapter 4 we designed a predicate abstraction enabling a high level reasoning about C strings.
Our goal in this chapter is to lift this string abstraction to a modular framework. Consider again
the strcpy function in C, shown in Program 4.1. In a real life C project, this function is often
user-redefined (as shown by the strcpy function from Qmail in Program 4.2) and called several
times during the analysis. We will call summary of a statements a description of its functional se-
mantics that can be applied on an input. The implementation of a modular static analyzer able
to infer, prove and reuse summaries on such functions without losing precision would yield a
scalable analyzer able to prove the absence of buffer overruns in C projects manipulating strings.
Indeed, an analyzer computing invariants by induction on the syntax of programs requires ab-
stract transformers for function calls. A straightforwardway to achieve this, provided that there is
no recursivity, is to analyze the body of the function at each call site. Therefore a way to improve
scalability is to design modular analyzers able to reuse previous analysis results so that reanalysis
is not always needed (as emphasized in [CC02]). As an example, in a project containing an in-
crementation function, we want to be able to express and to infer that ∀x, incr(x) = x+ 1. Once
this relation discovered, no further analysis of the body of incr is required. This technique can
be applied on any statement, not just on the bodies of functions (e.g. in [JM18] this is applied
to while statements when the number of nested loops is high).

When performing modular analysis two classical families of analyses can be distinguished:
top-down analyses and bottom-up analyses.

• A top-down approach starts from the root of the program, mimicking a classical intra-
procedural analysis by inlining. However for some statements in the program, summaries
are created once the first analysis of this statement is finished. Such summaries will usually
use as preconditions the constraints satisfied by the input state encountered during the top-
down analysis. This has the advantage that summaries target only the useful part of the
abstract semantics as we have information on the context (e.g. the state at call site in the
case of function summaries). The main drawback is that whenever calling contexts vary
slightly from one another, the summary can not be used and new analyses will be required.

• By opposition, a bottom-up analysis starts from the leaf statements of the program (the
ones for which we want a summary to be inferred) and propagates up towards the root.
This technique has the huge advantage that it is not context sensitive, therefore, in order
to be sound, the summaries created for the leaf statements are the most general (as no
information on the context is provided) they can therefore be reused for all other occur-
rences of the statement, ensuring that the body of a function is analyzed at most once.
The main drawback of this approach is also the fact that it is not context sensitive. Indeed

53
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as all possible input contexts need to be considered (even those useless for the analysis of
the complete program) this will leave us with two choices: (1) Either we try to perform
a precise analysis. In the context of a C program manipulating pointers, a precise analy-
sis will need to partition its input with respect to the different possible aliasing patterns,
thus inducing a exponential blowup. (2) Or we perform an imprecise analysis, merging
all aliasing patterns together. Such an analysis will be very imprecise, especially for our
target applications which are programs manipulating strings.

As our primary goal is to be precise and achieve scalability we felt that the bottom-up approach
would result in too many spurious computations and decided to modify the classical top-down
approach so as to ensure that the scope of application of inferred summaries will stabilize, en-
suring that the number of times a statement is reanalyzed is bounded. In order to achieve this
we will use the widening mechanism, already provided by every abstract domain. The idea of
the widening operator is to perform a “generalization” based on a finite number of observations.
We feel that this generalization process can be used when considering the different possible call
contexts of a function.

Abstract interpretation is always sound and inferred invariants describe an over approxi-
mation of the reachable set of states. Therefore the use of input/output relations discovered
on statements must yield an over-approximation. Nonetheless we do not want to give up too
much precision to achieve scalability. This was done by using classical techniques to express in-
put/output relations on numerical variables as performed in [CC02], partitioning these relations
according to symbolic conditions in the abstract state as proposed by Bourdoncle [Bou92a], and
generalizing them using widening operations.

As a result example, consider again the strcpy function from Program 4.1 (in the previous
chapter). Enabling modular analysis would yield that lsrc = l ′src and ldest = l ′src where primed
variables (resp. unprimed variables) denote the state at the beginning (resp. at the end) of the
analysis of the body of the function. Therefore these two relations state that the length of src
was not modified by the call to strcpy, while the length of dest is now that of src.

5.1.2 Outline of the chapter

In order to present our modular analysis framework, we start in Section 5.2 by providing intro-
ductory remarks on modular analyses. Section 5.3 will then present how relational domains can
be used to represent Input/Output summaries of numerical abstract transformers. Section 5.4
contains the main results of this chapter as it presents our modular analyzer extending to strings.
Section 5.5 provides some preliminary experimental evaluations of our results. Section 5.6 con-
tains a discussion about other works on modularity, and Section 5.7 concludes.

5.2 General remarks

We perform a static analysis in the context of abstract interpretation. Therefore we assume given
a representation for the semantics of C program.

(D,⊆) γ←− (D♯,v)

We recall that we are given a sound abstract interpreter for this language, that is a S♯JstmtK ∈
D♯ → D♯ function for every stmt ∈ stmt, such that:

∀S♯, stmt, SJstmtK(γ(S♯)) ⊆ γ(S♯JstmtK(S♯)) (5.1)

where SJstmtK ∈ D→ ℘(S) denotes the concrete semantics of the language.
S♯JK is usually defined inductively on the syntax of the program (as shown in Chapter 2),

therefore performing the analysis of a sequence of instructions requires the analysis of every
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atom that composes the statement. As highlighted by the introductory remarks to this chapter,
we would like to be able to infer, for every statement stmt, a partial function that, given an input
abstract state, can produce an output abstract state that is an over approximation of the abstract
state we would have obtained by performing the analysis of stmt.

Definition 5.1 (Summary function). We call a summary function relative to S♯, and denote T♯ a
partial function from stmt×D♯ to D♯ such that:

∀S♯1, S
♯
2, stmt, S

♯
1 v S

♯
2 ⇒

{
either: S♯JstmtK(S♯1) v T♯(stmt,S♯2)

or: T♯(stmt,S♯2) is undefined

This ensures that if the summary function is undefined on some context S♯1, but is defined
on some context S♯2 containing S

♯
1 (S♯1 v S

♯
2), then we can soundly return the image of S♯2 by the

summary function. This is put forth in the following proposition.

Proposition 5.1. If T♯ is a summary function relative to S♯, the analyzer S♯ defined by:

S♯JstmtK(S♯) ∆
=

{
T♯(stmt,S♯2) if ∃S♯2,S♯ v S

♯
2 ∧ T♯(stmt,S♯2) is defined

S♯JstmtK(S♯) otherwise

is sound in the sense of Equation 5.1

Definition 5.2 (⊛). We define ⊛ operating on summary functions:

T
♯
0 ⊛T

♯
1

∆
= λ(stmt,S♯).


T

♯
0(stmt,S♯) if T

♯
0(stmt,S♯) is defined

T
♯
1(stmt,S♯) else if T

♯
1(stmt,S♯) is defined

undefined otherwise

This operator enables us to build up summary functions by extension. Indeed if it is undefined
on some state or statement, we can extend it with another summary function. We call T♯ an
extension of T

♯
1 when there exists T

♯
2 such that T♯ = T

♯
1 ⊛T

♯
2.

Example 5.1. • T
♯
1

∆
= λ(stmt,S♯), S♯JstmtK(S♯) is a summary function relative to S♯. This

is the most precise summary function relative to S♯. However its computation requires
running the analysis on stmt. For a function analysis it means always inlining the body of
the callee.
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• Given stmt ∈ stmt, n ∈ N, (I♯j,O
♯
j)j∈J0,n−1K ∈ (D♯ ×D♯)n such that ∀j ∈ J0;n − 1K,

S♯JstmtK(I♯j) v O
♯
j, let us define

S♯j = [I♯j 7→ O
♯
j]

∆
= λ(stmt ′,S♯),

{
O

♯
j if stmt ′ = stmt∧ S♯ v I

♯
j

undefined otherwise

then T
♯
2

∆
= ⊛n−1

i=0 S♯j is a summary function relative to S♯. In this case we store every
input/output relations we get for reuse.

In Example 5.1, function T
♯
2 represents the case where we already performed the analysis of

some statement on some inputs and kept a list of the input/output relations corresponding to
these inputs. The function can be represented as the list (I♯j,O

♯
j)j∈J0,n−1K of such input/output

pairs and the computation of the function is reduced to a look-up in this list. Moreover in the
framework of abstract interpretation where we only try to compute over-approximations of the
set of accessible states, we can reuse a relation (I♯,O♯) for states S♯ such that S♯ v I♯. However
this usage might come with a loss of information, indeed the actual computation of S♯JstmtK
might have produced an abstract element S ′♯ ⊏ O♯. As an example, consider Figure 5.1 repre-
senting a summary function with 3 input/output relations stored. Using the (I♯1 7→ O

♯
1) relation

instead of reanalyzing the statement for the input state S♯ (that is such that S♯ v I
♯
1) leads to

a loss of information as we will only be able to use O
♯
1. Dually we can remove constraints on

I♯ before the analysis of the body of the function in order to improve the reusability of the in-
put/output relation obtained, the drawback being that the corresponding output abstract value
will be greater thus losing precision. Furthermore computing and storing new (I♯,O♯) relations
whenever no existing summary could be used can cause the computation of input/output rela-
tions that will never be reused, hence the importance of generalizing I♯ in the direction of newly
discovered call contexts, so as to tailor summaries to actual call sites abstract values.

Remark 5.1. Consider the statement stmt = x = x + 1, and assume our abstract domain to be
the interval domain. For every input state of the form {x 7→ [α,β]}, the output state will be of
the form {x 7→ [α+ 1,β+ 1]}. A summary function T♯ defined on {stmt}× S

♯
m in the manner

of Example 5.1 (with a finite list of input/output relations) will never yield an analyzer able
to express that for every input [γ, δ] the output is [γ + 1, δ + 1]. Indeed the interval domain
would produce a set of input/output relations {[αi,βi] 7→ [αi + 1,βi + 1]}, and for an input
[γ, δ] ⊊ [α0,β0]we could only use as output abstract state [α0 +1,β0 +1], thus losing information
compared to [γ+ 1, δ+ 1]. Moreover if we only allow a finite number of summaries to be created,
and if the number of potentially encountered inputs is unbounded we will have to generate and
use a summary returning the > interval.

5.3 Using relational domains

Relational domains are able to express relations of the form y = x+ 1. Such a relation can grasp
the semantics of stmt from the previous remark. We use the relational aspect of the numerical
domain to express relations not only between the values of variables, but also between their
values and their input values. This idea was introduced in [CC77a] (also used in e.g. [CC02,
Suz19]). Consider two sets of variables W = {x,y} and W ′ = {x ′,y ′} and the abstract element:
N♯ = {x = y ′,y = x ′}. Moreover assume at input that {x = 3,y = 5}, then using the meet
provided by the numerical domain in order to instantiate N♯ with input constraints: {x = 3,y =
5}|{x ′,y ′, x,y} u {x = y ′,y = x ′} = {x = 3,y = 5, x ′ = 5,y ′ = 3}, and finally {x = 3,y = 5, x ′ =
5,y ′ = 3}|{x,y} = {x ′ = 5,y ′ = 3}. This example emphasized how relational domains are used to
express precise input/output relations between numerical variables.
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Definition 5.3. Let W,W ′ be sets of variables such that W ∩W ′ = ∅. Let N♯ ∈ NW∪W ′ a
numerical abstract state. We define the function Λ(N♯) ∈ NW ′ → NW deriving form N♯ by:

ΛW(N♯)
∆
= λX♯. (X♯

|W∪W ′uW∪W ′
N♯)|W

Example 5.2. Consider W = {x}, W ′ = {x ′}, the abstract state N♯ = {x = x ′ + 1}. Consider
moreover the following subset of NW ′: S = {{x ′ = α} | α ∈ Q}. Then the restriction of ΛW(N♯) to
S is the function that associates every abstract state of the form {x = α+ 1} to the abstract state
of the form {x ′ = α}.

Remark 5.2. We only defined how we associate a function to a numerical abstract element con-
taining primed variables. This function is total, it is defined over NW ′ . In order to use this
function in a modular analyzer, its definition set will be restricted to a subset of NW ′ over which
the function can soundly be used. Example 5.4, in the following, will provide an illustration of
this problem.

5.4 Building the summary functions

5.4.1 Summaries

Based on the remarks from the two previous subsections, themselves based on related works
and state of the art results, we define the summary of a statement to be a set of input/transfer
relations. A pair input/transfer has the semantics that: whenever a abstract state S♯ satisfies
the input condition, the application of the transfer relation on S♯ is a sound post-condition of
the statement. To describe input conditions we will use another abstract element, the notion
of satisfaction will then be conveyed by the abstract comparison operator. Knowing whether S♯
satisfies some input condition I♯, or not, is tested by S♯ v I♯. When this holds this ensures that
all concrete states represented by S♯ are contained in the set of concrete states represented by I♯.
If the summary was inferred with input hypothesis I♯, this ensures that all concrete states from
S♯ have been considered when building the according transfer relation. Moreover by opposition
with the classical input/output summaries, we here have a transfer function, relating the input
abstract states with the output abstract states. The importance (for precision) of this relationality
was emphasized in the previous section.

When trying to apply the ideas put forth in the previous sections to the String analyzer de-
fined in Chapter 4 we are faced with the following problem: we do not have an out-of-the-box
mechanism that enables the lifting of the string abstraction to a relational abstraction as we have
for purely numerical abstractions. The string abstraction is composed of: a numerical component
(which we can lift to a relational framework) and two symbolic components (the set of cells and
the pointer map). An input/output transfer function for the string domain would be an element
of the form: (〈C,N♯,P〉, 〈C ′,N♯′,P ′〉), that is a pair of abstract elements. The meaning of such
a pair is: if an abstract element satisfies the left element of the pair then the right element is
a sound post condition. As we have shown a way to express numerical input/output relations,
we factor the two numerical component N♯ and N♯′ into a numerical element expressing such a
relation.

Definition 5.4 (transfer relation). We define transfer relations for the string abstraction (we re-
call thatV denotes the subset of memory zones handled by the string abstract domain), denoted
S
♯
m, to be quintuplets of the form:

S
♯
m

∆
= {〈C,P,N♯,C ′,P ′〉 | C,C ′ ⊆ Cell \ {〈V, _, _〉 | V ∈ V}, N♯ ∈ N, P ∈ PC, P ′ ∈ PC ′}

The support of the numerical component N♯ is C∪C ′ ∪V⋆ ∪V⋆ ′:
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• cells from C and C ′;
• string numerical variables (length and allocated size) as well as a primed version of those

string variables.

A transfer relation therefore contains: the two symbolic components of the input (the cell
set and the pointer map), the same two symbolic components of the output, and a relational
transformation from the input variables to the output variables. We now need to define how this
transfer relation is applied to an abstract element from the string domain. Given an input abstract
element Ci,N♯

i,Pi and a transfer relation 〈C,P,N♯,C ′,P ′〉 we would like the output abstract
element to be 〈C ′,Λ(N♯)(N♯

i),P ′〉, that is: we use the output symbolic component and apply the
numerical transformation to the input. However the input numerical component might not be
defined on the support expected by the function Λ(N♯). Indeed recall that in the cell domain
(which is used as the basis for the string domain) the numerical domain provides constraints on
a set of cells that evolve dynamically during the analysis. Once again we rely on the unification
operator provided by the underlying cell domain to transform the numerical relation and the
input numerical component so that they are compatible.

Definition 5.5 (Semantic of a transfer relation). Given a transfer relation T = 〈C,P,N♯,C ′,P ′〉
(in S

♯
m) we define:

JTK ∆
= λX♯ ∈ S♯m. let 〈_,N♯

i, _〉, 〈_,N♯
r, _〉 = unify(X♯, 〈C,N♯,P〉) in

〈C ′,Λ(N♯
r)(N

♯
i),P

′〉

This definition provides the semantics attached to a transfer relation. We now can define
the summaries that will be inferred for C statements. Following the idea introduced before,
summaries will be sets of pairs containing: an input constraint and a transfer relation. This can
be seen as a partitioning of transfer relations according to the input abstract element.

Example 5.3. Continuing on Example 4.1. Consider the following transfer relation: 〈{〈a, 0,
u32〉(∆= a0), 〈a, 4,u32〉(∆= a1)}, ∅, {a0 = a ′

0, a1 = a ′
1 + 1}, {a0, a1}, ∅〉. We want to apply this rela-

tion on input state 〈{〈a, 0,u64〉(= a)}, {a = 232 + 2}, ∅〉, the unification yields: N♯
i = {a = 232 + 2,

a0 = 2, a1 = 1} and N
♯
r = {a0 = a ′

0, a1 = a ′
1 + 1} with a unconstrained. Applying the numerical

relation yields the output state: 〈{a0, a1}, {a0 = 2, a1 = 2}, ∅〉.

Definition 5.6 (Summaries). We define the set of statement summaries as:

C
∆
= ℘(S♯m × S

♯
m)

Note that summaries contain an input condition, in addition to the already existing symbolic
input found in the transfer relation. This is required for soundness. As transfer relations are
computed dynamically during the analysis of the targeted statement, the computation of this
transfer relation is done by running the abstract interpreter on the body of the statement. Hence
the projection of the numerical component from the transfer relation onto the input variables
might be relaxed compared to its initial value. It would therefore be unsound to use this pro-
jection as input test for the use of the transfer function. The following example emphasizes this
problem.

Example 5.4. Consider Program 5.2, where we will only consider numerical components. As-
sume that a points to some integer x, assume moreover that this program is called in context
{x ⩾ 1}. In order to build an input/output numerical relation we add a primed variable x' to
denote the initial value of x, and we equate it to x initially: N

♯
0

∆
= {x = x', x ⩾ 1}. As x ⩾ 1

we only analyze the then branch and perform: S♯Jx ← x+ 1K(N♯
0). As we made no hypothesis
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1 void strcat(char* dest, char* src)

2 {

3 int i; int j;

4 for (i=0; dest[i]!='\0';i++) ;

5 for (j=0; src[j]!='\0';j++)

6 dest[i+j] = src[j];

7 dest[i+j] = '\0';

8 }

Program 5.1: strcat

1 void extend(int* a) {

2 if (*a >= 0) {

3 (*a)++;

4 } else {

5 (*a)--;

6 }

7 }

Program 5.2: Filters illustration

on the precision of S♯J.K, this might yield the (sound) post-condition: N
♯
1

∆
= {x = x'+ 1}. The

constraint x' ⩾ 1 has been lost. We therefore obtain as the numerical input/output relation for
this program that {x = x'+ 1}. ProjectingN

♯
1 onto the set of initial variable {x ′} we get>. We see

however that this can not be used as a sound input condition for function extend as extend(-1)
returns −2.

5.4.2 Inferring and proving summaries

In the following all abstract operators v, t, ▽ refers to those of the string abstract domain,
defined in Chapter 4. We recall that the computation of these operators boils down to the appli-
cation of the corresponding numerical operator on the underlying numerical domain, once cell
sets have been unified. We feel that two analyses starting from different aliasing patterns should
be kept separated in order to improve precision. Indeed, analyzing strcat(p,q) (see Figure 5.1)
without any hypothesis on the possible aliasing of p and q would result in a huge loss of preci-
sion and in false alarms being raised at every call (p and q might be aliased, which would raise a
segmentation fault). Performing an analysis for every possible aliasing scheme would result in a
combinatorial blow up, moreover we might perform analysis for aliasing schemes that will never
occur at any call site. For these reasons we will only perform analyses on demand. Our choice
of summaries from Definition 5.6 shows that analysis will be partitioned. The decision to extend
a partition or to build a new one will be based mostly on the ”symbolic” part of the abstract
domain. The heuristic we chose was to separate abstract states with different aliasing patterns,
but also those where the unification of the cell or string sets would induce major differences in
the numerical domain set. The summary function is extended on demand, meaning that when
the analyzer encounters a function call, it tries to use an existing relation and if none can be
found it builds a new relation or it generalizes an existing one. Generalization of a relation is
done in the following way: assume known a relation with input I♯ and an abstract state S♯, such
that S♯ 6v I♯. If the analyzer deems that S♯ and I♯ should be in the same relation (e.g. because
they have the same aliasing pattern), we perform a new analysis of the function starting from
I♯▽(S♯ t I♯), that is a generalization, of I♯, by the mean of the widening operator. This ensures
that, given an aliasing, a function will be analyzed only a bounded number of times and that the
input of the obtained relation is tailored to the actual values at call site. Algorithm 5.1 provides
a definition of this extension technique. It is used on statements for which we want to infer sum-
maries. The set of summaries is empty initially, and as Algorithm 5.1 returns the new summary
for the statement (in addition to a sound post-condition), the next call needs to be given the
previously returned summary. Algorithm 5.1 uses three undefined functions:

• identity_relation: this functions takes as input an abstract state and return the identity
transfer relation. This is obtained by duplicating the symbolic component of the abstract
state, duplicating and “priming” variables in the numerical relation, and finally adding
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Algorithm 5.1: try_and_extend algorithm
Input : a statement stmt,

a summary for statement stmt: C = {(I♯1,T1), . . . , (I♯n,Tn)},
an integer threshold m,
an input state S♯

Output: a new summary, and a postcondition
1 if ∃(I♯k,Tk) ∈ C,S♯ v I

♯
k then

2 return (C, JTkK(S♯));
3 else if n < m then
4 S

♯
2 ← S♯JstmtK(identity_relation(S♯));

5 (Tn+1,O♯)← extract_relation(S♯2);
6 return (C∪ (S♯,Tn+1),O♯);
7 else
8 I

♯
k = find_closest(S♯,C);

9 S
♯
2 ← S♯JstmtK(identity_relation(I♯k▽S♯));

10 (Tn+1,O♯)← extract_relation(S♯2);
11 return (C \ (I♯k,Tk)∪ (S♯,Tn+1),O♯);
12 end
13 return res;

Algorithm 5.2: identity_relation algorithm
Input : an abstract state 〈C,N♯,P〉
Output: The identity relation

1 res← N♯;
2 foreach x ∈ def(N♯) do
3 res← S♯JAssume(x = x ′)K ◦ S♯Jadd(x ′)K(res) ;
4 endfch
5 return 〈C,P, res,C,P〉;

equality constraints between primed and unprimed variables. identity_relation is defined
in Algorithm 5.2.

• extract_relation: this function takes as input a transfer function and extracts from it: the
transfer relation and the output state (this is obtained by removing the input variables from
the numerical environment). extract_relation is defined in Algorithm 5.3.

• find_closest: this function takes as input an abstract state S♯ and a summary C, it is
heuristically based as it looks for an input condition from C that is the most similar to
S♯. We chose a measure of similarity based on aliasing. Indeed, recall that in the cell
abstraction, the pointer map component of an abstract element associates to each cell with
pointer type an over-approximation of the set of bases that may be pointed to by the cell.
find_closest(S♯,C) tries to find an element (I♯,T) of C, the pointer map component of I♯
being identical to the pointer map component of S♯. If no such element can be found, it
tries to look for one with as few differences as possible.

Note the we assumed in Algorithm 5.1 that S♯JstmtK can be executed on transfer relations in
addition to usual abstract elements. This is implemented by considering the output component
of the transfer relation as an abstract element and applying the usual transfer relations on this
abstract element. Therefore building numerical relations does not require a transformation of
the intra-procedural iterator. Indeed variables are added to the numerical domain with equality
constraints between primed and unprimed variables. Analysis is then performed as if primed
variables were not present in the numerical domain and they are removed after storing the sum-
mary.



5.4. BUILDING THE SUMMARY FUNCTIONS 61

Algorithm 5.3: extract_relation algorithm
Input : an abstract relation 〈C,P,N♯,C ′,P ′〉
Output: The same abstract relation and the output state

1 res← N♯;
2 foreach primed variable x ′ ∈ def(N♯) do
3 res← S♯Jremove(x)K(res) ;
4 endfch
5 return 〈C,P,N♯,C ′,P ′〉, 〈C ′, res,P ′〉;

Example 5.5. Consider the statement s32 x = a + 1 (with typeof(a) = s32), from input state:
〈{a ′}, {a ′ = a}, ∅〉, a ′ has been added to denote the initial value of a. The output state is then
〈{a ′, x ′}, {a ′ = a, x ′ = a+ 1, }, ∅〉. From this we deduce the relation: let I♯α be some input state,
if the set of cells of I♯α is precisely {a} and if the numerical domain of I♯α satisfies the condition
a = α and if the pointer map is empty, then a possible output state is 〈{a, x}, {a = α, x = α+ 1},
∅〉.

Example 5.6. Consider now the function strcat of Figure 5.1. The modular analysis of this
function yields a relation stating that:
if dest points (at offset 0) to some memory location s, with length sl and allocated size sa, and

if src points (at offset 0) to some memory location t with equivalent length and allocated
size definition and t 6= s

then {s ′l = tl + sl, s ′a = sa, t ′a = ta, t ′l = tl, t ′l ⩾ 0, t ′l ⩽ t ′a − 1, t ′l ⩽ s ′l, s ′l ⩽ s ′a − 1}
Therefore thanks to the s ′l = tl + sl relation, if another call to strcat is performed in a state
where sl = α and tl = β for some α and β, our analyzer, can conclude (without reanalysis) that
the length of the string tl at the end of the analysis is α+β.

5.4.3 Improvements

The use of a relational domain for the description of summaries improves their precision (by
comparison with a simple non relational input/output list as presented in Example 5.1). Not
only do we want our summaries to be precise, but we want them to be reusable. For this reason
several improvements were designed for the try_and_extend algorithm:

Framing. We loosen the input state by removing some memory blocks (meaning we leave out
constraints on these regions) from the input state. This plays the role of the framing rule in
separation logic. In order to be able to soundly restore the constraints on these memory blocks
after the function analysis, they need to be memory blocks that we know will not be used by the
function. As a first framing rule we can, for example, remove every memory region that can not
be accessed by pointer dereferencing from one of the argument of the function or from global
variables.

Example 5.7. Let us assume that a call incr(p) is made in the input context:

〈{〈p, 0,ptr〉(∆= p), 〈b, 0,u8〉(∆= b), 〈a, 0,u8〉(∆= a)},N♯, {p 7→ {a}}〉

The memory zone 〈b, 0,u8〉 can not be accessed during the analysis of incr(p). Therefore the
cell is removed from the cell set before analysis and the according variable is removed from the
numerical component. We can thus perform the modular analysis of statement incr(p) starting
from S♯ = 〈{p, a},N♯

|{p,a}}, {p 7→ {a}}〉. If we find a transfer relation T (line 2 of Algorithm 5.1) that
can be applied on S♯, we modify the numerical component of the transfer relation T by assuming
that b = b’ and apply the transfer relation. Note that in the special case where the underlying
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known match

GI♯ GS♯

Figure 5.2: graph isomorphism for variable renaming

function name Loc
fprint_pascal_string 29
null_terminate 11
space_terminate 12
extendfilename 17
remove_newline 18
insert_long 21
join 44

Table 5.1: Functions from web2c analyzed

numerical domain is non relational, this amounts to removing the interval associated to b from
the numerical domain and restoring it after the analysis. Doing the same in the relational case
would lose the relationality between variables in the frame and those not in the frame.

In Chapter 7 we propose a more sophisticated framing mechanism.

Quantification. When a summary is created, some memory blocks are quantified universally,
therefore when trying to apply a summary we try to unify the memory blocks from the actual
input state with those of the summary input state. Continuing on the example of the incrementa-
tion function, assume that we have discovered a precise transfer relation applicable under input
condition I♯ = 〈{p, a}, {p = 0, a ⩾ 0}, (p 7→ {a})〉 and a new call is made to incr with input state
S♯ = 〈{p, c}, {p = 0, c = 0}, (p 7→ {a})〉. We can not reuse the discovered transfer relation because
S♯ 6v I♯. However, if a is not a global variable it plays the same role as c in the body of function
incr. For this reason we look for a renaming σ such that S♯[σ] v I♯. A necessary condition
for this to hold is to ensure that the pointer map component of the cell abstraction satisfies a
point-wise inclusion. We build the graphs associated with the pointer maps component of each
abstract element (the input condition and the input state), as shown in Figure 5.2, and try to
find a matching of the two graphs that preserves transitions (a graph isomorphism) and matches
together the arguments of the function (known match from Figure 5.2). Every matching gives
us a renaming σ that we can then apply to the abstract element. Finally we look for a matching
σ that satisfies S♯[σ] v I♯. Here we can see that the renaming σ = (a 7→ c) applied to S♯ will
indeed yield an abstract element satisfying I♯. This will allow us to use the relation associated
with filter I♯ for input S♯.

5.5 Preliminary experimental evaluation

The String abstract domain from Chapter 4 was added to the library of existing domains in
MOPSA, and a new inter-procedural iterator was added to implement the modular analysis pre-
sented in this chapter. The current analyzer is in development, it is able to analyze all C code
fragments presented here, but can not tackle complete realist C projects yet. To test our modular
string analysis, we thus considered the examples and benchmarks used in previous works on
string analysis [AGH06], [DRS01].
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1 char* insert_long(char* cp)

2 {

3 char tbuf[BUFSIZ];

4 int i;

5 for (i=0;&buf[i]<cp;++i)

6 tbuf[i] = buf[i];

7 strcpy(&tbuf[i],"(long)");

8 strcpy(&tbuf[i + 6], cp);

9 strcpy(buf, tbuf);

10 return cp + 6;

11 }

Program 5.3: insert_long from web2c

1 typedef struct {

2 char* f;

3 } s;

4 char buf[10];

5

6 void init(s* x) {

7 x[1].f = buf;

8 }

9 int main () {

10 s a[2][2];

11 s* ptr = (s*) &(a[1]);

12 init(ptr);

13 ptr = (s*) &(a[0]);

14 strcpy(a[1][1].f,"strcpy ok");

15 strcpy(a[1][1].f,"strcpy not ok");

16 }

Program 5.4: Program from [AGH06]

In related works, Allamigeon et al. mentioned in [AGH06], Section 5, that the most difficult
example they had to deal with were calls to strcpy performed on string placed in a structure,
itself placed in a matrix, and accessed via pointer manipulations (see Program 5.4). This ex-
ample was successfully analyzed with the version of strcpy defined in Program 4.1 and with an
alternate implementation found in Qmail (see Program 4.2), the second case was more complex
and required the use of partitioning. Our ability to easily deal with the pointer manipulations
from Program 5.4 comes from the use of the Cell domain to deal with low-level features of C.
Indeed our abstraction is not dependant upon the way strings are accessed as all string accesses
are transformed to pointer manipulations.

We are able to tackle most of the programs from web2c mentioned in [DRS01] (7 out of 9,
programs that could not be analyzed are due to the fact that we do not have yet implemented all
the features of the C language, see Table 5.1). Note moreover that both [AGH06] and [DRS01]
defined special abstract transformations for strcpy, whereas we perform amodular analysis of the
function. The number of lines of codes from Table 5.1 does not take into account library functions
as we tested with several different implementations of strcpy, strcat functions. The precision of
these analyses (number of errors and false alarms) is similar to that of [DRS01] and the execution
time of the analyzer was always below 2 seconds. We do not provide a comparison between the
running times of the analyzer with and without the modular iterator. Indeed, we first focused
on improving the framing mechanism so as to reduce the analysis time of the modular iterator.
As an example consider Program 5.3, starting the analysis under the conditions that: cp points
to buf, a buffer of size BUFSIZ before the first '\0' character, produces alarms at line 9 and 10.
Indeed under such hypothesis strcpy tries to write outside of tbuf.

5.6 Related works

The goal of the modular analysis iterator defined here is to provide a new inter-procedural iter-
ator. When trying to see the program as a control flow graph, inter-procedural analysis diverges
from intra-procedural in the fact that not all paths should be considered when computing the
set of reachable states at a given program point, at the risk of a huge loss of precision. Indeed
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return values from all possible inputs of a function are propagated to every call site. Sharir and
Pnueli [SP78] provide two approaches to this problem: the functional approach and the call
string approach. The call string approach tags the inferred data with a stack a strings to denote
the calling context in which it was discovered. Our work can be described in the functional ap-
proach. Reps et al.[RHS95] translated this data-flow problem into graph reachability problems
in the special case where the set of potentially inferred facts is finite.

Cousot and Cousot mentioned in [CC02] the importance of performing modular analyses and
described several methods to design them. An efficient way is to use user-provided contracts
as in [FL10]. Our goal was to infer contracts, therefore works closest to ours would be the
input/output inference performed by Bourdoncle in [Bou92a], however this method was limited
to non-relational (interval) domains, unlike our method, which is thus more expressive (see
Remark 5.1). In [CC02], numerical relations are used to represent the semantics of a set of
statements, however this is limited to numerical programs whereas we extend the method to
consider both numbers and pointers, including pointer arithmetic.

The semantics of a statement is a function fromD toD, in the definition of a modular abstract
interpreter we would like to abstract this semantics. This amounts to the definition of an abstract
domain (D ×D)♯. Several techniques [CC94] can be devised to obtain such an abstraction.
Using sets of input/output pairs amounts to choosing as abstraction the setD♯×D♯ which is non
relational. In [JGR05] a relational abstraction is proposed, it requires however D♯ to be finite.

The analyzer proposed by Sotin and Jeannet in [SJ11] is able to infer input/output relations
of the form proposed in Section 5.4. Nevertheless they consider a subset of C that does not
contain pointer arithmetic, union types nor pointer casts.

Müller-Olm and Seidl [MS07] and Sharma and Reps [SR17] proposed domains specialized
in the discovery of numerical input/output relations on statements, in both cases the relations
discovery is performed during the analysis of the statement by a special domain.

In Section 5.4 we mentioned that we implemented a mechanism to infer framing in order to
improve analysis reusability, framing mechanisms are fundamentals in tools based on separation
logic such as Smallfoot [BCO05] or Infer [CDD+15b].

We mentioned in the introductory remarks that two families of modular analysis can be
designed: the top-down and bottom-up approaches. Several works tried to mix these two tech-
niques to get the better of both world [NKH04, ZMNY14].

Inmore recent works, Kranz et al.[KS18] define an inter-procedural iterator based on Heyting
completions. In [BH19] the authors provide a bottom-up inter-procedural analyzer targeting
numerical properties. They choose an approach that is dual to ours as they build their summary
partitioning by successive refinements whereas we enlarge ours.

5.7 Conclusion

Upon the String abstraction from Chapter 4, which is an abstraction able to handle real life C
code, with an added precision for the length of C buffer, we defined an inter-procedural iterator
designed to increase statement analysis reusability without having to lose precision. We provided
preliminary experimental results by testing ourmodular analysis on examples from the literature.

These preliminary experimental results were used as a measure of the expressiveness capa-
bilities and reusability of the contracts inferred by our inter-procedural iterator. The expres-
siveness of the contracts seems sufficient for a precise analysis, however the reusability should
be improved for the iterator to scale. The generalization mechanism introduced by the use of
contracts widening ensures that the number of reanalysis of a given statement will be bounded
thus ensuring reusability ultimately. This can be bettered by an improved framing mechanism.
At this point framing is based purely on removing memory zones that are not reachable in the
state at call site, however reachability does not imply that the memory zone is useful to the anal-
ysis (consider for example the set of global variables in a C program). In order to improve the
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framing mechanism we decided to design a pre-analyzer. Its goal is to discover which memory
zones might be read and/or modified by the statement. This distinction is important as, if we
know that a memory zone is read but unmodified by a statement, it is kept in the input state,
but its output value can be refined by the input value when the analysis was too imprecise.

A first pre-analysis was designed (not presented in this thesis), the memory was represented
as a graph, which nodes were to be folded during the actual analysis at call site. However we
were not able to design a precise enoughwidening operator for the analysis of looping statements
as the graph structure did not provide enough regularities.

In order to add regularities, we decided to represent the set of potentially accessed memory
zones as a set of C pointer manipulating expressions. This led to the development of the tree
abstraction presented in Chapter 7.





Chapter 6

Numerical Abstraction

6.1 Introduction

As emphasized in Chapter 2 and by their extensive use in Chapters 4, 5 and 7, static analysis by
abstract interpretation relies heavily on the use of numerical abstractions. Classical numerical
abstractions represent sets of maps over a finite set of variables V to I, where I ∈ {Z, Q, R}.
In this introduction, we take a look at some C and Python programs and show how classical
numerical domains could not be used for their analysis. We emphasize that this comes from two
severe restrictions of these domains which are that definition sets of represented numerical maps
must be (1) homogeneous and (2) finite and set at analysis start up.

6.1.1 Homogeneous definition sets

In Chapter 5, we emphasized that several analyses of the body of a function could be done at once
by joining the different states at call sites. Indeed consider Program 6.1, in order to analyze the
body of f() (resp. g()) we need to provide abstract transformers for statement (resp. ). In a
classical top-down analysis abstract post-conditions of function calls are computed by inlining the
body of the function (as was described in Chapter 5) and analyzing it. However in the example
of Program 6.1 we see that performing only one analysis with input *x = 0 would be precise
enough to provide post-conditions for both calls. However in order to provide an input/output
relation (for function incr) that is usable both for and for , its input condition needs to be
satisfied by environments on both one and two variables. As has been shown in Chapter 5, input
conditions are described as an abstract element, therefore we need to define a representation for
sets of numerical environments with heterogeneous definition sets.

Some features in programming languages like C or Python can produce sets of maps defined
on different supports (called heterogeneous sets) at a given program point, e.g. an if statement
in a C program where only one branch dynamically allocates memory. As another example, con-
sider Program 6.2 written in Python. At program point , all concrete numerical environments
are defined on x and y. They can be abstracted using a numerical domain such as intervals or
polyhedra. However x is changed into a string under the condition that x ⩽ y. Therefore some of
the reachable numerical environments at program point are defined on {x, y}, while others only
on {y}. Usual numerical domains do not provide a way to represent such sets of environments,
hence several techniques have been devised to answer this problem. A first approach would be
to partition the set of reachable states according to their support, here this would yields the two
polyhedra: {0 ⩽ y,y ⩽ 10} and {0 ⩽ y,y < x, x ⩽ 10}. Albeit very precise, this technique is
costly as it might induce an exponential blow-up. Another method to represent such environ-
ments would be to remove x from the abstract environment to denote that it is not numerically
defined. Using the interval domain, the abstract environments that need to be merged at the end
of the first if statement would be (y 7→ [0; 10]) and (x 7→ [0; 10], y 7→ [0; 10]). It is then possible

67
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1 void incr(int* x) {

2 *x = *x + 1

3 }

4

5 int f() {

6 int a = 0;

7 incr(&a);

8 }

9

10 int g() {

11 int b = 0;

12 int c = 42;

13 incr(&b);

14 }

Program 6.1: Uncomparable input states

1 # 0<=x<=10 and 0<=y<=10

2 if x<=y:

3 x = "hello"

4

5 if x==y:

6

Program 6.2: Python heterogeneous envi-
ronments

1 if (. . . ) {

2 s1 = malloc(n);

3 s1[x] = '\0';

4 } else {

5 s2 = malloc(n);

6 s2[x] = '\0';

7 }

Program 6.3: String initialization

to slightly modify the usual interval join operation: so that the invariant inferred for program
point is (x 7→ [0; 10], y 7→ [0; 10]):

m1 tm2 = λx ∈ def(m1)∪ def(m2).


m1(x)tI m2(x) if x ∈ def(m1)∩ def(m2)
m1(x) otherwise if x ∈ def(m1)
m2(x) otherwise

where tI is the interval join operator. Indeed if the numerical value of x is read, we know
that it is in the range [0; 10]. This technique has the major drawback that it can only be used
with non relational domains, here we used intervals and could therefore not prove that is
unreachable. Finally, we could add a spurious binding to xwhen it is undefined [All08]. However
setting x to any value in the interval [0; 10] at the end of the else branch induces a precision loss
preventing us from proving that is unreachable. In order to get this result we would need to
choose for x a value not in its original interval. Choosing a spurious value for x will necessarily
induce a precision loss, moreover guessing the value “minimizing” the precision loss is hard. The
abstraction presented in this chapter is relational and does not require adding spurious values, it
is therefore able to prove that is unreachable. Indeed the invariant inferred at is: if x and y

are numerically defined then x > y. Note that we do not need partitioning to infer this invariant.
Even though it is not directly related to a language feature, one might need to represent

sets of maps defined over heterogeneous supports in order to build higher level abstractions.
These abstractions are parameterized by an underlying numerical domain in which they store
variables [Cou03]. For example consider Prog. 6.3 in which two strings are conditionally al-
located. Reusing the abstraction from Chapter 4, the numerical invariant at program point
(resp. ) will be {s1l ⩽ x} (resp. {s2l ⩽ x}), where s1l (resp. s2l) denotes the position of the
first '\0' in s1 (resp. s2). Classical homogeneous numerical domains cannot provide a precise
postcondition for the if statement as the two environments to be joined are not defined on the
same set of variables, the only sound result would thus be > whereas we would like to obtain
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1 void* memset(void* b, int c, size_t len) {

2 char* p = (char*)b;

3 for (size_t i = 0; i != len; ++i) {

4 p[i] = c;

5 }

6 return b;

7 }

Program 6.4: Memset

{s1l ⩽ x∧ s2l ⩽ x} as a postcondition, with the meaning that whenever s1l and x are defined,
they satisfy s1l ⩽ x, similarly for s2.

As mentioned in the outline of this thesis, the goal of Chapter 7 will be to set up abstrac-
tions for sets of trees with numerically-labeled leaves as we want to represent sets of expres-
sions, encoding access paths in data structures. Sets considered may contain trees with different
number of numerically-labeled leaves. Our abstraction will rely on numerical domains to store
constraints on leaves. Therefore Chapter 7 will assume the existence of numerical domains over
heterogeneous definition sets.

6.1.2 Fixed finite definition set

Another restriction of classical numerical domains is that they can only represent sets of maps
over of given finite definition sets. Program 6.4 is a definition of the memset function which, given
a pointer b, a constant c and an integer len, sets b[0], b[1], …, b[len− 1] to the value c. Using
a numerical domain (e.g. the octagons) to precisely represent the post-condition of memset we
need an abstract element with definition set containing b[0], b[1], …, b[len− 1]. This is not
possible with classical numerical domains when len is a parameter of this analysis. Solutions
based on variable summarization [GDD+04] have been devised to answer this problem, we will
show in this chapter that this method is compatible with the representation of heterogeneous
environments.

6.1.3 Outline of the chapter.

The remainder of the chapter will be organized as follow: Section 6.2 will define the concrete
semantics we want to abstract. Section 6.3 will describe state of the art techniques usually em-
ployed to circumvent restrictions presented in this introduction. There will also be mentions of
their limitations and why we chose to devise new techniques to answer these restrictions. Sec-
tion 6.4 will give the core definitions and results of this chapter while emphasizing on one of the
main drawbacks of our work: the handling of numerical domains over integers. This is addressed
in the following Section 6.5. Section 6.6 then provides an extension of the numerical abstraction
of Section 6.4, this extension provides a precision/efficiency trade-off. Finally Section 6.7 focuses
on the lifting of classical concretization to represent environments with potentially unbounded
definition set by means of summarizing variables.

6.2 Concrete semantics

In this section we define the concrete semantics we are interested in abstracting. This semantics
is defined over the concrete world: M ∆

= ℘(V ↛ I), the set of all sets of partial maps from V to
I. M is ordered by the inclusion relation ⊆. Once our concrete semantics introduced, we show
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1 0 a = 0

2 1 if ?:

3 2 a = 1

4 3 b = 1 4

5 else:

6 5 c = 2 6

7

8
7 if b <= 5:

9 8 a = 2

10
9

Program 6.5: Heterogeneous
environments Python

S 0 = {()} (6.1)

S 1 = SJa← 0KZ ◦ SJadd(a)KZ(S 0 ) (6.2)

S 2 = SJAssume(?)K(S 1 ) (6.3)

S 3 = SJa← 1KZ ◦ SJadd(a)KZ(S 2 ) (6.4)

S 4 = SJb← 1KZ ◦ SJadd(b)KZ(S 3 ) (6.5)

S 5 = SJAssume(?)KZ(S 1 ) (6.6)

S 6 = SJc← 1KZ ◦ SJadd(c)KZ(S 5 ) (6.7)

S 7 = S 6 ∪ S 4 (6.8)

S 8 = SJAssume(b ⩽ 5)KZ(S 7 ) (6.9)

S 9 = SJa← 2KZ ◦ SJadd(a)KZ(S 8 )

(6.10)

that our definitions are expressive enough to model the behaviour of the examples introduced in
Section 6.1.

6.2.1 Definition

Our concrete semantics will be defined only by the few following concrete transformers:
• SJAssume(c)KI, where c ∈ expr
• SJv← eKI, where e ∈ expr and v ∈ V

• SJremove(v)KI, where v ∈ V

• SJadd(v)KI, where v ∈ V

we recall from Chapter 2 that SJstmtKWI ∈ ℘(W → I) → ℘(W → I) designates the concrete
transformers operating on the lattice ℘(W → I). For presentation purposes, whenever R ∈ M

and W ∈ ℘(V) we denote RW
∆
= {ρ ∈ R | def(ρ) = W}.

Definition 6.1 (Concrete semantics on (M,⊆)). In the following R ∈M:

SJAssume(c)KI(R) =
⋃

fv(c)⊆W⊆V

SJAssume(c)KWI (RW)

SJx← eKI(R) =
⋃

({x}∪fv(e))⊆W⊆V

SJx← eKWI (RW)

SJremove(v)KI(R) =
⋃

W⊆V

{ρ|W\{v} | ρ ∈ RW}

SJadd(v)KI(R) =
⋃

W⊆V\{v}

{ρ[v 7→ i] | ρ ∈ RW, i ∈ I}∪
⋃

{v}⊆W⊆V

RW

Remark 6.1. Please note that in Definition 6.1, environments undefined on variables appearing
in a statement do not have a post-condition for the considered statement. We will show in the
following Section 6.2.2 that this definition models the behavior of programs that manipulate
heterogeneous environments.

6.2.2 Example of use

Program 6.5 is a small Python code snippet manipulating integer variables. Equations 6.1
to 6.10 provide the definitions of the set of reachable states at each program point, from 0 to



6.3. STATE OF THE ART 71

9 . Using definitions from Definition 6.1, we solve this system and get the following:

S 1 = SJa← 0KZ

 ⋃
W⊆V\{a}

{ρ[a 7→ i] | ρ ∈ ({()})W, i ∈ Z}∪
⋃

{v}⊆W⊆V

({()})W

 (6.11)

= SJa← 0KZ ({()[a 7→ i] | i ∈ Z}∪ ∅) (6.12)
= SJa← 0KZ ({(a 7→ i) | i ∈ Z}) (6.13)

=
⋃

({a}∪fv(0))⊆W⊆V

SJa← 0KWZ ({(a 7→ i) | i ∈ Z}W) (6.14)

= SJa← 0K{a}Z ({(a 7→ i) | i ∈ Z}) (6.15)
= {(a 7→ 0)} (6.16)

S 2 = S 1 (6.17)

S 3 = SJa← 1KZ ◦ SJadd(a)KZ(S 2 ) (6.18)

= SJa← 1KZ

 ⋃
W⊆V\{a}

{ρ[a 7→ i] | ρ ∈ ({(a 7→ 0)})W, i ∈ Z}∪
⋃

{a}⊆W⊆V

({(a 7→ 0)})W

 (6.19)

= SJa← 1KZ (∅ ∪ {(a 7→ 0)}) (6.20)
= {(a 7→ 1)} (6.21)

S 4 = SJb← 1KZ

 ⋃
W⊆V\{b}

{ρ[b 7→ i] | ρ ∈ ({(a 7→ 1)})W, i ∈ Z}∪
⋃

{b}⊆W⊆V

({(a 7→ 1)})W

 (6.22)

= SJb← 1KZ ({(a 7→ 1)[b 7→ i] | i ∈ Z}∪ ∅) (6.23)
= {(a 7→ 1, b 7→ 1)} (6.24)

S 6 = {(a 7→ 1, c 7→ 2)} (6.25)

S 7 = {(a 7→ 1, b 7→ 1), (a 7→ 1, c 7→ 2)} (6.26)

S 8 = SJAssume(b ⩽ 0)KZ(S 7 ) (6.27)

=
⋃

fv(b <= 5)⊆W⊆V

SJAssume(b ⩽ 0)KWZ ({(a 7→ 1, b 7→ 1), (a 7→ 1, c 7→ 2)}W) (6.28)

= SJAssume(b ⩽ 0)K{a,b}
Z ({(a 7→ 1, b 7→ 1)}) (6.29)

= {(a 7→ 1, b 7→ 1)} (6.30)
S 9 = {(a 7→ 2, b 7→ 1)} (6.31)

This example emphasizes that our choice of semantics enables the description of Python be-
havior. Indeed Eq. 6.28 and 6.29 show that only environments containing variables appearing
in expressions are kept. Moreover Eq. 6.18 to 6.21 underline the fact that add(v) only adds an
unconstrained variable v in environment that do not yet contain v. This ensures that every vari-
able assignment can be statically enriched with an add(v), without modifying the environments
that do contain v.

In the following section we describe existing works that enable the representation of M.

6.3 State of the art

6.3.1 Partitioning

The most used technique for the representation of sets of numerical maps with heterogeneous
supports is the use of partitionings [RM07]. Upon one of the numerical abstraction from Sec-
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tion 2.4 we build the following partitioning domain :

Definition 6.2 (Partitioning domain). The partitioning domain is defined to be: P♯ = {>}∪ {m ∈
ΠW:℘f(V)N

W | def(m) is finite} with concretization:

γP♯(m) =

{
M if m = >⋃

W∈def(m) γ
W(m(W)) otherwise

Moreover when every NW enjoys a Galois connection with the concrete (the abstraction function
is then denoted: αW) we can define an abstraction function:

αP♯(P) =

{ ⊎
W∈{def(ρ)|ρ∈P}(W 7→ αW({ρ ∈ P | def(ρ) = W})) if |{def(ρ) | ρ ∈ P}| < ∞
> otherwise

Example 6.1. Consider the set of partial maps: P = {

(
x 7→ α

y 7→ α+ 1

)
| α ∈ R} ∪ {

(
x 7→ β

)
| β ∈

{0, 2}}. We build a partitioning domain upon the octagon domain (which enjoys an abstraction
function). Octagons are represented as conjunctions of linear constraints. This yields: αP♯(P) =(
{x} 7→ {0 ⩽ x∧ x ⩽ 2}
{x,y} 7→ {y = x+ 1}

)
. This can then be concretized to: γP♯(αP♯(P)) = {

(
x 7→ α

y 7→ α+ 1

)
| α ∈

R} ∪ {
(
x 7→ β

)
| β ∈ [0, 2]}. We can see that a precision loss occurred due to the convexity of

octagons.

Definition 6.3 (Order relation). On the partitioning domain we define the following relation:

vP♯
∆
= {(m1,m2) | m2 = >

∨ (m1 6= >∧ ∀W ∈ def(m1),W ∈ def(m2)∧m1(W)vWm2(W)}

Example 6.2. Reusing elements from Example 6.1:(
{x,y} 7→ {y = 1, x = 0}

)
v

(
{x} 7→ {0 ⩽ x∧ x ⩽ 2}
{x,y} 7→ {y = x+ 1}

)

Proposition 6.1 (Galois connection). If for everyW ∈ ℘(V) we have a Galois connection: (℘(W→

I),⊆) −−−−→←−−−−
αW

γW

(NW,vW), then we have the following Galois connection: (M,⊆) −−−−→←−−−−
α

P♯

γ
P♯

(P♯,vP♯)

See proof on page 147.

Definition of abstract operators. Now that we have defined the abstract domain as well
as its concretization, we provide abstract operators that are sound relative to this concretiza-
tion. Please note that the concretization function is not only defined as a disjunction over
sets of variables on which the partitioning is defined, but this disjunction is disjoint, indeed
W 6= W ′ ⇒ γW(. . . ) ∩ γW ′

(. . . ) = ∅. This disjointedness enables a straightforward definition
of most abstract operators as the application of the operator on every underlying numerical ele-
ment. As an example consider the two following definitions:

Definition 6.4 (Join operator).

m1 tm2
∆
=

⊎
W∈def(m1)∪def(m2)

W 7→


m1(W)tWm2(W) if W ∈ def(m1)∩ def(m2)
m1(W) otherwise if W ∈ def(m1)
m2(W) otherwise if W ∈ def(m2)


Definition 6.5 (Abstract transfer functions).

S♯JstmtK(m1)
∆
=

⊎
W∈def(m1)

(
W 7→ S♯JstmtKW(m1(W))

)
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As emphasized by the two previous definitions, the cost of performing one abstract operation
on an abstract element m is the sum of the cost of performing the operation on every abstract
element in the image of m. Let us assume that we want to represent a concrete environment
containing n mandatory variables and p optional variables. Consider moreover the worst case
scenario where we need to abstract environments containing all possible subsets of the optional
variables, we get a map with an image of size 2p. Therefore the cost of computing an abstract
operation is exponential in the number of optional variables represented. Please note moreover
that in the case of polyhedra, the cost of performing one operation on the underlying polyhedron
is already exponential in the number of variables.

6.3.2 Encoding of optional variables via avatars

Liu and Rival in [LR15] provides an abstraction able to handle programs manipulating optional
numerical variables. Their abstraction lifts any numerical domain built as a conjunction of con-
straints (which is the case for intervals, octagons, polyhedra). We present here – in a simplified
way – the idea of their representation: for every optional variable x, two variables x+ and x−,
called avatars are allocated in the underlying numerical domain. If x+ and x− can be concretized
to the same value α then x is concretized to None or α, otherwise it is concretized to None. We
recall here the definition of this concretization function, X denotes the set of optional variables,
X+ (resp. X−) is the set of variables x+ (resp. x−) when x ∈ X, finally Y denotes the set of
non-optional variables.

γ(N♯)
∆
= {ρ | ∃τ ∈ γY∪X+∪X−

(N♯),∀y ∈ Y, ρ(Y) = τ(Y)∧

∀x ∈ X, (ρ(x) = τ(x+) = τ(x−)∨ ρ(x) = None)}

As an example, consider Program 6.6, assuming the abstraction is built upon the polyhedron
domain, the abstraction computed for program point (at line 5) is {x+ = 1, x− = 0, y = 0},
the concretization of which is {(x 7→ None, y 7→ 0)}, as x+ and x− could not be concretized to the
same value. At program point (at line 7), the computed abstraction is {y = x+,y = x−}, which
concretization is: {(x 7→ None, y 7→ α) | α ∈ Z} ∪ {(x 7→ α, y 7→ α) | α ∈ Z}. The abstraction
provided in this chapter diverges from the one introduced by Liu and Rival on the following
points:

• As emphasized by the previous example, their abstraction cannot express that an optional
variable is never None at some program point

• They are able to express some relations between the “support” (in their case: the set of
variables not mapped to None) of the representedmaps with the numerical values associated
to variables. This can not be done in the abstraction presented thereafter

• In their case variables must be defined as optional or non-optional. Setting all variables to
optional to represent Python-like behaviors, would induce a huge overhead as the number
of variables would be doubled.

6.3.3 A folk technique for non relational domains

We now present a classical technique used in analyzers where the underlying domain is non rela-
tional. To simplify, assume that the abstract element is a mapm, associating to each variable v a
set of potential concrete value m(v). Consider now the three following concretization functions:

γ⊇(m) = {ρ ∈M | def(ρ) ⊇ def(m)∧ ∀v ∈ def(m), ρ(v) ∈ m(v)}

γ=(m) = {ρ ∈M | def(ρ) = def(m)∧ ∀v ∈ def(m), ρ(v) ∈ m(v)}

γ⊆(m) = {ρ ∈M | def(ρ) ⊆ def(m)∧ ∀v ∈ def(m), ρ(v) ∈ m(v)}
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1 int option x;

2 int y = 0;

3

4 if (?) {

5 x = None;

6 } else {

7 y = x;

8 }

Program 6.6: Optional variable manipulations

γ⊇, γ= and γ⊆ are three extensions of the classical interval concretization. γ⊇ does not provide
any constraints on variables to which no interval was associated. On the contrary, γ= enforces
environments to be defined precisely on the definition set of the interval. Finally γ⊆ allows
environments to be defined only on a subset of the support of the interval map. Contrary to γ=,
this allows the representation of heterogeneous maps, and contrary to γ⊇ provides constraints
on all variable present in the support.

We will now illustrate the shortcomings of γ⊇ and γ=. Let us consider program 6.7, written
in Python. The top-down analysis of this program yields, at program point , the abstractions
S
♯

,= = S
♯

,⊇ = S
♯

,⊆ = (x 7→ [1; 1]). At program point we get: S
♯

,= = S
♯

,⊇ = S
♯

,⊆ = (x 7→
[0; 0],y 7→ [2; 2]) Let us now consider the possible post-conditions for the inner-most if statement
for each semantics.

• For the analysis with semantics γ⊇: The post-condition needs to be an over-approximation
of γ⊇(S

♯
,⊇) ∪ γ⊇(S

♯
,⊇) = {ρ | ∃ρ ′, ρ = (x 7→ 1) ] ρ ′ ∨ ρ = (x 7→ 1, y 7→ 2) ] ρ ′} =

{(x 7→ 1, . . . )}. Therefore the strongest possible post-conditions is (x 7→ [1; 1]). We lost all
information on y.

• For the analysis with semantics γ=: We need to provide an over-approximation of the con-
crete state γ=(S

♯
,=) ∪ γ=(S

♯
,=) = {(x 7→ 1), (x 7→ 0,y 7→ 2)}, however we have seen that

γ= can only represent precisely sets of maps with homogeneous supports. For soundness
reasons, the only possible post-conditions is therefore >. Loosing information on both x

and y.
• For the analysis with semantics γ⊆: We need to provide an over-approximation of the

concrete state γ⊆(S
♯

,⊆) ∪ γ⊆(S
♯

,⊆) = P
∆
= {(), (y 7→ 2), (x 7→ 1), (x 7→ 0), (x 7→ 0, y 7→ 2)}.

This can be represented by: (x 7→ [0; 1], y 7→ [2; 2]), with concretization P ∪ {(x 7→ 1, y 7→
2)}. Note that the analysis induced over-approximations but was more precise than the two
other semantics.

The abstract union operation for the γ⊆ semantics comes very naturally from the usual join
of intervals: when joining two abstract environmentsm andm ′, (1) if a variable v is bound inm

and in m ′, it is bound in the result with the join of m(v) and m ′(v); (2) if a variable v is bound
in only one of the input (w.l.o.g. say m), it is bound in the result with m(v); (3) finally, if it is
unbound in both operands, it is unbound in the result.

For all the aforementioned reasons γ⊆ has been used as the canonical extensions of intervals
to heterogeneous environments.

We used this technique as a starting point for the definition of a new abstraction used for
the representation of heterogeneous maps. Let us therefore use the opportunity of the presen-
tation of this non-relational approach to introduce our new abstraction. This abstraction will
be not only more precise than γ⊆, but it will also generalize the method to relational domains.
Indeed the join operation provided in the previous paragraph can be trivially generalized to any
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1 x = 0

2 if (?):

3 if (?):

4 x = 1

5 else:

6 y = 2

7 else:

8 if (?):

9 x = 3

10 else:

11 z = 4

Program 6.7: Heterogeneous Python
environments

non-relational domain, however as we will see, lifting to non-relational domains is not straight-
forward.

Support abstraction. Even though abstraction γ⊆ grossly over-approximates the set of ac-
cepted supports, we have shown that it was able to provide interesting numerical constraints. Our
first improvement will be to enrich the interval environment with an abstraction for supports that
provides more information that an upper-bound. The set of supports is a set of sets of variables,
that is a set of elements from ℘(V). Therefore we choose a simple lower-bound/upper-bound ab-
straction. As an example, the abstraction for program point will be: S♯ = 〈(x 7→ [1; 1]), {x}, {x}〉,
and for program point : S

♯ = 〈(x 7→ [0; 0], y 7→ [2; 2]), {x, y}, {x, y}〉, the join of which will be
X♯ = 〈(x 7→ [0; 1], y 7→ [2; 2]), {x}, {x, y}〉. In X♯, {x} is a lower-bound of the set of supports of
the represented maps, whereas {x, y} is an upper-bound. Hence variable x is present in every
environment, and y is optional. The concretization of X♯ will be: {(x 7→ 0, y 7→ 2), (x 7→ 1, y 7→
2), (x 7→ 0), (x 7→ 1)}. This is more precise than the classical approach. The classical approach γ⊆
is the special case where the lower-bound is always set to ∅ and the upper-bound to the definition
set of the interval map of the abstract element. The analysis of the other inner-most if would
yield the abstraction (x 7→ [0; 3], z 7→ [5; 5]), hence the post-condition of the entire Program 6.7
would yield: Y♯ = 〈(x 7→ [0; 3], y 7→ [2; 2], z 7→ [4; 4]), {x}, {x, y, z}〉. Indeed when computing a
join we will unite the upper-bounds and intersect the lower-bounds. Once more, note that this
induces a support over-approximation, indeed the concretization of Y♯ contains the environment
(x 7→ 0, y 7→ 2, z 7→ 4), even though no concrete environment reachable in Program 6.7 is defined
on {x, y, z}.

6.4 The CLIP abstraction

6.4.1 Abstraction definition

In order to abstract sets of maps with heterogeneous definition sets, we start by abstracting the
potential definition set. We choose a simple lower-bound/upper-bound abstraction (l and u in
the following definition). Moreover we need to abstract the potential mappings given a definition
set: this is done using a classical numerical domain. Contrary to partitioning, we will use only
one numerical abstract element, defined on the upper-bound u, to represent all environments
(instead of one abstract element for each definition set). We also add a > element, used in
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x

y

z

Figure 6.1: Projections between {z} and {x,y, z}

the case where the number of different supports that need to be represented is infinite. As the
abstract numerical element component of our abstraction is given meaning across projections on
all variable sets in an interval from the variable powerset lattice, the abstraction defined in this
section will be referred hereinafter as the CLIP abstraction (CLosed under Interval Projection).

Definition 6.6 (Abstract elements). We define the following set: M♯ ∆
= {〈N♯, l,u〉 | l,u ∈

℘f(V)∧ l ⊆ u∧N♯ ∈ Nu ∧N♯ 6= ⊥u} ∪ {>,⊥}. An element of M♯ is therefore: either >, ⊥
or a triple 〈N♯, l,u〉 where l and u are finite sets of variables such that N♯ is defined over u.

Definition 6.7 (Concretization function). Abstract elements from M♯ are concretized to M
thanks to the following concretization function:

γ(⊥) = ∅ γ(>) = M

γ(〈N♯, l,u〉) = {ρ ∈W→ I | l ⊆W ⊆ u∧ ρ ∈ γu(N♯)|W}

Example 6.3. As an example consider γ(〈{x = y, x ⩽ 3, z = 0}, {x}, {x,y, z}〉) = {(x 7→ a) | a ⩽
3} ∪ {(x 7→ a,y 7→ a) | a ⩽ 3} ∪ {(x 7→ a, z 7→ 0) | a ⩽ 3} ∪ {(x 7→ a,y 7→ a, z 7→ 0) | a ⩽ 3}. As
intended, the resulting set of maps contains maps with different definition sets.

Example 6.4. Figure 6.1 depicts the octagon (in ): N♯ = {x + z ⩽ 3, x ⩾ 1, z ⩾ 1}. The
concretization of the abstract element 〈N♯, {z}, {x,y, z}〉 is the union: ∪ ∪ ∪ .

The concretization function from Definition 6.7 defines the set of represented maps as the
union of several projections of some numerical abstract element. Therefore the definition of the
following set abstract operators will need the ability to perform the test: given N♯ ∈ Nu and
N♯′ ∈ Nu ′ , with u ⊆ u ′ does γu(N♯) ⊆ γu ′

(N♯′)|u. Indeed γ(〈N♯, l,u〉) ⊆ γ(〈N♯′, l ′,u ′〉) as
soon as l ′ ⊆ l ⊆ u ⊆ u ′ and γu(N♯) ⊆ γu ′

(N♯′)|u. As this test is not necessarily computable,
we will need to define an abstract operator called proj-inclusion (for projection and inclusion),
denoted |v . We will say that the operator is sound whenever ∀u ⊆ u ′, ∀N♯ ∈ Nu,N♯′ ∈
Nu ′ ,N♯ |v N♯′ ⇒ γu(N♯) ⊆ γu ′

(N♯′)|u. The following subsection provides the definition of
such an abstract operator.

6.4.2 Composing inclusion and projection

We assume in this section that the projection operator of the underlying domain is exact, it is
the case for intervals and octagons over Z or Q and for polyhedra over Q. The soundness of the
projection operator ensures that it is always true that γW(N♯)|W ′ ⊆ γW ′

(N♯
|W ′), the exactness of

the projection operator is stronger and ensures that ∀W,W ′ ∈ ℘f(V),∀N♯ ∈ NW,γW(N♯)|W ′ =

γW ′
(N♯

|W ′). The following definition and proposition motivates this assumption.
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Definition 6.8 (Proj-incl operator). Given N♯ ∈ Nu and N♯′ ∈ Nu ′ , with u ⊆ u ′, we define the
following proj-incl operator: N♯ |v N♯′ ∆

= N♯vuN
♯′
|u
.

Proposition 6.2 (Soundness of |v). Whenever the abstract projection operator □|□ is exact, the
proj-incl operator from Definition 6.8 is sound.

See proof on page 147.

Remark 6.2. Let us note that the precision of the operators defined in the rest of the CLIP abstrac-
tion depends greatly upon the precision of the |v operator. The version defined in Definition 6.8
albeit precise is not sound as soon as the underlying projection operator is not exact, see ex-
amples in Section 6.5. The alternative definition: N♯ |v N♯′ ∆

= N
♯
|u ′vu ′

N♯′ is always sound1,
however the CLIP abstraction will not be able to retrieve constraints on optional variables.

Using this newly defined |v operator we can move on to the definition of the abstract set
operators of the CLIP abstraction.

6.4.3 Operator definitions

Abstract inclusion test

We start by providing a comparison operator on M♯. As we ensured that, in a triple 〈N♯, l,u〉,
N♯ 6= ⊥u we have ∀l ⊆ W ⊆ u,γu(N♯)|W 6= ∅. Hence a necessary condition for γ(〈N♯, l,u〉) ⊆
γ(〈N♯′, l ′,u ′〉) is that l ′ ⊆ l ⊆ u ⊆ u ′. The numerical inclusion can then be tested with the |v
operator from previous section.

Definition 6.9 (Order relation v). On M♯ we define the following comparison operator:

〈N♯, l,u〉 v 〈N♯′, l ′,u ′〉 ∆⇔ l ′ ⊆ l ⊆ u ⊆ u ′ ∧N♯ |v N♯′

this comparison is trivially extended to > (resp. ⊥) as being the largest (resp. smallest) element
in M♯.

Proposition 6.3 (Soundness of v). v is a sound abstraction of ⊆. This means that X♯ v Y♯ ⇒
γ(X♯) ⊆ γ(Y♯). Moreover whenever the comparison operator of the underlying domain is complete,
v is complete as well, which means that X♯ v Y♯ ⇐ γ(X♯) ⊆ γ(Y♯).

See proof on page 147.

Example 6.5. Consider the following abstract element X♯ ∆
= 〈{x = y, x ⩽ 3, z = 0}, {x}, {x,y, z}〉,

introduced in Example 6.3. Consider moreover Y♯ ∆
= 〈{x ⩽ y,y ⩽ 2}, {x,y}, {x,y}〉 representing

the concrete set of environments: {(x 7→ α,y 7→ β) | α ⩽ β∧ β ⩽ 2}. We have {x} ⊆ {x,y} ⊆
{x,y} ⊆ {x,y, z}. Moreover {x = y, x ⩽ 3, z = 0}|{x,y} = {x = y, x ⩽ 3} and as {x ⩽ y,y ⩽
2}v{x,y}{x = y, x ⩽ 3} we have Y♯ v X♯.

1Themain difference with the definition fromDefinition 6.8 is the fact that the abstract operation pre inclusion test
is applied on the left operand, which can be approximated while preserving the soundness (but loosing precision) of
the overall operator. Whereas over-approximating the right operand is unsound before an inclusion test, more details
are provided in Section 6.5
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Algorithm 6.1: strengthening operator
Input : N♯′, C: a set of constraints, N♯

1 ∈ Nu: a soundness threshold on environment u,
N

♯
2 ∈ Nv: a soundness threshold on environment v

Output: res an abstract element over-approximating N
♯
1 on u and N

♯
2 on v

1 res← N♯′;
2 foreach c ∈ C do
3 test← S♯JAssume(c)Ku∪v

(res);
4 if N♯

1 |v test∧N
♯
2 |v test then

5 res← test;
6 end
7 return res;

Abstract union operator

We now need to define a join operator t that abstracts the classic set operator ∪. The possible
environments resulting from the union of two abstract element 〈_, l,u〉 and 〈_, l ′,u ′〉 are en-
vironments defined at least on l ∩ l ′ and at most on u ∪ u ′, therefore the result from this join
operation will be of the form 〈_, l ∩ l ′,u ∪ u ′〉, note however that this might induce an over-
approximation of the set of represented environments. Section 6.6 is dedicated to the definition
of an abstraction aiming at removing this over-approximation.

The numerical component can not be computed by simply applying the join operator from
the underlying domain on both abstract component as they might have different definition sets.
A first sound, naive solution would be to extend their respective definition set and to perform
the abstract operation on the resulting elements: N

♯
1 |u∪u ′tu∪u ′

N
♯
2 |u∪u ′ . However consider

U
♯
1 = 〈{x = y}(= N

♯
1), {x,y}, {x,y}〉 and U

♯
2 = 〈{x = z}(= N

♯
2), {x, z}, {x, z}〉 , where the underlying

domain is the octagon domain over Q where elements are represented as a set of linear con-
straints (e.g. {x = y}). The concretization of U♯

1 is {(x 7→ α,y 7→ α) | α ∈ Q}, the concretization
of U♯

2 is {(x 7→ α,y 7→ α) | α ∈ Q}. We have N
♯
1 |{x,y,z} = {x = y} and N

♯
2 |{x,y,z} = {x = z}, hence

N
♯
1 |{x,y,z}t{x,y,z}N♯

2 |{x,y,z} = >{x,y,z}. Therefore using this as the numerical component would
yield the abstract element 〈>{x,y,z}, {x}, {x,y, z}〉 the concretization of which is the whole set of
numerical maps defined on any set between {x} and {x,y, z}. Consider now the abstract element
in M♯: U

♯
3 = 〈{x = y, x = z}(= N

♯
3), {x}, {x,y, z}〉. The concretization of U♯

3 over-approximates
the union of the concretization of U♯

1 and U
♯
2, and its numerical component is more precise than

>. We note that the numerical constraints appearing inN
♯
3 could be found inN

♯
1 orN

♯
2, therefore

in order to remove the aforementioned imprecision we define a refined abstract union operator,
denoted as t? , that uses constraints found in the inputs in order to refine its result. This is done
using the strenghtening operator of Algorithm 6.1 which adds constraints from C that do not
make the projection of N♯′ to u (resp. v) lower than the threshold N

♯
1 (resp. N♯

2).

Definition 6.10 (t? operator). Let N♯
1 ∈ Nu, N♯

2 ∈ Nv be two numerical environments, let
c = u∩ v we define:

N
♯
1 t?N

♯
2 = let N♯′ = (N♯

1 |ctcN
♯
2 |c)|u∪v in

let C = constraints(N♯
1)∪ constraints(N♯

2) in

strengthening(N♯′,C,N♯
1,N♯

2)

Remark 6.3. • The relative precision of t? depends upon the order of iteration over con-
straints c ∈ C in Algorithm 6.1. Our implementation currently iterates in the order in
which constraints are returned from the abstract domains. More clever heuristics will be
considered in future work.
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• No hypothesis on the set of constraints given to strenghtening is required to ensure sound-
ness. We chose the set of constraints found in the arguments of the join as a first heuristic.
The more constraints are given to strengthening, the more precise the result will be.

• N
♯
1 t?N

♯
2 starts by performing the join over the domain c, the result is then strengthened.

Other strenghtening(N♯′,N♯
1 ∈ Nu,N♯

2 ∈ Nv) operator could be defined, however in
order to ensure soundness of t? , it must satisfy the two following constraints for every set
of constraints C:

N
♯
1v

ustrenghtening(N♯′,C,N♯
1,N♯

2)

N
♯
2v

vstrenghtening(N♯′,C,N♯
1,N♯

2)

Example 6.6. Let us now consider the example introduced beforehand: N♯
1 t?N

♯
2 = {x = y,y =

z} ∈ N{x,y,z}. Indeed using the notations of Definition 6.10: res ∆
= N♯′ = > ∈ N{x,y,z}, C = {x =

y,y = z}, moreover S♯JAssume(x = y)Ku∪v
(>) = {x = y}(

∆
= test), N♯

1v{x,y}{x = y} = test|{x,y}
and N

♯
2v{x,z}> = test|{x,z}. Therefore constraint x = y is added to res. At the next loop

iteration: S♯JAssume(x = z)Ku∪v
({x = y}) = {x = y, x = z}(

∆
= test), N♯

1v{x,y}{x = y} = test|{x,y}
and N

♯
2v{x,z}{x = z} = test|{x,z}. Therefore constraint x = z is added to res.

Proposition 6.4 (Soundness of t? ). letN♯
1 ∈ Nu andN

♯
2 ∈ Nv, then γu(N♯

1) ⊆ γu∪v(N♯
1 t?N

♯
2)|u

and γv(N♯
2) ⊆ γu∪v(N♯

1 t?N
♯
2)|v

See proof on page 148.
Using the t? operator we can now define an operator abstracting the union.

Definition 6.11 (Union abstract operators: t). We define the following abstract set operator:

〈N♯, l,u〉 t 〈N♯′, l ′,u ′〉 ∆
= 〈N♯ t?N♯′, l∩ l ′,u∪ u ′〉

Example 6.7. Following Example 6.6, let us compute the abstract union of U♯
1 = 〈{x = y}, {x,y},

{x,y}〉 and U
♯
2 = 〈{x = z}, {x, z}, {x, z}〉. As mentioned in Example 6.6 we have {x = z}t? {x = y} =

{x = y = z}. Hence we have U
♯
1 tU

♯
2 = 〈{x = y = z}, {x}, {x,y, z}〉, the concretization of which is

{(x 7→ α), (x 7→ α,y 7→ α), (x 7→ α, z 7→ α), (x 7→ α,y 7→ α, z 7→ α) | α ∈ I}. Note that the join
induced an over-approximation over the definition set, but not over the numerical constraints,
as intended.

Proposition 6.5 (Soundness oft). Thet operator over-approximates the union: ∀U♯
1,U♯

2,γ(U♯
1) ⊆

γ(U♯
1 tU

♯
2) and γ(U♯

2) ⊆ γ(U♯
1 tU

♯
2)

See proof on page 148.

Remark 6.4. The t? operator is costly: it computes a projection and an inclusion test for every
constraints appearing in its inputs. We now present an alternative definition of this operator that
reduces this overhead cost while retaining the same level of precision, this was not introduced
as the t? operator as it is more complicated and does not convey the idea as well.
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Definition 6.12 (t? 2 operator). Using the notation c = u∩ v, we define the following operator:

N
♯
1 t? 2N

♯
2 =if N

♯
1 = ⊥u then

N
♯
2

else if N
♯
2 = ⊥v then

N
♯
1

else

let N♯′ = (N♯
1 |ctcN

♯
2 |c)|u∪vuu∪v(N♯

1 |u\c)|u∪vuu∪v(N♯
2 |v\c)|u∪v in

let C = {c ∈ constraints(N♯
1) | fv(c)∩ u 6= ∅∧ fv(c)∩ (u \ c) 6= ∅}

∪ {c ∈ constraints(N♯
2) | fv(c)∩ v 6= ∅∧ fv(c)∩ (v \ c) 6= ∅} in

strengthening(N♯′,C,N♯
1,N♯

2)

Proposition 6.6 (Soundness of t? 2). letN♯
1 ∈ Nu andN♯

2 ∈ Nv, then γu(N♯
1) ⊆ γu∪v(N♯

1 t? 2N
♯
2)|u

and γv(N♯
2) ⊆ γu∪v(N♯

1 t? 2N
♯
2)|v

See proof on page 149.
The idea behind t? 2 is the following: there are 3 kinds of constraints in N

♯
1: (1) those

that relate only variables from u ∩ v; (2) those that relate only variables from u \ (u ∩ v); (3)
those that relate at least one variable from u ∩ v and one variable from u \ (u ∩ v). In the
definition of t? , only constraints from 1 can be found in N♯′, others must be salvaged using the
strenghtening operator. In the definition of t? 2, N♯′ contains not only constraints from 1, but
also constraints from 2 thanks to the two u computations. Finally we only have to try to add
back constraints that contain at least one variable in u∩ v and one in u \ (u∩ v). In the special
case where the underlying numerical domain is non relational, t? 2 amounts to: computing the
point-wise join on variables shared by the two abstract elements, keeping the abstract value for
every variable that does not appear in the other abstract element. This is what was usually done
to handle heterogeneous environments for non relational numerical domains. Moreover consider
the special case where the two abstract elements are defined over the same set of variables. We
have u = v = c in Definition 6.12, the definition falls back to the classical join: tu, as the set C
is empty, u \ c = ∅ and v \ c = ∅.

Abstract intersection operator

Let us now define an operator abstracting the intersection. Given two abstract elements 〈N♯
1,

l1,u1〉 and 〈N♯
2, l2,u2〉, they represent maps, the definition sets of which are between l1 and

u1, resp. l2 and u2. Therefore the maps that are represented by both abstract elements have
definition sets greater than both l1 and l2 and lower than both u1 and u2. Our abstract operator,
over-approximating the intersection will therefore yield an abstract element of the form 〈_, l1 ∪
l2,u1 ∩ u2〉. Before proceeding to the definition, we insist on the reasons why the numerical
component can not be N

♯
1 |u1∩u2uu1∩u2N

♯
2 |u1∩u2 , which is unsound, for the meet computation.

Consider the two following abstract elements: U♯
1 = 〈{y = x, x ⩾ −2, x ⩽ 1}, {x}, {x,y}〉 andU

♯
2 =

〈{y = −x, x ⩾ −1, x ⩽ 2}, {x}, {x,y}〉. Figure 6.2 provides an illustration of the concretization of
these two abstract elements: γ(U♯

1) = {(x 7→ α), (x 7→ α,y 7→ α) | α ∈ [−1; 2]} and γ(U♯
2) =

{(x 7→ α), (x 7→ α,y 7→ −α) | α ∈ [−2; 1]}. The concrete intersection is therefore: {(x 7→ α) |

α ∈ [−1; 1]} ∪ {(x 7→ 0,y 7→ 0)}. Therefore the result from our abstract operation must be a
polyhedron defined on {x,y} such that: (1) it contains the point (0, 0) (2) its projection on
{x} contains the interval [−1; 1] . We see that computing the intersection of the two polyhedra
on {x,y} will yield the polyhedron {x = 0,y = 0} which satisfies (1) but does not satisfy (2).
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Figure 6.2: Introductory example for intersection
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Figure 6.2 provides 3 polyhedra satisfying (1) and (2). These 3 polyhedra are incomparable and
are minimal over-approximations of the concrete intersection.

Definition 6.13 (Meet operator u). Let us now define an abstract operator over-approximating
the intersection operation:

〈N♯
1, l1,u1〉 u 〈N♯

2, l2,u2〉
∆
=if l1 ∪ l2 6⊆ u1 ∩ u2 then
⊥

else
〈N♯

1 |u1∩u2u
u1∩u2(N♯

2 |l1∪l2)|u1∩u2 , l1 ∪ l2,u1 ∩ u2〉

Example 6.8. Let us consider again the example from Figure 6.2. We have U
♯
1 = 〈{y = x, x ⩾

−2, x ⩽ 1}, {x}, {x,y}〉 and U
♯
2 = 〈{y = −x, x ⩾ −1, x ⩽ 2}, {x}, {x,y}〉. We have {x} ∪ {x} ⊆

{x,y} ∩ {x,y}, hence U
♯
1 uU

♯
2 = 〈N♯, {x}, {x,y}〉, where N♯ = {y = x, x ⩾ −2, x ⩽ 1}u{x,y}({y =

−x, x ⩾ −1, x ⩽ 2}|{x})|{x,y} = {y = x, x ⩾ −2, x ⩽ 1}u{x,y}{x ⩾ −1, x ⩽ 2} = {y = x, x ⩾
−1, x ⩽ 1}. Finally Definition 6.13 is polyhedron from Figure 6.2. This example emphasizes
that the idea behind the definition is the following: We can always keep constraints from both
abstract elements that only relate variables that are present in both abstract elements. However
(N♯

1 |l1∪l2ul1∪l2N
♯
2 |l1∪l2)|u1∩u2 is very imprecise: in our example this would yield the polyhe-

dron {x ⩾ −1, x ⩽ 1} where y is unbounded. We have seen that the conjunction of constraints
fromN

♯
1 andN

♯
2 was unsound, however we can keep the constraints from one of the two abstract

elements.

Remark 6.5 (Lack of Symmetry). Definition 6.13 is asymmetric: all constraints from N
♯
1 are

kept, whereas only constraints on l1 ∪ l2 are kept fromN
♯
2. The symmetric definition can also be

chosen. We do not provide here heuristics to guide this choice.
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Proposition 6.7 (Soundness of the meet operator). The meet operator u over-approximates the
intersection.

See proof on page 149.

Remark 6.6 (Homogeneous semantics). As for the abstract union, when the meet operator is
used in the context of the representation of homogeneous sets of environments, it falls back to
the computation of the classical meet operator. This ensures that we retain the precision and
efficiency of this operator.

Finally as the abstract lattice is of infinite height we need to define a widening operator. As for
the other operators our goal is to provide an operator which can be computed by one application
of the underlying widening in the case of homogeneous environments. As no hypothesis is made
on the set of variables, no structure can be used to define a clever widening for sequences of
abstract elements. Therefore as soon as the environment diverges we will over-approximate by
going to >. This yields a huge loss of precision, however we feel that it is the role of the higher
level abstraction storing variable in the numerical domain to ensure stabilization of the definition
set before widening the numerical environment.

Definition 6.14 (Widening operator). In order to ensure the stabilization of infinitely increasing
chains in M♯ we define the following widening operator:

〈N♯
1, l1,u1〉▽〈N♯

2, l2,u2〉 =


〈N♯

1▽u1N
♯
2 |u, l1,u1〉 when l1 ⊆ l2 ∧ u2 ⊆ u1

〈N♯
1 t?N

♯
2, l2,u1〉 when l2 ⊂ l1 ∧ u2 ⊆ u1

> otherwise

Remark 6.7. This definition contains 3 cases:
• The environment is stable (in the sense that the definition set of environments represented

by the second argument of the widening is contained in the set of environments repre-
sented by the first argument), in which case we fall back to the widening operator of the
underlying domain.

• The environment is not stable but the growth that occurred can only occur finitely many
times. This is the case where the lower bound of the definition set of represented environ-
ments is decreased. As it is a finite set, it must stabilize. In this case we soundly fall back
to the t? operator.

• Finally the environment is not stable and the growth that occurred may be indefinitely
repeated. In such cases we soundly over-approximate to >. The tree abstraction from the
following chapter does not make use of this case as it ensures stabilization of the environ-
ment before resorting to widening operations.

Proposition 6.8 (Soundness and termination of the widening operator). The▽ operator is sound:
∀U♯

1,U♯
2,γ(U♯

1) ⊆ γ(U♯
1▽U

♯
2)∧ γ(U♯

2) ⊆ γ(U♯
1▽U

♯
2). Moreover it ensures stabilization of infinite

sequences: ∀(U♯
n)n∈N, (V♯

n)n∈N,V♯
0 = U

♯
0 ∧ ∀n ⩾ 0,V♯

n+1 = V
♯
n▽U♯

n+1 ⇒ ∃N ∈ N,∀k ⩾
N,V♯

k = V
♯
N.

See proof on page 149.

6.4.4 Abstract transformers

We recall that our concrete semantics is defined on the four statements:
• Assume(c), where c ∈ expr
• v← e, where e ∈ expr and v ∈ V

• remove(v), where v ∈ V

• add(v), where v ∈ V
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In this subsection we provide abstract transformers computing an over-approximation of the
concrete semantics of these statements.

Definition 6.15 (Abstract transformers).

S♯JAssume(c)K(〈N♯, l,u〉) =
{
〈Assume(c)u(N♯), l∪ fv(c),u〉 if l∪ fv(c) ⊆ u

⊥ otherwise

S♯Jx← eK(〈N♯, l,u〉) =
{
〈S♯Jx← eKu(N♯), l∪ fv(e)∪ {x},u〉 if l∪ fv(e)∪ {x} ⊆ u

⊥ otherwise

S♯Jadd(v)K(〈N♯, l,u〉) =
{
〈N♯, l,u〉 if v ∈ l

〈(N♯
|u\{v}

)|u∪{v}, l∪ {v},u∪ {v}〉 otherwise

S♯Jremove(v)K(〈N♯, l,u〉) = 〈N♯
|u\{v}

, l \ {v},u \ {v}〉

Remark 6.8. • Recall that the concrete semantics of Assume(c) (resp. x ← e) filters out en-
vironments that are undefined on c (resp. x and e), this will ensure the soundness of the
operators from Definition 6.15.

• Please note that when trying to add a new variable v, if all environments represented by
the abstract element are already defined on v, (case v ∈ l) the abstract element will not be
modified. However in the case where some environments are defined on v and some are
not (case v /∈ l and v ∈ u) all existing constraints on v will be lost.

• Note that, once more, when used with sets of homogeneous environments, the definition
of these abstract transformers falls back to the application of the corresponding operator
on the underlying domain.

Proposition 6.9 (Soundness of the abstract transformers). All the abstract transformers fromDefi-
nition 6.15 soundly abstract their concrete counterpart: ∀stmt, SJstmtK(γ(U♯)) ⊆ γ(S♯JstmtK(U♯)).

See proof on page 150.

6.5 The integer case

In the definition of the CLIP abstraction, we made the hypothesis that the lifted domain provided
an exact abstract projection operator. This was needed to ensure soundness of the abstract
operator resulting from the lifting. However the polyhedral projection is not exact when given
an integer semantics. Therefore this exactness requirement restriction is too coarse, indeed
abstractions of sets of integer maps have often been used as a essential part of an analysis. This
comes from the fact that: (1) not only variables with integer types are often used in the analyzed
programs, (2) but also because maps with integer values can be used to design higher level
abstractions (e.g. predicate abstractions). In these two use cases, expressing relations between
variables is crucial for precision, which often leads to the use of integer polyhedra.

Notations. In this section we will use polyhedra over Q and polyhedra over Z defined over
some variable set u ⊆ V. These two abstract domains have the same set of abstract elements
(polyhedra, this set is denoted as Nu

P ), but their concretization functions differ. The abstract
operators, abstract transformers and concretization function for these abstract domains will be
denoted □u

PQ
(resp. □u

PZ
), the abstract universal/existential quantifications will be denoted as

□|Q□ (resp. □|Z□). We recall that, given a set of variables W, and a polyhedron P over W, the
integer concretization of P is defined as γW

PZ
(P) = γW

PQ
(P)∩ZW

The classical abstraction using integer polyhedra does not enjoy an exact projection operator.
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Example 6.9. Consider the polyhedra P = {x = 2y}, defined over {x,y}. Its concretization
is γW

PZ
(P) = {(x 7→ 2α,y 7→ α) | α ∈ Q} ∩ Z{x,y} = {(x 7→ 2α,y 7→ α) | α ∈ Z}. The

concrete projection of γW
PZ
(P) over {x} is γW

PZ
(P)|{x} = {(x 7→ 2α) | α ∈ Z} ∼ 2Z. Note however

that 2Z can not be represented as the integer concretization of some polyhedron. The abstract
projection therefore only yields the over-approximation P|Z{x} = >

{x}
PZ

which is concretized into:
{(x 7→ α) | α ∈ Z} ∼ Z.

6.5.1 Losing soundness

We show how this imprecision induces unsound abstract operator when trying to lift integer
polyhedra with the CLIP abstraction. Let us assume that we lifted the above integer polyhedra
abstraction and consider the two following CLIP abstract elements U♯

1 = 〈{x = 2y}, {x,y}, {x,y}〉
and U

♯
2 = 〈>{x}

PZ
, {x}, {x}〉. These elements are concretized into γ(S♯

1) = {(x 7→ 2α,y 7→ α) | α ∈
Z} and γ(S♯

2) = {(x 7→ α) | α ∈ Z}. Let us join these two abstract elements. This requires the
computation of {x = 2y}t?>{x}

PZ
:

• {x = 2y}t{x,y}
PZ
>{x}

PZ |Z{x,y} = >
{x,y}
PZ

• we then try to assume back the constraint x = 2y, yielding the polyhedron {x = 2y} and
check whether we violate the soundness conditions:

– {x = 2y}v{x,y}
PZ

{x = 2y}: this test holds
– >{x}

PZ
v{x}

PZ
{x = 2y}|Z{x} = >

{x}
PZ

as emphasized in Example 6.9, hence it holds as well.

As constraint x = 2y is assumed back, joining the abstract element U♯
1 and U

♯
2 yields U♯

3
∆
= 〈{x =

2y}, {x}, {x,y}〉. This is concretized as {ρ ∈ γ
{x,y}
PZ

({x = 2y})|W | {x} ⊆ W ⊆ {x,y}} = γ
{x,y}
PZ

({x =

2y})|{x} ∪ γ
{x,y}
PZ

({x = 2y})|{x,y} = {(x 7→ 2α) | α ∈ Z}∪ {(x 7→ 2α,y 7→ α) | α ∈ Z}. We see here
that γ(U♯

1)∪ γ(U
♯
2) 6⊆ γ(U♯

1 tU
♯
2), indeed (x 7→ 1) ∈ γ(U♯

2) but (x 7→ 1) /∈ γ(U♯
1 tU

♯
2).

This soundness loss can also be emphasized on the inclusion test. Indeed let us compare U
♯
2

and U
♯
3: we have {x} ⊆ {x} and {x} ⊆ {x,y}, moreover >{x}

PZ
v{x}

PZ
{x = 2y} |Z{x} = >

{x}
PZ

. Therefore
the relation U

♯
2 v U

♯
3 holds, even though {x 7→ 1} ∈ γ(U♯

2) but (x 7→ 1) /∈ γ(U♯
3).

The reason for this soundness loss comes from the fact that the inclusion tests performed on
the underlying domain (both for the computation of the join operation and for the computation
of the inclusion tests) are preceded by a projection. As the projection operator strictly over-
approximates, the comparison might be performed with an abstract element representing an
over-approximation of the original set of concrete elements, this yields an unsound comparison.

6.5.2 Losing parametricity

As losing soundness is not acceptable, we will instead provide a new concretization function for
polyhedra over Z, that is not a lift of the usual concretization function. Indeed by opposition to
the CLIP abstraction which provides a parametric way to lift numerical domains, the technique
provided in this section can only be applied on the polyhedra domain with integer semantics.

Definition 6.16 (Abstract element and concretization γZ). As for the CLIP abstraction, abstract
element are of the form 〈N♯, l,u〉 where N♯ is a polyhedron defined on u, l and u are finite sets
of variables such that l ⊆ u. The set of such abstract elements is denoted M♯

Z. These abstract
elements are concretized with the following function: γZ(〈N♯, l,u〉) = {ρ ∈ W → Z | l ⊆ W ⊆
u∧ ρ ∈ γu

PQ
(N♯)|W ∩ZW}. We will refer to this abstraction as the CLIPZ abstraction.

Remark 6.9. Please note that parametricity is lost since the projection is placed between the
rational concretization and the intersection with Z, the new concretization function is not built
on top of γPZ

.
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Example 6.10. Let us consider our example U
♯
1 = 〈{x = 2y}, {x}, {x,y}〉. We have

γZ(U
♯
1) = γ

{x,y}
PQ

({x = 2y})|{x} ∩Z{x} ∪ γ{x,y}
PQ

({x = 2y})|{x,y} ∩Z{x,y}

= {(x 7→ 2α,y 7→ α) | α ∈ Q}|{x} ∩Z{x} ∪ {(x 7→ 2α,y 7→ α) | α ∈ Q}|{x,y} ∩Z{x,y}

= {(x 7→ 2α) | α ∈ Q}∩Z{x} ∪ {(x 7→ 2α,y 7→ α) | α ∈ Q}∩Z{x,y}

= {(x 7→ α) | α ∈ Z}∪ {(x 7→ 2α,y 7→ α) | α ∈ Z}

This detailed computation emphasizes that interchanging the projection and the intersection
with Z ensures that the restriction of the concretization to every definition set is a convex in Z,
hence removing the problematic case of representing non convex shape as 2Z, which would be
the case by applying the CLIP abstraction lifting to the polyhedra concretization function.

Having modified the concretization function, we can now follow the same definitions as for
the CLIP abstraction parameterized by the polyhedra abstraction over Q. However some imple-
mentations2 enable the user to specify whether a variable is an integer or a real number, in the
case where the variable is an integer some simplifications might be performed, after operators
have been computed. As an example consider the polyhedron from Figure 6.3 where y is an
optional integer and x a non optional real. The first row of the figure shows a sound simplification
of the polyhedron, indeed the concretization of this polyhedron (shown in ) before and after
the simplifications was unchanged. However if we now consider the second row, it shows (in )
the concretization defined in this section. We see that the simplification induces a reduction of
the projection on x. The simplification, which amounted to the removal of spurious non integers
values, is therefore unsound. Our choice of concretization function therefore prevents us from
using simplifications performed on integer variables as soon as those are optional. Therefore all
optional variables are stored as real numbers (loosing precision), however as soon as they are
made non optional, they are made integers, and so we gain back the ability to perform simplifi-
cations. For that reason we see that once more we fall back to the precision and expressiveness
of the underlying domain as soon as all variables are mandatory.

6.6 Bridging the gap with partitioning: the ℘-CLIP abstraction

In Section 6.3.1 we provided an in-depth presentation of the partitioning abstraction. It is the
most precise abstraction among those presented at this point. Indeed it uses one numerical
abstract element per represented support, whereas the abstraction we defined in Section 6.4
encompasses all supports. In this Section we propose to bridge the gap between these two
extremes.

As an introductory example consider Program 6.8. Assuming that we are analyzing this
program using the CLIP abstraction parameterized by integers, we get: U♯ = 〈(x 7→ [0; 0], y 7→
[0; 0]), ∅, {x, y}〉 at program point and V♯ = 〈(y 7→ [1; 1]), {x}, {x}〉 at program point . The
concretization of U♯ yields the set of environments: U = {(), (x 7→ 0), (y 7→ 0), (x 7→ 0, y 7→
0)}, the concretization of V♯ yields V = {(y 7→ 1)}. U♯ and V♯ need to be joined to complete
the analysis, this yields W♯ = 〈(x 7→ [0; 0], y 7→ [0; 1]), ∅, {x, y}〉. The concretization of W♯ is
{(), (x 7→ 0), (y 7→ 0), (x 7→ 0, y 7→ 0), (y 7→ 1), (x 7→ 0, y 7→ 1)}. We see that the environment
(x 7→ 0, y 7→ 1) can not be found in U∪V, and is therefore a join inaccuracy. This inaccuracy on
environment {x, y} was introduced when joining environments defined on {y}. The partitioning
abstraction does not suffer from such inaccuracies as maps defined on distinct environments are
represented by different numerical domains. Let us simulate this behavior on our abstraction.
When asked to join U♯ and V♯, we observe that U♯ represents environments defined on {W ∈

2such as the one provided by the APRON library (see [JM09]), used in the MOPSA framework
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Figure 6.3: Z simplifications

1 if ?:
2 if ?:
3 x = 0

4 else:

5 y = 0

6

7 else:

8 y = 1

Program 6.8: Environment
over-approximation example

℘f(V) | ∅ ⊆W ⊆ {x, y}} = {∅, {x}, {y}, {x, y}} and V♯ represents maps defined on {y}. Let us split U♯

into a disjunction of abstract elements, each defined on disjoint sets of variables.

U♯ →


U

♯
1 = 〈(x 7→ 0, y 7→ 0), {x, y}, {x, y}〉

U
♯
2 = 〈(x 7→ 0), {∅}, {x}〉

U
♯
3 = 〈(y 7→ 0), {y}, {y}〉


Note that γ(U♯) = γ(U♯

1) ∪ γ(U♯
2) ∪ γ(U♯

3). This transformation is a step towards the parti-
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tioning domain. Note however that U♯
2 still represents environments defined on {} and environ-

ments defined on {x}, whereas in a partitioning abstraction each monomial (an element from the
partition) is concretized to an homogeneous set of maps. Now that U♯ is split we can perform
a point-wise join as in the partitioning abstraction: U

♯
4 = U

♯
3 t V♯ = 〈(y 7→ [0; 1]), {y}, {y}〉. The

result of the join operation is then expressed as the disjunction: {U♯
1,U♯

2,U♯
4}. Please note that it

is possible to apply operators point-wise as we ensured that the concretization is U♯
1, U

♯
2 and U

♯
3

are pair-wise non intersecting, indeed they represent maps over distinct supports.

Power set lattice intervals. As we have seen, definitions from this section will rely heavily on
the fact that monomials represent sets of maps defined on non intersecting supports. We have
chosen to abstract sets of supports by their lower-bound/upper bound. We define an Support
Variable Interval (SVI) of ℘(V) to be a set I of support (so a set of sets of variables) such that:
∃l ∈ ℘f(V), ∃u ∈ ℘f(V), I = {W, l ⊆W ⊆ u}. Whenever l ∈ ℘f(V) and u ∈ ℘f(V), [l;u] denotes
the SVI {W, l ⊆W ⊆ u}, this might be empty. The intersection of two SVIs [a;b] and [c;d] is the
SVI [a ∪ c;b ∩ d], the union of two SVIs is not necessary a SVI. When two supports are in the
same SVI I, their intersection and union are in I as well. Finally if two elements c and d are in
the SVI [a;b], the SVI [c;d] is contained in the SVI [a;b].

Running example. In this section, we will use the following two concrete sets as running
examples.

P1
∆
= {(), (x 7→ 0), (y 7→ α), (x 7→ α,y 7→ α) | α ⩽ 0}

P2
∆
= {(), (x 7→ 1), (y 7→ α), (z 7→ β,y 7→ α), (z 7→ β) | α ⩽ β∧α ⩾ 0}

6.6.1 Abstraction definition

An abstract element will be defined as a partitioning of several CLIP abstract elements, this
abstraction will henceforth be referred to as the ℘-CLIP abstraction.

Definition 6.17 (℘-CLIP abstraction). Let us define the set

M♯
℘ ={S♯ ∈ ℘f(M

♯) |

∀U♯ ∈ S♯, U♯ 6= ⊥
∧U♯ = > ⇒ S♯ = {>}
∧ ∀V♯ 6= U♯ ∈ S♯,U♯ = 〈N♯, l,u〉∧ V♯ = 〈N♯′, l ′,u ′〉 ⇒ [l;u]∩ [l ′;u ′] = ∅

}

As for partitioning, elements of M♯
℘ are sets of elements form M♯, moreover in a partitioning

abstraction we impose that at most one numerical abstract element is present per support, here
we have the same restriction but for non intersecting sets of supports. Moreover the biggest
element of our abstraction (for the order relation of Definition 6.22) will be {>} and its smallest
element will be ∅.

Example 6.11 (Using the running example). P1, P2 can be represented respectively by:

S♯
1 = {〈{x = 0}, ∅, {x}〉, 〈{y ⩽ 0, x = y}, {y}, {x,y}〉}

S♯
2 = {〈{x = 1}, {x}, {x}〉, 〈{y ⩾ 0,y ⩽ z}, ∅, {y, z}〉}
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Definition 6.18 (Concretization function). We recall that γ denotes the concretization function
from M♯ to M. Upon γ we define the concretization from M♯

℘ to M by:

γ℘(S
♯) =

⋃
U♯∈S♯

γ(U♯)

As was expected we have: γ℘({>}) = M and γ℘(∅) = ∅

Example 6.12 (Using the running example). By definition, we have γ℘(S
♯
1) = γ(〈{x = 0}, ∅,

{x}〉) ∪ γ(〈{y ⩽ 0, x = y}, {y}, {x,y}〉) = {(), (x 7→ 0)} ∪ {(y 7→ β), (x 7→ α,y 7→ β) | α = β∧ β ⩽
0} = P1. Similarly we have γ℘(S

♯
2) = P2.

Link with partitioning abstraction. If we impose in Definition 6.17 that ∀U♯ ∈ S♯,U♯ = 〈N♯,
l,u〉 ⇒ l = u, we fall back to the classical partitioning definition. Indeed we have seen in the
previous section that whenever 〈N♯, l,u〉 was such that l = u the CLIP abstraction behaves as
its underlying numerical abstraction. On the contrary if we impose that |S♯| ⩽ 1, we fall back
to the CLIP abstraction as our abstraction contains only one monomial and its concretization is
that of the CLIP abstraction. This shows that the ℘-CLIP abstraction defined here can emulate
the precise and costly partitioning abstraction as well as the, not so precise, CLIP abstraction. Its
behavior will be defined by the number of allowed monomials in the abstraction.

As two elements S♯
1 and S♯

2 from M♯
℘ might contain monomials defined on incomparable

SVIs, the definition of operators requires abstract elements to be unified. This unification requires
us to perform basic operations on SVIs. Note that results from these operations need to be
expressed as a disjoint union of SVIs. We have seen that intersections can be easily computed,
however SVI difference is more complicated and is the subject of the following subsection.

6.6.2 Set difference between SVIs

As mentioned before, the unification of two abstract elements requires the computation of the
difference between two SVIs. When I = [a;b] and J = [c;d] are two SVIs, I \ J = I \ (I ∩ J).
I∩ J = [a∪ c;b∩ d] is a SVI (potentially empty) contained in I. For this reason we focus in this
subsection on the computation of the difference between a SVI [l;u] and a SVI [l ′;u ′] such that
l ⊆ l ′ ⊆ u ′ ⊆ u. This is not always possible to express this difference as a SVI, however it can be
expressed as a union of pair-wise disjoint SVIs (indeed singletons are SVIs). We recall that we
need SVIs to be pair-wise disjoint so as to ease the definition of the set abstract operators and to
avoid the potential precision losses due to supports represented in several monomials. As an ex-
ample consider the difference between the SVI I = [∅; {x0, x1, x2}] and the SVI J = [{x0}; {x0, x1}].
A first naive solution is to enumerate of every singleton in I, and to check whether this singleton
is in J, in which case it is discarded; or not, in which case it is added to the result. In our case, this
yields: {[∅; ∅], [x1; x1], [x2; x2], [{x0, x2}; {x0, x2}], [{x1, x2}; {x1, x2}], [{x0, x1, x2}; {x0, x1, x2}]. The dif-
ference is therefore expressed using 6 SVIs and is illustrated in figure 6.4. On the contrary,
Figure 6.5 shows how the difference can be expressed using only two SVIs: [∅; {x1, x2}] and
[{x0, x2}; {x0, x1, x2}]. We recall that the number of numerical abstract elements (e.g. polyhedra)
stored in our abstraction (and therefore the number of time atomic operations on polyhedra will
be performed per abstract operation) is equal to the number of SVIs. Our goal is therefore to
compute a SVI difference using as few SVIs as possible.

Proposition 6.10. If I = [l;u] and J = [l ′;u ′] with l ⊆ l ′ ⊆ u ′ ⊆ u are such that I \ J =
⊎

k∈K Ik
and every Ik is a SVI, then |K| ⩾ |u \ u ′|+ |l ′ \ l|.

See proof on page 152.
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∅

{x0}

{x0, x1}

{x0, x1, x2}

{x0, x2}

{x1}

{x1, x2}

{x2}

Figure 6.4: Non optimal SVI difference for [∅; {x0, x1, x2}] \ [{x0}; {x0, x1}]

∅

{x0}

{x0, x1}

{x0, x1, x2}

{x0, x2}

{x1}

{x1, x2}

{x2}

Figure 6.5: Optimal SVI difference for [∅; {x0, x1, x2}] \ [{x0}; {x0, x1}]

Proposition 6.11. If I = [l;u] and J = [l ′;u ′] with l ⊆ l ′ ⊆ u ′ ⊆ u, such that u \ u ′ =
{y1, . . . ,yp} and l ′ \ l = {x1, . . . , xn},

let (Ui)1⩽i⩽n = [l∪
⋃

1⩽k⩽i−1
{xk};u \ {xi}]

and (Lj)1⩽j⩽p = [l ′ ∪ {yj};u \
⋃

1⩽k⩽j−1
{yk}]

we have I \ J =
⊎

1⩽i⩽nUi ]
⊎

1⩽j⩽p Lj.

See proof on page 153.
Proposition 6.11 gives us a disjoint union of SVIs of I \ J. Moreover Proposition 6.10 ensures

that the union found in Proposition 6.11 is optimal. The partitioning from Figure 6.6 was ob-
tained using sets Ui and Lj from Program 6.11. Please not that this solution is not unique and
that no choice heuristics were studied in this thesis.

Definition 6.19 (itv_diff). Following the aforementioned results, whenever l ⊆ l ′ ⊆ u ′ ⊆ u we
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Algorithm 6.2: itv_incl
Input : I an interval, Is = {I1, . . . , In} a set of intervals
Output: whether I ⊆

⋃
J∈Is J

1 rem← {I};
2 foreach i ∈ {1,n} do
3 rem←

⋃
L∈rem itv_diff(L, Ii);

4 return
⋃

L∈rem L = ∅;

∅

{x0}

{x0, x1}

{x0, x1, x2}

{x0, x1, x2, x3}

{x0, x1, x2, x3, x4}

{x0, x1, x2, x4}

{x0, x1, x3}

{x0, x1, x3, x4}

{x0, x1, x4}

{x0, x2}

{x0, x2, x3}

{x0, x2, x3, x4}

{x0, x2, x4}

{x0, x3}

{x0, x3, x4}

{x0, x4}

{x1}

{x1, x2}

{x1, x2, x3}

{x1, x2, x3, x4}

{x1, x2, x4}

{x1, x3}

{x1, x3, x4}

{x1, x4}

{x2}

{x2, x3}

{x2, x3, x4}

{x2, x4}

{x3}

{x3, x4}

{x4}

Figure 6.6: Disjoint union from Proposition 6.11 for [∅; {x0, x1, x2, x3, x4}] \ [{x0, x1}; {x0, x1, x2}]

define:

itv_diff([l;u], [l ′;u ′]) =
⋃

1⩽i⩽n

{Ui}∪
⋃

1⩽j⩽p

{Lj}

where Ui and Jj are as defined in Proposition 6.11. This definition is generalized to any two
SVIs by computing the difference with the intersection of the two SVIs.

Definition 6.20 (itv_incl). Finally we define itv_incl operator which computes whether a SVI
is contained in the union of several other SVIs. This algorithm removes one by one the SVIs in
its second argument from its first argument (using Definition 6.19) and checks that the result is
empty. The definition is provided in Algorithm 6.2.

See proof on page 153.

6.6.3 Operator definitions

Wenowprovide operators onM♯
℘. Wewill define two unifications unify_leq and unify, unify_leq

will be used to define the order relation on M♯
℘ and unify for the definition of the other oper-

ators. Indeed the general unification unify is such that: if (S♯ ′
1 ,S♯ ′

2 ) = unify(S♯
1,S♯

2), then
γ℘(S

♯
1) ⊆ γ℘(S

♯ ′
1 ) and γ℘(S

♯
2) ⊆ γ℘(S

♯ ′
2 ). While this is enough for the abstract definition of

monotone operators (as join, meet, widening) to be sound, it is not for the abstract inclusion
test. Indeed γ℘(S

♯ ′
1 ) ⊆ γ℘(S

♯ ′
2 ) 6⇒ γ℘(S

♯
1) ⊆ γ℘(S

♯
2). For this reason we define an ad-hoc

unify_leq operator that does not over-approximates its right argument.
For the following definitions we use the operator itvs(S♯ ∈M♯

℘) which yields the set of SVIs
on which monomials ofS♯ are defined: itvs({〈_, l1,u1〉, . . . , 〈_, ln,un〉}) = {[l1;u1], . . . , [ln;un]}

Definition 6.21 (unify_leq). Algorithm 6.3 provides the definition of a unify_leq operator
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Algorithm 6.3: unify_leq
Input : S♯

1,S♯
2 two abstract elements

Output: S♯ ′
1 ,S♯ ′

2 their unification
1 res← ∅;
2 foreach 〈N♯, l,u〉 ∈ S♯

1 do
3 foreach 〈_, l ′,u ′〉 ∈ S♯

2 do
4 if [a;b] ∆

= [l;u]∩ [l ′;u ′] 6= ∅ then
5 res← res∪ {〈N♯

|b
,a,b〉};

6 end
7 done
8 done
9 return (res,S♯

2);

Example 6.13. For this example we consider the following, slightly modified, version of the
running examples: S♯

1 = {〈{x = 0}, ∅, {x}〉, 〈{y ⩽ 0, x = y}, {y}, {x,y}〉} and S♯
2 = {(M1

∆
=)〈{x =

1}, {x}, {x}〉, (M2
∆
=)〈{y ⩾ 0,y ⩽ z}, ∅, {y, z}〉, (M3

∆
=)〈{y ⩾ x}, {x,y}, {x,y}〉}. The only difference

with our running examples is that the monomial 〈{y ⩾ x}, {x,y}, {x,y}〉 was added to S♯
2. The

unify_leq operator will leave S♯
2 unchanged, however:

• The monomial 〈{x = 0}, ∅, {x}〉 (the SVI of which intersected the SVI from M1 and the SVI
fromM2) is split into the two monomials: 〈{}, ∅, ∅〉 (which SVI intersects only the one from
M2) and 〈{x = 0}, {x}, {x}〉 (which SVI intersects only the one from M1).

• The monomial 〈{y ⩽ 0, x = y}, {y}, {x,y}〉 (which SVI intersected the SVI from M2 and the
SVI from M3) is split into the two monomials: 〈{y ⩽ 0}, {y}, {y}〉 (which SVI intersects only
the one from M2) and 〈{x = y ⩽ 0}, {x,y}, {x,y}〉 (which SVI intersects only the one from
M3)

The result from the unification is therefore:

{〈{}, ∅, ∅〉, 〈{x = 0}, {x}, {x}〉, 〈{y ⩽ 0}, {y}, {y}〉, 〈{x = y ⩽ 0}, {x,y}, {x,y}〉}

Please note that this unification tends to transform the ℘-CLIP abstraction into the partitioning
abstraction.

Proposition 6.12 (Soundness of unify_leq). If (S♯ ′
1 ,S♯ ′

2 ) = unify_leq(S♯
1,S♯

2) then:

(
⋃

I∈itvs(S♯
1)

I ⊆
⋃

J∈itvs(S♯
2)

J)

⇒ γ℘(S
♯
1) ⊆ γ℘(S

♯ ′
1 )

∧ γ℘(S
♯
2) = γ℘(S

♯ ′
2 )

∧ ∀〈_, l,u〉 ∈ S♯ ′
1 ,∃〈_, l ′,u ′〉 ∈ S♯ ′

2 , [l;u] ⊆ [l ′;u ′]

See proof on page 153.

Remark 6.10. Whenever the projection operator of the underlying domain is exact, the unify_leq
operator is exact in the sense that: (S♯ ′

1 ,S♯ ′
2 ) = unify_leq(S♯

1,S♯
2) ⇒ γ℘(S

♯
1) = γ℘(S

♯ ′
1 )∧

γ℘(S
♯
2) = γ℘(S

♯ ′
2 )

Using unify_leq, we can now define an order relation on M♯
℘.

Definition 6.22 (Order relation on M♯
℘: v℘). We define:
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v℘
∆
={(S♯

1,S♯
2) | ∀I ∈ itvs(S♯

1), itv_incl(I, itvs(S
♯
2))

∧ (S♯ ′
1 ,S♯ ′

2 ) = unify_leq(S♯
1,S♯

2)⇒ ∀U
♯
1 ∈ S♯ ′

1 ,∃U♯
2 ∈ S♯ ′

2 ,U♯
1 v U

♯
2

}

Proposition 6.13 (Soundness of v℘). γ℘ ∈ (M♯
℘,v℘)→ (M,⊆) is monotonic.

See proof on page 154.

Example 6.14. As for the previous example, we use the following slightly modified version of
our running example: S♯

1 = {〈{x = 0}, ∅, {x}〉, 〈{y ⩽ 0, x = y}, {y}, {x,y}〉} and S♯
2 = {(M ′

1
∆
=)〈{x =

1}, {x}, {x}〉, (M ′
2

∆
=)〈{y ⩾ 0,y ⩽ z}, ∅, {y, z}〉, (M ′

3
∆
=)〈{y ⩾ x}, {x,y}, {x,y}〉}. We have itvs(S♯

1) =

{[∅; {x}], [{y}, {x,y}]}, and itvs(S♯
2) = {[{x}; {x}], [∅; {y, z}], [{x,y}; {x,y}]}. Hence the constraint that

∀I ∈ itvs(S♯
1), itv_incl(I, itvs(S

♯
2)) is satisfied. Moreover we have shown in Example 6.13 that

S♯ ′
1 = {(M1

∆
=)〈{}, ∅, ∅〉, (M2

∆
=)〈{x = 0}, {x}, {x}〉, (M3

∆
=)〈{y ⩽ 0}, {y}, {y}〉, (M4

∆
=)〈{x = y ⩽

0}, {x,y}, {x,y}〉} and S♯ ′
2 = S♯

2. As we do not have M2 v M ′
i for i ∈ {1, 2, 3}, we do not have

S♯
1 v℘ S♯

2. Note that this was expected by soundness of the operator, indeed (x 7→ 0) ∈ γ℘(S
♯
1)

but (x 7→ 0) /∈ γ℘(S
♯
2).

Let us now define abstract operators for the classical set operations: ∪ and ∩. We start by
defining a unify operator which transforms two abstract elements in abstract elements defined
on the same SVI sets.

Definition 6.23 (unify). Algorithm 6.4 provides a general purpose unification operator. Fig-
ure 6.7 illustrates the behavior of this operator.

Algorithm 6.4 is “symmetric” inS♯
1,S♯

2. The idea is the following: each monomial over some
[l;u] from S♯

1 is partitioned into two sets: {[l1,c;u1,c], . . . , [ln,c;un,c]} and {[l1;u1] . . . [lm;um]}
such that [l;u] = [l1,c;u1,c]∪ . . . [ln,c;un,c]∪ [l1;u1]∪ . . . [lm;um]. As an example in Figure 6.7,
SVIs I is partitioned into I1,c, I2,c, I1 and I2. The [li,c;ui,c] are SVIs for whichS♯

2 also provides a
monomial. The unification then ensures that if S♯ ′

1 ,S♯ ′
2 both represent concrete environments

over some shared variables setW, thenW is found in two monomials fromS♯ ′
1 andS♯ ′

2 that are
defined on the same SVI.

Proposition 6.14 (Soundness of unify). If (S♯ ′
1 ,S♯ ′

2 ) = unify(S♯
1,S♯

2) then:

γ℘(S
♯
1) ⊆ γ℘(S

♯ ′
1 )

∧ γ℘(S
♯
2) ⊆ γ℘(S

♯ ′
2 )

∧ ∀[l1;u1] ∈ itvs(S♯ ′
1 ),∀[l2,u2] ∈ itvs(S♯ ′

2 ), [l1;u1]∩ [l2;u2] 6= ∅ ⇒ l1 = l2 ∧ u1 = u2

See proof on page 154.

Example 6.15 (Using the running example). Let us move back to our running example: S♯
1 =

{〈{x = 0}, ∅, {x}〉, 〈{y ⩽ 0, x = y}, {y}, {x,y}〉} and S♯
2 = {〈{x = 1}, {x}, {x}〉, 〈{y ⩾ 0,y ⩽ z}, ∅, {y,

z}〉}. Let us show how this two abstract elements are unified. Figure 6.8 provides an illustration
of the, pre and post unification, SVIs for S♯

1 and S♯
2. Let us denote S♯ ′

1 and S♯ ′
2 the unification

of S♯
1 and S♯

2. Let us consider the choice of monomial 〈{y ⩾ 0,y ⩽ z}, ∅, {y, z}〉 at line 15. We
initially have rem = {[∅; {y, z}]}.
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Algorithm 6.4: unify
Input : S♯

1,S♯
2 two abstract elements

Output: S♯ ′
1 ,S♯ ′

2 their unification
1 res1 ← ∅;
2 res2 ← ∅;
3 res1,c ← ∅;
4 res2,c ← ∅;
5 foreach 〈N♯, l,u〉 ∈ S♯

1 do
6 rem← {[l;u]};
7 foreach 〈N♯′, l ′,u ′〉 ∈ S♯

2 do
8 if [a;b] ∆

= [l;u]∩ [l ′;u ′] 6= ∅ then
9 res1,c ← res1,c ∪ {〈N♯

|b
,a,b〉};

10 rem←
⋃

J∈rem diff_itv(J, [a;b]);
11 end
12 res1 ← res1

⋃
[a;b]∈rem{〈N

♯
|b

,a,b〉};
13 done
14 done
15 foreach 〈N♯′, l ′,u ′〉 ∈ S♯

2 do
16 rem← {[l ′;u ′]};
17 foreach 〈N♯, l,u〉 ∈ S♯

1 do
18 if [a;b] ∆

= [l;u]∩ [l ′;u ′] 6= ∅ then
19 res2,c ← res2,c ∪ {〈N♯′

|b
,a,b〉};

20 rem←
⋃

J∈rem diff_itv(J, [a;b]);
21 end
22 res2 ← res2

⋃
[a;b]∈rem{〈N

♯′
|b

,a,b〉};
23 done
24 done
25 return (res1,c ∪ res1, res2,c ∪ res2);

• When 〈{x = 0}, ∅, {x}〉 is chosen at line 17: we have [a;b] ∆
= [∅; {y, z}] ∩ [∅; {x}] = [∅; ∅] 6=

∅. We then have: res2,c ← ∅ ∪ {〈{y ⩾ 0,y ⩽ z}|∅, ∅, ∅〉} = {〈{}, ∅, ∅〉}. Moreover rem ←
diff_itv([∅, {y, z}], [∅; ∅]) = {[{y}; {y}], [{z}, {y, z}]}

• When 〈{y ⩽ 0, x = y}, {y}, {x,y}〉 is chosen at line 17: we have [a;b] ∆
= [∅; {y, z}] ∩ [{y}; {x,

y}] = [{y}; {y}] 6= ∅. We then have: res2,c ← res2,c ∪ {〈{y ⩾ 0,y ⩽ z}|{y}, {y}, {y}〉} = {〈{},
∅, ∅〉, 〈{y ⩾ 0}, {y}, {y}〉}. Moreover rem ← diff_itv([{y}; {y}], [{y}; {y}]) ∪ diff_itv([{z}; {y, z}],
[{y}; {y}]) = ∅ ∪ {[{z}; {y, z}]} = {[{z}; {y, z}]}.

Once the two monomials from S♯
1 have been considered, we have res2 = {〈{y ⩾ 0,y ⩽ z}|{y,z},

{z}, {y, z}〉} = {〈{y ⩾ 0,y ⩽ z}, {z}, {y, z}〉} is added to res2. We skip the details for the other
monomials, the result of the unification is then S♯ ′

1 = {〈∅, ∅, ∅〉, 〈{x = 0}, {x}, {x}〉, 〈{y ⩽ 0}, {y},
{y}〉, 〈{y ⩽ 0, x = y}, {x,y}, {x,y}〉} and S♯ ′

2 = {〈∅, ∅, ∅〉, 〈{y ⩾ 0}, {y}, {y}〉, 〈{y ⩾ 0,y ⩽ z}, {z}, {y,
z}〉, 〈{x = 1}, {x}, {x}〉}, illustrated in the following table:

SVIs S♯ ′
1 S♯ ′

2
[∅; ∅] ∅ ∅

[{x}, {x}] {x = 0} {x = 1}
[{y}, {y}] {y ⩽ 0} {y ⩾ 0}

[{x,y}, {x,y}] {y ⩽ 0, x = y}

[{z}, {y, z}] {y ⩾ 0,y ⩽ z}

Given unify we can now define abstract operators for set operations ∩ and ∪. Note that
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shared intervalsS♯
1’s intervals S♯

2’s intervals

∅

℘(V)

unify

I

∅

℘(V)

I1I2

I1,c

I2,c

Figure 6.7: Illustration of the behavior of unify
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{z}

∅

{x}
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{x, z}

{y}

{y, z}

{z}

∅

{x}

{x,y}

{x,y, z}

{x, z}

{y}

{y, z}

{z}

∅

{x}

{x,y}

{x,y, z}

{x, z}

{y}

{y, z}

{z}

Figure 6.8: Illustration of example 6.15

unify_leq can also be used to unify abstract element, however it is less precise as it will enforce
the use of the SVI partitioning of its right argument rather than subdividing both partitionings.
These operators are computed by: (1) unifying the two abstract elements and (2) applying
point-wise the according abstract operators on the underlying CLIP abstraction.
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Definition 6.24 (Set abstract operators). We define t℘ and u℘ by:

S♯
1 t℘ S♯

2
∆
=

let (S♯ ′
1 ,S♯ ′

2 ) = unify(S♯
1,S♯

2) in⋃
[l;u]∈itvs(S♯ ′

1 )∪itvs(S♯ ′
2 )

{
{〈N♯

1, l,u〉 t 〈N♯
2, l,u〉} if 〈N♯

1, l,u〉 ∈ S♯ ′
1 and 〈N♯

2, l,u〉 ∈ S♯ ′
2

{〈N♯, l,u〉} else if 〈N♯, l,u〉 ∈ S♯ ′
1 or 〈N♯, l,u〉 ∈ S♯ ′

2

S♯
1 u℘ S♯

2
∆
=

let (S♯ ′
1 ,S♯ ′

2 ) = unify(S♯
1,S♯

2) in⋃
[l;u]∈itvs(S♯ ′

1 )∩itvs(S♯ ′
2 )

{〈N♯
1, l,u〉 u 〈N♯

2, l,u〉} where 〈N♯
1, l,u〉 ∈ S♯ ′

1 and 〈N♯
2, l,u〉 ∈ S♯ ′

2

We can see that these definitions are very close to the ones presented in the description of
the partitioning abstraction from Section 6.3.1. Contrary to the CLIP abstraction, we see that
the ℘-CLIP abstraction does not over-approximate the set of possible supports of the represented
maps when computing an abstract union.

Example 6.16 (Using the running example). We provided in the previous example (Exam-
ple 6.15) the unification of the two abstract element: S♯

1 = {〈{x = 0}, ∅, {x}〉, 〈{y ⩽ 0, x =

y}, {y}, {x,y}〉} and S♯
2 = {〈{x = 1}, {x}, {x}〉, 〈{y ⩾ 0,y ⩽ z}, ∅, {y, z}〉}. As explained before t℘

and u℘ are both defined point-wise on the unification ofS♯
1 andS♯

2. The following table provides
the values of S♯

1 and S♯
2:

SVIs S♯ ′
1 S♯ ′

2 S♯ ′
1 u℘ S♯ ′

2 S♯ ′
1 t℘ S♯ ′

2
[∅; ∅] ∅ ∅ ∅ ∅

[{x}, {x}] {x = 0} {x = 1} ⊥ {0 ⩽ x ⩽ 1}
[{y}, {y}] {y ⩽ 0} {y ⩾ 0} {y = 0} >

[{x,y}, {x,y}] {y ⩽ 0, x = y} ⊥ {y ⩽ 0, x = y}

[{z}, {y, z}] ⊥ {y ⩾ 0,y ⩽ z} ⊥ {y ⩾ 0,y ⩽ z}

Proposition 6.15 (Soundness of t℘ and u℘). t℘ and u℘ are sound w.r.t. to ∪ and ∩:

∀S♯
1,S♯

2,γ℘(S
♯
1)∪ γ℘(S

♯
2) ⊆ γ℘(S

♯
1 t℘ S♯

2)

∀S♯
1,S♯

2,γ℘(S
♯
1)∩ γ℘(S

♯
2) ⊆ γ℘(S

♯
1 u℘ S♯

2)

See proof on page 155.
As emphasized by the previous definitions and examples, unification of abstract elements

will make the abstraction converge towards a complete partitioning. This is due to the fact that
unification splits SVIs rather that merge them. We have seen that the merging operation might
induce an environment over-approximation. Merging two monomials M1 and M2 found in an
abstract element S♯ is done by computing (S♯ \ {M1,M2}) ∪ (M1 tM2). Notice however that
the result is not well-defined as the SVI resulting from (M1 tM2) might overlap other SVIs
already present in S♯. Therefore we define a wf function in Algorithm 6.5 which will ensure
the well-formedness of a set of monomials, in the sense that no two SVIs overlap. As we try to
reduce the number of monomials so as not to converge towards partitioning wf will not divide
already present SVIs, but rather merge them.

Definition 6.25 (merge operator). Using the previous remarks and the wf operator we can
define the following merge operator. This operator takes an abstract element from M♯

℘ and two
of its monomials and yields an abstract element where the two monomials have been merged.

merge(S♯,U♯
1,U♯

2) = wf(S♯ \ {U
♯
1,U♯

2}∪ {U
♯
1 tU

♯
2})
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Algorithm 6.5: wf operator
Input : S a set of monomials
Output: S♯ a well-formed abstract element

1 res← S;
2 while ∃〈N♯, l,u〉 ∈ res, 〈N♯′, l ′,u ′〉 ∈ res, 〈N♯, l,u〉 6= 〈N♯′, l ′,u ′〉∧ [l;u]∩ [l ′;u ′] 6= ∅ do
3 res← (res \ {〈N♯, l,u〉, 〈N♯′, l ′,u ′〉})∪ {〈N♯, l,u〉 t 〈N♯′, l ′,u ′}〉;
4 end
5 return res;

Algorithm 6.6: reduce_monomials operator
Input : S♯ an abstract element, n an integer
Output: an abstract element containing less than n monomials, over-approximating S♯

1 res← S♯;
2 while |S♯| > n do
3 (U♯

1,U♯
2)← mergeable(S♯);

4 res← merge(res,U♯
1,U♯

2);
5 end
6 return res;

Proposition 6.16 (Soundness of merge). For all S♯, U♯
1, U

♯
2, such that {U♯

1,U♯
2} ⊆ S♯ we have

γ℘(S
♯) ⊆ γ℘(merge(S♯,U♯

1,U♯
2)).

See proof on page 155.
We assume given amergeable function that, given an abstract elementS♯ produces the next

pair of monomials that should be merged. The mergeable function can be heuristically defined,
the evaluation of the “mergeability” of two monomials 〈N♯

1, l1,u1〉 and 〈N♯
2, l2,u2〉 should take

into account the two following: (1) how big is the difference between [l1;u1] ∪ [l2,u2] and
[l1 ∩ l2;u1 ∪u2]? (2) how much will N♯

1 t?N
♯
2 over-approximate the disjunction. Please note that

the evaluation of the “mergeability” of two monomials can not be made independently from
the rest of the monomials. Indeed after the merge operation is performed, the wf operator
might collapse other monomials into the newly formed one. We will not provide here heuristics
for the mergeable function. Indeed point (2) alone in the simpler case: how imprecise is the
computation of N♯

1tuN
♯
2, has already been extensively studied (see e.g. [BHZ09, RHC18]).

Given the mergeable function, we can define a reduce_monomials operator (defined by
Algorithm 6.6). reduce_monomials(S♯,n) computes an over-approximation ofS♯ that contains
at most n monomials. This is done by iteratively merging pairs of monomials, these pairs are
chosen by the mergeable function. Note that we need to ensure that abstract elements are well-
formed, therefore we apply the wf operator after each merging of two monomials, this might
induce more mergers. Therefore when calling reduce_monomials(S♯,n) with |S♯| = m, the
number of call to mergeable might be lower that m−n− 1.

Example 6.17. Let us consider the following abstract element: S♯ = {〈>{x}, {x}, {x}〉, 〈{x =
y, x ⩾ 0}, {x,y}, {x,y}〉, 〈{x = z, x ⩾ 0}, {x, z}, {x, z}〉}. S♯ contains three monomials, defined
respectively on the singleton SVIs [{x}, {x}], [{x,y}, {x,y}] and finally [{x, z}, {x, z}]. Thanks to
the CLIP abstraction, we have seen that the monomial defined on [{x, z}, {x, z}] and the mono-
mial defined on [{x,y}, {x,y}] can be merged without losing numerical precision (note how-
ever that this will induce an environment over-approximation). Merging this two monomi-
als yields: 〈{x = y, x = z}, {x}, {x,y, z}〉. The result from the merge operation can not be
{〈>, {x}, {x}〉, 〈{x = y, x = z, x ⩾ 0}, {x}, {x,y, z}〉} as this is not a well-formed abstract element,
indeed [{x}, {x}] ∩ [{x}, {x,y, z}] = {x} 6= ∅. Therefore these two monomials are merged, which
requires the computation of >{x} t? {x = y, x = z, x ⩾ 0} = {x = y, x = z}. Finally the re-
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sulting abstract element is S♯ ′ = 〈{x = y, x = z}, {x}, {x,y, z}〉, note that γ℘(S
♯ ′) numerically

over-approximates environments defined on {x,y} and {x, z}.

6.6.4 Widening operator

As the lattice (M♯
℘,v℘) has infinite height, we need to define a widening operator in order to

ensure the stabilization of infinitely increasing chains. As for union and intersection we can rely
on the unify operator to ensure that both abstract elements are defined on the same set of SVIs,
and then pair-wise apply the widening operator to the underlying domain. However consider
the following sequence:

X
♯
0 = {〈_, ∅, {x0}〉},

. . .
X♯
n = {〈_, ∅, {x0, . . . , xn}〉},

. . .

We then have:
Y
♯
1 = X

♯
0▽X

♯
1 = {〈_, ∅, {x0}〉,

〈_, {x1}, {x0, x1}〉},
. . .
Y
♯
n = Y

♯
n−1▽X

♯
n = {〈_, ∅, {x0}〉,

. . .
〈_, {xn}, {x0, . . . , xn}〉}

We see that the number of monomials is diverging. Therefore in addition to the stabilization of
the numerical constraints, we also need to ensure stabilization of the set of SVIs.

We now propose a widening operator which “freezes” the number of monomials when it is
first called. The idea is the following: instead of splitting monomials to unify abstract elements,
we merge them. This is the role of the loop at line 3 in Algorithm 6.7. Figure 6.9 illustrates
this merging phase. In both abstract elements we merge monomials the SVIs of which intersect
a common SVI in the other abstract element. Indeed when computing S♯

1▽℘S
♯
2, we need to

discover a one to (at most) one relation from the monomials of S♯
1 to the monomials of S♯

2. This
one to (at most) one relation is computed by iteratively merging elements until each momonial
from S♯

2 intersects at most one element from S♯
1 and reciprocally. There are then two cases to

consider:
• Every element ofS♯

2 is contained in at least one element fromS♯
1 (actually there is at most

one such element thanks to the merging phase). In this case we apply a pair-wise widening
between monomials from S♯

1 and monomials from S♯
2.

• At least one monomial from S♯
2 is not contained in a monomial from S♯

1. In this case we
over-approximate to >℘.

Definition 6.26 (▽℘ operator). Algorithm 6.7 provides the definition of a ▽℘ operator.

Proposition 6.17 (Soundness and stabilizing property of ▽℘). For all S♯
1 and S♯

2 in M♯
℘,

γ℘(S
♯
1) ⊆ γ℘(S

♯
1▽℘S

♯
2) and γ℘(S

♯
1) ⊆ γ℘(S

♯
1▽℘S

♯
2)

Moreover ▽℘ stabilizes sequences.

See proof on page 155.
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Algorithm 6.7: ▽℘ operator
Input : S♯

1,S♯
2 two abstract elements

Output: A stabilizing over-approximation of γ℘(S
♯
1)∪ γ℘(S

♯
2)

1 merg1 ← S♯
1;

2 merg2 ← S♯
2;

3 while (1) ∃U♯
1,U♯ ′

1 ∈ merg1,∃U♯
2 ∈ merg2, itv(U♯

1)∩ itv(U
♯
2) 6= ∅∧ itv(U♯ ′

1 )∩ itv(U♯
2) 6= ∅

or (2) ∃U♯
2,U♯ ′

2 ∈ merg2,∃U♯
1 ∈ merg1, itv(U♯

2)∩ itv(U
♯
1) 6= ∅∧ itv(U♯ ′

2 )∩ itv(U♯
1) 6= ∅

do
4 if (1) then
5 merg1 ← merge(merg1,U♯

1,U♯ ′
1 )

6 else
7 merg2 ← merge(merg2,U♯

2,U♯ ′
2 )

8 end
9 res← ∅;

10 if ∀I2 ∈ itvs(merg2), ∃I1 ∈ itvs(merg1), I2 ⊆ I1 then
11 res← ∅;
12 foreach U

♯
1 ∈ merg1 do

13 res← res∪ { U
♯
1▽U

♯
2 if ∃U♯

2 ∈ S♯
2, itv(U♯

2) ⊆ itv(U♯
1)

U
♯
1 otherwise

}

14 done
15 return res

16 else
17 return >℘

∅

℘(V)

M3

M4

M1 M2

∅

℘(V) merge( ,M1,M2)

∅

℘(V)

M3

M4

∅

℘(V) merge( ,M3,M4)

∅

℘(V)

∅

℘(V)

Figure 6.9: Merging phase of ▽℘

6.6.5 Abstract transformers

Now that we have provided abstract operators on M♯
℘ for classical set operations as well as a

widening operator, we focus on the definition of abstract transformers for the two classical trans-
formation SJAssume(c)K and SJx ← eK. As the CLIP abstraction already provides sound abstract
transformers defined on M♯, our lifting to the ℘-CLIP abstraction will amount to a point-wise
application of those operators (this point-wise lifting is the same as the one introduced in Sec-
tion 6.3.1 for the definition of abstract transformers on the partitioning domain). Note however
that the underlying operator modifies the SVI on which a monomial is defined. Therefore the
resulting set of monomials might not be well-formed, in the sense that it may contain monomi-
als with overlapping SVIs. In the previous section, we provided a wf operator which soundly
transformed a set of monomials into a well-formed abstract element. However this operator
was designed with the intent of reducing the number of monomials. We now provide in Algo-
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Algorithm 6.8: wfp operator
Input : S a set of monomials
Output: S♯ a well-formed abstract element

1 res← S;
2 while ∃〈N♯, l,u〉 ∈ res, 〈N♯′, l ′,u ′〉 ∈ res, 〈N♯, l,u〉 6= 〈N♯′, l ′,u ′〉∧ [l;u]∩ [l ′;u ′] 6= ∅ do
3 [a;b]← [l;u]∩ [l ′;u ′];
4 diff1 ← itv_diff([l;u], [a;b]);
5 diff2 ← itv_diff([l ′;u ′], [a;b]);
6 res← res \ {〈N♯, l,u〉, 〈N♯′, l ′,u ′〉};
7 res← res∪

⋃
[c;d]∈diff1〈N

♯
|d

, c,d〉 ∪
⋃

[c;d]∈diff2〈N
♯′
|d

, c,d〉 ∪ {〈N♯
|b
tbN♯′

|b
,a,b〉}

8 end
9 return res;

rithm 6.8 a wfp operator which aims at precision rather than conciseness. This operator looks
for two monomials, the SVI of which ([l;u] and [l ′;u ′]) have a non empty intersection. It then
replaces these two monomials by: a monomial defined on the intersection [l;u] ∩ [l ′;u ′] and
monomials for each of the SVIs from the SVI difference [l;u] \ [l ′;u ′], similarly for [l ′;u ′] \ [l;u].

Proposition 6.18 (Soundness of Algorithm 6.8). Let S be a set of monomials, we have:⋃
U♯∈S

γ(U♯) ⊆ γ℘(wfp(S))

See proof on page 156.

Definition 6.27 (Abstract transformers on M♯
℘). We define the following abstract transformers:

S♯JAssume(c)K℘(S♯) =wfp({S♯JAssume(c)K(U♯) | U♯ ∈ S♯})

S♯Jx← eK℘(S♯) =wfp({S♯Jx← eK(U♯) | U♯ ∈ S♯})

Proposition 6.19 (Soundness of the abstract transformers). S♯Jx← eK℘ and S♯JAssume(c)K℘ are
sound transformers.

See proof on page 156.

6.6.6 Conclusion

As partitioning is often used to lift classical numerical domains, we felt that the CLIP abstraction
should provide a way to be made more precise as well. For this reason, we provided in this
section the ℘-CLIP abstraction. The precision of this abstraction, contrary to the partitioning
abstraction, can be tuned dynamically during the analysis, providing, at one end of the spectrum
the partitioning abstraction and at the other end the CLIP abstraction.

6.7 Unbounded maps

In the introduction to this chapter (Section 6.1) we mentioned not only the need for heteroge-
neous numerical environments but also for unbounded numerical environments. In this section
we revisit the classical lifting of bounded numerical domains to unbounded numerical domains
by means of summarizing variables (see [GDD+04]), however we will here show how this lifting
can be defined when starting from heterogeneous environments. Summarizing is based on the
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folding of several concrete objects (a potentially infinite number) to an abstract element which
summarizes all concrete objects. The folding is encoded in a function f mapping summarized
variables to the set of concrete variables they abstract. The concretization function γ from the
underlying domain (yielding back partial environments V ′ ↛ I) can then be parameterized by
this summarizing function to produce environments in V ↛ I. Given a mapping from summary
variables: V ′ to sets of concrete variables f ∈ V ′ → ℘(V) where f(v1)∩ f(v2) 6= ∅ ⇒ v1 = v2, we
start by defining the collapsing of a partial map ρ ∈ V ↛ I under a summarizing function f. This
collapsing will be used in the definition of the parameterized concretization function.

Definition 6.28 (Environment collapsing ↓□ (□)). We define the collapse of an environment
defined on concrete variables (a potentially infinite number of them) under a summarizing func-
tion, this produces a set of environments defined on summary variables that meet the constraints
from the original environment.

↓f (ρ) = {ρ ′ ∈ V ′ ↛ I |∀v ′ ∈ V ′, ρ ′(v ′) =

{
undefined if f(v ′)∩ def(ρ) = ∅
ρ(v) otherwise if ∃v ∈ f(v ′)∩ def(ρ) }

Under a summary function f the collapse of an environment ρ therefore produces environ-
ments ρ ′ that:

• are undefined on a variable v ′ as soon as ρ is undefined on every concrete variable associ-
ated to v ′ by the summarizing

• is defined on a variable v as soon as ρ is defined on some concrete variable associated to v,
moreover in such a case v ′ has the same image by ρ ′ as the image of v by ρ.

Example 6.18. Consider V ′ = {x,y, z, t} and V = {a,b, c,d,g,h}, the environment ρ = (a 7→
0,b 7→ 1, c 7→ 2,d 7→ 3,h 7→ 4) and finally the summarizing function f = (x 7→ {a},y 7→
{b, c}, z 7→ {d}, t 7→ {g}). Collapsing environment ρ under f yields the set of environments:
(x 7→ 0,y 7→ 1, z 7→ 3) and (x 7→ 0,y 7→ 2, z 7→ 3).

Given a summarizing function f ∈ V ′ ↛ ℘(V), and a concretization function γ yield concrete
elements in V ′ ↛ I we can now lift γ in a concretization function producing concrete values in
V ↛ I.

Definition 6.29 (Parameterized concretization γ[f]). Given a summarizing function f ∈ V ′ ↛
℘(V) and a function γ : N♯ → ℘(V ′ ↛ I) concretizing abstract elements from N♯ we define:

γ[f] = λN♯.{ρ ∈ V ↛ I |↓f (ρ) ⊆ γ(N♯)}

We have γ[f] ∈ N♯ → ℘(V ↛ I).

Given an abstract element N♯ its concretization under γ[f] is the set of environments the
collapsing of which is contained in γ(N♯).

Example 6.19. As a first example, we consider:
• that γ = γ

{x,y,z}
PQ

, the classical concretization function of polyhedra over Z defined over
the environment {x,y, z};

• that V = {x1,y1,y2, z1, z2, t1} and W = {x,y, z};
• that we are given a summarizing function: f = (x 7→ {x1},y 7→ {y1,y2}, z 7→ {z1, z2});
• finally that N♯ = {y ⩾ x, z ⩽ 3}.

Let us describe γ[f](N♯). An element ρ ∈ V ↛ I is in γ[f](N♯) if and only if ↓f (ρ) ⊆ γ(N♯). We
have ρ ′ ∈↓f (ρ) ⇒ def(ρ ′) = {v ′ | f(v ′) ∩ def(ρ) 6= ∅}. Moreover we have necessarily def(ρ ′) =
{x,y, z}, this ensures that def(ρ)∩ f(x) 6= ∅, def(ρ)∩ f(y) 6= ∅ and def(ρ)∩ f(z) 6= ∅. Therefore if
ρ ∈ γ[f](N♯), def(ρ) contains {x1}, at least one element among {y1,y2}, and at least one element
among {z1, z2}. Therefore let ρ be one such environment, let X = {ρ(x1)}, Y = {ρ(y1), ρ(y2)} and
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Z = {ρ(z1), ρ(z2)}3, we then have ∀vx ∈ X, vy ∈ Y, vz ∈ Z, (x 7→ vx,y 7→ vy, z 7→ vz) ∈ γ(N♯).
This ensures that ∀vx ∈ X,∀vy ∈ Y,∀vz ∈ Z, vy ⩾ vx ∧ vz ⩽ 3. Finally we get that (and these
are sufficient conditions):

A
∆
= {x1 7→ α,y{1,2} 7→ β, z{1,2} 7→ δ | α ⩾ β∧ δ ⩽ 3}
∪ {x1 7→ α,y1 7→ β,y2 7→ β ′, z1 7→ δ | α ⩾ β∧α ⩾ β ′ ∧ δ ⩽ 3}
∪ {x1 7→ α,y1 7→ β, z1 7→ δ, z2 7→ δ ′ | α ⩾ β∧ δ ′ ⩽ 3∧ δ ⩽ 3}
∪ {x1 7→ α,y1 7→ β,y2 7→ β ′, z1 7→ δ, z2 7→ δ ′ | α ⩾ β∧α ⩾ β ′ ∧ δ ′ ⩽ 3∧ δ ⩽ 3}

γ[f](N♯) = A∪ {ρ] (t1 7→ ϵ) | ρ ∈ A∧ ϵ ∈ Z}

Remark 6.11. The previous example showed that
• a variable in V that is not in the image of the summarizing function will be contained or

not (without constraints) in the environment of the resulting concrete maps.
• if a variable v summarizes a set S of variables, the presence of v in the original concretiza-

tion does not imply the presence of all variables from S, only of at least one.
Both are design choices motivated by reasons which will be made clear in the use case of the
following chapter. Indeed the tree abstraction will track an over-approximation of the set of
variables, thus removing the need for the numerical domain to do it; moreover summarization
variables will be used for sets of variables which might not (and in some cases will not) be present
at the same time in the concretization, thus justifying the second design choice.

Example 6.20. As a second example, we consider:
• that the underlying abstraction is the octagon abstraction lifted with the CLIP abstraction.
• that V, V ′ and f are as defined in Ex 6.18
• finally that N♯ = 〈{x ⩽ y}, {x}, {x,y}〉.

we have: γ(N♯) = {(x 7→ α) | α ∈ Z} ∪ {(x 7→ α,y 7→ β) | α ⩽ β}. We have: ρ ∈ γ[f](N♯) ⇔↓f
(ρ) ⊆ γ(N♯) ⇒ ∀ρ ′ ∈↓f (ρ), {x} ⊆ def(ρ ′) ⊆ {x,y}. Therefore if we assume m defined on d

then f(z)∩ def(ρ) 6= ∅ hence there would be an element in ↓f (ρ) defined on z. Hence m is not
defined on d, similarly for g. Moreover ∀ρ ′ ∈↓f (ρ), {x} ⊆ def(ρ ′) implies that ρ is defined on a.
Finally:

A
∆
= {(a 7→ α) | α ∈ Z}

∪ {(a 7→ α,b 7→ β) | α ⩽ β}

∪ {(a 7→ α, c 7→ β) | α ⩽ β}

∪ {(a 7→ α,b 7→ β, c 7→ δ) | α ⩽ β∧α ⩽ δ}

γ[f](N♯) = A∪ {ρ] (h 7→ ϵ) | ρ ∈ A∧ ϵ ∈ Z}

The abstract domains we will define in the following sections will employ this summarizing
framework. The manipulation of summarized variables requires the definition of a fold(E, x, S)
(resp. expand(E, x, S)) operator yielding a new environment where x is used as a summary
variable for S (resp. where a summary variable x is desummarized into a set of variables S).
Let S and S ′ be two finite sets of elements such that S ′ ∩ S ⊆ {x}, the classical definition of the
fold and expand function on numerical abstract domains is (N♯ ∈ NS): expand(N♯, x, S ′) =d

v∈S ′ N♯[x 7→ v]|(S\{x})∪S ′ and fold(N♯, x, S ′) =
⊔

v∈S ′ N♯[v 7→ x]|(S\S ′)∪{x} (which generalize
the one introduced in [GDD+04]). Following these definitions, these operators are lifted on
elements of M♯.

3These definitions abuse notations, indeed ρ is defined on at least one element from {y1,y2}, not necessarily on
both, the set Y is the set containing all possible images of y1 and y2, similarly for z.
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6.8 Conclusion

We provided an abstraction able to represent heterogeneous sets of environments. This abstrac-
tion generalizes to relational domains an approach already used in the particular case of intervals.
The precision of this abstraction, in particular for the join operator, comes from iterated attempts
to assert constraints taken from already known invariants.

In addition to the definition of the CLIP abstraction we have shown how its definition can be
generalized in the ℘-CLIP abstraction, so that state of the art results (partitioning at one end of
the spectrum, and the folk technique for non relational domains at the other end) can be seen
as a special case of our work.

The definition of an abstract domain representing trees with numerically labeled leaves
(which we want to use as a pre-analysis guiding framing, in a C modular iterator), requires
the ability to represent numerical constraints on the leaves of a set of trees. As we want to rep-
resent sets of trees that do not necessarily share the same numerical leaves positions, we need
to represent heterogeneous environments. Thanks to the results from this chapter, we can move
on to the definition of this tree abstraction in the next chapter.



Chapter 7

Tree abstraction

7.1 Introduction

7.1.1 Trees and terms

In Chapter 5, we emphasized that the quality of a modular analyzer (in terms of reusability and
precision of the inferred summaries) relies heavily on the quality of the framing performed by the
analyzer. Program 7.1 describes an append function in C, this function adds an integer at the end
of a linked list. The infinite set of unbounded terms of the form *(*( …*(head + 4) …+ 4) + 4)

(shown in Figure 7.1) represents memory zones that are used by the append function. Having a
pre-analysis capable of inferring and proving that this set of terms represents the only memory
zones reachable in Program 7.1 would allow us to soundly forget all the data fields of the linked
list. This would improve: (1) precision: as we know that they are not modified by the function
call, (2) body analysis efficiency: as the input state is reduced (the cost of atomic operations
in the underlying numerical domains is guided by the number of variables), (3) reusability: as
constraints on the usage of the first analysis are relaxed by the removal of constraints.

Inferring this set of terms requires the discovery of invariants having the form of maps from
program variables to sets of terms. In this chapter we will provide an abstract domain able to
infer such invariants.

The remainder of this introduction provides two other case studies showing how the ability to
infer environments mapping variables to tree-shaped structures can be used in program analysis.

Symbolic relations. Program 7.2 is a C function computing an approximation of the golden
ratio (as it is the limit of the sequence r0 = 1, rn+1 = 1 + 1

rn
). As classical numerical domains

can not represent such numerical relations, methods were proposed to track symbolic equality
between expressions (see [Min06b]). However such methods can not handle the unbounded it-
eration of Program 7.2. The set of reachable states at the end of Program 7.2 can be expressed by
r = 1 + 1/(1 + 1/ . . . 1 . . . ) with depth n. The abstraction presented in this chapter will (1) pro-
vide a way to join two symbolic environments where variables are bound to different expressions;
(2) define a widening operator stabilizing sequences of sets of terms. An illustration of the be-
havior of the domain defined in this section on the value of r in Program 7.2 can be found in
Figure 7.2.

Numerical environment. Consider now the OCaml Program 7.3, we want to prove that the
assert false expression is never reached. This program builds a list of size 2 ∗ nwith alternating
values x+ 1 and x− 1. The assertion states that the head of the list is x+ 1. After the definition
of t there are two types of reachable states. (1) Those that have not gone through recursive
calls (t 7→ [], x 7→ Z, n 7→ 0), and (2) those that have gone through at least one iteration of
the loop: (t 7→ [a1; a2; a3; …], x 7→ α, n > 0,a1 7→ α+ 1,a2 7→ α− 1,a3 7→ α+ 1), where

103
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1 typedef struct node

2 {

3 int data;

4 struct node* next;

5 } node;

6

7 node* append(node* head, int data)

8 {

9 if (head==NULL) {

10 return (create(data, NULL));

11 } else {

12 node *cursor=head;

13 while(cursor->next != NULL)

14 cursor=cursor->next;

15 node* new_node=create(data,NULL);

16 cursor->next=new_node;

17 return head;

18 }

19 }

Program 7.1: Append to list in C

1 float golden_ratio(int n) {

2 int i = 0;

3 float r = 1;

4 while (i < n) {

5 r = 1 + 1 / r;

6 i += 1;

7 }

8 return r;

9 }

Program 7.2: Golden ratio in C

1 let rec f x n =

2 match n with

3 | 0 -> []

4 | _ -> (x+1)::(x-1)::(f x (n-1))

5

6 let () =

7 (*Assume x:int and n:int>=0*)

8 let t = f x n in

9 match t with

10 | [] -> ()

11 | p :: q when p > x -> ()

12 | _ -> assert false

Program 7.3: List type in Ocaml

α ∈ Z. Therefore we need to be able to keep numerical relations between the parametric and
unbounded number of numeric values appearing in t and numeric variables from the program.
We can see that results from Chapter 6 will be useful to represent these numerical relations.

7.1.2 Outline of the chapter

The remainder of the chapter is organized as follow: We start, in Section 7.2, by presenting
the concrete semantics we want to abstract. As the abstraction defined in this chapter and the
state of the art method from [GGLM12] for the representation of sets of trees with numerically
labeled leaves both use tree regular languages, we will recall, in Section 7.3, their definition and
the properties used in subsequent sections. We can then provide a description of state of the art
in Section 7.4. Section 7.3 will also recall some results on regular languages as these will be
used in the definition of our abstraction. In Section 7.5 we build a first abstraction which forgets
numerical values and focuses on abstracting tree shapes, this will be done using tree automata.
In Section 7.6, we define a second abstraction which aims at precisely representing numerical
constraints between trees and program variables. In Section 7.8 we provide remarks on the
implementation and results of the analyzer.

Due to the high number of abstract operators provided in this chapter, not all of them come
with a soundness proof. We consider as future works the completion of these proofs.
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*(…*(head+4)+4…+4)

Figure 7.1: Reachable memory zones in Program 7.1
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Figure 7.2: Joining and widening of Program 7.2

7.2 Syntax and concrete semantics

7.2.1 Terms and numerical terms

In this subsection we provide definitions for terms, numerical terms, as well as some of the
notations used thereafter. In the following I ∈ {Z, Q, R}.

Definition 7.1 (Alphabet, ranked alphabet, arity). An alphabet F is a finite set, a ranked alphabet
is a pair R = (F,a) where F is an alphabet and a ∈ F → N. For f ∈ F, we call arity of f the
value a(f). We assume that I and F are disjoint. In the following, Fn denotes the subset of F of
arity n.
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Definition 7.2 (Terms). When R contains at least one symbol of arity 0, we define terms over R
(denoted T(R)) to be the smallest set such that:

• ∀p ⩾ 0, f ∈ F, t1, . . . , tp ∈ T(R), a(f) = p⇒ f(t1, . . . , tp) ∈ T(R)

Definition 7.3 (Numerical terms). We define the set of numerical terms over R (denoted TI(R))
to be the smallest set such that:

• I ⊆ TI(R)
• ∀p ⩾ 0, f ∈ F, t1, . . . , tp ∈ TI(R), a(f) = p⇒ f(t1, . . . , tp) ∈ TI(R)

Remark 7.1. Moreover given a term t ∈ T(R) we denote f = head(t) ∈ F and sons(t) the
possibly empty tuple (t1, . . . , tn) of elements of T(R) such that t = f(t1, . . . , tn).

Example 7.1. Consider the ranked alphabet R = {*(1), &(1), +(2), x(0)}, u(n)means that symbol
u has arity n. Then &x ∈ T(R), but *(&x+4) ∈ TI(R), and *(&x+4) /∈ T(R). Using this alphabet we
can model C pointer arithmetic.

Example 7.2. U = {+(x,y) | x ⩽ y} and V = {+(x,+(z,y)) | x ⩽ y∧ z ⩽ y} are two sets of
numerical terms overR = {+(2)}which we will use as running examples in the following sections
of this chapter.

7.2.2 Syntax of the tree manipulating language

We consider here a small imperative language, manipulating numerical variables V, extending
with tree manipulating primitives. We have two sets of variables: a set of numerical variables
(V) and a set of tree variables (T). In addition to the usual constructions provided a numerical
imperative languages we add:

• An assignment statement for tree expressions (stmt).
• Tree expressions (tree-expr) which are expressions that are evaluated to trees. This adds

the ability to:
– build a tree which contains only a numerical leaf: make_integer(e);
– read the i-th son of a tree t: get_son(t, i).
– build a tree from a root symbol and its subtrees: make_symbolic(F, tree-expr, . . . ,

tree-expr)
• finally the set of expressions of the language is also extended to allow the retrieval of

information from trees (expr). :
– get_num_head(tree-expr) retrieves the numerical value of the head of the tree (note

that, in the concrete semantics this implies that the tree is reduced to a single leaf, as
numerical values can only be found in leaves)

– is_symbol(tree-expr) enables to test whether the head of the tree is a symbol or a
numeric value.

– simple test on symbols in trees
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Definition 7.4 (Language syntax). The language is defined to be:

tree-expr ∆
= | make_symbolic(F, tree-expr, . . . , tree-expr)

| make_integer(expr)
| get_son(tree-expr, expr)
| T

stmt ∆
= | while (expr) {stmt}

| if (expr) {stmt} else {stmt}
| T = tree-expr
| V = expr

expr ∆
= | W | I | expr ./ expr | ¬expr ./∈ {<,⩽,=, 6=,⩾,>,+,−,×, /}

| get_num_head(tree-expr)
| is_symbol(tree-expr)
| get_sym_head(tree-expr)==F

Remark 7.2. For presentation purposes, the mathematical definitions of the syntax and the se-
mantics of the considered language are built upon two new set of variables T and V. However
in the actual implementation we extended the “universal” language shipped with the MOPSA
framework, this language provides C-like types. Therefore rather than actually partitioning the
set of variables, we relied on the type language. This is visible in the two example: Program 7.4
and Program 7.5. Moreover in the implementation in the universal language, symbols handling
is assimilated to string handling. Note however that the set of manipulated symbols is supposed
to be finite, for this reason we only handle litteral strings. Thereafter we denote as R the ranked
alphabet obtained by gathering all litteral strings in the program, their arity is gathered statically
from their use in the program.

7.2.3 Concrete semantics of the language

Having given the syntax of the considered language we now define its concrete semantics. We
assume already defined an evaluation function EJ.K : (V → I) → ℘(I). This function will be
extended to the newly added language features. Similarly we assume already defined an execu-
tion function SJ.K : ℘(V→ I)→ ℘(V→ I). As mentioned in Remark 7.2, the language extension
adds a new set of variables: numerical term variables. Therefore our semantic extension requires
EJ.K and SJ.K to not be defined on (V → I) but rather on (V → I)× (T → TI(R)). We abuse
notations and assume that EJ.K and SJ.K have been lifted to this new signature on the already
existing language features.

Definition 7.5 (Concrete semantics). In the following E denotes a numerical environment: E ∈
V → I and F denotes a numerical tree environment: F ∈ T → TI(R). T , T1, . . . , Tm denote tree
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1 int i;

2 int n;

3 tree y;

4 assume(n >= 0);

5 i = 0;

6 y = make_symbolic("p",{});

7 while (i < n) {

8 y = make_symbolic("*",

9 {make_symbolic("+",

10 {y,

11 make_integer(4)

12 })

13 });

14 i = i+1;

15 }

Program 7.4: *(p+4) iterated

expressions (tree-expr), e denotes an expression (expr), t denotes a tree variable (T).

EJmake_symbolic(s ∈ Fm, T1, . . . , Tm)K(E, F) = {s(t1, . . . , tm) | ∀i, ti ∈ EJTiK(E, F)}
EJmake_integer(e ∈ expr)K(E, F) = EJeK(E, F)
EJis_symbol(T)K(E, F) = {true | ∃t ∈ EJTK(E, F),∃f ∈ R, t = f(. . . )}

∪ {false | ∃t ∈ EJTK(E, F), t ∈ I}

EJtK(E, F) = {F(t)}

EJget_son(T , e)K(E, F) = {t | ∃i ∈ EJeK(E, F), t ′ ∈ EJTK(E, F), f ∈ Fm>i,
t ′ = f(t0, . . . , tm−1)∧ ti = t}

EJget_num_head(T)K(E, F) = {i ∈ I | ∃t ∈ EJTK(E, F), t = i}

EJget_sym_head(T)K(E, F) = {s ∈ R | ∃t ∈ EJTK(E, F), t = s(. . . )}

SJt = TK(R) = ⋃
(E,F)∈R

{(E, F[t 7→ tv]) | tv ∈ EJTK(E, F)}

Remark 7.3. Note that the definition of EJis_symbol(T)K yields special values true and false,
which we assume representable in the underlying numerical domain I. For example we could
use the classical true = 1 and false = 0. The universal language from the MOPSA framework
comes with a boolean type, which we used.

7.2.4 Example

Now that we have given the syntax and semantics of our tree language, let us show some ex-
amples of the expressiveness of this language. To do so we translated two of our introductory
problems into this language. Program 7.4 computes the memory zones used by append from
Prog 7.1, and Program 7.5 simulates the behavior of Program 7.3.

7.3 Background – (Tree) regular languages

In this section we briefly recall the definitions of regular and tree regular languages, these def-
initions are followed by some properties of such sets of languages. We focus on the definitions
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1 int n; int i; int x; int rep;

2 tree t;

3 assume(n>=0);

4 i = 0;

5 t = make_symbolic("Nil",{});

6 while (i < n) {

7 t = make_symbolic("Cons", {make_integer(x-1), t});

8 t = make_symbolic("Cons", {make_integer(x+1), t});

9 i = i + 1;

10 };

11 if (get_sym_head(t) != "Nil") {

12 rep = get_num_head(get_son(t,0));

13 assert(rep > x);

14 }

Program 7.5: List manipulation

and properties necessary to the understanding of the abstractions defined in subsequent sec-
tions. For an in-depth description of regular languages and a proof of propositions please refer
to [HMU06], for tree regular languages please refer to [CDG+07].

7.3.1 Regular languages

Generalities

We provide here a definition of regular languages. Among all possible equivalent definitions we
choose here to define them as the set of languages that can be recognized by a finite automaton.

Definition 7.6 (Finite Automaton FA). We call finite automaton (FA) a quintuplet A = (Σ,Q, I,
Qf, δ) where:

• Σ is a finite set: the alphabet;
• Q is a finite set: the set of all possible states;
• I ⊆ Q is the set of all initial states;
• Qf ⊆ Q is the set of all final states;
• δ ⊆ Q× Σ×Q is the set of all transitions.

Definition 7.7 (Accepted word and recognized language). Given A = (Σ,Q, I,Qf, δ) ∈ FA,
a word w = w1 . . .wn ∈ Σn, a state q ∈ Q, we denote as δ⋆(q,w) the set of states {qn ∈
Q | ∃(q0, . . . ,qn−1) ∈ Qn−1,q0 = q∧ ∀i ∈ {0, . . . ,n− 1}, (qi,wi+1,qi+1) ∈ δ}. A word w is
said to be accepted by a finite automaton A = (Σ,Q, I,Qf, δ) if there exists q0 ∈ I such that
δ⋆(w,q0)∩Qf 6= ∅. The set of words accepted by a FA A will be called the language recognized
by A, denoted L(A).

Definition 7.8 (Regular languages). A language L is said to be regular if there exists a FA A,
such that L = L(A). The set of all regular languages over the alphabet Σ is denoted Reg(Σ).

Example 7.3. • The language of all words over Σ is regular;
• the empty language is regular;
• every finite language is regular.

Definition 7.9 (deterministic finite automaton DFA). We call deterministic finite automaton a
finite automaton A = (Σ,Q, I,Qf, δ) such that:
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• |I| = 1
• ∀q ∈ Q,∀a ∈ Σ, |{q ′ ∈ Q | (q,a,q ′) ∈ δ}| = 1

In this case we will abuse notations and denote q ′ = δ(q,a) the unique element such that
(q,a,q ′) ∈ δ.

Proposition 7.1 (Equivalence between FA and DFA). For every regular language L there exists a DFA
A such that L = L(A). Moreover given A ′ ∈ FA one can compute A ∈ DFA such that L(A) = L(A ′).

Proposition 7.2 (regular language stability). The set of regular languages is stable under:
• union
• intersection
• concatenation
• complementation
• Kleene star

Moreover all these operations are computable on the automaton representation of regular languages.

Proposition 7.3. (Reg(Σ),⊆,∩,∪,□c, ∅,Σ⋆) is a non-complete complemented lattice with infinite
height.

As we want to use regular languages to represent reachable sets of states in a program,
and as the lattice has infinite height, we need to define a widening operator ensuring sequence
stabilization. We follow the idea of regular widening introduced in [Fer01], also used in e.g.
[Gal08] and [Bot18].

Widening definition

Definition 7.10 (Quotient). Let A = (Σ,Q, I,Qf, δ) ∈ DFA and ∼ be an equivalence relation on
Q. We call quotient automaton of A by ∼, denoted A/ ∼ the automaton: (Σ,Q/ ∼, {[q]∼ | q ∈
I}, {[q]∼ | q ∈ Qf}, δ ′), where: δ ′ = {([q]∼,a, [δ(q,a)]∼) | q ∈ Q,a ∈ Σ}. The number of states of
A/ ∼ is the index of ∼.

Proposition 7.4 (Quotienting over-approximates). For all A ∈ DFA and all equivalence relations
∼, we have L(A) ⊆ L(A/ ∼).

Definition 7.11 (Congruence). Let A = (Σ,Q, I,Qf, δ) ∈ DFA and ∼ be an equivalence relation
on Q. We call ∼ a congruence whenever:

• ∀q1,q2,q1 ∼ q2 ⇒ (∀a ∈ Σ, δ(q1,a) ∼ δ(q2,a))
• ∀q1,q2,q1 ∼ q2 ⇒ (q1 ∈ Qf ⇔ q2 ∈ Qf)

Proposition 7.5 (Quotienting by congruence is exact). For all A ∈ DFA and all congruence ∼, we
have L(A) = L(A/ ∼).

Definition 7.12 (Nerode congruence). Given A = (Σ,Q, I,Qf, δ) ∈ DFA, we denote as: Lq =

{w | δ⋆(q,w) ∩Qf 6= ∅}. the Nerode congruence is then defined as: q1 ∼N q2
∆
= Lq1 = Lq2 . Note

that this is indeed a congruence.

Proposition 7.6 (Existence and uniqueness of a minimal equivalent DFA). For every regular lan-
guage L there exists a unique (up to renaming) minimal DFA A, such that L(A) = L. Given a DFA
A ′ recognizing L, one can choose A = A ′/ ∼N where ∼N is the Nerode congruence associated with
A ′.

Definition 7.13 (Myhill-Nerode sequence). Given A = (Σ,Q, I,Qf, δ) ∈ DFA, the following
sequence of equivalence relation is called the Myhill-Nerode sequence :

• q1 ∼N0 q2
∆⇔ (q1 ∈ Qf ⇔ q2 ∈ Qf)

• q1 ∼Ni+1 q2
∆⇔ (q1 ∼Ni q2)∧ ∀a ∈ Σ, δ(q1,a) ∼Ni δ(q2,a)
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Proposition 7.7 (Myhill-Nerode sequence stabilizes). Given A = (Σ,Q, I,Qf, δ) ∈ DFA, there
exists an integer k such that the Myhill-Nerode sequence of automaton A satisfies ∀j ⩾ k, ∼Nj =∼Nk.
Moreover ∼N=∼Nk

Definition 7.14 ([□]□). Given A ∈ DFA, and an integer n, let (∼Ni )i⩾0 be the Myhill-Nerode
sequence associated to A, we denote as ϕ(n) = max{k | k ⩽ |A| ∧ | ∼Nk | ⩽ n} (this is well-
defined for n ⩾ 2), we then define [A]n

∆
= A/ ∼N

ϕ(n).

The Myhill-Nerode sequence is a sequence of equivalence relation such that every relation
refines the previous one, ϕ(n) enables to chose the index of the first equivalence relation in this
sequence that has an index of at most n.

Remark 7.4. Thanks to Proposition 7.1 we can assimilate regular languages as the DFA that rec-
ognizes them. A regular languages is a potentially infinite set of words, whereas a DFA provides
a finite representation of the language. The widening operator from the following proposition
is therefore defined on DFA, rather than on regular languages.

Definition 7.15 (Widening operator). We define a widening operator, parameterized by an in-
teger w. Given A ∈ DFA and A ′ ∈ DFA: A▽wA ′ ∆

= [A∪A ′]w.

Remark 7.5. We abused notations by using ∪ to denote the operator taking two DFAs as argument
and returning a DFA recognizing the union of the two languages recognized by its inputs.

Proposition 7.8 (▽w). For every integer w ⩾ 2, ▽w over-approximates the union and stabilizes
infinite sequences.

Regular expressions/operations

In the following, regular expressions will be also be used to represent regular languages. We
recall their definition here to provide the notations used in the following. Given an alphabet Σ,
the set Regex(Σ) of regular expressions over Σ is:

Regex(Σ) ∆
= | ϵ | a a ∈ Σ

| Regex(Σ) + Regex(Σ)
| Regex(Σ).Regex(Σ)
| Regex(Σ)⋆

These notations will also be used for the operators on regular languages: + denotes the union,
. the concatenation and ⋆ the Kleene star.

Resolution of Gaussian systems (see [Sak09])

For the definition of our tree abstraction, we will need to solve systems of the form:

∀i ∈ {1, . . . ,n},Xi =

{ ⋃n
j=1 ai,j.Xj ∪ {ϵ} if i ∈ I⋃n
j=1 ai,j.Xj otherwise (7.1)

with unknown (Xi) ∈ ℘(Σ⋆), where I ⊆ {1, . . . ,n}, and where ∀i, j,ai,j ∈ Σ. Moreover in
addition to the computation of the unique solution, we use the fact that this solution maps every
Xi to a regular language. This result is achieved by performing several Gaussian eliminations,
this requires expressing Xi in terms of the Xj for j 6= i. This can be achieved by Arden’s rule.

Proposition 7.9 (Arden’s rule (case ϵ /∈ K)). Let K and L be two languages over Σ, such that
ϵ /∈ K, then the equation X = KX∪ L admits a unique solution that is X = K⋆L.
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We can rewrite an equation Xi =
⋃n

j=1 ai,jXj to the form Xi =
⋃

j̸=i ai,jXj ∪ ai,iXi. Using
Proposition 7.9 we conclude that Xi = a⋆

i,i(
⋃

j̸=i ai,jXj). Having shown that we are able to
eliminate Xi from the right hand side of the equation defining Xi we can iterate this process in
a Gaussian elimination fashion. This yields several results:

• Eq. 7.1 has a unique solution;
• The unique solution maps the Xi to regular languages;
• The unique solution can be computed.

7.3.2 Tree regular languages

We now recall the definition of tree regular languages as well as some of the properties used for
the abstraction of subsequent sections. Note that the properties and definitions of this subsection
will be very close to those of the Section 7.3.1. Regular languages are actually a special case of
tree regular languages when every symbol from the ranked alphabet has arity 1.

Generalities

Definition 7.16 (Finite Tree Automaton FTA). A finite tree automaton (FTA) is a tuple (R,Q,Qf, δ),
where:

• R is a ranked alphabet
• Q is a finite set of states;
• Qf ⊆ Q is the set of final states;
• δ ∈ ℘f(

⋃
n∈N Fn ×Qn ×Q) is the set of transitions.

We define δ : (
⋃

n∈N Fn ×Qn)→ ℘(Q) by: δ(f,−→q ) = {q ′ | (f,−→q ,q ′) ∈ δ}.

Definition 7.17 (Reachability function). Given a FTA A = (R,Q,Qf, δ) we define a reachability
function δ⋆ : T(R)→ ℘(Q):

δ⋆(t) =let t1, . . . , tn = sons(t) in⋃
(q1,...,qn)∈(δ⋆(t1),...,δ⋆(tn))

{q | (head(t), (q1, . . . ,qn),q) ∈ δ}

If sons(t) is the empty tuple (which is the case when t is a constant a), the union is made over
a unique element (which is the empty tuple), which then boils down to: {q | (a, (),q) ∈ δ}. If
sons(t) is not the empty tuple and for some i, δ⋆(ti) is empty, then δ⋆(t) is also empty

Example 7.4. Consider the ranked alphabet R = {f(2),a(0)}, and the automaton A = (R, {u,
v}, {v}, {a() → u, f(v, v) → v, f(u,u) → u, f(u,u) → v}). Then δ⋆(a) = {u}, δ⋆(f(a,a)) = {u, v},
δ⋆(f(f(a,a),a)) = {u, v}.

Definition 7.18 (Accepted tree, recognized tree language). Given a FTA A = (R,Q,Qf, δ), a
term t, we say that t is accepted by the automaton if δ⋆(t)∩Qf 6= ∅. The set of trees accepted by
a FTA A will be called the recognized tree language of A, denoted L(A) .

Example 7.5. With the definition of Example 7.4, L(A) is the set of terms over R that contain
at least one f.

Definition 7.19 (Tree regular languages). A set of terms T over a ranked alphabet R is called
tree regular if there exists a FTA A over R such that L(A) = T. The set of tree regular languages
over a ranked alphabet R is denoted TReg(R).

Example 7.6. • The language of all trees over R is tree regular;
• the empty language is tree regular;
• every finite tree language is tree regular.



7.3. BACKGROUND – (TREE) REGULAR LANGUAGES 113

Definition 7.20 (Deterministic Finite Tree Automaton DFTA). We call deterministic finite tree
automaton a finite tree automaton A = (R,Q,Qf, δ): such that: ∀n ∈ N, f ∈ Fn, −→q ∈
Qn, |{q ′ | (f,−→q ,q ′) ∈ δ}| = 1. We then abuse notations and denote as δ(f,−→q ) the unique
element in the set {q ′ | (f,−→q ,q ′) ∈ δ}.

Proposition 7.10 (Equivalence between FTA and DFTA). As for regular languages, for every tree
regular language L there exists A ∈ DFTA such that L(A) = L. Moreover given A ′ ∈ FTA one can
compute A ∈ DFTA such that L(A) = L(A ′).

Proposition 7.11. The set of tree regular languages is stable under:
• union
• intersection
• complementation

Moreover all these operations are computable on the automaton representation of tree regular lan-
guages.

Proposition 7.12. (TReg(R),⊆,∩,∪,□c, ∅, T(R)) is a non-complete, complemented lattice with
infinite height.

Widening operator

As for regular languages, the fact that the lattice has infinite height creates the need for a widen-
ing operator. The closeness between regular languages and tree regular languages enable us to
follow the classical widening definition (presented in Section 7.3.1) and adapt it to tree regular
languages.

Definition 7.21 (Quotient). LetA = (R,Q,Qf, δ) ∈ DFTA and ∼ be an equivalence relation onQ.
We call quotient automaton of A by ∼, denoted A/ ∼ the automaton: (R,Q/ ∼, {[q] | q ∈ Qf}, δ ′),
where: δ ′ = {(f, ([q1], . . . , [qn]), [δ(f, (q1, . . . ,qn))]) | n ∈ N,q ∈ Q, f ∈ Fn}. The number of
state of A/ ∼ is the index of ∼.

Proposition 7.13 (Quotienting over-approximates). For all A ∈ DFTA and all equivalence relation
∼, we have L(A) ⊆ L(A/ ∼).

Definition 7.22 (Congruence). Let A = (Σ,Q, I,Qf, δ) ∈ DFA and ∼ be an equivalence relation
on Q. We call ∼ a congruence whenever:

• ∀p1, . . . ,pn ∈ Q, ∀q1, . . . ,qn ∈ Q, (
∧n

i=1 pi ∼ qi) ⇒ ∀f ∈ Fn, δ(f,p1, . . . ,pn) ∼

δ(f,q1, . . . ,qn)
• ∀p,q,p ∼ q⇒ (p ∈ Qf ⇔ q ∈ Qf)

Proposition 7.14 (Quotienting by congruence is exact). For all A ∈ DFTA and all congruence ∼,
we have L(A) = L(A/ ∼).

As for regular languages, we have the existence of a minimal equivalent DFTA.

Proposition 7.15 (Existence and uniqueness of aminimal equivalent DFTA). For every tree regular
language L, there exists a unique (up to renaming) minimal DFTA A, such that L(A) = L.

Definition 7.23 (Myhill-Nerode sequence). Given A = (R,Q,Qf, δ) ∈ DFTA, the following se-
quence of equivalence relation is called the Myhill-Nerode sequence: :

• p ∼N0 p ′ ∆
= (p ∈ Qf ⇔ p ′ ∈ Qf)

• p ∼Ni+1 p ′ ∆
= (p ∼Ni p ′)∧ ∀n ∈ N,∀i ∈ {1, . . . ,n},∀f ∈ Fn,∀(q1, . . . ,qi−1,qi+1, . . . ,qn) ∈

Qn−1, δ(f, (q1, . . . ,qi−1,p,qi+1, . . . ,qn)) ∼
N
i δ(f, (q1, . . . ,qi−1,p ′,qi+1, . . . ,qn))

Proposition 7.16 (Myhill-Nerode sequence stabilizes). Given A = (R,Q,Qf, δ) ∈ DFTA, there
exists an integer k such that the Myhill-Nerode sequence of automaton A satisfies ∀j ⩾ k, ∼Nj =∼Nk.
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Definition 7.24 ([□]□). Given A ∈ DFTA, and an integer n, let (∼Ni )i⩾0 be the Myhill-Nerode
sequence associated toA, we denote as ϕ(n) = max{k | k ⩽ |A|∧ | ∼Nk | ⩽ n} (this is well-defined
for n ⩾ 2), we then define [A]n

∆
= A/ ∼N

ϕ(n).

Remark 7.6. Thanks to Proposition 7.10 we can assimilate tree regular languages as the DFTA
that recognizes them. The widening operator from the following proposition is therefore defined
on DFTA, rather than tree regular languages.

Definition 7.25 (Widening operator). We define a widening operator, parameterized by an in-
teger w. Given A ∈ DFA and A ′ ∈ DFA: A▽wA ′ ∆

= [A∪A ′]w.

Proposition 7.17 (▽w). For every integer w ⩾ 2, ▽w over-approximates the union and stabilizes
infinite sequences.

See proof on page 157.

Example 7.7. Consider the ranked algebra F = {f(2),a(0)}, the following complete and deter-
ministic automaton: Q = {0, 1, 2, 3, 4}, Qf = {1, 2, 3, 4}, δ = {a() → 1, f(1, 1) → 2, f(1, 2) → 3,
f(1, 3) → 4}, where every unmentioned transition mentioned goes towards 0. The recognized
language is a, f(a,a), f(a, f(a,a)) and f(a, f(a, f(a,a))). In order to relax constraints on this
automaton, we compute the following equivalence of index 4: {3, 4}, {0}, {1}, {2} andmerge equiva-
lent states (this introduces a loop). We therefore obtain the automaton: Q = {0, 1, 2, 3},Qf = {1,
2, 3}, δ = {a() → 1, f(1, 1) → 2, f(1, 2) → 3, f(1, 3) → 3}, which recognizes the language: f(a,
f(. . . , f(a,a) . . . )). Table 7.1 defines four tree automata A0,A1,A2,A3. On these elements, B0,
B1,B2,B3 are defined by: B0 = A0 and Bi = Bi−1▽Ai for the constant w = 4. labels on
nodes of Tab 7.1 mean that the sub-tree rooted in that node is also accepted. We can see that B1
(resp. B2) represents exactly A0 ∪A1 (resp. A0 ∪A1 ∪A2) whereas the language accepted by
B3 is an over approximation of A0 ∪A1 ∪A2 ∪A3(

∆
= C). Indeed representing effectively C would

require 5 states. Therefore an equivalence of index 4 is computed on the states of the automaton
representing the exact union, once this equivalence is computed, equivalent states are merged,
thus loosing precision.

7.3.3 Implementation remarks

As both the regular language lattice and the tree regular language lattice were needed for the
development of the numerical term abstraction (presented in subsequent sections), all above-
mentioned operations have been implemented. We chose to implement our own regular and
tree regular lattice operations instead of using existing libraries as we needed to:

• Test several design choices;
• Relax some operations. Indeed some of the above mentioned operators can be relaxed

to compute an over-approximation (for the language inclusion ordering) of their expected
result. This comes from the fact that these are used in an abstract interpreter. Note however
that this induces a precision loss;

• Define a widening operator (operator not provided in classical (tree) regular language
implementations). It is not defined as a composition of low level operators, but rather as a
modified minimization algorithm.

In this subsection we describe some features of our implementation.

Generalities. The regular (resp. tree regular) lattice and its operations have been implemented
as a generic abstract domain in the MOPSA framework (see Chapter 3). This entails the classical
abstract lattice operations: join, meet, inclusion test, emptyness checking, widening operator.
Both implementations provide additional operators, which are domain dependant (e.g. concate-
nation, gaussian solver, …).
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name Q Qf δ L

A0 {0, 1} {1} a()→ 1
a

A1 {0, 1, 2} {2} a()→ 1
f(1, 1)→ 2

f

a a

B1 {0, 1, 2} {1, 2} a()→ 1
f(1, 1)→ 2

f

a a

A2 {0, 1, 2, 3} {3} a()→ 1
f(1, 1)→ 2
f(1, 2)→ 3

f

a f

a a

B2 {0, 1, 2, 3} {1, 2, 3} a()→ 1
f(1, 1)→ 2
f(1, 2)→ 3

f

a f

a a

A3 {0, 1, 2, 3, 4} {4}
a()→ 1

f(1, 1)→ 2
f(1, 2)→ 3
f(1, 3)→ 4

f

a f

a f

a a

B3 {0, 1, 2, 3} {1, 2, 3}
a()→ 1

f(1, 1)→ 2
f(1, 2)→ 3
f(1, 3)→ 3

f

a . . .

f

a f

a a

Table 7.1: Illustration of widening operator on tree regular languages

Automaton representation. Following the definitions, we represent (tree) regular languages
as their automaton. Our implementation contains: a deterministic automaton signature as well
as a non deterministic one. We try to keep them deterministic as long as possible. The union
and intersection are therefore computed via product automaton (which produces a deterministic
output as soon as its inputs are deterministic).
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7.4 State of the art

7.4.1 Using (Tree) Regular languages

In [BHRV06]and [BHV04] tree automata and regular automata are used for the model check-
ing of programs manipulating C pointers and structures. Other uses have been made of tree
automata in verification: shape analysis of C programs as in [DPV11], computation of an over-
approximation of terms computable by attackers of cryptographic protocols as in [Mon99]. As
mentioned in Section 7.3, widening regular languages by the computation of an equivalence
relation of bounded index is also done in [Fer01] and in [GJJ06].

7.4.2 Tree languages

Previous works on sets of trees abstractions [Mau99] were able to recognize larger classes of
tree languages than tree automata, however they do not consider sets of trees with numerically
labeled leaves. Termination analyses have been proposed for the analysis of programs manipu-
lating tree structures (AVL, red-black trees) see [HIRV07].

7.4.3 Numerical terms

We focus in this chapter on the abstraction of trees labeled with numerical values, therefore the
work closest to ours would be [GGLM12]. For this reason we give here a summarized account
of their results, and point out the differences between their work and ours. Their goal is to
represent trees, the leaves of which can be labeled with elements from a set D. They assume
given an abstract latticeD♯, forming a representation (℘(D),⊆) γ←− (D♯,v). Their starting point
is the representation of sets of numerical terms by tree automata. They extend tree automata
in the following manner: each state of the tree automaton is mapped (via a function we denote
ϕ) to an abstract element from an abstract lattice. Running a tree labeled with elements from
D in such a tree automaton is a straightforward extension of the classical definition (provided in
Section 7.3):

• if the head of the tree is labeled with a symbol we follow the usual definition
• otherwise if the head is an element x ∈ D then running the tree yields the set of states:

{q | x ∈ γ(ϕ(q))}. These are the states, the adjoined abstract element of which represent
a set containing x.

These extended tree automata are concretized towards the set of trees they accept. We see
that their abstraction can represent more general sets of trees than the ones considered in this
chapter. Indeed as states are labeled with an element from an abstract lattice, we could choose,
for example, the interval lattice presented in Chapter 2, thus yielding numerically labeled trees.
However, choosing the constant string lattice, we obtain a representation for trees let leaves
of which are labeled with strings. However this generality comes at the cost of precision: no
relations can be expressed between the numerical values stored in the leaves of the represented
trees, nor could we express relations between the leaves of the represented trees and the other
program variables. Another drawback is the fact that the precise inclusion test would require
the abstract lattice to be equipped with a complementation operator, which is not the case for
the interval lattice, therefore the authors had to result to the classical technique of extending
the lattice with a partitioning (for example the interval lattice is extended with the partitioning
] −∞; 0[, [0; 0], ]0;∞[), this technique loses precision (on top of the precision loss induced by the
use of an abstract lattice).

Example 7.8. • Consider the following set of numerically labeled trees: S = {β, f(α,β),
f(α, f(α,β)), · · · | β ⩾ 0,α ⩽ −3}. Consider moreover the tree automaton A = ({f(2)},
{a,b}, {b}, {f(a,b)→ b}) augmented with the following ϕ function: ϕ(a) =] −∞;−3] and
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ϕ(b) = [0;∞]. Using results from [GGLM12], (A,ϕ) represents exactly the tree set S. The
abstraction defined in this chapter is also able to precisely represent S.

• Consider now the following set of numerically labeled trees: S = {β, f(α,β), f(α, f(α,β)),
· · · | β = α+ 1}. The abstraction from [GGLM12] can not precisely represent S due to the
numerical relationality between the leaves of the trees. The abstraction presented here is
able to precisely represent S.

Chapter intermission. In previous subsections, we have shown that we needed abstractions
representing environments mapping variables to numerical trees. In the two following sections
(Section 7.5 and Section 7.6) we define two abstractions representing such numerical tree en-
vironments. Both will be defined as a lifting of a value abstraction for numerical tree sets to an
environment. These liftings can be compared to the lifting of the interval value domain (repre-
senting ℘(R)) to the interval domain (representing ℘(V → R)). Note however that this lifting
induces a loss of relationality for the resulting environments. For this reason Section 7.7 will
explain how the lifting is modified to regain relational environments.

7.5 Natural term abstraction by tree automata

In this subsection we start by defining a value abstraction for tree sets (in Section 7.5.1), which
is then lifted to an environment abstraction (in Section 7.5.3). This abstraction will tackle the
problem of representing sets of tree shapes. This will be done using tree automata (introduced
in Section 7.3.2). As we only focus on tree shapes, numerical values contained in leaves will be
abstracted away and replaced by the □ symbol.

7.5.1 Value abstraction

Definition 7.26 (R□). GivenR, We denote asR□ the ranked alphabetR after adding the symbol
□ of arity 0 (we assume that □ 6∈ R).

Definition 7.27 (Holify function). Given a numerical term t ∈ TI(R) we define inductively:

t□ =

{
f(t□1 , . . . , t□n) when t = f(t1, . . . , tn)
□ when t = n ∈ I

t□ is the term obtained by replacing every number with the □ symbol in t.

Proposition 7.18 (Tree automata abstraction). (℘(TI(R)),⊆)
γ←− (TReg(R□),⊆), where:

γ(A) = {t | t□ ∈ L(A)}

is a representation. Moreover with such a γ definition, ∪, ∩ soundly abstracts the union and the
intersection.

Remark 7.7. Due to the use of the tree regular abstraction, we only have a representation and
not a Galois connection. Indeed, consider now ranked alphabet {a(1),b(1), ϵ(0)} and the set
of terms T = {ϵ,a(b(ϵ)),a(a(b(b(ϵ)))), . . . }. We can prove (in a similar way as for anbn in
regular languages) that T is not tree regular, moreover T does not have a best tree regular over
approximation.

+ +□

Figure 7.3: Automaton from Example 7.9
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. . .

+

□ +

□ +

□ □

+

□ +

□ □

Figure 7.4: Examples of accepted trees from Example 7.9

Example 7.9. Let R = {+(2)} and A = ({ , },R□, { , }, {(□() → ,+( , ) → ,+( , ) →
)}). This automaton is represented in Figure 7.3. Examples of terms recognized byA are shown

on Figure 7.4. Natural terms U and V, from our running example (defined in Example 7.2), are
also contained in γ(A). Moreover as we do not provide numerical constraints: 1 + (3 + 4), 23,
1+ (2+ (3+ 4)) are also elements in γ(A).

Remark 7.8. Consider the two following complete and deterministic tree automata: A = ({a,b,
h}, {+(2)}, {a}, {□() → b,+(b,b) → a}) and B = ({a,b, c,h}, {+(2)}, {a}, {□() → b,+(b,b) → c,
+(b, c) → a}) (unmentioned transitions go to h). These are similar tree automata as the one
showed in Table 7.1. A recognizes the tree +(□,□) and B recognizes the tree +(□,+(□,□)),
they over-approximate respectively U and V from our running example. A ∪B is recognized
by the following complete and deterministic tree automaton: C = ({a,b, c,h}, {+(2)}, {a, c},
{□() → b,+(b,b) → c,+(b, c) → a}). If we want to widen A and B with parameter 3, the
following equivalence relation is computed: {{h}, {b}, {a, c}}. Merging equivalent states in C pro-
duces ({a,b,h}, {+(2)}, {a}, {□() → b,+(b,b) → a,+(b,a) → a}), which contains a loop and
over-approximates the union. For illustrations please refer to Table 7.1.

7.5.2 Abstract transformers

We provide here the definition of Algorithms 7.1 to 7.6, that respectively provide operators
make_symbolic, make_integer, is_symbol, get_sym_head, get_num_head, get_son. These
algorithms operate on tree automata and will be used in the definition of the semantics of our
abstract environment. Note moreover that these operators rely on basic tree automaton manip-
ulations.

• Algorithm 7.1 takes several tree automata as inputs, concatenate all their transitions and
add new transitions from every tuple of final states to some new final state.

• Algorithm 7.2 builds a tree automaton recognizing the language {□}. fresh_state yields a
fresh state name.

• Algorithm 7.3 checks whether there is some transition labeled with a non □ symbol going
to one of the final state of the automaton (all states are assumed reachable in the input
representation).

• Algorithm 7.4 collects all transitions labels for transitions labeled with a non□ symbol and
going to a final state.

• Algorithm 7.5 yields > if the □ symbol yields a final state and ⊥ otherwise. Please note
that this prevents us from recovering any numerical value stored in the numerical trees
represented.

• Algorithm 7.6 takes as inputs: one tree automaton and an integer i, collects all possible
i-th sons of final states and sets these as the new final states.
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Algorithm 7.1: make_symbolic
Input : s ∈ Fn, t1, . . . , tn ∈ DFTA, where the ti share the same ranked algebra R

Output: a FTA
1 f← a fresh state;

(Qi,Ri,Qi
f, δi)i⩽n ← a renaming of t1, . . . , tn so that they share no state;

2 Q←
⋃

i⩽nQi;
3 δ←

⋃
(f1,...,fn)∈Q1

f×···×Qn
f
{s(f1, . . . , fn)→ f}∪

⋃
i⩽n δi;

4 return (Q,R, {f}, δ);

Algorithm 7.2: make_integer
Input : None
Output: a FTA

1 a← fresh_state();
2 return 〈{a},R, {a}, {□()→ a}〉;

Algorithm 7.3: is_symbol
Input : (Q,R,Qf, δ) ∈ DFTA, where all states are reachable
Output: true, false or >

1 r← ∅;
2 foreach f ∈ Qf do
3 if ∃s(. . . )→ f ∈ δ∧ s 6= □ then
4 if □→ f ∈ δ then
5 return >;
6 else
7 return true;
8 else
9 return false;

Algorithm 7.4: get_sym_head
Input : (Q,R,Qf, δ) ∈ DFTA, where all states are reachable
Output: a set of symbols

1 return
⋃

f∈Qf

⋃
s(... )→f∈δ∧s̸=□{s};

Algorithm 7.5: get_num_head
Input : (Q,R,Qf, δ) ∈ DFTA
Output: a numerical abstract value

1 if ∃f ∈ Qf,□→ f ∈ δ then
2 return >
3 else
4 return ⊥
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Algorithm 7.6: get_son
Input : (Q,R,Qf, δ) ∈ DFTA, i ∈N

Output: a FTA
1 r← ∅;
2 foreach f ∈ Qf do
3 foreach s(p0, . . . ,pm−1)→ f ∈ δ do
4 r← {pi}∪ r;
5 return (Q,R, r, δ);

7.5.3 Environment abstraction

Now that we are given an abstraction for numerical term sets, let us show how this is lifted to a
notion of abstract numerical term environments mapping variables to numerical terms. Given a
set of numerical term variables T, consider F♯ ∆

= (T → TReg(R□))∪ {⊥} and the set operators de-
fined by the point-wise lifting of operators on TReg(R□). We also lift the concretization function
℘(TI(R))← TReg(R□) . We assume given an abstract numerical environment E♯ and an abstract
evaluator E♯JeK. As for the concrete semantics, we lift the existing abstract semantics to account
for tree environments: E♯J□K(E♯, F♯) and extend it to tree expressions and tree statements in the
following definition.

Definition 7.28 (Abstract semantics). In the following, s ∈ R, T , T1, . . . , Tm ∈ tree-expr, e ∈ expr,
t ∈ T:

E♯Jmake_symbolic(s, T1, . . . , Tm)K(E♯, F♯) = make_symbolic(s, E♯JT1K(E♯, F♯), . . . , E♯JTmK(E♯, F♯))
E♯Jmake_integer(e)K(E♯, F♯) =

let _ = E♯JeK(E♯, F♯) in
make_integer()

E♯Jis_symbol(T)K(E♯, F♯) = is_symbol(E♯JTK(E♯, F♯))
E♯JtK(E♯, F♯) = {F♯(t)}

E♯Jget_son(T , e)K(E♯, F♯) =
⋃

i∈E♯JeK(E♯,F♯)∩{0,...,m−1}

get_son(E♯JTK(E♯, F♯), i)

E♯Jget_num_head(T)K(E♯, F♯) = get_num_head(E♯JTK(E♯, F♯))
E♯Jget_sym_head(T)K(E♯, F♯) = get_sym_head(E♯JTK(E♯, F♯))
S♯Jt=TK(E♯, F♯) = {(E♯, F♯[t 7→ E♯JTK(E♯, F♯)])}

Remark 7.9. Note that most of these definitions are just a trivial lifting of the underlying trans-
formers, operating on tree automata.

Remark 7.10. The definition of E♯Jget_son(T , e)K(E♯, F♯) iterates over i ∈ E♯JeK(E♯, F♯)∩ {0, . . . ,
m− 1}. This can be handled by the case-by-case evaluation provided by the MOPSA framework,
presented in Chapter 3, and already used in the definition of the string domain from Chapter 4.

7.6 Natural term abstraction by numerical constraints

We have seen in Chapter 6 how to represent sets of maps with heterogeneous supports and how
to lift their concretization (modulo a summarization function) to sets of maps with infinite and
heterogeneous supports. Given a tree shape (in the sense of Section 7.5), we can associate a nu-
meric variable to each numeric leaf, and use a numeric abstract element to represent the possible
values of these leaves. We will name the variables of each leaf as the path from the root to the
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Figure 7.5: Leaves labelling by words and summarization as word sets

leaf, i.e., V is a set of words over {0, ...,n− 1} where n is the maximum arity of the considered
ranked alphabet (see Figure 7.5). A summarized variable then represents a set of such paths.
We will abstract such sets as regular expressions. Using the summarization extended to hetero-
geneous supports presented in Chapter 6, it will be possible to represent, using a single numeric
abstract element, a set of contraints over the numerical leaves of an infinite set of unbounded
trees of arbitrary shape.

7.6.1 Value abstraction

The presentation of our computable abstraction able to represent numerical values in trees is
broken down (for presentation purposes only) into two consecutive abstractions. The first one
is not computable (as there is a potentially infinite number of numerical variables), as numerical
terms are abstracted as partial environments over tree paths to numerical values. This abstraction
looses most of the tree shapes but focuses on their numerical environment. A second abstraction
will show how partial environments over paths are abstracted into numerical abstract elements
defined over a regular expression environment. There will be a finite number of regular ex-
pression (yielding a computable abstraction), each regular expression will be used to convey
constraints over a potentially infinite number of concrete tree leaves.

We start by providing in the following definitions some of the vocabulary used in the reminder
of this chapter.

Definition 7.29 (Words). In the following, when R is a ranked alphabet of maximum arity n, we
call words sequences of integers, w = (w0, . . . ,wp−1) ∈ {0, . . . , (n− 1)}p will be called a word
of length p (denoted |w| ), wi denotes the i-th integer of the sequence, w = (w1, . . . ,wp−1) is
the tail of word w, W(R) = {0, . . . , (n− 1)}⋆ is the set of all words over {0, . . . ,n− 1} of arbitrary
size. Words will be used to denote paths in trees, in order to avoid confusion such paths will be
denoted H0, 1, 1I for the word (0, 1, 1).

We now define the subterm of a term t at position w where w is a word. This is used in the
definition of the abstraction.

Definition 7.30 (Position in a term). Given a numerical term t and a word w we inductively
define the subterm of t at position w (denoted t|w ) to be:

t|w =


(tw0)|w when |w| > 0∧ t = f(t0, . . . , tp−1) with w0 < p

t when |w| = 0
undefined otherwise

Moreover we denote as numeric(t) = {w ∈W(R) | t|w ∈ Z}.

Definition 7.31 (Positioning with exact numerical constraints). Wedefine C(R) ∆
= ℘(W(R) ↛ I),

an element of C(R) is therefore a set of partial maps that are acceptable bindings of positions to
numeric values.
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Definition 7.32 (Numerical map associated to a term). When t is a numerical term, we denote
as tI ∈ numeric(t)→ I the function such that ∀w ∈ numeric(t)g, tI(w) = t|w

tI is the numerical map associated with the numerical term t, it maps its positions contain-
ing numerical values to the according numerical value. Our first abstraction, provided in the
following proposition, abstracts terms by their numerical map.

Proposition 7.19 (Galois connection with numerical terms). We have the following Galois con-
nection: (℘(TI(R)),⊆) −−−−−→←−−−−−

αC(R)

γC(R)

(C(R),⊆), with:

γC(R)(Γ) = {t ∈ TI(R) | tI ∈ Γ }

αC(R)(T) = {tI | t ∈ T}

See proof on page 157.

Example 7.10. Consider our running example (introduced in Example 7.2), V = {+(x,+(z,
y)) | x ⩽ y∧ z ⩽ y}, we have αC(R)(V) = {H0I 7→ α, H1, 0I 7→ γ, H1, 1I 7→ β | α ⩽ β∧ γ ⩽ β}.
The concretization of which is exactly V.

Example 7.11. Consider however the ranked alphabet {f(2),g(2),a(0)}, and the tree a. Its
abstraction contains only the empty map, the concretization of which is the set of all terms that
do not contain any numerical value. For example: f(g(a,a),a),g(a,a), . . . . This emphasizes
that we loose information on:

• the labels in the numerical terms: we only have the path from the root of the term to leaves
with numerical labels, not the actual symbols along the path.

• the shape of the numerical terms: we do not keep any information on subterms that do not
contain numerical values.

Now that we have abstracted away the shape of the automaton, we are left with numerical en-
vironments with potentially infinite dimensions (that are words over the alphabet {0, . . . ,n− 1})
and different definition sets. Therefore following the idea of Section 6.7 we want to define a
summarization for sets of words over the alphabet {0, . . . ,n − 1}. A summarization of such a
language can be expressed as a partition into sub-languages, moreover in order to define the
numerical abstract set operators we will need to split and merge partitions in order to unify
numerical abstract elements. For this reason we need to use a subset of the set of languages
that is: machine representable, and closed under usual set operations. The set of regular lan-
guages over the alphabet {0, . . . ,n− 1} is a subset of the set of languages over this alphabet, that
satisfies both constraints. Hence given a set {r1, . . . , rm} of regular expressions (with respective
recognized languages {L1, . . . ,Lm}), we summarize all words in Li inside a common variable ri

Definition 7.33 (↑ {r1, . . . , rm}). When {r1, . . . , rm} is a set of pair-wise non intersecting regular
expressions, we define its associated summarization function to be:

↑ {r1, . . . , rm} =

{
ri 7→ L(ri)
{r1, . . . , rn} → ℘(W(R))

In the following, Regn denotes the set of regular expressions over the alphabetAn
∆
= {0, . . . ,n−

1}. In order to disambiguate regular expressions over integers from integers we will typeset them
within b.c in a bold font as in: b0+ 0.1⋆c.

Example 7.12. Using notations from Section 6.7, V ′ = Regn and V = W(R). Consider our
running example (introduced in Example 7.2), numerical terms from V = {+(x,+(z,y)) | x ⩽
y∧ z ⩽ y} contain three paths to numerical values: H0I, H1, 0I and H1, 1I. Numerical constraints
on H0I and H1, 0I are similar, therefore the two paths are summarized into one regular expression:
b0+ 1.0c, H1, 1I is left alone in its regular expression: b1.1c. The two constraints x ⩽ y∧ z ⩽ y

can now be expressed as one: b0+ 1.0c ⩽ b1.1c.
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In Example 7.12, we saw that tree paths with similar numerical constraints can be sum-
marized in one regular expression. For precision purposes, we do not want to summarize all
tree paths into one regular expression. Hence, we will keep several disjoint regular expressions,
which we call a subpartitioning. Contrary to a partitioning of s, a subpartitioning does not require
that the set of partitions covers s. Indeed when a set of tree paths is unconstrained we can just
remove it from the partitioning, therefore no dimension in the numerical abstract environment
will be allocated for this path.

Definition 7.34 (Subpartitioning). Given a regular expression s, a subpartitioning of s is a set
{s1, . . . , sn} of regular expressions such that ∀i 6= j, si ∩ sj = ∅ and

⋃n
i=1 si ⊆ s. We note P(s)

the set of all subpartitioning of s. Moreover if S = {s1, . . . , sn} is a set of regular expressions,
[S]∅ = S \ {∅}.

The following definition uses an underlying numerical abstraction denoted M♯ (we reuse
the notation from the CLIP domain from Section 6.4). The abstraction defined in this section
is parametric in this underlying numeric domain. We assume that it provides sound abstract
set operators as well as sound abstract transformers for the concrete semantics presented in Sec-
tion 6.2. Obviously the CLIP, ℘-CLIP and partitioning abstractions defined in the previous chapter
are examples of such abstractions. Moreover we denote as M♯

p the subset of M♯ that represents
set of numerical maps which supports are bounded by p. Note that (1) for the reminder of this
chapter, the examples will be based on the CLIP abstraction, (2) we abuse notations, when c is
a set of constraints, {c} refers to 〈c, fv(c), fv(c)〉 ∈M♯ from the CLIP abstraction.

Definition 7.35 (Positioning with numerical abstraction). Given a ranked alphabet R, where the
maximum arity of symbols is n, we define C♯(R) = {〈s, p,R♯〉 | s ∈ Regn, p ∈ P(s),R♯ ∈ M♯

p}.
Therefore C♯(R) are triples containing:

• s: (called support) a regular expression coding for positions at which numerical values can
be located.

• p: a subpartitioning of s. Elements of the same partition are subject to the same numerical
constraints. Note that these partitions are regular.

• R♯: an abstract numeric element, a dimension is associated to each partition, this dimension
plays the role of a summary dimension.

Example 7.13 (Continuing Example 7.12). V is represented by the abstract element: V♯ =
〈b0+ 1.(0+ 1)c, {b0+ 1.0c, b1.1c}, {b0+ 1.0c ⩽ b1.1c}〉.

Unification

The previous definition shows that two elements U♯ = 〈s, p,R♯〉 and V♯ = 〈s ′, p ′,R♯′〉 can have
different subpartitionings (p and p ′). However the partitions in p and in p ′ might overlap, thus
giving constraints to similar tree paths. Therefore in order to define the classical operators: v,t
and ▽, we need to unify the two abstract elements (U♯ and V♯) so that: given a tree path and
the partition in which it is contained in U♯, it is contained in the same partition in V♯. This will
enable us to rely on abstract operators of the numerical domain. In order to perform unification,
we rely on the expand and fold operators. We recall that fold(R♯, x,S) is used to summarize
variables from S in variable x: this amounts to joining environments where every variable from
S was renamed to x. Dually expand(R♯, x,S) is used to de-summarize variable x to the set S:
each new variable from S will behave as x with respect to other variables.

Indeed consider our running example:

U♯ = 〈b0+ 1c, {b0c, b1c}, {b0c ⩽ b1c} 〉
V♯ = 〈b0+ 1.(0+ 1)c, {b0+ 1.0c, b1.1c}, {b0+ 1.0c ⩽ b1.1c} 〉
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We see that constraints on tree path H0I is given: in U♯ by partition b0c and in V♯ by partition
b0+ 1.0c. However we can split the partition b0+ 1.0c into two partitions: b0c and b1.0c, and
expand variable b0+ 1.0c into the two variables b0c and b1.0c in the numeric component:

expand({b0+ 1.0c ⩽ b1.1c}, b0+ 1.0c, {b0c, b1.0c}) = {b0c ⩽ b1.1c, b1.0c ⩽ b1.1c}

Once U♯ and V♯ are unified we can rely on the numerical join to soundly abstract the union.
Note that we could also unify the partitions in U♯ and V♯ by merging them instead of splitting,
but merging results in a loss of precision. Indeed, consider the example where: in U♯ we have
b0c ⩾ 0 and b1c ⩽ 0 and in V♯ we have b0+ 1c = 0. Splitting partitions in V♯ yields: b0c =
0, b1c = 0, after joining we get b0c ⩾ 0, b1c ⩽ 0. Whereas merging partitions in U♯ yields
b0+1c unconstrained, after joining we also get that b0+1c is unconstrained. However unifying
by splitting or merging partitions in both abstract elements might result in an over-approximation
of the initial elements. This does not pose a threat to the soundness of the join operator, but it
does for the inclusion test. Unifying by splitting partitions induces an increase in the number of
partitions which we want to avoid when trying to stabilize abstract elements in the widening.
Hence, we define three unification operators:

• An operator unify_join that splits partitions from U♯ and V♯, this operator might induce
an over-approximation for both U♯ and V♯ and is used in the join operation. This operator
is presented in Algorithm 7.7, and illustrated in Figure 7.6. Once elements are unified we
can distinguish three kinds of partitions:

– partitions found in both abstract elements ( in Figure 7.6).
– partitions found in only one of the two, which do not overlap over the support of

the other abstract element (denoted uo), these are outer-partitions. Information on
such partitions can be soundly kept when joining two abstract elements (partition a

in Figure 7.6).
– partitions found in only one of the two, which overlap over the support of the other

abstract element, these are inner-partitions. Information on such partitions can not
be soundly kept when joining two abstract elements. (partition b in Figure 7.6)

• An operator unify_subset that does not modify V♯ (in order to avoid over-approximating
it), we only split and merge (using the fold operator) partitions from U♯ as, if the over-
approximated U♯ is smaller than V♯, then so is the original U♯. This operator is presented
in Algorithm 7.8.

• An operator unify_widen that unifies U♯ and V♯ by only merging partitions so that the
number of partitions does not increase. This operator is used in the widening definition, it
is defined in Algorithm 7.9. Algorithm 7.9 uses a connected_component function that
given two sets of vertices V1 and V2 and a set of edges in V1 × V2 computes a set of
pairs C1 ⊆ V1,C2 ⊆ V2 of maximal (for the inclusion) connected component such that:
V1 ⊆ ∪(C1,C2)∈connected_component(V1,V2,E)C1. This can be obtained by iteratively merging
partitions that overlap in both arguments until the abstract elements have the exact same
partitions, this is similar to the merging done in Algorithm 6.7. As an example, on the two
subpartitionings {b0+ 1c, b1.1c, b1.0c} and {b0c, b1+ 1.1c, b1.0c}. This will compute the
pairs: ({b0+ 1c, b1.1c}, {b0c, b1+ 1.1c}) and (b1.0c, b1.0c)

Example 7.14. As an illustration of these three algorithms consider the following example:

U♯ = 〈 b0+ 1+ 2c, {b0+ 1c, b2c}, {b0+ 1c = 0, b2c = 2} 〉
V♯ = 〈 b0+ 1+ 2c, {b0c, b1+ 2c}, {b0c = 0, b1+ 2c = 2} 〉
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Figure 7.6: Unification operator

Algorithm 7.7: unify_join operator
Input : 〈s, {p1, . . . ,pn},R♯〉, 〈s ′, {p ′

1, . . . ,p ′
m},R♯′〉 two abstract elements

Output: two unified abstract elements
1 (ci,j)i⩽n,j⩽m ← pi ∩ p ′

j;
2 (pi)i⩽n ← pi \ s

′;
3 (p ′

j)j⩽m ← p ′
j \ s;

4 (qi)i⩽n ← pi ∩ s ′ ∩ (∪j⩽mci,j)
c;

5 (q ′
j)j⩽m ← p ′

j ∩ s∩ (∪i⩽nci,j)
c;

6 R♯ ← R♯ ;
7 R♯′ ← R♯′ ;
8 for i = 1 to n do
9 R♯ ← expand(R♯,pi, [{ci,j}j⩽m ∪ {pi}∪ {qi}]∅);

10 for j = 1 to m do
11 R♯′ ← expand(R♯′,p ′

j, [{ci,j}i⩽n ∪ {p ′
j}∪ {q

′
j}]∅);

12 return 〈s,
⋃

i⩽n,j⩽m[{qi,pi, ci,j}]∅,R♯〉, 〈s ′,
⋃

i⩽n,j⩽m[{q ′
i,p ′

j, ci,j}]∅,R♯′〉;

Algorithm 7.8: unify_subset operator
Input : 〈s1, {p1, . . . ,pn},R♯

1〉, 〈s2, {p ′
1, . . . ,p ′

m},R♯
2〉 two abstract elements

Output: U♯, V♯ two unified abstract elements, V♯ is not modified
1 {ci,j}i⩽n,j⩽m ← pi ∩ p ′

j;

2 R♯⋆ ← R
♯
1;

3 p⋆ ← ∅;
4 for i = 1 to n do
5 if [{ci,j}j⩽m]∅ = ∅ then
6 R♯⋆ ← S♯Jremove(pi)K(R♯⋆);
7 else
8 R♯⋆ ← expand(R♯⋆,pi, [{ci,j}j⩽m]∅);
9 for j = 1 to m do

10 b←
⋃n

i=1 ci,j;
11 if b 6= ∅ then
12 R♯⋆ ← fold(R♯⋆,b, [{ci,j}i⩽n]∅);
13 p⋆ ← {b}∪ p⋆

14 return 〈s1, p⋆,R♯⋆〉, 〈s2, {p ′
1, . . . ,p ′

m},R♯
2〉
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Algorithm 7.9: unify_widen operator
Input : 〈s1, p1,R♯

1〉, 〈s2, p2,R♯
2〉 two abstract elements

Output: U♯, V♯ two unified abstract elements
1 p̃1 ← {p ∈ p1 | p ⊆ sc2 ∪

⋃
p ′∈p2 p

′};
2 V1 ← p̃1 ;
3 V2 ← p2;
4 E← {(p1,p2) ∈ p̃1 × p2 | p1 ∩ p2 6= ∅};
5 S← connected_component((V1,V2,E));
6 p⋆1 ← ∅; p⋆2 ← ∅; R

♯⋆
1 ← R

♯
1; R

♯⋆
2 ← R

♯
2;

7 foreach (C1,C2) ∈ S do
8 a← ∪e∈C1e;
9 b← ∪e ′∈C2e

′;
10 if b 6= ∅ then
11 p⋆2 ← {b}∪ p⋆2;
12 R

♯⋆
2 ← fold(R♯⋆

2 ,b,C2);
13 p⋆1 ← {a}∪ p⋆1;
14 R

♯⋆
1 ← fold(R♯⋆

1 ,a,C1);
15 f← f] [a 7→ b];
16 endfch
17 return 〈s1, p⋆1 , (R♯⋆

1 )|p⋆1〉, 〈s2, p⋆2 , (R♯⋆
2 )|p⋆2〉, f

the different unification operators will produce the following results:

unify_join U♯ = 〈 b0+ 1+ 2c {b0c, b1c, b2c} {b0c = 0, b1c = 0, b2c = 2} 〉
V♯ = 〈 b0+ 1+ 2c {b0c, b1c, b2c} {b0c = 0, b1c = 2, b2c = 2} 〉

unify_leq U♯ = 〈 b0+ 1+ 2c {b0c, b1+ 2c} {b0c = 0, 0 ⩽ b1+ 2c ⩽ 2} 〉
V♯ = 〈 b0+ 1+ 2c {b0c, b1+ 2c} {b0c = 0, b1+ 2c = 2} 〉

unify_widen U♯ = 〈 b0+ 1+ 2c {b0+ 1+ 2c} {0 ⩽ b0+ 1+ 2c ⩽ 2} 〉
V♯ = 〈 b0+ 1+ 2c {b0+ 1+ 2c} {0 ⩽ b0+ 1+ 2c ⩽ 2} 〉

Example 7.15. Consider the following abstract elements on the ranked alphabet {f(2)}: U♯ =
〈b0+ 1c, {b0c, b1c}, {b0c = b1c}〉, V♯ = 〈b0+ 1+ 0.1c, {b0+ 0.1c, b1c}, {b0+ 0.1c ⩾ b1c}〉. In the
reminder of the example, notations are taken from the definition of the application of unify_join
to U♯, V♯ (Algorithm 7.7). p1 = b0c, p2 = b1c, p ′

1 = b0+ 0.1c, p ′
2 = b1c, then p ′

1 = b0.1c, and
c1,1 = b0c, c2,2 = b1c (unmentioned values are ∅). Therefore: unify_join(U♯,V♯) = 〈b0+ 1c,
{b0c, b1c}, {b0c = b1c}(∆= R♯)〉, 〈b0+ 1+ 0.1c, {b0c, b1c, b0.1c}, {b0c ⩾ b1c, b0.1c ⩾ b1c}(∆= R♯′).

Set operators

Definition 7.36 (Comparison vC♯(R)). Using unify_subset we define a relation on C♯(R):

vC♯(R) = {(U♯,V♯) | (〈s, p,N♯〉, 〈s ′, p ′,N♯′〉) = unify_subset(U♯,V♯)

⇒ s ⊆ s ′ ∧ ∀b ∈ p ′, (b ⊆ sc ∨ ∃!a ∈ p, b∩ s = a)∧N♯ v N♯′[ϕ]}

where ϕ is the renaming from p ′ into p that renames b to a when such an a exists.

Example 7.16. Going back to our running example: U♯ = 〈b0+ 1c, {b0c, b1c}, {b0c ⩽ b1c}(=
A♯)〉 and V♯ = 〈b0+ 1.(0+ 1)c, {b0+ 1.0c, b1.1c}, {b0+ 1.0c ⩽ b1.1c}〉. We have s 6⊆ s ′ hence
U♯ 6v V♯. However if we now consider W♯: 〈b(ϵ+ 1).(0+ 1)c, {b(ϵ+ 1).0c, b(ϵ+ 1).1c}, {b(ϵ+
1).0c ⩽ b(ϵ + 1).1c}(= B♯)〉. W♯ is already unified with U♯, we have s ⊆ s ′ and ϕ : (b(ϵ +
1).0c 7→ 0, b(ϵ+ 1).1c 7→ b1c). Moreover A♯ v B♯[ϕ] = {b0c ⩽ b1c}. Hence U♯ vW♯.
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Proposition 7.20. We have the following representation:

(C(R),vC(R))
γ1←− (C♯(R),vC♯(R))

where:

γ1(〈s, p,R♯〉) = {ρ | def(ρ) ⊆ γRegn(s)∧ ρ ∈ γ[↑ p](R♯)}

By composition we get: (℘(TI(R)),⊆)
γ2←− (C♯(R),vC♯R), with γ2 = γC(R) ◦ γ1.

See proof on page 157.

Example 7.17. Going back to our running example: V♯ = 〈b0+ 1.(0+ 1)c, {b0+ 1.0c, b1.1c},
{b0+ 1.0c ⩽ b1.1c}〉. We have: ↑ p = (b0+ 1.0c 7→ {H0I, H1, 0I}, b1c 7→ H1I). Hence, γ1(V♯) =
{(H0I 7→ α, H1I 7→ β) | α ⩽ β} ∪ {(H1, 0I 7→ α, H1I 7→ β) | α ⩽ β} ∪ {(H0I 7→ α, H1, 0I 7→ γ,H1I 7→ β) | α ⩽ β∧ γ ⩽ β}.

We now define the t operator that relies on the unify_join operator of Algorithm 7.7. In the
following definition of the join operator, we compute (once elements are unified) the common
partitions and both outer-partitions and merge them to form the resulting subpartitioning.

Definition 7.37 (Union abstract operator). Given U♯,V♯ ∈ C♯(R), if

(〈s, p,R♯〉, 〈s ′, p ′,R♯′〉) = unify_join(U♯,V♯)

let c be p ∪ p ′, let uo (U♯ outer-partition) be {e ∈ p | e ⊆ s′c}, let vo (V♯ outer-partition) be
{e ∈ p ′ | e ⊆ sc}, we then define:

U♯ tC♯(R) V
♯ = 〈s∪ s ′, c∪ uo ∪ vo,R♯

|c∪uo t R♯′
|c∪vo〉

Proposition 7.21 (t is sound). We have: ∀U♯,V♯ ∈ C♯(R),γ1(U♯)∪ γ1(V♯) ⊆ γ1(U♯ tC♯(R) V
♯).

See proof on page 158.

Example 7.18. Consider the two following abstract elements (this is the particular case of our
running example where all numerical values are equal): V♯ = 〈b0+1.(0+1)c(= s), {b0+1.0c(=
a), b1.1c(= b), {a = b}}〉, and U♯ = 〈b0+ 1c(= s ′), {b0c(= c), b1c(= d)}, {c = d}〉. Intuitively U♯

could encode the term (x+x) andV♯ the term (x+(x+x)). The unification of those two elements
is: V

♯
1 = 〈s, {c,b, b1.0c(= e)},R♯〉 where R♯ = 〈{c = b, e = b}, {b}, {c,b, e}〉 and U

♯
1 = U♯,

moreover the common environment (c in previous definition) is: {c}, V♯ outer-partitioning is
{e, f}, U♯ outer-partitioning is {d}. Hence: the numerical component resulting of the join is: 〈{c =
d}, {c,d}, {c,d}〉 t 〈{c = b, e = b}, {b}, {c,b, e}〉 which is: 〈{c = b, e = b, c = d}, ∅, {c,d, e,b}〉. We
see here that using a naive numerical join operator, instead of the one provided by the CLIP
abstraction using a strenghtening operator, we would not have been able to get such a precise
result (the numerical join would have yielded >).

unify_widen. C♯(R) contains infinite increasing chains, therefore we need to provide a widen-
ing operator. As for the other operators, widening is computed on unified abstract elements.
However, recall that in order not to increase the number of partitions, we defined unify_widen
(in Algorithm 7.9, illustrated in Figure 7.8). This operator produces U♯ and V♯, over approxima-
tions of its inputs with the same number of partitions. Moreover it ensures that each partition of
U♯ intersects exactly one partition of V♯. This can be obtained by iterative merging partitions that
overlap in both arguments until the abstract elements have the exact same partitions. Therefore
from the result of unify_widen we can extract a list of pairs (a,b) where a is a partition from
U♯, b is a partition from V♯ and a ∩ b 6= ∅. This defines a bijection from partitions of U♯ onto
partitions of V♯.
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Figure 7.8: unify_widen

Extend. In order to ensure stabilization we first need to stabilize the supports on which ab-
stract elements are defined. This is easily done using the automaton widening (s1▽s2 in Algo-
rithm 7.10). Figure 7.7 illustrates the following simple example: U♯ is an abstract element with
support b0+ 1c, two partitions u = b0c and u ′ = b1c, and numerical constraints u ′ = 1 and
u = 0. V♯ is an abstract element with support b(ϵ+ 1).(0+ 1)c, two partitions v = b(ϵ+ 1).0c
and v ′ = b(ϵ+1).1cwith the numerical constraints that v = 0 and v ′ = 1. Supports are unstable,
therefore we start by widening them, which yields a new support: b1⋆.(0+ 1)c. The unification
ofU♯ and V♯ leaves subpartitionings unchanged and yields the bijection (u 7→ v,u ′ 7→ v ′). Given
this information we now need to provide a new subpartitioning for the result of the widening. We
see in this example that we could soundly use the subpartitioning from V♯, this would produce
the abstract element Z♯

1 depicted in Figure 7.7. However due to the widening of the support,
paths of the form H1, 1, 1, 0I are in the support of the result but are left unconstrained as they are
not in any of the partitions. Therefore we need to use the opportunity of the extension of the
support to place constraints on the newly added paths. Indeed it is always sound to add con-
straints on paths that can not be found in any of the arguments, the idea is therefore to choose
the constraints based on the “proximity” of the newly added paths with respect to already exist-
ing partitions. In order to do so we would like to force the extension of the existing partitions
from U♯ and V♯ into the new support. Therefore we need to define a extend operator that pro-
duces a sound new partition, given: (1) a pair a,b of partitions (such as the one produced by
unify_widen), (2) the support s1 (resp. s2) in which a (resp. b) lives and (3) a space to occupy
r. The following criteria must be verified by the resulting partition p in order to be sound and to
terminate: p ∩ s1 = a, p ∩ s2 = b and p \ (s1 ∪ s2) ⊆ r. A variety of extend operators could be
defined.

Definition 7.38 (extend). Given a, b, s1, s2 and r regular expressions, we define:

extend(a,b, s1, s2, r) = a∪ (b∩ (s2 \ s1))∪ ((a▽(a∪ b))∩ r)

The idea is the following: we keep a (as it is always sound thanks to the definition of the
unify_widen operator), we keep the part from b that satisfies the soundness condition, and we
extend into the space left to occupy according to the automata widening of a and a∪ b. In our
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Algorithm 7.10: widening operator
Input : U♯,V♯ two abstract elements

1 (〈s1, p1,R♯
1〉, 〈s2, p2,R♯

2〉)← unify_widen(U♯,V♯) ;
2 s← s1▽s2;
3 r← s \ (s1 ∪ s2);
4 foreach a ∈ p1 do
5 b← the unique element from p2 such that b∩ a 6= ∅;
6 p← extend(a,b, s1, s2, r);
7 p← {p}∪ p;
8 R

♯⋆
1 ← R

♯⋆
1 [a 7→ p];

9 R
♯⋆
2 ← R

♯⋆
1 [b 7→ p];

10 r← r \ p;
11 if p = p1 then
12 return 〈s, p,R♯⋆

1 ▽R
♯⋆
2 〉;

13 else
14 return 〈s, p,R♯⋆

1 t R
♯⋆
2 〉;

example, considering the pair (u, v), this would translate as: a = b0c, b∩ (s2 \ s1) = b1.0c and
(a▽(a∪ b))∩ r = b0c▽b(ϵ+ 1).0c ∩ b1⩾2(0+ 1)c = b1⩾2.0c. We get the new partition: b1⋆.0c.
Doing the same with the pair (v, v ′) yields b1⋆.1c. Finally we get the abstract element Z♯

2 from
Figure 7.7, which is more precise than Z

♯
1.

Definition 7.39 (Widening). Algorithm 7.10 provides the definition of a widening operator using
the unify_widen operator and parameterized by a extend function.

Widening stabilization. Our abstraction contains three components: (1) a support that de-
scribes the set of paths to numerical positions in the tree, (2) a subpartitioning of this support
and (3) a numerical component giving constraints on partitions in the subpartitioning. We will
show how the widening operator from Algorithm 7.10 stabilizes all three components.

• Regular expression widening is used on supports when widening is called. Therefore en-
suring support stabilization.

• Once supports are stable (this means s2 ⊆ s1), we have p = a for every pair (a,b) of parti-
tions. Meaning that once shapes stabilize, the only modifications allowed on the subparti-
tionings are those made by the unify_widen operator. Moreover each partition resulting
from the operator is the union of input partitions, when the shape stabilizes there is only
a finite number of those, hence the subpartitioning will stabilize.

• Once subpartitionings are stable (p1 = p in Algorithm 7.10) numerical widening is applied
on the numerical component in order to ensure stabilization.

Proposition 7.22 (Soundness and termination of the widening operator). The ▽ operator is
sound: ∀U♯

1,U♯
2,γ(U♯

1) ⊆ γ(U♯
1▽U

♯
2) ∧ γ(U♯

2) ⊆ γ(U♯
1▽U

♯
2). Moreover it ensures stabilization

of infinite sequences: ∀(U♯
n)n∈N, (V♯

n)n∈N,V♯
0 = U

♯
0 ∧ ∀n ⩾ 0,V♯

n+1 = V
♯
n▽U♯

n+1 ⇒ ∃N ∈
N,∀k ⩾ N,V♯

k = V
♯
N.

Example 7.19. Consider the following example on R = {f(2)} (Figure 7.9 depicts some of the
values mentioned in this example): U♯ = 〈b0+ 1c, {b0c, b1c}, {b0c ⩽ b1c} and V♯ = 〈b0+ 1+
1.0+ 1.1c, {b0+ 1.0c, b1+ 1.1c}, {b0+ 1.0c ⩽ b1+ 1.1c}〉. With notations from Algorithm 7.10
and Algorithm 7.8 we have the connected components C0 and C1, depicted in Fig 7.9. Regular
expression widening of s1 with s2 yields s = b1⋆.(1+ 0)c.

• For the first loop iteration, considering component C0 = {b0c, b0 + 1.0c} we get: r =
s \ (s1 ∪ s2) = b1.1.1⋆.(0+ 1)c, a = b0c, b = b0+ 1.0c, p = b0c ∪ b1.0c ∪ (b0c▽rb0+
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Figure 7.9: Values from Example 7.19

1.0c) = b(ϵ+ 1).0c ∪ (b1⋆.0c ∩ b1⩾2.0c) = b1⋆.0c. Moreover R♯⋆
1 = {b1⋆.0c ⩽ b1c} and

R
♯⋆
2 = {b1⋆.0c ⩽ b1+ 1.1c.

• For the second loop iteration, considering component C1 = {b1c, b1+ 1.1c} we get: r =

b1.1.1⋆.1c, a = b1c, b = b1+ 1.1c, p = b1⋆.1c. Moreover R♯⋆
1 = {b1⋆.0c ⩽ b1⋆.1c and

R
♯⋆
2 = {b1⋆.0c ⩽ b1⋆.1c.

The loop computation therefore yields p = {b1⋆.0c, b1⋆.1c}, R♯
1 = R

♯
2 = {b1⋆.0c ⩽ b1⋆.1c}.

Hence: U♯▽V♯ = 〈b1⋆.(0+ 1)c, {b1⋆.0c, b1⋆.1c}, {b1⋆.0c ⩽ b1⋆.1c}〉

Example 7.20. Consider now a modified version of the previous example: R = {f(2)}. Fig-
ure 7.10 depicts some of the values mentioned in this example:

U♯ = 〈b1⩽2.(0+ 1)c,


b0c, b1c,
b1.1c, b1.1.1c,
b1.(0+ 1.0)c

 ,


b0c = b1c = b1.1c,
b1.1c = b1.1.1c
b1.1.1c = b1.(0+ 1.0)c

〉
V♯ = 〈b1⩽2.(0+ 1)c,

{
b1⩽2.0c,
b(1+ 1.1).1c

}
, {b1⩽2.0c ⩽ b(1+ 1.1).1c}〉

We do not detail loop computations, which yield p = {b1⩽2.0c, b(1+ 1.1).1c}, R♯
1 = {b1⩽2.0c =

b1c = b(1+ 1.1).1c} and R
♯
2 = {b1⩽2.0c ⩽ b(1+ 1.1).1c}. Hence: U♯▽V♯ = V♯. We see here

that: as supports were not extended, neither were the partitions. The widening only tried to
salvage numerical constraints while preventing a growth of the number of partitions.

Example 7.21 (Numerical example). Consider the simple example where: R = {f(2)}, U♯ =
〈b0+ 1c, {b0c, b1c}, {b1c = b0c}〉 and V♯ = 〈b0+ 1c, {b0c, b1c}, {b1c ⩾ b0c, b1c ⩽ b0c+ 1}〉. U♯

and V♯ have the same shape, therefore widening will be performed on the numerical component
of the abstraction, therefore: U♯▽V♯ = 〈b0+ 1c, {b0c, b1c}, {b1c ⩾ b0c}〉

Reducing dimensionality and improving precision

As emphasized by the previous examples, definitions and illustrations, the numerical component
of an abstract state is used as a container for constraints on regular expressions, every node in a
regular expression must then satisfy all numerical constraints on the underlying regular expres-
sion. Therefore when two nodes of a tree satisfy the same constraints, they should be stored
in the same partition so as to reduce the dimension of the numerical domain (thus improving
efficiency). Moreover the widening operator provided in Figure 7.10 relies (for precision) on
the fact that partitions are built by similarity of constraints, therefore partition merging, when
it does not result in an over-approximation, also leads to a precision gain. The unification op-
erator defined in Figure 7.7 tends to split partitions whereas the widening operator defined in
Algorithm 7.10 tends to merge them. In order to reduce dimensionality (for example, after a
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Figure 7.10: Values from Example 7.20

join computation that greatly increased the number of partitions), we would like to define a
reduce : C♯(R) → C♯(R) operator, that folds variables with similar constraints into one. Please
note that for all S, S ′ and x such that S∩S ′ ⊆ {x}, x ∈ S and for all R♯ ∈ NS, we have that R♯ vNS

expand(fold(R♯, x,S ′), x,S ′). This means that when variables are folded into one, expanding
them afterwards would yield a bigger abstract element. For example, consider the octagon R♯ =

{x ⩾ 2,y ⩾ 2, x = y} then fold(R♯, z, {x,y}) = {z ⩾ 2}(∆= R♯′) and expand(R♯′, z, {x,y}) = {x ⩾
2,y ⩾ 2}. However if we consider R♯ = {x ⩾ 2,y ⩾ 2} then fold(expand(R♯, z, {x,y}), z, {x,y}) =
R♯. Therefore if we assume given a score function score(R♯, x,S ′) ranging in [0, 1] such that
score(R♯, x,S ′) = 1⇔ R♯ = expand(fold(R♯, x,S ′), x,S ′), we are able to define a generic reduce
operator parameterized by a value α (see Algorithm 7.11). This reduce operator merges par-
titions until no more set of partitions has a high enough score according to the score function.
Finding a good score function is a work in progress. As a first approximation we used the follow-
ing trivial one: score0(R♯,S) = 1 when expand(fold(R♯, x,S), x,S) = R♯ and 0 otherwise. This
score0 guarantees there is no loss of precision, but can miss opportunities for simplification.

Algorithm 7.11: reduce operator
Input : X♯ an abstract element
Output: Z♯ an over-approximation of X♯ with fewer dimensions

1 〈s, p,R♯〉 ← X♯;
2 while ∃S ⊆ p, score(R♯, S) ⩾ α do
3 S ′ ← argmaxS ′⊆pscore(R♯, S ′);
4 e← ∪x∈S ′x;
5 〈s, p,R♯〉 ← 〈s, (p \ S ′)∪ {e}, fold(R♯, e,S ′);
6 end
7 return 〈s, p,R♯〉;

Example 7.22. Consider the following example: U♯ = 〈b0+ 1c, {b0c, b1c}, {b0c = 0, b1c = 0}〉.
Relations on b0c and b1c can be expressed in one relation using the summarizing variable b0+1c.
This yields: reduce(U♯) = 〈b0 + 1c, {b0 + 1c}, {b0 + 1c = 0}〉. Note that expand({b0 + 1c =
0}, b0+ 1c, {b1c, b0c}) = {b0c = 0, b1c = 0}. Therefore no information is lost.
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7.6.2 Abstract semantics of operators

As for tree automata, abstract semantics of operators defined in Section 7.2 can be defined as
simple transformations on regular automata. Indeed the make_symbolic(s ∈ R) (resp. get_son)
operator, amounts to adding (resp. removing) an integer letter to: (1) the partitions in the
subpartitioning and (2) the support. make_integer(e ∈ expr) amounts to building an abstract
element with support bϵc and a subpartitioning containing only {bϵc}, on which we put the
constraint that it is equal to e. is_symbol needs only split the support and each partition, in the
two language L = {ϵ} and A⋆

n \ L. Indeed in order to restrict to terms having only an integer
as root, the support must be reduced to ϵ. The get_sym_head operator always yields the whole
ranked alphabet (as this was abstracted away and will be refined by the automaton abstraction).
Finally for get_num_head: (1) if the empty path HI is in the support we produce the set of integers
satisfying the numerical constraints on the partition containing ϵ, and> in case no such partition
could be found, and (2) otherwise we know that no numerical value is produced.

Algorithms 7.12 to 7.17 respectively provide the definition of transformers make_symbolic,
make_integer, get_son, is_symbol, get_sym_head and get_num_head. These algorithms use
the following notation: when r is a regular expression over Σ⋆ and a ∈ Σ, ∂a(r) = {w | a.w ∈ r}

and
∫
a(r) = {a.w | w ∈ r}.

As for the value abstraction of Section 7.5, these operators are defined only on values, and
are then lifted to an environment abstraction. We will not redefine here this lifting as it follows
the same construction as that of Section 7.5.3.

Algorithm 7.12: make_symbolic
Input : s ∈ Fn, 〈s1, p1,R♯

1〉, . . . 〈sn, pn,R♯
n〉

1 s←
∫
⌊0⌋ s1 ∪ · · · ∪

∫
⌊n-1⌋ sn;

2 (p ′i)i⩽n ← (
⋃

r∈pi

∫
⌊i-1⌋ r);

3 (ϕi)i⩽n ← (
⊎

r∈pi
(r 7→

∫
⌊i-1⌋ r);

4 (R♯′
i )i⩽n ← R

♯
i[ϕi];

5 return 〈s,∪i⩽np
′
i,
⊗

i⩽n R
♯′
i 〉

Algorithm 7.13: make_integer
Input : v ∈ Z

1 return 〈bϵc, {bϵc}, S♯JAssume(bϵc = v)K ◦ S♯Jadd(bϵc)K(>);

Algorithm 7.14: get_son
Input : i an integer, 〈s, p,R♯〉

1 s ′ ← ∂i(s);
2 p ′ ← [

⋃
r∈p ∂i(r)]∅;

3 ϕ← λ|pr. if ∂i(r) 6= ∅ then ∂i(r) else undefined;
4 R♯′ ← R♯[ϕ];
5 return 〈s ′, p ′,R♯′

|p ′〉;
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Algorithm 7.15: is_symbol
Input : 〈s, p,R♯〉

1 if ϵ ∈ s then
2 return {true, false};
3 else
4 return {true};

Algorithm 7.16: get_sym_head
Input : 〈s, p,R♯〉

1 return R;

Algorithm 7.17: get_num_head
Input : 〈s, p,R♯〉

1 if ϵ ∈ s then
2 if ∃a ∈ p, ϵ ∈ a then
3 return a

4 else
5 return >
6 else
7 return ⊥

7.7 Building up the full abstraction

7.7.1 Product

The abstraction by tree automata defined in Section 7.5 and the abstraction by numerical con-
straints on tree paths defined in Section 7.6 provide non comparable information on the set of
terms they abstract. Indeed the former describes precisely the shape of the term but can not ex-
press numerical constraints whereas the latter abstracts away most of the shape and focuses on
numerical constraints. Therefore, to benefit from both kinds of information, we use a product
between the two domains. Both abstractions in the product contain information on potential
integer positions. Indeed the position of the □ symbol in the tree automaton abstraction and
the support in the numerical constraints abstractions yield this information. Therefore we re-
move the support component from the product as the information can be retrieved from the tree
abstraction. The definitions of the abstract operators in Section 7.6 require the support to be a
regular language.

We show in the following subsection how to retrieve the support of a tree automaton with
holes and that it is regular.

7.7.2 Removing redundant information

Given a FTA (Q,R,Qf, δ) over a ranked alphabet Rwith maximum arity n. We assume that every
state in Q is reachable. Consider the following system over variables vp for p ∈ Q with values
in the set of languages over the alphabet An (. designates the classical concatenation operator
lifted to languages) :

{vp =
⋃

(s,(q1,...,qm),q)∈δ|qi=p

vq.{i}∪
{

{ϵ} if p ∈ Qf

∅ otherwise | p ∈ Q}

Every language {i} for i ∈N is regular and does not contain ϵ, moreover ∅ and {ϵ} are regu-
lar languages. Therefore by application of the results recalled in Section 7.3.1 we can compute
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the unique solution of this system, moreover every vp is regular. Variable vp is defined so that:
w ∈ vp if and only if there exists a tree t recognized by the automaton such that p ∈ REACH(t|w).
Therefore if □ ∈ R we have that the regular language: ∪(□,(),p)∈δvp represents exactly the po-
tential positions of integers in trees accepted by the tree automaton. In the following, whenever
A is a DFTA we denote as hole(A) the regular expression encoding the potential position of holes
in the trees recognized by A.

7.7.3 Factoring away the numerical component

We have shown in Section 7.5.3 how the tree automaton value abstraction was lifted to an envi-
ronment abstraction. Performing this similar lifting on the numerical constraints abstraction and
building a product of both abstractions (while removing the support from the second abstraction,
as we have shown it to be redundant) would yield an abstract tree environment of the form:

F♯ = T → {〈A, p,R♯〉 | A ∈ DFTA, p ∈ P(hole(A)),R♯ ∈M♯
p)}

The obvious drawback of this abstraction is the fact that it features one numerical environment
for each term in the map. Moreover please note that in the complete abstraction, containing an
abstract numerical environment and an abstract tree environment, the numerical variables from
the program will be stored in a different abstract environment from the dimensions allocated for
numerical constraints on tree leaves. Such an abstraction would not be able to represent numer-
ical relations between program variables and leaves of trees or between leaves of two different
trees. For these reasons, we factor away every abstract numerical environment and the abstract
numerical environment dedicated to the handling of program variables in one abstract numer-
ical environment. The resulting abstraction is therefore an abstract numerical environment E♯,
containing program variables and dimensions used for the representation of constraints on tree
leaves and an abstract tree environment containing a tree automaton and a partitioning of its
hole position denoted F♯. Note that, the numerical environment might be asked to store di-
mensions on two identical regular expressions from two different trees, we will precede regular
expression variables in the numerical domain by the name of the tree to which it refers.

Example 7.23. As an example, consider the following tree abstraction: (t 7→ (A, {b0c, b1c}),
u 7→ (A, {b0c, b1c})), where A is the tree automaton recognizing precisely the tree set {f(□,□),
g(□,□)}, adjoined with the numerical environment: {t.b0c = u.b1c, t.b1c = u.b0c, i = u.b0c}.
This represents the set of concrete environments {((t 7→ s(α,β), u 7→ s ′(β,α)), (i 7→ β)) | (α,
β) ∈ I2 ∧ (s, s ′) ∈ {f,g}2}. This example emphasizes how the abstraction allows to express
numerical relations between different tree leaves values and program variables.

7.7.4 Functional evaluation of tree expressions

When asked to perform the evaluation of an expression, the analyzer does not return a value,
but a partial value (containing the tree automaton and the subpartitioning) and a numerical
environment. Indeed consider the minimal example where we have the following numerical
abstract environment E♯ = {0 ⩽ x ⩽ 10}, and the tree environment is F♯ = ∅. Assume more-
over that we want to evaluate the expression: make_integer(x). Instead of returning the value
〈A, {bϵc}, {0 ⩽ bϵc ⩽ 10}〉 where A is a DFTA accepting exactly the language □, we return the
partial value 〈A, {bϵc}〉 and the modified abstract numerical environment {0 ⩽ x ⩽ 10, x = bϵc}.
This allows the result of the evaluation of tree expressions to be relational with other dimensions
in the numerical environment. However this transformation requires the abstract interpreter to
return the abstract environment with the expected abstract value. This is the case for the MOPSA
framework as was presented in Chapter 3. We do not provide here a full mathematical definition
of this transformation as it mostly consists of variables manipulations and renamings.
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{i 7→ β, x 7→ α, t 7→

Nil ‖Cons

α+ 1 ‖ConsNil

α− 1 ‖ConsNil

α+ 1 . . .

| β ∈ {0, . . . ,n}}

Figure 7.11: Concretization of OCaml example

Example 7.24. In this example we will only consider tree automata recognizing one tree, they
will therefore be assimilated as the only tree they recognize. Consider the following abstract
environment: U♯ = (t 7→ (f(□,□), {b0c, b1c})(∆= F♯), {t.b0c = t.b1c+ 1}). Consider moreover
the expression: e

∆
= make_symbolic("f", {t, make_integer(i)}). The successive evaluations

and their results are the following:

E♯JeK(U♯)

E♯Jmake_integer(i)K(U♯)

E♯JiK(U♯)

↪→ i

↪→ (□, {bϵc}), {t.b0c = t.b1c+ 1, bϵc = i}(
∆
= R♯)

E♯JtK((F♯,R♯))

↪→ (t 7→ (f(□,□), {b0c, b1c}), {t.b0c = t.b1c+ 1, bϵc = i, b0c = t.b0c, b1c = t.b1c}
↪→ (t 7→ (f(f(□,□),□), {b0.0c, b0.1c, b1c}), {t.b0c = t.b1c+ 1, b1c = i, b0.0c = t.b0c,

b0.1c = t.b1c}

This emphasizes how the numerical domain is used to keep relations during the evaluations.

7.8 Implementation and example

The analyzer presented in this chapter was implemented (in OCaml) in MOPSA, using the (tree)
regular language operators mentioned in Section 7.3.

We recall that numerical variables of the form t.x, where t is a numerical term variable,
represent a variable allocated for tree t. For example: t.r where r is a regular expression is the
variable allocated for partition r in tree t.

C introductory example. Let us consider the introductory example Program 7.4. The loop in-
variant inferredwith our analysis is the following abstract element: U♯ = (y 7→ (A, {b0.(0.0)⋆.1c(∆=
r)}),R♯), with A = 〈{a,b, c,d}, {∗(1),+(2),□(0), (p, 0)}, {c}, {∗(d) → c,+(c,a) → d,□() → a,
p → c}〉, and R♯ satisfies the constraints: {i ⩾ 0, i ⩽ n, y.r = 4}. This describes precisely the set
of terms of the form: p, ∗(p+ 4), ∗(∗(p+ 4) + 4), …. As mentioned in Section 7.7.4 evaluations
of tree expressions yield pairs containing an expression and an abstract environment. Tree ex-
pressions are pairs (A, p), partitions in p are bound by the adjoined environment. Let us now
present the result of the evaluation of the make_integer(4) expression in the abstract environ-
ment U♯. We get the expression (A ′, {bϵc}) (where A ′ recognizes only □) in the environment:
(y 7→ (A, {r}),R♯′) where R♯′ = R♯ ∪ {bϵc = 4}. This example emphasizes how the environment is
used to give constraints on the adjoined expression. This yields the ability to transport numerical
relations from the leafs of the expression up to the assigned variable t.
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OCaml introductory example. Let us now consider the introductory example Program 7.5.
The inferred loop invariant is the following (r = b(1.1)⋆.0c and r ′ = b(1.1)⋆.1.0c): (t 7→ (A,
{r, r ′}),R♯) and R♯ satisfies the constraints: {t.r ′ = x− 1, t.r = t.r ′ + 2, i ⩾ 0, i ⩽ n} and A =
({a,b, c,d}, {Cons(2), Nil(0),□(0)}, {a}, {Cons(c,a) → d, Cons(c,d) → a, Nil → a,□ → c}). The
concretization is illustrated in Figure 7.11. Please note that at the end of the while loops the two
numerical environments that need to be joined are not defined over the same set of variables (in
the environments that have not gone through the loop, variables t.r ′ and t.r are not present).
However thanks to the t? operator, we do not have to loose the numerical relations between
these variables and x. Hence we are able to prove that the assertion holds.

String copy. In addition to the two previous examples taken from the introductory remarks, let
us consider the strcpy function from Chapter 4 (Program 4.1). We want to discover the memory
zones used by this function, which will enable us to improve the framing mechanism for the
modular analysis. Consider the following abstract element S♯ = (p 7→ A, q 7→ A), {b0.1+.(ϵ+
0)c = 1} where A is the tree automaton accepting the following tree regular language:

*

p

, *

+

p □

, *

+

p +

□ □

, *

+

p +

□ +

□ □

, . . .

The values of p and q in the environments represented by S♯ represents an over-approximation of
the memory regions that will indeed be read/write during the execution of strcpy. Please note
moreover that this abstract state can be inferred by performing the analysis of a tree manipu-
lating program, obtained by a hand-made transformation of the original strcpy program. It is
our intention to develop in future works an automatic pre-analysis discovering S♯ that does not
require such a hand-made transformation.

7.9 Conclusion

We presented a relational abstract environment for sets of trees over a finite algebra, with numer-
ically labeled leaves. We emphasized the potential applications of being able to describe such
trees: description of reachable memory zones, tracking symbolic equalities between program
variables, description of tree like structures. All domains presented here have been implemented
as a library in the MOPSA framework.

The expressiveness of the abstraction was underlined on the examples from our introductory
remarks. Even though these examples target a language manipulating trees, the tree abstrac-
tion should be used as a tool for the definition of higher level abstractions. The most direct of
these applications being: (1) the generalization of symbolic propagation ([Min06b]) to handle
merging points and loops; (2) the design of a pre-analyzer for the C language.



Chapter 8

Conclusion

8.1 Summary of the thesis

The problem of inferring and proving sound, precise, and reusable contracts for a statement is a
hard one. Contracts need to represent relations between abstract states (input/output relations),
therefore our goal was to define a structure that could be interpreted as such. We have shown that
a finite list of pairs of abstract states can be used to describe such contracts but fails to express
some relationality between input and output states. We improved such contracts to win back
relationality, this yielded the modular analyzer of Chapter 5. Due to the lack of experimentation
on real life C code projects, we can not that say we provided a fully functional scalable modular
analyzer. However we feel that the combination of results from the literature (I/O pairs mixed
with relational domains) as well as the idea of filter generalization by use of widenings are a good
starting point for the design of a modular analyzer as underlined by our preliminary results, able
to tackle an almost complete version of the C language. In order to emphasize the fact that
our modular analysis was not purely numerical, we focused on handling the most common data
structure from the C language: strings.

We initially intended to reuse an abstraction from the literature, however we found none
that would work nicely with the Cell abstraction that we chose for handling all other C features.
Some of the classical string abstractions from related works intertwined the handling of string
manipulations with the handling of pointer manipulations in one abstract domain. In our process
of designing a modular1 analyzer in the MOPSA project we decided to keep the abstractions
handling these two distinct features of C separated. Our goal was to provide a string abstraction
that could be optionally added in a reduced product with the Cell domain, already handling
the C memory representation. We reused ideas from existing abstractions for the definition of
the string abstraction of Chapter 4, namely tracking the length and the allocated size of strings
with a numerical variable. We used the opportunity of the definition of this domain to provide a
mechanism allowing a dynamic translation from the Cell domain to the String domain.

The reusability of the contracts inferred by a modular analyzer is mostly dependant on the
quality of the framing mechanism. This framing should not only remove, from the input context,
values that are not used by the function, but also provide information as to which variables should
be generalized for better reusability. We therefore decided to represent the set of reachable
memory zones as a set of terms over the C pointer manipulating expression languages.

This led to the development of the tree abstraction of Chapter 7. Most of the work from the
literature focused on sets of trees containing constants whereas we wanted to be able to store
any numerical values in the leaves of our C pointer manipulating expressions. Moreover we felt
that targeting simple patterns of pointer manipulations would be precise enough for our goal of
designing a pre-analysis. For this reason we used tree regular languages to represent the set of
potential shapes of our C expressions. Works from the literature provided a widening operator

1Modular is to be understood, here, in the sense that each abstract domains handles one feature of the language.
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on regular languages that could be directly translated to tree regular languages. In the process
of adding numerical values at the leaf positions of the set of trees, we had to modify the semantics
of the underlying numerical domain, so that it would account for potentially absent variables.

As the problem had been encountered beforehand in MOPSA (during the analysis of Python
programs where variables could be both numerical and non-numerical), we decided to propose
a general solution to both problems by defining a lifting of the semantics of classical numerical
abstract domains to an heterogeneous framework. As this problem arose at two different oc-
casions and on two different subjects, and as people have been using a modified version of the
interval abstract domain (the semantics of this modified version being unclear) to account for
absent variables, we are confident that this relational lifting has use cases. Moreover we have
shown that this lifting does not induce an overhead cost when there are no optional variables.
Finally, as we felt that there was a gap in the precision/cost trade-off between the lifting we
provided and partitioning, we designed a partitioning extension of the CLIP abstraction defined
in Chapter 6.

Finally I was part of the MOPSA project (presented in Chapter 3). MOPSA was doubly present
in this thesis: firstly I participated in the development of this static analyzer, secondly MOPSA
provided a framework for the development of all the abstract domains presented here. The
variety of static analyses involved in this thesis and the diversity of features they required from
the MOPSA framework provided tests of its modularity and of its expressiveness in terms of what
analyses could be implemented.

8.2 Concluding example

The different chapters of this thesis provided results on various topics, some seemingly not re-
lated to the inference of contracts: strings, heterogeneous numerical environments, trees. In
the previous section we provided a roadmap of the thesis, explaining how these different topics
came into focus. In this section we give a small example showing howwe intend, in future works,
to bring together all these different parts. Program 8.1 defines a strings structure containing
three string pointers, a strcpy function as was already shown in previous chapters, a repeat

function taking a strings structure as argument and copying the second string in the first one.
This program was handcrafted based on behaviors actually encountered in real life C code: the
redefinition of strcpy as in Qmail, the usage of structures containing several strings as in the
web2c type key_entry, and calls to strcpy on such strings, as in [AGH06]. Assume that we want
to infer contracts for the repeat function.

• We start by performing a pre-analysis of the body of function strcpy using the tree abstrac-
tion from Chapter 7. This pre-analysis yields the information that strcpy only reads and
writes in the memory zones *p, *(p+1), *(p+1+1), …, *q, *(q+1), *(q+1+1), …. Even though
the only numerical value found in this set of terms is 1, it is not here considered as a term
constant but as a numerical value. For this reason, at line 8, when joining the two facts
that *p and *(p+1) are both used by strcpy, we need to join two sets of numerical environ-
ments that do not share the same definition set. Indeed *p does not contain any numerical
variable, whereas *(p+1) and *(p+1+1) contain a numerical variable with a relation setting
it to 1. Joining these facts requires the use of the strenghtening operator of Chapter 6. Us-
ing this information we get that the repeat function only reads and writes on the memory
zones *s, *(s+8), *(s.a), *(s.a+1), *(s.a+1+1), …, *(s.b), *(s.b+1), *(s.b+1+1), ….

• We then perform a top-down analysis of the program starting with the main function, this
analysis is made using the string abstraction of Chapter 4. Values of (1) numerical variables
x and y, (2) pointers s, s.a, s.b and s.c are all tracked by the Cell abstraction. Lengths
of strings a, b and c are stored in the numerical domain by the string abstraction. At line
28, when encountering the first call to repeat, we evaluate the expressions discovered by
the pre-analysis in the input environment to guide us as to which memory zones should be
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1 typedef struct strings {

2 char* a;

3 char* b;

4 char* c;

5 } strings;

6

7 void strcpy(char* p, char* q) {

8 while (*q != '\0') {

9 *p = *q;

10 p ++;

11 q ++;

12 }

13 *p = *q;

14 }

15

16 void repeat(strings s) {

17 strcpy(s.a, s.b);

18 }

19

20 int x = 23;

21 char a[10] = "first";

22 char b[10] = "second";

23 char c[10] = "third";

24 strings s = {a, b, c};

25

26 int main() {

27 int y = 10;

28 repeat(s);

29 }

Program 8.1: Complete example

kept and which should be universally quantified and removed from the environment for
the modular analysis of repeat. Values of x, y, s.c, and c are forgotten. We then perform
a modular analysis of the body of repeat and strcpy under input hypotheses. Using input
hypotheses has the advantage that we perform an analysis assuming that s.a and s.b do not
alias, however it has the drawback that the analysis is made under the assumption that the
length of b is precisely 6. Subsequent calls to repeat and the use of widening operations on
input states, as shown in Chapter 5, will remove this assumption and generalize the result.

After generalization, the contract for function repeat will then be: for every inputs, where s.a

and s.b do not alias and are valid pointers, repeat only modifies the memory zones pointed to
by s.a and s.b, however the lengths of s.a and s.b at the end are equal to the length s.b in the
input. The following provides a simplified illustration, of the form precondition ⇒ filter, of the
generalized contract (unmentioned memory zones are not modified, primed variables denote
input values):

∀u 6= v, pointers: s.a→ u

s.b→ v

offsets: o(s.a) = 0
o(s.b) = 0

length: 0 ⩽ len(v) < size(v)
0 < size(u)

⇒ pointers: s.a→ u

s.b→ v

offsets: o(s.a) = 0
o(s.b) = 0

length:

len(v) < size(v)
len(v) < size(u)
size(u ′) = size(u)
size(v ′) = size(v)
len(v) = len(u)
len(v) = len(v ′)

8.3 Future works

As already emphasized by the concluding remarks from the above chapters, there are several
points that are left unfinished, and some unstarted, at the end of this thesis.

Let us start with some future works related to the modular iterator, which was at the heart
of this thesis.
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Tests and benchmarks. The modular analysis framework has been tested on several test cases
from the literature so as to measure its expressiveness and the quality of the inferred summary.
Such results were used to guide our work on improving the quality of the framing and input
generalization mechanisms, which are crucial in the development of a modular analysis that is
not purely numerical. However these preliminary results can not be used as a validation of the
quality of our interprocedural iterator. Indeed the primary goal of modular iterators is to increase
the overall scalability of the analysis. Therefore tests and benchmarks on real life C projects are
necessary for the validation of our method.

Heuristics on summarization points. It is (empirically) known from previous works [JM18]
that a modular analysis based on the use of relational domains for the representation of relations
is not beneficial when applied everywhere. Indeed the overhead cost induced by the relation
computation kills the summarization gain. In a top-down analysis, there is a trade-off between
function body inlining and summary discovery/usage. For this reason an important future work
is to provide heuristics for the discovery of “good” program points where summarization should
be applied. This has already been studied in [JM18], this work was not presented here but was
done in parallel to this thesis. There remains to adapt these ideas to the context of the modular
analysis of C presented in this thesis.

Framing. Chapter 7 is entirely devoted to the development of a tree domain, the initial purpose
of which was to be used as a pre-analysis guiding the framing of the interprocedural iterator. Even
though we finished the development of the abstract domain and tested its expressiveness on a
tree toy language we have not yet implemented the pre-analyzer using this tree abstract domain
and have not connected it to our modular analysis of C programs.

Proj-inclusion as an atomic operator for polyhedra. The proj-inclusion operator of Chap-
ter 6 is at the heart of the definition of the abstract inclusion test and the abstract union operator
of the CLIP abstraction. In Chapter 6, it is implemented as the composition of several projec-
tions and one inclusion. We started working on improving this algorithmic definition in the
special case of the polyhedra abstraction. We made the proj-inclusion operator atomic using
results from parametric linear programming. This provides two major improvements. Firstly,
it avoids computing the whole projected polyhedron when the inclusion does not hold: as soon
as a constraint of P|def(Q) that does not include Q is found, the operator can return. Secondly,
the whole proj-inclusion operator can be made incremental. It means that any subsequent test
Q |v S♯JAssume(e)K(P) will build upon the result of Q |v P to avoid redundant computations. We
did not present these results in this thesis but underline as future works the fact that further
testing needs to be done to evaluate the efficiency gain of this novel operator.

Fold-expandability. We have seen in Chapter 7 that tree leaves partitionings evolved dynam-
ically during analysis. Indeed partitions are split by join operations and merged by widening
operations. In order to have more control over the number of partitions, we defined a reduce
operator that tries to fold variables together. As of now, variables are folded when they can
be unfolded without loss of precision, this is tested in the implementation by actually folding,
unfolding and testing the inclusion, which is quite costly. In the special case of polyhedra, we
started to study the properties of dimensions that can be folded and expanded without precision
loss. Preliminary results (not presented in this thesis) were not sufficient for the development of
a better exact algorithm, however it is our hope that further works will provide one. Moreover,
please note that it is always sound to fold any set of dimensions together, therefore we feel that
a non-exact algorithm based on sampling points in polyhedra could be devised.

Folding and expanding operations are often used to represent potentially unboundedmemory
locations. It is usually the case that variables that should be folded together, are defined as



8.3. FUTURE WORKS 141

such by the abstraction. For example in an array abstraction all array cells will be summarized
together. We feel that the ability to automatically discover which dimensions should be folded
together could:

• in some cases improve the precision of the analysis: if the cell of an array does not have
the same value as the others, it is automatically kept separated in the numerical domain;

• in some cases improve the efficiency of the analysis by automatically reducing the dimen-
sionality of the numerical abstraction.

Precise join detection. The efficiency of the ℘-CLIP abstraction from Chapter 6 depends greatly
upon the number of partitions in the abstraction. We have shown that the number of partition
can be reduced by merging together pairs of elements of the partition. An element of the par-
tition represents a set of environments, the definition sets of all these environment form a SVI
(support variable interval). Knowing whether the union of two SVIs can be precisely represented
as a SVI is an easy one. However, as for the partitioning abstraction it is hard to know whether
the merging of two monomials from the partitioning induces an over-approximation on the set
of environments for each definition sets (see e.g. [BHZ09, RHC18]). Further works on the exac-
t/precise join detection problem would improve the quality of the ℘-CLIP abstraction in the case
where the underlying domain is the polyhedra abstraction.
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Appendix A

Proofs

Proof of 6.1. Let P be in M and m ∈ P♯. We want to prove that: αP♯(P) vP♯ m⇔ P ⊆ γP♯(m).
• if |{def(ρ) | ρ ∈ P}| < ∞, then αP♯(P) =

⊎
W∈{def(ρ)|ρ∈P}W 7→ αW({ρ ∈ P | def(ρ) = W}).

– if m = > then we have αP♯(P) vP♯ m and we have P ⊆ γP♯(m)
– otherwise:

* Whenever αP♯(P) vP♯ m, we have that ∀W ∈ def(αP♯(P)),W ∈ def(m) ∧
αP♯(P)(W)vWm(W), therefore: let ρ ∈ P, let W = def(ρ), by definition of
αP♯(P): αP♯(P)(W) = αW({ρ ∈ P | def(ρ) = W}), hence ρ ∈ γW(αP♯(P)(W)).
Moreover as αP♯(P)(W)vWm(W), we have γW(αP♯(P)(W)) ⊆ γW(m(W)), there-
fore ρ ∈ γW(m(W)). By definition of γP♯: γP♯(m) =

⋃
W∈def(m) γ

W(m(W)) as
W ∈ def(m) we get that: ρ ∈ γP♯(m)

* Conversely whenever P ⊆ γP♯(m), for αP♯(P) vP♯ m to hold (we can not have
m = >), we need to prove that: (1) αP♯(P) 6= > and that (2) ∀W ∈ def(αP♯(P)),
W ∈ def(m)∧ αP♯(P)(W)vWm(W). By definition of P♯, def(m) is finite, there-
fore γP♯(m) =

⋃
W∈def(m) γ

W(m(W)). As P ⊆ γP♯(m), we have |{def(ρ) | ρ ∈
P}| ⩽ |{def(ρ) | ρ ∈ γP♯(m)}| < ∞, hence αP♯(P) 6= > thus proving (1). Let
W ∈ def(αP♯(P)), let PW

∆
= {ρ ∈ P | def(ρ) = W}, by definition PW 6= ∅,

hence ∅ ⊂ PW ⊆ P ⊆ γP♯(m) which implies that W ∈ def(m), moreover
PW ⊆ γW(m(W)) ⇒ αW(PW)vWm(W). As αP♯(P)(W) = αW(PW) we can con-
clude that (2) holds.

• otherwise we have : αP♯(P) = >, hence αP♯(P) vP♯ m ⇔ > vP♯ m ⇔ m = >. Clearly
m = > ⇒ γP♯(m) = M. Moreover when γP♯(m) = M if we assume that m 6= >, then
by definition γP♯(m) =

⋃
W∈def(m) γ

W(m(W)). This union is finite (as m ∈ P♯), therefore
as V is infinite, we have a contradiction, hence m = >. This yields m = > ⇔ γP♯(m) =
M. Finally we clearly have that: γP♯(m) = M ⇒ P ⊆ γP♯(m). Conversely, whenever
P ⊆ γP♯(m) we have that {def(ρ) | ρ ∈ P} ⊆ {def(ρ) | ρ ∈ γP♯(m)}, as {def(ρ) | ρ ∈ P} is
not finite: {def(ρ) | ρ ∈ γP♯(m)} is not either, by definition of γP♯(m) we must have that:
γP♯(m) = >. Therefore we have: αP♯(P) vP♯ m⇔ P ⊆ γP♯(m).

Proof of 6.2. Let u ∈ ℘f(V) and u ′ ∈ ℘f(V), let N♯ ∈ Nu and N♯′ ∈ Nu ′ , be such that u ⊆ u ′

and N♯ |v N♯′. By definition we have N♯vuN
♯′
|u
, by soundness of the vu operator we have:

γu(N♯) ⊆ γu(N♯′
|u
), finally as the projection operator is exact we have: γu(N♯′

|u
) = γu ′

(N♯′)|u,
hence γu(N♯) ⊆ γu ′

(N♯′)|u.

Proof of 6.3. • Soundness: We want to prove that γ is monotonic for v, which is that ∀X♯ v
Y♯, γ(X♯) ⊆ γ(Y♯). Let us assume that 〈N♯

1, l1,u1〉 v 〈N♯
2, l2,u2〉, let ρ ∈ γ(〈N♯

1, l1,u1〉).
By definition of γ we have: there exists l1 ⊆ W ⊆ u1, such that def(ρ) = W and ρ ∈
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(γu1(N♯
1))|W, hence there exists τ : (u1 \W) ↛ I, such that ρ ] τ ∈ γu1(N♯

1). Moreover
by definition of v we have: l2 ⊆ l1 ∧ u1 ⊆ u2, therefore: l2 ⊆ W ⊆ u2 (a). Moreover
N

♯
1 |v N

♯
2, hence by soundness of this operator γu1(N♯

1) ⊆ γu2(N♯
2)|u1 , therefore: ρ] τ ∈

γu2(N♯
2)|u1 and by projection: ρ ∈ (γu2(N♯

2)|u1)|W = γu2(N♯
2)|W (b). From (a) and (b) we

get that: ρ ∈ γ(〈N♯
2, l2,u2〉). Thus proving that v is sound.

• Completeness: Assume that ∀W ∈ ℘f(V),γW(U♯) ⊆ γW(V♯) ⇒ U♯vWV♯ (i.e. the com-
parison operator of the underlying domain is complete). We want to prove that ∀X♯, Y♯,
γ(X♯) ⊆ γ(Y♯)⇒ X♯ v Y♯, let us assume that X♯ = 〈N♯

1, l1,u1〉 and Y♯ = 〈N♯
2, l2,u2〉.

– If (γu1(N♯
1))|l1 = ∅ then γu1(N♯

1) = ∅, henceN
♯
1 = ⊥u1 , which is absurd by definition.

Therefore, let ρ ∈ (γu1(N♯
1))|l1 , we have ρ ∈ γ(X♯), hence ρ ∈ γ(Y♯), hence def(ρ) =

l1 ⊇ l2. mutatis mutandis, u1 ⊆ u2.
– Moreover, γ(X♯) ⊆ γ(Y♯), therefore we have: γ(X♯)|u1 ⊆ γ(Y♯)|u1 . As γ(X♯)|u1 =

γu1(N♯
1) and γ(X♯)|u1 = γu2(N♯

2)|u1 , we have that γu1(N♯
1) ⊆ γu2(N♯

2)|u1 . By sound-
ness of the projection operator: γu2(N♯

2)|u1 ⊆ γu1((N♯
2)|u1). Finally as γu1(N♯

1) ⊆
γu1((N♯

2)|u1), using the completeness of vu1 we have: N♯
1vu1(N♯

2)|u1 .
This last two points give us that X♯ v Y♯.

Proof of 6.4. We want to prove that: if N♯
1 ∈ Nu and N

♯
2 ∈ Nv, then γu

0 (N
♯
1) ⊆ (γu

0 (N
♯
1 t?N

♯
2))|u

and γv
0(N

♯
2) ⊆ (γv

0(N
♯
1 t?N

♯
2))|v.

• We start by proving what can be considered the soundness of the strengthening operator:
whenever γu(N♯

1) ⊆ γu∪v(N♯′)|u then γu(N♯
1) ⊆ γu∪v(strenghtening(C,N♯′,N♯

1,N♯
2))|u.

Therefore let us assume that γu(N♯
1) ⊆ γu∪v(N♯′)|u. We prove the following invariant of

the foreach loop of Algorithm 6.1: γu ⊆ γu∪v(res)|u. This holds trivially initially as res is
initialized toN♯′. Whenever res is not modified by the test during some loop then we have
that N♯

1 |v test holds. By soundness of |v we have that γu(N♯
1) ⊆ γu∪v(test)|u. Which

concludes the proof of the invariant. As Algorithm 6.1 returns res, the result is proven.
• Let us now show that N♯′ form Definition 6.10 satisfies: γu(N♯

1) ⊆ γu∪v(N♯′)|u. We have
N♯′ = (N♯

1 |ctcN
♯
2 |c)|u∪v, where c = u ∩ v. Let ρ ∈ γu(N♯

1), such that ρ = τ ] µ with
τ ∈ c → I and µ ∈ (u \ c) → I. By soundness of the projection we have τ ∈ γc(N♯

1 |c), by
soundness of the join operator: τ ∈ γc(N♯

1 |ctcN
♯
2 |c), finally by soundness of the abstract

universal quantification: ∀υ ∈ ((u∪ v) \ c)→ I, τ] υ ∈ γc((N♯
1 |ctcN

♯
2 |c)|u∪v). Therefore,

as I 6= ∅, ∃η ∈ (u ∪ v)\, τ ] µ ] η ∈ γc((N♯
1 |ctcN

♯
2 |c)|u∪v) and by projection on u we get

ρ = τ] µ ∈ γc((N♯
1 |ctcN

♯
2 |c)|u∪v)|u. Hence we conclude that γu(N♯

1) ⊆ γu∪v(N♯′)|u.
Using the last two points we have that γu(N♯

1) ⊆ γu∪v(N♯
1 t?N

♯
2)|u, the other case is symmetric.

Proof of 6.5. We want to prove that t soundly abstracts the union, that is ∀U♯
1,U♯

2, γ(U♯
1) ⊆

γ(U♯
1 tU

♯
2)∧ γ(U♯

2) ⊆ γ(U♯
1 tU

♯
2). By symmetry we only prove that ∀U♯

1,U♯
2, γ(U♯

1) ⊆ γ(U♯
1 t

U
♯
2). Let U

♯
1 = 〈N♯

1, l1,u1〉 and U
♯
2 = 〈N♯

2, l2,u2〉, such that U♯
1 tU

♯
2 = 〈N♯

1 t?N
♯
2, l1 ∩ l2,u1 ∪u2〉.

Let ρ ∈ γ(U♯
1), let A = def(U♯

1) we have (by definition of γ) that l1 ⊆ A ⊆ u1, therefore
l1 ∩ l2 ⊆ A ⊆ u1 ∪ u2 (a). Moreover ρ ∈ (γu1(N♯

1))|A hence there exists τ : (u1 \A) ↛ I such
that ρ ] τ ∈ γu1(N♯

1). By soundness of t? we have: ρ ] τ ∈ γu1(N♯
1) ⊆ (γu1∪v1(N♯

1 t?N
♯
2))|u1

and by projection: ρ ∈ ((γu1∪v1(N♯
1 t?N

♯
2))|u1)|A = (γu1∪u2(N♯

1 t?N
♯
2))|A (b). From (a) and (b)

we get that ρ ∈ γ(U♯
1 tU

♯
2).
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Proof of 6.6. The proposition holds trivially for the first two cases of the definition. The third case
is similar to the definition of t? , therefore, using the soundness of the strengthening operator
proved in Proposition 6.4, we know that we only need to prove that N♯′ form Definition 6.12
satisfies: γu(N♯

1) ⊆ γu∪v(N♯′)|u. We have N♯′ = (N♯
1 |ctcN

♯
2 |c)|u∪vuu∪v(N♯

1 |u\c)|u∪vuu∪v

(N♯
2 |v\c)|u∪v.
• Following the proof of Proposition 6.4, if ρ ∈ γu(N♯

1), such that ρ = τ ] µ with τ ∈ c → I

and µ ∈ (u \ c)→ I then ∀η ∈ (u∪ v) \ u, τ] µ] η ∈ γu∪v((N♯
1 |ctcN

♯
2 |c)|u∪v).

• Moreover as N♯
2 6= ⊥v we have that γv(N♯

2) 6= ∅, let ρ2 ∈ γv(N♯
2), such that ρ2 = τ2 ] µ2

with τ2 ∈ c → I and µ2 ∈ (v \ c) → I by soundness of the projection operator, we have
that µ2 = ρ2 |v\c ∈ γv\c(N♯

2 |v\c), by soundness of the universal quantification operator,
we have that ∀θ2 ∈ u → I, µ2 ] θ2 ∈ γu∪v((N♯

2 |v\c)|u∪v). In particular, µ2 ] τ ] µ ∈
γu∪v((N♯

2 |v\c)|u∪v).
• Finally by soundness of projection we have: µ ∈ γu\c(N♯

1 |u\c), by soundness of universal
quantification: ∀θ1 ∈ v → I,µ ] θ2 ∈ γu∪v((N♯

1 |u\c)|u∪v). In particular: µ ] τ ] µ2 ∈
γu∪v((N♯

2 |v\c)|u∪v)

Therefore we have that µ]τ]µ2 ∈ γu∪v((N♯
1 |ctcN

♯
2 |c)|u∪v), that µ2]τ]µ ∈ γu∪v((N♯

2 |v\c)|u∪v)

and also that µ] τ] µ2 ∈ γu∪v((N♯
2 |v\c)|u∪v). By soundness of the tu∪v operator, we get that

µ] τ] µ2 ∈ γu∪v(N♯′), by projection we get that: ρ = (µ] τ] µ2)|u ∈ γu∪v(N♯′)|u.

Proof of 6.7. We have to prove that ∀U♯
1,U♯

2,γ(U♯
1)∩γ(U

♯
2) ⊆ γ(U♯

1 uU
♯
2). Let 〈N

♯
1, l1,u1〉 be U♯

1
and 〈N♯

2, l2,u2〉 be U
♯
2.

• If l1 ∪ l2 6⊆ u1 ∩ u2, let us assume that there exists ρ ∈ γ(U♯
1) ∩ γ(U♯

2), we have l1 ⊆
def(ρ) ⊆ u1 and l2 ⊆ def(ρ) ⊆ u2, hence l1 ∪ l2 ⊆ def(ρ) ⊆ u1 ∩u2. This is absurd, hence
γ(U♯

1)∩ γ(U
♯
2) = ∅, as U

♯
1 uU

♯
2 = ⊥, we indeed have γ(U♯

1)∩ γ(U
♯
2) ⊆ γ(U♯

1 uU
♯
2)

• If l1 ∪ l2 6⊆ u1 ∩ u2, let ρ ∈ γ(U♯
1)∩ γ(U

♯
2), let A = def(ρ), we have l1 ∪ l2 ⊆ A ⊆ u1 ∩ u2,

moreover we also have ρ ∈ γu1(N♯
1)|A and ρ ∈ γu2(N♯

2)|A. Let us consider θ1 ∈ (u1 \A)→
I (resp. θ2 ∈ (u2 \ A) → I) such that ρ ] θ1 ∈ γu1(N♯

1) (resp. ρ ] θ2 ∈ γu2(N♯
2)).

Moreover by soundness of the projection operator (ρ ] θ1)|u1∩u2 = ρ ] θ1 |(u1∩u2)\A ∈
γu1∩u2(N♯

1 |u1∩u2). Let us decompose ρ = τ ] µ, where τ ∈ (l1 ∪ l2) → I and µ ∈
(A \ (l1 ∪ l2))→ I. By soundness of the projection operator, we have τ ∈ γl1∪l2(N♯

2 |l1∪l2),
and by soundness of the universal quantification we get that ∀θ ∈ ((u1 ∩u2) \ (l1 ∩ l2))→
I, τ ] θ ∈ γu1∩u2((N♯

2 |l1∪l2)|u1∩u2). In particular, let us consider the case where θ =
µ] θ1 |(u1∩u2)\A, we have def(θ) = def(µ)∪ def(θ1 |(u1∩u2)\A) = (A \ (l1 ∪ l2))∪ ((u1 ∩
u2) \A) = (u1 ∩u2) \ (l1 ∪ l2). Hence we have: τ] θ ∈ γu1∩u2((N♯

2 |l1∪l2)|u1∩u2), τ] θ =

τ]µ]θ1 |(u1∩u2)\A = ρ]θ1 |(u1∩u2)\A. As ρ]θ1 |(u1∩u2)\A ∈ γu1∩u2((N♯
2 |l1∪l2)|u1∩u2)

and ρ] θ1 |(u1∩u2)\A ∈ γu1∩u2(N♯
1 |u1∩u2), we can conclude by soundness of the intersec-

tion operator that ρ ] θ1 |(u1∩u2)\A ∈ γu1∩u2(N♯
1 |u1∩u2uu1∩u2(N♯

2 |l1∪l2)|u1∩u2). Finally
by projection onto A we get that ρ ∈ γu1∩u2(N♯

1 |u1∩u2uu1∩u2(N♯
2 |l1∪l2)|u1∩u2)|A, to-

gether with the fact that l1 ∪ l2 ⊆ A ⊆ u2 ∩ u2 we get that ρ ∈ γ(U♯
1 uU

♯
2)

Proof of 6.8. We want to prove that ▽ soundly abstracts the union and that it stabilizes infinite
chains.

• We start by proving that ▽ soundly abstract the union. Which means that: ∀U♯
1,U♯

2,
γ(U♯

1) ⊆ γ(U♯
1▽U

♯
2)∧ γ(U♯

2) ⊆ γ(U♯
1▽U

♯
2). Let U

♯
1 = 〈N♯

1, l1,u1〉 and U
♯
2 = 〈N♯

2, l2,u2〉.
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– If l2 ⊂ l1 and u2 ⊆ u, we then have U
♯
1▽U

♯
2 = U

♯
1 tU

♯
2, soundness is then ensured by

Proposition 6.5.
– If u1 ⊂ u2 U

♯
1▽U

♯
2 = > which ensures soundness.

– Finally if l1 ⊆ l2 ∧u2 ⊆ u1: we have U♯
1▽U

♯
2 = 〈N♯

1▽u1N
♯
2 |u1 , l1,u1〉. Let ρ1 ∈ γ(U♯

1)

and ρ2 ∈ γ(U♯
2). We have: l1 ⊆ def(ρ1) = A1 ⊆ u1 and l1 ⊆ l2 ⊆ def(ρ2) =

A2 ⊆ u2 ⊆ u1. Moreover ρ1 ∈ (γu1(N♯
1))|A1 hence there exists τ1 : (u1 \A1) → I

such that ρ ] τ1 ∈ γu1(N♯
1) and as ρ2 ∈ (γu2(N♯

2))|A2 there exists τ2 : u2 \A2 → I

such that ρ2 ] τ2 ∈ γu2(N♯
2). Moreover as u2 ⊆ u1, by soundness of the universal

quantification and as I 6= ∅, there exists τ′2 such that ρ2 ] τ2 ] τ′2 ∈ γu1((N♯
2)|u1).

By soundness of ▽u1 we get that: ρ1 ] τ1 ∈ γu1(N♯
1▽u1(N♯

2)|u1) and ρ2 ] τ2 ] τ′2 ∈
γu1(N♯

1▽u1N
♯
2 |u1). Finally by projection we get that: ρ1 ∈ (γu1(N♯

1▽u1(N♯
2)|u1))|A1

and ρ2 ∈ (γu2(N♯
1▽u1(N♯

2)|u1))|A2 . Finally we have that: ρ1 ∈ γ(U♯
1▽U

♯
2) and ρ2 ∈

γ(U♯
1▽U

♯
2). Thus proving soundness.

• We now prove the infinite sequences are stabilized by the widening. Consider a sequence
(U♯

i)i⩾0 ∈ M and let (V♯
i )i⩾0 be: V

♯
0 = U

♯
0 and V

♯
i+1 = V

♯
i▽U

♯
i+1. If for some i ⩾ 0,

V
♯
i = > we are given by soundness of ▽, that ∀j ⩾ i,V♯

j = >, and therefore the sequence is
stabilized. Therefore we assume in the following that ∀i ⩾ 0, V

♯
i 6= >. Given an abstract

element X♯ we denote X♯[N♯], X♯[l], X♯[u] the elements such that: X♯ = 〈X♯[N♯], X♯[l],
X♯[u]〉.

– Consider the sequence (V♯
i [u])i⩾0 ∈ ℘(V)⋆. We have that: ∀i,U♯

i+1[u] ⊆ V
♯
i [u] other-

wise V
♯
i+1[u] = >. Hence ∀i ⩾ 0,V♯

i+1[u] = V
♯
i [u].

– Consider then the sequence (V♯
i [l])i⩾0 ∈ ℘(V)⋆ we have: ∀i ⩾ 0,V♯

i+1[l] ⊆ V
♯
i [l].

However V♯
0[l] is a finite set, therefore we can not have an infinitely decreasing se-

quence, hence there exists j ⩾ 0 such that ∀k ⩾ j,V♯
k[l] = V

♯
j [l].

– Consider finally the sequence: (Z♯
k)k⩾0 = (V♯

k+j)k⩾0, we have: ∀k ⩾ 0,Z♯
k[l] =

Z
♯
k+1[l]∧ Z

♯
k[u] = Z

♯
k+1[u], hence we have that: ∀k ⩾ 0,U♯

k+j[u] ⊆ Z
♯
k[u]∧ Z

♯
k[l] ⊆

U
♯
k+j[l], hence there exists an u ∈ ℘(V) such that ∀k ⩾ 0,Z♯

k+1[N
♯] = Z

♯
k[N

♯]▽u

U
♯
k+j+1[N

♯] by the stabilization property of the ▽u operator we get that sequence
(Z♯

k[N
♯])k⩾0 stabilizes, hence (V♯

k[N
♯])k⩾0 stabilizes.

Hence we have stabilization of the sequence (V♯
k)k⩾0.

Proof of 6.9. Let us prove that ∀stmt, SJstmtK(γ(U♯)) ⊆ γ(S♯JstmtK(U♯)) holds. Let U♯ = 〈N♯, l,
u〉 ∈M♯. We recall here the definition of the concrete operators:

SJAssume(c)KI(R ∈M) =
⋃

fv(c)⊆W⊆V

SJAssume(c)KWI (RW)

SJx← eKI(R ∈M) =
⋃

({x}∪fv(c))⊆W⊆V

SJx← eKWI (RW)

SJremove(v)KI(R ∈M) =
⋃

W⊆V

{ρ|W\{v} | ρ ∈ RW}

SJadd(v)KI(R ∈M) =
⋃

W⊆V\{v}

{ρ[v 7→ i] | ρ ∈ RW, i ∈ I}∪
⋃

{v}⊆W⊆V

RW

• If stmt = remove(v). Let ρ ∈ SJremove(v)K(γ(U♯)) =
⋃

W⊆V{ρ|W\{v} | ρ ∈ γ(U♯)W}.
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– Let {v} ⊆ W ⊆ V, such that ρ ∈ {τ|W\{v} | τ ∈ γ(U♯)W}, let τ ∈ γ(U♯)W such that ρ =

τ|W\{v}. We have that τ ∈ γ(U♯) and def(τ) = W, hence τ ∈ γu(N♯)|W and l ⊆W ⊆
u, there exists µ ∈ (u \W) → I such that τ ] µ ∈ γu(N♯), and by soundness of the
projection operator we have that (τ]µ)|u\{v} = τ|u\{v}]µ = ρ]µ ∈ γu\{v}(N♯

|u\{v}
),

and finally by projecting ontoW\{v}we have ρ]µ|W\{v} = ρ ∈ γu\{v}(N♯
|u\{v}

)|W\{v}.
Moreover we have def(ρ) = W\ {v}, which is such that l \ {v} ⊆ W\ {v} ⊆ u \ {v}.
Finally ρ ∈ γ(〈N♯

|u\{v}
, l \ {v},u \ {v}〉) = γ(S♯Jremove(v)K(U♯)).

– Let v /∈ W ⊆ V such that ρ ∈ {τ|W\{v} | τ ∈ γ(U♯)W}, let τ ∈ γ(U♯)W such that
ρ = τ|W\{v} = τ. We have def(ρ) = def(τ) = W. As τ ∈ γ(U♯)W, we have l ⊆
W ⊆ u, hence l \ {v} ⊆ W\ {v} ⊆ u \ {v}, therefore l \ {v} ⊆ def(ρ) \ {v} ⊆ u \ {v}.
Moreover as τ ∈ γ(U♯)W there exists µ ∈ u \ W → I such that τ ] µ ∈ γu(N♯).
By soundness of the projection operator: (τ ] µ)|u\{v} ∈ γu\{v}(S♯Jremove(v)K(N♯)).
Finally as (τ ] µ)|\{v} = τ ] µ|u\{v}, we have τ ∈ γu\{v}(S♯Jremove(v)K(N♯))|W and
τ ∈ γ(S♯Jremove(v)K(U♯)).

• If stmt = add(v). Let ρ ∈ SJadd(v)K(γ(U♯)) =
⋃

W⊆V\{v}{ρ[v 7→ i] | ρ ∈ γ(U♯)W, i ∈
I}∪

⋃
{v}⊆W⊆V γ(U

♯)W.
– If v ∈ l then ∀W,W ⊆ V \ {v} = ∅ ⇒ γ(U♯)W = ∅. Indeed all maps from γ(U♯)

are defined on v. Therefore there exists {v} ⊆ W ⊆ V such that ρ ∈ γ(U♯)W, hence
ρ ∈ γ(U♯). As S♯Jadd(v)K(U♯) = U♯ we have ρ ∈ γ(S♯Jadd(v)K(U♯)).

– Otherwise if ∃{v} ⊆ W ⊆ V, ρ ∈ γ(U♯)W, we have def(ρ) = W, ρ ∈ γu(U♯)|W
and l ⊆ W ⊆ u. There exists τ ∈ u \ W such that ρ ] τ ∈ γu(U♯). We have, by
soundness of the projection operator, (ρ ] µ)|u\{v} = ρ|u\{v} ] µ ∈ γu\{v}(N♯

|u\{v}
),

by soundness of the universal quantification we have that ∀i ∈ I, (v → i) ] ρ|u\{v} ]
µ ∈ γu((N♯

|u\{v}
)|u∪{v}). In particular by choosing i = ρ(v) we have: (v → ρ(v)) ]

ρ|u\{v} ] µ = ρ ] µ ∈ γu((N♯
|u\{v}

)|u∪{v}). By projection onto W we get that (ρ ]
µ)|W = ρ ∈ (γu((N♯

|u\{v}
)|u∪{v}))|W. Moreover as l ∪ {v} ⊆ W ⊆ u ∪ {v}. Finally we

have ρ ∈ γ(〈(N♯
|u\{v}

)|u∪{v}, l∪ {v},u∪ {v}〉) = γ(S♯Jadd(v)K(U♯)).
– Otherwise if ∃W ∈ V\ {v}, ρ ∈ {τ[v 7→ i] | τ ∈ γ(U♯)W, i ∈ I}. Let i0 ∈ I and τ ∈ γ(U)W

such that ρ = τ[v 7→ i0]. As τ ∈ γ(U)W we have that def(τ) = W and τ ∈ γu(N♯)|W,
there exists µ ∈ (u \W)→ I such that τ] µ ∈ γu(N♯).
* If v ∈ u: By soundness of the projection operator we have (τ ] µ)|u\{v} = τ ]

µ|u\{v} ∈ γu\{v}(N♯
|u\{v}

). By soundness of the universal quantification we have

∀i ∈ I, (v 7→ i) ] τ ] µ|u\{v} ∈ γu((N♯
|u\{v}

)|u∪{v}). As I 6= ∅, in particular we

have (v 7→ i0) ] τ ] µ|u\{v} ∈ γu((N♯
|u\{v}

)|u∪{v}). Finally by projecting onto
W ∪ {v} we get: ((v 7→ i0) ] τ ] µ|u\{v})|W∪{v} = τ ] (v 7→ i0) = τ[v 7→ i0] =

ρ ∈ γu((N♯
|u\{v}) |u∪{v}) |W∪{v}. Moreover as def(ρ) = W ∪ {v} is such that

∪ {v} ⊆ W ∪ {v} ⊆ u ∪ {v} we have that ρ ∈ γ(〈(N♯
|u\{v}

)|u∪{v}, l∪ {v},u ∪ {v}〉) =
γ(S♯Jadd(v)K(U♯))

* Finally if v /∈ u, we have U
♯
|u\{v}

= U♯. Moreover by soundness of the universal

quantification operator we have ∀i ∈ I, τ ] µ ] (v 7→ i) ∈ (γu(N♯
|u∪{v}

)). In

particular τ]µ] (v 7→ i0) ∈ γu(N♯
|u∪{v}

), hence by projection on {W∪ {v}}we get

(τ ] µ ] (v 7→ i0))|W∪{v} = τ ] (v 7→ i0) = ρ ∈ (γu(N♯
|u∪{v}

))|W∪{v}. Moreover as

l∪ {v} ⊆W∪ {v} ⊆ u∪ {v}, we finally have that ρ ∈ γ(〈N♯
|u∪{v}

, l∪ {v},u∪ {v}〉) =
γ(S♯Jadd(v)K(U♯)).

• If stmt = Assume(c) for some constraint c ∈ expr . Let ρ ∈ SJAssume(c)K(γ(U♯)) =
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⋃
fv(c)⊆W⊆V SJAssume(c)KWI (γ(U♯)W). Let fv(c) ⊆ W ⊆ V be the set of variables such

that ρ ∈ SJAssume(c)KWI (γ(U♯)W). By definition of SJAssume(c)KWI we have def(ρ) = W,
ρ ∈ γ(U♯) and EJcKWI (ρ) = true. As ρ ∈ γu(N♯)|W, there exists τ ∈ u \W → I such that
ρ] τ ∈ γu(N♯). As def(τ)∩ fv(c) = 0, we have EJcKuI (ρ] τ) = true. Therefore by defini-
tion of S♯JAssume(c)Ku we have: ρ] τ ∈ S♯JAssume(c)Ku(γu(N♯)). Therefore by soundness
of the underlying S♯JAssume(c)Ku operator we have that: ρ] τ ∈ γu(S♯JAssume(c)Ku(N♯)).
Once again, by projection over W, we get ρ] τ|W = ρ ∈ γu(S♯JAssume(c)Ku(N♯))|W, more-
over we have fv(c) ⊆ W and as ρ ∈ γ(U♯), we have l ⊆ def(ρ) = W ⊆ u. Finally
we have l ∪ fv(c) ⊆ W ⊆ u. This gives us that ρ ∈ γ(〈S♯JAssume(c)Ku(N♯), l ∪ fv(c),
u〉) = γ(S♯JAssume(c)K(U♯)).

• If stmt = x ← e for some constraint variable x ∈ V and some expression e ∈ expr. Let
ρ ∈ SJx ← eK(γ(U♯)) =

⋃
{x}∪fv(e)⊆W⊆V SJx ← eKWI (γ(U♯)W). Let {x} ∪ fv(c) ⊆ W ⊆ V

be the set of variables such that ρ ∈ SJx← eKWI (γ(U♯)W). By definition of SJx← eKWI
we have def(ρ) = W, and there exists µ, i ∈ I such that i ∈ EJcKWI (µ) and ρ = µ[x 7→
i] and µ ∈ γ(U♯). From µ ∈ γ(U♯) we can conclude that def(µ) = W, l ⊆ W ⊆ u,
µ ∈ γu(N♯)|W, let τ ∈ u \W → I be such that µ ] τ ∈ γu(N♯). As def(τ) ∩ fv(e) = ∅
we have EJcKWI (µ ] τ) = EJcKWI (µ). By definition of SJx← eKuI we have (µ ] τ)[x 7→
EJcKWI (µ ] τ)] = ρ ] τ ∈ SJx← eKuI (γu(N♯)). By soundness of S♯Jx← eKuI , we get that
ρ ] τ ∈ γu(S♯Jx← eKuI (N♯)), by projection we have ρ ∈ γu(S♯Jx← eKuI (N♯))|W. Finally
we conclude that ρ ∈ γ(〈S♯Jx← eKuI (N♯), l∪ {x}∪ fv(e),u〉) = γ(S♯Jx← eK(U♯))

Proof of 6.10. Let us assume that I \ J =
⊎

k∈K Ik and every Ik is a SVI. Let us denote l ′ = l ]
{x1, . . . , xn}, u = u ′] {y1, . . . ,yp}. Consider the two following sets: L = {l ′∪ {yj} | j ∈ {1, . . . ,p}}
and U = {u ′ \ {xi} | i ∈ {1, . . . ,n}}. Let a and b be any two distinct elements from L∪U, we will
show a and b can not be in the same Ik.

• if a ∈ L and b ∈ L, then there exists j and j ′ such that j 6= j ′ and a = l ′ ∪ {yj} and
b = l ′ ∪ {yj ′}, as yj /∈ l ′ and yj ′ /∈ l ′ by definition, we have that a ∩ b = l ′. Therefore if
there exists k0 such that a ∈ Ik0 and b ∈ Ik0 then l ′ ∈ Ik0 (indeed SVIs are closed under
intersection) which is absurd as l ′ ∈ J.

• if a ∈ U and b ∈ U, then there exists i and i ′ such that i 6= i ′ and a = u ′ \ {xi} and
b = u ′ \ {xi ′}, as xi ∈ u ′ and xi ′ ∈ u ′ by definition, we have that a∪ b = u ′. Therefore if
there exists k0 such that a ∈ Ik0 and b ∈ Ik0 then u ′ ∈ Ik0 (indeed SVIs are closed under
union) which is absurd as u ′ ∈ J.

• if a ∈ L and b ∈ U then there exists i and j such that a = l ′ ∪ {yj} and b = u ′ \ {xi}.
As yj /∈ u ′ and yj 6= xi, we have a ∩ b ⊆ l ′. Moreover as xi ∈ l ′ we have a ∪ b ⊇ u ′.
Therefore if there exists k0 such that a ∈ Ik0 and b ∈ Ik0 then a∩ b ∈ Ik0 and a∪ b ∈ Ik0
therefore [a∩ b;a∪ b] ⊆ Ik0 and l ′ ∈ Ik0 , which is absurd as u ′ ∈ J.

• the final case is symmetric
Finally we have shown that no two elements from L ∪ U can be in the same Ik. As |L ∪ U| =
p+n = |u \ u ′|+ |l ′ \ l|, we have |K| ⩾ |u \ u ′|+ |l ′ \ l|.

Proof of 6.11. We have to show: I \ J =
⋃

1⩽i⩽nUi ∪
⋃

1⩽j⩽pUi and that every two SVIs in the
union are disjoint.

• Let us prove that I \ J ⊆
⋃

1⩽i⩽nUi ∪
⋃

1⩽j⩽pUi. Let a ∈ [l;u] = I such that a /∈ [l ′;u ′] =
J.

– if l ′ ⊆ a, recall that l ′ = l] {x1, . . . , xn}
* if ∀j ∈ {1,p},yj /∈ a then, as a ⊆ u and u = u ′ ] {y1, . . . ,yp} then a ⊆ u ′, this is

absurd.
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* otherwise, ∃j ∈ {1,p},yj ∈ a. Let j0 = min{j ∈ {1,p} | yj ∈ a}, we have ∀j ⩽
j0 − 1, yj /∈ a. Therefore we have l ′ ∪yj0 ⊆ a and a ⊆ u \

⋃
1⩽k⩽j0−1{yk}. Hence

a ∈ Lj0 and a ∈
⋃

1⩽i⩽nUi ∪
⋃

1⩽j⩽pUi

– otherwise l ′ 6⊆ a, hence as l ⊆ a there exists i ∈ {1,n} such that xi /∈ a. Let
i0 = min{i ∈ {1,n} | xi /∈ a}. We have ∀k ⩽ i0 − 1, xk ∈ a. Hence l ∪

⋃
1⩽k⩽i0−1 ⊆

a. Moreover a ⊆ u and xi0 /∈ a, hence a ∈ u \ {xi0}. Finally a ∈ Ui0 and a ∈⋃
1⩽i⩽nUi ∪

⋃
1⩽j⩽pUi

• Let us prove that I \ J ⊇
⋃

1⩽i⩽nUi ∪
⋃

1⩽j⩽pUi. For all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ pwe have:
l ⊆ l∪

⋃
1⩽k⩽i−1{xk} ⊆ u, l ⊆ u \ {xi} ⊆ u, l ⊆ l ′ ∪ {yj} ⊆ u, l ⊆ u \

⋃
1⩽k⩽j−1{yk} ⊆ u.

Hence for all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ p we have l ⊆ Lj ⊆ u and l ⊆ Ui ⊆ u, hence
I ⊇

⋃
1⩽i⩽nUi ∪

⋃
1⩽j⩽pUi. Therefore we only have to prove that J ∩ (

⋃
1⩽i⩽nUi ∪⋃

1⩽j⩽pUi) = ∅.
– Let 1 ⩽ i ⩽ n, we have J ∩ Ui = [l ′;u ′] ∩ [l ∪

⋃
1⩽k⩽i−1{xk};u \ {xi}] = [l ′ ∪ l ∪⋃

1⩽k⩽i−1{xk};u ′ ∩ (u \ {xi})] = [l ′;u ′ \ {xi}], as xi ∈ l ′ and xi /∈ u ′ \ {xi}, we have
[l ′;u ′ \ {xi}] = ∅ = J∩Ui.

– Let 1 ⩽ j ⩽ p, we have J ∩ Lj = [l ′;u ′] ∩ [l ′ ∪ {yj};u \
⋃

1⩽k⩽j−1{yk}] = [l ′ ∪ l ′ ∪
{yj};u ′ ∩ (u \

⋃
1⩽k⩽j−1{yk})] = [l ′ ∪ {yj};u ′], as yj ∈ l ′ ∪ {yj} and yj /∈ u ′, we have

[l ′ ∪ {yj};u ′] = ∅ = J∩ Lj.
Therefore we have that J ∩ (

⋃
1⩽i⩽nUi ∪

⋃
1⩽j⩽pUi) = ∅. Finally I \ J ⊇

⋃
1⩽i⩽nUi ∪⋃

1⩽j⩽pUi

• Let us show that ∀i, i ′, i 6= i ′ ⇒ Ui ∩Ui ′ = ∅, ∀j, j ′, j 6= j ′ ⇒ Lj ∩Lj ′ = ∅, ∀i, j,Ui ∩Lj = ∅
– Let i, i ′ ∈ {1,n}, assume w.l.o.g. that i < i ′, Ui ∩ U ′

i = [l ∪
⋃

1⩽k⩽i−1{xk};u \

{xi}] ∩ [l ∪
⋃

1⩽k⩽i ′−1{xk};u \ {x ′
i}] = [l ∪

⋃
1⩽k⩽i ′−1{xk};u \ {xi, xi ′}]. We have xi ∈⋃

1⩽k⩽i ′−1{xk} and xi /∈ u \ {xi, xi ′}, hence [l ∪
⋃

1⩽k⩽i ′−1{xk};u \ {xi, xi ′}] = ∅ =
Ui ∩U ′

i.
– Let j, j ′ ∈ {1,p}, assume w.l.o.g. that j < j ′ , Lj ∩ L ′

j = [l ′ ∪ {yj};u \
⋃

1⩽k⩽j−1{yk}] ∩
[l ′ ∪ {y ′

j};u \
⋃

1⩽k⩽j ′−1{yk}] = [l ′ ∪ {yj,y ′
j};u \

⋃
1⩽k⩽j ′−1{yk}]. We have yj ∈ l ′ ∪

{yj,yj ′} and yj /∈ u \
⋃

1⩽k⩽j ′−1{yk}, hence [l ′ ∪ {yj,y ′
j};u \

⋃
1⩽k⩽j ′−1{yk}] = ∅ =

Lj ∩ L ′
j.

– Let i ∈ {1,n} and j ∈ {1,p}, Ui ∩ Lj = [l ∪
⋃

1⩽k⩽i−1{xk};u \ {xi}] ∩ [l ′ ∪ {yj};u \⋃
1⩽k⩽j−1{yk}] = [l ′ ∪ {yj}; (u \ {xi}) \

⋃
1⩽k⩽j−1{yk}]. We have xi ∈ l ′ ∪ {yj} and

xi /∈ (u \ {xi}) \
⋃

1⩽k⩽j−1{yk}, therefore [l ′ ∪ {yj}; (u \ {xi}) \
⋃

1⩽k⩽j−1{yk}] = ∅ =
Ui ∩ Lj

Therefore SVIs in {U1, . . . ,Un,L1, . . . ,Lp} are pair-wise disjoint.

Proof of 6.11. Let us prove that itv_incl(I, Is) = true ⇔ I ⊆
⋃

J∈Is J. The loop invariant of
Algorithm 6.2 is the following: INVm

∆
=

⋃
L∈rem L = I \

⋃
1⩽k⩽m Ik.

• Before loop iterations we have: rem = {I}. Therefore
⋃

L∈rem L = I = I \ ∅. Hence the
invariant holds before the loop iterations.

• Assume that INVn holds at the end of them-th loop. At the end of them+1-st loop iteration
we have: rem =

⋃
L∈rem ′ itv_diff(L, Im+1), (rem' denotes the value of rem at the beginning

of the m-th loop iteration). Hence
⋃

L∈rem L =
⋃

L∈rem ′
⋃

K∈itv_diff(L,Im+1)
K. Moreover⋃

K∈itv_diff(L,Im+1)
K = L \ Im+1, hence rem =

⋃
L∈rem'(L \ Im+1) = (

⋃
L∈rem' L) \ Im+1 =

I \
⋃

1⩽k⩽m+1 Ik.
Given the invariant, we conclude that itv_incl(I, Is) = true⇔

⋃
L∈rem L = ∅ ⇔ I \

⋃
1⩽k⩽n Ik =

∅ ⇔ I \
⋃

J∈Is J = ∅ ⇔ I ⊆
⋃

J∈Is J

Proof of 6.12. Let us assume that (S♯ ′
1 ,S♯ ′

2 ) = unify_leq(S♯
1,S♯

2)∧ (
⋃

I∈itvs(S♯
1)
I ⊆

⋃
J∈itvs(S♯

2)
J).

• γ℘(S
♯
2) = γ℘(S

♯ ′
2 ) holds trivially as S♯

2 is not modified by unify_leq.
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• Let 〈N♯, l,u〉 ∈ S♯
1, we will show that γ(〈N♯, l,u〉) ⊆ γ℘(S

♯ ′
1 ). Let ρ ∈ γ(〈N♯, l,u〉) and

W = def(ρ), we have l ⊆ W ⊆ u. As (
⋃

⟨_,l,u⟩∈S♯
1
[l;u] ⊆

⋃
⟨_,l ′,u ′⟩∈S♯

2
[l ′;u ′]), there

exists 〈_, l ′,u ′〉 ∈ S♯
2 such that l ′ ⊆ W ⊆ u ′. Hence W ∈ [l;u] ∩ [l ′;u ′] 6= ∅, let [a;b] =

[l;u] ∩ [l ′;u ′], we have a ⊆ W ⊆ b. As ρ ∈ γ(〈N♯, l,u〉), we have ρ ∈ (γu(N♯))|W =

((γu(N♯))|b)|W ⊆ (γb(N♯
|b
))|W. Hence ρ ∈ 〈N♯

|b
,a,b〉 ∈ res, as γ℘(res) =

⋃
U♯∈res γ(U

♯),

we have ρ ∈ γ℘(res) = γ℘(S
♯ ′
1 ). Therefore we have γ(〈N♯, l,u〉) ⊆ γ℘(S

♯ ′
1 ) and as this

holds for every 〈N♯, l,u〉 ∈ S♯
1 we can conclude that γ℘(S

♯
1) ⊆ γ℘(S

♯ ′
1 ).

• Finally by definition we that that ∀〈_,a,b〉 ∈ S♯ ′
1 ,∃〈_, l,u〉 ∈ S♯

1, 〈_, l ′,u ′〉 ∈ S♯
2, [a;b] =

[l;u]∩ [l ′;u ′], hence [a;b] ⊆ [l ′;u ′], moreover S♯ ′
2 = S♯

2, which gives us that ∀〈_,a,b〉 ∈
S♯ ′

1 ,∃〈_, l ′,u ′〉 ∈ S♯ ′
2 , [l;u] ⊆ [l ′;u ′].

Proof of 6.13. Let S♯
1,S♯

2 be in M♯
℘ such that S♯

1 v℘ S♯
2, we will show that γ(S♯

1) ⊆ γ(S♯
2). Let

(S♯ ′
1 ,S♯ ′

2 ) = unify_leq(S♯
1,S♯

2), as ∀I ∈ itvs(S♯
1), itv_incl(I, itvs(S

♯
2)), we have

⋃
I∈itvs(S♯

1)
I ⊆⋃

J∈itvs(S♯
2)
J. Therefore from Proposition 6.12 we have:

• γ℘(S
♯
1) ⊆ γ℘(S

♯ ′
1 )

• γ℘(S
♯
2) = γ℘(S

♯ ′
2 )

There remains only to show that γ℘(S
♯ ′
1 ) ⊆ γ℘(S

♯ ′
2 ). This comes trivially from the soundness

of v, indeed we have ∀U♯
1 ∈ S♯ ′

1 ,∃U♯
2 ∈ S♯ ′

2 ,U♯
1 v U

♯
2, hence ∀U

♯
1 ∈ S♯ ′

1 ,∃U♯
2 ∈ S♯ ′

2 ,γ(U♯
1) ⊆

γ(U♯
2). Please note that we did not need the fact that ∀〈_, l,u〉 ∈ S♯ ′

1 ,∃〈_, l ′,u ′〉 ∈ S♯ ′
2 , [l;u] ⊆

[l ′;u ′] to prove the soundness of the operator. Indeed this fact only improves the precision of
the operator.

Proof of 6.14. For symmetry reasons, it suffices to prove that γ℘(S
♯
1) ⊆ γ℘(S

♯ ′
1 ) and that ∀[l1;u1] ∈

itvs(S♯ ′
1 ),∀[l2,u2] ∈ itvs(S♯ ′

2 ), [l1;u1]∩ [l2;u2] 6= ∅ ⇒ l1 = l2 ∧ u1 = u2
• Let us show that γ℘(S

♯
1) ⊆ γ℘(S

♯ ′
1 ), let ρ ∈ γ℘(S

♯
1), there exists 〈N♯, l,u〉 such that

〈N♯, l,u〉 ∈ S♯
1 and ρ ∈ γ(〈N♯, l,u〉). Let us consider the loop iteration at line 5 in Algo-

rithm 6.4 when 〈N♯, l,u〉 is chosen in S♯
1. We consider the two following cases:

– there exists 〈N♯′, l ′,u ′〉 ∈ S♯
2 such that def(ρ) ∈ [l ′;u ′]. In such a case [a;b] ∆

=

[l;u] ∩ [l ′,u ′] 6= ∅, we then have that: 〈N♯
|b

,a,b〉 ∈ res1,c ⊆ res1,c ∪ res1 = S♯ ′
1 .

As def(ρ) ∈ [l ′;u ′] and def(ρ) ∈ [l;u], we have def(ρ) ∈ [a;b]. Moreover ρ ∈
γu(N♯)|def(ρ) = (γu(N♯)|b)|def(ρ) ⊆ γb(N♯

|b
)|def(ρ), hence ρ ∈ γ(〈N♯

|b
,a,b〉) and

ρ ∈ γ℘(S
♯ ′
1 ).

– there exists no 〈N♯′, l ′,u ′〉 ∈ S♯
2 such that def(ρ) ∈ [l ′;u ′]. We can now prove by

a trivial induction on loop 7 that ∃[x;y] ∈ rem, def(ρ) ∈ [x;y], this comes from the
fact that itv_diff indeed computes the difference between two SVIs. At the end of
the loop there exists [a;b] in rem, such that def(ρ) ∈ [a;b], we can show as before
that ρ ∈ γ(〈N♯

|b
,a,b〉) and as 〈N♯

|b
,a,b〉 ∈ res1 ⊆ res1,c ∪ res1 = S♯

1, we have that

ρ ∈ γ℘(S
♯ ′
1 ).

• Let us now show that ∀[l1;u1] ∈ itvs(S♯ ′
1 ),∀[l2,u2] ∈ itvs(S♯ ′

2 ), [l1;u1] ∩ [l2;u2] 6= ∅ ⇒
l1 = l2 ∧ u1 = u2. Let 〈N♯

1, l1,u1〉 ∈ S♯ ′
1 and 〈N♯

2, l2,u2〉 ∈ S♯ ′
2 such that [l1;u1] ∩

[l2;u2] 6= ∅. Consider the following cases (with notations from Algorithm 6.4):
– 〈N♯

1, l1,u1〉 ∈ res1,c and 〈N♯
2, l2,u2〉 ∈ res2,c, we thus have [l1;u1] = [x1;y1]∩ [x2;y2]

and [l2;u2] = [x ′
1;y ′

1]∩ [x ′
2;y ′

2] with [x1;y1], [x ′
1;y ′

1] ∈ S♯ ′
1 and [x2;y2], [x ′

2;y ′
2] ∈ S♯ ′

2 .
As [l1;u1] ∩ [l2;u2] 6= ∅, we have: ([x1;y1] ∩ [x2;y2]) ∩ ([x ′

1;y ′
1] ∩ [x ′

2;y ′
2]) 6= ∅, hence
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([x1;y1]∩ [x ′
1;y ′

1]) 6= ∅, as S
♯
1 is a well-formed abstract element we have: x1 = x ′

1 and
y1 = y ′

1, symmetrically x2 = x ′
2 and y2 = y ′

2, finally we get: l1 = l2 and u1 = u2.
– 〈N♯

1, l1,u1〉 ∈ res1,c and 〈N♯
2, l2,u2〉 ∈ res2. We can trivially prove the following in-

variant on the loop of line 17: ∀[a;b] ∈ rem, [a,b]∩
⋃
I ∈ itvs(S̃♯

1)I = ∅, where S̃♯
1 is

the subset of S♯
1 already visited during the considered loop iteration. Once again this

holds because diff_itv indeed computes a difference. Using this invariant we know
that at the end of the 17-loop iteration we have: ∀[a;b] ∈ rem, [a,b]∩

⋃
I ∈ itvs(S♯

1)I.
Therefore [l2;u2] ∩

⋃
I ∈ itvs(S♯

1)I = ∅. As there exists (by construction) [l;u] ∈ S♯
1

such that [l1;u1] ⊆ [l;u], we have ∅ = [l2;u2]∩ [l;u] ⊇ [l2;u2]∩ [l1;u1] 6= ∅ which is
absurd

– 〈N♯
1, l1,u1〉 ∈ res1 and 〈N♯

2, l2,u2〉 ∈ res2c . This case is symmetric to the previous
one

– 〈N♯
1, l1,u1〉 ∈ res1 and 〈N♯

2, l2,u2〉 ∈ res2. As in the previous case we have: [l1;u1]∩⋃
I ∈ itvs(S♯

2)I = ∅ and [l2;u2]∩
⋃
I ∈ itvs(S♯

1)I = ∅ as there exists [l;u] ∈ S♯
1 such

that [l1;u1] ⊆ [l;u], we have ∅ = [l2;u2] ∩ [l;u] ⊇ [l2;u2] ∩ [l1;u1] 6= ∅ which is
absurd

This proves the assertion.

Proof of 6.15. • We start by proving the soundness of t℘. Let S♯
1 and S♯

2 be in M♯
℘. Let

ρ ∈ γ℘(S
♯
1) ∪ γ℘(S

♯
2), w.l.o.g. we can assume that ρ ∈ γ℘(S

♯
1). With notations from

Definition 6.24 we have: (S♯ ′
1 ,S♯ ′

2 ) = unify(S♯
1,S♯

2). From the soundness of the unify
operator (see Proposition 6.14) we deduce that ρ ∈ γ℘(S

♯ ′
1 ). This implies that there exists

〈N♯
1, l,u〉 ∈ S♯ ′

1 such that ρ ∈ γ(〈N♯
1, l,u〉). Therefore [l;u] ∈ itvs(S♯ ′

1 ), hence:
– either there exists 〈N♯

2, l,u〉 ∈ S♯ ′
2 , in such a case, by soundness of the t operator (see

Proposition 6.5) we have: ρ ∈ γ(〈N♯
1, l,u〉 t 〈N♯

2, l,u〉) and as 〈N♯
1, l,u〉 t 〈N♯

2, l,u〉 ∈
S♯

1 t℘ S♯
2 we can conclude that ρ ∈ γ℘(S

♯
1 t℘ S♯

2)

– or there exists no 〈N♯
2, l,u〉 ∈ S♯ ′

2 . In this case, we have that 〈N♯
1, l,u〉 ∈ S♯

1 t℘ S♯
2,

hence ρ ∈ γ℘(S
♯
1 t℘ S♯

2).
We conclude that γ℘(S

♯
1)∪ γ℘(S

♯
2) ⊆ γ℘(S

♯
1 t℘ S♯

2)

• Let us now prove the soundness of u℘. LetS♯
1 andS♯

2 be inM♯
℘. Let ρ ∈ γ℘(S

♯
1)∪γ℘(S

♯
2).

With notations from Definition 6.24 we have: (S♯ ′
1 ,S♯ ′

2 ) = unify(S♯
1,S♯

2). From the
soundness of the unify operator (see Proposition 6.14) we deduce that ρ ∈ γ℘(S

♯ ′
1 ) and

ρ ∈ γ℘(S
♯ ′
2 ). This implies that there exists 〈N♯

1, l1,u1〉 ∈ S♯ ′
1 such that ρ ∈ γ(〈N♯

1, l1,u1〉)
and there exists 〈N♯

2, l2,u2〉 ∈ S♯ ′
2 such that ρ ∈ γ(〈N♯

2, l2,u2〉). As we have def(ρ) ∈
[l1;u1] and def(ρ) ∈ [l2;u2] we know that [l1;u1]∩ [l2;u2] 6= ∅. From Proposition 6.14 we
can conclude that l1 = l2 and u1 = u2. This implies that [l;u] ∈ itvs(S♯ ′

1 ∩ itvs(S♯ ′
2 ).

Finally we have that 〈N♯
1, l,u〉 u 〈N♯

2, l,u〉 ∈ S♯
1 u℘ S♯

2, by soundness of u (see Proposi-
tion 6.7) we know that: ρ ∈ γ(〈N♯

1, l,u〉 u 〈N♯
2, l,u〉), hence ρ ∈ γ℘(S

♯
1 u℘ S♯

2)

Proof of 6.16. The soundness of themerge operator relies solely on the fact that γ(U♯
1)∪γ(U

♯
2) ⊆

γ(U♯
1 tU

♯
2) (which is given by soundness of t, see Proposition [?]), indeed merge(S♯) is ob-

tained from S♯ by iteratively applying this transformation.

Proof of 6.17. • We will not provide the details of the soundness proof. Indeed merg1 (resp.
merg2) was built fromS♯

1 (resp. S
♯
2) by successivemerge operation, whichwe proved sound

in Proposition 6.16. There are then two cases to consider: (1) Every SVI of a monomial
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of S♯
2 is contained in at least one SVI of a monomial of S♯

1. In this case the result is
the union of the pair-wise widening of every shared SVIs, and monomials from S♯

1 which
do not intersect a monomial from S♯

2 (there are no monomials in S♯
2 that do intersect a

monomial from S♯
1). Therefore the soundness of this case is given by the soundness of the

underlying ▽ operator, which is given by Proposition 6.8. (2) In the other case, the result
of the widening computation is >℘, which is always sound.

• Let us now prove the stabilizing property of the ▽℘ operator. Let us consider a sequence
(S♯

n)n∈N, we want to show that the sequence (S♯ ′
n )n∈N, defined by S♯ ′

0 = S♯
0 and

S♯ ′
n+1 = S♯ ′

n ▽℘S
♯
n, converges.

– By soundness we know that: if there exists some k ∈ N such that S♯ ′
k = >℘, then

for every p ⩾ k, S♯ ′
k = >℘, which ensures convergence. Therefore we assume for the

rest of the proof that for all k ∈N we have S♯ ′
k 6= >℘.

– Given two elementsS♯ andS♯ ′ such thatS♯▽℘S
♯ ′ 6= >℘ we have |S♯▽℘S

♯ ′| < |S♯|.
Indeed with notations from Algorithm 6.7: |S♯▽℘S

♯ ′| = |res| = |merg1|. As |merg1|
is obtained from S♯ by successive merge operations, we deduce that |S♯▽℘S

♯ ′| =

|merg|1 ⩽ |S♯|. From this we conclude that (|S♯
n|)n∈N converges, let N be such that

∀k ⩾ N, |S♯
k| = |S♯

N|. Moreover we trivially have that if |S♯| = |S♯▽℘S
♯ ′| then

itv(S♯) = itv(S♯▽℘S
♯ ′). Indeed SVIs from S♯▽℘S

♯ ′ are obtained by merging SVIs
fromS♯, as there are the same number of SVIs, none have been merged and itv(S♯) =

itv(S♯▽℘S
♯ ′). Therefore we have ∀k ⩾ N, itvs(S♯

k) = itvs(S♯
N). Finally using

notations introduced in Proposition ??, we can show that ∀[a;b] ∈ itvs(S♯
N),∀k ⩾

N,S♯ ′
k+1[a;b] = S♯ ′

k [a;b]∨ ∃S♯,S♯ ′
k+1[a;b] = S♯ ′

k [a;b]▽S♯. We conclude by the
stabilizing property of ▽ (given by Proposition 6.8).

Proof of 6.18. Let us show that Algorithm 6.8 enjoys the following loop invariant:
⋃

U♯∈S γ(U♯) ⊆⋃
U♯∈res γ(U

♯).
• This holds trivially initially as res = S

• Let us assume that at the beginning of some loop we have:
⋃

U♯∈S γ(U♯) ⊆
⋃

U♯∈res γ(U
♯).

We note res the value of res at the end of the loop. Let us consider ρ ∈
⋃

U♯∈S γ(U♯). By
induction hypothesis, there exists U♯ ∈ res such that ρ ∈ γ(U♯).

– If U♯ 6= 〈N♯, l,u〉 and U♯ 6= 〈N♯′, l ′,u ′〉 then U♯ ∈ res. Hence the invariant trivially
holds.

– Otherwise we can assume w.l.o.g. that U♯ = 〈N♯, l,u〉.
* If def(ρ) ∈ [a;b] then by definition of γ we have that ρ ∈ γu(N♯)|def(ρ). As we

have already shown before, as def(ρ) ⊆ b, we have ρ ∈ γb(N♯
|b
)|def(ρ), and ρ ∈

γb(N♯
|b
tbN♯′

|b
)|def(ρ). Hence ρ ∈ γ(〈N♯

|b
tbN♯′

|b
,a,b〉) as 〈N♯

|b
tbN♯′

|b
,a,b〉 ∈ res

we can conclude that the invariant holds.
* If def(ρ) /∈ [a;b], then there exists [c;d] ∈ itv_diff([l;u], [a;b]) such that def(ρ) ∈

[c;d]. Hence there exists [c;d] ∈ diff1 such that def(ρ) ∈ [c;d]. As we have
already shown before, as def(ρ) ⊆ d, we have ρ ∈ γd(N♯

|d
)|def(ρ). Hence we have

ρ ∈ γ(〈N♯
|d

, c,d〉). As 〈N♯
|d

, c,d〉 ∈ res, we can conclude that the invariant holds.
We have proven that the loop invariant holds. At the end of the loop we have

⋃
U♯∈S γ(U♯) ⊆⋃

U♯∈res γ(U
♯). Moreover the loop guard ensures that no two SVIs in res intersects, therefore

res ∈M♯
℘ and

⋃
U♯∈res γ(U

♯) = γ℘(res). Finally
⋃

U♯∈S γ(U♯) ⊆ γ℘(wfp(S)).
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Proof of 6.19. We only provide proof for S♯JAssume(c)K℘ as both definitions are identical. We
prove that ∀S♯, SJAssume(c)K(γ℘(S

♯)) ⊆ γ℘(S
♯JAssume(c)K℘(S♯)).

SJAssume(c)K(γ℘(S
♯)) = SJAssume(c)K( ⋃

U♯∈S♯

γ(U♯)) By definition

=
⋃

U♯∈S♯

SJAssume(c)K(γ(U♯)) SJAssume(c)K is a join-morphism

⊆
⋃

U♯∈S♯

γ(S♯JAssume(c)K(U♯)) By soundness of S♯JAssume(c)K
⊆

⋃
V♯∈{S♯JAssume(c)K(U♯)|U♯∈S♯}

γ(V♯) Variable change

⊆ γ℘(wfp({S♯JAssume(c)K(U♯) | U♯ ∈ S♯}) By Proposition 6.18

⊆ S♯JAssume(c)K℘(S♯) By definition

Proof of 7.17. We want to prove that tree automata widening is sound and stabilizes infinite
sequences. Consider two tree regular languages U♯ and V♯, which unique minimal deterministic
automaton are A and B. We have U♯▽V♯ = L([A∪B]w) ⊇ L(A∪B) = L(A)∪L(B) = U♯ ∪ V♯

which proves soundness. Let us now consider a sequence (U♯
i)i⩾0 and (V♯

i )i⩾0 defined by: V♯
0 =

U
♯
0 and V

♯
i+1 = V

♯
i▽U

♯
i. We have that ∀i ⩾ 0,Bi has at most w states. The set of tree automatas

overRwith at mostw states is finite, moreover by soundness we haveBi ⊆ Bi+1, hence sequence
(Bi)i⩾0 stabilizes and sequence (V♯

i )i⩾0 stabilizes.

Proof of 7.19. Let us show that ∀T ∈ ℘(TI(R)),∀Γ ∈ C(R),T ⊆ γC(R)(Γ) ⇔ αC(R)(T) ⊆ Γ . Let
T ∈ ℘(TI(R)) and Γ ∈ C(R), we have

T ⊆ γC(R)(Γ)⇔ T ⊆ {t ∈ TI(R) | tI ∈ Γ }

⇔ ∀t ∈ T, tI ∈ Γ

⇔ αC(R)(T) ⊆ Γ

Proof of 7.20. We assume given the soundness of the unification operator. Hence: ∀U♯,V♯, (U♯
1,V♯

1) =

unify_subset(U♯,V♯) ⇒ U♯ v U
♯
1 ∧ V♯ = V

♯
1 (N1). Moreover we assume that (U♯

1,V♯
1) =

unify_subset(U♯,V♯) all partitions in U♯ intersects a partition in V♯ (N2). Let us now prove
that γ1 is monotonic in vC♯ , meaning that: ∀U♯,V♯,U♯ vC♯ V♯ ⇒ γ1(U♯) ⊆ γ1(V♯). Thanks
to (N1) we only have to prove that: if 〈s, p,N♯〉 and 〈s ′, p ′,N♯′〉 are such that: s ⊆ s ′ ∧ ∀b ∈
p ′, (b ⊆ sc ∨ ∃!a ∈ p, b ∩ s = a)∧N♯ v N♯′[ϕ], where ϕ is the renaming from p ′ into p that
renames b in a when such an a exists (N3) then: γ1(〈s, p,R♯〉) ⊆ γ1(〈s ′, p ′,R♯′〉). Therefore
let us assume that ρ ∈ γ1(〈s, p,R♯〉) and assume every conditions (N3). By definition of γ1 we
get that ρ ∈ γ[↑ p](R♯) and def(ρ) ⊆ s. We therefore have (by definition of γ[↑ p](R♯)) that:
↓↑p (ρ) ⊆ γ(R♯).

• We have def(ρ) ⊆ s ⊆ s ′

• Let us now show that ρ ∈ γ[↑ p ′](R♯′). We only need to prove that ↓↑p ′ (ρ) ⊆ γ(R♯′).
Therefore let g ∈↓↑p ′ (ρ). We have g ∈ Regn ↛ I, moreover by definition of ↓↑p ′ (ρ),
we have v ′ ∈ def(g) ⇔↑ p ′(v ′) ∩ def(ρ) 6= ∅ ⇔ v ′ ∈ p ′ ∧ v ′ ∩ def(ρ) 6= ∅. Moreover
as def(ρ) ⊆ s ⊆ s ′ we have that g is undefined on partitions contained in sc. Therefore
g is only defined on partitions where ϕ is defined. Hence let us consider g[ϕ] such that
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g[ϕ](a) = g(b) when ϕ(b) = a and undefined otherwise. We have def(g[ϕ]) = {a |

∃b, ϕ(b) = a∧ g is defined on b} = {ϕ(b) | b ∈ def(g)} = {ϕ(b) | b ∈ p ′ ∧ b ∩ def(ρ) 6=
∅} ⊆ p (N4). Let us show that g[ϕ] ∈↓↑p (ρ). Let v ′ ∈ Regn:

– If ↑ p(v ′) ∩ def(ρ) = ∅ then let us assume that g[ϕ] is defined on v ′, then (from
(N4)) v ′ = ϕ(b) and ↑ p(v ′) = v ′ (as v ′ ∈ p ′) with b ∈ p ′ ∧ b ∩ def(ρ) 6= ∅,
moreover b ∩ s = v ′ and def(ρ) ⊆ s, therefore we have: v ′ ∩ def(ρ) 6= ∅ and thus
↑ p ′(v ′)∩ def(ρ) 6= ∅ which is absurd, hence g[ϕ] is undefined on v ′.

– If ↑ p(v ′)∩def(ρ) 6= ∅, we have v ′ ∈ p. Thanks to (N2) we also have that: ∃b ∈ p ′, v ′∩
b 6= ∅, we have necessarily thatϕ(b) = v ′ and b∩ s = v ′, hence b∩def(ρ) 6= ∅ and g is
defined on b. Thus there exists v ∈W(R) such that v ∈ (↑ p ′)(b)∩def(ρ),g(b) = ρ(v)
(this comes from g ∈↓↑p ′ (ρ)). We have ↑ p ′(b) = b and b∩ def(ρ) = v ′ ∩ def(ρ) (as
def(ρ) ⊆ s), hence v ∈ v ′ and v ∈↑ p(v ′)∩def(ρ). Moreover g[ϕ](v ′) = g(b) = ρ(v ′).
Therefore there exists v ′ ∈↑ p(v ′)∩ def(ρ) such that g[ϕ](v ′) = ρ(v ′).

From the two previous point we get that g[ϕ] ∈↓↑p (ρ), hence g[ϕ] ∈ γ(R♯), by soundness
of the underlying domain and by (N3) we have: g[ϕ] ∈ γ(R♯′[ϕ]), hence g ∈ γ(R♯′). As
this holds for every g ∈↓↑p ′ (ρ), we have that: ↓↑p ′ (ρ) ⊆ γ(R♯′).

Finally from the last two points we get that ρ ∈ γ1(s ′,p ′,R♯′). Hence γ1(〈s, p,R♯〉) ⊆ γ1(〈s ′, p ′,
R♯′〉)

Proof of 7.21. Here again we assume the soundness of the unify_join operator: ∀U♯,V♯, if
U

♯
1,V♯

1 = unify_join(U♯,V♯), then γ(U♯) ⊆ γ(U♯
1) and γ(V♯) ⊆ γ(V♯

1). Therefore in order to
prove the soundness of thetC♯(R) operator we only have to prove that: let (〈s, p,R♯〉, 〈s ′, p ′,R♯′〉) =
unify_join(U♯,V♯), let c = p ∪ p ′, let uo = {e ∈ p | e ⊆ s′c}, let vo = {e ∈ p ′ | e ⊆ sc} then
if ρ ∈ γ(〈s, p,R♯〉) then ρ ∈ γ(〈s ∪ s ′, c ∪ uo ∪ vo,R♯

|c∪uo t R♯′
|c∪vo〉). Indeed the operator defini-

tion is symmetric therefore we only prove the result for U♯. Let ρ ∈ γ1(〈s, p,R♯〉), we have by
definition that def(ρ) ⊆ s hence def(ρ) ⊆ s ∪ s ′. Moreover we have ↓↑p (ρ) ⊆ γ(R♯). Let us
prove that we have: ↓↑(c∪uo∪vo) (ρ) ⊆ γ(R♯

|c∪uo t R
♯′
|c∪vo). By soundness of t we only need to

prove that: ↓↑(c∪uo∪vo) (ρ) ⊆ γ(R♯
|c∪uo). Therefore let g ∈↓↑(c∪uo∪vo) (ρ). We have def(g) =

{v ′ | v ′ ∈ c ∪ uo ∪ vo ∧ v ′ ∩ def(ρ) 6= ∅}. Moreover if v ′ ∈ vo then v ′ ⊆ sc, and as def(ρ) ⊆ s

we have that v ′ ∩ def(ρ) = ∅. Hence def(g) = {v ′ | v ′ ∈ c ∪ uo ∧ v ′ ∩ def(ρ) 6= ∅}, moreover
∀v ′, v ′ ∈ def(g),∃v, v ∈ v ′ ∩ def(f)∧ g(v ′) = ρ(v) (N1). Let us now define h : Regn ↛ I in the
following way: if v ′ ∈ def(g) then h(v ′) = g(v ′), if there exists some v ∈↑ p(v ′) ∩ def(ρ) then
h(v ′) = f(v) otherwise h is undefined. Note that there can be several such h, we choose one of
them. Let us show that h ∈↓↑p (ρ): let v ′ ∈ Regn,

• if ↑ p(v ′)∩ def(ρ) = ∅ then if h is defined, by definition it is either because:
– ↑ p(v ′)∩ def(ρ) 6= ∅, which is absurd,
– or because g is defined on v ′. Hence we have that v ′ ∈ c ∪ uo and v ′ ∩ def(ρ) 6= ∅,

which is also absurd.
Hence h is undefined.

• if ↑ p(v ′)∩ def(ρ) 6= ∅ then:
– if v ′ ∈ def(g), then ↑ p(v ′) = v ′ as def(g) ⊆ c ∪ uo ⊆ p we have (due to (N1)).

Moreover there exists some v ∈ v ′ ∩def(f) such that g(v ′) = ρ(v), hence h(v ′) = ρ(v)
– otherwise by construction of h there exists some v ∈↑ p(v ′)∩def(ρ) such that h(v ′) =

ρ(v).
Finally we have h ∈↓↑p (ρ) and therefore h ∈ γ(R♯). Moreover if v ′ ∈ def(h) ∩ (c ∪ uo) we
have v ′ ∈ def(g) or ↑ p(v ′) ∩ def(ρ) 6= ∅. In the latter case as p = c ∪ ui ∪ uo, we have ↑
p(v)∩def(ρ) =↑ (c∪uo∪vo)(v)∩def(ρ) 6= ∅, and therefore v ′ ∈ def(g). Hence h|c∪uo = g, and
as h ∈ γ(R♯) we have: g ∈ γ(R♯

|c∪uo). We thus conclude that ↓↑(c∪uo∪vo) (ρ) ⊆ γ(R♯
|c∪uo) hence
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↓↑(c∪uo∪vo) (ρ) ⊆ γ(R♯
|c∪uo t R

♯′
|c∪vo). Thus giving us that ρ ∈ γ(〈s ∪ s ′, c ∪ uo ∪ vo,R♯

|c∪uo t
R
♯′
|c∪vo〉)
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