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Nomenclature

Green’s functions formalism

Σ≶ Lesser/greater self-energy

Σ� Right/left-connected self-energy

g Left connected Green’s function

Dac Acoustic phonons deformation potential

Dopt Optical phonons deformation potential

G± (anti)chronological Green’s function

G≶ Lesser/greater Green’s function

G(0) Unperturbed Green’s function

GR/A Retarded/advanced Green’s function

Σph Phonon self-energy

ΣR Retarded self-energy

ωopt Optical phonons frequency

NEGF Non-equilibrium Green’s function

SCBA Self-consistent Born approximation

Physics and second quantization

|ψ〉 Wave function

|u〉 Bloch function

φ Electric potential

f Fermi distribution

J Electrical current

m∗ Effective mass

ĉ†/ĉ Creation/annihilation operators

EF Fermi level energy

EG Gap energy

Ĥ Hamiltonian operator

Θ Heaviside function
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I Identity matrix

ρ̂ Density matrix

T Time-ordering operator

Û Time-evolution operator

�/� Up/down spin

Ŵ Perturbation operator

CB/VB Conduction/valence band

e Elementary charge

HV/LC Highest valence/lowest conduction (subband)

LDOS Local density of states

n/p Electron/hole density

Device-related terms

Esw Switching energy

IDS Source-drain current

Ion/Ioff on- and off -state currents

Ldop Doped region length

Lext Extension region length

LG Gate length

Lov Overlap length

Lsp Spacer length

NSD Source/drain doping

tB Tunnel barrier thickness

tch Channel thickness

tox Oxide thickness

tS/tD Source/drain layer thickness

Tsw Intrinsic switching time

VDD Supply voltage

VDS Source-drain voltage

VGS Gate voltage

Von/Voff on- and off -state voltages
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BTBT Band-to-band tunneling

DIBL Drain-induced barrier lowering

FET Field effect transistor

HIBL Hole-induced barrier lowering

MOS Metal-Oxide-Semiconductor

NW Nanowire

SCE Short channel effect

SR Surface roughness

SS Subthreshold swing

STDT Source-to-drain tunneling

TFET Tunnel-FET

UTB Ultra thin body
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CHAPTER 1

Introduction

1.1 Context

Nearly 70 years ago, W.B. Shockley, J. Bardeen and W.H. Brattain made a discov-
ery that would become one of the most notable technological break-through of the
last century. They were subsequently awarded the 1956 Nobel Prize in Physics “for
their researches on semiconductors and their discovery of the transistor effect”. The
invention of the bipolar transistor in the Bell Laboratories rapidly led the scientific
community to enrich the field of semiconductor physics. Building over the knowl-
edge brought by previous solid-state physicists such as L. Brioullin or F. Bloch, great
progress in the understanding of the energy band structure was achieved.
In 1959, the famous speech of yet-to-be Nobel laureate R.P. Feynman – There’s Plenty
of Room at the Bottom – was a prelude to the development of more advanced micro-
fabrication techniques. The next major leap in semiconductor physics came with the
development of the field effect transistor, and notably the MOSFET. As a side effect,
a wide range of new phenomena could be studied in the emerging devices. Some were
related to the small size of the structures, like the ballistic transport. A handful was
observed at low temperature, like the Kondo effect (1964). Some others required the
presence of high magnetic fields, like the quantum Hall effect (1980), which was first
observed in the two-dimensional inversion layer of a MOSFET [1]. In the following
decades, the fabrication techniques kept improving, and electronic devices got more
efficient and powerful as their size decreased. In 1986, the term “nanotechnology” was
introduced for the first time in the science-fiction literature [2].
With several billions of transistors in every modern computer and phone, semiconduc-
tor devices have become the most elementary building block of today’s information
technology. Even though quantum theory proved itself vital to understand the funda-
mentals of solid-state physics, classical and semi-classical models could still be elabo-
rated on top of the quantum formalism. For a long time, semiconductor engineering
has been taking place in the mesoscopic domain (i.e. between the macroscopic and the
atomic scales). In the 1990s, the 1 µm limit was broken. In the 2000s, we reached the
nanometric scale by manufacturing 100 nm long devices. Today, the transistor channel
length is getting close to the 10 nm mark. Henceforth, taking quantum phenomena
into account is not only important for understanding the underlying theory: it is also
vital to accurately predict the behavior of the future nanoelectronic devices.
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Indeed, size reduction has triggered many undesired effects, which prevent transistors
from fulfilling their essential tasks. Before describing these effects, let us remind that
one expects a transistor to:

• switch between its on and off states as fast as possible (i.e. billions of times per
second);

• keep these states sufficiently distinguishable (i.e. distant of several orders of
magnitude in terms of current);

• perform the aforementioned tasks with as little energy dissipation as possible.

In practice, at the nanoscale, we can be confronted to electron flow reduction due to
quantum confinement effects, electrostatic control deterioration over the channel, and
tunneling or leakage current in the off state. These effects degrade the performances
of the transistors by hindering their ability to switch efficiently (subthreshold swing
degradation), and by bringing their on and off states closer to one another (on-current
lowering and off -current increase).
Modern transistor technology is mainly based on silicon. Improving the performance
of the nanoelectronic devices is likely to require alternative channel semiconductors,
like III-V materials. These semiconductors, which belong to the 13th and 15th columns
of the periodic table, can be arranged into various compounds such as indium-arsenide
(InAs), gallium-arsenide (GaAs) or aluminum-antimonide (AlSb), to mention just a
few. Some of these materials exhibit remarkable transport properties due to their high
electron mobility and low effective mass [3]. Another benefit of the III-V semiconduc-
tors lies in the fact that they can be arranged in a broad variety of heterostructures.
We can, for example, take advantage of their different bandgaps to form quantum
wells (useful in ultra-thin devices) or even tunnel barriers. However, compared to
silicon, these materials also suffer from increased short-channel effects [4], which can
be detrimental for the design or efficient nanotransistors. For this reason, new device
architectures shall also be investigated. In this work, we will show that we can either
try to counteract the drawbacks of size reduction through the use of multi-gate ar-
chitectures, or take advantage of the quantum behavior by designing tunnel devices.
Among the important issues that have to be addressed, we can cite the variability of
III-V devices induced by surface fluctuations, or the impact of quantum effects, strain
and device geometry on carrier transport.

1.2 Full-quantum simulations

In this work, we will simulate nanoelectronic devices with custom-made algorithms.
Computing the behavior and the properties of transistors (or any other physical sys-
tem, for that matter) can usually be done via two different approaches: the analytical
method or the numerical method. The devices we will consider in this work are too
small to be correctly described by the bulk, macroscopic models, but are large enough
to contain thousands of atoms, and there is no simple way to describe the system accu-
rately. That is the reason why we perform numerical simulations, using a full-quantum
approach.
The band structure of the materials is computed with an eight-band k · p Hamilto-
nian [5] that we have discretized in the real space. Such an Hamiltonian is well suited
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for the study of III-V semiconductors since it accounts for direct-gap band structures
and includes conduction, light-hole, heavy-hole and spin-orbit bands, that all con-
tribute to transport in this type of materials. This approach is also compatible with
other models developed with the k · p perturbation theory, like the Pikus-Bir Hamilo-
nian [6], that we use to account for the effects of strain.
The electron transport is computed with the non-equilibrium Green’s functions (NEGF)
approach [7–9], that is a very versatile quantum framework able to consider the ef-
fects relevant for the study of nanoscale transistors. Since these devices are subjected
to an electric potential, they are indeed brought in a state of non-equilibrium. The
NEGF allows us to solve the subsequent electron flow while accounting for the impact
of confinement, tunneling, or interferences. The electron-phonon interactions are also
included with the self-consistent Born approximation (SCBA).
Since the simulations are rather resource demanding, they are performed on a ded-
icated computer cluster. On a technical point of view, the implementation of the
code and the choice of a proper balance between the complexity of the model and the
feasibility of the simulations are the main hurdles to overcome.

1.3 Outline

As explained above, in order to understand which is the best couple of material and
device architecture, we will run predictive simulations based on rigorous models. We
will perform 2D-3D self-consistent simulations of III-V nanodevices based on advanced
physical models within the NEGF formalism, using eight-band k · p Hamiltonians.
The first half of this dissertation is focused on detailing the simulation approach and
its implementation. In Chap.2, we explain how to model the band structure of an
isolated device. We give some basics of solid state physics and quantum mechanics,
which are then used to introduce the perturbation k · p Hamiltonian. In Chap.3, we
explain how to connect the system to external contacts and then compute the resulting
electron transport. To that end, we introduce the NEGF formalism and the SCBA
scheme and illustrate their computational implementation.
The second half of the manuscript aims to apply the quantum transport algorithm
to practical cases of nanotransistors. In Chap.4, we simulate an ultra-thin MOSFET
made of either InAs or InGaAs. We study the bias voltage scalability, the effect of
the gate length and the spacer, or the influence of the channel semiconductor, as well
as its thickness. This chapter serves us as an introductory case study, before moving
to more elaborate architectures. Chap.5 presents a comparison between InAs and
Si nanowire-FETs and shows how the gate-all-around architectures can be helpful in
the quest for size reduction. The investigation resembles to that of Chap.4, but we
also demonstrate the impact of interface fluctuations on the quality of the transport,
by means of a statistical study led on hundreds of nanowire simulations. Finally, in
Chap.6, we address the case of a tunnel-FET device made of stacked III-V compounds.
We provide details on its operation by reviewing the effect of various geometrical
parameters, such as the barrier thickness, the size of the overlap region, or the gate
extensions. In addition, we assess the effect of phonon scattering in this type of device.
We then formulate our general conclusions about this work in Chap.7 and propose
possible perspectives.
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CHAPTER 2

Band structure modeling

In which we give an introduction on perturbation theory and then detail the
method from which the eight-band k ·p Hamiltonian is derived and used in our
simulations.

The study of nanoelectronic devices requires precise predictions of the electron
behavior at the nanoscale. To this aim, a realistic description of the electronic structure
is of central importance. A good understanding of the band structure is indeed essential
for the design of field effect transistors, since it dictates the way electrons spread and
flow through the device.

2.1 Approximations

There are different ways to model a semiconductor’s band structure. However, all these
methods tend to use a similar set of approximations. An intuitive way of modeling a
solid is to consider a general electron Hamiltonian of the form

Ĥ =
∑
i

− ~2

2mi
∇2
i +

∑
i

V (ri) +
∑
i 6=j

U(ri, rj) = T̂ + V̂ + Û , (2.1)

where T̂ is the kinetic energy, and Û and V̂ are the electron-electron and electron-
nucleus interaction potentials:

Û =
∑
j 6=i

e2

4πε0 |rj − ri|

V̂ = −
∑
j 6=i

Zj e
2

4πε0 |Rj − ri|

(2.2)

with the elementary charge e, the electron positions {ri}, the atomic nuclei positions
{Ri}, and the protons number {Zi}. Yet, such a Hamiltonian would require substantial
computation power to deal with. Therefore, some approximations are usually made:

• First, we forget about the core electrons, and only consider the outermost or-
bitals. As explained in Sec.2.4, the electrical properties of a semiconductor are
mainly influenced by the outer shell, and we combine together the lower energy
orbitals and the nuclei into ions.

• Second, we assume that the motion of the electrons is much faster than that of
the heavier ions. Therefore, the wavefunction can be factorized in its electronic
and ionic components (Born-Oppenheimer approximation). When calculating
the electronic structure, we consider the ions as static.
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• Third, the electron-electron interactions are not taken into account exactly. In-
stead, we introduce the mean field theory, which states that one can approximate
a many-body problem by averaging a one-body problem. This leads to the one-
electron approximation.

The resulting Hamiltonian can be expressed in terms of an atomistic basis set (like
the tight binding method), a plane wave basis set (like the empirical pseudopotential
approach), or a Bloch-state approach (like the k ·p theory). Even though the accuracy
and the complexity of these models vary, they are all fundamentally meant to solve
one-electron problems in the one-electron formalism. The k · p model offers a good
compromise between accuracy and computational burden, and is the framework used
in this work.
In practice, most of the transport properties of semiconductors can be understood by
focusing on a reduced portion of the band structure. This zone is centered on the
minimum of the conduction band, and the maximum of the valence band. When the
bottom of the conduction band is aligned with the top of the valence band in the
k-space, the material is categorized as “direct gap”. All the III-V compounds treated
is this work will belong to this category, and have the region of interest around k = 0
(also called the Γ-point).

2.2 Perturbation theory

The perturbation theory [1, 2] allows one to describe complex quantum systems by
adding a small perturbation to an initial configuration. The unperturbed Hamiltonian
generally corresponds to an ideal, simplified case. The perturbation plays the role of
other additional phenomena affecting the system, which refine the model and lead to
more precise and realistic results.
Let us first consider a simple unperturbed system whose eigenstates |ψn〉 are known

Ĥ(0) |ψn〉 = E(0)
n |ψn〉 . (2.3)

We now introduce a perturbation potential Ŵ in the Hamiltonian, such that Ĥ =
Ĥ(0) + λŴ, where λ is a small scalar parameter. The Schrödinger equation can now
be expanded as

(
Ĥ(0) + λŴ

)(
|ψ(0)
n 〉+ λ |ψ(1)

n 〉+ λ2 |ψ(2)
n 〉+O(λ3)

)
=
(
E(0)
n + λE(1)

n + λ2E(2)
n +O(λ3)

)(
|ψ(0)
n 〉+ λ |ψ(1)

n 〉+ λ2 |ψ(2)
n 〉+O(λ3)

)
. (2.4)

The exponent in brackets indicates the order of each term in the series. The zeroth-
order of this equation corresponds to the unperturbed case. At the order λ (i.e. first
order), this equation simplifies as

λ
(
Ĥ(0) − E(0)

n

)
|ψ(1)
n 〉+ λ

(
Ŵ − E(1)

n

)
|ψ(0)
n 〉 = 0. (2.5)
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Taking the scalar product of this expression with ψ
(0)
n leads to

〈ψ(0)
n | Ĥ(0) |ψ(1)

n 〉+ 〈ψ(0)
n | Ŵ |ψ(0)

n 〉 = E(0)
n 〈ψ(0)

n |ψ(1)
n 〉+ E(1)

n 〈ψ(0)
n |ψ(0)

n 〉 , (2.6)

which yields to the first-order energy correction

E(1)
n =

〈ψ(0)
n | Ŵ |ψ(0)

n 〉
〈ψ(0)

n |ψ(0)
n 〉

= 〈ψ(0)
n | Ŵ |ψ(0)

n 〉 . (2.7)

As we can see, the first-order energy shift can be obtained by assuming that the sys-
tem stays in the unperturbed state under the application of a perturbation Ŵ. In
other words, we can compute the first-order eigenvalues of the perturbation Hamil-
tonian without considering any change in the eigenvectors (which makes sense, since
Ŵ has been chosen to affect lightly the system compared to Ĥ(0)). However, to com-
pletely account for the first-order perturbation, the next step is to update the value

of the eigenstate. To do so, we consider a state ψ
(0)
m 6=n orthogonal to ψ

(0)
n , such as

〈ψ(0)
m |ψ(0)

n 〉 = 0, and we compute again its scalar product with Eq.(2.5) . We deduce
the following expression for the first-order eigenstate correction

〈ψ(0)
m |ψ(1)

n 〉 =
〈ψ(0)

m | Ŵ |ψ(0)
n 〉

E
(0)
m − E(0)

n

=⇒ |ψ(1)
n 〉 =

∑
m 6=n

〈ψ(0)
m | Ŵ |ψ(0)

n 〉
E

(0)
m − E(0)

n

|ψ(0)
m 〉 , (2.8)

which shows that the perturbed wave function can also be deduced from the knowledge
of the unperturbed system. We can keep iterating through the next perturbation orders
while applying the same process. For the second order, one will find



E
(2)
n = 〈ψ(0)

n | Ŵ |ψ(1)
n 〉 =

∑
m6=n

| 〈ψ(0)
n | Ŵ |ψ(0)

m 〉 |2

E
(0)
n − E(0)

m

|ψ(2)
n 〉 =

∑
m6=n

[
− 〈ψ

(0)
n | Ŵ |ψ(0)

n 〉 〈ψ(0)
m | Ŵ |ψ(0)

n 〉(
E

(0)
n − E(0)

m

)2 +
∑
k 6=n

〈ψ(0)
m | Ŵ |ψ(0)

k 〉 〈ψ
(0)
k | Ŵ |ψ

(0)
n 〉(

E
(0)
n − E(0)

m

) (
E

(0)
m − E(0)

k

) ] |ψ(0)
m 〉

(2.9)

The perturbation corrections are thus fully described by the matrix elements Ŵij ≡
〈ψ(0)

i | Ŵ |ψ
(0)
j 〉. The smaller

∣∣E(0)
i −E

(0)
j

∣∣, the more Ŵij shifts the energy of the system.
Thus, the second-order energy perturbation is due to the interaction between different
states. Whether two eigenvalues interact or not is determined by the elements of the
perturbation Hamiltonian. The k · p Hamiltonian described in the next section is
obtained through a similar second-order expansion.

2.3 2-band Hamiltonian: conduction and valence bands

A crystal is a periodic system of ordered matter, and essentially consists of a unit cell
which can contain several atoms. This cell is repeated in space by a set of discrete
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translation operations, defined by linear combinations of the primitive vectors. In this
work, we assume that we are dealing with perfectly crystalline materials. In such
solids, electrons are subjected to a periodic potential

V (r) = V (r + R), (2.10)

where R can be any of the linear combinations mentioned above. The same periodicity
holds for the electrons’ wave functions, since the Hamiltonian is invariant under a
translation by R. The Bloch theorem takes advantage of the periodicity of the system,
and allows us to express the wave function as

ψk(r) = eik·ruk(r), (2.11)

where uk is a Bloch lattice function. Put together, Bloch functions will form the band
structure of the material. To predict the electrical properties of a material, one will
focus on the lowest partially filled band, called the conduction band (CB). The va-
lence band (VB), located energetically below the CB, also has to be considered if it
contributes to the transport, as this is the case for III-V semiconductors [3].

In the Schrödinger’s equation, the kinetic term −~2∇2 corresponds to the square of
the momentum operator p̂ = −i~∇. Applying this squared operator to the Bloch wave
function eik.run,k(r) yields

−~2∇2eik.run,k(r) = eik.r(−i~∇)2un,k(r)+~2k2eik.run,k(r)+2~k·eik.r (−i~∇)︸ ︷︷ ︸
p

un,k(r).

(2.12)

Therefore, if one injects the Bloch wave function into the Schrödinger equation, one
obtains: (

− ~2

2m0
∇2 + V (r)︸ ︷︷ ︸
Ĥ(0)

+
~2k2

2m0
+

~
2m0

k · p︸ ︷︷ ︸
Ŵ

)
un,k(r) = E(k)un,k(r). (2.13)

This corresponds to the system without spin-orbit interaction. As explained before,
the quantum perturbation theory can be applied to any system whose Hamiltonian
can be split into two parts: an easy to solve unperturbed part and an additional
perturbation. In Eq.(2.13), we have highlighted these two components. Here, we will
use this approach around k = 0, by assuming that the eigenfunctions un,0 and their
eigenvalues En(0) are known. The dispersion relation developed at the second order
writes [4, 5]

En(k) = En(0) +
~2k2

2m0
+

~
m0

k · 〈un,0|p|un,0〉︸ ︷︷ ︸
k=0

+
~2

m2
0

∑
m 6=n

| 〈un,0|k · p|um,0〉 |2

En(0)− Em(0)
+O(λ3).

(2.14)
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Around k = 0, the third term from the left vanishes. By summing on α, β = x, y, z,
this equation becomes

En(k) = En(0)+
~2k2

2m0
+

~2

m2
0

∑
α,β

kαkβ
∑
m6=n

〈un,0|pα|um,0〉 〈um,0|pβ|un,0〉
En(0)− Em(0)

+O(λ3). (2.15)

This can also be written in a more compact form

En(k) ≈ En(0) +
~2

2

∑
α,β

kαkβ

[ 1

m∗n

]
α,β
, (2.16)

where we introduced the effective mass m∗, whose tensor is defined as[ 1

m∗n

]
α,β

=
δα,β
m0

+
2

m2
0

∑
m 6=n

〈un,0|pα|um,0〉 〈um,0|pβ|un,0〉
En(0)− Em(0)

. (2.17)

Eq.(2.16) corresponds to the simplest form of the effective mass approximation. In this
model, electrons are considered to have a mass m∗ 6= m0 (that can also be negative
in the valence band). In a simple 2-band model, we can represent the conduction and
valence bands by two Bloch functions |uc〉 and |uv〉. In this case, the system obeys

Ĥ(0) |uc,0〉 = Ec(0) |uc,0〉
Ĥ(0) |uv,0〉 = Ev(0) |uv,0〉

, (2.18)

where Ec and Ev are the conduction and valence energy levels. The momentum inter-
action term between those bands is

〈uc|p|uv〉 = P

〈uv|p|uc〉 = P ∗
(2.19)

P is the coupling term between the conduction band (CB) and the valence band (VB).
In this basis, the 2-band k · p Hamiltonian for Eq.(2.13) is

Ĥk.p,2 =

|uc〉 |uv〉( )
Ec(0) + ~2k2

2m0

~
m0
kP

~
m0
kP ∗ Ev(0) + ~2k2

2m0

, (2.20)

where the first row/column corresponds to the CB and the second row/column refers
to the VB. To lighten the notation, we define the gap energy as EG ≡ Ec(0) − Ev(0)
and we take the energy reference at Ev(0) = 0eV . The eigenvalues of Eq.(2.20) are

E(k) =
EG
2

+
~2k2

2m0
± 1

2

√
E2
G +

( 2~
m0

k|P |
)2
. (2.21)
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For small values of k, these eigenvalues are close to

E(k) '


EG +

~2k2

2m0
+

~2

EGm2
0

|P |2k2 , (CB)

~2k2

2m0
− ~2

EGm2
0

|P |2k2 , (VB)

(2.22)
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Figure 2.1: (a) GaAs band structure plotted with the 2-band k · p Hamiltonian. (b) EG versus
m∗ in the III-V compounds used in this work (data from [6]). The semiconductors with the
smallest gaps tend to have lower effective masses.

The CB and the VB are defined by parabolic dispersion curves, which is a basic,
yet efficient way to treat any direct-gap semiconductor around the Γ point. Fig.2.1-a
shows the resulting band structure for GaAs, EG=1.519eV, a0=5.65Å and EP=20eV
(extracted from [6]), where Ep controls the mixing between the CB and the VB, and
follows the definition introduced by Kane [7]

EP =
2

m0
P 2. (2.23)

EG and EP are taken as input parameters in the simulation code. From
Eq.(2.17), we can also derive the value of the conduction and valence band effective
masses in the 2-band case

1

m∗c/v
=

1

m0
± 2P 2

EGm2
0

=
1

m0

(
1± EP

EG

)
. (2.24)

In III-V semiconductors, we have generally EG � EP [6]. For that reason, the energy
gap EG and the effective mass m∗ are roughly proportional, as illustrated in Fig.2.1-b.
Indeed, we are dealing with two coupled energy bands that tend to strongly repel each
other when the gap is small. This increases the curvature of the bands, which in turn
means that the effective mass is reduced. On the contrary, in large gap compounds,
the bands are weakly coupled and the effective mass is closer to the free electron mass.
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2.4 4-band Hamiltonian: electronic orbitals

Figure 2.2: Zinc blende crystal structure of the III-V semiconductors. The dark atoms form a
FCC lattice.They correspond to elements of group III and the light ones are group-V materials
(or conversely).

Some insights about the electronic orbitals of semiconductors will be helpful for the
rest of this discussion. The III-V compounds we want to model are made of two inter-
penetrating face cubic centered (FCC) lattices. They form a so called “zinc-blende”
structure (Fig.2.2). This structure is related to their tetrahedral bonding which can,
in turn, be explained by their electronic orbitals. Table 2.1 shows the electronic con-
figuration of the targeted semiconductors. Group-III materials have a s2p1 outer shell
configuration, whereas group-V materials have a s2p3 type configuration. Since the
outermost electrons tend to delocalize in the material, the overall electronic configura-
tion of a III-V crystal becomes s2p2. However, once the atoms are brought together,
the orbitals will also hybridize to reach a more stable collective state. In the case of
III-V semiconductors, this process leads to the formation of four sp3 orbitals, as shown
in Fig.2.3. This corresponds to the diamond geometry.

Group Element Electronic configuration

III Al (1s22s22p6) 3s23p1

V P (1s22s22p6) 3s23p3

III Ga (1s22s22p63s23p63d10) 4s24p1

V As (1s22s22p63s23p63d10) 4s24p3

III In (1s22s22p63s23p63d104s24p64d10) 5s25p1

V Sb (1s22s22p63s23p63d104s24p64d10) 5s25p3

Table 2.1: Electronic configuration of some III-V semiconductors. s and p orbitals are the
main components of the band structure, while the core electrons can be neglected.

Figure 2.3: Outermost electron shell of a III-V semiconductor in its atomic form (left) and
after sp3 hybridization in the crystal (right). The direction of the spins is arbitrary.

The upmost orbitals are those that contribute the most to the band structure. Thus,
the conduction and valence bands of III-V semiconductors present s- and p-like char-
acteristics. Even if bands result from a mixing between those two types of orbitals, one



22 CHAPTER 2. BAND STRUCTURE MODELING

can make the approximation that the conduction band is mostly s-like around k = 0;
while the valence band corresponds to a linear combination of p-like orbitals [8].
The Bloch lattice functions un,k(r) retain most of the symmetries of those orbitals
around k = 0. Therefore, let us replace the {|uc〉 , |uv〉} basis by a different set of
Bloch functions. We denote |us〉 the s-like conduction state and |ux〉, |uy〉, |uz〉, the
px-, py- and pz-like valence states. These Bloch functions act as lattice-periodic repe-
titions of the orbitals. They can be written

|un,k〉 =

{s,x,y,z}∑
i

ci(k) |ui,0〉 , (2.25)

with ci some scalar coefficients. By generalizing the ideas introduced for the 2-band
Hamiltoninan, the momentum operator between the conduction and the valence bands
will obey

〈us|pi|uj〉 = Pδij i, j ∈ {x, y, z}. (2.26)

We can use this new basis to write an improved version of Ĥk.p,2. First, we consider
a single s-like conduction band and a 3-fold degenerate p-like valence band (one light-
hole and two heavy-hole states). With the orbital basis, we can expand the 2-band
Hamiltonian from Eq.(2.20) to a 4-band expression

Ĥk.p,4 =

|us〉 |ux〉 |uy〉 |uz〉


Ec(0) + ~2k2
2m0

~
m0
kxP

~
m0
kyP

~
m0
kzP

~
m0
kxP

∗ Ev(0) + ~2k2
2m0

0 0
~
m0
kyP

∗ 0 Ev(0) + ~2k2
2m0

0
~
m0
kzP

∗ 0 0 Ev(0) + ~2k2
2m0

(2.27)

In the present case, we only consider CB-VB coupling (represented by the Ĥ1,i and Ĥi,1
non-diagonal terms). To go beyond the scope of the effective mass model and account
for the effects of other bands, we then introduce the Löwdin perturbation theory [9].
Indeed, distant bands (above the CB and below the VBs) also have a non-zero impact
on the dispersion profile and can be indirectly included in the Hamiltonian, without
being explicitly modeled. We first recall that the Hamiltonian of the system can be
written ∑

n

Ĥm,ncn = Emcm −→
∑
n6=m
Ĥm,ncn = (Em − Ĥm,m)cm. (2.28)

Before introducing Kane’s 4-band Hamiltonian, we focus on the valence bands only.
Löwdin renormalization consists in splitting the bands into two categories [5]. Class A
denotes the valence bands formed by the p-orbital states |ux〉, |uy〉 and |uz〉 , whereas
all the other bands are from class B. The coefficients c can be obtained from Eq.(2.28)
and divided according the classes that have just been defined. Thus, we can write

cm =

A∑
i 6=m

Ĥm,i
Em − Ĥm,m

ci +
B∑

j 6=m

Ĥm,j
Em − Ĥm,m

cj (2.29)
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We want to eliminate the states from class B (i.e. the bands distant from the degenerate
p-like valence bands) by a process of iterations, which is limited to the first order, such
that

cm =
A∑
i 6=m

Ĥm,i
Em − Ĥm,m

ci +
B∑

j 6=m

Ĥm,j
Em − Ĥm,m

cj︷ ︸︸ ︷( A∑
i 6=j

Ĥj,i
Ej − Ĥj,j

ci +
B∑
k 6=j

Ĥj,k
Ej − Ĥj,j

ck

)
︸ ︷︷ ︸

=0 (first order)

=
A∑
i 6=m

ci

Em − Ĥm,m

(
Ĥm,i +

B∑
j 6=m

Ĥm,jĤj,i
Ej − Ĥj,j︸ ︷︷ ︸

Um,i

)

(2.30)

From this expression, we can extract the renormalized Hamiltonian U , which contains
the effect of the remote bands on the valence bands. Thanks to this reformulation, we
only have to solve the following eigenvalue problem, that is now limited to the bands
from class A:

A∑
n

(UAm,n − Enδm,n)cm = 0 (2.31)

The renormalized Hamiltonian can be fragmented as UA = Ĥ + Ĥint. The left-hand
contribution contains the diagonal valence-band terms already included in the Ĥk.p,4
Hamiltonian (Eq.(2.27)), that are

Ĥm,n = 〈um,0|Em(0) +
~2k2

2m0
|un,0〉 =

(
Em(0) +

~2k2

2m0

)
δm,n (m,n ∈ A). (2.32)

The left-hand Hamiltonian contains additional interaction terms and reads

Ĥintm,n = 〈um,0|
~
m0

k · p|un,0〉 =

{x,y,z}∑
i

~ki
m0
〈um|pi|un〉 (m ∈ A, n ∈ B) (2.33)

We are ultimately interested in including the supplementary effects generated by this
Hamiltonian, to improve the precision of the model. To summarize, by combining
these contributions, the expression of UA is

UAm,n =
(
Em(0) +

~2k2

2m0

)
δm,n +

{x,y,z}∑
α,β

kαkβ
~2

m2
0

B∑
i 6=m,n

〈um|pα|ui〉 〈ui|pβ|un〉
E0 − Ei

= Em(0)δm,n +
∑
α,β

kαkβD
α,β
m,n

, (2.34)
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with

Dα,β
m,n =

~2

2m0

(
δm,nδα,β +

1

m0

B∑
i

〈um|pα|ui〉 〈ui|pβ|un〉+ 〈um|pβ|ui〉 〈ui|pα|un〉
E0 − En

)
.

(2.35)

Kohn and Luttinger argue that this tensor plays the same role in the theory of degen-
erate bands (i.e. when multiple valence bands are present) that the effective mass in
the non-degenerate case [10]. They propose to take advantage of the symmetries of
the diamond lattice to express this matrix in the |ux〉, |uy〉, |uz〉 basis as

D = kαkβD
α,β =

|ux〉 |uy〉 |uz〉 Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

Lk2
y +M(k2

x + k2
z) Nkykz

Lk2
z +M(k2

x + k2
y)

.

(2.36)

The definition of the terms L, M and N , also given by Dresselhaus, Kip and Kittel [11],
is

L ≡ Dxx
xx =

~2

2m0
+

~2

m2
0

{x,y,z}∑
n

| 〈ux|px|un〉 |2

Ev(0)− En︸ ︷︷ ︸
L′

,

M ≡ Dyy
xx =

~2

2m0
+

~2

m2
0

{x,y,z}∑
n

| 〈ux|py|un〉 |2

Ev(0)− En︸ ︷︷ ︸
M ′

,

N ≡ Dx,y
x,y = 0 +

~2

m2
0

{x,y,z}∑
n

〈ux|px|un〉 〈un|py|uy〉+ 〈ux|py|un〉 〈un|px|uy〉
Ev(0)− En

.

(2.37)

In practice, all these parameters can be experimentally calibrated by means of cyclotron
resonance. Note that we are only interested in the right-hand element of L and M
(denoted L′ and M ′) since the left-hand term is already included in Ĥk.p,4.
Similarly, for the conduction band, Kane adds another set of terms [7, 12]

A =
~2

m2
0

{x,y,z}∑
n

| 〈us|px|un〉 |2

Ec(0)− En
,

B =
2~2

m2
0

{x,y,z}∑
n

〈us|px|un〉 〈un|py|uz〉[
Ec(0) + Ev(0)

]
/2− En

,

(2.38)

where B couples the conduction and the valence bands. Combining the VB terms L′,
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M ′, N , the CB term A and the CB-VB term B , the final renormalized interaction
Hamiltonian in the |us〉, |ux〉, |uy〉, |uz〉 basis reads

ĤRk.p,4 =

|us〉 |ux〉 |uy〉 |uz〉


Ak2 Bkykz Bkxkz Bkxky
L′k2

x +M ′(k2
y + k2

z) Nkxky Nkxkz
L′k2

y +M ′(k2
x + k2

z) Nkykz
L′k2

z +M ′(k2
x + k2

y)

(2.39)

In the next section, we show how to combine Ĥk.p,4, ĤRk.p,4 and another spin-orbit
matrix to form a 8-band Hamiltonian.

2.5 8-band Hamiltonian: spin-orbit interaction

E

k

Eg

HH

LH

SO

SO

|us>

|ux>+|uy >+|uz>

Figure 2.4: Schematic band structure of a direct-gap semiconductor with spin orbit splitting.
The light-hole, heavy-hole and split-off valence bands result from linear combinations of the
|ux〉,|uy〉 and |uz〉 Bloch states.

As a consequence of relativistic effects, an electron moving in a potential V feels an
effective magnetic field, that acts on its spin. The spin-orbit coupling increases with the
atomic number of the atoms. Thus, the III-V compounds that contain heavy elements
such as In, Ga, As, or Sb, are expected to be especially sensitive to this effect. The
spin-orbit (SO) interaction can be included in the unperturbed (i.e. k independent)
Hamiltonian with the following expression [13, 14]

Ĥ(0) =
−~2

2m0
∇2 +

~
4m2

0c
2
(σ ×∇V ) · p︸ ︷︷ ︸
SO

, (2.40)

where σ corresponds to the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.41)
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With this new contribution, Eq.(2.13) becomes:(
Ĥ(0) +

~2k2

2m0
+

~
m0

k · π
)
un,k(r) = E(k)un,k(r), (2.42)

with

π = p +
~

4m0c2
(σ ×∇V ). (2.43)

Expanding the SO component in Eq.(2.42) yields

ĤSO =
~

4m0c2
(σ ×∇V ) · p +

~2

4m0c2
(σ ×∇V ) · k︸ ︷︷ ︸
neglected

(2.44)

The right hand side term can be neglected, as we are working around k = 0. To take
the SO interaction into account in the k ·p Hamiltonian, the basis has to be extended
to consider the spin, and the Hamiltonian has to include not only four, but actually
eight bands. In this new basis, the spin-orbit Hamiltonian can be built from the Pauli
matrices [4]:

ĤSO,8 =

|us �〉 |ux �〉 |uy �〉 |uz �〉 |us �〉 |ux �〉 |uy �〉 |uz �〉



0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 i
0 −1 0 0 0 0 0 1
0 0 1 0 0 −i −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −i 0 0 −1 0
0 0 0 1 0 1 0 0
0 i −1 0 0 0 0 0

∆SO

3i

(2.45)

where the spin-orbit splitting term can be expressed by different ways, using the sym-
metry properties of the orbitals

4m2
0c

2

3i~
∆SO = 〈ux|

∂V

∂x
py −

∂V

∂y
px |uy〉

= 〈uy|
∂V

∂y
pz −

∂V

∂z
py |uz〉

= 〈uz|
∂V

∂z
px −

∂V

∂x
pz |ux〉

(2.46)

Here, we assume that the states at the valence band maximum are formed by electrons
from the p-orbitals [8]. In the expression of ĤSO,8, it can be observed that the spin-orbit
contribution for the s-like states (corresponding to the CB) is zero. Indeed, the orbital
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angular momentum L is equal to 0 in the s-like states and the spin-orbit interaction
is proportional to L · S (with S the spin angular momentum). Finally, the CB-VB
coupled, renormalized and SO k ·p Hamiltonians can be assembled in the orbital basis
with spin as

Ĥorb
k.p,8 =

� �( )
Ĥk.p,4 0

0 Ĥk.p,4
+

� �( )
ĤRk.p,4 0

0 ĤRk.p,4
+ ĤSO,8 (2.47)

|J, Jz〉 state Orbital combination Energy at Γ

|uC�〉 = |1
2
,
1

2
〉 i |us �〉 Eg(Ec)

|uC�〉 = |1
2
,−1

2
〉 i |us �〉 Eg(Ec)

|uHH�〉 = |3
2
,
3

2
〉 − 1√

2

(
|ux �〉+ i |uy �〉

)
0 (Ev)

|uHH�〉 = |3
2
,−3

2
〉 − 1√

2

(
|ux �〉 − i |uy �〉

)
0 (Ev)

|uLH�〉 = |3
2
,
1

2
〉 − 1√

6

(
|ux �〉+ i |uy �〉+ 2 |uz �〉

)
0 (Ev)

|uLH�〉 = |3
2
,−1

2
〉 1√

6

(
|ux �〉 − i |uy �〉+ 2 |uz �〉

)
0 (Ev)

|uSO�〉 = |1
2
,
1

2
〉 1√

3

(
|ux �〉+ i |uy �〉+ |uz �〉

)
−∆SO

|uSO�〉 = |1
2
,−1

2
〉 − 1√

3

(
|ux �〉 − i |uy �〉+ |uz �〉

)
−∆SO

Table 2.2: Table of correspondence between the orbital basis |u{s,x,y,z} � / �〉 and the angular
momentum basis |J, Jz〉, quantized in the z direction [13, 15–17]. In this new basis, the states
can be associated to specific bands, which simplifies the physical interpretation of the model.

The drawback of such an expression is that it does not allow distinguishing the different
valence bands. Indeed, as shown in Fig.2.4, the light-hole, heavy-hole and spin-orbit
VBs are formed by linear combinations of the px, py and pz states. Another possibility
is to express the Hamiltonian with the eigenstates of the total angular momentum
|J, Jz〉, with J = L + S, in order to diagonalize the spin-orbit term proportional to
L · S [13, 15, 16]. In this basis, the orbital angular momentum L = 0 for the s-like
states, whereas it is equal to 1 in the case of p-like states. Since the spin angular
momentum S=1/2 or -1/2, the total angular momentum will take the value 1/2 in the
CB and 1/2 or 3/2 in the VBs. Tab.2.2 shows the linear combinations of the (orbital)
Bloch states that diagonalize the spin-orbit interaction at k = 0, in the |J, Jz〉 basis.
Bahder [17] applies such a change of basis to the eight-band k · p Hamiltonian. This
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forms the Hamiltonian used in this work

Ĥk.p,8 =

|uC �〉 |uC �〉 |uHH �〉 |uLH �〉 |uHH �〉 |uLH �〉 |uSO �〉 |uSO �〉



A 0 V † 0
√

3V −
√

2U −U
√

2V †

A −
√

2U −
√

3V † 0 −V
√

2V U

−P +Q −S† R 0
√

3
2S −

√
2Q

−P −Q 0 R −
√

2R 1√
2
S

−P −Q S† 1√
2
S†

√
2R†

−P +Q
√

2Q
√

3
2S
†

−P −∆SO 0

−P −∆SO

(2.48)

with the k-dependent parameters:

A = Ec + γc
~2

2m0
(k2
x + k2

y + k2
z)

U =
1√
3
P0kz

V =
1√
6
P0(kx − iky)

P = −Ev + γ1
~2

2m0
(k2
x + k2

y + k2
z)

Q = γ2
~2

2m0
(k2
x + k2

y − 2k2
z)

R = −
√

3
~2

2m0

(
γ2(k2

x − k2
y)− iγ3kxky

)
S =

√
3 γ3

~2

m0
kz(kx − iky)

(2.49)

With this expression, it is possible to associate each line/column of the Hamiltonian
with a specific band. The term A is related to the conduction band, while P , Q, R
and S correspond to the valence bands. In addition, U and V are the CB-VB coupling
terms and include the mixing parameter P0 (similar to the P term in 2.19).
The expressions of the modified Luttinger parameters are

γ1 = γL1 −
EP
3EG

, γ2 = γL2 −
EP
6EG

, γ3 = γL3 −
EP
6EG

, (2.50)

and

γc =
1

m∗c
− Ep

3

( 2

Eg
+

1

Eg + ∆SO

)
. (2.51)

The γn are derived from the Luttinger parameters γLn that are listed, for III-V binary
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and ternary compounds, in Ref. [6].
Fig.2.5 shows a comparison of 8-band and tight-binding Hamiltonians band structures
for bulk InAs. Both methods give similar results around the Γ-point. A calibration of
the k ·p Hamiltonian with the empirical pseudopotential method can also be found in
Ref. [18].

Figure 2.5: 8-band k · p/tight-binding band structure comparison for bulk InAs along the [110]
and [100] directions.

2.6 Numerical implementation for a 2D system

In order to use the k · p Hamiltonian to treat transport problems, it is convenient to
work in the real space representation. To that end, we have to assume a local basis
that, in our case, will be given by the nodes of a discrete mesh.
To illustrate how this Hamiltonian is implemented in the code, we treat the case of a
2D system. The 8 band k·p Hamiltonian presented in Eq.2.48 is written in the k-space.
In order to transfer it into the real space, we adopt the usual prescription of quantum
mechanics (shown below) and then discretize the real space operator with a finite
difference method. Hence, the transition from the momentum- to the position-space
can be done via kxky

kz

 −→ −i
∂/∂x∂/∂y
∂/∂z

 . (2.52)

This replacement of the k wave vector is only done in the non-periodic directions of
the system (here, x and z). Along the periodic dimension (y-axis) the ky component is
meant to be used as a parameter. The solutions for each ky are computed independently
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(in a selected range) and are later summed up to form the total solution. For example,
the element A of Ĥ8,k.p (see Eq.(2.49)) becomes

Aψ = EC ψ +
~2

2m

(
− ∂

∂x
γc
∂

∂x
− γc k2

y −
∂

∂z
γc
∂

∂z

)
ψ. (2.53)

The system is now ready to be discretized with the finite difference method (Fig.2.6).

Figure 2.6: Finite differences discretization of a 2D grid. Each site is contained in a subdomain
of area ∆x∆z

In practice, it means that we can apply the following discretization procedure for the
first and second derivatives of ψ around the node (i,j)

−i ∂
∂x
ψ
∣∣∣
i,j
≈ −iψi+1,j − ψi−1,j

2∆x
,

− ∂2

∂x2
ψ
∣∣∣
i,j
≈ −ψi+1,j + ψi−1,j − 2ψi,j

∆x2
.

(2.54)

The same goes for kz (and ky in the case of a 3D problem). In our nanodevice sim-
ulations, we typically resort to a step size ∆ of 0.2 nm. Thus, in our example, the
discretization of A using the box integration method yields

Aψi,j∆x∆z = (ECi,j + γi,j
~2

2m
k2
y) ψi,j∆x∆z

− ~2

2m

(
∆z

ψi+1,j − ψi,j
∆x

γi+1,j + γi,j
2

+ ∆z
ψi−1,j − ψi,j

∆x

γi−1,j + γi,j
2

+ ∆x
ψi,j+1 − ψi,j

∆z

γi,j+1 + γi,j
2

+ ∆x
ψi,j−1 − ψi,j

∆z

γi,j−1 + γi,j
2

)
.

(2.55)

The other elements of Ĥk.p,8 can be discretized the same way. Let us divide the system
in a series of vertical slices, arranged along the x-axis, in accordance with the procedure
shown in Fig.2.7.
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Figure 2.7: Schematic view of a 2D discretized system. Each dot corresponds to a site in the
lattice and is connected to its nearest neighbors. At position x = xi The on-site term and the
top/bottom interaction terms are contained in the Ĥi,i submatrix, while the right/left couplings

are accounted for in Ĥi,i±1.

In such a discretization, A can be written as matrices

Ai,i =

Nz︷ ︸︸ ︷
. . .

. . .
. . . Ej αj

α†j
. . .

. . .

. . .
. . .

, Ai,i+1 =

Nz︷ ︸︸ ︷
. . .

βj
. . .

 . (2.56)

where Nz is the number of sites in the vertical direction. Ai,i corresponds to the i-th
slice and Ai,i+1 is responsible for the coupling between the i-th slice and its neighbor.
The index j still denotes the vertical position.
The on-site terms E correspond to the (i, j) part of Aψi,j∆x∆z and read

Ej = (ECi,j + γi,jk
2
y) ∆x∆z

+
~2

2m

[
(
γi−1,j + γi,j

2
+
γi+1,j + γi,j

2
)
∆z

∆x
+ (

γi,j+1 + γi,j
2

+
γi,j−1 + γi,j

2
)
∆x

∆z

]
,

(2.57)

while the hopping terms α and β correspond respectively to the (i, j+ 1) and (i+ 1, j)
parts of Aψi,j∆x∆z

αj = − ~2

2m

∆x

∆z

γi,j+1 + γi,j
2

,

βj = − ~2

2m

∆z

∆x

γi+1,j + γi,j
2

.

(2.58)

The same derivation can naturally be applied to the other terms of Ĥk.p,8. We can
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then write the eight-band k · p Hamiltonian for the i-th slice as

Ĥi,i′ =

Nz×Nb︷ ︸︸ ︷
Ai,i′ 0 . . .

0 Ai,i′
...

. . .
...

−Pi,i′ −∆SO
i,i′ 0

. . . 0 −Pi,i′ −∆SO
i,i′

, (2.59)

where i′ can take the values i, i + 1 or i − 1, and Nb is the number of bands. Here,
Nb = 8 since this matrix is the eight-band k · p Hamiltonian (Eq.(2.48)) projected on
a system of Nz points. The elements of this Hamiltonian are now themselves square
(diagonal or tridiagonal) submatrices of rank Nz (as shown in Eq.(2.56)). As illustrated
in Fig.2.8, these terms are defined in such a way that the in-slice k · p Hamiltonian
Ĥi,i remains Hermitian, while the slice-slice hopping Hamiltonians only have to verify

Ĥi+1,i = Ĥ†i,i+1.

Once all the in-slice and coupling Hamiltonians Ĥi,i′ have been defined The total
Hamiltonian takes the form of a block tridiagonal matrix

Ĥtot =

Nx×Nz×Nb︷ ︸︸ ︷
Ĥ1,1 Ĥ1,2

. . .

Ĥi,i−1 Ĥi,i Ĥi,i+1

. . .

ĤNx−1,Nx ĤNx,Nx

, (2.60)

where Nx is the number of sites in the x direction. The total rank of the problem is
thus Nx ×Nz ×Nb.

2.7 Coupled mode-space approach

Due to the size of the devices treated in this work, the computational cost of the
simulations can rapidly increase (especially in the case of 3D simulations). In order to
reduce the size of the problem, we resort to the coupled mode-space technique [19, 20].
In the real-space, the problem is defined by a block tridiagonal Hamiltonian, similar
to that of Eq.(2.60). Thus, we have

(Ĥi,i−1 + Ĥi,i + Ĥi,i+i)χmi = Emi χ
m
i , (2.61)

where the m-th eigenfunction χmi represents the so called m-th mode of the i-th slice.
These NzNb eigenfunctions can be arranged as column vectors in a matrix X, that
takes the form

Xi =
[
χ1
i , χ

2
i , ..., χ

NzNb
i

]
. (2.62)

These Nx rectangular matrices can, in turn, be used to generate the transformation
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(a) (b)

(c) (d)

Figure 2.8: Graphical representation of the real and imaginary parts of the Ĥi,i and Ĥi+1,i 8×8
k · p Hamiltonians. This example corresponds to a 2D system with Nz=5, discretized along kx
and kz (at ky=0). The grid delimits the Nz×Nz submatrices. The white elements are positive

numbers and the black ones are negative. For the total Hamiltonian Ĥtot to be Hermitian,
the diagonal Hamiltonian Ĥi,i (and all its submatrices) must be Hermitian as well. However,

Ĥi+1,i can be non-Hermitian since it is an off-diagonal element of Ĥtot.

matrix U , that reads

U =

Nx×Nz×Nb︷ ︸︸ ︷
X1

X2

. . .

XNx

 . (2.63)

This unitary matrix can be applied to the original real-space (RS) Hamiltonian in order
to form the mode-space (MS) Hamiltonian, while preserving the tridiagonal form of
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this operator:

ĤMS
k.p = U† ĤRS

k.p U . (2.64)

In this equivalent reformulation of the 2D problem, ĤMS
k.p still has a rank NxNzNb

and does not present actual benefits with respect to ĤRS
k.p yet. However, we can use

a truncated version of Xi, by selecting only M modes. By doing so, the rank of the
MS Hamiltonian becomes MNx, which can indeed reduce the computational burden.
In the case of 3D systems, the rank is even reduced from NxNyNzNb to MNx. For
example, if we consider 20 modes in an 5 × 5 nm2 cross-section nanowire, with a step
size ∆z = ∆y = 0.2 nm, the rank of the Hamiltonian will be decreased 250-fold. Note
that the mode-space approximation is only valid if we keep the lowest modes, since
they are the most relevant for electron transport.
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2.8 Appendix: Strain Hamiltonian
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Figure 2.9: Effect of compressive strain on the band structure of bulk InAs

Following the work of Pikus and Bir [21], it is possible to include the effect of strain
within the perturbation theory framework. The first order perturbation elements to
add to the Ĥ8,k.p Hamiltonian are given by

Ĥstrain
m,n =

{x,y,z}∑
i,j

−kiεi,j 〈um|pj |un〉+ εi,j 〈um|Di,j |un〉 , (2.65)

where εi,j is the strain tensor and D is the deformation potential, which describes the
effect of strain on the potential and kinetic energy of the electrons. The resulting
eight-band k · p strain Hamiltonian is [17]

Ĥstrain,8 =



p′ 0 −v∗ 0 −
√

3v
√

2u u −
√

2v∗

p′
√

2u −
√

3v∗ 0 v −
√

2v −u
−p+ q −s∗ r 0

√
3/2s −

√
2q

−p− q 0 r −
√

2r s/
√

2

−p− q s∗ s∗/
√

2
√

2r∗

−p+ q
√

2q
√

3/2s
−p 0

−p


, (2.66)
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where

p′ = ac (εx,x + εy,y + εz,z),

p = av (εx,x + εy,y + εz,z),

q = b
(
εz,z − (εx,x + εy,y)/2

)
u =

P0√
3

(εx,zkx + εy,zky + εz,zkz),

v =
P0√

6

(
(εx,x − iεx,y)kx + (εx,y − iεy,y)kx + (εx,z − iεy,z)kz

)
,

r =

√
3

2
b (εx,x − εy,y)− idεx,y,

s = −d (εx,z − iεy,z),

(2.67)

where the Pikus-Bir deformation-potential constants av, b and d describe the VB-
strain coupling, while ac describes the CB-strain coupling. The deformation potentials
of different III-V compounds can be found in [6]).
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CHAPTER 3

Electron transport

In which we show that we can compute the non-equilibrium Green’s functions to
extract meaningful physical properties, essential to simulate quantum transport
– and then give extensive details about the computational implementation of
the methods.

The ultimate aim of our approach is to compute the current density inside the
nanodevices. This quantity depends on many phenomena occurring inside the system,
like phonon scattering, wave interferences, tunneling or quantum confinement. Up to
this point, we have only shown how to build an isolated quantum system, by describing
a physical system by its Hamiltonian and calculating its energy structure. We know the
available energy levels, but we still have to determine how the electrons flow through
the channel. Simulating electron transport at the nanoscale entails solving a non-
equilibrium statistical problem. Different approaches exist, but we choose to use the
non-equilibrium Green’s functions (NEGF) formalism [1–4], motivated by two main
reasons:

• It not feasible to solve the eigenvalue problem for the whole system. Indeed, the
Schrödinger equation would include not only the device itself, but also the elec-
tron reservoirs. The dimension of the Hilbert space describing a quantum system
grows with the number of particles. So does the complexity of the algorithm and
the computation time. Green’s functions offer a decent compromise to estimate
the observable quantities we are interested in, without having to calculate the
wave functions of the entire system.

• Even though we are dealing with nanometric devices, these systems are far from
being completely ballistic and scattering processes must be properly taken into
account. In particular, the electron-phonon coupling is an unavoidable source
of scattering at room temperature. The NEGF is a versatile framework, which
enables us to implement such a many-body interaction in a computationally
convenient way.

In practice, the studied devices are connected to their environment via the contacts (or
leads), which can be modeled by infinite electron reservoirs. By allowing new carriers
to enter and leave the device, these leads bring the system out of equilibrium. NEGF
outputs the energy availability and occupancy of the quantum states (in a given energy
range), in order to evaluate the non-equilibrium current. Since the complexity of the
problem does not allow for an analytical solution, the computation is numerical (see
Sec.3.5). For the charge, the energy and the current to be conserved, one will have to
resort to self-consistent calculations.
Even though the NEGF formalism can, in principle, handle time-dependent problems,
we will eventually move to the energy domain, where we will assume the

39
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existence of stationary solutions. Those steady states will correspond to successive
steps in the device operation, that can be computed independently from one another.

3.1 Preliminary concepts

On a mathematical point of view, Green’s functions can be applied to problems of the
form

Ô ψ(x) = f(x) =

∫
dx′ δ(x− x′)f(x′), (3.1)

where Ô is a linear differential operator, ψ is analogous to the system’s wavefunction
and f plays the role of an external contribution – for example, a force. If f is a
continuous function, then it can be written as a Dirac distribution, as shown on the
right-hand side of Eq.(3.1). This ordinary differential equation can be solved by the
knowledge of a Green’s function G, defined as

Ô G(x− x′) = δ(x− x′). (3.2)

Indeed, by combining Eq.(3.2) and Eq.(3.1), one can solve the problem for ψ

Ô ψ(x) =

∫
dx′ Ô G(x− x′)f(x′),

ψ(x) =

∫
dx′ G(x− x′)f(x′).

(3.3)

Physically, the Green’s function can be seen as the relation which links a cause f to
its effect ψ. The x variable can refer to a position in space, time, or to a space-time
coordinate (in which case ÔG = δ(t)δ(r)). To improve readability, we now resort to
the following notation

G(x′, x) ≡ G(x′ − x). (3.4)

3.1.1 Green’s functions in quantum mechanics

Since the time-dependent Schrödinger equation complies with the above definition, one
can apply Eq.(3.2) to a one-particle Hamiltonian(

i~
∂

∂t
− Ĥ

)
G(r′, t′; r, t) = δ(r′ − r)δ(t′ − t). (3.5)

In this context, the Green’s function is often called the propagator. It can be expressed
as

G(r′, t′; r, t) = − i
~

Θ(t′ − t) 〈r′|Û(t′, t)|r〉 , (3.6)

where Θ is the Heaviside step function, which ensures that t′ > t. The matrix element
on the right contains the probability amplitude of a transition from state {r, t} to state
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{r′, t′}, performed in two steps

{r, t} Û(t′,t)7−−−−→ {r, t′} 〈r
′|7−−→ {r′, t′}

Û is the evolution operator, transforming the quantum state at time t into a quantum
state at time t′

|Ψ(t′)〉 = Û(t′, t) |Ψ(t)〉 (3.7)

In the context of a time-independent Hamiltonian, Û simply reads

i~
∂

∂t
Û(t′, t) = ĤÛ(t′, t)

Û(t′, t) = e−i(t
′−t)Ĥ/~

. (3.8)

By Stone’s theorem, this operator is unitary, since it can be expressed as the exponen-
tial of Ĥ, which is a self-adjoint operator

Û †(t′, t)Û(t′, t) = Û(t′, t)Û(t, t′) = I. (3.9)

Eq.(3.7) corresponds to the so called Schrödinger picture of quantum mechanics, where
the states are the only time-dependent parts of the equation. However, in this work, it
will be convenient to introduce another quantum mechanics scheme, detailed hereafter.

3.1.2 Heisenberg picture

In the Heisenberg picture, the quantum state is time invariant, while the time depen-
dence is shifted to the operators. This representation is connected to the Schrödinger
picture by the expressions{

|ψH〉 = Û(0, t) |ψS(t)〉 = |ψS(0)〉
ÔH(t) = Û(0, t) ÔS Û(t, 0)

(3.10)

Additionally, in the Heisenberg picture, the time evolution of an operator is given by

i~
d

dt
ÔH(t) = [ÔH(t), Ĥ], (3.11)

where the square brackets denote the commutator.
In the rest of this work, any operator associated with a time variable will belong to the
Heisenberg scheme. The subscript “H” will often be omitted for readability purposes.

In the case of a time-dependent Hamiltonian, the expression of Û becomes [5]

Û(t′, t) = 1− i

~

∫ t′

t
dτ Ĥ(τ)Û(τ, t), (3.12)
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where the evolution operator is calling itself recursively. This can be developed as

Û(t′, t) = 1 +

∞∑
n=1

(
− i

~

)n ∫ t′

t
dt0 · · ·

∫ tn

t
dtnĤ(t0) · · · Ĥ(tn). (3.13)

The order in which the Hamiltonians are written is important and we can resort to
the following time-ordering procedure to rearrange them

T [Ĥ(t′)Ĥ(t)] = Θ(t′ − t)Ĥ(t′)Ĥ(t) + Θ(t− t′)Ĥ(t)Ĥ(t′)

=

{
Ĥ(t)Ĥ(t′) t′ > t

Ĥ(t′)Ĥ(t) t′ < t

(3.14)

The expression for Û(t′, t) becomes

Û(t′, t) = 1 +

∞∑
n=1

(− i
~)n

n!

∫ t′

t
dt0 · · ·

∫ tn

t
dtn T [Ĥ(t0) · · · Ĥ(tn)], (3.15)

which is the series expansion of the exponential function.
To account for the adjoint of the evolution operator (which corresponds to a back-
wards propagation in time), let us split the time-ordering procedure into T + and T −,
corresponding to its chronological (t′ > t) and antichronological (t′ < t) version. Û
can finally be written

Û(t′, t) = T + exp
(
− i

~

∫ t′

t
dτ Ĥ(τ)

)
Û †(t′, t) = T − exp

( i
~

∫ t′

t
dτ Ĥ(τ)

)
= Û(t, t′)

(3.16)

3.2 Second quantization in many-fermion systems

The second quantization formalism allows us to describe a many-particle system in a
very convenient way, able to automatically take into account the Pauli principle for
identical particles.

3.2.1 Creation and annihilation operators

The creation operator ĉ† is a procedure which turns an empty state |0〉 into an occupied
state |n〉

ĉ†n |0〉 = |n〉 . (3.17)

In the case of electrons (which are fermions), the Pauli exclusion principle allows only
one particle per state. For that reason, in this section, any state denoted by anything
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else than “0” corresponds to an occupied state, containing one particle. When dealing
with multiple states, one can use the Fock state notation

|{n}〉 ≡ |n1, n2, ..., nN 〉 ,
|ni〉 ≡ |0, 0, .., ni, ..., 0〉 ,
|0〉 ≡ |0, 0, ..., 0〉 .

(3.18)

Using this notation, Eq.(3.17) can then be generalized as follows:

|n,m〉 = ĉ†m |n〉 = ĉ†mĉ
†
n |0〉 ,

|n1, ..., nN 〉 = ĉ†N |n1, ..., nN−1〉 = ĉ†N ...ĉ
†
1 |0〉 .

. (3.19)

Additionally, with fermions, exchanging any two particles will result in a sign change
of the state ket, such that

|..., ni, ..., nj , ...〉 = − |..., nj , ..., ni, ...〉 . (3.20)

Applying this rule to Eq.(3.19) yields

ĉ†mĉ
†
n |0〉 = |n,m〉 = − |m,n〉 = −ĉ†nĉ†m |0〉 , (3.21)

from which one can deduce an important property of the creation operator

ĉ†mĉ
†
n + ĉ†nĉ

†
m ≡

[
ĉ†m, ĉ

†
n

]
+

= 0, (3.22)

where we have introduced the (anti)commutator notation[
Â, B̂

]
± = ÂB̂ ± B̂Â. (3.23)

Eq.(3.22) is a consequence of the Pauli exclusion principle, since it implies that ĉ†nĉ
†
n = 0,

which prevents a fermion from being created twice in the same state.

Similarly, the annihilation operator ĉn acts on a filled state |n〉 to turn it into an
empty state |0〉

ĉm |n〉 = δm,n |0〉 , (3.24)

where the Kronecker delta function δ prevents the state n from being annihilated by
ĉm6=n (and more specifically, protects the empty state from undergoing any further
annihilation). This operator anticommutes the same way than the creation operator
(Eq.(3.22)) [

ĉm, ĉn
]
+

=
[
ĉ†m, ĉ

†
n

]
+

= 0. (3.25)
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Last but not least, the most useful commutation relation for the rest of this work is[
ĉm, ĉ

†
n

]
+

= δm,n = 〈m|n〉 (3.26)

Note that creating an electron equates to annihilating a hole and conversely. For
example, ĉ†mĉn |0, n〉 = |m, 0〉 first removes an electron from state n and places it in

state m. Symmetrically, ĉmĉ
†
n |m, 0〉 = |0, n〉 “fills” the hole at state n and then creates

a new hole at state m.

3.2.2 Statistical ensemble

The density operator is a statistical tool used to describe a quantum system in a
mixture of states

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (3.27)

with pi = 〈ψi| ρ̂ |ψi〉 the probability for the system to be in the state |ψi〉. The off-
diagonal elements ρ̂i,j correspond to a transition probability. The trace of ρ̂ can be
easily calculated by using the basis for which it is diagonal

Tr(ρ̂) =
∑
n

ρ̂n,n =
∑
i,n

pi 〈ψn|ψi〉 〈ψi|ψn〉 =
∑
i

pi 〈ψi| I |ψi〉 =
∑
i

pi
def
= 1. (3.28)

At thermal equilibrium, the operator reads

ρ̂ =
e−(Ĥ−µN)/kBT

Tr(e−(Ĥ−µN)/kBT )
, (3.29)

where N is the number operator, and the denominator serves as a normalization factor
(or partition function), so that

∑
pi = 1

The density matrix is useful to describe the expectation value of an operator. This
corresponds to the average eigenvalue of an operator and is denoted

〈Ô〉 ≡ 〈ψ| Ô |ψ〉 , (3.30)

where |φ〉 is a pure state. Using 〈m|n〉 = Tr(|n〉 〈m|), one can derive

〈Ô〉 =
∑
i

pi 〈ψi| Ô |ψi〉 =
∑
i

pi Tr
(
|ψi〉 〈ψi| Ô

)
= Tr(ρ̂Ô) . (3.31)

Let us get back to second quantization and define the number operator n̂ which returns
0 or 1 when applied to an empty or a filled fermion state

n̂i = ĉ†i ĉi. (3.32)
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While this operator only has two possible eigenvalues, its expectation value can still
be anywhere between 0 and 1, and corresponds to the average occupation number n
of the targeted state

ni = 〈n̂i〉 = 〈ĉ†i ĉi〉 = Tr(ρ̂ ĉ†i ĉi) = fi (3.33)

Where we can see that, at equilibrium, the states occupancy follows a Fermi-Dirac
distribution

fi =
1

e(Ei−µ)/kBT + 1
. (3.34)

3.3 Equilibrium Green’s functions

In order to make the connection with the computer simulations, we shall now employ
discrete space variables for the Green’s functions and use the matrix notation

Gi,j(t
′, t) ≡ G(r′, t′; r, t).

The time indexes are kept as continuous variables, as they are useful for the forthcom-
ing derivations, but are not part of the final simulations.

Before computing the electrical current and the many-body phenomena that result
from it, we first consider a non-interacting Hamiltonian. In the second quantization
formalism, this Hamiltonian can be written as

Ĥ =
∑
i

Ei ĉ
†
i ĉi +

∑
i 6=j

ti,j ĉ
†
i ĉj , (3.35)

where the diagonal terms Ĥi,i = Ei are the energies of each state and the off-diagonal
terms Ĥi,j = ti,j are the hopping energies between two given states.
Following the idea expressed in Sec.3.1.1 and using the second quantization tools intro-
duced in Sec.3.2, one defines the chronological and antichronological Green’s functions
G+ and G−

G±i,j(t
′, t) = − i

~
〈ψ0| T ±[ĉi(t

′)ĉ†j(t)] |ψ0〉
〈ψ0|ψ0〉

, (3.36)

where |ψ0〉 is the ground state of the system. Using the expectation value notation of
Eq.(3.30), this expression can be compacted as

G±i,j(t
′, t) = − i

~
〈T ±[ĉi(t

′)ĉ†j(t)]〉 (3.37)

Let us analyze the physical meaning of this expression before moving any further.
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Depending on the relative position of t and t′ along the real axis, G+ can take two
forms

G+
i,j(t

′, t) =

{
− i

~ 〈ĉi(t
′)ĉ†j(t)〉 t′ > t

− i
~ 〈ĉ
†
j(t)ĉi(t

′)〉 t′ < t

The top expression gives the probability amplitude for a hole to move from {j, t} to
{i, t′} whereas the bottom one corresponds to an electron going from {i, t′} to {j, t}.
The time-ordering operator has ensured that the operators act forward in time. Hence
the name “chronological” for this Green’s function. Similarly, G− gives the probability
amplitude for an electron or a hole to travel between two sites, backward in time.
If we drop the time ordering operator, the (anti)chronological Green’s function can be
split as follows

G±i,j(t
′, t) = Θ(t′ − t) G≷i,j(t

′, t) + Θ(t− t′) G≶i,j(t
′, t), (3.38)

where we define the greater and lesser Green’s functions G> and G< as

G>i,j(t
′, t) ≡ − i

~
〈ĉi(t′)ĉ†j(t)〉

G<i,j(t
′, t) ≡ i

~
〈ĉ†j(t

′)ĉi(t)〉
(3.39)

Which are related to G+ and G− by

G+ +G− = G> +G<. (3.40)

G< and G> are only connected to one type of particle (respectively an electron or a
hole). However, the direction in time can be either forward or backward (depending
on the sign of t′ − t).
These Green’s functions can be combined to form another set of functions: the so
called retarded and advanced Green’s functions GR = (GA)†

GRi,j(t
′, t) ≡ Θ(t′ − t)

(
G>i,j(t

′, t)−G<i,j(t
′, t)
)
,

GAi,j(t
′, t) ≡ Θ(t− t′)

(
G<i,j(t

′, t)−G>i,j(t
′, t)
)
.

(3.41)

Hence

GRi,j(t
′, t) = − i

~
〈
[
ĉi(t
′), ĉ†j(t)

]
+
〉Θ(t′ − t)

GAi,j(t
′, t) =

i

~
〈
[
ĉi(t
′), ĉ†j(t)

]
+
〉Θ(t− t′)

(3.42)

also connected to G< and G> by

GR −GA = G> −G<. (3.43)
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Finding a physical meaning for these retarded and advanced quantities is less straight-
forward, since they contain both electron and hole contributions (which arise when
one develops the anticommutator). GR and GA will mainly be used to determine the
density of states. In the following sections, we will show that we can ultimately discard
GA since it does not provide any supplementary information. Indeed, the stationary
state time invariance implies that GA = (GR)†.

3.3.1 Energy domain

In this work, we are not actually interested in solving the time-dependent Green’s
functions. As explained in this chapter’s introduction, we are looking for the steady-
state solution, within a given energy window. If we consider a diagonal Hamiltonian,
the elements of the evolution operator are

Ûn,n(t′, t) = e−iEn(t′−t)/~. (3.44)

Using the anticommutation relation of Eq.(3.26) and the fact that ĉ
(†)
i (t) = Û (†)(t, 0)ĉ

(†)
i (0),

we find [
ĉi(t
′), ĉ†j(t)

]
+

= Ûi,i(t
′, t)
[
ĉi(0), ĉ†j(0)

]
+

= Ûi,i(t
′, t) δi,j , (3.45)

which allows us to re-express the retarded and advanced Green’s functions

G
R/A
i,j (t′, t) = ∓ i

~
Ûi,j(t

′, t) Θ(±t∓ t′). (3.46)

Moreover, based on Eq.(3.33), the lesser/greater equilibrium Green’s functions become

G<i,j(t
′, t) =

i

~
Ûi,j(t

′, t) fi δi,j ,

G>i,j(t
′, t) = − i

~
Ûi,j(t

′, t)
(
1− fi

)
δi,j .

(3.47)

We can now move from the time-domain to the energy-domain by resorting to a Fourier
transform

GR/A(E) =

∫
dt GR/A(t)eiEt/~ −→ G

R/A
i,i (E) = ∓ i

~

∫ ∞/0
0/−∞

dt ei(E−Ei)t/~, (3.48)

which ultimately yields

G
R/A
i,i (E) =

1

E ± iε− Ei
(3.49)

where iε is a small imaginary part introduced to help convergence.
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Let us now introduce the spectral function, which provides information about the
density of states (also useful in Sec.3.3.3) and reads

A(E) = i
(
GR(E)−GA(E)

)
= −2 =(GR(E)). (3.50)

From Eqs.(3.49) and (3.50), and from the Cauchy identity =[1/(x± iε)] = ∓iπδ(x), it
follows

Ai,i(E) = 2π δ(E − Ei). (3.51)

As for the lesser and greater Green’s functions, they are related to the density of
occupied states, since

G<i,i(E) = −fi(GRi,i(E)−GAi,i(E)) = ifi Ai,i(E),

G>i,i(E) = (1− fi)(GRi,i(E)−GAi,i(E)) = −i(1− fi)Ai,i(E),
(3.52)

G<i,i(E) = 2πi fi δ(E − Ei)
G>i,i(E) = −2πi (1− fi) δ(E − Ei)

(3.53)

We have obtained the equilibrium steady-state Green’s functions expressed in terms
of energy and position. The next step is to show how the retarded, greater and lesser
Green’s functions can actually be used to compute physical quantities of interest.

3.3.2 Electron and hole densities

The charge distribution is one of the most basic quantities that one can observe in
order to understand the behavior of a nanodevice. From the definition of the number
operator of Eq.(3.33), we can obtain the electron and hole occupation probability for
the i-th state

ni(t) = 〈ĉ†i (t)ĉi(t)〉 = −i~ G<i,i(t),

pi(t) = 〈ĉi(t)ĉ†i (t)〉 = i~ G>i,i(t).
(3.54)

As we just explained, we are interested in the steady-state solutions and may therefore
translate these equations in the energy domain

ni = − i

2π

∫
dE G<i,i(E)

pi =
i

2π

∫
dE G>i,i(E)

(3.55)

We can then readily obtain the electron and hole charges by multiplying these carrier
concentrations by the electronic charge.
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3.3.3 Density of states

The density of states is another essential quantum transport quantity. It is related to
the spectral function and thus (see Eq.(3.50)) to the retarded Green’s function by

Di(E) =
1

2π
Ai,i(E) = − 1

π
=
(
GRi,i(E)

)
(3.56)

D corresponds to the total number of states in a specific site. It is therefore called the
local density-of-states (LDOS). The total density-of-states is then simply the trace of
the spectral function.

3.4 Non-equilibrium Green’s functions

When a current actually starts flowing through the device, the system is brought away
from its thermodynamical equilibrium. The Hamiltonian of such a perturbed system
can be split into two parts

Ĥ = Ĥ0 + Ŵ. (3.57)

Where Ĥ0 is the one-body non-interacting Hamiltonian whose solutions are known and
Ŵ is the interacting (or perturbed) Hamiltonian, which accounts for additional terms
that drive the system out of equilibrium. The corresponding interacting stationary
state reads

|ψint〉 = ÛI(0,∓∞) |ψ0(∓∞)〉 , (3.58)

where the system is prepared in the ground state |ψ0〉 at time t = −∞ and is brought
to the present (t = 0), while the perturbation Ŵ is adiabatically switched on. In
Sec.3.1.2, we have introduced the Schrödinger and the Heisenberg representations.
They can be combined to form the interaction picture, where both the state kets and
the operators depend on time. Here above, the evolution operator has been written in
the interaction picture (hence the subscript “I”) since it is function of a time-dependent
Hamiltonian and takes the form shown in Eq.(3.16).
Under non-equilibrium conditions, the (anti)chronological Green’s function from Eq.(3.40)
becomes

G±i,j(t
′, t) =

− i
~ 〈ψ0(∞)| ÛI(∞, 0) T ±[ĉi(t

′)ĉ†j(t)] ÛI(0,−∞) |ψ0(−∞)〉
〈ψ0(∞)|ÛI(∞, 0)ÛI(0,−∞)|ψ0(−∞)〉

=
− i

~ 〈ψ0(∞)| T ±[ ÛI(∞,−∞)ĉi(t
′)ĉ†j(t)] |ψ0(−∞)〉

〈ψ0(∞)|ÛI(∞,−∞)|ψ0(−∞)〉
.

(3.59)

Scanning the equation from right to left: The system is brought adiabatically from
the remote past to the present, where a particle is created and annihilated (electron
or hole, depending on the sign of t′ − t) and the system finally returns to equilibrium
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in the distant future. Out of equilibrium, however, the remote past and distant future
ground states differ by a phase factor

|ψ0(∞)〉 = eiL |ψ0(−∞)〉 . (3.60)

To avoid using |ψ0(∞)〉 int the expression of G, we can take advantage of the fact that
|ψ0(∞)〉 = Û(∞,−∞) |ψ0(−∞)〉, to obtain

G±i,j(t
′, t) = − i

~
〈ψ0(−∞)| ÛI(−∞,∞)T ±[ ÛI(∞,−∞)ĉi(t

′)ĉ†j(t)] |ψ0(−∞)〉 , (3.61)

where the denominator vanishes since 〈ψ0(∞)|ÛI(−∞,−∞)|ψ0(−∞)〉 = I. Yet, the
numerator’s evolution operators cannot be combined because one belongs to the time-
ordering T ± and the other does not.
In order to solve the NEGF, we will show that one has to expand it perturbatively.
However, since |ψ0(∞)〉 is not connected to |ψ0(−∞)〉 in an obvious way, the solution
cannot be computed easily. Indeed, the evolution operators shown in the above ex-
pression contain series expansions (see Eq.(3.15)), which are too intricate to be solved
this way.

Note: In this section, for the sake of simplicity, we have resorted to the fundamental
state |ψ0〉 that describes the system at T = 0. However, in the general case, we can
use the density matrix, as discussed in Sec.3.2.2.

3.4.1 Keldysh contour

The Keldysh formalism [1–3] proposes to discard any explicit reference the distant
future t = ∞ by using a specific integration path, composed of two time branches
(Fig.3.1). The upper branch C� extends from t = −∞ to t = ∞, whereas the lower
branch C� does the opposite. If the upper/lower branch times are denoted “t�/�”, one
gets a total contour C = C� ∪C� which goes from t = −∞� to t = −∞�. In that case,
the contour-ordered Green’s function reads

Gi,j(t
′, t) = − i

~
〈 T C [ĉi(t

′)ĉ†j(t)ÛI(−∞�,−∞�)] 〉 , (3.62)

where we have dropped the equilibrium time-ordering operator and introduced the
contour-ordering operator T C , which orders the elements according to their position on
the Keldysh contour. The time-evolution operator takes the form shown in Eq.(3.16),
integrated along C

Û(−∞�,−∞�) = T C exp
(
− i

~

∮
C
dτ Ŵ(τ)

)
. (3.63)

Fig.3.1 shows the time contour C and represents graphically where are located the time
boundaries t and t′ of the various Green’s functions. In order to help the interpretation
of their physical meaning, one can also make the connection with the explanations given
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Figure 3.1: Plain line: The Keldysh time-contour and its two branches C� and C�. Dotted
lines: graphical representations of the Green’s functions on the time contour. The arrows always
go from t to t′. The chronological and antichronological functions G+ and G− correspond to
the probability amplitude for a particle (electron or hole) to travel respectively forward in time
(upper branch) or backward in time (lower branch). The lesser and greater functions G< and
G> are each associated to a specific type of particle, but can either correspond to a forward
or a backward time propagation (represented by the crossing arrows). Figure partially inspired
from [6].

after Eq.(3.43).
Mathematically, they can be expressed as follows:

G+
i,j(t

′, t) = − i
~
〈 T C [ĉi(t

′
�)ĉ†j(t�)] 〉

G−i,j(t
′, t) = − i

~
〈 T C [ĉi(t

′
�)ĉ†j(t�)] 〉

G>i,j(t
′, t) = − i

~
〈ĉi(t′�)ĉ†j(t�)〉

G<i,j(t
′, t) =

i

~
〈ĉ†i (t

′
�)ĉj(t�) 〉

(3.64)

The equilibrium and non-equilibrium Green’s function formalisms are, otherwise, struc-
turally equivalent (as long as the adiabatic assumption holds). The retarded and
advanced non-equilibrium Green’s functions can be obtained and the definitions in-
troduced in the equilibrium case in Sec.3.3 (charge, density of states, ...) still hold at
non-equilibrium. In other words, the NEGF formalism can be used to treat quantum
transport as a stationary problem, while a current is nonetheless flowing through the
device. The aim of the next sections is to show how this current is actually computed.

3.4.2 Dyson equation and self-energy

Figure 3.2: Diagram representation of the interacting Green’s function (left hand side), per-
turbatively expanded into a unperturbed term (simple line) and an infinite series of n-th order
scattering processes. The terms of this series can be brought together in a single quantity: the
self-energy Σ (right hand side).
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In nanodevices, the electrons are subjected to various interactions as they travel
from one contact to the other. In order to include these interactions one can exploit
the recursive structure of the Green’s functions. If we consider the Green’s function
for an unperturbed system G(0) and a perturbation Ŵ, the total Green’s function can
be expanded as [5, 7]

Gi,j(t
′, t) = G

(0)
i,j (t′, t) +

∫ t′

t
dt1 G

(0)
i,m(t′, t1) Ŵm,n G

(0)
n,j(t1, t)

+

∫ t′

t
dt2

∫ t2

t
dt1 G

(0)
i,α(t′, t2) Ŵα,β G

(0)
β,m(t2, t1) Ŵm,n G

(0)
n,j(t1, t)

+ ...

(3.65)

This series expansion can be interpreted as a succession of scattering events, repre-
sented in the form of diagrams in Fig.3.2. The most basic event corresponds to the
free propagation from time t to time t′ with no scattering. It can be represented as a
single line. One then adds a first order scattering event, occurring between times t and
t′. We then keep adding intermediate interactions as we iterate through this process.
Ultimately, the overall scattering perturbation can be merged in a single term, called
the self-energy Σ. The Green’s function now reads

Gi,j(t
′, t) = G

(0)
i,j (t′, t) +

∫ t′

t
dt2

∫ t2

t
dt1 G

(0)
i,m(t′, t2) Σm,n(t2, t1) Gn,j(t1, t). (3.66)

In other words, the self-energy allows us to obtain the perturbed (out-of-equilibrium)
Green’s functions in terms of the unperturbed (equilibrium) ones. In a more compact
form, for the retarded quantity, we have:

GR = GR(0) +GR(0) ΣR GR (3.67)

This equation is called the Dyson equation and ΣR is the retarded self-energy. Deriving
the expression for the greater and lesser Green’s functions is less straightforward and
requires to perform the integration on the Keldysh contour described in Sec.3.4.1 and
to use the Langreth’ rules [1], which state that a function D defined by

D(t′�, t�) =

∫
C

dt1 A(t′�, t1)B(t1, t�), (3.68)

corresponds to a lesser quantity of

D<(t′, t) =

∫
dt1

(
AR(t′, t1)B<(t1, t) +A<(t′, t1)BA(t1, t)

)
. (3.69)

As a result, it can be proven that [2]

G< = GR Σ< GA (3.70)
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Resorting to a self-energy term is a very versatile approach that allows one to include
different types of interactions. This high adaptability is one of the main strengths of
the NEGF method. In practice, Σ can actually represent all the interactions of an
electron with the other particles in the system. However, even though the general
form of the Dyson equation is rather compact and straightforward, the main challenge
comes from the derivation and the computation of the various self-energies. We note
that many of the expressions relating the Green’s functions to one another also hold
true for the self-energies. For example

ΣR − ΣA = Σ> − Σ<, (3.71)

is similar to Eq.(3.43) and we can also write

ΣR = (ΣA)†. (3.72)

3.4.3 Electron-electron interaction: Poisson’s equation

Even though we treat one-electron problems, the electron-electron interaction can be
partially accounted for, by considering that each electron moves in a potential that
comes from its average interaction with all of the other carriers [1]. In second quanti-
zation, a many-body system can be described by the following Hamiltonian

Ĥ =

∫
dr ĉ†(r)

[
− 1

2
∇2 + V (r)

]
ĉ(r)︸ ︷︷ ︸

one-body

+
1

2

∫
dr

∫
dr′ ĉ†(r)ĉ†(r′) v(r− r′) ĉ(r′)ĉ(r)︸ ︷︷ ︸

two-body

.

(3.73)

The one-body part (left hand side) is the usual one-body Hamiltonian and the two-
body part (right hand side) contains a Coulomb interaction term v.

v(r− r′) =
e2

4πε |r− r′|
, (3.74)

where ε is the dielectric constant of the medium. Similarly to the perturbative expan-
sion detailed in Sec.3.4.2, the contribution of the two-body part of the Hamiltonian
can be approximated (at the lowest order) by the Hartree self-energy, as [8]

ΣHartree(r, t) = −i~
∫

dr′ v(r− r′) G<(r′, t; r′, t). (3.75)

Since n(r, t) = −i~ G<(r, t; r, t) (see Eq.(3.54)), we obtain

ΣHartree(r, t) =

∫
dr′ v(r− r′) n(r′, t)

=

∫
dr′

ρ(r′, t)

4πε |r− r′|
= −eφ(r),

(3.76)
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where ρ is the charge density and φ is the electric potential. Finally, we obtain the
Poisson’s equation

∇ ·
(
ε(r)∇φ(r)

)
= −ρ(r) (3.77)

In our simulations, the charge density due to the free carrier concentration can be
obtained by solving the retarded Green’s function (Eq.(3.54)). The charge will also
be affected by the introduction of dopants, or by the electrostatic potential at the
electrodes (due to the application of voltages). For that reason, the Poisson’s equation
and the NEGF are computed iteratively in a so called Poisson-Schrödinger cycle. Once
the Poisson’s equation has been solved by accounting for the charge density obtained by
the NEGF, φ is used as an input for the potential energy of the one-body Hamiltonian,
to recompute the NEGF. The process is repeated until a desired level of convergence
is reached.

3.4.4 Electron-phonon interaction: SCBA

Scattering mechanisms can be relevant when considering transport in nanodevices. In-
deed, vibrations in the lattice (i.e. phonons) can cause changes in the crystal potential,
which, in turn, can affect the flow of the electrons. Phonons are implemented within
the deformation potential method and the electron-phonon interaction is approximated
as being local. The lesser/greater phonon self-energy reads

Σ≶ph = D≶0 G
≶, (3.78)

where D≶0 is the Green’s function of the unperturbed phonon bath. In the expression
adopted in this work, acoustic phonons are treated within the elastic approximation,
whereas polar optical phonons are assumed to be dispersionless.
For acoustic phonons, the corresponding lesser/greater quantity at the i -th slice and
for the n-th mode reads [1, 9]

Σ≶ac,i(n, n,E) =
D2

ackBT

ρν2
S

∑
m

Ii(m,n) G≶i (m,m,E) , (3.79)

where Dac stands for the acoustic deformation potential, ρ is the material density, νS
is the sound velocity and I is the form factor, that is used to transform the expression
of the self-energy from the real-space to the mode-space (see Sec.2.7)

Ii(m,n) =

∫
dz |χi(m, z)|2 |χi(n, z)|2. (3.80)

Likewise, the lesser self-energy term for the optical phonons is written

Σ≶opt,i(n, n,E) =
~D2

opt

2ρωopt

∑
m

Ii(m,n)G≶i (m,m,E ± ~ωopt)

[
NBE(~ωopt) +

1

2
± 1

2

]
,

(3.81)
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where Dopt is the optical deformation potential, ωopt is the optical phonon frequency
and NBE is the Bose-Einstein distribution function, corresponding to the average
phonon density at the energy ~ωopt

NBE =
1

e(~ωopt/kBT ) − 1
. (3.82)

Once these self-energies have been computed, the total lesser/greater self-energy for
phonons is simply given by

Σ≶ph = Σ≶ac + Σ≶opt. (3.83)

Finally, from Eq.(3.71), the retarded self-energy for phonons is approximated by

ΣR
ph,i =

1

2

(
Σ>

ph,i − Σ<
ph,i

)
. (3.84)

As discussed in Sec.3.4.2, computing the self-energies is necessary to implement inter-
action phenomena in the NEGF. However, as shown above, the Green’s functions are
also required to solve the phonons’ self-energies. Consequently, in a similar way than
the Poisson-Schrödinger cycle detailed in Sec.3.4.3, we perform a self-consistent Born
approximation (SCBA) cycle, that consists in solving Σph and G≶ iteratively, until a
desired degree of convergence is achieved. More details on the connection between the
SCBA and the Poisson-Schrödinger cycles are given in Sec.3.5.

3.4.5 Electrical current

In Sec.3.3 and 3.4.1, we have shown that the NEGF allowed one to compute the carrier
concentration and the density of states in a system brought out of equilibrium (that
can typically correspond to a transistor, connected to its environment via two leads).
The last quantity essential for electron transport is evidently the electrical current.
Let us consider a Hamiltonian of the form

Ĥ =
∑
i

Ei ĉ
†
i ĉi +

∑
i 6=j

ti,j ĉ
†
i ĉj , (3.85)

where E is the on-site energy and t is a hopping term. The charge on a given site i is

q̂i = −e ĉ†i ĉi. (3.86)

The total current that leaves site i towards the coupled sites can be obtained with the
continuity equation [2]

Ĵi = −∂qi
∂t

= − 1

i~
[
qi, Ĥ

]
−. (3.87)

Hence, we obtain

Ĵi =
−ie
~
∑
j

(ti,j ĉ
†
i ĉj − tj,iĉ

†
j ĉi). (3.88)
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The current flowing from site i to a specific neighbor j is thus restricted to

Ĵi→j =
−ie
~

(ti,j ĉ
†
i ĉj − tj,iĉ

†
j ĉi). (3.89)

From Eq.(3.64), this current also reads

Ji→j = −e
(
ti,jG

<
i,j(t = 0)− tj,iG<j,i(t = 0)

)
. (3.90)

In this work, we are interested in the solutions in the energy domain. The conversion
can be done accordingly to the procedure presented in Sec.3.3.1

Ji→j = − e
h

∫
dE

(
ti,jG

<
i,j(E)− tj,iG<j,i(E)

)
= − e

h

∫
dE 2<

[
tj,iG

<
i,j(E)

]
.

(3.91)

Figure 3.3: Simplified view of the NEGF that highlights the relevant parts of the NEGF matrices
that are used to compute the LDOS, the current and the carrier density (and consequently, the
charge). The LDOS and the current are obtained with G≶ via Eqs.(3.55) and (3.91), whereas
the LDOS comes from GR, as shown in Eq.(3.56).

To conclude, we have shown in Eq.(3.54) that the electron and hole densities could
be obtained with the diagonal elements of the G< matrix. Moreover, we have also
explained of the local density of states could be computed with the diagonal part of
GR (Eq.(3.56)). In the present section, we consider a third physical quantity that is
connected to the off-diagonal terms of G<, namely the electrical current. As illustrated
in Fig.3.3, we will thus only be interested in a limited portion of the GR and G<

matrices in the simulations.

3.5 Computational implementation

Even though finding the eigenvalues of the Hamiltonian and solving Poisson’s equation
is within the reach of a standard desktop computer, the computation of the SCBA and
the NEGF are very resource demanding. In order to optimize the performances of the
code, the algorithm is implemented in Fortran. This compiled language is well suited
for high performance scientific computing and gives access to optimized linear algebra
libraries that are particularly convenient for the purpose of this work. As detailed in
Sec.3.5.2, we also resort to parallel programming to speed up the computation of the
SCBA cycles. Fig.3.4 presents a general view of the simulation code, in the form of a
block diagram. The Schrödinger block corresponds to the ideas developed in Chap.2,
whereas the SCBA and Poisson blocks contain parts of the formalism derived in the
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present chapter. The inputs required in the code are a finite elements mesh file that
details the structure (geometry, materials, regions), a list of the materials’ properties
and a file that contains the physical (voltages, phonons, doping) and computational
(cycles precision and cutoff, parallelization) parameters. The outputs contain a wide
range of physical quantities related to transport, among which is the current, the
carrier distribution, the electrical potential, the density of states, the bands, or the
wave functions.

3.5.1 Recursive scheme

Similarly to the method employed to discretize the Hamiltonian (Sec.2.6), we adopt a
finite difference grid to compute the NEGF. We recall from Eq.(3.49) that the complete
retarded Green’s function reads [4]

GR = (EI − Ĥk.p − Σ)−1. (3.92)

As we notice, this matrix has the same dimension than the total eight-band k · p
Hamiltonian, which represents as much as (Nb ×Nx ×Ny ×Nz)

2 elements in the case
of a 3D system. Directly solving this equation represents a very heavy task and would
have to be done multiple times on a large energy grid. However, only a limited portion
of the Green’s function is actually required to compute the transport (Fig.3.3). This is
one of the reasons why, in this manuscript, we have focused on expressing the NEGF as
matrix elements, rather than using the full matrix notation. If the total Hamiltonian
is written as a tri-diagonal block matrix, the NEGF can be computed step by step by
slicing the problem along the transport direction and by considering only first-neighbor
slice-slice interactions, as shown in Fig.3.5. In this chapter, the notation “Gi,i” refers
to the Green’s function of the i-th slice, and no explicit reference to the direction
transverse to transport is made.

Additionally, Caroli et al. have proposed to split the system into three distinct
parts [10]. The left and right regions surround a central region, where all the in-
teractions occur. Conversely, the right and left contact regions are viewed as inert and
do not host any interaction. In the case of nanostructures, this assumption is justified
since most of the interaction processes happen in the structure itself (due to its high
susceptibility to its environment) rather than in the contacts. Once an electron ex-
its the system, we assume that it does not affect the state of the leads, whose Fermi
energies remain perfectly stable. As explained in the introduction of this chapter, we
simply consider that the device is connected to semi-infinite electron reservoirs whose
behavior is perfectly under control. In the case of a transistor, these reservoirs’ Fermi
levels are directly related to an applied voltage, that can be freely chosen. The position
of the right, central and left regions also results from an arbitrary choice. In practice,
this means that the self-energy can be split into three components:

Σ = Σ←︸︷︷︸
Left

+ Σph︸︷︷︸
Center

+ Σ→︸︷︷︸
Right

, (3.93)

where the Σ← and Σ→ the left- and right-connected self-energies are related to the
contacts and the phonon self-energy comes from the central region (since we consider
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Figure 3.4: Structure of the code. The algorithm is composed of two main loops: the outer
Poisson-Schrödinger loop and the inner SCBA loop, which encompasses the computation of
the NEGF (using the recursive scheme detailed in Sec.3.5.1) and the phonons. The underlined
terms are the main outputs of the code, since they correspond to tangible physical quantities and
contain many information about the transport. More pragmatically, in the case of a transistor,
this piece of program allows us to obtain the (steady-state) current for specific gate and supply
voltages (that are included as input parameters via the “external stimuli” initialisation block).
Note that once the convergence is reached by the Poisson’s equation, a last SCBA cycle is
actually performed before extracting the final physical quantities.

that no scattering occurs outside of the device). This implies that Eqs.(3.92) and
(3.70) now read

GR = gR + gR(ΣR
← + ΣR

ph + ΣR
→)GR,

G< = GR(Σ<
← + Σ<

ph + Σ<
→)GA,

(3.94)
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Figure 3.5: Recursive approach corresponding to the NEGF block of Fig.3.4. In the first stage
(left), we start from the left contact and compute the left-connected Green’s functions g< and
gR. The self-energies of the previous slice Σ<,← and ΣR,← are included through Eq.(3.95)
and the phonon self-energies Σ<

ph and ΣR
ph are also added. The resulting Green’s functions are

incomplete, since the right self-energies are missing in the computation. Thus, in the second
stage (right), we repeat the process from right to left and the complete Green’s functions G<

and GR are finally obtained. At the contacts, since no previous step exists to determine the

right/left-connected self-energy, Σ
</R
Lead is used.

where the lower case Green’s functions correspond to a right- or left-connected system.
Using the notation of Eq.(3.85), the left-connected components can be written

ΣR,←
i,j = ti,m gRm,n tn,j ,

Σ<,←
i,j = ti,m g<m,n tn,j .

(3.95)

where the terms t are the Hamiltonian’s hopping terms.
The recursive method [11] consists in solving the NEGF on each slice iteratively by
considering its interactions with its previous neighbor. Each computation step can be
seen as a small lead-device-lead system (where each slice plays successively the role
of the device). A slice is affected by the self-energy Σ→ of its right neighbor, by the
self-energy Σ← of its left neighbor and by a phonon self-energy Σph. If we start to solve
the problem from the left contact, the right side terms will be unknown, since Σ→ is
related to Ĥi+1,i, which has not been computed yet. For that reason, the recursive
approach comprises two stages:

• First, the problem is solved from left to right and allows one to obtain the left-
connected lesser and retarded Green’s functions, g< and gR.

• Second, once we reach the right contact, the problem is solved backwards, from
right to left. This time, both the previous (right) and the next (left) neighbors
are known and we can derive the complete Green’s functions GR and G<.

At the beginning of each stage, it is necessary to compute the initial self-energy, coming
from the contact. This is done with the Sancho-Rubio iterative procedure, that is
designed to determine the surface Green’s function at an interface with a semi-infinite
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homogeneous reservoir (more details can be found in [12]). Once we know the lead’s
self-energy Σlead, the first left-connected terms can be obtained from Eq.(3.94):

gR1,1 = (EI1,1 − Ĥ1,1 − ΣR
ph,1,1 − ΣR

lead)−1, (3.96)

g<1,1 = gR1,1 (Σ<
ph,1,1 + Σ<

lead) gA1,1. (3.97)

where the phonon self-energies Σph have been calculated with the procedure detailed
in Sec.3.4.4. We can then solve the diagonal elements iteratively, by using the previous
slice’s results to determine the left-connected self-energy via Eq.(3.95)

gRi,i = (EIi,i − Ĥi,i − ΣR
ph,i,i − Ĥi,i−1 g

R
i−1,i−1 Ĥi−1,i︸ ︷︷ ︸

ΣR,←
i−1,i−1

)−1, (3.98)

g<i,i = gRi,i (Σ<
ph,i,i + Ĥi,i−1 g

<
i−1,i−1 Ĥi−1,i︸ ︷︷ ︸

Σ<,←
i−1,i−1

) gAi,i. (3.99)

Once the right contact has been reached, the same procedure can be repeated back-
wards. We obtain the complete retarded Green’s function

GRi,i = GRi,i + gRi,i
(
Ĥi,i+1 G

R
i+1,i+1 Ĥi+1,i

)︸ ︷︷ ︸
ΣR,→
i+1,i+1

gRi,i. (3.100)

The resulting trace GR(i, E) allows us to compute the local density of states
(LDOS) along the transport direction, as a function of the energy, via Eq.(3.56).
In order to solve G<, we introduce an additional expression

G< = g< + gRΣ<gA + gRΣRg< + g<ΣAgA. (3.101)

Thus, the diagonal part of the lesser Green’s function can be computed as

G<i,i = g<i + gRi,i
(
Ĥi,i+1 G

<
i+1,i+1 Ĥi+1,i

)
gAi,i

+ gRi,i
(
Ĥi,i+1 G

R
i+1,i+1 Ĥi+1,i

)
g<i

+ g<i,i
(
Ĥi,i+1 G

A
i+1,i+1 Ĥi,i+1

)
gAi,i,

(3.102)

The same procedure can be applied to G> and the electron and hole densities can
be extracted with Eq.(3.54).
Finally, the off-diagonal values are obtained with

G<i,i+1 = G<i,i Ĥi,i+1 g
A
i+1,i+1 +GRi,i Ĥi,i+1 g

<
i+1,i+1,

G<i+1,i = G<i+1,i+1 Ĥi+1,i g
A
i,i +GRi+1,i+1 Ĥi+1,i g

<
i,i.

(3.103)
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These values are used to compute the spectral current J(i, E) with the expression
developed in Eq.(3.91)

Ji→ i+1 = − e
h

∫
dE

(
Ĥi,i+1G

<
i,i+1(E)− Ĥi+1,iG

<
i+1,i(E)

)
. (3.104)

Once these quantities have been calculated on all the energy grid, the SCBA approach
consists in using G≶ to solve the phonon self-energies Σ<

ph and ΣR
ph, with the approach

discussed in Sec.3.4.4. These self-energies will be used to recompute G≶ and GR, and
the process will be repeated until the convergence of the algorithm is reached.
As illustrated in Fig.3.4, when the convergence of the SCBA has been achieved, the
resulting carrier density is transferred to the Poisson’s equation, where the electric
potential can be computed. Note that since we are working in the mode-space, it
is necessary to transform G≶ back into the real-space to obtain the spatial carriers
distribution. The transformation is done with

G≶RS,i,j =

modes∑
m,n

χm∗i G≶MS,m,n χ
n
j , (3.105)

where we used the notation introduced in Sec.2.7. Finally, the electric potential is
used as an input to recompute the eight-band k · p Hamiltonian and to start another
Schrödinger-NEGF-Poisson cycle.
Ultimately, the non-equilibrium steady-state transport – with a given set of external
conditions – is solved. In practice, this corresponds to the state of the nanoelectronic
device when its electrodes are connected to a given voltage.

3.5.2 Convergence

The accuracy and the speed of the computation is related to many parameters. Both
the SCBA and the Poisson-Schrödinger loops have their own tolerances and cut-off
limits. The size of the device and the number of modes also play an important role in
the simulation time.
To make the computation faster, we resort to parallelization of the code on several
CPUs. The parallel resolution is performed on the energy grid during the SCBA loop
(where the simulation spends a large amount of time). The total energy range is split
into fragments of size ∆E (defined as an input) and each of these fragments is shared
by Nsub subprocesses (that correspond to individual CPU cores). The energy reso-
lution is thus given by R = ∆E/Nsub, which is close to 1 meV in our case. If Nsub

is increased, the resolution is improved; and if ∆E is increased, the simulation gets
faster. Thereby, if both quantities are increased so that R remains unchanged, the
computation is sped up with no loss of precision. However, ∆E must not be chosen ar-
bitrarily, since another constraint comes into play: we also have to consider an integer
parameter Nop such that ~ωopt = Nop ×∆E, with ωopt the optical phonons frequency
(see Sec.3.4.4). In practice, we want ~ωopt = 30 meV, which means that ∆E cannot
exceed 30 meV either (for which we would set Nop = 1).
Finally, on a larger scale, the whole computation can also be divided into multiple
individual steps. Indeed, the operation of the device is split into separate stages,
each corresponding to a steady-state solution under a given set of external stimuli
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(source-drain voltage, gate potential, etc.). These steps being independent, they can
be computed in parallel. However, for a given number of available cores, this kind of
parallelization does not necessarily lead to a faster simulation. When several states of
the device are computed in series, the solution for the potential φn is kept as an input
“guess” for step n+ 1. There is a significant time difference between a simulation step
performed with and without such an initial guess. When all these steps are solved in
parallel, one does not benefit from this boosting effect anymore.
We shall also note that only a fraction of the code is parallelized. Thus, we cannot
establish a linear relation between the number of subprocesses and the expected du-
ration of the simulation. As a perspective, the convergence of the algorithm could be
accelerated by performing the coupled mode-space, form factor or Poisson computation
in parallel. We may also consider keeping the solution of the last Green’s functions as
a starting guess for the following iteration.



BIBLIOGRAPHY 63

Bibliography

[1] M. Pourfath. Non-Equilibrium Green’s Function Method for Nanoscale Device
Simulation. Springer, 2014.

[2] A. Cresti. Theoretical Imaging of Currents in Nanostructures. PhD thesis, Uni-
veristy of Pisa, 2005.

[3] R. van Leeuwen G. Stefanucci. Nonequilibrium Many-Body Theory of Quantum
Systems: A Modern Introduction. Cambridge University Press, 2013.

[4] S. Datta. Quantum Transport: Atom to Transistor. Cambridge University Press,
2005.

[5] M. Di Ventra. Electrical Transport in Nanoscale Systems. Cambridge University
Press, 2008.

[6] P. Kakashvili and C. J. Bolech. Time-loop formalism for irreversible quantum
problems: Steady-state transport in junctions with asymmetric dynamics. Phys-
ical Review B, 78(3), jul 2008.

[7] J. D. Walecka A. L. Fetter. Quantum Theory of Many-Particle Systems. McGraw-
Hill, 1980.
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CHAPTER 4

In(Ga)As planar MOSFET

In which we introduce the basics of FET design, apply these principles to the
case of III-V semiconductor nanotransistors and understand the role of the
various geometrical and physical parameters.

As discussed in Chap.1, the goal of this work is to identify possible alternatives to
silicon-based field effect transistors (FETs). For this assessment to be quantitative,
we have to define what criteria should be evaluated. In practice, the aim is to find a
device that - when compared to silicon FETs - would:

• show an improved subthreshold swing (SS),

• and/or show a larger on-current (Ion).

These two properties are related to the fundamental goals of a transistor, formulated
in the introduction (i.e. “switch between its on and off states as fast as possible”
and “keep these states sufficiently distinguishable”). The third task (“generate as
little energy dissipation as possible”) will not be explicitly treated in this chapter.
However, different operating regimes, which correspond to various fields of application
(and therefore different power consumptions), will be described later.

4.1 Quantities and definitions

Despite not being identical, all the devices presented in this work share some common
properties. Geometrically, they are essentially made of three distinct parts, whose
name allude to the field of hydraulics: the source, the channel and the drain. The
electrons enter the device from the source, travel through the channel, and exit from
the drain. The channel is the active part of the transistor, since it is (partially or
totally) covered by a gate electrode, which generates a potential barrier when a gate
voltage VGS is applied. This metallic electrode is separated from the channel by an
oxide layer, hence the acronym “MOS” (Metal-Oxide-Semiconductor). The voltage
VGS modulates the shape of the barrier (usually its height - but also its width in the
case of a Tunnel-FET), which can allow (or prevent) a current IDS to flow from the
source to the drain. This current also increases with the energy difference between
source and drain electrons, which is connected to the source-drain voltage VDS.
The performance of a transistor is evaluated for a given off current Ioff and a fixed
value of VDS (corresponding to the supply voltage VDD). The initial off-state gate
voltage is denoted Voff . It is then increased until VGS = Voff + VDS, where one can
finally extract the on-current Ion

Ion ≡ IDS(Voff + VDS) (4.1)

65
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Figure 4.1: Typical transfer characteristic of a transistor, showing the evolution of the current
IDS as a function of the gate voltage VDS. The arrows show how, from a given set of Ioff and
VDS, one can obtain the corresponding on current Ion and subthreshold swing SS.

The subthreshold-swing (SS) is proportional to the increase rate of VGS for a given
change in IDS. It is conventionally expressed in mV/dec and corresponds to the varia-
tion of VGS required to increase the source-drain current by one order of magnitude. It
is usually measured between Voff and a so called threshold voltage Vth, which denotes
the minimum gate voltage needed to create a conducting channel between the source
and the drain. It is evaluated with the formula

SS =
Vth − Voff

log10

(
Ith/Ioff

) (4.2)

Where Ith is the threshold current, defined here as Ith=1 A/m. Moreover, in a MOS-
FET, the SS can also be modeled by the following expression [1]

SS = ln(10)
kBT

e
(1 +

Cd
Cox

) (4.3)

Where Cox is the capacitance of the oxide and Cd is the capacitance of the depletion
region; i.e. the domain from which the carriers have been forced away by the gate
potential (which roughly corresponds to the channel). In an ideal MOSFET device,
the ratio Cd/Cox should tend towards zero. At room temperature (300K), the best
possible subthreshold swing is thus close to 60 mV/dec. For this reason, we shall not
expect our MOSFET device to go beyond this limit. We may nonetheless try to get
as close to it as possible.
To summarize, depending on the range of applications targeted, one chooses an appro-
priate set of Ioff and VDS and evaluates the performance of the device by extracting
the values of Ion and SS, as shown in Fig.4.1. The specifications to meet are listed in
the International Technology Road-map for Semiconductors (ITRS) [2] and will serve
us as a reference for the rest of this work.
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4.2 Channel material

Before focusing on novel device architectures, we shall study a ultra-thin-body (UTB)
MOSFET in which the silicon channel has been replaced by a III-V compound semi-
conductor. Indeed, by combining materials from groups III and V, it is possible to
obtain various compounds that present better transport properties than silicon, due
to their higher mobility and lower effective mass [3]. These semiconductors promote
the establishment of a ballistic transport regime [4], which is beneficial for the device
performance. On the other hand, III-V semiconductors are also expected to be more
sensitive to short channel effects (SCE) [5]. This term refers to the detrimental phe-
nomena that arise when the channel length is decreased. Indeed, handling the flow
of electrons through a nanoscale channel requires a good electrostatic control, which
is more easily achieved in silicon. The class of materials studied in this work suffers
from noticeable electron tunneling and leakage. Given this bittersweet information,
one cannot readily conclude whether III-V could outperform silicon technology. The
aim of this chapter is to carry an introductory investigation on this issue, by focusing
on the specific case of an InAs n-type MOSFET.

4.3 Description of the device

Figure 4.2: Scheme of the InAs UTB MOSFET. The thickness is indicated on each layer, while
the lengths of the doped regions, spacers and gate (respectively Ldop, Lsp and LG) are detailed
in Tab.4.1. The block drawn on top of the oxide layer corresponds to the position of the gate
contact. The doping of the InAs regions marked with “n-doped” is 3×1019cm−3, while the rest
of the channel remains undoped.

4.3.1 Channel

We design an InAs MOSFET with a 2.4 nm thick channel, inspired from the exper-
imental work of [6]. This InAs layer is grown on a In0.52Al0.48As surface, where the
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Thicknesses (nm) Lengths (nm)
tInAs tInAlAs tAl2O3 tZrO2 LG Ldop Lsp

2.4 100 0.5 2 8, 15, 25, 40 20 17

Table 4.1: Geometrical parameters of the studied device. The corresponding lengths are shown
on Fig.4.2

subscripts denote the respective molar fractions of each element. In practice, this alu-
minum/indium molar ratio allows the ternary compound to match the InP substrate
lattice constant (not modeled here), thus avoiding dislocations. However, there is still
a lattice mismatch between InAs and InAlAs (aInAs > aInAlAs). For that reason, the
channel undergoes compressive strain, while the InAlAs is assumed unstrained in our
simulations. As explained in Sec.2.8, the effect of strain in the transport is modeled by
adding a strain interaction matrix to the 8×8 k · p Hamiltonian. In order to compute
the value of the axial strain ε‖, we compare the lattice parameters of the stacked ma-
terials. The transverse strain ε⊥ is then simply obtained with a macroscopic approach,
using the material’s Poisson’s ratio (ν = ε⊥/ε‖). Consequently, in the InAs channel,
we obtain ε‖ = −0.0311 and ε⊥ = 0.0338. The total Hamiltonian then writes

Ĥtot = Ĥ8,k.p + Ĥ8,strain, (4.4)

where the Ĥ8,k.p and Ĥ8,strain parameters are shown in Tab.4.2. Additional parameters,
such as the number of conduction and valence modes and the phonon parameters are
listed in Tab.4.3.

4.3.2 Oxide

To reproduce the experimental results as precisely as possible, the gate oxide is com-
posed of 0.5 nm of Al2O3 on top of 2 nm of ZrO2. To evaluate the properties of these
gate layers, a comparison can be made with the conventional SiO2 oxide by computing
the equivalent oxide thickness (EOT)

EOT = tox
εSiO2

εox
, (4.5)

where tox corresponds to the actual oxide thickness and ε denotes a dielectric constant.
Here, the EOT of the oxide layers add up to a total of 0.52 nm, which is an aggressive,
but still achievable value.

4.3.3 Regions

The transistor is composed of three different parts, as shown on Fig.4.2. The corre-
sponding dimensions are listed in Tab.4.1.
First, the source and the drain regions are 20 nm long. This shall allow the subbands
to stabilize before reaching the right and left contacts. These regions are doped (i.e.
charge impurities are introduced in the semiconductor) in order to make available
mobile charge for the injection into the channel. In the simulations, the dopant con-
centration is set to NSD = 3× 1019cm−3 in both the source and the drain.
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InAs In0.52Al0.48As

EG 0.417 1.879 (eV)
EP 18.0 18.29 (eV)
γC 2.25 1.04
γL1 20.00 12.20
γL2 8.50 4.81
γL3 9.20 5.47
m∗ 0.026 0.098 (m0)

∆SO 0.39 0.37 (eV)
ε 15.5 12.88

b -1.80 -2.04 (eV)
d -3.60 -3.50 (eV)
av -1.00 -1.71 (eV)
ac -5.35 -5.35 (eV)

Table 4.2: k · p (top) and strain (bottom) parameters used in the simulation [7]. The InAlAs
parameters are obtained using Bowing’s interpolation between InAs and AlAs.

Phonons Modes Transport Temp.
Dac(eV) Dopt(108eV/cm) ~ωop(meV) CB VB direction (K)

5.8 2 30 4 4 [100] 300

Table 4.3: Simulation parameters used for the MOSFET device. The phonon deformation
potentials are taken from [8]

Second, spacer regions are added before and after the gate. These undoped channel
extensions are often introduced to reduce SCEs. Indeed, even though they are not
located directly under the gate contact, they will still contribute to increase the width
of the potential barrier, which shall reduce off -state tunneling phenomena [5]. They
also help to decouple the doped regions and the gate, thus improving the electrostatic
control of the gate.
Third, the gate length LG will range from 8 to 40 nm. Size reduction is indeed a
keystone in the design of novel devices, but can lead to various detrimental phenom-
ena that have been described earlier. For that reason, we will study the effect of gate
length reduction on the performance of the device in Sec.4.7

4.4 Simulations

Let us define x as the direction of transport and z as the vertical direction (the direction
in which the layers are stacked). The system is periodic in the third direction y and
the total wave function can be written

ψ(x, y, z) = ψW (x, z)eikyy, (4.6)

where ψW is the wave function of a device of width W along the y direction. Thus,
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the discretization of the Hamiltonian is performed in the real-space along x and z and
in the k-space along y. Put another way, we have

Ĥ ≡ Ĥ(−i ∂
∂x
, ky,−i

∂

∂z
). (4.7)

Here, we have set W = 10 nm after observing that the results remained unchanged if
we kept increasing the width beyond this value. A more detailed derivation of such a
2D Hamiltonian is done in Sec.2.6. This choice of discretization allows us to account
for the heterostructures present in the device. Indeed, the materials have been chosen
in such a way that the band structure gives rise to a two-dimensional electron gas
(2DEG) in the channel. The small-gap InAs is sandwiched between two large-gap
materials, which create a potential well and confine the electrons along the z direction.
If the whole bulk of the device was made of InAs, the electron flow could occur outside
of the 2.4 nm channel layer and this confinement would not arise. Such an architecture
is similar to the silicon on insulator (SOI) MOSFETs, where the Silicon channel in
grown on a buried oxide. Fig.4.3 shows a vertical section of the energy bands and the
way they are modified when a gate voltage is applied.

-5

-4

-3

-2

-1

0

1

2

3

4

100 102 104 106 108 110

E
(e
V
)

z (nm)

2D electron gas

Voff

Von

InAlAs InAs

Oxide

CB

VB

Figure 4.3: Conduction (CB) and valence (VB) bands of the off-state (plain lines) and on-
state (dotted lines) transistor, along the z direction. The cut has been done in the middle
of the channel, at position x=50 nm, for VDS=0.7V. The electron gas (sketched in gray) is
confined in the InAs channel, due to the larger gap of the surrounding materials. Apart from
a slight band deformation near the oxide, the whole band structure is shifted towards lower
energies when the gate is switched on.

The figure also illustrates the effect of VGS on the band structure. The fact that the
bands are slightly bent shows that the coupling with the gate electrode increases as we
get closer to the oxide. However, this bend is quite weak when compared to the overall
downshift of the bands, created by the application of a gate voltage. This means that,
despite this slight curvature, the gate still controls the top and the bottom parts of the
channel nearly equally. Fig.4.4 confirms this statement, by showing that the electron
density in the channel is rather homogeneous in the vertical direction.
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Figure 4.4: Electron density in the InAs layer at the off state (top) and on state (bottom). The
source and the drain appear clearly more populated than the channel, due to their doping. In
the drain, the density is lower than NSD = 3× 1019cm−3 due to the presence of a source-drain
voltage VDS=0.7V.
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Figure 4.5: Transfer characteristics of the LG=25 nm device, under various bias voltages. The
SS degrades and Ioff increases as VDS gets larger. To understand this behavior, we shall first
focus on the VDS=0.7V device at the off state (VGS <0V).

4.5 Off state behavior

This MOSFET device is mainly suitable for high power (HP) applications. It means
that it shall be operated with VDS ≥ 0.5V and Ioff=0.1 A/m. In this first section,
we focus on the LG=25 nm device. I may also be noted that, from now on, the gate
voltage VGS is defined in such a way that Voff = 0V . In Fig.4.5, we plot the device’s
transfer characteristics for different VDS values varying from 0.1 to 0.9V. This plot is
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characterized by a significant increase of the off current and SS degradation as VDS

increases. To gain physical insight on this behavior, we first focus on the off state
of the VDS=0.7V device (whose SS is strongly degraded) and we plot, in Fig.4.6, the
lowest conduction (LC) and the highest valence (HV) subbands of this device, at low
VGS. We note that the effective gap is larger than in bulk InAs due to quantum-
confinement and strain effects [9]. A first observation which can be made from this
figure is that the LC subband is energetically lower than the HV subband near the
channel/drain junction area. The occupied states are determined by the position of
the source and drain Fermi levels ESF and EDF . This energy configuration, paired with
the shape of the bands, gives rise to band-to-band tunneling (BTBT) from the valence
band in the channel to the conduction band in the drain. However, as shown in the
spectral current distribution (Fig.4.7) such a tunneling does not directly contribute
to the overall IDS current: the electrons tunneling towards the valence band balance
those tunneling towards the conduction band. Moreover, the HV subband at the source
remains lower that the LC subband at the drain. The higher off current at high VDS is
predominantly due to thermionic current above the conduction-band potential barrier,
which is amplified as the source-drain voltage is increased.
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Figure 4.6: (a) Highest valence (HV) and lowest conduction (LC) subbands of the VDS=0.7V
device (at VGS=-0.5V), plotted in the channel direction and overlayed with the regions’ labels.
It also illustrates the role of the spacers as transition regions. (b) Sketch of the electronic
occupation of these subbands (shown in grey). ES

F and ED
F are the source and drain Fermi

levels. The small gap of the InAs allows electrons from the HV subband to tunnel to the drain’s
LC subband, which generates a hole accumulation under the gate.

To summarize, electrons can tunnel from the channel to the drain via a local
BTBT effect, without causing any direct increase of the off current. To explain why
this BTBT is still detrimental for the InAs MOSFET, we shall investigate the behavior
the device when VGS increases. Even though it does not contribute to the net current,
the BTBT actually induces a positive charge in the channel (or hole accumulation,
as shown in Fig.4.6-b), that acts against the gate potential and therefore decreases
the gate control on the channel barrier. This phenomenon, called hole-induced barrier
lowering (HIBL) [10] is especially present at low values of VGS. This can be explained
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(a) (b)

Figure 4.7: (a) Electron and hole densities in the subbands already described in Fig.4.6. This
corresponds to the carrier occupation in the HV and LC states, and confirms the presence of
holes in channel (HV) states energetically higher than drain (LC) states. (b) Spectral current at
the off state (VGS=-0.5V). The off current is actually due to thermionic effects above the top of
the LC subband, while the BTBT solely generate local charge accumulation without contributing
to the net current.
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Figure 4.8: Spatial profile of the highest valence subband and of the lowest conduction subband
at different VGS. The BTBT window (grey) only encompasses the lowest values of VGS. The
gate is thus more effective at larger gate voltages, since the positive charge accumulation in the
channel vanishes.

by looking at the evolution of the subbands as VGS increases: the BTBT window only
exists for VGS . 0V , but vanishes as the transistor is being switched on (and as the
HV subband, responsible of the HIBL, is lowered). This is more clearly illustrated by
Fig.4.8.
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4.6 Bias voltage scaling

We have just explained how BTBT and HIBL can be detrimental to the off state of the
device and thus to the overall performance of the InAs MOSFET. Let us come back to
our initial observation, which was that the off state was more degraded at high values
of VDS (Fig. 4.5). When comparing the subbands of low and high bias voltage devices
(Fig. 4.9), one notices that the BTBT window is greatly reduced when VDS decreases.
As depicted in Fig.4.10-a, values of VDS lower than 0.6V see their SS substantially
improved, due to the better control of the gate on the channel. This result confirms
what we have been saying up to now. Moreover, while we would normally expect an
on current increase with VDS, there is actually a breaking point after VDS=0.6V where
Ion starts to decline, due to the relevance of BTBT.
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Figure 4.9: Off state subbands of low and high VDS devices. The BTBT window almost vanishes
in the VDS = 0.1 V transistor, since the Fermi level at the drain is now above the top of the
HV subband.

Now that the influence of the bias voltage has been clarified, we shall select a more
optimal VDS value for the rest of this study. To benefit from an improved off state
while still responding to the HP specifications, we will now focus VDS = 0.5V, which
shall not present the HIBL responsible of the SS degradation shown in Sec.4.5. In the
next steps, we will review some aspects which are more intrinsic to the device, like its
geometry of the materials it is made of.

4.7 Gate length scaling

The gate length is one of the key metrics of a transistor. By reducing the length of the
channel, one can integrate a greater quantity of devices in a given chip. However this
usually come with various side effects, which we will now evaluate in the case of the
VDS=0.5V device. After running simulations for different values of LG, ranging from
8 to 40 nm, we observe that the shortening of the gate leads to a worse electrostatic
integrity. This is revealed by Fig. 4.11-a, which shows that the SS increases as LG is
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Figure 4.10: (a) SS evolution for different values of supply voltages VDD = VDS = VGS. The
slope shows decent values up to VDD > 0.6V , beyond which it is quickly deteriorated due to the
HIBL described previously. This effect ultimately results in a drop of Ion at high VDD (b), from
which we can conclude that there is not real interest of using this device beyond VDD = 0.6V

reduced. On a positive note, we notice that the devices with a gate longer than 25 nm
present a subthreshold swing close to the theoretical limit of 60 mV/dec.
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Figure 4.11: (a) Subthreshold swing evolution as a function of LG in the VDS=0.5V device. A
reduction of the gate length deteriorates its electrostatic control on the channel, thus hindering
the ability of the device to switch quickly from an off to an on state. (b) This behavior is
confirmed by an increase of the DIBL as LG is shortened. Indeed, when the gate size is
reduced, it starts to be affected by the potential of the surrounding low-energy regions, especially
the drain.

Another phenomenon resulting from a reduced electrostatic control is the so called
drain-induced barrier lowering (DIBL). The gate electrode has for sole purpose the
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creation (and the removal) of a potential barrier in the channel. When LG is reduced,
the source and the drain tend to be more strongly coupled to the channel region. Due
to the voltage difference between the source and the drain, the latter naturally tends
to reduce the barrier height in the channel. This effect is amplified when the region on
which the gate potential is applied - i.e. the channel - is reduced. Such a lowering of
the potential barrier facilitates the flow of thermionic electrons at the off state, which
increases the off current. In practice, this effect is evaluated by comparing the change
of the threshold voltage Vth for a given VDS difference:

DIBL =
V high

th − V low
th

V high
DS − V low

DS

. (4.8)

In the present case, Vth is extracted a Ith = 1 A/m. The DIBL is then computed by
comparing the devices supplied at VDS = 0.1V and 0.5V. The higher the DIBL, the
more difficult it is for the gate to properly control the current. In accordance with the
previous observations, Fig.4.11-b confirms that the short-gate transistors suffer from
a decreased electrostatic integrity.

Figure 4.12: Evolution of the simulated Ion (extracted for Ioff=0.1 A/m) as a function of LG,
compared with the experimental values obtained in a similar 2.4 nm thick InAs MOSFET [6].
In both cases, the current is reduced in the shorter devices, due to the worse electrostatic
integrity described earlier. However, the simulations do not account properly for the on current
degradation observed in actual long-gate devices.

As a consequence, the on current is also reduced in shorter devices. In Fig.4.12, we plot
the evolution of Ion with LG and our simulations are compared with the experimental
data of Ref. [6]. We observe that the simulations, which are closer to ideal devices,
are less sensitive to LG reduction. However, and quite surprisingly, the experimental
devices reach slightly higher on currents that the simulated ones at moderate gate
lengths. Finally, for LG & 30 nm, the experimental case exhibits a Ion drop, whereas
the latter is not visible in our simulations. This Ion decrease may be caused by some
scattering mechanisms that cause an increased channel resistance in longer devices, or
by the presence of other sources of disorder. In the simulations, neglecting these effects
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In0.75Ga0.25As

EG 0.78 (eV)
EP 19.60 (eV)
γC 4.15
γL1 17.23
γL2 6.89
γL3 7.63
m∗ 0.038 (m0)

∆SO 0.41 (eV)
ε 14.85

b -1.85
d -3.70
av -1.04
ac -5.60

Table 4.4: k · p (top) and strain (bottom) parameters used for the InGaAs channel MOSFET.

may allow the transport to remain ballistic in the largest devices.

4.8 Comparison with InGaAs
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Figure 4.13: Transfer caracteristics of the InAs and InGaAs devices, at VDS = 0.5V (a) and
VDS = 0.7V (b). The gate voltage is chosen so that VGS(Ioff) = 0V with Ioff = 0.1 A/m in
both devices. The InAs transistor is strongly degraded as VDS is increased (both in terms of SS
and Ion) whereas the InGaAs device remains unperturbed.

We now propose to study a similar device, where the channel material has been
replaced with In0.75Ga0.25As (denoted InGaAs in the rest of this section), as this com-
pounds is also a potential candidate for nanotransistor design [11]. The k·p parameters
of this material are shown in Tab.4.4. Due to the different lattice parameter of this
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Figure 4.15: On current evolution with LG in InAs and InGaAs devices.

material, the longitudinal and transverse strain components in the channel are now
ε‖ = −0.0140 and ε⊥ = 0.0048.
In Fig.4.13-a, we plot the transfer characteristic of both the InAs and the InGaAs
devices for VDS=0.5V. We note that the InGaAs MOSFET does not suffer from the
off -state degradation previously observed in the InAs device. However, for VDS=0.5V,
by the time the current has reached Ioff=0.1 A/m, the SS of both devices stabilizes
to the same value. Similar simulations done for LG ranging from 8 to 40 nm con-
firm that the introduction of InGaAs does not change the SS of the transistor in the
operating regime (i.e. above IDS = 0.1 A/m) or the ratio of tunneling current at
VGS = 0 V. However, as stated above, the remote off state (VGS < Voff) is greatly
improved with this new channel material – i.e. IDS keeps getting smaller as VGS is
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decreased. This can be explained by the larger gap of the InGaAs, which breaks the
BTBT window, thus preventing the HIBL. Fig.4.14 confirms that the hole accumu-
lation is significantly weaker in the InGaAs device, even at really small VGS. Even
though this property is not an actual advantage at VDS = 0.5 V, it can allow the
InGaAs device to perform decently at higher bias voltages, where the InAs transistor
suffers from a degraded Ioff . The VDD scalability of the InGaAs transistor will not be
thoroughly detailed, as we have chosen to focus on the VDS = 0.5 V case. Nevertheless,
we can briefly mention Fig.4.13-b, which represents the transfer characteristic of III-V
MOSFETs for VDS = 0.7 V. Here, the InGaAs device shows an excellent performance,
with SS = 68 mV/dec and Ion = 1340 A/m (which clearly outperforms its InAs coun-
terpart, with SS = 192 mV/dec and Ion = 600 A/m).
Both materials present a similar SS at VDS = 0.5 V, but another strong point of the
InGaAs device is its improved Ion. Fig.4.15 shows that the on current is affected the
same way by LG in both devices (which confirms that the electrostatic control is sim-
ilar in both cases) but the InGaAs MOSFET is shifted up of more than 200 A/m.
This semiconductor has a higher effective mass than InAs (due to the presence of
GaAs), which means that it should present a lower electron mobility. However, this
also allows this material to benefit from a larger density of states. This can be seen
more intuitively in the effective mass model, where the dispersion relation gets wider
as m∗ is increased. In low effective mass semiconductors such as InAs, the charge in
channel may thus be reduced. In turn, this generates a drop of the current, which can,
in some cases, cancel out the on current enhancement resulting from the increased
electron velocity. Ultimately, InGaAs devices show an improved performance in such
a n-type thin-body MOSFET by benefiting from a better Ion without suffering from a
SS degradation.

4.9 Channel thickness
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Figure 4.16: Transfer characteristics of 2.4 nm and 10 nm thick InGaAs MOSFETS

We now investigate the effect of the channel thickness on the transport. In practice,
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Figure 4.17: (a) On-state electron density in the 10 nm thick InGaAs channel. The carrier
distribution shows a lack of homogeneity under the gate. (b) Vertical cross section of Fig.(a)
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Figure 4.18: Subthreshold swing (a) and DIBL (b) evolution as a function of LG in the 2.4 nm
and 10 nm thick devices. The thicker transistor shows an overall worse SS and DIBL (especially
at small LG) and a greater sensitivity to gate length scaling.

growing thick InAs layers can result in a loss of material quality, by inducing disloca-
tions or other types of defects. For that reason, we simulate a device similar to that of
the last section, with an InGaAs channel of thickness tch=10 nm. The I(V) curves of
the thick and thin devices are compared in Fig.4.16. At LG=25 nm, the 10 nm thick
transistor appears to be degraded, both in terms of SS and Ion. After investigating
the off state, we conclude that the larger thickness is not responsible for any increase
in off-tunneling. However, the electrostatic control is strongly impacted by the new
geometry of the channel. As depicted in Figs.4.17-a and 4.17-b, the on-state charge
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distribution is far less homogeneous in the thick device than it was in the original
2.4 nm MOSFET (see Fig.4.4 for comparison). The carriers now accumulate near the
oxide, while the bottom of the channel is less populated. We can postulate that this
effect is due to the gate potential having a greater influence on the uppermost part of
the channel. However, this is only a part of the story, since the charge density also
appears more directed toward the bottom of the channel in some other VGS steps (not
shown here). We can thus conclude that this behavior is mainly related to quantum
confinement effects. This irregular carrier density participates to the degradation of
the electrostatic control. Indeed, as shown in Fig.4.18-a, the SS of the thick device
is increased compared to the thin-body case. As a result, the DIBL is also far more
pronounced (Fig.4.18-b). On top of showing degraded performance, this thick-channel
InGaAs transistor is also more sensitive to gate length scaling. This is clearly brought
to light by Fig.4.19, which shows that Ion drops quickly as VGS is decreased. Only
for LG & 35 nm, this device starts to benefit from an on current better than that of
the thin MOSFET. This corresponds to the point where the device does not undergo
significant electrostatic degradation anymore and can start to take advantage of its
larger channel to conduct more current.
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Figure 4.19: Ion evolution as a function of LG in the 2.4 nm and 10 nm thick devices. Due
to the its degraded electrostatics, the 10 nm thick device cannot benefit from its wider channel,
except at large gate length where it starts to outperform the 2.4 nm thick channel.

4.10 Spacer effect

We come back to the original 2.4 nm InAs device, to study the effect of the spacer.
As explained earlier, these undoped regions located on both sides of the gate help to
improve the electrostatic control by putting the center of the channel away from the
influence of the source and the drain. This induces a reduced electrostatic screening
under the gate, which enhances the modulation of the gate potential barrier. Never-
theless, we propose to study a device where the spacer has been removed.
Fig.4.20-a confirms the predictions that have just been made, by showing a SS degra-
dation in the device without spacers. However, when LG is increased, the SS of both
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Figure 4.20: (a) SS and (b) Ion evolution with LG of an InAs device with and without spacer
(respectively denoted “normal” and “no spacer”). The SS reduction is only significant for the
smallest gate lengths, suggesting that the spacers could be omitted is the channel is long enough.
Moreover, the removal of the spacers positively impacts the on current, by facilitating the flow
of electrons.
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Figure 4.21: LC subband and current density of the device without spacer, for a LG=8 nm
(a) and 25 nm (b). The dotted line corresponds to the subband of the device with spacer, at
the same VGS. Voff corresponds to the gate voltage extracted at Ioff=0.1 A/m. The barrier is
decreased both in terms of height and width: the first generates thermionic current above the
barrier, while the second contributes to STDT through the barrier.

devices becomes very close. Actually, the spacers seem to only be useful for the short
gate lengths, where the gate screening is stronger. To gain physical insight on this
behavior, we plot the off-state LC subband and the current density of long and short
devices in Figs.4.21-a and -b. We first note that the barrier height is lower in the
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Figure 4.22: Tunneling current ratio as a function of LG, extracted at IDS=Ioff=0.1 A/m. The
contribution of STDT to the off current is significant in the short devices without spacer. In
longer devices (with or without spacer), the off current is essentially due to thermionic effects.

devices without spacer. This barrier lowering, due to the coupling of the gate with
the contacts, is even more noticeable at low gate length. The decline of the potential
barrier promotes the flow of thermionic current above the top of the LC, from which
a parasitic off current originates. Indeed, even though the Fermi level is below the top
of the barrier, electrons excited by thermal fluctuations can still jump above it. As
it could be expected, the barrier also appears thinner when the spacers are removed,
since the transition between the contacts and the gate gets sharper. This creates an
additional undesired effect at the off state, namely source to drain tunneling (STDT).
To evaluate the respective contributions of thermionic and STDT currents, we plot
the tunneling ratio as a function of LG in Fig.4.22 (more details about the tunneling
current extraction can be found in the next chapter, where we use this method more
extensively). In both cases, the tunneling component is more significant at low gate
lengths. But the most striking result is that STDT in the transistor without spacer
prevails overs thermionic current for LG . 15 nm. When the gate length is increased,
however, both devices show a similar off current composition (which is essentially due
to thermionic effects). Again, this confirms that when LG is large enough, the off state
is not strongly impacted by the removal of the spacers. Further investigations show no
significant change in HIBL when the spacers are removed, which allows us to conclude
that most of the impact of the spacers takes place in the higher energy range, near the
top of the LC.
Finally, the removal of the spacers causes a dramatic increase of Ion, as shown in
Fig.4.20-b. The shorter channel is indeed in favor of a larger flow of electron due to
ballistic effects. Overall, we conclude that the spacers are only useful at small gate
lengths, where they improve the SS, with practically no Ion deterioration. However,
when LG & 20 nm, removing the spacers has a substantial positive effect on the on
current, without strong impact on the off state and the slope. In the case of InGaAs
devices, the removal of the spacers leads to similar results.
Depending on the targeted gate length for future transistor devices, further investiga-



84 CHAPTER 4. IN(GA)AS PLANAR MOSFET

tion would be required to determine the most optimized choice of spacer length.

4.11 Conclusions and perspectives

As a first application for our NEGF code, we performed 2D full-quantum simulations
of InAs and InGaAs nMOSFETs. We started by conducting supply-voltage scaling
investigation to evaluate the performance of such devices at different channel lengths.
It appeared that the InAs transistor could not work properly for VDS > 0.6 V due to
its small gap, enabling strong HIBL. For that reason, it seems that InGaAs devices
are the most suitable for high VDD applications.
Even though both InAs and InGaAs are sensitive to gate-length scaling we have shown
that, for a given LG, the latter presented an overall better Ion, while the SS remains
identical in both cases (and compatible with the ITRS requirements for HP applica-
tions).
The advantage of ultra-thin-body architectures for III-V MOSFETs has also been
demonstrated. The degradation of the electrostatic control in a 10 nm-thick channel
deteriorates both the slope and the on current. While we have only carried out this
investigation for an InGaAs channel (since thick InAs layers are not practical to grow
experimentally), we can mention a similar simulation performed for a 10 nm-thick InAs
MOSFET, which reveals that the IDS current could not even reach 0.1 A/m (i.e. Ioff)
in the selected VGS range.
We also demonstrated that the spacers were not really relevant if the gate-length was
large enough. For example, for LG = 25 nm and VDS = 0.5 V, the spacers only improve
the SS by 2 or 3 mV/dec in both InAs and InGaAs devices. In addition, they can
even be quite detrimental for Ion, since they introduce additional length to the channel,
which prevents to current to be strictly ballistic. In the examples cited above, remov-
ing the spacer takes the on current from 500 A/m (InAs with spacers) or 800 A/m
(InGaAs with spacers) to 1800 A/m. We finally remind that getting rid of the spacers
improves the overall size of the device, which is also one of the aspirations of this work.
To sum up, for LG = 25 nm and VDS = 0.5 V, by combining the advantages of using
an ultra-thin 2.4 nm channel and removing the spacers the InAs and InGaAs de-
vices can achieve a performance of SS ' 71 mV/dec and Ion ' 1800 A/m.
In addition, by taking advantage of the better VDD scalability of InGaAs, one can
design a 25 nm-long InGaAs device without spacer that reaches Ion ' 4000 A/m and
SS ' 71 mV/dec for VDS = 0.7 V (which would not have been possible with InAs).
We can also mention the impact of some additional parameters that have been omitted
in the discussion:

• First, we have deliberately chosen to work with a state-of-the-art EOT in order
to study cutting edge devices. By example, with the choice of a thicker EOT of
0.8nm, the performance of the device drops from 67.5 to 70 mV/dec in terms of
SS and from 490 to 380 A/m in terms of Ion.

• Second, we have not discussed the effect of the strain on the quality of the
transport. In a test simulation where the strain was removed, the performance
seemed to be slightly degraded. However, more extensive work would be required
to draw any conclusion on that matter.

• Third, we have not mentioned the possible impact of interface traps and other



4.11. CONCLUSIONS AND PERSPECTIVES 85

defects such that surface roughness. The first issue has already been reviewed
in [12], while the second will be addressed in next chapter, in the case of nanowire
transistors.
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On a more applicative point of view, Fig.4.23 shows the output characteristics of a
device with LG=25 nm presenting an ideal linear behavior at small VDS and high
saturation currents, demonstrating the excellent transport properties of the ultra-thin
III-V MOSFET. One can also estimate the intrinsic switching time Tsw and switching
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energy Esw of a digital inverter, defined as

Tsw =
Qon −Qoff

Ion
, (4.9)

and
Esw = VDD ×

(
Qon −Qoff

)
, (4.10)

where Qon and Qoff are the channel charges in the on and off states, obtained by
integrating the charge density in the device. As expected, in Fig.4.24 the switching
delay of the 25 nm InAs MOSFET decreases with VDD, while the switching energy
increases (even if more factors, such as the parasitic capacitances, should be taken into
consideration to realistically predict these metrics).
As stated before, one of the main impediments in the design of efficient III-V MOSFETs
is to obtain an acceptable electrostatic control. Here, one of the main hurdles to
overcome is the fact that the gate controls only one side of the channel. To address
this problem, we will move to 3D simulations in the next chapter and study III-V
nanowire FETs.
On a final note, we inform the reader that the work presented in this chapter has
resulted in a journal publication [14].
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CHAPTER 5

InAs Nanowire-FET

In which we study nanowire architectures for InAs nanotransistors and com-
pare them to their silicon counterparts – with a specific focus on the influence
of surface roughness.

In the previous chapter, we have shown that the electrostatic integrity was a vi-
tal aspect of transistor design. A possible solution to improve this feature without
having to increase the gate length consists in using a nanowire (NW) architecture.
The efficiency of the device comes from the fact that the semiconductor channel can
be surrounded by the gate oxide – unlike a “classical” MOSFET for which only one
side of the channel is exposed to the gate. The aim of this chapter is thus to study
the behavior of NWFETs and determine if they can perform better that the planar
architecture. Since the experimental demonstration of such devices is still difficult as
of today, we lack a basis of comparison for our III-V devices. For that reason, we will
also perform similar simulations for strained silicon devices.
As already mentioned, III-V materials present both advantages and drawbacks with
respect to Si. On one hand, they have a smaller effective mass and energy band-
gap resulting in higher injection velocity and bulk mobility, but on the other hand,
they present a smaller DOS and are more sensitive to quantum effects such as phase-
coherent tunneling and lateral confinement. Therefore, at short gate lengths, these
materials are expected to present a higher ballisticity [1], but also larger SCEs leading
to a reduced electrostatic control of the gate on the channel region [2]. The relative
impact of such effects is strongly dependent not only on the gate length, but also on
the applied bias voltage.
In the second half of this chapter, we will also study whether III-V based transistors
are similarly affected by device variability [3] induced by surface roughness at the
semiconductor-oxide interface.

5.1 Description of the device

Various designs of multi-gate transistors exist [4–6]. We choose to focus on square gate-
all-around (GAA) NWFETs with a 5× 5 nm2 cross section. Even though actual NWs
usually feature circular cross sections [7], the finite-difference discretization employed in
this work (see Sec.2.6) is more suitable for rectangular shapes. Fig.5.1 shows a scheme
of the device, and its geometrical parameters are listed in Tab.5.1. We considered a gate
length LG ranging from 5 to 20 nm in order to study the impact of SCEs, ballisticity and
quantum tunneling on these devices. Since a better electrostatic integrity is expected,
no spacer is used between the source/drain regions and the gate. This helps to further
reduce the size of the nanodevice. The EOT was set to 0.6 nm, in accordance with
the ITRS specifications for the 5 nm technological node and beyond [8]. The doping
concentration of the source and drain extensions NSD was chosen in order to enforce

89
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Figure 5.1: Scheme of the NWFET. The lengths of the source-drain regions and the gate (re-
spectively LSD and LG) as well as the height of the channel and the oxide thickness (respectively
H and tox) are detailed in Tab.5.1.

LG W = H tox LSD NSD Transport
(nm) (nm) (nm) (nm) (cm−3) direction

InAs 5-20 5 1.2 20 3 · 1019 [100]
sSi 5-20 5 1.2 10 1020 [110]

Table 5.1: Device parameters of InAs and Si square GAA NWFETs. The oxide dielectric
constant is εox = 7.8 ε0. W (H) is the width (height) of the semiconductor, LSD is the length
of the source and drain extensions, and NSD is their donor concentration. A compressive
uniaxial stress of -1 GPa along the [110] direction is applied to the silicon devices, now denoted
“sSi”.

degenerate conditions for the semiconductor in the doped regions and mimic small
resistance contacts. Since InAs presents a smaller DOS that Si, we set NSi

SD > N InAs
SD ,

in order to make both semiconductors degenerate. Moreover, the value of NSD used for
the InAs devices is limited by the technological difficulties in doping III-V materials [9]
and by the necessity to suppress the tunneling leakage reported for InAs nanowires with
higher doping concentrations [10]. The reader may also notice that the source/drain
lengths LSD are not identical in both cases. This comes from the fact that a shorter
distance is required for silicon to reach charge neutrality (i.e. flat electric potential),
due to its larger DOS and subsequent shorter screening length. Therefore, reducing
LSiSD from 20 nm to 10 nm allows us to save computational time, without distorting
the results (since the contacts are considered as a periodic prolongation of the source
and drain regions).
It has been shown that the inclusion of strain could improve the performance of silicon
devices. For that reason, we apply a compressive uniaxial stress of -1 GPa along
the [110] to the silicon devices, now denoted as “sSi”. The InAs NWFETs are left
unstrained, as the effect of strain on III-V materials is not the purpose of this study.
Such an InAs/sSi comparison is similar to the benchmarking simulations done in [11]
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for MOSFET devices.

Phonons Modes Temp.
Dac(eV) Dopt(108 eV/cm) ~ωopt(meV) CB VB (K)

InAs 5.8 2 30 10 10
300

sSi 14.7 11, 2, 2 63.3, 63.3, 47.5 20 0

Table 5.2: Simulation parameters for InAs and sSi NWFETs. Due to the large gap of silicon,
the valence band of the sSi is not taken into account since it does not contribute to transport.
The phonon parameters are taken from [12] for InAs and from [13] for sSi.

The sSi devices are simulated with the 2-band k · p Hamiltonian detailed in Ref. [14],
where only the conduction band is taken into account. Indeed, the effect of the valence
band can be neglected in silicon, due to its large bandgap energy EG. The Si phonon
parameters are shown in Tab.5.2, as well as the values used for InAs (that are the same
than in Chap.4). In both simulations, 20 modes are used and are equitably distributed
between the CB and the VB in the case of InAs.

5.2 Gate-length scaling

As expected, the performance of the device depends on the gate length. Fig. 5.2
shows the transfer characteristics of InAs and sSi NWFETs with perfect channel-oxide
interfaces for LG = 5 nm and 10 nm. The IDS versus VGS curve of the InAs device
with LG = 10 nm shows an ambipolar behavior at negative gate voltage values due to
the activation of BTBT when the HV subband in the channel gets higher than the LC
subband in the source region [2]. The sSi devices do not exhibit any ambipolarity due
to their larger energy bandgap that suppresses BTBT. Similarly to the n-MOSFET
from Chap.4, the device reaches the Ioff value required for HP applications, but is still
unable to fulfill the low power (LP) requirements (that necessitate Ioff = 10−5 A/m).
Since these devices are interesting only for high performance applications, we adopted
an Ioff target of 0.1 A/m and focused on VDD of 0.5 and 0.7 V close to the ITRS
specifications for the ultimate technological nodes [8].
As previously observed in the case of the UTB MOSFET, both InAs and sSi devices
show a SS degradation with decreasing LG due to the loss of electrostatic integrity and
the increase of direct STDT in the off state (as detailed hereafter). Fig.5.3 illustrates
the scaling of the SS with the gate length. For large LG, the InAs device presents
a better SS than the sSi one, whereas it is the opposite for short LG. These results
can be explained by analyzing the electrostatic properties of the two devices at large
LGand their sensitivity to electron tunneling at short LG.

5.2.1 Electrostatic integrity

One would expect a worst electrostatic integrity of InAs as a consequence of the higher
permittivity of this material with respect to sSi. This can be quantified by using the
concept of the natural transistor length λ, which estimates the length of the region
electrostatically influenced by the drain contact [6].
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Figure 5.2: Transfer characteristics at VDS= 0.7 V of (a) the InAs NWFET and (b) the sSi
NWFET with LG= 5 and 10 nm. The current is normalized with respect to the lateral width
W = 5 nm. Other device parameters are listed in Tab.5.1. The right y-axis shows the current
on a linear scale.

For a rectangular GAA nanowire, it reads

λ =

√
εsc

4εox

[
1 +

εox

4εsc

W

Tox

]
ToxW (5.1)

where εsc is the dielectric constant of the semiconductor (11.7 ε0 for sSi and 14.6 ε0 for
InAs). According to Eq.(5.1), the natural length equals 2.09 nm for InAs and 1.95 nm
for sSi transistors.
Despite this prediction, it has been observed that the InAs MOSFETs could achieve a
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Figure 5.3: Subthreshold swing as a function of LG for InAs and sSi NWFETs with (a) VDS=
0.5 V and (b) VDS= 0.7 V. SS is computed by averaging the IDS between 0.01 and 1 A/m.
Off-state tunneling is the main reason for the difference observed at short LG.
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Figure 5.4: Spatial profile along the transport direction (x-axis) of the lowest conduction sub-
band of InAs and sSi NWFETs in the off state (VGS = 0 V and VDS = VDD = 0.7 V). The
Fermi level at source is EFs = 0 eV. The gated region extends from x = 10 nm to x = 20 nm.
The source and drain doped regions of the InAs NWFET further extend for 10 nm beyond the
interval considered in the plot in order to attain the charge neutrality at the source and drain
contacts.

better SS, due to another competing phenomenon: the smaller DOS exhibited by InAs
implies a longer screening length [11] and hence requires a smaller doping concentration
to obtain degenerate subbands (see Tab. 5.1). A comparison of the lowest conduction
subband in the off state for the InAs and the sSi nanowires is shown in Fig. 5.4. In
the InAs nanowire, the lower doping concentration in the source and drain extensions
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Figure 5.5: (a) Off-state spectral current through the LC subband, in the InAs NWFET. Direct
STDT is observed, as a portion of the current tunnels through the potential barrier. (b) The
off current exhibits two spikes: a thermionic component and a tunneling component, located
respectively above and below the top of the LC subband, denoted Etop
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Figure 5.6: Percentage of the tunneling component in the off current versus LG for InAs and
sSi NWFETs with (a) VDS= 0.5 V and (b) VDS= 0.7 V. InAs is more sensitive to STDT when
the gate length is shorter than 14 nm

allows the gate to wield a stronger electrostatic control over the channel and hence
to assure a better SS. As can be seen, this has also an influence on the shape of the
potential experienced by electrons traveling from the source to the drain, which is
wider in InAs devices and thus also helps in reducing the tunneling component of the
current in the subthreshold regime. This effect explains how the InAs NWFETs can
achieve a slightly better SS than the sSi devices for some values of LG. However, the
low effective mass and high mobility of InAs act against this advantage, by increasing
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the electron tunneling, especially at short LG.

5.2.2 Off-state tunneling

Fig.5.5 illustrates the off -state spectral current in the InAs device and confirms the
presence of STDT. The off current can be split into two components: a thermionic
contribution, that consists of electrons from the tail of the Fermi distribution jumping
above the barrier; and a tunneling (STDT) contribution, which is due to the electrons
tunneling through the potential barrier. For short LG, the SS of both InAs and sSi
NWFETs starts to be dominated by this tunneling effect. This is quantified in Fig. 5.6,
which shows the tunneling component of the IDS , computed by integrating the current
spectrum from the minimum of the conduction band up to Etop

C − 2kBT , where Etop
C

is the top of the lowest conduction subband [2]. Figure 5.6 shows that, in the InAs
NWFETs, the percentage of tunneling current is substantially higher than in the sSi
ones already at LG = 12 nm, thus indicating that the faster SS degradation for shorter
gate lengths in InAs devices is related to the increased STDT.
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Figure 5.7: On current versus LG for InAs and sSi NWFETs for (a) VDD= VDS= 0.5 V and
(b) VDD= VDS= 0.7 V. Ioff= 0.1 A/m. Decreasing the gate length causes Ionto drop. The sSi
devices also show signs of non-balisticity LG &14 nm, due to their lower electron mobility.

5.2.3 Ion degradation

Fig.5.7 presents the Ion as a function of LG for InAs and sSi NWFETs at VDD = 0.5 V
and 0.7 V. This figure presumes a large flexibility of the gate work-function, which
is implicitly modified to attain the value of Ioff = 0.1 A/m for the different gate
lengths. As can be seen, the maximal Ion values are obtained by sSi NWFETs at
around LG=̃ 12 nm, while the Ion drops down when LG becomes smaller than 10 nm.
For LG > 12 nm, the Ion of the sSi devices decreases due to the increasing impact of
phonon scattering on the channel resistance, while the InAs devices keep experienc-
ing an increase of Ion with LG due to their higher ballisticity. Despite this different
behavior, for large values of LG the InAs devices still provide an on current smaller
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than the sSi devices. The latter can sustain a larger Ion thanks to the higher density
of states, implying a larger number of conducting modes at high VGS. The electrical
performances of the two devices get closer only for small values of LG, when the gate
overdrive of the on state is reduced as a consequence of the SS degradation analyzed
in the rest of this section and the number of conducting channels becomes comparable.
The dramatic drop of Ion visible in Fig. 5.7 for LG .10 nm is therefore essentially due
to the SS deterioration induced by STDT.

5.2.4 Comparison with the MOSFET
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Figure 5.8: (a) SS and (b) Ion comparison in an InAs NWFET and a 2.4 nm thick InAs
MOSFET without spacers (from Chap.4) at VDS=0.5V. The current in the NW has been renor-
malised according to the configuration represented in Fig.5.9.

Figure 5.9: Possible spacial arrangement of parallel nanowires, that would occupy the same
wafer area than the planar MOSFET. A spacing of 2W (10 nm) corresponds to an optimistic
case of density of integration.

As already stated, the NW devices are improved versions of the MOSFETs, as they
feature a more effective gate, wrapping around the channel. In Fig.5.8-a, we compare
the SS of the present device with the InAs MOSFET from the previous chapter. For
this comparison to be fair, we selected the UTB InAs MOSFET without spacers (since
the NWFET does not feature any spacer either). At long gate lengths, the NWFET
exhibits a better SS than the MOSFET due to its enhanced electrostatic integrity.
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However, it appears that the GAA architecture is not able to ensure a significantly
better SS than the planar architecture when LG is reduced – that is, when the off -
tunneling ratio gets close to 100%. In Fig.5.8-b, we compare the evolution of the on
current in both architectures. In order to make this examination possible, the Ion

in the NWFET had to be renormalised. The MOSFET has been simulated as a 2D
system, periodic in the y direction. An equivalent design would be to build an array of
nanowires, placed side by side in the (x,y) plane. Depending on the spacing between
these NWs, the renormalised on current will differ. Even though the experimental
fabrication of well-arranged NWFETs is still hard to achieve, we assume that a lateral
spacing close to 2 ×W could ultimately be reached, as illustrated in Fig.5.9. Under
this assumption, the Ion obtained would be greater than that of the planar MOSFET
on the studied LG range.

5.3 Surface roughness

Figure 5.10: Comparison of the electron density at the on state in an InAs NWFET, with and
without surface roughness (SR).

The growth of nanowires requires methods such as metal-organic chemical vapor depo-
sition [15], that can not yet achieve the precision of traditionnal etching techniques. In
realistic conditions, the devices are thus likely to exhibit surface roughness (SR) [16].
This variability is especially relevant at the channel-oxide interface [17], since it modi-
fies the shape and the cross-section of the channel. In this work, the impact of surface
roughness was evaluated by computing the transfer characteristics of InAs and sSi
NWFETs for 50 spatial realizations of the rough channel-oxide interfaces. Fig.5.11
corresponds to the rough InAs and sSi devices with LG = 5 nm and 10 nm. Rough
interfaces induce a positive threshold-voltage shift (∆Vth) in these devices due to the
increase of the top of the lowest conduction subband, which finally determines the
threshold voltage [18]. In Fig.5.11, a larger dispersion of Vth in InAs devices is found
since they are more sensitive to quantum confinement effects and develop higher am-
plitudes of subband fluctuations. This can be intuitively explained by considering that
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Figure 5.11: Transfer characteristics at VDS = 0.7 V of (top) InAs and (bottom) sSi NWFETs
with LG = 5 nm (right) and 10 nm (left), for different realizations of rough interfaces. The
RMS of SR is ∆R = 0.4 nm. The curves of the devices with no surface roughness are also
shown with a dashed line for comparison. The dispersion is more important in the InAs devices.

subband fluctuations are, at the first order in the lateral size variation, inversely pro-
portional to the effective mass [19].
Fig.5.12 illustrates the SS and Ioff variability of InAs and sSi NWFETs for different
realizations of the rough interfaces. For the devices including surface roughness, the
Ioff has been determined as the current at the VGS value for which the device with
perfect interfaces features IDS = 0.1 A/m. As it can be seen, rough interfaces induce a
significantly larger variability of SS in InAs NWFETs. Moreover, Fig.5.11 shows that
the SS of InAs devices is typically improved by roughness. According to the discus-
sion of Fig.5.13, this can be explained by considering that the SR tends to induce an
increase of the potential barrier in the off state and hence, a decrease of the STDT.
To confirm this statement, a correlation between the off -state tunneling process and
the SS can be observed in Fig.5.14. The figure reveals that the LG=5 nm and 10 nm
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InAs devices exhibit less STDT when exposed to surface roughness and that the SS
is subsequently improved. We note that STDT is a predominant phenomenon in the
5 nm InAs NWFETs, since the off state tunneling ratio in these devices is close to
100%. This also explains the Ioff/SS correlation observed in Fig.5.12-a for InAs.
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Figure 5.12: Subthreshold swing versus off current at VDS = 0.7 V of (circles) InAs and
(squares) sSi NWFETs with LG = 5 nm (a) and 10 nm (b), for different realizations of rough
interfaces. The RMS of SR is ∆R = 0.4 nm. The values obtained for the devices with perfect
interfaces are also shown for comparison. The InAs NWFETs present larger Ioffand SS dis-
persions than the sSi devices. However, the the SS of the sSi NWFETs tend to be degraded by
the addition of SR, whereas the opposite is observed for InAs.

Finally, Fig.5.15 shows the Ion versus the Ioff of InAs and sSi NWFETs extracted from
the data in Fig. 5.11. As already observed in Fig.5.12, the Ioff variability is much larger
in InAs nanowires due to their larger subband fluctuations, whereas the Ion variabil-
ity is similar. Another interesting finding is that, in sSi nanowires, the roughness is
responsible for a stronger Ion reduction with respect to the device without roughness.
At short gate length (LG=5 nm), the rough InAs devices can even outperform their
rough sSi counterpart in terms of Ion. This is a consequence, on one hand, of the SS
improvement induced by SR in InAs NWFETs and, on the other hand, of the differ-
ent lateral distribution of the electron charge at high gate overdrives: back-scattering
due to roughness is stronger in sSi nanowires because their on-state transport involves
higher-order transverse modes. This means that carriers in sSi NWs are closer to
the interfaces, whereas they are more localized in the center of the cross-section in
InAs NWs, as shown in Fig.5.16. Hence, as illustrated in Figs.5.12 and 5.15, surface
roughness has both negative and positive effects on InAs NWFETs: it induces a signif-
icant device variability but also an improvement of the SS, which results in Ion values
closer to those of the sSi counterpart for LG=10 nm and even (on average) better at
LG=5 nm. The carrier distribution is further investigated in Fig.5.17, which presents
a sample of the rough nanowire realizations. On one hand, at the off state, the InAs
NWFETs show more fluctuations that the sSi ones. On the other hand, at the on
state, the InAs and sSi carrier distributions are similarly affected by spatial fluctua-
tions. This observation confirms that most of the differences between these materials
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Figure 5.13: Spatial profiles along the transport direction (x-axis) of the subbands of the InAs
NWFET with (dashed lines) perfect and (solid lines) rough interfaces in the off state (VGS=̃0 V
and VDS = VDD = 0.7 V). In example (a), the LC subband is only slightly modified by the
roughness and the corresponding SS is close to that of the clean device. Example (b) corresponds
to a rough device with a greatly improved SS, where the SR induces an increase of the height
of the LC barrier.
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Figure 5.14: Subthreshold swing versus off-tunneling current ratio in InAs NWFETs with
surface roughness, for LG=5 nm (a) and 10 nm (b), at VDS=0.7V. The SR tends to reduce
off-state tunneling (via the mechanism described in Fig.5.13). Such a reduction is correlated
with an enhancement of the SS.

arise from their off -state behavior.
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Figure 5.15: On current versus off current at VDS = 0.7 V of (circles) InAs and (squares) sSi
NWFETs with LG = 5 nm (ab) and 10 nm (b) for different realizations of rough interfaces.
The on current in rough InAs devices is less degraded than in sSi. It can even be improved at
LG=5 nm, where the InAs NWFETs can actually outperform the sSi devices.
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Figure 5.16: (a) Cross-section of the charge density the channel of an InAs NWFET, at the
on state and without SR. (b) Similar plot for the sSi device

5.4 Conclusion

We have performed full-quantum simulations aimed to benchmark the use of InAs
against strained Si as channel material in sub-20 nm gate-length GAA NWFETs. The
performance of these devices was evaluated in the context of high power applications,
with Ioff= 0.1 A/m and VDS= 0.5 V and 0.7 V. Even though the sSi devices reached
better overall Ion and SS values, our results indicate that a slightly better electrostatic
integrity could be obtained in InAs NWFETs with LG > 10 nm. An increased STDT



102 CHAPTER 5. INAS NANOWIRE-FET

(a) (b)

(c) (d)

Figure 5.17: Cross-section of the charge density in a rough InAs NWFET (top) and in a rough
sSi NWFET (bottom), at the off state (left) and at the on state (right). We have selected
specific examples that are representative of the overall behavior.

is the main reason that explains why the InAs devices hardly outperform the sSi ones,
despite benefiting from a lower source doping and a longer natural gate length. The
sSi devices also exhibit signs of non-ballisticity at long gate lengths, whereas the InAs
NWFETs do not present such a degradation, due to their higher electron mobility.
Compared to the UTB InAs MOSFET from the previous chapter, the GAA architec-
ture presented better SS and current, with a subthreshold swing close to the 60mV/dec
limit for LG & 12 nm and a Ion greater than that of the planar device, if we assume
an optimistic density of integration.
The second part of this chapter was focused on the effect of surface roughness at the
semiconductor-oxide interface. We have simulated about ∼200 realizations of rough
sSi and InAs devices with ∆R = 0.4 nm, with VDS = 0.7 V and LG = 5 nm and 10 nm.
We have found that the Ioff and SS variability of InAs was greater that in sSi. An
interesting result is that the swing of the InAs NWFET actually improves when a SR
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is applied. The effect is due to a change in the shape of the subbands, that tends
to reduce the occurrence of STDT. However, it is not sufficient for the average rough
InAs device to outperform a typical rough sSi device. The reduction of the value of the
on current induced by the surface roughness is typically lower in InAs devices than in
sSi ones. At LG = 5 nm, when the electrical performance of both devices is degraded
by STDT and poor electrostatics, the rough InAs devices even exhibits (on average) a
better Ion than the sSi one.
At the time of writing, these results have been submitted to the Transactions on Elec-
tron Devices and are currently being reviewed to be published soon [20].

5.4.1 Perspectives

In this chapter, we have covered a wide range of gate lengths, but the effect of the lateral
and vertical dimensions has not been treated. This study could indeed be extended
to thinner or wider devices. The implementation of a finite elements discretization
would also allow us to investigate more complex shapes, such as circular nanowires.
In order to make the simulations more realistic, we could also evaluate the impact
of other non-idealities, such as the presence of traps. Similarly to the investigations
conducted in Chap.4, it would also be possible to simulate NWFETs based on other
III-V materials, such as InGaAs (or GaSb, for p-type devices).

Figure 5.18: Equicharge envelope in a rough InAs NWFET with a 3×3 nm2 cross section (the
x, y and z axis are not represented proportionally). This specific realization of SR gives rise
to a 3 nm-long dot in the channel. The total charge integrated in the channel is close to the
elementary charge e.

Studies have also shown that surface roughness could actually be useful to generate
quantum dots in thin-channel Si NWFETs [21]. As shown in Fig.5.18, we have been
able to obtain similar results with rough InAs NWFETs, where a quantum dot was
formed in the middle of the channel, as a result of the roughness. Such “artificial
atoms” could prove themselves useful in possible future applications, like single electron
transistors or quantum bits.
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CHAPTER 6

Vertical Tunnel-FET

In which we take advantage of the quantum nature of the transport to design
a tunneling transistor, made of stacked III-V semiconductors

Chapters 4 and 5 dealt with the optimization the current field-effect transistor
architecture, by studying the impact of the device dimensions, the channel material
and the geometry of the gate. We have shown that some quantum effects, such as
BTBT or STDT, are detrimental for the device operation. In this present chapter, we
focus on a novel kind of architecture that instead does take advantage of the quantum
tunneling effect.
A tunnel-FET (TFET) presents the same overall structure as a standard MOSFET:
it has a source, a channel and a drain, and the current is controlled by the gate.
The major difference comes from the nature of the channel barrier. The switching no
longer consists in a modulation of the conduction band, but rather in a squeezing of the
band-to-band tunneling window between the source VB and the drain CB. This is very
convenient in order to achieve a very low SS, which is no more limited by thermionic
emission as in standard FETs. The working mechanism is detailed in Fig.6.1, where
a typical configuration with p-doped source, n-doped drain and intrinsic channel is
considered. Thanks to the p-type donors, the Fermi level in the source is located in
(or close to) the VB, while the CB is not populated. On the contrary, in the n-doped
drain the Fermi level is located in (or close to) the conduction band. The gate acts
on the intrinsic channel by increasing or reducing the width of the BTBT barrier
with the source. When the gate voltage is low, the large width of the barrier prevent
electrons from tunneling, thus suppressing the off current. When the gate voltage is
high enough, the electrons start to tunnel towards the lower energy n-doped drain.
Remarkably, the current is thus entirely due to BTBT, since no thermionic emission is
possible in such a setup, where the gap above the source valence band cut the density of
states in the energy region of the Fermi distribution tail. For that reason, the TFETs
are expected to feature subthermionic slopes, which means that they can break the
60 mV/dec SS limit.
Due to its indirect gap, silicon is not the ideal candidate for the realization of such a
device. However, III-V semiconductors are especially suitable for the design of TFETs,
since they offer a wide variety of direct gap compounds with different band structures,
which allows one to obtain the desired band profile by combining them properly.

6.1 Description of the device

Various III-V TFET architectures have been considered in previous studies [2–10].
The most intuitive way to design a tunneling transistor is to mimic the shape of a
MOSFET [2–4] and replace the source, channel and drain materials in order to obtain a
band profile similar to that depicted in Fig.6.1. As in Chap.5, it is also possible to resort
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Figure 6.1: General working principle of a TFET. At the off state, a wide barrier prevents the
electrons from tunneling from the source VB to the drain CB. When the barrier is modulated
by the gate, it becomes thin enough to allow BTBT from the VB to the CB. Note that this
picture, which depicts filled states below the Fermi energy EF , is only true at T = 0 K. At
room temperature, the tails of the Fermi functions are essential in the device operation.

Figure 6.2: Sketch of the vertical GaSb/AlSb/InAs Tunnel-FET. The “default” device uses tS=
4.8 nm, tB= 1.2 nm and tD= 4.8 nm. Lov, Lext and Lsp are all 20 nm long. The source layer
is p-doped with an acceptor concentration NS = 5× 1019cm−3, while the drain layer is n-doped
on a 20 nm length, with a donor concentration ND = 2 × 1019cm−3. Most of the parameters
will be modified in search of the best design options, as shown in Tab.6.1

Lov Lext Lsp tB tS tD EOT ND Transport
(nm) (nm) (nm) (nm) (nm) (nm) (nm) (1019cm−3) direction

10-30 0-30 0-20 0-10.4 3-6.1 3-4.8 0.6 0.5-2 [100]

Table 6.1: Geometry of the heterojunction TFET. All the values written as a range will we
subjected to a specific investigation (where at least the minimum and the maximum of each given
range will be simulated). The thicknesses tB, tS and tD correspond respectively to multiples of
the AlSb, GaSb and InAs lattice parameters.

to multigate or gate-all-around architectures [5–8] to improve the electrostatic control.
However, these longitudinal TFET devices are sensitive to trap-assisted tunneling,
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Figure 6.3: Energy of the CB (down arrows) and the VB (up arrows) at the Γ point for different
III-V compounds, arranged according to their lattice parameter. The vertical lines correspond
the energy gaps. The offset between the conduction band of different materials given by their
electron affinity [1], where we have taken the CB of InAs as a reference. The semiconductors
highlighted in the figure present several advantages for the design of a vertical TFET: InAs and
GaSb are broken-gap, AlSb has a large gap, and these three materials present a similar lattice
parameter.

which can degrade the off state [11]. The alternative solution investigated in this
work is to simulate a 2D vertical heterojunction TFET [9, 10], that consists of stacked
semiconductor layers. In the present case, three III-V compounds are considered:
GaSb, AlSb and InAs.
As illustrated in Fig.6.2, the source is the bottom p-doped layer of GaSb, while the
drain is the top layer of InAs with a n-doped access region. A thin interlayer of AlSb is
sandwiched between top and bottom layers. This material is ideal as a tunnel barrier
because of its large gap. BTBT occurs through the overlap (OL) region controlled
by the gate, which, at high gate voltages, induces the crossing of the conduction
band in the top layer and of the valence band in the bottom layer. At low gate
voltages, on the contrary, the conduction band minimum of the top layer is higher
than the valence band maximum of the bottom layer inside the overlap region and
the tunneling current is suppressed. Fig.6.3 shows that GaSb, AlSb and InAs have
similar lattice constants [1] and can be pseudomorphically grown in order to achieve
defect-free interfaces. Indeed, the layers are deposited in the (x,y) plane, which is
perpendicular to the growth direction and should lead to high quality interfaces. For
that reason, we also neglect the influence of strain in this study. Another advantage of
such a configuration, also illustrated in Fig.6.3, is that the GaSb/InAs heterojunction is
broken-gap (the GaSb VB is energetically higher the the InAs CB) and can therefore
provide large on-current values due to the short tunneling path occurring between
source and channel regions [12]. Finally, the fact that the gate is perpendicular to the
direction of the current in the channel (see the red arrow in Fig.6.2) should offer an
improved control of the tunneling barrier, since the gate potential acts nearly uniformly
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InAs AlSb GaSb

EG 0.417 2.386 0.812 (eV)
EP 18.0 13.0 22.0 (eV)
γC 2.25 2.10 2.91
γL1 20.00 5.18 13.4
γL2 8.50 1.97 4.7
γL3 9.20 1.97 6.0
m∗ 0.026 0.14 0.039 (m0)

∆SO 0.39 0.68 0.76 (eV)
ε 15.5 12.04 15.7 (ε0)

Table 6.2: k ·p parameters used in the simulation for the three semiconductors layers, extracted
from [1].

on the entire length of the AlSb layer. As VGS gets larger, the tunneling probability
increases in the whole overlap length at once. We are thus dealing with a so called
line tunneling (as opposed to the point tunneling, found in longitudinal TFETs). The
aim of this chapter is to assess the effect of the various geometrical parameters of this
III-V vertical TFET (see Tab.6.1), among which we find the AlSb barrier thickness tB
the overlap length Lov, the gate-extension length Lext, or the spacer length Lsp. We
will also investigate the role of the drain doping ND and the impact of phonons on the
transport through the barrier.

6.2 Simulations

The layers are grown along the z direction, while the transport takes place along the
x direction (see Fig.6.1). Similarly to the device of Chap.4, the system is periodic
in the y direction and we resort to 2D simulations. Even though 3D simulations can
be useful to account for possible defects, surface roughness or lateral confinement, we
will not consider these aspects here. Although the electron flow is vertical in the OL
region, the problem is solved by slicing the TFET in the x direction. This approach is
still valid, since the i-th slice is described by a submatrix Ĥi,i of Ĥtot that accounts for
heterostructures in the vertical direction (see the discretization method, in Sec.2.6).

Phonons Modes Temp.
Dac(eV) Dopt(108 eV/cm) ~ωop(meV) CB VB (K)

5.8 2 30 4 16 300

Table 6.3: Simulation parameters used for the TFET device. The phonon deformation poten-
tials are taken from [13]

The band profile evolution along the vertical direction is shown in Fig.6.4. In the
source, the Fermi level ESF is energetically lower than the VB. It ensures that the
electrons do not populate the CB, where they could easily pass through the interlayer
barrier. As the device is switched on, the band profile in the drain is strongly shifted
towards lower energies. The InAs CB in now below ESF and a tunneling current can
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OL region (vertical cut along the z direction), for the device with tB= 1.2 nm.

flow through the AlSb layer.
Unlike the previous MOSFET and NWFET devices, such a nanotransistor is especially
suitable for low power (LP) applications [14]. Indeed, the presence of a tunneling
barrier does not allow for the high current densities required in the HP specifications.
However, as stated before, TFETs can benefit from an improved SS and very small off
current. For these reasons, the transistor will be operated with a bias voltage VDS =
0.3 V and a off current Ioff = 10−5 A/m, in accordance with the ITRS requirements.

6.3 Drain spacer

As explained in Chap.4, a spacer region can be useful to reduce the coupling between
the contacts and the gate, thus enhancing the electrostatic integrity. In our case, such
a spacer is only necessary in the drain, since there is no need for the gate to affect
the GaSb layer. We first simulate a TFET with tB = 1.2 nm, Lext = 20 nm and
Lov = 20 nm (the rest of the default parameters are listed in the caption of Fig.6.2).
Its transfer characteristics with and without spacer are plotted in Fig.6.5. The figure
shows that the addition of a 20 nm spacer in the drain region allows the device to
reach a smaller off -state current, which subsequently improves its SS. Thanks to this
spacer, the slope is steeper than the 60 mV/dec mark up to VGS ' 0.22 V. The on
current only reaches 18 A/m, but this still represents an Ion/Ioff ratio greater than 106.
This confirms that the TFET device is well suited for LP applications, where it can
outperform the MOSFET architecture in terms of SS. The TFET with a Lsp = 20 nm
and tB = 1.2 nm will be our reference device for the rest of this chapter’s investigations.

6.4 Gate geometry

There are two ways to extend the gate of the device. First, one can increase the overlap
length Lov, that is defined as the region where the gate covers all three semiconductor
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layers at once. Second, one can vary the gate extension length Lext, which means that
the gate electrode is stretched on both sides of the overlap region. Note that changing
the extension length does not modify the size of the OL region.
Fig.6.6 shows the I(V) characteristic of the TFET for Lext ranging from 0 to 30 nm. It
appears that longer extension lengths greatly improve the off state and the SS. Indeed
increasing Lext also extends the length of the BTBT path, as can be seen in Fig.6.7.
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Figure 6.7: (a) LDOS integrated over the z direction in the device with Lext = 10 nm. The
white area is the gap, while the available states are represented by the color map. (b) Same
plot with Lext = 30 nm. The BTBT distance seen by the carriers has increased and the off
tunneling current is consequently reduced.
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Figure 6.8: (a) Off-state electron density along the x direction, inside the AlSb interlayer, for
different values of Lext. Reducing the extension lengths increases the carrier density along
the right edge of the AlSb interlayer. The coordinate x = 0 nm denotes the beginning of the
overlap region, that ends at x = 20 nm. (b) On-state electron density inside the AlSb layer
for different overlap lengths. At the on state, the charge is accumulated along the edges of the
overlap region. This behavior is almost independent of the value of Lov.

The tunneling takes place between the HV and the LC subbands, at energies close to
the source Fermi level. Indeed, BTBT occurs where the tunneling path is the shortest
and decreases exponentially when this paths gets longer. As a result, the TFETs with
Lext ≥ 20 nm reach easily the desired Ioff value of 10−5 A/m and present a better
SS. As shown in Fig.6.8-a, the additional off -tunneling contribution for small values
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of Lext appears along the right edge of the OL region. This SS improvement also leads
to a shift of Voff which, in turn, increases Von and Ion. For example, when Lext goes
from 20 to 30 nm, the SS goes from 42 to 25 mV/dec and Ion also gets dramatically
boosted from 18 to 120 A/m. The Lext=30 nm device thus presents an Ion/Ioff ratio
of more than 107.
Contrary to Lext, which is extremely beneficial for both the SS and the Ion, the overlap
length Lov very weakly affects the behavior TFET (if not at all). We could have
expected that a larger Lov would enhance the value of Ion, but this is not actually the
case. Between Lov=10 nm and Lov=40 nm, the Ion and the SS stay nearly identical,
at 18 A/m and 42 mV/dec, respectively. This is due to the fact that most of the
electrons are packed along the edges of the AlSb interlayer at the on state, as shown in
Fig.6.8-b. Unlike what has been postulated in this chapter’s introduction, the TFET
actually appears to exhibit point tunneling (instead of line tunneling). Since both the
off and on current are mostly governed by edge effects, Lov does not impact the overall
transfer characteristic of the TFET. For that reason, Lov will be limited to 20 nm in
the rest of this work to avoid any further increase in the size of the device.
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Figure 6.9: Transfer characteristic of the TFET device for different barrier thicknesses. In-
creasing tB improves the SS, without strongly affecting the on state. The curves for tB =
4.9 nm and 6.1 nm, are not shown here, but nearly overlap with that of tB = 4.3 nm. Above
tB = 7.4 nm, the SS starts to visibly degrade again.

6.5 Tunnel barrier scaling

We now study the effect of the AlSb barrier thickness tB, by simulating TFET devices
with tB ranging from 0 to 10.4 nm. The chosen values for the thickness of this layer
correspond to multiples of the AlSb lattice constant, that is close to 0.61 nm [1]. Fig.6.9
demonstrates that the devices with larger tB values exhibit a lower off -state current
and a better SS. We plot the off -state band profile of a thin (tB= 1.2 nm) and a thick
(tB= 4.9 nm) AlSb layer in Fig.6.10. As it could be expected, increasing the thickness
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Figure 6.11: (a) On-state band profile performed on the edge of the OL region and zoomed-in
at the extremities of the bands. The dashed lines represent the energies of the modes. The
HVB mode in the source is located above the LCB mode in the drain. (b) Vertical profile of the
transverse modes corresponding to the HVB and LCB modes. A strong mixing can be observed
in the AlSb layer.

of this layer directly affects the width of the tunneling barrier. Since the BTBT current
is exponentially suppressed with when the barrier is enlarged, the devices with a larger
tB present en smaller off current
More unexpectedly, increasing tB appears to be beneficial in terms the on current,
at least for tB ≤ 4.9 nm. To gain more insight on this behavior, we examine the
individual transverse modes in the CB and VB. As detailed in Tab.6.3, the simulation
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Figure 6.12: SS and Ion evolution as a function of tB. Thicker barriers reduce the off-state
current, while the on-state current remains high due to resonant tunneling. This leads to a
improved SS and a subsequent increased Ion (due to the Vth shift). The on current starts to be
degraded for tB & 4.9 nm

uses 16 valence modes and 4 conduction modes. The most significant modes for the
transport are the (energetically) highest VB (HVB) mode and the lowest CB (LCB)
mode. Fig.6.11 shows that, in the OL region, the HVB mode is located above the LCB
mode, which is a consequence of the crossing of the CB in InAs and VB in GaSb. By
analyzing the vertical profile of the transverse modes in Fig.6.11-b, it can be seen that
that these modes are strongly mixed among them and they easily penetrate into the
AlSb barrier. As a consequence, the transmission probability through the AlSb layer
remains relevant when the thickness of the barrier is increased and does not prevent
the achievement of high on currents. At the same time, in the device with thicker
barrier, the gate voltage leaves almost unaltered the VB in the GaSb, which implies a
more efficient crossing of the HVB and LCB modes and an improved SS with respect
to thinner barrier devices. This means that it exists a tradeoff between the decrease
of the transmission probability through the barrier and the SS enhancement given by
increasing tB. The best tradeoff appears to be a barrier thickness close to 5 nm, which
is large enough to allow an efficient crossing/uncrossing the of VB and CB, but it still
leads to a a strong transverse mode mixing able to provide a high tunneling probability
through the AlSb barrier. For that reason, the performance enhancement stops when
tB & 4.9 nm, as shown un Fig.6.12. Around this value, the TFET exhibits very good
performances, with Ion >100 A/m and SS = 30 mV/dec.

6.6 Drain doping

A closer look at the subbands led us to consider a third approach to improve the
slope of the device. The addition of a spacer or extension lengths create a stretch of
the LC subband in the drain, that subsequently reduces the off tunneling. Another
solution to increase the length of the BTBT path is to bend the LC subband towards
higher energies. This can be achieved with a reduction of the drain doping ND, as
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Figure 6.13: (a) Transfert characteristic of TFETs with ND = 2 to 0.125×1019cm3. (b)
Corresponding subband profiles along the x direction. The spectral current if shown for the
device with ND = 2×1019cm3. Decreasing the source doping brings the source LC towards
higher energies, which increases the width of the BTBT barrier seen by the electrons. The off
current is reduced and the performance of the TFET is improved.

illustrated in Fig.6.13. Low values of ND lift the LC subband in the drain contact
region, which also changes the height of the subband in the BTBT region. In practice,
this optimization will be limited by the position of the drain Fermi level EDF . Indeed,
the LC subband has to be above EDF at the contact, in order to avoid forming a
Schottky barrier with the metallic contact. For that reason, the optimal choice for ND

is 0.5×1019cm−3 (see Fig.6.13). This doping improves the SS from 42 to 32 mV/dec
and the Ion from 18 to 71 A/m.
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Figure 6.14: Transfer characteristics of a TFET with different source layer thicknesses (a) and
drain layer thicknesses (b). The curve for tD = 3 nm has been shifted from 0.1 V to the left
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Figure 6.15: (a) Effect of the confinement on the CB and the highest VB of an GaSb layer,
plotted along the [100] direction. (b) Evolution of the electrical potential with VGS, along the
vertical direction, for different drain thicknesses tD.

6.7 Source and drain thicknesses

We now consider the effect of the GaSb and InAs layers thicknesses, denoted respec-
tively tS (source) and tD (drain). Fig.6.14-a shows that a thicker source layer can
be beneficial for the on state of the vertical TFET device. Indeed, by increasing tS,
the quantum confinement in the GaSb layer is reduced, which, in turn, increases the
density of states in the layer. This allows the device to conduct more current at the
on state. Another contribution of tS on Ion can be appreciated in Fig.6.15-a, which
corroborates the fact that the bandgap EG is smaller in the thick-source device. This
amplifies the broken-gap nature of the bands and consequently enlarges the tunneling
window. This feature is again beneficial for Ion, while having little, or no effect at all,
on the off current. Compared to the normal device (tS = 4.8 nm) whose Ion is 18
A/m, the TFET with tS = 6.1 nm exhibits Ion= 31 A/m and no change in SS.
Conversely, it can be observed in Fig.6.14-b that a decrease of the InAs thickness tD
has a positive impact on both the swing and the on current. This effect can be di-
rectly connected to the improved electrostatic control present in the device with a thin
drain, as illustrated in Fig.6.15-b. The potential profile, extracted along the vertical z
direction, is substantially more affected by a given ∆VGS in the device with small tD.
Indeed, the smaller thickness of the drain layer allows the gate to wield an enhanced
electrostatic control on this part of the device. As a consequence, the SS goes from 42
to 33 mV/dec and the Ion jumps from 18 to 58 A/m.

6.8 Ideal configuration

In the previous sections, we have found efficient ways to enhance the SS and the
Ion of the vertical TFET. We now propose to combine some of these solutions in
order to design a more optimized device. For this device, we have selected Lov =



6.8. IDEAL CONFIGURATION 119

20
22
24
26
28
30
32
34
36
38
40
42
44

A B C

S
S
(m
V
/d
ec
)

Device

L
ex
t
=
3
0
n
m

N
D
=
0
.5
×
1
0
1
9
cm

-3

tB = 4.3 nm

tB
=
1.2
nm

(a)

0

20

40

60

80

100

120

140

160

180

A B C

I o
n
(A
/m
)

Device

L
ex
t
=
3
0
n
m

N
D
=
0
.5
×
1
0
1
9
cm

-3

t B
=
1.
2
nm

tB
= 4
.3 n
m

(b)

Figure 6.16: SS and Ionevolution as successive optimizations are added to the tB = 1.2 and 4.3
nm devices. Case A corresponds to Lext = 20 nm and ND = 2×1019cm−3. Case B corresponds
to case A with an increased Lextand case C corresponds to case B with a reduced ND.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0 0.1 0.2 0.3 0.4 0.5

I D
S
(A
/m
)

VGS (V)

Von
Von
M

T

MO
SF
ET

T
F
E
T

60
m
V/
de
c

Figure 6.17: “Optimal” TFET device compared with the InGaAs MOSFET (VDS = 0.5 V) of
Chap.4. The curves have been shifted to obtain Voff = 0 V in both devices. Even though the
current appears to be higher in the TFET, the MOSFET actually has a better Ion since its
higher supply voltage allows it to reach a larger Von (denoted VM

on here).

20 nm , Lsp =20 nm and Lext = 30 nm. Even though further increasing Lsp and Lext

could lead to even better results, we still try to design a device compatible with large
scale integration, whose dimension does not exceed 100 nm. As explained in Sec.6.6,
the ultimate drain doping ND is limited to 0.5×1019 cm−3. Fig.6.16 illustrates the
cumulative effect of Lext and ND on the device performance, for two different barrier
thicknesses. Even though the TFET with tB = 4.3 nm initially presents better SS
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and Ion than the device with tB = 1.2 nm (as explained in Sec.6.5), increasing Lext

from 20 to 30 nm is more beneficial for the thinnest device. When ND is reduced from
2×1019 to 0.5×1019 cm−3, the performances of the thick and thin devices meet. We
even observe a degradation of the tB = 4.3 nm device in this third case, suggesting that
we may be reaching a limitation case, that can be difficult to exceed. Furthermore,
the weakly doped device is rather idealistic and could present contact resistances in
practice. When looking for the best option, a pragmatic choice would be the thick
device with a normal doping and an increased extension length (case B at 4.3 nm,
in the figure) as it presents very good SS and Ion, without the risk of showing high
contact access resistances.
The I-V curve of this optimal device is compared with that of the MOSFET from
Chap.2 in Fig.6.17. The swing difference between the two kind of devices appears very
clearly on this graph. We also notice that the on-state currents is in fact higher in the
TFET than in the MOSFET. However, since the TFET is operated with VDD=̃ 0.3V,
its Ion is actually still lower than in the MOSFET.

6.9 Phonons
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Figure 6.18: Evolution of the TFET’s transfer characteristic (plain lines) and the local swing
(dashed lines) with the optical phonons deformation potential.

In the off state and in the absence of inelastic phonon scattering, the current is de-
termined by the electrons tunneling from the bottom layer to the top layer at energies
close to the Fermi level at the source. In the presence of optical phonon scattering,
however, electron tunneling from the top to the bottom layer can occur also at ener-
gies higher than the top of the valence band, due to optical phonon absorption, and
such additional tunneling paths can increase the current. This effect is illustrated in
Fig.6.19, where increased optical phonons enlarge the tunneling window, by allowing
the electrons to tunnel at energies at least 3×~ωopt above the source Fermi level ESF .
The relevance of this phenomenon depends on the intensity of the electron–phonon
interaction, that is the optical phonon deformation potential and the temperature,
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(a) (b)

Figure 6.19: Spectral current at VGS= 0.1 V in the initial device (a) and when Dopt is mul-
tiplied by 10 (b). Increasing the deformation potential enhanced optical phonon absorption in
the OL region (symbolized as curved arrows), which facilitates the tunneling from the HV to
the LC subband. Energy jumps of height ~ωopt are clearly visible and correspond to phonon
absorption/emission events.
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Figure 6.20: SS and Ion evolution as a function of the optical phonon deformation potential.
By allowing more BTBT at the off state, the phonons degrade the SS. This detrimental effect
is however rather weak in the studied device.

that we suppose to be the same for the optical phonon bath and the lattice. Fig.6.18
presents the effect of an increased optical phonons deformation potential on the trans-
fer characteristic. The slope is degraded by optical phonons at low VGS, but is then
improved at higher gate voltages. The net effect of optical phonons on the SS and Ion

is thus very weak, as shown in Fig.6.20. These results are consistent with a previous
study performed on longitudinal III-V TFETs, where the value of Dopt did not strongly
impact the performance of the device [15].
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6.10 Conclusion

In this chapter, we have investigated the properties of vertical heterojunction tunnel-
FETs. The GaSb/AlSb/InAs semiconductor combination offers both a broken-gap
configuration and a large energy gap in the barrier, and is thus well suited for the
design of such a device. This chapter also demonstrated the necessity of resorting
to a quantum formalism to model innovative nanodevices, since a TFET device is
inherently quantum.
We have shown that, with the right set of parameters, the vertical TFET could fulfil
the ITRS requirements for LP applications, with VDS=0.3 V. In order to reduce the
off -state current and reach Ioff = 10−5 A/m, one can resort to several tune-ups in the
geometry of the device. The addition of spacer or longer gate extension regions both
participate in the reduction of the off tunneling and in the improvement of the swing.
This is also beneficial for the value of Ion. However, the overlap length Lov had quasi
non-existent effect on both the SS and the Ion.
Another way to improve the SS was to increase the barrier thickness tB. Here, the
most surprising result is that this modification only starts to degrade the on current
when tB gets greater than 5 nm. We have concluded that this was due to a stronger
crossing of the HVB and LCB modes, resulting in a mixing of the confined states,
in the devices with a thicker gate. This effect can compensate the decrease of the
transmission probability due to the enlargement of the barrier, until the thickness of
the latter reaches 5 nm.
Another slope enhancement was obtained by reducing the drain doping ND. Indeed,
this change in donor concentration lifts the LC subband in the drain, which greatly
increases the off tunneling distance. However, the on state is not impacted by this
change in doping, since the tunneling window becomes large enough at VDS = Von to
not be a limitation for the current flow. The practicality of this approach can however
be debated, since the choice of ND is limited by the Fermi energy at the drain contact.
The thicknesses of the source and the drain layers also impacted the behavior of the
device, due to electrostatic effects in the case of the drain and confinement effects in the
case of the source. The reduction of the drain thickness led to promising performance
improvements, but has not been investigated more deeply due to convergence issues in
the simulations for tD. 2 nm.
Finally, the effect of electron-phonon interactions has been investigated. We concluded
that the phonons merely led to a shift of Vth, but nearly no performance degradation.
The work presented in this section has been partially included in a journal publication
[11] and an additional, more complete, article is in preparation.

6.10.1 Perspectives

Our study of TFETs is far to be exhaustive. In particular, several disorder sources
and optimization parameters should be investigated. For example, though interface
traps can be strongly limited thanks to the vertical growth of the device, they could
nevertheless affect the SS by promoting subthreshold tunneling. Their effect should
be thus investigated in order to evaluate their possible impact on the performances.
Another aspect that could be studied is the role of strain, which could be exploited to
optimize the devices by modulating the band structure in the different regions of the
TFETs.
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CHAPTER 7

General conclusion

7.1 Summary

In this PhD, we have implemented numerical methods to simulate III-V semiconductor
transistors. Thanks to an eight-band k ·p Hamiltonian model and the non-equilibrium
Green’s functions (NEGF) formalism, we were able to account for the quantum effects
that arise in these nanoscale devices. Indeed, in order to accurately predict their be-
havior, one must consider the impact of quantum confinement, tunneling, interferences,
or electron-phonon interactions, to cite some of them. In our simulations, these phe-
nomena manifest themselves in the form of short-channel effects (SCEs), energy band
shifts, band-to-band and source-to-drain tunneling processes (BTBT and STDT) and
also influence scattering events. Additionally, the model has been improved by the
implementation of strain effects and surface roughness. This allowed us to formulate
predictions about the characteristics of different logic devices in a realistic context. The
aim of this work was to look for possible III-V based candidates that could outperform
current silicon technology. To carry out this investigation, we considered different de-
vice architectures.
First, we simulated an ultra-thin body (UTB) n-type MOSFET with a III-V channel.
We have shown that SCEs had a substantial impact on the subthreshold swing (SS)
and the on current. In particular, when the gate length was reduced, we observed the
presence of drain induced barrier lowering (DIBL) and off-state STDT. In addition,
hole-induced barrier lowering (HIBL) occurred for high supply voltages, due to the
small gap of In(Ga)As. We shall stress that this phenomenon is not present in silicon,
which represents an important difference between these materials. Our results suggest
that the III-V UTB device should perform better than a III-V bulk architecture. An-
other interesting result is that a removal of the spacers does not strongly affect the
transistor, which is an encouraging finding for device size reduction. Since this kind of
device can already be fabricated experimentally, these simulations simultaneously al-
lowed us to verify the validity of the code, by comparing our results with experimental
data. Overall, the III-V MOSFET presents promising performances when compared
to silicon, but still needs to be improved in order to outperform it.
Second, we made a further step towards ultra-scaled devices, by simulating gate-all-
around nanowire transistors (NWFETs). These devices can be seen as an improved
version of the UTB MOSFET, where the gate has been reshaped to be wrapped around
the channel. Due to that fact that the experimental realization of this architecture is
still technically demanding, we also had to model its strained silicon (sSi) counterpart
to be used as a benchmark. Since we are aware of the fabrication difficulties, we also
investigated the influence of surface variability at the channel-oxide interface. On the
computational point of view, these calculations were especially resource-demanding, as
the absence of periodicity in the system necessitated 3D simulations. Even though the
larger density of states and immunity to STDT in the sSi devices always resulted in
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a higher Ion, we found that a better electrostatic integrity could be obtained in InAs
NWFETs when the gate length is longer than 10 nm. InAs devices exhibited a larger
Ioff , Ion and SS variability when surface roughness was applied. Despite this strong
dispersion, the overall performance degradation in InAs was weaker than in Si. We
also made the surprising observation that roughness could even enhance the SS (at
LG = 10 nm) or the Ion (at LG = 5 nm) of the InAs NWFETs. Despite these advan-
tageous features, we had to conclude that the InAs NWFETs could hardly outperform
their silicon counterpart.
Third, we moved to a totally different kind of architecture, by studying a vertical
heterojunction tunnel-FET (TFET) device. Since this device has no exact silicon
counterpart, this final work constituted a state-of-the-art study, that could only be
compared with other types of pre-existing technologies. This last example demon-
strates the interest of the simulation approach, as it enables us to investigate the
properties of nanoscale structures that are intricate to study both analytically and
experimentally. It also emphasizes the importance of resorting to full-quantum simu-
lations, as a TFET is intrinsically based on quantum tunneling. III-V compounds are
ideal channel materials for this type of device, since their variety of band alignments
and gap tunability allows the engineering of heterostructures with band profiles that
can only be achieved with high values of doping in silicon. We have shown that the
presence of a spacer, the addition of gate extensions, the increase of the barrier and
drain thicknesses, or the reduction of the drain doping could all be beneficial for the
SS and the Ion of the device. By combining some of these optimizations, the vertical
III-V TFET exhibited very promising performances for low power applications, with
a SS close to 20 mV/dec and an Ion/Ioff ratio greater than 107. Finally, the effect
of acoustic and optical phonons has been investigated, as they strongly impact the
off-state tunneling current, by allowing inelastic electron transitions from the source
valence band to the drain conduction band. We should also stress that – as of today –
the (possibly optimistic) simulation results for TFETs do not match the experimental
observations. This can be due to the presence of trap assisted tunneling, material
imperfections or structure irregularities that are not considered in our model.
In this work, the numerical approach gave us a chance to perform deep and precise
physical analysis of the investigated devices and to identify the most important pa-
rameters that determine their performance. One of the difficulties of computational
physics is distinguishing between the results that do describe the real behavior of the
simulated system and those that are just a consequence of the model approximations
or the computational limits, and are thus unphysical or misleading. For that reason, it
is essential to adopt a global view, both on a physical and on a computational stand-
points. Among the technical difficulties that had to be dealt with during these PhD
years, we can cite the convergence problems due to numerical issues, the abundant
adjustments that were required in the code before it could lead to satisfactory results
and the regular need to discriminate between real and spurious solutions – that can
arise from both code imperfections and flaws in the model.

7.2 Perspectives

We can foresee several perspectives for the work conducted during this thesis. With
only minor code adjustments, the behavior of all the devices could, for example, be
investigated under various crystal orientations, strain conditions, or with defects at dif-
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ferent interfaces. We could also simulate the p-type counterpart of the UTB MOSFET
and the NWFET. Besides, the diameter and the shape of the nanowire device could
be the subject of an entire new study. Regarding the TFET, it is certain that many
geometrical configurations still need to be investigated. Among the others perspective
of this work, we can mention the necessity to include in our simulations a more accu-
rate description of the system (atomistic effects through, for example, the empirical
pseudopotential method), more disorder models (trap assisted tunneling mechanisms,
non-local phonons) and other important phenomena (such as self-heating).
Despite the promising paths explored in this manuscript, it is still unclear whether it
will be possible to keep improving transistors beyond the 5 nm node in the coming
years or decades. As extensively discussed in this work, size reduction is undoubtedly
a strong limitation to the performances of such devices. However, the strategies em-
ployed in this PhD work (i.e. acting on the materials or on the device architecture)
are not the only valid approaches to improve nanoelectronic devices. Beyond the scope
of this work, other solutions could come from the investigation of different variables to
carry the information, such as the spin of the electron. Other types of carriers, like the
photon or various quasi-particles, may also prove useful in the future. Finally, different
paradigms of computation can also be explored, and an increasing effort is currently
being made towards the realization of quantum computers or neuromorphic chips, to
cite just a few examples. In any case, computational physics is likely remain essential
in the design of novel nanodevices, as the investigation of more and more advanced
phenomena may be necessary to open the doors to new ideas.
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