
i

THÈSE DE DOCTORAT DE

L’UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Charles XOSANAVONGSA
Heterogeneous Event Causal Dependency Definition for the

Detection and Explanation of Multi-Step Attacks

Thèse présentée et soutenue à RENNES, CENTRALESUPÉLEC, le 23 juin 2020
Unité de recherche : IRISA
Thèse N° : 2020CSUP0003

Composition du jury :

Président du jury : Hervé DEBAR Professeur, Télécom Sud Paris

Rapporteurs : Isabelle CHRISMENT Professeur, Télécom Nancy
Sébastien MONNET Professeur, Polytech Annecy-Chambéry

Dir. de thèse : Éric TOTEL Professeur, IMT Atlantique

Co-dir. de thèse : Olivier BETTAN Head of Theresis Cyber Security Lab, Thales

A B S T R A C T

Knowing that a persistent attacker will eventually succeed in gaining a
foothold inside the targeted network despite prevention mechanisms, it is
mandatory to perform security monitoring on the system.

The purpose of this thesis is to enable the discovery of multi-step attacks
through event analysis. To that end, previous alert correlation work has
aimed at building connections among events and between attack steps. In
practice, this type of link is not trivial to define and discover, especially when
considering heterogeneous events (i.e., events emanating from monitoring
systems deployed in different abstraction layers of the monitored system),
and the literature lacks a formal definition of these connections. We argue
that these connections among heterogeneous events correspond to a causal
dependency relationship among events.

Inspired from two causality models from the distributed system and the
security research areas, i.e., Lamport’s [Lamport, 1978] and d’Ausbourg’s
[d’Ausbourg, 1994] models, we have thereby proposed a formal definition of
this relationship called event causal dependency. The relationship enables the
discovery of all events, which can be considered as the cause or the conse-
quence of an event of interest (e.g., an alert produced by an attacker action).
To the best of our knowledge, our work is the first one to propose a defini-
tion of the causal dependency relationship among heterogeneous events. We
present how existing work permits the computation of parts of the overall
model, and detail our implementation, which exclusively leverages existing
monitoring facilities (e.g., auditd, and Zeek network-based intrusion detec-
tion system) to produce events. We show that our implementation already
yields a good approximation of our model.

A C K N O W L E D G E M E N T S

Through the following paragraphs, I would like to express my gratitude to
all the people that helped and supported me either intellectually, financially,
or personally, along my journey.

First of all, I would like to thank Isabelle Chrisment, Sebastien Monnet,
and Hervé Debar for taking an interest in my work and accepting to be
members of the jury.

Secondly, I would like to thank my Ph.D. advisors, Eric Totel, and Olivier
Bettan. They shared different responsibilities for this work and provided me
with their expertise, helpful criticism, and, above all, their time to listen to
my state of mind and doubts. In particular, I would like to thank Eric for
taking me under his wing and pushing me to my limits. I can assure I would
not have finished my Ph.D. thesis without his help and guidance. I would
also like to thank Olivier for supporting me during the hard times of the last
year of my Ph.D.

I had the opportunity to be part of two teams during my Ph.D.: the There-
sis team from Thales, and the CIDRE team from CentraleSupelec. I want
to thank them for giving me the research perspectives from industrial and
academic standpoints. I would like to thank the members of the Theresis
team for all our interesting conversations around the coffee machine and
during lunchtime, the babyfoot matches, the jogging sessions, the RootMe
sessions, the time they took to answer my questions and help me debug-
ging. In particular, I would like to thank: Nizar Kheir for guiding me in my
journey to become a researcher; Pierre-Olivier Brissault, Ivana Djunisijevic,
Mehdi El Ayachi, Clément Georjon, and Aurélien Deharbe for all our walks
in the park; Romain Ferrari and Tarek Marcé for our no pain no gain work-
outs; Sébastien Keller for sharing with me his martial art journey and views
on life; Adam Faci for all our debugging sessions; and Nicolas Peiffer and
Bruno Marcon for our fun boardgame sessions.

I would also like to thank the CIDRE team members for taking care of me
and giving me the opportunity to teach network and security to CentraleSu-
pelec students. In particular, I would like to thank: Ludovic Mé for trusting
me, giving me the opportunity to present my work to the Minister of Higher
Education, Research and Innovation, and for his solicitude during the hard
times of the last year of my Ph.D.; Pierre Wilke for helping us correct our
first paper and managing the student project; and all the Ph.D. students for
the time we spent together.

My Ph.D. journey would have been really different without Olivia Carron
and Alexandre Dang. I cannot express enough how much gratitude I have
towards them. Thank you very much for your kindness and for taking care
of me every time I was in Rennes.

Pour finir, je tiens bien sûr à remercier ma famille, ainsi que tous mes
proches, pour leur soutien sans faille. En particulier, je remercie mes parents,
qui, malgré tous mes doutes, ont toujours cru en moi et m’ont toujours

iii

iv acknowledgements

poussé à donner le meilleur de moi-même. Je tiens également à remercier
tout particulièrement Tatiana, Raphael, Soudrudy, et Bounsana pour m’avoir
aidé à me relever pendant les moments les plus difficiles de ma thèse. Je vais
terminer ces paragraphes en remerciant mes grands parents, à qui je dédie
ce manuscrit.

R É S U M É S U B S TA N T I E L E N
F R A N Ç A I S

Du fait de leur environnement compétitif, les entreprises sont sujettes à
l’espionnage industriel, le sabotage ou encore le vol de données. Le nombre
de rapports de sécurité détaillant les brèches subies par les entreprises ne fait
qu’augmenter. Il nous rappelle la réalité de la menace des attaques ciblées
et de leurs conséquences sur les finances et la réputation des entreprises. Le
constat est le suivant : malgré tous les moyens de prévention mis en place, un
attaquant motivé trouvera toujours le moyen d’infiltrer un réseau informatique.

Attaques Multi-Étapes. Pour atteindre ses objectifs, un attaquant doit géné-
ralement effectuer plusieurs actions consécutives. De telles attaques sont
connues sous le nom d’attaques multi-étapes et peuvent potentiellement
rester longtemps inaperçues. Ceci s’explique notamment par le fait que, en
dehors du contexte de la sécurité informatique, certaines étapes de l’attaque
peuvent potentiellement être considérées comme étant des ensembles d’ac-
tions légitimes. Ceci les rend plus difficile à détecter.

La Supervision de Sécurité est Indispensable. Partant du constat que les mé-
canismes de prévention d’intrusion sont insuffisants, il est indispensable de
mettre en place des moyens d’observer le système [Anderson, 1980]. Pour
cela, les équipes de supervision de sécurité déploient différents types de
sondes leur permettant d’observer le système sous plusieurs angles (réseau,
système d’exploitation, application...) et d’enregistrer les observations dans
des fichiers de journalisation sous la forme d’événements1. En particulier,
les équipes de supervision déploient des systèmes de détection d’intrusion
(appelés Intrusion Detection Systems (IDS) en anglais). En pratique, les événe-
ments produits par ces sondes, ainsi que les IDS, sont la seule source d’infor-
mation disponible pour le débogage post mortem ou l’investigation d’at-
taques numériques. L’objectif de cette thèse est de permettre la découverte de
scénarios d’attaque multi-étapes à travers l’analyse d’événements de sécurité.

Détecter des Scénarios d’Attaque grâce à la Corrélation d’Alertes. Un événe-
ment représente l’observation d’une action spécifique ayant été effectuée
dans le système supervisé. Les événements doivent donc être analysés pour
pouvoir en tirer une vision d’ensemble du système supervisé. Dans le con-
texte de la supervision de sécurité, un des objectifs principaux de cette anal-
yse est de permettre la découverte, ainsi que la compréhension, des différentes
étapes constituant une attaque. Ce rôle est joué par la corrélation d’alertes [Jakob-
son & Weissman, 1993].

Les méthodes de corrélation d’alertes cherchent à construire des liens en-
tre les événements produits par les différents types de sondes et d’IDS dé-
ployés dans le système supervisé. Dans le contexte de la détection et décou-

1 Un « événement » correspond à toute information journalisée par une sonde ou un IDS.
Lorsqu’un événement est produit par un IDS, il peut aussi être appelé « alerte ».

vi résumé substantiel en français

verte de scénario d’attaque multi-étapes, la corrélation de différents types
d’événements est indispensable pour permettre leur complète compréhen-
sion [Valeur et al., 2004]. En pratique, ces liens sont difficiles à définir et
découvrir, notamment lorsque l’on considère l’analyse d’événements hétéro-
gènes.

L’approche typique pour corréler les événements et détecter des attaques
est d’écrire des règles de corrélation. Un telle règle correspond à une descrip-
tion explicite des ensembles, ou séquences, d’événements correspondant aux
observations des actions composant une attaque. Malheureusement, la for-
mulation de règles de corrélation est très difficile car elle se base sur la fusion
des points de vue du défenseur et de l’attaquant. Autrement dit, elle néces-
site d’avoir une connaissance fine du système supervisé (c.à.d. connaître
sa topologie, sa cartographie, ses vulnérabilités, ainsi que ses capacités de
supervision), ainsi que de la créativité pour pouvoir imaginer les scénarios
d’attaque potentiels.

Notre étude de la corrélation d’alertes nous a amenés à la réflexion suiv-
ante : grâce à la corrélation, un analyste de sécurité espère trouver des
événements causalement dépendants. Autrement dit, les méthodes de corrélation
d’alertes cherchent idéalement à découvrir des liens de dépendance causale entre les
événements.

Vers la Recherche de Liens de Causalité entre Événements. Dans la con-
tinuité de nos recherches sur la corrélation d’alertes, nous nous sommes
naturellement dirigés vers l’étude de la causalité et de sa définition dans
le contexte de la supervision sécurité. Nous avons donc étudié la notion
de dépendance causale dans un contexte plus général que la corrélation
d’alertes. Ceci nous a mené à l’étude des domaines de recherches tels que
les systèmes distribués, les flux d’information, ainsi que la provenance. Suite
à notre étude de la littérature, nous sommes arrivés au constat suivant : la
littérature manque d’une définition formelle de la relation de dépendance causale
entre événements hétérogènes. Nous pensons que définir, ainsi que pouvoir
calculer, ces relations de dépendance causale permettrait de simplifier le
procédé d’identification de scénario d’attaque et d’améliorer les capacités
d’investigation d’attaques.

En pratique, partant d’un événement d’intérêt e, tel qu’un indice de com-
promission ou une alerte, un analyste de sécurité cherche à identifier tous les
événements pouvant être considérés comme les causes ou les conséquences
de e. Idéalement, cet ensemble d’événements contiendrait toutes les traces
laissées par les actions de l’attaquant dans le système supervisé. Notre
raisonnement est le suivant : si les relations de dépendance causale entre
événements peuvent être définies et calculées, alors la découverte de scénar-
ios d’attaque se traduit en des parcours de graphes de dépendance causale
où les nœuds et les flèches correspondent respectivement aux événements et
à leurs liens de dépendance causale.

résumé substantiel en français vii

définition de la relation de dépendance causale
entre événements

Dans ce manuscrit de thèse, nous proposons une définition claire de la
relation de dépendance causale entre événements. L’objectif est de définir
un modèle formel permettant, dans l’idéal, d’unifier les travaux existants
portant sur la notion de dépendance causale entre événements hétérogènes,
c’est-à-dire, des événements issus de différentes couches d’abstraction (ré-
seau, système d’exploitation, application).

Suite à notre étude de la littérature, ainsi qu’à notre quête de définir ce
qu’est la relation de dépendance causale entre événements hétérogènes, nous
sommes parvenus aux réflexions suivantes :

(a) Un système informatique peut être modélisé comme un ensemble d’ob-
jets actifs et passifs décrits par leur état. Les objets actifs ont la possi-
bilité d’effectuer des actions et d’interagir avec les autres objets du
système. Les objets passifs, quant à eux, ne peuvent pas effectuer
d’actions. Un objet passif peut être influencé par un autre objet ac-
tif, qui effectue des actions sur lui, ou par un autre objet passif, par
le biais d’un objet actif. Par exemple, les processus d’un système cor-
respondent à des objets actifs, tandis que les fichiers correspondent
à des objets passifs. Les processus peuvent interagir entre eux, ainsi
qu’avec les objets passifs du système;

(b) Il existe des liens de dépendance causale entre les états des objets, les
actions effectuées par les objets, ainsi qu’entre leurs états et leurs ac-
tions. Considérons par exemple un processus écrivant dans un fichier.
L’état du fichier, autrement dit la valeur de son contenu, dépend cau-
salement de l’état du processus au moment de l’écriture;

(c) Les systèmes de supervision permettent d’observer et d’enregistrer,
sous la forme d’événements, ces actions et/ou états. Par exemple, un
système de supervision peut être mis en place pour observer et en-
registrer les interactions entre les processus et les fichiers à travers les
appels systèmes;

(d) Si nous sommes capables de déterminer les relations de dépendance
causale entre les actions et les états, nous pouvons transférer cette con-
naissance aux événements pour pouvoir déterminer des liens de dépen-
dance causale entre événements.

Ces réflexions nous ont amené à proposer et définir trois nouvelles rela-
tions de dépendance causale :

1. La relation de dépendance causale entre actions contextuelles. Cette relation
a pour objectif de modéliser le fonctionnement du système supervisé.
Elle se base sur les réflexions (a) et (b) précédemment décrites;

2. La relation de dépendance causale entre événements contextuels. La défini-
tion du concept d’événement contextuel a pour objectif de modéliser
le lien entre actions contextuelles et événements bruts. De manière suc-
cincte, une action contextuelle peut être observée, et enregistrée sous

viii résumé substantiel en français

la forme d’événements, par différentes systèmes de supervision. La
relation se base sur les réflexions (c) et (d) précédemment décrites;

3. La relation de dépendance causale entre événements bruts. Cette relation a
pour objectif de permettre la découverte de tous les événements étant
causalement liés à un événement d’intérêt.

Les paragraphes suivants présentent plus en détails le modèle que nous
avons défini. Dans un premier temps, nous commençons par introduire
la notion d’action contextuelle ainsi que sa relation de dépendance causale.
Nous décrivons ensuite progressivement les liens qui unissent actions contex-
tuelles et événements. Nous pourrons alors définir la notion de dépendance
causale entre événements bruts.

Ces trois relations s’inspirent de deux modèles de causalité précédem-
ment définis dans les domaines des systèmes distribués (modèle de Lam-
port [Lamport, 1978]) et de la sécurité (modèle de d’Ausbourg [d’Ausbourg,
1994]).

Relation de Dépendance Causale entre Actions Contextuelles

Définition d’une Action Contextuelle. De manière informelle, une action
contextuelle est composée de :

1. l’action effectuée par un objet, de manière similaire au modèle de Lam-
port [Lamport, 1978];

2. la valeur du contexte de l’objet au moment où l’action a été effec-
tuée, autrement dit, l’état de l’objet, au sens du modèle défini par
d’Ausbourg [d’Ausbourg, 1994].

Pour résoudre le problème de dépendance entre objets de types différents,
nous devons distinguer deux catégories d’objets : les objets actifs, qui ef-
fectuent des actions (tel que les processus ou les interfaces réseau), et les
objets passifs (comme les conteneurs d’information tels que les fichiers, sock-
ets, ...), qui ne peuvent pas effectuer d’actions. Un objet actif est supposé
effectuer des actions pouvant être liées aux contextes de l’objet. Pour les
objets passifs, seul leur contexte peut être observé.

Definition 1 ObjectActions(o) correspond à l’ensemble des actions produites
par un objet o, actif ou passif. ObjectActions(o) = {ai}∪ {∅} avec {ai} l’ensemble
des actions pouvant être effectuées par o, et ∅ l’absence d’action.

Par exemple, les appels système invoqués par un processus p pour requêter
les services du kernel correspondent à des actions de ObjectActions(p).

Nous pouvons maintenant introduire formellement la notion d’action contex-
tuelle :

Definition 2 Une action contextuelle est un couple (a, (o, t)), où a correspond à
l’action effectuée par l’objet o, avec a ∈ ObjectActions(o), et (o, t) correspond
à l’état de l’objet o au temps t. Dans le cas où a 6= ∅, t correspond au temps où
l’action a été effectuée.

résumé substantiel en français ix

Définition d’une Session. Étant donné deux actions a et b produites par un
processus donné telles que a ≺ b, « ≺ » étant la relation happened-before [Lam-
port, 1978], Lamport précise que b peut être causalement dépendant de a.
Nous voulons définir un modèle plus précis permettant de casser la relation
de causalité entre a et b lors de l’évolution d’un objet, c’est-à-dire, si l’état de
cet objet est indépendant de ses états précédents au sens de d’Ausbourg. En
pratique, de nombreux services ne gardent pas en mémoire les différentes
séquences d’exécution. Ceci implique que l’exécution d’un objet donné peut
être divisée en intervalles de temps où les exécutions sont partiellement ou
complètement indépendantes l’une de l’autre. Dans notre modèle, un tel
intervalle dans l’exécution d’un objet est appelé session.

Definition 3 Une session sessionn(o), d’un objet o, est une séquence d’actions
contextuelles (ai, (o, ti)), où ai ∈ ObjectActions(o), telle que :
sessionn(o) =

{
(ai, (o, ti)) / (o, ti)→ (o, ti+1) ∧ (o, tendn−1

) 6→ (o, tstartn)
∧ (o, tendn

) 6→ (o, tstartn+1
)
}

, avec tstartn correspondant au temps où la pre-
mière action contextuelle de sessionn(o) est effectuée, tendn

correspondant au
temps où la dernière action contextuelle de sessionn(o) est effectuée, et «→ » cor-
respondant à la relation de dépendance causale définie par d’Ausbourg [d’Ausbourg,
1994].

Une exécution d’un objet o est l’union de toutes les sessions(o). La no-
tion de sessions s’applique à tout type d’objet. Exemples : un fichier peut
être vidé de son contenu; pour un processus Apache, deux requêtes conséc-
utives sont indépendantes. En pratique, une action commençant une nou-
velle session peut être produite par une application ou encore le système
d’exploitation.

La notion de session n’est pas nouvelle. En particulier, les actions délim-
itant les sessions au sein des processus ayant une longue durée de vie, tels
que les services par exemple, ont fait l’objet d’une étude approfondie pour
permettre de diminuer le nombre de fausses dépendances causales entre les
actions [Lee et al., 2013a].

Définition de la Relation de Dépendance Causale entre Actions Contextuelles.
Le concept d’action contextuelle prend en compte les actions effectuées par
les objets et leurs états au moment où les actions sont effectuées. Ceci nous
permet de profiter des modèles de Lamport et de d’Ausbourg pour définir
une relation de dépendance causale entre différents types d’actions. Nous
avons appelé cette nouvelle relation dépendance causale entre actions contex-
tuelles. Cette dernière est dénotée « 7→ », et est définie sur l’ensemble de
toutes les actions contextuelles produites par tous les objets du système.

Definition 4 Étant donné deux actions contextuelles (a1, (o1, t1)) et (a2, (o2, t2)),
l’action contextuelle (a2, (o2, t2)) est causalement dépendante de l’action contex-
tuelle (a1, (o1, t1)), dénoté (a1, (o1, t1)) 7→ (a2, (o2, t2)), lorsque :

1. o1 et o2 correspondent au même objet o, et il existe n tels que :
(a1, (o, t1)) ∈ Sessionn(o), (a2, (o, t2)) ∈ Sessionn(o) et t1 < t2;

2. ou, o1 6= o2, et (o1, t1) → (o2, t2), c’est-à-dire que les états des deux objets
sont causalement dépendants au sens de d’Ausbourg. Autrement dit, il existe
un flux d’information de l’état (o1, t1) vers l’état (o2, t2);

x résumé substantiel en français

3. ou, o1 6= o2, et l’action a1 correspond à l’envoi d’un message m et l’action
a2 correspond à la réception de m, ce qui signifie que a1 ≺ a2 en utilisant la
relation happened-before de Lamport;

4. ou ∃ (c, (o, t)) tel que (a1, (o1, t1)) 7→ (c, (o, t)) et (c, (o, t)) 7→ (a2, (o2, t2)).

to1
o1

(a1, (o1, t1)) (a5, (o1, t5)) (a6, (o1, t6)) (a4, (o1, t4))

to2
o2

(a2, (o2, t2)) (a3, (o2, t3))

Session1(o1) Session2(o1)

Session1(o2)

Figure 1: Illustration de la relation de dépendance causale entre actions contex-
tuelles issues de sessions différentes.

La figure 1 illustre l’utilisation de notre modèle. La relation « 7→ » étant
transitive, nous avons par exemple (a1, (o1, t1)) 7→ (a4, (o1, t4)) même si ces
deux actions contextuelles appartiennent à deux sessions différentes. Il est
important de noter que les deux objets possèdent leur propre horloge, to1

et
to2

, et que notre modèle ne nécessite pas qu’elles soient synchronisées.

Des Actions Contextuelles vers les Événements

Comme défini dans [European Commission, 2010], un événement corres-
pond à « une action identifiable ayant lieu sur un dispositif et étant enreg-
istrée comme une entrée de journal ». En pratique, les actions contextuelles
peuvent donc être observées par les sondes déployées dans le système su-
pervisé. Il est important de souligner qu’une action contextuelle peut ne pas
être observée et journalisée. C’est le cas lorsqu’aucune des sondes déployées
ne permet d’observer ce type d’action contextuelle. Prenons l’exemple d’un
système où seul le réseau est supervisé à l’aide d’un NIDS. Les interactions
entre les processus et les fichiers ne pourraient pas être observées dans ce
cas. Par conséquent, certaines actions contextuelles peuvent être manquées
par l’analyste de sécurité. À l’opposé, une action contextuelle peut égale-
ment être observée par plusieurs sondes de type différent. Les événements
correspondant à une même action sont alors répartis sur différents fichiers
de journalisation.

Définition des Événements Contextuels : Observations d’Actions Contextuelles.
Étant donné l’ensemble des événements journalisés du système, dénoté E,
chacun des événements est produit à un temps donné, c’est-à-dire au mo-
ment de son horodatage, en observant une action contextuelle effectuée par
un objet.

Definition 5 Un événement contextuel est un triplet (e,o, te) où e ∈ E, o

représente l’objet observé et te est l’horodatage de l’événement e.

D’après la définition 2, l’action a d’une action contextuelle donnée (a, (o, ta))
peut représenter une action réelle ou l’absence d’action. Par conséquent, a,

résumé substantiel en français xi

et (o, ta) peuvent ne pas être observable. On peut ainsi étendre la définition
précédente en introduisant l’événement contextuel (∅,o, ta) correspondant
à l’absence d’observation de a au temps ta. Nous pouvons maintenant in-
troduire la fonction Obs qui associe une action contextuelle à un ensemble
d’événements contextuels correspondant à l’observation de cette unique ac-
tion contextuelle.

Definition 6 Étant donné une action a ∈ ObjectActions(o) effectuée au temps
ta, l’observation d’une action contextuelle correspond à l’ensemble :
Obs

(
(a, (o, ta))

)
= {(ei,o, tei

)} ∪ {(∅,o, ta)}, où ei ∈ E, et (∅,o, ta) correspond
à l’absence d’observation de a et donc à l’absence d’événement.

Définition de la Relation de Dépendance Causale entre Événements Con-
textuels. Maintenant que nous avons fait le lien entre les actions contex-
tuelles et les événements contextuels, nous pouvons définir la relation de
dépendance causale entre événements contextuels dénotée « ⇀ ».

Definition 7 Étant donné deux événements contextuels (e1,o1, tei
) et (e2,o2, tej

),
(e2,o2, te2

) est causalement dépendant de (e1,o1, te1
), dénoté

(e1,o1, te1
) ⇀ (e2,o2, te2

), si et seulement s’il existe deux actions contextuelles
(a1, (o1, t1)) et (a2, (o2, t2)) telles que (e1,o1, tei

) ∈ Obs
(
(a1, (o1, t1))

)
,

(e2,o2, tej
) ∈ Obs

(
(a2, (o2, t2))

)
et (a1, (o1, t1)) 7→ (a2, (o2, t2)).

Définition de la Dépendance Causale entre Événements. Nous arrivons main-
tenant au résultat attendu du modèle, c’est-à-dire, la définition de la dépen-
dance causale entre événements bruts dénotée « . ».

Definition 8 Étant donné deux événements e1 et e2, e2 est causalement dépendant
de e1, dénoté e1 . e2, si et seulement si (e1,o1, te1

) ⇀ (e2,o2, te2
), où o1 et o2

correspondent respectivement aux objets observés et t1 et t2 sont les horodatages des
événements.

Graphes de Cause et de Dépendance pour les Événements

Les relations « 7→ », « ⇀ » et « . » définissent respectivement des ordres
partiels sur les ensembles des actions contextuelles, des événements con-
textuels et des événements. Elles sont de plus transitives. Cette propriété
nous permet de construire le graphe de cause, cause(e) = {e ′/e ′ . e}, ainsi que
le graphe de dépendance, dep(e) = {e ′/e . e ′}, d’un événement d’intérêt donné
e. Ces deux graphes représentent tous les événements qui, respectivement,
contribuent ou dépendent de l’événement donné.

La figure 2 illustre les graphes de cause et de dépendance d’une alerte.
Ces graphes permettent à un analyste de sécurité d’obtenir tous les événe-
ments pouvant être considérés comme les causes ou les conséquences d’un
événement d’intérêt. Ainsi, idéalement, les graphes de cause et de dépen-
dance contiennent toutes les informations disponibles, et issues des événe-
ments, pour pouvoir investiguer des attaques. Il peut ainsi plus facilement
déterminer les origines d’une attaque, ainsi que son impact sur le système
supervisé.

xii résumé substantiel en français

eAlerte

Graphe de
Cause

eNet

eSys
.

e
Net

e
Sys

.

eSys .

.
eApp

.

Graphe de
Dépendance

e
Net

eSys. eSys
.

eNet

eSys
.

eApp
.

eSys.

.

.

.

.

.

Figure 2: Illustration des graphes de cause et de dépendance d’une alerte

Récapitulatif des Relations de Dépendance Causale Définies

La figure 3 résume les trois relations définies dans notre modèle. Ces
relations peuvent être vues comme trois modèles représentant le système
supervisé sous différents angles.

Dépendances
Causales
entre Actions
Contextuelles

(a1, (o1, t1)) (a, (o, t)) (a2, (o2, t2))

Dépendances
Causales entre
Événements
Contextuels

(e1,o1, te1
)

(e ′1,o1, te1
)

(∅,o, t) (e2,o2, te2
)

Dépendances
Causales entre
Événements

e1

e ′1

e2
.
.

Obs
(
(a1, (o1, t1))

)
Obs

(
(a, (o, t))

)
Obs

(
(a2, (o2, t2))

)

⇐
⇒

⇐
⇒

Figure 3: Schéma récapitulatif des 3 relations de dépendance causale

La ligne du haut (Dépendances Causales entre Actions Contextuelles) re-
présente les actions, et les états, des objets du système, ainsi que les dépen-
dances causales qui les lient. En d’autres termes, ce modèle décrit comment
le système supervisé vit.

La ligne du bas (Dépendances Causales entre Événements) représente les
événements produits par les divers types de sondes déployées pour observer
le système supervisé, ainsi que les dépendances causales qui les lient. En
d’autres termes, ce modèle représente une vue partielle, à travers les événe-
ments, du système supervisé.

La ligne centrale (Dépendances Causales entre Événements Contextuels)
représente les événements contextuels, ainsi que les dépendances causales
qui les lient. La notion d’événement contextuel a été introduit pour faire le
pont entre les actions contextuelles et les événements bruts.

résumé substantiel en français xiii

implémentation du modèle de causalité

Les méthodes de calcul de dépendances causales permettent d’observer et
journaliser les actions effectuées par les objets actifs du système supervisé.
Les travaux existants permettent d’observer le système sous un point de vue
donné (réseau, système d’exploitation, applicatif,...). Ils ne donnent donc
qu’une information partielle de ce qu’il s’est réellement passé sur le système.
Il est donc important de noter que les travaux existants ne permettent de
calculer qu’une approximation du modèle.

Stratégies d’Implémentation

Le modèle que nous avons défini peut être implémenté de diverses ma-
nières. Nous pouvons les catégoriser en deux groupes : celles qui adoptent
une stratégie descendante (c’est-à-dire, partir des actions contextuelles pour
aller vers les événements), et celles qui adoptent une stratégie ascendante,
(c’est-à-dire, partir des événements pour aller vers les actions contextuelles).
Les noms de ces stratégies font références à la figure 3.

Stratégie Descendante. Cette stratégie est basée sur le calcul et le suivi des
relations de dépendance causale entre actions contextuelles. Ces relations
sont ensuite utilisées pour calculer les relations de dépendance causale entre
événements contextuels, ainsi qu’entre les événements bruts.

Une implémentation adoptant la stratégie descendante pourrait par exem-
ple se baser sur les méthodes de capture et de rejeu des états du système ou
des objets tel que dans [Ji et al., 2017].

Stratégie Ascendante. Cette stratégie consiste à tirer parti des informations
sémantiques contenues dans les événements bruts pour calculer les événe-
ments contextuels, ainsi que leur relations de dépendance causale. Plus
précisément, cette stratégie permet d’obtenir une approximation du mo-
dèle de dépendance causale. La qualité de cette approximation dépend des
l’information contenue dans les événements bruts.

Stratégie Ascendante : Implémentation Basée sur des COTS

Actuellement, notre implémentation du nouveau modèle de causalité adopte
une stratégie ascendante.

Stratégie de Supervision. Pour cela, nous avons tout d’abord élaboré une
stratégie de supervision permettant le calcul des événements contextuels,
ainsi que des dépendances causales qui les lient, à partir des événements
bruts produits par les sondes déployées. Pour cette implémentation, notre
environnement de test est pour le moment exclusivement composé de sys-
tèmes d’exploitation Linux. Notre stratégie de supervision a la particularité
de se reposer uniquement sur différents types de systèmes de supervision
publiquement disponibles («COTS monitoring systems» en anglais). Plus
précisément, elle se base sur:

1. la supervision des appels système à l’aide d’auditd, l’objectif étant
d’observer les flux d’information entre les objets du Kernel Linux;

xiv résumé substantiel en français

2. la supervision de netfilter, l’objectif étant d’enregistrer les connections
établies pour chacune des machines;

3. la supervision du réseau à l’aide de Zeek NIDS, également connu sous
le nom de Bro NIDS;

4. la supervision d’applications telles que le serveur HTTP Apache.

Calcul du Modèle de Dépendance Causale entre Événements Contextuels.
Ces différents types d’événements permettent de calculer des événements
contextuels, ainsi que les dépendances causales qui lies lient. L’architecture
de notre implémentation permet le calcul de ce graphe d’événements con-
textuels et repose sur une base de données graphe pour le stocker. Une
interface de visualisation permet à un analyste de sécurité d’investiguer des
événements. Cette dernière lui permet notamment de construire les graphes
de cause et de dépendance d’un événement d’intérêt donné.

Une évaluation simple de notre approche nous a permis de montrer que
notre implémentation nous permet déjà d’identifier et de découvrir certaines
étapes d’une attaque multi-étapes.

résumé substantiel en français xv

conclusion

L’objectif des travaux présentés dans ce manuscrit est de permettre à un
analyste de sécurité d’identifier et de retrouver toutes les traces d’une at-
taque à travers l’analyse des événements. Pour cela, nous avons proposé
de définir formellement la notion de dépendance causale entre les objets ac-
tifs, les objets passifs, ainsi que les événements hétérogènes produits par les
différents types de sondes déployées dans le système supervisé.

Inspiré des relations de dépendance causale de Lamport et de d’Ausbourg,
nous avons défini trois nouvelles relations de dépendance causale. Nous
avons commencé par définir la notion d’action contextuelle et la relation
de dépendance causale associée. Ceci nous a permis d’introduire progres-
sivement la notion de dépendance causale entre événements journalisés. À
notre connaissance, nos travaux sont les premiers à proposer une définition
formelle de la relation de dépendance causale entre événements hétérogènes.
Notre idée est la suivante : si nous pouvons identifier et construire les liens
de dépendance causale entre les événements, alors la découverte de scénar-
ios d’attaque se simplifie en une traversée de graphe.

Après avoir présenté le nouveau modèle de dépendance causale que nous
proposons, nous avons décrit comment ce modèle se traduisait dans la réa-
lité, dans le contexte de la supervision des réseaux d’entreprise. Plus précisé-
ment, nous avons décrit deux types de stratégies pour implémenter notre
modèle de causalité : la stratégie descendante et la stratégie ascendante.
À notre connaissance, aucun système ne fournit toutes les notions requi-
ses pour calculer notre modèle. Seules des parties de ces notions sont
disponibles dans une même implémentation donnée.

Notre implémentation adopte la stratégie ascendante. Elle a la particula-
rité de se baser uniquement sur l’analyse d’événements, hétérogènes, issus de
COTS tels que Zeek NIDS et auditd, pour calculer la relation de dépendance
causale entre événements contextuels. L’évaluation de notre implémenta-
tion montre qu’elle permet d’obtenir une bonne approximation de notre
modèle, et de découvrir les différents événements pouvant être considérés
comme les causes ou les conséquences d’un événement d’intérêt.

C O N T E N T S

abstract i

acknowledgements iii

résumé substantiel en français v

contents xviii

introduction 1

1 Computer Systems—Society’s Keystone 1

2 The Need for Security Monitoring 2

3 Retrieving Attackers’ Traces—The Search of Causality 3

4 Contributions . 5

5 Outline . 6

I Context 7

1 system monitoring and computer security 9

1.1 Basic Terminology . 9

1.2 Why is Monitoring Critical?—Enabling Situational Awareness . 16

1.3 Intrusion Detection Systems . 20

1.4 Monitoring Activity at the different Abstraction Layers 22

1.5 Summary . 30

2 alert correlation 31

2.1 Addressing Intrusion Detection Systems’ Limitations 31

2.2 Alert Correlation Definition . 33

2.3 A Focus on Attack Scenario Identification 40

2.4 Alert Correlation’s Challenges and Limitations 45

2.5 Summary . 52

3 causal dependencies—in the search of the holy grail 53

3.1 Causality Primer . 53

3.2 Temporal Causality in Distributed Systems 59

3.3 Information Flow-Based Causality 64

3.4 Provenance Primer . 69

3.5 Summary . 75

II Towards a Unified Causality Model 77

4 defining a causal dependency relationship among hetero-
geneous events 79

4.1 Illustration of the Problematic and Proposed Model 79

4.2 Limitations of Lamport’s and d’Ausbourg’s Relationships . . . 82

xvii

xviii contents

4.3 Causal Dependency among Contextual Actions 83

4.4 From Contextual Actions to Contextual Events and Events . . . 87

4.5 Cause and Dependence Graphs 90

4.6 Summary . 91

5 model implementation 93

5.1 Top-Down and Bottom-Up Perspectives 93

5.2 Top-Down Strategy—Ideal Implementation Description 94

5.3 Bottom-Up Strategy—A Lightweight Approach 98

5.4 VESTA Industrial Project . 115

5.5 Summary . 117

6 assessment 119

6.1 Building Datasets to Assess our Approach 119

6.2 COTS-Based Bottom-Up Approach Assessment 128

6.3 Discussions . 141

6.4 Summary . 146

conclusion 147

a monitoring systems configuration 151

a.1 List of Monitored Linux System Calls 151

a.2 Netfilter Configuration . 154

a.3 Apache Configuration . 154

publications 154

bibliography 155

L I S T O F F I G U R E S

Figure 1 Illustration de la relation de dépendance causale entre
actions contextuelles issues de sessions différentes. . . x

Figure 2 Illustration des graphes de cause et de dépendance
d’une alerte . xii

Figure 3 Schéma récapitulatif des 3 relations de dépendance
causale . xii

Figure 1.1 Illustration of the observation of different abstraction
layers. 14

Figure 1.2 Detail levels of information acquisition according to
the NSM tool used. 24

Figure 2.1 Alert correlation functional architecture. 34

Figure 2.2 Attack scenario identification taxonomy. 40

Figure 3.1 Space-time diagram of a distributed computation made
up of three processes. 61

Figure 3.2 Causal histories of a distributed computation made
up of three processes. 62

Figure 3.3 Example of a linear time system. 63

Figure 3.4 Example of a vector clocks system. 63

Figure 4.1 SQL injection attack scenario on a vulnerable web server. 80

Figure 4.2 Visualization of events, alerts, and information flows
on a space-time diagram. 81

Figure 4.3 Sequence of contextual actions and sessions. 85

Figure 4.4 Contextual action causal dependency in different ses-
sions. 86

Figure 4.5 Rendez-vous between two threads. 87

Figure 4.6 Illustrative summary of the three relationships we de-
fined. 89

Figure 4.7 Cause and dependence graphs of an event of interest. . 90

Figure 4.8 Event cause and dependence graphs of the NIDS alert. 91

Figure 5.1 Illustration of a causal dependency tracking system. . . 98

Figure 5.2 Overview of the architecture of our implementation. . 100

Figure 5.3 Illustration of the ETL pipelines architecture. 101

Figure 5.4 Visualization interface for contextual event causal de-
pendency graph analysis. 104

Figure 5.5 Apache application contextual event computed from
access.log. 106

Figure 5.6 Message exchange between two applications. 107

Figure 5.7 Bottom-up strategy rationale for system call events. . . 108

Figure 5.8 System call contextual events computed from audit logs.110

Figure 5.9 Network-related contextual events computed from net-
filter and Zeek NIDS logs. 112

Figure 5.10 Message exchange among network objects. 113

Figure 6.1 Network architecture of our test environment. 124

xix

xx List of Figures

Figure 6.2 Relevant parts of the event cause graph of the SQLi
attack scenario. 131

Figure 6.3 Event dependence graph of the beginning of the Shell-
Shock and RAT attack scenario. 133

Figure 6.4 Event dependence graph of the execution of the Shell-
Shock payload. 134

Figure 6.5 Event dependence graph of the domain name resolu-
tion of the RAT. 135

Figure 6.6 Event dependence graph of the IRC communications
of the RAT. 136

L I S T O F TA B L E S

Table 1 Key figures of the SQL injection attack scenario 130

Table 2 Key figures of the ShellShock and RAT attack scenario 132

Table 3 Average event handling rate in seconds of transform
components . 140

xxi

I N T R O D U C T I O N

1 computer systems—society’s keystone

The range of application of computer systems goes from everyday life
technologies, such as phones, to large information systems of business and
state organizations. Regarding information, data has become the new dig-
ital gold as more and more aspects of organizations have been digitalized.
Regarding industries, such as electric power, water treatment, and supply
industries, information technologies provide stakeholders, engineers, and
operators with remote access to their industrial plants. These few examples
illustrate how critical computer systems are in our Society. They represent
a significant means for data theft, industrial spying, and sabotage. The con-
sequences of such attacks range from reputational aspects to economic and
human loss. The Cost of a Data Breach Report, conducted each year by the
Ponemon Institute, stated that the average total cost of a data breach was
3.92M dollars in 2019. Their study concerned 507 organizations, which suf-
fered from a data breach, in 16 countries, and across 17 industry sectors.
Additionally, the Verizon Data Breach Investigations Report reported 2,013

confirmed data breaches for the year 2019. Securing computer systems has
become mandatory. In order to achieve this goal, prevention mechanisms
such as firewalls, encryption, and access control, have been designed.

You Will Be Breached... Unfortunately, the frightening number of data
breaches reported each year leads us to the following observation: a persistent
attacker will eventually succeed in gaining a foothold inside the targeted net-
work despite all the prevention mechanisms. To achieve their goals, it is gen-
erally necessary for attackers to perform several consecutive actions. Such
attacks are known as multi-step attacks and can potentially remain undetected
because each step can typically be considered normal until the ultimate in-
trusion objective is achieved. A typical attacker usually succeeds in gaining a
foothold inside the target system using social engineering techniques, such
as phishing email, watering hole, or Trojan software. Then, he maintains
his foothold through the deployment of command and control channels, ex-
plores the network, and attempts to advance his opportunities by exploiting
vulnerabilities or stealing passwords. The final stage, i.e., the attack objec-
tive, often consists of sensitive data leakage or sabotage [Hutchins et al.,
2011]. Hence, detecting any stages of the attack and responding to the intru-
sion has become a priority.

2 introduction

2 the need for security monitoring

Towards Situational Awareness. Our research aims at helping security teams
to comprehend an attack, ascertain its root causes, and identify all the com-
promised assets to ascertain its impacts. To do so, we focused our research
on the security monitoring research field, i.e., the ability to monitor it, with a
computer security point of view, in order to detect and respond to intrusions.
Security monitoring is mandatory to enable the observation, recording, and
detection of abnormal behaviors that would ideally correspond to attackers’
actions. Produced records, also called traces or events, can be analyzed by
the security team in order to satisfy their mission. Security monitoring’s
goal is to enable the three phases of situational awareness [Liu et al., 2017]:
(1) Perception of the dynamics of relevant elements within the networks; (2)
Comprehension of the situation, i.e., “how analysts combine, correlate, and
interpret information;” (3) Projection, i.e., “the ability to make predictions
based on the knowledge acquired through perception and comprehension.”
Situational awareness allows security monitoring teams to answers key ques-
tions when attacks are launched against their monitored system:
• What has happened to the monitored system? Or, in other words, what

has the attacker done?
• What is the impact (damage and system’s mission impact assessment)?
• Why did it happen? For instance, the security monitoring team should

be able to identify the exploited vulnerability.
Answering these questions allows the security monitoring team to plan the
response to the attack.

Alerting When Suspicious Behaviors are Observed. In practice, most of the
time, the team in charge of security monitoring exclusively deploys the se-
curity monitoring’s spearheads to gain situational awareness, namely, Intru-
sion Detection Systems (IDS). IDSs trigger alerts when suspicious behaviors
are observed. Ideally, these alerts would be symptomatic of malicious activ-
ities. However, an IDS frequently relies on the analysis of a single type of
data source. A network-based IDS (NIDS) relies on network packet analysis,
whereas host-based IDS (HIDS) solutions may monitor a given application
or the system’s access control policy. Moreover, an alert rarely explains the
context of the detected attack; hence, the correctness of an alert must be
investigated. Indeed, even if an alert is a consequence of an attack step, it
only indicates a small portion of the overall related attack. The attack may
also contain footprints that are not sufficiently suspicious to trigger an alert.
Such footprints might even appear benign and legitimate in the system at
first. Accordingly, analysts have to verify and contextualize an alert by man-
ual techniques to determine whether or not it is related to a step of an attack
scenario. Another issue when solely analyzing a single type of data source is
that a threat might be impossible to discover without merging information
coming from different origins [Bass, 2000][Abad et al., 2003].

The Need to Correlate Alerts to other Sources of Information. The discovery
of correlations among different sources of information is the key to identify
the steps composing an attack scenario [Valeur et al., 2004]. Therefore, IDS

3 retrieving attackers’ traces—the search of causality 3

alerts have to be correlated to contextual information, other alerts, and other
types of events produced by complementary monitoring systems. We argue
that a holistic security monitoring strategy consequently relies on different
types of monitoring systems in order to complement IDSs’ coverage and be
able to thwart any action performed by attackers. More specifically, these
techniques can be leveraged at the different abstraction layers of the moni-
tored system (e.g., the application, operating system, and network abstrac-
tion layers) according to the security team’s monitoring strategy. Naturally,
the events produced by these techniques in these different abstraction lay-
ers are heterogeneous. More specifically, their semantics, their formats, and
the quantity of information they conveyed vary and complement each other.
Ideally, these events would contain all the information needed to perform at-
tack investigation or digital forensics tasks. In fact, every single instance of
events produced by monitoring systems may contain valuable information
in order to comprehend better an ongoing attack or intrusion.

Writing Explicit Correlation Rules is Hard. The typical approach to corre-
late events and alerts is to rely on a base of correlation rules that explicitly
describe the sequences or set of events and alerts that are parts of the conse-
quence of attacks inside the monitored system [Eckmann et al., 2002][Totel
et al., 2004][Goubault-Larrecq & Olivain, 2008]. Security Information and
Event Management (SIEM) tools have adopted this technique for years in
[Nicolett & Kavanagh, 2011]. However, the formulation of correlation rules
can be considerably tricky because it requires the merging of the defender’s
and the attacker’s perspectives. More specifically, it respectively requires
having a precise knowledge of the monitored system (i.e., its topology and
cartography) and deployed IDSs [Godefroy et al., 2015a], as well as the cre-
ativity to imagine possible attack scenarios.

The Necessity for Novel Approaches. The approach mentioned above has
reached its limits, and new methods must be defined to automatically dis-
cover the relationships among traces related to the same attack. Such meth-
ods and related tools would enable them to discern the attack and imple-
ment actions to avert similar scenarios in the future; in other words, detect,
respond to, and report on intrusions.

3 retrieving attackers’ traces—the search of
causality

Following the lead of alert and event correlation research and the quest
for novel approaches, the study of the concept of correlation has naturally
brought us to study the concept of causality. We argue that in order to
infer the root causes and the overall scenario of an attack, alert and event
diagnosis rely on causal reasoning.

From Causal Chains of Actions to Causal Chains of Events. A multi-step at-
tack tends to follow a logical progression of actions. We argue that this cor-

4 introduction

responds to cause–effect relationships among the attacker’s actions. Thus,
the detection and discovery of multi-step attacks would ideally highlight
the causal chains of actions performed by the attacker. Recorded events
that relate to these actions are the direct consequence of these same actions:
they correspond to their observation. Consequently, the cause–effect rela-
tionships among the attacker’s actions can be translated into causal depen-
dency relationships among the corresponding events. An event can then be
seen as the natural consequence of the previous one.

Causal Dependency Graph of Events—The Holy Grail. The concept of causal
dependency among events is particularly interesting regarding our research
field. Indeed, the goal of comprehending an attack, as well as its root causes
and impact, translates to computing the set of events that causally depend
on and the set of events that are causal consequences of a given suspicious
event related to this attack. In other words, if causal dependency relation-
ships among events can be defined and computed, the discovery of attack
scenarios translates to simple graph traversals, where graphs correspond to
causal dependency graphs with events as nodes and causal dependency re-
lationships as directed edges.

The Lack of a Definition of the Causal Dependency Relationship among Events
in the Literature. Previous alert and event correlation work aim at building
connections among events and between attack steps. In practice, the rela-
tionship among events is not trivial to define and discover, especially when
considering heterogeneous events. We noticed that the literature lacks a for-
mal definition of these connections. We argue that the relationship definition
our research community is looking for corresponds to a causal dependency
relationship among events.

Causal Dependencies Computation is Hard. Computing causal dependency
among events is a difficult task and has been studied for years, especially
in distributed systems [Schwarz & Mattern, 1994]. Several methods have
been introduced in order to discover causal relationships among the actions
of distributed processes in these types of systems. Regarding security, pre-
cise definitions have also been introduced to reflect object state causal de-
pendencies [d’Ausbourg, 1994]. Object state causal dependencies are well-
illustrated by methods that track information flows between the subjects
and objects of an operating system (OS). Indeed, if an information flow be-
tween two objects is observed, it can be said that their states are causally
linked. Recently, we could observe that a considerable amount of work has
been focused on causal dependency inference but not on explicit causal de-
pendency computations. Such an inference is performed by attempting to
identify links [Kwon et al., 2018] among events, mining data to discover pat-
terns (such as temporal invariant properties) [Beschastnikh et al., 2011], or by
computing a measure of similarity among event attributes. In practice, with
these types of approaches, the events are expected to be causally dependent
when they are tightly linked.

The main difficulty in finding causal dependencies among heterogeneous
events is that it aims to merge different points of view: an application em-

4 contributions 5

beds the business logic, whereas an OS only identifies requests from user
space applications through system calls. Additionally, network packet anal-
ysis and alert production, either from NIDS or HIDS, are challenging to rec-
oncile. These examples illustrate the semantic gaps among different layers
of abstraction and different data sources.

4 contributions

The work presented in this manuscript focuses on the computation of
correlations among heterogeneous events to help information security pro-
fessionals perform attack investigation, and discover their causes and conse-
quences.

Reviewing the literature in order to study our research field in-depth, we
came up with a comprehensive state of the art covering the security moni-
toring research field, i.e., the study of monitoring systems, alert and event
correlation and causal dependency computation. Parts of this reviewing
work has been leveraged to publish a short paper at the 4th Rendez-Vous de
la Recherche et de l’Enseignement de la Sécurité des Systèmes d’Information (RESSI
2018) [Xosanavongsa et al., 2018].

Towards a Formal Definition of the Causal Dependency Relationship among
Heterogeneous Events

In order to address the problem of computing correlations among hetero-
geneous events, we propose a formal definition of the causal dependency
relationships among events emanating from heterogeneous monitoring sys-
tems (i.e., monitoring systems deployed at different abstraction layers of the
monitored system). More specifically, we define three new relationships
based on the merging of two previously defined causality models from the
distributed system and the security research areas, i.e., Lamport’s [Lamport,
1978] and d’Ausbourg’s [d’Ausbourg, 1994] models, namely, the contextual
action causal dependency, the contextual event causal dependency, and the event
causal dependency relationships. These relationships enable the discovery of
all events, which can be considered as the cause (in the past) or the effect (in
the future) of an event of interest (e.g., an alert, or an indicator of compro-
mise, produced by an attacker action).

To the best of our knowledge, our work is the first one to propose a def-
inition of the causal dependency relationship among heterogeneous events.
It contributes to the formalization of our research field: the discovery and
investigation of multi-step attacks through causality analysis.

The formal definition we propose would ideally unify prior work on
causal dependency relationships among heterogeneous events, i.e., events
emanating from different abstraction layers (e.g., network, operating system,
application). The three relationships we define provide a unified understand-
ing of the causality relationships that can be defined between active entities,
passive entities, and events.

6 introduction

This work has been presented at the 4th IEEE European Symposium on
Security and Privacy (EuroS&P 2019) [Xosanavongsa et al., 2019a], as well
as at the 5th Rendez-Vous de la Recherche et de l’Enseignement de la Sécurité des
Systèmes d’Information (RESSI 2019) [Xosanavongsa et al., 2019b]. These two
papers, as well as this manuscript, present how actual work allows for the
computation of parts of the overall model. They also present an implemen-
tation of our model that exclusively leverages existing monitoring facilities
(i.e., auditd, netfilter, application logging systems, and Zeek NIDS) to pro-
duce events. We show that our implementation already yields a good ap-
proximation of our model.

5 outline

This manuscript is divided into two parts. The first part, consisting of
Chapter 1, 2, and 3, introduces the reader to our research context and its
state of the art. Chapter 1 aims to define the main terms that will be used
throughout the rest of the manuscript, i.e., multi-steps attacks, cyber defense
analysts, events, and alerts. Then, it presents the different means to observe
the monitored system and produce events. Chapter 2 introduces the reader
to the current methodologies to reason about alerts and events. It details
the alert correlation process, the different methodologies proposed to detect
or discover multi-step attacks, and alert correlation’s challenges and limita-
tions. More specifically, alert and event correlation work aims at building
connections among events and between attack steps. We argue that these
connections ideally correspond to causal dependency relationships. Our re-
search, therefore, led us to the study of causal dependency relationships
computation. This is presented in Chapter 3. It focuses on the concept of
causal dependency relationships among active entities, passive entities, and
events. More specifically, it presents the two models our work is inspired
from, namely, Lamport’s happened-before relationship [Lamport, 1978] and
d’Ausbourg’s causal dependency relationship [d’Ausbourg, 1994].

The second part of the manuscript, consisting of Chapter 4, 5 and 6, details
our contribution. Based on the observation that the definition of the relation-
ship among events is lacking, we introduce a clear definition of this relation-
ship called event causal dependency in Chapter 4. This relationship is grad-
ually introduced, starting from the definition of the contextual action causal
dependency and the contextual event causal dependency relationships. Chapter 5

introduces how existing implementations allow the computation of parts of
the model, as well as our implementation of the event causal dependency
relationship. An assessment of our implementation is done in Chapter 6. It
demonstrates how the proposed model is useful to avert real attack cases in
distributed environments.

Finally, the last chapter gives a conclusion and future perspectives.

Part I

Context

7

1 S Y S T E M M O N I TO R I N G A N D
C O M P U T E R S E C U R I T Y

The first chapter of this manuscript lays down the foundational concepts
surrounding security monitoring. Section 1.1 starts by defining intrusions
and multi-step attacks, presents who the actors that defend organizations
are, and introduces the notions of actions, events, and monitoring. Sec-
tion 1.2 presents why monitoring is critical in the context of security mon-
itoring. Then, Section 1.3 introduces the reader to the security monitoring
spearheads: intrusion detection systems. Finally, Section 1.4 illustrates the
different means to observe the monitored system at its different abstraction
layers.

1.1 basic terminology

This section aims to define the main terms that will be used throughout
the rest of the manuscript. Following the introduction, it will present in
more detail what has been previously introduced: what an intrusion is; the
notions of single-step and multi-step attacks; who the actors that defend
organizations are; the basic concepts of actions, events, and traces; and mon-
itoring.

1.1.1 Defining Multi-Step Attacks

So far, we have mentioned attacks and multi-step attacks without defining
them. The following paragraph starts by defining what an attack is as well
as its surrounding notions.

What is an Attack?—CIA Triad, Security Policy Violation, and Intrusions

To define what an attack is, we have to go back to foundational security
properties, namely, confidentiality, integrity, and availability. Protecting and
securing the information resources of an organization consists in elaborating
a security policy that will ensure the requirements of the CIA triad [CISSP
et al., 2003]:

confidentiality “The protection of information within systems so that
unauthorized people, resources, and processes cannot access that in-
formation.”

integrity “The protection of system information or processes from inten-
tional or accidental unauthorized changes.”

availability “The assurance that a computer system is accessible by autho-
rized users whenever needed.”

10 system monitoring and computer security

Based on the CIA triad, we can now define what an intrusion is:

Definition 1.1 - Intrusion: Any action or set of actions that attempt to compro-
mise one of these three properties.

According to ISO/IEC 27001 standard1, an attack is defined as an “attempt
to destroy, expose, alter, disable, steal or gain unauthorized access to or make
unauthorized use of an asset.” In fact, we can simply define an attack as an
intrusion attempt [Heady et al., 1990].

Defining Single-Step Attacks

As its name suggests, a multi-step attack is made up of several attack
steps, which correspond to single-step attacks. The events generated by the
different kinds of deployed monitoring systems generally correspond to in-
dividual malicious actions [Navarro et al., 2018]. These individual actions
are also called single-step attacks. Some attacks, which involve several ac-
tions, can be considered as elementary attacks. For example, a distributed
denial-of-service attack corresponds to an elementary attack, even though
it corresponds to a distributed attack where several machines attack a sin-
gle one at the same time. Another example of an elementary attack that
involves several actions is network scanning, where a single machine probes
many others. All the alerts raised by IDSs represent symptoms of potential
single-step attacks. Thus, some work is still needed to understand attacks in
their entirety.

An Attack is Generally Made of Several Attack Steps

Considering the context of organizations, an attacker has to perform sev-
eral actions to reach critical assets. Indeed, one single-step attack is very
unlikely to be enough to complete an intrusion successfully. Moreover, de-
composing an attack in several steps allows an attacker to be more stealthy
as they can spread their actions across time. Also, he will likely need to
leverage several hosts, using exploits or stolen credentials, for instance, to
attain their goal. Actions performed by an attacker are thereby scattered
across several hosts and the network. Such sophisticated attacks correspond
to multi-step attacks, i.e., sequences of single-step attacks. They have also
been denoted multi-stage [Chen et al., 2006] [Du et al., 2010], attack plans [Qin
& Lee, 2004a], attack strategies [Huang et al., 1999] or attack scenarios [Ning
et al., 2002] [Mathew & Upadhyaya, 2009] in the literature.

Causal Chains of Actions. To be able to perform a single-step attack, and
ultimately achieve a multi-step attack, an attacker might need to perform
various actions on the system to set it up in the right state, e.g., perform-
ing privilege escalation before uploading and executing malicious pieces of
code. Some of these actions might be linked by a cause–consequence rela-
tionship, thereby forming a causal chain of actions. However, highlighting
these relationships is a hard task. Ideally, the detection and discovery of
multi-step attacks would highlight the causal chains of actions performed
by the attacker.

1 https://www.iso.org/isoiec-27001-information-security.html

https://www.iso.org/isoiec-27001-information-security.html

1.1 basic terminology 11

Modeling Multi-Step Attacks. Several models and frameworks have been
proposed to model multi-step attacks. The ATT&CK knowledge database2

created by the MITRE corporation is an example of such a framework. Single-
step attacks are categorized by attack stages, e.g., initial access, lateral move-
ment, or ex-filtration. Moreover, the framework provides the projection of
some single-step attacks on logs. This information allows system adminis-
trators to be aware of the logging systems to enable and log files to monitor.
Other attack models have also been developed to enhance their understand-
ing or perform a better risk assessment. Attack trees [Kordy et al., 2014]
and attack graphs [Sheyner et al., 2002] are examples of such attack models.
These graph-based approaches allow quantitative and qualitative analyses of
attack scenarios and allow cyber defense analysts to visualize them. As its
name suggests, an attack tree models a threat as a tree, where the root node
specifies an attacker’s primary goal. It is then repeatedly and recursively
refined into sub-goals. This refinement is done either disjunctively (i.e., the
goal can be achieved in different and alternative ways), or conjunctively (i.e.,
all the branches, which correspond to attacker’s steps, need to be taken to
achieve the goal). The attack tree’s leafs represent basic actions, i.e., atomic
actions that can be easily understood and quantified [Qin & Lee, 2004a].

Attack graphs represent another popular security research field. Kordy et
al. defined it clearly in their survey on graph-based attack and defense mod-
eling [Kordy et al., 2014]: “The nodes of an attack graph represent possible
states of a system during the attack. The edges correspond to changes of
states due to an attacker’s actions. An attack graph is generated automat-
ically based on three types of inputs: attack templates (generic representa-
tions of attacks including required conditions), a detailed description of the
system to be attacked (topology, configurations of components, etc.), and the
attacker’s profile (his capability, his tools, etc.).”

Such attack models can, in turn, be used as input for alert and event cor-
relation techniques. More details will be presented in the following chapter.

1.1.2 Defenders—The Security Monitoring Team

We have seen that organizations’ computer systems are threatened in sev-
eral ways. To protect organizations’ computer systems and detect any intru-
sion attempt, computer systems have to be audited on a regular basis. To do
so, organizations have to hire dedicated information security professionals
to protect and defend their assets.

Many different roles are needed to elaborate and maintain an organiza-
tion’s security policy. However, regarding our research context and goal, i.e.,
helping analysts to comprehend an attack, we are mainly interested in se-
curity monitoring-related roles. Based on the terminology proposed in the
NICE framework developed by the NIST [Newhouse et al., 2017] and the one
proposed by the French National Cybersecurity Agency (ANSSI) [ANSSI,
2015], the roles we are interested in are the following:

cyber defense analyst - “uses data collected from a variety of cyber
defense tools (e.g., IDS alerts, firewalls, network traffic logs.) to an-

2 https://attack.mitre.org

https://attack.mitre.org

12 system monitoring and computer security

alyze events that occur within their environments for the purposes
of mitigating threats.” According to the ANSSI’s terminology, cyber
defense analysts also contribute to the deployment strategy of the se-
curity monitoring systems.

cyber defense forensics analyst - “analyzes digital evidence and in-
vestigates computer security incidents to derive useful information in
support of system/network vulnerability mitigation.” According to
the ANSSI’s terminology, cyber defense forensics analysts also formu-
late recommendations for detection capacities.

To perform their job, i.e., investigating attacks, these roles rely on “col-
lected data” and “digital evidence.” More specifically, they leverage traces,
events, and alerts produced by the deployed security monitoring systems.
Section 1.1.3 details these notions.

1.1.3 Actions, Events and Heterogeneity

Several standards on logging and monitoring have been written to make
the industrial and research converge towards the same definitions [European
Commission, 2010] [Chuvakin et al., 2008].

Defining Action

According to Oxford’s English dictionary, an action is defined as “the fact
or process of doing something, typically to achieve an aim.” Following this
definition, we can consider that any activity performed by a computing sys-
tem can be described as sequences of actions, with an action being the exe-
cution of an instruction or a function, for example. Thus, when a user, or
an other system, interacts with a given system, the system performs several
actions to satisfy the request. Therefore, an attack step is represented by a
set of actions performed by the system.

Defining Event and Log

Several standards describe what an event is, e.g., the MITRE Corpora-
tion’s Common Event Expression (CEE) whitepaper [Chuvakin et al., 2008]
or the European Commission’s standard on logging and monitoring [Euro-
pean Commission, 2010]. Based on the definition proposed by the European
Commission’s standard, we define an event as the following.

Definition 1.2 - Event: The observation and recording, by a monitoring system,
of one or several identifiable actions happening on a monitored system. An event is
recorded in a log, a log being a collection of events.

Actions can be observed and recorded by one or several monitoring sys-
tems. Produced records correspond to events. Additionally, actions can be
performed by a system at different abstraction levels, e.g., network, oper-
ating system, or application level. Different types of monitoring systems
enable the observation of specific actions at these levels. Consequently, pro-
duced events are heterogeneous, either regarding their semantics, their for-
mats, or encoding.

1.1 basic terminology 13

Defining Trace

Additionally to actions and events, the term trace will also be used through-
out this manuscript. It englobes all the indications (e.g., events, alerts, or
network packets) of the activity of a given subject (e.g., a process, a CPU,
or an attacker). Thus, the terms attacker’s traces refer to the projection of
the attacker’s actions on the logs, i.e., all the events that correspond to the
attacker’s actions on the monitored system.

1.1.4 Defining Monitoring

Section 1.1.4 presents in more detail the concept of monitoring. After
defining it, it starts by introducing the reader to the concept of abstraction
layers and presents its relationship with monitoring. It then illustrates the
fact that monitoring systems can be either active or passive.

According to the European Commission’s standard [European Commis-
sion, 2010], monitoring is defined as follows.

Definition 1.3 - Monitoring: “The process of pro-actively checking systems for
information security incidents, normally by checking log messages or periodically
verifying that the system is responding.”

As it is, this definition is clearly oriented towards computer security. Natu-
rally, in monitoring systems have to be deployed to monitor a given system.

Observing the System at Different Abstraction Layers

Computers and Abstraction Layers. Abstraction is a fundamental concept of
computer science. Indeed, to arrange the complexity of computer systems,
software engineering and computer science build them as layered architec-
tures, each layer being an abstraction level that hides the complexity and
working details of the lower ones. This technique allows studying each
abstraction layer separately and building them independently while using
interfaces to make them co-operate.

An Illustration of the Observation of Different Abstraction Layers. To illus-
trate the layers of abstraction and the ability to observe their activities, let’s
consider the simple example of a software application running on a single
machine (corresponding to the “Monitored System” in Figure 1.1).

At the application abstraction layer, the application performs high-level
tasks that embed the business logic. These tasks can be observed and re-
corded. For instance, the users’ actions can be logged when performing
significant tasks. Developers can use log printing statements (denoted “LPS”
in Figure 1.1) to record them. Going one layer deeper, all of the processes
running on the machine are handled by the OS. To interact with other pro-
cesses or with resources such as the file system or the networking subsystem,
the application sends requests to the OS. Thus, the application layer commu-
nicates with the OS abstraction layer through the system call application
programming interface (API). System call invocations, which represent re-
quests such as accessing a file, can be observed and recorded by leveraging

14 system monitoring and computer security

Monitored
System

Application

Operating System

HardwareNetwork

Abstraction
Layers

LPS

System Call
Monitor

Processor
Tracing System

Network
Sniffer

Observation Means
Examples

Figure 1.1: Illustration of the observation of different abstraction layers.

existing kernel modules (denoted “System Call Monitor” in Figure 1.1). Go-
ing one layer deeper, every piece of software is running on the hardware.
The OS abstraction layer communicates with the hardware abstraction layer
through drivers. Processes can be seen as a sequence of instructions, which
can also be considered as actions, executed by the processor. Executed in-
structions and processor states can be traced using existing hardware facili-
ties (denoted “Processor Tracing System” in Figure 1.1). Finally, going one
layer deeper, our computer communicates with other ones by sending and
receiving packets. Of course, this can also be observed and recorded using
network sniffing technology (denoted “Network Sniffer” in Figure 1.1).

There is thereby a tight bond between observations, i.e., events, and ac-
tions occurring in the monitored system. An action performed can be ob-
served and recorded by various monitoring systems at different abstraction
layers. Moreover, actions performed at a given abstraction layer might pro-
voke actions in other layers.

Monitoring Different Abstraction Layers is Critical. Regarding the context of
computer security, an attack can be potentially observed at different abstrac-
tion layers. Depending on the problem to solve or the questions to answer,
e.g., debugging or attack investigation, several abstraction layers might need
to be observed at the same time to understand one or several attack steps.
In other words, several sources of information have to be correlated [Valeur
et al., 2004].

Merging information coming from different origins can actually enable
the discovery of threats that would be impossible to discover otherwise, i.e.,
by analyzing only a single source of information [Navarro et al., 2018]. For
instance, in [Abad et al., 2003], Abad et al. illustrate a case where an attack
is not detected by their system call-based anomaly-based IDS alone as the
related OS activity is not deemed statistically significant. However, the net-
work activity corresponding to the related sequence of system calls shows
an unusual amount of traffic. Combining these two data sources allow the
identification of the attack.

1.1 basic terminology 15

Active and Passive Monitoring Systems

Additionally to the fact that monitoring systems can observe and record
actions at different abstraction layers of the monitored system, they can be
classified into two categories: passive and active.

Passive Monitoring Systems. Passive monitoring systems produce events
either: (1) by observing the system’s activity as it is and recording it, e.g., a
network sniffer that performs full packet capture; or (2) through the execu-
tion of log printing statements (LPS) when logging systems are enabled. The
following paragraphs present in more detail the latter class of passive moni-
toring systems, namely, logging systems, as well as another class of passive
monitoring systems, called tracing systems.

Logging Systems. Computer systems and networks consist of devices and
software components which generally have logging systems. Logging sys-
tems generally record system states, significant actions, or any useful infor-
mation to enable analyses such as system status understanding, root cause
determination, debugging when problems arise, and attack investigation.

A logging system produces an event when the related running process exe-
cutes a log printing statement in its code. LPSs are generally placed manu-
ally at various critical places in the code to convey meaningful information.
To do so, developers often rely on logging frameworks or libraries such as
Log4J for Java-based applications and the logging library for Python-based
applications.

Depending on the system, application, or device to monitor, different
types of information can be conveyed into events. A network device will
likely record network-related, whereas an OS Kernel will record its internal
states.

Logging systems can also be configured according to the needs of the team
who analyze logs. For instance, developers can configure, at the application
level, the logging system they develop to produce debug log messages. In
the context of the previous Python code example, debug messages were not
produced as the logger has been configured to the info level. Here are a few
logging system-related event categories described in Dr. Anton Chuvakin’s
book “Logging and Log Management” [Chuvakin et al., 2012]:

informational “Messages of this type are designed to let users and ad-
ministrators know that something benign has occurred.” For instance,
a server can log every command an administrator executed;

debug “Debug messages are generally generated from software systems
to help software developers troubleshoot and identify problems with
running application code;”

warning “Warning messages are concerned with situations where things
may be missing or needed for a system, but the absence of which will
not impact system operation;”

error “Error log messages are used to relay errors that occur at various
levels in a computer system. Unfortunately, many error messages only

16 system monitoring and computer security

give you a starting point as to why they occurred. Further investigation
is often required to get at the root cause of the error;”

These categories illustrate the fact that log messages can be leveraged for
various purposes.

Tracing Systems. Following the definition of the term trace (defined in Sec-
tion 1.1.3), tracing corresponds to the recording of every action performed by
a software, e.g., an operating system or a specific application. Tracing can be
achieved either using LPSs in the source code of programs or by leveraging
specific monitoring systems. Information provided by tracing is much more
fine-grained than simple informational logging. However, tracing generates
a lot of information in a short period. It is thereby only enabled in special
cases such as debugging.

Active Monitoring Systems. Contrary to passive monitoring systems, active
monitoring systems analyze the activity they monitor to possibly produce
higher semantics events. For example, activity analysis might be pattern
detection, metrics computation, or metrics visualization. Intrusion detection
systems and event monitoring systems fall into this category of monitoring
systems.

Section 1.1 introduced the reader to basic terms that will be used through-
out this manuscript, from attack-related terms such as multi-step attacks to
defender-related terms such as events and monitoring. The following sec-
tion presents why monitoring is critical, especially regarding the security
monitoring context.

1.2 why is monitoring critical?—enabling situa-
tional awareness

The previous paragraph illustrates the fact that monitoring techniques can
be leveraged at the different abstraction layers of the system and for its var-
ious components. They thereby enable the observation and a better under-
standing of what is happening on the monitored system.

In practice, logs, and the data they contain, are often the only information
available for attack investigation, digital forensics or, postmortem debug-
ging of production systems failures.

The following paragraphs illustrate why monitoring is considered as crit-
ical. More specifically, it is considered as: the main debugging method;
an important means to perform intrusion detection, attack detection, and
investigation; and a key component of compliance programs regarding orga-
nizations’ security processes.

1.2 why is monitoring critical?—enabling situational awareness 17

1.2.1 The Main Debugging Method

As the documentation of Log4J3 highlights, debuggers might not always
be available nor applicable, especially for multi-threaded or distributed ap-
plications. Thus, inserting log printing statements (LPSs) into code is gener-
ally considered as the main debugging method. That is why the questions
of where to log, e.g., the placement of LPSs in the source code, and what to
log, e.g., the information conveyed in the printing statement, are critical.

Despite appearances, logging is not simple. As the authors of “Learning
to Log” [Zhu et al., 2015] emphasize: (1) logging too little might prevent the
recording of key runtime information for postmortem analysis; (2) logging
too much might produce “trivial and/or useless logs that eventually mask
the truly important information, thus making it difficult to locate the real
issue.” Placing LPSs also means more code to write and maintain. Of course,
they impact the system performance by consuming additional resources, e.g.,
CPU and I/O.

Most research work focuses on automating what to log [Yuan et al., 2012]
[Yuan et al., 2012]. Fewer approaches propose methodologies for automatic
log printing statements placement [Zhao et al., 2017]. These families of
methodologies allow system developers to better capture their intent, the
information, and events of interest.

1.2.2 Detecting Intrusions

From a security perspective, monitoring systems make up for prevention
mechanisms. In fact, a persistent attacker will eventually succeed in gaining
a foothold inside the targeted network despite all prevention mechanisms.
The security monitoring team has thereby to deploy various monitoring sys-
tems at critical places to develop situational awareness, as defined in the
introduction of this manuscript, of the system to protect. Such deployment
would ideally enable cyber defense analysts to detect, investigate, and re-
spond to incidents.

To detect potential security incidents, the monitored system has to be pro-
actively analyzed. Therefore, security monitoring teams have to deploy spe-
cific active monitoring systems, as defined in Section 1.1.4, called Intrusion
Detection Systems (IDSs). This class of monitoring systems is presented in
more detail in Section 1.3.

In practice, enabling situational awareness is hard. The security moni-
toring methodologies currently applied are not efficient enough to perform
effective detection and investigation of attacks. The launching of the Trans-
parent Computing program, by the Defense Advanced Research Projects
Agency (DARPA), in 2014, illustrates well this issue [Defense Advanced Re-
search Projects Agency, 2014]. Considering the observation that “modern
computing systems act as black boxes in that they accept inputs and gen-
erate outputs but provide little to no visibility of their internal workings,”
the program aims to respond to the lack of visibility in monitored systems
and to counter the rise of complex multi-step attacks. More specifically, it

3 https://logging.apache.org/

https://logging.apache.org/

18 system monitoring and computer security

aims to build enterprise-scale monitoring systems that highlight and record
interactions and causal dependencies among system components to perform
root cause analysis and damage assessment in the context of an attack. The
fact that this program is still ongoing in 2019 shows that security monitoring
remains an active research field in computer security.

1.2.3 Attack Investigation in the Context of Security Monitoring

Attack investigation often relies on log analysis to retrieve the attackers’
traces and understand their context. For instance, security monitoring teams
generally enable logging on their firewall and their web proxy to record
connections and HTTP requests. However, other logging systems are often
overlooked and ignored in the enterprise environment, especially regarding
security-related log data [Australian Cyber Security Center, 2019].

Several projects and recommendations have been launched and proposed
to counter this tendency. The following paragraphs present the event collec-
tion guidelines proposed by different Cybersecurity-related organizations,
namely, OWASP, ANSSI, ACSC, JPCERT, and EUCERT.

OWASP Security Logging Framework. In 2014, the Open Web Application
Security Project’s (OWASP) Security Logging Framework was born out of
the need for web applications to have the capacity to produce security-
related events [OWASP, 2014]. The idea behind the project was to enhance
events’ context to be able to answer the questions: who, what, where, and
when? Answering these questions allows a cyber defense analyst to get all
the information needed to understand an attack, as well as its context, and
respond to the incident. More specifically, given a suspicious event, they
allow him to identify which user performed the related suspicious action
(who and what), on which machine the action was performed (where), and
the time it was performed (when).

ANSSI’s Security Recommendations for Logging Systems Implementation. In
2013, the ANSSI released its recommendations for logging systems implemen-
tation [ANSSI, 2013]. It emphasizes on the fact that any logging system is
indispensable for an information system’s security, and is complementary
to prevention systems. More specifically, ANSSI’s recommendations do not
detail what to log for specific devices, operating systems, or software. In-
stead, it focuses on the best practices for security-oriented logging. For in-
stance, logging systems’ clocks have to be synchronized, storage size for
logs have to be estimated, logs have to be automatically exported to dedi-
cated servers, used protocol for logs exportation should be based on TCP
and cryptographic mechanisms. The fact that the French National Cyberse-
curity Agency did these recommendations clearly illustrates the importance
of logging regarding Cybersecurity.

ACSC’s Logging Configuration Guidelines for Windows. Based on the obser-
vation that the lack of visibility of activity occurring on workstations and
servers is a common problem in organizations, the Australian Cyber Secu-

1.2 why is monitoring critical?—enabling situational awareness 19

rity Center (ACSC) released its guidelines for Windows event logging in
organizations in 2017 [Australian Cyber Security Center, 2019]. The report
highlights the fact that this lack of visibility prevents investigation teams
from performing effective investigations and responses to Cybersecurity in-
cidents: already deployed host-based IDSs and prevention systems are not
enough to attain these goals. According to the report, this gap could be filled
by enabling the production of specific Windows event logs. The guidelines
they developed have been designed to enable the detection and investiga-
tion of suspicious and malicious activity while keeping in mind the balance
needed between the collection of significant events and the management of
generated data. Events collected by following these guidelines are comple-
mentary to the alerts triggered by HIDSs and can, in turn, be analyzed by
HIDSs to trigger alerts. Moreover, they allow investigation teams, i.e., cyber
defense analysts, to understand the overall context of incidents better. The
guidelines are general enough to cover all the stages of a multi-step attack,
as modeled by Lockheedmartin’s Cyber Kill Chain [Hutchins et al., 2011].

JPCERT’s Guidelines for Lateral Movement Detection. Complementary to
the general logging configuration guidelines made by the ACSC, the Japan
Computer Emergency Response Team Coordination Center (JPCERT) focused
its report on the detection of attacker’s lateral movement through Windows
event logs analysis [Japan Computer Emergency Response Team Coordina-
tion Center, 2017]. As modeled by Lockheedmartin’s Cyber Kill Chain, lat-
eral movement corresponds to one of the seven stages of a multi-step attack
and is described as following: after gaining a foothold inside the targeted
network, the attacker leverages different tools and methodologies to access
other machines or sensitive resources, e.g., credentials. These can, in turn,
be used to perform privilege escalation, steal more valuable resources, or
compromise additional systems. Many of the actions performed during this
stage can be captured and recorded in the Windows event logs. Studying
the security incidents involving lateral movement, the JPCERT noticed some
patterns in the attack methods, especially the tools used by the attackers in
the lateral movement stage, e.g., “net”, “ipconfig”, “mimikatz”. Tools were
identified through the investigation of the traces left by their usage on the
server and clients. Then, the JPCERT looked for the right logging config-
uration to obtain sufficient evident information in the Windows event logs.
The report produced by the JPCERT is more detailed than the general log-
ging configuration guidelines provided by the ACSC. Indeed, it contains the
names of classic tools used by attackers, as well as various means to retrieve
or detect their usage in the monitored system.

EUCERT’s Guidelines for Lateral Movement Detection. Similarly to the JP-
CERT, the European CERT also made a report on the detection of attackers’
lateral movement in infrastructures based on Windows Vista/7/8 [European
Union Computer Emergency Response Team, 2017]. However, their report
focuses on the exploitation of the Microsoft authentication protocol, and Ker-
beros protocol using stolen credentials.

These few project examples illustrate how important logging is regarding
security. Of course, these guidelines are not perfect. They are limited: by

20 system monitoring and computer security

the expert knowledge of cyber defense analysts, i.e., they have to specifi-
cally know how to look for attack traces; by known attack cases that have
already been observed; to one type of OS, i.e., Windows in these examples.
Even though all these CERT reported on the lack of logging systems use to
gain visibility, they do not seem to converge towards a standard. In fact,
these projects have the same approach: they identify the minimal event in-
formation needed to enable the detection of specific attacks. In this thesis,
we follow a similar approach: we identify the minimal event information
needed to compute causal dependencies among events.

1.2.4 Digital Forensics

Log analysis can also be performed in a digital forensic investigation con-
text where the goal is to help investigators reconstruct the timeline of events
that happened on the crime scene. In this context, this discipline is called
Event Reconstruction [Chabot et al., 2015], i.e., “the process of identifying the
underlying conditions and reconstructing the sequence of events that led to
a security incident.” Here again, the heterogeneous nature of events and
their quantity make the task of event reconstruction complex. Recent re-
search efforts focus on automating some parts of the investigation process.
As an example, Chabot et al. propose tools and approaches for the extrac-
tion, management, and reasoning on events by leveraging an ontology to
capture event semantics and enhance their analysis [Chabot et al., 2015].

1.2.5 Logging and Compliance Program

To raise organizations’ security standards, different kinds of compliance
programs have been designed to evaluate their security processes, e.g., PCI
Data Security Standard (DSS)4 and ISO 27001. Organizations have to comply
with given programs according to their business and corresponding regula-
tions.

Similarly to the projects presented in the previous paragraph, compliance
programs logging and event monitoring requirements highlight the impor-
tance of these monitoring systems regarding security. For example, the PCI
DSS program requires the tracking and monitoring of all access to network
resources, cardholder data, and user activities to enable effective forensics.

Previous sections defined the concept of monitoring and emphasized its
importance regarding computer security. The following sections present in
more detail how monitoring is performed to detect attacks or to observe
different abstraction layers of computer systems. Section 1.3 introduces the
reader to security monitoring’s spearheads, i.e., intrusion detection systems.

4 https://www.pcisecuritystandards.org

https://www.pcisecuritystandards.org

1.3 intrusion detection systems 21

1.3 intrusion detection systems

To observe and detect intrusion-related actions, a new category of method-
ologies and techniques has been created – Intrusion Detection. A software
that implements them is called an Intrusion Detection System. An IDS either
attempts to automatically detect attackers that try to break into the system,
as well as attackers that already have a foothold inside the system or autho-
rized users that are misusing system resources.

An IDS is a security monitoring system that raises alerts when noticing
something suspicious. Analyzing these alerts, cyber defense analysts can
then take countermeasures to bring back the system into a normal state.
These countermeasures can be done either manually, or automatically with
the use of another class of monitoring systems called: Intrusion Prevention
Systems (IPSs). We will only focus on IDSs in this manuscript.

The intrusion detection discipline began in 1980 with Anderson’s seminal
work “Computer Security Threat Monitoring and Surveillance” [Anderson,
1980]. Diverse intrusion detection methodologies and techniques have been
proposed since then. Different taxonomy propositions have been made to
get a better view of the field [Debar et al., 1999] [Axelsson, 2000].

1.3.1 IDS Taxonomy According to the Analyzed Data Source.

According to the activity that is monitored, IDSs are generally classified
into two categories, namely, Network-based IDS (NIDS) and Host-based IDS
(HIDS). As its name suggests, a NIDS will monitor network-related activity
by sniffing the traffic. A HIDS will monitor system or application behavior
by watching its activities, or the event logs its activities produce. Follow-
ing the diversity of event semantics, the variety of data sources that can be
monitored makes IDSs heterogeneous. A few examples are presented in
Section 1.4 for the most common abstraction layers.

1.3.2 IDS Taxonomy According to the Methodology Used.

Going further in the taxonomy of IDSs, intrusion detection methodologies
can be divided into two categories: misuse-based and anomaly-based.

Misuse-based IDS

Misuse-based techniques characterize malicious activities using specifica-
tions, i.e., patterns or sets of detection rules [Debar et al., 1999]. Misuse detection
is the most prevalent methodology used in commercial intrusion detection
products, especially the signature-based detection techniques [Sommer &
Paxson, 2010]. This popularity is mainly due to the fact that misuse-based
techniques are expert knowledge-based approaches. These approaches are
trusted by cyber defense analysts as they can easily understand why an alert
was triggered, especially in the case of signature-based detection, where the
triggered alerts contain the information related to the attack. The major lim-
itations of misuse-based approaches rely on the fact that they cannot detect
unknown threats. As threats are constantly evolving, these approaches are

22 system monitoring and computer security

prone to detection evasion. Thus, cyber defense analysts have to periodically
update the knowledge base to keep up with evolving threats.

Anomaly-based IDS

Anomaly-based techniques consists in building a reference model to detect de-
viations [Denning, 1987]. Compared to misuse detection, anomaly detection
is expected to detect yet unknown threats. Anomaly detection techniques
proceed in two stages: 1) design of a set of models of reference representing
the legitimate behavior; 2) automatic detection of deviant behaviors accord-
ing to the rules. Contrary to misuse-based approaches, anomaly-based IDS
can likely detect unknown threats, e.g., new attack scenarios or new vul-
nerability exploits. However, the interpretation of the triggered alert is not
straightforward as it does not refer to a specific malicious behavior. The
only information known to the cyber defense analyst is that it is deviant
compared to the legitimate behavior model.

Building Reference Models. Reference model building techniques for anom-
aly-based IDSs can be categorized into the following three families:

specification of the reference model - Specifications are generally
developed by performing in-depth analyses of attacks.

policy as a reference model - Policy-based techniques define formal se-
curity policies to enforce to detect violations, which are considered as in-
trusion attempts. Policy-based IDSs (PBIDS) fall into the category of
anomaly-based IDSs. More specifically, security policies correspond
to the reference models. The limitation of PBIDSs lies in the expres-
sive power of their policy definition formalism. Blare is an example of
PBIDS that enforces its security policy on the information flows of the
operating system abstraction layer [Zimmermann et al., 2003].

learning models - Learning techniques, either supervised or unsuper-
vised, model legitimate, malicious behaviors, both at the same time, to classify
an event as legitimate or malicious. A learning model is trained on a la-
beled dataset containing legitimate and malicious data, in the case of
supervised learning, or on an unlabeled dataset containing either le-
gitimate or malicious data in the case of unsupervised learning. The
learned model serves as the reference model for anomaly detection.
For example, the reference model can be learned using methods such
as automata or invariant modeling (presented in Section 1.4.5), or un-
supervised learning, where the legitimate behavior is automatically
induced from benign data, e.g., DeepLog [Du et al., 2017].

The previous section presented intrusion detection systems, i.e., the moni-
toring systems dedicated to attack detection, as well as their taxonomy. The
next section presents monitoring systems in a more general context. It il-
lustrates how monitoring can be implemented in different abstraction layers,
namely, the application, OS, network, and hardware layers.

1.4 monitoring activity at the different abstraction layers 23

1.4 monitoring activity at the different abstrac-
tion layers

We have previously mentioned that monitoring can apply to various sources
of data, i.e., network, operating system, or application-related data. This sec-
tion illustrates how monitoring can be applied in these different abstraction
layers.

1.4.1 Application Layer

Considering the application abstraction layer, a typical example of active
monitoring is the ability to load a module in the application to extract the
desired information [Almgren & Lindqvist, 2001]. ModSecurity5 is a good
example of such a monitoring module. It is an open-source Web Application
Firewall for web servers. It has the capability to thoroughly inspect HTTP
traffic in real-time and perform user-defined actions, i.e., actions defined by
the cyber defense analysts, thanks to its event-based programming language.
Such actions might be access control, web application hardening with the
restriction of selected HTTP features, or logging for security purposes like
forensics analysis.

Another means to monitor an application is to trace it using tracing tech-
niques. For example, considering a Python program, the trace module will
record every statement and function executed, including their parameters
and caller-callee relationships6. In the same fashion, the Linux OS kernel
provides the system call ptrace() to enable a tracer process to observe and
control the execution of a tracee process. The tracer process gets access to
the tracee’s memory and registers. Microsoft provides the Windows Driver
Kit7 to help developers perform software tracing. The kit relies on the Event
Tracing for Windows facility to generate traces.

1.4.2 Operating System and Kernel Layer

Whenever a program requests a service from the operating system’s ker-
nel, it has to use the system call interface. Such services can, for instance,
be accessing the file system, accessing network facilities or asking for the
creation and execution of a new process. Thus, the system call interface is
a noticeable observation point to monitor process behavior. Commercial off-
the-shelf (COTS) kernel monitoring frameworks, such as auditd8 for Linux,
and logman, that leverages the Event Tracing Windows (ETW) for Windows9,
easily enable the observation and recording of system calls. Considering the
increasing interest in leveraging system call monitoring and logging for se-
curity purposes and the high performance overhead induced by this type of

5 https://modsecurity.org

6 https://docs.python.org/3/library/trace.html

7 https://docs.microsoft.com/en-us/windows-hardware/drivers

8 https://people.redhat.com/sgrubb/audit

9 https://docs.microsoft.com/en-us/windows-hardware/test/wpt/event-tracing-for-w

indows

https://modsecurity.org
https://docs.python.org/3/library/trace.html
https://docs.microsoft.com/en-us/windows-hardware/drivers
https://people.redhat.com/sgrubb/audit
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/event-tracing-for-windows
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/event-tracing-for-windows

24 system monitoring and computer security

observation mechanism, recent work focuses on the improvement of auditd
architecture to lower its run-time and storage overheads [Ma et al., 2018].

System calls have been widely used to perform anomaly-based intrusion
detection since the seminal work of Forrest in 1996 [Forrest et al., 1996]. This
family of work models the legitimate behaviors of processes using sequences
of system calls. The vast majority of approaches focuses on the study of the
Linux kernel. Very few approaches propose to adapt these techniques to the
Windows kernel. An example of such adaptation was proposed in [Creech,
2014].

System calls have also been used as an information flow tracking means to
perform intrusion detection. These approaches are part of the policy-based
IDS family. They consider any violation of the information flow security
policy, defined by a cyber defense analyst, as an intrusion attempt. Imple-
mentations of such techniques are generally done on the Linux kernel by
instrumenting it. They either leverage the Linux Security Module frame-
work, such as Blare [Zimmermann et al., 2003] or BlueBox [Chari & Cheng,
2003], or add their own modules to the kernel.

Apart from the system call interface, many activities can be monitored at
the operating system layer. For instance, OSSEC10 and Samhain11 have the
capabilities to perform file integrity checking, log file analysis, and rootkit
detection, among others.

1.4.3 Network Layer

Computer communications constitute a major field of monitoring systems.
The monitored activity corresponds to packet exchanges inside the computer
network. Considering the context of a company, these exchanges can hap-
pen inside an internal network or between the internal and external net-
works. A network security policy that explicitly allows or restricts exchanges
is enforced using firewalls. Unfortunately, as we have already mentioned,
it is now well-considered that prevention mechanisms will eventually fail.
As computer systems to protect are likely to be connected to the Internet,
network-oriented security monitoring is thereby mandatory.

So far, approaches that have been presented fall into the HIDS category.
As threats can also come from the network, security monitoring also applies
to the network layer. This discipline is called Network Security Monitoring
(NSM), i.e., “the collection, analysis, and escalation of indications and warn-
ings to detect and respond to intrusions” [Bejtlich, 2013]. In other words,
NSM aims to find intruders on the monitored network and react before they
attain their goal and damage the company. Examples of open-source NSM
platforms are Security Onion12 and RockNSM13.

Regarding the network context, the different level of observation can be
illustrated using Figure 1.2. For example, alerts only give a few information
on punctual suspicious activities, according to the NIDS rule set. Netflow
logs contain all connections, and some statistics such as the size of packet ex-

10 https://www.ossec.net

11 https://www.la-samhna.de

12 https://securityonion.net/

13 http://rocknsm.io/

https://www.ossec.net
https://www.la-samhna.de
https://securityonion.net/
http://rocknsm.io/

1.4 monitoring activity at the different abstraction layers 25

Information Quantity

Size

Alerts (NIDS)
Connections Stats (Netflow)

Application Logs (Zeek)

Packets’ Payloads (Full Packet Capture)

Figure 1.2: Detail levels of information acquisition according to the NSM tool used.

changes, among hosts of the monitored network. Application logs, obtained
from protocol dissection, contain more detailed information about the states
of the applications and their requests and responses. Finally, a full packet
capture allows a cyber defense analyst to perform a complete network foren-
sics analysis by deep diving into packets payload, e.g., extracting transferred
files, or simply by allowing him to use all the analysis tools he wants. All
the data presented in this figure are derived from the analysis of the packet
streams in the monitored system. This analysis can be done either online,
using monitoring tools, or offline, while replaying a full packet capture. Of
course, the more the information is complete, e.g., full packet capture, the
more storage capacity is needed.

Here again, these different levels of observation can be seen as layers of
abstraction. According to the needs of investigation and the monitoring
capacities, different types of analyses can be performed. In the best case, the
whole traffic can be recorded using tools such as tcpdump. This recording
process is called a full packet capture and allows cyber defense analysts to
perform fine-grained network forensics using Wireshark14 for instance.

NSM relies on many tools, especially on NIDS such as Snort15 or Suri-
cata16. According to the IDS taxonomy previously defined (Section 1.3),
these tools are misuse-based IDSs. They perform deep packet inspection
to retrieve patterns defined in their detection rule set. One of the most im-
portant tool of NSM is Zeek17, which was formerly known as the Bro NIDS.
Contrary to Snort and Suricata, whose primary goal is to highlight suspi-
cious behaviors by triggering alerts when a signature matches, Zeek is about
enabling the observation of network activity to have a better understanding
of it. To do so, Zeek performs protocol dissection to generate logs out of
the activity that is happening on the monitored network. Protocol dissec-
tion allows the retrieval of application level data. This enables network and
cyber defense analysts to have a semantically high-level view of the activity
occurring on their monitored network, e.g., which service is requested and
what is requested.

14 https://www.wireshark.org

15 https://www.snort.org

16 https://suricata-ids.org

17 https://www.zeek.org

https://www.wireshark.org
https://www.snort.org
https://suricata-ids.org
https://www.zeek.org

26 system monitoring and computer security

We have seen that NSM tools rely on the analysis of protocols and packet
payload. Unfortunately, encrypted communication prevents these tools from
analyzing the content of communications, leading NSM to be less effec-
tive. In this context, deep packet inspection techniques cannot be performed.
Moreover, only source and destination IP addresses and ports and informa-
tion such as the payload size will be available to the cyber defense analyst.

1.4.4 Hardware or Assembly Instruction Layer

Monitoring can also be performed at the hardware level. Intel Proces-
sor Trace (IntelPT)18 is an example of such technology. IntelPT leverages
dedicated hardware facilities to perform tracing of the processor, i.e., the
recording of all executed instructions. It supports exact control flow tracing
at the instruction level. Regarding computer security, data generated by In-
telPT can be used to perform Control Flow Integrity [Abadi et al., 2009] or
to create control flow-based behavioral models to perform anomaly detec-
tion [Chen et al., 2018]. Dynamic binary instrumentation, such as the Pin

tools developed by Intel19, can also be considered as a tracing technique.
More specifically, this technique allows code insertion into a program at
run-time, without the need to recompile the application. For example, such
capability can be used to inspect each instruction executed by an application
at the userspace level, collect run-time information, track function calls (i.e.,
control flow), track data flow, or perform program capture and replay.

At this point, we have seen that events can be generated at the different
layers by various types of monitoring systems. The produced events can, in
turn, be monitored and analyzed by active monitoring systems.

1.4.5 Event Monitoring—Log Analysis

As we have already mentioned, analyzing log data generated by a system
allows monitoring teams to get different types of insight regarding the sys-
tem itself, its status, its properties, or its security state. Event monitoring
can apply to any abstraction layer where logs are produced. Various lev-
els of complexity can be found among event monitors. Some simply scan
log files, searching for known text patterns. For example, at the OS layer,
a simple system call event monitor can be configured to raise alerts when
confidential files are accessed. Others have the capability to correlate events.
This is particularly useful when several events need to be considered to char-
acterize an attack. To reason about them, events are parsed into structured
data. For instance, events can be used to build graph structures or feature
vectors that can, in turn, be used as inputs for other algorithms. The follow-
ing paragraphs illustrate examples of the different ways of analyzing logs to
give an idea of the possibilities of event monitoring and log analysis.

18 https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing

19 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation

-tool

https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

1.4 monitoring activity at the different abstraction layers 27

System Understanding

Discovering Infrastructure’s Critical Services. Regarding network, network
devices’ logging systems can produce logs such as Netflow20. Netflow logs
can be analyzed and used to gain insight on the running infrastructure
through the computation of a topological graph. For example, they can be
used to discover the infrastructure’s critical services and their dependency
relationships inside a network [Zand et al., 2015]. This knowledge allows
monitoring teams to prioritize their prohibitive and defensive actions.

Understanding Control-Flow and Data-Flow. Considering application log-
ging systems, we have seen so far that log messages are the consequence of
executed log printing statements in the code. Thus, log messages are gen-
erated according to the program’s control-flow, i.e., execution path, as well
as its data-flow. This insight has been leveraged in several works where the
main idea is to extract knowledge out of the logs using mining methods.

For instance, SALSA [Tan et al., 2008] leverages log messages produced by
a distributed system to derive approximated automaton views of the entire
distributed system execution. Their goal is to reconstruct the distributed sys-
tem’s control-flow and data-flow for graph-based visualization and a better
understanding of failures.

Detecting Anomalies. Some approaches leverage the knowledge extracted
from logs to build a reference behavior model and perform anomaly detec-
tion, i.e., they monitor the stream of events while performing model check-
ing to detect any deviation.

Similarly to SALSA, presented in the previous paragraph, the authors of
“CloudSeer” [Yu et al., 2016] use totally ordered logs, also referred to as
interleaved logs, to build a finite-state automaton (FSA) for each task of
the distributed application. The built FSA captures temporal dependen-
cies between log messages to model the task workflow. During the first
offline modeling stage, each identified task, e.g., creating a virtual machine
in an OpenStack21 environment, is executed several times to generate sev-
eral traces of the same task. These traces are then used to build the FSAs
corresponding to tasks. Computed FSAs are then used in an online checking
stage to identify whether the newly produced traces satisfy the FSA speci-
fication. Every deviation is considered as an anomaly. Another noticeable
approach is DeepLog [Du et al., 2017], a state of the art anomaly detection
method that uses interleaved logs. The authors’ intuition is that logs pro-
duced by the execution of a program are really close to a natural language:
log messages can be seen as “elements of a sequence that follows certain
patterns and grammar rules.” To do so, they leverage a deep neural net-
work model based on long short-term memory [Hochreiter & Schmidhuber,
1997]. Contrary to CloudSeer, their method allows the capture of inter-task
dependencies. Moreover, its anomaly detection models can be updated in
an online manner.

20 https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow

21 https://www.openstack.org

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow
https://www.openstack.org

28 system monitoring and computer security

Attack Detection

As we have seen before, attack investigation often relies on log analysis to
understand what happened. Depending on the nature of the log analyzed,
the analysis enables different attack detection capabilities. For instance, Or-
chIDS [Goubault-Larrecq & Olivain, 2008] and GnG [Totel et al., 2004] are
event correlation engines that rely on attack description languages to corre-
late events explicitly. Cyber defense analysts can express their knowledge of
attacks in these languages to write detection rules.

Detecting Anomalies—Security Monitoring Perspective. All the log analy-
sis approaches presented in the previous “Detecting Anomalies” paragraph
are based on interleaved logs. Their drawback relies on the fact that the
authors consider that the different clocks are loosely synchronized across
hosts, i.e., they assume the existence of a global clock in the distributed sys-
tem and consider log traces as temporally totally ordered. However, other
methods consider the fact that the existence of a global clock cannot be as-
sumed in a distributed system. They leverage relationships such as Lam-
port’s “happened-before” [Lamport, 1978] to build a partial order of the log
messages issued from distributed logs. Similar data mining approaches can
be performed on partial orders. For instance, temporal invariant mining
algorithms have been proposed in [Beschastnikh et al., 2011].

In [Totel et al., 2016] and [Lanoë et al., 2019], the authors propose a log-
based and anomaly-based IDS for distributed applications. However, con-
trary to DeepLog and CloudSeer, their methodology relies on the partial
ordering of logs. Here again, any deviation from the learned behavior refer-
ence model is considered as the observation of an attack. The methodology
developed relies on the log analysis of several legitimate executions of the
distributed application to capture as many legitimate behaviors as possible.
For each execution logs, the partial order is computed and used to derive an
FSA model as well as likely temporal invariant, similarly to [Beschastnikh
et al., 2011]. A first global behavior model is then built by merging all the
automata and invariant properties. Finally, the behavior reference model
is obtained by leveraging generalization algorithms, i.e., KTail algorithms
family [Beschastnikh et al., 2014], on the global automaton. This model can
then be used by the detection part of the methodology for global automa-
ton checking and temporal invariant checking. Security-wise, these kinds
of anomaly detection methodologies extract properties from the logs and
use these properties to build the reference model. Any execution log which
does not comply with this model is then considered as the observation of an
intrusion.

Leveraging a Single Type of Log. Some approaches focus on the analysis
of a single type of log to detect specific actions. For instance, Lamprakis et
al. propose an approach to detect the communication of compromised hosts
that try to reach their Command and Control (C&C) server through HTTP
protocol in [Lamprakis et al., 2017]. To do so, the authors leverage the HTTP
web proxy logs to build web request graphs, where a node corresponds
to an HTTP request and its response and edges correspond to dependencies

1.4 monitoring activity at the different abstraction layers 29

between requests, a target node being the consequence of a source node. The
web request graphs reconstruction allows filtering out regular web browsing,
thus highlighting single nodes that would ideally correspond to malware
requests.

Leveraging Several Types of Log. Other approaches propose to leverage
several types of logs to detect attacks. One of the seminal work in this
precise research field is the work of Abad et al. [Abad et al., 2003]. The au-
thors highlight the fact that attacks can be reflected in different logs and are
not obvious to detect when only a single log is analyzed. They argue the
need to correlate heterogeneous logs to increase intrusion detection systems’
accuracy. More specifically, several approaches propose to correlate network-
related and system-related logs to improve intrusion detection [Abad et al.,
2004] [Li et al., 2004] [Yurcik et al., 2006]. On the other hand, Beehive [Yen
et al., 2013] correlates different types of network-related logs, mainly HTTP
web proxy and DHCP logs, to detect suspicious hosts that might be compro-
mised. DHCP logs allow the association of IP addresses to their correspond-
ing hosts. A daily feature vector is then computed for each host based on
the HTTP requests it made during the day. Based on the fact that hosts form
homogeneous groups inside enterprises, a clustering-based outlier detection
is then performed to identify suspicious hosts, i.e., the ones that behave dif-
ferently from the group. These detections are considered as incidents that
can be further analyzed to determine whether it corresponds to an attack or
a policy violation made by an employee.

Detecting Multi-Step Attacks with Heterogeneous Logs Analysis. Very few
approaches leverage heterogeneous logs to detect multi-step attack scenar-
ios automatically. In HERCULE [Pei et al., 2016], the authors model multi-
step attack scenario detection as a community discovery problem. Inspired
from social networks where people with similar interests form communities,
events are considered as individuals that are likely to be close to each other
when generated by the same activity, i.e., events generated by attacker’s ac-
tions are likely to be part to the same community. Starting from a given finite
set of heterogeneous events, the approach consists in building a weighted
correlated event graph, where nodes, edges, and weights respectively corre-
spond to individual events, attribute-based correlations, and distance met-
rics. The built-weighted graph is then given as an input to a community
discovery algorithm. In a final step, communities containing at least one
suspicious event are tagged as malicious. The authors claim that detected
communities contain the various steps that make up the attacks.

30 system monitoring and computer security

1.5 summary

Chapter 1 introduces the reader to the basic terminology that will be used
throughout the rest of the manuscript, as well as the key concepts of security
monitoring.

Briefly, Section 1.1 introduces the reader to the concepts of: intrusions,
which correspond to sets of actions that attempt to compromise the confi-
dentiality, integrity, or availability of a system; multi-step attacks, which refer
to attack scenarios where attackers have to perform several steps in order
to attain their goals; cyber defense analysts, i.e., the organizations’ defenders,
who are in charge of deploying and configuring the security monitoring
systems at various abstraction levels in order to enable situational aware-
ness; events, i.e., monitoring systems’ outputs, which correspond to one of
the major means for cyber defense analysts to perform attack detection and
investigation; and, finally, abstraction layers, e.g., network, OS, or applica-
tion layers, which correspond to the different possible observation points for
monitoring.

Section 1.2 presents why monitoring is critical, especially in the computer
security context. Based on the observation that prevention mechanisms are
not sufficient, i.e., persistent attackers will eventually break into the sys-
tem, security monitoring is mandatory to enable the observation, detection,
recording, and collection of the actions performed by the attackers.

The two remaining sections of this chapter illustrate different types of
monitoring systems. Section 1.3 focuses on the monitoring system class ded-
icated to attack detection, namely, intrusion detection systems. Briefly, IDSs
can be categorized into the network-based category, i.e., NIDS, or the host-
based category, i.e., HIDS, depending on the data source they analyze. Ad-
ditionally, IDSs can be categorized into misuse-based and anomaly-based
IDSs, depending on their analysis methodologies. Section 1.4 presents how
monitoring can be performed in different abstraction layers, namely, the ap-
plication, OS, network, and hardware layers.

The Need for Alert and Event Correlation. While performing attack inves-
tigation, cyber defense analysts’ goal is to identify the attacker’s traces and
highlight their links in order to deduce the global strategy of the attack, and
its consequences. Retrieving the attacker’s traces is a difficult task as they
are scattered across several machines, across heterogeneous and diverse log
files, and potentially scattered across time. The increasing complexity of
computer systems also makes it hard to identify relevant security informa-
tion. Moreover, IDSs and observation means only enable the detection of
single-step attacks. Therefore, discovering and detecting sophisticated at-
tacks, i.e., multi-step attacks, is a hard problem. It involves finding correla-
tion links among heterogeneous events. Automatic or semi-automatic tools
are needed in order to detect multi-step attacks by linking the different obser-
vations, i.e., the ones related to single-step attacks, that are part of the same
multi-step attack. This discipline forms a dedicated security research field
called Alert and Event Correlation. The next chapter focuses on this precise
research field.

2 A L E R T C O R R E L AT I O N

The last chapter introduced the reader to the basic concepts of security
monitoring. We have seen that these systems enable the observation of var-
ious types of actions performed at different abstraction layers of the mon-
itored system. Ideally, these monitoring systems would record malicious
actions happening inside the monitored system. However, recorded events
need to be further analyzed to discover and understand the different steps that
make up attacks. This is the role of Alert Correlation. Alert correlation is tightly
linked to the security monitoring industry. Indeed, in the enterprise context,
all the events generated by monitoring systems are generally collected and
analyzed by a SIEM, which is in charge of the correlation process [Nicolett
& Kavanagh, 2011].

This chapter introduces the reader to the alert correlation research field.
Section 2.1 presents why alert correlation is critical regarding security moni-
toring: alert correlation makes up for IDSs’ limitations and aggregate events
to enable the discovery of multi-step attacks. Section 2.2 presents in more de-
tail the alert correlation process and defines its surrounding concepts. More
specifically, the different types of correlation (e.g., correlating alerts to vul-
nerability knowledge) used by alert correlation techniques will be presented.
Section 2.3 focuses on the attack scenario identification component of the
alert correlation process. Finally, Section 2.4 presents alert correlation’s chal-
lenges and limitations. Furthermore, it discusses the relationship between
alert correlation and causal dependency relationships among events. More
specifically, we observed that the definition of the causal dependency rela-
tionship among events has not been clearly defined in the literature. We
argue that addressing this issue would help the research community to for-
malize the alert correlation research field and enable the discovery of new
types of approaches.

2.1 addressing intrusion detection systems’ lim-
itations

The alert correlation research field began in the early 2000s, when re-
searchers and security monitoring vendors realized the IDSs’ limitations [De-
bar & Wespi, 2001] [Cuppens & Miege, 2002]. Alert correlation aims to ad-
dress the major limitations of IDSs presented in the following paragraphs,
namely, alert flooding, false positive and false negatives, presented in Sec-
tion 2.1.1, and the aggregation of alerts and/or events corresponding to the
same attack, presented in Section 2.1.2.

32 alert correlation

2.1.1 Flooding, False Positives and False Negatives

The first limitation of IDSs is called alert flooding: too many alerts are pro-
duced by IDSs, and cyber defense analysts cannot keep up the pace. In
practice, a lot of alerts are related to the same problem or the same occur-
rence of an attack, but the lack of context prevents them from being eas-
ily logically grouped. Moreover, alerts only describe symptom-related or
problem-related information. They generally do not contain explicit infor-
mation about the root causes of a problem. On top of this semantic issue,
many of the produced alerts correspond to false positives [Axelsson, 1999],
meaning that an alert was triggered even though the attack attempt was un-
successful or that the triggering action was a benign behavior irregularity.
For example, false positives can be the consequences of an off-the-shelf de-
tection rule set that does not suit the monitored system. False negative, i.e.,
the fact that a successful attack is not detected, is still an issue as well. In
order to address these limitations, the alert correlation discipline emerged.
Thus, alert correlation’s first objectives have been:

1. Alert verification, i.e., false positive checking, to filter out irrelevant
alerts;

2. Merging of alerts corresponding to the same attack occurrence and;
3. Alert prioritization, also called “alert triaging,” to focus on most crucial

ones [Porras et al., 2002].
These objectives comprehensively tackle the issue of “alert fatigue”, also
called “information overload problem,” where cyber defense analysts miss
alerts relating to actual attacks as: (1) true positives generally have a low
priority; (2) cyber defense analysts are drowned in the noise of false posi-
tives [Hassan et al., 2019].

2.1.2 Aggregating Events Corresponding to the Same Attack

As systems become more and more complex, the diversity of data sources
also increases. The amount of information to process motivates another ob-
jective: the need to merge information from different data sources to trans-
late alerts into more understandable and exploitable information [Dain &
Cunningham, 2002]. Such capabilities would ideally enable cyber defense an-
alysts to gain analysis time and perform more efficient responses. The alert
correlation process thereby integrates information from other data sources
than IDS alerts, such as events generated by other monitoring systems, for
instance. Alert correlation thereby includes event correlation [Dain & Cun-
ningham, 2001]. Here again, the amount of events generated is important,
and events often lack the information regarding the context in which they
happen. As an example, a legitimate event such as the recording of an
successful admin login might be malicious in a specific context. Another
objective is thereby added to alert correlation’s: increasing attack investiga-
tion insight by identifying and aggregating alerts and events, which have
a low detail level, corresponding to the same attack. Meta-alerts [Valeur
et al., 2004], also called hyper-alerts [Ning et al., 2002], are produced when
aggregated alerts correspond to symptoms of actual attacks. Doing so, the
overall number of produced alerts can be reduced, and their details can be

2.2 alert correlation definition 33

enhanced, thus elevating their semantic level and making them more ex-
ploitable and understandable for cyber defense analysts.

Section 2.1 presented IDSs’ limitations and introduced how alert correla-
tion tries to tackle them. Alert correlation aims to help cyber defense ana-
lysts to find “needles in the haystack.” More specifically, its goal is to iden-
tify significant events and their links by leveraging aggregation techniques,
i.e., alert correlation identifies the “threads among needles in the haystack.”
Following sections present in more detail the process of alert correlation.

2.2 alert correlation definition

In their seminal work Alarm Correlation [Jakobson & Weissman, 1993], Ja-
cobson and Weissmann defined network alarm correlation as a “conceptual
interpretation of multiple alarms such that new meanings are assigned to
them.” Their goal was to emphasize the fact that such techniques could
enable network administrators to improve network surveillance and fault
management. In [Gardner & Harle, 1996], Gardner and Harle defined it as
the “interpretation of multiple alarms so as to increase the semantic infor-
mation content associated with a reduced set of messages.” Although this
work focused on telecommunication network alarms, these definitions still
hold in today’s security monitoring field.

Correlation Meaning

So far, we have introduced alert correlation without defining what Correla-
tion means. Let’s first define what it is.

Definition 2.1 - Correlation: “An action to carry back relations with each other”,
taken from the report Alert Correlation: Review of the State of the Art [Pouget &
Dacier, 2003].

In facts, alert correlation can be performed in several ways: among events;
among observed or known states of the monitored system; among system in-
formation such as its topology and its vulnerabilities in the case of networks;
among alerts; and, of course between all of these categories at the same time.
The precise definition of correlation thereby depends on the technique used
for a given alert correlation process.

The two following paragraphs propose two ways of seeing the alert corre-
lation process. The first one describes a functional point of view of the alert
correlation process (Section 2.2.1). The second one describes the different
types of information alerts are correlated to in the literature (Section 2.2.2).

2.2.1 The Alert Correlation Process

This section introduces the reader to its functional architecture. The differ-
ent approaches proposed [Valeur et al., 2004] [Sadoddin & Ghorbani, 2006]
[Salah et al., 2013] mainly converged to the same representation.

34 alert correlation

Pre-treatment
- Normalization
- Enrichment

Verification
- Static
- Dynamic

Aggregation
- Fusion
- Elementary Attacks

Identification
- Attack Scenarios

Identification

Impact &
Priority
Analysis

Figure 2.1: Alert correlation functional architecture.

More specifically, four families of components can be highlighted, namely,
pre-treatment, verification, aggregation, and impact and priority analysis [Gode-
froy, 2016]. Figure 2.1 illustrates the global functional architecture of alert
correlation. These components will be presented in the following para-
graphs.

The dotted arrow from aggregation to verification, in Figure 2.1, corresponds
to a feedback loop. Salah et al. have proposed this functional architecture for
meta-alerts to be enriched and verified again [Salah et al., 2013]. An example
of such a feedback loop is [Stroeh et al., 2013], where alerts are aggregated
using clustering techniques. A supervised learning classifier then verifies
alert clusters.

Pre-treatment

The first step of the alert correlation process consists in a pre-treatment
phase where alerts are normalized and enriched to enable them to be analyzed
by the other components. This phase is also called preprocessing in [Salah
et al., 2013].

Normalization. As we have seen in Chapter 1, alerts are generated by vari-
ous IDSs that monitor different abstraction layers and use different conven-
tions and formats. Normalization aims to unify alert syntax, i.e., attribute
structure, and semantics, i.e., attributes meaning. Expressing the alerts in
such a unified format enables the other components of the architecture to
compare them.

The Intrusion Detection Message Exchange Format (IDMEF) has been de-
fined to unify alert syntax [IDM, 2007]. Several approaches relies on ID-
MEF [Zaraska, 2003] [Liu et al., 2008] and efforts to promote it are still on-
going [IDM, 2016]. For instance, an IDMEF output module for ModSecurity
has recently been proposed to feed the Prelude SIEM [Baláž et al., 2018]. On
the other hand, fewer approaches pay attention to normalizing alerts seman-
tics. In [Liu et al., 2008], the approach includes a semantics checking module
that verifies attributes coherence. Another approach proposes to leverage
a taxonomy to extend IDMEF with semantics normalization [Stroeh et al.,
2013]. Syntactic and semantics normalization are implicitly assumed in the
literature. The different approaches often focus on given components of the
whole alert correlation process.

Enrichment. In addition to alert syntactic and semantics gaps, the infor-
mation they contained might not be enough to perform better correlations.
Several approaches propose to enrich alerts to overcome this issue.

2.2 alert correlation definition 35

This enrichment is generally done by leveraging static knowledge data-
bases. These databases are first populated before being queried to give in-
formation alerts are missing, e.g., information regarding targets, sources, or
IDS that produce it [Debar & Wespi, 2001] [Morin et al., 2009] [Sadighian
et al., 2013]. Similarly, the authors of [Mustapha et al., 2012] propose to en-
rich alerts using information collected from honeypots. Alerts can also be
enriched semantically to enable an aggregation component to group alerts
corresponding to the same action [Sundaramurthy et al., 2011].

Verification

As we have already mentioned in Subsection 2.1.1, IDSs are subject to
the false positive problem. The verification component aims at recognizing
and discarding non-relevant alerts in the monitored system context. This
component corresponds to the alert reduction module in [Salah et al., 2013].

Following the taxonomy from [Kruegel et al., 2004], verification can be
either static or dynamic. Dynamic approaches monitor observable conse-
quences of attacks to determine whether they succeeded or not [Kruegel
et al., 2004]. On the other hand, the main approach of static verification
is the vulnerability knowledge correlation. These approaches discard alerts
that refer to the exploitation of a non-existent vulnerability in the monitored
system [Chyssler et al., 2004] [Liu et al., 2008]. Here again, static verification
might rely on knowledge databases such as M4D4 [Morin et al., 2009] or
ONTIDS [Sadighian et al., 2013]. Another type of approach proposes to gen-
erate IDS verification rules automatically by leveraging supervised machine
learning [Massicotte et al., 2008]. Such rules can, in turn, feed knowledge
databases.

Aggregation

Aggregation components aim at reducing the overall number of alerts by
grouping them into meta-alerts. They can be classified into three categories,
namely, fusion, elementary attacks identification, and attack scenario identification.

Fusion. Fusion components are responsible for recognizing and combining
alerts of the same type, which represent the “independent detection of the
same attack instance by different intrusion detection systems” [Valeur et al.,
2004]. This definition can be extended with the combination of alerts rep-
resenting the detection of the same attack instance by the same IDS. Fusion
can be further refined into three cases [Morin, 2004]:

1. Split - Combining alerts, generated by the same IDS, which correspond
to the same attack instance. In other words, the alerts are caused by
the same action, e.g., a port scan that makes a NIDS trigger several
alerts. The split case is closely related to elementary attacks identifica-
tion component.

2. Recurrence - Combining alerts, generated by the same IDS, which cor-
respond to a recurrent attack. Fusion components that deal with recur-
rence are similar to the attack thread reconstruction component proposed
in the functional architecture of Valeur et al. [Valeur et al., 2004]. The

36 alert correlation

mentioned case example is an attacker that runs his exploit several
times to guess the parameters’ correct values, e.g., memory addresses
and offsets for buffer overflows. Another interpretation of recurrence
is proposed in [Viinikka et al., 2009]. The authors rely on time series to
identify and discard periodic alert floods. They hypothesize that these
periodic phenomenons correspond to benign behavior.

3. Redundancy - Combining alerts, generated by various IDSs of the same
type, which correspond to the same attack instance [Debar & Wespi,
2001]. Here again, the alerts are caused by the same action.

Alert fusion techniques generally rely on similarities between alerts’ at-
tributes [Julisch, 2003] [Valdes & Skinner, 2001]. The idea is that alerts that
have similar attributes and are generated in a given time frame likely have
the same root cause.

Elementary Attacks Identification. Elementary attacks identification compo-
nents are closely related to fusion components. They aim to identify and
combine alerts, generated by different types of IDSs, that correspond to the
same attack. These components are similar to the attack session reconstruction
component proposed in the functional architecture of Valeur et al. [Valeur
et al., 2004]. For instance, in [Chyssler et al., 2004], the authors leverage
Snort NIDS alerts, Samhain HIDS alerts, Syslog events, and machine learn-
ing techniques to perform elementary attacks identification.

Attack Scenario Identification. All the outputs of the previously presented
components can, in turn, be analyzed by the attack scenario identification
components to identify those pertaining to multi-step attack scenarios. At-
tack scenarios identification is the main focus of the work presented in this
thesis. Related techniques will be presented in Section 2.3.

Impact and Priority Analysis

In addition to alert aggregation, alert correlation also aims at prioritizing
the information that needs to be processed by cyber defense analysts. To do
so, the alert correlation process also includes an impact and priority analysis
component. Alerts and meta-alerts are ranked depending on criteria such
as IDS confidence [Pérez et al., 2014] or potential impact of corresponding
attacks [Porras et al., 2002].

2.2.2 Alert Correlation Types

In order to achieve its goals, alert correlation leverage many other sources
of information to enhance its correlation capabilities. These data sources
can be considered as a taxonomy of alert correlation types [Shittu, 2016] and
have been described and summarized in several approaches [Salah et al.,
2013] [Gagnon et al., 2009]. The alert correlation types, as in [Shittu, 2016],
are the following:

2.2 alert correlation definition 37

Correlating Alerts with Topology, Cartography and Detection Capabilities

Topology and cartography information aim to provide an accurate rep-
resentation of the monitored system. Topology information describes the
positions and links of nodes. It typically includes network-related infor-
mation such as IP addresses and their associated names, subnets, or vir-
tual LANs. Cartography information describes each nodes’ components,
i.e., its users, OS, software, processes, services, and their version informa-
tion [Morin, 2004] [Gagnon et al., 2009]. Such databases can be populated
using agents that dynamically gather information [Yu et al., 2004] [Chyssler
et al., 2004]. Topology and cartography knowledge have been used early
to enhance alert correlation capabilities [Goldman et al., 2001]. For exam-
ple, it can be used to perform alert verification, e.g., by discarding alerts
corresponding to attacks against software that are not part of the cartogra-
phy. Such knowledge has also been leveraged to perform alert prioritization
in [Porras et al., 2002]. As we will describe in the next paragraph, this knowl-
edge can be coupled to vulnerability databases to perform a risk assessment
of the monitored system.

Detection capability corresponds to the knowledge of the deployed IDSs’
characteristics such as their nature, i.e., application-based, host-based or
network-based, their topological visibility or their ability to detect attacks
in given conditions for example [Morin et al., 2002] [Morin, 2004]. Coupled
with topology and cartography knowledge, detection capability knowledge
enables the semi-automatic generation of correlation rules to detect complex
attack scenarios [Godefroy et al., 2015b]. This approach will be presented in
more detail in the Section 2.3 on attack scenario identification techniques.

Correlating Alerts with Vulnerability Knowledge

Vulnerability assessment plays an important role in risk analysis. Such
knowledge allows security monitoring teams to elaborate their strategy re-
garding security, and more specifically, regarding prevention and detection
mechanisms. In the context of intrusion detection and alert correlation, alerts
can be symptoms of attacks that rely on the exploitation of specific vulner-
abilities. Considering these kinds of alerts, the monitored system’s vulner-
ability information allows filtering out false alerts regarding the monitored
system’s context [Kruegel et al., 2004].

Knowing the monitored system’s configuration information, e.g., its topol-
ogy and cartography, cyber defense analysts can identify disclosed vulner-
abilities, i.e., known vulnerabilities described in vulnerability databases, us-
ing vulnerability scanner technology. Such inspection allows a cyber defense
analyst to know whether a target is safe against the security flaws used by
a given attack. It thereby allows to filter out alerts corresponding to failed
attack attempts that leverage exploits of non-existent vulnerabilities in the
monitored system context.

Vulnerability databases such as MITRE’s Common Vulnerabilities and Ex-
posures (CVE)1 list and National Vulnerability Database2 provide common

1 https://cve.mitre.org

2 https://nvd.nist.gov

https://cve.mitre.org
https://nvd.nist.gov

38 alert correlation

identifiers for publicly known vulnerabilities, i.e., disclosed vulnerabilities
affecting public software.

Coupled with topology and cartography knowledge, vulnerability knowl-
edge can also be used to build attack graphs [Sheyner et al., 2002]. The next
section will describe how attack graphs can be used to generate correlation
rules automatically.

The correlation types presented in the two previous paragraphs, namely,
correlation of alerts with topology, cartography, and detection capabilities,
and correlation of alerts with vulnerability knowledge, are partially and,
sometimes, fully included in databases called knowledge databases in the alert
correlation research field. These technologies bring the monitoring environ-
ment context that alerts and, more generally, events, are missing.

Knowledge can be organized using technologies such as ontologies [Sadi-
ghian et al., 2013] or other frameworks such as M4D4 [Morin et al., 2009]. To
the best of our knowledge, these work correspond to state of the art knowl-
edge databases for alert correlation. They include all the alert correlation
types previously described. More specifically, M4D4 has been extended to
enable the semi-automatic generation of event correlation rules [Godefroy
et al., 2015a].

Correlating Alerts with Alerts

As described in [Kent & Souppaya, 2006], approaches that leverage this
type of correlation “match multiple log entries from a single source or mul-
tiple sources based on logged values, such as timestamps, IP addresses, and
event types.” For example, De Alvarenga et al. aggregate NIDS alerts that
have the same source IP address and consider that they are part of the same
attack scenario in [de Alvarenga et al., 2018]. Similarity-based correlation,
statistical methods [Julisch & Dacier, 2002] [Gu et al., 2008] or visualization
tools [Leichtnam et al., 2017] fall into this alert correlation type.

Correlating Alerts to Attack Knowledge

As its name suggests, attack knowledge includes any knowledge related
to attacks. Such knowledge comes from information security experts and is
expressed in various forms, i.e., as a taxonomy of attacks, or as the expres-
sion of dreaded attack scenarios.

Attack knowledge can be expressed as a characterization of attacks, gen-
erally in the form of taxonomy, that allows answering questions such as:
• What are the attack targets?
• What are the main observation means to record the actions related to

this attack?
• What is the attack class?

In his PhD thesis [Godefroy, 2016], Godefroy presents the different attack
knowledge taxonomies which can be classified into five classes:

1. Violation type. This taxonomy includes classes such as vulnerability
exploitation, security policy violation, or suspicious activity. Contrary

2.2 alert correlation definition 39

to the other taxonomies, the violation type attack taxonomy has a fairly
high level of abstraction.

2. Technique used. This taxonomy generally corresponds to the main type
of classification. It allows the description of the different steps and
techniques used to perform an attack. Some approaches propose a sim-
ple list of attack classes [Porras et al., 2002]. The ATT&CK knowledge
database proposes to classify techniques by attack tactics, e.g., initial
access, persistence, privilege escalation, lateral movement, command
and control or exfiltration. The Common Attack Pattern Enumeration
and Classification (CAPEC3) list presents techniques as attack patterns.
The classification is done in a tree format where a root node describes
a generic attack class (e.g., injection attacks), intermediate nodes refine
the attack class, and leaf nodes describes techniques (e.g., severity level,
required steps to perform the attack, required privileges, examples of
traces left by such attack).

3. Attacker’s required privileges or attack’s prerequisites. This taxonomy cor-
responds to a classification of the required privileges needed by the
attacker to perform an attack. It allows cyber defense analysts to deter-
mine whether a given attack is possible or not, according to the system
to protect, and to assess its probability to happen. Privileges can cor-
respond either to the attacker’s location, i.e., distant access (from the
internet), local access to the internal network or physical access, or its
user’s privileges, i.e., simple user or root. For each technique presented
in their databases, ATT&CK and CAPEC also describe the permissions
required to perform the technique.

4. Attack’s consequences. This taxonomy corresponds to a classification
of the consequences of attacks. Consequences correspond to the attack
impact on the system’s integrity, confidentiality, and availability. These
types of taxonomies generally include obtained privileges through a
privilege escalation, e.g., gaining root access, leaked information on the
system, e.g., files, users, or topology, or services’ performance degra-
dation.

5. Attack’s target. This taxonomy corresponds to a classification of the
attack’s target, i.e., a network device, an OS, an application, a service,
or memory.

The reader may refer to Godefroy’s PhD thesis [Godefroy, 2016] to get more
details on attack taxonomies. Such taxonomies, especially the attack’s pre-
requisites and consequences, allow leveraging alert correlation techniques
such as prerequisite and postcondition approaches, which is well illustrated by
the lambda language [Cuppens & Ortalo, 2000]. Coupled with detection ca-
pability knowledge, attack knowledge taxonomies can be leveraged to iden-
tify attacks that can actually be detected in the context of the monitored
system.

3 https://capec.mitre.org

https://capec.mitre.org

40 alert correlation

Attack Knowledge from the Attacker’s Perspective. Attack knowledge can
also refer to dreaded attack scenarios description from the attacker’s per-
spective. This type of approach only deals with the attack modeling, i.e.,
the attacker’s actions. They do not deal with events, nor their correlations.
This type of knowledge can be found in various forms. For instance, attack
trees and attack graphs, presented in Section 1.1.1, respectively express at-
tack scenarios and the set of possible attack paths according to the topology,
cartography, and vulnerability knowledge databases.

Attack Knowledge from the Defender’s Perspective. Contrary to the previ-
ous type of approach, the type of approach presented in this paragraph does
not deal with the attacker’s actions. This type deals with events, alerts, and
their correlations. It thereby represents the modeling of attack knowledge
with the defender’s perspective. Attack scenarios description is done using
attack description languages such as [Eckmann et al., 2002] [Totel et al., 2004]
[Goubault-Larrecq & Olivain, 2008]. Such languages allow to explicitly cor-
relate events to elaborate and express event correlation rules. These rules
thereby represent attacks through their traces, i.e., the events that represent
the observed and recorded actions. These rules are later interpreted by a
correlation engine that analyzes events and retains those described in the
correlation rules. This type of knowledge is also referred to as case-based
knowledge [Salah et al., 2013] [Navarro et al., 2018].

The common idea behind all these types of correlation is to enhance the
context of alert investigation to make it more efficient. They can be found
in the different components of the alert correlation functional architecture
presented in Section 2.2.1. Proposed approaches generally focus on some
components of the alert correlation process and do not address all of them
at once. A majority of them focus on the problem of attack scenario identi-
fication. Section 2.3 presents how the alert correlation research community
proposed to solve this problem.

2.3 a focus on attack scenario identification

Attack scenarios identification has been thoroughly studied in the alert
correlation research field. Leveraging the different kinds of available knowl-
edge (e.g., the knowledge presented in the alert correlation types in Sec-
tion 2.2.2), and produced data (i.e., alerts and events generated by the moni-
toring systems), attack scenario identification aims at helping cyber defense
analysts to identify and retrieve the alerts and events corresponding to the
same multi-step attack scenarios.

The problem of attack scenario identification in alert correlation has been
addressed using various kinds of methodologies and several taxonomies
have been proposed to categorize them [Yusof et al., 2008] [Salah et al., 2013]
[Godefroy, 2016]. More specifically, these various methodologies compute
correlation links between events and alerts. According to the used methodol-
ogy, attack scenarios can be either predefined, reconstructed, or discovered.

2.3 a focus on attack scenario identification 41

Attack Scenarios Identification

Similarity-based

Progressive Construction

Scenario Clustering

Anomaly Detection

Causal Correlation

Prerequisites & Consequences

Statistical Inference

Model Matching

Structural-based Case-based Mixed

Figure 2.2: Attack scenario identification taxonomy.

Presented approaches will be presented using Navarro et al.’s taxonomy,
as previously proposed taxonomies are included in their work [Navarro
et al., 2018]. Figure 2.2 illustrates the different categories of the taxonomy,
namely, similarity-based, causal correlation, structural-based, and case-based tech-
niques. Each category will be presented in the following paragraphs.

2.3.1 Similarity-based Approaches

Similarity-based approaches are described as follows in [Navarro et al.,
2018]: “The degree of similarity between traces determines the construction
of the attack scenarios.” The idea is that similar alerts are likely to be related
to the same root cause, i.e., to the same attack scenario [Salah et al., 2013].
Contrary to causal correlation techniques, which focus on alert and event se-
quences and their causal structure, similarity-based techniques focus on the
computation of a similarity degree between alerts and events. The similarity
degree is generally computed after a combination of several event record
fields.

The main advantage of similarity-based techniques is that they are likely
to return unknown attack scenarios. However, choosing the right linking
process is still a hard task. Simple linking processes are subject to the gen-
eration of false positive correlations. On the other hand, complex linking
processes, e.g., using an alert correlation matrix [Zhu & Ghorbani, 2006],
might be too specific to capture the different kinds of multi-step attacks.

Similarity-based methodologies are divided into three groups: progressive
construction (by attribute matching or correlation), scenario clustering, and
anomaly detection.

1. Progressive construction - Potential attack sequences are built step
by step by appending traces to scenarios that contain similar traces,
according to their record fields. Built sequences follow a logical pro-
gression where the order of the actions matters. Thus, a time window
is considered when comparing traces’ similarities. Sequence building
methods are divided into two subcategories:

a) attribute matching, which relies on exact comparison of chosen
record fields, e.g., network-related fields such as IP addresses

42 alert correlation

and/or ports. For instance, in [Chen et al., 2006], the authors
instrumented the Bro NIDS to actively correlate network events
coming from the same IP address than a given alert.

b) attribute correlation, which computes a correlation coefficient among
events and links them if a threshold is attained. Such correla-
tion coefficient can, for example, be computed by leveraging par-
tial matching of record fields [Dain & Cunningham, 2001], an
alert correlation matrix [Zhu & Ghorbani, 2006] and/or super-
vised learning algorithm [Zhu & Ghorbani, 2006] [Pei et al., 2016].
In [Zhu & Ghorbani, 2006], the authors mentioned that the us-
age of their alert correlation matrix technique, which corresponds
to a “knowledge base that encodes statistical correlation informa-
tion of alerts,” allows the inference of causal relationships when
the correlation coefficient between two alerts is high enough.

2. Scenario clustering - As its name suggests, this category includes
methodologies that identify groups of similar actions, considered as
potential multi-step attack scenarios, using clustering algorithms. As
it is mentioned in [Navarro et al., 2018], “The degree of similarity be-
tween traces belonging to the same scenario should be higher than the
degree between traces from different scenarios.”

3. Anomaly detection - Similarly to the anomaly detection presented
in the intrusion detection section (Section 1.3.2), these methodologies
learn the normal behavior, corresponding to normal sequences of events,
and consider any deviating sequence as an attack scenario. Hidden
Markov Models (HMM) are often used to perform such anomaly de-
tection as they model well sequences of events.

2.3.2 Causal Correlation Approaches

Navarro et al. describe causal correlation approaches as follows in [Na-
varro et al., 2018]: Scenario reconstruction “is focused on the anatomy of
multi-step sequences and the causal relationship between their steps. In
other words, previous steps determine the ones that follow, and a causal
scheme can be derived from this relationship.” The name of this category
is interesting as it merges the notions of causality and correlation, although
they are different.

According to Navarro et al.’s [Navarro et al., 2018] and Salah et al.’s [Salah
et al., 2013] studies, the main advantages of causal correlation techniques
are their ability to: highlight sequences of steps, which make results easily
interpretable by human analysts; discover slight variations of known attacks;
potentially uncover the causal relationship between events and alerts. Causal
correlation techniques are also said to be subject to false positives.

Causal correlation methodologies are divided into three groups: prerequi-
sites and consequences, statistical inference, or model matching.

1. Prerequisites and consequences - Methods from this subcategory rely
on the alert to attack knowledge correlation type previously described

2.3 a focus on attack scenario identification 43

in Section 2.2.2. They associate a set of prerequisites, also called pre-
conditions, and a set of consequences, also called post-conditions, to
each alert [Benferhat et al., 2003]. The goal is to automatically correlate
the post-conditions of an alert to the preconditions of another one to
build sequences of potential multi-step attacks. Thus, attack scenarios
are also progressively constructed in this type of methodology. The
LAMBDA language [Cuppens & Ortalo, 2000] and the JIGSAW lan-
guage [Templeton & Levitt, 2001] correspond to the references of pre-
requisites and consequences approaches. Even if this approach seems
promising, it is unfortunately impossible to precisely encode and enu-
merate all attack prerequisites and consequences into alert pre/post-
conditions.

2. Statistical inference - Methods from this subcategory learn a statis-
tical model from a training dataset, based on the frequencies of at-
tack actions and their sequences, that can, in turn, be used to detect
and/or predict attacks. Most popular statistical inference methods for
attack scenario identification are based on HMMs and Bayesian infer-
ence. The work proposed in [Ren et al., 2010] is an example of a sta-
tistical inference approach that leverages a Bayesian network to extract
causal relationships among alerts and predict future steps of ongoing
detected attacks.

3. Model matching - “Methods doing model matching assume that every
multi-step attack follows a certain structure. They model this structure
and try to find sequences that adapt to them” [Navarro et al., 2018].
Contrary to case-based methods, which rely on the expression of spe-
cific attack scenarios, model matching methods operate at a higher
level of abstraction, e.g., a model can represent the skeleton of an at-
tack scenario, such as the different stages of an Advanced Persistent
Threat [Luh et al., 2017]. Navarro et al. mentioned approaches that
rely on the formalism of HMM to model the abstract stage sequences.
Model matching methods mainly leverage alert to attack knowledge
correlation type and alert to vulnerability knowledge correlation type.

2.3.3 Structural-based Approaches

Navarro et al. describe structural-based approaches as follows in [Navarro
et al., 2018]: “Incoming traces are projected to a model of the network, where
future attack paths can be predicted.” The word structural refers to the struc-
ture of the defended network regarding its topology, cartography, and vul-
nerabilities. Structural-based methods do not depend on attackers’ actions.
They only consider the latter information. They thereby only leverage alert
to topology, cartography, and detection capability correlation type and alert
to vulnerability knowledge correlation type.

Such structural information is generally coded in the form of an attack
graph, i.e., an abstract representation of the network containing the moni-
tored system’s vulnerabilities in each node [Sheyner et al., 2002]. Incoming
alerts are then projected into the attack graph to detect attack scenarios and

44 alert correlation

predict future attack steps. This projection can be performed using different
kinds of correlation engines such as a dedicated attack graph engine [Noel
et al., 2004] [Jajodia et al., 2005] or the usage of an attack description lan-
guage and its related correlation engine [Lanoë et al., 2018].

Given that topology, cartography, and vulnerability knowledge are avail-
able, structural-based methods are easily deployed as attack graph models
can be automatically generated. They thereby represent an easy way to com-
pute alert correlation rules. However, they only contain known information
about the monitored system. Structural-based methods cannot detect un-
known attack scenarios or attack steps that do not leverage a known vulner-
ability.

2.3.4 Case-based Approaches

Navarro et al. define case-based approaches as follows in [Navarro et al.,
2018]: “Detection of well-known attack scenarios as an ensemble of traces.”
Case-based approaches represent an important part of the alert correlation
research field. The attack scenario knowledge-base can be either manually
populated by cyber defense analysts or automatically populated by lever-
aging techniques that extract attack scenarios from datasets. As we have
already mentioned before, the former method, i.e., manually describing at-
tack scenarios through their projected events and alerts on the monitored
system, is one of the most popular methodologies used in the SIEM indus-
try. This category of approaches relies on attack description languages, e.g.,
STATL [Eckmann et al., 2002], OrchIDS [Goubault-Larrecq & Olivain, 2008],
and ADeLe [Totel et al., 2004], and leverage the alert to attack knowledge cor-
relation type and the topology, cartography and detection capability correla-
tion type described in Section 2.2.2. It corresponds to the predefined scenarios
category in Salah et al.’s taxonomy [Salah et al., 2013].

Case-based methods’ main advantage is their low false positive rate. In
fact, the exact occurrence of attack scenarios is searched in the alert and event
streams. Only known attack scenarios included in the knowledge database
can be detected. Unfortunately, most of the case-based methods are limited
to IDS alerts and do not consider other events. Moreover, most approaches
do not consider the reliability of monitoring systems. In fact, a given sen-
sor might miss the detection or recording of a significant action regarding
an attack scenario. The missing event or alert would prevent case-based
approaches to identify attack scenarios included in the knowledge database.
For instance, this limitation has been addressed in [Lanoë et al., 2018], where
the authors propose a correlation engine that is able to detect incomplete at-
tack scenarios.

Due to their resemblance, prerequisites and consequences-based, model
matching-based, structural-based, and case-based can be wrongly consid-
ered as being the same methodologies. Therefore, it is important to highlight
the fact that they are different. In prerequisites and consequences approa-
ches, each step of an attack scenario is represented by an alert enriched by
its corresponding prerequisites and consequences knowledge. Attack scenar-

2.3 a focus on attack scenario identification 45

ios’ sequences are not defined. Model matching approaches define abstract
views of attack scenarios where a given view corresponds to many attack
scenario instances. Structural-based approaches leverage network-related in-
formation such as its topology and vulnerabilities to build attack graphs.
Attack graphs represent all attack paths that coherently exploit known vul-
nerabilities, according to the monitored system. Finally, case-based are man-
ually built and represent specific attacks.

2.3.5 Mixed Approaches

Navarro et al. define mixed approaches as follows in [Navarro et al., 2018]:
“More than one of the approaches are followed but none of them stands out
among the others.” In fact, many of the approaches proposed in the attack
scenario identification field leverage several techniques. A few examples of
the mixed category are presented with the following approaches. For in-
stance, HERCULE [Pei et al., 2016], presented in Section 1.4.5, has several
processing stages that fall into different categories. Its first event processing
stage falls into the attribute matching subcategory of the similarity-based’s
progressive construction category. A correlated event graph is built by ap-
plying a set Boolean logic rules, which compares event record fields, for
each pair of the normalized event set. More specifically, nodes correspond
to events, and edges correspond to the Boolean logic rules result, i.e., a
binary vector where matching rules are set to 1 and the other to 0. This
multi-dimension graph is then transformed into a flat weighted graph using
a supervised learning algorithm. This second stage of HERCULE falls into
the causal correlation’s statistical inference. Finally, a clustering algorithm is
applied to the weighted graph to group events corresponding to the same
attack scenario. In [de Alvarenga et al., 2018], the authors identify attack
scenarios in NIDS alert sets using process mining, i.e., an attribute matching
technique, and hierarchical clustering, which correspond to a scenario clus-
tering technique of the similarity-based category. The approach proposed
in [Qin & Lee, 2004b] is an example of a prerequisites and consequences
approach, coupled with statistical inference approaches. The authors pro-
pose to correlate alerts using two different techniques: a Bayesian-based
technique that relies on the hypothesis that earlier attack steps positively
affect later ones and the expert knowledge of alerts’ prerequisites and con-
sequences; a statistical analysis, which does not rely on expert knowledge,
based on the hypothesis that alerts have temporal and statistical patterns.

Previous sections presented a holistic view of the alert correlation’s defini-
tion, process, and technique diversity. So far, its challenges and limitations
have not been exposed yet.

46 alert correlation

2.4 alert correlation’s challenges and limitations

Section 2.4 discusses the challenges faced by security monitoring, and,
more specifically, the challenges and limitations of alert correlation.

First of all, as we have seen at the end of the first chapter, computer sys-
tems are becoming more and more complex. Elaborating a monitoring strat-
egy for such environments is the first challenge. For instance, monitoring
systems’ clocks have to be synchronized to analyze produced events con-
veniently. Otherwise, the chronological order of observed actions could be
altered.

A second challenge is the detection of single-step attacks. In fact, indi-
vidual steps composing a multi-step attack might be missed by deployed
monitoring systems. This may be caused by deployment or configuration
limitations, e.g., the lack of observation means for a given abstraction layer,
or technical limitations, e.g., current detection capabilities [Chen et al., 2006].

Another challenge lies in the nature of multi-step attacks: the time interval
between consecutive attack steps can be very high, i.e., hours, days, or even
months [Chen et al., 2006].

The following paragraphs present in more detail the current limitations of
alert correlation, namely, the fact that expressing dreaded attack scenarios
is a difficult task and that proposed alert correlation approaches often exclu-
sively rely on NIDS alerts. Then, the necessity to consider heterogeneous
events to detect and understand better multi-step attacks is highlighted. Fi-
nally, we present our opinion regarding the relation between alert correlation
and the concept of causal dependency relationships among events.

2.4.1 Expressing a Dreaded Scenario is Hard

As we have previously mentioned, the alert and event correlation research
field is directly linked to the security monitoring industry, i.e., the SIEM
industry. Even though many different kinds of approaches have been pro-
posed, as it has been illustrated in the previous section, classical SIEM tech-
nologies apply rule-based correlation based on expert knowledge [Navarro
et al., 2018], i.e., case-based approaches relying on alert and event correla-
tion languages. In other words, current SIEM practices rely on the explicit
expression of correlation links between alerts and events.

On the Attacker’s Perspectives. In order to elaborate event correlation rules
for attack scenario identification, cyber defense analysts need to think like
attackers. This is already a challenge because being exhaustive in the listing
of possible attack seems impossible. In fact, attackers can elaborate multiple
attack plans in parallel and choose to continue or stop them according to
their possibilities [Qin & Lee, 2004b]. They might not need to follow a precise
order to perform their attack, which implies that possible action sequences
can be complex. Moreover, attackers try to evade detection by performing
actions that are incoherent with their previous actions.

2.4 alert correlation’s challenges and limitations 47

Merging the Defender’s and the Attacker’s Perspectives. Detecting multi-
step attack scenarios rely on the capability to infer the single-step attacks
that make them up, together with the links between them. In practice, alert
and event correlation rules are considerably difficult to formulate because
cyber defense analysts have to combine the attacker’s perspective by build-
ing possible attack scenarios and representing them with attack description
languages, as described in Section 2.3.4; as well as the defender’s perspective
by having a precise knowledge of the system to defend, i.e., its topology,
cartography, vulnerabilities, known attacks, and detection capabilities. The
combination of these points of view enables them to project the attack steps
based on the set of observable events that the deployed monitoring systems
can produce; accordingly, they can explicitly frame the sequence of events
that represents the attack.

Additionally to the efforts needed to write alert and event correlation rules,
rules are static. Considering the fact that an organization’s network can be
dynamic, the fact that rules are static represents another limitation. Rules
have thereby to be manually updated to correspond to the new state of the
monitored network.

Moreover, according to Godefroy [Godefroy, 2016], the availability of cor-
relation rules are taken for granted. Consequently, only a few research work
focus on the different ways of writing correlation rules.

Towards Automatic Correlation Rule Generation. In order to address these
issues, recent work aim to perform automatic alert and event correlation rule
generation. For instance, the authors of [Godefroy et al., 2015a] propose to
simplify the process of event correlation writing by dissociating: (1) the at-
tack scenario specification from the knowledge of the monitored system; (2)
leveraging a knowledge database, such as M4D4 for instance [Morin et al.,
2009], which contains organized information on the monitored system, i.e.,
its topology, cartography, vulnerabilities, and deployed monitoring systems.
Different teams of information cyber defense analysts can thereby focus on
either of the points of view. Following their methodology, attack scenarios’
specifications are then semi-automatically translated into explicit alert and
event correlation rules according to the information contained in the knowl-
edge base.

Another example of automatic correlation rule generation is the usage of
attack graphs [Jajodia & Noel, 2010]. Using a similar knowledge database as
the previous presented approach, an attack graph can be used to represent
all possible observable attack paths according to the deployed monitoring
systems in the monitored system. These observable attack paths can, in turn,
be automatically translated into explicit alert and event correlation rules.

Towards Automatic Attack Scenario Detection Methods. Much hope is being
placed in automatic attack scenario detection methods, i.e., automatically
constructing attack scenarios from alerts [Ning & Xu, 2010]. Such methods
would ideally reduce the time spent by cyber defense analysts in potential
threats investigation and avoid human errors in the attack signatures de-
velopment [Navarro et al., 2018]. Based on the fact that most dangerous
attacks only happen rarely, datasets have a few examples of multi-step at-

48 alert correlation

tacks. Therefore, it is difficult to apply automatic attack scenario detection
methods, which are based on learning techniques.

2.4.2 IDS Alerts’ Exclusivity

Simplifying the Translation of Dreaded Attack Scenarios. In Section 2.4.1,
we have seen that cyber defense analysts have to explicitly and specifically
frame the sequence of events that represents an attack scenario. When this
process is done through the expression of a dreaded scenario, the transla-
tion from the high abstraction level view to the alerts and events sequence
that represents it is very difficult. This translation is often omitted, e.g., risk
assessment approaches presented in Section 1.1.1, or simplified by only us-
ing NIDS alerts, for instance [Godefroy, 2016]. Attack graphs also illustrate
that issue. The vast majority of attack graph-based approaches only consider
alerts. More specifically, these alerts correspond to the monitored system’s
known vulnerabilities. As attack graphs rely on topology information, the
considered alerts generally correspond to NIDS alerts.

On Events’ Informational Quality. Alert correlation’s efficiency greatly de-
pends on the informational quality of produced events. In fact, “detection
methods count only with a limited amount of information, such as the one
contained in events or network packets, to infer attack scenarios.” [Navarro
et al., 2018]. For instance, IDS alerts generally do not contain explicit infor-
mation about their triggering root cause [Salah et al., 2013].

Unfortunately, a majority of approaches only correlate alerts, particularly
NIDS alerts. Navarro et al.’s study “A systematic survey on multi-step at-
tack detection” illustrates it well [Navarro et al., 2018]. 85% of the 181 pub-
lications they reviewed propose approaches that exclusively leverage alerts.
This high percentage could be explained by the lack of public datasets con-
taining heterogeneous events.

The Majority of Available Datasets Only Contain NIDS Alerts. Obtaining
datasets to evaluate proposed approaches is also difficult. Authors often
rely on public datasets that contain poor heterogeneity of event types, i.e.,
they generally only contain NIDS alerts. As a matter of illustration, the vast
majority of the approaches presented in Navarro et al.’s multi-step attack
detection survey [Navarro et al., 2018] assess their approach on the famous
DARPA 2000 dataset4. The fact that the famous dataset DARPA 2000 con-
tains alerts exclusively might have greatly influence alert correlation research
directions. In fact, many publications of this survey, i.e., 87 out of the 181,
use the DARPA 2000 dataset for their experiments.

2.4.3 The Need for Heterogeneous Event Correlation

In fact, attackers attempt to be as stealthy as possible to avoid triggering
IDS alerts. Moreover, as we have previously mentioned, attack scenarios are

4 https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-sp

ecific-datasets

https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets

2.4 alert correlation’s challenges and limitations 49

sequences of single-step attacks. Such single-step attacks might correspond
to harmless steps or legitimate actions outside of the context of the attack.
Thus, similarly to Bass [Bass, 2000] and Yusof et al. [Yusof et al., 2008], we
argue that considering IDS alerts solely is not sufficient to conduct attack
scenario detection. Single-step attacks can be observed by IDSs, general-
purpose monitoring systems, or both. The last ones can provide critical
contextual information to enable the understanding of the full picture of an
attack scenario. Consequently, heterogeneous event correlation is needed.

Heterogeneity of data sources has been studied early in the alert and event
correlation research field [Welz & Hutchison, 2001]. Valeur et al. already in-
cluded such correlation capabilities in their functional architecture through
the attack session reconstruction component [Valeur et al., 2004]. Its goal is
to link network-based and related host-based alerts. Chyssler et al. pro-
posed an alert and event correlation process that leverages Snort, Samhain,
and Syslog events [Andersson et al., 2002]. In the same year 2004, Li et
al’s proposed UCLog [Li et al., 2004], which organizes audit logs from het-
erogeneous sources, i.e., system calls and network packet captures, to take
advantage of their naturally existing correlation. In [Dreger et al., 2005] and
[Almgren & Lindqvist, 2001], the authors propose to enhance NIDS events,
e.g., Bro NIDS events, with host-based context. More specifically, they mod-
ified an Apache web server to enable the cooperation with the NIDS. In
that sense, they propose to correlate network-based and application-based
events.

Heterogeneous events correlation’s benefits are multiple. First, it allows
the reduction of alerts number that cyber defense analysts must address by
grouping events that correspond to the same incident. Additionally, it can
enhance detection capabilities by giving several points of view of the overall
attack, thus allowing cyber defense analysts to get a more holistic view of
the incident, and improving the detection confidence. This property is also
called adaptive scrutiny [Dreger et al., 2005], i.e., heterogeneous monitoring
systems provide complementary indications and coverage that allow enhanc-
ing the detection confidence. As we have previously mentioned, a priori le-
gitimate events can be part of an attack scenario. Even though these events
can seem innocuous, they can be included in the heterogeneous events anal-
ysis to determine whether they relate to an attack or not. Finally, heteroge-
neous monitoring systems also contribute to anti-evasion, as attackers will
have to increase their efforts to evade all the different types of monitoring
systems.

2.4.4 The Lack of a Clear Definition of the Links among Events

Leveraging data generated by diverse monitoring systems and IDSs de-
ployed in several critical places of the monitored system would ideally make
the explanation and detection of attack scenarios easier. As a reminder, a cy-
ber defense analyst starts his investigation by building the set of events that
are linked to a given event of interest, e.g., an IoC like an IDS alert. Accord-
ingly, the cyber defense analyst attempts to identify links among the events
to retrieve those that correspond to the traces of the attacker’s actions in the

50 alert correlation

monitored system. Indoing so, he also attempts to reconstruct the attack sce-
nario related to the event of interest. Previous work presented in the attack
scenario identification section (Section 2.3) aims at building these connections
among events and between attack steps and helping cyber defense analysts
in their attack investigation task. In practice, this type of link is not trivial
to define and discover, especially when considering heterogeneous events.
Hence, there is a real necessity to formally describe and define the semantics
of these links in the literature. Navarro et al. also emphasized this issue in
their survey on multi-step attack detection [Navarro et al., 2018]. According
to them, the diversity of proposed methods illustrates the fact that “the re-
search community still does not know how to provide a solid definition of a
link between the steps of an attack.” Looking for correlations among events,
our research led us to the notion of causal dependencies among heteroge-
neous events. We argue that the link definition our research community is
looking for corresponds to a causal dependency among events.

The Search for Causality. As the discipline’s name suggests, it is important
to emphasize the fact that finding links between alerts and events relies on
correlation, which is different from causality. In fact, correlations between
alerts and events do not imply the existence of causal dependency relation-
ships between them. However, we argue that attack scenario identification
techniques ideally aim at identifying and highlighting actions performed by
an attacker, as well as the cause–effect relationships among them, through
alerts, events, and context analysis. Of course, the different correlation cate-
gories presented are more or less close to causal reasoning. This section aims
to present how much the attack scenario identification technique categories
are related to causal reasoning.

As it is, the relationship between the taxonomy proposed in [Navarro et al.,
2018] and the concept of causality is not straight forward. Let’s review all
its categories from the perspective of causality.

Similarity-based Methods and Causality. Generally, similarity-based meth-
ods do not imply causal dependencies among events. However, even if this is
not explicitly mentioned in their study, Navarro et al. seem to consider that
attack scenario identification approaches leveraging information flow-based
techniques at the operating system level falls into this category. Contrary to
the other types of approaches in the similarity-based category, we argue that
information flow-based techniques directly deal with causal dependencies.
The next chapter will present information flow-based techniques in more
detail.

Causal Correlation Methods and Causality. As the category’s name sug-
gests, the methods classified into the causal correlation category are really
close to causal dependencies. When an alert’s preconditions match another
one’s post-conditions, the two alerts are likely to be causally dependent, i.e.,
the related action of the first alert prepares for the conditions needed to
perform the action that triggers the second alert. Statistical inference tech-
niques aim to capture the implicit causal relationships between alerts and

2.4 alert correlation’s challenges and limitations 51

events. For instance, HERCULE aims to infer causal dependency relation-
ships among events that are part of the same activity, either malicious or
benign, i.e., events pertaining to the same community should be causally
linked [Pei et al., 2016]. Considering model matching techniques, two alerts
with similar features that correspond to two consecutive attack stages are
likely to be causally linked.

Structural-based Methods and Causality. Regarding structural-based meth-
ods, the attack paths included in an attack graph represent potential attack
scenarios. Two alerts pertaining to a given attack path within a predeter-
mined time window are likely to be causally dependent.

Case-based Methods and Causality. Regarding case-based methods, we
have seen that attack description languages, or in other words, alert and
event correlation languages, allow the precise and specific description of at-
tack scenarios. There is thereby a close relationship between the knowledge
of attack scenarios and causal reasoning: given an attack scenario they want
to express, cyber defense analysts know the logical progressions of the at-
tacker’s actions. More specifically, they know the cause–effect relationships
among them and can, therefore, transfer and express this knowledge into
alert and event correlation rules that capture causal dependency relation-
ships. Overall, leveraging attack knowledge allows attack scenario identifi-
cation methods to highlight causal dependency relationships among events
explicitly.

Towards the Study of Causal Dependency Relationships in Computation. In
the previous paragraphs, we shared our opinion regarding alert correlation:
we highlighted the fact that all the alert and event correlation techniques ded-
icated to attack scenario identification ideally aim to discover causal depen-
dency relationships among events. In fact, apart from statistical inference,
very few methods focus on the specific computation of causal dependencies
among events in the alert correlation research field. From this observation,
we guided our work towards the search of causality with the following idea
in mind: if causal dependency relationships among events can be defined
and computed, the discovery of attack scenarios translates to simple graph
traversals. Such graphs correspond to causal dependency graphs with events
as nodes and causal dependency relationships as directed edges. The next
chapter presents how causal dependency relationships have been studied in
other research fields such as the distributed systems, the information flow,
and the provenance communities.

52 alert correlation

2.5 summary

Following the first chapter, which has introduced the reader to the concept
of observation in the general and security monitoring contexts, Chapter 2

presents the alert correlation research field.

Addressing Monitoring Systems’ Limitations. Briefly, alert correlation makes
up for IDSs and monitoring systems limitations in the security monitoring
context. It has several roles: solving alert flooding issues, reducing false
positive and false negative rates, aggregating alerts or events corresponding
to the same action, and above all, enabling the discovery and enhancing the
understanding of complex attacks made up of multiple steps.

Alert Correlation’s Definition. Delving deeper into the concepts surround-
ing alert correlation, we defined and presented the concept of correlation
in Section 2.2. This section presents alert correlation functional architecture,
which is made up of four components, namely, pre-treatment, verification,
aggregation, and impact and priority analysis. These four components in-
volve different types of correlation approaches. More specifically, alerts and,
more generally, events, can be correlated to different types of information:
descriptive information of the monitored system such as its topology, car-
tography, vulnerabilities and observation capabilities; attack knowledge; or
any other events. Many approaches have been proposed, especially for at-
tack scenario identification, which is part of the aggregation component. In
particular, the main categories of attack scenario identification methods have
been presented in Section 2.3.

Alert Correlation’s Limitations. Following the global presentation of alert
correlation, we have discussed alert correlation’s limitations and highlighted
the necessity to consider heterogeneous events, i.e., events emanating from
different abstraction layers, to fully comprehend complex multi-step attack
scenarios in Section 2.4. More specifically, we presented our opinion re-
garding the relationship between alert correlation and the concept of causal
dependency relationships among events. Following the description of the
various attack scenario identification method categories, we concluded that
the community does not provide and converge to a clear definition of the se-
mantics of the relationships among events. Our opinion is the following: all
the alert and event correlation techniques dedicated to attack scenario identification
ideally aim to discover causal dependency relationships among events. Thus, the
relationships among events correspond to causal dependencies. The ratio-
nale is that defining these causal dependencies and enabling their computa-
tion would simplify the attack scenario identification process. Our research
thereby led us to the study of causal dependencies computation among het-
erogeneous events in a broader context than security monitoring. The next
chapter presents how causal dependency relationships have been studied
in other research fields such as distributed systems, information flow, and
provenance.

3 C A U S A L D E P E N D E N C I E S — I N T H E
S E A R C H O F T H E H O LY G R A I L

The last chapter introduced the reader to the alert correlation research
field. Its different components have been presented and defined. In par-
ticular, we have paid close attention to one of its objectives: identifying
multi-step attacks. Going through the alert correlation’s state of the art, we
highlighted and argued the fact that this objective relies on causal reasoning.
Therefore, our research naturally led us to the study of causality in a broader
context than security monitoring.

This chapter is dedicated to the study of causal dependency relationships
in computation. Section 3.1 starts by laying the foundational concepts sur-
rounding causality, namely, causes and effects, counterfactuality, and causal
reasoning. Then, it introduces the reader to the particularity of causal de-
pendency relationships regarding the context of a computer system: causal
dependencies can be either internal or external. More specifically, internal
causal dependencies can be perceived by the system, e.g., information flows
among the system’s entities. On the other hand, external causal dependen-
cies happen in the physical world the computer system interacts with. In
fact, external causal dependencies are hard to identify. Moreover, identifying
internal causal dependencies seems to be already promising regarding the
objective of discovering multi-step attack scenarios. Thus, we focused our re-
search on internal causal dependencies. Our research led us to study causal-
ity in the distributed systems (Section 3.2), information flow (Section 3.3),
and provenance (Section 3.4) research fields. More specifically, Section 3.2
and 3.3 present the two models our work is inspired from, i.e., Lamport’s
happened-before relationship and d’Ausbourg’s causal dependency relation-
ship, respectively.

3.1 causality primer

So far, we have studied attack investigation from the perspective of se-
curity monitoring. To attain their goal, cyber defense analysts seek to un-
derstand, explain, and diagnose the causes and effects of a suspicious event.
Doing so, they are reasoning about causality and do the best they can to infer at-
tack scenarios and their impact. In practice, their causal reasoning relies on
the identification of causal dependencies among the heterogeneous events
emanating from the monitored system.

The concept of causal dependence among events is difficult to define and,
more generally, all the concepts surrounding causality may lead to confusion.
This first section starts by introducing them.

54 causal dependencies—in the search of the holy grail

The concept of causality has long been discussed in various disciplines,
from philosophy, legal reasoning to computer science. Defining “what it
means for an event1 A to be an actual cause of an event B” is subtle.

3.1.1 Cause, Effect, Counterfactuality and Causal Dependency

Let’s start by defining the notions of cause and effect. According to Oxford’s
English dictionary, their definitions are the following:

Definition 3.1 - Cause: “A person or thing that gives rise to an action, phe-
nomenon, or condition.”

Definition 3.2 - Effect: “A change which is a result or consequence of an action
or other cause.”

Many definitions of the concept of causality have been proposed. Its most
basic definition is based on the concept of counterfactual dependence. Coun-
terfactuality addresses the question “what if something had been different
in the past” [Halpern, 2006] [Lewis, 2013]. Using this concept, causality is
defined as the following:

Definition 3.3 - Causality: “A is a cause of B if, had A not happened (this is
the counterfactual condition, since A did in fact happen), then B would not have
happened.” More formally, (A =⇒ B) ⇐⇒ (A =⇒ B).

Although this definition is simple, we do not need a more complex and
complete definition than the one based on counterfactuality in the context
of our research. The reader may refer to Pearl’s book “Causality: mod-
els, reasoning and inference” [Pearl, 2000] for more complete definitions of
causality.

Defining Causal Dependency Relationship

In the previous chapter, we have already introduced the concept of causal
dependency as the relation between cause and effect. However, as it is, the
proposed definition of causality (Definition 3.3) seems to refer to the notion
of event exclusively. Following the definition of cause (Definition 3.1), we can
notice that the definition of cause applies to a larger context than events. The
definition of causality thereby encompasses a larger scope, i.e., A and B do
not have to be events, using the casual definition of “event,” to be a cause or
an effect.

Given a cause A and its effect B, B is said to be causally dependent on A.
For example, if an event E needs an object O to be in a particular state to
happen, then E is causally dependent on O. Thus, there are various kinds of
causal dependency according to the nature of the causes and effects. This
is well illustrated by the Open Provenance Model presented in Section 3.4.2.
Different types of causal dependency relationships will be presented in the
following sections and chapter.

1 In this sentence, the word event refers to its casual definition, i.e., anything that happens. It
does not correspond to the definition of Chapter 1.

3.1 causality primer 55

3.1.2 Causal Reasoning, Inference and Core Notions

In practice, reasoning about causality relies on underlying notions such as
time: a cause always precedes its effect. In [Kayser & Lévy, 2009], Kayser et
al. highlight these underlying notions which they call core notions. The fol-
lowing list describes the ones we are interested in considering our research
context:

time - It can be viewed in two ways: (1) as an order, i.e., the cause precedes
the effect; (2) as a metric, i.e., given a presumed cause, the fact that the
effect happens too long after might be a hint that the effect has another
cause.

counterfactuality - As we have already mentioned, many causality def-
initions are based on counterfactuality.

correlation - “The repetition of A followed by B is a strong hint of a
causal relation between A and B.”

necessary connection - “When a correlation is non accidental, it wit-
nesses a causal relation, and we have a clear intuition of what is acci-
dental and what is not.”

coherence - “Detecting incoherence among a set of observations is a strong
incentive to challenge an alleged causal relation. Furthermore, a causal
analysis is required when there is incoherence between our observa-
tions and our expectations.”

Core notions are non causal concepts. However, they are needed to define
and understand causality. More specifically, they are the tools needed to
reason about causality and draw conclusions about the analyzed situations.

Causal Reasoning and Causal Inference

The “simple” exercise of defining the concept of causality is interesting. It
caused us to reason about the notions of cause and effect. This analysis corre-
sponds to the concept of causal reasoning. More specifically, reasoning about
causality enables causal inference, i.e., drawing conclusions about the rela-
tion between the cause(s) and effect(s) by leveraging our knowledge. Causal
reasoning and causal inference are thereby strongly linked.

Delving deeper into causal reasoning, we can observe that it relies on three
types of reasoning, namely the deductive, inductive, and abductive reason-
ings. These different types of reasoning have been studied for a long time
regarding the history and philosophy of science. More specifically, the fact
that deductive and inductive reasonings lead to different knowledge claims
is well settled [Herley & Van Oorschot, 2017]. Let’s define these different
types of reasoning.

deductive reasoning - Deriving logical conclusions from premises known
or assumed to be true, i.e., a self-consistent set of axioms. One of the
famous examples of deductive reasoning is the following:

56 causal dependencies—in the search of the holy grail

All men are mortal (1st axiom) Socrates is a man (2nd axiom)
Therefore, Socrates is mortal (conclusion)

inductive reasoning - “Drawing conclusions about the empirical world
using observations and inferences from those observations” [Herley &
Van Oorschot, 2017]. It is important to emphasize that the observations
used to infer conclusions might not be representative of the empiri-
cal world. For example, one can inductively infer that “all swans are
white” after observing n white swans:

Swan1 is white Swan2 is white ... Swann is white
Therefore, all swans are white

However, inferred rules from inductive reasoning can always turn out
to be wrong when encountering an observation that violates the rule.
For example, the observation of a black swan makes the inductive in-
ference rule “all swans are white” wrong.

abductive reasoning - “Abduction, or inference to the best explanation,
is a form of inference that goes from data describing something to a
hypothesis that best explains or accounts for the data” [Josephson &
Josephson, 1996]. Abduction follows the following kind of pattern:

D is a collection of data (facts, observations, givens)
Hypothesis H explains D (would, if true, explain D)
No other hypothesis can explain D as well as H does

Therefore, H is probably true

The research work presented in this thesis relies on the deductive and
abductive reasonings.

Causality Purposes

We apply causal reasoning in everyday life for many different purposes.
Kayser et al. highlighted them when presenting their causal reasoning in-
sights in [Kayser & Lévy, 2009]. For instance, causality can be sought when
trying to make sense of a situation or to predict its outcome. The following
list illustrates some of the purposes of causality that are interesting in the
context of our research:

goal-directed reasoning - Setting up a sequence of actions to reach an
objective. For instance, counter-acting the identified attacker’s plan.

sense-making - Applying abductive reasoning on the observed effects to
presume their causes;

diagnostic - “Causal reasoning enables: (1) circumscribing the possible
faulty components when a system behaves improperly; (2) finding a
sequence of tests to determine what has to be done.” ;

explanation - “Filling some holes in the prior knowledge of the addressee.”
Two scenarios can be considered: (1) given that the addressee knows

3.1 causality primer 57

that A causes B, why A is true has to be explained. This generally im-
plies the need for a transitive chain of causal relations; (2) given that
the addressee knows that A is true, the fact that A causes B has to be
explained;

prediction - Anticipating the future or imagining the effects of a decision.
Decision-making thereby strongly relies on causal reasoning.

These different purposes can be closely interrelated. In fact, sense-making
can be seen as the hidden goal of diagnostic and explanation. Moreover,
explanation supports diagnostic. In the context of our research, explanation,
sense-making, and diagnostic are the main purposes a cyber defense ana-
lyst is using when investigation an attack. For instance, when investigating
an alert, the verification process relies on sense-making by checking the ve-
racity of the alert according to the monitored system context. The analyst
can then try to retrieve the causal chain of the attacker’s actions through
alert correlation approaches. This involves the explanation causality pur-
pose. Goal-directed reasoning and prediction apply when the cyber defense
analyst identifies the actions needed to recover from an attack and assesses
the impact of these actions on the production environment.

3.1.3 Causal Dependency Relationships in Computer Systems

Internal and External Causality

So far, we have presented the concept of causality, and causal dependen-
cies, in a general context. However, it is necessary to further refine it to
properly make sense of it in computer systems, and in the context of our re-
search. In fact, we can consider that there are two types of causality [Baquero
& Preguiça, 2016]:

internal causality - Causal dependencies that can be perceived inside
the monitored system, e.g., information flows among information con-
tainers or message exchanges inside a distributed system.

external causality - Causal dependencies that cannot be perceived in-
side the monitored system. Indeed, the monitored system interacts
with the physical world (e.g., users interact with it), and there are also
causal dependencies that cannot be perceived inside the system.

The example presented in [Baquero & Preguiça, 2016] by Baquero et al.
illustrates well external causality. Let’s consider a couple planning a night
out using a system that manages reservations for restaurants and movies.
One person makes the reservation for dinner and calls the second one to let
her know. Following the phone call, the second person goes to the same
system and makes the reservation for a movie. The first reservation actually
caused the second one. However, the system has no way of knowing that. It
is thereby an external causality and can only be approximated by physical
time. Indeed, time can, at best, only totally order all events, whether related
or not. It cannot substitute causality.

58 causal dependencies—in the search of the holy grail

Regarding our research context, multi-step attack scenarios are made up
of both internal and external causality. As an illustration of external causality
in the context of a multi-steps attack scenario, let’s consider an attacker that
already gained a foothold inside the monitoring network. The attacker could
gain knowledge about its target through data collection (e.g., shared network
drives) and perform its next attack step based on this knowledge. These two
attack steps are causally dependent, the first one being the cause of the
second one. However, the monitored system cannot perceive it.

Causal Dependencies Computation Strategies

Causal dependencies computation strategies naturally depend on the con-
sidered type of causality. As the goal of our research is to help the cyber
defense analyst by providing him with the set of events that are causally de-
pendent on a suspicious event (e.g., an alert or an indicator of compromise),
we are especially interested in the explanation and diagnostic causality pur-
poses. More specifically, we are interested in tracking causal dependencies
among heterogeneous events. First of all, to achieve this goal, causal depen-
dencies have to be identified. Computation strategies can mainly be cate-
gorized into two groups: (1) discovering causal dependency relationships
knowledge through data analysis; and (2) explicitly highlighting causal de-
pendencies.

Discovering causal dependency relationships knowledge through data analy-
sis. This category leverages data analysis techniques such as statistical tech-
niques, i.e., techniques from the statistical inference subcategory of “causal
correlation” approaches presented in Section 2.3.2.

Used techniques include Bayesian networks [Ren et al., 2010], or Granger
causality when data is modeled as time series [Qin & Lee, 2004b]. Consider-
ing attack scenario identification, such techniques have mainly been applied
to the analysis of NIDS alerts in the alert correlation literature. The advan-
tage of this category is that it enables the discovery of both internal and
external causality. However, obtaining a relevant dataset is hard, especially
when considering datasets made up of heterogeneous events.

Explicitly highlighting causal dependencies. Case-based approaches well il-
lustrate this category. In fact, such an approach can capture the external and
internal causality relationships among events, as described in the paragraph
“The Search for Causality” in Section 2.4.4.

Similarly to case-based approaches that explicitly correlate events using
event correlation rules, distributed systems’ logical clocks approaches (pre-
sented in Section 3.2), and information flow approaches (presented in Sec-
tion 3.3) allow to track explicit causal dependencies. However, contrary to
case-based approaches that express specific dreaded attack scenarios through
attack description languages, these approaches directly describe causal de-
pendencies among entities of the monitored system. Thus, they enable the
tracking of causality throughout the system. Unfortunately, this tracking is
limited to internal causality only.

3.2 temporal causality in distributed systems 59

The work presented in this manuscript mainly focuses on internal causal-
ity and approaches that explicitly highlight causal dependencies. The fol-
lowing sections introduce the reader to causal dependency computation in
the distributed systems, information flow, and provenance research fields.

This first section presented the different concepts surrounding causality
and causal dependency. More specifically, we introduced counterfactuality,
the core notions underlying causality, the deductive, inductive, and abduc-
tive reasonings that support causal reasoning, the various purposes of causal-
ity, and the specificities of causal dependencies in the context of computer
systems. Following sections present how the concept of causality has been
studied in different research fields. The next section is dedicated to dis-
tributed systems.

3.2 temporal causality in distributed systems

In 1978, Lamport published “Time, Clocks, and the Ordering of Events in
a Distributed System,” a seminal work in the field of distributed computing
theory [Lamport, 1978]. Lamport emphasizes that it is impossible to capture
a total ordering of actions in a distributed computation. Indeed, most actions
that arise in distributed systems cannot be ordered because of the lack of a
global clock in the system.

Beyond the study of the specific temporal properties of distributed sys-
tems, Lamport’s work has been the stepping stone to the study of causality
in distributed computation. As we are interested in finding causal depen-
dencies among events, our research naturally led us to study the concept of
causality in the distributed systems research field.

This section presents the research field of distributed systems with the
perspective of causal reasoning. It starts by defining what distributed com-
putation is. Then it presents why causality is needed for distributed compu-
tation. Finally, it introduces the reader to Lamport’s happened-before rela-
tionship and the different concepts surrounding the notion of logical clocks,
also called logical time.

3.2.1 Defining Distributed Computation

The research field of distributed computation was born out of the interest of
researchers and practitioners to “take into account the intrinsic characteristic
of physically distributed systems” [Raynal, 2013], as well as the need to
understand how to design, realize and test them [Schwarz & Mattern, 1994].
In his book “Distributed Algorithms for Message-Passing Systems,” Raynal
defines distributed computation as the following [Raynal, 2013]:

Definition 3.4 “Distributed computation arises when one has to solve a problem
in terms of distributed entities (usually called processors, nodes, processes, actors,
agents, sensors, peers, etc.) such that each entity has only partial knowledge of the
many parameters involved in the problem that has to be solved.”

60 causal dependencies—in the search of the holy grail

Distributed computation can occur either in a close location (e.g., with
concurrent processes running on a single machine, or several nodes inside a
data-center), or different locations spread across the globe (e.g., geographi-
cally distributed databases).

3.2.2 Why is Causality Needed for Distributed Computation?

“These days hardly any service can claim not to have some form of dis-
tributed algorithm at its core” [Baquero & Preguiça, 2016]. Distributed sys-
tems are everywhere and their capabilities naturally rely on the quality of
the distributed algorithms that run on them. In fact, the concept of causal
dependencies among actions is fundamental to the design of distributed al-
gorithms. It helps to solve various problems in distributed systems such
as [Raynal, 2013]:

• The design of distributed algorithms, e.g., maintaining consistency in
replicated databases or detecting deadlocks;
• The tracking of dependent events which can be leveraged to model the

behavior of a distributed system and perform anomaly detection, as
previously described in Section 1.4.5;
• The measure of progress of other processes to perform garbage collec-

tion of obsolete information or detect termination for example.

These few examples illustrate how important causality is in the distributed
systems research field.

3.2.3 Temporal Causality Relationship—Lamport’s Happened-Before Re-
lationship among Actions

In order to study distributed systems, the research community converged
to a simple, yet sufficient model to reason about causality in distributed
systems.

Distributed Systems’ Model

A distributed computation is considered as a collection of single-threaded
processes that: (1) can solely communicate through message exchanges; (2)
are disjoint, i.e., processes do not share a common memory. Each process
produces a sequence of totally ordered actions determined by a local algo-
rithm. Actions can be either: sending a message; receiving a message; or
simply an internal action, e.g., a function call. In a distributed system, the
message transmission might suffer from a non-zero delay; First in first out
order is not assumed for message delivery; The availability of perfectly syn-
chronized local clocks, i.e., a global clock, is not assumed. Generally, only
relevant actions are considered. “The concurrent and coordinated execution
of all local algorithms forms a distributed computation” [Schwarz & Mat-
tern, 1994].

3.2 temporal causality in distributed systems 61

Happened-Before Relationship and Causality

In order to reason about the ordering of actions in distributed computa-
tion, Lamport defined a relationship called happened-before. This relationship,
denoted by “≺,” enables the construction of a partial order on the set of ac-
tions that are performed by the concurrent running processes. It is defined
as follows: Given two distinct actions, a and b, a ≺ b is true:

1. if a and b are actions produced by the same process, and a comes
before b;

2. or if a is the sending of a message m by a process, and b is the receipt
of the same message m by another process;

3. or if ∃ c / a ≺ c and c ≺ b.
Two distinct actions, a and b, are regarded as concurrent (denoted a||b) if
a 6≺ b and b 6≺ a. The advantage of the happened-before relationship is
that it does not rely on a global clock to order the actions; this is particularly
important in the context of distributed systems where having local clocks
synchronized is particularly difficult.

Lamport’s relationship is often referred to as the causality relationship, as
Schwarz and Mattern do in their paper “Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail” [Schwarz & Mat-
tern, 1994]. In fact, a ≺ b means that it is possible that action b is causally
dependent on action a, a being any action that satisfies a ≺ b.

P1 tP1

aP1

1 aP1

2 aP1

3 aP1

4

P2 tP2

aP2

1 aP2

2 aP2

3

P3 tP3

aP3

1 aP3

2 aP3

3

Figure 3.1: Space-time diagram of a distributed computation made up of three pro-
cesses.

A distributed computation can conveniently be visualized with space-time
diagrams. Figure 3.1 shows a simple example of distributed computation
with three processes. Each process has its own timeline, i.e., with its own
local clock, depicted, as well as the sequential actions it performs. Messages
are represented by arrows connecting send actions to their corresponding
receive actions. In this example, we can visualize the fact that aP1

1 may
causally affect all the following actions of P1, as well as all the actions of P2.
On the other hand, aP2

2 cannot causally affect P3’s actions.

3.2.4 Distributed Systems and Logical Clocks

Causal History and Causality Tracking

Thanks to the happened-before relationship, the tracking of causal depen-
dencies among actions can be easily done using causal histories. Each action a

can be assigned to its causal history H(a), a set containing all actions which

62 causal dependencies—in the search of the holy grail

causally precede a [Schwarz & Mattern, 1994]. More specifically, given A the
set of actions of a distributed computation, H(a) = {a ′ ∈ A|(a ′ ≺ a)}∪ {a}.

P1 tP1

{ a
P1
1 } { a

P1
1 , a

P1
2 } { a

P1
1 , a

P1
2 , a

P1
3 } { a

P1
1 , a

P1
2 , a

P1
3 , a

P3
2 , a

P1
4 }

P2 tP2

{ a
P1
1 , a

P1
2 , a

P1
3 , a

P2
1 } { a

P1
1 , a

P1
2 , a

P1
3 , a

P2
1 , a

P2
2 } { a

P1
1 , a

P1
2 , a

P1
3 , a

P2
1 , a

P2
2 , a

P2
3 }

P3 tP3

{ a
P3
1 } { a

P3
1 , a

P3
2 } { a

P3
1 , a

P3
2 , a

P3
3 }

Figure 3.2: Causal histories of a distributed computation made up of three pro-
cesses.

Figure 3.2 represents the same example of distributed computation and
illustrates the causal histories of each action. Each process locally keeps its
causal histories. Each time a process performs a send action, it also sends
the causal history of the send action. For instance, the causal history of
aP2

1 corresponds to the merging of the causal history of the send action aP1

3

with the local history, which corresponds to {aP2

1 }. Causality tracking is
straightforward, thanks to causal histories. Indeed, two actions a and b are
said to be causally linked when a ∈ H(b) or b ∈ H(a).

The simple concept of causal history can already be leveraged to perform
useful tasks such as intrusion detection. In fact, some of the approaches pre-
sented in the Event Monitoring section (Section 1.4.5) rely on causal histories
to build behavior models [Lanoë et al., 2019].

As it is, causal histories are not very compact as their size is of the order
of the total number of actions that occur during the distributed computation.
The following paragraphs present how they can be represented with more
compact representations, i.e., logical time or logical clocks [Raynal, 2013].

Linear Time

Linear time, also called scalar time, has been proposed by Lamport [Lam-
port, 1978]. Each action a is associated to a logical date date(a), which is con-
sistent with the happened-before relationship, i.e., (a ≺ b) =⇒ (date(a) <

date(b)). Without additional information on the logical date system, we can-
not assure that (date(a) < date(b)) =⇒ (a ≺ b). The logical date system
presented in this paragraph, i.e., the linear time, illustrates this remark.

The simplest logical date that respects the causality relationship among
actions is the sequence of increasing integers. Thus, a logical date is an
integer. This logical date system is called linear time. The following algorithm
describes an example, using pseudocode, of the local algorithm for process
Pi:

When producing an internal action a do:

tPi
= tPi

+ 1

Perform action a

When sending a message MSG(m) to Pj do:

tPi
= tPi

+ 1

send MSG(m, tPi
)

3.2 temporal causality in distributed systems 63

When receiving a message MSG(m, t) do:

tPi
= max(tPi

, t)
tPi

= tPi
+ 1

Several properties follow directly from the definition of linear time:
(1) (date(a) 6 date(b)) =⇒ (b 6≺ a);
(2) (date(a) = date(b)) =⇒ (a||b).

P1 tP1

1 2 3 4

P2 tP2
4 5 6

P3 tP3
1 2 3

Figure 3.3: Example of a linear time system.

Figure 3.3 shows the same example with a linear time system. It illustrates
very well that it is possible to have (date(a) < date(b))∧ (a 6≺ b). In this
example, we have date(aP3

1) = 1, date(aP1

2) = 2 and (aP3

1 6≺ aP1

2). Linear
time is thereby not sufficient to capture causal dependencies among actions.

Vector Clocks

Vector clocks have been developed independently by Fidge [Fidge, 1988],
Mattern [Mattern, 1989]. The system is based on the following observation
on causal histories: given an action aPi , if aPi ∈ H(aPj), then all actions
performed by Pi that precede aPi are included in H(aPj), i.e., H(aPi) ⊂
H(aPj). It is thereby sufficient to store the most recent action from each
process.

P1 tP1

[1, 0, 0] [2, 0, 0] [3, 0, 0] [4, 0, 2]

P2 tP2
[3, 1, 0] [3, 2, 0] [3, 3, 0]

P3 tP3
[0, 0, 1] [0, 0, 2] [0, 0, 3]

Figure 3.4: Example of a vector clocks system.

Figure 3.4 shows the same example with a vector clocks system. In our
example, the causal history H(aP2

2) = { aP1

1 , aP1

2 , aP1

3 , aP2

1 , aP2

2 } can be
compacted to the following map: { P1 : aP1

3 , P2 : aP2

2 , P3 : 0 }. Leveraging this
map, vector clocks rely on the observation that each process represented in
the map can be sufficiently characterized by its largest index. Thus, H(aP2

2)

can be further compacted to the following vector clock: [3, 2, 0] .
More specifically, given a distributed computation with n processes, each

action aPi , produced by the process Pi, is associated to a vector clock V(aPi)

of size n. Given k ∈ [1..n], V(aPi)[k] corresponds to Pi’s knowledge about
the number of relevant actions performed by Pk.

64 causal dependencies—in the search of the holy grail

Several properties follow directly from the definition of vector clocks:
(1) (H(a) ⊂ H(b)) ⇐⇒ (V(a)[k] 6 V(b)[k] for all k ∈ [1..n]);
(2) (a ≺ b) ⇐⇒ (V(a) 6= V(b))∧ (V(a)[k] 6 V(b)[k] for all k ∈ [1..n]). Sim-
ilarly to the actions, that can be partially ordered with Lamport’s happened-
before relationship, vector clocks can be partially ordered with the relation-
ship denoted “<,” which is defined as the following: (V(a) < V(b)) ⇐⇒
(V(a) 6= V(b)) ∧ (V(a)[k] 6 V(b)[k] for all k ∈ [1..n]). Thus, we have:
(a ≺ b) ⇐⇒ (V(a) < V(b)). Contrary to linear time, vector clocks fully
capture the causality implied by the happened-before relationship. In other
words, given two actions a and b, implementing such logical date system
allows to easily verify whether b might be causally dependent or not by
comparing their vector clocks V(a) and V(b). The following algorithm
describes an example, using pseudocode, of the local algorithm for process
Pi:

When producing an internal action an do:

V(an) = V(an−1)

V(an)[i] = V(an)[i] + 1

Perform action an

When producing a send action an to Pj with a message MSG(m) do:

V(an) = V(an−1)

V(an)[i] = V(an)[i] + 1

send MSG(m,V(an))

When producing a receive action an with the message MSG(m,V(b)) do:

V(an) = V(an−1)

V(an)[k] = max(V(an)[k],V(b)[k])
V(an)[i] = V(an)[i] + 1

Matrix Clocks

More complex clocks, such as matrix clocks, have also been proposed. Ma-
trix clocks represent a generalization of vector clocks: “while vector time cap-
tures first-order knowledge (a process knows that another process has issued
some number of events), matrix time captures second-order knowledge (a
process Pi knows that another process Pj knows that...)” [Raynal, 2013]. The
reader may refer to the previous reference, i.e., Raynal’s book “Distributed
Algorithms for Message-Passing Systems,” to find more details about matrix
clocks.

This section introduced the reader to the concept of causality in the con-
text of distributed systems. All the work presented in this section relies on
the partial order relationship happened-before defined by Lamport [Lamport,
1978]. The section starts with the presentation of the common modeling
of distributed systems, describes the need to study the causal dependency
relationship among actions performed in a distributed computation, and fin-
ishes with the presentation of proposed solutions for causality tracking (e.g.,
logical clocks and vector clocks). The next section is dedicated to the study
of causality in the information flow research field.

3.3 information flow-based causality 65

3.3 information flow-based causality

One of the main goals of computer systems consists in the automatic pro-
cessing of data, i.e., the storage, manipulation, and protection of informa-
tion. The French translation of computer science, i.e., informatique, captures
well this goal. Indeed, its etymology corresponds to the association of the
French word information, which has the same meaning in English, and the
suffix −ique, which means “which is proper to.” More specifically, computer
systems store information inside information containers, e.g., variables, files,
sockets, processes, databases. Processes have the ability to perform actions
to manipulate the information contained in these containers by transform-
ing, or transferring it from one container to another one. As the information
is transferred from one container to another, information is flowing. This
corresponds to the concept of information flow.

3.3.1 Information and Computer Security—A Brief History of Security
Mechanisms

As we have already seen in Chapter 1, the relationship between informa-
tion and security is clear: information cannot be separated from the notions
of confidentiality and integrity. In order to protect the information, different
mechanisms have been proposed. For instance, access control protects the ac-
cess of data objects by assigning a security level to them. Each security level
is associated with explicit and mandatory permissions that allow the reading
or modification of the objects assigned to it. The limitation of access control
lies in the fact that it only prevents unauthorized users to directly read or
modify files they don’t have permission to access. In fact, they might be able
to access it indirectly by “collaborating in arbitrarily ingenious ways with
other users who have authority to access the information” [Denning, 1976].

Information Flow Control (IFC), also called Information Flow Tracking (IFT),
addresses this limitation. Information flow control mechanisms monitor the
dissemination of information throughout the monitored system to detect the
ones that violate the predefined information security policy. IFC is thereby
a means to implement policy-based IDSs, as described in Section 1.3.2. It
forms a full research domain since Denning’s seminal work, “A lattice model
of secure information flow” in 1976 [Denning, 1976].

In order to implement security policies related to information, the informa-
tion flow control community developed various kinds of information flow
monitors and tracking techniques. Tracking is often implemented as a label
propagation policy [Myers & Myers, 1999], also called tag propagation policy
[Hossain et al., 2017] or taint propagation policy [Clause et al., 2007] [Balliu
et al., 2017].

The great advantage of information flow monitors is that they can gen-
erally be used in a broader context than IFC. More specifically, tracking in-
formation flows enables the explanation and understanding of how a given
information container came to be in a given state. This type of knowledge
serves several purposes. For instance, information flows can be used to ana-
lyze and detect malware [Yin et al., 2007]. Another example is the usage of

66 causal dependencies—in the search of the holy grail

information flows to retrieve the entry point of an attack [Newsome & Song,
2005]. In other words, information flows can also be leveraged in security
monitoring. The term IFT is thereby more suited.

3.3.2 Information Flow and Causality—Introducing d’Ausbourg’s Causal
Dependency Relationship among Object States

Information Containers’ Dependency

In the previous paragraph, we have mentioned that IFT enables the ex-
planation of how a given information container came to be in a given state.
More specifically, it captures the causal chain of actions that explains the infor-
mation container’s state.

In fact, information flows are produced by specific actions in the system.
Therefore, these actions represent the cause of information flows. Then, an
information flow implies that information is flowing from a source informa-
tion container to a destination container. Consequently, these information
container states are causally dependent as the value of the destination is di-
rectly dependent on the value of the source. This type of causal reasoning
falls into deductive reasoning.

Formalizing the Causal Dependency Relationship

The relationship among information containers states has been especially
formalized by d’Ausbourg [d’Ausbourg, 1994]. More specifically, he de-
scribes the relationship of causal dependency, denoted by “→,” among the
states of the system. The system corresponds to a set of objects. A state, de-
noted (o, t), is the value of an object o at a given time t. Using d’Aubourg’s
terminology, an information container, therefore, corresponds to an object.
Formally, stating that the state (o, t ′) causally depends on the state (o, t) (i.e.,
(o, t) → (o, t ′)) means that the value of o at time t, denoted (o, t), is used
to generate the value of o at time t ′, denoted (o, t ′): states are causally de-
pendent if and only if an information flow occurs among these states. The
concept of an object is considerably flexible. For example, it can be variables
in a program execution or system process states, file states, or socket states.

The model we defined in our work [Xosanavongsa et al., 2019a] is partly
inspired from d’Ausbourg’s causal dependency relationship among object
states. It will be presented in the second part of this manuscript.

3.3.3 Information Flow Monitoring in Different Abstraction Layers

Information flow monitors have been implemented for many abstraction
layers of computer systems. These abstraction layers contain various kinds
of information containers, which in turn have different granularity levels.
The fact that IFT has been studied in programming languages, operating
systems, or databases, is a good illustration of how active this research field
is.

3.3 information flow-based causality 67

Information flows are represented as directed graphs where nodes and
edges respectively correspond to information containers and information
flows.

Programming Languages—Source Code Instrumentation

Information flows can be traced inside a process or a group of processes.
Considered information containers correspond to the program’s variables,
inputs, and outputs, e.g., manipulated file descriptors. Information flows
among them are produced by the programming language instructions, i.e.,
there is a flow of information from the variable x to the variable y if y’s
value depends on x’s value. This dependence can be either direct or indirect.
When it is direct, there exists a data flow between x and y. This type of
dependence is called explicit information flow. Example 3.1 shows a snippet
of Python code that illustrates this case.

Example 3.1 Illustration of explicit information flow in Python

x = 1

y = 1 + x

The dependence is said to be indirect when the value of a variable is af-
fected through a control dependence. This type of dependence is called
implicit information flow. Example 3.2 shows a snippet of Python code that
illustrates this case. The value of x is affected by a through a control depen-
dence.

Example 3.2 Illustration of implicit information flow in Python

def foo (a: int):

if (a > 10):

x = 1

else:

x = 2

print(x)

Information flow monitors have been implemented for various program-
ming languages. For instance, JBlare [Hiet et al., 2008] and JFlow [Myers &
Myers, 1999] monitor information flows in the Java programming language.
JSgraph [Li et al., 2018] does it for the JavaScript programming language to
reconstruct web attack scenarios.

All of the programming language-related information flow monitors rely
on a fine-grained tracking of the monitored programming language’s instruc-
tions set. Therefore, they can be considered as tracing systems according to
the terminology presented in Chapter 1.

Instruction Level—Dynamic Information Flow Tracking

Information flows can be traced throughout the whole system by leverag-
ing hardware facilities such as processor tracing technologies. More specifi-
cally, IFT techniques based on hardware facilities leverage tracing technolo-
gies presented in the Tracing Systems section of Chapter 1 (Section 1.1.4). This

68 causal dependencies—in the search of the holy grail

family of techniques is called Dynamic Information Flow Tracking (DIFT) [Suh
et al., 2004], Dynamic Data Flow Tracking (DFT) [Kemerlis et al., 2012] or dy-
namic taint analysis [Newsome & Song, 2005] [Clause et al., 2007].

Delving deeper into the information flow-related understanding of the
processor-related abstraction layer, considered information containers corre-
spond to processor’s registers and memory words. Similarly to the previous
paragraph, those information containers are handled by the processor’s in-
struction set, which corresponds to the actions that produce the information
flows.

As an illustration, the following x86 assembly code moves the 4 bytes in
memory at the address contained in the ebx register into the eax register:

mov eax, [ebx]

In other words, the mov instruction produces an information flow from the
memory address referenced by ebx into eax.

The great advantage of this family of technologies is that they do not rely
on source code instrumentation. Some of the approaches leverage real-time
binary rewriting to perform DFT [Newsome & Song, 2005]. For instance, the
libdft library is coupled with Intel Pin tools (presented in Section 1.4.4) to
dynamically instrument binaries for tracing.

Of course, tracing information flow dynamically has an impact on perfor-
mance, i.e., performance overhead. Great research efforts have been made
to reduce it. To address this limitation, Kannan et al. have proposed to
decouple DIFT-related operations and regular computation by dedicating a
co-processor for DIFT-related operations [Kannan et al., 2009].

Similarly to programming languages information flow monitors, proces-
sor information flow monitors also face the challenge of implicit informa-
tion flow tracking and address this issue with control flow graph method-
ologies [Clause et al., 2007] [Balliu et al., 2017].

Operating System—System Call-Based Information Flow Tracking

Applied to the OS abstraction layer, information flows are deduced from
system call invocations. Considered information containers correspond to
kernel objects, e.g., processes, files, sockets, and pipes. It is worth men-
tioning that research efforts have mainly been made on the Linux kernel.
This abstraction layer has been thoroughly studied since King et al.’s sem-
inal work “Backtracking Intrusions” in 2003 [King & Chen, 2003]. Their
implementation relied on the instrumentation of a hypervisor. The monitor-
ing OS was thereby virtualized. It is interesting to highlight the fact that
King et al. do not mention the usage of information flows in their work.
They immediately refer to it as “causal dependencies.” Thus, information
flow graphs have also been dubbed dependency graphs.

OS kernels have seen many improvements since 2003. Commercial off-
the-shelf (COTS) kernel logging frameworks were created to enhance their
visibility, i.e., enabling better debugging and auditing. For example, such
frameworks are auditd for the Linux kernel, DTrace2 for FreeBSD, and Event
Tracing Windows (ETW) for Windows.

2 https://wiki.freebsd.org/DTrace

https://wiki.freebsd.org/DTrace

3.4 provenance primer 69

Many of the attack scenario reconstruction approaches are based on these
COTS frameworks. All of these approaches rely on the construction of in-
formation flow graphs. For instance, the authors of PrioTracker propose a
methodology to prioritize the traversal of information flow graphs [Liu et al.,
2018]. Instead of computing a naive breadth-first traversal, they perform a
search based on an information flow rarity score. The score is calculated
according to the occurrence frequency, at an organization’s scale, of the in-
formation flow between two given information containers. The rationale is
that attack paths rely on rare actions. Other approaches focus on the investi-
gation process of cyber defense analysts regarding system call-related events,
i.e., events causing information flows [Gao et al., 2018]. Other approaches
couple COTS framework system call events with tag propagation policies
(based on access control and attack detection policies) to detect policy viola-
tions and retrieve all related system call events [Hossain et al., 2017].

Many approaches also propose to instrument the kernel to optimize the
capture process of information flows and include secure data acquisition
schemes [Ma et al., 2016] [Bates et al., 2015] [Pasquier et al., 2017]. For in-
stance, auditd records Linux system calls without any modification. Further
treatment needs to be done to translate a Linux system call into an informa-
tion flow [Gehani & Tariq, 2012].

Interoperating IFT among Different Abstraction Layers

Previous paragraphs of this section (Section 3.3.3) mainly presented ap-
proaches that solely focus on a single abstraction layer, e.g., source code,
processor, or operating system. Information flow tracking can also be per-
formed through several abstraction layers.

For instance, Hauser et al. developed a taint propagation technique over
the network using an extension of the Internet protocol. Their idea is to
enable taint tracing among several machines pertaining to the same net-
work [Hauser et al., 2012]. Another example of information flow track-
ing inter-operation among abstraction layers is JBlare, which tracks infor-
mation flows from the Java virtual machine down to the Linux operating
system [Hiet et al., 2008].

This section presented the concept of information flow, its relation to
causality, a formalization proposed by d’Ausbourg, as well as how infor-
mation flow has been studied in different abstraction layers. Pursuing our
search of causality, our research led us to the provenance research field, and
its sub-field called data provenance. The next section is dedicated to them.

3.4 provenance primer

3.4.1 Defining Provenance

According to Oxford’s English Dictionary, provenance is defined as “the
source or origin of an object; its history and pedigree; a record of the ulti-

70 causal dependencies—in the search of the holy grail

mate derivation and passage of an item through its various owners.” This
concept has been well studied in the context of: Art, where it refers to “the
documented history of an art object”; Digital libraries, where it refers to “the
documentation of processes in a digital object’s life cycle”; Science, where it
ensures reproducibility of the scientific processes and analysis.

These few examples illustrate the diversity of application provenance ad-
dresses. Its definition is, therefore, dependent on the context in which it
studied. In fact, the various user communities that use the term “prove-
nance” have different underlying applications and needs in mind [Cheney
et al., 2009]. However, they all seek to explain: where a given object comes
from; how given object ended up in its state; or which objects were influ-
enced by a given object. This search involves causal reasoning, and more
specifically, deductive reasoning, as we have previously mentioned in Sec-
tion 3.1.2.

3.4.2 Representing Provenance—The Open Provenance Model

In the words of the standardization proposed by Moreau et al. in [Moreau
et al., 2011], the Open Provenance Model (OPM) standard allows the charac-
terization of “what caused things to be, i.e., how things depended on others
and resulted in specific states.” Things can, for example, represent simula-
tion results, physical objects, or digital data. Provenance is represented as a
typed directed graph where nodes are linked by causal relationships.

OPM Nodes

The OPM is based on three types of nodes:

artifact “Immutable piece of state, which may have a physical embodi-
ment in a physical object, or a digital representation in a computer
system.”

process “Action or series of actions performed on or caused by artifacts,
and resulting in new artifacts.”

agent “Contextual entity acting as a catalyst of a process, enabling, facili-
tating, controlling, or affecting its execution.”

OPM Edges—Causal Dependency Relationships

Similarly to nodes, an OPM graph can have different types of edges:
used “The process required the availability of the artifact to be able to com-

plete its execution.”

Artifact
used←−−−− Process

wasgeneratedby “The process was required to initiate its execution for
the artifact to have been generated.”

Process
wasGeneratedBy←−−−−−−−−−−−−−− Artifact

3.4 provenance primer 71

wascontrolledby “The start and end of process Process were controlled
by agent Agent.”

Agent
wasControlledBy←−−−−−−−−−−−−−− Process

wastriggeredby “The start of Process1 was required for Process2 to be
able to complete.”

Process1
wasTriggeredBy←−−−−−−−−−−−−− Process2

wasderivedfrom “Artifact1 needs to have been generated for Artifact2
to be generated. The piece of state associated with Artifact2 is depen-
dent on the presence of Artifact1 or on the piece of state associated
with Artifact1.”

Artifact1
wasDerivedFrom←−−−−−−−−−−−−−− Artifact2

These different types of edges represent the different kinds of causal depen-
dency relationships considered in the OPM standard. It defines a causal
relationship as “an arc that denotes the presence of a causal dependency
between the source of the arc (the effect) and the destination of the arc (the
cause).” These five kinds of causal dependency relationships are coherent
with the one we defined in Section 3.1.1. More specifically, they encompass
a cause, an effect, and the counterfactual dependency.

3.4.3 Data Provenance and Computer Security

In the context of our research, we are interested in the specific research
subfield of data provenance. As advocated by the DARPA’s Transparent Com-
puting program [Defense Advanced Research Projects Agency, 2014], data
provenance aims at providing transparency to “large opaque systems.” Data
provenance has naturally represented an important topic of the program. Re-
garding security monitoring, the value of data provenance is clear. It enables
causal analysis: the explanation and understanding of how a suspicious dig-
ital artifact came to be in a given state [Bates & Hassan, 2019].

Data Provenance’s Relation to Information Flow

Data provenance’s literature mainly focuses on the study of digital arti-
facts such as processes, files, sockets. Doing so, considerable efforts have
been made to analyze “audit events,” i.e., system call events produced at the
OS abstraction level. In fact, data provenance approaches are based on infor-
mation flow monitors. This is simply explained by the fact that information
flows represent causal dependency relationships among digital artifacts, i.e.,
information containers. Referring to the causal dependency types defined in
the OPM standard (Section 3.4.2), information flows can correspond to the
used, wasGeneratedBy, wasTriggeredBy and wasDerivedFrom causal dependency
relationships.

72 causal dependencies—in the search of the holy grail

3.4.4 Data Provenance in the Different Abstraction Layers

Similarly to information flow tracking, data provenance has been applied
to the various abstraction layers composing a system.

Operating System Abstraction Layer

One of the most represented abstraction layers in the data provenance
literature is the OS abstraction layer. Related data provenance monitors ob-
serve and record information-flow induced by system calls. This has been
done either using COTS system call monitoring frameworks, such as SPADE
which leverages auditd [Gehani & Tariq, 2012], or the approach proposed
by Ma et al. which leverages Windows’ ETW [Ma et al., 2015]; or by in-
strumenting the OS Kernel, e.g., PASS [Muniswamy-Reddy et al., 2006], Hi-
Fi [Pohly et al., 2012], Linux Provenance Module (LPM) [Bates et al., 2015],
CamFlow [Pasquier et al., 2017] and CamQuery [Pasquier et al., 2018].

More specifically, PASS, which stands for Provenance Aware Storage Sys-
tem, is one of the first provenance-aware operating system [Muniswamy-
Reddy et al., 2006]. It was totally integrated into the Linux Kernel. Hi-Fi
leveraged Linux Security Module (LSM) to hook system calls [Pohly et al.,
2012]. Hi-Fi has also added netfilter hooks to handle socket-related prove-
nance better. LPM also relies on LSM [Bates et al., 2015]. Additionally to
system call recording, LPM also addressed the data acquisition security, i.e.,
securing the recording and storage of provenance inside the Linux Kernel.
CamFlow [Pasquier et al., 2017] and CamQuery [Pasquier et al., 2018] go
further in system call tracing by integrating Georget et al.’s work [Georget
et al., 2017]. More specifically, Georget et al propose to update the LSM
framework to track information flows in the Linux Kernel correctly. They
highlighted the fact that LSM was initially designed for mandatory access
control and that more information flow tracking-specific hooks needed to be
added to correctly and completely track information flows. On top of the
correct and complete recording of system calls, CamFlow and CamQuery
also track information flows through shared memory and among threads in-
stead of processes. These two features were not addressed by the approaches
previously presented.

Addressing the Dependence Explosion Problem

All the approaches previously presented in the OS abstraction layer have
a conservative assumption: any output information container of a process,
or a thread in the case of CamFlow and CamQuery, is considered as causally
dependent on the preceding input objects. This assumption can introduce
false causal dependency relationships that can distort the provenance history
of a given information container. This problem is known as the dependence
explosion problem [Lee et al., 2013a][Ma et al., 2016]. In order to mitigate it,
Lee et al’s have introduced the notion of execution units with BEEP [Lee
et al., 2013a]. Based on the observation that long-running processes (e.g.,
servers or Internet browsers) are designed with input-triggered loops that
are generally independent and autonomous, processes’ executions can be
partitioned into execution units, a unit being a run of a loop. Execution

3.4 provenance primer 73

units are identified using software testing methodologies through static and
dynamic binary analysis. These analyses can be considered as a learning
stage. Inter-units’ dependencies through shared memory are also identified
by instrumenting the standard C library LibC. Once execution units have
been identified, binaries are then modified and instrumented in order for
execution units to invoke a specific system call when they start. This system
call allows the distinction of execution units directly in the system call audit
trail. This execution units-aware system call audit trail can then be used to
build a finer-grained provenance graph where “process” nodes (in the sense
of provenance graphs) correspond to execution units, instead of OS’ classical
“processes.” This methodology has been thoroughly explored for the Linux
Kernel with BEEP [Lee et al., 2013a] and ProTracer [Ma et al., 2016], and
Windows [Ma et al., 2015].

Towards Smaller Entities for Data Provenance

In fact, approaches presented in the previous paragraph propose solutions
for a finer-grained tracking of information in the kernel abstraction layer.
To achieve this goal, they proposed to decrease the size of digital artifacts,
i.e., considering threads instead of processes (e.g., CamFlow [Pasquier et al.,
2017] and CamQuery [Pasquier et al., 2018]), or going deeper, considering
execution units instead of processes (e.g., BEEP [Lee et al., 2013a]).

This concept also applies to other types of information containers. The
general idea is to track their inputs and outputs (I/O) with more precision.
For instance, it has been applied to SQL databases in [Lee et al., 2013b]. The
authors propose to consider a table entry as a data unit. A MySQL server has
been completely instrumented to track such fine-grained information flow.
This allows information flow tracking from the mysql process to table entry
data unit, and vice versa, at the OS abstraction layer. It has also been applied
to files in [Xu et al., 2016]. The information flow monitor they leverage
tracks the lines written or read by processes. This awareness allows them
to perform a finer-grained tracking of information flows among information
containers: if process p1 writes the first line of file f and process p2 reads
the line n of f, no information flows from p1 to p2 and the two processes’
states are not causally dependent.

Going further in the search for accurate data provenance, DIFT techniques
can also be leveraged.

Programming Language Abstraction Layer

Another way to get finer-grained tracking of information flow is to work
on programming languages directly. For instance, compilers can be loaded
with specific modules to automatically instrument code according to a given
policy. This is the case of Loom, an LLVM module developed in the context
of the CADETS project [Strnad et al., 2019]. Another example of program-
ming language instrumentation is the method leveraged in MPI [Ma et al.,
2017]. Based on the observation that BEEP-related execution units were too
low level for attack investigation, the authors of MPI propose to directly
instrument the source code of applications to create semantics-aware execu-
tion units. Annotations would directly be added to the source code by their

74 causal dependencies—in the search of the holy grail

developers that know its structure and mechanics, i.e., its semantics. MPI
proposes different tools, such as annotation placement suggestions, to help
them annotate the source code. Annotations serve as compilation indications
to add binary code that invokes specific system calls. These special system
calls indicate units, as well as their dependencies at the OS abstraction layer.

Finer-grained tracking of information flow can also be attained by instru-
menting libraries, especially shared libraries, by precisely recording which
function has been called [Wang et al., 2018]. Such monitoring enables the
observation of attacks that leverage libraries.

Interoperating Provenance among Different Abstraction Layers

Similarly to information flow monitors inter-operation through different
abstraction layers, the data provenance research field proposed to merge
provenance computed from different abstraction. This concept is called prove-
nance layering. It was first introduced by the authors of PASS [Muniswamy-
Reddy et al., 2006] [Muniswamy-Reddy et al., 2009]. More specifically, PASS
is embedded in a Linux Kernel to enable data provenance tracking at the
OS abstraction layer. To enable provenance-aware applications to send their
provenance data to the PASS, an API, called the "Disclosed Provenance API"
(DPAPI), has been developed. This API is based on specific DPAPI system
calls to transfer provenance data from the provenance-aware applications to
the PASS.

The concept of provenance layering continued since the seminal work of
PASS. Recent work proposes to leverage network sniffing techniques, i.e.,
protocol dissection, and Linux Kernel instrumentation, namely, the Linux
Provenance Module LPM, to track data provenance from the network to
the Kernel [Bates et al., 2017]. The authors of LProv propose to leverage
shared libraries instrumentation with BEEP binaries to compute fine-grained
provenance graph [Wang et al., 2018]. The project CADETS proposes to
enhance FreeBSD’s auditing tool, i.e., DTrace, to handle information flow
tracing in distributed systems [Strnad et al., 2019]. It couples it with the
provenance data emanating from the instrumentation of source code using
its Loom module for the LLVM compiler.

3.5 summary 75

3.5 summary

Chapter 3 introduces the reader to the concept of causality and presents
how causality and its surrounding concepts have been studied in the dis-
tributed systems, information flow and provenance research fields, i.e., the
ones that are the closest to our research interests. Even if these research
fields relate to a more general context, we have seen that they have also
been applied to security monitoring, either in an IDS setup, e.g., IDS for dis-
tributed systems, or for attack scenario identification purposes in the case of
information flow, and provenance.

On Causality. In more details, Section 3.1 started with the presentation of
the surrounding concepts of causality: counterfactuality, i.e., given two events
or object states A and B, (A =⇒ B) ⇐⇒ (A =⇒ B); causal reasoning and
its types, i.e., deductive, inductive and abductive; internal and external causal
dependencies, i.e., causal dependencies that can respectively be explicitly per-
ceived, or not, by a computer system; causal dependencies computation, i.e.,
leveraging data analysis techniques to discover relationships or leveraging
approaches that explicitly highlight them. After the laying down of these
foundational concepts, we present the main research fields that made up
our research journey.

Causality in Distributed Systems. Section 3.2 presents the distributed sys-
tems research field, and its temporal causality relationship called happened-
before. It starts by defining what a distributed system is: a system made up
of distributed entities that only have partial knowledge of the various param-
eters involved in the problem that has to be solved. Secondly, it illustrates
why causality has been studied in this research field. Then, Lamport’s sem-
inal work on the happened-before relationship [Lamport, 1978], denoted by
“≺,” is presented. This relationship allows the construction of a partial order
on the set of actions performed by the distributed entities of a distributed
system. More specifically, given two actions a and b, a ≺ b means that it is
possible that b is causally dependent on a. Finally, the end of this section
presents different means to implement Lamport’s relationship in order to
compute causal dependencies among distributed entities’ actions.

Causality and Information Flow. Section 3.3 presents the information flow
research field as well as its relation causality. This research field models sys-
tems as sets of information containers where information can be transformed
and/or transferred from one to another. These flows of information actually
correspond to causal dependencies among information containers’ states. In
particular, this concept has been formalized by d’Ausbourg [d’Ausbourg,
1994]. This section presents its formalization. It then illustrates how infor-
mation flows have been studied in various abstraction layers, e.g., program-
ming languages and operating systems. It also illustrates how information
flow monitors have been leveraged in order to perform attack scenario iden-
tification.

76 causal dependencies—in the search of the holy grail

Causality and Provenance. Section 3.4 presents the provenance research
field and its sub-field called data provenance. Provenance’s relation to causal-
ity is clear: provenance seeks to explain where a given object comes from,
how given object ended up in its state, or which objects were influenced by
a given object. Data provenance represents a noticeable growing research
field in the context of security monitoring, and more specifically, intrusion
detection and attack scenario identification. The techniques leveraged by
data provenance greatly rely on the work done in the information flow re-
search field. Data provenance can also be seen as a sub-field of information
flow that is specialized in tracking and storing objects’ causal histories. Sim-
ilarly to the previous section, Section 3.4 finishes by illustrating how data
provenance has been studied in various abstraction layers.

Towards a Formal Definition of the Event Causal Dependency Relationship.
Causality is an active subject in various research fields of computer science.
Regarding the specific context of attack scenario identification for security
monitoring, the amount of work done illustrates well how much causality
seems promising to the research community. However, we observed that
the literature lacks a formalization of the causal dependency relationships
among heterogeneous events. We think that defining this link would help
the research community. Based on the relationships defined by Lamport and
d’Ausbourg, we formally define the heterogeneous event causal dependency
relationship in the following chapter.

Part II

Towards a Unified Causality
Model

77

4 D E F I N I N G A C A U S A L
D E P E N D E N C Y R E L AT I O N S H I P
A M O N G H E T E R O G E N E O U S E V E N T S

Previous chapters have laid the fundamental concepts needed to compre-
hend our research field: the investigation of multi-step attack scenarios.
Chapter 1 introduced the reader to the basics needed to perform security
monitoring: enabling the observation of actions performed in this monitored
system. Observed actions are recorded by monitoring systems as events.
Chapter 2 presented how the alert correlation research field addresses the
problem of attack identification through the analysis of events and alerts
produced by the deployed monitoring systems. More specifically, alert cor-
relation approaches aim at building connections among events and between
attack steps. However, we have seen that these links are not trivial to define
and discover, especially when considering heterogeneous events. Based on
(1) the observation that the literature lacks of a formal definition of these
connections, and (2) the insights gained through the study of causality and
causal dependency computation presented in Chapter 3, Chapter 4 presents
our contribution, i.e., the event causal dependency relationship. More specifi-
cally, Section 4.1 presents our problem through an attack scenario example.
This example serves as an illustration throughout the second part (Part II)
of this manuscript. Thereafter, the following sections introduce our model
gradually, from the definitions of the concepts of contextual actions, contextual
events, and their respective causal dependency relationships, to the definition
of the causal dependency relationship among heterogeneous events.

4.1 illustration of the problematic and proposed
model

This section introduces the concept of causality analysis in heterogeneous
and distributed event logs via a motivating attack scenario example. This
example is used to further illustrate how each type of event is treated in our
model.

The web server architecture consists of two machines, which respectively
host an Apache server and a MySQL database. The security monitoring
team deploys several monitoring systems, at different abstraction layers (as
described in Chapter 1), to collect data and perform intrusion detection on
the servers. Specifically, the servers are equipped with the Linux audit frame-
work auditd, which enables the observation of the monitored system at the
OS layer. The Apache and MySQL logging modules are activated for the
web server and database server, respectively. These logging modules enable
the observation of the monitored system at the application layer. Moreover,
the database server is equipped with Zeek NIDS, which enables the obser-

80 defining a causal dependency relationship among heterogeneous events

vation of the network layer; auditd and netfilter are particularly configured
to record system calls of interest and established connections, respectively.

Internet

Attacker

(1) SQL Injection Attack
"’UNION ALL SELECT table_schema,

table_name FROM
info_schema.tables;"

(4) Web Server’s
Response

Web
Server

apache.log

system_call.log

netfilter.log

(2) SQL
Query

(3) SQL
Response

MySQL
Server

mysql.log

system_call.log

zeek_ids.log

netfilter.log

Figure 4.1: SQL injection attack scenario on a vulnerable web server.

The attack scenario, illustrated in Figure 4.1, is described as follows. After
a discovery step, a malicious user performs an SQL injection via the POST
parameters on an HTTP request to obtain the database table scheme. The
cyber defense analyst is alerted by a Zeek alert, which describes an SQL
injection attempt. Because this behavior is considerably suspicious, the cyber
defense analyst decides to investigate the alert.

Because the web server initiates the SQL query, the cyber defense analyst
immediately checks the events logged by the Apache server. However, be-
cause the Apache web server is not configured to record POST parameters,
the cyber defense analyst is unable to identify the web request related to the
SQL query; hence, he cannot determine the requests issued by the attacker.
Finding no other clues in the Apache logs, he decides to perform an anal-
ysis of the recorded system call logs produced by auditd in both machines
by manually backtracking the sequence of system calls that led to the SQL
query observed over the network. With such an analysis, he eventually re-
trieves the socket from which the SQL query originated. The information
contained in this network entry point allows the cyber defense analyst to
identify the attacker’s IP address. Finally, the investigation of the Apache
and system call logs reveals the rest of the traces related to the attacker’s
IP. This simple example illustrates the fact that the attacker’s footprints are
scattered across different types and formats of event logs. Evidently, the net-
work, applications, and system events emanating from different machines
must be investigated to understand the full picture of the attack.

If the cyber defense analyst could automate this task, then he would have
to specify that he intends to retrieve the attacker’s traces, i.e., the different
events corresponding to the observed and recorded attacker’s actions, as de-
fined in Section 1.1.3. These events are scattered in various heterogeneous
logs. For simplicity, he can draw a space-time diagram, such as that illus-
trated in Figure 4.2, which captures the semantics of the different logs of
interest. In this figure, the timelines of all active and passive entities that are
part of the attack can be observed. Each event is interpreted as representing

4.1 illustration of the problematic and proposed model 81

netwext
apa tapa

eNet
http eNet

http

saccept tapa

apache tapa
e
Sys
accept e

Sys
read

e
Sys
connect e

Sys
write e

Sys
read

e
App
Req

e
Sys
write

e
Sys
accept

sconnect tapa

netwint
apa tapa

eNet
conn eNet

conn eNet
conn

netwint
zeek tzeek

eNet
conn,alert

netwint
sql tsql

eNet
conn eNet

conn eNet
conn

saccept tsql

mysqld tsql
e
Sys
sendto

e
Sys
accept e

Sys
recvfrom

e
Sys
read e

Sys
read

e
Sys
sendto

eNet
accept

movies.db tsql

tab_schem.db tsql

Figure 4.2: Visualization of events, alerts, and information flows on a space-time
diagram.

the relationship among these entities and is placed on the timeline of the
entity it describes. The different types of events are also indicated using the
following: (1) eNet for log entries deduced from network packet flow analy-
sis, e.g., eNet

conn,alert, which represents an alert raised by the Zeek NIDS; (2)
eSys for system call log entries, e.g., eSysaccept, which represents the invocation
of an accept() system call; (3) eApp for application log entries, e.g., eApp

Req ,
which represents the Apache application logged event for the HTTP request.
In most cases, the events pertain to relationships between two entities. In
reading space-time diagrams by backtracking starting from the alert or the
IoC, it can be deduced that several process activities can explain attackers’
steps.

For example, by using the space-time diagram illustrated in Figure 4.2
and by backtracking from the NIDS alert, eNet

conn,alert, the cyber defense
analyst can see that it is linked to a netfilter event, eNet

conn, which describes a
connection related to a network socket of the Web Server host. This network
socket is, in turn, linked to a write() system call from Apache, described
by the e

Sys
write. Continuing with the reading of the space-time diagram, the

cyber defense analyst can see that this write() system call event is further
linked to an HTTP connection event, eNet

Req. In the same fashion, the cyber
defense analyst can leverage the space-time diagram to perform a forward
tracking from the NIDS alert, and discover the various linked events that
happened after it.

In the following sections, we formally present these relationships as causal
dependencies among log entries and define a model that permits the gener-
ation of causal dependency links among events. All concepts are illustrated
using the above example. For clarity, only the principal events of interest
that allow the comprehension of the segment of the attack scenario related
to the raised alert are presented.

82 defining a causal dependency relationship among heterogeneous events

4.2 limitations of lamport’s and d’ausbourg’s re-
lationships

In Chapter 3, we have presented the main research fields that deal with
causal dependency computation, as well as their foundational relationships:
Lamport’s happened-before relationship [Lamport, 1978] and d’Ausbourg’s
causal dependency relationship [d’Ausbourg, 1994]. More specifically, we
have seen that Lamport’s relationship is defined on the set of actions per-
formed by the processes of a distributed system; and d’Ausbourg’s relation-
ship is defined on the set of objects’ states of a system. Chapter 3 already
started to emphasize the particularities of these two types of models. We will
further present them, as well as their limitations, in the following paragraphs.
Thereafter, in the following sections, we explain how we have merged these
two approaches to exploit them and define a new causality dependency no-
tion called the contextual action causal dependency relationship.

4.2.1 Lamport’s Happened-Before Relationship’s Limitations

In Section 3.2.3, we mentioned that a ≺ b means that it is possible that
action b is causally dependent on action a, a being any action that satisfies
a ≺ b. In other words, given an action b, the set of actions {a/a ≺ b} is a
superset of actions that can influence b, i.e., it might contain actions that do
not influence b. Therefore, this set might be an over-approximation of the
set of actions that actually causally influence b. Actually, we can only assure
that b is causally dependent on a when a corresponds to the sending of a
given message and b corresponds to its reception, i.e., the second case of
Lamport’s relationship defined in Section 3.2.3. In fact, Lamport’s relation-
ship is temporal and does not take into consideration the context in which
the actions are produced. Moreover, in this model, only application-level
actions performed by concurrent processes are covered. Consequently, not
all system-level actions or network actions can be taken into account by the
model; thus, causal dependencies among heterogeneous events cannot be
explicitly computed.

As it is, the concept of causal dependencies among concurrent processes’
actions denotes abductive reasoning, as defined in Section 3.1.2: according to
the distributed computation modeling, the relationship is the best hypoth-
esis possible regarding actual causal dependencies among actions. In the
context of a distributed computation, this causal dependency is actually an
internal causal dependency, as described in Section 3.1.3.

4.2.2 D’Ausbourg’s Causal Dependency Relationship’s Limitations

As opposed to Lamport’s model, the claim that all actions of a process are
causally dependent across time is false in the d’Ausbourg’s model. Exam-
ple 4.1 illustrates this point.

Example 4.1 Illustration of d’Ausbourg’s and Lamport’s relationships using a sim-
ple Python code

4.3 causal dependency among contextual actions 83

a = 1 # (action_1, 1)

a = a + 1 # (action_2, 2)

a = 0 # (action_3, 3)

Consider a variable a as an object. The Python code snippet of this example
yields three states of a, with (a, 1) = 1, (a, 2) = 2, and (a, 3) = 0. As a
result, (a, 1) → (a, 2), and (a, 2) 6→ (a, 3) because the value of a at line
3 is independent of the value of a at line 2. In the Lamport model, we
would state that action_1 ≺ action_2, and action_2 ≺ action_3, which
involves the causal dependency between action_2 and action_3, simply
because action_2 temporally happens before action_3.

D’Ausbourg causal dependency relationship is applied to object states and
not on events produced by monitoring systems that observe applications, op-
erating systems, or the network. It is thereby challenging to use this model
because object states are not easily captured by applications or system exe-
cutions. In fact, events only represent the actions and information that are
actually captured by monitoring mechanisms. Accordingly, we must define
a model that takes into account both the action causal dependencies in time
(similarly to Lamport’s model) and the contextual states in which these ac-
tions are produced (similarly to d’Ausbourg’s model).

This section presented the limitations of Lamport’s and d’Ausbourg’s re-
lationships and started to explain why we want to define a more precise
model. The following sections introduce the reader to the concept of event
causal dependency relationship by gradually defining all the concepts sur-
rounding it. Section 4.3 starts by introducing the concept of contextual action
and the related causal dependency relationship.

4.3 causal dependency among contextual actions

The purpose of the contextual action causal dependency relationship pre-
sented in this section is to capture the advantages of both Lamport and
d’Ausbourg models. To this end, we have to consider not only the actions
performed by processes but also the context of the process at the moment
the action is executed. This leads to the definition of what we refer to as a
contextual action.

4.3.1 Contextual Action Definition

Active and Passive Objects

A contextual action consists of (1) the action performed by an object, and
(2) the value of the context of the object at the time at which the action is
performed. In order to resolve the problem of dependency among heteroge-
neous objects, two categories of objects must be distinguished: active objects

84 defining a causal dependency relationship among heterogeneous events

(processes or network interfaces that produce actions) and passive objects (in-
formation containers, such as files, sockets, memory, and pipes that do not
produce any action).

Introducing Object Actions

An active object is supposed to produce actions that can be linked to the
context of the object. For a passive object, only its context can be observed,
and no action is produced. In order to have a unique notation for both types
of objects, an action a is that performed by a process if the object is active
and ∅ if an object is passive (i.e., no action is produced by a passive object).
Note that if we consider the state of an active object at a given time without
running an action, ∅ is the precise notation used to indicate that no action
is performed in this context. The set of actions produced by an active or
passive object, o, is defined as the set ObjectActions(o).

Definition 4.1 ObjectActions(o) = {ai}∪ {∅} with {ai} the set of actions that can
be performed by the object, o, and the absence of action, ∅.

As an example, a process p has to call a function in a library to invoke a
system call to request a kernel service. We consider that all library function
invocations are actions of ObjectActions(p).

Defining Contextual Actions

We now formally introduce the concept of contextual action:

Definition 4.2 A contextual action is a couple (a, (o, t)) where a ∈ ObjectActions(o),
and (o, t) is the state of object o at time t.

As an example, given a process p that calls a function f(), p is actually
performing a contextual action where the action, which corresponds to the
call of f(), is performed in the specific state of the active object p, at the time
of the function call, i.e., (f(), (p, tf())).

Introducing Sessions

We have seen that the distributed systems research community supposes
that for two actions, a and b, produced by a given process such that a ≺ b,
b is potentially causally dependent on a. As previously noted, it is desired
to realize a more precise model that can define that, at a given moment, the
causality relationship between a and b inside a given object evolution can
be broken if the state of the object is independent from its previous state.
In practice, numerous server processes keep no memory in their sequenced
request executions. For instance, a network file server process can access any
file without the knowledge of the previous access. This means that a given
process execution can be divided into temporal intervals, where executions
are partially or completely “independent” from each other. In our model,
such an interval in the execution of a process is called a session. The concept
of session is not new. In particular, Section 3.4.4 presents approaches that
study actions that delimit sessions inside long-running processes to reduce

4.3 causal dependency among contextual actions 85

the number of false causal dependencies among actions. The definition of
the notion of session is as follows.

Definition 4.3 Given an object o, a session Sessionn(o) is a sequence of con-
textual actions (ai, (o, ti)), where ai ∈ ObjectActions(o) and Sessionn(o) =

{(ai, (o, ti)) / (o, ti)→ (o, ti+1) and (o, tendn−1
) 6→ (o, tstartn) and (o, tendn

) 6→
(o, tstartn+1

)}; tstartn is the time of the first contextual action of Sessionn(o), and
tendn

is the time of the last contextual action in Sessionn(o).

too
(a

1
, (o

, t 1
))

(a
2
, (o

, t 2
))

(a
3
, (o

, t 3
))

(a
4
, (o

, t 4
))

(a
5
, (o

, t 5
))

(a
6
, (o

, t 6
))

(a
7
, (o

, t 7
))

(a
8
, (o

, t 8
))

Session1(o) Session2(o) Session3(o)

Figure 4.3: Sequence of contextual actions and sessions.

The execution of an object o is the union of all Sessions(o), as shown in
Figure 4.3. The figure also illustrates how different sessions of an object
are built on its timeline. In this example, the actions, a4 and a7, start new
sessions. Thus, (o, t4) and (o, t7) are independent of their previous states,
i.e., (o, t3) and (o, t6) respectively. In practice, such actions can be identified
with expert knowledge or the use of underlying mechanisms of applications.
The concept of sessions applies to any object type, e.g., a file that is emptied
or an Apache process that has no memory between two execution requests.
An application or the OS can actually perform an action that starts a new
session. This can be illustrated for passive objects with a shared memory that
can be cleared by the system or another process and whose state becomes
independent from its previous states.

4.3.2 Definition of the Contextual Action Causal Dependency Relationship

The concept of contextual action takes into consideration the actions per-
formed by the objects and their states involved in these actions. It allows us
to exploit both models and define a more precise dependency relationship
among heterogeneous actions. This new dependency relationship is called
contextual action causal dependency, denoted “ 7→,” and is defined on the set of
all contextual actions produced by all objects in the system.

Definition 4.4 Given two contextual actions, (a1, (o1, t1)) and (a2, (o2, t2)), the
latter is causally dependent on the former, written as (a1, (o1, t1)) 7→ (a2, (o2, t2)):

1. if o1 and o2 are the same object o, ∃ n so that (a1, (o, t1)) ∈ Sessionn(o),
(a2, (o, t2)) ∈ Sessionn(o), and t1 < t2;

2. or if o1 6= o2, (o1, t1) → (o2, t2), i.e., they are causally dependent in the
sense of d’Ausbourg, indicating that there is an information flow from the
state (o1, t1) to the state (o2, t2);

86 defining a causal dependency relationship among heterogeneous events

3. or if o1 6= o2, action a1 corresponds to the sending of a message, m, and the
action a2 corresponds to the reception of m, implying that a1 ≺ a2 using
case (2) of Lamport’s happened-before relationship;

4. or ∃ (c, (o, t)) so that (a1, (o1, t1)) 7→ (c, (o, t)) and (c, (o, t)) 7→ (a2, (o2, t2)).

to1
o1

(a1, (o1, t1)) (a5, (o1, t5)) (a6, (o1, t6)) (a4, (o1, t4))

to2
o2

(a2, (o2, t2)) (a3, (o2, t3))

Session1(o1) Session2(o1)

Session1(o2)

Figure 4.4: Contextual action causal dependency in different sessions.

Figure 4.4 illustrates the use of our model. Given two objects, o1 and o2,
we have the following relationships among the different contextual actions:
• (a1, (o1, t1)) 7→ (a2, (o2, t2)) 7→ (a3, (o2, t3)) 7→ (a4, (o1, t4));
• (a1, (o1, t1)) 7→ (a5, (o1, t5));
• (a6, (o1, t6)) 7→ (a4, (o1, t4)).

Even if the contextual actions (a1, (o1, t1)) and (a4, (o1, t4)) belong to two
different sessions, we have (a1, (o1, t1)) 7→ (a4, (o1, t4)) because of the tran-
sitivity property of the the relationship “ 7→.” Moreover, as action a6 starts
a new session, it is implied that (a5, (o1, t5)) 67→ (a6, (o1, t6)). Note that ob-
jects o1 and o2 have their own clocks, i.e., to1

and to2
, respectively; no time

synchronization is needed.

Differences with Lamport’s Relationship

In practice, for a given object, o, two contextual actions, (a1, (o, t1)) and
(a2, (o, t2)), are causally dependent if their states are causally dependent in
the sense of d’Ausbourg causality definition, i.e., if (o, t1) → (o, t2). This
implies that if (a1, (o, t1)) and (a2, (o, t2)) are part of the same session, then
they are causally dependent. However, if (a1, (o, t1)) and (a2, (o, t2)) are not
in the same session, then they can either be causally dependent or indepen-
dent. This is clearly different from the Lamport causality definition, where
all actions performed by object o are considered as causally dependent even
if they belong to different sessions.

Differences with d’Ausbourg’s Relationship

At first, the difference between points (2) and (3) of Definition 4.4 might
look ambiguous, i.e., an explicit message exchange between two active ob-
jects could be seen as an information flow. However, Lamport’s relationship
does not only deal with explicit message exchanges, it also encompasses
implicit message exchanges as in the case of a Rendez-Vous between two pro-
cesses.

Figure 4.5 illustrates an example of a Rendez-Vous between two threads.
Such Rendez-Vous can be illustrated by the usage of a semaphore, where

4.4 from contextual actions to contextual events and events 87

tth1th1

th1 arrives at Rendez− Vous

tth2th2
th2 blocked th2 continues

Figure 4.5: Rendez-vous between two threads.

a thread th2 waits for a thread th1 to release a common resource to con-
tinue its computation. In fact, the information is actually contained in the
semaphore which is handled by the operating system. No message is explic-
itly exchanged by the threads in this example, i.e., th1 does not send an ac-
tual message to th2. However, we have necessarily (th1 arrives at Rendez−

Vous) ≺ (th2 continues). This situation can be seen as the exchange of an
implicit message between the two threads.

This section described the notions of contextual actions and the causal
dependencies among them. The following section introduces the notion of
contextual event, as well as the relationship between contextual actions and
contextual events.

4.4 from contextual actions to contextual events
and events

4.4.1 Contextual Event Definition

As we have seen in Chapter 1, a given action can either be: (1) observed
by different monitoring systems and be recorded as several log entries in
heterogeneous logs; or (2) unobserved, thus implying that it is not recorded
in a log entry. It can consequently be missed by a cyber defense analyst.

Given the set of the system’s events, denoted E, each event is produced
at a given time (e.g., its timestamp) by observing a given contextual action
performed by an object. This leads to the definition of a contextual event.

Definition 4.5 A contextual event is a triplet (e,o, te), where e ∈ E; o represents
the observed object, and te is the timestamp of event e.

The relationship between events and contextual events is pretty straight-
forward: each contextual event corresponds to a unique event. Using the
example of Section 4.1,(eApp

Req ,apache, t
e
App
Req

) represents a contextual event

of the observed active object apache. However, Definition 4.5 needs to be
extended to cover the lack of observation of a contextual action. According
to definition 4.2, the action a of a given contextual action, (a, (o, ta)), might
represent a real action or the lack of action; hence, the action a might not
be observable. We thus extend the previous definition by introducing the
contextual event, (∅,o, ta), corresponding to the lack of observation of a at
time ta.

88 defining a causal dependency relationship among heterogeneous events

Contextual Events as Observations of Contextual Actions

We can now introduce a function, Obs, which maps a contextual action
into a set of contextual events corresponding to the observations of this sin-
gle contextual action. The function Obs can be defined as follows.

Definition 4.6 Given an action a ∈ ObjectActions(o) occurring at time ta, the
observation of a contextual action is Obs

(
(a, (o, ta))

)
= {(ei,o, tei

)}∪ {(∅,o, ta)},
where ei ∈ E and is an observation of a; (∅,o, ta) corresponds to the lack of an
observation of a and thus to the lack of an event.

Using the previous example used for Definition 4.5, (eApp
Req ,apache, t

e
App
Req

)

is to the observation of the contextual action corresponding to the execution
of a LPS by the active object apache. Thus, in this example, the Obs function
is implemented as an LPS.

On Event Timestamp and Actual Action Time

It must be noted that in Definition 4.6, the timestamp of event tei
might

be different from time ta at which the related action is actually executed.
We have no clue whether ta < tei

or not because the action can be recorded
before it occurs, during, or after its execution. Moreover, the type of an
action, e.g., application, network or OS, and its observations are the same as
that of the observed object.

4.4.2 Definition of the Contextual Event Causal Dependency Relationship

Recall that the goal of this model is to define the causal dependency rela-
tionship among events. To accomplish this, it is first necessary to define the
contextual event causal dependency relationship, denoted as “⇀.”

Definition 4.7 Given two contextual events (e1,o1, te1
) and (e2,o2, te2

), with
e1 ∈ E and e2 ∈ E, the latter is causally dependent on the former, written
as (e1,o1, te1

) ⇀ (e2,o2, te2
),if and only if there exist two contextual actions,

(a1, (o1, t1)) and (a2, (o2, t2)), such that (a1, (o1, t1)) 7→ (a2, (o2, t2)) and
(e1,o1, te1

) ∈ Obs
(
(a1, (o1, t1))

)
and (e2,o2, te2

) ∈ Obs
(
(a2, (o2, t2))

)
.

4.4.3 Definition of the Event Causal Dependency Relationship

At this point, the core result of this model is obtained, i.e., the definition
of what we call the event causal dependency relationship, denoted “..”

Definition 4.8 Given two events, e1 ∈ E and e2 ∈ E, the latter is causally depen-
dent on the former, written as e1 . e2, if and only if (e1,o1, te1

) ⇀ (e2,o2, te2
),

where o1 and o2 are the observed objects, and t1 and t2 are the timestamps of events,
respectively.

4.4 from contextual actions to contextual events and events 89

Contextual
Action Causal
Dependency

(a1, (o1, t1)) (a, (o, t)) (a2, (o2, t2))

Contextual
Event Causal
Dependency

(e1,o1, te1
)

(e ′1,o1, te1
)

(∅,o, t) (e2,o2, te2
)

Event Causal
Dependency

e1

e ′1

e2
.
.

Obs
(
(a1, (o1, t1))

)
Obs

(
(a, (o, t))

)
Obs

(
(a2, (o2, t2))

)
⇐
⇒

⇐
⇒

Figure 4.6: Illustrative summary of the three relationships we defined.

We have defined three new causal dependency relationships, “7→,” “⇀,”
and “.,” that define partial orders on the set of contextual actions, the set of
contextual events, and the set of events, respectively.

Figure 4.6 summarizes the new relationships we defined in this chapter.
These relationships can be seen as three representations of the monitored
system. The model at the top (i.e., the contextual action causal dependency
(CACD) model) considers the actions, the object states, as well as their causal
dependencies. The bottom model (i.e., the event causal dependency (ECD)
model) considers the events produced by the heterogeneous monitoring sys-
tems deployed, as well as their causal dependencies. The middle model (i.e.,
the contextual event causal dependency (CECD) model) considers contex-
tual events, a notion that bridges the gap between contextual actions and
raw events, as well as their causal dependencies.

The left part of the figure highlights the fact that the three causal depen-
dency relationships we define are equivalent. Delving deeper in the details,
the term “equivalent” is to be understood as a double implication. The fol-
lowing examples illustrate this clarification.

From CACD to CECD. Given two observed and causally dependent contextual
actions, (a1, (o1, t1)) and (a2, (o2, t2)), and their related contextual events,
(e1,o1, te1

) ∈ Obs
(
(a1, (o1, t1))

)
and (e2,o2, te2

) ∈ Obs
(
(a2, (o2, t2))

)
, we

have:
(
(a1, (o1, t1)) 7→ (a2, (o2, t2))

)
=⇒

(
(e1,o1, te1

) ⇀ (e2,o2, te2
)
)
.

From CECD to CACD. Given two causally dependent contextual events,
(e1,o1, te1

) and (e2,o2, te2
), we know that these contextual events are actu-

ally the observation of two contextual actions, (a1, (o1, t1)) and (a2, (o2, t2)),
with (e1,o1, te1

) ∈ Obs
(
(a1, (o1, t1))

)
and (e2,o2, te2

) ∈ Obs
(
(a2, (o2, t2))

)
,

and that these contextual actions are causally dependent, i.e.,(
(e1,o1, te1

) ⇀ (e2,o2, te2
)
)

=⇒
(
(a1, (o1, t1)) 7→ (a2, (o2, t2))

)
.

However, we might not be able to specifically identify and/or compute these
contextual actions. In practice, complete object states are rarely captured by
monitoring systems. Therefore, the contextual action causal dependency ab-
straction layer is hard to compute and can only be approximated most of the
time.

90 defining a causal dependency relationship among heterogeneous events

From CECD to ECD. Given two causally dependent contextual events,
(e1,o1, te1

) and (e2,o2, te2
), their related events are causally dependent. Thus,

we have:
(
(e1,o1, te1

) ⇀ (e2,o2, te2
)
)

=⇒
(
e1 . e2

)
.

From ECD to CECD. Given two causally dependent events, e1 ∈ E and
e2 ∈ E, we know these events emanate from the context of monitored ob-
jects, denoted o1 and o2, i.e., e1 and e2 are related to the contextual events
(e1,o1, te1

) and (e2,o2, te2
). Thus, we have:(

e1 . e2
)

=⇒
(
(e1,o1, te1

) ⇀ (e2,o2, te2
)
)
.

However, similarly to the case of contextual actions, we might not be able to
compute contextual events from raw events. For example, a raw event might
not contain the information needed to identify its related observed object.

The next section introduces the reader to the aim of defining a causal
dependency relationship among heterogeneous events: enabling the compu-
tation of the cause and dependence graphs of an event of interest.

4.5 cause and dependence graphs

The relationships defined in this chapter are transitive. Regarding the
event causal depedency relationship, this property allows us to build the
cause graph, and the dependence graph of a given event of interest. The cause
and dependence graphs represent all events that contribute to and depend
on a given event, respectively.

Definition 4.9 Given e ∈ E, the cause graph of e is defined as:

cause(e) = {e ′/e ′ . e}

Definition 4.10 Given e ∈ E, the dependence graph of e is defined as:

dep(e) = {e ′/e . e ′}

Alert/IoC

eAlert

Cause
Graph

eNet

eSys
.

e
Net

e
Sys

.

eSys .

.
eApp

.

Dependence
Graph

e
Net

eSys. eSys
.

eNet

eSys
.

eApp
.

eSys.

.

.

.

.

.

Figure 4.7: Cause and dependence graphs of an event of interest.

Figure 4.7 illustrates the cause and dependence graphs of a given event of
interest, e.g., an alert produced by an IDS. Of course, cause and dependence
graphs can be defined for contextual actions and contextual events as well.

4.6 summary 91

Event Cause and Dependence Graphs of the Attack Scenario Example

Chapter 5 describes how each type of events used in the example of Sec-
tion 4.1 is processed to compute contextual events and their related causal de-
pendencies. It explains how to obtain the space-time diagram shown in Fig-
ure 4.2. Setting all contextual events on their related object timelines, we can
build the cause and dependency graph for alert (eNet

conn,alert,netwzeek, talert).
Then, event causal dependencies can be easily deduced using Definition 4.8.

eNet
http

e
Sys
accept . e

Sys
read . e

Sys
connect . e

Sys
write

eNet
conn

eNet
conn,alert

.

.

.Cause
Graph

eNet
http

e
Sys
read . e

App
Req . e

Sys
write

eNet
conn

eNet
conn eNet

conn

e
Sys
recvfrom . e

Sys
read . e

Sys
read . e

Sys
sendto

.
. .

.

.

.

Dependence
Graph

Figure 4.8: Event cause and dependence graphs of the NIDS alert.

Figure 4.8 represents the resulting event cause and dependence graphs of
the attack scenario example of Section 4.1. The cyber defense analyst would
have all the events that causally contribute to or causally depend on the
raised NIDS alert.

4.6 summary

Chapter 4 presents the main contribution of the work presented in this
manuscript: the formal definition of the causal dependency relationship
among heterogeneous events. The model we define aims at unifying previ-
ous work on causal dependencies presented in Chapter 3, and at addressing
the lack of the definition of the semantics of the links among events. This
chapter starts by presenting the example that will serve as an illustration
throughout the rest of the manuscript. The following sections of the chapter
gradually introduce our model.

Limitations of Lamport’s and d’Ausbourg’s Models. Section 4.2 starts by ex-
plaining the limitations of the foundational causal dependency relationships
presented in Chapter 3, namely, Lamport’s happened-before relationship [Lam-
port, 1978] and d’Ausbourg’s causal dependency relationship [d’Ausbourg,
1994]. Briefly, Lamport’s relationship is temporal and does not take into con-
sideration the context in which the actions are produced. On the other hand,
D’Ausbourg causal dependency relationship is applied to object states and
not on events produced by monitoring systems. It is thereby challenging to
use this model because object states are not easily captured by applications

92 defining a causal dependency relationship among heterogeneous events

or system executions. Building upon Lamport’s and d’Ausbourg’s relation-
ships, we aim at defining a model that takes into account both the action
causal dependencies in time (similarly to Lamport’s model) and the contex-
tual states in which these actions are produced (similarly to d’Ausbourg’s
model). The model we propose is gradually introduced in Sections 4.3
and 4.4. This new causality model is made up of three relationships that
represent three different perspectives of the monitored system.

Defining a New Model: Causal Dependency Among Contextual Actions. Sec-
tion 4.3 starts with the definition of the contextual action causal dependency
(CACD). Additionally, it explains the differences between the CACD rela-
tionship and the ones defined by Lamport and d’Ausbourg. Succinctly, the
CACD relationship we define is based on the insight that a system can be
modeled as a set of active and passive objects that have states. It considers the
actions, the object states, as well as their causal dependencies.

Towards the Definition of the Event Causal Dependency. Building upon the
contextual action causal dependency relationship, we gradually define the
notions that are necessary to link the contextual actions to their correspond-
ing events and define the event causal dependency (ECD) relationship in Sec-
tion 4.4. More specifically, the definition of the ECD relationship is based
on the insight that events, actions, and object states are closely related, i.e.,
monitoring systems enable the observation and recording of actions or states in the
form of events. The idea is the following: If we can determine causal dependencies
among actions, among states, and between actions and states, we can propagate this
knowledge to the events.

Enabling the Computation of Cause and Dependence Graphs. Finally, Sec-
tion 4.5 introduces the aim of defining a causal dependency relationship
among heterogeneous events: enabling the computation of the cause and the
dependence graphs of an event of interest (e.g., an alert or an indicator of com-
promise, produced by an attacker action).

The work presented in this chapter has been published and presented
at the 4th IEEE European Symposium on Security and Privacy (EuroS&P
2019) [Xosanavongsa et al., 2019a], as well as at the 5th Rendez-Vous de la
Recherche et de l’Enseignement de la Sécurité des Systèmes d’Information (RESSI
2019) [Xosanavongsa et al., 2019b]. The next chapter presents how the new
causal dependency model we define can be computed.

5 M O D E L I M P L E M E N TAT I O N

The previous chapter presented the model we have defined to unify two
existing work on causal dependencies among heterogeneous events. This
chapter presents how this new model can be implemented. More specifically,
Section 5.1 illustrates the two strategies that can be adopted to implement
the model, i.e., the top-down and the bottom-up strategies. The following sec-
tions present how we can implement these strategies in the context of our
research interest: the monitoring of the computer network of an enterprise.
Section 5.2 describes how our model would be ideally implemented with the
top-down strategy. Finally, Sections 5.3 and 5.4 present our implementations
of the contextual event causal dependency relationship, using the bottom-up
strategy, for the Linux OS and the Windows OS, respectively. More specifi-
cally, Section 5.4 introduces the reader to the project called VESTA. VESTA
consists in the development of an endpoint detection and response product
and embeds a part of the work presented in this manuscript.

5.1 top-down and bottom-up perspectives

The first section of this chapter aims to introduce the reader to the two
strategies that can be adopted to implement our causal dependency model,
namely, the top-down and the bottom-up strategies.

As we have seen with Figure 4.6, the three relationships we have defined
can be seen as three representations of the monitored system. As these
relationships are equivalent, computing the event causal dependency rela-
tionship, based on Figure 4.6, can be done either:

1. by adopting a top-down strategy, i.e., tracking causal dependencies
among contextual actions, and computing the Obs function that maps
a contextual action to its corresponding set of contextual events. Sec-
tion 5.1.1 describes this first strategy;

2. or by adopting a bottom-up strategy, i.e., computing contextual events,
as well as their causal dependencies, from raw events. Section 5.1.2
describes this second strategy.

5.1.1 Top-Down—From the Contextual Action Causal Dependency Rela-
tionship to the Event Causal Dependency Relationship

The top-down strategy’s global idea is the following. If (1) the causal
dependencies among contextual actions are known; and (2) the observabil-
ity relationship between contextual actions and contextual events is known
through the computation of the Obs function; Then, we can compute causal
dependencies among contextual events and among events, based on the
causal dependencies among contextual actions.

94 model implementation

In order to adopt this strategy, we should thereby be able to compute the
contextual action causal dependency model. This implies that we should be
able to:

1. observe actions performed by the monitored active objects;
2. observe the object states in which these actions take place;
3. identify, observe and track the causal dependencies among contextual

actions, as defined in Section 4.3.2;
4. compute the Obs function that maps a contextual action to its corre-

sponding set of contextual events.
The following section (Section 5.2) describes how the top-down strategy

can be implemented.

5.1.2 Bottom-Up—Leveraging Events Information to Compute the Contex-
tual Event Causal Dependency Relationship

The bottom-up strategy’s global idea is the following. If raw events ex-
plicitly contain the needed semantic information; Then we might be able to
compute contextual events and their causal dependencies from events. Addi-
tionally, timestamps may be used to approximate the ordering of contextual
actions performed on the same machine.

Building upon the contextual event causal dependency model, we would
need to compute contextual actions from contextual events. Again, it de-
pends on the semantic information contained in the events. Events generally
contain information related to actions or notice changes of states. However,
it is mostly impossible to have access to the object states. Therefore, it is very
difficult to compute the contextual action causal dependency model.

This section presented the two strategies that can be adopted to compute
the three relationships we defined in Chapter 4. Of course, the implementa-
tion of these strategies is conditioned by the nature of the monitored system.
In our context, the monitored system consists in a classical enterprise com-
puter network without additional deployed monitoring systems. The rest of
this chapter is organized into two parts.

The first part, consisting in Section 5.2, describes how a classical system
could be modified to attain an implementation of the top-down strategy.
More specifically, it shows how current technologies enable the computation
of parts of the prerequisites for the application of top-down strategy.

The second part, consisting in Section 5.3 and 5.4, presents our implemen-
tations of the model. These implementations adopt the bottom-up strategy.

5.2 top-down strategy—ideal implementation de-
scription

There is currently no complete implementation of the overall model we
defined in Chapter 4. However, the contextual action causal dependency

5.2 top-down strategy—ideal implementation description 95

computation prerequisites, described in the previous section, can be par-
tially satisfied by current causal dependency computation methodologies, as
presented in Chapter 3. An ideal implementation of the top-down strategy
would, therefore, consist in the merging of several methods and technolo-
gies. In fact, all these methods and implementations allow the observation
and recording of a subset of actions performed by active objects in the mon-
itored system. More specifically, each implementation permits observations
at a given level of the system and thus provides partial information of what
really happens in the system. Accordingly, it is important to note that the ex-
isting work only enables an approximation of the correct model. This section
presents how existing work enables the computation of parts of the contex-
tual action causal dependency model. It also presents why we can only
attain an approximation of the contextual action causal dependency model
by introducing the reader to the limitations of presented methodologies.

5.2.1 Message Passing Systems—Causal Dependencies among Actions

As we have presented in the chapter on causality (Chapter 3), every work
in this distributed system research field implements various means to de-
duce causal dependencies among distributed processes’ actions. Actually,
any of these technical solutions is relevant for computing contextual action
dependencies of different processes that communicate. Going into more
detail, a message exchange consists of two causally dependent actions: a
sending action and a reception action. Thus, message passing-related causal
dependencies relate to causal dependency among actions.

5.2.2 Information Flow Monitoring—Causal Dependencies among Object
States

The various kinds of information flow monitoring we presented in Chap-
ter 3 can be leveraged to compute causal dependencies among contextual ac-
tions. More specifically, we have seen that an information flow represents a
kind of causal dependency among information containers, i.e., object states.

Delving Deeper into Kernel-Level Information Flow Monitors

Sections 3.3.3 and 3.4.4 presented information flow monitors at the OS ab-
straction level, i.e., the Kernel abstraction level. These work monitor system
calls invoked by active objects, i.e., processes, threads, or execution units,
and deduce information flows from them.

Monitoring of System Call Invocations. These monitors allow the computa-
tion of causal dependencies among object states by tracking the invocations of sys-
tem calls. In practice, this family of monitors allows the identification of the
objects involved in observed system call invocations. The most fine-grained
monitors also allow the recording of the value of the information that is ac-
tually flowing through the system call. However, they do not observe the
actual states of the objects involved in system calls. Thus, they don’t allow
the computation of object states nor the computation of contextual actions.

96 model implementation

Approximated Occurrence Time. Additionally, these monitors capture sys-
tem call-related actions at a certain point in time, which is not the exact time
of occurrence of the actions, as discussed in Section 4.4.1. Even if object
states could be observed and recorded, the previous remark implies that ob-
ject states might not be observed at the actual time the actions occurred, i.e.,
object states might change during this time frame.

False Causal Dependencies. As we have already mentioned in Section 3.4.4,
system call-related information flow monitors are subject to the dependence
explosion problem. They thereby might introduce false causal dependencies
among contextual actions. This also contributes to the fact that only an
approximation of the contextual action causal dependency model can be
computed.

Delving Deeper into Programming Language-Level Information Flow Monitors

The same conclusion applies to information flow monitors of the pro-
gramming language abstraction layers, i.e., work presented in Sections 3.3.3
and 3.4.4. As the name data flow tracking suggests, only the flow of data is
tracked. Such systems do not observe the values of the variables. Thus, the
values of object states cannot be computed by such methodologies. How-
ever, these methodologies are more precise than Kernel-level information
flow monitors.

The existing work presented in the previous paragraphs only observe and
record active object actions. They do not provide a means to observe and
record object states, either active or passive, at any given time. Hence, they
do not enable the computation of the contextual action causal dependency
model.

5.2.3 Eidetic Systems—Towards State Awareness

Computing the complete contextual action causal dependency model re-
quires the capability to observe and record object states at any moment dur-
ing system execution. Such object state awareness is enabled in debugging
and replaying tools, where an action can be stopped and its context cap-
tured, i.e., the state of the object that performed the action and the states of
involved objects. Such capture mechanisms can be embedded in processors,
virtual machine hypervisors, or emulators, such as QEMU, as that in [Chow
et al., 2008].

Defining Eidetic Systems

In 2014, Devecsery et al. introduced the concept of state-aware systems [De-
vecsery et al., 2014]. They termed them eidetic systems, i.e., “a computer sys-
tem which can record and replay any prior computation, just as if it were
happening again”. This concept can be applied at different abstraction lay-
ers, e.g., the OS or application abstraction layers.

5.2 top-down strategy—ideal implementation description 97

Eidetic Systems at the Operating System Layer

Devecsery et al. applied it to the Linux operating system. Their implemen-
tation is embedded in the Linux Kernel and enables the recording of process
states and their evolution to replay subsets of processes [Devecsery et al.,
2014].

Building upon Devecsery et al.’s work, Ji et al. have proposed to use this
record and replay technology to perform attack investigation [Ji et al., 2017]
[Ji et al., 2018]. Hence, they record the required information to perform clas-
sical Kernel-level information flow tracking, as well as process replay. More
specifically, recorded information corresponds to the context of processes
I/O, e.g., system call results, or shared memory reads and writes. Their idea
is to leverage the replay capability of the eidetic Linux Kernel to perform
fine-grained information flow tracking at the instruction level, i.e., Dynamic
Information Flow Tracking (DIFT) techniques (as described in Section 3.3.3).
In practice, using DIFT is not realistic for real-time usage as it induces too
much performance overhead. However, using DIFT in a replay setting al-
lows avoiding the induced performance overhead in the production context.
Thus, this idea allows to address the dependence explosion problem (pre-
sented in Section 3.4.4) and to retrieve the traces of an attacker with more
precision as well.

Eidetic Systems at the Application Layer

These principles can also apply at the application abstraction level. For
example, Vadrevu et al. instrument the Chrome web browser to enable
the logging and replay of the user action contexts, i.e., the document object
model that contains web page objects and JavaScript source code [Vadrevu
et al., 2017]. By enabling the finer-grained logging of action contexts, these
methodologies also allow the computation of a better approximation of the
contextual action causal dependency model.

In fact, the implementations presented in this section (Section 5.2.3) in-
strument the studied abstraction layer to record the information required
to enable replay: they build tailor-made monitoring systems. However, such
heavyweight instrumentation is not always possible or desirable and is diffi-
cult to maintain.

5.2.4 Obs Function Implementation Ideas

Based on the hypothesis that contextual actions and their related causal de-
pendencies can be computed, an implementation of the Obs function would
allow us to compute contextual events, as well as their corresponding causal
dependencies.

Existing technologies that correspond to an implementation of the Obs

function can be system call monitors, application logging systems, or net-
work packet sniffers, for instance.

98 model implementation

Contextual
Action Causal
Dependency

[Known]

(a1, (o1, t1)) (a2, (o2, t2))

Contextual
Event Causal
Dependency (e1,o1, te1

) (e2,o2, te2
)

Event Causal
Dependency e1 e2

Obs
(
(a1, (o1, t1))

)
Obs

(
(a2, (o2, t2))

)

Figure 5.1: Illustration of a causal dependency tracking system.

We could also design a more global implementation of the Obs function.
For instance, we can imagine a tracking system for contextual actions and
their causal dependencies. Tracking information could be recorded by the
Obs function. Figure 5.1 illustrates this implementation idea. Additionally
to the recorded information, e.g., the performed action and the object state at
the recording time, events would also have the same tracking information as
their corresponding contextual actions. Thus, with the example illustrated
in the figure, we have (e1,o1, te1

) ⇀ (e2,o2, te2
) and e1 . e2.

In practice, it is difficult to gather and integrate all these technologies
together to get the complete model of the contextual actions and their causal
dependencies. Therefore, as a first step, we have decided to adopt a bottom-
up strategy in order to compute the event causal dependency model. The
bottom-up strategy is more realistic to implement. However, it is based on
an incomplete coverage of the actions performed by the monitored system.
The computed representation is thereby an approximation of the model we
defined in Chapter 4. The following section presents our implementation of
the contextual event causal dependency model using the bottom-up strategy.

5.3 bottom-up strategy—a lightweight approach

The security monitoring strategy is the key to enabling the computation
of contextual events and their related causal dependencies. Depending on
the chosen monitored abstraction layers, different kinds of monitoring sys-
tems can be deployed to produce events containing the necessary semantics
information for this computation.

This section presents our implementation of the contextual event causal
dependency model using exclusively existing monitoring system facilities
to record events. Our implementation does not rely on any additional in-
strumentation of the monitored system (e.g., source code instrumentation).
More specifically, we chose to observe the network, OS, and application ab-
straction layers. In the next sections, as well as in Chapter 6, it is shown that
the use of existing events generated by various monitoring systems, such as

5.3 bottom-up strategy—a lightweight approach 99

auditd, netfilter, application logging systems, and Zeek NIDS, already yields
a good approximation of the model.

Building upon the semantic information contained in raw events, our
implementation adopts a bottom-up strategy, as described in Section 5.1.2.
This section is organized into three parts. This first one describes how a
cyber defense analyst would leverage our model to identify and retrieve all
the events that are causally linked to the suspicious event that is being in-
vestigated (Section 5.3.1). The second one presents the architecture of our
implementation (Section 5.3.2). Finally, the third one goes into more detail
by describing how the contextual event causal dependency model is com-
puted from raw events (Section 5.3.3).

5.3.1 Investigating an Event—A Cyber Defense Analyst’s Perspective

Actually, the lightweight implementation that is proposed in this section
involves taking the perspective of a cyber defense analyst who only has
events and alerts.

Starting from an event of interest e, a cyber defense analyst tries to find
links between heterogeneous events and e to understand its context better.
In fact, as described in Chapter 2, we argue that these links correspond to
causal dependencies among heterogeneous events. A cyber defense analyst
is, therefore, performing graph traversals, i.e., by building the cause and
dependence graphs, of the event causal dependency model presented in Chap-
ter 4.

The implementation of the bottom-up strategy we propose aims at au-
tomating the computation of these links and the retrieval of the set of events
that are causally dependent on e. Thus, we provide a cyber defense analyst
an interface to request the cause and dependence graphs of any event of
interest. More specifically, if this event is not a part of a real attack, then the
dependence and cause graphs will not contain traces of an attack. Accord-
ingly, a cyber defense analyst should begin with a suspicious event. In this
case, the probability that the graph contains all events related to an attack is
higher. Such capability represents a means to assert the veracity of a given
alert, as well as a means to identify multi-step attack scenarios.

Following sections describe our implementation of the bottom-up strat-
egy:

• Section 5.3.2 presents the design of our implementation. More specifi-
cally, it details why we have chosen the ArangoDB1 graph database to
implement the contextual event causal dependency model;
• Section 5.3.3 focuses on the computation of contextual events, as well

as their causal dependencies, from raw events. Additionally, it answers
the following questions:

– What actions do we monitor?
– How do we generate events?

1 https://www.Arangodb.com/

https://www.Arangodb.com/

100 model implementation

5.3.2 Implementation’s Architecture

The architecture of our implementation is divided in four parts: (1) The
monitoring systems deployment; (2) The Extract, Transform, Load (ETL)
pipelines; (3) the graph database; and (4) the visualization interface that
allows the cyber defense analyst to interact with the database and investi-
gate events. Figure 5.2 illustrates the big picture of our implementation’s
architecture.

ETL Pipeline

ETL Pipeline

ETL Pipeline

Cause & Dep
Graph Requests

Event
Search

(1) Monitoring
Systems

Deployement

(2) ETL: Extract,
Transform, Load

Pipelines

(3) ArangoDB
Graph

Database

(4) Visualization
& Investigation

Interface

Figure 5.2: Overview of the architecture of our implementation.

Monitoring Systems Deployment

The monitoring systems deployment depends on the adopted monitoring
strategy. More specifically, the monitoring strategy consists in choosing:

1. which objects’ actions, states, or related causal dependencies are ob-
served and recorded to enable efficient attack detection and investiga-
tion.

2. produced events’ formats, according to the format output possibilities
offered by the deployed monitoring systems.

The monitoring strategy, in turn, depends on the context, i.e., the system
to monitor. In our case, the system to monitor consists in a small enterprise
network. Additionally, we have decided to implement our model using only
COTS monitoring systems. In this monitoring context, we monitor network
objects, i.e., network interfaces of the monitored machines, as well as Kernel-
level objects, e.g., processes, files, pipes, sockets. Moreover, we consider
that application events are produced by processes. Monitored object actions
correspond to system call invocations, message exchanges over the network,
and the actions observed by the monitored applications’ logging systems.
Section 5.3.3 details how each type of data source is handled to produce con-
textual events and causal dependencies among contextual events pertaining
to different objects.

ETL Pipelines

As its name suggests, an ETL pipeline corresponds to a process that moves
data from a source (extraction) to a destination (load), and modifies it (trans-
formation) along the way.

5.3 bottom-up strategy—a lightweight approach 101

Transform
Component

Load
Component

Kafka
Topic

Publishes To
Suscribes To

Msg Exch
M

Hosti

CEs & CDs
i1

CEs & CDs
i2

Timelines
Hosti

Hostj

CEs & CDs
j1

CEs & CDs
j2

CEs & CDs
j3

Timelines
Hosti

GraphDB
Connector

L

(1) Extract:
Event Collection

(2) Transform:
CECD Graph
Computation

(3) Load:
Import to

ArangoDB

Figure 5.3: Illustration of the ETL pipelines architecture.

Figure 5.3 represents the architecture of our ETL pipelines. They consist
in: (1) collecting the raw events on the monitored machines; (2) computing
contextual events and, when possible, their causal dependencies; and (3)
loading the computation results in the graph database.

Kafka Topics. ETL pipelines follow a publish-subscribe model, also called
the producer-consumer model, i.e., each component of the pipelines pub-
lishes, subscribes, or both, to streams of events. In our implementation,
event streams are handled by Apache Kafka2, a scalable distributed stream-
ing platform that allows building ETL pipelines. Kafka enables the reliable
transportation of events from their sources, to the different contextual events
and causal dependencies computation components (i.e., transform compo-
nents), and the graph database. More specifically, event streams are handled
by topics in Kafka. Thus, extract, transform, or load components publish,
subscribe, or both, to topics, as we can see in Figure 5.3. Kafka is specially
configured to keep the publishing order of messages.

The following paragraphs describe the extract, transform, and load compo-
nents of the ETL pipelines. More specifically, the transform part of the ETL
pipelines is made up of three types of components: (1) Contextual Events
and Causal Dependencies (CEs & CDs) transform components; (2) Timelines
transform components; and (3) Message exchange transform component.

Extract. The extract part of the ETL pipelines currently consists in the read-
ing of event log files by the CEs & CDs transform components. These compo-
nents parse raw events and compute the contextual events and their causal

2 https://kafka.apache.org/

https://kafka.apache.org/

102 model implementation

dependencies before publishing them to one or several Kafka topics. We
currently suppose that each event log file is temporally ordered.

CEs & CDs Transform Components. As we can see in Figure 5.3, each CEs &
CDs transform component publishes to its own dedicated topic. More specifi-
cally, it publishes all the contextual events and causal dependencies it com-
puted. When computed contextual events are message exchange-related,
e.g., network communication-related, CEs & CDs transform components also
publish them to the MSG Exch topic.

CEs & CDs transform components aim to identify the monitored objects by
parsing the event. Depending on its type, an event can contain one or several
objects. For instance, a system call event contains two objects. Moreover,
event semantics can also allow the deduction of causal dependencies, e.g., a
system call that produces an information flow between two object states;

Depending on the data source to transform, CEs & CDs transform compo-
nents might need to be stateful, i.e., remembering preceding events. For
instance, this is the case with system call and netfilter events.

Timelines Transform Components. Timelines transform components aim to build
object’s timelines, as well as object’s sessions. Each monitored host has its
own timelines transform component, which actually builds its local contextual
event causal dependency graph. In order to do so, a timelines transform com-
ponent subscribes to all the topics related to a given monitored host. For
instance, in Figure 5.3, topics i1 and i2 are dedicated to the CEs & CDs trans-
form components of Hosti. In our current implementation, we suppose that
all the objects pertaining to the same monitored host share the host’s local
clock. However, we do not consider that different hosts have synchronized
clocks. A timelines transform component starts by ordering the CEs streams it
has subscribed to before appending them to the corresponding objects’ time-
lines. Doing so, a timelines transform component actually totally orders all the
events emanating from a given host.

Naturally, timelines transform components are stateful. They have to remem-
ber the last contextual event of each monitored object to build causal depen-
dencies related to their timelines. All timelines transform components publish
to the topic L.

Message Exchange Transform Component. The message exchange transform
component aims to build causal dependencies deduced from message ex-
changes, e.g., network communications. This component is actually in charge
of the building of the dependencies among local contextual event causal de-
pendency graphs. This component will be further described in Section 5.3.3.
The message exchange transform component is also stateful. It also has to re-
member send and receive events to build causal dependencies related to
message exchanges. It also publishes to the topic L.

Load Component. All the contextual events and causal dependencies com-
puted by the various transform components are eventually published to the
topic L, which is dedicated to the load component (called Graph DB Connec-
tor in Figure 5.3). The subscription to this topic enables the load component

5.3 bottom-up strategy—a lightweight approach 103

to import the computed contextual events (CECD nodes) and causal depen-
dencies (CECD edeges) into the database using a bulk import strategy.

Graph database

Given the acyclic oriented graph structure property of the three relation-
ships we defined in Chapter 4, we naturally settled on a graph database to
benefit from its efficiency to recover graph structures via a graph-oriented
dedicated query language. Such graph-oriented query language enables the
writing of simple graph traversal queries. This corresponds to an impor-
tant database choice criteria as we are interested in computing cause and
dependence graphs of events of interest.

In order to properly investigate events and attacks, a cyber defense analyst
also needs to be able to search through the event database conveniently. This
means that the chosen database is tailored for search and retrieval, instead
of data update. In fact, once events are stored in the database, they are
very likely to be read-only. For example, this requirement is well illustrated
by elastic search3, a document-oriented database, which is one of the main
choices when building an open-source SIEM.

Additionally to the graph and search properties needed, the chosen data-
base needs to adapt to the number of events generated by the monitoring
systems. Thus, the database has to be scalable.

To satisfy all these requirements, we have chosen ArangoDB, a distributed
graph database. ArangoDB has the characteristic to be multi-model, i.e., it
supports key-values, document, and graph data models. Moreover, it also
has the capability to scale to a large number of events by easily adding
machines to the database cluster. Its query language allows a cyber defense
analyst to explore events, as they are contained in the computed contextual
events, and compute the cause and dependence graphs of interesting events
by performing graph traversals of the contextual event causal dependency
graph.

Visualization Interface

In order to investigate events, a cyber defense analyst has to be able to use
the contextual event causal dependency graph by requesting for cause and
dependence graphs. The graph database we chose already has a visualiza-
tion interface, however, its visualization tools are not expressive enough to
make use of it. We have thereby worked on a simple interface to enable the
visualization of cause and dependence graphs.

Figure 5.4 illlustrates the visualization interface we developed. It is made
up of three main parts:

1. the visualization of the graph on the left side [1]. The graph’s legend
is displayed at the bottom of the visualization interface. This visual-
ization displays all the contextual events, as well as their causal depen-
dencies, contained in the requested cause and dependence graphs. In
the example illustrated in the figure, the different colors correspond

3 https://www.elastic.co/products/elasticsearch

https://www.elastic.co/products/elasticsearch

104 model implementation

1

2

3

Figure 5.4: Visualization interface for contextual event causal dependency graph
analysis.

to different types of objects. The yellow triangles represent network-
related contextual events. The purple circles represent process-related
contextual events, either computed from system call invocation events,
or from application events. Blue crosses represent socket-related con-
textual events. Red crosses represent unknown objects, i.e., file descrip-
tors that could not be identified because the information was missing.
And green crosses represent file-related contextual events;

2. the display of the selected contextual event’s information in the middle
[2]. More specifically, all information contained in the related event is
displayed;

3. the display of the events of interest, i.e., alerts in our case, on the right
side [3].

Using this interface, a cyber defense analyst can interact with the graph
database and easily request for the contextual event causal dependency cause
and dependence graphs of a contextual event of interest.

The work presented in this manuscript does not focus on visualization. Vi-
sualization for Cybersecurity is research field in itself. This is well illustrated
by the IEEE VizSec4 conference.

The previous section presented the overall design of our implementation.
The following section focuses on the computation of the so-called contex-
tual events. More specifically, it presents how contextual events and their
related causal dependencies are guessed from the raw events produced by
the deployed monitoring systems.

4 https://vizsec.org/

https://vizsec.org/

5.3 bottom-up strategy—a lightweight approach 105

5.3.3 Computing the Contextual Event Causal Dependency Model from
Raw Events

Section 5.3.3 describes how each type of event is treated, depending on its
data source, to compute contextual events and deduce their causal depen-
dencies. The following sections describe how we deduce contextual events
issued from the analysis of: (1) application-related data sources, i.e., applica-
tion logs and application-level HIDS alerts; (2) system call-related logs and
HIDS alerts; and (3) events deduced from network traces or NIDS alerts.
Finally, the last paragraph of Section 5.3.3 illustrates the fact that, building
upon contextual events computed from raw events, corresponding contex-
tual actions can only be approximated.

Application Data Source

Contextual Events from Application-Level Events. A process, p, running an
application, produces a sequence of application events, [eApp

i], where the
event e

App
i describes an action, or a change of state, executed by the ob-

served process. In order to compute the related contextual event of a given
raw event, we first need to identify the observed object and its timestamp.
These information can generally be retrieved from the event semantics or
from an external knowledge base. We can thereby deduce a sequence of
the related contextual events, [(eApp

i ,p, ti)], where p corresponds to the ob-
served process and ti corresponds to the recording time of eApp

i .
Depending on the deployed monitoring system, these events can be ana-

lyzed by an application-level HIDS to detect suspicious program behavior,
e.g., an abnormal sequence of events. The HIDS analysis uses events from
the monitored application; thus, any raised alert is related to the application
context. An application-level contextual event, (eApp

alert,p, talert), can be de-
duced from a given application-level alert, eApp

alert; with (eApp
alert,p, talert) ∈

Obs
(
(a, (p, t))

)
, (a, (p, t)) being the contextual action that is actually ob-

served.

Example 5.1 Example of an Apache event

[04/Nov/2018:21:50:54 +0000] 1566 10.0.2.15 80 10.0.2.2
56582 ‘‘POST /bWAPP/sqli_6.php HTTP/1.1’’ 200
6799 ‘‘http://10.0.2.15:80/bWAPP/sqli_6.php’’ ‘‘Mozilla/5.0 (X11;
Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0”

Let the processing of application events in our attack scenario example
be illustrated using the Apache application events. The application event,
e
App
Req , illustrated with Example 5.1, corresponds to the Apache log entry

that records the fact that the request has been treated.
The Apache logging system has been specially configured to output this

event format, i.e., a format that contains enough information to deduce the
monitored active object. In fact, we have configured the Apache logging sys-
tem to suit our information needs. Another way to enhance the semantic
information contained in produced events is to leverage dedicated monitor-
ing modules. For example, such modules can enable the recording of POST
requests’ parameters.

106 model implementation

The second attribute, i.e., 1566, represents the process identifier (PID) of the
process that treated the request. This information allows us to identify pre-
cisely the process that recorded the event, i.e., the monitored object. Thus,
a contextual event can be computed, by a CEs & CDs transform component,
by identifying the corresponding Apache active object using the PID infor-
mation. This transform component is stateless. Then, the contextual event
can then be placed on its timeline by the CECD graph builder, using the
timestamp, t

e
App
Req

.

In fact, this unique application event is actually a fusion of two events: the
POST request and its result; however, we only have one timestamp for the
two. Thus, it is necessary to consider the following approximation: the two
actions happened at the same time (i.e., the event’s timestamp). Moreover,
e
App
Req could also be considered as message exchanges: (1) the reception of a

message, i.e., the POST request; and (2) its reply.
The following two paragraphs further illustrate how application events

can be leveraged to deduce sessions and message exchanges when possible.
In our case, we would need to instrument further the Apache web server.
Thus, we did not implement the methodologies presented in these two para-
graphs.

Sessions in Application Contextual Events. According to the semantic infor-
mation contained in the application-level events, sessions can be deduced
from them.

apache tapa

(eApp
Reqn

,apa, t
eApp
Reqn

)(eApp
Reqn−1

,apa, t
eApp
Reqn−1

)

Sessionn−1(apa) Sessionn(apa) Sessionn+1(apa)

Figure 5.5: Apache application contextual event computed from access.log.

Figure 5.5 shows the placement of the contextual application event on the
Apache object timeline. Considering that Apache is a server with no internal
memory between requests, i.e., the beginning of each request processing is
independent of the others. In other words, each request would be executed
in an independent session, as defined in Section 4.3.1. . Note that the Apache
application could be further instrumented for the accurate determination of
sessions at the application-level. With two events shown in the example,
three sessions are illustrated.

Message Exchanges in Application Contextual Events. In our attack scenario
example, messages are exchanged among different processes at different
nodes; for instance, the apache and mysqld processes exchange messages.
With further instrumentation of the applications, these messages could be
recorded in the application-level events. This is, for example, the case for
the approach presented in [Lanoë et al., 2019] (presented in Section 1.4.5).

Figure 5.6 illustrates the use of application-level contextual events (when
they can be deduced from raw events) to compute causal dependencies be-
tween the two process active objects. Note that the clocks of the two pro-

5.3 bottom-up strategy—a lightweight approach 107

tp1
p1

(e
App

1

,p1, t1)

(e
App

sen
dM

sg(
p2

,m)
,p1, ts)

(e
App

2

,p1, t2)

tp2
p2

(e
App

3

,p2, t3)

(e
App

rec
vM

sg(
p1

,m)
,p2, tr)

(e
App

4

,p2, t4)

Figure 5.6: Message exchange between two applications.

cesses, tp1
and tp2

, are not necessarily synchronized. Process p1 records in
its log a contextual event, (eApp

sendMsg(p2,m),p1, ts), indicating that it sends a
message m to p2 at time ts with the sendMsg function. Process p2 records
(eApp

recvMsg(p1,m),p2, tr), which indicates that it receives message m from p1

at time tr with the recvMsg function.
This implies that both contextual events are causally dependent, i.e.:
(eApp

sendMsg(p2,m),p1, ts) ⇀ (eApp
recvMsg(p1,m),p2, tr), in the sense of Lamport.

Therefore, we also have e
App
sendMsg(p2,m) . e

App
recvMsg(p1,m). If it is supposed

that all contextual events of an object are part of the same session, then
we can deduce the following as partial ordering of events using the event
causality relationship:

• e
App
1 . eApp

sendMsg(p2,m) . e
App
2 ;

• e
App
3 . eApp

recvMsg(p1,m) . e
App
4 ;

• e
App
1 . eApp

sendMsg(p2,m) . e
App
recvMsg(p1,m) . e

App
4 .

In practice, if the processes are communicating on a single node, then we
would be able to build this causal dependency using the OS-level system call
traces. However, if the two processes are communicating through the net-
work via message exchanges, causality relationships can be deduced from
their application-level logs, for example.

System Call Data Source

Contextual Events from System Call Events. System call invocations can be
recorded inside the Kernel or by a dedicated module in the Kernel space that
uses hooks to intercept system calls and produce a trace for each process. To
avoid the instrumentation of the Kernel, an already existing tool, auditd, is
used to record system call invocations. In this trace, contextual events are in
the form of (eSys,p, t); this means that each recorded event indicates which
system call is invoked by process p at a given timestamp. The event eSys

is a system call that is executed in the context of process p at time t. Note
that this time is defined as the timestamp of the contextual event, which is
an approximation of the actual time of the system call invocation. In that
sense, the event eSys is not produced by process p but is part of the set of
contextual events of p.

Among the invoked system calls, some produce information flows (e.g.,
read(), write(), send(), and recv()) and others do not (e.g., wait(), mpro-

108 model implementation

tect(), and futex()). We configured auditd to record all system call actions
that produce information flows. The list of the monitored system calls is
detailed in Appendix A (Section A.1). Each time an information flow is
produced, two objects are involved: an active object (e.g., a process or the
network) and a passive object (e.g., shared memory, sockets, files, and pipes).
Accordingly, we can deduce two causally dependent contextual events from
a raw event, denoted eSys, which corresponds to a system call that produces
an information flow.

Raw Events
Deduced

Event Causal
Dependency

Deduced
Contextual Events

Deduced
Contextual Event

Causal Dependency

Corresponding
Contextual Actions

Known
Contextual Action

Causal Dependency
=⇒

=⇒

=
⇒

=
⇒

Figure 5.7: Bottom-up strategy rationale for system call events.

Regarding system call events, the bottom-up strategy rationale is illus-
trated in Figure 5.7. Contextual events can be deduced from raw events.
Based on the model we defined in Chapter 4, deduced contextual events
correspond to the observation of contextual actions. Even if we cannot deter-
mine the corresponding contextual actions, we know that, in the context of
system call events, the corresponding contextual actions are causally depen-
dent, in the sense of “ 7→,” as monitored system calls produce information
flows. Therefore, as we previously explained in Chapter 4 with Figure 4.6,
we can deduce that the contextual events are causally dependent in the sense
of “⇀.” Finally, we can deduce causal dependencies among events. More
specifically, depending on the family of the observed system call, the bottom-
up strategy rationale is the following:

Write() System Call Family.
1. From eSys, we deduce two contextual events: (eSys,p, teSys) and

(∅,o, teSys), with teSys the timestamp of the event eSys;
2. According to the causality model we defined in Chapter 4, there exist

two contextual actions (write(), (p, t)) and (∅, (o, t)), with t the actual
time of the information flow, such that: (eSys,p, teSys) ∈ Obs

(
(write(),

(p, t))
)

and (∅,o, teSys) ∈ Obs
(
(∅, (o, t))

)
;

3. If the system call is from the write() family, then, it produces an infor-
mation flow from the active object, p, i.e., the process that invoked the
system call, to the passive object, o.
Thus, we know that the two objects’ states are causally dependent and
we have: (write(), (p, t)) 7→ (∅, (o, t));

4. This implies that (eSys,p, teSys) ⇀ (∅,o, teSys).

5.3 bottom-up strategy—a lightweight approach 109

Read() System Call Family.
1. From eSys, we deduce two contextual events: (eSys,p, teSys) and

(∅,o, teSys), with teSys the timestamp of the event eSys;
2. According to the causality model we defined in Chapter 4, there exist

two contextual actions (read(), (p, t)) and (∅, (o, t)), with t the actual
time of the information flow, such that:
(eSys,p, teSys) ∈ Obs

(
(read(), (p, t))

)
and (∅,o, teSys) ∈ Obs

(
(∅, (o, t))

)
;

3. If the system call is from the read() family, then, it produces an infor-
mation flow from the passive object, o, to the active object, p, i.e., the
process that invoked the system call.
Thus, we know that the two objects’ states are causally dependent and
we have: (∅, (o, t)) 7→ (read(), (p, t));

4. This implies that (∅,o, teSys) ⇀ (eSys,p, teSys).

Fork() System Call Family.
1. From eSys, we deduce two contextual events: (eSys,pparent, t) and

(∅,pchild, teSys), with teSys the timestamp of the event eSys;
2. According to the causality model we defined in Chapter 4, there exist

two contextual actions (fork(), (pparent, t)) and (∅, (pchild, t)), with t

the actual time of the information flow, such that: (eSys,pparent, t) ∈
Obs

(
(fork(), (pparent, t))

)
and (∅,pchild, teSys) ∈ Obs

(
(∅, (pchild, t))

)
;

3. If the system call is from the fork() family, then, it produces an infor-
mation flow from a parent process, pparent, that invoked the system
call, to a child process, pchild.
Thus, we know that the two objects’ states are causally dependent and
we have: (fork(), (pparent, t)) 7→ (∅, (pchild, t));

4. This implies that (eSys,pparent, t) ⇀ (∅,pchild, t).

Example 5.2 Example of a system call event produced by auditd

type=SYSCALL msg=audit(1541366508.539:47875): arch=c000003e syscall=288

success=yes exit=10 a0=3 a1=7ffce59a1100 a2=7ffce59a10e0 a3=80000

items=0 ppid=1106 pid=1566 auid=4294967295 uid=33 gid=33 euid=33

suid=33 fsuid=33 egid=33 sgid=33 fsgid=33 tty=(none) ses=4294967295

comm=’apache2’ exe=’/usr/sbin/apache2’ key=(null)

type=SOCKADDR msg=audit(1541366508.539:47875): saddr=0200DD060A0002
020000000000000000

type=PROCTITLE msg=audit(1541366508.539:47875): proctitle=2F7573722F7362
696E2F61706163686532002D6B007374617274

Linux Kernel system call events produced by auditd are made up of sev-
eral entries. Example 5.2 illustrates an accept() system call, which corre-
sponds to the number 288, that produces two contextual events: one for the
Apache process and another for the created socket. This event is made up of
three entries:

1. The SYSCALL entry records the system call information, i.e., its param-
eters as well as its output. In more detail, the event semantics depends
on the nature of the system call. In this case, for example, the sys-
tem call returns the number of the file descriptor (exit=10) created to
reference the network socket.

110 model implementation

2. The SOCKADDR entry describes the socket information: “saddr=(AF
_INET) 10.0.2.2:56582.” This information corresponds to the IP and
port of the remote machine. They will be completed with the informa-
tion contained in the netfilter events, as described in Section 5.3.3 in
the Network Socket Object Identification paragraph.

3. The PROCTITLE entry “records the full command-line of the com-
mand that was used to invoke the analyzed process.”5

The accept() system call is from the read() system call family. Thus, the
Apache process’ contextual event is causally dependent on the contextual
event of the created socket.

Approximating the Contextual Event Causal Dependency Model. Processes
communicate using the interprocess communication (IPC) mechanism, which
always involves passive objects, such as pipes, sockets, message queues, or
shared memory. The access to these passive objects may or may not involve
system calls (e.g., shared memory and memory-mapped files). In the latter
case, communications cannot be intercepted by the Kernel because they are
produced at the hardware level. Consequently, the log files available in the
system do not exhibit all information flows. Thus, we can only compute a
part of the causal dependencies among contextual events.

Stateful Transform Component. The CEs & CDs transform component that han-
dles Linux Kernel system call events is stateful. In fact, the Linux Kernel
handles I/O resources with file descriptors instead of file paths, for instance.
More specifically, the Kernel maintains a file descriptor table for each pro-
cess. Processes operate with them, through system call invocations, to read
from or write to their related I/O resources. As we do not have access to
these file descriptor tables, we have to rebuild them from the recorded infor-
mation contained in system call events. Such a processing step is mandatory
to track the flows of information among objects. To implement this require-
ment, we leveraged the system call handling component of SPADE6.

saccept tapa
∅ ∅ ∅

apache tapa
e
Sys
accept e

Sys
read

e
Sys
connect e

Sys
write e

Sys
read

e
App
Req

e
Sys
write

e
Sys
accept

sconnect tapa
∅ ∅ ∅

saccept tsql
∅ ∅ ∅

mysqld tsql
e
Sys
sendto

e
Sys
accept e

Sys
recvfrom

e
Sys
read e

Sys
read

e
Sys
sendto

eNet
accept

movies.db tsql
∅

tab_schem.db tsql
∅

Figure 5.8: System call contextual events computed from audit logs.

5 https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/se

curity_guide/sec-understanding_audit_log_files

6 https://github.com/ashish-gehani/SPADE

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-understanding_audit_log_files
https://github.com/ashish-gehani/SPADE

5.3 bottom-up strategy—a lightweight approach 111

Following the illustration of application event processing in our attack
scenario example, we now illustrate system call event processing. As can
be observed in Figure 5.8, system call contextual events are not sufficient to
link the Apache and MySQL hosts. To make them readable, the contextual
events are not written in figures but are replaced by their corresponding
events. In Figure 5.8, it can be seen that system call events already allow the
linking of several objects that are involved in the attack scenario. A system
call event contains the required information to causally link active objects,
i.e., a process identified by its PID and a passive object. Because system call
events are produced on a single node, they can be temporally ordered and
easily placed on the timelines of their related objects. Note that the Apache
and MySQL host clocks might not be synchronized. Thus, the system call
contextual events from the two nodes cannot be totally ordered; moreover,
at this point, they cannot be partially ordered.

Similarly to the application-level HIDS, and any triggered alert is also
considered to be part of the application context. Accordingly, a system call-
related contextual event, (eSysalert,p, talert), can be deduced from the system
call-related alert, eSysalert, triggered in the context of p at time talert; with
(eSysalert,p, talert) ∈ Obs

(
(a, (p, t))

)
, (a, (p, t)) being the contextual action

that triggered the alert. Because auditd can be configured to observe direc-
tories or files of interest using dedicated rules, it can also be used as a HIDS.
Such an alert contains the same information as a classic system call event
and can also be easily placed on the timeline of the related object.

Sessions in System Call Contextual Events. As mentioned in the application
data source section, system calls can be used to determine sessions. In the
case of Apache, it is known that request handling delimits sessions. At
the Kernel level, a request is read from the network that used the accept()

system call. Thus, it is considered that accept() system calls start new
sessions for apache processes.

The system call abstraction layer has been used to indicate sessions in
many approaches presented in Section 3.4.4, i.e., approaches that leverage
software testing techniques and binary instrumentation to determine ses-
sions and enable their identification in the produced events.

Network Data Source

Contextual Events from Network-Level Events. Network-level events7, specif-
ically packet flows, can be recorded by network sniffing tools. Even though
communications over the network are produced by processes, network traces
do not have any information concerning the processes and cannot be directly
related to their contexts. Therefore, in this trace, contextual events are in the
form (eNet

conn,netw, t), which means that a network-level event, eNet
conn, i.e., a

raw or analyzed packet flow, related to the connection, conn, is observed in
the context of the network interface, netw, at time t. In that sense, netw is
modeled as an active object that produce actions, i.e., the sending and recep-
tion of messages over the physical network layer. Thus, it can be considered

7 We refer to log entries deduced from network traces as network-level events.

112 model implementation

as a process in the sense of Lamport’s Happened-Before relationship defined in Sec-
tion 3.2.3. Messages are transmitted to the OS layer through the usage of
sockets.

Additionally, network interfaces can observe, analyze, and record packet
flows, and are considered to be stateless, i.e., considering the context of
netw, a contextual event is independent of other contextual events. Note
that a given network interface belongs to a unique host, and a host can have
multiple network interfaces. A network-level event, eNet

conn, observed on a
given network interface, netw, always involves communication between two
objects, i.e., a network socket that uses netw to read from or write to the
network. The network interface of the source or destination of the message
is:

1. (∅, socketsrcconn, t) ⇀ (eNet
conn,netw, t) if the information flows from the

passive object (the socket) to the active object (the network interface,
netw);

2. (eNet
conn,netw, t) ⇀ (∅, socketdstconn, t) if the information flows from the

active object (the network interface, netw) to the passive object (the
socket).

Packet flows, as previous data sources, can also be analyzed by a NIDS,
such as Zeek NIDS, which generates event logs from the protocol dissec-
tion. A NIDS alert, eNet

conn,alert, is modeled like any other network-level
event, i.e., a contextual event in the form of (eNet

conn,alert,netw, talert); with
(eNet

conn,alert,netw, talert) ∈ Obs
(
(a, (netw, t))

)
, (a, (netw, t)) being the con-

textual action that triggered the alert. Because Zeek can generate several
events from the same connection, it well illustrates the fact that an action
can be observed as several events, i.e., the set Obs

(
(a, (netw, t))

)
of its re-

lated contextual action, (a, (netw, t)), can contain several contextual events:
Obs

(
(a, (netw, t))

)
=

{
(ei

Net
conn,netw, tei

)
}

. Moreover, these events can
even be aggregated using event fusion techniques. Note that a NIDS typ-
ically observes network activities using a network tap; thus, it relies on its
own network interface to observe network activities.

Example 5.3 Example of Zeek NIDS alert

2018-11-04T21:50:55.001600Z CgGkAp4P6ThQzD2Wg 192.168.1.2 48218
192.168.1.3 3306 tcp MySQL::Sqli SELECT * FROM movies WHERE title
LIKE ‘%%’ UNION ALL SELECT table_schema,table_name, null, null,
null, null, null from information_schema.tables;- %’ SQLi Attempt :
Suspect syntax detected. [‘Notice::ACTION_LOG’]

sconnect tapa
∅ ∅ ∅

netwint
apa tapa

eNet
conn eNet

conn eNet
conn

netwint
zeek tzeek

eNet
conn,alert

netwint
sql tsql

eNet
conn eNet

conn eNet
conn

saccept tsql
∅ ∅ ∅

Figure 5.9: Network-related contextual events computed from netfilter and Zeek
NIDS logs.

5.3 bottom-up strategy—a lightweight approach 113

Figure 5.9 illustrates the use of contextual events deduced from network
traces in our motivating example. Only the internal network side has been
shown in this example, i.e., netwint

apa, netwint
sql, and netwint

Zeek network in-
terface active objects. The event, eNet

conn,alert, illustrated by Example 5.3,
corresponds to a Zeek alert triggered by an SQL injection detection rule. It
has been deduced from the network packet capture by dissecting the MySQL
application protocol level; it represents the MySQL query crafted by the at-
tacker and requested by the Apache web server.

Similarly to the Apache application event transform component, the Zeek trans-
form component is stateless.

Network Socket Object Identification. Because sockets are mechanisms of
the IPC, they are involved in the system call layer of our model. Thus,
sockets are the means to bridge contextual network events and contextual
Kernel events. Concerning Linux and its socket handling, only the pair
{ipremote,premote}, where ipremote and premote respectively correspond
to the IP address and port of the remote host, is available in the system
calls of the network family (i.e., socket(), connect(), and accept()). In
our model, a socket is identified by the quadruplet {ipsrc,psrc, ipdst, pdst}.
Thus, system calls alone are not sufficient to identify a socket object in our
model.

To completely identify the socket objects, we leverage netfilter, the embed-
ded Linux firewall, to record any established connection. Netfilter events
allow us to easily link a socket to its corresponding connection by matching
{ipremote,premote} with the connection information:

1. for incoming connections, i.e., sockets created by the accept() system
call family, {ipremote,premote} = {ipsrc,psrc};

2. for outgoing connections, i.e., sockets created by the connect() system
call family, {ipremote,premote} = {ipdst,pdst}.

This matching allows the acquisition of all information required to describe
a network socket. It is done by a stateful transform component as it needs to
remember system call-related sockets and network-related sockets that did
not match yet. Note that this matching does not rely on precise timestamp
matching, i.e., the two events’ timestamps may differ by a few milliseconds.

Message Exchanges in Network-related Contextual Events. Network-related
contextual events can typically be considered as message exchange events
among several network interfaces. By leveraging network socket object infor-
mation and connection information, i.e., {ipsrc,psrc, ipdst, pdst}, the nature
of the message can easily be identified: whether it corresponds to a sending
or a reception.

Given a connection, the two socket objects can easily be matched using
their connection information. This matching is done by the second compo-
nent of the transform part of the ETL pipeline (as described in Figure 5.3).
This component is stateful, similarly to the one presented in the Network
Socket Object Identification paragraph.

The example in Figure 5.10 illustrates the use of network level contextual
events to compute causal dependencies utilizing the message exchange part
of definition 4.4. Note that the clocks of the three objects (tapa, tzeek, and

114 model implementation

netwint
apa tapa

(eNet
out(conn),netwapa, ts)

netwint
zeek tzeek

(eNet
conn,alert,netwzeek, talert)

netwint
sql tsql

(eNet
in(conn),netwsql, tr)

Figure 5.10: Message exchange among network objects.

tsql) are not necessarily synchronized because they potentially belong to
three different hosts. The network active object, netwapa, records in its log a
contextual event, (eNet

out(conn),netwapa, ts), indicating that it sends data (i.e.,
the SQL query via the connection conn at time ts). The network active object,
netwsql, records (eNet

in(conn),netwsql, tr); this indicates that it receives data
from conn at time tr. The above implies that both contextual events are
causally dependent: (eNet

out(conn),netwapa, ts) ⇀ (eNet
in(conn),netwsql, tr).

Because the Zeek NIDS observes and analyzes the network using a net-
work tap, it detects a suspicious behavior and raises an alert. This alert
corresponds to the same connection, conn; hence, we also have:
(eNet

out(conn),netwapa, ts) ⇀ (eNet
in(conn),netwsql, tr); and

(eNet
out(conn),netwapa, ts) ⇀ (eNet

in(conn),netwsql, tr).

From Contextual Events to Contextual Actions—An Approximation

In practice, the bottom-up strategy rarely permits the generation of real
contextual actions from the system observations (e.g., there is no system
implementation that enables the observation of object states and computa-
tion of causal dependencies among contextual actions). Indeed, most of the
time, events do not contain the overall context in which these actions are per-
formed, i.e., the object states. Thus, we can only produce an approximation
of contextual actions from contextual events. A contextual action is surmised
from a set of events that correspond to the observations and recordings of
this single action by several monitoring systems. This contextual action is an
approximation of the real action: (1) the time at which it occurs is supposed
to be in the time interval of the timestamps of contextual events; and (2) the
action is the one that produced the set of events. To build this set, it is neces-
sary to preprocess contextual events to aggregate the ones that correspond
to the same action into a single set.

The previous section presented our implementation of the bottom-up strat-
egy in the context of Linux environments. The following section describes
how we apply this strategy in the windows environment.

5.4 vesta industrial project 115

5.4 vesta industrial project

This section introduces the reader to the project called VESTA, which
partly supported the research work presented in this manuscript.

5.4.1 Introduction to the VESTA Endpoint Detection and Response

VESTA stands for Vigilant Endpoint Security Tools and Agents. This
project consists in the development of an Endpoint Detection and Response
(EDR) product for information systems and industrial control systems, as
well as the development of its operational center. In simple terms, VESTA
follows a master-slave architecture where the agents execute actions and
commands led by the operational center, e.g., producing logs that are col-
lected by the operational center.

Project’s Objectives

VESTA aims to enable:
• the enumeration of the monitored endpoints in the computer network;
• intrusion detection capabilities based on misuse-based and anomaly-

based techniques. These detections can be done either online or offline;
• threat hunting capabilities by scanning file systems for given IoCs;
• forensics capabilities by enabling memory and disk dump or collecting

events of interest;
• response actions led by cyber defense analysts;
• and the bridging of the gap between intrusion detection research and

operational intrusion detection domains.
The initiative of the VESTA EDR development is based on the fact that solely
monitoring the network, via network sniffing tools such as NIDS, is not suf-
ficient. Additionally, it aims to propose a French sovereign product solution
to address the security monitoring of French operators of vital importance
(Opérateur d’Importance Vitale in French).

5.4.2 Bottom-Up Strategy—Leveraging Windows System Calls

VESTA aims to be multi-platform. It has firstly been developed for the
Windows OS. As VESTA does not aim to instrument applications, nor the
Windows OS itself, we based our work on events that can natively be pro-
duced by Windows, i.e., system call events recorded via the event trac-
ing windows facility. Similarly to our approach for the Linux Kernel, We
adopted a bottom-up strategy to implement our work in the project.

Windows’ System Calls and Information Flows

In practice, the analysis of Windows system call events corresponds to
the implementation of an information flow monitor for the Windows OS.
However, it is simpler on Windows as system calls are already categorized
into:
• process-related operations, e.g., the creation of new processes;

116 model implementation

• image loading operations, e.g., initializing applications’ contexts or
loading Dynamic-Link Libraries (DLLs) at run time;
• file system operations on artifacts, e.g., read or write a file;
• network operations, e.g., send to and receive from a TCP or UDP com-

munication.
Similarly to the case of the Linux Kernel, Windows Kernel system calls al-
lows cyber defense analysts to deduce information flows among objects of
the OS’s Kernel abstraction layer. As we have previously presented in Chap-
ters 1 and 3, Windows system calls can be monitored by ProcMon8 or log-
man, which both leverage the ETW facility.

Contrary to the Linux Kernel system call transform component, the one that
handles Windows Kernel system call does not need to be stateful. In fact,
recorded Windows system call events contain more information than the
Linux ones, e.g., they relate file paths in each system call. Therefore, pas-
sive objects can directly be identified with the information contained in the
system call events.

Operational Constraints

Contrary to the setup presented in the previous section, the monitoring
strategy adopted in VESTA is more restrictive. The monitoring of system
calls is by default disabled. When analyzing a triggered HIDS alert, the cyber
defense analyst can subsequently decide to enable to monitoring of system
calls and collect them. The consequence of such choice is that it prevents the
building of cause graphs. Moreover, the building of the dependence graph is
also harder as some important events might be missed between the effective
action that triggered the alert and the system call invocations recorded at
the start of the monitoring process. In this context, we can therefore only
compute a degraded dependence graph at best.

Due to time constraints, we did not have access to data produced by the
project. We thereby conducted our own experiments. These experiments are
presented in the following chapter (Chapter 6).

8 https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

5.5 summary 117

5.5 summary

Building upon Chapter 4, this chapter further explains the three relation-
ships we defined and shows how they can be implemented.

Implementation Strategies of our Model: Top-Down and Bottom-Up. Sec-
tion 5.1 introduces the reader to the two implementation strategies that can
be adopted to compute the event causal dependency relationship, namely,
the top-down and bottom-up strategies. The first one is based on the computa-
tion and tracking of contextual action causal dependencies. These causal de-
pendencies among contextual actions are then leveraged to compute causal
dependencies among contextual events, and events. The second strategy
consists in leveraging raw events’ semantics to compute the contextual event
causal dependency model. More specifically, the bottom-up strategy al-
lows obtaining an approximation of the contextual event causal dependency
model that depends on the semantical quality of events.

Section 5.2 presents how the merging of existing technologies would en-
able the top-down strategy computation of different parts of the overall
model. Of course, other methodologies could emerge to address the implemen-
tation of the model. Unfortunately, it is a challenge to gather and inte-
grate all these technologies together to compute contextual actions and their
causal dependencies. Therefore, as a first step, we have decided to adopt
a bottom-up strategy in order to compute the event causal dependency
model.

COTS-Based Implementation of the Bottom-Up Strategy. Sections 5.3 and 5.4
describe our implementation of the model using the bottom-up strategy.
More specifically, we elaborate a monitoring strategy, based on COTS mon-
itoring systems, to enable the identification of multi-step attack scenarios
through the computation of the contextual event causal dependency model.
We describe our implementation’s architecture, as well as how each data
source is handled to compute contextual events and their causal dependen-
cies.

The following chapter presents the assessment of our implementation and
discusses the obtained results.

6 A S S E S S M E N T

This chapter proposes an assessment of the lightweight approach we de-
scribed in Chapter 5. It aims to verify whether the approach we propose al-
lows the identification and understanding of real attack scenarios. Through-
out the chapter, we will discuss the usefulness of our approach and method-
ology.

Section 6.1 starts by presenting the notions surrounding datasets as they
are one of the key assessment elements in the attack scenario identification
research field. Section 6.2 discusses an assessment of our lightweight ap-
proach implementation. It questions the relevance of the cause and depen-
dence contextual event graphs resulting from our approach and examines
the performance of the different components presented in the architecture
of our implementation. Finally, Section 6.3 discusses the limitations of our
current implementation.

6.1 building datasets to assess our approach

As we have seen in the previous chapters of this manuscript, attack sce-
nario identification approaches mainly rely on log analysis. More specifi-
cally, they aim to help cyber defense analysts investigate and recover from
attacks by retrieving all the events corresponding to the projection of an
attack scenario on the monitored system.

This section introduces the reader to the assessment context of our ap-
proach and implementation presented in the two previous chapters. It starts
with the presentation of the ideal dataset for the attack scenario identifica-
tion research field in Section 6.1.1. Then, Section 6.1.2 presents a few pub-
licly available datasets and explains why we need to build our own testing
environment to generate a dataset that suits our needs. Section 6.1.3 intro-
duces the reader to the challenges of building an ideal dataset. Section 6.1.4
describes our testing environment, i.e., its architecture and the deployed
monitoring systems. Finally, Section 6.1.5 describes the attack scenarios we
performed in our testing environment.

6.1.1 Describing an Ideal Dataset

Naturally, the attack scenario identification research community needs to
have comprehensive datasets to assess the proposed approaches and allow
their comparison. Unfortunately, to the best of our knowledge, datasets
fitting our needs are not publicly available. The following paragraphs intro-
duce the reader to the concepts surrounding the building of datasets and its
challenges.

120 assessment

Needed Data is Specific to the Proposed Approach. As we have seen in the
first part of this manuscript (Part I), chosen attack scenarios identification
methodologies cannot be dissociated from the security monitoring strategy.
In fact, the majority of approaches presented in the first part and Chapter 3

only leverage a single type of event. For instance, some approaches pre-
sented in Chapter 2 exclusively leverage NIDS alerts, and other approaches,
presented in Chapter 3 exclusively leverage system call-related events (Sec-
tion 3.3.3). On the other hand, our approach aims to include all types of
events as they may contain valuable information for attack investigation.

Contextual Actions and Datasets. From the perspective of the causal depen-
dency model we defined in Chapter 4, we have seen that contextual events
correspond to the observation of contextual actions in the monitored system.
A dataset thereby represents a given perspective of the activity, i.e., a per-
spective of the contextual actions that happened in the monitored system in
a given time window. According to the adopted monitoring strategy, this
dataset is more or less detailed for the different abstraction layers of the
monitored system.

Ideal Dataset. The following points describe the general characteristics of
an ideal dataset for the assessment of attack scenario identification approa-
ches:

1. The dataset is made up of heterogeneous events emanating from in-
trusion detection systems as well as general-purpose monitoring sys-
tems. In fact, a multi-step attack likely involves steps that leave traces
in many places in the monitored system: application-related activity,
OS-related activity, or network communication-related activity. Thus,
understanding a multi-step attack likely involves the analysis of logs
produced at these various levels.

2. The dataset contains the traces of one multi-step attack, at least. The
attack ideally involves lateral movements of the attacker throughout
the monitored system, i.e., pursuing his attack, the attacker accesses,
and exploit different machines of the monitored system.

3. The dataset contains noise, i.e., events generated by the normal activity
happening in the monitored system. Such events may correspond to
false positive alerts triggered by legitimate activities. Noise makes the
assessment more realistic than only having the events corresponding
to the multi-step attack.

6.1.2 On the Lack of Publicly Available Comprehensive Datasets

On Public Datasets. Unfortunately, to the best of our knowledge, a dataset
containing all the various types of events we need is not publicly avail-
able. The following list presents some of the publicly available datasets and
explains why we cannot leverage them to evaluate our methodology and
implementation.

6.1 building datasets to assess our approach 121

darpa 2000 - This dataset has been produced and released by DARPA in
2000

1. It contains full packet captures (network-related data) and Solaris
BSM audit events (system call-related data). Additionally, it contains
traces of multi-step attacks, as well as an explanation of the attack, i.e.,
the ground truth, that were performed against the monitored system
by a redteam. Even if this dataset is made up of two interesting
types of events, recorded system call data does not contain enough
information to suit our needs and build the contextual event causal de-
pendency model. More specifically, our approach relies on the capture
of all information flow-related system calls, and the BSM audit events
do not satisfy this requirement.

lanl - The Los Alamos National Laboratory (LANL) proposes three datasets
produced in the context of their internal enterprise network:

The “User-Computer Authentication Associations in Time”2 dataset,
which is made up of authentication events. This dataset is made up of
one type of event that does not allow to compute causal dependencies.
Thus, we cannot leverage it. Moreover, we do not know if it contains
attack traces or not.

The “Comprehensive Multi-Source Cyber-Security Events”3 dataset. It
is made up of five types of events, namely, Windows-based authenti-
cation events, process start and stop events from Windows worksta-
tions, Domain Name Server (DNS) lookups from the LANL internal
DNS servers, netflow events, and attack-related netflow events. The
attacks were performed by a redteam. Even if this dataset is made up
of heterogeneous types of event, the related monitoring strategy that
produce it does not suit our needs to adopt the bottom-up strategy.
Recall that we need information flow-related data to build the contex-
tual event causal dependency model for monitored hosts. However,
this dataset does not provide information flow-related data in the host-
related events, i.e., process start and stop, and authentication. Netflow
events can be used to build message exchange related causal depen-
dencies among hosts. However, a contextual event causal dependency
model that only relies on netflow events would be too coarse-grained
to get insight from it.

The “Unified Host and Network Dataset,”4 which is made up of 21

types of events, i.e., netflow events, and 20 different types of Windows
event logs. Similarly to the previous dataset, selected event types do
not allow to apply the bottom-up strategy to compute the contextual
event causal dependency model. Additionally, we do not know if it
contains attack traces or not. Thus, we cannot leverage it.

1 https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-sp

ecific-datasets

2 https://csr.lanl.gov/data/auth/

3 https://csr.lanl.gov/data/cyber1/

4 https://csr.lanl.gov/data/2017.html

https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://csr.lanl.gov/data/auth/
https://csr.lanl.gov/data/cyber1/
https://csr.lanl.gov/data/2017.html

122 assessment

vast challenge 2011 mc2 - This dataset has been produced for the Vi-
sual Analytics Science and Technology (VAST) Challenge of 2011

5. It
represents the activity happening in a four days time window inside a
fictional shipping company. This dataset is made up of several types
of events, i.e., firewall logs, NIDS alerts, and Windows security event
logs. It also contains traces of attacks. However, the issues related to
this dataset are the same as the LANL “Comprehensive Multi-Source
Cyber-Security Events” dataset. Only network-related events can be
leveraged. Thus, computed contextual event causal dependency model
would be too coarse-grained to get insights from its analysis.

darpa transparent computing - This dataset has been produced by
DARPA in the context of the Transparent Computing program pre-
sented in Chapter 1

6. It has been released in late 2018. It is made up
of system call-related events from the Linux, FreeBSD, and Windows
Kernels recorded by COTS monitoring systems, i.e., auditd, DTrace,
and Event Windows Tracing, respectively. These events have been pro-
duced in DARPA’s test environment and contain attack traces, as well
as normal activity (i.e., activities corresponding to noise). Even if this
dataset only contains one type of events, i.e., information flow-related
system call events, this type of events allow us to apply the bottom-up
strategy for the computation of the contextual event causal dependency
model. The only weakness of this dataset is that it does not contain
different types of events, e.g., network-related and application-related
events.

As we have started to discuss at the end in Section 2.4.2, we argue that ex-
clusively reasoning on publicly available datasets may constrain researchers’
creativity and invite them to propose approaches that only work with the
data available in these datasets, e.g., the majority of alert correlation approa-
ches that only rely on NIDS alerts.

The Need to Build our Own Datasets. As we have seen in Chapter 5, our
approach adopts a bottom-up strategy. It thereby relies on the analysis of
specific types of events that enable us to compute contextual events and
their causal dependencies. This implementation, presented in Section 5.3,
relies on application, system call, netfilter and network-related events. More
specifically, it relies on the capability to compute contextual events and their
causal dependencies from raw events. Thus, we have to build our own
datasets to evaluate the implementation of our model.

6.1.3 On the Difficulty to Build a Comprehensive Dataset

Based on the observation that a publicly available dataset that suits our
needs is lacking, we need to build our own test environment to produce
datasets. Such a testing environment generally corresponds to a classical

5 http://www.cs.umd.edu/hcil/varepository/VASTChallenge2011/challenges/MC2-Comput

erNetworkingOperations/

6 https://github.com/darpa-i2o/Transparent-Computing

http://www.cs.umd.edu/hcil/varepository/VAST Challenge 2011/challenges/MC2 - Computer Networking Operations/
http://www.cs.umd.edu/hcil/varepository/VAST Challenge 2011/challenges/MC2 - Computer Networking Operations/
https://github.com/darpa-i2o/Transparent-Computing

6.1 building datasets to assess our approach 123

enterprise computer network. However, it is generally built-in the context
of a laboratory platform to safely play attack scenarios that may involve
the execution of malwares. As a consequence, testing environments rarely
involve real users, and generating normal activity and noise is a challenge.

Previous sections introduced the reader to one of the main assessment’s
requirements, namely, datasets. It presented the ideal dataset and explained
why we need to build our own testing environment to generate datasets that
suit our needs. The following section presents our testing environment.

6.1.4 Our Test Environment

Section 6.1.4 describes the environment we have built- to generate the ac-
tivity and the events needed to assess our implementation and methodology.

Building and Sharing our Test Environment

Dataset’s Context. In order to allow the comparison, or the simultaneous
usage, of approaches that leverage different types of events, we argue that
the context in which datasets are produced (i.e., the activity of the monitored
system during a given time window) needs to be shared. In fact, in the
light of the relationships we have defined in Chapter 4, the context actually
corresponds to the contextual action causal dependency model.

Sharing and replaying scenarios with Moirai. Sharing the overall activity of
a monitored system relies on the capability to exactly replay a given scenario,
made up of normal activity and attack-related activity, in an automated way.
In order to satisfy this requirement, Brogi et al. propose Moirai [Brogi &
Tong, 2017], an attack scenario sharing, and replaying platform.

Building environments with Vagrant and Ansible. Under the hood, Moirai
relies on Vagrant7 and Ansible8 to build the environment described in the
scenario. Vagrant, coupled with Ansible, enables the automatic deployment
of virtual machines, services, and network configurations based on files that
describe the environment. Thus, anybody can instantiate our test environ-
ment using the description files.

Playing attack scenarios. Additionally, it generates the activity described
in an input file. Such activity can, for example, correspond to the execu-
tion of a shell script or a binary. Based on the capability to replay attack
scenarios, users can, therefore, implement their own monitoring strategy to
produce the various types of events they need to perform the approach they
propose. Thus, we have decided to leverage Moirai to build our test environ-
ment. Moirai allows us to describe the architecture of our test environment,
instantiate it using virtualization technology, deploy the monitoring systems
we need, and play scripted scenarios.

7 https://www.vagrantup.com/

8 https://www.ansible.com/

https://www.vagrantup.com/
https://www.ansible.com/

124 assessment

Attacker Internet

Firewall

DMZ Subnet

Web
Server

apache.log

system_call.log

zeek_ids.log

netfilter.log

MySQL
Server

mysql.log

system_call.log

netfilter.log

Figure 6.1: Network architecture of our test environment.

Test Environment Description

The current architecture of our test environment is described in Figure 6.1.
The current network architecture consists of a demilitarized zone (DMZ) and
an internal network. These two subnets are linked by an Ubuntu 14.04 LTS
machine, which is in charge of the firewalling, the routing, and giving access
to the internet. Two machines are running in the DMZ:

1. An Ubuntu 14.04 LTS running an Apache server version 2.4.7 with the
Common Gateway Interface (CGI) module enabled, PHP 5.5 execution
environment, and Bash 4.2.37, a version of Bash that is vulnerable to
the ShellShock attack (CVE-2014-6271)9;

2. An Ubuntu 14.04 LTS running a MySQL server version 5.5.62;
On the other hand, the internal network consists in desktop environments.
The attack scenarios we have performed to assess our implementation only
focus on the machines of the DMZ. Thus, we did not develop the monitoring
of desktop environments in the context of this assessment.

Deployed Monitoring Systems

In order to enable the monitoring of the testing environment we have set
up, we have deployed different kinds of monitoring systems that allow the
observation of the network, operating system, and application abstraction
layers. The monitoring systems we chose produce events that allow us to
apply a bottom-up strategy, as described in Section 5.3. Each deployed mon-
itoring system is detailed in the following paragraphs.

Zeek. A Zeek NIDS, configured in promiscuous mode, is currently de-
ployed on the Mapa host. Ideally, we would have deployed Zeek NIDS
on a dedicated monitoring machine that would sniff all the network traffic
of the DMZ thanks to the port mirroring10 feature of the DMZ switch. How-

9 https://github.com/opsxcq/exploit-CVE-2014-6271

10 A mirror port is a specially configured switch port that gets a copy of all frames that pass
through the switch.

https://github.com/opsxcq/exploit-CVE-2014-6271

6.1 building datasets to assess our approach 125

ever, the virtualization provider we currently use is Oracle VM VirtualBox11,
and the provided virtual switch implementation does not have the port mir-
roring feature. That is the reason why we do not have a dedicated network
monitoring machine in the DMZ of our test environment. Fortunately, the
network monitoring of the Mapa host is sufficient to produce the events we
need in our scenario.

As we previously mentioned in Section 1.4.3, Zeek produces many types
of logs according to the protocols dissected in the analyzed traffic. The
base version is already equipped with all the classical protocol dissectors.
A few examples of the logs it produces are: http.log, which corresponds
to the dissection of the HTTP protocol; mysql.log, which corresponds to
the dissection of the MySQL protocol. Related events contain the invoked
command, as well as its result metadata, e.g., whether the command was suc-
cessfully handled or not, and the number of rows returned; dns.log, which
corresponds to the dissection of the DNS protocol. Related events contain
the requested domain name and the resulting IP addresses; conn.log, which
corresponds to the dissection of the transport layer. Related events contain
network flow statistics, similarly to netflows; and notice.log, which corre-
sponds to the alert log file.

Zeek NIDS enables the monitoring of all messages exchanged through the
network. When protocol dissection is possible, i.e., when messages are not
encrypted, Zeek actually logs some information about the content of the
message, as we have presented in the previous paragraph.

In our current implementation, messages are considered to be exchanged
through the network between two active objects: a source and a destination
network interfaces.

Netfilter. Netfilter is configured on all monitored machines to log any “es-
tablished” connections, either with the TCP or UDP protocols. As we have
previously mentioned in Section 5.3.3, produced netfilter events allow to as-
sociate network sockets deduced from system calls to their actual related con-
nections (defined by the quadruplet {ipsrc,psrc, ipdst, pdst}). More specifi-
cally, one network socket corresponds to one connection. Netfilter rules are
specified in Appendix A (Section A.2).

Auditd. Auditd version 3.0 is deployed on all monitored machines. It is
configured in a particular manner so that: (1) it enables the monitoring of
system calls that produce information flows; and (2) it produces alerts on
specifically suspicious actions, e.g., trying to modify auditd configuration, or
executing a specified executable such as whoami. Auditd rules are specified
in Appendix A (Section A.1).

Apache. Apache logging system is configured to record any request han-
dling. Additionally, the PID of the process that handled the request is also
explicitly recorded. This configuration enables the computation of contex-
tual events from the raw events produced by the logging system. Note that
without this specific configuration, it is not possible to deduce the monitored

11 https://www.virtualbox.org/

https://www.virtualbox.org/

126 assessment

active object from the explicit information contained in the raw event. Apa-
che logging system’s configuration is specified in Appendix A (Section A.3).

MySQL. Contrary to the monitoring systems previously presented, MySQL
logging system cannot be configured to produce events that contain specific
information such as the PID of the process that handled the request. Thus,
MySQL logging system’s events do not provide enough information to com-
pute contextual events, and, as it is, cannot be used for the bottom-up strat-
egy.

6.1.5 Attack Scenarios Description

The previous paragraphs presented our testing environment, as well as
the deployed monitoring systems that allow us to observe the system and
produce heterogeneous events. Section 6.1.5 presents the attack scenarios we
have performed in the context of the assessment presented in this manuscript.
For each presented attack scenario, we explain how the actions of the at-
tacker are projected on logs and explain how we identify IoCs for the given
attack scenario. Two attack scenarios are presented: (1) The first attack sce-
nario corresponds to a sequence of SQL injection against the web application;
(2) The second one corresponds to an attack scenario that makes use of the
ShellShock vulnerability of the web server.

SQL Injection against the Web Application

Attack Scenario Description. The first one corresponds to the attack sce-
nario we have presented in Chapter 4. It consists in SQL injections that aim
to exfiltrate sensitive data contained in the MySQL database. This attack
scenario corresponds to the one presented in Chapter 4 (Section 4.1).

Projection on Logs. Naturally, any SQL query will be logged by the MySQL
server’s logging system. However, as we have previously mentioned, MySQL
logs cannot be leveraged to compute contextual events. Thus, they are not
easily leveraged to start an investigation in the context of the current bottom-
up implementation of our approach.

As users perform SQL queries against the web application, SQL queries
are embedded in HTTP requests that can be logged by the Apache server’s
logging system. The Apache server then forwards, over the network, the
SQL query to the MySQL server. Of course, these message exchanges (HTTP
requests from the internet, and SQL queries between the Apache server and
the MySQL server) are sent over the network, which is monitored by the
Zeek NIDS. Information flow-related system calls are invoked by the Apa-
che and MySQL applications to handle these messages and reply to the cor-
responding requests.

On IoCs Identification. As we can see in the architecture of our test envi-
ronment (described in Figure 6.1), the Apache server and the MySQL server
corresponds to two separate machines. The Apache server has to issue SQL

6.1 building datasets to assess our approach 127

requests through the network to reach the MySQL server. These SQL re-
quests can be observed and analyzed by the Zeek NIDS that monitors all
the network traffic of the DMZ. Thus, in this context, Zeek NIDS allows the
detection of SQL injections.

ShellShock and RAT Attack Scenario

Attack Scenario Description. The second attack scenario consists in several
steps. The initial compromise step consists in the exploitation of the Shell-
Shock bash vulnerability (also referenced as CVE-2014-6271). The ShellShock
vulnerability consists of the ability to execute arbitrary shell commands by
embedding them in bash environment variables. Arbitrary shell commands
are then executed when bash environment variables are loaded. As the Apa-
che server relies on bash scripts for CGI, the Apache server allows a remote
attacker to execute arbitrary shell commands through the injection of spe-
cially crafted bash environment variables embedded in HTTP requests.

Once the attacker has discovered the vulnerability, the second step of the
attack scenario consists in making the Apache server download and execute
a remote access tool (RAT), written in perl, based on the IRC protocol. Then,
this remote access tool connects to its command and control server and starts
a reconnaissance step by gathering some information about the web server
and its surrounding environment.

Projection on Logs. Similarly to the first attack scenario, the actions of the
ShellShock and RAT attack scenario can be observed at several abstraction
layers. As we have previously mentioned, the ShellShock attack is embed-
ded in an HTTP request. Thus, this request may be observed and recorded
at the network, OS, and application layers. More specifically, the connection
that contains the HTTP payload can be observed by the Zeek NIDS; the re-
quest is then received by the listening network interface, which records seen
connections via the netfilter monitoring system; the web server application
retrieves the request by invoking system calls, which are recorded by auditd;
and, finally, the application logging system records the fact it has handled
the request.

The second steps consists in the execution of the bash commands that
are embedded in the HTTP request. These bash commands are executed
through the CGI module of Apache. In order to execute them, bash has to
invoke system calls. These system calls can be captured by auditd.

The RAT has been written to be stealthy. It tries to hide by masquerading
its name with a fake one such as rsyslog. Similarly to bash, it has to invoke
system calls to execute the binaries that allow it to perform reconnaissance
actions, e.g., the execution of other binaries such as /sbin/ip, which allows
a system administrator to list the current configuration of the network inter-
faces of the machine.

On IoCs Identification. Several indicators of compromise can be identified
for this attack scenario. The current monitoring systems we have deployed
allow detecting different types of actions of the attack scenario.

128 assessment

IoCs related to network traces can be observed by the Zeek NIDS. As the
Apache web server is not configured to encrypt its communications, the Zeek
NIDS can observe, dissect, and analyze the payload of the HTTP requests.
It has thereby the capability to detect patterns corresponding to attempts of
ShellShock exploitation.

IoCs related to application traces can be observed in the Apache logs.
More specifically, the Apache logging system is configured to record HTTP
headers, such as the referrer and the user-agent. ShellShock attacks embed-
ded in HTTP requests often make use of the user-agent header to convey the
payload.

IoCs related to the execution of binaries can be observed by auditd. More
specifically, auditd is configured to tag specific system call invocation as
suspicious, e.g., the execution of the binary /bin/uname.

Additionally, the execution of the IRC-based RAT consumes a lot of CPU
resources. This abnormal consumption can be noticed by a system adminis-
trator that checks the health status of the web server.

On Noise

Unfortunately, we do not satisfy all the requirements needed to build an
ideal dataset, as described in Section 6.1.1. More specifically, we currently
do not have a means to generate noise activity, such as user interactions, in
the system. Such noise activity could be generated by tools such as Locust12,
which simulates users that interact with a targeted web server. Other types
of approaches propose to simulate network traffic.

This section presented the attack assessment context of the implementa-
tion of our model. It described our vision of the ideal dataset, our test en-
vironment, our monitoring strategy with the deployed monitoring systems,
and the attack scenarios we have played. The following section discusses the
results of the assessment of our methodology.

6.2 cots-based bottom-up approach assessment

This section presents our assessment of the lightweight approach imple-
mentation. More specifically, Section 6.2.1 discusses the relevance of the com-
puted cause and dependence graphs for the two attack scenarios we have
presented in the previous section. Section 6.2.4 presents the performance
of the current implementation of the ETL pipelines for the lightweight ap-
proach.

6.2.1 Contextual Event Graphs Relevance

This section presents a qualitative and quantitative assessment, as well
as the notions of false positives and false negatives in the context of our

12 https://locust.io/

https://locust.io/

6.2 cots-based bottom-up approach assessment 129

approach. As our current visualization tool (presented in Section 5.3.2) does
not implement filters, the figures illustrated in this section only show the
relevant events from the resulting cause and dependence graphs. Events are
described in a JSON format, and some of their fields have been hidden to
simplify readability.

Building Cause and Dependence Graphs

It may be recalled that if a contextual event that is considered as an IoC
is given, then the purpose of our approach is to generate the causal depen-
dency graph of events that can be considered as the causes or the conse-
quences of this abnormal event. To achieve this goal, our implementation
of the lightweight approach, presented in Section 5.3, computes the best
approximation of the contextual event causal dependency model we can de-
duce from the raw events produced by the deployed monitoring systems. It
then stores the contextual events in the ArangoDB graph database.

The cause and dependence graphs are then computed by performing a
breadth-first traversal of the contextual event causal dependency graph, start-
ing from an identified suspicious raw event or contextual event. The depth
of the breadth-first traversal can be chosen according to the investigation
needs. Naturally, the greater the chosen depth is, the bigger cause and de-
pendence graphs are. Their size will be discussed in the different paragraphs
of this chapter.

The following paragraphs propose an analysis of the cause and depen-
dence graphs computed for each one of the attack scenarios presented in the
previous section, namely, the SQL Injection against the Web Application and
the ShellShock and RAT Attack Scenario.

Analyzing the SQL Injection against the Web Application Scenario

For the first attack scenario, the cause and dependence graphs are com-
puted from the Zeek NIDS alert triggered by the detection of the SQL injec-
tion while dissecting the SQL request from the web server to the database
server.

The following table (Table 1) gives the key figures of the second attack
scenario. The ratio columns correspond to the comparison between the
cause, or dependence, graphs, and the contextual event causal dependency
(CECD) graph. We can see that the resulting cause and dependence graphs
are small compared to the size of the overall contextual event causal depen-
dency graph. The cause and dependence graphs have been computed with a
chosen traversal depth of 50. This depth has been chosen arbitrarily. Choos-
ing a bigger depth would increase the size of the cause graph. However, the
dependence graph already contains all the possible contextual events and
causal dependencies.

This first attack scenario permits to illustrate the construction of causal
dependencies among heterogeneous events produced by different machines,
i.e., the web and the mysql servers. Figure 6.2 illustrates the most interest-
ing events of the cause graph of the Zeek NIDS alert. We can notice that the
resulting graph contains netfilter and audit events from the two machines,
as well as Zeek and apache events from the web server. The Zeek NIDS

130 assessment

Table 1: Key figures of the SQL injection attack scenario

CECD Graph Cause Graph Dep Graph
Count Count Ratio Count Ratio

Raw Events 75939 433 0.6 % 145 0.2 %
Contextual Events 109178 771 0.7 % 265 0.2 %
Causal Dependencies 209741 1767 0.8 % 568 0.3 %
Objects 27387 55 0.2 % 31 0.1 %
– ConnectionObject 914 12 1.3 % 4 0.4 %
– DirectoryObject 195 0 0 % 0 0 %
– FileObject 1283 17 1.3 % 0 0 %
– MemoryObject 6433 0 0 % 15 0.2 %
– ProcessObject 382 6 1.6 % 4 1 %
– SysSocketObject 2002 20 1 % 6 0.3 %
– UnixSocketObject 2 0 0 % 0 0 %
– UnixSocketPairObject 9 0 0 % 0 0 %
– UnknownObject 16987 0 0 % 2 0.01 %
– UnnamedPipeObject 92 0 0 % 0 0 %

alert is represented in red in this figure. In Figure 6.2, we can see that the
Zeek event links events from the Apache web server (all the events repre-
sented below the Zeek event) and from the MySQL server (event below the
Zeek event). In the illustrated cause graph, the events above the Zeek NIDS
alert correspond to the execution of the HTTP request, from its reception
(accept() and read() system call events), to the connection (connect() and
send() system call events) to the MySQL server to retrieve information from
the database. The event below the Zeek NIDS alert corresponds to a mysql

process sending the response of the SQL request back to the Apache web
server. The cause graph illustrates the connection between the MySQL re-
quest, issued from the Apache web server, and the original HTTP request it
is coming from, i.e., the Zeek event at the top of Figure 6.2. Information on
the HTTP request can also be found in the Apache access log event (the 5th

event starting from the top).
Similarly to the cause graph, the dependence graph contains events cor-

responding to the handling of the SQL request by mysql processes, from
its reception with an accept() system call event to the write() system call
event that corresponds to the sending of the request’s response, as illustrated
by the bottom event of Figure 6.2.

For the first attack scenario, the computed cause and dependence graphs
contain causal dependencies and contextual events that should not be part
of the causes or consequences of the Zeek NIDS alert. These causal depen-
dencies correspond to false positives (this notion will be further explained
and discussed in Section 6.2.2). These false dependencies have not been
illustrated. We will discuss them in the following section.

To the best of our knowledge, the cause and dependence graphs do not
have any missing causal dependencies, i.e., false negatives (this notion will
be further explained and discussed in Section 6.2.3).

6.2 cots-based bottom-up approach assessment 131

{"__source":"Net_Zeek.log","__type":"NET", "uid":"Cd7ZWP1dJfzbrtFZ88","
ts":"2020-04-05T16:29:30.609162Z","id.orig_h":"172.16.0.2","id.orig_
p":57060,"id.resp_h":"192.168.51.100","id.resp_p":80,"method":"GET
","host":"172.16.0.1","uri":"/cases/productsCategory.php?category=1
OR 1=1","user_agent":"curl/7.59.0","status_code":200}

.

{"__source":"APA_netfilter.log","__type":"NET",
"host_id":"apache","in":"eth1","len":"60","src_ip":"172.16.0.2","dst_ip

":"192.168.51.100","protocol":"TCP","src_p":"57060","dst_p":"80","
dest_mac":"08:00:27:6f:91:e5","source_mac":"08:00:27:0f:fb:67"}

.

{"__source":"APA_auditd.log","__type":"SYS","exe":"/usr/sbin/apache2","
pid":"22947","ppid":"22891","syscall":"288","operation":"accept","
saddr":"0200DEE4AC1000020000000000000000","success":"yes","time
":"1586103781.741","egid":"33","euid":"33","sgid":"33","event id
":"66694","exit":"11"}

.

{"__source":"APA_auditd.log","__type":"SYS","exe":"/usr/sbin/apache2","
pid":"22947","ppid":"22891","syscall":"0","operation":"read","a
0":"11","size":"122","success":"yes","time":"1586104170.607","egid
":"33","euid":"33","sgid":"33","event id":"66699","exit":"122"}

.
{"__source":"APA_access.log","__type":"APP",
"time_received":"[05/Apr/2020:16:29:30 +0000]","pid":"22947","local_ip

":"192.168.51.100","server_port":"80","remote_host":"172.16.0.2","
server_port_remote":"57060 ","request_method":"GET","request_url":"/
cases/productsCategory.php?category=1 OR 1=1","request_http_ver
":"1.1","status":"200","bytes_tx":"9962","request_header_referer
":"-","request_header_user_agent":"curl/7.59.0"}

.

{"__source":"APA_auditd.log","__type":"SYS","exe":"/usr/sbin/apache2","
pid":"22947","ppid":"22891","syscall":"42","operation":"connect","
saddr":"02000CEAC0A833650000000000000000","a0":"12","success":"no","
time":"1586104170.611","egid":"33","euid":"33","sgid":"33","event id
":"66707","exit":"-115"}

.

{"__source":"APA_auditd.log","__type":"SYS","exe":"/usr/sbin/apache2","
pid":"22947","ppid":"22891",syscall":"44","operation":"send","a
0":"12","size":"65","success":"yes","time":"1586104170.615","egid
":"33","euid":"33","sgid":"33","event id":"66711","exit":"65"}

.

{"__source":"APA_netfilter.log","__type":"NET", "host_id":"apache","out
":"eth1","len":"60","src_ip":"192.168.51.100","dst_ip
":"192.168.51.101","protocol":"TCP","src_p":"41238","dst_p":"3306"}

.

{"__source":"Net_Zeek.log","__type":"NET","uid":"CGUJkC1cvTct10IiR4","ts
":"2020-04-05T16:29:30.613652Z","id.orig_h":"192.168.51.100","id.
orig_p":41238,"id.resp_h":"192.168.51.101","id.resp_p":3306,"proto
":"tcp","duration":0.0133020878,"orig_bytes":172,"resp_bytes":2437,"
conn_state":"SF"}

.

{"__source":"MYSQL_auditd.log","__type":"SYS","exe":"/usr/sbin/mysqld",
"pid":"21915","ppid":"1","syscall":"1","operation":"write","a0":"31","

size":"48","success":"yes","time":"1586104170.613","egid":"112","
euid":"106","fsgid":"112","fsuid":"106","gid":"112","sgid":"112","
suid":"106","uid":"106","event id":"35995","exit":"48"}

Figure 6.2: Relevant parts of the event cause graph of the SQLi attack scenario.

132 assessment

Analyzing the ShellShock and RAT Attack Scenario

For the second attack scenario, the cause and dependence graphs are com-
puted from the Zeek NIDS alert triggered by the detection of the ShellShock
attack attempt through an HTTP request coming from the outside of the
network. In the following analysis, only the dependence graph is illustrated
as the cause graph only contains 9 contextual events. Additionally, in this
specific attack scenario, the Zeek NIDS alert actually corresponds to the first
event of the scenario. In fact, the related HTTP request is the cause of the
attack scenario. Thus, the computation of the cause graph of the alert is less
relevant. The following table (Table 2) gives the key figures of the second at-
tack scenario. These numbers will be discussed in the following paragraphs.
As this attack scenario only involves the web server, figures of Table 2 only
refer to the events of the web server.

Table 2: Key figures of the ShellShock and RAT attack scenario

CECD Graph Dep Graph
Count Count Ratio

Raw Events 34117 1992 5.8 %
Contextual Events 68107 3610 5.3 %
Causal Dependencies 79460 4583 5.8 %
Objects 23583 620 2.6 %
– ConnectionObject 109 4 3.7 %
– DirectoryObject 36 0 0 %
– FileObject 587 1 0.2 %
– MemoryObject 4232 546 12.9 %
– ProcessObject 259 51 19.7 %
– SysSocketObject 1470 5 0.3 %
– UnixSocketObject 2 0 0 %
– UnixSocketPairObject 7 0 0 %
– UnknownObject 16929 2 0.01 %
– UnnamedPipeObject 73 11 15.1 %

An analysis of the dependence graph reveals that, to the best of our knowl-
edge, all the contextual events, and thus all the 1992 events it contains cor-
respond to traces of the attack scenario. Thus, the resulting dependence
graph does not contain any false causal dependencies, i.e., false positives
(this notion will be further explained and discussed in Section 6.2.2). Addi-
tionally, the computed dependence graph contains all the events that help
understand the overall attack scenario.

Looking at these figures, the size of the computed dependence graph
seems big compared to the overall contextual event causal dependency graph.
This can be explained by the fact that the testing environment does not have
a lot of noise activity. The number of retrieved events in the dependence
would not increase with additional noise activity in the test environment.
The following paragraphs explain the conclusions that can be drawn from
the analysis of the dependence graph.

6.2 cots-based bottom-up approach assessment 133

{"__source":"Net_Zeek.log","__type":"NET", "uid":"C7SKfD3hbTetA4cQb2",
"ts":"2020-04-03T15:28:45.389087Z", "id.orig_h":"172.16.0.2",
"id.orig_p":33032, "id.resp_h":"192.168.51.100", "id.resp_p":80,
"method":"GET","host":"172.16.0.1","uri":"/cgi-bin/shell.sh",
"user_agent":"() { :;}; /usr/bin/perl -e ’print \"Content-Type: text/

plain\\r\\n\\r\\nATTACK SUCCESS\\n\"; system(\"/usr/bin/curl http
://172.16.0.2/attacker1-irc-bot.pl -o /tmp/core; perl /tmp/core; rm
/tmp/core;\");’"}

.

{"__source":"Net_netfilter.log","__type":"NET", "host_id":"apache","in
":"eth1","len":"60","src_ip":"172.16.0.2","dst_ip
":"192.168.51.100","protocol":"TCP","src_p":"33032","dst_p":"80","
dest_mac":"08:00:27:05:d9:f1","source_mac":"08:00:27:b4:c7:20", "raw
":"Apr 3 15:28:45 apache kernel: [565.137077] [nfconnections] IN=
eth1 OUT= MAC=08:00:27:05:d9:f1:08:00:27:b4:c7:20:08:00 SRC
=172.16.0.2 DST=192.168.51.100 LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID
=44609 DF PROTO=TCP SPT=33032 DPT=80 WINDOW=64240 RES=0x00 SYN URGP
=0 \n"}

.

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/sbin/apache2","
pid":"22898","ppid":"22891","syscall":"288","operation":"accept","
saddr":"02008108AC1000020000000000000000","success":"yes","time
":"1585927592.670","type":"SOCKADDR","egid":"33","euid":"33","sgid
":"33","event id":"62327","exit":"11"}

.
{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/sbin/apache2","

pid":"22898","ppid":"22891","syscall":"56","operation":"fork","flags
":"CLONE_CHILD_CLEARTID|SIGCHLD|CLONE_CHILD_SETTID","success":"yes
","time":"1585927725.389","egid":"33","euid":"33","event id
":"62346","exit":"22929"}

.

{"__source":"apache_access.log","__type":"APP","time_received":"[03/Apr
/2020:15:28:45 +0000]","pid":"22898","local_ip":"192.168.51.100","
server_port":"80","remote_host":"172.16.0.2","server_port_remote
":"33032 ","request_method":"GET","request_url":"/cgi-bin/shell.sh
","request_http_ver":"1.1","status":"200","request_header_referer
":"-","request_header_user_agent":"() { :;}; /usr/bin/perl -e ’print
\\"}

Figure 6.3: Event dependence graph of the beginning of the ShellShock and RAT
attack scenario.

The beginning of the event dependence graph is illustrated in Figure 6.3.
The connection corresponding to the Zeek NIDS alert is handled by an
apache process, with the PID 22898, with an accept() system call. We
can see the causal dependencies between the Zeek NIDS alerts, the netfilter
event, and the system call event. The analysis of the Zeek event shows that
the ShellShock payload has been embedded in the user-agent HTTP header.
The event dependence graph also shows that the clone() system call event
(i.e. the next to last event, starting from the bottom of the figure) and the
apache application event, at the bottom of the figure, are causally dependent,
in the sense of “.,”on the accept() system call event. The clone() system
call event actually corresponds to the execution of the CGI module.

134 assessment

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/sbin/apache2","
pid":"22898","ppid":"22891","syscall":"56","operation":"fork","flags
":"CLONE_CHILD_CLEARTID|SIGCHLD|CLONE_CHILD_SETTID","success":"yes
","time":"1585927725.389","egid":"33","euid":"33","event id
":"62346","exit":"22929"}

.

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/bin/bash","pid
":"22929","ppid":"22898","syscall":"59","operation":"execve","execve
_a0":"/bin/bash","execve_a1":"/usr/lib/cgi-bin/shell.sh","execve_
argc":"2","mode0":"0100755","mode1":"0100755","mode2":"0100755","
path0":"/usr/lib/cgi-bin/shell.sh","path1":"","path2":"","egid
":"33","euid":"33","success":"yes","time":"1585927725.389","event id
":"62367","exit":"0"}

.

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/bin/bash","pid
":"22929","ppid":"22898","syscall":"56","operation":"fork","flags":"
CLONE_CHILD_CLEARTID|SIGCHLD|CLONE_CHILD_SETTID","success":"yes","
time":"1585927725.397","egid":"33","euid":"33","event id":"62402","
exit":"22930"}

.
{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/bin/perl","pid

":"22930","ppid":"22929","syscall":"59","operation":"execve","execve
_a0":"/usr/bin/perl","execve_a1":"-e","execve_a2":"print \"Content-
Type: text/plain\r\n\r\nATTACK SUCCESS\n\"; system(\"/usr/bin/curl
http://172.16.0.2/attacker1-irc-bot.pl -o /tmp/core; perl /tmp/core;
rm /tmp/core;\");","execve_argc":"3","path0":"/usr/bin/perl","path

1":"","success":"yes","time":"1585927725.397","egid":"33","euid
":"33","event id":"62403","exit":"0"}

Figure 6.4: Event dependence graph of the execution of the ShellShock payload.

Figure 6.4 illustrates the events that are causally dependent on the clone()

system call event of Figure 6.3. The child apache process starts a shell that
in turn clone itself. The child shell process invokes perl, which executes the
perl payload embedded in the attack. We can see that the payload contains
commands to download a file from a remote server, save it as /tmp/core,
execute it with perl, and remove it. The events that causally depend on
the bottom event of Figure 6.4 show the execution of this payload. The
perl process clones itself, becomes a shell with an execve() system call that,
in turn, clone itself three times, i.e., once for each invocation of the curl,
perl, and rm binaries. It is worth mentioning that even if the /tmp/core

file is removed, all the actions related to it are captured by the deployed
monitoring systems.

6.2 cots-based bottom-up approach assessment 135

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/bin/perl","comm
":"/sbin/klogd -c ","pid":"22933","ppid":"22931","syscall":"56","
operation":"fork","flags":"CLONE_CHILD_CLEARTID|SIGCHLD|CLONE_CHILD_
SETTID","success":"yes","time":"1585927725.497","egid":"33","euid
":"33","event id":"63719","exit":"22935"}

.

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/bin/perl","comm
":"/sbin/klogd -c ","pid":"22935","ppid":"1","syscall":"42","
operation":"connect","saddr":"020000350A0002030000000000000000","
success":"yes","time":"1585927725.505","type":"SOCKADDR","egid
":"33","euid":"33","event id":"63809","exit":"0"}

.

{"__source":"Net_netfilter.log","__type":"NET", "host_id":"apache","out
":"eth0","len":"36","src_ip":"10.0.2.15","dst_ip":"10.0.2.3","
protocol":"UDP","src_p":"43940","dst_p":"53","raw":"Apr 3 15:28:45
apache kernel: [565.258817] [nfconnections] IN= OUT=eth0 SRC
=10.0.2.15 DST=10.0.2.3 LEN=56 TOS=0x00 PREC=0x00 TTL=64 ID=53539 DF
PROTO=UDP SPT=43940 DPT=53 LEN=36 \n"}

.

{"__source":"Net_Zeek.log","__type":"NET", "uid":"CWPI1zW5fEMduTBB2","ts
":"2020-04-03T15:28:45.509275Z","id.orig_h":"10.0.2.15","id.orig_p
":43940,"id.resp_h":"10.0.2.3","id.resp_p":53,"proto":"udp","service
":"dns","duration":0.0057039261,"orig_bytes":28,"resp_bytes":44,"
conn_state":"SF","missed_bytes":0,"history":"Dd","orig_pkts":1,"orig
_ip_bytes":56,"resp_pkts":1,"resp_ip_bytes":72}

Figure 6.5: Event dependence graph of the domain name resolution of the RAT.

Figure 6.5 illustrates the events corresponding to the beginning of the ex-
ecution of the RAT. Following the execution of the /tmp/core file with perl,
we can see the start of a new process called /sbin/klogd -c. In fact, this
process corresponds to the execution of the /tmp/core file. Additionally, we
can notice that the PPID (i.e., the PID of its parent process) has been changed
to 1. At this point, we can suspect that the process name is fake, i.e., it at-
tempts to be stealthy. Additionally, we can see that the process issues a DNS
request to attempt to retrieve the IP address of its C&C.

Figure 6.6 illustrates the following events of the fake process. These events
correspond to the beginning of the communications with the C&C server,
which actually correspond to IRC communications. We can see that the
process seems to behave like a bot. The overall scenario involves four net-
work connections. So far, we have seen that the three network connections
are causally dependent on the network connection corresponding to the
ShellShock HTTP request. The three network connections respectively corre-
spond to: (1) the download of a file, through a GET HTTP request, from a
remote web server; (2) a DNS request to resolve a domain name. This DNS
request actually corresponds to an attempt to get the IP address of the at-
tacker’s command and control (C&C) server; (3) IRC communications with
the C&C server on its port 6667.

The fake /sbin/klogd -c process further performs many actions: the ex-
ecution of the uname, id, ip, and “cat /etc/passwd” commands. These ac-
tions correspond to the reconnaissance step of the attack scenario. Continuing
the analysis of the event dependence graph, we can also notice that all child
processes of /sbin/klogd -c are linked to the same socket and connection,
i.e., the connection to the C&C server. This connection very likely corre-
sponds to a data exfiltration channel.

136 assessment

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/bin/perl","comm
":"/sbin/klogd -c ","pid":"22935","ppid":"1","syscall":"42","
operation":"connect","saddr":"020000350A0002030000000000000000","
success":"yes","time":"1585927725.505","type":"SOCKADDR","egid
":"33","euid":"33","event id":"63809","exit":"0"}

.

{"__source":"Sys_auditd.log","__type":"SYS","exe":"/usr/bin/perl","comm
":"/sbin/klogd -c ","pid":"22935","ppid":"1","syscall":"42","
operation":"connect","saddr":"02001A0BAC1000020000000000000000","
success":"yes","time":"1585927725.521","type":"SOCKADDR","egid
":"33","euid":"33","event id":"63815","exit":"0"}

.

{"__source":"Net_netfilter.log","__type":"NET", "host_id":"apache","out
":"eth1","len":"60","src_ip":"192.168.51.100","dst_ip
":"172.16.0.2","protocol":"TCP","src_p":"56655","dst_p":"6667","raw
":"Apr 3 15:28:45 apache kernel: [565.272108] [nfconnections] IN=
OUT=eth1 SRC=192.168.51.100 DST=172.16.0.2 LEN=60 TOS=0x00 PREC=0x00
TTL=64 ID=60312 DF PROTO=TCP SPT=56655 DPT=6667 WINDOW=29200 RES=0x

00 SYN URGP=0 \n"

.
{"__source":"Net_Zeek.log","__type":"NET", "uid":"CcYfw81tOlAdxztZy9","

ts":"2020-04-03T15:28:45.522557Z","id.orig_h":"192.168.51.100","id.
orig_p":56655,"id.resp_h":"172.16.0.2","id.resp_p":6667,"proto":"tcp
","service":"irc",duration":220.6755070686,"orig_bytes":3190,"resp_
bytes":1925,"conn_state":"S1","missed_bytes":0,"history":"ShADad","
orig_pkts":34,"orig_ip_bytes":4966,"resp_pkts":37,"resp_ip_bytes
":3857}

Figure 6.6: Event dependence graph of the IRC communications of the RAT.

The analysis of the dependence graph of the ShellShock and RAT at-
tack scenario shows promising results regarding the relevance of our ap-
proach. We have shown that our approach allows retrieving the heteroge-
neous events corresponding to the traces of the attack scenario on the moni-
tored system and that the different types of events contain information that
complements each other.

Based on the hypothesis that all the raw events produced by the deployed
monitored system are correctly handled by the transform components we im-
plemented (i.e., CEs & CDs, message exchange, and timelines transform
components described in Section 5.3.2), generated contextual events and
their related causal dependencies accurately represent the best approximation
of the contextual event causal dependency model we can compute. The com-
puted approximation may contain false causal dependencies, missing causal
dependencies, or both, due to the limitations of the deployed monitoring sys-
tems, e.g., poor semantic quality of logged information. This corresponds to
the notions of false positives and false negatives in the context of the contex-
tual event causal dependency model. The following sections discuss these
two notions.

6.2 cots-based bottom-up approach assessment 137

6.2.2 False Positives—False Causal Dependencies

In the context of the contextual event causal dependency model we de-
fined in Chapter 4, a false positive corresponds to a false causal dependency
between two contextual events. Computing false causal dependencies dur-
ing the transform step of raw events handling implies that computed cause
and dependence graphs may contain contextual events that are not causally
dependent on the event of interest in the sense of “⇀,” as defined in Chap-
ter 4 (Section 4.4.2). The following paragraphs illustrate the different cases
where false positives can be computed.

On the Ability to Identify or Compute Sessions

As we have defined in Section 4.3.1 (Definition 4.3), the execution of an
object may be made up of several sessions. Thus two contextual actions
pertaining to two different sessions might not be causally dependent. This
remark also applies to the contextual event causal dependency and event
causal dependency models. In fact, it may be recalled that sessions aim to
decrease the size of computed cause and dependence graphs. They con-
tribute to the reduction of false positives.

Currently, if we don’t have a means to identify and compute sessions, then
we adopt a conservative assumption regarding the computation of causal de-
pendencies, i.e., we suppose that all the computed contextual events related
to the same object are causally dependent. Naturally, some computed causal
dependencies may be false. This assumption is thereby subject to false posi-
tive production.

Regarding our current implementation, we deduce sessions for the Apa-
che and MySQL servers. As we mentioned in the last paragraph of Sec-
tion 5.3.3, we consider that accept() system calls start new sessions for
apache processes.

As we have previously mentioned in Section 6.2.1, the cause and depen-
dence graphs of the SQL injection attack scenario contain false positives. The
dependence graph of the SQL injection attack scenario contains 102 contex-
tual events and 201 causal dependencies that are not part of the execution of
the SQL injection request. This corresponds to a false positive (false causal
dependencies) rate of 35.4% (201/568) and a rate of irrelevant contextual
events of 38.5% (102/265). Regarding the cause graph of the SQL injection
attack scenario, the false positive rate is 75.9% (1347/1773), and the rate of
irrelevant contextual events is 81.7% (630/771). These high numbers could
be lowered by decreasing the depth of traversal. However, the number of
relevant events would also decrease.

This is explained by the fact that the mysql process that handles the
accept() system call is different from the one that actually handles the
mysql request. We currently do not have any means to compute sessions
for the latter process. Therefore, the conservative assumption implies that
all its contextual events are in the same session. The computation of cause or
dependence graphs thereby includes them. Naturally, the bigger the depth
of traversal, for cause and dependence graph construction, is, the more false
dependencies will be included in the traversal. This corresponds to a com-

138 assessment

pound effect which is called the “dependence explosion problem.” This
notion has been discussed in Section 3.4.4.

On the Accuracy of the Deployed Information Flow Monitoring Systems

Naturally, the accuracy of the contextual event causal dependency model
greatly relies on the monitoring systems’ capabilities to observe contextual
actions.

Let’s consider the OS abstraction layer to illustrate the notion of granu-
larity. The following example illustrates the limitations of observing system
call invocations. Let’s consider that a process reads from a file f1 and, then,
writes to another one called f2. From the point of view of system call invo-
cations, we cannot determine whether the process transferred information
from f1 to f2. Thus, we conservatively consider that information has flowed
between the two files. In other words, we might consider a false causal de-
pendency, through the transitivity property of “ 7→” between the contextual
actions of f1 and f2. In order to overcome this issue, we would need to be
able to observe the states of objects.

Additionally to the intrinsic limitations of the observing system call invo-
cations, limitations can come from the capabilities of the deployed monitor-
ing system, e.g., RfBlare [Georget, 2017] performs a better information flow
tracking than auditd-based information flow trackers.

Consequences

The consequences of generating false positives are multiple. First, it may
lead to the dependency explosion problem, as described in Section 3.4.4,
which would greatly impact cause and dependence graphs computation de-
pending on the adopted graph traversal strategy. For instance, the perfor-
mance impact on a naive breadth-first traversal strategy would be impor-
tant. Computed cause and dependence graphs would also contain contex-
tual events that do not correspond to the attack traces. Thus false positives
may impact cyber defense analysts’ analyses.

6.2.3 False Negatives—Missing Causal Dependencies

In the context of the contextual event causal dependency model, a false
negative corresponds to the absence of an actual causal dependency between
two contextual events.

To the best of our knowledge, given the events that are generated by the
monitoring systems we have deployed, and the analysis of the computed
cause and dependence graphs, we don’t have any false negatives in our
graphs, i.e., missing causal dependencies.

The following paragraphs illustrate the different cases where false nega-
tives can happen.

On Monitoring System Failure

Assuming that the transform components we implement are reliable, false
negatives can be explained by the failure of a given monitoring system, e.g.,

6.2 cots-based bottom-up approach assessment 139

a network sniffer that drops packets because the network traffic to analyze
is too big, or a system call monitor that has not been configured or designed
to handle bursts of system call invocations.

On ETL Pipelines Reliability

Assuming that deployed monitoring systems are reliable, i.e., any moni-
tored contextual actions are correctly recorded into events, faults might come
from the ETL pipelines, either from the extract, transform, or load compo-
nents. In other words, raw events, or computed contextual events and their
causal dependencies, may be accidentally lost in the ETL pipelines. This
may happen with a poorly designed system for ETL pipelines.

On the Lack of Observation Capability

False negatives can also be explained by a monitoring system’s inability
to observe some contextual actions. For example, auditd might not be con-
figured to capture all information flow-related system calls.

Another observation capability issue is the approximation of timestamps,
as discussed in Section 4.4.1. For example, auditd only records the exit of sys-
tem call invocations. Thus, we cannot know when they started and can only
consider them as instantaneous. In practice, we have to rely on timestamps
to order contextual events and events locally. However, their corresponding
contextual actions might have a different order. This behavior might intro-
duce false positives, as some contextual events might be incorrectly included
in contextual event causal dependency graph traversals, and false negatives,
as some contextual events might be incorrectly excluded in contextual event
causal dependency graph traversals.

Attacker Behaviors

Of course, false negatives may be caused by attackers’ actions. Such ac-
tions could correspond to monitoring systems evasion, or specific actions
that target the computation of our model, i.e., the computation of contextual
events and their causal dependencies. For example, attackers may leverage
the timestamp approximation issue to attack the computation of our model,
or even delete log entries.

Consequences

False negatives greatly impact the overall methodology we propose, i.e.,
missing causal dependencies hinders the capability to perform graph traver-
sal and compute cause and dependence graphs. All the work previously
presented in this manuscript have this weakness. To the best of our knowl-
edge, no approach has been proposed to compensate it in the literature.

The previous sections proposed a qualitative and quantitative assessment
of the implementation of our methodology. The following section discusses
ETL pipelines’ performance.

140 assessment

6.2.4 ETL Pipelines Performance—Event Handling Rate

This section presents an assessment of the performance of our current
ETL pipeline implementation, i.e., the rate of event handling, or in other
words, the time needed to compute the contextual event causal dependency
model. All the tests are done on a single machine where all the components
of the ETL pipelines, i.e., transform components, Kafka, and the ArangoDB
graph database, run in parallel. Our current implementation of the transform
components, are written in Python. The testing machine is made up of 16Gb
of RAM and an Intel i7-7600U CPU.

As we have mentioned in the “ETL Pipelines” section (Section 5.3.2), ex-
tract components are currently not implemented in the current version of our
implementation. Log files are manually collected and read by transform com-
ponents.

Transform Component Performance. As we have previously presented in Sec-
tion 5.3.2, the architecture of the ETL pipelines is distributed. Each transform
component’s performance is independent of the other ones’ performances.
However, the performance of the overall ETL pipelines is limited to the com-
ponent with the poorest performance.

Table 3: Average event handling rate in seconds of transform components

Transform Component
Event Handling Rate (No of Events per Seconds)

Mean Min Q1 Median Q3 Max

Auditd 2377.82 2191.86 2357.33 2399.07 2414.72 2441.67

Netfilter 5960.83 3474.55 5748.77 6141.9 6302.01 6517.95

Apache 2591.01 2337.31 2573.1 2597.18 2616.72 2716.52

Zeek 17947.03 11228.87 17034.19 18369.6 18887.18 19388.58

Transform Component
CE Handling Rate (No of CEs per Seconds)

Mean Min Q1 Median Q3 Max

Auditd Netfilter Match 2337.17 2155.71 2312.29 2357.58 2373.93 2401.62

Time Ordering 2281.18 2107.39 2257.75 2301.41 2317.82 2344.2
Timelines 910.81 835.42 899.35 922.37 927.93 944.24

Message Exchange 12006.9 7652.81 11451.24 12168.73 12616.36 13159.26

Overall Pipeline 663.23 608.17 653.68 671.96 675.06 686.16

Load Component
Import Rate (No of Documents per Seconds)

Mean Min Q1 Median Q3 Max

Arango Import 8222.04 8149.22 8199.83 8215.95 8235.74 8321.81

Table 3 shows the performance figures of our transform components, i.e.,
the number of events, or contextual events, handled per second. The overall
ETL pipelines have been run a hundred times using the ShellShock and RAT
attack scenario dataset. The table presents the mean, the minimal, first quar-
tile, median, third quartile, and maximum handling rates for each transform
component.

Database Loading Performance. Table 3 also shows the performance of the
load part of our ETL pipelines. The load component adopts a batch strategy
to index the contextual events and causal dependencies computed by the
transform components into the ArangoDB graph database.

6.3 discussions 141

As we can see, the major bottleneck of our current implementation is the
timelines transform component. We discuss ways to improve the performance
of the ETL pipelines in Section 6.3.2.

Section 6.2 presented a qualitative and quantitative assessment of our cur-
rent implementation of the bottom-up strategy. More specifically, we have
discussed the relevance of the contextual event causal dependency graph we
compute and have proposed an assessment of the performance of the ETL
pipelines.

6.3 discussions

Section 6.3 further discusses the current implementation of our model.
More specifically, we will discuss the size of the computed contextual event
causal dependency model and the weaknesses of our implementation.

6.3.1 Graph Size

Analysis of Contextual Events and Causal Dependencies Computation

Currently, contextual events and causal dependencies are stored as docu-
ments, i.e., in the JSON format, inside the ArangoDB graph database. More
specifically, one document corresponds to one contextual event or to one
causal dependency. As a reminder, in the context of the lightweight implemen-
tation we presented in Section 5.3, we potentially transform a raw event into
several contextual events and causal dependencies. It may be recalled that
our current architecture temporally orders all the events emanating from
each host. This property allows us to build timelines easily, i.e., a computed
contextual event simply needs to be appended to the timeline of its corre-
sponding object. Several cases are possible:

1. A raw event is transformed into a unique contextual event. Then, in
the context of the monitored object, we have two possibilities:

a) If the contextual event is part of the current session of the object,
then a causal dependency is created between this contextual event
and its previous one, according to the object’s timeline;

b) If the contextual event pertains to a brand new session of the
object, then any causal dependency is created;

2. A raw event is transformed into several contextual events and causal
dependencies between them. This is, for example, the case for infor-
mation flow-related system call events where a first causal dependency
is created between the two created contextual events. Then, similarly
to the first case with a) and b), we examine whether each contextual
event pertains to a running object session, or to a new one.

Following the previous remarks, we can conclude that the number of
stored documents is at least twice the number of analyzed events.

142 assessment

On Attacks’ Time Length

So far, we did not address the issues related to the time length of multi-
step attacks. In fact, multi-step attacks can be scattered over time for a period
of several days, weeks, or even months. Such attack scenarios are also called
Advanced Persistent Threat [Hutchins et al., 2011].

Regarding our approach and methodology, several cases are possible for
this type of attack scenarios.

Time between Consecutive Contextual Actions. As multi-step attacks can be
scattered over time, corresponding contextual actions can also be scattered
over time. An interesting property of the contextual action causal depen-
dency relationship we defined is that, given two consecutive causally depen-
dent contextual actions (a1, (o, t1)) and (a2, (o, t2)) performed by the same
object, (a2, (o, t2)) may be performed long after (a1, (o, t1)). Thus, even if an
object does not have activity for a long time, its next contextual action will
be added to its timeline and, if they pertain to the same session, a causal
dependency will be created between this contextual action and the previous
one. Therefore, time between consecutive contextual actions does not matter.

A Visualization Problem. Supposing that we have a good approximation of
the contextual event causal dependency model, the cause and dependence
graphs would contain all the contextual events that correspond to traces of
the attack. The cause and dependence graphs might be too big to be ana-
lyzed by cyber defense analysts. In fact, we argue that this issue corresponds
to a visualization problem. It may actually be counter-productive to display
cause and dependence graphs entirely. However, they ideally contain all the
information items available for attack investigation. Thus, we could imagine
a solution that would enable the computation of different kinds of perspec-
tive, such as only displaying causally dependent network-related events, or
causally dependent application-related events.

On Data Reduction and Storage

The issues related to the storage of contextual events and their causal
dependency are orthogonal to the work presented in this manuscript. They
represent a full research subfield and we did not address these issues in our
work.

Such studies correspond to the capability to handle a high throughput of
events into the database. Depending on the architecture of the extract, trans-
form and load pipelines, proposed solutions greatly differ. For instance,
CamQuery [Pasquier et al., 2018], which focuses on the provenance collec-
tion in the Linux Kernel, merges the capture and storage layers. On the
opposite, our approach separates the collection, transform, and load compo-
nents. Additionally, it centralizes all computed contextual events and their
causal dependencies into a single database (i.e., the ArangoDB graph data-
base).

In order to address the problem of storage, various approaches have been
proposed regarding system call-based causal dependency approaches:

6.3 discussions 143

garbage collection - In [Lee et al., 2013b], Lee et al. propose to lever-
age garbage collection methodologies to discard events that are not
considered to be useful for forensics.

event aggregation strategies - In [Xu et al., 2016], Xu et al. propose
strategies to aggregate events by leveraging graph analysis: (1) they
aggregate events that have identical contributions to the causal depen-
dency analysis; (2) they identify subgraphs that can be shrunk without
too much impact of the causal dependency analysis. Hossain et al.
further develop these event aggregation strategies in [Hossain et al.,
2018].

generating less events - In [Ma et al., 2016], Ma et al. change their
recording strategy by only logging write() system calls without losing
information for causal dependency analysis.

These approaches reduce the quantity of system call events by fusing them
or discarding them. This might be a problem in the context of heterogeneous
events as some events might contain valuable information, with higher se-
mantics, for attack investigation.

6.3.2 Limitations of our Implementation

This section discusses the limitations of our current implementation and
its assessment. It goes through the limitations of our test environment, the
deployed monitoring systems, as well as our implementation of the ETL
pipelines.

Test Environment’s Limitations

The Lack of Representative Activity. As we have previously mentioned, the
test environment we have built does not contain activity from real users. Its
representativeness of the reality can easily be questioned, and it does not
allow us to generate an ideal dataset. However, it may be recalled that the
primary goal of our implementation is to illustrate that the implementation
of the bottom-up strategy is possible. We argue that the dataset we produce
is sufficient to satisfy the prerequisites to attain this goal.

On Virtualization. Additionally, the fact that our test environment is fully
virtualized can also be criticized as it can be seen as not representative of
a real enterprise network. We argue that virtualization is not an issue as it
tends to be more and more adopted in enterprise networks with the usage
of cloud provider services.

Deployed Monitoring Systems’ Limitations

It may be recalled that our capability to adopt the bottom-up strategy
and compute the contextual event causal dependency model relies on the
adopted monitoring strategy. This section discusses the limitations caused
by the adopted monitoring strategy.

144 assessment

On Attack Types Coverage. Naturally, the capability to detect specific types
of attacks depends on the deployed monitoring systems. For instance, our
current monitoring strategy does not have a means to detect rootkits. There-
fore, some steps of attack scenarios might be undetected. However, other
actions related to the rootkits can be captured with our monitoring strategy,
e.g., their installations, or their network and system call-related activities.
Additionally, as we have previously explained, a multi-step attack involves
several steps that are likely to leave traces in the different abstraction layers
of the monitored system. Thus, we argue that our implementation of the
bottom-up strategy is still relevant as it can help cyber defense analysts to
retrieve and investigate some steps of the overall attack scenario.

On Performance. Additionally to the fact that we do not, and cannot, cover
the detection of all attack types, we are also limited by the performance of
the chosen deployed monitoring systems. For instance, auditd has not been
designed to record all the system call related to information flows. Thus,
the number of system call invocations to record might be too significant
for auditd. New monitoring system designs, e.g., KCAL [Ma et al., 2018]
or CamQuery [Pasquier et al., 2018], have been proposed to overcome this
problem.

On Deployed Monitoring System’s Configuration Capabilities. COTS moni-
toring systems might not be able to record all the information we need to
compute contextual events and their causal dependencies. This is, for exam-
ple, the case with the MySQL server’s logging system, which does not allow
the recording of the PID of the process that actually handled the SQL query.
Ideally, the logging systems of application should be configurable enough
to apply the bottom-up strategy and compute contextual events and causal
dependencies. We argue that this constraint is not an issue as the logging
systems of applications often rely on logging frameworks such as Log4J and
Log4C, as we have previously mentioned in Section 1.1.4.

ETL Pipelines’ Limitations

As we have previously mentioned, our current implementations of the
transform components are written in Python and leverage the CPython inter-
preter. Other languages and optimized designs could be explored to increase
the rate of event analysis.

Following the discussions of the limitations of our current implementation,
the next section presents a comparison of our approach and implementation
with other approaches.

6.3 discussions 145

6.3.3 Comparison of our Implementation with other Approaches

As we have previously mentioned in Chapter 4, the new causality model
we define aims to unify prior work on causal dependency. To the best of our
knowledge, this new model is the first to address the formal definition of the
causal dependency relationship among heterogeneous events. As we have
seen in Chapter 5, all the work presented in the first part of this manuscript
(Part I) enable the computation of parts of the overall causality model. Ad-
ditionally, a few approaches focus on the analysis of heterogeneous events.

Provenance Layering. The closest work to our implementation corresponds
to the approaches presented in the Layered Provenance paragraph of Sec-
tion 3.4.4. In fact, these approaches correspond to various implementations
adopting the bottom-up strategy. They propose a monitoring strategy that
allows them to compute an approximation of the contextual event causal
dependency model from raw events.

Leveraging Learning Techniques to Detect Multi-Step Attack Scenarios. HER-
CULE, presented in the Detecting Multi-Step Attacks with Heterogeneous Logs
Analysis paragraph of Section 1.4.5 is also close to our work. However, con-
trary to our implementation of the bottom-up strategy, the authors leverage
a supervised learning algorithm to compute a weighted event graph. We ar-
gue that, as any methodology that leverages a supervised learning algorithm,
a good training data set is needed. Unfortunately, obtaining or building re-
alistic training datasets containing multi-step attacks and benign activity is
not an easy task to do. HERCULE’s approach assessment has currently been
done using a single target machine. In a more complex setting, such as
a small or middle size company network, the existence of such a learning
dataset is questionable. Indeed, even if they may have high-level common-
alities, each multi-step attack scenario is unique as any target network or
system is different. Literature has also mentioned that supervised learning
for multi-step attack scenarios is complex to apply due to the lack of training
datasets containing enough complex attack scenarios data [Ourston et al.,
2003].

146 assessment

6.4 summary

Chapter 6 presents an assessment of the bottom-up strategy implementa-
tion we have made.

The Need to Build our Own Dataset. Section 6.1 covers the description of
the ideal dataset regarding our approach, as well as our attempt to generate
it with our own test environment. More specifically, this section explains
why publicly available datasets do not suit our needs for our approach. It
then describes how we generate assessment datasets by detailing the test
environment, and the monitoring strategy we have designed, as well as the
attack scenarios that we have performed against the test environment. These
attack scenarios correspond to: (1) SQL injections, as presented in Section 4.1;
(2) The exploitation of the ShellShock Vulnerability against the web server of
our test environment. This step is followed by the download and installation
of a remote access tool that allows the attacker to perform reconnaissance
actions such as the listing of the network configuration of the web server.

Analyzing the Resulting Cause and Dependence Graphs. Section 6.2 presents
the results of our approach, i.e., computed cause and dependence graphs
that can be used by cyber defense analysts to perform attack investigation.
We show that our approach allows retrieving heterogeneous events corre-
sponding to an attack scenario, and discuss the relevance of the computed
cause and dependence graphs. More specifically, computed cause and de-
pendence graphs might have false or missing causal dependencies, or both.
These two cases respectively correspond to false positives and false nega-
tives in the context of our approach. The analysis of the cause and depen-
dence graphs yields different results for each attack scenario. In both cases,
they contain all the events related to the attack scenarios and, to the best
of our knowledge, do not contain any false negatives. However, the cause
and dependence graphs of the SQL injection attack scenario contain many
false positives. This is explained by our inability to compute sessions for the
MySQL application. On the other hand, the cause and dependence graphs
of the ShellShock and RAT attack scenario contain all the steps of the at-
tack. Moreover, they do not contain any false positives. We have concluded
that our approach shows promising results and could be even more relevant
with the adoption of a better monitoring strategy. Following the discus-
sions surrounding the results of our approach, this section also presents an
assessment of the performance of our current implementation of the ETL
pipelines.

On the Limitations of Our Current Implementation. Finally, Section 6.3 fur-
ther discusses concepts surrounding our approach, such as the size of the
overall contextual event causal dependency graph, as well as the limitations
of our current implementation. Additionally, it proposes a comparison of
our implementation with other approaches.

C O N C L U S I O N

The purpose of this study is to help cyber defense analysts with the de-
tection and understanding of multi-step attacks through security monitoring
and event analysis. Ideally, event analysis would help them ascertain attacks’
root causes and impacts, i.e., by identifying all the compromised assets. This
study addresses the following observation: a persistent attacker will eventu-
ally succeed in gaining a foothold inside the targeted network despite all
the prevention mechanisms. Thus, the detection of complex attack scenar-
ios, and more generally, security monitoring, remains an active domain of
research in computer security.

To meet this objective, we asked ourselves the following questions: How
do we observe the system to protect? What do we observe? How do we
analyze observations to get insights regarding potential attacks? These ques-
tions led us to the review of monitoring systems and alert correlation methodolo-
gies.

Monitoring Systems. Detecting attacks relies on the capability to observe
the activities that take place in the system to protect. This capability is
enabled by monitoring systems. Chapter 1 introduced the reader to mon-
itoring systems and security monitoring. The various types of monitoring
systems enable the observation of the monitored system at different abstrac-
tion layers, e.g., the application, operating system, or network abstraction
layer. Observed activity is recorded as events to keep a history of what
happened in the monitored system. In practice, they are often the only in-
formation available for attack investigation, digital forensics or, postmortem
debugging of production systems failures. Additionally, some monitoring
systems are dedicated to the observation and detection of intrusion-related
actions, i.e., intrusion detection systems. IDSs produce a particular class of
events, called alerts, when detecting suspicious behavior such as an intrusion
attempt.

Alert Correlation. In practice, an event represents the observation of a spe-
cific action happening in the monitored system. Events have thereby to be
further analyzed to gain insights from them. In the context of security mon-
itoring, this analysis aims to discover and understand the different steps that
make up attacks. This is the role of alert correlation. Chapter 2 introduced
the reader to alert correlation methodologies, which aim at building connec-
tions among the events produced by deployed monitoring systems. From the
study of the alert correlation research field, we came up with the following
conclusions:

1. It is necessary to consider heterogeneous events, i.e., events produced
at different abstraction layers, to understand fully complex multi-step
attack scenarios;

148 conclusion

2. All the alert and event correlation techniques dedicated to attack sce-
nario identification ideally aim to discover causal dependency relationships
among events.

Towards the Search of Causality. Following the lead of alert correlation re-
search, the study of correlation has naturally brought us to study causality
and its definition regarding the context of computer systems. Our research
led us to the study of distributed systems, information flow, and provenance
fields. Reviewing the literature, we observed the lack of a clear definition of
the causal dependency relationship among heterogeneous events. We believe that
defining these causal dependencies and enabling their computation would
simplify the attack scenario identification process and enhance attack inves-
tigation capabilities. The rationale is the following: given an event of interest
e, e.g., an IoC or an alert, we want to identify all the events that can be con-
sidered as the causes or consequences of e. This set of events would ideally
correspond to the traces left by the attacker on the monitored system. More
specifically, if causal dependency relationships among events can be defined
and computed, then the discovery of attack scenarios translates to simple
graph traversals. Such graphs correspond to causal dependency graphs with
events as nodes and causal dependency relationships as directed edges.

summary of our contributions

Formal Definition of the Causal Dependency Relationship Among Heteroge-
neous Events. Working towards the definition of the causal dependency
relationship among heterogeneous events, we came up with the following
insights and models:

1. A system can be modeled as a set of active and passive objects that
have states. Active objects have the capability to perform actions;

2. There exist causal dependencies among object states, among object ac-
tions, as well as between actions and states;

3. Monitoring systems enable the observation and recording of actions or
states in the form of events;

4. If we can determine causal dependencies among actions, among states,
and between actions and states, we can propagate this knowledge to
the events.

In order to define the causal dependency relationship among heterogeneous
events, we have thereby proposed a unified understanding of the causal de-
pendency relationships that can be defined between active objects, passive
objects, and event logs. More specifically, inspired from two causality mod-
els from the distributed system and the security research areas, i.e., Lam-
port’s [Lamport, 1978] and d’Ausbourg’s [d’Ausbourg, 1994] models, we
have formally defined three causal dependency relationships that represent
different perspectives of the monitored system, namely, the contextual action
causal dependency, the contextual event causal dependency, and the event causal
dependency relationships. The definitions of these relationships have been
laid down in Chapter 4. We believe that our attempt to formalize the notion

conclusion 149

of causal dependency among heterogeneous events will help our research
community to explore new directions.

Implementation Strategies of the Causal Dependency Relationships. Follow-
ing the presentation of the model we defined, we have shown how this
model fits reality in the context of enterprise computer networks in Chap-
ter 5. More specifically, we have introduced two strategies to implement the
causal dependency model we defined:
top-down strategy - The first strategy is based on the computation and

tracking of contextual action causal dependencies. These causal de-
pendencies among contextual actions are then leveraged to compute
causal dependencies among contextual events, and events.

bottom-up strategy - The second strategy consists in leveraging raw
events’ semantics to compute the contextual event causal dependency
model, as well as the contextual action causal dependency model, when
possible. More specifically, the bottom-up strategy allows obtaining
an approximation of the contextual event causal dependency model,
which accuracy depends on the semantic quality of events.

Lightweight COTS-based Implementation. Our current implementation of
the causal dependency model we have defined adopts the bottom-up strat-
egy. The particularity of our implementation lies in the fact that we have
based our monitoring strategy on COTS monitoring systems in order to com-
pute the contextual event causal dependency model and enable the identifi-
cation of multi-step attack scenarios. We have assessed our implementation
in Chapter 6 and have discussed its limitations.

perspectives

Several areas of the work presented could be further explored and devel-
oped. In particular, the assessment of our implementation may contain more
attack scenarios with various levels of complexity. For instance, it would be
interesting to explore an attack scenario in which actions are scattered in
time, e.g., separated by several days.

Additionally, other implementation strategies could be explored. As we
have seen in Figure 5.2, the overview of our architecture implementation is
made up of four parts:

1. the deployment of monitoring systems, which focuses on the observa-
tion of contextual actions and their recording into events;

2. the extract, transform and load pipelines, which are in charge of the
collection of raw events, the building of the contextual event causal
dependency graph, and its loading into the database;

3. the graph database, which handles the storage and the query capabili-
ties;

4. the visualization and investigation interface, which aims to give in-
sights to the cyber defense analyst.

Each one of these parts could be further explored. The following para-
graphs provide some examples of possible research directions.

150 conclusion

Integrating Better Monitoring Systems. Deploying monitoring systems is al-
ready a challenge as the security monitoring team has to find a compromise
between storage, memory, and CPU performance, and observation capabili-
ties. This issue is well illustrated by system call-related monitoring systems
as applications may invoke many system calls in a very short period of time.
A first avenue of research lies in developing better monitoring systems in
order to ease their adoption in the industry. For instance, Ma et al. propose
a new architecture for the system call auditing mechanisms of the Linux
Kernel in [Ma et al., 2018].

Another research direction consists in exploring static analysis and dy-
namic analysis to have further grained information flow tracking, as pro-
posed with BEEP in [Lee et al., 2013a].

Exploring Pattern Recognition. The work presented in this manuscript fo-
cuses on discovering and retrieving events that correspond to the same at-
tack scenarios. These events may have a semantic level that is too low to
be easily analyzed by cyber defense analysts. Thus, an interesting avenue of
research is the ability to recognize patterns, in the contextual event causal de-
pendency model, that would provide a higher semantic level of information.
For example, given sequences of events may be automatically recognized as
APT stages, as proposed in [Milajerdi et al., 2019].

Developing Visualization Strategies. As we have previously mentioned, we
did not explore the visualization part of the architecture. As they are, cause
and dependence graphs might not be easily analyzed by a cyber defense
analyst as it potentially contains many nodes. Information could be better
rearranged to get insight faster. For example, we could compute different
kinds of perspectives, such as only displaying causally dependent network-
related events or causally dependent application-related events. Addition-
ally, the approach and methodology we propose in this manuscript could be
coupled with knowledge databases (i.e., topology, cartography, and vulner-
ability knowledge) to create a more holistic view of the monitored system
and further enable situational awareness.

A M O N I TO R I N G S Y S T E M S
C O N F I G U R AT I O N

Appendix A describes how the deployed monitoring systems have been
configured to generate the dataset we used to assess our current implementa-
tion of the causality model. Section A.1 describes how auditd is configured
in order to capture information flow-related system calls. Section A.2 de-
scribes how netfilter is configured in order to log any new UDP or TCP
communications. Section A.3 describes how Apache is configured in order
to use the log format we need.

a.1 list of monitored linux system calls

This section describes how auditd is configured to log of the appendix
aims to log information flow-related system calls. The following code snip-
pet corresponds to the auditd configuration file. It is made up of 5 sections:

1. auditd settings;
2. self auditing, which includes audit rules to watch auditd configuration

files;
3. filters, which includes rules to avoid the logging of log messages we

are not interested in;
4. alert rules, which includes audit rules that correspond to suspicious

activity;
5. information flow-related system calls, which includes audit rules to

log the system calls of interest that allow us to compute the OS-related
part of the contextual event causal dependency model.

[filepath] /etc/audit/rules.d/custom.rules

First rule - delete all

-D

Auditd Settings --

Increase the backlog buffers to survive stress events.

Make this bigger for busy systems

-b 100000

This determine how long to wait in burst of events

--backlog_wait_time 0

Set failure mode to syslog

-f 1

This rule will cause auditctl to continue loading rules when it runs

across a an unsupported or a rule with a syntax error however it will

152 monitoring systems configuration

report an error at exit. The normal action is to report the line and

issue with the rule and exit immediately with an error to get the

admin’s

attention to fix the rules.

Continue through errors in rules

-c

Self Auditing --

Audit the audit logs

Successful and unsuccessful attempts to read information from the

audit records

-w /var/log/audit/ -k alert_auditlog

Auditd configuration

Modifications to audit configuration that occur while the audit

collection functions are operating

-w /etc/audit/ -p wa -k alert_auditconfig

-w /etc/libaudit.conf -p wa -k alert_auditconfig

-w /etc/audisp/ -p wa -k alert_audispconfig

Monitor for use of audit management tools

-w /sbin/auditctl -p x -k alert_audittools

-w /sbin/auditd -p x -k alert_audittools

Filters --

We put these early because audit is a first match wins system.

Ignore PROCTITLE messages

-a always,exclude -F msgtype=PROCTITLE

Ignore SELinux AVC records

-a always,exclude -F msgtype=AVC

Cron jobs fill the logs with stuff we normally don’t want (works with

SELinux)

-a never,user -F subj_type=crond_t

-a never,exit -F subj_type=crond_t

This is not very interesting and wastes a lot of space if the server

is public facing

-a always,exclude -F msgtype=CRYPTO_KEY_USER

Exclude /dev/random for apache2 monitoring

-a never,exit -F path=/dev/urandom -k exclude_dev_urandom

-a never,exit -F path=/dev/null -k exclude_dev_null

More information on how to filter events

https://access.redhat.com/solutions/2482221

Alert Rules --

32bit API Exploitation

If you are on a 64 bit platform, everything _should_ be running

in 64 bit mode. This rule will detect any use of the 32 bit syscalls

because this might be a sign of someone exploiting a hole in the 32

a.1 list of monitored linux system calls 153

bit API.

-a always,exit -F arch=b32 -S all -k alert_32bit_api

Reconnaissance

-w /usr/bin/whoami -p x -k alert_recon

-w /bin/uname -p x -k alert_recon

-w /etc/issue -p r -k alert_recon

-w /etc/hostname -p r -k alert_recon

Suspicious activity

-w /usr/bin/wget -p x -k alert_susp_activity

-w /usr/bin/curl -p x -k alert_susp_activity

-w /usr/bin/base64 -p x -k alert_susp_activity

-w /bin/nc -p x -k alert_susp_activity

-w /bin/netcat -p x -k alert_susp_activity

-w /usr/bin/ncat -p x -k alert_susp_activity

-w /usr/bin/ssh -p x -k alert_susp_activity

-w /usr/bin/socat -p x -k alert_susp_activity

-w /usr/bin/wireshark -p x -k alert_susp_activity

-w /usr/bin/rawshark -p x -k alert_susp_activity

-w /usr/bin/rdesktop -p x -k alert_sbin_susp

Sbin suspicious activity

-w /sbin/iptables -p x -k alert_sbin_susp

-w /sbin/ifconfig -p x -k alert_sbin_susp

-w /usr/sbin/tcpdump -p x -k alert_sbin_susp

-w /usr/sbin/traceroute -p x -k alert_sbin_susp

-w /etc/shadow -p rwa -F success!=1 -k alert_susp_activity_shadow

Injection

These rules watch for code injection by the ptrace facility.

This could indicate someone trying to do something bad or just

debugging

-a always,exit -F arch=b32 -S ptrace -k alert_tracing

-a always,exit -F arch=b64 -S ptrace -k alert_tracing

-a always,exit -F arch=b32 -S ptrace -F a0=0x4 -k alert_code_injection

-a always,exit -F arch=b64 -S ptrace -F a0=0x4 -k alert_code_injection

-a always,exit -F arch=b32 -S ptrace -F a0=0x5 -k alert_data_injection

-a always,exit -F arch=b64 -S ptrace -F a0=0x5 -k alert_data_injection

-a always,exit -F arch=b32 -S ptrace -F a0=0x6 -k alert_register_

injection

-a always,exit -F arch=b64 -S ptrace -F a0=0x6 -k alert_register_

injection

Privilege Abuse

The purpose of this rule is to detect when an admin may be abusing

power by looking in user’s home dir.

-a always,exit -F dir=/home -F uid=0 -F auid>=1000 -F auid!=4294967295 -

C auid!=obj_uid -k alert_power_abuse

Information Flow-related Syscalls ------------------------------------

Record all the following events, regardless of their exit code

-a always,exit -F arch=b64 -S exit -S exit_group -S connect -S kill

154 monitoring systems configuration

Only record these events if they succeed

-a always,exit -F arch=b64 -S read -S readv -S pread -S preadv -S write

-S writev -S pwrite -S pwritev -S lseek -S sendto -S recvfrom -S

sendmsg -S recvmsg -S bind -S accept -S accept4 -S socket -S mmap -S

mprotect -S madvise -S unlink -S unlinkat -S link -S linkat -S

symlink -S symlinkat -S clone -S fork -S vfork -S execve -S open -S

close -S creat -S openat -S mknodat -S mknod -S dup -S dup2 -S dup3

-S fcntl -S rename -S renameat -S setuid -S setreuid -S setgid -S

setregid -S chmod -S fchmod -S fchmodat -S pipe -S pipe2 -S truncate

-S ftruncate -S init_module -S finit_module -S tee -S splice -S

vmsplice -S socketpair -S ptrace -F success=1

a.2 netfilter configuration

This section describes how netfilter is configured in order to log any new
UDP or TCP communications. The following code snippets correspond to
the iptables commands to enable the logging of new UDP and TCP com-
munications.

iptables -I INPUT -p tcp -m state --state NEW -j LOG
--log-prefix=’[nfconnections] ’

iptables -I OUTPUT -p tcp -m state --state NEW -j LOG
--log-prefix=’[nfconnections] ’

iptables -I INPUT -p udp -m state --state NEW -j LOG
--log-prefix=’[nfconnections] ’

iptables -I OUTPUT -p udp -m state --state NEW -j LOG
--log-prefix=’[nfconnections] ’

In order to log netfilter events in a dedicated file, we also configure rsyslog
with the following directive:

[filepath] /etc/rsyslog.d/00-nfconnections.conf

:msg,contains,"[nfconnections] " /var/log/nfconnections.log

a.3 apache configuration

The following code snippet corresponds to the LogFormat configuration
of the Apache server. More specifically, we have kept the original Apache
configuration and only changed the LogFormat part by replacing it with our
configuration.

[filepath] /etc/apache2/apache2.conf

LogFormat "%t %{usec}t %{UNIQUE_ID}e %P %A %p %h %{remote}p \"%r\" %>s %

O \"%{Referer}i\" \"%{User-Agent}i\"" combined

Additionally, the Apacher server is configured to enable the use of CGI.
This is done by executing the following command with root privileges:

a2enmod cgi

P U B L I C AT I O N S

Xosanavongsa, C., Totel, E., & Bettan, O. (2019a). Discovering correlations:
A formal definition of causal dependency among heterogeneous events.
In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), (pp.
340–355). IEEE.

Xosanavongsa, C., Totel, E., & Bettan, O. (2019b). Définition formelle de
la relation de dépendance causale entre Événements journalisés. In 2019
Rendez-Vous de la Recherche et de l’Enseignement de la Sécurité des Systèmes
d’Information (RESSI). INRIA.

Xosanavongsa, C., Totel, E., & Kheir, N. (2018). Corrélation d’événements
et découverte de scénarios d’attaque multi-étapes. In 2018 Rendez-Vous
de la Recherche et de l’Enseignement de la Sécurité des Systèmes d’Information
(RESSI). INRIA.

155

B I B L I O G R A P H Y

(2007). The intrusion detection message exchange format (idmef).

(2016). The intrusion detection message exchange format v2 (idmef v2).

Abad, C., Li, Y., Lakkaraju, K., Yin, X., & Yurcik, W. (2004). Correlation
between netflow system and network views for intrusion detection. In
Workshop on Link Analysis, Counter-terrorism, and Privacy held in conjunction
with SDM 2004.

Abad, C., Taylor, J., Sengul, C., Yurcik, W., Zhou, Y., & Rowe, K. (2003). Log
correlation for intrusion detection: A proof of concept. In 19th Annual
Computer Security Applications Conference, 2003. Proceedings., (pp. 255–264).
IEEE.

Abadi, M., Budiu, M., Erlingsson, Ú., & Ligatti, J. (2009). Control-flow in-
tegrity principles, implementations, and applications. ACM Transactions
on Information and System Security (TISSEC), 13(1), 4.

Almgren, M. & Lindqvist, U. (2001). Application-integrated data collection
for security monitoring. In International Workshop on Recent Advances in
Intrusion Detection, (pp. 22–36). Springer.

Anderson, J. P. (1980). Computer security threat monitoring and surveillance.
Technical Report, James P. Anderson Company.

Andersson, D., Fong, M., & Valdes, A. (2002). Heterogeneous sensor corre-
lation: A case study of live traffic analysis. In IEEE Information Assurance
Workshop.

ANSSI (2013). Recommandations de sécurité pour la mise en œuvre d’un
système de journalisation.

ANSSI (2015). Les métiers de la sécurité du numérique.

Australian Cyber Security Center (2019). Windows event logging and for-
warding.

Axelsson, S. (1999). The base-rate fallacy and its implications for the diffi-
culty of intrusion detection. In Proceedings of the 6th ACM Conference on
Computer and Communications Security, (pp. 1–7). ACM.

Axelsson, S. (2000). Intrusion Detection Systems: A Survey and Taxonomy.

Baláž, A., Ádám, N., Pietriková, E., & Madoš, B. (2018). Modsecurity idmef
module. In 2018 IEEE 16th World Symposium on Applied Machine Intelligence
and Informatics (SAMI), (pp. 000043–000048). IEEE.

Balliu, M., Schoepe, D., & Sabelfeld, A. (2017). We are family: Relating
information-flow trackers. In European Symposium on Research in Computer
Security, (pp. 124–145). Springer.

157

158 bibliography

Baquero, C. & Preguiça, N. (2016). Why logical clocks are easy. acmqueue.

Bass, T. (2000). Intrusion detection systems and multisensor data fusion:
Creating cyberspace situational awareness. Communications of the ACM,
43(4), 99–105.

Bates, A. & Hassan, W. U. (2019). Can data provenance put an end to the
data breach? IEEE Security & Privacy, 17(4), 88–93.

Bates, A., Hassan, W. U., Butler, K., Dobra, A., Reaves, B., Cable, P., Moyer,
T., & Schear, N. (2017). Transparent web service auditing via network
provenance functions. In Proceedings of the 26th International Conference on
World Wide Web, (pp. 887–895). International World Wide Web Conferences
Steering Committee.

Bates, A., Tian, D. J., Butler, K. R., & Moyer, T. (2015). Trustworthy whole-
system provenance for the linux kernel. In 24th {USENIX} Security Sympo-
sium ({USENIX} Security 15), (pp. 319–334).

Bejtlich, R. (2013). The practice of network security monitoring: understanding
incident detection and response. No Starch Press.

Benferhat, S., Autrel, F., & Cuppens, F. (2003). Enhanced correlation in an
intrusion detection process. In International Workshop on Mathematical Meth-
ods, Models, and Architectures for Computer Network Security, (pp. 157–170).
Springer.

Beschastnikh, I., Brun, Y., Ernst, M. D., & Krishnamurthy, A. (2014). Inferring
models of concurrent systems from logs of their behavior with csight. In
Proceedings of the 36th International Conference on Software Engineering, (pp.
468–479). ACM.

Beschastnikh, I., Brun, Y., Ernst, M. D., Krishnamurthy, A., & Anderson, T. E.
(2011). Mining temporal invariants from partially ordered logs. In Manag-
ing Large-scale Systems via the Analysis of System Logs and the Application of
Machine Learning Techniques (pp. 1–10).

Brogi, G. & Tong, V. V. T. (2017). Sharing and replaying attack scenarios with
moirai. In 2017 Rendez-Vous de la Recherche et de l’Enseignement de la Sécurité
des Systèmes d’Information (RESSI). INRIA.

Chabot, Y., Bertaux, A., Kechadi, T., & Nicolle, C. (2015). Event reconstruc-
tion: A state of the art. In Handbook of Research on Digital Crime, Cyberspace
Security, and Information Assurance (pp. 231–245). IGI Global.

Chabot, Y., Bertaux, A., Nicolle, C., & Kechadi, T. (2015). An ontology-based
approach for the reconstruction and analysis of digital incidents timelines.
Digital Investigation, 15, 83–100.

Chari, S. N. & Cheng, P.-C. (2003). Bluebox: A policy-driven, host-based
intrusion detection system. ACM Transactions on Information and System
Security (TISSEC), 6(2), 173–200.

bibliography 159

Chen, B., Lee, J., & Wu, A. S. (2006). Active event correlation in bro ids to
detect multi-stage attacks. In Fourth IEEE International Workshop on Infor-
mation Assurance (IWIA’06), (pp. 16–pp). IEEE.

Chen, L., Sultana, S., & Sahita, R. (2018). Henet: A deep learning approach
on intel R© processor trace for effective exploit detection. In 2018 IEEE
Security and Privacy Workshops (SPW), (pp. 109–115). IEEE.

Cheney, J., Chong, S., Foster, N., Seltzer, M., & Vansummeren, S. (2009).
Provenance: a future history. In Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages and
applications, (pp. 957–964). ACM.

Chow, J., Garfinkel, T., & Chen, P. M. (2008). Decoupling dynamic program
analysis from execution in virtual environments. In USENIX 2008 Annual
Technical Conference on Annual Technical Conference, (pp. 1–14).

Chuvakin, A., Schmidt, K., & Phillips, C. (2012). Logging and log management:
the authoritative guide to understanding the concepts surrounding logging and
log management. Newnes.

Chuvakin, W. J. H. A., Marty, J. T. J. R., & Mcquaid, R. M. (2008). Common
event expression.

Chyssler, T., Burschka, S., Semling, M., Lingvall, T., & Burbeck, K. (2004).
Alarm reduction and correlation in intrusion detection systems. In DIMVA,
(pp. 9–24).

CISSP, S. H., CISSP, J. B., & Hare, C. (2003). Official (ISC) 2 guide to the CISSP
exam. Auerbach Publications.

Clause, J., Li, W., & Orso, A. (2007). Dytan: a generic dynamic taint analysis
framework. In Proceedings of the 2007 international symposium on Software
testing and analysis, (pp. 196–206). ACM.

Creech, G. (2014). Developing a high-accuracy cross platform Host-Based Intru-
sion Detection System capable of reliably detecting zero-day attacks. PhD thesis,
University of New South Wales, Canberra, Australia.

Cuppens, F. & Miege, A. (2002). Alert correlation in a cooperative intrusion
detection framework. In Proceedings 2002 IEEE symposium on security and
privacy, (pp. 202–215). IEEE.

Cuppens, F. & Ortalo, R. (2000). Lambda: A language to model a database
for detection of attacks. In International Workshop on Recent Advances in
Intrusion Detection, (pp. 197–216). Springer.

Dain, O. & Cunningham, R. K. (2002). Fusing a heterogeneous alert stream
into scenarios. In Applications of Data Mining in Computer Security (pp. 103–
122). Springer.

Dain, O. M. & Cunningham, R. K. (2001). Building scenarios from a heteroge-
neous alert stream. In Proceedings of the 2001 IEEE workshop on Information
Assurance and Security, volume 6. United States Military Academy, West
Point, NY.

160 bibliography

d’Ausbourg, B. (1994). Implementing secure dependencies over a network
by designing a distributed security subsystem. In European Symposium on
Research in Computer Security, (pp. 247–266). Springer.

de Alvarenga, S. C., Barbon, S., Miani, R. S., Cukier, M., & Zarpelão, B. B.
(2018). Process mining and hierarchical clustering to help intrusion alert
visualization. Computers & Security, 73, 474 – 491.

Debar, H., Dacier, M., & Wespi, A. (1999). Towards a Taxonomy of Intrusion-
detection Systems. Computer Networks, 31(8), 805–822.

Debar, H. & Wespi, A. (2001). Aggregation and correlation of intrusion-
detection alerts. In International Workshop on Recent Advances in Intrusion
Detection, (pp. 85–103). Springer.

Defense Advanced Research Projects Agency (2014). Transparent computing.

Denning, D. E. (1976). A lattice model of secure information flow. Communi-
cations of the ACM, 19(5), 236–243.

Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on
software engineering, (2), 222–232.

Devecsery, D., Chow, M., Dou, X., Flinn, J., & Chen, P. M. (2014). Eidetic
systems. In 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14), (pp. 525–540).

Dreger, H., Kreibich, C., Paxson, V., & Sommer, R. (2005). Enhancing the
accuracy of network-based intrusion detection with host-based context. In
International Conference on Detection of Intrusions and Malware, and Vulnera-
bility Assessment, (pp. 206–221). Springer.

Du, H., Liu, D. F., Holsopple, J., & Yang, S. J. (2010). Toward ensemble char-
acterization and projection of multistage cyber attacks. In 2010 Proceedings
of 19th International Conference on Computer Communications and Networks,
(pp. 1–8). IEEE.

Du, M., Li, F., Zheng, G., & Srikumar, V. (2017). Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
(pp. 1285–1298). ACM.

Eckmann, S. T., Vigna, G., & Kemmerer, R. A. (2002). Statl: An attack lan-
guage for state-based intrusion detection. Journal of computer security, 10(1-
2), 71–103.

European Commission (2010). Standard on logging and monitoring.

European Union Computer Emergency Response Team (2017). Detecting
lateral movementsin windows infrastructure.

Fidge, C. J. (1988). Timestamps in Message-Passing Systems that Preserve
the Partial Ordering. In 11th Australian Computer Science Conference, (pp.
55–66)., University of Queensland, Australia.

bibliography 161

Forrest, S., Hofmeyr, S. A., Somayaji, A., & Longstaff, T. A. (1996). A sense
of self for unix processes. In Proceedings 1996 IEEE Symposium on Security
and Privacy, (pp. 120–128).

Gagnon, F., Massicotte, F., & Esfandiari, B. (2009). Using contextual infor-
mation for ids alarm classification. In International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, (pp. 147–156).
Springer.

Gao, P., Xiao, X., Li, Z., Xu, F., Kulkarni, S. R., & Mittal, P. (2018). {AIQL}:
Enabling efficient attack investigation from system monitoring data. In
2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), (pp. 113–
126).

Gardner, R. D. & Harle, D. A. (1996). Methods and systems for alarm correla-
tion. In Proceedings of GLOBECOM’96. 1996 IEEE Global Telecommunications
Conference, volume 1, (pp. 136–140). IEEE.

Gehani, A. & Tariq, D. (2012). Spade: support for provenance auditing in
distributed environments. In Proceedings of the 13th International Middleware
Conference, (pp. 101–120). Springer-Verlag New York, Inc.

Georget, L. (2017). Suivi de flux d’information correct pour les systèmes
d’exploitation Linux. PhD thesis.

Georget, L., Jaume, M., Tronel, F., Piolle, G., & Tong, V. V. T. (2017). Verifying
the reliability of operating system-level information flow control systems
in linux. In 2017 IEEE/ACM 5th International FME Workshop on Formal Meth-
ods in Software Engineering (FormaliSE), (pp. 10–16). IEEE.

Godefroy, E. (2016). Définition et évaluation d’un mécanisme de génération de
règles de corrélation liées à l’environnement. PhD thesis, CentraleSupélec.

Godefroy, E., Totel, E., Hurfin, M., & Majorczyk, F. (2015a). Generation and
assessment of correlation rules to detect complex attack scenarios. In 2015
IEEE Conference on Communications and Network Security (CNS), (pp. 707–
708). IEEE.

Godefroy, E., Totel, E., Hurfin, M., & Majorczyk, F. (2015b). Generation and
assessment of correlation rules to detect complex attack scenarios. In 2015
IEEE Conference on Communications and Network Security (CNS), (pp. 707–
708).

Goldman, R. P., Heimerdinger, W., Harp, S. A., Geib, C. W., Thomas, V., &
Carter, R. L. (2001). Information modeling for intrusion report aggregation.
In Proceedings DARPA Information Survivability Conference and Exposition II.
DISCEX’01, volume 1, (pp. 329–342). IEEE.

Goubault-Larrecq, J. & Olivain, J. (2008). A smell of orchids. In International
Workshop on Runtime Verification, (pp. 1–20). Springer.

Gu, G., Cárdenas, A. A., & Lee, W. (2008). Principled reasoning and practical
applications of alert fusion in intrusion detection systems. In Proceedings
of the 2008 ACM symposium on Information, computer and communications
security, (pp. 136–147). ACM.

162 bibliography

Halpern, J. Y. (2006). Causality, responsibility, and blame: a structural-model
approach. In Third International Conference on the Quantitative Evaluation of
Systems-(QEST’06), (pp. 3–8). IEEE.

Hassan, W. U., Guo, S., Li, D., Chen, Z., Jee, K., Li, Z., & Bates, A. (2019).
Nodoze: Combatting threat alert fatigue with automated provenance
triage. In NDSS.

Hauser, C., Tronel, F., Reid, J., & Fidge, C. (2012). A taint marking ap-
proach to confidentiality violation detection. In Proceedings of the Tenth
Australasian Information Security Conference-Volume 125, (pp. 83–90). Aus-
tralian Computer Society, Inc.

Heady, R., Luger, G., Maccabe, A., & Servilla, M. (1990). The architecture of
a network level intrusion detection system. Technical report, Los Alamos
National Lab., NM (United States); New Mexico Univ., Albuquerque

Herley, C. & Van Oorschot, P. C. (2017). Sok: Science, security and the elusive
goal of security as a scientific pursuit. In 2017 IEEE Symposium on Security
and Privacy (SP), (pp. 99–120). IEEE.

Hiet, G., Tong, V. V. T., Me, L., & Morin, B. (2008). Policy-based intrusion de-
tection in web applications by monitoring java information flows. In 2008
Third International Conference on Risks and Security of Internet and Systems,
(pp. 53–60). IEEE.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735–1780.

Hossain, M. N., Milajerdi, S. M., Wang, J., Eshete, B., Gjomemo, R., Sekar,
R., Stoller, S., & Venkatakrishnan, V. (2017). {SLEUTH}: Real-time attack
scenario reconstruction from {COTS} audit data. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), (pp. 487–504).

Hossain, M. N., Wang, J., Weisse, O., Sekar, R., Genkin, D., He, B., Stoller,
S. D., Fang, G., Piessens, F., Downing, E., et al. (2018). Dependence-
preserving data compaction for scalable forensic analysis. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), (pp. 1723–1740).

Huang, M.-Y., Jasper, R. J., & Wicks, T. M. (1999). A large scale distributed
intrusion detection framework based on attack strategy analysis. Computer
Networks, 31(23-24), 2465–2475.

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-driven
computer network defense informed by analysis of adversary campaigns
and intrusion kill chains. Leading Issues in Information Warfare & Security
Research, 1(1), 80.

Jajodia, S. & Noel, S. (2010). Advanced cyber attack modeling analysis and
visualization. Technical report, GEORGE MASON UNIV FAIRFAX VA.

Jajodia, S., Noel, S., & O’berry, B. (2005). Topological analysis of network
attack vulnerability. In Managing Cyber Threats (pp. 247–266). Springer.

bibliography 163

Jakobson, G. & Weissman, M. (1993). Alarm correlation. IEEE network, 7(6),
52–59.

Japan Computer Emergency Response Team Coordination Center (2017). De-
tecting lateral movement through tracking event logs.

Ji, Y., Lee, S., Downing, E., Wang, W., Fazzini, M., Kim, T., Orso, A., &
Lee, W. (2017). Rain: Refinable attack investigation with on-demand inter-
process information flow tracking. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, (pp. 377–390). ACM.

Ji, Y., Lee, S., Fazzini, M., Allen, J., Downing, E., Kim, T., Orso, A., & Lee,
W. (2018). Enabling refinable cross-host attack investigation with efficient
data flow tagging and tracking. In 27th {USENIX} Security Symposium
({USENIX} Security 18), (pp. 1705–1722).

Josephson, J. R. & Josephson, S. G. (1996). Abductive inference: Computation,
philosophy, technology. Cambridge University Press.

Julisch, K. (2003). Clustering intrusion detection alarms to support root cause
analysis. ACM transactions on information and system security (TISSEC), 6(4),
443–471.

Julisch, K. & Dacier, M. (2002). Mining intrusion detection alarms for ac-
tionable knowledge. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, (pp. 366–375). ACM.

Kannan, H., Dalton, M., & Kozyrakis, C. (2009). Decoupling dynamic in-
formation flow tracking with a dedicated coprocessor. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks, (pp. 105–114).
IEEE.

Kayser, D. & Lévy, F. (2009). Causality: Purposes, core notions, properties. In
Extended abstracts of the International Multidisciplinary Workshop on Causality,
(pp.9̃).

Kemerlis, V. P., Portokalidis, G., Jee, K., & Keromytis, A. D. (2012). libdft:
Practical dynamic data flow tracking for commodity systems. In Acm
Sigplan Notices, volume 47, (pp. 121–132). ACM.

Kent, K. & Souppaya, M. (2006). Guide to computer security log manage-
ment. NIST special publication, 92.

King, S. T. & Chen, P. M. (2003). Backtracking intrusions. In ACM SIGOPS
Operating Systems Review, volume 37, (pp. 223–236). ACM.

Kordy, B., Piètre-Cambacédès, L., & Schweitzer, P. (2014). Dag-based attack
and defense modeling: Don’t miss the forest for the attack trees. Computer
science review, 13, 1–38.

Kruegel, C., Robertson, W., & Vigna, G. (2004). Using alert verification to
identify successful intrusion attempts. Praxis der Informationsverarbeitung
und Kommunikation, 27(4), 219–227.

164 bibliography

Kwon, Y., Wang, F., Wang, W., Lee, K. H., Lee, W.-C., Ma, S., Zhang, X., Xu,
D., Jha, S., Ciocarlie, G. F., et al. (2018). Mci: Modeling-based causality
inference in audit logging for attack investigation. In NDSS.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7), 558–565.

Lamprakis, P., Dargenio, R., Gugelmann, D., Lenders, V., Happe, M., & Van-
bever, L. (2017). Unsupervised detection of apt c&c channels using web
request graphs. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, (pp. 366–387). Springer.

Lanoë, D., Hurfin, M., & Totel, E. (2018). A scalable and efficient correlation
engine to detect multi-step attacks in distributed systems. In 2018 IEEE
37th Symposium on Reliable Distributed Systems (SRDS), (pp. 31–40). IEEE.

Lanoë, D., Hurfin, M., Totel, E., & Maziero, C. (2019). An Efficient and Scal-
able Intrusion Detection System on Logs of Distributed Applications. In
Dhillon, G., Karlsson, F., Hedström, K., & Zúquete, A. (Eds.), ICT Systems
Security and Privacy Protection, IFIP Advances in Information and Commu-
nication Technology, (pp. 49–63). Springer International Publishing.

Lee, K. H., Zhang, X., & Xu, D. (2013a). High accuracy attack provenance
via binary-based execution partition. In NDSS.

Lee, K. H., Zhang, X., & Xu, D. (2013b). Loggc: garbage collecting audit log.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, (pp. 1005–1016). ACM.

Leichtnam, L., Totel, E., Prigent, N., & Mé, L. (2017). Starlord: Linked secu-
rity data exploration in a 3d graph. In 2017 IEEE Symposium on Visualiza-
tion for Cyber Security (VizSec), (pp. 1–4). IEEE.

Lewis, D. (2013). Counterfactuals. John Wiley & Sons.

Li, B., Vadrevu, P., Lee, K. H., & Perdisci, R. (2018). Jsgraph: Enabling recon-
struction of web attacks via efficient tracking of live in-browser javascript
executions. In NDSS.

Li, Z., Taylor, J., Partridge, E., Zhou, Y., Yurcik, W., Abad, C., Barlow, J. J., &
Rosendale, J. (2004). Uclog: A unified, correlated logging architecture for
intrusion detection. In the 12th International Conference on Telecommunication
Systems-Modeling and Analysis (ICTSM).

Liu, P., Jajodia, S., & Wang, C. (2017). Theory and Models for Cyber Situation
Awareness, volume 10030. Springer.

Liu, X., Xiao, D., & Peng, X. (2008). Towards a collaborative and systematic
approach to alert verification. JSW, 3(9), 77–84.

Liu, Y., Zhang, M., Li, D., Jee, K., Li, Z., Wu, Z., Rhee, J., & Mittal, P. (2018).
Towards a timely causality analysis for enterprise security. In NDSS.

bibliography 165

Luh, R., Marschalek, S., Kaiser, M., Janicke, H., & Schrittwieser, S. (2017).
Semantics-aware detection of targeted attacks: a survey. Journal of Com-
puter Virology and Hacking Techniques, 13(1), 47–85.

Ma, S., Lee, K. H., Kim, C. H., Rhee, J., Zhang, X., & Xu, D. (2015). Accurate,
low cost and instrumentation-free security audit logging for windows. In
Proceedings of the 31st Annual Computer Security Applications Conference, (pp.
401–410). ACM.

Ma, S., Zhai, J., Kwon, Y., Lee, K. H., Zhang, X., Ciocarlie, G., Gehani, A.,
Yegneswaran, V., Xu, D., & Jha, S. (2018). Kernel-supported cost-effective
audit logging for causality tracking. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), (pp. 241–254).

Ma, S., Zhai, J., Wang, F., Lee, K. H., Zhang, X., & Xu, D. (2017). {MPI}:
Multiple perspective attack investigation with semantic aware execution
partitioning. In 26th {USENIX} Security Symposium ({USENIX} Security 17),
(pp. 1111–1128).

Ma, S., Zhang, X., & Xu, D. (2016). Protracer: Towards practical provenance
tracing by alternating between logging and tainting. In NDSS.

Massicotte, F., Labiche, Y., & Briand, L. C. (2008). Toward automatic gen-
eration of intrusion detection verification rules. In 2008 Annual Computer
Security Applications Conference (ACSAC), (pp. 279–288). IEEE.

Mathew, S. & Upadhyaya, S. (2009). Attack scenario recognition through
heterogeneous event stream analysis. In MILCOM 2009-2009 IEEE Military
Communications Conference, (pp. 1–7). IEEE.

Mattern, F. (1989). Virtual time and global states of distributed systems. In
Proc. Int. Workshop on Parallel and Distributed Algorithms.

Milajerdi, S. M., Gjomemo, R., Eshete, B., Sekar, R., & Venkatakrishnan, V.
(2019). Holmes: real-time apt detection through correlation of suspicious
information flows. In 2019 IEEE Symposium on Security and Privacy (SP),
(pp. 1137–1152). IEEE.

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwas-
nikowska, N., Miles, S., Missier, P., Myers, J., et al. (2011). The open
provenance model core specification (v1. 1). Future generation computer
systems, 27(6), 743–756.

Morin, B. (2004). Corrélation d’alertes issues de sondes de détection d’intrusions
avec prise en compte d’informations sur le système surveillé. PhD thesis, Rennes,
INSA.

Morin, B., Mé, L., Debar, H., & Ducassé, M. (2002). M2d2: A formal data
model for ids alert correlation. In International Workshop on Recent Advances
in Intrusion Detection, (pp. 115–137). Springer.

Morin, B., Mé, L., Debar, H., & Ducassé, M. (2009). A logic-based model to
support alert correlation in intrusion detection. Information Fusion, 10(4),
285–299.

166 bibliography

Muniswamy-Reddy, K.-K., Braun, U. J., Holland, D. A., Macko, P., Maclean,
D., Margo, D. W., Seltzer, M. I., & Smogor, R. (2009). Layering in prove-
nance systems. In Proceedings of the 2009 USENIX Annual Technical Confer-
ence (USENIX’09). USENIX Association.

Muniswamy-Reddy, K.-K., Holland, D. A., Braun, U., & Seltzer, M. I. (2006).
Provenance-aware storage systems. In USENIX Annual Technical Conference,
General Track, (pp. 43–56).

Mustapha, Y. B., Débar, H., & Jacob, G. (2012). Limitation of honey-
pot/honeynet databases to enhance alert correlation. In International Con-
ference on Mathematical Methods, Models, and Architectures for Computer Net-
work Security, (pp. 203–217). Springer.

Myers, A. C. & Myers, A. C. (1999). Jflow: Practical mostly-static information
flow control. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, (pp. 228–241). ACM.

Navarro, J., Deruyver, A., & Parrend, P. (2018). A systematic survey on
multi-step attack detection. Computers & Security, 76, 214–249.

Navarro, J., Legrand, V., Deruyver, A., & Parrend, P. (2018). Omma: open ar-
chitecture for operator-guided monitoring of multi-step attacks. EURASIP
Journal on Information Security, 2018(1), 6.

Newhouse, W., Keith, S., Scribner, B., & Witte, G. (2017). National initia-
tive for cybersecurity education (nice) cybersecurity workforce framework.
NIST Special Publication, 800, 181.

Newsome, J. & Song, D. X. (2005). Dynamic taint analysis for automatic de-
tection, analysis, and signaturegeneration of exploits on commodity soft-
ware. In NDSS, volume 5, (pp. 3–4). Citeseer.

Nicolett, M. & Kavanagh, K. M. (2011). Magic quadrant for security informa-
tion and event management. Gartner RAS Core Reasearch Note (May 2009).

Ning, P., Cui, Y., & Reeves, D. S. (2002). Constructing attack scenarios
through correlation of intrusion alerts. In Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, (pp. 245–254). ACM.

Ning, P. & Xu, D. (2010). Toward automated intrusion alert analysis. In
Network Security (pp. 175–205). Springer.

Noel, S., Robertson, E., & Jajodia, S. (2004). Correlating intrusion events and
building attack scenarios through attack graph distances. In 20th Annual
Computer Security Applications Conference, (pp. 350–359). IEEE.

Ourston, D., Matzner, S., Stump, W., & Hopkins, B. (2003). Applications of
hidden markov models to detecting multi-stage network attacks. In 36th
Annual Hawaii International Conference on System Sciences, 2003. Proceedings
of the, (pp. 10–pp). IEEE.

OWASP (2014). Security logging project.

bibliography 167

Pasquier, T., Han, X., Goldstein, M., Moyer, T., Eyers, D., Seltzer, M., & Bacon,
J. (2017). Practical whole-system provenance capture. In Proceedings of the
2017 Symposium on Cloud Computing, (pp. 405–418). ACM.

Pasquier, T., Han, X., Moyer, T., Bates, A., Hermant, O., Eyers, D., Bacon, J.,
& Seltzer, M. (2018). Runtime analysis of whole-system provenance. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, (pp. 1601–1616). ACM.

Pearl, J. (2000). Causality: models, reasoning and inference, volume 29. Springer.

Pei, K., Gu, Z., Saltaformaggio, B., Ma, S., Wang, F., Zhang, Z., Si, L., Zhang,
X., & Xu, D. (2016). Hercule: Attack story reconstruction via community
discovery on correlated log graph. In Proceedings of the 32Nd Annual Con-
ference on Computer Security Applications, (pp. 583–595). ACM.

Pérez, M. G., Tapiador, J. E., Clark, J. A., Pérez, G. M., & Gómez, A. F. S.
(2014). Trustworthy placements: Improving quality and resilience in col-
laborative attack detection. Computer Networks, 58, 70–86.

Pohly, D. J., McLaughlin, S., McDaniel, P., & Butler, K. (2012). Hi-fi: col-
lecting high-fidelity whole-system provenance. In Proceedings of the 28th
Annual Computer Security Applications Conference, (pp. 259–268). ACM.

Porras, P. A., Fong, M. W., & Valdes, A. (2002). A mission-impact-based
approach to infosec alarm correlation. In International Workshop on Recent
Advances in Intrusion Detection, (pp. 95–114). Springer.

Pouget, F. & Dacier, M. (2003). Alert correlation: Review of the state of the
art. TechnicalReport EURECOM, 1271.

Qin, X. & Lee, W. (2004a). Attack plan recognition and prediction using
causal networks. In 20th Annual Computer Security Applications Conference,
(pp. 370–379). IEEE.

Qin, X. & Lee, W. (2004b). Discovering novel attack strategies from infosec
alerts. In European Symposium on Research in Computer Security, (pp. 439–
456). Springer.

Raynal, M. (2013). Distributed algorithms for message-passing systems, volume
500. Springer.

Ren, H., Stakhanova, N., & Ghorbani, A. A. (2010). An online adaptive
approach to alert correlation. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, (pp. 153–172). Springer.

Sadighian, A., Fernandez, J. M., Lemay, A., & Zargar, S. T. (2013). Ontids: A
highly flexible context-aware and ontology-based alert correlation frame-
work. In International Symposium on Foundations and Practice of Security, (pp.
161–177). Springer.

Sadoddin, R. & Ghorbani, A. (2006). Alert correlation survey: framework
and techniques. In Proceedings of the 2006 international conference on privacy,
security and trust: bridge the gap between PST technologies and business services,
(pp.3̃7). ACM.

168 bibliography

Salah, S., Maciá-Fernández, G., & DíAz-Verdejo, J. E. (2013). A model-based
survey of alert correlation techniques. Computer Networks, 57(5), 1289–
1317.

Schwarz, R. & Mattern, F. (1994). Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distributed Computing,
7(3), 149–174.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., & Wing, J. M. (2002). Auto-
mated generation and analysis of attack graphs. In Proceedings 2002 IEEE
Symposium on Security and Privacy, (pp. 273–284). IEEE.

Shittu, R. O. (2016). Mining intrusion detection alert logs to minimise false posi-
tives & gain attack insight. PhD thesis, City University London.

Sommer, R. & Paxson, V. (2010). Outside the closed world: On using ma-
chine learning for network intrusion detection. In 2010 IEEE Symposium
on Security and Privacy, (pp. 305–316). IEEE.

Strnad, A., Messiter, Q., Watson, R., Carata, L., Anderson, J., & Kidney, B.
(2019). Causal, adaptive, distributed, and efficient tracing system (cadets).
Technical report, BAE Systems Burlington United States.

Stroeh, K., Madeira, E. R. M., & Goldenstein, S. K. (2013). An approach to
the correlation of security events based on machine learning techniques.
Journal of Internet Services and Applications, 4(1), 7.

Suh, G. E., Lee, J. W., Zhang, D., & Devadas, S. (2004). Secure program
execution via dynamic information flow tracking. In ACM Sigplan Notices,
volume 39, (pp. 85–96). ACM.

Sundaramurthy, S. C., Zomlot, L., & Ou, X. (2011). Practical ids alert cor-
relation in the face of dynamic threats. In Proceedings of the International
Conference on Security and Management (SAM), (pp.1̃). Citeseer.

Tan, J., Pan, X., Kavulya, S., Gandhi, R., & Narasimhan, P. (2008). SALSA:
Analyzing Logs As State Machines. In Proceedings of the First USENIX
Conference on Analysis of System Logs, WASL’08, (pp. 6–6)., Berkeley, CA,
USA. USENIX Association.

Templeton, S. J. & Levitt, K. (2001). A requires/provides model for computer
attacks. In Proceedings of the 2000 workshop on New security paradigms, (pp.
31–38). ACM.

Totel, E., Hkimi, M., Hurfin, M., Leslous, M., & Labiche, Y. (2016). Inferring
a Distributed Application Behavior Model for Anomaly Based Intrusion
Detection. In Dependable Computing Conference (EDCC), 2016 12th European,
(pp. 53–64). IEEE.

Totel, E., Vivinis, B., & Mé, L. (2004). A language driven intrusion detection
system for event and alert correlation. In IFIP International Information
Security Conference, (pp. 209–224). Springer.

bibliography 169

Vadrevu, P., Liu, J., Li, B., Rahbarinia, B., Lee, K. H., & Perdisci, R. (2017). En-
abling reconstruction of attacks on users via efficient browsing snapshots.

Valdes, A. & Skinner, K. (2001). Probabilistic alert correlation. In International
Workshop on Recent Advances in Intrusion Detection, (pp. 54–68). Springer.

Valeur, F., Vigna, G., Kruegel, C., & Kemmerer, R. A. (2004). Comprehen-
sive approach to intrusion detection alert correlation. IEEE Transactions on
dependable and secure computing, 1(3), 146–169.

Viinikka, J., Debar, H., Mé, L., Lehikoinen, A., & Tarvainen, M. (2009). Pro-
cessing intrusion detection alert aggregates with time series modeling. In-
formation Fusion, 10(4), 312–324.

Wang, F., Kwon, Y., Ma, S., Zhang, X., & Xu, D. (2018). Lprov: Practical
library-aware provenance tracing. In Proceedings of the 34th Annual Com-
puter Security Applications Conference, (pp. 605–617). ACM.

Welz, M. & Hutchison, A. (2001). Interfacing trusted applications with in-
trusion detection systems. In International Workshop on Recent Advances in
Intrusion Detection, (pp. 37–53). Springer.

Xu, Z., Wu, Z., Li, Z., Jee, K., Rhee, J., Xiao, X., Xu, F., Wang, H., & Jiang,
G. (2016). High fidelity data reduction for big data security dependency
analyses. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, (pp. 504–516). ACM.

Yen, T.-F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A., &
Kirda, E. (2013). Beehive: Large-scale log analysis for detecting suspicious
activity in enterprise networks. In Proceedings of the 29th Annual Computer
Security Applications Conference, (pp. 199–208). ACM.

Yin, H., Song, D., Egele, M., Kruegel, C., & Kirda, E. (2007). Panorama: cap-
turing system-wide information flow for malware detection and analysis.
In Proceedings of the 14th ACM conference on Computer and communications
security, (pp. 116–127). ACM.

Yu, J., Reddy, Y. R., Selliah, S., Kankanahalli, S., Reddy, S., & Bharadwaj,
V. (2004). Trinetr: an intrusion detection alert management systems. In
13th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, (pp. 235–240). IEEE.

Yu, X., Joshi, P., Xu, J., Jin, G., Zhang, H., & Jiang, G. (2016). CloudSeer:
Workflow Monitoring of Cloud Infrastructures via Interleaved Logs. In
Proceedings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems - ASPLOS ’16, (pp.
489–502)., Atlanta, Georgia, USA. ACM Press.

Yuan, D., Park, S., & Zhou, Y. (2012). Characterizing logging practices in
open-source software. In Proceedings of the 34th International Conference on
Software Engineering, (pp. 102–112). IEEE Press.

170 bibliography

Yuan, D., Zheng, J., Park, S., Zhou, Y., & Savage, S. (2012). Improving soft-
ware diagnosability via log enhancement. ACM Transactions on Computer
Systems (TOCS), 30(1), 4.

Yurcik, W., Abad, C., Hasan, R., Saleem, M., & Sridharan, S. (2006). Uclog+:
a security data management system for correlating alerts, incidents, and
raw data from remote logs. arXiv preprint cs/0607111.

Yusof, R., Selamat, S. R., & Sahib, S. (2008). Intrusion alert correlation tech-
nique analysis for heterogeneous log. International Journal of Computer Sci-
ence and Network Security, 8(9), 132–138.

Zand, A., Houmansadr, A., Vigna, G., Kemmerer, R., & Kruegel, C. (2015).
Know your achilles’ heel: Automatic detection of network critical services.
In Proceedings of the 31st Annual Computer Security Applications Conference,
(pp. 41–50). ACM.

Zaraska, K. (2003). Prelude ids: current state and development perspectives.

Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., & Zhou, Y. (2017).
Log20: Fully Automated Optimal Placement of Log Printing Statements
Under Specified Overhead Threshold. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, (pp. 565–581)., New York, NY,
USA. ACM.

Zhu, B. & Ghorbani, A. A. (2006). Alert correlation for extracting attack
strategies. IJ Network Security, 3(3), 244–258.

Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M. R., & Zhang, D. (2015). Learning to
log: Helping developers make informed logging decisions. In Proceedings
of the 37th International Conference on Software Engineering-Volume 1, (pp.
415–425). IEEE Press.

Zimmermann, J., Mé, L., & Bidan, C. (2003). An improved reference flow
control model for policy-based intrusion detection. In European Symposium
on Research in Computer Security, (pp. 291–308). Springer.

Titre : Définition de la Relation de Dépendance Causale entre Événements Hétérogènes pour la
Détection et l’Explication de Scénarios d’Attaque Multi-Étapes

Mot clés : corrélation d’alertes et d’événements, découverte de scénarios d’attaque multi-étapes, modèle
formel, dépendances causales

Resumé : Partant du constat qu’un attaquant mo-
tivé finit par réussir à s’infiltrer dans un réseau malgré
les moyens de prévention déployés, la mise en place
d’une supervision de sécurité du système est indis-
pensable. L’objectif de cette thèse est de permettre
la découverte de scénarios d’attaque multi-étapes
à travers l’analyse d’événements de sécurité. Pour
atteindre cet objectif, les précédentes approches, is-
sues du domaine de la corrélation d’alertes, visent à
construire des liens entre les événements et entre les
étapes d’une attaque. En pratique, ces liens sont dif-
ficiles à définir et découvrir, notamment lorsque l’on
considère l’analyse d’événements hétérogènes (c.-à-d.
produits par différents types de systèmes de supervi-
sion déployés dans différentes couches d’abstraction).
De plus, la littérature ne propose pas de définition
formelle de ce lien. Selon nous, ce lien correspond à
une relation de dépendance causale.Inspirés de deux

modèles de causalité précédemment définis dans les
domaines des systèmes distribués (modèle de Lam-
port) et de la sécurité (modèle de d’Ausbourg), nous
avons donc proposé une définition formelle de cette
relation dénommée event causal dependency. Cette
relation permet la découverte de tous les événements
pouvant être considérés comme les causes, ou les
effets, d’un événement d’intérêt telle qu’une alerte
par exemple. À notre connaissance, nos travaux sont
les premiers à proposer une définition formelle de
la relation de dépendance causale entre événements
hétérogènes. Actuellement, les méthodes proposées
dans la littérature ne permettent de construire qu’une
approximation de notre modèle. Notre implémenta-
tion a la particularité de se baser uniquement sur
l’analyse d’événements issus de COTS tels que Zeek
NIDS et auditd. Cette dernière permet d’obtenir une
bonne approximation de notre modèle.

Title : Heterogeneous Event Causal Dependency Definition for the Detection and Explanation of
Multi-Step Attacks

Keywords : alert and event correlation, multi-step attack discovery, formal model, causal dependencies

Abstract : Knowing that a persistent attacker will
eventually succeed in gaining a foothold inside the
targeted network despite prevention mechanisms, it
is mandatory to perform security monitoring on the
system. The purpose of this thesis is to enable the
discovery of multi-step attacks through logged events
analysis. To that end, previous alert correlation work
has aimed at building connections among events and
between attack steps. In practice, this type of link
is not trivial to define and discover, especially when
considering heterogeneous events (i.e., events ema-
nating from monitoring systems deployed in different
abstraction layers of the monitored system), and the li-
terature lacks a formal definition of these connections.
We argue that the connections among heterogeneous
events correspond to causal dependency relationships
among events. Inspired from two causality models

from the distributed system and the security research
areas, i.e., Lamport’s and d’Ausbourg’s models, we
have thereby proposed a formal definition of this
relationship called event causal dependency. The rela-
tionship enables the discovery of all events, which can
be considered as the cause or the effect of an event
of interest (e.g., an alert produced by an attacker
action). To the best of our knowledge, our work is
the first one to propose a formal definition of the
causal dependency relationship among heterogeneous
events. We present how existing work permits the
computation of parts of the overall model, and detail
our implementation, which exclusively leverages exis-
ting monitoring facilities (e.g., auditd, or Zeek NIDS)
to produce events. We show that our implementation
already yields a good approximation of our model.

	 Abstract
	 Acknowledgements
	 Résumé Substantiel en Français
	 Contents
	 Introduction
	1 Computer Systems—Society's Keystone
	2 The Need for Security Monitoring
	3 Retrieving Attackers' Traces—The Search of Causality
	4 Contributions
	5 Outline

	 Context
	1 System Monitoring and Computer Security
	1.1 Basic Terminology
	1.2 Why is Monitoring Critical?—Enabling Situational Awareness
	1.3 Intrusion Detection Systems
	1.4 Monitoring Activity at the different Abstraction Layers
	1.5 Summary

	2 Alert Correlation
	2.1 Addressing Intrusion Detection Systems' Limitations
	2.2 Alert Correlation Definition
	2.3 A Focus on Attack Scenario Identification
	2.4 Alert Correlation's Challenges and Limitations
	2.5 Summary

	3 Causal Dependencies—In the Search of the Holy Grail
	3.1 Causality Primer
	3.2 Temporal Causality in Distributed Systems
	3.3 Information Flow-Based Causality
	3.4 Provenance Primer
	3.5 Summary

	 Towards a Unified Causality Model
	4 Defining a Causal Dependency Relationship among Heterogeneous Events
	4.1 Illustration of the Problematic and Proposed Model
	4.2 Limitations of Lamport's and d'Ausbourg's Relationships
	4.3 Causal Dependency among Contextual Actions
	4.4 From Contextual Actions to Contextual Events and Events
	4.5 Cause and Dependence Graphs
	4.6 Summary

	5 Model Implementation
	5.1 Top-Down and Bottom-Up Perspectives
	5.2 Top-Down Strategy—Ideal Implementation Description
	5.3 Bottom-Up Strategy—A Lightweight Approach
	5.4 VESTA Industrial Project
	5.5 Summary

	6 Assessment
	6.1 Building Datasets to Assess our Approach
	6.2 COTS-Based Bottom-Up Approach Assessment
	6.3 Discussions
	6.4 Summary

	 Conclusion
	A Monitoring Systems Configuration
	A.1 List of Monitored Linux System Calls
	A.2 Netfilter Configuration
	A.3 Apache Configuration

	 Publications
	 Bibliography

